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Abstract: Mass extinctions are known to be extraordinary events during which the normal 

rules of natural selection do not apply. Evidence points to the operation of a different 

selective regime, one where clade-level properties are selected upon; however, it is still 

unclear whether survivorship rules apply across different extinction events, the consequences 

of differential responses in diversity and disparity during extinction events, and the factors 

governing subsequent recoveries. This dissertation explores these issues by studying three 

clades of arthropods that experience multiple extinction events, allowing for the effect of 

different mass extinctions on the same group to be compared utilizing phylogenetic 

methodology. Three phylogenies where generated, one each for Stylonurina, Eurypterina, and 

Aulacopleuroidea. Variations in diversity, disparity, and volatility, are compared across these 

clades for two extinction events: the end-Ordovician (443 Ma) and the late Devonian (385–

359 Ma). Consistent differences in how morphospace occupation changes across the end-

Ordovician and late Devonian mass extinction events reveal that the underlying driving 

factors of individual extinction events can result in very different selective pressures, 

suggesting that it may not be possible to identify general survivorship rules for all mass 

extinctions. Ecology is revealed to be a major factor behind the responses of individual 

species to the late Devonian biodiversity crisis. The somewhat contradictory selective signal 

exhibited by the studied clades reveals how different aspects of ecology can influence 

diversity, disparity and volatility in different ways, each influencing aspects of clade survival 

and recovery in different ways. The results also demonstrate the bearing of the evolutionary 

history of a clade on such studies. Contingency is an important factor in determining the 

response of clades to mass extinctions, and only through having a firm understanding of the 

history of a group can such factors be appropriately accounted for. 
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Introduction 

 

Mass extinctions are known to be unique events in earth history, often marked by 

extreme faunal turnovers that have drastically altered the trajectory of evolution. During 

these extraordinary periods the normal rules of natural selection do not apply and an 

alternative selective regime holds sway; different criteria influence survival than during 

background extinctions, with other factors such as geographic range at the clade level 

playing a greater role. The study of mass extinctions and their aftermath is a major 

cornerstone of paleobiology, yet despite decades of research there remain a number of 

issues to which solutions have proved elusive. These include whether there are general 

survivorship rules that apply across different mass extinction events, the consequences of 

inexact correlations between taxonomic and morphological diversity, and the factors 

governing the dynamics and outcome of recoveries. This dissertation seeks to explore 

these issues by studying clades that experience multiple extinction events, allowing for 

the effect of different mass extinctions on the same group to be compared. Through 

incorporating data from multiple clades across the same time period it is also possible to 

compare how the different groups react to the same extinction events. These studies 

utilize phylogenetic methodology to ascertain the internal relationships of the target 

clades. Accurate phylogenetic relationships are integral for any meaningful understanding 

of the responses these groups exhibit to mass extinction events to be possible. Three 

arthropod groups are included as part of the study, the eurypterid suborders Stylonurina 

and Eurypterina and the trilobite superfamily Aulacopleuroidea. All three clades have 
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evolutionary histories spanning the majority of the Paleozoic, from the Ordovician to the 

Permian, and as such pass through two mass extinctions, the end-Ordovician and late 

Devonian. The end Ordovician mass extinction has been linked to the rapid formation of 

an unstable icehouse in the middle of otherwise greenhouse conditions, with the sudden 

glaciation and subsequent return to greenhouse conditions resulting in pulsed periods of 

cladal turnover, therefore exhibiting heightened rates of extinction mediated by rapid 

climate change. This is not true of the late Devonian event, however, during which the 

biodiversity loss has been linked to a drop in speciation rates due to a decrease in 

endemism, with a shutdown in vicariant speciation attributable to widespread interbasinal 

species invasions mediated by a global increase in sea level. This affords an excellent 

opportunity to compare the impacts of two very different mass extinction events on three 

arthropod groups. 

 

This dissertation comprises a series of taxonomic and phylogenetic works that form the 

basis of detailed analyses of the influence of Paleozoic mass extinctions on three 

arthropod clades. The first part of the dissertation (Chapters 1–6) consists of works 

focusing on eurypterid phylogeny; the redescription of Drepanopterus pentlandicus and 

Melbournopterus crossotus have deep implications for stylonurine phylogeny, while the 

redescription of Stoemeropterus conicus and the description of three new eurypterine 

species helps provide a strong groundwork for a robust phylogeny of the Eurypterina. 

The second part (Chapters 7–8) focuses on aulacopleuroid phylogeny, the first chapter 

consisting of a broader analysis of trilobites in order to ascertain the status of proetide 

monophyly while the second comprises a detailed analysis of aulacopleuroid 
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relationships. The final part (Chapters 9–10) constitutes studies on variations in diversity 

and disparity across the end-Ordovician and late Devonian mass extinctions along with 

comparisons of rate of character change and volatility between the three clades. 
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Part 1 
 

On eurypterid phylogeny 
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Chapter 1 

Redescription of Drepanopterus pentlandicus Laurie 1892, the earliest 

known mycteropoid (Chelicerata: Eurypterida) from the early Silurian 

(Llandovery) of the Pentland Hills, Scotland 

 

James C. Lamsdell 

(Formatted for submission to Earth and Environmental Science Transactions of the Royal 

Society of Edinburgh) 

 

ABSTRACT: Drepanopterus pentlandicus Laurie, 1892 is redescribed from the original 

type material along with previously unfigured specimens. A cleft metastoma is confirmed 

as a characteristic of the genus along with the armature of the second and third prosomal 

appendages being modified into flattened blades, while the species is shown to possess a 

somewhat enlarged second tergite and lateral prosomal margins that overlap the first 

opisthosomal tergite. Different ontogenetic stages of D. pentlandicus are described and it 

is revealed that these latter characters develop only later in ontogeny, suggesting that 

described specimens of Drepanopterus abonensis Simpson, 1951 may represent 

juveniles. Cladistic analysis of Stylonurina shows the genus Drepanopterus to be 

monophyletic consisting of D. pentlandicus, D. abonensis and D. odontospathus sp. nov., 

and forms a basal clade of mycteropoids. Hibbertopteroidea Kjellesvig-Waering, 1959 is 

shown to be a junior subjective synonym of Mycteropoidea Cope, 1886, with the 

synonymy of many of the hibbertopterid genera hypothesised and Hibbertopterus 

Kjellesvig-Waering, 1959 suggested to represent juvenile specimens of Cyrtoctenus 
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Størmer & Waterston, 1968. Hibbertopterus permianus Ponomarenko, 1985 is transferred 

to Campylocephalus Eichwald, 1860. The role of heterochrony in the morphological 

development of the mycteropoid lineage is discussed, with both hibbertopterids and 

mycteropids suggested to be hypertrophic and pre displacement peramorphs respectively. 

 

 

The description of the Pentland Hills arthropod fauna in two seminal papers by Laurie 

(1892; 1899) marked a turning point in eurypterid research. The co-occurrence of so 

many species at a single locality makes it the most diverse eurypterid locality in the 

world (Plotnick 1999) while the style of preservation means that vast amounts of 

morphological detail can be observed, especially of the organisms’ ventral surface. 

Laurie was the first to assign a stylonurine (i.e. eurypterids with a swimming paddle 

lacking a modified podomere 7a on appendage VI) to a genus other than Stylonurus Page, 

1856, and while this view was later temporarily rejected in favour of creating various 

subgenera of Stylonurus by Clarke & Ruedemann (1912) it is now recognised that the 

erection of Drepanopterus Laurie, 1892 was the first concession to the true 

morphological diversity of Stylonurina. 

Laurie’s morphological descriptions were generally highly detailed and accurate, 

however it is only recently that they have been viewed in a context beyond their initial 

taxonomic assignments, which were somewhat constrained by the framework at the time. 

Waterston (1979) reviewed many of the stylonurine eurypterids, although it is only in 

recent years that there has been serious renewed interest in the Pentland fauna with the 

recognition of Bembicosoma pomphicus Laurie, 1899 as a synziphosurine (Anderson & 
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Moore 2004) and Kiaeropterus cyclophthalmus (Laurie, 1892) as a member of the 

Stylonurina (Tetlie et al. 2007) and not a Eurypterus as initially described. 

Reinvestigation of the various further Drepanopterus species described by Laurie (1899) 

revealed that the genus was polyphyletic and that ‘Drepanopterus’ bembycoides Laurie, 

1899 and ‘Drepanopterus’ lobatus Laurie, 1899 were synonyms of ‘Nanahughmilleria’ 

conica Laurie, 1892 and belonged in a distinct genus closely related to members of the 

basal Eurypterina (Lamsdell 2011) while Drepanopterus pentlandicus Laurie, 1892 

remained within the Stylonurina. 

Redescription of Drepanopterus abonensis Simpson, 1951 from the Upper Devonian 

of Portishead, Somerset showed it to be a basal member of the predominantly 

Carboniferous-Permian sweep-feeding mycteropoids, a derived stylonurine clade marked 

by their bizarre morphology and generally large size (Lamsdell et al. 2009). Comparison 

with Laurie’s (1892; 1899) published figures suggested that D. abonensis and D. 

pentlandicus were indeed congeneric, and if so this would make D. pentlandicus the 

earliest mycteropoid, being from the Llandovery (early Silurian). However, the temporal 

gap between the two species (some 54 million years) and the limitations inherent in 

studying the figures from Laurie’s original works mean that restudy of D. pentlandicus is 

needed in order to confirm the monophyly of the genus. When studying the Pentland 

Hills material in 2009 the author discovered over 30 well preserved specimens of 

Drepanopterus pentlandicus, much more than the three described and figured by Laurie, 

and these make up the basis of the work herein. 
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1. Previous Work 

The Silurian eurypterid fauna of the Pentland Hills was first described by Laurie (1892, 

1899) and is possibly one of the most important eurypterid fossil sites in the world, 

accounting for 15% of all known stylonurine eurypterid species. In total nine genera are 

known from the site, along with one genus of scorpion and a single genus of xiphosuran. 

The Hardie and Henderson collections (housed in the National Museums of Scotland) 

provided the material for Laurie’s original work, and these specimens were also the 

subject of extensive study by Lamont (1955) and Waterston (1979). Renewed interest in 

the site in recent years has resulted in the redescription of several of Laurie’s original 

taxa, including the xiphosuran Bembicosoma pomphicus (Anderson & Moore 2004) and 

the eurypterids Kiaeropterus cyclophthalmus (Laurie, 1892) (Tetlie et al. 2007), 

Stoermeropterus conicus (Laurie, 1892) (Lamsdell 2011), and ‘Eurypterus’ minor Laurie, 

1899 (Tetlie 2006), which has been shown to represent a genus separate from Eurypterus 

sensu stricto (Tetlie & Cuggy 2007).  

Drepanopterus pentlandicus was among the first Pentland eurypterids to be described 

and was originally known from only two specimens within the Henderson collection 

(Laurie 1892). The acquisition of the Hardie collection greatly increased the number of 

known specimens for the species, however only one of these was described and figured 

(Laurie 1899), leaving most of the details of the ventral aspect unknown. Despite a 

number of relatively complete, unfigured specimens the species has received no further 

treatment, aside from  the Hardie collection specimen figured by Laurie being re-figured 

in Clarke & Ruedemann (1912, fig. 69) and for a photograph of the holotype to be 

figured by Anderson (2007, pl. 26 fig. 3). A number of other Drepanopterus species have 
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been described however, although most have since been removed from the genus; ‘D.’  

bembycoides Laurie, 1899 and ‘D.’ lobatus Laurie 1899 were shown to be synonyms of 

the basal eurypterine Stoermeropterus conicus (Lamsdell 2011), Kokomopterus 

longicaudatus (Clarke & Ruedemann, 1912) was transferred from the genus by 

Kjellesvig-Waering (1966), D. ruedemanni O’Connell, 1916 was shown to be a lithic 

clast by Tollerton (2004), Vinetopterus struvei (Størmer, 1974) was removed by 

Poschmann & Tetlie (2004) and ‘D.’ nodosus Kjellesvig-Waering & Leutze, 1966 is 

considered congeneric with S. conicus. Therefore aside from D. pentlandicus only two 

other species of Drepanopterus are currently recognised as valid – D. abonensis 

Simpson, 1951 from the Upper Devonian of SW England and an unnamed species 

described by Braddy & Dunlop (2000) from the Lower Devonian of Arctic Canada. The 

genus received its most recent treatment when Drepanopterus abonensis was restudied 

by Lamsdell et al. (2009), where it was considered to have affinities with the large 

sweep-feeding mycteropoids, and subsequent phylogenetic analysis supports this theory 

(Lamsdell et al. 2010a).  

Two other eurypterid species have been suggested to have affinities with 

Drepanopterus. Onychopterella (?) pumilus (Savage, 1916) was suggested to be a 

Drepanopterus by Plotnick (1999) and an unnamed, undescribed drepanopterid was 

partially figured by Størmer & Kjellesvig-Waering (1969, fig. 2d), however both of these 

assignments were suggested before it was realised that the genus was polyphyletic. O. (?) 

pumilus is reportedly reposited at the University of Illinois, although its accession 

number is unknown and so restudy has proved impossible. Details of the morphology as 

suggested by the only known figure (Savage 1916, pl. 17, fig. 8), specifically the form of 
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the metastoma, genital appendage and telson, suggests its affinities lie with 

Stoermeropterus Lamsdell, 2011 rather than Drepanopterus. The known morphology of 

the undescribed drepanopterid however corresponds well to that of Drepanopterus 

pentlandicus and D. abonensis, having a broad body, short and robust spatulae and a long 

type A genital appendage. Aside from its mention in Størmer & Kjellesvig-Waering 

(1969), however, no trace of this specimen is known and at present it must be considered 

lost. 

 
 

2. Material and methods 

All the known specimens of Drepanopterus pentlandicus are held at the National 

Museums of Scotland (NMS) in the Hardie (NMS G.1897.32) and Henderson (NMS 

G.1885.26) collections. Specimens were photographed under low-angle light using a 

Panasonic Lumix DMC-FZ50 digital camera. Interpretative drawings were prepared 

using Adobe Illustrator CS4, on a MacBook Pro running OS X, while reconstructions 

were prepared in outline in Adobe Illustrator CS4 and shaded in Adobe Photoshop CS4 

using the methodology described by Coleman (2003). Phylogenetic analysis consisting of 

80 characters coded for 36 taxa was performed using random addition sequences 

followed by branch swapping (the mult command) with 100,000 repetitions with all 

characters unordered and of equal weight in TNT (Goloboff et al. 2008; made available 

with the sponsorship of the Willi Hennig Society). Jackknife (Farris et al. 1996), 

Bootstrap (Felsenstein 1985) and Bremer support (Bremer 1994) values were calculated 

in TNT and the Consistency, Retention and Rescaled Consistency Indices were calculated 

in Mesquite 2.73 (Maddison & Maddison 2010). The matrix is deposited in morphobank 
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(O’Leary & Kaufman 2007) with the project code p586 and can be accessed from 

http://morphobank.org/permalink/?P586. The previous incarnations of the phylogenetic 

matrix from Lamsdell et al. (2010a and b) have also been reposited in morphobank with 

the project codes p537 (http://morphobank.org/permalink/?P537) and p541 

(http://morphobank.org/permalink/?P541) respectively. 

