

Toxidromes and Antidotes

Bader Alyahya, MD, FRCPC (EM,CPT), DABEM

- 1. To discuss the identification and therapeutic approach to common toxidromes:
 - Anticholinergic
 - Sympathomimetic
 - Opioids
 - Sedative hypnotic
 - Serotonin
 - Neuroleptic malignant syndrome
 - Cholinergic

2. To Discuss common Antidotes and their indications

The Dose Makes The Poison

Poison is in everything, and no thing is without poison. The dosage makes it either a poison or a remedy.

(Paracelsus)

izquotes.com

The Dose Makes The Poison

TABLE 1.1.1 Risk assessment-based approach to poisoning

Resuscitation

Airway

Breathing

Circulation

Detect and correct

hypoglycaemia

seizures

hyper-/hypothermia

Emergency antidote administration

Risk assessment

Agent

Dose

Time since ingestion

Clinical features and course

Patient factors

Supportive care and monitoring

Investigations

Screening-12-lead ECG, paracetamol Specific

Decontamination Enhanced elimination Antidotes

Disposition

What is a Toxidrome

- A toxidrome is a constellation of signs and symptoms that help narrow the differential diagnosis to certain toxin and thus guides therapy
- i.e A clinical picture that suggests exposure to certain class of poisons

Toxidromes Vs urine drug screen (UDS)

- Urine drug testing: tests for specific class of xenobiotic, commonly (opioids, BDZ, amphetamines, cannabis, ...)
- Significant rates of false positive and false negative results
- If truly positive, it indicates exposure to the substance at some point in time and not necessary indicates toxicity

Factors That Influence The Results Of UDS

McMillin et al. Journal of Pain & Palliative Care Pharmacotherapy. 2013;27:322–339.

Amphetamines

- 25 year-old male, Ingested 25 tablets (50 mg each) of diphenhydramine, 2 H ago
- He is drowsy and his skin is dry
- BP= 135/85, HR= 130, RR=18
- He is trying to catch something in the air

Anticholinergic Toxidrome

Mad as a hatter Altered mental status

Blind **as a bat** Mydriasis

Red as a beet Flushed skin

Hot as a hare Dry skin (anhydrosis)

Dry as a bone Dry mucous membranes

Anticholinergic Toxidrome

Anticholinergic Toxidrome

- Blind as a bat
- Dry as a bone
- Red as a beet
- Hot as a hare
- Mad as a hatter

Exam: mydriasis, dry flushed skin, hyperthermia, altered mental status, seizure, tachycardia, hypotension, urinary retention

Antidote: Physostigmine Other Treatment: fluids

Anticholinergic Toxidrome

Management:

- 1) ABCDE
- 2) <u>Supportive care</u>: fluid, cooling if needed,....
- 3) Physostigmine: in moderate to severe toxicity, if No TCA overdose, no wide QRS, no seizure, no bradycardia
- If physostigmine is contraindicated, then just use supportive care and benzodiazepines for agitation or seizure

Toxidrome Case #2

- 32-year-old woman found delirious and very agitated; extremely paranoid; appears to be hallucinating
- Vital signs: HR 130 bpm; BP 170/100 mm Hg; R 16/min; T 100.4°F
- Pupils 7mm (mydriasis)
- Skin: moist, diaphoretic

EMNote.org

Sympathomimetic Toxidrome

Mnemonic: "MATHS"

- M : Mydriasis
- A : Agitation, arrhythmia, angina
- T : Tachycardia
- H : Hypertension, hyperthermia
- S : Seizure, sweating

Management:

- 1. Treat agitation, HTN, and seizures with benzodiazepines
- 2. Avoid pure β-blockers due to unapposed alpha agonism

iackcfchona

Sympathomimetic toxidrome

Excessive Sympathetic nervous system stimulation

- Tachycardia
- Hypertension
- Mydriasis
- Tachypnea
- Sweating (as opposed to dry skin in anticholinergic syndrome!)
- Hyperthermia
- Seizures
- Stroke
- MI

• Meds:

- Decongestants
 (Pseudoephedrine)
- Ritalin, Adderall
- Cocaine, amphetamines
- Treatment:
 - Benzodiazepines
 - Supportive care (cooling, IVF...)

