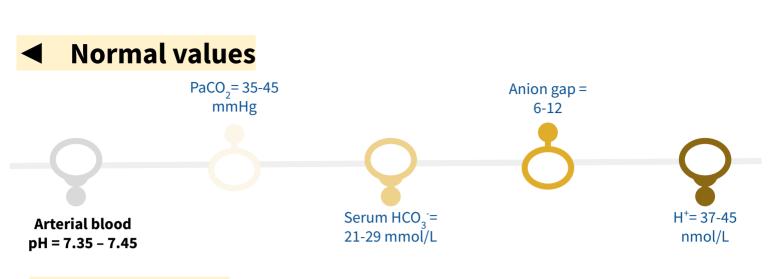


Acid-Base disorders


Objectives:

- ★ Develop an approach to acid base problems
- ★ Identify the primary acid base disturbance
- ★ Solve simple acid base cases

Color index:

Original text Females slides Males slides Doctor's notes Textbook Important Golden notes Extra

Basic recall

Definition

Acid-base balance is concerned with maintaining a normal hydrogen ion concentration in the body fluids. This balance is achieved by utilization of buffers in extracellular fluid and intracellular fluid, by respiratory mechanisms that excrete carbon dioxide, and by renal mechanisms that reabsorb bicarbonate and secrete hydrogen ions.

- Blood pH refers to the level of H+ ions and maintained by several buffering systems.
 - A **decrease** in blood pH is called acidaemia and is caused by acidosis.
 - An **increase** in blood pH is called alkalemia and is caused by alkalosis.
- Disturbances of acid-base balance are described as either <u>metabolic</u> or <u>respiratory</u>, depending on whether the primary disturbance is in HCO₃⁻ or CO₂
- Assessment of acid base abnormalities: typically done using arterial blood gases (ABG)
- Given the ease of obtaining venous blood gases (VBG) and capillary blood gases (CBG) these are often used in **clinical practice**
- The clinical picture is often dominated by the underlying cause rather than the acid-base abnormality itself
- Always check the reference range in your local laboratory.

Primary disturbance:

Primary disorder	Respiratory acidosis	Respiratory alkalosis	Metabolic acidosis	Metabolic alkalosis
Problem	Hypoventilation	Hyperventilation	Gain of H ⁺ or loss of HCO ₃ ⁻	Gain of HCO ₃ ⁻ or loss of H ⁺
рН	Ļ	↑	Ļ	↑
HCO ₃ -	1	Ļ	$\downarrow\downarrow$	↑ ↑
PaCO ₂ ¹	↑ ↑	$\downarrow\downarrow$	Ļ	1

1: PCO₂ does not rise above 55 mmHg because hypoxia then intervenes to drive respiration

Respiratory Acidosis

Definition

Increased PaCO, and decreased pH

Mechanism

- Process that primarily causes **elevation** in PaCO2.
- Reduce effective ventilation e.g. many chronic respiratory diseases (COPD) or drugs depressing the respiratory center.
- Alveolar Hypoventilation → Accumulation of CO₂ → Increases in PaCO₂ → Respiratory acidosis → pH decreases.
- HCO₃⁻ will increase (Compensation) but it needs time (12 -24 h) as the kidney need time to compensate

Clinical features

• Signs of acute CO2 retention: headaches, confusion, and papilledema, flapping tremors

Classification

	Acute Respiratory Acidosis	Chronic Respiratory Acidosis
Causes	 Respiratory: airway obstruction, severe pneumonia, chest trauma/pneumothorax Acute drug intoxication: narcotics, sedatives. Residual neuromuscular blockade. CNS disease (head trauma) 	 Chronic lung disease (COPD) Neuromuscular disease Extreme obesity Chest wall deformity Muscular e.g. Duchenne dystrophy
рН	Low	Almost normal due compensatory mechanism.
Compensation	 Immediate renal compensatory↑of HCO3. HCO3 ↑ by 1 mEq/l for every 10 mmHg ↑ in PaCO2. 	HCO3 ↑ by 3-3.5 mEq/l for every 10 mmHg ↑ in PaCO2 (Due to renal adaptation)

> Treatment:

- Verify patency of airways.
- Give supplemental oxygen: If PaO₂ is low (<60 mmHg), Oxygen is contraindicated in COPD patients (CO2 retention) as it can exacerbate symptoms.
- Treat underlying cause.
- Intubation and mechanical ventilation might be required for:
 - Severe acidosis.
 - $PaCO_2 > 60$ or inability to increase PaO_2 .
 - Mental deterioration.
 - Impending respiratory fatigue.