Eurypterid terminology largely follows Tollerton (1989) for morphology of the 

carapace, metastoma, lateral eyes, prosomal appendages, genital appendage, 

opisthosomal differentiation, telson, and patterns of ornamentation, however the 

terminology for the ventral plate morphologies follows the revised types of Tetlie et al. 

(2008) and Tollerton’s Drepanopterus-type prosomal appendage was shown to be absent 

on Drepanopterus sensu stricto by Lamsdell et al. (2009). Selden (1981) is followed for 

prosomal structures and cuticular sculpture and the labelling of the appendages. 

Terminology for the segmentation of the genital operculum follows Waterston (1979), 

while mycteropoid morphological features are as defined in Lamsdell et al. (2009); the 

term ‘blade’ is used for the broad, flattened spines bearing sensory setae on the anterior 

prosomal appendages (Selden et al. 2005), ‘rachis’ (pleural ‘rachises’) refers to the comb-

like spines in Cyrtoctenus (Waterston et al. 1985) and the term ‘lade’ (pleural ‘laden’) 

refers to the plate-like structures that overlie the coxae (Waterston 1957). 

2.1 Institutional Abbreviations 

BMAG, Bristol Museum and Art Galleries, Bristol, UK; CMN, Canadian Museum of 

Nature, Ottawa, Canada; MBA, Museum für Naturkunde, Berlin, Germany; NMS, 

National Museums of Scotland Collection Centre, Edinburgh, Scotland, UK;  PIN, 

Paleontological Institute, Moscow, Russia. 
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3. Geological Setting 

All known specimens of Drepanopterus pentlandicus originate from the Eurypterid Bed 

at Gutterford Burn [GR NT155579] in the Pentland Hills, located SW of Edinburgh, 

Scotland. The Gutterford Burn succession was recently described in detail by Anderson 

et al. (2007) and the Eurypterid Bed placed at the base of the Deerhope Formation which 

is considered to be a shallow marine phase of a continuous marine regression (Clarkson 

2000). The Eurypterid Bed is located near the base of the exposure of the Gutterford 

Burn, situated 3 m up from where the succession dips beneath the water level, however 

the strata here have been overturned and so the Eurypterid Bed is one of the 

chronologically younger beds. The Eurypterid Bed itself is c. 55 cm thick, with its lower 

surface not directly conformable with the underlying siltstones suggesting the infilling of 

a pre-existing irregular sea floor topography (Anderson et al. 2007). 13 cm from the base 

of the bed is a calcareous-rich horizon containing crinoid ossicles, stick bryozoans, 

monograptids and brachiopods, while two thin clay bands exist, the first 8 cm up from the 

bed’s base while the second covers the top of the Eurypterid Bed with an irregular 

topology suggesting it draped the underlying beds.  

The bed was recognised as a Konservat-Lagerstätte by Anderson et al. (2007), citing 

the presence of eurypterids, scorpions and synziphosurines which have a non-mineralised 

cuticle that is rarely preserved in the fossil record (Gupta et al. 2007). The arthropod 

specimens within the Eurypterid Bed are mostly entire individuals associated with 

articulated crinoids, echinoids and starfish and this, coupled with the layers of volcanic 

clay, suggests that the bed represents a smothering event caused by the seabed being 
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rapidly covered by a sudden influx of fine-grained, volcanic ash sediment (Anderson et 

al. 2007). Similar events are thought to be responsible for the exceptional preservation in 

the upper Ordovician Elkhorn Formation, Ohio (Caster & Kjellesvig-Waering 1964) and 

the Wenlock Herefordshire Lagerstätte (Orr et al. 2000). Anderson et al. (2007) 

suggested that the localised preservation of the eurypterids in ‘hollows’ of the bedding 

surface was due to infilling of the pre-existing topography while the concentration of 

faunal elements such as starfish could be explained by their clustering at the bottom of 

such hollows in the sea floor. This is a similar depositional environment to that proposed 

for the fauna preserved in submarine channel slides from Leintwardine in England which 

also includes both eurypterids and synziphosurines (Whitaker 1962). 

Alongside Drepanopterus pentlandicus the eurypterids Parastylonurus ornatus 

(Laurie, 1892), Parastylonurus hendersoni Waterston, 1979, Hardieopterus 

macrophthalmus (Laurie, 1892), Laurieipterus elegans (Laurie, 1899), ‘Eurypterus’ 

minor Laurie, 1899 ‘Carcinosoma’ scoticum (Laurie, 1899), Slimonia dubia Laurie, 1899 

and Stoermeropterus conicus (Laurie, 1892) are also found in the same bed, as are the 

scorpion Dolichophonus loudonensis (Laurie, 1899) and synziphosurine Bembicosoma 

pomphicus. Aside from the chelicerates the Eurypterid Bed fauna consists of Dictyocaris 

ramsayi Salter, 1860, now considered to be a benthic marine alga (Botting 2007), 

polychaete burrows (Allan 1927), octocorals, bryozoans, abundant crinoids, stelleroids, 

the echinoid Aptilechinus caledonensis Kier, 1973, brachiopods, the gastropod 

Euomphalopterus cf. apedalensis Pitcher, 1939 and the cephalopod Geisonoceras 

maclareni (Murchison, 1859), and monograptid graptolites. 
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The Eurypterid Bed was interpreted as marginal marine (BA1) by Plotnick (1999), 

possibly representing a tidal flat setting, and Waterston (1979) mentioned large amounts 

of plant material found in the Eurypterid Bed, which could suggest a terrestrial influence 

and an external source for some of the faunal elements. Excavation of the Eurypterid Bed 

itself however yielded no plant material (Anderson et al. 2007), and a detailed study of 

the specimens held at NMS confirmed that no terrestrial plant material is found in 

association with the Eurypterid Bed fauna. Furthermore, the associated fauna of 

echinoids, starfish and brachiopods indicates that the Eurypterid Bed was preserved under 

normal marine salinity and the most recent work by Anderson et al. (2007) supports the 

depositional environment suggested by Clarkson & Taylor (2002) of suspension flows 

below wave-base on the seaward side of an offshore bar. 

 
4. Systematic Palaeontology 

Eurypterida Burmeister, 1843 

Stylonurina Diener, 1924 

Superfamily Mycteropoidea Cope, 1881 

(= Hibbertopteroidea Kjellesvig-Waering, 1959) 

Emended diagnosis. Stylonurina with posterior cleft on metastoma; annular cuticular 

thickening surrounding lateral eyes; posterolateral carapace margins overlap first 

opisthosomal tergite; anterior appendages with armature modified into flattened blades 

(emended from Lamsdell et al. 2010a). 

Remarks. Hibbertopteridae Kjellesvig-Waering, 1959, Drepanopteridae Kjellesvig-

Waering, 1966, and Mycteropidae Cope, 1886 were included in a single superfamily by 

Lamsdell et al. (2010a) under the name Hibbertopteroidea Kjellesvig-Waering, 1959. 
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However, the family Mycteropidae formed the type family for the superfamily 

Mycteropoidea by Novojilov (1962), and following the Principle of Coordination 

(International Code of Zoological Nomenclature articles 36, 43 and 46) the correct author 

of this superfamily is also Cope 1886. Hibbertopteroidea is therefore a junior subjective 

synonym of Mycteropoidea. 

The diagnosis for the superfamily is modified from Lamsdell et al. (2009, 2010a) 

which makes reference to ‘round lenses overlying the lateral eyes’. While there is a 

circular structure surrounding each of the lateral eyes in mycteropoids, herein termed the 

annular cuticular thickening as in its original description by Waterston (1957), there is no 

direct evidence that this structure bore a lens. The concept appears to stem from Tetlie 

(2004) who referred to ‘calcareous lenses’, probably based on the fact that a thin film of 

calcite covered the ocular region on one specimen of Hibbertopterus (Waterston 1957) 

and the only known specimen of Woodwardopterus has its eye region obscured by 

calcium carbonate pustules (Selden et al. 2005). The calcite is probably diagenetic in 

origin however as chelicerates have an unmineralised cuticle and calcareous lenses have 

not been preserved in any of the numerous other mycteropoid fossils displaying the 

lateral eyes. 

 

Family Drepanopteridae Kjellesvig-Waering, 1966 

Drepanopterus Laurie, 1892 

Type species. Drepanopterus pentlandicus Laurie, 1892 by original designation. 

Emended diagnosis. Drepanopteridae with crescentic lateral eyes; prosomal 

appendages II–III spiniferous with spines modified into flattened blades; prosomal 

15



 

appendages IV–VI nonspiniferous Kokomopterus-type; metastoma oval, cleft posteriorly 

with anterior notch; type A genital appendage long, reaching to fifth segment of 

mesosoma, and with spatulae; cuticle displays pustular ornamentation with paired median 

tubercles on tergites 2–5 (emended from Lamsdell et al. 2009). 

Remarks. The diagnosis for the genus is updated from Lamsdell et al. (2009) as 

several characteristics such as the cleft metastoma previously only known from D. 

abonensis can now also be confirmed in D. pentlandicus. 

 

Drepanopterus pentlandicus Laurie, 1892 

Figures 1, 3–21 

Emended diagnosis. Drepanopterus with a dorsal ornamentation of pustules grading 

into acicular scales towards the margins of the carapace and tergites; lateral eyes 

crescentic, lacking enlarged palpebral lobe; small angular prosomal posterolateral lobes 

present resulting in the tergite of somite VIII being partially overlapped by the carapace 

in adults; tergite of somite IX elongated in adults; Blattfüsse of somites X and XI lack 

medial fusion; telson clavate in adult individuals (emended from Laurie 1892).  

Type material. NMS G.1885.26.72.5 and G.1885.26.72.6, part and counterpart 

(holotype), NMS G.1885.26.72.15 (paratype). 

Additional material. NMS G.1885.26.72.3, G.1885.26.72.10, G.1885.26.72.11, 

G.1885.26.72.12, G.1897.32.18, G.1897.32.71, G.1897.32.72, G.1897.32.91, 

G.1897.32.92, G.1897.32.94, G.1897.32.97, G.1897.32.98, G.1897.32.99, 

G.1897.32.100, G.1897.32.101, G.1897.32.102, G.1897.32.103, G.1897.32.105, 

G.1897.32.106, G.1897.32.107, G.1897.32.108, G.1897.32.109, G.1897.32.110, 
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G.1897.32.111, G.1897.32.112, G.1897.32.113, G.1897.32.114, G.1897.32.115, 

G.1897.32.117, G.1897.32.119, G.1897.32.188, G.1897.32.209, G.1897.32.219, 

G.1897.32.221, G.1897.32.122, G.1897.32.868, G.1897.32.869. 

Remarks. Laurie (1899) figured a single specimen from the Hardie collection, 

unfortunately this specimen could not be traced and appears to have been lost. One 

specimen, NMS G.1891.39.18, was identified as its counterpart, however it does not 

preserve the full detail of the lateral eyes and lacks the distal parts of the prosomal 

appendages, the metasoma and telson, and so Laurie’s figure of the original specimen is 

reproduced here (Fig. 1). Laurie (1892) referred another specimen (NMS 

G.1885.26.72.15) to Drepanopterus pentlandicus with reservations, however the 

ornamentation clearly shows that this small specimen is indeed D. pentlandicus. The 

specimen confirms a phenomenon also seen in D. abonensis (but omitted from the 

discussion of Lamsdell et al. (2009)), that the telson shape in Drepanopterus changes 

through ontogeny with smaller individuals possessing a lanceolate telson which becomes 

clavate in adults. 

There are a number of key differences between D. pentlandicus and the two Devonian 

species; it lacks the reniform palpebral lobe, retains a cuticular ornament of acicular 

scales towards the margins of the carapace and tergites and lacks the striate ornament on 

its marginal rim. While the lack of an enlarged palpebral lobe in particular might suggest 

that it is further removed from the other mycteropoids than either Devonian 

Drepanopterus species a number of characteristics including the broad marginal rim, 

pustular ornamentation and paired tubercles suggest that the Drepanopterus clade is a 

monophylum and that D. pentlandicus has retained a number of plesiomorphic character 
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states; either these represent reversals or the enlarged palpebral lobes evolved 

independently in Drepanopterus and the remaining mycteropoids, however this at present 

remains equivocal. 

 
Drepanopterus odontospathus sp. nov. 

Drepanopterus sp. Braddy & Dunlop 2000, p. 1172, fig. 4 

Diagnosis. Drepanopterus with crescentic lateral eyes with a reniform palpebral lobe; 

marginal rim with striated ornament; telson margin serrate. 

Etymology. Named odontospathus after the Greek οδοντωτή meaning notched or 

serrated and σπαθί, meaning sword, in reference to its serrated telson. 

Holotype. CMN 51123, carapace part and partial counterpart. 

Additional material. CMN 51120b and MBA 934 (paratypes), telson part and 

counterpart. 

Remarks. The two specimens assigned to this species were described by Braddy & 

Dunlop (2000) from the Emsian of Arctic Canada. While the remains are fragmentary 

they are clearly those of a Drepanopterus with a distinct telson morphology, and so the 

specimens are assigned to this new species. The species is an important one, as it is the 

first record of a mycteropoid, and the only Drepanopteridae, from North America. Of the 

existing Drepanopterus species D. odontospathus is morphologically closer to D. 

abonensis, with the carapace appearing almost identical. The lateral eyes preserve 

perhaps the best example in the genus of the annulated cuticular thickening within the 

genus, preserving the reniform palpebral lobe faintly within an oval, grooved outline 

(Braddy & Dunlop 2000 fig. 4a). The initial size estimate of 70 cm given by Braddy & 

Dunlop is based on the old, incorrect reconstruction of Drepanopterus abonensis 
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according to Simpson (1951). Scaling the Canadian specimens to the new reconstruction 

of Lamsdell et al. (2009) gives a size estimation of 40 cm. The serrate margin of the 

telson is reminiscent of the ornamentation on the telson of the mycteropid Hastimima 

(White 1908) while the gross morphology is less clavate than in the other Drepanopterus 

species and appears broader and more lanceolate, closer to the morphology of 

Hibbertopterus (Jeram & Selden 1994). 