Toxidrome Case #3

- A 15-year-old boy found unresponsive, snoring in bed.
- Vital signs: HR 50 bpm, BP 90/60 mm Hg, RR 5/min, Temp 97°F
- Pupils 1-2 mm (miosis)

- Neurologic: unresponsive to painful stimuli
- Physical exam: decreased bowel sounds

Opioid toxidrome

- Excessive stimulation of mu receptors in the CNS from opioid agonists.
- Meds:
 - Morphine
 - Fentanyl
 - Hydromorphone
 - Codeine
 - Oxycodone
- Recreational drugs:
 - Heroin

Opioid Toxidrome

Toxidrome Case #4

- A 45-year-old female found unresponsive at home. She was last seen approximately 20 hours prior. She does not respond to painful stimuli.
- Vital signs: HR 60 bpm, BP 100/50 mm Hg, T 96°F, RR 10/min
- HEENT: 4 mm bilaterally, reactive to light
- Skin: pressure sores
- Physical exam: poor gag reflex, decreased muscle tone and depressed reflexes

Sedative-hypnotic Toxidrome

A pnoea G CS reduced taxia S lurred speech

Hypnotic toxidiome

Sedative-hypnotic Toxidrome

- Usually from excessive stimulation/potentiation of GABA receptors in the CNS.
- Can happen with H1 blockade in the CNS
- Meds:
 - Benzodiazepines (GABA agonism)
 - Antipsychotics (H1 blockade)
 - ETOH (GABA agonism)
- Treatment:
 - Supportive
 - Flumazenil??

MiniReview

Adverse Events Associated with Flumazenil Treatment for the Management of Suspected Benzodiazepine Intoxication – A Systematic Review with Meta-Analyses of Randomised Trials

Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% (CI M-H, F	ixed, 95% Cl	
Aarseth 1988	5	9	2	9	4.1%	2.50 [0.65, 9.69]]		
Barnett 1999	0	19	0	22		Not estimable	e		
FBIMSG 1992	53	162	21	164	43.2%	2.55 [1.62, 4.03]]		
Höjer 1988	6	26	0	26	1.0%	13.00 [0.77, 219.53]		\rightarrow
Höjer 1990	9	53	2	52	4.2%	4.42 [1.00, 19.47]]		
Knudsen 1988	9	16	5	16	10.3%	1.80 [0.77, 4.19]	+	
Lheureux 1988	1	10	2	10	4.1%	0.50 [0.05, 4.67]]	- <u>-</u>	
Martens 1990	6	14	0	12	1.1%	11.27 [0.70, 181.41]		\rightarrow
O'Sullivan 1987	10	31	4	29	8.6%	2.34 [0.82, 6.64]	+	
Ritz 1990	0	13	0	10		Not estimable	9		
Rouzioux 1988	7	41	1	45	2.0%	7.68 [0.99, 59.81]]	•	
Spivey 1993	26	87	9	83	19.1%	2.76 [1.37, 5.53]		
Weinbroum 1996	6	17	1	14	2.3%	4.94 [0.67, 36.34]		-
Total (95% CI)		498		492	100.0%	2.85 [2.11, 3.84]	l	•	
Total events	138		47						
Heterogeneity: Chi ² = 7.43, df = 10 (P = 0.68); l ² = 0%								1 10	
Test for overall effect: Z = 6.87 (P < 0.00001)							Favours flumazer	nil Favours plac	cebo

Toxidrome # 5

- 20 year old female presented with confusion, diarrhea and agitation
- Vital signs: HR 130, BP: 150/90, T: 37.9, RR: 18
- Hx: Patient on Fluoxetine (SSRI) for depression. Lately was prescribed tramadol for pain following a dental procedure
- Physical exam: Agitated, exaggerated bowel sounds, has tremor, hyperreflexia with clonus

Serotonin Toxicity

Serotonin toxidrome

- Excessive activity at the serotonin receptor (5HT) in the CNS and peripherally
- Usually results from a drug-drug interaction of two serotonergic agents.
- In this case the two serotonergic agents were:
 - Fluoxetine (SSRI)
 - Tramadol
- Treatment:
 - Benzodiazepines
 - Supportive care (cooling, IVF...)
 - Cyproheptadine

