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ABSTRACT 

 

Aliciidae and Thalassianthidae look similar because they possess both morphological features of 

branched outgrowths and spherical defensive structures, and their identification can be confused 

because of their similarity.  These sea anemones are involved in a symbiosis with zooxanthellae 

(intracellular photosynthetic algae), which is implicated in the evolution of these morphological 

structures to increase surface area available for zooxanthellae and to provide protection against 

predation.  Both families have been classified in Endomyaria; the phylogenetic relationships 

within this group are poorly known.  I analyzed mitochondrial and nuclear sequences to 

hypothesize phylogenetic relationships between and within Aliciidae and Thalassianthidae.  I 

recovered Thalassianthidae as monophyletic and nested in a well-supported clade containing 

some members of Stichodactylidae, within the larger Endomyaria clade.  Monophyly of Aliciidae 

was not recovered, but all members were affiliated with the larger Metrididoidea clade, and 

closely related with Boloceroididae.  Sea anemones in a symbiotic relationship with crabs of the 

genus Lybia have been identified as Triactis producta, which I confirmed with molecular data.  

The similarity between Aliciidae and Thalassianthidae is a case of convergence, supported by 

both molecular and morphological data.  The branched outgrowths and spherical defensive 

structures in Thalassianthidae are of the oral disc, while in Aliciidae they are projections of the 

column.  To understand the diversity of species possessing branched outgrowths and spherical 

structures, I did a morphological revision of both Aliciidae and Thalassianthidae.  From the seven 

nominal genera and 16 nominal species of Aliciidae, I found four genera and nine species to be 
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valid.  From the five nominal genera and 11 nominal species of Thalassianthidae, I found two 

genera and seven species to be valid.  Each family, genus, and species has been redescribed. 
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CHAPTER 1: General Introduction 

 

 Convergent morphologies are a persistent problem with members of the soft-bodied 

Order Actiniaria (sea anemones), because of the relatively simplistic, diploblastic body plans 

these anemones possess.  Unrelated anemones have evolved similar morphologies in response to 

similar environmental or symbiotic conditions; for example, sea anemones symbiotic with hermit 

crabs have evolved multiple times.  The morphology of these sea anemones is convergent, 

because the species that form symbioses with crabs belong to four families that are not each 

other’s closest relatives (Daly et al. 2004, Gusmão & Daly 2010, Crowther et al. 2011).  

Members of the actiniarian families Aliciidae and Thalassianthidae possess similar 

morphological features – branched outgrowths and defensive spheres.  Most of these species are 

found in predominantly shallow tropical waters, and the sea anemones have presumably evolved 

similar morphological features convergently due to their symbiotic relationship with 

zooxanthellae.  However, the hypotheses that (1) these two families are each monophyletic, and 

(2) that they are not each other’s closest relatives, have never been tested using rigorous 

molecular phylogenetic or morphological analyses.  

 

Aliciidae and Thalassianthidae: two families containing species with branched outgrowths and 

spherical defensive structures 

 Sea anemones can form intimate relationships with zooxanthellae (intracellular algae); 

the zooxanthellae use sunlight to produce carbohydrates that are assimilated by the sea anemones 

(Muscatine & Hand 1958, Trench 1971, Gladfelter 1975).  This symbiosis is presumably 

implicated in the evolution of morphological structures for increasing habitable space available 
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to accommodate the zooxanthellae.  Some sea anemones symbiotic with zooxanthellae, such as 

members of Stichodactylidae, possess a large, undulating oral disc covered with many tentacles, 

whereas some Acintiidae sea anemones (e.g. Oulactis, Phyllactis) possess an elaborate marginal 

ruff.  Some sea anemone possess branched outgrowths that serve to increase surface area; sea 

anemones with outgrowths are inferred thereby to accommodate more zooxanthellae and 

intercept more light than is possible in sea anemones lacking such structures (Gladfelter 1975). 

  The possession of branched outgrowths housing zooxanthellae coupled with spherical 

structures is a character combination characteristic of two families, Aliciidae and 

Thalassianthidae.  In Thalassianthidae, the branched outgrowths are the many tentacles of the 

oral disc (Fig 1.1a,c), whereas in Aliciidae, the branched outgrowths are the pseudotentacles of 

the column (Fig 1.1b,d).  Associated with the branched outgrowths in these two families are 

spherical structures dense with nematocysts (intracellular stinging capsules unique to Cnidaria), 

presumed to prevent predation.  In Thalassianthidae, these are the nematospheres, which are 

specialized tentacles situated near the margin of the oral disc (Fig 1.1c).  In Aliciidae, these are 

the vesicles, which are bubble-like outgrowths on the column or pseudotentacles (Fig 1.1d). 

 The branched outgrowths and spherical defensive structures of Aliciidae and 

Thalassianthidae look and function similarly, hence why members of these groups have been 

confused in the literature.  Even though the branched outgrowths and spherical defensive 

structures are on the column in aliciids, the placement of the morphological characters is not 

always clearly visible.  In the presence of light, it is the branched outgrowths of the column that 

are expanded, while the unbranched tentacles of the oral disc are retracted and hidden from view 

(Gladfelter 1975), illustrated by the aliciid species Triactis producta in figure 1.1b.  In this 

posture, the branched pseudotentacles and spherical vesicles of Triactis producta look like the 
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branched tentacles and spherical nematospheres of Thalassianthus aster (Fig 1.1a). Correct 

identification is important because representatives of both Aliciidae and Thalassianthidae have 

been reported to cause pain to humans if stung (Williamson et al. 1996, Erhardt & Knop 2005) 

and have been used in toxicological studies (Mizuno et al. 2000, 2007, 2012, Oshiro et al. 2001, 

Nagai et al. 2002a,b, Uechi et al. 2005a,b, Satoh et al. 2007).  

Rodríguez et al. (in Daly et al. 2007) stated that many families defined in Carlgren’s 

(1949) catalog are likely not to be monophyletic, and the monophyly of Aliciidae and 

Thalassianthidae has not been tested in recent studies.  Neither family has been studied 

taxonomically as a unit for many years; thus, revising the definitions of genera and species is 

long over-due.  By simultaneously analyzing specimens from both families, I will investigate the 

similarities and differences of the branched outgrowths and spherical defensive spheres.  Details 

of these structures could reveal apomorphies to support the monophyly of each family and/or 

identify genera and species.  In addition, a close morphological analysis could give insight into 

the homology of branched outgrowths and spherical defensive structures found in Aliciidae and 

Thalassianthidae. 

 

A combined molecular and morphological approach to understanding morphological 

convergence of Aliciidae and Thalassianthidae 

There is a need for a hypothesis of evolutionary relationships for the families Aliciidae 

and Thalassianthidae because recent phylogenies have not included adequate sampling (Daly et 

al. 2008, Rodríguez et al. 2008, Gusmão & Daly 2010, Rodríguez & Daly 2010, Rodríguez et al. 

2012).  In addition, a robust hypothesis of evolutionary relationships could establish or refute 

monophyly of groups of interest, and allow for an evolutionary interpretation of morphological 
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features.  In this dissertation, I use molecular data to reconstruction a phylogenetic tree for 

Actiniaria in order to address the questions 1) are Aliciidae and Thalassianthidae each 

monophyletic and 2) are Aliciidae and Thalassianthidae each other’s closest relatives?  I do this 

by sampling more aliicids and thalassianthids than any other study to date, and analyzing 

molecular data from these species to reconstruct a hypothesis of evolutionary relationships.  I 

then investigate the evolution of branched outgrowths and defensive spheres throughout the tree.  

This allows me to elucidate whether this combination of morphological features has evolved 

once or multiple times in Actiniaria, and provides insight into the evolutionary relationships 

within and between the actiniarian families Aliciidae and Thalassianthidae.   

In addition to a robust hypothesis of evolutionary relationships, understanding the 

evolution of anemones possessing branched outgrowths and spherical defensive structures 

requires an accurate account of diversity and anatomy of each species.  Species delimitation in a 

group should be based on multiple lines of evidence when available  (de Queiroz 2007, Weins 

2007, Ross et al. 2010).  Futher, while a phylogenetic perspective may illuminate the 

relationships between taxa and enable inferences about character evolution, a taxonomic revision 

based on a careful examination of morphology may provide insight into characters and identify 

problematic or invalid species.  Here, I perform a taxonomic revision of the actiniarian families 

Thalassianthidae and Aliciidae to address the questions 1) how many valid species are present in 

each family and 2) are branched outgrowths and defensive spheres possessed by species in each 

families homologous? 

Both molecular and morphological approaches are valid approaches for understanding the 

relationships of examined species.  However, while each can inform the other, analyzing results 

simultaneously can help to fully understanding the evolution of the group.  Here, I integrate 

4



 

morphological and molecular data to examine the families Thalassianthidae and Aliciidae, and I 

present a phylogenetic revision of Thalassianthidae and Aliciidae.  

This dissertation entails interrelated tasks, which are set out as separate chapters.  The 

contents of these chapters are summarized below. 

 

Chapter 2: Phylogenetic relationships and character evolution of sea anemones possessing 

branched outgrowths and defensive spheres 

In Chapter 2 I investigate the monophyly and placement of Thalassianthidae and 

Aliciidae using phylogenetic analyses of molecular data.  The molecular phylogenies presented 

by Daly et al. (2008), Rodríguez et al. (2008), and Rodríguez et al. (2012) did not shed light on 

the monophyly of either family because they analyzed just one aliciid sample and no 

thalassianthid samples.  My study is the first phylogenetic analysis to incorporate multiple aliciid 

and thalassianthid sequences.  With a well-corroborated phylogenetic hypothesis, I analyze the 

evolution of branched outgrowths and spherical defensive structures.  

 

Chapters 3 and 4: Morphological revision of Thalassianthidae and Aliciidae, respectively 

The species and generic delineations in Thalassianthidae and Aliciidae are unclear.  

Stephenson (in Carlgren 1949, p. 4) suspected that Carlgren (1949), in his survey of Actiniaria, 

had recognized too many genera of anemones as valid, stating “I cannot resist the suspicion, also, 

that Carlgren has now recognized rather too many genera, that some of them might well be 

fused, and that the distinctions between them are sometimes very slight.”  This is especially true 

for genera in Thalassianthidae for which there are very few characters that differentiate the 

genera.  As with many families in Actiniaria, some of the nominal genera and species of 
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Thalassianthidae and Aliciidae were described from few specimens, so the boundaries are based 

on limited knowledge regarding morphological variation and geographic distribution.  By 

analyzing the type specimens and conducting my own fieldwork, I study many specimens in an 

attempt to characterize the variability found within Thalassianthidae and Aliciidae.  Generic and 

species boundaries are made after analysis of data from all available specimens. 
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Figure 1.1.  a,b) shared morphological features of branched outgrowths and defensive 
spheres  a) Thalassianthus aster from Singapore b) Triactis producta from Oman  c)  Thala-
ssianthus hemprichii from Palau, close-up of oral disc with dense covering of branched 
tentacles, and nematospheres near margin  d) Triactis producta from Mo’orea, photograph 
of whole individual from side, tentacles on oral disc, pseudotentacles and vesucles from 
column.  Figure legend: N = nematospheres, T = tentacles, P = pseudotentacles, V = 
vesicles.
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CHAPTER 2: Phylogenetic relationships of sea anemones possessing 

branched outgrowths and defensive spheres 

 

Although we can no doubt decide a few points connected with Actinian evolution with some 

degree of confidence, there is a great deal which must remain entirely uncertain 

(Stephenson, in Carlgren 1949, pg 4) 

 

Introduction 

 Stephenson (in Carlgren 1949) stated that some of the evolutionary relationships within 

Actiniaria are uncertain, but our knowledge has improved greatly due to recent phylogenetic 

studies (Daly 2002, Daly et al. 2008, Rodríguez et al. 2008, Gusmão & Daly 2010, Rodríguez & 

Daly 2010, Rodríguez et al. 2012).  These studies either provide a broad overview of Actiniaria 

or focus on non-endomyarian sea anemones.  Thalassianthidae are lacking and Aliciidae 

represented by one species, so the phylogenetic placement and monophyly of these families has 

remained elusive.  Furthermore, none of the numerous phylogenies published have sampled 

heavily within Endomyaria, which is the clade of sea anemone in which both Aliciidae and 

Thalassianthidae have been most recently classified (Carlgren 1949, Fautin 2011).  Thus, 

relationships within Endomyaria remain tenuous.   

In this chapter, I sample DNA from a number of specimens of Aliciidae and 

Thalassianthidae, and apply phylogenetic methods to these molecular data to reconstruct a 

hypothesis of evolutionary relationships.  This phylogeny includes numerous representatives of 

Aliciidae, Thalassianthidae, and other Endomyaria.  The resulting phylogeny allows me to 

investigate the monophyly and placement of Aliciidae and Thalassianthidae to address the 
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following questions: 1) Are Aliciidae and Thalassianthidae monophyletic?  2) Do sea anemones 

with branched outgrowths and defensive spheres form a single, monophyletic clade (are 

Aliciidae and Thalassianthidae each other’s closest relatives)?  I furthermore address whether 

vesicles possessed by members of different genera of Aliciidae are homologous and document 

the types of vesicles present in each genus.   

 

Monophyly and phylogenetic placement of Thalassianthidae 

Members of Thalassianthidae are found in shallow localities of the Indo-West Pacific 

Ocean.  Stephenson (1920) and Carlgren (1949) placed Thalassianthidae in Endomyaria, 

primarily due to the presence of an endodermal marginal sphincter muscle and lack of acontia.  

The monophyly of Thalassianthidae has not been questioned, although genera placed in this 

family have changed through various iterations of the classification system proposed (see 

Chapter 3 for details).  Several classifications (Carlgren 1900, 1949, Stephenson 1921) have 

proposed a close relationship to Stichodactylidae, Capneidae, or Phymanthidae, based on tentacle 

arrangement; all families have members that possess multiple tentacles per endocoel.  

Thalassianthids have not been represented in any of the molecular phylogenies to date, so the 

monophyly or placement has not been tested using phylogenetic analyses. 

 

Monophyly and phylogenetic placement of Aliciidae 

Two main hypotheses have been proposed for the phylogenetic placement of Aliciidae.  

In the classification of Carlgren (1949), which is used by most sea anemone systematists, 

Aliciidae is considered an endomyarian.  In contrast, Schmidt (1974) and Den Hartog (1994, 

1997) proposed that Aliciidae was part of the subordinal group (mistakenly ranked as ‘tribe’) 
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Boloceroidaria; members of Boloceroidaria lack marginal sphincter and basilar muscles and 

possess longitudinal muscles of the column.  One aliciid, Triactis producta, and one 

boloceroidid, Boloceroides mcmurrichi, were included in the multi-gene phylogenies of Daly et 

al. (2008), Rodríguez & Daly (2010), and Rodríguez et al. (2012).  The placement of T. producta 

and B. mcmurrichi was not stable among the three phylogenies, so their relationships are 

unknown.  In the same three phylogenies (Daly et al. 2008, Rodríguez & Daly 2010, Rodríguez 

et al. 2012), T. producta was never recovered as being closely related to any endomyarians.  

Instead, it was recovered with strong support to be a member of the Metridioidea clade that 

contains species predominantly from the traditionally recognized Acontiaria, Mesomyaria, and 

Boloceroidaria clades (Rodríguez et al. 2012).  In only one phylogeny (Daly et al. 2008) were T. 

producta and B. mcmurrichi recovered as sister taxa.  In addition, T. producta has been identified 

as one of the anemone species that is able to form symbiotic relationships with Lybia crabs (see 

below).  However, Lybia crab symbionts have never been sampled for inclusion in phylogenetic 

analyses. 

 

Lybia crab symbiont identity 

 Crabs of the genus Lybia possess a pair of modified first chelae (Fig 2.1b,d,e) that are 

delicate (Borradaile 1902) and thus ineffective for defense, feeding, or grasping heavy objects 

(Borradaile 1902, Duerden 1905, Guinot 1976).  Each chela holds a small sea anemone (Fig 2.1), 

with which it forms a symbiotic relationship (Richters 1880, Borradaile 1902, Duerden 1905, 

Guinot et al. 1995, Verrill 1928, Cutress 1977, Karplus et al. 1998).  The identification of 

anemones in symbiosis with Lybia crabs is difficult due to their small size and the possibility that 

important morphological features may be lacking (Fig 2.1 b,d).  Sea anemones symbiotic with 
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Lybia crabs have been ascribed to a number of genera, including Actinia (by Richters 1880), 

Bunodeopsis (by Duerden 1905), Sagartia (by Duerden 1905, Verrill 1928), and Triactis (by 

Schmitt 1965, Cutress 1977, Karplus et al. 1998).  Triactis belongs to the genus Aliciidae; thus, 

sampling Lybia crab symbionts for morphological and molecular analyses was important for 

resolving their identity and determining their possible placement within Aliciidae.  To this end, I 

obtained four Lybia crabs with anemone symbionts from Hawai’i and the Indian Ocean to 

include in this analysis. 

 

Evolution of morphological features 

 The branched outgrowths and spherical defensive structures of Aliciidae and 

Thalassianthidae look and function similarly, but are not homologous features.  In 

Thalassianthidae, the outgrowths are of the oral disc, whilst in Aliciidae they are of the column.  

McMurrich (1889a, p. 40), when discussing pseudotentacles, the branched outgrowths of aliciids, 

stated, “…perhaps the pseudotentacles are to be compared to the peculiar evaginations of the 

disk which characterize Thalassianthinae, though their origin from the column wall precludes 

anything more than a general comparison.”  The molecular phylogeny provides an independently 

derived framework of relationships with which to explore the evolution of morphological 

characters such as branched outgrowths and defensive spheres. 

 In Thalassianthidae, the morphology with increased surface area and volume to 

incorporate and display a large number of zooxanthella are the tentacles of the oral disc.  

Members of Thalassianthidae possess a wide oral disc covered with many small, branched 

tentacles radially arranged in endocoels.  In the family, the branched endocoelic tentacles are in 
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two general shapes; palmate with branches in one plane, or pine tree-shaped with branches in 

multiple planes. 

 In Aliciidae, the morphology with dense zooxanthellae are the pseudotentacles of the 

column.  Pseudotentacles, unique to Aliciidae, were first described and illustrated by 

Duchassaing de Fonbressin & Michelotti (1860) in their description of Lebrunia.  

Pseudotentacles are referred to as ‘external tentacles’ and ‘exterior thick tentacles stalked’ by 

Duchassaing de Fonbressin & Michelotti (1860) and Klunzinger (1877), respectively; this 

terminology indicates the authors thought the branched outgrowths were specialized tentacles of 

the oral disc.  Hertwig (1882) uses the term pseudotentacle to refer more accurately to the 

outgrowths of the column.  The name pseudotentacle alludes to how similar in form these 

outgrowths are to tentacles – both are essentially hollow outgrowths of endoderm and ectoderm.  

McMurrich (1889b) considered pseudotentacles to be characteristic of a group, and established 

Subtribe Dendromelinae, based on this character.  Three of the four genera of Aliciidae possess 

pseudotentacles; Alicia, the type genus, lacks pseudotentacles.  In the remaining three genera, 

differences in pseudotentacle number, position, and morphology will be investigated. 

 The spherical defensive structures of Aliciidae and Thalassianthidae are similar because 

of their shape and have ectoderm dense with nematocysts.  In Thalassianthidae, the spherical 

defensive structures are specialized endocoelic tentacles called nematospheres.  Stephenson 

(1921, p. 575) described them as, “A tentacle which has become converted into a short structure 

rounded at the end, or into a practically sessile sphere, and the ectoderm of at least part of which 

is crowded with nematocysts.”  The nematocysts of nematospheres are basitrichs (Carlgren 

1949).  Within the family, nematospheres either are closely packed to form a continuous band or 

in grape-like clusters on lobes of oral disc. 
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 In Aliciidae, the spherical defensive structures are bubble-like outgrowths of the column 

or the pseudotentacles called vesicles.  The term vesicle is also used to describe bubble-like 

column outgrowths of certain genera of Actiniidae (Phlyctenactis and Phlyctenanthus) and 

Bunodeopsis of family Boloceroididae.  The vesicles of Phlyctenactis and Phlyctenanthus are not 

defensive: they do not have dense concentration of nematocysts, as seen in Aliciidae and 

Bunodeopsis.  Vesicles of Aliciidae and Bunodeopsis are dense with microbasic amastigophores, 

but aliciids also have macrobasic amastigophores.  A more precise term for the vesicles of 

Aliciidae and Bunodeopsis is mastigophoral vesicles to distinguish them from Actiniidae 

vesicles.  In this dissertation, I use the term vesicle to refer to mastigophoral vesicles. 

 There are various forms of vesicles in family Aliciidae.  Some vesicles are single spheres, 

referred to as simple vesicles.  Alternatively, vesicles are composed of a cluster of spheres, 

referred to as compound vesicles.  Vesicles may be attached directly to column or 

pseudotentacles, referred to as sessile vesicles.  Alternatively, vesicles may attach to column or 

pseudotentacles with a stalk, referred to as stalked vesicles.  An understanding of the homology 

of such complex characters may be informed by the reconstruction of a phylogeny, which can 

then serve as an independent framework for investigating character evolution.  Here, I code 

terminal taxa for characters relating to branched outgrowths and spherical defensive structures, 

as well as other characters of interest.  I visualize the distribution of these characters to better 

understand their evolution. 
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Materials and Methods 

Taxon sampling and gene choice 

Most specimens targeted for this study were collected by hand while snorkeling or 

SCUBA diving, and some were purchased online from aquarium supply stores.  Other sequences 

were downloaded from GenBank (Benson et al. 2005).  The complete dataset (Table 2.1) 

includes 101 sea anemone specimens and one zoanthid specimen.  In all analyses, the zoanthid 

species, Savalia savaglia, was used as an outgroup.  Zoanthidea was chosen as an outgroup 

because it is a monophyletic order within Hexacorallia, and had the same genes available on 

GenBank as what I include in my study.  I include just one zoanthid outgroup so my results are 

comparable with recent large-scale Actiniaria phylogenies (Rodríguez & Daly 2010, Rodríguez 

et al. 2012).  I include 20 specimens of species in Aliciidae, all but one new, including 

representatives of all four genera.  I include seven specimens of species in Thalassianthidae, all 

new.  I also include four specimens of Lybia crab symbionts.  Because the phylogenetic 

placement of Aliciidae and Thalassianthidae was unknown, I include representatives from most 

sea anemone families, with multiple specimens from species-rich families (e.g. Actiniidae, 

Hormathiidae) and from families hypothesized to be closely related to Aliciidae (e.g. 

Boloceroididae) and Thalassianthidae (e.g. Stichodactylidae and Actinodendridae).  The genes 

were selected from both mitochondrial (12S, 16S, CO3) and nuclear (18S, 28S) regions to span a 

range of evolutionary rates.  These genes have also been used previously for anemone 

phylogenies (Daly et al. 2008, Rodríguez & Daly 2010, Rodríguez et al. 2012); my new 

sequences will complement the published sequences, but also allow me to use published 

anemone sequences from GenBank to supplement my data matrix. 
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Molecular data collection and analysis 

DNA was extracted from most specimens using commercial Qiagen DNeasy Blood and 

Tissue Kit, following methods of Daly (2002).  If an extraction had low quality or quantity DNA, 

the specimen was re-extracted using a standard phenol-chloroform protocol.  Because aliciids 

produce copious amounts of mucus, and the polysaccharides of mucus can inhibit extraction of 

DNA, aliciids were extracted using either Omega Biotek E.Z.N.A. Mollusc DNA Isolation Kit 

(Omega Biotek, USA) or a protocol from McFadden et al. (2006).  The McFadden et al. (2006, 

p. 291) protocol incorporates Nucleon Phytopure (GE Healthcare), which is “a resin designed to 

remove excess polysaccharides.” 

A NanoDrop 2000 Spectrophotometer (Thermo Scientific) was used to measure the DNA 

concentration and purity.  When additional DNA was needed and no additional tissue available, I 

used the Genomiphi DNA Amplification Kit (GE Healthcare) to increase the volume of the 

original DNA extraction.  Mitochondrial DNA (12S, 16S, and CO3) and nuclear DNA (18S and 

28S) were amplified.  Primer sequences for PCR and sequencing reactions from the following 

sources: 12S (Chen et al. 2002), CO3 and 16S (Geller & Walton 2001), 18S (Medlin et al. 1998, 

Apakupakul et al. 1999), and 28S (Medina et al. 2001, Voigt et al. 2004, Cartwright et al. 2008, 

Evans et al. 2008) (see Appendix A for primer sequences).   

Targeted gene regions were amplified using PCR on a Peltier Thermal Cycler (BioRad), 

following the protocol of Daly et al. (2008).  PCR reactions were 25 µL reactions for all gene 

primer sets except for the complete 28S gene; the complete 28S gene reactions were 50 µL 

because of the greater number of sequencing reactions needed (Appendix B).  PCR products 

were size selected on a 1% agarose gel via electrophoresis; only PCR products that had a band of 

the appropriate size were sent for sequencing.  For PCR products that showed two bands, 
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indicating that DNA was amplified from two sources (most likely the sea anemone and the 

zooxanthellae), the band of the appropriate size was cut from the gel, purified using the Qiagen 

MinElute Gel Extraction Kit (Qiagen, MD), then cloned using the Invitrogen TOPO TA Cloning 

Kit (Invitrogen, CA).  Colonies were purified for DNA using Qiagen QIAprep Miniprep Kit 

(Qiagen, MD), then sent for sequencing. 

Purification and direct sequencing of PCR products were by Cogenics (Houston, TX) and 

High Throughput Genomics Center (Seattle, WA).  Raw sequences were blasted against the 

NCBI database.  Editing of sequences was done using Sequencher 4.7 (GeneCodes 2005) and 

Geneious (Biomatters).  Alignment of each marker was done using MAFFT (Katoh et al. 2002) 

or MUSCLE (Edgar 2004a, b).  Alignments were viewed using Seaview (Galtier et al. 1996, 

Guoy et al. 2010) and adjusted by hand and trimmed if necessary.  Alignments were run through 

the program Gblocks (Castresana 2000, Talavera & Castresana 2007) to remove ambiguously 

aligned regions.  Model testing was conducted using jmodeltest (Posada 2008) for the following 

partitions: 12S, 16S, CO3, 18S, 28S, mitochondrial, nuclear.  Model selection was based on 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).  Separate gene 

alignments were concatenated with assistance from a Python script. 

Maximum likelihood analyses were run using RAxML-vi-HPC 2.2.3 (Stamatakis 2006) 

for separate genes, combined mitochondrial, combined nuclear, all genes except 28S, and 

combined five-gene dataset.  The combined five-gene dataset was analyzed twice – once without 

and once with the specimens from the Lybia crab symbionts.  The 28S dataset was problematic 

for alignment; sequences downloaded from GenBank were an approximately 1,100 base pairs 

fragment at the 5’ end of the molecule, referred to as 5’ fragment in Table 2.2.  Most of the new 

sequences were an approximately 2,600 base pairs fragment at the 3’ end of the molecule, 

16



 

referred to as 3’ fragment in Table 2.2.  Any fragment over 2,000 base pairs had overlap with the 

published molecule.  Concatenated datasets were partitioned into separate genes so each gene 

could be assigned a separate model of evolution.  Support was assessed with 1,000 bootstrap 

replicates.  Bayesian analyses were conducted on the mitochondrial, nuclear, all genes except 

28S, and five-gene (with and without Lybia crab symbionts) datasets, using MrBayes 

(Huelsenbeck & Ronquist 2001, Ronquist & Huelsenbeck 2003).  Four runs of 20 million 

generations with eight chains were cued in MrBayes.  FigTree v1.3.1 (Rambaut 2009) and 

Mesquite (Maddison & Maddison 2007) were used to view and edit the topologies resulting from 

analyses. 

 

Lybia crab symbiont identity 

Four specimens of sea anemones symbiotic with Lybia crabs were added to the combined 

five-gene matrix.  This matrix was analyzed using a maximum likelihood phylogenetic 

framework to determine the specimens’ closest relatives. 

 

Evolution of morphological features 

Using the five-gene (without Lybia symbionts) matrix, terminal leaves are coded for 

morphological features.  Details of morphological features and coding are listed in Table 2.2.  

Ancestral character state reconstructions were not performed on the five-gene phylogenies 

because deeper nodes were poorly resolved.   
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Results 

 Datasets with ambiguously aligned regions removed by Gblocks were analyzed but did 

not alter topology compared to datasets still containing ambiguously aligned regions, and 

therefore are not included in the results.  A summary of each dataset, including the number of 

taxa, unaligned length, and aligned length is provided in Table 2.3.  The appropriate models of 

evolution for separate datasets under AIC and BIC are shown in Table 2.4.  In most of the 

analyses, two major clades, Endomyaria and Metridioidea, are recovered.  Figures 2.2–2.11 show 

the phylogenies resulting from the Maximum Likelihood analyses.  Nodes with bootstrap values 

of 70 or above are interpreted as well supported.  Table 2.5 provides a summary of the major 

clades relevant to Aliciidae and Thalassianthidae that are recovered in datasets.  The combined 

datasets result in trees with most resolved nodes compared to the separate genes.  The 28S 

analysis failed to recover monophyletic Metridioidea or Endomyaria clades.  Instead, all of the 

incomplete GenBank sequences clustered together in a derived position in the tree. 

 

Monophyly and phylogenetic placement of Thalassianthidae 

Thalassianthidae is recovered as a well-supported monophyletic clade in all datasets 

except CO3 and mitochondrial matrices.  Consistently, members of the genera Thalassianthus 

and Cryptodendrum are reciprocally monophyletic, though their relationship is not always highly 

supported.  In all analyses, Thalassianthidae form a clade in Endomyaria that is nested within a 

group containing some members of Stichodactylidae.  The larger 

Stichodactylidae+Thalassianthidae clade is supported in all analyses (Fig 2.2–2.11).  The 

members of Stichodactylidae that are not included in the Stichodactylidae+Thalassianthidae 
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clade are the species Heteractis aurora and H. crispa; instead they are placed in a well-supported 

derived clade containing Phymanthus and Macrodactyla representatives (Fig 2.10, 2.11). 

 

Monophyly and phylogenetic placement of Aliciidae 

In the ML analysis of the combined five-gene dataset, Aliciidae is not monophyletic 

(Table 2.5, Fig 2.10, 2.11).  In the combined five-gene analyses, most of the aliciid genera are 

monophyletic with good support – the exception is Triactis in the dataset without Lybia 

symbionts (Fig 2.10).  In this situation, one Triactis specimen is not most closely related to all 

other Triactis specimen and instead is sister to a Phyllodiscus+Triactis clade (Fig 2.10).  Three 

genera from Aliciidae (Lebrunia, Triactis, and Phyllodiscus) form a well-supported clade in the 

combined five-gene datasets with and without Lybia crab symbionts (Fig 2.10, 2.11).  

Boloceroididae is monophyletic, with good support, in most analyses (Fig 2.2–2.3, 2.5–2.11). 

In none of the combined five-gene analyses are members of Aliciidae recovered within 

the Endomyaria clade; instead they form a clade with Boloceroididae that is nested as a derived 

clade of Metridioidea (Fig 2.11).  When Lybia symbionts are excluded, the representatives of 

Alicia are most closely related to Aiptasiidae (Fig 2.10), which is nested within the larger 

Metridioidea clade, sister to the rest of Aliciidae+Boloceroididae clade. 

 

Lybia crab symbiont identity 

 Sequences from all four sea anemones symbiotic with Lybia crabs are nested with 

members of Triactis producta, a relationship that has high support (Fig 2.11).  The inclusion of 

the Lybia symbiont specimens altered the relationships in comparison with the analysis without 

these specimens (Fig 2.10).  Triactis producta formed a well-supported monophyletic clade with 
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the Lybia symbiont specimens (Fig 2.11, Table 2.5) compared to Triactis producta forming a 

paraphyletic clade in the analysis without Lybia symbiont specimens (Fig 2.10).  In the analysis 

with Lybia symbionts, the genus Alicia is sister to the rest of Aliciidae+Boloceroididae (although 

with a bootstrap support of 47) (Fig 2.11), whereas in the analysis lacking the Lybia symbionts, 

Alicia was sister to Aiptasiidae (bootstrap support of 62), which was then sister to the rest of 

Aliciidae+Boloceroididae (Fig 2.10). 

 

Evolution of morphological features 

 Morphological features are mapped onto the maximum likelihood phylogeny from the 

combined five-gene (without Lybia symbionts) matrix (Fig 2.12–2.14).  Branched outgrowths, 

defensive spheres, and radially arranged tentacles have evolved multiple times in multiple 

families (Fig 2.12, 2.13).  The branched outgrowths and defensive spheres are separated into 

outgrowths of the oral disc (Fig 2.13) and column (Fig 2.14).  The families Actinodendridae and 

Thalassianthidae both possess branched tentacles and defensive spheres.  One family, Aliciidae, 

possesses branched outgrowths and defensive spheres of the column (Fig. 2.14).  Defensive 

spheres evolved three times (Fig 2.14).  The combination of pseudotentacles and vesicles are 

features of a clade containing three of the four Aliciidae genera (Fig 2.14).  

 

 

Discussion 

Monophyly and phylogenetic placement of Thalassianthidae 

Thalassianthidae is consistently recovered as monophyletic, which is not surprising as 

morphological traits also support the monophyly of this group.  Thalassianthids are the only sea 
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anemones to possess multiple branched tentacles per endocoel in addition to nematospheres.  The 

included specimens of Thalassianthus, which possess lobes of the oral disc, form a clade that is 

sister to Cryptodendrum, whose members lack lobes. 

The placement of Thalassianthidae in Endomyaria is supported morphologically by the 

conspicuous endodermal marginal sphincter muscle (Carlgren 1949).  The thalassianthids are 

nested within a well-supported clade that includes most of the Stichodactylidae, including the 

type genus Stichodactyla.  Members of this clade all possess multiple tentacles per endocoel, 

although this feature is not unique to this clade (Fig 2.13).  Other families whose members 

possess multiple tentacles per endocoel, such as Homostichanthidae and Capneidae, were not 

included in this analysis. 

 The Stichodactylidae members not included in the Stichodactylidae+Thalassianthidae 

clade are the species Heteractis aurora and H. crispa.  These two species are found closely 

related to Phymanthus (Phymanthidae), Phyllactis (Actiniidae), and Macrodactyla (Actiniidae).  

The close relationship of Heteractis aurora and H. crispa is supported by Dunn’s (1981) 

observation that these two species closely resemble each other.  The separation of H. magnifica 

from congeners H. aurora and H. crispa in the phylogenies is also supported by findings by 

Dunn (1981), who reported that H. magnifica differed from all other species of Heteractis by the 

refractive endoderm of the upper column.  This character is shared with some species of 

Stichodactlya, along with multiple tentacles per endocoel.  

 The separation of Heteractis, in particular the type species H. aurora, from other 

Stichodactylidae has been proposed by England (1988), who found macrobasic amastigophore 

nematocysts present in H. aurora but not in Stichodactyla specimens.  England (1988) separated 

the genus Heteractis from Stichodactylidae and reinstated the family Heteractidae.  In light of 
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previous hypotheses and phylogenies presented here, it is clear that the family Stichodactylidae 

(including Stichodactyla and Heteractis) should be revised, particularly because Thalassianthidae 

was recovered nested within a Stichodactylidae clade. 