 

Family Hibbertopteridae Kjellesvig-Waering, 1959 

Campylocephalus Eichwald, 1860 

Type species. Limulus oculatus Kutorga, 1838. 

Emended diagnosis. Hibbertopteridae with subelliptical prosoma broadest at 

midsection; lateral eyes with reniform palpebral lobe, located on posterior half of 

carapace (emended from Kjellesvig-Waering 1959). 

Remarks. The lack of annular cuticular thickening around lateral eyes of 

Campylocephalus oculatus is probably preservational, as the eyes themselves are 

preserved only in outline and cuticular thickening structures around the lateral eyes have 

been observed in Campylocephalus permianus. 

 

Campylocephalus permianus (Ponomarenko, 1985) 

Hibbertopterus permianus Ponomarenko, 1985, p. 104, fig. 2 

Diagnosis. Campylocephalus with lateral eyes converging markedly posteriorly. 

Holotype. PIN N1209/2, incomplete carapace. 
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Remarks. The characteristics listed by Ponomarenko as separating this species from 

other Hibbertopterus species, namely the posterior position of the lateral eyes and their 

non-circular shape, are actually diagnostic of Campylocephalus. The characters used to 

separate the species from Campylocephalus, the presence of annular cuticular thickening 

around the eyes and a different carapace shape, are invalid as Campylocephalus oculatus 

does not preserve the detail of the eye structure and the carapace of Campylocephalus is 

incomplete and flattened, meaning its original shape cannot be ascertained. 

 

5. Morphological Interpretation of Drepanopterus pentlandicus 
 
The Drepanopterus pentlandicus fossils are preserved in a form typical of the Pentland 

Hills eurypterids; individuals are relatively intact with the unmineralised cuticle 

preserved as a brown-green film over impressions of the body. The impressions are 

sufficiently detailed as to preserve the cuticular ornamentation, even when the cuticle 

itself has been worn away. There is a distinct phenomenon among the Pentland Hills 

eurypterids of being preserved in ventral view with the dorsal structures such as lateral 

eyes and tergite boundaries being superimposed through compression (see Lamont 1955; 

Waterston 1979) in a manner exceedingly similar to the preservation of some of the 

eurypterids from Alken an der Mosel, Germany (Størmer 1973; 1974) and may be due to 

the fine-grained sediment and the coarse nature of the dorsal ornamentation making the 

rocks more likely to split across the smoother ventral plane of the animal. While this form 

of preservation is advantageous as the ventral structures such as the genital appendage 

and metastoma are extremely useful for resolving the relationships of eurypterids it does 

make reconstructing the dorsal morphology somewhat difficult. Although Drepanopterus 
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pentlandicus does follow the trend for ventral preservation a greater proportion of its 

specimens reveal the dorsal aspect, possibly due to its thick dorsal cuticle. In this respect 

it has the potential to be one of the most completely known Pentland eurypterids, 

however the anterior appendages are often absent or poorly preserved. A similar problem 

was noted in Drepanopterus abonensis (Lamsdell et al. 2009), and it might be that if 

these appendages were relatively robust they may have regularly broken off at the coxal 

joint if the carcass or exuviae underwent any transportation. Prosomal appendages II and 

III are short and robust in Hibbertopterus scouleri (Hibbert, 1836) and are only rarely 

preserved (Waterston 1957); only the most proximal podomeres of these appendages are 

preserved in Cyrtoctenus wittebergensis Waterston, Oelofsen & Oosthuizen, 1985, and 

Megarachne servinei Hünicken, 1980 does not preserve any trace of either appendage 

pair (Selden et al. 2005). Woodwardopterus scabrosus (Woodward, 1887) possesses a 

more gracile appendage III with blades however it is not well preserved and appendage II 

is absent, and so it appears that these appendages were frequently broken off before 

preservation in mycteropoids. 

The complete nature of the specimens, including the intact ventral prosomal plates 

and articulated appendages, suggests that they represent mortalities rather than exuviae. 

Distinguishing between carcasses and moults can be difficult, however the ventral 

prosomal unit and the carapace and opisthosomal segment one both detach independently 

from the rest of the exoskeleton during ecdysis (Tetlie et al. 2008) and therefore these 

specimens in all likelihood do represent mortalities. Conversely, while the specimens of 

Drepanopterus abonensis where initially theorised to represent mortalities by Lamsdell et 

al. (2009) the patterns of disarticulation, including having coxa VI preserved with the 
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metastoma, isolated ventral plates and the carapace associated with opisthosomal 

segment one suggests that these are actually exuviae that have undergone a degree of 

transportation and further disarticulation after the ecdysial event. 

The largest, most complete specimen (NMS G.1897.32.91) has an estimated length of 

c. 38.5 cm, while the largest complete carapace (NMS G.1897.32.869) indicates a total 

length of c. 40 cm, however the average length of the specimens is c. 27 cm with the 

holotype (NMS G.1885.26.72.5) having an estimated total length of c. 33 cm. The 

smallest specimen (NMS G.1885.26.72.15) meanwhile has an estimated length of c. 6 cm 

with other juvenile specimens having estimated lengths of c. 18 cm (NMS G.1897.32.18), 

c. 14 cm (NMS G.1897.32.94) and c. 9 cm (NMS G.1897.32.108). The animal was broad, 

with the largest specimens reaching at least 10 cm in width, and deep-bodied down its 

centre. In adult individuals the carapace accounts for approximately 20% of the total 

length with the mesosoma accounting for a further 25%, the metasoma 30% and the 

telson the remaining 25%. 

The following descriptions are of the animal in life and are based on a composite of 

all the available material with individual specimens noted as appropriate. An overall 

reconstruction of the animal in life is shown in figure 2. 

5.1 Prosoma 

5.1.1 Carapace and visual structures. The carapace is well represented by fourteen 

specimens (Table 1), however in only three (NMS G.1885.26.72.5, Figs. 3, 4; 

G.1897.32.18, Fig. 5c, d; G.1897.32.107, Fig. 6c) is it preserved in its entirety. It is 

recognisably similar to that of Drepanopterus abonensis, being horseshoe-shaped with its 

widest point being approximately halfway along its length. The carapace is comparatively 
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narrower with a more rounded anterior margin in juvenile specimens such as NMS 

G.1897.32.18 however it still falls within the boundaries of the horseshoe-shaped 

morphology. A marginal rim, generally 2–3 mm wide, extends all the way around the 

front and lateral edge of the carapace and narrows towards its posterior, however unlike 

Drepanopterus abonensis there is no pustule ridge along the marginal rim’s inner border, 

even on well-preserved specimens (e.g. NMS G.1897.32.102, Fig. 6b). The marginal rim 

also lacks striations, which are present on both Drepanopterus abonensis and 

Drepanopterus odontospathus. The posterior margin of the carapace in Drepanopterus 

pentlandicus is somewhat recurved, so that its lateral portions completely overlap the first 

visible tergite (as in NMS G.1885.26.72.5 and G.1897.32.102) – posterolateral extensions 

of the carapace are also seen in several specimens of Drepanopterus abonensis (Lamsdell 

et al. 2009 pl. 1 fig. 2, pl. 3 fig. 2, pl. 5 fig. 2, pl. 6 fig. 2) although these were not noted 

in the species redescription. This observation also has ramifications for a specimen of 

Drepanopterus abonensis, BMAG Cb4668 (Lamsdell et al. 2009, pl. 3 fig. 2), which was 

originally considered to show telescoping in the metasoma. However the first tergite is 

actually somewhat recessed underneath the carapace and the alleged telescoping is 

actually preservation of the enlarged articulation devices. 

The lateral eyes are well preserved, with the visual surface directly observable in five 

specimens (NMS G.1897.32.18; G.1897.32.97, Figs. 7a, 8; G.1885.26.72.15, Fig. 5b; 

G.1897.32.868, Fig. 9; G.1897.32.869, Fig. 10), and their general position and outline 

preserved in several more (e.g. NMS G.1897.32.110, Fig. 11). Among smaller specimens 

(NMS G.1897.32.18; G.1897.32.98, Fig. 7b; G.1897.32.110) the lateral eyes are closer to 

around 20% of the carapace length, generally increasing in larger specimens to around 
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30% of the carapace length, although a number of larger specimens (e.g. NMS 

G.1897.32.869) exhibit lateral eyes that are only 20% of the carapace length (Table 2). 

The lateral eyes of juveniles differ in shape, being lunate (NMS G.1897.32.18) rather 

than arcuate (NMS G.1897.32.102); in those larger specimens that have relatively shorter 

eyes the degree of curvature of the visual surface is greater, and so all larger specimens 

consistently have a greater visual surface area than juveniles. In all specimens the lateral 

eyes are positioned centrimesially, however in the juvenile specimens they are located 

slightly more anteriorly, similar to the position of the lateral eyes in Drepanopterus 

abonensis. Contra to the expectations of Laurie (1892) none of the D. pentlandicus 

specimens show any indication of a raised palpebral lobe which further serves to 

differentiate it from the Devonian Drepanopterus species, both of which have reniform 

palpebral lobes. In some of the more poorly preserved D. pentlandicus specimens 

however the lateral eyes appear circular (NMS G.1897.32.110) while on others there are 

circular grooves surrounding the lateral eyes (NMS G.1897.32.869) and this is due to 

annular cuticular thickening around the lateral eye (see Waterston 1957). The median 

ocelli are rarely preserved in Pentland Hills material and are largely obscured in the 

available specimens of Drepanopterus pentlandicus, however in NMS G.1897.32.102 the 

ocelli are preserved as two indentations on the carapace. They are circular and relatively 

large, each being 3 mm wide, and positioned centrally between the two lateral eyes at the 

midpoint of their length.  

The cuticular ornamentation of the carapace is much as Laurie (1892) initially 

described. For the most part the carapace is covered in a pustular ornamentation that 

slowly grades into broad lunule scales (sensu Selden 1981) towards the lateral margins, 
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however even where the scales are at their most prevalent they are interspersed with 

pustules (NMS G.1885.26.72.3, Fig. 12). The scales on the carapace in D. pentlandicus 

are much more apparent than those of the Devonian species, however some scales are 

present on the carapace of well preserved D. abonensis (Lamsdell et al. 2009, pl. 3 fig. 

2). 

5.1.2 Ventral prosomal plates, prosomal appendages and metastoma. The ventral 

plates widen anteriorly and in NMS G.1885.26.72.5 and G.1897.32.869 a single median 

suture is preserved showing that their morphology is also of Eurypterus-type. No clear 

transverse suture is apparent in the majority of specimens, however creases on the ventral 

plates caused by compression are common and it is likely that the transverse suture has 

been lost among these taphonomic structures. One specimen, NMS G.1897.32.869 does 

show a clear suture running across the ventral plate posterior to the marginal rim. 

The appendages of Drepanopterus pentlandicus are relatively well preserved, however 

the chelicerae are only preserved in NMS G.1897.32.91 (Fig. 13), where they are shown 

to be small (6 mm long by 4 mm wide) and angled back towards the mouth presumably 

through an ‘elbow-joint’ at the attachment of the peduncle and the fixed finger of the 

chelicera. This morphology corresponds to that of the chelicerae of the other Stylonurina, 

and of the non-pterygotoid Eurypterina. The same specimen also preserves the only 

evidence of the second prosomal appendage in the form of the coxae, being 10 mm long 

and 5 mm wide. Appendage III is known from three specimens, comprising both juvenile 

and adult individuals (Table 3), and bears similarity to both D. abonensis and 

Hibbertopterus. Of the two specimens that preserve more than just the coxa, the larger 

(NMS G.1897.32.92, Fig. 14a, b) has a podomere structure similar to that of H. scouleri 
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as described by Waterston (1957, fig. 4), having short robust podomeres with short fixed 

spines projecting from the ventral side of each podomere along with moveable blades that 

are occasionally flexed dorsally so as to appear projecting above the appendage. The 

appendage is better preserved than the appendage in D. abonensis (Lamsdell et al. 2009, 

pl. 1 fig. 9) and shows that, as in Hibbertopterus, the cuticular ornamentation becomes 

more concentrated along the antero-ventral of each podomere and on each blade, possibly 

consistent with an increase in setal density. The terminal podomere is elongated, as in D. 

abonensis, and curved to resemble a hook-like blade in a manner similar to the terminal 

podomere of H. scouleri. The smaller appendage (NMS G.1897.32.18) differs in having 

comparatively longer podomeres, and therefore a comparatively longer appendage, with 

the terminal podomere still appearing elongate but lacking the extreme curvature of the 

adult specimen. In many ways the juvenile appendage more closely matches the 

appendage in D. abonensis than does the adult, with the blades also appearing to be 

shorter and less robust. 

The three posterior pairs of appendages are all of the Kokomopterus-type, with each 

consecutively posterior pair being longer than the preceding pair. Although appendage IV 

is preserved in a number of individuals (Table 4) only NMS G.1897.32.18 shows details 

of more than just the coxa. The appendage is long and nonspiniferous with podomeres 

that thicken distally, clearly used for locomotion and not for prey capture and comparable 

to appendage IV in D. abonensis and Woodwardopterus scabrosus. Appendage V is more 

frequently preserved (Table 5), although like appendage IV no specimen preserves the 

terminal podomeres, while appendage VI is the most commonly preserved appendage and 

is also the most completely known (Table 6). Both appendage pairs have distally 
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expanding podomeres with paired grooves running along their lengths, however with the 

exception of the juvenile NSM G.1897.32.18 they are comparatively shorter than the 

corresponding appendages in D. abonensis. One specimen (NMS G.1897.32.868) 

preserves a complete appendage VI and shows several key features that differentiate the 

Stylonurina from the Eurypterina; there is no modified ‘podomere’ 7a at the joint 

between VI-7 and VI-8, VI-5 is longer than VI-4, and there is no coxal ‘ear’.  

The metastoma is preserved in a fair number of specimens (Table 7), with the largest 

having the same dimensions as the largest metastoma of Drepanopterus abonensis 

(Lamsdell et al. 2009, pl. 5 fig. 3). The metastoma also corresponds in general 

morphology with D. abonensis, being oval in shape with an angular anterior notch and a 

deep posterior cleft that is obvious on almost every specimen including the holotype 

(NMS G.1885.26.72.5), with a similar cleft seen in the metastoma of Hibbertopterus 

scouleri (Waterston 1957, pl. 1).  

 

5.2 Opisthosoma 

5.2.1 Mesosoma and genital operculum. The mesosoma is represented by a total of 

21 specimens (Table 8) that reveal details of both the dorsal and ventral anatomy (e.g. 

Figs. 15–18). Several features, such as the first tergite being shorter than the succeeding 

ones and the broadest point of the animal being at the fourth segment, are common to 

most other eurypterids, while others such as the pustular ornamentation and the presence 

of paired median tubercles on at least tergites 2–5 are characteristics of Drepanopterus. 