Action	Medications			
Increases serotonin formation	Tryptophan			
Increases release of serotonin	Amphetamines and amphetamine derivatives			
	Cocaine			
	MDMA			
Impairs serotonin reuptake	Cocaine, MDMA, meperidine, tramadol, pentazocine			
	SSRIs (citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline)			
	SNRIs (desvenlafaxine, duloxetine, milnacipran, venlafaxine, levomilnacipran)			
	Dopamine-norepinephrine reuptake inhibitors (bupropion)			
	Serotonin modulators (nefazodone, trazodone, vilazodone, vortioxetine)			
	TCAs (amitriptyline, amoxapine, clomipramine, desipramine, doxepin)			
	St. John's wort			
	5-HT3 antagonists (dolasetron, granisetron, ondansetron, palonosetron)			
	Metoclopramide, valproate, carbamazepine, sibutramine, dextromethorphan, cyclobenzaprine			
Inhibits serotonin metabolism	MAOIs (phenelzine, tranylcypromine, isocarboxazid, moclobemide, safinamide, selegiline, rasagiline, linezolid, tedizolid, methylene blue, procarbazine)			
Direct serotonin agonist	Buspirone, triptans, ergot derivatives, fentanyl, LSD			
Increases sensitivity of postsynaptic receptor	Lithium			

Current Psychiatry

LSD: lysergic acid diethylamide; MAOIs: monoamine oxidase inhibitors; MDMA: 3,4-methylenedioxymethamphetamine; SNRIs: serotonin-norepinephrine reuptake inhibitors; SSRIs: selective serotonin reuptake inhibitors; TCAs: tricyclic antidepressants

Vol. 18, No. 2

February 2019

College - ----

Treatment for neuroleptic malignant syndrome vs serotonin syndrome

Serotonin syndrome	Neuroleptic malignant syndrome
Stop serotonergic agent	Stop causative agents
Supportive care (aim to normalize vital signs)	Supportive care (possible ICU admission)
Sedation with benzodiazepines	Medical therapy (dantrolene, bromocriptine, amantadine)
Medical therapy (cyproheptadine)	Consider ECT (unclear efficacy)
ECT: electroconvulsive therapy	

Current Psychiatry Vol. 18, No. 2

February 2019

Neuroleptic Vs Serotonin

Differentiating neuroleptic malignant syndrome and serotonin syndrome

Factor	Serotonin syndrome	Neuroleptic malignant syndrome
Causative medications	Serotonergic agents	Dopamine antagonists
Physical exam findings	Hyperreflexia, myoclonus, ocular clonus	Severe rigidity (lead pipe), hyporeflexia
Laboratory findings	More commonly no lab findings	More commonly increased creatine kinase, leukocytosis, low serum iron
Course of illness	Symptoms seen within 24 hours of starting/changing therapy and resolves within a few days of treatment	Slower in onset (1 to 2 weeks after starting/changing therapy) and resolves within 9 to 14 days of treatment

Current Psychiatry Vol. 18, No. 2

February 2019

Toxidrome #6

- A 56-year-old woman with confusion, shortness of breath, vomiting and diarrhea
- Vital signs: HR 50 bpm; BP 90/palp mm Hg; R 32/min; T 98.6°F
- Pupils 2 mm
- Skin: profuse sweating, tearing and rhinorrhea
- Physical exam: hyperactive bowel sounds, muscle fasciculations

FIGURE 113–5.Pathophysiology of cholinergic syndrome as it affects the auto-
nomic and somatic nervous systems.Goldfrank's Toxicologic emergencies 10th

Goldfrank's Toxicologic emergencies 10th edition

Organophosphate Poisioning

Cholinergic toxidrome

- Excessive stimulation of nicotinic and muscarinic acetylcholine receptors
- Usually from blockade of acetylcholinesterase leading to excessive free acetyl- choline molecules acting on the receptors

Cholinergic toxidrome

- Medication:
 - Alzheimer's meds (donepezil)
 - Myasthenia gravis meds (pyridostigmine)
- Chemicals:
 - Organophosphates
 - Carbamates
- Treatment:
 - Antidote: Atropine, 2PAM
 - Supportive care

	HR & BP	Resp.	Temperature	Pupils	Bowel Sounds	Diaphoresis
Anticholinergics – Atropine, scopolamine, glycopyrrolate benztropine, trihexyphenidyl Antihistamines – Chlorpheniramine, Cyproheptadine, Doxylamine, Hydroxyzine, Dimenhydrinate, Diphenhydramine, Meclizine Promethazine	1	No change		Dilated		J.
Cholinergic Organic Phosphorous Compounds: Carbamates • Arecholine, Pilocarpine, Urecholine (Betanechol), Carbachol, Choline, Metacholine, Mushrooms	No change	No change	No change	Pinpoint		
Opioid Morphine • Codeine • Tramadol • Heroin • Meperidine • Diphenoxylate • Hydromorphone • Fentanyl • Methadone • Propoxyphene • Pentazocine • DXM • Oxycodone • Hydrocodone	J.			Pinpoint		Ŷ
Sympathomimetic Caffeine, cocaine, a mphetamines, methamphetamines, Ritalin, LSD, Theophylline, MDMA				Dilated •		
Sedative-Hypnotic anti-anxiety agents, muscle relaxants, antiepileptics and preanesthetic medications –Barbituates –Benzodiazepines	J.			No change		Ŷ