 

Monophyly and phylogenetic placement of Aliciidae 

 Aliciidae is not recovered to be monophyletic in any of the phylogenetic analyses (Fig 

2.2–2.11).  Despite the non-monophyly of Aliciidae indicated by the phylogenies, I will treat the 

family as a whole unit in the morphological revision chapter (Chapter 4).  Three of the four 

aliciid genera (Lebrunia, Triactis, Phyllodiscus) consistently form a well-supported clade, but the 

placement of the other genus, Alicia, is not consistent across datasets.  The placement of Alicia, 

the type genus of Aliciidae, is important to determine for systematic and nomenclatural reasons. 

 My results support Schmidt’s (1974) hypothesis of relationships with Aliciidae members 

more closely related to Boloceroididae than to Endomyaria.  However, in contrast to Schmidt’s 

(1974) hypothesis of an early diverging clade of Aliciidae and Boloceroididae, my results 

suggest that aliciids and boloceroidids are more derived (Fig 2.10, 2.11).  Daly et al. (2008) 

recovered a well-supported sister relationship between Triactis and Boloceroides; Aliciidae and 

Boloceroididae share features such as possession of microbasic amastigophores and ectodermal 

longitudinal muscles of the column (Carlgren 1949, Schmidt 1974).   

Another family whose members possess ectodermal longitudinal muscles of the column 

is Aiptasiidae (Carlgren 1949, Schmidt 1974).  In the combined five-gene dataset excluding 

Lybia crab symbionts, members of Alicia are sister to Aiptasiidae (Fig 2.10).  This close 

relationship of Alicia and Aiptasiidae has also been found in preliminary analyses of a larger 

Actiniaria dataset (pers. comm. E. Rodríguez), and Rodríguez & Daly (2010) recovered Triactis 
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as sister to Aiptasiidae.  The close relationship of aliciids, boloceroidids, and aiptasiids in some 

of the phylogenies presented here (Fig 2.2, 2.10, 2.11) are congruent with some morphological 

features, in particular the well-developed longitudinal musculature in the uppermost part of the 

column (Schmidt 1974), which Carlgren (1947) stated could be an important character for 

classification of anemones.  The relationships recovered in both of the combined five-gene 

datasets support this notion, with a derived clade comprised of Aliciidae, Boloceroididae, and 

Aiptasiidae recovered with good support.  Future studies should include members of 

Gonactiniidae, which also possess well-developed longitudinal muscles of the column (Carlgren 

1947, 1949). 

Aiptasiids possess nematocyst-laden threads called acontia, a feature shared by many 

members of Metridioidea, but lacking in Aliciidae and Boloceroididae.  The consistent recovery 

of aliciid members within the Metridioidea clade suggests that acontia were gained in early 

evolution of Metridioidea (Fig 2.12), but subsequently lost for members of Aliciidae and 

Boloceroididae.  Alternatively, acontia could have been lost in the 

Aiptasiidae+Boloceroididae+Aliciidae clade, and regained in the Aiptasiidae lineage.  The 

phylogenies of Daly et al. (2008), Rodríguez & Daly (2010), and Rodríguez et al. (2012) also 

suggest that acontia have been lost in various taxa, including Aliciidae, Boloceroididae, and 

Paranthus.  I, too, recover these three groups of acontia-less species to be nested in the 

Metridioidea clade, supporting the hypothesis that acontia were lost evolutionarily in these taxa, 

and therefore multiple times in Metridioidea.  Acontia used to define the group Acontiaria, of 

which all members have acontia, however, the Acontiaria group has not been recovered in recent 

phylogenies.  Instead a clade consisting predominantly of acontia-bearing taxa, but also 
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including some taxa that lack acontia, has been recovered; this group is referred to as 

Metridioidea (see Rodríguez et al. 2012). 

  

Lybia crab symbiont identity 

 In all analyses, including separate gene analyses not shown, the Lybia crab symbionts are 

most closely related to specimens of Triactis producta and never found closely related to 

Bunodeopsis (Family Boloceroididae) or Sagartia (Family Sagartiidae).  The Lybia crab 

symbionts also possessed macrobasic amastigophore nematocysts on the column, which is 

further evidence these sea anemones are in the family Aliciidae.  Both the molecular and cnidae 

results support that the Lybia crab symbionts are members of the species Triactis producta. 

 Triactis producta usually possess pseudotentacles projecting from the column, and 

vesicles attached to the pseudotentacles or column.  The Lybia crab symbionts lacked any 

projections of the column (Fig 2.1 b,d).  The symbiosis between the sea anemone and the crab is 

such that the crab holds onto the anemones mid-column (Fig 2.1 b,d), with chelae that have 

sharp, fine hooks (Fig 2.1 e) (Guinot 1976).  Sea anemones with outgrowths of the column 

would make this difficult.  Whether the crab chooses anemones that lack column outgrowths, and 

if the development of column features on the sea anemone is impeded by the symbiosis, is 

unknown and untested in this study.  Observations have shown that once the anemone is out of 

the relationship, vesicles start to form on the column (pers. comm. Y. Schnytzer).  I have 

observed that for column morphology of T. producta, vesicles are the first projection to form, 

followed by pseudotentacles (see results in Chapter 4).   

 The specimens I obtained of anemones symbiotic with Lybia crabs included three 

representatives from the Indian Ocean, and one from Hawai’i in the Pacific Ocean, as well as 
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from two species of Lybia, L. tesselata from the Indo-Pacific and L. edmondsoni from Hawai’i.  

It is still unknown how many species of sea anemones are associated with Lybia crabs, Triactis 

producta may not be the only species of sea anemone involved in this symbiosis, despite all four 

specimens I analyzed nesting with T.producta.  In fact, Duerden (1905) showed that Lybia crabs 

could change their symbionts, and even hold two different species of anemones in each chela.  

Adding more specimens of sea anemone symbionts may show more species involved in this 

symbiosis. 

Verrill (1928) described a new species of sea anemone, Sagartia pugnax, and cited it as a 

symbiont of both Lybia tesselata and Polydectus cupulifer.  Figure j of Verrill (1928) shows an 

illustration of the symbiotic sea anemone with acontia extended through the column wall – a 

feature that characteristic of Sagartia.  What is not clear from the Verrill’s (1928) account is 

whether the sea anemone specimen in Figure j was symbiotic with Polydectus or Lybia, or 

whether all sea anemone specimens he encountered possessed acontia.  It is possible that small 

specimens of Triactis producta and Sagartia can look very similar when in association with 

crabs, as symbiotic T. producta lack the distinctive column morphology of non-symbiotic T. 

producta.  Cutress (1977) considered that some of the specimens described by Verrill (1928) 

were T. producta and not Sagartia pugnax; however, it is not known which subset of the 

specimens he considered which, and whether T.producta were associated with Lybia or 

Polydectus.  Cutress (1977) stated that Duerden (1905) had mis-identified Bunodeopsis as 

specimens belonging to T.producta, and also synonymized Actinia prehensa, the first sea 

anemone described in association with Lybia crabs, with T.producta.  

 It is possible that multiple species of anemones are symbiotic with Lybia crabs.  Duerden 

(1905) observed that one Lybia crab individual could change species of symbionts, from 
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Bunodeopsis to Sagartia, and could even hold different species in each chela.  The acontia 

observed in the symbiont anemone by Duerden (1905) and Verrill (1928) rule out that these 

anemones were Triactis producta, as this species lacks acontia; so at least two species of 

anemones have been recorded in this symbiosis.  For the crab, it is possible that any small-sized 

anemone is suitable for the symbiosis, as all anemones possess cnidae; it is unknown whether the 

selection of the anemone is based on anything except size. 

 

Evolution of morphological features 

 The pattern of relationships recovered suggests that sea anemone possessing both 

branched outgrowths and defensive spheres have evolved three times (Fig 2.12).  The 

combination of these characters are exhibited in three families, Actinodendridae, 

Thalassianthidae, and Aliciidae, that are not recovered as each others’ closest relatives.  Some 

members of other families possess either branched outgrowths (e.g. Phymanthus of 

Phymanthidae) or defensive spheres (e.g. Phyllactis of Actiniidae), but not both.  The non-

monophyly of a clade containing branched outgrowths and defensive spheres is reasonable 

because of the morphological differences among the families.  Re-coding characters gives a 

clearer indication that these characters are not homologous, and convergence has lead to sea 

anemones evolving superficially similar morphological features.  Finding Actinodendridae to be 

monophyletic and nested within Endomyaria supports Ardelean’s (2003a) results.  Ardelean 

(2003b) showed the branched tentacles of Actinodendridae and Thalassianthidae to be 

superficially similar. 

 The re-coding of branched outgrowths and defensive spheres as projections of either the 

oral disc or column shows the very distant relationship of species that possess projections of the 
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oral disc and the column, and different morphological evolutionary histories for each genus (Fig 

2.13, 2.14).  Branched outgrowths and defensive spheres of the oral disc evolved twice in the 

Endomyaria clade, once in Actinodendridae and once in Thalassianthidae.  The defensive 

spheres of the column have evolved three times; most instances of defensive spheres of the 

column are found in representatives of Aliciidae.  An alternative explanation of evolution of 

vesicles is that they evolved once in a clade containing Aliciidae, Boloceroididae, and 

Aiptasiidae, then were subsequently lost in Boloceroides and Aiptasiidae.  Because of the 

similarities of vesicles of Alicia and all other Aliciidae genera, especially in relation to 

possession of macrobasic amastigophores, it is likely that the vesicles of all Aliciidae genera are 

homologous.  The vesicles of Bunodeopsis are similar in morphology, but do not have 

macrobasic amastigophores.  The branched outgrowths of the column, the pseudotentacles, are 

recovered as being evolved only once, in a clade consisting of three of the four genera of 

Aliciidae.  The pseudotentacles of the three genera share features such as position, cnidae, and 

musculature, so a clade consisting of these three genera is not unexpected. 

 The defensive spheres of Thalassianthidae and Aliciidae are neither homologous, nor 

contain the same type of nematocysts, yet species that possess defensive spheres have been 

reported to be toxic.  This suggests that toxicity within Actiniaria has evolved multiple times, 

including many families, not just Thalassianthidae and Aliciidae.  Actinodendridae have the 

common name of Hell’s Fire Anemone because of the nasty sting to humans (Hansen & Halstead 

1971).  Phyllodiscus semoni should be considered very dangerous following a report that a man 

died after being stung by this species (Erhardt & Knop 2005).  Species of Thalassianthidae, 

Triactis, and Lebrunia have all been reported to cause irritation to the skin (Fishelson 1970, Levy 

et al. 1970, Herrnkind et al. 1976, Williamson et al. 1996).  Species in other families such as 
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Hormathiidae, Aiptasiidae, and Actiniidae have also been reported to sting humans, so it is clear 

toxicity is widespread in Actiniaria. 

 

 

Conclusion 

 In this study, I investigated whether Aliciidae and Thalassianthidae were each 

monophyletic, and if they were closely related.  To do so, phylogenetic analyses of molecular 

data from a broad sample of Actiniaria provided a framework of evolutionary relationships.  

Resulting phylogenies provided evidence supporting the monophyly of Thalassianthidae and the 

thalassianthid genera, Thalassianthus and Cryptodendrum.  Support was also gained for the 

placement of Thalassianthidae in Endomyaria.  Aliciidae was not recovered as monophyletic, but 

missing data may have influenced this result.  The three pseudotentacle-bearing genera 

consistently formed a well-supported clade.  Aliciidae members were found closely related to 

Boloceroididae and Aiptasiidae members, placed in the larger group Metridioidea, and never 

found closely related to endomyarians. 

 Branched outgrowths and defensive spheres of Thalassianthidae and Aliciidae are 

convergent characters, but clearer definitions reveal more precise evolutionary histories for each 

genus of Aliciidae and Thalassianthidae.  For specimens lacking diagnostic morphology, such as 

sea anemones symbiotic with Lybia crabs, molecular data provides an alternative form of 

information.  By analyzing Lybia symbionts along with other species of sea anemones, I found 

the Lybia symbionts belong to aliciid Triactis producta. 

 In future studies, additional genes may be added to the matrix to resolve more nodes.  

Other mitochondrial genes, such as CO1, may help to resolve deeper nodes.  The terminal nodes 
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may be resolved with the addition of the nuclear loci ITS, which has been used successfully by 

other sea anemone studies (Stoletzki & Schierwater 2005, Acuña et al. 2007, Worthington-

Wilmer & Mitchell 2008, Gusmão 2010).  Increased taxon and gene sampling may lead to the 

recovery of a monophyletic Aliciidae, and provide further insight into the evolution or vesicles in 

this diverse family. 
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Fig 2.1.  Lybia crabs and symbionts.  a,b) Lybia edmondsoni and sea anemone from Indian 
Ocean  c,d) Lybia tesselata and sea anemone from Hawai’i  e) modified chela from Lybia 
tesselata without sea anemone.
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Fig 2.2.  Phylogeny from Maximum Likelihood analyses of 12S dataset.  Samples in all 
caps from GenBank, lowercase from this study.  Support assessed from 1000 bootstrap 
replicates; red for 100, black for >50.
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Fig 2.3.  Phylogeny from Maximum Likelihood analyses of 16S dataset.  Samples in all 
caps from GenBank, lowercase from this study.  Support assessed from 1000 bootstrap 
replicates; red for 100, black for >70.
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Fig 2.4.  Phylogeny from Maximum Likelihood analyses of CO3 dataset.  Samples in all 
caps from GenBank, lowercase from this study.  Support assessed from 1000 bootstrap 
replicates; red for 100, black for >70.
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Fig 2.5.  Phylogeny from Maximum Likelihood analyses of mitochondrial dataset.  Samples 
in all caps from GenBank, lowercase from this study.  Support assessed from 1000 boot-
strap replicates; red for 100, black for >70.
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Fig 2.6.  Phylogeny from Maximum Likelihood analyses of 18S dataset.  Samples in all 
caps from GenBank, lowercase from this study.  Support assessed from 1000 bootstrap 
replicates; red for 100, black for >70.
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Fig 2.7.  Phylogeny from Maximum Likelihood analyses of 28S dataset.  Samples in all 
caps from GenBank, lowercase from this study.  Support assessed from 1000 bootstrap 
replicates; red for 100, black for >70.
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Fig 2.8.  Phylogeny from Maximum Likelihood analyses of nuclear dataset.  Samples in all 
caps from GenBank, lowercase from this study.  Support assessed from 1000 bootstrap 
replicates; red for 100, black for >70.
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Fig 2.9.  Phylogeny from Maximum Likelihood analyses of all genes except 28S dataset.  
Samples in all caps from GenBank, lowercase from this study.  Support assessed from 1000 
bootstrap replicates; red for 100, black for >70.
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Fig 2.10.  Phylogeny from Maximum Likelihood analyses of  complete dataset.  Samples in 
all caps from GenBank, lowercase from this study.  Support assessed from 1000 bootstrap 
replicates; red for 100, black for >70.
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Fig 2.11.  Phylogeny from Maximum Likelihood analyses of complete dataset, including 
Lybia crab symbionts.  Samples in all caps from GenBank, lowercase from this study.  
Support assessed from 1000 bootstrap replicates; red for 100, black for >70.
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Aliciidae_Triactis_producta (Maldives)

Stichodactylidae_Stichodactyla_gigantea

HORMATHIIDAE_CALLIACTIS_POLYPUS

PREACTINIDAE_DACTYLANTHUS_ANTARCTICUS

Stichodactylidae_Heteractis_aurora

NEMANTHIDAE_NEMANTHUS_NITIDUS

AIPTASIIDAE_AIPTASIA_MUTABILIS

STICHODACTYLIDAE_HETERACTIS_AURORA

Thalassianthidae_Thalassianthus_hemprichii (Palau)

Lybia_synbiont (Indian Ocean 1)

ISANTHIDAE_ISANTHUS_CAPENSIS

Aliciidae_Triactis_producta (Zanzibar)

Thalassianthidae_Thalassianthus_aster (Australia)

Aliciidae_Phyllodiscus_semoni (Maldives 2)

ANDVAKIIDAE_ANDVAKIA_BONIENSIS

Boloceroididae_Bunodeopsis_medusoides (Mo’orea)

ACTINOSTOLIDAE_PARANTHUS_NIVEUS

ALICIIDAE_TRIACTIS_PRODUCTA

HALIPLANELLIDAE_HALIPLANELLA_LINEATA

HORMATHIIDAE_HORMATHIA_ARMATA

Aliciidae_Lebrunia_coralligens (Curacao)

Stichodactylidae_Stichodactyla_haddoni (Australia)

SAGARTIIDAE_PHELLIA_GAUSAPATA

Thalassianthidae_Cryptodendrum_adhaesivum (Maldives)

HALOCLAVIDAE_HALOCLAVA_PRODUCTA

HORMATHIIDAE_AMPHIANTHUS

STICHODACTYLIDAE_STICHODACTYLA_GIGANTEA

Stichodactylidae_Stichodactyla_mertensii
STICHODACTYLIDAE_STICHODACTYLA_HADDONI

Aliciidae_Phyllodiscus_semoni (Indonesia)

ACTINIIDAE_EPIACTIS_LISBETHAE

DIADUMENIDAE_DIADUMENE_CINCTA

Stichodactylidae_Heteractis_aurora

Aliciidae_Lebrunia_neglecta (Belize)

LIPONEMATIDAE_LIPONEMA_BREVICORNE

SAGARTIIDAE_ACTINOTHOE_SPHYRODETA

ACTINODENDRIDAE_ACTINOSTEPHANUS_HAECKELI

Aliciidae_Alicia_sansibarensis  (AMNH)

ACTINIIDAE_BUNODOSOMA_GRANDIS

Aliciidae_Triactis_producta (Mo’orea 2)

Thalassianthidae_Thalassianthus_aster (Singapore)

Aliciidae_Alicia_mirabilis (AMNH)

Boloceroididae_Boloceroides_mcmurrichi (Australia 2)

Lybia_symbiont (Hawai’i)

Aliciidae_Lebrunia_coralligens (Curacao 1)
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PHYMANTHIDAE PHYMANTHUS LOLIGO

ACTINIIDAE ANEMONIA VIRIDIS

METRIDIIDAE METRIDIUM SENILE

ACTINIIDAE MACRODACTYLA DOREENSI S

STICHODACTYLIDAE HETERACTIS AURORA

Thalassianthidae Thalassianthus hemprichii (Palau)  

BATHYPHELLIIDAE BATHYPHELLIA AUSTRALIS

Actiniidae Phyllactis

Aliciidae Lebrunia coralligens (Barbados 1)  

Aliciidae Phyllodiscus semoni 

Stichodactylidae Heteractis aurora 

HORMATHIIDAE HORMATHIA LACUNIFERA

ACTINIIDAE URTICINA CORIACEA

Thalassianthidae Cryptodendrum adhaesivum (Red Sea) 

ACTINOSTOLIDAE PARANTHUS NIVEUS

STICHODACTYLIDAE HETERACTIS MAGNIFICA

STICHODACTYLIDAE STICHODACTYLA HADDONI

Stichodactylidae Stichodactyla gigantea

ACTINOSCYPHIIDAE ACTINOSCYPHIA PLEBEIA

Thalassianthidae Cryptodendrum adhaesivum (Maldives)  

Thalassianthidae Thalassianthus aster (Australia)  

AIPTASIIDAE BARTHOLOMEA ANNULATA  

Actinodendridae Actinostephanus haeckeli  

Aliciidae Lebrunia neglecta

Aliciidae Lebrunia neglecta (Curacao 3)

Aliciidae Lebrunia coralligens (Curacao 3) 

HORMATHIIDAE AMPHIANTHUS

HORMATHIIDAE HORMATHIA ARMATA

ACTINIIDAE ACTINIA FRAGACEA

Aliciidae Lebrunia coralligens (Curacao 1) 

SAGARTIIDAE CEREUS PEDUNCULATUS

Stichodactylidae Stichodactyla haddoni (Australia)

Boloceroididae Boloceroides mcmurrichi (Zanzibar)

EDWARDSIIDAE NEMATOSTELLA VECTENSIS

Stichodactylidae Heteractis aurora

Stichodactylidae Heteractis crispa

PREACTINIDAE DACTYLANTHUS ANTARCTICUS

ACTINODENDRIDAE ACTINOSTEPHANUS HAECKELI  

HALOCLAVIDAE HALOCLAVA PRODUCTA

ZOANTHID

ACTINIIDAE ANTHOPLEURA ELEGANTISSIMA

Thalassianthidae Thalassianthus hemprichii (Japan)  

SAGARTIIDAE SAGARTIA TROGLODYTES

SAGARTIIDAE ANTHOTHOE CHILENSIS

Aliciidae Phyllodiscus semoni (Maldives 2)  

HALCAMPOIDIDAE HALCAMPOIDES PURPUREUS

NEMANTHIDAE NEMANTHUS NITIDUS

Boloceroididae Boloceroides mcmurrichi (Australia 1)

ACTINIIDAE BUNODOSOMA GRANDIS

ALICIIDAE TRIACTIS PRODUCTA 

Thalassianthidae Thalassianthus aster (Singapore) 

SAGARTIIDAE PHELLIA GAUSAPATA

HALCAMPIDAE HALCAMPA DUODECIMCIRRATA

Aliciidae Triactis producta (Zanzibar)  

HORMATHIIDAE HORMATHIA PECTINATA

STICHODACTYLIDAE STICHODACTYLA GIGANTEA

ANTIPODACTINIDAE ANTIPODACTIS AWI I

Stichodactylidae Stichodactyla mertensii

KADOSACTINIDAE KADOSACTIS ANTARCTICA

LIPONEMATIDAE LIPONEMA BREVICORNE

EDWARDSIIDAE EDWARDSIA ELEGANS

ACTINOSTOLIDAE STOMPHIA SELAGINELLA

Aliciidae Lebrunia coralligens (Curacao 2) 

ACTINIIDAE EPIACTIS LISBETHAE

Thalassianthidae Cryptodendrum adhaesivum  

Phymanthidae Phymanthus crucifer

HALIPLANELLIDAE HALIPLANELLA LINEATA

SAGARTIIDAE ACTINOTHOE SPHYRODETA

ACTINOSTOLIDAE ACTINOSTOLA CRASSICORNI

Aliciidae Triactis producta (Moorea 2)  

HORMATHIIDAE CALLIACTIS POLYPUS  

Boloceroididae Bunodeopsis medusoides (Moorea)

Aliciidae Lebrunia coralligens (Barbados 2) 

AIPTASIIDAE AIPTASIA MUTABILIS

Actiniidae Macrodactyla doreensis (Australia)

Boloceroididae Boloceroides mcmurrichi (Moorea)

ANDVAKIIDAE ANDVAKIA BONIENSIS

Aliciidae Phyllodiscus semoni (Maldives 1) 

SAGARTIIDAE SAGARTIOGETON LACERATUS

HORMATHIIDAE ACTINAUGE RICHARDI

ACTINOSTOLIDAE HORMOSOMA SCOTTI

ISANTHIDAE ISANTHUS CAPENSIS

ACTINIIDAE AULACTINIA VERRUCOSA

Phymanthidae Phymanthus

Aliciidae Triactis producta (Moorea 1) 

Aliciidae Alicia mirabilis (AMNH)  

Aliciidae Triactis producta (Maldives)  

Aliciidae Alicia sansibarensis (Mozambique)  

DIADUMENIDAE DIADUMENE CINCTA

Aliciidae Phyllodiscus semoni (Indonesia)  

Stichodactylidae Heteractis magnifica

HORMATHIIDAE VERRILLACTIS PAGURI

Aliciidae Alicia beebei (Mexico)  

Aliciidae Alicia sansibarensis (AMNH) 

BOLOCEROIDIDAE BOLOCEROIDES MCMURRICHI

ACTINIIDAE ISOTEALIA

Boloceroididae Boloceroides mcmurrichi (Australia 2)

A B

absent
present

absent
present

A: branched outgrowths

B: defensive spheres

Fig 2.12.  Morphological character states coded on combined five-gene without Lybia 
symbiont phylogeny.  Thalassianthidae members highlighted in green, Aliciidae members 
highlighted in red.  Bold taxa possess acontia.  For further explanation of character coding, 
see Table 2.2. 
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PHYMANTHIDAE PHYMANTHUS LOLIGO

ACTINIIDAE ANEMONIA VIRIDIS

ACTINIIDAE MACRODACTYLA DOREENSIS

STICHODACTYLIDAE HETERACTIS AURORA

Thalassianthidae Thalassianthus hemprichii (Palau)

BATHYPHELLIIDAE BATHYPHELLIA AUSTRALIS

Actiniidae Phyllactis

Stichodactylidae Heteractis aurora 

ACTINIIDAE URTICINA CORIACEA

Thalassianthidae Cryptodendrum adhaesivum (Red Sea)

STICHODACTYLIDAE HETERACTIS MAGNIFICA

STICHODACTYLIDAE STICHODACTYLA HADDONI

Stichodactylidae Stichodactyla gigantea

Thalassianthidae Cryptodendrum adhaesivum (Maldives)

Thalassianthidae Thalassianthus aster (Australia)

Actinodendridae Actinostephanus haeckeli

ACTINIIDAE ACTINIA FRAGACEA

Stichodactylidae Stichodactyla haddoni (Australia)

Stichodactylidae Heteractis aurora

Stichodactylidae Heteractis crispa

PREACTINIDAE DACTYLANTHUS ANTARCTICUS

ACTINODENDRIDAE ACTINOSTEPHANUS HAECKELI

HALOCLAVIDAE HALOCLAVA PRODUCTA

ACTINIIDAE ANTHOPLEURA ELEGANTISSIMA

Thalassianthidae Thalassianthus hemprichii (Japan)

ACTINIIDAE BUNODOSOMA GRANDIS

Thalassianthidae Thalassianthus aster (Singapore)

STICHODACTYLIDAE STICHODACTYLA GIGANTEA

Stichodactylidae Stichodactyla mertensii

LIPONEMATIDAE LIPONEMA BREVICORNE

ACTINIIDAE EPIACTIS LISBETHAE

Thalassianthidae Cryptodendrum adhaesivum

Phymanthidae Phymanthus crucifer

Actiniidae Macrodactyla doreensis (Australia)

ACTINIIDAE AULACTINIA VERRUCOSA

Phymanthidae Phymanthus

Stichodactylidae Heteractis magnifica

DC E

absent

present

C: radially arranged 
tentacles

absent

four orders

D: branched tentacles

two orders

absent

acrospheres

nematospheres,
 band

E: defensive tentacles

nematospheres,
 clusters

Fig 2.13.  Morphological character states coded on inset of combined five-gene without 
Lybia symbiont phylogeny.  Thalassianthidae members highlighted in green.  For further 
explanation of character coding, see Table 2.2.
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Aliciidae Lebrunia coralligens (Barbados 1)

Aliciidae Phyllodiscus semoni

AIPTASIIDAE BARTHOLOMEA ANNULATA

Aliciidae Lebrunia neglecta

Aliciidae Lebrunia neglecta (Curacao 3)

Aliciidae Lebrunia coralligens (Curacao 3)

Aliciidae Lebrunia coralligens (Curacao 1)

Boloceroididae Boloceroides mcmurrichi (Zanzibar)

Aliciidae Phyllodiscus semoni (Maldives 2)

Boloceroididae Boloceroides mcmurrichi (Australia 1)

ALICIIDAE TRIACTIS PRODUCTA

Aliciidae Triactis producta (Zanzibar)

Aliciidae Lebrunia coralligens (Curacao 2)

Aliciidae Triactis producta (Moorea 2)

Boloceroididae Bunodeopsis medusoides (Moorea)

Aliciidae Lebrunia coralligens (Barbados 2)

AIPTASIIDAE AIPTASIA MUTABILIS

Boloceroididae Boloceroides mcmurrichi (Moorea)

Aliciidae Phyllodiscus semoni (Maldives 1)

Aliciidae Triactis producta (Moorea 1)

Aliciidae Alicia mirabilis (AMNH)

Aliciidae Triactis producta (Maldives)

Aliciidae Alicia sansibarensis (Mozambique)

Aliciidae Phyllodiscus semoni (Indonesia)

Aliciidae Alicia beebei (Mexico)

Aliciidae Alicia sansibarensis (AMNH)

BOLOCEROIDIDAE BOLOCEROIDES MCMURRICHI

Boloceroididae Boloceroides mcmurrichi (Australia 2)

FG

absent

branching in 
one plane

branching in 
multiple planes

F: pseudotentacles

absent

simple, 
two kinds

simple, 
one kind

G: defensive vesicles

compound

Fig 2.14.  Morphological character states coded on inset of combined five-gene without 
Lybia symbiont phylogeny.  Aliciidae members highlighted in red.  For further explanation 
of character coding, see Table 2.2.
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Table 2.1.  List of sequences used in this study.  Bold indicate sequences new for this study, 
Accession numbers for sequences from GenBank.
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Table 2.1 continued.
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Table 2.2.  Coding of morphological features.
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number of taxa unaligned length aligned length
12S 73 619-860 960
16S 70 270-716 781
CO3 68 243-794 780
mitochondrial 87 n/a 2,647
18S 73 626-1,825 2,017
28S 69 449-3,777 3,788
nuclear 80 n/a 5,885
all except 28S 95 n/a 4,744
all genes (no Lybia  symbionts) 97 n/a 8,532
all genes (with Lybia  symbionts) 101 n/a 8,638

Table 2.3 Summary of datasets analyzed.

48



AIC BIC
12S GTR+G GTR+G
16S HKY+G HKY+G
CO3 HKY+G HKY+G
18S GTR+G SYM+G
28S GTR+G GTR+G
all genes GTR+G GTR+G

Table 2.4 Models of evolution estimated for each dataset under Akaike and Bayesian 
Information Criterion.
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Table 2.5  Summary of relationships from separate analyses.  Bold indicate bootstrap 
support at node 70 or above.
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Chapter 3: Morphological revision of Thalassianthidae 

 

 

“Es ist völlig den Actinien ähnlich, allein durch die verästelten und gefiederten Tentakeln 

unterscheidet es sich hinlänglich davon” 

(Rüppell & Leuckart, 1828, p. 5) 

 

“It is completely similar to other anemones, except for the branching and feathery tentacles, 

which distinguish it sufficiently” – translated by Crowther. 

 

 

Introduction 

From the first description of Thalassianthus aster Rüppell & Leuckart, 1828, the type 

species of Thalassianthus Rüppell & Leuckart, 1828, the branched nature of the tentacles has 

been an important character to distinguish the genus from other genera (see quote above from the 

genus description).  Through most of the 1800s, specific, generic, subfamilial, and familial 

diagnoses relied on the presence of branched outgrowths to adjudicate membership in this group 

(Rüppell & Leuckart 1828, de Blainville 1830, 1834, Quoy & Gaimard 1833, Milne Edwards & 

Haime 1851, Milne Edwards 1857, Klunzinger 1877, Kwietniewski 1896, 1897, Haddon 1898).   

For example, descriptions by Milne Edwards (Milne Edwards & Haime 1851, Milne Edwards 

1857) of genera in Thalassianthinae, including Thalassianthus, Actinodendron de Blainville, 

1830, Actineria de Blainville, 1830, Megalactis Hemprich & Ehrenberg in Ehrenberg, 1834, 

Phymanthus Milne Edwards & Haime, 1851, Sarcophinanthus Lesson, 1830, and 
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Heterodactyla Hemprich & Ehrenberg in Ehrenberg, 1834, were placed together because of the 

branched tentacles.  However, tentacles of anemones now considered not being thalassianthids 

(bolded in list above) differ in branching geometry from those of Thalassianthidae (Ardelean 

2003a).   

Thalassianthidae comprises five nominal genera and 11 nominal species, all recorded 

from the Red Sea and the tropical Indo-West Pacific Ocean at depths less than 30 m.  Carlgren 

(1949) and Rodríguez et al. (in Daly et al. 2007) considered four genera and eight species valid.  

However, based on my assessment of specimens and their attributes, I consider that the 

characters used are ineffective in separating the four genera; their definitions include terms or 

statements that do not allow easy comparison (Table 3.1).  For example, the pedal disc is 

described as well developed for Thalassianthus and Heterodactyla, wide for Actineria, and broad 

for Cryptodendrum; it is not clear if these terms mean different things (in particular wide vs 

broad) or are mutually exclusive (for example, could a well developed pedal disc also be wide or 

broad?).  Moreover, body size was used to separate the genera Thalassianthus and 

Heterodactyla, but was not included in the generic descriptions of Actineria and Cryptodendrum.  

In relation to the sphincter muscle descriptions seem similar for each genus despite different 

wording; sphincter muscles are listed as either weak or very weak and restricted to 

circumscribed.  Thalassianthus differs from the remaining genera by apparently lacking directive 

mesenteries and not having a greater number of mesenteries distally than proximally.  I study 

more specimens than any other researcher to gain a better understanding of variability of 

morphological characters, and therefore make informed inferences regarding generic and specific 

boundaries.  In investigate 1) How many genera and species are valid in Thalassianthidae?  2) 
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What is the morphological variation of nematospheres and branched tentacles in 

Thalassianthidae? 

A combination of characters unites members of Thalassianthidae.  Nematospheres are 

specialized tentacles found only in members of Thalassianthidae; the tentacles have a blunt 

rounded to spherical distal end, which is dense in basitrichs (Carlgren 1949).  Thalassianthids 

also possess multiple tentacles per endocoel, a character used by Andres (1883a) to define his 

family Stichodactylinae, in which he included the thalassianthid genera Cryptodendrum and 

Heterodactyla.  McMurrich (1889c) employed the feature to diagnose the Stichodactylina sub-

tribe, a rank he used to group families.  Families Stichodactylidae Andres, 1883a, Capneidae 

Gosse, 1860, Homostichanthidae Carlgren, 1900, Phymanthidae Andres, 1883a, and 

Thalassianthidae are all currently characterized as possessing more than one tentacle per 

endocoel.  Stephenson (1921, p. 533) believed the possession of more than one tentacle per 

endocoel is a useful character to join families of subtribe Stichodactylina and “represent 

relationships very naturally”. 

 Thalassianthus Rüppell & Leuckart, 1828, Epicladia Ehrenberg, 1834, Heterodactyla 

Ehrenberg, 1834, and Actineria de Blainville, 1830, all of which have branched tentacles, have 

been considered close relatives since the inception of Thalassianthidae, with the exception of 

Andres (1883a), who moved Heterodactyla to family Stichodactylinae, subfamily 

Criptodendridae with Cryptodendrum.  Ehrenberg (1834) recognized the similarities between the 

monotypic Red Sea genera Thalassianthus and Epicladia and Klunzinger (1877) synonymized 

them.  The genus Actineria is the thalassianthid genus least discussed in the literature; its two 

species were described from Tonga and NE Australia (Quoy & Gaimard 1833, Haddon & 

Shackleton 1893).   
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Heterodactyla, which was also described from the Red Sea, is similar to Thalassianthus 

in structure of the nematospheres, as was recognized by Ehrenberg (1834), Klunzinger (1877), 

Haddon (1898), and Stephenson (1922).  Carlgren (1900) stated that Heterodactyla differed from 

Thalassianthus in that it had well-developed directives mesenteries connected to siphonoglyphs.  