Respiratory Alkalosis

Definition

Decreased PaCO, and increased pH.

Mechanism

- Process that primarily causes reduction in PaCO2
- Increase ventilation e.g.in response to hypoxia or secondary to metabolic acidosis.
- Alveolar hyperventilation \rightarrow increased wash out CO2 \rightarrow decrease in PaCO2 \rightarrow increased pH.
- Compensation: HCO3- will decrease after (12 -24 h).

Etiology

Hyperventilation of any Cause

Overaggressive mechanical ventilation Pain, Sepsis, Pregnancy, Hepatic failure (cirrhosis)

Medication (salicylate toxicity e.g. aspirin overdose)

Anxiety (most common), Fever (not severe) 2nd most common.

Hypoxemia, Restrictive lung disease

Pulmonary embolism, asthma, pneumonia.

Clinical Features:

lightheadedness, dizziness, anxiety, paresthesia, and perioral numbness

Tetany, Arrhythmias, Trousseau's sign¹ and Chvostek's sign¹ may be positive

Classification

Acute Respiratory Alkalosis	Chronic Respiratory Alkalosis
HCO ³⁻ \downarrow by 2 mEq/l for every 10 mmHg \downarrow in PaCO ₂	HCO^{3-} ↓ by 4-5 mEq/l for every 10 mmHg ↓ in PaCO ₂ .

1: alkalosis promotes the binding of calcium to albumin, resulting in a reduction in ionised calcium concentrations

Respiratory Alkalosis (cont.)

Treatment Sometimes: does not need to be treated (e.g., in the case of pregnancy). 1 Treat underlying cause. 3 Breathe into paper bag to recycle the exhaled CO2 (especially who have anxiety).

Metabolic Acidosis

Definition

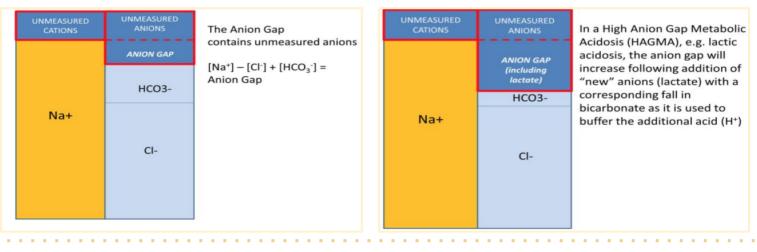
Loss of [HCO3] or addition of [H+] and decreased pH.

Mechanism

- Process that primarily reduced bicarbonate
- Excessive H+ formation e.g. lactic acidosis, ketoacidosis.
- Reduce H+ excretion e.g. renal failure.
- Excessive HCO3- loss e.g. diarrhea.
- Compensation: Hyperventilation \rightarrow decrease PCO2 immediately.
- If the kidneys are intact and the primary cause of acidosis is not renal in origin, the kidney can gradually increase acid secretion over days to weeks and restore a new steady state

l The Anion gap¹: 🖸

- The difference between primary measured cations (Na+ and K+) and the primary measured anions (Cl- and HCO3-) in serum:
 - Anion gap = cations anions \rightarrow AG= ([Na+] + [K+]) ([Cl-] + [HCO3-])
 - Normal range is about 5-11 mmol/L
- It is helpful in determining the cause of a **metabolic acidosis**


1: This gap is normally made up of anions, such as phosphate and sulphate, as well as albumin.