Antidote

TABLE 32.7

Antidotes

Antidote
N-acetylcysteine
Flumazenil*
Glucagon*
Digoxin immune Fab
Crotalidae polyvalent immune Fab
Hydroxocobalamin*
Fomepizole
Deferoxamine
Pyridoxine
Fomepizole
Methylene blue
Naloxone*
1. Atropine*
2. Pralidoxime*
1. Glucose*
2. Octreotide

*This antidote card is for information only and is not meant to substitute for medical judgment or toxicology consultation. For patient care issues please contact your local toxicologist or poison center at 1-800-222-1222.

GIDECONTAMINATION

LAVAGE (OROGASTRIC LAVAGE WITH LARGE BORE TUBE)

Adult: 36-40 Fr

Child: no less than 22 Fr

- Consider airway protection
- Rarely indicated

Contraindications: Caustics, large or sharp foreign body. can't protect airway, toxin not in stomach

Activated Charcoal

Dose: 1 g/kg PO, ideally 10:1 charcoal:drug

Consider in recent (1-2 hr) ingestion of toxic substance that adsorbs to charcoal and lack of contraindications (caustics, AMS, vomiting, decreased GI motility)

Multidose Activated Charcoal (MDAC)

Consider for ingestions with enterohepatic or enteroenteric circulation (phenytoin, phenobarbital, carbamazepine, dapsone, theophylline, caffeine)

Whole Bowel Irrigation

Mechanical bulk cleansing of GI tract with polyethylene glycol solution (i.e. GoLytely™)

Consider for ingestions with delayed/prolonged absorption, or body packers Adult: 2 liters/hr PO (+/- NGT, antiemetic) Child: 25 ml /kg/hr PO Continue until rectal effluent is clear

N-ACETYLCYSTEINE (NAC. ACETADOTE™) Indication: Acetaminophen Poisoning

Oral dosing:

140 mg/kg load then 70 mg/kg q 4 h x 17 doses IV dosina:

Load: 150 mg/kg x 60 min

Then: 50 mg/kg x 4 h Then: 100 mg/kg x 16 h

ĺ	(kg)	(lb)	Acetadote	5% Dextrose	Acetadote	5%	Acetadote	5%
I	-		(mL)	(mL)	(mL)	Dextrose	(mL)	Dextrose
l						(mL)		(mL)
[30	66	22.5	100	7.5	250	15	500
ĺ	25	55	18.75	100	6.25	250	12.5	500
[20	44	15	60	5	140	10	280
ſ	15	33	11.25	45	3.75	105	7.5	210
ĺ	10	22	7.5	30	2.5	70	5	140

CALCIUM

Indication: Calcium Channel Blocker or Beta Blocker Poisoning

Adult: CaCl 10% 10 mL IV (1 gm) over 10-15min CaGluconate 10% 30 ml/dose IV (3 gms) over 5-10 min Peds: CaCl 10% 0.1-0.2 ml/kg IV (20 mg/kg) over 10-15 min CaGluconate 10% 0.2-0.5 ml/kg IV (20-50mg/kg) up to 10 ml/dose over 5-10 min, not to exceed adult dose Infusion: 0.5 mEq/kg/hr IV = 0.2 - 0.4 mL/kg/hr of CaCl₂ (10%), or 0.6 - 1.2 mL/kg/hr of CaGluconate (10%)

Indication: Hydrofluoric Acid

Dermal: 3.5 grams CaGluconate plus 5 oz water-soluble lubricant (KY jelly)

- 1 g CaCl₂ = 13.4 mEg elemental Ca
- 1 g CaGluconate = 4.3 mEg elemental Ca

GLUCAGON

Indication: Calcium Channel Blocker or Beta Blocker Poisoning

Adult: 50 µg/kg (max 10 mg) IV over 1-2 min, repeat g 10-15 min 1-2 times PRN

Then: 1-5 mg/h (max 10 mg/h) IV in D5W Peds: 50 ug/kg IV load then 70 ug/kg/hr

HIGH DOSE INSULIN EUGLYCEMIA (HIE)