Thalassianthus and Heterodactyla were separated by Carlgren (1949) based primarily on number 

of siphonoglyphs and directives: specimens originally classified as Thalassianthus possess no or 

many siphonoglyphs, irregularly arranged mesenteries, and no directives, whereas specimens 

originally classified as Heterodactyla possess two siphonoglyphs with directives attached and 

fairly regularly arranged mesenteries.  Thalassianthus specimens are generally small and found 

in clusters, whereas Heterodactyla specimens are generally larger and found individually. 

 Similarities between Thalassianthus and Heterodactyla were recognized by Haddon 

(1898, p. 486) in his monograph describing the Actiniaria of the Torres Strait; he ended the 

discussion of Heterodactyla hemprichii Ehrenberg, 1834 with the statement “but it is possible 

that this will prove to be a member of the genus Thalassianthus.”  Haddon (1898) did not explain 

his reasoning but this statement clearly shows that the distinction between the two genera is 

vague.  Stephenson (1922, p. 296) had a similar view, and stated, “the presence of several 

siphonoglyphs in some species, and no directives, of two siphonoglyphs and two pairs of 

directives in others, seems no valid ground for separation”.  Therefore, he synonymized 

Heterodactyla with Thalassianthus, and stated, “I have joined Thalassianthus and Heterodactyla 

because I cannot find any really important differences between them.”  However, in his catalog, 

Carlgren (1949) considered both genera valid. 

 Cryptodendrum Klunzinger, 1877, the genus of Thalassianthidae to be described most 

recently, is the most distinctive and widespread genus of the family.  Klunzinger (1877) first 
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placed it in the subfamily Phyllactinae of the family Thalassianthidae.  The other then-valid 

thalassianthid genera were classed in a different subfamily, Thalassianthinae.  Subsequent 

placement of Cryptodendrum has been inconsistent; Carlgren (1900, 1949) grouped 

Cryptodendrum with Thalassianthus, Heterodactyla, and Actineria, while Haddon & Shackleton 

(1893) erected a new family for Cryptodendrum, family Criptodendridae.  However, Haddon 

(1898) placed Cryptodendrum back into Thalassianthidae along with Thalassianthus, 

Heterodactyla, Actineria, Sarcophianthus, and Amphiactis. 

Because the genera and species do not have clear delineation among them, I observed and 

compared multiple specimens to assess variability of multiple morphological characters.  From 

my observations of thalassianthids of a range of sizes and from a range of localities, including 

type material, I conclude that Thalassianthidae comprises two genera and six species.  I found 

that two characters, lobes of the oral disc and arrangement of nematospheres, are important to 

differentiate the genera (Table 3.2), and I found that the other characters previously used (Table 

3.1) were variable or not well defined enough to delineate genera.  In the following account I 

provide redescriptions of the genera and species I find to be valid. 

 

 

 Methods and materials 

Collection techniques 

Specimens were observed and photographed in situ, then collected by hand in the 

intertidal zone, or snorkeling or SCUBA diving for subtidal specimens.  During collection, care 

was taken not to damage the sea anemone specimen.  For the specimens that were strongly 

attached to the substrate, I chiseled or broke off the substrate part to which the specimen was 
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attached.  Having the specimen unharmed and attached to the original specimen meant higher 

rate of survival for the anemone once collected.  After collection, each specimen (or lot of 

specimens if multiple at one site) were placed in a plastic zip lock bag with seawater then sealed 

and transported back to land. 

Once back at facilities on land, the sea anemones were transferred to plastic dishes with 

fresh seawater.  Further observations and photographs of live specimens, including behavior, 

could be done – in some instances with the aid of a dissecting microscope.  If a compound 

microscope was available, squashes of cnidae from live material were done to view fired 

capsules – this allows more accurate identification of particular nematocyst types (e.g. the 

presence or absence of a thread to signify a p-mastigophore or amastigophore). 

 

Photographing equipment 

 Photographs for field and lab work were taking using a Canon G10 digital camera, with a 

Canon underwater housing for underwater photographs.  Because most species of 

Thalassianthidae and Aliciidae are found to depths where sunlight can penetrate, I did not need 

to use a strobe or flash to photograph. 

 

Preservation 

 After observations and photographs of the live specimens were completed, a sub-sample 

of the specimen was preserved in 95–100% ethanol or RNALater (Ambion) for future DNA 

extraction.  The pedal disc was usually the tissue sub-sampled, as this part of thalassianthid and 

aliciid anemones has the lowest density of zooxanthellae residing in the endoderm.  The 

remainder of the specimen was fixed in 10% seawater formalin solution; specimens were not 
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transferred to any other preservative.  For soft-bodied anemones the property of formalin that 

cross-links proteins to stabilize the tissues and musculature is beneficial (and necessary for 

histology).  Transferring sea anemone specimens to ethanol is avoided, as the ethanol dehydrates 

the tissues causing them to become more brittle and less acceptable for histological purposes.  

Formalin fixation is known to denature DNA and therefore making DNA extraction and 

amplification difficult, yet not impossible. 

 

Museum (abbreviation list) 

 In addition to specimens that I collected from the field, specimens already part of 

museum collections were examined.  See Appendix C for a list of the museums, and their 

abbreviations used in this work. 

 

Specimen examination 

 External anatomy of whole specimens was examined, sometimes with the aid of a 

dissection microscope.  External morphology examined included tentacle (types, length, number, 

arrangement), oral disc (diameter, shape), column (length, width, region specialization, 

outgrowth), pedal disc (diameter, nature), and if present, vesicles (number, position, types), and 

pseudotentacles (number, length, position, branching pattern).  Internal morphology relating to 

mesenteries including number, arrangement, fertility arrangement, filament distribution, and 

stomata.  Microanatomical details on musculature (marginal sphincter, retractor, basilar, 

parietobasilar) were examined from histological slides. 
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Histology 

To observe microscopic details of muscles and mesentery details, some specimens were 

sectioned for histology.  Longitudinal and cross sections of 5–10 µm to observe marginal 

sphincter muscle and mesenterial arrangement and details, respectively, were made from 

specimens.  Before being embedded, sections were dehydrated in a series of ethanol steps, 

cleared with toluene, and infiltrated with paraffin.  Sections were placed on slides and then 

stained with Gomori trichrome (Menzies 1959) or hematoxylin and eosin (Presnell & 

Schreibman 1997), then coverslipped with Canada Balsam. 

 

Cnidae 

Cnida preparations were made from the tentacles, mesenterial filaments, actinopharynx, 

nematospheres, vesicles, pseudotentacles, and column by smashing tissue with water under a 

coverslip.  Preparations were examined using differential interference contrast (Nomarski) optics 

at 1,000X.  For each tissue type, the length and width of at least 15 undischarged capsules were 

measured for each type of cnida for each specimen.  Results of the cnidae survey for a species is 

reported as the length and width (in µm) measurement range, how many capsules were 

measured, and the ratio of how many specimens this capsule was found in out of all investigated.  

Representative cnidae were photographed using SPOT Idea digital camera (Diagnostic 

Instruments) attached to the compound microscope and lined to a Dell laptop computer.  

Nomenclature for nematocyst types follows Weill (1934) modified by Carlgren (1940a) and 

Mariscal (1974). 
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Taxonomic accounts 

 

Thalassianthidae Milne Edwards, 1857 

 

Diagnosis (based on Carlgren 1949; bold indicates additions, italics indicate replacements) 

Thenaria (Endomyaria) with well developed pedal disc.  Column with more or less 

distinct verrucae distally.  Endodermal marginal sphincter weak, restricted or circumscribed.  

Tentacles short, of three kinds: dendritic endocoelic, nematospheric endocoelic, and 

dendritic exocoelic.  Oral disc diameter equal to or greater than pedal disc diameter.  Fosse 

present.  Oral disc sometimes thrown into numerous short, cyclically arranged, permanent lobes; 

or sometimes not.  The lobes, when present, bear on the oral side dendritic endocoelic tentacles 

which are continued on the disc and radially arranged, on the aboral side a group of 

nematospheres.  At the margin, a cycle of dendritic exocoelic tentacles, no more than one per 

exocoel.  Longitudinal muscles of tentacles absent or very weak.  Mouth small, central.  Pairs 

of mesenteries numerous, many complete, directives present or absent.  Retractors well 

developed, diffuse, band-like.  Parietobasilar muscles weak, basilar muscles well developed.  

Distribution of gametic tissue varying, the mesenteries of the first cycle, apart from the 

directives, may be fertile.  Cnidom: spirocysts, basitrichs, microbasic p-mastigophores. 

 

Valid genera 

Thalassianthus Rüppell & Leuckart, 1828 (Type genus) 

 Cryptodendrum Klunzinger, 1877 
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KEY: 

1 a) Oral disc without permanent lobes, nematospheres form a continuous band on oral 

disc inside exocoelic dendritic tentacles 

………………………………Cryptodendrum 

b) Oral disc with permanent lobes, nematospheres clustered on aboral side of lobes 

…………………………………Thalassianthus 

 

 

Discussion 

Based on molecular and morphological data, I find Thalassianthidae to be a monophyletic family 

in Endomyaria.  All its members possess a single dendritic tentacle per exocoel, multiple 

nematospheric tentacles per endocoel, and multiple dendritic endocoelic tentacles.  All 

phylogenies (Figs 2.2, 2.3, 2.6-2.11) except the CO3 (Fig 2.4) and mitochondrial (Fig 2.5) 

recovered a well-supported monophyletic Thalassianthidae.  This indicates that nematospheres 

and radially arranged branched tentacles have a single origin at the most recent common ancestor 

of Thalassianthidae (Fig 2.13).  The placement of Thalassianthidae nested in a larger clade 

incorporating some Stichodactylidae representatives was a consistent and well-supported result 

from my analyses (See Chapter 2 for further discussion). 

There had been debate over the number of valid genera of Thalassianthidae for many 

years, Stephenson (1922) being one of the most persistent in his view that there should be fewer 

valid than nominal genera.  I consider two of the five nominal genera valid, Thalassianthus and 

Cryptodendrum (Table 3.2).  Some characters that had been used previously to separate the 

genera (Table 3.1), such as size, relate to age and/or condition of the specimen.  The two genera I 
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find valid based on morphological features are sometimes recovered as reciprocally 

monophyletic, such as 16S (Fig 2.3), all except 28S (Fig 2.9), combined five-gene (Fig 2.10) and 

combined five-gene with Lybia symbionts (Fig 2.11) phylogenies, but the nodes are not 

necessarily well-supported. 

Specimens originally identified in Thalassianthus and Heterodactyla share many 

features; most notably, both have lobes of the oral disc.  I conclude that the main purported 

differences between Thalassianthus and Heterodactyla, number of siphonoglyphs and directive 

mesenteries, are not generically important.  Characters such as these don’t distinguish any other 

genera in Actiniaria.  Additionally, I found these traits to be variable among specimens studied; I 

therefore synonymize Heterodactyla with Thalassianthus.  Similarly, Actineria shares characters 

that overlap with both Heterodactyla and Thalassianthus; according to Carlgren (1949), both 

Actineria and Heterodactyla supposedly possess directives, and the oral discs of Thalassianthus 

and Actineria are deeply folded and relatively free from tentacles compared to that of 

Heterodactyla.  Because no characters set Actineria apart from Thalassianthus, I synonymize 

Actineria with Thalassianthus. 

 Cryptodendrum, the most widespread and the most distinctive genus in Thalassianthidae, 

is the only thalassianthid to lack permanent lobes of the oral disc, and possesses a band of 

nematospheres.  The branching pattern of the dendritic endocoelic tentacles differs between 

Cryptodendrum and Thalassianthus: in Thalassianthus, the endocoelic dendritic tentacles have 

secondary projections from a main shaft, whereas in Cryptodendrum, the base of the tentacle is 

divided into multiple finger-like projections. 
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Thalassianthus Rüppell and Leuckart, 1828 
 

Synonymy 

 Actineria de Blainville, 1830 

Epicladia Ehrenberg, 1834 

 Heterodactlya Ehrenberg, 1834 

 

Gender 

 Masculine 

 

Diagnosis (based on Carlgren 1949, bold indicates additions, italics indicates replacements) 

Small to large sized thalassianthid.  Dendritic endocoelic tentacles hand-shaped or 

pinnate.  Dendritic exocoelic tentacles orally-aborally flattened, and their accessory projections 

irregularly arranged.  Longitudinal muscles of tentacles and radial muscles of oral disc 

ectodermal, the former very weak.  Oral disc margin undulated or not, from little to two-thirds 

of the oral disc without tentacles.  Mouth circular.  Siphonoglyph number variable: all 

specimens have at least two.  Directives sometimes present.  No more mesenteries distally than 

proximally.  Large oral stomata, sometimes small marginal stomata present.  Parietobasilar 

muscles weak but forming a fold.  Some complete and stronger imperfect mesenteries fertile.   

 

Distribution 

Red Sea and tropical Indo-West Pacific Ocean. 

 

Valid species 
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Thalassianthus aster Rüppell & Leuckart, 1828 (Type species) 

Thalassianthus villosa (Quoy & Gaimard, 1833) 

Thalassianthus hemprichii (Ehrenberg, 1834) 

Thalassianthus hypnoides (Saville-Kent, 1893) 

Thalassianthus dendrophora (Haddon & Shackleton, 1893) 

 

KEY: 

1 a) Oral disc with undulating oral disc margin and folded oral disc. 

…………………………….2 

b) Oral disc without undulating oral disc margin and folded oral disc. 

……………………………. T. aster 

2 a) Oral disc mostly free of tentacles, lobes clavate.  

…………………………………….3 

b) Oral disc mostly covered with tentacles, lobes finger-like. 

…………………………………….4 

3 a) Approximately 200 lobes.  

…………………………………….T. villosa 

b) Approximately 300–400 lobes. 

…………………………….T. dendrophora 

4 a) Lobes small (length 8 mm or less), oral disc shallowly folded.  

……………………………….T. hemprichii 

b) Lobes large (length 10 mm or greater), oral disc deeply folded. 

……………………………….T. hypnoides 
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Discussion 

 Thalassianthus, Heterodactyla, and Actineria were previously separated based on 

presence of directives and size of individual (Carlgren 1949).  Individuals of Thalassianthus 

aster (type species of Thalassianthus) are small with irregular mesenterial arrangement lacking 

directives, and found in groups in shallow areas of the reef (Fishelson 1970).  In contrast, 

individuals of Thalassianthus hemprichii (type species of Heterodactyla) and Thalassianthus 

villosa (type species of Actineria) are large and solitary with regular mesenterial arrangement 

with directives.   

The mesentery irregularity and lack of directives are likely connected (McMurrich 1897), 

and loss of regularity may be due to asexual reproduction or regeneration (Stephenson 1928).  

Fishelson (1970) reported that Thalassianthus aster individuals reproduce asexually, and are 

found in groups in shallow, high-energy regions of the reef.  Within a genus, asexual 

reproduction can be gained or lost multiple times, as seen by Geller & Walton (2001) in 

Anthopleura.  I think this is a similar situation to the genus Thalassianthus; instead of large 

solitary individuals being classified as different genera (e.g. Heterodactyla or Actineria), I think 

they are just species of Thalassianthus that produce predominantly via sexual reproduction. 

Thalassianthus is now the only genus in Thalassianthidae to possess permanent lobes of 

the oral disc.  Based on observations of many specimens, I found that features such as size and 

color do not distinguish species, but features such as shape of lobes, number of lobes in similar-

sized individuals, size of lobe in similar-sized individuals, and extent of folding of the oral disc 

do serve to distinguish six valid species. 

The molecular results support the synonymy of Heterodactyla with Thalassianthus, as the 

specimens available of nominal species Heterodactyla hemprichii and Thalassianthus aster were 
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found to be closely related in most phylogenies, with very short branches indicating little genetic 

difference between the nominal genera.  The sequences available for Thalassianthus are from 

two species: Thalassianthus aster and T. hemprichii.  The reciprocal monophyly of these two 

species was not recovered in any of the phylogenies.  However, relationships within the genus 

were not always resolved or well-supported. 
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Thalassianthus aster Rüppell & Leuckart, 1828 

Figs 3.1–3.4 

Tables 3.3–3.4 

Synonymy 

Thalassianthus aster Rüppell & Leuckart, 1828, p. 5–6  

Epicladia quadrangula Hemprich & Ehrenberg in Ehrenberg, 1834, p. 266  

Thalassianthus senckenbergianus Kwietniewski, 1896, p. 390–391  

Thalassianthus kraepelini Carlgren, 1900, p. 91–93 

 

Type localities and specimens 

 Thalassianthus aster type locality and syntypes: Egypt, Red Sea, Tor; SMF 35 (6 

specimens), SMNH 5632 (1 specimen). 

 Epicladia quadrangula type locality and syntypes: Egypt, Red Sea, Tor; ZMB 199 (2 

specimens), ZMB 201 (2 specimens), ZMB 202 (4 specimens). 

 Thalassianthus senckenbergianus type locality and syntypes: Indonesia, Moluccas, 

Ternate Island; PMJ 64 (4 specimens), SMNH 4862 (1 specimen), SMF 102 (11 specimens), 

ZMB 3581 (5 specimens). 

 Thalassianthus kraepelini type locality and holotype: East Africa, Tanzania, Zanzibar, 

Tumbatu; ZMF C2591 (1 specimen). 

 

Material examined 

 Table 3.3. 
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Description 

Pedal disc 

 Circular to oval (Fig 3.1a), adherent. Diameter to 40 mm.  Thick ectoderm, opaque, 

mesenterial insertions visible in some specimens.  Beige. 

 

Column 

 Cylindrical, diameter smaller than pedal disc (Fig 3.1b).  Length to 60 mm.  Firm, 

opaque, uniform in color.  Longitudinal rows of non-adhesive verrucae in endocoels (Fig 3.1c).  

Beige.  Live coloration: light purple to whitish-gray (reported for Thalassianthus aster by 

Rüppell & Leuckart [1828] and Carlgren [1900]), white, sometimes yellow (reported for 

Thalassianthus aster by Klunzinger [1877]). 

 

Oral disc 

 Not folded, flat in most specimens.  Diameter to 60 mm.  From half to two-thirds 

surrounding mouth free from tentacles (Fig 3.1d).  Mouth central (Fig 3.1d).  Two or more 

siphonoglyphs.  Lobes finger-shaped (Fig 3.1e): length to 7 mm, width to 4 mm.  Fosse 0.5–1 

mm deep.  Beige in preservation.  Live coloration: violet (reported for Epicladia quadrangula by 

Ehrenberg [1834]), white to white-gray with blackish or blue-gray radiations (reported for 

Thalassianthus aster by Klunzinger [1877]), mottled brown (reported for Thalassianthus aster 

by Carlgren [1900]), olive with darker radial stripes (reported for Thalassianthus kraepelini by 

Carlgren [1900]). 
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Tentacles 

 Dendritic exocoelic tentacles of variable shape (Fig 3.1f-h), but usually same morphology 

within an individual (pinnate with blunt filaments) (Fig 3.1f-h).  Length to 3.5 mm.  

Nematospheres (Fig 3.1e) in clusters of up to 15, rarely with tip of bulb split.  Dendritic 

endocoelic tentacles of variable shape (Fig 3.1i-k), even within an individual; morphology from 

palmate, to spindle-shaped with four neat rows of short filaments (Fig 3.1i), to thin central shaft 

with filaments not in rows (Fig 3.1j), to club-shaped with filaments concentrated near tip (Fig 

3.1k).  Multiple rows (to 5) of dendritic endocoelic tentacles communicate with a single 

endocoel.  Beige in preservation.  Live coloration of dendritic endocoelic tentacles: purple-green 

(reported for Thalassianthus aster by Rüppell & Leuckart [1828]), violet (reported for by 

Ehrenberg [1834]), gray to gray-blue (reported for Thalassianthus aster by Klunzinger [1877]), 

light grayish-brown (reported for Thalassianthus aster by Carlgren [1900]), green (reported for 

Thalassianthus kraepelini by Carlgren [1900]).  Live coloration of nematospheres: grey to 

reddish (reported for Thalassianthus aster by Klunzinger [1877] and Carlgren [1900]), olive-

brown or purple with green tip (reported for Thalassianthus kraepelini by Carlgren [1900]). 

 

Mesenteries and internal anatomy 

 To five or six orders of mesenteries; lower ones complete.  Directives attached to 

siphonoglyphs in individuals with two siphonoglyphs; individuals with more than two 

siphonoglyphs lack directives (Fig 3.2a).  Retractor muscles diffuse (Fig 3.2a).  Marginal 

sphincter muscle circumscribed, situated toward base of fosse on column side (Fig 3.2b). 
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Cnidae 

 Fig 3.3 and Table 3.4. 

 

Habitat and ecology 

 Most recorded from shallow water, aggregated, attached to live or dead branched 

scleractinians (Rüppell & Leuckart 1828, Ehrenberg 1834, Fishelson 1970) or at edge of crevices 

(Klunzinger 1877).  Fishelson (1970) reported T. aster multiplying by longitudinal fission in the 

Red Sea, which would explain the inconsistency in number of siphonoglyphs among individuals, 

and the occurrence of aggregations.  A footnote in Carlgren (1900) stated that specimens are 

found at very low tide and exposed to the air. 

 

Symbionts 

Zooxanthellae in endoderm, particularly in tentacles. 

 

Distribution 

 Tropical Indo-West Pacific, from Red Sea to Indonesia.  Fig 3.4. 

 

Discussion 

 From my observations, I conclude that many characters are variable within specimens, 

including tentacle morphology and nematosphere arrangement.  I could not find clear 

distinctions among type material of the four nominal species.  Characters that had been used to 

delineate species, such as size, color, tentacle morphology, and number of nematospheres per 

cluster, are variable among the individuals I observed, and I therefore synonymize 

69



 

Thalassianthus kraepelini and T. senckenbergianus with T. aster.  I concur with Klunzinger 

(1877) in his synonymy of Epicladia quadrangula with T. aster.  I provide cnidae data from 

multiple individuals (Table 3.4), which was similar to what Carlgren (1945) reported.  There was 

a difference in size of basitrichs of the endocoelic dendritic tentacles, and Carlgren (1945) 

reported microbasic p-mastigophores from the actinopharynx that I did not find.  

Carlgren (1900) distinguished Thalassianthus kraepelini from other species of 

Thalassianthus based on column length, number of complete mesenteries, and color of 

nematospheres, stating that it was taller than T. aster in relation to the diameter of the body, but I 

observed syntypes of T. aster that had similar body proportions to T. kraepelini.  I counted a 

similar number of mesenteries (5 orders) in the holotype of T. kraepelini and in syntypes of T. 

aster (5–6 orders), and observed that mesenteries of the lower 1–3 orders were complete in all 

specimens of both nominal species.  Carlgren (1900) also recorded that T. kraepelini had 

nematospheres of the same color as the dendritic endocoelic tentacles, different to what had been 

recorded in T. aster, which had contrasting colors of nematospheres and dendritic endocoelic 

tentacles.  However, because color is not considered important for species distinctions in sea 

anemones (Stephenson 1918), and individuals of Cryptodendrum adhaesivum vary in color, this 

is not a good character for species delineation. 

Thalassianthus senckenbergianus was separated from the other Thalassianthus species by 

Kwietniewski (1896) based on the palmate dendritic endocoelic tentacles.  In contrast, T. aster 

and E. quadrangula possess tentacles that have a central shaft with lateral projections 

(Kwietniewski 1896, 1897).  Carlgren (1900) noted that the tentacles of T. kraepelini reminded 

him of those of T. senckenbergianus.  I did observe some T. senckenbergianus individuals with 

palmate tentacles, but some of the syntypes also have pinnate dendritic endocoelic tentacles, 
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similar to what was described for T. aster and E. quadrangula.  Palmate and pinnate tentacles of 

were observed in a single individual. 

Epicladia quadrangula was described as possessing dendritic endocoelic tentacles that 

are spindle-shaped, with four near rows of short projections arranged regularly so that the cross-

section of a tentacle is square.  Single individuals (including a syntype) possess both spindle-

shaped and feather-shaped dendritic endocoelic tentacles.  Thalassianthus senckenbergianus was 

separated from the other Thalassianthus species based on fewer nematospheres (Kwietniewski 

1896, 1897).  This character is also highly variable, the number of nematospheres observed in the 

syntypes of T. kraepelini, T. aster, T. senckenbergianus, and E. quadrangula overlapping. 
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 Thalassianthus hemprichii (Ehrenberg, 1834) 

Figs 3.5–3.8 

Tables 3.5–3.6 

Synonymy 

Heterodactyla hemprichii Ehrenberg, 1834, p. 266  

 

Type localities and specimens 

 Heterodactyla hemprichii type locality: Egypt, Red Sea, Sinai Peninsula, near Sharm al-

Sheikh; no type specimens. 

 

Material examined 

 Table 3.5. 

 

Description 

Pedal disc 

 Irregular shape, adherent.  Thick ectoderm, opaque, mesenterial insertions not visible.  

Live: white, with bright purple spots on limbus (Fig 3.5a), diameter to 120 mm.  Preserved: 

beige, diameter to 70 mm. 

 

Column 

 Cylindrical, flares slightly from distal to proximal end.  Length to 80 mm.  Firm, opaque, 

mesenterial insertions not visible.  Longitudinal rows of non-adhesive verrucae in endocoels of 
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flared region (Fig 3.5b).  Live: pale red, pink with carmine spots, yellow, white distally to gray 

proximally.  Preserved: beige. 

 

Oral disc 

 Circular, mostly flat (Fig 3.5c), but can be deeply folded; much wider than pedal disc.  In 

living individuals, diameter to 300 mm; in preserved individuals, diameter to 140 mm.  Most of 

oral disc covered with tentacles; small area around mouth free of tentacles.  Most individuals 

with two siphonoglyphs (Fig 3.5d) (one individual observed with three), directives attached to 

siphonoglyphs.  Finger-shaped lobes near margin of oral disc (Fig 3.5e); fosse approximately 1 

mm deep.  Live: gray-blue, white, brown, green.  Preserved: beige. 

 

Tentacles 

 Dendritic exocoelic tentacles robust, variable morphology (Fig 3.5f-g), most with wide 

central shaft with short, blunt projections on lateral sides; some with opposite branching. Length 

to 20 mm.  Some nematospheres with split bulbs, some with multiple spheres per stalk, most 

simple bulb on stalk, to 37 per lobe, diameter to 1 mm (Fig 3.5h).  Dendritic endocoelic tentacles 

numerous, arranged in neat radial rows on lobes and oral disc; in most individuals long, narrow 

shaft bearing scattered fine projections along length (Fig 3.5i-k), but some individuals with 

bushy, club-shaped, or bifurcate/trifurcate dendritic endocoelic tentacles.  Live: Dendritic 

endocoelic tentacles gray, purple, gray-red with white tips, brown, rusty red (Fig 3.5b-e,h), 

lemon-yellow with brown core, with some endocoels with lighter tents.  Nematospheres bright 

amethyst with green apex (Fig 3.5e,h).  Dendritic exocoelic tentacles: pink, gray-red.  Preserved: 

all tentacles beige. 
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Mesenteries and internal anatomy 

 Mesenteries to 7 orders; those of lower orders complete.  Sexes separate.  Retractor 

muscles diffuse (Fig 3.6a,b).  Directives attached to siphonoglyphs (Fig 3.6a).  Marginal 

sphincter muscle small, circumscribed, positioned near base of fosse on column side (Fig 3.6c-

h). 

 

Cnidae 

 Fig 3.7 and Table 3.6. 

 

Habitat and ecology 

 Most individuals with pedal disc attached deep within crevice, column extended so oral 

disc lies over exposed surface.  If disturbed, can retract column and pull oral disc into crevice.  

Occur in shallow reefs to 10 m, most in 0–3 m. 

 

Symbionts 

Zooxanthellae in endoderm, particularly in tentacles. 

 

Distribution 

 Tropical Indo-West Pacific, from Red Sea to Kiribati.  Fig 3.8. 
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Discussion 

My observations correspond closely to the original description and other more recent 

accounts of Heterodactyla hemprichii, including information regarding size, mesentery 

arrangement, marginal sphincter muscle, and coloration.  I provide information regarding the 

cnidom for this species that was lacking from published literature.  Compared to other species of 

Thalassianthus, the oral disc of T. hemprichii is relatively flat, with only gentle waves of the 

margin compared to the deep undulations of T. hypnoides, for example.  The tentacles of T. 

hemprichii are arranged neatly in endocoelic rows on the oral disc, so that it is possible to trace 

an endocoel from the margin to the mouth in either a live or preserved individual.  Tentacles 

cover more of the oral disc than I observed in any other species of Thalassianthus. 
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Thalassianthus hypnoides (Saville-Kent, 1893) 

Figs 3.9–3.11 

Tables 3.7–3.8 

Synonymy 

Heterodactyla hypnoides Saville-Kent, 1893, p. 148–149 

 

Type localities and specimens 

 Heterodactyla hypnoides type locality: Australia, Queensland, Great Barrier Reef, 

opposite Cape Flattery; no type specimens. 

 

Material examined 

 Table 3.7. 

 

Description 

 No live material was available; live observations from Saville-Kent (1893). 

Pedal disc 

 Nearly circular or oval (Fig 3.9a), diameter to 65 mm.  Thick ectoderm, opaque, 

mesenterial insertions not visible.  Preserved: beige. 

 

Column 

 Cylindrical (Fig 3.9b).  Length to 55 mm.  Firm, thick, opaque.  Non-adhesive verrucae 

in longitudinal endocoelic rows.  Live: stone gray to pale green.  Preserved: beige. 
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Oral disc 

 Folded, margin undulate (Fig 3.9c).  Diameter to 140 mm.  Lobes large, length to 20 mm, 

width to 6 mm (Fig 3.9c).  Tentacles cover approximately ¾ of oral disc, area around central 

mouth free of tentacles.  Two or three siphonoglyphs.  Live: stone gray to pale green.  Preserved: 

beige. 

 

Tentacles 

 Dendritic exocoelic tentacles robust, with thick central shaft bearing blunt lateral 

projections (Fig 3.9e), width to 5 mm, length to 20 mm.  Small individuals with 3–7 

nematospheres per lobe, large individuals with 6–27 per lobe (Fig 3.9d).  Dendritic endocoelic 

tentacles with narrow central shaft and fine projections scattered on distal half of shaft (Fig 3.9f), 

some bifurcate or trifurcate, width to 2 mm, length to 20 mm.  Live: nematospheres amethyst (no 

green tip), dendritic endocoelic bright green.  Preserved: all tentacles beige. 

 

Mesenteries and internal anatomy 

 To six or seven orders or mesenteries.  Directives attached to siphonoglyphs (Fig 3.9g).  

Sexes separate.  Large oral and small marginal stomata.  Marginal sphincter muscle small, near 

base of fosse on column side (Fig 3.9h). 

 

Cnidae 

 Fig 3.10 and Table 3.8. 
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Habitat and ecology 

 From intertidal to 20 m depths in reefal areas. 

 

Symbionts 

Zooxanthellae in endoderm, particularly in tentacles. 

 

Distribution 

 Tropical Pacific Ocean from Great Barrier Reef to Indonesia. Fig 3.11. 

 

Discussion 

 Saville-Kent (1893) separated this species from Heterodactyla hemprichii based on the 

number of nematospheres per lobe: Thalassianthus hypnoides with 20–30, T. hemprichii with 10 

or fewer.  I found that the number of nematospheres per lobe is highly variable within and 

between individuals, some specimens of T. hemprichii having as many as 37.  The difference 

between these two species is the deep and convoluted oral disc folding in T. hypnoides, the 

regular, neatly arranged tentacles in T. hemprichii, and the smaller lobes relative to oral disc 

diameter in T. hemprichii.  I provide cnidae measurements for T. hypnoides for the first time.  

Although the cnidoms of T. hypnoides and T. hemprichii are similar, T. hemprichii possess a 

small size basitrich in the nematosphere and endocoelic dendritic tentacles that is not present in 

T. hypnoides. 
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Thalassianthus villosa (Quoy & Gaimard, 1833) 

Figs 3.12–3.14 

Tables 3.9 

Synonymy 

Actineria villosa Quoy & Gaimard in de Blainville, 1830, p. 288  

 

Type specimens and localities 

 Actineria villosa type locality and holotype: Tonga; MNHN 2387 (1 specimen). 

 

Material examined 

Only holotype available, see section above. 

 

Description 

Pedal disc 

Circular to oval; adherent.  Thick, opaque, mesenterial insertions not visible.  Preserved 

diameter to 65 mm, cream/beige (Fig 3.12a). 

 

Column 

 Cylindrical, transversely furrowed (Fig 3.12e), flared at both ends (Fig 3.12b).  Non-

adhesive verrucae in longitudinal endocoelic rows.  Live: purplish-grey (Quoy & Gaimard 1833).  

Preserved: cream/beige, length to 60 mm. 
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Oral disc 

 Flat (Fig 3.12c), margin sometimes folded.  Diameter to 80 mm.  Approximately 200 

lobes, to 10 mm long, project from endocoels near margin (Fig 3.12d), alternately larger and 

smaller.  Most of oral disc free from tentacles (Fig 3.12c).  Live diameter to 120 mm, greyish 

around mouth (Quoy & Gaimard 1833).  Preserved: cream. 

 

Tentacles 

 Exocoelic dendritic tentacles 1 mm length, 2 mm width.  Nematospheres 12–40 per lobe; 

either project directly from lobe, or part of grape-like cluster attached to lobe; as many as 6 per 

grape-like cluster (Fig 3.12d).  Endocoelic dendritic tentacles on oral side of lobe (Fig 3.12d,f), 

small pine-cone shape, length 1 mm.  Multiple dendritic tentacles per endocoel, radially 

arranged, to 10 tentacles across coelenteric space.  All tentacles cream in preservation.  Live 

tentacles white, nematospheres yellow (Quoy & Gaimard 1833). 

 

Mesenteries and internal anatomy 

200 pairs of mesenteries; same number distally as proximally.   

 

Cnidae 

 Fig 3.13 and Table 3.10. 

 

Symbionts 

Zooxanthellae in endoderm, particularly in tentacles. 
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Distribution 

 Tonga (Fig 3.14).  Records from Japan in Uchida & Soyama (2001) are doubtful; they 

likely refer to the aliciid Phyllodiscus semoni; see discussion of that species. 

 

Discussion 

The only specimen available for observation was the holotype, which matched closely to 

published details of morphological features of the species.  The tentacle morphology and internal 

anatomy were hard to determine because the specimen had not been preserved well. 
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Thalassianthus dendrophora (Haddon & Shackleton, 1893) 

Figs 3.15–3.16 

Synonymy 

Actineria dendrophora Haddon & Shackleton, 1893, p. 123 

 

Type localities and specimens 

 Actineria dendrophora type locality and inferred syntype: Australia, Queensland, Torres 

Strait, Murray Islands, Mer Island; one histological slide at Museum of Zoology, Lund 

University, Sweden (no catalog number). 

 

Material examined 

Only one slide available, see section above. 

 

Description 

 The description is based on published accounts from Haddon & Shackleton (1893) and 

Haddon (1898). 

Pedal disc 

Slightly expanded (Fig 3.15a) compared to width of column, cream. 

 

Column 

 Thick layer of mesoglea.  Verrucae in longitudinal rows corresponding to exocoels.  