Classification & Etiology:

1-High Anion gap acidosis

• Causes of High Anion Gap Metabolic Acidosis (MUD PILES):

Increased Endogenous production of anions distinct from Cl ⁻ & HCO ₃ ⁻		
Lactic acidosis Plasma lactate > 2 mmol/L	Type I: Tissue hypoxia & peripheral generation of lactate (circulatory failure & shock (septic , cardiogenic, hypovolemic)) Type II: Impaired metabolism of lactate (liver disease, metformin ¹)	
Diabetic Ketoacidosis ²	 ★ DKA: caused by insulin deficiency & exacerbated by catecholamine & stress hormone excess → lipolysis → formation of acidic ketones (acetoacetate, 3-hydroxybutyrate, acetone) Other causes of ketoacidosis: Starvation ketoacidosis: ↓ food intake in situations of high glucose demand e.g. neonates, pregnant & breastfeeding women Alcoholic ketoacidosis: chronic malnutrition & recent alcohol binge 	
Uremia	Renal failure $\rightarrow \downarrow NH_4^+ \& H^+$ excretion, decreased excretion of organic anions, sulfates, and phosphates.	
INH	Impaired hepatic clearance of lactate	
	Increa	sed Exogenous Intake
Ethanol/Ethylene glycol poisoning Accur		Accumulation of glycolate, calcium oxalate crystals
Methanol poisoning		Manifested as visual complaints
Propylene glycol (not paraldehyde)		is metabolized to lactic acid (lactate) and has the potential to cause a high anion gap metabolic acidosis
Aspirin poisoning ³		Accumulation of Salicylates

1: Inhibit lactate metabolism

2: Treat with insulin

3: salicylate overdose may cause both primary metabolic acidosis and primary respiratory alkalosis. Treat by removal of salicylate by dialysis

Classification & Etiology:

2-Normal Anion Gap Acidosis

• HCO₃⁻ decreases and is replaced by Cl⁻ to maintain electroneutrality. Consequently, these disorders are sometimes referred to collectively as **hyperchloraemic acidoses**.

\uparrow GI HCO ₃ ⁻ loss	Diarrhea ¹ , small bowel fistula, pancreatic fistula, urinary diversion procedure , ileostomy, ureterosigmoidostomy	
↑ Renal HCO ₃ ⁻ loss	 Type II (proximal) RTA² hyperparathyroidism tubular damage e.g. drugs, heavy metals, paraproteins Treatment with carbonic anhydrase inhibitors: Acetazolamide therapy 	
↓Renal H⁺excretion	 Type I (classical distal) RTA, Type IV RTA (aldosterone deficiency³) CKD 	
↑ HCl production	 Ammonium chloride ingestion, ↑ catabolism of lysine, arginine Excessive administration of 0.9% saline 	

Clinical Features: 1- Hyperventilation (deep rhythmic breathing) also called Kussmaul respiration. 2- Tissue malfunction such as altered cardiac & central nervous system

Treatment:

Identify & correct the underlying cause

IV bicarbonate⁴ is best reserved for severe acidosis or evidence of tissue dysfunction Mechanical ventilation might be needed if the patient is fatigued (esp. in DKA)

1: Most common cause of normal AG metabolic acidosis

2- further discussed in the next page.

3- hypoaldosterone status could be due to: Addison's disease, spironolactone, amiloride, triamterene.

4- needed especially in normal AG metabolic acidosis

Renal tubular acidosis (RTA):

• RTA should be suspected when there is a hyperchloraemic acidosis with a normal anion gap in the absence of gastrointestinal disturbance.

- Plasma $HCO_3^- < 21 \text{ mmol/L}$, urine pH > 5.3 = RTA
- Confirmed by acid load test

Type I (classical distal) RTA

Impaired acid secretion in late distal tubule of cortical collecting duct intercalated cells

- Consists of: acidosis, hypokalemia, Inability to lower the urine pH below 5.3 despite systemic acidosis, Low urinary ammonium production, Low urinary citrate (owing to increased citrate absorption in the proximal tubule where it can be converted to bicarbonate), Hypercalciuria.
- **Treatment:** sodium bicarbonate, potassium supplements and citrate. Thiazide diuretics are useful by causing volume contraction and increased proximal sodium bicarbonate reabsorption.