Indication: Calcium Channel Blocker or Beta Blocker Poisoning

Dextrose: ± 25-50 g (0.5-1 g/kg) IV bolus Then: 0.25-0.5 g/kg/h IV drip Insulin: 1 U/kg IV bolus Then: 0.5-1.0 U/kg/hour IV drip [mix as 500 U insulin in 50 mL NS (10 U/mL)] Increase if no effect in 15 minutes

- Titrate to 10 U/kg/hr Check capillary glucose g 30 min initially
- DIGOXIN-SPECIFIC FAB (DIGIBIND AND DIGIFAB)

- Indication: Digoxin and Cardiotoxic Steroid Reconstitute with 4 ml sterile H₂O
- IV over 30 min (IVP if critical)

Amount ingested known: # vials = [amount (mg)] x 0.8 / 0.5 mg

Level known

vials = [level (ng/ml)] x [weight (kg)] / 100

Unknown ingestion/level (empiric therapy):

Adult: 10 vials (acute): 3-6 vials (chronic) Peds: 1-2 vials

CYANIDE ANTIDOTE KIT [HOPE NITHIODOTE KIT]

Indication: Cyanide Poisoning

- Consider in Smoke Inhalation with Hypotension and Lactic Acidosis
- Sodium Nitrite (NaNO2) 3% (30 mg/ml) Adult: 10 mL (300 mg) IV over 2-4 min
- Peds: ~0.2 ml/kg IV over 2-4 min
- Sodium Thiosulfate 25% (250 mg/ml)

Adult: 50 mL (12.5 g) IV over 10-30 min Peds: 0.5 g/kg (2 mL/kg) IV as adult

Warning: no nitrite if smoke/fire victim/CO exposure.

HYDROXOCOBALAMIN (CYANOKIT™)

Indication: Cyanide Poisoning

Dose: 70 mg/kg (max 5 g) IV over 30 min Repeat prn (max total 15 g) IV over 6-8 h

METHYLENE BLUE

Indication: Methemoglobinemia

IV: 1-2 mg/kg (0.1-0.2 mL/kg) of 1% over 5 min with 30 ml flush q 4 h (max 7 mg/kg) Neonate: 0.3-1 mg/kg IV

DEXTROSE (GLUCOSE)

Indication: Hypoglycemic agents

Dose: 0.5 -1.0 gram/kg, adjust based on size Adult: D₅₀ (0.5 grams/ml) IV Peds: D₂₅ (0.25 grams/ml) IV Neonates: D10 (0.1 grams/ml) IV Consider administering thiamine if deficient

OCTREOTIDE (SANDOSTATIN]

Indication: Sulfonylurea Poisoning Adult: $50 \ \mu g \ SQ$ every $6 \ h$ Peds: 1.25 $\mu g/kg$ (max adult) SQ every $6 \ h$ Continue therapy x 24h, then FSBG x 24 hours

FOMEPIZOLE (ANTIZOL™)

Indication: Methanol, Ethylene Glycol

Load: 15 mg/kg IV in 100 mI NS x 30 min Maint: 10 mg/kg IV q12 hours until level <20 mg/dL *Hemodialysis:* Give load if > 6 h since last dose Maint: q 4 h during HD At end, give scheduled dose if > 3 h Or, x' dose if 1.3 h since last dose

ETHANOL (ETOH)

Indication: Methanol, Ethylene Glycol

 IV: 10% ETOH (100 mg/ml) (may use 5%) Load: 0.8 g/kg (8 ml/kg) over 1 h Maint: 80-130 mg/kg/h (0.8-1.3 ml/kg/h) Chronic: 150 mg/kg/h (2.5-3.5 ml/kg/h) HD: 250-350 mg/kg/h (2.5-3.5 ml/kg/h)

2-PAM (PRALIDOXIME CHLORIDE)

Indication: Organophosphate poisoning

Adult: 1-2 g (20-40 mg/kg) in 100 ml NS IV over 15-30 min Maint: 8 to 10 mg/kg/h or 500 mg/h IV

Peds: 20-40 mg/kg (max 2 gm] in 100 ml NS IV x 30-60min Maint: 10-20 mg/kg/h IV

ATROPINE

Indication: Organophosphate/Carbamate Poisoning

Adult: 1-2 mg (mild) or 3-5 mg (severe) IV Double q 3-5 min until dry Maint: 10-20% of load IV qh, titrate prn Peds: 20-50 μg/kg (min 0.1 mg/max 0.5 mg) IV

NALOXONE (NARCAN™)

Indication: Opioid Poisoning

Adult: Start at 0.04 -0.4 mg IV/IM/SQ/intranasally/intratracheal. Repeat dose if initial response not adequate, up to 10 mg total. Titrate to RR ≥ 12 and sufficient tidal volume. If opioid naive, can start with 0.4 mg.