Pinkish, length to 70 mm. 
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Oral disc 

 Smooth, wide, 125 mm diameter.  Mouth on cone, pale.  Most of oral disc free from 

tentacles.  Two siphonoglyphs.  Margin with non-permanent folds, and 300–400 endocoelic 

lobes (Fig 3.15a,c), lobe length 10 mm.  Translucent pinkish-brown with green sheen. 

 

Tentacles 

 Dendritic exocoelic tentacles length 1 mm, width 2 mm.  Nematospheres 12–40 per lobe 

(Fig 3.15b); either project directly or part of grape-like cluster from lobe; as many as 6 per grape-

like cluster.  Dendritic endocoelic dendritic tentacles small pine-cone shape, length 1 mm.  All 

tentacles cream in preservation.  Live tentacles white or same color as oral disc, nematospheres 

yellow or pink with cream tip. 

 

Mesenteries and internal anatomy 

Marginal sphincter muscle circumscribed to restricted, palmate (Fig 3.15c,d). 

 

Cnidae 

 Not available. 

 

Habitat and ecology 

Surface of reef. 

 

Symbionts 

Zooxanthellae in endoderm, particularly in tentacles. 
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Distribution 

 Torres Straits, Australia (Fig 3.16). 

 

Discussion 

 Thalassianthus dendrophora remains valid.  However, it is possible it is synonymous 

with T. villosa.  Haddon & Shackleton stated, “This species is quite distinct from the only hithero 

described species of the genus A. villosa (Quoy et Gaim.)” (1893, p. 123), although they did not 

specify how it differed.  The main difference I can deduce between the species is the number of 

lobes.  Kwietniewski (1897) commented that the number of lobes in Thalassianthus 

senckenbergianus increases with size of the individual.  I infer that this is also true for T. villosa 

and T. dendrophora.  The pedal disc diameter of T. dendrophora was not given.  However, both 

the oral disc diameter and column length of T. dendrophora (125 mm, 70 mm, respectively) are 

larger than they are in T. villosa (80 mm, 60 mm, respectively).  It is possible that the larger 

number of lobes recorded for T. dendrophora is because it is a larger individual, not because it is 

a different species to T. villosa.  

This species was reported by Haddon (1898, p. 487) to undergo longitudinal fission, 

similar to what has been reported for Thalassianthus: “I could not observe in the living animal 

the symmetry and multiples of radii, partly because of the incipient fission, but more particularly, 

as is usual with these species with dendritic tentacles, on account of their apparent irregularity”.  

The specimen in Haddon’s (1898) drawing (Fig 3.15a) had two mouths. 
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 Cryptodendrum Klunzinger, 1877 

 

Synonymy 

Cryptodendrum Klunzinger, 1877 

Stoichactis Doumenc, 1973 

 

Gender 

 Neuter 

 

Diagnosis (modified from Dunn 1981, additions in bold) 

Thalassianthid with medium to large body.  Oral disc not lobed, densely covered with 

many short tentacles.  Inside single row of dendritic exocoelic tentacles, a continuous, broad 

band of nematospheres.  Short dendritic endocoelic tentacles, hand-shaped, radially 

arranged occupy the inner greater part of the oral disc. One to three well developed 

siphonoglyphs.  Mesenteries numerous, more at margin than base.  

 

Distribution 

 Indo-West Pacific. 

 

Valid species 

Cryptodendrum adhaesivum Klunzinger, 1877 (Type species) 
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Discussion 

 Cryptodendrum is clearly separated from Thalassianthus, based on a combination of 

characters.  In Cryptodendrum, the nematospheres form a distinct, uninterrupted band close to 

the margin of the oral disc; in Thalassianthus, the nematospheres occur in clusters on the aboral 

sides of the permanent lobes of the oral disc.  The separation of the genera based on molecular 

sequences was not as clear, with reciprocal monophyly of Thalassianthus and Cryptodendrum 

rarely recovered or well supported.  The C. adhaesivum sequences were recovered as each 

others’ closest relatives in 16S (Fig 2.3), mitochondrial (Fig 2.5), all except 28S (Fig 2.9), and 

combined five-gene phylogenies (Figs 2.10, 2.11), but the monophyly was not always well 

supported. 
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Cryptodendrum adhaesivum Klunzinger, 1877 

Figs 3.17–3.25 

Tables 3.12–3.14 

Synonymy 

Cryptodendrum adhäsivum Klunzinger, 1877, p. 86  

Stoichactis digitata Doumenc, 1973, p. 175, 194–198, Fig 4, Pl V Fig A–B  

 

Type localities and specimens 

Cryptodendrum adhaesivum type locality and syntypes: Egypt, Red Sea, Koseir; ZMB 

1877 (2 specimens), SMNH 1159 (1 piece). 

Stoichactis digitata type locality and syntypes: French Polynesia, Tuamotu Archipelago, 

Gambier Islands; MNHN 2038 (1 specimen); French Polynesia, Marquesas Islands, MNHN 

2540 (1 specimen). 

 

Material examined 

See Table 3.12. 

 

Description 

Pedal disc 

 Irregularly shaped (Fig 3.17a), conforms to substrate, adherent.  Thick, opaque, 

mesenterial insertions not visible.  Live: diameter 40–90 mm, highly variable in color.  Of 

specimens examined, cream with bright orange flecks (KUDIZ 3027), light beige (ZRC Cni 

0332).  Preserved: diameter to 40 mm, beige, furrowed. 
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Column 

 Column flares distally and proximally (Fig 3.17b). Length to 70 mm.  Firm, opaque, 

mesenterial insertions not visible.  Longitudinal rows of non-adhesive verrucae (Fig 3.17c), 

verruca width 1–2 mm.  Color variable.  Live: pinkish cream with bright orange flecks and bright 

orange verrucae (KUDIZ 3027, Fig 3.18b), beige, darker at distal end, gradually lightens toward 

proximal end to honey-beige (ZRC Cni 0332), yellowish lower column with maroon dots, 

fuchsia upper column with yellow verrucae (Dunn 1981), white with orange flecks below and 

orange verrucae above (Dunn 1981), whiteish with red, brown, or yellow-brown spots or flecks 

(Klunzinger 1877), yellowish white with irregular blotches of pale olive green or dull orange 

(Haddon 1898).  Preserved: beige to dark green, transversely ridged from contraction. 

 

Oral disc 

Circular, flat when expanded.  When disturbed, can be cup-shaped and folded (Fig 3.19).  

Margin crenulated.  Most of oral disc covered with tentacles, only small area immediately 

surrounding circular, central mouth free from tentacles (Fig 3.18a,c).  Nearly all individuals with 

two diametrically opposed siphonoglyphs (Fig 3.18c) (one specimen examined with only one 

siphonoglyph and Doumenc [1973] reported an individual with three siphonoglyphs).  Fosse 

approximately 1 mm deep.  Live: diameter up to 600 mm, white, mouth white tinged with bright 

yellow (KUDIZ 3027, Fig 3.18a,c).  Preserved: diameter approximately 90 mm, dark beige.  

 

 

 

88



 

Tentacles 

 Dendritic exocoelic tentacles with wide main shaft (diameter 1–2 mm) and finer 

projections distally, length to 10 mm.  Multiple spherical endocoelic nematospheres per 

endocoel; up to 10 nematospheres across endocoel.  Nematospheres packed together to form an 

uninterrupted band up to 15 mm wide just inside ring of exocoelic tentacles (Fig 3.17e,f).  

Individual nematospheres of 1 mm attach directly to oral disc.  Dendritic endocoelic tentacles 

densely packed in rows in endocoels, cover most of oral disc.  Dendritic endocoelic tentacles of 

endocoels smaller than those of exocoels; average length of dendritic endocoelic tentacles 3 mm.  

Dendritic endocoelic tentacles all palmate, but variable within individual.  Some fields of 

dendritic endocoelic tentacles reach closer to the mouth than others (Fig 3.17d).  All tentacles 

very adhesive in life.  Live: dendritic exocoelic tentacles brown, nematospheres green to brown, 

dendritic endocoelic tentacles dark green (KUDIZ 3027, Fig 3.18).  Dendritic exocoelic tentacles 

and nematospheres brown with yellow/cream tips, dendritic endocoelic tentacles dark green with 

bright green tips (ZRC Cni 0332).  Preserved: all beige (Fig 3.17e,f) or dark green or brown (Fig 

3.17b,d). 

 Color can be in wide range.  In general, endocoelic branched tentacles in contrast to color 

of nematospheres (Fig 3.19), although may be same color (Fig 3.20e).  Coloration of live 

specimens observed in Egypt and the Maldives and depicted in field guides are in Table 3.13.   

 

Mesenteries and internal anatomy 

To five or six orders, all with filaments.  Lower orders complete.  Directives attached to 

siphonoglyphs.  All may be fertile, except directives.  Sexes separate.  Retractor muscles diffuse 
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(Fig 3.21).  Marginal sphincter muscle endodermal, circumscribed, situated near base on column 

side of fosse (Fig 3.22). 

Cnidae 

See Fig 3.23 and Table 3.14. 

 

Habitat and ecology 

 Attached to hard substrate, from intertidal to 25 m.  Most individuals with pedal disc 

attached in deep crevice, in cryptic location such as under coral overhangs or bommies.  Oral 

disc spreads out over surface (Fig 3.19e).  Once disturbed, can contract column to pull oral disc 

down into crevice (Fig 3.18, 3.19a-d,f).  Common inhabitant of shallow reefs in Red Sea, Egypt. 

 

Symbionts 

 Cryptodendrum adhaesivum is the only thalassianthid to form symbiotic associations 

with anemonefish (Fig 3.20e,f), in this case Amphiprion clarkii; this species of anemonefish 

forms associations with other sea anemones of the families Actiniidae and Stichodactylidae 

(Fautin & Allen 1992).  The shrimp Thor discosomatis and Periclimenes affinis have been 

reported as symbionts of C. adhaesivum (see Fricke 1967, Fishelson 1970, Fransen 1997).  

Humes (1982) reported the copepod species Doridicola magnificus and Lambanetes gemmulatus 

living symbiotically with C. adhaesivum.  Zooxanthellae dense in the endoderm of tentacles. 

 

Distribution 

 Indo-West Pacific, from Red Sea to French Polynesia.  Fig 3.24. 
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Discussion 

 Individuals of Cryptodendrum adhaesivum are distinctive because they lack lobes, but 

possess both branched tentacles and nematospheres, the latter forming a distinct band close to the 

margin of the oral disc.  This band of nematospheres is usually a contrasting color to the other 

tentacles.  This species has been given the common name of pizza anemone (Sprung & Delbeek 

1997, Fenner 1998, Fosså & Nilsen 1998, Sprung 2001, Baine & Harasti 2007).  The sticky 

tentacles lead to the species epithet adhaesivum, which has been rendered to the common name, 

the adhesive sea anemone (Fautin & Allen 1992, Allen & Steene 2002, Gosliner et al. 1996, 

Weinberg 1996, Fenner 1998).  Klunzinger (1877) commented on the resemblance of this 

species to Discosoma giganteum (a synonym for Stichodactyla haddoni and S. gigantea).  Both 

S. haddoni and S. gigantea have a large oral disc (which may be undulated) and covered in 

tentacles.  However, species of Stichodactyla have only one type of simple (not branched) 

tentacle. 

 In his publication on sea anemones from the Torres Strait in Australia, Haddon (1898) 

discussed how the marginal sphincter muscle from specimens observed by Kwietniewski (1896) 

differed from those he observed, and suggested that this may be a character to separate species.  

Carlgren (1950) disagreed with Haddon (1898) that the differences in sphincter muscle in 

Cryptodendrum adhaesivum were distinctive enough to separate species.  The variation in 

marginal sphincter muscles from the literature (Fig 3.25) and specimens I observed (Fig 3.22) is 

shown. The variation among these relates to the extent of the mesoglea through the sphincter 

muscle.  In the published literature, the sphincter muscle figured in Kwietniewski (1896, Fig 

3.25a), Carlgren (1950, Fig 3.25c), and Dunn (1981, Fig 3.25d) have a longer shaft of mesoglea 

infiltrating into the endodermal sphincter muscle, compared to the muscle figured in Haddon 
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(1898, Fig 3.25b).  I observed similar amounts of variation in marginal sphincter morphology 

among specimens I investigated (Fig 3.22b,d,f).  The placement of the marginal sphincter muscle 

was consistent through the literature and my observations (Fig 3.22a,c,e): at base of fosse, 

slightly toward the column side of the fosse. 

Cryptodendrum adhaesivum has the widest known distribution of all thalassianthids, 

although, across the range, there is very little morphological variation of the species except for 

color (Fig 3.19, Fig 3.20, Table 3.13).  Within a single reef in Dahab, Egypt, I observed five 

individuals all differently colored (Fig 3.19), so there appears to be no geographical pattern of 

coloration. 
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Conclusions 

In this study, I performed a family-level revision to address the question of how many 

valid species comprise Thalassianthidae, and to provide an in-depth morphological description of 

their branched outgrowths and defensive spheres. To do so, I compared more thalassianthid 

specimens than any other study, and find two genera and six species to be valid.  I find the 

possession of lobes and nematosphere morphology and placement to be important characters to 

aid in identification of genera and species in Thalassianthidae.  Thalassianthids occur over a 

large geographic distribution, and I was unable to cover the whole range with my fieldwork.  

Despite this, I sampled more specimens and species of this family than any study to date. Out of 

all of the thalassianthids, Cryptodendrum adhaesivum has the widest distribution, while 

Thalassianthus dendrophora and T. villosa have been found from just one locality each.  Further 

fieldwork in areas such as NE Australia, the only recorded locality of both T. dendrophora and 

T. villosa, will likely provide more evidence regarding the validity of these species. 
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Fig 3.1.  Thalassianthus aster. a) pedal disc, SMNH 111221, scale bar = 10 mm  b) side-on 
view of syntype SMNH 5632, scale bar = 10 mm  c) longitudinal rows of verrucae, SMNH 
111220, scale bar = 2 mm  d) oral disc of syntype SMNH 5632, scale bar = 10 mm e) lobe, 
SMNH 111220, scale bar = 3 mm  f-h) exocoelic dendritic tentacles, scale bar = 1 mm f) 
SMNH 111220 g) SMNH 5632 h) LO 891/3021 i-k) endocoelic dendritic tentacles, scale 
bar = 1 mm i) ZMB 202 j) SMNH 5632 k) SMNH 111221.  Figure legend: L = lobe, N = 
nematosphere, V = verrucae.
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Fig 3.2.  Thalassianthus aster.  Histological slides of a) diffuse longitudinal retractor and b) 
marginal sphincter muscles from RMNH Coel 39759.  a) Note multiple siphonoglyphs. 
Scale bar = 10 mm.  Figure legend: AP = actinopharynx, C = column, F = fosse, S = sphinc-
ter muscle, Si = siphonoglyph.
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Fig 3.3. Cnidae from various tissues of Thalassianthus aster.  Lowercase letters correspond 
to measurements in Table 3.4.  Tissue source: a,b) exocoelic tentacles c,d) nematospheres  e) 
endocoelic branched tentacles  f) actinopharnx  g) oral disc  i-k) mesenterial filaments. 
Scale bar in micrometers.
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Fig 3.4.  Localities of Thalassianthus aster.
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a

c

b

d e

i j k

hf g

Fig 3.5.  Thalassianthus hemprichii.   a-e,h,k) KUDIZ 3165  f,i) USNM 53281  g,j) RMNH 
Coel 39745.  a) limbus and pedal disc , scale bar = 10 mm  b) non-adhesive verrucae on 
column, scale bar = 10 mm  c) flat oral disc covered with tentacles, scale bar = 30 mm  d) 
mouth with two siphonoglyphs, scale bar = 10 mm  e) lobe of oral disc, scale bar = 2 mm  
f-g) exocoelic dendritic tentacles, scale bar = 1 mm  h) margin of oral disc with nemato-
spheres clustered on lobes, scale bar = 10 mm i-k) endocoelic dendritic tentacles, scale bars 
= 1 mm.  Figure legend: C = column, PD = pedal disc, Si = siphonoglyph.
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Fig 3.6.  Thalassianthus hemprichii.  a-b) Cross-section showing diffuse longitudinal retrac-
tor muscles of a) RMNH Coel 39765 and  b)  CAS 050115.  Longitudinal section showing 
various marginal sphincter muscles from c,d) CAS 050115 e) RMNH Coel 39776 f) KUDIZ 
3165 g) KUDIZ 1155 h) RMNH Coel 39765.  Scale bars = 10 mm.  Figure legend: C = 
column, D =  directive mesentery, F = fosse, OD = oral disc, S = marginal sphincter muscle, 
Si = siphonoglyph.
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Fig 3.7. Cnidae from various tissues of Thalassianthus hemprichii.  Lowercase letters 
correspond to measurements in Table 3.6.  Tissue source: a) exocoelic tentacles b-d) nema-
tospheres  e-h) endocoelic branched tentacles  i) actinopharnx  j) oral disc  k) column  l-n) 
mesenterial filaments.  Scale bar in micrometers.
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Fig 3.8.  Localities of Thalassianthus hemprichii.
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a b
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F

ODe

f

g h

D

Fig 3.9. Thalassianthus hypnoides.   a) pedal disc, RMNH Coel 39743, scale bar = 10 mm  
b) column, RMNH Coel 39743, scale bar = 20 mm  c) oral disc, CAS 060342, scale bar = 
20 mm  d) lobe, with endocoelic dendritic tentacles on oral side and nematospheres on 
aboral side, RMNH Coel 39743, scale bar = 20 mm e) exocoelic dendritic tentacle, RMNH 
Coel 39743, scale bar = 1 mm  f) endocoelic dendritic tentacles, RMNH Coel 39743, scale 
bar = 1 mm g) cross-section through mesenteries at level of actinopharynx, RMNH Coel 
39743, scale bar = 10 mm  h) longitudinal section at margin, CAS 060342, scale bar = 10 
mm.   Figure legend: C = column, D = directive mesentery, F = fosse, L = lobe, OD = oral 
disc, S = marginal sphincter muscle, Si = siphonoglyph.
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Fig 3.10. Cnidae from various tissues of Thalassianthus hypnoides.  Lowercase letters 
correspond to measurements in Table 3.8.  Tissue source: a) exocoelic tentacles b-c) nema-
tospheres  d,e) endocoelic branched tentacles  f) actinopharnx  g) column  h-j) mesenterial 
filaments.  Scale bar in micrometers.
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Fig 3.11.  Localities of Thalassianthus hypnoides.
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b
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a

Fig 3.12  Thalassianthus villosa. a-d) syntype (MHNH 2387) a) pedal disc, scale bar = 20 
mm  b) whole individual, scale bar = 20 mm  c) oral disc with lobes and radially arranged 
endocoelic dendritic tentacles, scale bar = 20 mm  d) Lobe, with endocoelic dendritic 
tentacles and nematospheres, scale bar = 5 mm.  e,f) Plate XI, Fig 1 and 2 from Quoy & 
Gaimard (1833).  e) whole specimen, f) lobe with endocoelic dendritic tentacles and 
nematospheres attached.  Figure legend: D = endocoelic dendritic tentacle, L = lobe, N = 
nematosphere.
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Figure 3.13.  Cnidae from various tissues of Thalassianthus villosa.  Lowercase letters 
correspond to measurements in Table 3.9.  Tissue source: a,b) exocoelic tentacles c) nema-
tospheres  d-f) endocoelic branched tentacles  g) actinopharnx  h-j) oral disc  k,l) column 
m,n) mesenterial filaments.  Scale bar in micrometers.
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Figure 3.14.  Localities of Thalassianthus villosa.
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Figure 3.15.  Thalassianthus dendrophora, from Haddon (1898).  a)  whole individual, note 
two mouths depicted, and oral disc mostly free from tentacles  b) lobes of oral disc, showing 
position of endocoelic dendritic tentacles and nematospheres.  View from side (left) and 
from aboral (right) aspects.  c)  Longitudinal sections through two lobes and oral disc 
margin.  d) Longitudinal section through two marginal endodermal sphincter muscles.  
Figure legend: D = endocoelic dendritic tentacle, En = endoderm, Ec = ectoderm, L = lobe, 
M = mesoglea, N = nematosphere, S = marginal sphincter muscle.
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Figure 3.16.  Localities of Thalassianthus dendrophora.
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N

Fig 3.17. Cryptodendrum adhaesivum.  a) pedal disc of PMJ Coel 77, scale bar = 20 mm  b)  
mid-column region of PMJ 843 with smallest diameter, flares in diameter at oral and pedal 
discs, scale bar = 20 mm  c) non-adhesive verrucae on column of SMNH 1159, scale bar = 2 
mm  d) oral disc and tentacle fields of PMJ 843, scale bar = 20 mm e) nematosphere band of 
SMNH 1159, scale bar = 5 mm  f) nematospheres and exocoelic tentacles of SMNH 1159, 
scale bar = 5 mm.  Figure legend: v = verrucae, OD = oral disc, X = exocoelic tentacles, F = 
fosse, S = marginal sphincter muscle, C = column, N = nematospheres.
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Fig 3.18.  Cryptodendrum adhaesivum.  Photographs of recently collected specimen 
(KUDIZ 3027).  a) whole individual, looking down on oral disc, scale bar = 20 mm  b) 
flared distal part of column with orange verrucae, scale bar = 1 mm  c) central white mouth 
with bright yellow tinge, and two white siphonoglyphs, scale bar = 10 mm  d) all three 
tentacle types, scale bar = 10 mm.  Figure legend: D = endocoelic dendritic tentacles, M = 
mouth, N = nematospheres, Si = siphonoglyphs, V = verrucae,  X = exocoelic tentacles.
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Fig 3.19.  Cryptodendrum adhaesivum.  Some of the individuals observed at Dahab, Egypt 
during fieldwork, note wide color variation found at one locality.  Photographs on left (scale 
bar = 50 mm) of whole individual, photos on right (scale bar = 20 mm) showing closer view 
of tentacles.  Photographs taken by Christian Alter.
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a b
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e f

Fig 3.20. Cryptodendrum adhaesivum. In situ photographs of individuals from Egypt and 
the Maldives showing variation in coloration.  a-d) from Dahab, Egypt  e-f) from the Mal-
dives, with symbiont Amphiprion clarkii.  Scale bars = 50 mm.
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Fig 3.21.  Cryptodendrum adhaesivum.  Cross section (KUDIZ 3027) showing diffuse, 
well-developed retractor muscles of mesenteries, scale bar = 200 µm.
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Fig 3.22.  Cryptodendrum adhaesivum.  Longitudinal sections showing position and detail 
of marginal sphincter muscles.  a,b) KUDIZ 3027  c,d) KUDIZ 1660.  a) scale bar = 100 µm  
b) scale bar = 100 µm  c) scale bar = 200 µm  d) scale bar = 100 µm.  Top panel shows 
position of marginal sphincter muscle toward bottom of fosse, on aboral side.  Lower panel 
shows closer detail of marginal sphincter muscle.  Figure legend: OD = oral disc, N = 
nematospheres, X = exocoelic tentacle, F = fosse, C = column.
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Fig 3.23.  Cnidae from various tissues of Cryptodendrum adhaesivum.  Lowercase letters 
correspond to measurements in Table 3.12.  Tissue source: a-d) exocoelic tentacles e,f) 
nematospheres  g-j) endocoelic branched tentacles  k,l) actinopharnx  m) oral disc  n,o) 
column  p-s) mesenterial filaments.  Scale bar in micrometers.
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Figure 3.24.  Localities of Cryptodendrum adhaesivum.
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a b

c d

Fig 3.25.  Cryptodendrum adhaesivum.  Variation of marginal sphincter muscles depicted in  
figures from the literature.  a) from Kwietniewski (1896)  b) from Haddon (1898)  c) from 
Carlgren (1951)  d) from Dunn (1981), scale bar = 125 µm.
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Table 3.1.  Generic characteristics for genera of Thalassianthidae, according to Carlgren 
(1949).
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Thalassianthus Cryptodendrum

permanent lobes on 
oral disc absent present

nematospheres
in clusters on aboral 
sides of lobes

in uninterrupted band 
on oral disc

Table 3.2.  Characters used in this study to diagnose valid thalassianthid genera.
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Table 3.3.  Specimens examined, Thalassianthus aster.  Bold entries indicate newly-
collected specimens.
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Table 3.4.  Distribution and size of cnidae of Thalassianthus aster.  Measurements given as 
range in length x width of undischarged capsules in µm (outlier measurements in parenthe-
ses), {number of capsules measured}, [ratio of number of individuals in which that type of 
cnidae was found to the number of individuals examined].  Subjective frequency of cnida 
type indicated as very common, common, or rare.  Letters in parentheses correspond to 
images in Fig 3.3.
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Table 3.5.   Specimens examined, Thalassianthus hemprichii.  Bold entries indicate newly-
collected specimens.
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Thalassianthus hemprichii
this study

EXOCOELIC TENTACLES
basitrich (a) 16-25 x 2.5-3 {27} [2/2] common

NEMATOSPHERES
spirocyst (b) 20-35 x 2-3 {21} [2/3] common
basitrich (c) 11-15 x 2 {16} [2/3] common
basitrich (d) 36-43 x 2.5-3 {40} [3/3] v. common

ENDOCOELIC BRANCHED TENTACLES
spirocyst (e) 16-17 x 2 {3} [1/2] rare
microbasic p-mastigophore (f) 28-35 x 5-6 {6} [1/2] rare
basitrich (g) 9.5-12 x 2-2.5 {10} [1/2] common
basitrich (h) 16-17 x 2.5-3 {3} [2/2] rare

ACTINOPHARYNX
basitrich (i) 18-30 x 2.5-3 {27} [2/2] v. common

ORAL DISC
basitrich (j) 10-13 x 2-3 {15} [1/2] common

COLUMN
basitrich (k) 18-21 x 2.5-3 {25} [2/2] common

MESENTERIAL FILAMENTS
microbasic p-mastigophore (l) 24-31 x 5-6 {25} [2/2] common
basitrich (m) 11-15 x 2-2.5 {25} [2/2] v. common
basitrich (n) 29-35 x 3 {25} [2/2] v. common

Table 3.6.  Distribution and size of cnidae of Thalassianthus hemprichii.  Measurements 
given as range in length x width of undischarged capsules in µm (outlier measurements 
in parentheses), {number of capsules measured}, [ratio of number of individuals in 
which that type of cnidae was found to the number of individuals examined].  Subjective 
frequency of cnida type indicated as very common, common, or rare.  Letters in paren-
theses correspond to images in Fig 3.7.
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Table 3.7.  Specimens examined, Thalassianthus hypnoides.  
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Table 3.8.  Distribution and size of cnidae of Thalassianthus hypnoides.  Measurements 
given as range in length x width of undischarged capsules in µm (outlier measurements in 
parentheses), {number of capsules measured}, [ratio of number of individuals in which 
that type of cnidae was found to the number of individuals examined].  Subjective 
frequency of cnida type indicated as very common, common, or rare.  Letters in parenthe-
ses correspond to images in Fig 3.10.

Thalassianthus hypnoides
this study

EXOCOELIC TENTACLES
basitrich (a) 17-23 x 2-2.5 {11} [1/1] v. common

NEMATOSPHERES
spirocyst (b) 20-33 x 2-3 {10} [1/1] common
basitrich (c) 34-38 x 2.5-3 {12} [1/1] common

ENDOCOELIC BRANCHED TENTACLES
microbasic p-mastigophore (d) 29-36 x 5 {11} [1/1] common
basitrich (e) 15-18 x 2 {4} [1/1] rare

ACTINOPHARYNX
basitrich 15-20 x 2.5-3 {2} [1/1] v. rare
basitrich (f) 25-30 x 2.5-3 {10} [1/1] common

COLUMN
basitrich (g) 18-22 x 2-3 {13} [1/1] v. common

MESENTERIAL FILAMENTS
microbasic p-mastigophore (h) 28-35 x 5-5.5 {12} [1/1] v. common
basitrich (i) 13-15 x 2 {12} [1/1] v. common
basitrich (j) 32-38 x 2.5-3 {10} [1/1] v. common
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Table 3.9.  Distribution and size of cnidae of Thalassianthus villosa.  Measurements given 
as range in length x width of undischarged capsules in µm (outlier measurements in 
parentheses), {number of capsules measured}, [ratio of number of individuals in which 
that type of cnidae was found to the number of individuals examined].  Subjective 
frequency of cnida type indicated as very common, common, or rare.  Letters in parenthe-
ses correspond to images in Fig 3.13.

Thalassianthus villosa
this study

EXOCOELIC TENTACLES
basitrich (a) 16-20 x 2.5-3 {13} [1/1] common
basitrich (b) 36-40 x 2.5-3 {15} [1/1] v. common

NEMATOSPHERES
basitrich (c) 37-42 x 3 {15} [1/1] v. common

ENDOCOELIC BRANCHED TENTACLES
spirocyst (d) 11-20 x 2 {5} [1/1] rare
basitrich 12 x 2 {1} [1/1] v. rare
basitrich (e) 16-19 x 2-3 {9} [1/1] common
basitrich (f) 36-44 x 2.5-3 {15} [1/1] v. common

ACTINOPHARYNX
basitrich 13-14 x 2.5 {2} [1/1] v. rare
basitrich (g) 27-39 x 2.5-3 {15} [1/1] v. common

ORAL DISC
microbasic p-mastigophore (h) 27-30 x 6-7 {6} [1/1] rare
basitrich (i) 12-14 x 2.5-3 {15} [1/1] common
basitrich (j) 26-34 x 3 {15} [1/1] common

COLUMN
basitrich (k) 16-19 x 2.5 {15} [1/1] common
basitrich (l) 33-41 x 2.5-3 {5} [1/1] rare

MESENTERIAL FILAMENTS
basitrich (m) 12-16 x 2-3 {15} [1/1] common
basitrich (n) 28-31 x 3 {15} [1/1] v. common
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Table 3.10. Specimens examined, Cryptodendrum adhaesivum.  Bold entries indicate 
newly-collected specimens..
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Table 3.11.  Color combinations of endocoelic branched tentacles and nematospheres of 
Cryptodendrum adhaesivum observed during fieldwork.
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Table 3.12.  Distribution and size of cnidae of Cryptodendrum adhaesivum.  Measurements 
given as range in length x width of undischarged capsules in µm (outlier measurements in 
parentheses), {number of capsules measured}, [ratio of number of individuals in which that 
type of cnidae was found to the number of individuals examined].  Subjective frequency of 
cnida type indicated as very common, common, or rare.  Letters in parentheses correspond 
to images in Fig 3.23.
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Chapter 4: Morphological revision of Aliciidae 

 

Introduction 

 Aliciidae has not been the subject of a morphological revision since the erection of the 

family, even though the number of valid genera and species has been debated (Stephenson 1922, 

Carlgren 1949, Doumenc 1973).  Carlgren (1924) discussed generic membership within the 

family, but did not investigate the number of valid species.  I use many specimens, including 

type material if available, to 1) determine generic and species boundaries in Aliciidae and 2) 

investigate variation in morphological features.  I also investigate hypotheses regarding 

proposed generic and species synonymies by using more specimens and new methods compared 

to previous taxonomists.  There are seven nominal genera and 16 nominal species of Aliciidae 

(Table 4.1), with only four of these species having known type specimens. 

 

Family background 

Alicia Johnson, 1861, the type genus of Aliciidae, was originally placed in the family 

Bunodidae Gosse, 1858; the genera in Bunodidae were grouped together based on their 

possession of tubercles on the column.  A strong circumscribed endodermal marginal sphincter 

muscle characterizes most of the other genera of Bunodidae, such as Bunodes Gosse, 1855, but 

this feature does not characterize Alicia.  Duerden (1895) realized Alicia was different from the 

other genera in this respect, and moved Alicia to a new family, Aliciidae.  In Aliciidae, Duerden 

(1895) included Cystiactis Milne Edwards, 1857, and Bunodeopsis Andres, 1881, both of which 

are characterized by a diffuse marginal sphincter muscles and hollow processes and vesicles over 

the greater part of the column, also reported for Alicia.   
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McMurrich (1889a) first erected “subtribe” (a category he used for a group of families) 

Dendromelinae to house the current aliciid genus Lebrunia Duchassaing de Fonbressin & 

Michelotti, 1860, but later (McMurrich 1896) reduced it to a family rank, Dendromelidae.  Pax 

(1910, 1924), Duerden (1897), Verrill (1899, 1901), and McMurrich (1905) continued using 

Dendromelidae as the family name; Poche (1914) chose to rename this family Lebruniidae.  The 

family and genus diagnosis were essentially the same, with the main distinguishing feature being 

the cycle of bifurcating outgrowths (term used for pseudotentacles) immediately proximal to the 

tentacles.  McMurrich (1896) added the genera Ophiodiscus Hertwig, 1882 and Hoplophoria 

Wilson, 1890 to Dendromelidae, based on their possession of pseudotentacles.  Duerden (1898) 

stated Aliciidae and Dendromelidae are very similar, and should therefore be united, even though 

Aliciidae was then composed only of genera with vesicles/tubercles, none with column 

outgrowths.  In 1921, Stephenson moved Lebrunia to Phyllactiidae Milne Edwards, 1857, 

joining it with other genera such as Phyllactis Milne Edwards and Haime, 1851, Cradactis 

McMurrich, 1893, Phymactis Milne Edwards, 1857, and Bunodeopsis, although these genera did 

not share many characters.  Carlgren (1924) recognized Lebrunia as being closely related to the 

other valid aliciids.  Lebrunia shares with Phyllodiscus Kwietniewski, 1897, and Triactis 

Klunzinger, 1877, the possession of pseudotentacles, but is separated from them by the fertile 

primary mesenteries (except directives). 

McMurrich (1889a, 1893) and Haddon (1898) placed Phyllodiscus and Triactis in the 

family Phyllactidae alongside Lebrunia.  Phyllactidae was characterized by “prolongations from 

the margin of the column” (Haddon 1898, p. 435); this interpretation of the outgrowths meant 

that genera such as Oulactis and Phyllactis were included with Phyllodiscus and Triactis in this 

family.  Their well-developed marginal ruff characterizes both Oulactis Milne Edwards and 
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Haime, 1851 and Phyllactis, which is different to the morphology of Phyllodiscus or Triactis, 

whose projections are from the mid-column, not the margin, and possess different cnidae.  

Haddon (1898) considered the inclusion of Phyllodiscus and Triactis in this family to be 

dubious, and thought Phyllodiscus was better placed in Aliciidae.  Stephenson (1921) moved 

Phyllodiscus (also encompassing Triactis) into Aliciidae, removing all but Alicia and 

Phyllodiscus (also encompassing Triactis) from Aliciidae.  Duerden (1898) suggested that 

Lebrunia should be moved into Aliciidae, but instead, Stephenson (1921) moved the genus into 

Phyllactidae. 

After his doubt on whether Aliciidae was a homogenous group (Carlgren 1900), Carlgren 

(1924) investigated genera possessing vesicles and pseudotentacles further.  His conclusions 

agreed with Stephenson’s (1921) actions, with members of Aliciidae being reduced in number to 

include Alicia, Phyllodiscus (also encompassing Triactis), and Lebrunia.  Other genera 

possessing tubercles on the column were grouped in the family Phyllactidae.  Carlgren (1949) 

designated Alicia, Lebrunia, Triactis, and Phyllodiscus as the members of Aliciidae, all 

characterized by simple or compound vesicles or outgrowths, and vesicles with macrobasic 

amastigophore nematocysts. 