Type II (proximal) RTA

Impaired HCO3 reabsorption in proximal tubule

- The cardinal features are acidosis, hypokalaemia, an inability to lower the urine pH below 5.5 despite systemic acidosis, and the appearance of bicarbonate in the urine despite a subnormal plasma bicarbonate.
- **Treatment:** sodium bicarbonate: massive doses may be required to overcome the renal 'leak'.

Type IV RTA

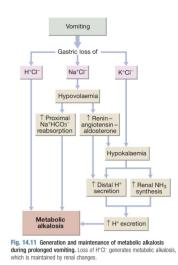
- Also called 'hyporeninaemic hypoaldosteronism'
- impaired sodium reabsorption in the late distal tubule or cortical collecting duct, which is associated with reduced secretion of both K⁺ and H+ ions
- The cardinal features are hyperkalaemia and acidosis occurring in a patient with mild chronic kidney disease
- Treatment: fludrocortisone, sodium bicarbonate, diuretics, or ion exchange resins to remove potassium, or a combination of these.

Metabolic alkalosis

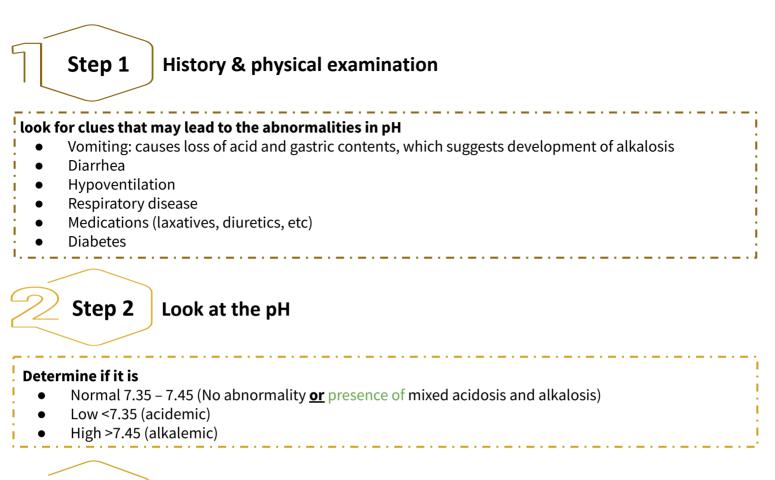
Definition:

Addition of [HCO3] or loss of [H+] and increase pH

Mechanism:


- Process that primarily raises bicarbonate.
- Extracellular fluid volume loss e.g. due to vomiting or diuretics.
- Excessive potassium loss with subsequent hyperaldosteronism.
- Initiating metabolic alkalosis by either:
 - Gaining of HCO3-.
 - Loss of acid (H+) ex: from vomiting.
- Maintaining Metabolic alkalosis due to the kidney inability to excrete the excess HCO3
- Compensation: Hypoventilation → increased PCO2 (respiratory Acidosis) immediately (PaCO2 ↑ by 0.6 mmHg for every 1 mEq/l ↑ in HCO3).

Clinical Features:


Tetany, apathy, confusion, drowsiness, cardiac arrhythmias & neuromuscular irritability are common when alkalosis is severe

Classification & causes:

	Hypovolemic (Saline sensitive, urine Cl ⁻ <10 mEq/L)	Normovolemic (Saline resistant, urine Cl ⁻ >20 mEq/L)
Definition	Metabolic alkalosis with ECF contraction (due to \rightarrow fluid loss).	Metabolic alkalosis with ECF volume expansion (no fluid loss)
Causes	 Gastric loss of H+ (sustained vomiting) Diuretic use: loop or thiazide. Volume depletion Post-hypercapnia Villous adenoma of colon, diarrhea with high chloride content 	 Hypertensive: Primary Hyperaldosteronism Cushing Syndrome Glucocorticoid therapy Hypo/normo tensive: Bicarbonate ingestion: massive or with kidney disease Bartter's syndrome & Gitelman's syndrome, Severe hypokalemia
Treatment	intravenous infusions of 0.9% saline with potassium supplements	management of the underlying cause

Steps in Acid-Base Analysis

Determine the primary abnormality that is causing the abnormal pH

- If the **pH** is acidemic (<7.35), then look for **Low** HCO₂ (**Metabolic**) or **High** PCO₂ (**Respiratory**)
- If the **pH** is alkalemic (>7.45), then look for **High** HCO₃ (**Metabolic**) or **Low** PCO₂ (**Respiratory**)

Note: Compensation will not return the pH to the normal range, it's just a mechanism which the body trying to reduce the impact.