There are two main differences in the adult specimens that serve to differentiate D. 

pentlandicus from D. abonensis; the third opisthosomal segment (second opisthosomal 
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tergite) showing a positive third order differentiation (sensu Tollerton 1989) and further 

paired median tubercles on tergites 6–11. The enlarged third segment (equivalent to 

somite IX) can be seen in the holotype (NMS G.1885.26.72.5) and is also expressed 

ventrally as indicated by the enlarged posterior opercular plate in NMS G.1897.32.868. 

The genital operculum is preserved in only two specimens, however both genital 

appendage type A (NMS G.1897.32.71, Fig. 19) and type B (NMS G.1897.32.868, Fig. 

9) are represented. Of the two the type B appendage is better preserved and bears some 

resemblance to the genital appendage of Hibbertopterus scouleri as described by 

Waterston (1957, fig. 6). The appendage is 12 mm long and 8 mm wide and consists of 

two parts, a broader anterior plate (10 mm by 8 mm) with an anterior notch and a smaller, 

narrow plate (2 mm by 2 mm) with an angular termination. The genital appendage differs 

from that of Hibbertopterus in the anterior plate that narrows posteriorly, being more 

cardioid than oval, and is also differentiated from the type B appendage of 

Stoermeropterus conicus by the anterior notch. There is also a median ridge running 

down the centre of the genital appendage, and although this may be taphonomic – the 

area around the genital appendage is crumpled, making it difficult to easily discern in 

photographs – it appears that it may represent the remnants of the original convexity of 

the appendage. The type A appendage is by comparison preserved as a flat imprint, 

however while the specimen is overall less well preserved than the type B specimen the 

appendage is easier to discern due to its sheer size. The type A appendage is 56 mm long, 

extending down to the fourth Blattfüsse (somite XIII), however the specimen has begun 

to disarticulate, with the carapace and first tergite along with the narrow anterior 

opercular plate somewhat displaced anteriorly to (but confusingly still in contact with) 
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the genital operculum and the rest of the opisthosoma. The genital operculum has been 

compressed, with the median and posterior opercular plates crumpled into one another; 

thus the genital appendage is positioned slightly more posteriorly than it would have been 

in life, and so would likely have reached only to the third Blattfüsse (somite XII, 

corresponding to the fifth tergite). Despite this details of the genital appendage 

morphology can still be made out. Although it is impossible to make out the number of 

segments in the genital appendage a pair of grooves can be seen running down its length, 

absent only from the top third and bottom quarter of the appendage, and this may indicate 

a three-segmented genital appendage. Paired grooves are also present on the type A 

appendage of Drepanopterus abonensis (Lamsdell et al. 2009, pl. 1 fig. 11), which also 

possesses triangular deltoid plates at the base of the appendage. A single triangular 

deltoid plate can also be seen to the right of the genital appendage base in NMS 

G.1897.32.71, which is also flanked by a pair of robust, angular genital spatulae. These 

are also seen in D. abonensis (Lamsdell et al. 2009) and in the undescribed drepanopterid 

figured by Størmer & Kjellesvig-Waering (1969, fig. 2d) which also possesses the 

triangular deltoid plates. 

The remaining opercular plates form the book-gill bearing Blattfüsse, although details 

of the respiratory structures themselves are not preserved in any of the available 

specimens. As in most eurypterids the third and fourth Blattfüsse (corresponding to the 

appendages of somites XII and XIII, or tergites five and six) are medially fused, retaining 

a visible median suture (NMS G.1897.32.91; G.1897.32.103; G.1897.32.104, Fig. 20b), 

however the first and second Blattfüsse still retain each half of the operculum as an 

independent limb as shown by NMS G.1897.32.114 (Fig. 21).  
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5.2.2 Metasoma and telson. The metasoma is known from 17 specimens (Table 9), 

however only six of these preserve it in its entirety and only seven show the telson. The 

metasoma is much the same as in Drepanopterus abonensis, narrowing evenly towards 

the telson, with the pretelson being somewhat more elongated than the preceding 

segments in at least some specimens (e.g. Figs. 5a, 12, 13). It is notable that the anterior 

articulations on the tergites, which are comparatively narrow in the mesosoma (Fig. 5) 

become much larger in the metasoma (Fig. 9), possibly indicating a greater degree of 

dorso-ventral flexibility. The juvenile paratype specimen (Fig. 5a,b) possesses short, 

angular epimera on its metasomal segments, as do the supposed adults of D. abonensis, 

however none of the adult specimens of D. pentlandicus show any indication of epimera 

on any of the opisthosomal segments, and it may be that this is another juvenile trait of 

the genus. The main difference from D. abonensis however is the possession of large 

dorsal median tubercles on the metasomal segments as well as those on tergites 2-5. 

These are only observed in NMS G.1897.32.868 (Fig. 9) which is also the only individual 

with a verifiable type-B appendage and so the posterior tubercles may be a sexually 

dimorphic trait, however more specimens preserving the genital appendage would be 

required before that possibility could be explored. 

The telson is clearly clavate in NMS G.1897.32.72 (Fig. 11), G.1897.32.91 (Fig. 12) 

and G.1897.32.109 (Fig. 11a) but lanceolate in the juvenile NMS G.1885.26.72.15 (Fig. 

5a, b). This appears to confirm a trend first tentatively recognised in D. abonensis; that 

the telson in Drepanopterus changes through ontogeny. The ratio of body:telson length 

does not appear to vary between juveniles and adults, however, and both telson 
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morphologies possess a dorsal median keel which is also present in the other two 

Drepanopterus species. 

 
6. Discussion 

The description of unfigured, relatively complete specimens of Drepanopterus 

pentlandicus (the adult morphology of which is shown in Figure 2) allows for a better 

understanding of the species and permits its relationship to the two other Drepanopterus 

species to be considered in full. The D. pentlandicus material is more complete than that 

of either D. abonensis or D. odontospathus and confirms the presence of a number of 

characters within the genus. D. pentlandicus clearly retains a number of plesiomorphic 

characters, such as the lack of an enlarged palpebral lobe and the presence of acicular 

scales in the cuticular ornament, but also possesses the Drepanopterus autapomorphies of 

pustules in the cuticular sculpture and paired axial tubercles on the tergites. A posteriorly 

cleft oval metastoma, previously known only from a few disarticulated specimens of D. 

abonensis, is consistently observed in articulated individuals of D. pentlandicus while an 

isolated appendage and an articulated juvenile specimen also verify the occurrence of 

flattened spines modified into broad blades in the anterior appendages of Drepanopterus, 

albeit in a more recognisable form than in D. abonensis. Genital spatulae and deltoid 

plates on the type A operculum, previously only tentatively known from two isolated 

genital opercula in D. abonensis, are again observed in a more complete specimen of D. 

pentlandicus associated with an elongate type A genital appendage that previously has 

been known from only the basal portions. The type B genital appendage, meanwhile, 

shows no indication of deltoid plates or spatulae, however does somewhat resemble the 

type B appendage of Hibbertopterus scouleri. 
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Drepanopterus pentlandicus also possesses a number of characteristics that suggest 

further links to the mycteropoids. The most obvious is the cleft metastoma, which is also 

present in Hibbertopterus scouleri. Selden et al. (2005) proposed that the metastoma in 

H. scouleri actually represented the fused coxae of appendage VI, with the underlying 

genital appendage being the true metastoma, however this interpretation is rejected both 

on the grounds of evidence from Drepanopterus and the fact that in ventral view the 

metastoma overlies the coxae and so the small plate suggested by Selden et al. to be the 

metastoma could not be as it would underlie the coxae. Another similarity is the 

morphology of the ventral prosomal plates, which until known have not been well known 

in Drepanopterus is not well known with most of the evidence from D. abonensis 

consisting of isolated plates that show the diagnostic stylonurine transverse suture but do 

not indicate the form of the median join (Lamsdell et al. 2009 pl. 1 figs. 6–8), however 

the median join is relatively well preserved in D. pentlandicus and consists of a single 

Eurypterus-type suture. Hibbertopterus scouleri has also been demonstrated to possess 

ventral plates of Eurypterus-type (Waterston 1957 pl. 2 fig. 2) and it has been assumed 

that this plate morphology was part of the mycteropoid ground plan. The ventral plates of 

D. pentlandicus, like those of Hibbertopterus, are very broad (NMS G.1897.32.105, Fig. 

6d) and this may be linked to having a deep carapace.  

The condition in Drepanopterus pentlandicus of the posterolateral margins 

completely overlapping the first tergite is also unusual. The posterolateral margins of the 

carapace often curve back in eurypterids, however it is mostly only in Eurypterina that 

the carapace covers the first visible tergite to any great extent (e.g. Eurypterus 

tetragonophthalmus Fischer, 1839). Among Stylonurina the posterolateral margins only 
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greatly overlap the tergite in Hibbertopteridae, where they are drawn out to form lobes. It 

seems likely that the recurved margins of D. pentlandicus are homologous to the 

hibbertopterid posterolateral lobes, although neither are present in mycteropids, however 

it is noteworthy that the juvenile D. pentlandicus specimens do not show this overlap and 

it is likely that it only developed in adult individuals. The positive third order 

differentiation of somite IX appears to be a similar phenomenon. While this segment is 

somewhat enlarged in D. pentlandicus – being one and a half times larger than the 

following segment – it is not truly hypertrophied as in seen in somite VIII of some 

synziphosurines (Anderson & Moore 2004, Eldredge 1974, Krzeminski et al. 2010) and 

somites VIII and IX in mycteropids (Pruvost, 1924, Selden et al. 2005). 

Woodwardopterus, Megarachne and Mycterops all have somite IX massively 

hypertrophied, while in Mycterops somite VIII is also hypertrophied. It is possible that 

the enlarged segment in D. pentlandicus is a precursor to the hypertrophied segment in 

mycteropids. Drepanopterus abonensis meanwhile shows no evidence of an enlarged 

segment, yet neither do the juvenile specimens of D. pentlandicus (NMS 

G.1885.26.72.15, Fig. 5a, b, and G.1897.32.18), and so its lack in D. abonensis may be 

ontogenetic. Similarly, the paired tubercles on tergites 6–11 are not found on the 

juveniles, although tubercles are seen on tergites 2–5 of the larger specimen (NMS 

G.1897.32.18), and so their absence in D. abonensis may again be due to ontogeny. 

A number of characters found in Drepanopterus pentlandicus therefore bear 

resemblance to structures found in either the hibbertopterid of mycteropid lineages, 

including a lateral overlap of the first tergite by the prosomal carapace margins 

(hibbertopterids), a somewhat enlarged somite IX (mycteropids) and short, robust 
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prosomal appendages II and III (hibbertopterids). None of these characters are present in 

the juvenile specimens, however, which exhibit more gracile appendages, a straight 

carapace posterior and more uniform mesosomal tergite length. Somewhat troublingly 

none of these characteristics are present in D. abonensis, which appears to exhibit more 

of the juvenile morphology. Two characteristics from the original redescription would 

seem to suggest that the D. abonensis specimens represent adult individuals; the eyes are 

positioned more centrally on the carapace, a more lateral placement of the eyes being a 

characteristic of juvenile eurypterids (Cuggy 1994), and the clavate morphology of the 

telson (Lamsdell et al. 2009). However, the lateral eyes of D. abonensis are positioned 

more laterally than shown in Lamsdell et al.’s reconstruction, as the figured specimens 

show, while the majority of telson specimens are lanceolate with those few that do 

exhibit a somewhat clavate morphology not being as pronouncedly so as in D. 

pentlandicus. Furthermore, the median ridge described as being present in D. abonensis 

probably actually represents taphonomic wrinkling in the cardiac lobe region of some 

specimens, being undoubtedly absent from several others and inconsistent in morphology 

among those where it is present. The anterior appendages of D. abonensis also more 

closely resemble those of the juvenile D. pentlandicus, being more gracile and lacking 

the antero-ventral extensions of the podomere cuticle with a conical terminal podomere in 

contrast to the hook-like podomere of the adult D. pentlandicus, which is similar in 

morphology to that of Hibbertopterus scouleri. The armature of the D. abonensis 

appendage is also unusual, appearing to consist of flattened blades at the most distal 

podomeres but the more usual conical spines proximally. Morphological change in 

appendage shape has previously been documented in the sixth appendage of 
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Strobilopterus princetonii (Ruedemann, 1934) (Tetlie 2007a) and in all appendages of 

‘Carcinosoma’ scorpioides (Woodward, 1868) (Lamsdell pers. obs.) and can comprise 

both changes in relative appendage length and armature. Unfortunately, the juvenile 

specimen of D. pentlandicus does not preserve the proximal armature, however a single 

blade is preserved distally and it is possible that its morphology may further match that 

preserved in D. abonensis.  

Two other differences between D. abonensis and D. pentlandicus may also be a 

function of ontogeny. The absence of axial nodes on the mesosomal segments of D. 

abonensis is also observed in the juveniles of D. pentlandicus, the smaller of which has 

no nodes at all, however it is also possible that this difference could be due to sexual 

dimorphism in adults. Prosomal posterolateral lobes are absent from the juvenile D. 

pentlandicus and were not described in D. abonensis by Lamsdell et al. (2009), however 

some specimens (Lamsdell et al. 2009, pl. 3 fig. 2, pl. 5 fig. 2) do indicate that 

posterolateral lobes may in fact be present but are very much reduced in comparison to D. 

pentlandicus. At present there is not enough data to determine whether the described 

specimens of D. abonensis represent juveniles or adults that had paedomorphically 

retained juvenile traits, however their closer resemblance to the juvenile specimens of D. 

pentlandicus than to the adult in a number of morphological details is conspicuous. The 

D. abonensis specimens have been assumed to be adults largely due to their size but 

eurypterid discoveries elsewhere have shown that juveniles of large species could 

themselves reach an impressive size while retaining juvenile characteristics (Lamsdell et 

al. 2010b), something well worth bearing in mind. 