 

Previously proposed hypotheses to test 

 Four of the seven nominal genera and 10 of the 16 nominal species of Aliciidae are 

currently considered valid (Fautin 2011), respectively.  Stephenson (1922), Carlgren (1949), and 

Doumenc (1973) have suggested that the number of genera and species should be reduced 

further.  Most of these species were described from one or a few specimens, so their variability 

and geographic distribution are unknown. 
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Ontogenetic stages of a single species may have been described as separate species.  All 

species of Lebrunia possess between four and eight pseudotentacles; larger specimens with more 

branched pseudotentacles are identified as Lebrunia neglecta Duchassaing de Fonbressin & 

Michelotti, 1860, while the name L. coralligens (Wilson, 1890) is applied to smaller specimens 

with less branched pseudotentacles (Corrêa 1964).  Other than size, there is little difference in 

the diagnoses of the two species, both having similar distributions (Fig 4.1).  Duerden (1898, p. 

457) commented, “the two are found to agree extremely closely in habit, and in all their 

anatomical and histological characters.”  Duerden (1898) and Carlgren (1949) hypothesized that 

the smaller specimens may be juvenile specimens of L. neglecta. 

 Similarly, Stephenson (1922) and Doumenc (1973) both speculated that Triactis producta 

(as T. cincta) are small specimens of Phyllodiscus semoni Kwietniewski, 1897.  The difference 

between the species appears to be the size and extent of the pseudotentacle branching.  Because 

each genus is monotypic, synonymizing one species into the other is effectively synonymizing 

the genera too.  Stephenson (1922, pg. 281) wrote “It seems not unlikely that Phyllodiscus is 

identical with Triactis, but it would be well to wait for the anatomy of T. producta before 

assuming that and changing the name”. 

 Phyllodiscus currently contains only P. semoni Kwietniewski, 1897.  The thorough 

species description was based on one specimen from one locality.  Since then, specimens with 

Phyllodiscus attributes have been photographed from various localities, showing a large array of 

morphological variation.  This variation has led to speculation (Den Hartog 1997) that there are 

multiple species of Phyllodiscus; I investigate how many species there are of Phyllodiscus using 

morphometric analyses. 
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 The genus Alicia currently has six valid species, three known from only one locality each.  

Species boundaries within this genus are difficult to determine, because there is a large variation 

in coloration within a locality (e.g. the Red Sea, based on field photos), and the distribution of 

each species is unknown.  The type species, Alicia mirabilis Johnson, 1861, has been recorded 

from the Mediterranean, as well as the North and South Atlantic Ocean, extending to the 

southern coast of Brazil.  Alicia uruguayensis Carlgren, 1927, is known from just one locality, 

also in the southern coast of Brazil.  Schmidt (1972) proposed the most recent taxonomic 

changes in Alicia; he synonymized Alicia costae Panceri, 1868, described from the Gulf of 

Naples, with Alicia mirabilis, described from the Canary Islands in the Atlantic Ocean. 

 

 

Material and methods 

 For materials and methods relating to specimen collection, cnidae analysis, and histology, 

refer to material and methods section of Chapter 3. 

 

Species delineation in Lebrunia 

 I measured the pedal disc diameter of 159 individuals of Lebrunia, regardless of species 

identification.  For each individual, I recorded the number of pseudotentacles and branch orders 

of a pseudotentacle.  A branch order was defined as the region between points where the 

pseudotentacle branched dichotomously (Fig 4.2).  The maximum number of branch orders for 

an individual represents the greatest growth achieved.  Results were plotted on a scatterplot.  I 

recorded the number of mesenteries proximally and the number of tentacles from a subset of 45 

individuals of a range of sizes; these results were plotted on a scatterplot and color-coded for the 
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number of mesenteries.  The statistical program Minitab 14 (Minitab, Inc. 2005) was used for 

analyses and graph production. 

 

Generic delineation between Triactis and Phyllodiscus 

 I observed pseudotentacle and vesicle details of specimens of Triactis and Phyllodiscus.  

The attributes examined are total number of pseudotentacles and vesicles, number of 

pseudotentacles and vesicles per intermesenterial space, number of branching directions of 

pseudotentacles, placement of vesicles on pseudotentacles, and size of pseudotentacles and 

vesicles.  I also recorded pedal disc diameter, number of mesenteries proximally, and number of 

tentacles. 

 

Species delineation in Phyllodiscus 

 I recorded measurements and counts relating to the pseudotentacles and vesicles, the only 

morphological features to exhibit variation between preserved individuals of Phyllodiscus.  Pedal 

disc diameter was also measured as an indication of size.  Individuals were grouped in three 

morphotype categories: cake, branched, pom-pom (Fig 4.3a-c).  Morphometric analysis of 

pseudotentacle and vesicle features addressed the following traits (measurements in millimeters 

unless specified): diameter of peduncle (where pseudotentacle connects to scapus), density of 

peduncles on column (number per 3cm2 of column), total length of pseudotentacle, number of 

orders of branching of pseudotentacle, number of directions of branching of pseudotentacle, 

density of vesicles on pseudotentacle (number per 1cm2 area of pseudotentacle), range of vesicle 

diameter, maximum vesicle diameter, minimum vesicle diameter. 
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 I ran Principal Components Analysis, a Cluster Analysis, and a Multivariate Scatterplot 

on raw and ln-transformed data using the statistical program JMP 9 (SAS Institute Inc. 2007). 

 

Results 

 I find Aliciidae to be monophyletic, because all, and only, members of this family 

possess macrobasic amastigophoral vesicles.  I did not find evidence of endodermal marginal 

sphincter muscles, nor marginal ruffs – which are morphological features of some genera (e.g. 

Bunodes, Phyllactis) that have previously been linked to some aliciids.  Of the four genera I find 

to be valid (Alicia, Lebrunia, Triactis, and Phyllodiscus), all but Alicia possess pseudotentacles.  

Redescriptions of valid genera and species are in the “Taxonomic accounts” section. 

 

Species delineation in Lebrunia 

The number of branch orders in pseudotentacles of individuals differed by as much as 

two.  The number of branch order ranges from zero to 12; the frequency of the branch orders has 

a bimodal distribution (Fig 4.4a); the two modes are two and seven.  Only one individual had 

five branch orders.  The scatterplot of branch order and pedal disc diameter (Fig 4.4b) is 

continuous.  Individuals with 48 or fewer mesenteries proximally (black points) all have three or 

fewer branch orders, whereas individuals that have more than 48 mesenteries proximally (red 

points) have four or more branch orders (Fig 4.4c). 

 

Generic delineation between Triactis and Phyllodiscus 

 The pseudotentacle morphology differs considerably between Triactis and Phyllodiscus, 

with Phyllodiscus possessing pseudotentacles that branch in multiple directions, multiple 
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pseudotentacles per intermesenterial space, vesicles attached to any side of the pseudotentacles, 

greater number of pseudotentacles and vesicles (Table 4.2).  Individuals belonging to 

Phyllodiscus also possessed greater numbers of tentacles and mesenteries proximally, even in 

small (8 mm pedal disc diameter) individuals, therefore these morphological characters were not 

correlated with size of individual. 

 

Species delineation in Phyllodiscus 

 Neither the Cluster Analysis (Fig 4.5a) nor the Principle Components Analysis (Fig 4.5b) 

discriminated among the examined specimens.  The Multivariate Scatterplot showed no 

correlation between any of the variables. 

 

Discussion 

Testing species delineation in Lebrunia 

 Although there was a continuous distribution of number of branch orders among the 

individuals of Lebrunia I observed, incorporating the number of mesenteries proximally onto the 

scatterplot shows two distinct groups.  The first of these, with 48 or fewer proximal mesenteries, 

small pedal disc, and few branch orders, corresponds to L. coralligens.  The other group 

corresponds to L. neglecta; even at the same pedal disc diameter, these animals have an extra 

order of mesenteries compared to L. coralligens individuals.  The number of mesenteries 

provides a good character separating these species.  From my results, L. coralligens 

pseudotentacles have zero to three branch orders, and L. neglecta at least four. 

 

Generic delineation between Triactis and Phyllodiscus 
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 Stephenson (1921, 1922) believed that Phyllodiscus semoni represented a fully mature 

anemone, whereas two other nominal species represented immature forms: P. cincta, the most 

immature, and P. indicus, slightly more developed.  Stephenson (1921, 1922) had at his disposal 

the original description of P. semoni and P. cincta, and only a few specimens of P. indicus.  

These anemones share an Indo-West Pacific distribution and pseudotentacles on which are 

vesicles. 

 When Stephenson (1921, 1922) moved Hoplophoria cincta into Phyllodiscus, and named 

another species (P. indicus) in the genus, he noted that a description of the anatomy of Triactis 

producta was needed before Phyllodiscus could be synonymized with Triactis.  Doumenc 

(1973), commenting on the same issue of the lack of difference between Triactis and 

Phyllodiscus, stated that the only difference between the two is the number of tentacles and the 

diameter of the crown of pseudotentacles.  Deeming that insufficient, Doumenc (1973) 

synonymized Phyllodiscus with Triactis.  

 From my observations of hundreds of individuals of Triactis and Phyllodiscus, I have 

established the morphological boundaries for each genus, showing clear differences that had not 

been highlighted before (Table 4.2).  The number and morphology of the pseudotentacles are the 

most distinctive attributes: compared to Triactis, the pseudotentacles of Phyllodiscus are more 

numerous, and multiple pseudotenacles can correspond to a single intermesenterial space.  As 

well, the pseudotentacles of Phyllodiscus branch in multiple directions and the vesicles occur on 

any side of the pseudotentacles. 

 Most importantly, these features do not correlate with size of the individual.  Although 

most of the individuals of Phyllodiscus examined were much larger than the individuals of 

Triactis, I observed some individuals of Phyllodiscus that were the same size or smaller than 
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individuals of Triactis.  Compared to Triactis, specimens of Phyllodiscus that have a small pedal 

disc diameter still possess pseudotentacles that branch in multiple directions, and still possess a 

greater number of mesenteries proximally (Fig 4.3d).  Another difference between the two is that 

in Triactis, the pseudotentacles show more regular and even development and arrangement 

around the scapus compared to Phyllodiscus.  In Triactis and Lebrunia there is a discrete ring on 

the scapus where pseudotentacles develop, in Phyllodiscus there is a larger and less defined area 

on the scapus where pseudotenacles develop. 

 I establish a clearer understanding of the variation of morphology within each genus.  

Within Triactis, the pseudotentacle and vesicle morphology is consistent, and variation in 

pseudotentacle morphology within the genus reflects growth and developmental stage.  

Phyllodiscus, on the other hand, has immense variation in morphology, especially of the 

pseudotentacles (Hoeksema & Crowther 2011).  Based on my observations, I consider 

Phyllodiscus and Triactis to be separate monotypic genera. 

 

Species delineation in Phyllodiscus  

Hoeksema & Crowther (2011) documented multiple morphotypes of Phyllodiscus semoni 

from reefs of the Makassar Strait in Indonesia.  Morphometric analyses of the pseudotentacles 

did not show any groupings of morphotypes.  I infer that different morphotypes, largely due to 

the pseudotentacle morphology, do not necessarily correspond to distinct species.  This inference 

is strengthened by additional observations that some individuals possess characteristics of 

multiple morphotypes, and therefore within the survey there was a gradation of morphology 

rather than specific morphotypes.  Ongoing research will investigate whether genetic data can 

shed more light on the issue of whether Phyllodiscus is a monotypic genus. 
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Taxonomic accounts 

 

Aliciidae Duerden, 1895 

 

Diagnosis (based on Carlgren 1949, changes indicated in bold) 

Thenaria (Endomyaria) with a broad pedal disc.  Column divided into scapus and 

capitulum, the latter may have weak longitudinal muscles and opaque spots containing 

dense cnidae.  Scapus with simple or compound vesicles or with pseudotentacles which may 

be branched in their ends.  Simple vesicles occur on the pseudotentacles; with microbasic and 

macrobasic amastigophores.  The capitulum may have weak longitudinal muscles, and spots 

containing spirocysts and few nematocysts.  No distinct marginal sphincter.  Margin tentaculate, 

no fossa.  Tentacles long with spots as in upper part of column.  Longitudinal muscles of 

tentacles and radial muscles of oral disc ectodermal.  Two siphonoglyphs.  Pairs of complete 

mesenteries six, sterile or fertile.  Two pairs of directives.  Retractors diffuse, weak or rather 

strong.  Basilar muscles weak or well developed.  Cnidom: spirocysts, basitrichs, microbasic p-

mastigophores, microbasic and macrobasic amastigophores. 

 

Valid genera 

Alicia Johnson, 1861 (Type genus) 

Lebrunia Duchassaing de Fonbressin & Michelotti, 1860 

Triactis Klunzinger, 1877 

Phyllodiscus Kwietniewski, 1897 
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KEY: 

1 a) Pseudotentacles absent.  Vesicles simple or compound, attached directly to scapus or 

stalked.  Tentacles numerous, very long and sinuous, commonly curled at distal ends. 

……………………………………………….Alicia 

 

 b) Pseudotentacles on scapus.  All vesicles simple, attached to pseudotentacles or rarely 

to scapus. 

………………………………………………2 

 

2 a) Pseudotentacles in multiple whorls, branch in multiple directions.  Vesicles of one 

kind, but multiple sizes, occur on all sides of pseudotentacles, rarely on scapus.  

……………………………………..…Phyllodiscus 

 

 b) Pseudotentacles in single whorl of scapus.  Vesicles of one or two kinds.  If branched, 

branch in one direction, perpendicular to oral-aboral axis. 

 ………………………………………………3 

 

 

3 a) Multiple pseudotentacles in whorl.  At most developed stage, one pseudotentacle in 

every intermesenterial space, and base of pseudotentacles fused to form a continuous 

region at junction of scapus and capitulum.  Most developed and largest pseudotentacles 

extend past edge of fused region to form branched region of pseudotentacle.  Vesicles 

simple, attached directly to pseudotentacles, rarely to scapus, some individuals with 
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stalked vesicles.  To three or four vesicles on largest pseudotentacle. 

……………………………………………Triactis 

 

b) Between two and nine pseudotentacles in whorl per individual, most commonly six.  

Pseudotentacles form only in intermesenterial endocoels of lower order mesenteries.  

Pseudotentacles always distinct from one another, do not fuse.  Vesicles simple, either 

raised hemispheres or flat opaque patches of ectoderm.  Vesicles at distal end or oral side 

of pseudotentacles, rarely on scapus.   

………………………………………….Lebrunia 

 

 

Discussion 

 None of the molecular datasets produced a phylogenetic hypothesis that supported the 

monophyly of Aliciidae to include Alicia, Lebrunia, Triactis, and Phyllodiscus (Figs 2.2–2.11).  

A clade consisting of the three pseudotentacle-bearing genera (Lebrunia, Triactis, Phyllodiscus) 

was recovered with high support from the combined five-gene analyses (Fig 2.10, 2.11, 2.14).  

Since only members in this clade possess pseudotentacles, this indicates that the pseudotentacles 

of Lebrunia, Triactis, and Phyllosdiscus are homologous. 

 The monophyly of Aliciidae is supported by morphology; this is the only family with 

members that possess vesicles with macrobasic amasitigopore nematocysts.  The macrobasic 

amastigophores of aliciids are different to macrobasic amastigophores that have been reported 

from Diadumenidae and Antipodactinidae (pers. comm. A. Reft and E. Rodriguez).  The 

nematocysts reported as macrobasic amastigophores of Diadumenidae and Antipodactinidae are 
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most likely microbasic amastigophores with a slightly longer shaft, and also lack features of 

aliciid macrobasic amastigophores seen using Scanning Electron Microscopy (pers. comm. A. 

Reft). 
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Alicia Johnson, 1861 

Synonymy 

Cladactis Panceri, 1868 

non Cladactis Verrill, 1869 

 

Gender 

Feminine 

 

Diagnosis (based on Carlgren 1949, changes indicated in bold) 

 Aliciidae with well developed pedal disc.  Column delicate, divisible into scapus and 

capitulum.  Scapus with vesicles, simple or stalked and compound, containing microbasic and 

macrobasic amastigophores.  Compound and stalked vesicles in ring at distal end of scapus.  

Tentacles numerous, long and slender, may be curled at end, with spots as in the capitulum.  

Two weak siphonoglyphs.  Six pairs of complete and sterile mesenteries.  Retractors weak.  

Parietobasilar and basilar muscles very weak. 

 

Distribution 

Tropical and temperate, shallow to 80 m.  Caribbean Sea, Atlantic Ocean, Pacific Ocean, 

Mediterranean Sea. 

 

Valid species 

Alicia mirabilis (Johnson, 1861) (Type species) 

Alicia pretiosa (Dana, 1846) 

145



 

Alicia sansibarensis Carlgren, 1900 

Alicia beebei Carlgren, 1940b 

Alicia uruguayensis Carlgren, 1927 

 

 

Discussion 

Members of Alicia are distinctive and easy to identify to genus because they are the only 

sea anemones bearing dense simple or compound vesicles on a very delicate column wall.  These 

striking sea anemones are frequently photographed by divers (Fig 4.9d,e), particularly in the 

Mediterranean.  The monophyly of Alicia was recovered in most molecular phylogenies (Fig 2.2, 

2.4, 2.5, 2.7, 2.8, 2.10, 2.11), although, sequences were only available for three of the five 

species. 

Of the seven nominal species, type specimens are known for only two: Alicia 

sansibarensis and A. uruguayensis.  Five of the seven species were described from single 

specimens; the other two were described using two and three specimens.  Alicia sansibarensis, A. 

beebei, A. rhadina, and A. uruguayensis have not been recorded from anywhere other than the 

type locality.  For a large proportion of the genus, therefore, the extent of the distribution of 

species is not known and variability is poorly documented. 

Even though there are clear morphological characters to diagnose the genus Alicia, the 

characters to separate the species are not as clear.  Characters such as mesenterial arrangement 

lack variation among species.  Most species possess four orders, with first order complete and 

orders two to four incomplete, and if information available, first order sterile while the rest 

fertile.  The exception is Alicia pretiosa, where specimens, even at the same size as specimens of 
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other species, have three instead of four orders of mesenteries.  This species is also distinguished 

from the others by the possession of a red spot on the oral side of the proximal part of the 

tentacles (Haddon & Shackleton 1893). 

There is little variation in external or internal morphology among Alicia specimens; the 

most variation in the genus is seen in coloration.  In fact, the variation in color within and among 

species of Alicia is large; in the species description of Alicia sansibarensis, Carlgren (1900) 

stated the vesicles of an individual were predominantly violet, but could also be yellow, white, 

brown-red, or pink.  Similar colors were also recorded for A. mirabilis, A. costae, A. pretiosa, 

and A. rhadina.  Schmidt (1972) proposed that the color of an individual is related to the 

brightness of the locality, noting that in clear waters, A. mirabilis tends to be green-brown to 

dark green, whereas in turbid water individuals a more orange-yellow.  No similar observations 

are available for other species of Alicia, so it is unknown whether this information will hold true. 

Apart from color, the most variable morphological feature among members of the genus 

is the vesicle.  Vesicle density may vary among individuals of a species, as proposed by Schmidt 

(1972) for Alicia mirabilis.  He suggested that differences could be due partly to size and age of 

an individual, as younger or smaller individuals may have smaller and fewer vesicles, but he 

suggested this could also be a consequence of environmental influences such as water flow.  The 

number of vesicles on the distal stalks was originally used to separate species A. mirabilis and A. 

costae, but has since been considered too variable among individuals to be a specific character 

(Schmidt 1972).  In his discussion of the synonymy of A. costae with A. mirabilis, Schmidt 

(1972) posited that individuals found in the Atlantic have denser vesicles than individuals in the 

Mediterranean, due to the higher water motion in the Atlantic.   
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Seaton (1981) considered that the difference originally separating Alicia mirabilis and A. 

costae, the number of vesicles on distal stalks, was greater than the difference separating most 

other species in Alicia, yet Schmidt (1972) synonymized the two species.  Seaton (1981) 

speculated that if A. costae had been synonymized with A. mirabilis, then even fewer species 

should be considered valid; he thought A. costae, A. uruguayensis, A. beebei, and A. 

sansibarensis should be junior synonyms of A. mirabilis, and A. rhadina a junior synonym of A. 

pretiosa.  Despite not having clear morphological characters to delineate the rest of the species, I 

use cnidae to provide some resolution.  Alicia beebei has the most distinctive cnidom, with 

unique types and size classes compared to the other species, and A. uruguayensis could be 

distinguished from A. mirabilis due to size of cnidae.  Alicia pretiosa also possesses unique size 

classes of cnidae compared to other species in the genus.   
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Alicia mirabilis (Johnson, 1861) 

Fig 4.6–4.9 

Tables 4.3–4.4 

Synonymy 

Actinia mirabilis Johnson, 1861, p. 303–305 

Cladactis costae Panceri, 1868, p. 30–32 

 

Type specimens and localities 

 Alicia mirabilis type locality and syntypes: Madeira Archipelago, Madeira, Bay of 

Funchal, no type material.  

 Cladactis costa type locality and syntypes: Italy, Gulf of Naples, northern Capri Island, 

no type material. 

 

Material examined 

 Table 4.3. 

 

Description 

Pedal disc 

Circular to oval, some irregular (Fig 4.6a).  Diameter of preserved specimens 15–130 

mm.  Adherent.  Pale brown or yellow-green in life, translucent.  Cream in preservation, opaque.  

No pattern.  Limbus with ~ 96 radial furrows from mesenterial insertions; concentric furrows 

from contraction. 
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Column 

Cylindrical when expanded (Fig 4.6b), conical when oral disc completely retracted.  

Length of preserved specimens 30–70 mm, expanded specimens to 200 mm.  Delicate tissue, 

mesenterial insertions visible as bright white lines.  Scapus with vesicles.   Pale brown, beige, or 

yellow-green in life, translucent, greenish-gray preserved.  Capitulum translucent, free from 

outgrowths, about ¼ length of scapus.  

 

Vesicles 

 Most compound, stalked, cover most of scapus. When contracted, vesicles form unbroken 

coat; when expanded, scapus visible between vesicles (Fig 4.6c).  Colors range from purple, 

green, brown, white, black, orange, or brick red; can be multicolored within individual.  Some 

stalks opaque white and some orange in one individual.  Distal most compound stalks up to 60 

vesicles.  Usually six distal-most compound stalks on scapus. 

 

Oral disc 

Circular, flat (Fig 4.6d).  Diameter of preserved specimens 7–30 mm.  Tissue thin.  Pale 

brown or yellow-green, translucent.  Mesenterial insertions visible as white lines.  Central mouth 

oval, lips inflated in some specimens, 10–12 mm greatest length.  Actinopharynx rich brown in 

life, opaque, strongly furrowed with 12 longitudinal creases.  Two siphonoglyphs, not distinct.  

 

Tentacles 

Simple, taper to blunt point, elongated, rather slender.  Preserved length to 40 mm, width 

to 4 mm.  Yellow-green, rust, or pale brown with black band proximally in life, cream in 
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preservation.  Nematocyst batteries visible as opaque spots, tips opaque.  Numerous, to 96, 

compactly set in 3 rows near margin.  In life, longer than column.   

 

Mesenteries and internal anatomy 

 Very thin, delicate.  48–96 mesenteries in 3–4 hexamerously arranged orders.  First order 

complete, sterile.  Orders two to four incomplete, fertile.  Yolk-poor eggs (~100 um) round, 

smooth.  Sperm pointed apically.  Filaments on all mesenteries.  Retractors diffuse.  No marginal 

stomata.  Marginal sphincter muscle endodermal, diffuse, elongate, extends length of capitulum, 

according to Duerden (1895, 1897), absent according to Schmidt (1972); I did not observe a 

marginal sphincter muscle. 

 

Cnidae 

 Fig 4.7 and Table 4.4. 

 

Habitat and ecology 

Attached lightly to hard substrate such as sea grass or sea fan.  Detach readily and float 

with inflated base up (Johnson 1861, Fig 4.6e).  Habitually found in elevated locations so long 

tentacles free to float in water stream, particularly at night.  Schmidt (1972) reports that sea 

anemone Cribrinopsis crassa eats A. mirabilis. 

 

Distribution 

Mediterranean and Caribbean Seas, and the Atlantic Ocean from Madeira Archipelago 

and Canary Islands in the north, to southern coast of Brazil (Fig 4.8).  
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Discussion 

 Of all the Alicia species, Alicia mirabilis has been published on the most (Fig 4.9a,b), 

photographed by divers (Fig 4.9c,d), and found from the greatest number of localities (Fig 4.8).  

It has also been used on a stamp from Portugal (Fig 4.9e).  Johnson’s (1861) description, based 

on a single specimen collected at the Bay of Funchal, Madeira, was a thorough account of the 

external morphology, with a figure, but lacked information on internal anatomy.  Cladactis costa 

Panceri, 1868 was described from a single specimen collected in the Gulf of Naples.  The 

original description was thorough for elements of the external morphology, and included detailed 

figures.  Duerden (1895, 1897) provided further information regarding internal morphology for 

Alicia species A. costae and A. mirabilis, respectively.  Specimens I observed were within the 

variation of morphological characters that had been recorded for A. mirabilis and A. costae. 

 Andres (1884) separated Cladactis mirabilis and Cladactis costa (the only other species 

in the genus at the time) based on the number of vesicles in the distal-most stalks; C. mirabilis 

has approximately 60, whereas C. costa has only 10–30.  Schmidt (1972) published the most 

detailed description of A. mirabilis, including details of external and internal morphology, 

cnidae, ecology, distribution, and reproduction, observing that individuals of A. costae can 

possess more than 60 vesicles on the distalmost stalks – refuting the significance of the feature 

Andres (1884) used to separate the species.  Schmidt (1972) therefore synonymized A. costae 

with A. mirabilis.  Based on this decision, Seaton (1981) discussed a valid point about what this 

means for the genus and number of valid species, which will be considered further in the Alicia 

genus discussion section. 
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 Cnidae I measured were within the range of cnidae measurements provided by Carlgren 

(1940a), Schmidt (1972), and Seaton (1981) (Table 4.4).  There are a few differences, where 

certain size classes were found by Seaton (1981) and not by others, but these were mostly 

classified as sparse. 
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Alicia pretiosa (Dana, 1846) 

Fig 4.10–4.12 

Tables 4.5–4.6 

 

Synonymy 

Actinia pretiosa Dana, 1846, p. 137, Fig. 20 

Alicia rhadina Haddon & Shackleton, 1893, p. 117, 127–128 

 

Type specimens and localities 

 Alicia pretiosa type locality and syntypes: Fiji, Vanua-levu, Sandalwood Bay, no type 

specimens. 

 Alicia rhadina type locality and syntypes: Australia, Queensland, Cape York, Albany 

Pass, no type specimens. 

 

Material examined 

 Table 4.5. 

 

Description 

Pedal disc 

Circular to oval (Fig 4.10a).  Diameter of live specimen (KUDIZ 3168) 4–8 mm, of 

preserved specimens 4–50 mm.  Opaque, cream in preservation, no pattern, tissue thicker than 

proximal column.  Mesenterial insertions not easily visible, except at limbus, where mesenterial 
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insertions visible as light lines.  In life, attached to hard substrate (rock, scleractinian coral), but 

able to detach easily and inflate to float in water. 

 

Column 

Cylindrical when expanded (Fig 4.10b), conical when retracted.  Length 5 mm in live 

specimen (KUDIZ 3168, Fig 4.10b), 5–30 mm in preserved specimens.  Scapus translucent in 

live specimens (Fig 4.10b,c), pinkish or cream translucent in most preserved specimens, 

sometimes cream to off-white opaque.  Capitulum translucent in live specimens, white to cream 

in preserved specimens, with white spots formed by dense patches of cnidae. 

 

Vesicles  

Vesicles red in live specimen (KUDIZ 3168, Fig 4.10c).  Compound stalked vesicles (Fig 

4.10d) from endocoels of primary mesenteries, to 20 vesicles.  At mid-column, simple or 

compound vesicles present, sessile or stalked.  At proximal end of column, simple sessile vesicle 

between each mesentery pair.  Stalks transparent, cnidae-dense pad opaque.  In life brown, red, 

or greenish grey.  KUDIZ 3168 vesicles with outer ring of yellow, middle ring of red, and yellow 

center in life (Fig 4.10b,c).  Dana (1846, p. 137) described vesicles of Actinia pretiosa as “rich 

carmine, with a white border.”  In some specimens, vertical rows of vesicles alternate among 

different colors, for example one row of brown vesicles bounded by row of white vesicles on 

either side. 
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Oral disc 

Flat, circular.  Diameter of live specimen 5 mm, of preserved specimen 8–11 mm.  Tissue 

thin, mesenterial insertions visible as white lines.  White, translucent.  No pattern, but with 

opaque spots from dense cnidae patches.  Central mouth oval, lips inflated in some specimens; 

white in preservation; KUDIZ 3168 had red mouth and actinopharynx in life (Fig 4.10b,c).  In 

preserved specimen, actinopharynx white to cream, opaque, strongly furrowed.  Siphonoglyphs 

sometimes difficult to discern.   

 

Tentacles 

All of similar appearance: slender, taper to blunt tips, some with pore at tip.  Inner longer 

than outer; longest to 50 mm, width at base to 2 mm in preserved specimens.  In live specimens 

translucent, or golden brown with red spot on oral side of proximal part of tentacle (Haddon & 

Shackleton 1893), spotted with dense cnidae patches, sometimes with band of color around 

proximal end (Fig 4.10b,c).  In preserved specimens beige, cream, or white, translucent with 

opaque spots, opaque tip, and opaque ring where attached to oral disc.  24–70 arranged in 2 

cycles.  

 

Mesenteries and internal anatomy 

Very thin, transparent.  To 48 pairs of mesenteries hexamerously arranged in four orders.  

Members of first order complete; members of second and third order incomplete, all with 

filaments.  Same number distally and proximally.  Specimens examined did not possess gametes, 

and no information is available from published literature. 
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Cnidae 

 Fig 4.11 and Table 4.6. 

 

Habitat and ecology 

Shallow localities of the West Pacific Ocean.  KUDIZ 3168 was collected from a cave in 

Palau with very silty substrate, and was the smallest specimen examined. 

 

Distribution 

West Pacific Ocean, from Australia to Japan.  Fig 4.12.  

 

Discussion 

 I consider Alicia rhadina Haddon & Shackleton, 1893, to be a junior synonym of Alicia 

pretiosa (Dana, 1864), because I find no defining characteristics in the original descriptions to 

set the two apart.  Haddon (1898, p. 434) stated he found A. rhadina to be “close to Alicia (or 

Actinia?) pretiosa, but I think it is a new species” without giving reasons.  The original 

descriptions each were based on a single specimen, and stated only external morphological 

characters.  The two species match in number of mesenteries and tentacles, and in patterning of 

tentacles.  Both species possess a dark spot on the proximal, oral side of their outer tentacles (Fig 

4.10f), a feature that has not been recorded in any other Alicia species.  Although there is no type 

material for either species, the original descriptions provide enough information that matched 

with observations of live and preserved material, that I synonymize the two species. 

Alicia rhadina was described from Cape York, North Queensland, Australia, and has not 

been recorded since.  Alicia pretiosa was described from Fiji; the only other record of A. pretiosa 
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is Japan (Uchida & Soyama 2001).  Although I was unable to confirm this identification, it is 

highly likely that a species found in the tropical central and South Pacific will also be found in 

Japan.  Other examples in Aliciidae with a similar distribution include Triactis producta and 

Phyllodiscus semoni.  A specimen from Japan I did examine (CAS 161241) fit the description of 

Alicia pretiosa. 

The cnidome of Alicia pretiosa had two unique size classes to set it apart from available 

information from other species of Alicia.  In the mesenterial filaments, A. pretiosa had a small 

sized microbasic p-mastigophore, and in the tentacles, a wider second type of microbasic 

amastigophore.  These cnidae differences, coupled with the mesentery number and tentacle 

patterning make this species unique.  It was difficult to ascertain whether other specimens I 

observed were A. pretiosa.  CAS 161241 possesses more mesenteries proximally than published 

for A. pretiosa or A. rhadina: 96 compared to 48.  However, it possesses the same number of 

tentacles (48) as described by Dana (1846) and Haddon & Shackleton (1893).  The distribution 

of A. pretiosa may be wider than presented in this species treatment, potentially Indo-West 

Pacific; please refer to the Alicia genus discussion for further information. 
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Alicia sansibarensis Carlgren, 1900 

Fig 4.13–4.16 

Tables 4.7–4.8 

Synonymy 

Alicia sansibarensis Carlgren, 1900, p. 28–30 

 

Type specimens and localities 

 Alicia sansibarensis type locality and syntypes: Zanzibar, Tumbatu, SMNH 1169 (1 

specimen), ZMH C2592 (1 specimen), ZMH C2597 (1 specimen). 

 

Material examined 

Table 4.7 

 

Description 

Pedal disc 

Circular, slightly concave, pulled in at mesenterial insertions.  Diameter of live syntypes 

50–70 mm (Carlgren 1900), of preserved specimens 10–50 mm.  Slightly wider than proximal 

column, and wider than oral disc.  Tissue thicker than proximal column, opaque.  Cream to 

beige, no pattern.  Mesenterial insertions visible as radiating depressions, concentric furrows due 

to contraction (Fig 4.13a).  At limbus, mesenterial insertions visible as light lines, and 

correspond to notches of pedal disc edge.  In life, attached to hard substrate (rock, scleractinian 

coral) in sandy areas.   
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Column 

Preserved specimens conical when oral disc retracted (Fig 4.13b).  Length of live syntype 

60–80 mm, of preserved specimens 13–70 mm.  Capitulum translucent, cream, smooth with 

opaque spots formed by dense patches of cnidae; 3–4 mm long in preserved specimens.  Scapus 

yellowish beige color, with pink vertical stripes in life (Fig 4.13c, Carlgren 1900), cream or 

beige opaque in preserved specimens.  Majority of scapus covered with vesicles.  

 

Vesicles 

 Most vesicles compound and stalked (Fig 4.13b), rarely simple and sessile.  At distal end 

of scapus, compound stalked vesicles (Fig 4.13d) from endocoels of primary mesenteries.  

Endocoels of lower order mesenteries with more compound and stalked vesicles; most developed 

compound vesicles with up to 40 vesicles per stalk.  At proximal end of column, stalks shorter, 

and vesicles densely packed in horizontal rows.  Stalks transparent, cnidae-dense pad opaque.  In 

life, vesicles predominantly violet, but can be yellow, white, brown-red, or pink.  Specimen 

Copenhagen #1 possesses two distal-most compound stalked vesicles much longer than other; 

stalks measure 10 mm long and 3.5 mm wide, and have vesicles along length, densest at distal 

end (Fig 4.13e). 

 

Oral disc 

Flat, circular.  Diameter 8–40 mm.  Tissue thin.  Cream, opaque, no pattern.  Central 

mouth oval, lips inflated in some specimens; cream in preservation.  Actinopharynx brownish-

red, strongly furrowed longitudinally (due to mesenterial insertions) and vertically (due to 

contraction).  Siphonoglyphs cream. 
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Tentacles 

All of similar appearance.  Inner longer than outer; longest to 70 mm, width at base to 2 

mm.  In preserved specimens beige, cream, or white, translucent with opaque spots, opaque tips, 

and opaque ring where attached to oral disc.  In live specimens, glossy pink, with darker 

pigmentation at proximal end (Carlgren 1900).  Opaque spots with dense cnidae patches.  At 

least 48 and as many as 60, arranged in two cycles at margin. 