Step 3<u>b</u>

If pH is normal, that doesn't rule out mixed acidosis and alkalosis (Determine what is being mixed¹)

- Look for high or low PCO2= Low PCO2 suggests respiratory alkalosis/High PCO2 suggests respiratory acidosis
- Look for high or low HCO3= Low HCO3 suggests metabolic acidosis/High HCO3 suggests metabolic alkalosis

How to determine Is the <u>respiratory</u> disturbance acute or chronic?

- Acute respiratory acidosis: HCO3 increase by 1 mEq/l for every 10 mmHg increase in PaCO2.
- **Chronic respiratory acidosis**: HCO3 **increase** by 3-3.5 mEq/l for every 10 mmHg **increase** in PaCO2.
- Acute respiratory alkalosis: HCO3 decrease by 2 mEq/l for every 10 mmHg decrease in PaCO2.

Chronic respiratory alkalosis: HCO3 decrease by 4-5 mEq/l for every 10 mmHg decrease in PaCO2.

Steps in Acid-Base Analysis

check for compensation

Compensation is the mechanism by which the body adapts to either acidosis or alkalosis, it will not fully correct the abnormality

example:

Step 4

- A patient has diabetic ketoacidosis, pH is 7.29, HCO3 is 15 (hence, it is metabolic acidosis)
- Use the metabolic acidosis formula: Expected PCO2 by using Winter's formula PCO2 = 1.5 x HCO3
 + 8 (±2¹) = 1.5 x 15 + 8 = 30.5
- So: you expect the PCO2 in this patient to be in the range of 28.5–32.5³
 - Now, determine whether there is a compensation or an additional disorder:
 - If the PCO2 in this patient is **higher than 32.5** \rightarrow consider additional² respiratory acidosis
 - \circ If the PCO2 in the patient is **lower than 28.5** \rightarrow consider additional respiratory alkalosis

Primary disorder		Expected compensation
Metabolic acidosis		 PaCO₂ = 1.5 x HCO₃ + 8 ± 2 ↓PaCO₃ = 1.2 x ∆HCO₃ PaCO₂ ~ last two digits of pH
Metabolic alkalosis		• $\uparrow PaCO_2 = 0.7 \times \triangle HCO_3$
Respiratory acidosis	Acute	• ↑HCO ₃ = 0.1 x ∆PaCO ₂
	Chronic	 ↑HCO₂ = 0.35 x △PaCO₂ ↓pH = 0.003 x △PaCO₂
Respiratory alkalosis	Acute	• \downarrow HCO ₃ = 0.2 x \triangle PaCO ₂
	Chronic	• \downarrow HCO ₃ = 0.4 x \triangle PaCO ₂

Compensation calculation

Step 5

Calculate the anion gap

anion gap (AG): AG = Na - (Cl + HCO3)

- Normal anion gap = 6-12⁴
- Albumin is the main unmeasured anion. To overcome the effects of hypoalbuminemia on the AG, the corrected AG can be used which is **AG** + (0.25 X (40-albumin)) expressed in g/L.
- An increase in anion gap that means there's **additional acids** like lactic acid and keto acid.
- Get back to pages to check for high AG metabolic acidosis vs normal AG metabolic acidosis

1: gives you a range

3: Memorize one compensation equation for each acid base abnormality. Example:

- -If the PCO₂ of this patient was 30, then the patient's acid-base status will be : Metabolic Acidosis Compensated by Respiratory Alkalosis. .
- 4: The normal range is up to 14. It is Especially important in Metabolic Acidosis, crucial for the differential diagnosis.

^{2:} Please make sure that you differentiate between additional and compensated.

⁻If the PCO₂ of this patient was 35, then the patient's acid-base status will be : Metabolic Acidosis AND Respiratory Acidosis.