6.1 Phylogenetic Implications 
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In order to ascertain whether the new data for Drepanopterus pentlandicus at all 

alters the current hypotheses of relationships among the Stylonurina the taxon was 

recoded for the analysis presented by Lamsdell et al. (2010b). Three new taxa, 

Hastimima whitei White, 1908, Campylocephalus oculatus (Kutorga, 1838), and 

Drepanopterus odontospathus sp. nov., were also included so as to give the mycteropoids 

a more comprehensive treatment along with nine new characters pertaining to carapace 

morphology, overlying lens shape, reduction of the median ridge, expansion of the 

second opisthosomal segment and telson serration. The genera Vernonopterus Waterston, 

1968 and Dunsopterus Waterston, 1968, while clearly mycteropoids, are known only 

from fragmentary material so were not included in the matrix. Analysis of this expanded 

data matrix as detailed in the Material and Methods resulted in a single most 

parsimonious tree (Fig. 22) with a Tree Length of 149, an ensemble Consistency Index of 

0.550 and a Retention Index of 0.725. The overall topology of the tree remains 

unchanged from that in Lamsdell et al. (2010b), with Stylonurina consisting of 

rhenopteroid, stylonuroid, kokomopteroid and mycteropoid clades, nor has the 

composition or relationships of taxa within these clades altered. Drepanopterus 

odontospathus resolves as the sister taxon to Drepanopterus abonensis, as befitting its 

intermediate stratigraphic position between Drepanopterus abonensis and Drepanopterus 

pentlandicus, while Campylocephalus oculatus and Hastimima whitei fall within the 

hibbertopterids and mycteropids respectively. Hastimima whitei was included within 

Hibbertopteridae by Lamsdell et al. (2010a), however given its provinciality (Brazil) and 

age (Sakmarian) it is perhaps not surprising that it resolves in the analysis as sister taxon 

to Megarachne servinei from the Permo-Carboniferous of Argentina. H. whitei is only 
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known from fragmentary material, however the ornamentation is more reminiscent of 

mycteropids than hibbertopterids while the preserved tergite may be hypertrophied and 

has a similar morphology to the first tergite of M. servinei. Further, more complete 

material of H. whitei may show that it is congeneric with M. servinei, however this is just 

speculation at present beyond the similarities in tergite and coxa morphology. The 

inclusion of C. oculatus within hibbertopterids is not unexpected; the holotype, consisting 

of a single carapace, closely resembles the carapace of Hibbertopterus scouleri (the two 

species were considered congeneric by Størmer (1951)), differing solely in the shape and 

more posterior position of the lateral eyes and point of greatest carapace width. It is 

intriguing that C. oculatus, long considered to be closely related to H. scouleri, should in 

fact form the sister taxon to a clade consisting of H. scouleri and Cyrtoctenus 

wittebergensis. While clearly related, these two taxa exhibit a number of differences in 

appendage morphology (which is unknown in C. oculatus) and carapace shape, 

Cyrtoctenus wittebergensis possessing an anterior projection that is lacking in both H. 

scouleri and C. oculatus. Both Hibbertopterus and Cyrtoctenus are found predominantly 

from the Carboniferous, with one supposed Permian record of Hibbertopterus 

(Ponomarenko 1985) (representing the youngest known eurypterid occurrence) and a 

single late Devonian occurrence of Cyrtoctenus (Fraipont 1889), while the only reliable 

records of Campylocephalus are from the Permian. The Permian ‘Hibbertopterus’ 

material is however more diagnostic of Campylocephalus and is herein transferred to that 

genus. The remaining valid species of Cyrtoctenus and Hibbertopterus frequently co-

occur, with Cyrtoctenus largely known from isolated rachises (see Størmer & Waterston 

1968) in association with fragments of cuticle from the large eurypterids Dunsopterus 
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and Vernonopterus (Waterston 1968) and smaller (but still sizeable), more complete 

specimens of Hibbertopterus (Jeram & Selden 1994). An exception to this trend is the 

single, relatively complete specimen of Cyrtoctenus wittebergensis from the 

Carboniferous of South Africa, which occurs in strata devoid of other eurypterid material 

(Waterston et al. 1985). In their description of Cyrtoctenus wittebergensis, Waterston et 

al. noted several similarities with Dunsopterus including carapace and tergite 

morphology, form of the prosomal appendages and cuticular ornamentation, although 

rachises have never been observed articulated with Dunsopterus appendages, and 

suggested the two may be synonyms. Lamsdell et al. (2010a) also briefly summarised 

similarities between Dunsopterus, Vernonopterus and Cyrtoctenus, noting that 

Vernonopterus and Cyrtoctenus both possessed opisthosomal ridges either side of the 

axial region and suggesting that all three genera may be synonyms. Jeram & Selden 

(1994) also suggested that Hibbertopterus and Cyrtoctenus may be synonyms, with 

Hibbertopterus simply representing the juvenile ontogenetic stages and Cyrtoctenus the 

adult forms. Given our knowledge of how appendage armature changes through the 

development of Drepanopterus it is not inconceivable that Hibbertopterus could develop 

rachises in its later moult stages; grooves on the podomeres, present in Cyrtoctenus, 

mycteropids and Drepanopterus, are also absent in Hibbertopterus suggesting that these 

too may be a feature that developed later in ontogeny. Furthermore, the lateral eyes of 

Cyrtoctenus wittebergensis are located exceedingly close together towards the carapace 

centre while those of Hibbertopterus scouleri are found in a slightly more lateral (but still 

overall central) position; as noted earlier, a migration of the lateral eyes towards the 

carapace centre during ontogenetic development has been previously documented in 
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eurypterids. Finally, a small carapace closely resembling that of Hibbertopterus scouleri 

was described by Waterston (1957) as possibly being a juvenile specimen of Dunsopterus 

stevensoni (Etheridge, 1877). It seems almost certain that Dunsopterus, Vernonopterus 

and Cyrtoctenus are all synonyms, with Dunsopterus having priority, while Dunsopterus 

is also likely to be a junior synonym of Hibbertopterus. Such a major systematic revision 

is beyond the scope of the current work, however. 

6.2 Heterochrony and evolutionary trends in mycteropoids 

All current knowledge on eurypterid ontogenetic trends largely comes from three 

studies, focusing on the genera Eurypterus De Kay, 1825 (Andrews et al. 1974, Cuggy 

1994) and Adelophthalmus Jordan in Jordan & von Meyer, 1854 (Kues & Kietzke 1981), 

although none of these include representatives of the earliest instars. One species, 

Hardieopterus myops (Clarke 1907), has been theorised to represent juveniles including 

later described early instars (Clarke & Ruedemann 1912) which display abnormally large 

eyes and a possible reduction in tergite count, however these specimens have remained 

virtually forgotten since the early 1900s, and warrant reinvestigation in light of current 

understanding. The smallest specimens (some not more than a millimetre in size) 

representing the earliest instars need particular scrutiny given the large amount of 

inorganic material misidentified by Ruedemann (Tollerton 2006); an initial review of the 

specimens suggests that several are pseudofossils and some of the larger individuals 

represent more than one taxon (Tollerton pers. comm.). Given the apparent paucity of 

ontogenetic data for eurypterids it is perhaps understandable that there have been no 

studies on heterochronic trends within the various lineages, however there are clues that 

such trends exist. Two clades are of particular note, both exhibiting a marked increase in 
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size and deviation from the familiar eurypterid morphology through their evolution. 

Pterygotoidea, well-known as being a highly predatory clade, exhibit a number of 

juvenile characteristics that become increasingly exaggerated in more derived species and 

probably lies along a paedomorphocline. The other lineage of interest, Mycteropoidea, 

show a different trend; both hibbertopterids and mycteropids appear to lie along 

peramorphoclines. Hibbertopterids exhibit a number of morphological characteristics that 

can be considered extreme expressions of the Drepanopterus-type morphology; the 

lateral eyes exhibit extreme curvature of the visual surface (as noted in the largest 

Drepanopterus specimens) and are positioned more centrally on the carapace (trends 

recognised as part of eurypterid ontogenetic development), the lateral overlap of the 

carapace posterior with the first opisthosomal tergite (a characteristic that only appears in 

later ontogenetic stages of Drepanopterus) becomes more prominent with the genal 

regions drawn out into posterolateral lobes, the prosomal appendages become shorter and 

more robust (another observable trend in the ontogeny of other eurypterid species 

(Lamsdell pers. obs.)) while the appendage armature undergoes a marked expansion into 

large, broad blades, some of which develop enlarged and robust setae to form rachises. 

The fourth prosomal appendage, which is nonspiniferous in Drepanopterus, also 

develops armature similar to the second and third appendages but retains its locomotary 

function. The most obvious expression of the peramorphocline however is the dramatic 

increase in size diagnostic of the Carboniferous and Permian species, with Cyrtoctenus 

reaching lengths of at least 135 cm and trackway evidence indicating lengths of 150 cm 

to 250 cm (Whyte 2005, Almond 2002), suggesting that hypermorphosis may be the 

underlying process. Mycteropids, meanwhile, exhibit the same central positioning of the 
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lateral eyes, increase in appendage armature size and thickening of the calcareous lenses, 

however do not appear to undergo the same drastic size increase that characterises the 

hibbertopterids. A number of other characters also appear to buck the peramorphic trend; 

the podomeres of the anterior appendages remain long and do not shorten into adulthood, 

the fourth appendage is devoid of armature, and the blades do not develop into rachises. 

All these characteristics however are also absent from Drepanopterus (although the 

anterior appendages of Drepanopterus do get shorter in ontogeny, they do not reduce to 

the extent seen in Hibbertopterus) and so it is likely that mycteropids represent a separate 

offshoot from the mycteropoid lineage prior to the morphological developments observed 

in hibbertopterids.  

Mycteropids also show no evidence of the lateral margins of the carapace overlapping 

the first opisthosomal tergite. That said, the first tergite is actually sutured onto the 

carapace (Selden et al. 2005) and, in Megarachne servinei and Woodwardopterus 

scabrosus, is drawn out into structures strongly resembling the hibbertopterid 

posterolateral lobes. It seems that when the tergite fused to the carapace it took on the 

developmental identity (through changes in expression of the Hox genes that determine 

cell fates in the segments and appendages – see McGinnis & Krumlauf 1992, Gellon & 

McGinnis 1998) of the carapace posterior, with the posterolateral lobes forming at the 

posterior of the tergite rather than the true carapace posterior, an interesting possibility as 

it would mean that the number of segments incorporated into the carapace is greater than 

the number of somites comprising the prosomal tagma (as indicated by appendage 

differentiation). This decoupling between carapace shield and cephalic tagma has been 

noted in other arthropods (e.g. trilobites, Scholtz & Edgecombe 2006; decapod 
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crustaceans, Abzhanov & Kaufman 2004) but is uncommon in chelicerates, which show a 

remarkable conservatism of tagmation into the prosoma and opisthosoma (although 

modern horseshoe crabs incorporate part of the tergite of the eighth somite into the 

prosoma (Scholl 1977, Sekiguchi et al. 1982)).  

Further evidence that mycteropids represent peramorphs is provided by the extreme 

hypertrophy of the second tergite into a large, circular structure. The lack of a marked 

size increase between species however suggest that the main process underlying the 

developmental shift is not hypermorphy as in hibbertopterids but more likely to be pre 

displacement, an earlier increase in trait development leading to a more extreme 

morphology without increasing development time so that overall size stays largely 

unchanged.  
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NMS specimen Carapace 
length 

Carapace 
width 

Lateral 
eye 
length 

Lateral eye 
width 

Marginal 
rim 
width 

G.1885.26.72.5 63 98 18 2 2 
G.1897.32.18 35 40 8 0.6 1.2 
G.1897.32.71 61.5 60* – – 3 
G.1897.32.91 73 76* – – 3 
G.1897.32.94 25 32* – – 1 
G.1897.32.98 46 88* 11 3 3 
G.1897.32.100 31* 52* 15 2 – 
G.1897.32.102 58 80* 16 3 3 
G.1897.32.103 66 78* 16 4 4 
G.1897.32.107 51 92 – – 2.5 
G.1897.32.108 16.5 27.5* – – 1.5 
G.1897.32.110 48 46* 10 2 (9) 3 
G.1897.32.868 44* 80* 12 3 (8) 3 
G.1897.32.869 76 106* 14 2 (10) 2 
 
Table 1. Dorsal prosomal measurements. Dimensions in mm. The numbers in brackets 

for lateral eye width include the annular cuticular thickening. *=incomplete 
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NMS specimen Distance from carapace 
lateral margin 

Percentage of 
carapace length 

Percentage of 
carapace width 

G.1885.26.72.5 23 (centrimesial) 28.6 2 
G.1897.32.18 7 (outer centrimesial) 22.8 1.5 
G.1897.32.98 18 (centrimesial) 23.9 – 
G.1897.32.102 13 (centrimesial) 27.6 – 
G.1897.32.103 19 (centrimesial) 24.2 – 
G.1897.32.110 16 (outer centrimesial) 20.8 – 
G.1897.32.868 20 (centrimesial) – – 
G.1897.32.869 23 (centrimesial) 18.4 – 
 
Table 2. Summary statistics for position of lateral eye position from the carapace lateral 

margin and relative size of eye compared to carapace size (expressed as a percentage of 

carapace size). NMS G.1897.32.868 does not preserve the full carapace length and so the 

proportional size cannot be calculated, while only NMS G.1885.26.72.4 and 

G.1897.32.18 preserve the full carapace width allowing for the relative width of the 

lateral eyes to be calculated. The current data indicates relatively little alteration in lateral 

eye proportion and position through ontogeny, however the lateral eyes of the smaller 

specimens are position at the outermost limits of the centrimesial quadrant whereas in 

larger specimens they are unquestionably centrimesial. 
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NMS specimen Appendage III 
G.1897.32.18 (podomeres 3 – 8): 3; 4/3. 4; 3.5/3. 5; 3.5/3. 6; 3.5/3. 7; 4/3. 8; 7/3. 
G.1897.32.91 (podomere 1): Coxa; 12/6.  
G.1897.32.92 (podomeres 4 – 8): 4; 26/10. 5; 10/10. 6; 9/9. 7; 9/6. 8; 13/5.  
 
Table 3. Appendage III measurements (length/width) in mm. 
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NMS specimen Appendage IV  
G.1897.32.18 (podomeres 3 – 6): 3; 5*/4.5. 4; 10/4.3. 5; 8/3*. 6; 6*/4.  
G.1897.32.91 (podomere 1): Coxa; 16/8. 
G.1897.32.98 (podomere 1): Coxa; 12/7. 
G.1897.32.107 (podomere 1): Coxa; 19/10.  
 
Table 4. Appendage IV measurements (length/width) in mm. 
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NMS specimen Appendage V  
G.1897.32.18  (podomeres 3 – 4): 3; 9*/5. 4; 8*/5. 
G.1897.32.71 (podomere 1): Coxa; 12/5. 
G.1897.32.91 (podomeres 1 – 6): Coxa; 26/12. 2; 5/11. 3; 6/11. 4; 23/10. 5; 17/9. 

6; 19/8.  
G.1897.32.98 (podomere 1): Coxa; 15/8. 
G.1897.32.103 (podomere 1): Coxa; 20/8. 
G.1897.32.107 
 

(podomeres 1 – 5): Coxa; 25/12. 2; 5/10. 3; 5/10. 4; 15/9. 5; 20/8.  