 

Mesenteries and internal anatomy 

Thin, white or cream, opaque mesenteries.  Oral stomata, no marginal stomata.  Forty-

eight pairs of mesenteries hexamerously arranged in four orders (please see note regarding 

original description in discussion).  Mesenteries of first order complete, sterile; of second to 

fourth orders incomplete, fertile.  All mesenteries with filaments.  Sexes presumably separate.  

Same number distally and proximally. 

 

Cnidae 

Fig 4.14 and Table 4.8. 

 

Habitat and ecology 

Shallow localities of the Indian Ocean.   

 

Distribution 

Western Indian Ocean (Fig 4.15). 
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Discussion 

Carlgren (1900) provided a detailed description of A. sansibarensis, including external 

morphology, internal anatomy, and cnidae.  Syntypes are in fairly good condition, which is rare 

for this genus.  Alicia sansibarensis is the only species of the genus known from the Indian 

Ocean, being described from Zanzibar and collected recently in Mozambique.  It is possible that 

specimens of Alicia photographed in the Red Sea (Fig 4.16) are also A. sansibarensis, based on 

external morphology and distribution.  The specimen collected from Mozambique (housed at 

AMNH) is slightly smaller than the syntypes from Zanzibar, but agrees in number of 

mesenteries, tentacles, and vesicles at distalmost scapus.  Despite fieldwork in Zanzibar and the 

Red Sea, I was unable to collect any specimens of A. sansibarensis. 

Parulekar (1990) recorded A. sansibarensis in India, but I doubt the sea anemone is an 

Alicia.  Parulekar (1990) lists A. sansibarensis as burrowing; specimens of Alicia are usually 

attached, even though lightly, to a hard or firm substrate.  They are not known to burrow, thereby 

making the identification of this species dubious. 

 Alicia sansibarensis is the only species of Alicia to have sequences from two specimens.  

The two specimens were receovered as sister in the 18S (Fig 2.6) and all except 28S (Fig 2.9) 

phylogenies, but not in the 28S (Fig 2.7), nuclear (Fig 2.8), or combined five-gene (Fig 2.10, 

2.11) phylogenies. 
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Alicia beebei Carlgren, 1940b 

Fig 4.17–4.19 

Tables 4.9–4.10 

Synonymy 

Alicia beebei Carlgren, 1940b p. 211–212  

 

Type specimens and localities 

 Alicia beebei type locality and syntypes: Mexico, Gulf of California, Arena Bank, no type 

material. 

 

Material examined 

 Table 4.9. 

 

Description 

Pedal disc 

Circular to oval, wide, slightly concave (Fig 4.17a).  Diameter 20–80 mm.  Slightly wider 

than proximal column, and wider than oral disc.  Tissue thicker than proximal column, opaque, 

buff brown or dark beige, no pattern.  Mesenterial insertions visible as dark lines.  At limbus, 

mesenterial insertions visible as restrictions of the circular pedal disc.   

 

Column 

Cylindrical to conical when retracted (Fig 4.17b).  Length 25–85 mm.  Scapus dark beige 

translucent, covered with vesicles.  Capitulum translucent, beige.  
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Vesicles 

 Most vesicles compound and stalked, very rarely simple and sessile.  At distal end of 

scapus, stalks protrude from endocoels of primary mesenteries, up to 20 vesicles (Fig 4.17c).  

Proximal scapus provided with sessile vesicles, crowded toward base, more scattered distally.  In 

life, vesicles can be brown, red, dark pink, white, gold, and green (Fig 4.17c). 

 

Oral disc 

Flat, circular (Fig 4.17d).  Diameter 15–30 mm.  Tissue thin, beige.  Large central mouth 

oval, lips inflated in some specimens.  Actinopharynx cream to beige, opaque, strongly furrowed 

(Fig 4.17d,e).  Siphonoglyphs difficult to discern.  In USNM 49397, mouth oval, longest 

diameter 15 mm, mouth diameter half that of oral disc (diameter 30 mm) (Fig 4.17e). 

 

Tentacles 

All of similar appearance, taper to blunt tips.  Inner longer than outer; longest to 120 mm, 

width at base to 4 mm.  USNM 49397 distal curled ends have become entwined (Fig 4.17b).  In 

preserved specimens translucent, beige or cream, scaly pattern from dense cnidae patches, 

proximal part of tentacles opaque, yellowish-brown.  92–100 arranged in 2 cycles. 

 

Mesenteries and internal anatomy 

Very thin, transparent.  Hexamerously arranged in four orders.  Members of second to 

fourth order incomplete, all with filaments.  Same number distally and proximally.  All 

specimens observed sterile. 
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Cnidae 

Fig 4.18 and Table 4.10. 

 

Habitat and ecology 

Attached to hard surfaces such as rocks or black coral, from shallow to depths of 64 m.  

Found in areas with loose rock or sandy substrate.  USNM 49397 found in tide pool. 

 

Distribution 

Gulf of Mexico and southern California coast.  Fig 4.19. 

 

Discussion 

 Alicia beebei was described by Carlgren (1940b), who provided details of the external 

morphology and nematocyst measurements from a single specimen collected from the Gulf of 

California, Mexico.  In 1951, Carlgren supplemented this description with details of a larger 

specimen of A. beebei, also from the Gulf of California.  External morphology measurements 

from specimens in the present study were within the bounds of the original material (Carlgren 

1940b, 1951).  Although there is no type material, I was able to observe the voucher specimen 

from Carlgren (1951).  In addition, I studied a specimen from the Gulf of California collected by 

Carlos Sanchez. 

 I provide information on the oral disc cnidae, which Carlgren (1940b, 1951) did not 

include.  I observed an additional size class of microbasic p-mastigophore in the tentacles and 

actinopharynx, and microbasic amastigophore in the vesicles (Table 4.10).  The unique 
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microbasic p-mastigophores of Alicia beebei were found only in small numbers, and designated 

as rare in the table.  The largest difference between what Carlgren (1940b, 1951) recorded for the 

cnidae of A. beebei and what I observed, are the sizes of microbasic amastigophores of the 

actinopharynx; I observed larger microbasic amastigophores than what Carlgren (1940b, 1951) 

observed.  Carlgren (1940b) recorded an extra type of nematocyst in the mesenterial filaments, 

but could not determine whether this was a microbasic amastigophore or p-mastigophore.  

Carlgren (1951, p. 481) commented that the specimen studied was larger than the holotype and 

“The nematocysts also larger throughout.”  This could be a cause of differences in cnidae 

measurements between individuals, as seen in Table 4.10, where there are different sets of 

measurements for cnidae of the vesicles obtained from different sized individuals. 

 The effect of individual size on external morphology is unknown.  The holotype, with a 

pedal disc diameter of 20 mm, is recorded as having 2–7 vesicles per stalk (Carlgren 1940b).  

The voucher specimen from Carlgren’s (1951) paper, USNM 49397, possesses a pedal disc with 

diameter of ~75–80 mm, and up to 20 vesicles in the distal-most stalks.  The uncataloged 

specimen from Loreto, Mexico, also possesses 20 vesicles per stalk, but had a pedal disc 

diameter of 35 mm.  The latter two specimens have 96 mesenteries and approximately 96 

tentacles; this information is unknown from the holotype. 

 Carlgren, even after having described two other Alicia species (A. sansibarensis in 1900 

and A. uruguayensis in 1927), did not provide additional information or distinguishing features 

in his accounts of A. beebei.  Distribution and cnidae size differences distinguish this species 

from others of the genus.  The other species found in the Pacific Ocean is A. pretiosa, which has 

fewer mesenteries and tentacles than A. beebei.   
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Alicia uruguayensis Carlgren, 1927 

Fig 4.20–4.21 

Tables 4.11 

Synonymy 

Alicia uruguayensis Carlgren, 1927, p. 18–19  

 

Type specimen and locality 

 Alicia uruguayensis type locality and syntypes: Southern Brazil (Carlgren [1927, 1949] 

stated off Uruguay), SMNH 86 (2 specimens). 

 

Material examined 

Table 4.11. 

 

Description 

Pedal disc 

Circular.  Diameter 13–20 mm, slightly wider than proximal column, and wider than oral 

disc.  Opaque, cream/beige in preservation, no pattern.  Slightly concave.  Concentric rings from 

contraction, radial indentations from mesenterial insertions. 

 

Column 

Conical when retracted (Fig 4.20a).  Length 17–20 mm.  Scapus beige or cream in 

preserved specimens.  Capitulum beige. 
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Vesicles 

 Compound with 2–6 spheres per stalk, very few simple.  Average diameter of sphere 0.75 

mm.  All distal-most vesicles missing. 

 

Oral disc 

Circular.  Diameter 9–10 mm.  Tissue thin, mesenterial insertions visible as ridges.  

Cream, opaque.  No pattern.  Central mouth oval, cream in preservation.  Actinopharynx cream, 

opaque, strongly furrowed.  Mouth and actinopharynx inflated, protruding from oral disc.  

Siphonglyphs not clearly distinguished. 

 

Tentacles 

Most tentacles missing from specimen.  48 in two cycles, judging from apertures where 

tentacles were attached (Fig 4.20b). 

 

Mesenteries and internal anatomy 

Same number of mesenteries proximally and distally.  Specimens not well preserved 

internally, no other information available.   

 

Cnidae 

No information. 

 

Habitat and ecology 

80 m, blackish clay.   
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Distribution 

Off the coast of southern Brazil (Fig 4.21). 

 

Discussion 

 Carlgren’s (1927) description of A. uruguayensis does not provide many details of 

external morphology, and no information of internal morphology.  He does provide nematocyst 

data for the species.  The poor description is because the specimens were “very badly preserved 

and partly damaged” (Carlgren 1927, p. 19), which also made it difficult for me to gain any 

additional useful information from the syntypes.  Even the number of tentacles is inferred from 

the number of holes around the oral disc, as they were all lost.  I was unable to observe the 

number of mesenteries, due both to poor preservation and one specimen being heavily damaged.  

The distalmost stalks with vesicles are also missing, the holes on the column where they were 

attached clearly visible.  The cnidom reported by Carlgren (1927) indicated that the 

actinopharynx cnidae or A. uruguayensis are larger than those of A. mirabilis. 

When Carlgren (1927) described Alicia uruguayensis, A. mirabilis was known only from 

Maderia in the North Atlantic, and A. costae from the Mediterranean.  It was not until Corrêa 

(1973) identified specimens of A. mirabilis from Brazil did the known distribution of A. mirabilis 

widen to the western Atlantic.  Following this, Zamponi et al. (1998) identified and recorded A. 

mirabilis from more regions of Brazil, so now the southern-most locality recorded for A. 

mirabilis is less than 1,000 km from the A. uruguayensis locality.  Currently, A. mirabilis are 

known to occur to depths of 50 m, while A. uruguayensis occur at 80 m. 
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 The individuals of A. uruguayensis are some of the smallest Alicia encountered in this 

study.  This may, or may not, be correlated with lower percent coverage of the scapus by 

vesicles, and that most vesicles were compound with only two or four divisions.  This species is 

known from only one locality, in the Atlantic Ocean off the coast of southern Brazil.  It is 

sympatric with A. mirabilis (Fig 4.22), according to published localities of A. mirabilis in Brazil 

(Zamponi et al. 1998).   

  From the data available, Alicia uruguayensis is sympatric with A. mirabilis, with cnidae 

size differences and depth separating the two species.  The disjunct distribution of A. mirabilis 

from the North to West Atlantic needs further investigation.  Specimens from the Western 

Atlantic identified as A. mirabilis need to be confirmed as such, but observing Alicia specimens 

in that region.  If cnidae of specimens from the Western Atlantic overlap in size with cnidae 

reported from A. uruguayensis, there could be one species in the Western Atlantic.  Whether that 

species is A. mirabilis or A. uruguayensis would require comparison with specimens from the 

North Atlantic, as Madeira Islands is the type locality of A. mirabilis.  If there is no overlap in 

cnidae with A. uruguayensis, then these two species remain sympatric. 
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Lebrunia Duchassaing de Fonbressin and Michelotti, 1860 

 

Synonyms 

Taractea Andres, 1883a 

Stauractis Andres, 1883a 

Oulactis pro parte Duchassaing de Fonbressin and Michelotti, 1860 

Rhodactis pro parte Duchassaing de Fombressin and Michelotti, 1866 

Hoplophoria Wilson, 1890 

Cradactis pro parte Hargitt, 1911 

 

Gender 

Feminine 

 

Diagnosis (based on Carlgren 1949, changes indicated in bold) 

 Aliciidae with smooth column.  One ring of pseudotentacles just proximal to 

tentacles.  Pseudotentacles 2–9 per individual, dense with zooxanthellae (dark brown color, 

some also with lighter pigmentation); ends may be branched in one plane perpendicular to 

oral-aboral axis.  Vesicles attached at distal end or on oral surface of pseudotentacles: all 

simple, but can be hemispheric and raised, or opaque patch on ectoderm; contain micro- 

and macrobasic amastigophores.  Capitulum with weak longitudinal muscles and spots of 

spirocysts and nematocysts.  Tentacles, inner longer than outer, with opaque spots as on 

capitulum.  Longitudinal muscles of tentacles and radial muscles of oral disc ectodermal.  Two 

distinct siphonoglyphs.  Six perfect pairs of mesenteries and several pairs incomplete.  Complete 
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mesenteries, except directives, fertile.  Retractors diffuse, moderately developed.  Parietobasilar 

muscles weak, basilar muscles well developed.   

 

Distribution 

Tropical Caribbean Sea and western Atlantic Ocean to approximately 30 m. 

 

Valid species 

Lebrunia neglecta Duchassaing de Fonbressin & Michelotti, 1860 (Type species) 

Lebrunia coralligens (Wilson, 1890) 

 

 

Discussion 

 Members of the genus Lebrunia all possess pseudotentacles in one whorl, and can have 

two forms of vesicles.  Genetic data support monophyly of Lebrunia, as members of the genus 

are always most closely related to one another and distantly related to other genera (Fig 2.2, 2.3, 

2.5, 2.9, 2.10, 2.11).  With the combined five-gene analyses, Lebrunia was recovered as 

monophyletic with high support, with bootstrap value of 100 when Lybia symbiont specimens 

were included and 99 when they were not. 

There are two valid species of Lebrunia, L. neglecta and L. coralligens.  The initial 

suggestion that L. coralligens was a juvenile form of L. neglecta by Duerden (1898) has 

pervaded the literature through to recent times (Carlgren 1949, Corrêa 1964, Stanton 1977, Dube 

1981).  The genus Lebrunia was most recently reviewed by Corrêa (1964), who found specimens 

of L. coralligens were smaller than specimens of L. neglecta and possess pseudotentacles that 
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branched twice at most, a point that Dube (1981) reiterated, while pseudotentacles of L. neglecta 

branch more than twice.  Corrêa (1964) also proposed that specimens of L. coralligens could be a 

neotenous form of L. neglecta.  Corrêa (1964) was unable to conclusively test the hypothesis that 

the name L. coralligens had been applied to juveniles of L. neglecta because she lacked 

individuals of intermediate sizes.  The lack of intermediate sizes available to study was also an 

issue for Duerden (1898), so both Duerden (1898) and Corrêa (1964) kept the species separate. 

Previous workers lacked individuals of intermediate sizes (Duerden 1898, Corrêa 1964), 

so could not provide resolution on this issue.  By observing specimens from museum collections 

and collecting specimens from the field, I was able to observe individuals of a wide size range 

and can confirm that L. coralligens is a separate and valid species, not a juvenile form of L. 

neglecta.  Compared to similar sized individuals of L. neglecta, L. coralligens possess fewer 

mesenteries (no more than 48), and pseudotentacles with fewer branch orders (three at most), 

with no overlap with small specimens of L. neglecta.  The combination of these two characters 

can be used to distinguish these two species.   

The molecular results did not support two reciprocally monophyletic species within 

Lebrunia.  Instead, representatives of Lebrunia neglecta and L. coralligens were nested together 

(Fig 2.2, 2.3, 2.5, 2.10, 2.11) or related to other species (Fig 2.7, 2.8).  However, missing data 

could have influenced this result.  As shown in Table 2.1, the gene sequences available for 

Lebrunia species is patchy, and most information on relationships from molecular data comes 

from mitochondrial genes 12S and 16S.  Mitochondrial genes, in this instance, may not have 

appropriate rates of evolution to determine species-level relationships (Hellberg 2006), and 

nuclear genes may provide better resolution at species level (Hellberg 2007).  Despite the genetic 

sequences not providing evidence for separate species, the morphometric analyses of 
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psuedotentacle morphology, in conjunction with mesentery number provides evidence for two 

species, hence I consider L. neglecta and L. coralligens to be the two valid species of the genus. 

 Lebrunia, described by Duchassaing de Fonbressin & Michelotti in 1860, was the first 

genus diagnosed by branched outgrowths of the column, later called pseudotentacles.  As the 

only genus of sea anemone in the Caribbean Sea and Atlantic Ocean to possess pseudotentacles, 

members of Lebrunia are easily recognized.  The appearance of the pseudotentacles has been 

compared to brown algae (Duerden 1897, McClendon 1911), Herrnkind et al. (1976) suggesting 

that mimicking a brown algae could increase prey capture as unsuspecting prey blunders into 

toxic pseudotentacles.  Lebrunia are toxic to humans (Wilson 1890, Herrnkind et al. 1976, 

Stanton 1977, Sanchez-Rodriguez & Cruz-Vazquez 2006, pers. obs.), like other aliciids. 

 Verrill (1899) and McMurrich (1905) found that Actinodactylus neglectus Duchassaing, 

1850, is a juvenile of Lebrunia neglecta, and postulated that perhaps Actinodactylus 

Duchassaing, 1850, could be synonymous with Lebrunia.  However, the type species of 

Actinodactlyus, A. boscii, was poorly described, has not reported since it was described, and 

lacks type material; thus, the status of Actinodactylus remains uncertain.  If Actinodactylus and 

Lebrunia are synonyms, then Actinodactylus would have priority over Lebrunia.  McMurrich 

(1905, p. 8) commented that “uncertainty renders it advisable to hesitate” before making any 

changes, and therefore I continue to provisionally recognize Actinodactylus until such time as its 

status can be properly evaluated. 
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Lebrunia neglecta Duchassaing de Fonbressin & Michelotti, 1860 

Figs 4.23–4.25 

Tables 4.12–4.13 

Synonyms 

Oulactis danae Duchassaing de Fonbressin & Michelotti, 1860, p. 47, Plate VII fig 10  

Lebrunia neglecta Duchassaing de Fonbressin & Michelotti, 1860, p. 48, Plate VII, fig 8  

Actinodactylus neglectus Duchassaing de Fonbressin & Michelotti, 1860, p. 44–45  

?Rhodactis musciformis Duchassaing de Fombressin & Michelotti, 1864, p. 38  

 

Type specimens and localities 

 Lebrunia neglecta type locality and syntypes: US Virgin Islands, St. Thomas, no type 

material. 

 Oulactis danae type locality and syntypes: US Virgin Islands, St. Thomas, no type 

material. 

 

Material examined 

 Table 4.12. 

 

Description 

Pedal disc 

Circular, oval, to irregular (Fig 4.23a).  Same color and texture as proximal column – 

generally cream, beige, brown, or green in life, beige in preservation.  Diameter of live 

specimens 10–30 mm, of preserved specimens 3–60 mm.  Tissue thin, mesenterial insertions 
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visible as light lines.  Concentric furrows in contracted specimen.  In life, pedal disc attached 

firmly to hard substrate (rock, scleractinian coral), most common in cryptic locality such as on 

underside of rock or coral colony (Fig 4.23c–e).   

 

Column 

 Cylindrical.  Length of preserved specimens 10–35 mm.  Proximal column cream, beige, 

brown, or green in life, cream to light brown in preservation.  Smooth, except in narrow ring just 

below tentacles where pseudotentacles are situated.  

 

Pseudotentacles 

 4–9 per individual, most commonly 5 or 6.  Develop in endocoels of lower order 

mesenteries, only one pseudotentacle per endocoel.  Morphology variable, but most branched 

dichotomously between 4 and 12 times in one direction, perpendicular to oral-aboral body axis. 

Highly extensible; length to 300 mm.  Pseudotentacles of one individual may not be identical.  

Peduncle 3–8 mm diameter arises from column.  Distal ends of pseudotentacles may be narrow 

and pointed (Fig 4.23b–d), or wider and blunt (Fig 4.23e). All pseudotentacles golden to dark 

brown, (Fig 4.23d,e) some individuals with white or gray pigment in longitudinal stripes on oral 

side (Fig 4.23b–c).   

 

Vesicles 

 Raised hemisphere (Fig 4.23b, Fig 4.24a) of variable density, size, and morphology.  

Within an individual, may be of different sizes but same morphology.  On oral side of 
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pseudotentacles, commonly at vertices of branches.  Color variable, opaque; most commonly 

silver gray, can be pinkish brown. 

 

Oral disc 

 Flat, circular (Fig 4.23f).   Diameter 10–25 mm.  Tissue thin, transparent, mesenterial 

insertions visible as white lines.  White, cream, beige, pink, same color as capitulum; no pattern.  

Central oval mouth.   

 

Tentacles 

 Slender, taper to blunt tip (Fig 4.23f).  Inner longer than outer; length to 35 mm, width at 

base to 1.5 mm.  All tentacles of similar appearance.  White, cream, beige, light brown; 

translucent with opaque spots and tips.  Commonly 96–120, up to 200, in 2–3 whorls at margin 

of oral disc.   

 

Mesenteries and internal anatomy 

 Very thin, transparent.  Between 90 and 192, hexamerously arrayed in four or five orders.  

First order fertile.  All other orders incomplete, fertile.  Separate sexes.  Retractors well 

developed (Fig 4.24b).  More numerous distally than proximally.  

 

Cnidae 

 Fig 4.25 and Table 4.13. 
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Habitat and ecology 

 Individuals attach to hard substrate in cryptic locations, such as underside or crevice of 

rock or coral colony (Fig 4.23b–e), to 30 m.  Occurs as individual, not in aggregations; if 

multiple individuals in close proximity, never in same crevice. 

 

Symbionts 

 Herrnkind et al. (1976) and Stanton (1977) recorded commensals of Lebrunia neglecta, 

including shrimps Periclimenes pedersoni, P. c.f. rathbunae, P. c.f. anthophilus, P. yucatanicus, 

and Thor amboinensis, crabs Mithrax commensalis and Stenorhynchus seticornis, ophioroid 

Ophioderma rubicundum, and a clinid fish.  Each species of commensal resides in a slightly 

different microhabitat of a specimen (Stanton 1977).  

 

Distribution 

Tropical localities of Caribbean Sea and West Atlantic Ocean (Fig 4.26). 

 

Discussion 

Duchassaing de Fonbressin & Michelotti (1860: Plate VII, Fig. 10) described Oulactis 

danae as possessing dichotomous tentacles with round tubercles.  They also described Lebrunia 

neglecta, in a new genus that possesses five sprawling highly dichotomous pseudotentacles 

proximal to the simple tentacles (Duchassaing de Fonbressin & Michelotti 1860: Plate VII Fig. 

8).  McMurrich (1889a) was the first to refer to the external appendages of L. neglecta as 

pseudotentacles, a term that had been proposed by Hertwig (1882) for the deep sea genus 
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Ophiodiscus.  Verrill (1899, 1901) recognized that the dichotomous outgrowths with tubercles of 

O. danae were pseudotentacles with vesicles, and moved the species to Lebrunia. 

 McMurrich (1889a, 1889b, 1896, 1905) and Duerden (1897) provided more information 

on the variation within Lebrunia neglecta, particularly regarding size and coloration of 

individuals, numbers of tentacles and mesenteries, number and size of pseudotentacles, and 

appearance of vesicles.  Verrill (1899) used vesicle appearance to separate L. danae and L. 

neglecta: prominent in L. danae, not in L. neglecta.  However, Duerden (1898) described 

specimens of L. neglecta possessing prominent vesicles.  McMurrich (1905) and Verrill (1901) 

both questioned the species distinction based on vesicle appearance recognizing that vesicle form 

is variable.  McMurrich (1905, p. 9) concluded, “it seems to me that the development of the 

vesicles is more or less variable, and indeed, that they may vary greatly even in a single 

individual according as they are expanded or retracted.”  I have observed variation in vesicle 

form within individuals, and the nominal species do not differ in other aspects of their 

morphology. 

 In his synonymy, McMurrich (1905, p. 9) stated, “that L. Danae [sic] and L. neglecta are 

identical, the latter term having the priority.”  Carlgren (1924, 1949) and Corrêa (1964, 1973) 

recorded L. danae as the valid name and type species of Lebrunia over L. neglecta, without any 

justification.  However, according to ICZN (Article 67.2), the type species of a genus must be 

one that was originally described in the genus, so I agree with Fautin et al. (2007) that L. 

neglecta is the type species of this genus, by monotypy.  Additionally, McMurrich (1905), acting 

as First Reviser of the genus Lebrunia, designated L. neglecta as the valid name over L. danae, 

so in accordance with ICZN (Article 24.2 and 24.2.2) the precedence of names is fixed by the 

First Reviser, and L. neglecta is the valid name instead of L. danae. 
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Lebrunia coralligens (Wilson, 1890) 

Fig 4.27–4.30 

Tables 4.14–4.15 

Synonyms 

Hoplophoria coralligens Wilson, 1890, p. 379–386 

Cradactis variabilis Hargitt, 1911, p. 52–53 

 

Type specimens and localities 

 Hoplophoria coralligens type locality and syntypes: Bahamas, Abaco, no type material. 

 Cradactis variabilis type locality and syntypes: USA, Florida, Gulf of Mexico, Dry 

Tortugas, no type material. 

 

Material examined 

 Table 4.14. 

 

Description 

Pedal disc 

 Flat, circular.  Diameter of live and preserved specimens 1–13 mm, approximately same 

diameter as proximal column.  Same color and texture as proximal column; white, cream, beige, 

pinkish brown.  Tissue thin, mesenterial insertions visible as opaque lines (Fig 4.27 a).   
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Column 

 Cylindrical.  Length of live and preserved specimens 1–7 mm. Thin-walled.  Proximal 

column white, cream, beige, pinkish to golden brown in live specimens, beige in preserved. 

 

Pseudotentacles 

 Unbranched or dichotomously branched (Fig 4.27b–f) at most 2–3 times.  Extensible in 

life, length to 20 mm in life and preservation.  Brown (Fig 4.27a,d,e,f) or brown with white 

stripes (Fig 4.27b,c); stripes may be on oral or aboral side of pseudotentacles; one color pattern 

within an individual.  3–6 pseudotentacles per individual, one per endocoel of second order 

mesenteries (Fig 4.28a).  Within an aggregation, generally all individuals with pseudotentacles of 

one type; however, some individuals with both branched and unbranched pseudotentacles.   

 

Vesicles 

Number and position on pseudotentacle variable between individuals: single terminal 

(Fig 4.27e), single on oral side (Fig 4.27b–d), or one or two on oral side (Fig 4.27f, Fig 4.28b).  

Terminal vesicles round, silver-gray (Fig 4.27e).  Pseudotentacle with single terminal vesicles 

never branched.  Vesicles on oral side of pseudotentacle oval, silver gray or white (Fig 4.27b–

d,f).  Up to two vesicles per pseudotentacle (Fig 4.28b).  Pseudotentacle with oral side vesicles 

may be branched or not. 
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Oral disc 

Flat, circular (Fig 4.27f), diameter 2–10 mm in life and preservation.  Tissue thin, 

mesenterial insertions visible as light lines.  Golden brown, no pattern, mouth tinged with white.  

Central mouth.  

 

Tentacles 

Slender, taper to blunt tip.  Length to 20 mm in life and preservation.  All tentacles of 

similar appearance.  White, cream, beige, or golden brown, translucent with opaque spots and 

tips.  20–48 per individual in 2–3 whorls at margin. 

  

Mesenteries and internal anatomy 

Very thin, transparent.  24–48 mesenteries, hexamerously arrayed in 2–3 orders.  First 

order fertile, second and third order fertile.  Approximately same number of mesenteries distally 

and proximally.  Simultaneous hermaphrodite, male and female gametes on same mesentery (Fig 

4.28c). 

 

Cnidae 

 Fig 4.29 and Table 4.15. 

 

Habitat and ecology 

 Individuals occur in aggregations (Fig 4.27b–e), to 20 m, in crevices of rock or dead 

coral; pseudotentacles extend so exposed to light. 
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Reproduction and development 

Of all the aliciid species, Lebrunia coralligens has the most information regarding 

reproduction and development.  It is reported to be reproductive in spring and early summer 

(Hargitt 1911, Lewis 1984).  Internal brooding of propagules occurs (Hargitt 1911, McClendon 

1911, Duerden 1899, pers. obs.) (Fig 4.28d), with up to 50 larvae released from a single adult 

(Lewis 1984).  Duerden (1899) reported that all larvae released at same time were of similar size 

and therefore age.  Planula are approximately 1 mm in length and 0.5 mm diameter at apical end 

(Lewis 1984), possess zooxanthellae (Duerden 1899, Lewis 1984), and starting to form eight 

mesenteries.  Lewis (1984) reported planula were negative phototropic, most frequently settled 

around pedal disc of adults, and showed aggregated settlement behavior in his laboratory-based 

experiments.  This behavior would explain the aggregations of individuals found in nature.  

Planulae settle within 24 hours of release from adult, and pigment moves into radial pattern 

(McClendon 1911, Lewis 1984).  Once settled, mouth and tentacles start forming at distal end.  

Pseudotentacles do not form until later, after about 20 tentacles have been formed (McClendon 

1911) or six weeks after settlement (Lewis 1984). 

 

Distribution 

Tropical localities of the Caribbean Sea and West Atlantic Ocean (Fig 4.30). 

 

Discussion 

 From a single specimen collected in the Bahamas, Wilson (1890) described Hoplophoria 

coralligens, the species epithet chosen because the animal lived in coral.  One of the 

distinguishing characters that Wilson (1890, p. 382) described are the “four large and 
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conspicuous organs” proximal to the circle of tentacles.  The genus Lebrunia was considered for 

this new species by Wilson (1890), but he put it in Hoplophoria rather than Lebrunia because its 

pseudotentacles were not branched.  He did note, “whether there is any relationship between 

Hoplophoria on the one hand and Ophiodiscus of Hertwig and the peculiar Lebrunea neglecta on 

the other, cannot yet be discussed” (Wilson 1890, p. 386). 

 Duerden (1897) recognized that even though the pseudotentacles branched fewer times in 

specimens of Hoplophoria coralligens than what had been recorded in Lebrunia, the presense of 

pseudotentacles meant this species belonged in Lebrunia.  He identified newly collected 

specimens of L. coralligens that had six pseudotentacles that branch between 2–3 times, hence 

increasing our knowledge of the variation in morphology within the species (Duerden 1897).  

Duerden (1897, p. 457) also disputed McMurrich’s (1896) suggestion that H. coralligens is 

synonymous with Viatrix globulifera, stating, “there is no doubt, however, that it [H. coralligens] 

belongs to the genus Lebrunea”.  Verrill (1899) did doubt it, suggesting the species could be 

synonymous with Diplactis Bermudiensis.  Duerden (1899) defended his decision that placement 

in Lebrunia, asserting that Verrill’s (1899) opinions were not based on any specimens, because 

Verrill had not seen either species of Lebrunia. 

 In 1911, Hargitt described a new species, Cradactis variabilis, and McClendon (1911) 

described details of the natural history for it, including a detailed account of the reproduction and 

development.  Hargitt (1911) considered Lebrunia, Oulactis, and Cradactis as possible genera 

for it, and although none was a perfect fit and he showed that the new species was similar to 

Lebrunia species in habitat and possessing 6–8 dichotomous fronds, he decided to place the 

species in Cradactis provisionally.  From Hargitt’s (1911) description and figures and 

observations of many specimens, it is clear that the species Lebrunia coralligens is variable in 
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morphology, in particular the branching of pseudotentacles.  What was described for C. 

variabilis corresponds to the original description of L. coralligens, rather than L. neglecta, with 

respect to the size of individuals and branch order number of pseudotentacles.  I therefore 

synonymize C. variabilis with L. coralligens, and do not agree that C. variabilis is a synonym of 

L. neglecta as proposed by Hedgpeth (1954). 

Häussermann (2003) moved Cradactis digitata McMurrich, 1893, to Actinostella, and 

listed Cradactis as a junior synonym of Actinostella.  However, Cradactis as used by Hargitt 

(1911) is different from the Cradactis as used by McMurrich (1893).  Hargitt’s (1911) C. 

variabilis is a junior synonym of L. coralligens, and not similar to species of the actiniid genus 

Actinostella.  Therefore, Cradactis pro parte McMurrich, 1893, is a junior synonym of 

Actinostella, and Cradactis pro parte Hargitt, 1911, is a junior synonym of Lebrunia. 
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Triactis Klunzinger, 1877 

Synonyms 

non Thelactis Klunzinger, 1877 

Viatrix pro parte Haddon & Shackleton, 1893 

Hoplophoria pro parte Haddon, 1898 

Phyllodiscus pro parte Stephenson, 1921, 1922; Carlgren, 1945 

 

Gender 

Feminine 

 

Diagnosis (based on England 1987, changes indicated in bold) 

 Aliciidae with well developed pedal disc.  Scapus may have small vesicles proximal to 

margin, capitulum may have opaque spots.  Margin with one distal ring of stalked 

pseudotentacles; in young specimens these occur sparingly and are little branched, closer 

together and dichotomously branched in larger specimens.  Distal end of pseudotentacles may 

or may not branch; if branched, branch perpendicular to oral-aboral axis.  Hemispheric 

vesicles on oral side of pseudotentacles.  Stalks of pseudotentacles few, with longitudinal weak 

bands of endodermal muscle.  Six pairs of complete mesenteries and several incomplete pairs.  

Retractor and parietobasilar muscles weak.   

 

Distribution 

Shallow tropical Indo-West Pacific. 
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Valid species 

Triactis producta Klunzinger, 1877 (Type species) 

 

 

Discussion 

 Individuals of the genus Triactis are distinguished from other aliciids by one kind of 

simple vesicle, attached only to the oral side of a pseudotentacle, never on the aboral side or tip, 

multiple vesicles per pseudotentacle, only one pseudotentacle per intermesenterial space, 

pseudotentacles in a distinct whorl at distal end of scapus, and pseudotentacles that branch in one 

direction.  Considering the distinctive features, and the lack of morphological variation 

throughout the distribution of this genus, non-monophyly of Triactis was recovered by combined 

except 28S (Fig 2.9) and combined five-gene (Fig 2.10) phylogenies.  However, seeing as most 

of the genetic information analyzed for Triactis representatives was from nuclear 28S (Table 

2.1), the phylogeny from combined except 28S dataset may be unreliable to place Triactis.   