Case study 1:

 A 75-year-old man is admitted with septic shock. Shortly after admission, blood tests reveal the following:

	Case	Normal range
рН	7.18	7.35-7.45
PO ₂	150 mmHg	82-105 mmHg
PaCO ₂	16 mmHg	35-45 mmHg
HCO ₃	7 mmol/L	22-26 mmol/L
Na⁺	138 mmol/L	136-145 mmol/L
K⁺	3.9 mmol/L	3.5-5 mmol/L
Cl ⁻	95 mmol/L	
Urea	8.2 mmol/L	2.5-7.8 mmol/L
Creatinine	102 µmol/L	40-110 umol/L

• Identify the acid-base disturbance.

• Metabolic acidosis

Check whether the patient has compensation/additional disturbance.

• Choose the formula

```
PaCO_2 = 1.5 \times HCO_3 + 8 \pm 2
```

• Substitute the values

 $PaCO_2 = 1.5 \times 7 + 8 \pm 2$

```
PaCO_2 = 18.5 \pm 2
```

```
PaCO_2 = (16.5 - 20.5)
```

• Interpret the result

The patient's value is 16 Which almost falls within the range, that means that the metabolic acidosis is being compensated properly with respiratory alkalosis.

• Calculate the anion gap

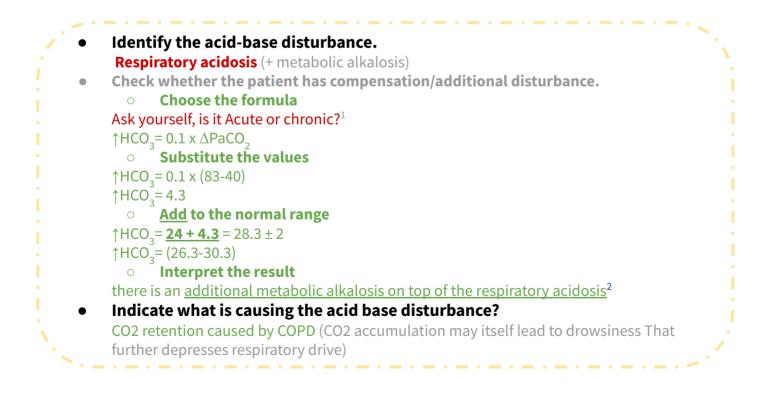
AG = Na - (Cl + HCO3)

AG = 138 - (95+7) = 36 (**high**)

- Indicate what is causing the acid base disturbance?
 - Lactic acidosis (associated with shock)

Case study 2:

A 68-year-old woman is being treated for congestive heart failure in the coronary care unit. After several days of treatment, the following results are returned:


	Case	Normal range
рН	7.49	7.35-7.45
PO ₂	86 mmHg	82-105 mmHg
PaCO ₂	48.5 mmHg	35-45 mmHg
HCO ₃	39 mmol/L	22-26 mmol/L
Na⁺	142 mmol/L	136-145 mmol/L
K ⁺	3 mmol/L	3.5-5 mmol/L
Cl	85 mmol/L	
Urea	9.3 mmol/L	2.5-7.8 mmol/L
Creatinine	84 µmol/L	40-110 umol/L

Identify the acid-base disturbance. Metabolic alkalosis Check whether the patient has compensation/additional disturbance. **Choose the formula** \uparrow PaCO₂= 0.7 x Δ HCO₂ Substitute the values 0 ↑PaCO₂= 0.7 x (39-24) \uparrow PaCO₂=10.5 Add to the normal range ↑PaCO₂= <u>40 + 10.5</u> = 50.5 ± 2 ↑PaCO₂= (48.5-52.5) Interpret the result 0 the metabolic alkalosis is compensated properly by respiratory acidosis. Indicate what is causing the acid base disturbance? use of **Diuretics** (diuretics decrease blood volume so as a response to that, the kidneys increase reabsorption of sodium bicarbonate)

Case study 3:

A 70-year-old man with chronic obstructive pulmonary disease (COPD) is admitted with increasing confusion. Shortly after admission, blood tests reveal the following:

	Case	Normal range
рН	7.21	7.35-7.45
PO ₂	61.5 mmHg	82-105 mmHg
PaCO ₂	83 mmHg	35-45 mmHg
HCO ₃	34 mmol/L	22-26 mmol/L
Na⁺	140 mmol/L	136-145 mmol/L
K ⁺	4.7 mmol/L	3.5-5 mmol/L
Cl ⁻	94 mmol/L	
Urea	8.2 mmol/L	2.5-7.8 mmol/L
Creatinine	66 µmol/L	40-110 umol/L

1: 437 doctor solved it as chronic, making the additional disturbance a <u>metabolic acidosis</u>. his explanation: mainly depends on the clinical scenario. Which means that if a patient presents with a stroke 2 or 3 hours ago and he cannot breathe so he developed Respiratory acidosis this is acute. A chronic scenario (**like the case mentioned here**) where the patient has COPD and he chronically retains CO2 which eventually leads to respiratory acidosis. 2: When the clinically obtained acid-base parameters do not accord with the predicted compensation shown, a mixed acid-base disturbance should be suspected. For example, a respiratory acidosis due to narcotic overdose with metabolic alkalosis due to vomiting.

Case study 4:

A 40-year-old man developed profuse diarrhea following antibiotic treatment of a chest infection. He is thirsty, and light headed. Shortly after admission, blood tests reveal the following:

	Case	Normal range
рН	7.25	7.35-7.45
PO ₂	101 mmHg	82-105 mmHg
PaCO ₂	31.5 mmHg	35-45 mmHg
HCO ₃	17 mmol/L	22-26 mmol/L
Na⁺	134 mmol/L	136-145 mmol/L
K ⁺	3.4 mmol/L	3.5-5 mmol/L
Cl ⁻	104 mmol/L	
Urea	9.3 mmol/L	2.5-7.8 mmol/L
Creatinine	102 µmol/L	40-110 umol/L

•	Identify the acid-base disturbance. Metabolic acidosis
•	Check whether the patient has compensation/additional disturbance.
	 Choose the formula
	$PaCO_{2} = 1.5 \times HCO_{3} + 8 \pm 2$
	 Substitute the values
	$PaCO_{2} = 1.5 \times 17 + 8 \pm 2$
	$PaCO_{2}^{2} = 33.5 \pm 2$
	$PaCO_{2}^{2} = (31.5 - 35.5)$
	• Interpret the result
	the metabolic acidosis is compensated properly by respiratory alkalosis.
•	Calculate the anion gap
	AG = Na - (Cl + HCO3)
	AG = 134 - (104 + 17) = 13 (normal)
•	Indicate what is causing the acid base disturbance?
1. J. J.	diarrhea

Summary

	Arterial: 7.35-7.45 Normal pH	Venous: 7.31-7.41
Metabolic Acidosis	Process that primarily reduces bicarbonate	 Excessive H⁺ formation: e.g. lactic acidosis, ketoacidosis Reduced H⁺ excretion: e.g. renal failure Excessive HCO₃⁻ loss: e.g. diarrhea
Metabolic Alkalosis	Process that primarily raises bicarbonate	 Extracellular fluid volume loss: e.g. vomiting or diuretics Excessive potassium loss with subsequent hyperaldosteronism
Respiratory Acidosis	Process that primarily causes elevation of PaCO₂ (Hypoventilation)	Reduced effective ventilation: e.g. many chronic respiratory diseases or drugs depressing the respiratory system
Respiratory Alkalosis	Process that primarily causes reduction in PaCO₂ (Hyperventilation)	Increased ventilation: e.g. in response to hypoxia or secondary to a metabolic acidosis