G.1897.32.108 (podomeres 4 – 6): 4; 8/4. 5; 6/3. 6; 2.5*/3. 
G.1897.32.868  (podomeres 4 – 5): 4; 24/8. 5; 20/7. 
 
Table 5. Appendage V measurements (length/width) in mm. 
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NMS 
specimen 

Appendage VI  

G.1885.26.72.5  (podomeres 1 – 7): Coxa; 22/36. 2; –. 3; –. 4; 40/12. 5; 35/12. 6; 
18/10. 7; 19/10. 

G.1897.32.18 (podomeres 1 – 6): Coxa; 10/12. 2; 2/6.5. 3; 2.5/6.5. 4; 12.5/6. 5; 
13/5. 6; 9*/4. 

G.1897.32.71 (podomeres 1): Coxa; 19/30. 
G.1897.32.91 (podomeres 1): Coxa; 22/33. 
G.1897.32.98  (podomeres 1 – 5): Coxa; 18/23. 2; 3/10. 3; 3/ 10. 4; 14/7. 5; 12/7. 
G.1897.32.103  (podomeres 1 – 2): Coxa; 22/36. 2; 6/15.  
G.1897.32.107 (podomeres 1): Coxa; 21/36. 
G.1897.32.868 (podomeres 1 – 9): Coxa; 22/32. 2; 4/14. 3; 4/14. 4; 18/11. 5; 24/10. 

6; 21/9. 7; 17/9. 8; 16/5*. 9; 13/4*. 
G.1897.32.869  (podomeres 1 – 3): Coxa; 23/38. 2; 6/16. 3; 6/15.  
 
Table 6. Appendage VI measurements (length/width) in mm. 
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NMS specimen Metastoma 
length 

Metastoma 
width 

Notch 
depth 

Cleft 
length 

G.1885.26.72.5 37 28 4 20 
G.1897.32.18 10* 10.5 – – 
G.1897.32.91 32 21 3 20 
G.1897.32.94 13 9* – 8 
G.1897.32.98 28 19 2 18 
G.1897.32.103 30* 26 – 20 
G.1897.32.107 22* 18 2 – 
G.1897.32.868 15* 18 – 15* 
G.1897.32.869 33 26 3 20 
 
Table 7. Metastoma measurements. Dimensions in mm. *=incomplete 
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NMS specimen 1 2 3 4 5 6 
G.1885.26.72.5 12/101* 25/105* 15/101* 14/94* 14/85* 14/73* 
G.1885.26.72.10 5*/4* 12/15* 10/22* 10/23* 10/24* 10/25* 
G.1885.26.72.15 – 2.5/6.5* 2.5/12.5 2.3/12.5* 2/12 2/11 
G.1897.32.18 5/34 10/40 10/35* 9/28* 9/24* 5*/13* 
G.1897.32.71 15/61* 24/61* 15/59* 15/59* 15/55* 14/53 
G.1897.32.72.1 – 10/42* 10/43* 10/49 9/48 10/47 
G.1897.32.91 14/42* 25/88* 16/75* 16/84 14/80 15/58* 
G.1897.32.94 5/34* 9/33* 8/10* 6/28* 8/26* 8/25* 
G.1897.32.98 13/70* 20/65* 14/88* 14/84* 14/78* 15/57* 
G.1897.32.100 13/104* 19/102* 15/78* 15/68* 14/58* 10*/42* 
G.1897.32.102 9/72* 15/66* 10/56* 11/45* 11/38* 6*/35* 
G.1897.32.103 12/82 20/85 14/89 15/92 14/88 15/82 
G.1897.32.106 8/32* 18/58* 14/52* 14/43* 14/30* – 
G.1897.32.108 4.5/25* 7.5/30.5* 7/33* 6/33* 6.5/30* 6/30* 
G.1897.32.109 – – 10/105 10/101* 11/95 11/93 
G.1897.32.110 10/51.5* 15/56.5* 11/55* 11/59* 5*/26* – 
G.1897.32.111 8/32* 15/41* 10/44* 10/47* 10/55* 10/55* 
G.1897.32.114 4/46* 6/45* 5/32* 5/30* 5/27* 5/26* 
G.1897.32.117 5/22* 9/38* 6/42* 6/47* 6/52* 6/52* 
G.1897.32.188 9/31* 20/36* 15/41* 15/42* 16/42* 16/41* 
G.1897.32.868 10/85 18/99 12/103 12/104 11/102 11/96 
 
Table 8. Mesosoma (length/width) in mm. *=incomplete 
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NMS specimen 7 8 9 10 11 12 Telson 
G.1885.26.72.5 12/62* 11/55* – – – – – 
G.1885.26.72.10 10/50* 10/45* 10/30* 12/30* 13/32* 15/20* – 
G.1885.26.72.15 2/10 2/8 2/6.5 4/6 4/4.5 5.3/5 19/3 
G.1897.32.71 12*/51 – – – – – – 
G.1897.32.72.1 6/34* 8/19* 8/18* 8/10* 10/14 12/12 25*/6 
G.1897.32.72.2 – 4*/5* 12/12* 17/24* 18/26* 22/23 50*/12 
G.1897.32.72.3 – – – – – 9*/16 54*/10 
G.1897.32.91 15/43* 16/47* 15/50* 19/53 22/47 29/32 65*/16 
G.1897.32.98 14/55* 14/48* 15/44* 15/36* 18/30* 23/22 57*/15 
G.1897.32.103 13/76  12/72 15/48* 15/34* – – – 
G.1897.32.108 4*/27* 6.5/16* 8/26.5 8/26.5 8/21 14/14 10.5*/7.5 
G.1897.32.109 10/89 9/70* 10/71 11/58 12/50 19/38 70*/20 
G.1897.32.111 9/50* 10/43* 10/43* 10*/31* – – – 
G.1897.32.114 5/33* 5/22* 4*/5* – – – – 
G.1897.32.117 6/49* 6/38* 6/33* 6/24* 6/15* 4*/7* – 
G.1897.32.188 15/36* 13/33* – – – – – 
G.1897.32.868 10/89 11/76 12/72  14/55* 14/51* – – 
 
Table 9. Metasoma and telson (length/width) in mm. *=incomplete 
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Figure 1. Drepanopterus pentlandicus Laurie, 1892. Original figure of a juvenile 

individual (part to specimen NMS G.1897.32.18?) in Laurie, 1899, specimen now 

considered lost. 
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Figure 2. Reconstruction of adult Drepanopterus pentlandicus Laurie, 1892. Dorsal and 

ventral views of a type-A individual are shown either side, while a type-B genital 

operculum is shown in the centre. Scale bar = 10 mm. 
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Figure 3. Drepanopterus pentlandicus Laurie, 1892. a: Holotype, NMS G.1885.26.72.5, 

consisting of carapace, mesosomal segments and proximal portions of appendage VI, b: 

NMS G.1885.26.72.5, counterpart. Scale bar = 10 mm. 
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Figure 4. Drepanopterus pentlandicus Laurie, 1892. Interpretive drawing of holotype 

NMS G.1885.26.72.5. Abbreviations: LE, lateral eyes; M, metastoma; MR, marginal rim; 

MS, median suture; TU, tubercles; T1–T12, tergites 1–12; VP, ventral plate. Prosomal 

appendages are labelled with Roman numerals (I–VI), and individual podomeres are 

labelled with Arabic numerals (1–9), proximally to distally. Scale bar = 10 mm. 
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Figure 5. Drepanopterus pentlandicus Laurie, 1892. a: Paratype, NMS G.1885.26.72.15, 

opisthosoma of juvenile individual, b: Interpretive drawing of NMS G.1885.26.72.15, c: 

Interpretive drawing of NMS G.1897.32.18, d: NMS G.1897.32.18, juvenile individual 

consisting of carapace, anterior mesosomal segments and parts of prosomal appendages 

III, IV and VI. Abbreviations: AF, articulating facet; B, blade; LE, lateral eyes; M, 
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metastoma; MR, marginal rim; TU, tubercles; T1–T12, tergites 1–12; TE, telson; VP, 

ventral plate. Prosomal appendages are labelled with Roman numerals (I–VI), and 

individual podomeres are labelled with Arabic numerals (1–9), proximally to distally. 

Scale bars = 10 mm. 
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Figure 6. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1897.32.101, partial 

carapace and mesosomal segments, b: NMS G.1897.32.102, counterpart to NMS 

G.1897.32.101, c: NMS G.1897.32.107, prosoma showing ventral structures, d: NMS 

G.1897.32.105, anterior of prosoma showing ventral plates, e: NMS G.1897.32.106, 

opisthosomal segments. Scale bars = 10 mm. 
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Figure 7. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1897.32.97, relatively 

complete individual including carapace, opisthosoma and telson, b: NMS G.1897.32.98, 

counterpart to NMS G. 1897.3.97. Scale bars = 10 mm. 
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Figure 8. Drepanopterus pentlandicus Laurie, 1892. Enlarged view of carapace of NMS 

G.1892. 897.32.97. Scale bar = 10 mm. 
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Figure 9. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1897.32.868, almost 

complete specimen consisting of carapace and opisthosoma, including appendage VI and 

type B genital appendage, b: Interpretive drawing of NMS G.1897.32.868. ACT, annular 
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cuticular thickening; Abbreviations: AF, articulating facet; AOP, anterior opercular plate; 

GA, genital appendage; LE, lateral eyes; M, metastoma; MOP, median opercular plate; 

MR, marginal rim; POP, posterior opercular plate; TU, tubercles; T1–T12, tergites 1–12; 

TE, telson; VP, ventral plate. Prosomal appendages are labelled with Roman numerals (I–

VI), and individual podomeres are labelled with Arabic numerals (1–9), proximally to 

distally. Scale bars = 10 mm. 
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Figure 10. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1897.32.869, prosoma 

showing lateral eyes, ventral plates, metastoma and coxa of appendage VI, b: Interpretive 

drawing of NMS G.1897.32.869. Abbreviations: ACT, annular cuticular thickening; LE, 
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lateral eyes; M, metastoma; MR, marginal rim; MS, median suture; T1–T12, tergites 1–

12; VP, ventral plate. Prosomal appendages are labelled with Roman numerals (I–VI), 

and individual podomeres are labelled with Arabic numerals (1–9), proximally to distally. 

Scale bars = 10 mm. 
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Figure 11. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1897.32.109, metasoma 

and telson, b: NMS G.1897.32.110, carapace with apparently round lateral eye and 

mesosomal segments. Scale bars = 10 mm. 
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Figure 12. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1897.32.72, multiple 

specimens preserved in different levels of sediment on the same slab, b: Interpretive 

drawing of NMS G.1897.32.72. Abbreviations: MR, marginal rim; T1–T12, tergites 1–

12; TE, telson. Scale bars = 10 mm. 
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Figure 13. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1897.32.91, remarkably 

well preserved specimen showing details of the ventral prosomal structures and the 

median sutures on the Blattfüsse, b: Interpretive drawing of NMS G.1897.32.91. 

Abbreviations: M, metastoma; MOP, median opercular plate; MR, marginal rim; POP, 

posterior opercular plate; T1–T12, tergites 1–12; TE, telson; VP, ventral plate. Prosomal 

appendages are labelled with Roman numerals (I–VI), and individual podomeres are 

labelled with Arabic numerals (1–9), proximally to distally. Scale bars = 10 mm. 
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Figure 14. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1897.32.92, isolated 

appendage (III?) with blades, b: Interpretive drawing of NMS G.1897.32.92, c: NMS 

G.1897.32.94, weathered specimen showing fragments of cuticle, d: NMS G.1897.32.99, 

tangle of appendage podomeres. Abbreviations: B, blade. Prosomal appendages are 

labelled with Roman numerals (I–VI), and individual podomeres are labelled with Arabic 

numerals (1–9), proximally to distally. Scale bars = 10 mm. 
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Figure 15. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1885.26.72.12, lateral 

portions of mesosomal segments, b: NMS G.1885.26.72.10, portion of mesosoma and 

metasoma. Scale bars = 10 mm. 
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Figure 16. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1885.26.72.11, 

opisthosomal segments, b: NMS G.1885.26.72.3, fragment of large, flattened carapace 

showing compressed lateral eye and cuticular ornament. Scale bars = 10 mm. 
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Figure 17. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1897.32.108, showing 

opisthosoma and base of telson, b: NMS G.1897.32.111, lateral portions of opisthosomal 

segments. Scale bar = 10 mm. 
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Figure 18. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1897.32.112, ventral 

view of tergites showing median tubercles, b: NMS G.1897.32.113, lateral portions of 

tergites, c: NMS G.1897.32.115, tergites showing cuticular sculpture. Scale bars = 10 

mm. 
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Figure 19. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1897.32.71, specimen 

preserving the type A genital appenda, b: Interpretive drawing of NMS G.1897.32.71. 

Abbreviations: AOP, anterior opercular plate; DP, deltoid plate; GA, genital appendage; 

MOP, median opercular plate; MR, marginal rim; POP, posterior opercular plate; S, 

spatula; T1–T12, tergites 1–12. Prosomal appendages are labelled with Roman numerals 

(I–VI). Scale bar = 10 mm. 
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Figure 20. Drepanopterus pentlandicus Laurie, 1892. a: NMS G.1897.32.100, poorly 

preserved specimen with carapace and mesosomal segments, b: NMS G.1897.32.103, 

fractured specimen showing details of carapace structures and anterior opisthosoma. 

Scale bar = 10 mm. 
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Figure 21. Drepanopterus pentlandicus Laurie, 1892. NMS G.1897.32.114, specimen 

showing various degrees of suturing of the blattfüsse. Scale bar = 10 mm. 
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Figure 22. Single most parsimonious tree derived from the matrix shown Appendix 1, 

analysed as detailed in the material and methods section. Bootstrap values are shown 

above the branches, generated from 50% character resampling with 1000 repetitions, 
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while shown beneath the branches are jackknife values with 20% character resampling 

with 1000 repetitions, with bremer support values shown in bold within parentheses.  
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Chapter 2 

The problematic ‘chelicerate’ Melbournopterus crossotus Caster & 

Kjellesvig-Waering: a case of mistaken identity 

 

James C. Lamsdell, Ian G. Percival and Markus Poschmann 

(Formatted for submission to Alcheringa) 

 

The type (and only known) specimen of Melbournopterus crossotus Caster & Kjellesvig-

Waering, an enigmatic late Silurian fossil that was initially assigned to the eurypterid family 

Stylonuridae, is critically examined for the first time in 60 years. It is reinterpreted as most likely 

the dorsal valve of a craniate brachiopod, with prominent paired adductor muscle scars (described 

originally as ‘lateral eyes’) situated anteromedially, a short hingeline, and a spinose anterior 

margin. 