Viatrix cincta was described from an individual possessing pseudotentacles that were not 

branched many times (see Plate XXIII, Fig 11–15 of Haddon 1898).  Stephenson (1921, 1922) 

described an individual possessing pseudotentacles with more branch orders as a new species 

Phyllodiscus indicus.  By comparing the figures from Haddon (1898, Plate XXIII, Fig 11–15) 

and Stephenson (1921, Fig 18), it can be seen that the pseudotentacles of Viatrix cincta and 

Phyllodiscus indicus are similar to pseudotentacles of Triactis producta, in having branching 

perpendicular to the body axis.  During my fieldwork, I encountered individuals of both of these 

developmental stages of the pseudotentacles, and more stages, from one aggregation of Triactis 

producta at one locality.  The distinctive column morphology of Triactis producta is lacking 
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from the Lybia symbiont specimens (Fig 2.1b,d).  However, the Lybia symbionts look similar to 

individuals of Triactis producta I observed in the field that lacked column outgrowths (Fig 4.40a, 

4.42b black arrows). 

Triactis was erected by Klunzinger (1877) for specimens collected from the Red Sea, 

which he described as T. producta in the same paper (Fig 4.31a,b).  In the genus description, 

Klunzinger (1877) recorded three types of tentacles: thick branching, short spherical, and 

filamentous.  Because of the branched tentacles, Andres (1883a) proposed that Triactis was 

closely related to Phymanthus.  However, Andres (1883a) noted that the mouth protruded on a 

retractable cone, and admitted that this feature differs from the flat oral disc of Phymanthus.  The 

thick branched and short spherical tentacles of Triactis described by Klunzinger (1877) are 

pseudotentacles and vesicles, respectively, and are not tentacles with lateral projections as seen 

in Phymanthus specimens. 

 Haddon & Shackleton (1893) described Viatrix cincta from Australia as possessing six 

club-like enlargements of the column.  This is more accurate than how Klunzinger (1877) 

described them, as tentacles.  Haddon (1898) moved Viatrix cincta into Hoplophoria because 

species in this genus also possessed pseudotentacles, then Carlgren (1945, 1949) moved the 

species to the genus Triactis, because Hoplophoria individuals were recorded only from the 

Caribbean, whilst Triactis were recorded from the Indo-Pacific.   

Carlgren (1949, 1950) described the pseudotentacles as occurring at mid-column, 

whereas England (1987) stated that they are situated at the margin.  Cruicial to arbitrating these 

interpretations is the position and definiton of the margin.  The margin should be considered the 

border where the column joins the oral disc, just below the base of the tentacles (Carlgren 1949), 

and not necessarily where the marginal sphincter is, because some species lack marginal 
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sphincter muscles.  Carglren’s (1949, 1950) specification that the capitulum is distal to the 

pseudotentacles verifies that he considered the pseudotentacles mid-column and not at the 

margin.  In Triactis producta, the capitulum is present (Fig 4.32a), and compared to the scapus is 

thin-walled, lighter color, and has different cnidae (Stephenson 1928). 

England (1987) appears to have interpreted the placement of the margin in Triactis 

producta individuals differently.  His figure (England 1987, p. 234) depicts a longitudinal section 

of T. producta, which has labeled distally to proximally: tentacle, capitulum, sphincter, vesicles, 

fosse, and margin.  The scapus is proximal to the margin, but is not labled in the figure.  In this 

interpretation, England (1987) considers the junction between the scapus and capitulum to be the 

margin, hence why he considered the pseudotentacles to occur at the margin. 

Despite the slightly different wording and interpretation of features, Carlgren (1949, 

1950) and England (1987) are describing the same placement of the pseudotentacles of Triactis 

producta.  From the literature and my observations, I interpret that the pseudotentacles occur 

mid-column.  I agree with Haddon’s (1898) interpretation that pseudotentacles occur near the 

junction of the scapus and capitulum, and not at the margin, which I consider to occur at junction 

of the capitulum and oral disc.   

The position of, or even presence of, marginal sphincter muscle is not well established.  

Most authors did not state nature of marginal sphincter muscle (e.g. Klunzinger 1877, Andres 

1883a,b, Haddon & Shackleton 1893, Stephenson 1921, 1922, Carlgren 1950), or the marginal 

sphincter muscle is absent (e.g. Haddon 1898, Carlgren 1949, Doumenc 1973, England 1987).  I 

did not observe a marginal sphincter muscle. 

The only person to record marginal sphincter muscle in Triactis producta was England 

(1987); though, he noted that it was apparent in only one of the specimens he was studying, and 

189



 

absent in another.  England (1987, p. 233) stated that the weak sphincter muscle recalled “that 

depicted by Haddon (1898: 439, text fig) in Hoplophoria cincta”.  However, on the description 

of the sphincter muscle, Haddon (1898, p. 438) states, “I cannot be certain that there is any 

sphincter at all.”  Also, the text figure of Haddon (1898, p. 439) depicts as cross-section through 

a mesentery, not a longitudinal section through the margin.  England (1987, p. 233) does admit 

that the sphincter muscle he observed “may have been due to the influence of other muscles on 

the degree of folding of the circular muscles of the column.”  I interpret that the only record of a 

marginal sphincter muscle of Triactis producta specimens is dubious, and the marginal sphincter 

muscle is absent.  I have emended the generic diagnosis of Triactis to state that the 

pseudotentacles occur in a ring at the distal end of the scapus.   
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Triactis producta Klunzinger, 1877 

Figs 4.31–4.42 

Tables 4.16–4.17 

Synonyms 

non Thelactis simplex Klunzinger, 1877, p. 79 

Triactis producta Klunzinger, 1877, p. 85–86  

Viatrix cincta Haddon & Shackleton, 1893, p. 117, 127  

Phyllodiscus indicus Stephenson, 1921, p. 561  

Sagartia pugnax Verrill, 1928, p. 18–19 

 

Type localities and specimens 

 Triactis producta type locality and syntypes: Red Sea, no type specimens. 

 Viatrix cincta type locality and syntypes: Australia, Torres Strait, no type specimens. 

 Phyllodiscus indicus type locality and syntypes: Maldives, no type specimens. 

 Sagartia pugnax type locality and syntypes: USA, Hawaii, Oahu, AMNH 1585 (1/2 

specimen), BPBM D113 (2 specimens). 

 

Material examined 

Table 4.16. 
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Description 

Pedal disc 

Circular.  Diameter of live and preserved specimens 1–15 mm, same as proximal scapus 

(Fig 4.33a).  Same color and texture as proximal column – cream or beige, sometimes brown, in 

live specimens.  Tissue thin, some mesenterial insertions visible as light beige or pink lines.  In 

life, attached to firm substrate, usually scleractinian coral or rock.   

 

Column 

Cylindrical.  Expanded length 1–30 mm and diameter 1–15 mm in live and preserved 

specimens (Fig 4.33b).  Scapus same color and texture as pedal disc.  Capitulum very delicate 

and thin-walled, white or cream, translucent; diameter slightly less than that of scapus.   

 

Pseudotentacles 

Each starts as simple projection, branching only at distal end: branching irregular (Fig 

4.33c).  Pseudotentacles of lower order endocoels branched, (Fig 4.32b,c); pseudotentacles of 

higher order endocoels unbranched (Fig 4.32b,c).  Dark brown from dense zooxanthellae, some 

with iridescent green or pink tinge on tips, no pattern.  Pseudotentacles form in wide region of 

scapus. 

 

Vesicles 

Vary in size within and between individuals.  Diameter 0.5–2 mm.  Attach directly to 

pseudotentacle (Fig 4.33c), or borne on short stalk (Fig 4.33d,e).  Largest vesicles in distal region 

of largest pseudotentacle.  Some individuals with multiple vesicles per pseudotentacle (Fig 
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4.33f), but only on largest pseudotentacles.  Occur only in zooxanthellate region of a 

pseudotentacle.  Opaque, with bright silver ring around outer edge (Fig 4.34): grey in most 

specimens, but may be pale pink, green, bright orange, bright pink seen (Fig 4.35).  Usually, 

color within individual homogenous, between individuals variable.   

 

Oral disc 

Flat, circular.  Diameter 1–10 mm, usually slightly less than pedal disc.  In live and 

preserved specimens thin, mesenterial insertions visible as white or beige lines (Fig 4.36).  

Cream, beige, or white, translucent, some with opaque spots from dense cnidae patches, no 

pattern.  Central mouth.   

 

Tentacles 

Slender, taper slightly to blunt tips; all of similar appearance.  Inner longer than outer; 

length to 20 mm, width to 0.5 mm.  White, cream, or golden brown tinge, translucent with 

opaque spots all over surface, including at tip (Fig 4.36), in life and preservation.  Usually 48, 

but as many as 60, hexamerously arrayed in 2–3 cycles.   

 

Mesenteries and internal anatomy 

Mesenteries very thin, transparent, some with zooxanthellae in endoderm.  Mesenteries 

hexamerously arranged in three orders: those of first order sterile, those of second and third 

orders incomplete, some fertile (Fig 4.37a).  Separate sexes.  Retractors diffuse (Fig 4.37b).  

Directives attached to siphonoglyphs (Fig 4.37c). 
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Cnidae 

Figure 4.38 and Table 4.17. 

 

Habitat and ecology 

Attached by flat pedal disc to firm substrate such as dead or live scleractinian coral 

(particularly Porites and Acropora) and rocks.  Common to depths between 1 and 15 m where 

light penetration is strongest, but may occur as deep as 30 m.  Most common in aggregations, 

either in crevices of rocks or at vertices of branched scleractinian colony. 

 

Distribution 

 Triactis producta is widespread in the Indo-West Pacific (Fig 4.39).   

 

Symbionts 

 Cutress (1977) and Fishelson (1970) reported Triactis producta as one of the species 

symbiotic with crabs of the genus Lybia.  The crab holds the sea anemone in modified chela, 

using the anemone for protection against predators.  Zooxanthellae dense in endoderm of 

pseudotentacles.   

 

Discussion 

The original description of Triactis producta is thorough, and with the figure, diagnostic 

(Fig 4.31).  Triactis producta is the only species of the genus; I found little difference in tentacle 

and mesentery number or mesentery arrangement among individuals covering a large size and 

geographic range.  I found more size-classes of cnidae in each tissue type compared to what had 
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been recorded by Carlgren (1945) and Doumenc (1973).  In the tentacles and column, I found a 

smaller basitrich size class, while Carlgren (1945) reported an additional size of microbasic 

amastigophore.  I found an extra size class of microbasic amastigophore in mesenterial filaments.  

The cnidom reported by Doumenc (1973) has the fewest types and sizes, but those presented 

concur with my findings. 

Pseudotentacle number and branching varied most: the larger the individual, the more 

pseudotentacles and the more their branching.  Pseudotentacle morphology was influenced by 

the size of the individual and varied between putative clonemates at one locality (see below).  In 

one aggregation in Mo’orea, some individuals had a smooth column lacking vesicles and 

pseudotentacles (Fig 4.40a) and zooxanthellae concentrated in the oral end and tentacles.  Other 

individuals (Fig 4.40b) possessed a single well-developed vesicle and two developing 

pseudotentacles and more tentacles and mesenteries than depicted in Fig 4.40a, while some 

possessed multiple vesicles and pseudotentacles at various stages of development in one discrete 

ring (Fig 4.40c), and some had more fully developed pseudotentacles and vesicles (Fig 4.40d).  

This range of character states encompasses what is known of the nominal species Viatrix 

cincta (reported in Haddon & Shackleton 1893, Haddon 1898, Carlgren 1950, Doumenc 1973) 

and Phyllodiscus indicus (Fig 4.31c, reported in Stephenson 1921, 1922).  I therefore agree with 

England (1987) that Viatrix cincta and Phyllodiscus indicus are synonyms of Triactis producta, 

which is the sole valid species of Triactis. 

Carlgren (1947, p. 14) asserted that Thelactis simplex Klunzinger, 1877 was “probably 

nothing but a very young Triactis producta,” stating the conical warts around the column were 

early development stages of the pseudotentacles.  Although this is possible, I think it more likely 

that Klunzinger (1877) was referring to a species of Bunodeopsis.  It was a lone specimen 
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attached to algae in shallow lagoonal areas, which is a habitat more similar to that of 

Bunodeopsis than of Triactis, the latter of which is generally found in aggregations and attached 

to a firm substrate.  Members of Bunodeopsis possess vesicles on the column and in a ring mid-

column.   

In the field, individuals of Triactis producta occur in cryptic locations and in 

aggregations composed of closely packed individuals, with pseudotentacles of one individual 

overlapping those of another, and pedal discs of neighboring individuals in contact.  Most 

frequently, these animals are attached to live or dead scleractinian coral.  In branched corals such 

as Acropora and Porites, the anemones are hidden, situated at the vertices of skeleton branches 

(Fig 4.41a).  Another common habitat is crevices of corals or boulders (Fig 4.41b).  More rarely, 

specimens are on the sides of shallow rocks that are slightly buried in the sandy substrate (Fig 

4.41c), and the individuals of one aggregation I observed were attached to a demosponge (Fig 

4.41d). 

I observed multiple smaller, less developed individuals surrounding a larger, more 

developed individual (Fig 4.42).  It is possible these smaller individuals were produced via 

asexual reproduction, which has been reported for this species (Den Hartog 1997).  The larger 

individual in Fig 4.42 has dense concentrations of zooxanthellae in a discrete ring at the limbus 

(see white arrow in Fig 4.42); this could be the region where clonal individuals pinch off via 

constriction, and therefore could obtain zooxanthellae from the parent. 
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Phyllodiscus Kwietniewski, 1897 

Gender 

Masculine 

 

Diagnosis (based on Carlgren 1949, changes indicated in bold) 

 Aliciidae with broad pedal disc.  Proximal part of scapus smooth, distally a broad 

zone of pseudotentacles in multiple whorls, radially arranged, branched in multiple planes.  

Pseudotentacles with few branched bands of longitudinal endodermal muscle.  Attached to 

pseudotentacles, and rarely on column, simple hemispheric vesicles of variable size.  A few 

branched bands of longitudinal endodermal muscles in the pseudotentacles.  Capitulum short 

with ectodermal longitudinal muscles.  Sphincter indistinct, diffuse.  Tentacles to about 200, 

hexamerously arranged.  Longitudinal muscles of tentacles and radial muscles of oral disc 

ectodermal.  Gametes on all but first order mesenteries.  Retractors weak.  Basilar muscles 

rather well developed.  

 

Distribution 

Shallow tropical Indo-West Pacific. 

 

Valid species 

Phyllodiscus semoni Kwietniewski, 1897 (Type species) 
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Discussion 

Kwietniewski (1897) placed Phyllodiscus in Phyllactiidae, along with other genera 

having branched outgrowths.  Haddon (1898) suggested Aliciidae would be a more appropriate 

placement, although Aliciidae contained genera with tubercles or vesicles of the column.  

Stephenson (1921) placed Phyllodiscus in Aliciidae to join Alicia.   

Individuals of Phyllodiscus are easily distinguished from other aliciids by their multiple 

whorls of pseudotentacles, multiple planes of branching of pseudotentacles, and vesicles on all 

sides of pseudotentacles.  Molecular data support the monophyly of Phyllodiscus (Fig 2.2, 2.5, 

2.6, 2.9-2.11).  I do not agree with suggestions of Stephenson (1922) and Doumenc (1973) that 

Triactis individuals are juveniles of Phyllodiscus.  I find Triactis individuals to be small 

individuals (at most 35 mm column length), with pseudotentacles in one distinct whorl that 

branch in one plane, and vesicles only on oral side of pseudotentacles. 

Two genera of sea anemones most confused with Phyllodiscus are Actinodendron and 

Actineria, because all three have branched outgrowths.  Actinodendron (and others in the family 

Actinodendridae) are burrowing anemones, and therefore have long cylindrical bodies; neither 

Phyllodiscus nor Actineria individuals have long cylindrical bodies, but both attach to hard 

substrates.  Correct identification of sea anemones, particularly toxic species, is important for 

public safety and for understanding the evolution of toxicity in sea anemones. 
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Phyllodiscus semoni Kwietniewski, 1897 

Figs 4.43–4.37 

Tables 4.18–4.19 

Synonyms 

Phyllodiscus Semoni Kwietniewski, 1897, p. 11–17  

 

Type specimens and localities 

 Phyllodiscus semoni type locality and syntypes: Indonesia, Ambon, PMJ 707 (1 

specimen), SMNH 4080 (piece), SMNH 4081 (piece). 

 

Material examined 

Table 4.18. 

 

Description 

Pedal disc 

Limbus circular to irregular (Fig 4.43a).  Diameter of live and preserved specimens 1.2–

90 mm, most individuals 25–60 mm.  Slightly wider than proximal column, and always much 

wider than oral disc.  Color and texture as proximal column – generally translucent cream/beige 

in life and opaque in preservation, no pattern.  Tissue thin, mesenterial insertions clearly visible 

as opaque lines; concentric furrows in contracted specimen.  In life, attached firmly to hard 

substrate (rock, scleractinian coral).   
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Column 

Column length of preserved specimens 2–90 mm, most 35–60 mm.  Proximal scapus 

translucent to opaque, cream, smooth (Fig 4.43b).  Distal scapus with pseudotentacles and 

vesicles.  Capitulum translucent, white to cream, smooth.   

 

Pseudotentacles 

Length variable, 4–65 mm; single individual can embody entire range.  Pedunculate: 

peduncle diameter variable, 3–14 mm.  Morphology and coloration variable (Fig 4.44).  In life, 

observed colors across individuals include white, gray, cream, beige, rusty red, and green, to 

mottled (Fig 4.44).  No pattern, but may follow coloration of organisms in surrounding 

environment (e.g. golden green except at tips which are white, presumably mimicking 

scleractinian coral Seriatopora hystrix (Fig 4A,B of Hoeksema & Crowther 2011).  Multiple per 

intermesenterial space, radially arranged.  Usually different sizes of pseudotentacles in one 

intermesenterial space, similar size arranged in whorls; largest communicate with lower 

mesenterial orders.  Pseudotentacles branch up to 5 orders.  Some possess subunit complexes of 

vesicles and small, short branches (Fig 4.43c, Fig 4.45a). 

 

Vesicles 

 Raised, no stalk (Fig 4.43c).  May be of multiple sizes on one individual; diameter 0.25–2 

mm.  Most vesicles on pseudotentacles, predominantly at vertices of branches, occur on all sides 

of pseudotentacles; some on scapus.  Density variable.  Opaque, cream to gray. 
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Oral disc 

Flat, most circular, some with slightly wavy margin (Fig 4.43d).  Most specimens 

between 15–30 mm diameter; smallest 2 mm, largest 50 mm in preserved specimens.  Tissue 

thin, mesenterial insertions visible as white lines.  Cream, beige, or greenish, translucent.  No 

pattern, some opaque spots from dense patches of cnidae.  Central mouth oval, agape in most 

preserved specimens; lips inflated in some specimens.  Actinopharynx cream, opaque, strongly 

furrowed.   

 

Tentacles 

All of similar appearance: slender, taper to blunt tips, some with pores at tip, very few 

bifurcate.  Longest to 45 mm, width at base to 1.5 mm.  Beige, cream, or greenish tinge 

especially at base (Fig 4.43d), translucent with opaque spots, opaque tips.  To 200, hexamerously 

arranged in 2–3 whorls.   

 

Mesenteries and internal anatomy 

Very thin, most individuals with dense zooxanthellae in endoderm, transparent.  Oral 

stomata present.  Between 87 and 130, hexamerously arranged in four (rarely three or five) 

orders.  Those of second and third order incomplete, fertile.  Those of fourth and rare fifth order 

incomplete, some fertile with filaments, but usually very small, lacking gametes.  Very rarely 

mesenteries of same pair unequal in size, or one missing.  Some individuals with more and some 

with fewer mesenteries distally than proximally, and some with approximately same number 

distally and proximally.  Some individuals simultaneously hermaphroditic (Fig 4.45b).  
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Cnidae 

Fig 4.46 and Table 4.19. 

 

Habitat and ecology 

In the Spermonde Archipelago of Sulawesi, Phyllodiscus semoni occurs predominantly in 

the mid-shelf zone (Hoeksema & Crowther 2011).  Individuals attach flat pedal disc to firm 

substrate, such as dead or live scleractinian coral (particularly Porites and Acropora) and rocks.  

Usually in depths between 1 and 15 m where light penetration is strongest, but may occur as 

deep as 20–25 m.  Can occur as isolated individuals or in aggregations, one or more aggregations 

of separate morphotypes may occur at one locality (Figs 7, 10 of Hoeksema & Crowther 2011). 

 

Distribution 

Tropical Indo-West Pacific (Fig 4.47). 

 

Symbionts 

Zooxanthellae in endoderm, particularly dense in pseudotentacles.  Pontoniid shrimp, 

including Periclimenes brevicarpalis, Anocylomenes sarasvati, and A. venustus live on and 

around Phyllodiscus semoni individuals (Fransen 1997, Humann & DeLoach 2010, Hoeksema & 

Crowther 2011) (Fig 4.43e).  Wentletrap snails Epitonium parasitize individuals (Kokshoorn et 

al. 2007) (Fig 4.43f). 

 

Toxicology and misidentification 

 The nematocysts of Phyllodiscus semoni contain toxins that can cause damage to human 
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skin, from mild rash and irritation to blistering welts, ulcers and skin necrosis (Williamson et al. 

1996).  Therefore, swimming beaches and inlets in Okinawa, Japan, have been closed when 

Phyllodiscus numbers increases (JD Reimer, pers. comm.).  Erhardt & Knop (2005) reported that 

a fisherman in the Philippines died after being stung by a Phyllodiscus.  Toxicological analyses 

of sea anemones identified as Phyllodiscus show that the toxins, of the actinoporin family (Nagai 

et al. 2002a), were fatal to shrimp (Nagai et al. 2002a), can cause severe renal failure in rats 

(Mizuno et al. 2007), and can cause hemolysis of fish and mammalian red blood cells (Nagai et 

al. 2002b). 

 Uechi et al. (2005a,b) reported on the toxicology of a sea anemone in Okinawa, the 

species referred to as Actineria villosa by Oshiro et al. (2001).  However, the sea anemone 

identified as A. villosa in Figure 2 of Oshiro et al. (2001) clearly shows Phyllodiscus semoni of a 

branched morphotype (Hoeksema & Crowther 2011).  This same misidentification is shown in 

Uchida & Soyama (2001, p. 26).  Uechi et al. (2005a) stated, “A. villosa is morphologically quite 

similar to coral…” (p. 379), which is more like a Phyllodiscus specimen (see figures in 

Hoeksema & Crowther 2011), rather than a specimen of Actineria.  Uechi et al. (2005a,b, 2010) 

refer multiple times to the similarity between the toxin from their study organism (Avt-1) to the 

toxin extracted from Phyllodiscus semoni (Pstx20).  The N-terminal sequences match completely 

(Uechi et al. 2005b), and there is a 99% amino acid similarity (Uechi et al. 2005a), 

corresponding to one base pair difference in 179 bases (Alegre-Cebollada et al. 2007).  I am 

confident that the records of A. villosa from Japan by Oshiro et al. (2001), Uchida & Soyama 

(2001), and Uechi et al. (2005a,b, 2010), all refer to a branched morphotype of Phyllodiscus 

semoni. 

I believe that in a report of a stinging sea anemone in Vietnam, Hansen & Halstead 
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(1971) refer to two species of sea anemones under the name Actinodendron plumosum.  

Actinodendron plumosum has a powerful sting, and long branched tentacles – two features 

similar to those of Phyllodiscus semoni (if the pseudotentacles are confused with tentacles).  The 

specimens referred to by Hansen & Halstead (1971) were “found on the shady side of rocks,” 

reminiscent of a P. semoni individual that attaches to hard substrate, not of an A. plumosum 

individual that burrows in soft sediments, and the authors refer to “flowery” and “top hat” forms 

(Hansen & Halstead 1971, p. 125).  The “flowery” form (Fig 2b Hansen & Halstead 1971) is 

most certainly a close-up of P. semoni, with tentacles shown surrounded by pseudotentacles.  

The “top hat” form (Fig 3, Hansen & Halstead 1971) is very similar to the morphotype termed a 

“cake” shape by Kwietniewski (1896, 1897).  Figure 4b (Hansen & Halstead 1971) shows a 

macrobasic amastigophore, a type of nematocyst known from Aliciidae, the family to which 

Phyllodiscus belongs. 

 

Discussion 

This is currently the only species of Phyllodiscus and it is one of the most polymorphic 

sea anemones; even if this variability represents several species, few other sea anemone genera 

possess this much morphological variation.  The function (if any) of the morphological variation 

is unknown; it may be camouflage.  Hoeksema & Crowther (2011) documented how 

Phyllodiscus can appear like other organisms or blend into the background of their environment 

(Figs 3–6 and 7–8, respectively, of Hoeksema & Crowther 2011).  I infer the lack of variation in 

pseudotentacle morphology among individuals in close proximity as evidence for asexual 

reproduction.  I assume that individuals cannot alter their morphotype within their life; the 
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pseudotentacle branching is too extensive and sea anemone morphology is not known to be 

plastic. 

Multiple specimens of Phyllodiscus semoni were included in molecular analyses, and 

were all found as closest relatives in all of the phylogenies (see Fig 2.2, 2.5, 2.6, 2.9, 2.10, 2.11) 

except 28S (Fig 2.7) and nuclear (Fig 2.8).  The branches between P. semoni individuals are very 

short, indicating the high similarity of the sequences.  The clade of P. semoni supports a single 

evolution of pseudotentacle branching in multiple planes – this is the only species of sea 

anemone with this feature (Fig 2.13). 
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Conclusions 

In this study, I completed a family-level revision to address how many valid genera and 

species Aliciidae comprised of, and to provide a detailed morphological description of branched 

outgrowths and defensive spheres for each genus and species.  To do so, I compared more aliciid 

specimens than any other study, and find four genera and nine species to be valid.  I find the 

possession of pseudotentacle and vesicle morphology and placement to be important characters 

to aid in identification of genera and species in Aliciidae.  The genus Alicia has five valid 

species, but there are very few characters to separate these species.  Lebrunia neglecta is the type 

species of Lebrunia, and the other valid species is L. coralligens.  Lebrunia coralligens 

anemones are smaller individuals with pseudotentacles with fewer branches and mesenteries 

compared to individuals of L. neglecta.  Triactis and Phyllodicus are both widespread monotypic 

genera, valid species of T. producta and P. semoni, respectively. 
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Fig 4.1.  Recorded distribution of Lebrunia neglecta and L. coralligens.  Note the overlap-
ping distribution of species.

Lebrunia coralligens
Lebrunia neglecta
Species
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Fig 4.2.  a) Lebrunia coralligens pseudotentacle with two branch orders, USNM 42625, 
scale bar = 2 mm.  Note uneven branching.   b) Lebrunia neglecta pseudotentacle with 13 
branch orders, USNM 56912, scale bar = 10 mm.  Figure legend: Ped = peduncle of pseudo-
tentacle that is attached to scapus.
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a b c d

Fig 4.3.  Phyllodiscus semoni.  a) cake morphotype, whole and pseudotentacle detail, scale 
bar = 10 mm  b) branched morphotype, whole and pseudotentacle detail, scale bar = 10 mm  
c)  pom-pom morphotype, whole and pseudotentacle detail, scale bar = 10 mm  d) small 
individual with two well developed pseudotentacles, RMNH Coel 39709, scale bar = 2 
mm.

209



Fig 4.4.  a) Histogram of individuals, based on number of branch orders.   b) Scatterplot of 
number of branch orders and pedal disc diameter (mm).  c) Scatterplot from (b), with 
individuals coded for mesentery number.
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Fig 4.5.  a) Cluster analysis of morphometric measurements   b) Principal Component 
Analysis scatterplots for first four components.  Note, for either graph, the non-clustering of 
individuals of same morphotype.  Color coding for morphotype: black =  cake, orange = 
branched, green = pom-pom. 
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Fig 4.6.  Alicia mirabilis.  a) pedal disc of preserved specimen with mesenterial insertions 
visible as dark lines, SMF 1911, scale bar = 30 mm  b) whole individual, with vesicles on 
scapus, SMNH 644, scale bar = 30 mm  c) compound stalked vesicles, SMNH 644, scale bar 
= 10 mm  d) oral disc and mouth,  KUDIZ 3130, scale bar = 10 mm  e) figure 1 from John-
son (1861), detached individual with inflated pedal disc, pedal disc at top of figure.
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Fig 4.7.  Representative cnidae from various tissues of Alicia mirabilis.  Lowercase letters 
correspond to measurements in Table 4.4.  Tissue source: a-d) tentacles e,f) actinopharnx  
g-i) oral disc  j,k) mesenterial filaments  l-n) vesicles.  Scale bar in micrometers.
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Fig 4.8.  Recorded localities of Alicia mirabilis.

Ty
pe

Pu
bl

is
he

d

Fi
el

d 
gu

id
e 

or
 o

nl
in

e

Fi
el

dw
or

k 
(c

ol
le

ct
ed

)

M
us

eu
m

 s
pe

ci
m

en

Lo
ca
lit
ie
s

Fi
el

dw
or

k 
(o

bs
er

ve
d)

214



a

b

d

e

c

Fig 4.9.  Alicia mirabilis.  a,b) extended specimen with long, fine tentacles (from Schmidt 
1972)  c,d) retracted specimen  c) from Western Mediterranean (http://gps-
tsc.upc.es/comm/jriba/personal_data.html)  d) from Canary Islands 
(http://www.flickr.com/photos/fotografiasubmarina/7006094154/in/set-7215762742092302
5)  e) pictured on stamp from Azores, Portugal.
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Fig 4.10.  Alicia pretiosa.  a) pedal disc, circular to oval shape, live KUDIZ 3168, scale bar 
= 2 mm  b)  whole specimen from side, showing delicate and translucent scapus with colored 
vesicles, live KUDIZ 3168, scale bar = 5 mm  c) closer view of vesicles, live KUDIZ 3168, 
scale bar = 2 mm  d) Figure 20 from Dana (1846), note dark spot on distal oral part of 
tentacles. 
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Fig 4.11.  Representative cnidae from various tissues of Alicia pretiosa.  Lowercase letters 
correspond to measurements in Table 4.6.  Tissue source: a-f) tentacles g,h) actinopharnx  
i,j) oral disc  k-m) mesenterial filaments  n-q) vesicles.  Scale bar in micrometers.
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Fig 4.12.  Recorded localities of Alicia pretiosa.
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Fig 4.13.  Alicia sansibarensis.  a,b) syntype ZMH C2592  a) pedal disc, scale bar  = 10 mm  
b) whole individual, scapus with vesicles, scale bar = 10 mm  c,d) figures from Carlgren 
(1900) c) whole individual  d)  peduncle with group of vesicles, attached to distal column  e)  
specimen in Zoologisk Museum, Copenhagen, compound stalked vesicle, scale bar = 5 mm.
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Fig 4.14.  Representative cnidae from various tissues of Alicia sansibarensis.  Lowercase 
letters correspond to measurements in Table 4.8.  Tissue source: a-e) tentacles f,g) 
actinopharnx  h) oral disc  i,j) vesicles.  Scale bar in micrometers.
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Fig 4.15.  Recorded localities of Alicia sansibarensis.
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Fig 4.16.  Alicia specimens photographed from the Red Sea. Note range of coloration among 
specimens.  Photographs by Christian Alter.
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Fig 4.17.  Alicia beebei.  a) pedal disc of preserved individual with mesenterial insertions 
visible as dark lines, USNM 49397, scale bar = 20 mm  b) whole individual, vesicles cover-
ing scapus, long tentacles, USNM 49397, scale bar = 20 mm  c) whole individual in situ 
from Loreto, Mexico, Gulf of California, photograph by Carlos Sanchez, arrow indicating 
distal peduncle with large number of vesicles  d) oral disc and mouth, uncataloged specimen 
collected from Gulf of Mexico, scale bar = 10 mm  e) oral disc and mouth, USNM 49397, 
scale bar = 10 mm.
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Fig 4.18.  Representative cnidae from various tissues of Alicia beebei.  Lowercase letters 
correspond to measurements in Table 4.10.  Tissue source: a-e) tentacles f,g) actinopharnx  
h,i) oral disc  j,k) mesenterial filaments  l-o) vesicles.  Scale bar in micrometers.
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Fig 4.19.  Recorded localities of Alicia beebei.

Ty
pe

Pu
bl

is
he

d

Fi
el

d 
gu

id
e 

or
 o

nl
in

e

Fi
el

dw
or

k 
(c

ol
le

ct
ed

)

M
us

eu
m

 s
pe

ci
m

en

Lo
ca
lit
ie
s

Fi
el

dw
or

k 
(o

bs
er

ve
d)

225



Fig 4.20.  Alicia uruguayensis.  a) whole individual, SMNH 86, scale bar = 10 mm  b) side 
view of oral disc and distal part of column, SMNH 86, scale bar = 5 mm, arrows indicating 
some of the holes where tentacles were attached.
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Fig 4.21.  Recorded localities of Alicia uruguayensis.
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Fig 4.22.  Recorded localities of Alicia mirabilis and A. uruguayensis.
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Fig 4.23.  Lebrunia neglecta.  a) pedal disc of preserved specimen, KUDIZ 2365  b) close-
up of brown pseudotentacles with gray markings, KUDIZ 3247, Belize, Carrie Bow Cay  c) 
individual in situ with light gray pseudotentacles, KUDIZ 3177, Curaçao, near Water Plant  
d) individual in situ with brown pseudotentacles, KUDIZ 3183, Curaçao, Snake’s Bay  e) 
individual in situ with brown pseudotentacles, KUDIZ 3176, Curaçao, near Water Plant  e) 
tentacles, oral disc, and mouth,  KUDIZ 3249.  Scale bars = 20 mm.  
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a b

Fig 4.24.  Lebrunia neglecta.  a) longitudinal section through single pseudotentacle with 
multiple raised vesicles, KUDIZ 3247, scale bar = 10 mm  b) cross section through mesen-
teries, showing well developed retractor muscles, KUDIZ 3247.  Figure legend: V =  
vesicle.