Peds: 0.01 mg/kg IV (IM, SQ, Intraosseous, Intratracheal can be used but not preferred) if opioid naïve (0.001 mg/kg if opioid dependent) Titrate to 0.1 mg/kg IV if no effect *Neonate:* (asphyxia neonatorum) 0.01 mg/kg via umbilical vein (IM, SQ) q 2-3 min For recurrent resp depression consider infusion: 2/3 of reversal dose infused hourly

FLUMAZENIL (ROMAZICON™)

Indication: Benzodiazepine Poisoning

Initial: 0.2 mg IV @ 0.1 mg/min May repeat with 0.3 mg, then 0.5 mg Infusion: 0.1-1.0 mg/h IV (in NS or D5W)

PHYSOSTIGMINE (ANTILIRIUM™)

Indication: Antimuscarinic Toxicity

- For reversal of neurobehavioral effects
- NO ECG evidence of TCA toxicity (+t40 aVR)
- Atropine at bedside, cardiac monitor, oximetry Adult: 1-2 mg IV over > 5 min
- May repeat in 5 10 minutes PRN Peds: 20 ug/kg (max 0.5 mg) as above

FOLATE (FOLIC ACID)

Indication: Methanol Poisoning 1-2 mg/kg (50-75 mg) q 4 h x 24h Extra dose at completion of hemodialysis

LEUCOVORIN (FOLINIC ACID)

Indication: Methotrexate Poisoning

Dose: MTX plasma level or 100 mg/m² IV over 15-30 min (max 160 mg/min) q 3-6 h x several days or until serum MTX < 10 nmol/L or < 100 nmol (in cancer) and no bone marrow toxicity

SODIUM BICARBONATE (NAHCO₃)

8.4% (1 M) 50 ml ampule = 50 mEq 7.5% (0.892 M) 50 ml ampule = 44.6 mEq Bolus: 1-2 mEq/kg IVP over 1-2 mln Infusion: 2-3 amps in 1 L D₂W @ 150-200 mL/h (2x maintenance in *peds*)

Indication: Tricyclic Antidepressant and other Sodium Channel Blocker Poisoning

Goal is QRS narrowing

Indication: SalicylatePoisoning or to alkalinize urine in specific toxins

- Goal is urine pH 8.0 (alkalinization)
- Must make sure serum K ~ 4.0

Indication: Chlorine/Hcl Gas Inhalation

Consider 4% nebulized solution

VITAMIN B6 (PYRIDOXINE)

Indication: Ethylene Glycol Poisoning Adult: 50 mg IV q6h

Indication: Isoniazid Poisoning

- Known amt: 1 g per g of INH (max 5 g) Unknown: 70 mg/kg IV at 0.5 g/min
- Max 5 g, or until seizure stops
- Remainder IV over 4-6 h

VITAMIN K1 (PHYTONADIONE)

Indication: Brodifacoum Poisoning Adult: 25-50 mg PO TID-QID x 1-2 d, then per INR

L-CARNITINE

Indication: Valproic Acid Poisoning

Note: Optimal dosing for VPA toxicity not well established. Suggested dosing is below.

Loading Dose: 100 mg/kg IV (max 6 g) over 15-30 min Then:15 mg/kg (max 3g per dose) IV q 4 h over 10-30 min Prophylaxis: 100 mg/kg/d PO + q 6h (maximum 3g/day in adults and 2g/day in children)

PROTAMINE SULFATE

Indication: Heparin Poisoning

1 mg (max 50 mg) neutralizes 100 U heparin, or 100 anti-Xa

- U of dalteparin/tinzaparin, or 1 mg of enoxaparin Load: 1% solution IV over > 10 min
 - Then: 0.5 mg/100 anti-Xa U if still bleeding

INTRAVENOUS LIPID EMULSION

Indication: Local Anesthetic Toxicity (LAST)

Loading Dose: 1.5 ml/kg of 20% solution over 1 minute. Bolus may be repeated for persistent dysrhythmia Infusion: 0.25 ml/kg/min over 30-60 minutes. Infusion rate can be increased if blood pressure declines.

Indication: Non-LAST with cardiovascular collapse Poorly studied. Consider for poisoning by drugs expected to be lipid soluble based on Log D, or Log P. See http://lipidrescue.org for further information. Consider same dosing as above for LAST.