 

MELBOURNOPTERUS CROSSOTUS Caster & Kjellesvig-Waering, 1953 is known from a 

single enigmatic specimen in part and counterpart, described from the upper Silurian 

(Monograptus nilssoni Zone) Dargile Formation near Heathcote in central Victoria, Australia. 

The fossil, originally assigned to the eurypterid family Stylonuridae, was interpreted as the 

external mould of an isolated carapace displaying external cuticular ornamentation and lateral 

eyes. However, the morphology of these “lateral eyes” is unlike those of any other stylonurid; 

they are rectangular, positioned on the posterior half of the carapace and angled so they converge 

anteriorly at the centre of the carapace. Furthermore, the posterior margin possesses short, blunt 
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spines. These unusual characteristics have led to uncertainty over the specimen’s assignment. 

Tollerton (1989) placed it in Eurypterida incertae sedis, but Plotnick (1999) suggested that 

Melbournopterus was not a eurypterid, instead considering that it may be a xiphosuran, whereas 

Tetlie (2004) retained Melbournopterus within Eurypterida but as a mycteropid.  

Xiphosurans are represented in Australia by only a handful of occurrences, including 

Victalimulus mcqueeni Riek & Gill, 1971 from the Lower Cretaceous Koonwarra Fossil Bed 

within the Strzelecki Group of Victoria, Austrolimulus fletcheri Riek, 1955 from a shale lens 

within the Middle Triassic Hawkesbury Sandstone of the Sydney Basin, New South Wales, 

Paleolimulus (=Dubbolimulus) peetae (Pickett, 1984) from the Middle Triassic Ballimore 

Formation and Kasibelinurus amicorum Pickett, 1993 from the Upper Devonian Mandagery 

Sandstone, both in central NSW, and Paleolimulus sp. from the Upper Permian Jackey Shale in 

Tasmania (Ewington et al. 1989). Interestingly, all these specimens have been found in rocks 

interpreted as freshwater deposits, either lacustrine or fluvial in origin. Two other species referred 

to xiphosurans by Chapman (1932) were reviewed and rejected by Pickett (1984). There are even 

fewer records of indisputable eurypterids from Australia (see the review by Selden 1993), with 

occurrences limited to Acutiramus cf. bohemicus (Barrande, 1872) from the Lower Devonian of 

Victoria (Burrow et al. 2002) and Adelophthalmus waterstoni (Tetlie, Braddy, Butler & Briggs, 

2004) (originally assigned to Rhenopterus) from the Upper Devonian of Western Australia, 

whereas Pterygotus (?) australis McCoy, 1899 from the upper Silurian of Melbourne, and other 

fragments from strata of similar age in the Cootamundra district of southern NSW that were 

referred to Hughmilleria by Gill (1951) or to Pterygotus by Caster & Kjellesvig-Waering (1953) 

are based on undiagnostic material. Considerable fragmentary eurypterid material from upper 

Silurian rocks in the Melbourne region remains undescribed in the collections of Museum 
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Victoria (David Holloway pers. comm., in Burrow et al. 2002). All known Australian eurypterids 

occur in marine strata.  

If Melbournopterus was a xiphosuran it would be the earliest representative of the group in 

Australia. Alternatively, if its eurypterid affinities could be established conclusively, this would 

have important implications for eurypterid biogeography and evolution. Although pterygotids and 

adelophthalmids were good dispersers capable of traversing the oceans between continents, the 

same does not apply to either stylonurids or mycteropids (Tetlie 2007), hence the occurrence of a 

representative of either group in the Silurian of Australia would lend support to the possibility of 

a Gondwanan origin for Eurypterida (Lamsdell et al. in press). If Melbournopterus was a 

mycteropid it would also be the oldest known member of the group. 

Very few morphological characters support its assignment to either group, however, and there 

is a very strong possibility that the phylogenetic position of this enigmatic fossil lies elsewhere. 

Surprisingly, despite the uncertainty of its affinities, the specimen itself has never been restudied 

in the six decades since the original description, making its critical re-examination essential. 

Furthermore, Caster & Kjellesvig-Waering’s (1953) alleged image of the counterpart (their figure 

2) actually is the same as their illustration of the part specimen (their figure 1), the photograph 

margins simply having been trimmed. The counterpart of the specimen is, therefore, figured here 

for the first time. 

 

Material and terminology 

The unique specimen preserved as part and counterpart, now housed in Museum Victoria (in 

Melbourne) with catalogue number MV P.134779, was collected from the upper Silurian Dargile 

Formation (Monograptus nilssoni Graptolite Zone: Ludlow) at a locality 4.2 km east-southeast of 
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Heathcote Railway Station, approximately 50 km north of Melbourne city centre. The host rock is 

a light brown laminated micaceous siltstone, lacking other fossils except for a poorly-preserved 

graptolite stipe. Plaster casts of the holotype are housed in the Field Museum of Natural History, 

Chicago, USA (FMNH PE22018) and the Naturhistorisk Museum in the University of Oslo, 

Norway (PMO A40620, A40621). An unidentified Ordovician craniiate brachiopod from the 

Fossil Hill Limestone that is illustrated in Fig. 2 for comparison with Melbournopterus is housed 

in the Palaeontological Collection of the Geological Survey of New South Wales at Londonderry 

in outer Sydney, with catalogue number MMF 45232.	  Brachiopod morphological terminology 

follows Williams & Brunton (1997). 

 

Characteristics of the holotype 

The specimen is subquadrate in outline and planar in profile. As oriented in Figure 1, the 

specimen measures 44.5 mm from posterior margin (top) to anterior margin (bottom), and is at 

least 45 mm wide. The posterior margin is slightly emarginate medially and is estimated to attain 

about half the maximum width. Posterolateral and lateral margins are incompletely exposed, but 

appear at least on the left side to be broadly and evenly convex. The anterior margin is about 

equal to the maximum width, and is very broadly convex; its most characteristic feature is a 

fringe of evenly-spaced, short (2.5 mm), blunt, cylindrical spines that protrude perpendicularly 

along the entire anterior margin. Whether these spines are solid or hollow can not definitively be 

determined, although there is a suggestion that they are tubular in one or two places. 

Incompleteness of the lateral margins prevents an assessment of how far around the shell the 

spines extend. 
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Internal details display strong bilateral symmetry, with a low, irregular median ridge dividing 

the posterior half, away from the hingeline. A conspicuous, well-defined pair of subrectangular 

depressions with convex corners (the “eyes” of the original interpretation) diverge anterolaterally 

from the anterior extremity of the median ridge and are relatively shallowly excavated into the 

shell floor. Slightly deeper and considerably smaller pit-like excavations separate the large paired 

depressions from the median ridge. Other possible indistinct scars extend in an arc from each end 

of the hingeline to the vicinity of the lateral extremities of the large paired subrectangular 

depressions. Several small conical pits are present immediately in front of (anterior to) the 

hingeline (one is especially prominent on the right-hand side of Figure 1A, expressed as a raised 

pimple-like feature on the left side of the counterpart, Figure 1B). The floor of the shell in its 

anterior half is crossed by several indistinct shallow meandering trail-like depressions, extending 

from the end of the median ridge almost to the spinose anterior margin. The original shell 

material is not preserved, but the broken edge of the internal mould suggests that it was quite thin. 

 

Discussion 

An objective analysis of the part and counterpart of the specimen, and comparison with 

representatives of other phyla that are likely to have co-existed in a late Silurian marine setting, 

has resulted in only one possible match – the dorsal valve of a craniate brachiopod. Our 

reassessment requires a reorientation of the specimen, relative to that in the original description 

by Caster and Kjellesvig-Waering (1953), who regarded the narrower margin of the specimen as 

anterior and the spinose margin as posterior. In our interpretation (Figs 1, 2A), the narrower, 

slightly emarginated edge of the specimen represents a hingeline and hence is posterior in 

position, whereas the spinose margin is anterior. The large paired subrectangular depressions may 
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be interpreted as the anterior adductor muscle scars (rather than eyes), the medial indentations 

either side of the anterior end of the median ridge are possibly scars of the brachial protractors, 

and the arcuate linear excavations and isolated pit-like depressions in the posterior half of the 

valve can be attributed to other muscle scars such as the posterior adductors and oblique internals 

(cf. Bassett 2000, fig. 89). The meandering shallow trail-like features in the anteromedian part of 

the valve are interpreted as vascula media. The peripheral fringe of spines is also compatible with 

a brachiopod interpretation, though this feature is more generally associated with acrothelids such 

as Acrothele and Orbithele, and occasionally occurs in zhanatellids (e.g. Thysanotos);  peripheral 

spines are unknown in craniids (M. Mergl, pers. comm.). 

The similarity between Melbournopterus crossotus and craniate brachiopods is most apparent 

when comparing the former with the Ordovician craniids Orthisocrania (Bassett 2000, figs 103f, 

j) and Pseudocrania (Bassett 2000, fig. 93a). Dorsal valves of both these craniids are planar and 

exhibit an array of morphological features comparable to M. crossotus, though they are 

considerably smaller (20–22 mm maximum width and length, only half the dimensions of 

Melbournopterus). However, another group of craniate brachiopods, the trimerellids (which 

became extinct by the end of the Silurian), commonly exceed 50 mm in maximum dimension. 

To further support the comparison with craniate brachiopods, we illustrate an undescribed 

example of Late Ordovician age from the Fossil Hill Limestone at Cliefden Caves in central 

NSW (Fig. 2B, C). This brachiopod, known only from this specimen (MMF 45232), is nearly 

identical in outline to Melbournopterus, and displays comparable paired posterior adductor and 

oblique internal muscle scars, and a remarkably similar median septum. Like Orthisocrania, it 

shows traces of radial ornament anteriorly, but as the periphery of the specimen is not preserved 

96



	  

we can not tell whether these ribs may have been produced as short spines as in Melbournopterus. 

Width of the specimen (18 mm) is again less than half that of Melbournopterus. 

This reinterpretation is not without its problems, the main one being that the conspicuous 

paired features, thought to be anterior adductor scars in Melbournopterus, diverge in the opposite 

direction to those in the known craniate brachiopods. An anterolaterally divergent configuration 

should still allow the muscles to contract to close the valves, so this does not negate the 

brachiopod hypothesis. We considered inverting Melbournopterus so that the spinose margin was 

uppermost; although in this orientation the presumed adductor muscle scars are more reminiscent 

of craniates, these muscles would be inserted within the posterior half of the valve, so imparting 

less of a mechanical advantage in valve closure. Furthermore, because the spines would then lie 

behind the hingeline, they may interfere with valve opening. Spines (and non-preserved sensory 

setae that may have occupied interspaces between the spines) are most likely to have protected 

the anterior opening of the shell. 

Lack of preservation of the shell material also hinders a definitive identification of the 

specimen as a brachiopod. Craniids have a calcitic or aragonitic shell, and lingulate brachiopods 

(including lingulides, acrotretides and siphonotretides) have a phosphatic shell. As suggested by 

the presence of graptolite fragments in the rock containing Melbournopterus, we interprete the 

depositional environment as relatively deep water in which it is possible that aragonite – if this in 

fact was the original composition of the shell – may have dissolved, leaving only the internal 

mould preserved.  

Given the rarity of available material (restricted to a solitary valve internal), some 

discrepancies in morphological features – such as the combination of external spines with an 

internal morphology that is more consistent with a group of brachiopods that are normally lacking 
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in spines, and divergence of the large paired adductor scars that is opposite from normal  – and 

the lack of knowledge regarding contemporaneous late Silurian craniate brachiopod taxa, it is 

prudent not to assign Melbournopterus to a genus or species at present. Our reinterpretation 

provides an alternative explanation of the affinities of this enigmatic fossil, certainly removing it 

from the eurypterids or xiphosurans and their kin, and potentially establishing it as a craniate 

brachiopod, although questions remain as to its exact phylogenetic position.          
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Fig. 1. Melbournopterus crossotus Caster & Kjellesvig-Waering, 1953, from the Upper Silurian 

Dargile Formation, near Heathcote, Victoria, Australia. Holotype and sole specimen. A, part MV. 

P134779B (painted black to enhance details); B, counterpart MV. P134779A (natural colour). 

Scale bars = 10 mm. 
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Fig. 2. A, Melbournopterus crossotus Caster & Kjellesvig-Waering, 1953, holotype MV. 

P134779B, coated with ammonium chloride, and annotated to show features indicative of a 
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craniate brachiopod affinity. A = posterior margin and hingeline; B = median septum; C = paired 

posterior adductor and oblique internal muscle scars; D = paired anterior adductor muscle scars; 

E = brachial protractor muscle scars; F = traces of vascula media mantle canals; G = anterior 

margin fringed with spines. Scale bar = 10 mm. 

B, C, undescribed craniate brachiopod MMF 45232, from the Kalimna Limestone Member of the 

Fossil Hill Limestone (Late Ordovician: early Katian age), Cliefden Caves, N.S.W., Australia, 

showing interior of dorsal valve (B) and corresponding internal mould (C). Note similarity of 

morphological features to those exhibited by Melbournopterus crossotus. See text for further 

explanation. Scale bars = 5 mm. 
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Chapter 3 

The eurypterid Stoermeropterus conicus from the lower 

Silurian Pentland Hills, Scotland 

James C. Lamsdell 

(Formatted for submission to Palaeontographical Society Monographs) 

 

ABSTRACT 

Stoermeropterus conicus (Eurypterida: Eurypterina), from the Telychian (Upper 

Llandovery, Silurian) of Pentland Hills near Edinburgh, Scotland, is described from 

material originally assigned to three different species (Nanahughmilleria conica, 

Drepanopterus bembycoides and Drepanopterus lobatus). Two other existing eurypterid 

species, Hughmilleria lata from the Wenlock of Norway and Drepanopterus nodosus 

from the Pridoli of North America are recognized as being congeneric with S. conicus, 

united principally by their possession of moveable mesosomal spines on the mesosoma, 

genital spatulae and a bulbous telson ‘boss’. Several characters support the assignment 

Stoermeropterus to Moselopteridae, the most basal eurypterine clade, including its 

possession of a pediform appendage VI with a modified ‘podomere’ 7a and the 

possession of a coxal ‘ear’, which may represent the remains of a much-reduced exopod. 

Stoermeropterus conicus resolves phylogenetically as the most basal known eurypterine, 

and can aid in reconstructing the eurypterid ground plan. As such an attempt is made to 

reconstruct the characteristics that are plesiomorphic for Eurypterida through comparison 

with basal Eurypterina, Stylonurina, chasmataspidids and synziphosurines. Several 

104



 

characteristics previously thought to be autapomorphies of Stylonurina, such as a three-

segmented genital operculum, are now shown to actually be plesiomorphic conditions, 

while other apparently derived characteristics such as an epistoma and genital spatulae 

may be characters that are present in all eurypterids but are respectively either 

paedomorphically retained into adulthood or become hypertrophied in various species. 