V
V

230



a

b

c

d

e

f

g

0 10 20 30 40 50 60

h

i

j

l

m

k

Fig 4.25.  Representative cnidae from various tissues of Lebrunia neglecta.  Lowercase 
letters correspond to measurements in Table 4.13.  Tissue source: a-e) tentacles f) 
actinopharnx  g,h) oral disc  i-k) mesenterial filaments  l,m) vesicles.  Scale bar in microm-
eters.
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Fig 4.26.  Recorded localities of Lebrunia neglecta.
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Fig 4.27.  Lebrunia coralligens.  a) pedal disc with mesenterial insertions visible as lighter 
lines, KUDIZ 3182  b) multiple individuals in situ, KUDIZ 3172, Barbados, Church Point  
c) multiple individuals in situ, KUDIZ 3186, Curaçao, Piscadera Bay  d) multiple individu-
als in situ, KUDIZ 3170, Barbados, Tropicana Reef  e) multiple individuals in situ, KUDIZ 
3182, Curaçao, Snake’s Bay  f) tentacles, oral disc, and mouth,  KUDIZ 3170.  Scale bars = 
2 mm.  
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Fig 4.28.  Lebrunia coralligens.  a) cross section, KUDIZ 3181, with pseudotentacles, note 
pseudotentacle communicating with endocoel of higher order mesentery pair, scale bar = 5 
mm   b) longitudinal section through pseudotentacle with vesicles; dense patch of cnidae on 
left, raised vesicle on right, KUDIZ 2361, scale bar = 10 mm  c) cross section of second 
order mesenteries, egg and sperm packets on same mesentery, KUDIZ 2361  d) brooded 
individual from adult, KUDIZ 3170, scale bar = 1 mm.  Figure legend: E = egg, Ps = 

d
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Fig 4.29.  Representative cnidae from various tissues of Lebrunia coralligens.  Lowercase 
letters correspond to measurements in Table 4.15.  Tissue source: a-d) tentacles e-g) mesente-
rial filaments  h,i) vesicles.  Scale bar in micrometers.
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Fig 4.30.  Recorded localities of Lebrunia coralligens.
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Fig 4.31.  Triactis producta. Figures from original descriptions.  a) Triactis producta, 
whole, side view.  Plate VI, figure 8 from Klunzinger (1877).  b) Triactis producta, pseudo-
tentacle with vesicles. Plate VI, figure 8 from Klunzinger (1877).  c) Phyllodiscus indicus, 
whole, view looking down onto oral disc and tentacles (white) and pseudotentacles and 
vesicles (shaded).  Figure 18 from Stephenson (1921).
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Fig 4.32.  Triactis producta.  a) longitudinal section of whole individual, note separation 
of scapus and capitulum, KUDIZ 3374   b,c) cross section showing pseudotentacle place-
ment in relation to mesenteries b) cross section of whole individual, KUDIZ 3210  c) 
cross section through scapus wall and multiple pseudotentacles, KUDIZ 3210.  Scale bars 
= 5 mm.  Figure legend: bPs = branched pseudotentacle, Ca = capitulum, PD = pedal disc, 
Ps = pseudotentacle, Sc = scapus, T = tentacle, uPs = unbranched pseudotentacle, V = 
vesicle, Z = zooxanthellae.
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Fig 4.33.  Triactis producta.  a) pedal disc  b) scapus, with mesenterial insertions as light 
lines, no vesicles on aboral side of pseudotentacles  c) pseudotentacles with sessile vesicles, 
note branching occurs perpendicular to oral-aboral axis and at distal ends of pseudotentacles  
d,e) stalked vesicles, individual in (d) has retracted oral disc and tentacles.  f) Individual 
with four vesicles in one endocoel, indicated with arrows.  All scale bars = 2 mm.
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Fig 4.34.  Triactis producta. Sessile vesicles on pseudotentacle, with silver ring at base of 
vesicle. Scale bar = 2 mm.
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Fig 4.35.  Triactis producta.  Various colors of vesicles a) orange, b) green, c) grey, d) pink.  
Scale bars = 20 mm.  Note only pseudotentacles and vesicles visible, oral disc and tentacles 
retracted during the day.
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Fig 4.36.  Triactis producta.  Individual with expanded oral disc and tentacles.  Note trans-
lucent oral disc and tentacles lacking zooxanthellae.  Tentacles with opaque spots and tip.  
Scale bar = 5 mm.
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Fig 4.37. Triactis producta.  a) fertile second order mesentery pair  b) diffuse retractor 
muscle and parietobasilar muscle of second order mesentery  c) directive mesenteries 
attached to column and siphonoglyph.  Figure legend: C = column, D = directive, Si = 
siphonoglyph.
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Fig 4.38.  Representative cnidae from various tissues of Triactis producta.  Lowercase letters 
correspond to measurements in Table 4.17.  Tissue source: a-f) tentacles  g,h) actinopharnx  
i-m) oral disc  n-q) column  r-u) mesenterial filaments  v-z) vesicles.  Scale bar in microm-
eters.
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Fig 4.39.  Recorded localities of Triactis producta.
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Fig 4.40.  Triactis producta.  Stages of pseudotentacle and vesicle development.         
a) smooth column, no pseudotentacles or vesicles  b) one well-developed vesicle, developing 
pseudotentacles   c) multiple pseudotentacles and vesicles in various stages of development   
d) full whorl of branched pseudotentacles with sessile vesicles.  Scale bar = 3 mm.
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Fig 4.41.  Cryptic habitats of Triactis producta.  a) at vertices of scleractinian coral colonies  
b) in crevices of rocks or scleractinian corals  c) attached to rock that was buried in sand  d) 
attached to demosponge.  Scale bars = 20 mm.
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Fig 4.42.  Triactis producta.  Large individual surrounded by three smaller individuals 
(black arrows).  Note dense zooxanthellae at limbus of larger individual (white arrows).  
Scale bar = 10 mm.
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Fig 4.43.  Phyllodiscus semoni.  Morphology and symbionts.  a)  pedal disc, RMNH Coel 
39739, scale bar = 20 mm  b) proximal scapus with mesenterial insertions visible as lighter 
lines, RMNH Coel 39704, scale bar = 20 mm  c) vesicles and pseudotentacle subunits, 
RMNH Coel 39702, scale bar = 2 mm  d) oral disc with central mouth, RMNH Coel 39730, 
scale bar = 10 mm  e) shrimp symbiont, Periclimenes brevicarpalis  f) snail parasite, 
Epitonium sp., photo by Bert Hoeksema.
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Fig 4.44.  Phyllodiscus semoni, individuals in situ of variable morphotypes.  a) Maldives, 
Velavaru, photo Andrea Crowther, KUDIZ 3381  b) Indonesia, Hoga, photo Harry Erdhart  
c) Philippines, Siquijor, photo Harry Erdhart   d-o) Indonesia, photos by Bert Hoeksema  d) 
Indonesia, Ternate, RMNH Coel 30712  g) Indonesia, Ternate, RMNH Coel 30711.
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a b

Fig 4.45.  Phyllodiscus semoni.  a) longitudinal section through part of pseudotentacle, 
vesicles of multiple sizes attached to pseudotentacle, CAS 65156, scale bar = 2 mm  b) cross 
section showing eggs and sperm packets on same second order mesentery, RMNH Coel 
39730.  Figure legend: E = egg, S = sperm packet, V = vesicle.
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Fig 4.46.  Representative cnidae from various tissues of Phyllodiscus semoni.  Lowercase 
letters correspond to measurements in Table 4.19.  Tissue source: a-e) tentacles f-h) 
actinopharnx  i,j) oral disc  k) column  l) mesenterial filaments  m-q) vesicles.  Scale bar in 
micrometers.
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Fig 4.47.  Recorded localities of Phyllodiscus semoni.
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Table 4.1.  Nominal genera and species and type specimen availability of Aliciidae.

Nominal genera Nominal species Type specimens

Alicia
Actinia mirabilis N
Actinia pretiosa N
Alicia rhadina N
Alicia sansibarensis Y
Alicia uruguayensis Y
Alicia beebei N

Cladactis
Cladactis Costae N

Lebrunia
Oulactis danae Y
Lebrunia neglecta N

Hoplophoria
Hoplophoria coralligens N

Cradactis
Cradactis variabilis N

Triactis
Triactis producta N
Triactis cincta N

Phyllodiscus
Phyllodiscus Semoni Y
Phyllodiscus indicus N
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Table 4.2.  Characters separating Triactis and Phyllodiscus.

Feature Triactis Phyllodiscus

Number of pseudotentacles 
per intermesenterial space 1 many

Number of vesicles per 
intermesenterial space up to 3 many

Vesicle placement on 
pseudotentacles only on oral side on all sides

Number of branching 
directions 1 many
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Table 4.3.  Specimens of Alicia mirabilis examined. 
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Table 4.4. Distribution and size of cnidae of Alicia mirabilis from this study and literature.  
Measurements given as range in length x width of undischarged capsules in µm (outlier 
measurements in parentheses), {number of capsules measured}, [ratio of number of indi-
viduals in which that type of cnidae was found to the number of individuals examined].  
Frequency of cnida type indicated as either very common, common, or rare.  Letters in 
parentheses correspond to images in Fig 4.7.
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Table 4.5.  Specimens of Alicia pretiosa examined. Bold entries indicate specimens 
collected for this study.

Catalog Number Status Original ID
Number of 
Specimens Locality Depth (m)

CAS 161241 Aliciidae 1 Japan, Ryukyu Islands, Okinawa
KUDIZ 3168 Alicia pretiosa 1 Palau, Koror, Soft Coral Arch 6
L XX/6530 Alicia pretiosa New Caledonia
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Table 4.6.  Distribution and size of cnidae of Alicia pretiosa from this study and literature.  
Measurements given as range in length x width of undischarged capsules in µm (outlier 
measurements in parentheses), {number of capsules measured}, [ratio of number of indi-
viduals in which that type of cnidae was found to the number of individuals examined].  
Frequency of cnida type indicated as either very common, common, or rare.  Letters in 
parentheses correspond to images in Fig 4.11.

Alicia pretiosa
this study

TENTACLES
spirocyst - robust  (a) 28-45 x 6-9.5 {14} [1/1] common
spirocyst - gracile  (b) 20-28 x 2-4 {15} [1/1] common
microbasic amastigophore  (c) 42-59 x 5-6 {12} [1/1] common
microbasic amastigophore  (d) 49-60 x 7-9 {8} [1/1] common
microbasic p-mastigophore  (e) 12-15 x 3-4 {3} [1/1] rare
basitrich  (f) 10-17 x 2 {15} [1/1] v. common

ACTINOPHARYNX
microbasic amastigophore  (g) 40-50 x 5-6.5 {15} [1/1] v. common
microbasic p-mastigophore  (h) 25-33 x 4-5 {8} [1/1] common

ORAL DISC
spirocyst - robust  (i) 20-30 x 5-8 {11} [1/1] common
microbasic amastigophore  (j) 34-41 x 5-6.5  {11} [1/1] common

MESENTERIAL FILAMENTS
microbasic amastigophore  (k) 18-23 x 5-5.5 {15} [1/1] v. common
microbasic p-mastigophore  (l) 9-12 x 2-3.5 {11} [1/1] v. common
microbasic p-mastigophore   (m) 5-7 x 3-4.5 {12} [1/1] common

COMPOUND VESICLE
macrobasic amastigophore  (n) (54) 65-70 x 9.5-13 {6} [1/1] common
microbasic amastigophore  (o) 50-79 x 6.5-8.5 {14} [1/1] v. common
microbasic amastigophore  (p) 85-94 x 8-10 {3} [1/1] rare
basitrich  (q) 11-16 x 2 {11} [1/1] common

LIMBUS VESICLE
macrobasic amastigophore 44-63 x 9-12 {9} [1/1] common
microbasic amastigophore 52-70 x 6-8 {14} [1/1] v. common
microbasic p-mastigophore 10-13 x 2.5-3 {6} [1/1] rare
basitrich 9-15 x 2.25 {15} [1/1] v. common
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Table 4.7.  Specimens of Alicia sansibarensis examined. Bold entries indicate specimens 
collected for this study.

Catalog Number Status Original ID
Number of 
Specimens Locality Depth (m)

AMNH Alicia cf sansibarensis 1 Mozambique 24-38
KUDIZ 2986 Alicia 1 Singapore, Cyrene
L 02/3067 Alicia sansibarensis 1 Gulf of Suez
MAGNT C5749 1 Australia, Northern Territory
SMNH 1169 syntype Alicia sansibarensis quarter Tanzania, Zanzibar, Tumbatu
ZMH C2592 syntype Alicia sansibarensis 1 Tanzania, Zanzibar, Tumbatu
ZMH C2597 syntype Alicia sansibarensis 1 Tanzania, Zanzibar, Tumbatu
ZMB 4746 Alicia sansibarensis 1 Tanzania, Zanzibar, Kokotoni
ZRC Cni 0635 Alicia 1 Singapore, Cyrene
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Table 4.8.  Distribution and size of cnidae of Alicia sansibarensis from this study and 
literature.  Measurements given as range in length x width of undischarged capsules in µm 
(outlier measurements in parentheses), {number of capsules measured}, [ratio of number of 
individuals in which that type of cnidae was found to the number of individuals examined].  
Frequency of cnida type indicated as either very common, common, or rare.  Letters in 
parentheses correspond to images in Fig 4.14.

Alicia sansibarensis Alicia sansibarensis
this study Carlgren (1900)

TENTACLES
spirocyst - robust  (a) 23-30 x 4-6 {15} [1/1] v. common 48 x --
spirocyst - gracile  (b) 18-25 x 3-4 {14} [1/1] common
microbasic amastigophore  (c) 35-45 x 5-6 {12} [1/1] common 52 x --
microbasic p-mastigophore  (d) 18-21 x 5 {2} [1/1] rare
basitrich  (e) 14-17 x 2-3 {15} [1/1] v. common

ACTINOPHARYNX
microbasic amastigophore  (f) 44-56 x 6-7 {15} [1/1] v. common 44-60 x --
microbasic p-mastigophore  (g) 34-39 x 5 {3} [1/1] rare

ORAL DISC
spirocyst - robust 48 x --
microbasic amastigophore  (h) 47-55 x 6-7 {15} [1/1] v. common 44 x --

MESENTERIAL FILAMENTS not available

VESICLE
macrobasic amastigophore  (i) 79-93 x 11-14 {15} [1/1] v. common 80 *
microbasic amastigophore  (j) (80) 89-110 x 8-9 {13} [1/1] common
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Table 4.9.  Specimens of Alicia beebei examined. Bold entries indicate specimens collected 
for this study.
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Table 4.10.  Distribution and size of cnidae of Alicia beebei from this study and literature.  
Measurements given as range in length x width of undischarged capsules in µm (outlier 
measurements in parentheses), {number of capsules measured}, [ratio of number of indi-
viduals in which that type of cnidae was found to the number of individuals examined].  
Frequency of cnida type indicated as either very common, common, or rare.  Letters in 
parentheses correspond to images in Fig 4.18.
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Table 4.11.  Specimens of Alicia uruguayensis examined. 

Catalog Number Status Original ID
Number of 
Specimens Locality Depth (m)

SMNH 86 syntypes Alicia uruguayensis 2 Brazil, southern coast  80
LO (no catalog number) Alicia uruguayensis 3 slides Brazil, southern coast  80
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Table 4.12.  Specimens of Lebrunia neglecta examined. Bold entries indicate specimens 
collected for this study.

Catalog Number Status Original ID
Number of 
Specimens Locality

Depth 
(m)

BMNH 1901.3.8.29-30 Lebrunea neglecta 2 Jamaica, Port Royal Cays
BMNH 1951.4.7.97-99 Lebrunia coralligens 3 Cayman Islands, Reef north of Water Cay
KUDIZ 1891 Lebrunia danae 1 USA, Florida, Vaca Key, Gulf side at Old Clark House 1
KUDIZ 2365 Lebrunia danae 4 US Virgin Islands, St. Thomas, Hull Bay 0.3-0.5
KUDIZ 2424 Lebrunia danae 1 Panama, Bocas del Toro, Bocas Torito Bay 0.3-1
KUDIZ 2425 Lebrunia danae 1 Panama, Bocas del Toro, Cayo Adriana
KUDIZ 2426 Lebrunia danae 1 Panama, Bocas del Toro, Cayo Adriana
KUDIZ 2427 Lebrunia danae 1 Panama, Bocas del Toro, Crawl Cay 3-4
KUDIZ 2428 Lebrunia danae 1 Panama, Bocas del Toro, Red point 3
KUDIZ 2430 Lebrunia danae 1 Panama, Bocas del Toro, Red point 3
KUDIZ 2431 Lebrunia danae 1 Panama, Bocas del Toro, Crawl Cay 3-4
KUDIZ 3176 Lebrunia danae 1 Curaçao, Reef just offshore from Water Plant 10
KUDIZ 3177 Lebrunia danae 1 Curaçao, Reef just offshore from Water Plant 6
KUDIZ 3178 Lebrunia danae 1 Curaçao, Reef just offshore from Water Plant 3
KUDIZ 3180 Lebrunia danae 1 Curaçao, Reef just offshore from Water Plant 3
KUDIZ 3249 Lebrunia danae 1 Belize, Carrie Bow Cay, Reef east of Cay 13.3
KUDIZ 3247 Lebrunia danae 1 Belize, Carrie Bow Cay, shallow patch reef just north of Cay 2
KUDIZ 3249 Lebrunia danae 1 Belize, Carrie Bow Cay, Reef east of Cay 13.3
KUDIZ 3361 Lebrunia danae USA, Florida, American Shoal 9-10
KUDIZ 3362 Lebrunia danae USA, Florida, Monroe County, Patch reef 6-7
KUDIZ 3363 Lebrunia danae USA, Florida, American Shoal 9-10
KUDIZ 3364 Lebrunia danae 1 USA, Florida, Carysfort Reef Light, Biscayne National Monument 3
L 08/3157 Lebrunia neglecta 2 Bahamas, Andros
L 09/3067 Lebrunia neglecta 2 Bahamas, Andros
L 09/3068 Lebrunia neglecta 4 Bahamas, Andros
L 09/3078 Lebrunia neglecta 2 Bahamas, Andros
RMNH Coel 11009 Lebrunia danae 4 Curaçao,  Awa di Osstpunt.
RMNH Coel 11010 Lebrunia danae 2 Curaçao,  between Piscadera Bay and Blau Bay
RMNH Coel 11007 Lebrunia danae 2 Puerto Rico, near La Paquera
RMNH Coel 23899 Lebrunia danae 1 Panama Canal Zone, Caleta Id 5
RMNH Coel 11008 Lebrunia danae 5 Curaçao,  Slangeribaai.
RMNH Coel 11013 Lebrunia danae 1 Curaçao, Piscadera Bay
SMNH 361 Lebrunea neglecta 1 Jamaica
SMNH 362 Lebrunea neglecta 1 USA, Florida
SMNH 363 Lebrunea neglecta 1 Curaçao,  Schotlegat 1
USNM 51042 Lebrunia danae 1 Puerto Rico, La Parguera, La Gata Island
USNM 52007 Lebrunia danae 1 Virgin Islands of the United States, St. John Island, Reef Bay 20
USNM 53261 Lebrunia danae 2 Puerto Rico, Cayo Enrique, S Of La Parguera 1
USNM 54170 Lebrunia danae 1 Guadeloupe, Grande Terre, Pointe A Pitre, East Of Cochons Island
USNM 54211 Lebrunia danae 1 British Virgin Islands, Tortola Island, Sopers Hole, West End Flats 1
USNM 54212 Lebrunia danae 1
USNM 54213 Lebrunia danae 1
USNM 54217 Lebrunia danae 1
USNM 56911 Lebrunia danae 1 Belize, Carrie Bow Cay, Transect On Fore Reef Slope 27.5
USNM 56912 Lebrunia danae 1 Belize, Carrie Bow Cay, Reef Flat
USNM 56913 Lebrunia danae 1 Belize, Curlew Cay 4.6
USNM 56914 Lebrunia danae 2 Belize, Curlew Cay 4.6
USNM 1004414 Lebrunia danae 1 Bahamas, Lyford Cay 4
USNM 1004415 Lebrunia danae 1 Bahamas, Abaco Island, Hopetown Reef
USNM 1004419 Lebrunia danae 1 British Virgin Islands, Tortola Island, Sopers Hole, West End Flats 1
USNM 1004464 Lebrunia danae 1 Bermuda
USNM 1004963 Lebrunia danae 1 Barbuda Island, Spanish Point
ZMB 5172 Lebrunia danae 1 Tortugas, Bird Key Reef
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Table 4.13.  Distribution and size of cnidae of Lebrunia neglecta from this study and litera-
ture.  Measurements given as range in length x width of undischarged capsules in µm 
(outlier measurements in parentheses), {number of capsules measured}, [ratio of number of 
individuals in which that type of cnidae was found to the number of individuals examined].  
Frequency of cnida type indicated as either very common, common, or rare.  Letters in 
parentheses correspond to images in Fig 4.25.

Lebrunia neglecta Lebrunia danae
this study Carlgren 1945

TENTACLES
spirocyst  (a) 20-50 x 3-7 {79} [7/7] v. common
spirocyst 15-22 x 2-3.5 {26} [3/7] common
microbasic amastigophore  (b) 60-92 (105) x 5-9 {90} [7/7] v. common 67.7-73.3 x 6.3-7
microbasic amastigophore 50-64.9 x 5.6-6.3
microbasic amastigophore 31-50.8 x 5-5.6
microbasic amastigophore  (c) 19-34 x 4-5 {30} [4/7] common 29.6-45 x 4.2-5.5
microbasic amastigophore  (d) 11-21 x 2.5-4.5 {62} [6/7] common 16.9-21 x 3.5
microbasic amastigophore 19.7 x 3.5
basitrich  (e) 14-26 x 3-4 {42} [4/7] common

ACTINOPHARYNX
microbasic amastigophore  (f) 29-55 (66) x 4-8 {49} [3/4] common 36.7-45 x 5.6-6.3
microbasic p-mastigophore 10-12 x 3-4 {9} [2/4] rare
unspecified nematocyst 10.6-18.3 x 3.4

COLUMN
macrobasic amastigophore 23-37 x 6-15 {26} [3/6] rare
microbasic p-mastigophore  (g) 17-33 x 3.5-7 {64} [5/6] v. common
microbasic amastigophore  (h) 16-27.5 x 4-6 {43} [3/6] common 15.5-19.7 x 3.5-4
basitrich 9.5-16 x 2.5-4 {15} [2/6] rare

MESENTERIAL FILAMENTS
microbasic amastigophore  (i) 35-60 x 4-8.5 {67} [6/6] v. common 36.7-45 x 5.6-6.3
microbasic p-mastigophore  (j) 9-20 x 2-4.5 {49} [5/6] common
microbasic p-mastigophore - squarish  (k) 10-15 x 3-6 {41} [4/6] common
basitrich 9-14 x 2.5-4 {28} [2/6] rare 10-14 x 2.5
basitrich 14 x 2.5
unspecified nematocysts 9.2-12 x 2.8-3.5
unspecified nematocysts 10.7-14.1 x 2.8-3.5

VESICLE
macrobasic amastigophore 90-110 x 15-25 {10} [2/7] rare
macrobasic amastigophore  (l) 45-89 x 12-20 {98} [7/7] v. common
microbasic amastigophore 13-40 x 3-7 {81} [4/7] common
basitrich  (m) 6-19.5 x 4 {12} [2/7] rare

PSEUDOTENTACLE
spirocyst 22-46 x 4-5.5 {12} [1/1] rare
basitrich 8-11 x 2-4 {20} [2/2] common
basitrich 14-17 x 4-6 {14} [1/1] rare
basitrich 15.5-35.2 x 4.2-5.6
basitrich 19.7-35.2 x 4.2-5.6
basitrich 28.2-31 x 5.6
macrobasic amastigophore 35.2-73 x 12-15
macrobasic amastigophore 45-70 x 10-16
macrobasic amastigophore 49.3-63.4 x 11.3-15.5

PEDUNCLE
microbasic amastigophore 12.7-15.5 x 3.5-4
microbasic amastigophore 19.7-14.1 x 3.5-4.2

BRANCHES
basitrich 11.3-19 x 3-4
basitrich 11.3-15.5 x 3-4
microbasic amastigophore 12.7-19.7 x 4
microbasic amastigophore 14.1-31.7 x 3.5-5.5
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Table 4.14.  Specimens of Lebrunia coralligens examined. Bold entries indicate specimens 
collected for this study.
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Table 4.15  Distribution and size of cnidae of Lebrunia coralligens from this study and 
literature.  Measurements given as range in length x width of undischarged capsules in µm 
(outlier measurements in parentheses), {number of capsules measured}, [ratio of number of 
individuals in which that type of cnidae was found to the number of individuals examined].  
Frequency of cnida type indicated as either very common, common, or rare.  Letters in 
parentheses correspond to images in Fig 4.29.
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Page 1 of 2
Table 4.16.  Specimens of Triactis producta examined. Bold entries indicate specimens 
collected for this study.
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Table 4.16 continued.
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Table 4.17.  Distribution and size of cnidae of Triactis producta from this study and litera-
ture.  Measurements given as range in length x width of undischarged capsules in µm 
(outlier measurements in parentheses), {number of capsules measured}, [ratio of number of 
individuals in which that type of cnidae was found to the number of individuals examined].  
Frequency of cnida type indicated as either very common, common, or rare.  Letters in 
parentheses correspond to images in Fig 4.38.

Triactis producta Triactis producta Triactis cincta
this study Carlgren 1945 Doumenc 1973

TENTACLES
spirocyst - robust  (a) 26-35 x 4-6 {80} [5/7]  common 25-28 x 4-5
spirocyst - gracile  (b) 15-29 x 2-4.5 {105} [7/7]  common
microbasic amastigophore  (c) 10.5-21 x 3-5 {64} [7/7]  common 12.7-16.9 x 3.5-4.2
microbasic amastigophore 32.4-46.5 x 3.5-5.6
microbasic amastigophore  (d) 46-86 x 5.5-9 {95} [7/7] v. common 55-65.5 x 6.3-7 52-62 x 6-10
basitrich  (e) 16-25 x 2-3 {50} [6/7]  v. common 15.5-22.6 x 2.2-3
basitrich  (f) 10-12 x 4-5 {62} [5/7]  common

ACTINOPHARYNX
microbasic amastigophore  (g) 30-39 x 4-6 {103} [7/7] common 42.3-52.2 x 5.6-6.3
microbasic amastigophore  (h) 12-20 x 3-5 {90} [7/7]  common 11.3-21 x 3.5

ORAL DISC
spirocyst - robust  (i) 18-29 x 4-6 {75} [7/7] v. common
microbasic amastigophore  (j) 8-13 x 3-4 {100} [7/7] common
microbasic amastigophore  (k) 23-32 x 4.5-5.5 {75} [5/7] common
basitrich  (l) 9-11 x 2-3 {59} [6/7] common
basitrich  (m) 8-12 x 4-4.5 {50} [5/7] common

COLUMN
microbasic amastigophore  (n) 12-24 x 3.5-5.5 {87} [7/7] v. common 19.7-29.6 x 4.2-5.5
microbasic amastigophore 10-15.5 x 2.8-4.2
microbasic p-mastigophore  (o) 8-10 x 2-3 {54} [7/7] common 7-12 x 4.2
basitrich  (p) 8-11 x 2-3  {65} [7/7] common 8.5-10.6 x 2
basitrich  (q) 8.5-12 x 4-6 {55} [5/7] common

MESENTERIAL FILAMENTS
microbasic amastigophore  (r) 40-50 x 6-7 {77} [7/7] commoon 49.3-56.4 x 8.5-11.3 55-60 x 8-9
microbasic amastigophore  (s) 18-35 x 3.5-6  {56} [7/7] common 14.1-21 x 3.5-4.2
microbasic amastigophore  (t) 11.5-15 x 2.5-5 {60} [6/7] common
microbasic p-mastigophore (u) 7-9 x 3.5-5 {80} [7/7] common 6.3-10 x 3.5-4.2 8-9 x 3-4

VESICLE
macrobasic amastigophore  (v) 28-54 x 9-15 {85} [7/7] v. common 44-45 x 10-13
microbasic amastigophore  (w) 35-56 (80) x 5.5-8 {70} [7/7] common 50-53 x 8.5
microbasic amastigophore  (x) 17-30 x 4-5 {50} [5/7] common 13-14 x 3.5
microbasic amastigophore  (y) 8-20 x 3-4 {50} [5/7] common
basitrich  (z) 9-13 x 2-3 {81} [7/7] common
basitrich 10-12 x 3.5-4.5 {40} [7/7] rare

PEDUNCLE
microbasic amastigophore 8.5-15.5 x 3-3.5

PSEUDOTENTACLE
macrobasic amastigophore 39.5-57.8 x 10.6-15.5
microbasic amastigophore 38-57.8 x 6-7

BRANCHES
microbasic amastigophore 32.4-36.6 x 4.2
microbasic amastigophore 21-38 x 4.2-5.6
microbasic amastigophore 8.5-18.3 x 3-4.2
basitrich 10-14 x 2
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Table 4.18.  Specimens of Phyllodiscus semoni examined. Bold entries indicate specimens 
collected for this study.
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Table 4.19.  Distribution and size of cnidae of Phyllodiscus semoni from this study and 
literature.  Measurements given as range in length x width of undischarged capsules in µm 
(outlier measurements in parentheses), {number of capsules measured}, [ratio of number of 
individuals in which that type of cnidae was found to the number of individuals examined].  
Frequency of cnida type indicated as either very common, common, or rare.  Letters in 
parentheses correspond to images in Fig 4.46.

Phyllodiscus semoni Phyllodiscus semoni
this study Carlgren 1945

TENTACLES
spirocyst - gracile  (a) 19-30 x 3-4.5 {39} [2/2] v. common (51) 55-62 x 7-8.5
spirocyst - robust  (b) 34-48 x 5-8 {27}[2/2] v. common
microbasic amastigophore  (c) 90-104 x 9-10 {30} [2/2] v. common 86-94.5 x 7-10 (15)
microbasic amastigophore
microbasic amastigophore
microbasic p-mastigophore  (d) 13-16 x 2.5-3 {5} [1/2] rare
basitrich  (e) 17-20 x 3 {15} [1/1] common

ACTINOPHARYNX
spirocyst  (f) 23-40 x 4-5.5 {15} [1/1] common
microbasic amastigophore  (g) 48-65 x 6-8 {15} [1/1] v. common 45.8-52 x 6.3-7
microbasic p-mastigophore  (h) 20-30 x 3-3.5 {6} [1/1] rare

ORAL DISC
spirocyst - robust  (i) (26) 30-37 x 5-6 {15} [1/1] common
microbasic amastigophore  (j) 51-60 x 6-8 {15} [1/1] common
microbasic amastigophore

COLUMN
spirocyst 63.7-73.3 x 12-15.5 (17)
microbasic amastigophore  (k) 21-37 x 4-6 {19} [2/2] common (25.4) 31-57.8 x 5-6.3
microbasic amastigophore 8.5-15.5 x 2.8-3.5
microbasic p-mastigophore
basitrich 22-27 x 4.5-6 {12} [2/2] rare 24-29.6 x 2.8-4

MESENTERIAL FILAMENTS
microbasic amastigophore 42.3-48.6 (52.2) x 7-7.5
microbasic amastigophore
microbasic p-mastigophore  (l) 12-16 x 3.5-4 {15} [1/1] common 8.5-14 (18)  x 2.5-3.5
basitrich 16.9-24 x 2.2-2.8

PEDAL DISC
microbasic amastigophore 21-28 x 5-6 {12} [1/1] common 24-28.2 x 4.2-5
basitrich 11-15 x 2-3.5 {13} [1/1] common

VESICLE
macrobasic amastigophore  (m) 67-76 x 12-15 {27} [2/2] v. common
macrobasic amastigophore
microbasic amastigophore  (n) 49-58 x 6-8 {15} [1/2] v. common
microbasic p-mastigophore  (o) 12-17 x 2-3 {11} [1/2] rare
basitrich  (p) 12-15 x 2-4 {25} [2/2] common
basitrich  (q) 8-13 x 2.5-4 {11} [2/2] common
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CONCLUSIONS 

 

 In this study, I investigate whether sea anemones that possess branched outgrowths and 

defensive spheres, but belong to different families, have features due to convergent evolution.   

By analyzing molecular and morphological data from both families simultaneously, I was able to 

confirm that members of Aliciidae and Thalassianthidae are not closely related, despite looking 

similar.  Instead, Thalassianthidae members are most similar molecularly and morphologically to 

some members of Stichodactylidae.  Aliciidae members are most similar molecularly and 

morphologically to members of Boloceroididae and Aiptasiidae.  The non-relatedness of 

Aliciidae and Thalassianthidae supports the hypothesis of convergent evolution of the branched 

outgrowths and defensive spheres. 

 Symbiotic relationships can be an influential force on evolution in a group, and in this 

case, potentially in the evolution of morphological features.  Members in the unrelated families, 

Aliciidae and Thalassianthidae, have evolved morphological features that look and function 

similarly.  The symbiotic relationship with zooxanthellae is likely implicated with the formation 

of these structures, as defensive spheres defend the branched outgrowths that house large 

numbers of zooxanthellae.  Various morphological features that perform similar functions have 

also evolved, possible due to symbiosis with zooxanthellae, such as branched lateral projections 

of tentacles in Phymanthus, or specialized parts of tentacles dense with nematocysts called 

acrospheres in Actinodendridae.  Throughout Actiniaria, it is clear that different morphological 

features perform similar functions – a consequence of the relative simplicity of their diploblastic 

body plans. 
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 Phylogenetic analyses of molecular data recovered Thalassianthidae members most 

closely related to members of Endomyaria, while Aliciidae members was most closely related to 

members of Metridioidea.  Mapping of the morphological features of branched outgrowths and 

defensives spheres on the phylogeny show this combination of character has evolved multiple 

times.  Further recoding of characters recovered a single origin for nematospheres and 

pseudotentacles, but multiple origins for branched tentacles and vesicles.  Molecular data also 

provided an alternative way to identify specimens that lack distinctive morphology – in this case, 

sea anemones that are symbiotic with crabs of the genus Lybia.  Without distinctive branched 

outgrowths and defensives spheres, it would be difficult to identify these specimens as Triactis 

producta, but using molecules, I found samples of Lybia symbionts were most closely related 

with Triactis producta samples. 

 I determine that Thalassianthidae is a monophyletic family with two valid genera and 

seven valid species (Chapter 3).  I find that presence/absence of lobes of oral disc and 

positioning of nematospheres to be characters to diagnose genera in Thalassianthidae.  I agree 

with a previous hypothesis (Stephenson 1922) that Heterodactyla is a synonym of 

Thalassianthus, and I synonymize Heterodactyla and Actineria with Thalassianthus.  I find 

number, shape and size of lobes, coverage of oral disc by tentacles, and depth of oral disc folds 

provides to be characters to diagnose species.   

I determine that Aliciidae has four valid genera and 11 valid species (Chapter 4).  I find 

the number, position, and branching anatomy of pseudotentacles as well as type and position of 

vesicles to be characters to diagnose genera in Aliciidae.  I do not agree with previous 

hypotheses (Stephenson 1922, Doumenc 1973) that Triactis specimens are juvenile Phyllodiscus 

specimens.  I find both Triactis and Phyllodiscus to be valid genera, separated based on number 
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and branching anatomy of pseudotentacles.   I also find that Lebrunia coralligens specimens are 

not juvenile specimens of L. neglecta, as had been previously hypothesized (Duerden 1898, 

Carlgren 1949).  My analyses show that a combination of number of branch orders and number 

of mesenteries can separate the two species of Lebrunia.   

My research shows that careful analyses of morphology, in conjunction with analyses of 

molecular data, provide information to support generic and species boundaries in Aliciidae and 

Thalassianthidae.  This approach was particularly helpful when dealing with convergent 

characters, which allow species to look similar, despite not being closely related. 
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APPENDIX A: Primer sequences for PCR and sequencing reactions.
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APPENDIX B: PCR reactions. 

 

25 µL reactions 

(for 12s, 16s, COIII, and 18s primer sets) 

12.5 µL Qiagen Taq PCR master mix 

5.0 µL forward primer (5 µM) 

5.0 µL reverse primer (5 µM) 

1.5 µL BSA 

1.0 µL DNA template 

 

 

50 µL reactions 

(for complete 28s primer sets) 

25.0 µL Qiagen Taq PCR master mix 

10.0 µL forward primer (5 µM) 

10.0 µL reverse primer (5 µM) 

3.0 µL BSA 

2.0 µL DNA template 
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APPENDIX C: Abbreviations used in text and specimen tables with 

corresponding institution names and information. 
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