Approaching Acid-base Abnormalities		
Step 1 : History and Physical Examination	Vomiting • Diarrhea • Hypoventilation • Respiratory disease • Medications (laxatives, diuretics, etc) • Diabetes	
Step 2 : Look at the pH	- Normal 7.35 – 7.45 (No abnormality or mixed acidosis and alkalosis) - Low <7.35 (acidemic) - High >7.45 (alkalemic)	
Step 3: a. Determine the primary abnormality that is causing the abnormal pH	 If the pH is acidemic, look for: Low HCO₃⁻ (Metabolic) or High PCO₂ (Respiratory) If the pH is alkalemic, look for High HCO₃⁻ Metabolic) or Low PCO₂ (Respiratory) 	
b. if pH is normal	- Rule out mixed acidosis and alkalosis - Look for high or low PCO ₂ and for high or low HCO ₃ ⁻	
Step 4: Check for compensation (imp)	Metabolic Acidosis: $PaCO_{2}=1.5 \times HCO_{3}+8$ (±2) $Or \downarrow PaCO_{2}=1.2 \times \Delta HCO_{3}$ Metabolic Alkalosis: $\uparrow PaCO_{2}=0.7 \times \Delta HCO_{3}$ Acute Respiratory Acidosis: $\uparrow HCO_{3}=0.1 \times \Delta PaCO_{2}$ Chronic Respiratory Acidosis: $\uparrow HCO_{3}=0.35 \times \Delta PaCO_{2}$ Acute Respiratory Alkalosis: $\downarrow HCO_{3}=0.2 \times \Delta PaCO_{2}$ Chronic Respiratory Alkalosis: $\downarrow HCO_{3}=0.4 \times \Delta PaCO_{2}$	
Step 5: Calculate the anion gap (AG)	AG= Na - (Cl + HCO ₃)	

Lecture Quiz

Q1: A 32-year-old builder presents in accident and emergency in a distressed state. He reports suffering from chest pain for the last 2 weeks, the pain is sharp and only occurs when he moves heavy objects. He has a family history of cardiovascular disease and is worried about a heart attack. His blood gas findings are as follows: pH = 7.47; PCO2 = 3.3; PO2 = 15.3; bicarbonate = 17.53. The most likely diagnosis is:

- A. Respiratory acidosis with metabolic compensation
- **B.** Acute metabolic acidosis
- C. Respiratory alkalosis with metabolic compensation
- D. Metabolic acidosis with respiratory compensation
- E. Acute respiratory alkalosis

Q2: A 22-year-old woman is found unconscious in her room and brought into accident and emergency. A urine dipstick is positive for glucose and ketones and blood analysis shows the following results:

pH 6.9 PCO2 3.0 kPa PO2 13 kPa Sodium 144 mmol/L Potassium 5.0 mmol/L Urea 11 Glucose 20 Chloride 100 Bicarbonate 2.9

The most likely anion gap is:

A. 180

B. 118

C. 139.2

D. 46.1

E. 28

Q3: You are informed that one of your ward patients has been breathless over the last hour and has been quite anxious since her relatives left after visiting. The patient is a 67-year-old woman who was admitted 6 days ago for a left basal pneumonia which has responded well with intravenous antibiotics. Her past medical history includes dementia and hypertension. You are asked by your registrar to interpret the patient's arterial blood gas (ABG) measurements taken during her tachypnoea: pH 7.49 kPa, PO2 14.1, PCO2 3.1 kPa, HCO3 24. From the list of answers below, choose the most appropriate ABG interpretation:

- A. Metabolic alkalosis
- **B.** Respiratory alkalosis
- C. Type 1 respiratory failure
- D. Respiratory acidosis
- E. None of the above

Q4: The most common cause of hyperventilation:

- A. Asthma
- **B. Hypoxemia**
- **C.** Anxiety
- **D. Fever**

Q5: Which of the following assessments is preferred for obtaining blood gases in <u>children (less painful)</u>:

- A. Arterial blood gases (ABG)
- B. Venous blood gases (VBG)
- C. Capillary blood gases (CBG)
- D. None of the above

Q6: young woman is found comatose, having taken an unknown number of sleeping pills an unknown time before. An arterial blood sample yields the following values: pH – 6.90, HCO3- 13 meq/liter, PCO2 68 mmHg. This patient's acid-base status is most accurately described as (From 437 team work):

- A. Uncompensated metabolic acidosis.
- B. Uncompensated respiratory acidosis
- C. Simultaneous respiratory and metabolic acidosis.
- D. Respiratory acidosis with partial renal compensation

Females co-leaders:

Raghad AlKhashan Amirah Aldakhilallah Males co-leaders: Mashal Abaalkhail Ibrahim AlAsous

Send us your feedback: We are all ears!