Following the identification of a metastoma and genital appendage in some 

chasmataspidid species, the sole currently known eurypterid autapomorphy is identified 

as the fusion of the opercular plates of somites VIII and IX. Evolutionary relationships 

among the traditional ‘merostome’ groups primarily in light of segment articulations and 

the development of the appendage of somite VII and the concept that synziphosurines 

may represents a paraphyletic stem grade to a group inclusive of xiphosurids, 

chasmataspidids, eurypterids and arachnids is proposed. 

 

INTRODUCTION 

 

Eurypterids, an extinct order of predominantly predatory Palaeozoic aquatic 

chelicerates with a fossil record spanning the mid-Ordovician to the end-Permian, have 

been known from the Silurian strata of the Pentland Hills since the late 1800s. The fauna, 

first described by Laurie (1892, 1899), is possibly one of the most important eurypterid 

fossil sites in the world; consisting of a diverse eurypterid community. A total of nine 

genera are known from the site, including both eurypterids with their posterior prosomal 

appendages modified into paddle-like organs (Eurypterina) and those with entirely 

pediform appendages (Stylonurina). This results in a high local morphological diversity 
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(Text-fig. 1). Overall, the locality accounts for 15% of all known stylonurine eurypterid 

species, and is currently the most diverse eurypterid locality in the world (Plotnick 1999). 

Both eurypterine and stylonurine eurypterids are found in a variety of salinities, 

indicating a euryhaline mode of life (Braddy 2001), however by the Carboniferous 

stylonurines were limited to freshwater environments. The nektonic Eurypterina reached 

their acme in the Silurian before declining drastically through to the end Devonian, 

however Stylonurina diversity remained more or less constant from the Silurian through 

to the order’s eventual extinction towards the end of the Permian (Lamsdell & Braddy 

2010). Recent phylogenetic analyses have confirmed the monophyly of the two suborders 

within Eurypterida (Tetlie 2007a; Lamsdell et al. 2010a,b), and these have shown that the 

most basal members of the Eurypterina had their sixth appendage as a walking leg 

bearing a modified ‘podomere 7a’ lobe-like spine.  Further study of these basal members 

is required in order to more accurately determine the nature of the evolutionary transition 

from a benthic to nektonic habitat and the relationships between the basal taxa of the 

Eurypterina and the Stylonurina.  

Revised interest in the Pentland fauna over recent years has resulted in the 

redescription of a number of genera, including the recognition of Bembicosoma 

pomphicus Laurie, 1899 as a synziphosurine (Anderson & Moore 2004) and Kiaeropterus 

cyclophthalmus (Laurie, 1892) as a member of the Stylonurina (Tetlie et al. 2007), while 

simultaneously new investigation of the Drepanopteridae (Poschmann & Tetlie 2004; 

Lamsdell et al. 2009) suggested that the family was polyphyletic, containing both derived 

stylonurines and basal Eurypterina. This culminated in the realization that several of the 

Pentland species (Nanahughmilleria (?) conica (Laurie, 1892), ‘Drepanopterus’ 
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bembycoides Laurie, 1899 and ‘Drepanopterus’ lobatus Laurie, 1899) represented a 

distinct genus of basal eurypterine. Lamsdell et al. (2010a) assigned ‘Drepanopterus’ 

bembycoides, as the most completely known species, to their new family Moselopteridae, 

however the lack of an accurate, modern anatomical description of these species has 

limited attempts to include them in broader treatments of Eurypterina phylogeny. 

Herein a new genus, comprising the newly synonymized species ‘Nanahughmilleria’ 

conica, ‘Drepanopterus’ bembycoides and ‘Drepanopterus’ lobatus, is described for the 

first time as Stoermeropterus gen. nov., including a complete description of all known 

specimens with illustrations and photographs. Based on these specimens and comparisons 

with other eurypterid taxa a phylogenetic analysis of the basal Eurypterida is presented 

and the position of Stoermeropterus is commented upon, along with its importance for 

understanding basal eurypterid phylogeny, character evolution, and palaeoecology. This 

detailed description aims to provide data for Stoermeropterus to be included in future 

studies of eurypterid evolution, including phylogenetic analyses that would previously 

have excluded Stoermeropterus despite its completeness and importance for resolving 

plesiomorphic character states. 

 

MATERIAL 

 

The material of Stoermeropterus gen. nov. conicus described here includes all known 

specimens, held at the National Museums of Scotland in the Hardie (NMS G.1897.32) 

and Henderson (NMS G.1885.26) collections. 
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GEOLOGICAL SETTING 

 

All known fossil specimens of Stoermeropterus gen. nov. conicus originate from the 

Telychian (Upper Llandovery, Silurian) rocks (see Loydell 2005; Molyneux et al. 2008) 

of the Pentland Hills, located south-west of Edinburgh, Scotland. The majority of the 

Pentland Hills strata consists of Old Red Sandstone deposited in the Devonian and early 

Carboniferous, however Silurian rocks are exposed in three inliers; Bavelaw, Loganlea-

Craigenterrie, and the North Esk Inlier (Clarkson & Taylor 2007). The North Esk Inlier is 

the largest and most fossiliferous outcrop and is divided into five distinct subgroups; the 

Reservoir, Deerhope, Cock Rig, Wether Law Linn and Henshaw formations (Tipper 
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1976; Robertson 1989). The succession, with its changing faunas, can be directly linked 

with phases of a continuous marine regression (Clarkson 2000), with the oldest beds (the 

Reservoir Formation) deposited in relatively deep-water conditions. The overlying 

Deerhope Formation represents a shallower marine environment and in places preserves 

an abundant fauna, while the Cock Rig Formation above it represents the growth and 

development of a persistent barrier island system after a period of rapid shallowing 

(Clarkson et al. 2001). The large lagoon enclosed behind the offshore barrier forms the 

Wether Law Linn Formation, the initial typical-marine faunas giving way to a 

composition dominated by fluctuating salinity as deposition progresses before they 

become increasingly scarce. The youngest part of the succession is the Henshaw 

Formation, a series of red sandstones and conglomerates deposited in a semi-arid desert.  

The eurypterids are located in an exposure at Gutterford Burn (GR NT155579; Text-

fig. 2a), located at the base of the Deerhope Formation (Anderson et al. 2007). Anderson 

et al. undertook a detailed examination of the site and presented a sedimentary log of the 

strata, reproduced in a simplified form here (Text-fig. 2b). The Gutterford Burn 

succession consists of 23 metres of exposed strata divided into eight lithologies by 

Anderson et al.; micaceous siltstones, the Gutterford Burn Limestones, green shales, the 

graptolite flags, sandstone with weathered clasts, green clay, the Eurypterid Bed, and 

purple siltstones. The micaceous siltstones are the oldest beds in the exposed succession, 

comprising 3 m of green-brown siltstones deposited in beds 50 – 100 mm thick. Some of 

the beds at the base of the succession are bioturbated by branching Chondrites Sternberg, 

1833 burrows while a bed of fine-grained green siltstone 2.5 m into the section contains 

the coral Favosites multipora Lonsdale, 1839, stick bryozoans, lingulid brachiopods and 
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monograptid graptolites. The Gutterford Burn Limestones are a series of 18 calcareous 

beds that extend for 9.5 m, with individual bed thicknesses increasing upwards through 

the section. The calcareous beds are rich in shelly fossils including brachiopods, bivalves, 

corals, bryozoans and rare trilobites along with reported finds of the conodont 

Pterospathodus amorphognathoides Walliser, 1964. The surfaces of the individual beds 

are often covered with Dictyocaris ramsayi Salter, 1860 in association with small 

branching bryozoans and monograptids such as Monograptus priodon (Bronn, 1835). The 

next 1.9 m of the succession consists of the massively bedded green shales and contains 

the corals Favosites multipora and Palaeocyclus porpita (Linnaeus, 1767) preserved in 

their life position. Following the green shales lies 3.4 m of graptolite flags, consisting of 

dark green shales with six interbedded massive grey-green micaceous flagstones. These 

are planar laminated with an average bed thickness of 10 – 15 cm, the lower surfaces of 

which are covered with densely packed Dictyocaris ramsayi. Dendroid graptolites, 

monograptids, the graptolite Oktavites excentricus (Bjerreskov, 1975), the putative 

hexacoral Mirmor andreae Lamont, 1978, small starfish and the large orthocone 

Orthoceras politum M’Coy, 1851 have also been reported from these beds.  The final 1.5 

m before the Eurypterid Bed consists of the non-fossiliferous sandstone with weathered 

clasts, consisting of ‘flinty’ sandstone with weathered decalcified clasts 10 – 20 mm 

thick, succeeded by a 5 cm thick bed of soft green clay interpreted as a band of altered 

volcanic ash. The Eurypterid Bed itself is c. 55 cm thick, the lower surface of which is 

not directly conformable with the underlying siltstones indicating infilling of a pre-

existing irregular sea floor topography. A thin clay band exists 8 cm up from the 

Eurypterid Bed’s base, while 13 cm from the base is a calcareous-rich horizon containing 
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crinoid ossicles, stick bryozoans, monograptids and brachiopods. The top of the 

Eurypterid Bed is covered by another green clay band with irregular topology suggesting 

it draped the underlying beds. Above the Eurypterid Bed the remainder of the exposed 

succession consists of 1.2 m of sandstones capped by finely laminated blue-purple 

micaceous siltstones. 

The Eurypterid Bed is located near the base of the slope rising up from the banks of 

the Gutterford Burn, approximately 3 m up from where the succession dips beneath the 

water level. The strata here have overturned, leading to the chronologically youngest beds 

being located at the base of the exposure. The bed was recognized as a Konservat-

Lagerstätte by Anderson et al. (2007), citing the presence of eurypterids, scorpions and 

synziphosurines. Eurypterids (like other chelicerates) have a non-mineralized cuticle 

(Gupta et al. 2007) that is rarely preserved in the fossil record and highly dependent on 

environmental conditions, so any locality where eurypterid cuticle is preserved in 

abundance should be considered a Konservat-Lagerstätte. The Eurypterid Bed of 

Gutterford Burn is one of a series of predominantly Scottish eurypterid Lagerstätten 

found in the United Kingdom, including the Lower Wenlock Slot Burn Formation of 

Seggholm, Ayshire (Peach and Horne 1899; Cocks et al. 1971), the Patrick Burn 

Formation of Logan Water (Late Llandovery/Wenlock) and the Kip Burn Formation 

(Wenlock) of Lesmahagow (Ritchie 1968a; Cocks et al. 1971), the Lochkovian age 

Dundee Formation of Kelly Den near Arbroath (Braddy 2000), the Viséan East Kirkton 

Quarry near Bathgate, West Lothian (Jeram 1994; Jeram & Selden 1994), and the Pridoli 

age Downton Castle Sandstone from Ludlow and Kington, Herefordshire (Tetlie 2006). 

Of these the Gutterford Burn Eurypterid Bed is one of the most diverse, and the most 
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important for stylonurine research. The arthropod specimens are mostly entire individuals 

and are associated with articulated crinoids, echinoids and starfish. This, coupled with the 

layers of volcanic clay, suggests that the bed represents a smothering event caused by the 

sea bed being quickly covered by a sudden influx of fine-grained, volcanic-ash-

influenced sediment (Anderson et al. 2007), preserving the sea floor community 

relatively intact (note however that Donovan et al. (2011) recently considered the 

majority of echinoderms from the North Esk Inlier to be allochthonous). The 

echinoderms are thought to have perished due to the blocking of the ambulacral system 

by fine-grained sediment as in the Lower Jurassic Gmünd obrution deposit (Seilacher et 

al. 1985). A similar event is thought to have occurred in the upper Ordovician Elkhorn 

Formation, Ohio, where hundreds of Megalograptus specimens are preserved in a largely 

inflated condition in association with a marine invertebrate fauna (Caster & Kjellesvig-

Waering 1964), and the Wenlock-aged Herefordshire Lagerstätte is interpreted to be an 

ashfall accumulation in an outer shelf environment (Orr et al. 2000a). Anderson et al. 

(2007) suggested that the localized preservation of eurypterids in ‘hollows’ on the 

bedding surface may be explained by the infilling of the pre-existing topography and that 

concentrations of faunal elements such as starfish may be explained by their clustering at 

the bottom of such hollows in the sea floor, a similar preservational environment to that 

proposed for the fauna preserved in submarine channel slides from Leintwardine in 

England (Whitaker 1962). 

The associated fauna of echinoids, starfish and brachiopods indicates that the 

Eurypterid Bed was preserved under normal marine salinity. Eurypterids are thought to 

have been largely euryhaline, capable of tolerating a wide range of salinities (Braddy 
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2001), however the majority of specimens (stylonurines in particular) are known from 

lagoonal or freshwater deposits. Waterston (1979) mentioned large amounts of plant 

material found in the Eurypterid Bed, which could suggest a terrestrial influence and an 

external source for some of the faunal elements. Excavation of the Eurypterid Bed itself 

(Anderson et al. 2007) yielded no plant material however, and a detailed study of the 

specimens held at NMS confirmed that no terrestrial plant material is found in association 

with the Eurypterid Bed fauna. This, coupled with the extraordinary levels of articulation 

of the chelicerates, indicates that all components of the fauna are preserved in their living 

habitat, indicating that the paucity of Siluro-Devonian marine eurypterid localities is 

related to preservation potential of eurypterid cuticle rather than a genuine ecological 

trend. 

There are four main components of the fauna preserved in the Eurypterid Bed (Text-

fig. 3). The infaunal component is represented solely by the presumed annelid Keilorites 

Allan, 1927. The general lack of infaunal organisms is probably due to the extraordinary 

preservation being limited to the seabed surface and the lack of a hard exoskeleton in the 

burrowing organisms. The fossils of Keilorites are thought to represent the membrane 

lined burrows of polychaete worms (Allan 1927) and this structured organic component 

to the burrow wall may be the reason for their preservation.  

The benthic community is the most abundant and diverse component of the fauna, 

consisting of the majority of the chelicerates and all of the echinoderms. There is also an 

abundant sessile constituent; by far the most common organism preserved in the 

Eurypterid Bed is Dictyocaris ramsayi, now considered to be a benthic marine alga 

(Botting 2007), which formed large sheets on the sea floor. The octocoral Atractosella 

115



 

andreae (Lamont, 1978) and stick bryozoan Stictopora Hall, 1847 are also found within 

the association, along with the moderately abundant crinoids Macrostylocrinus 

silurocirrifer Brower, 1975, Dimerocrinites pentlandicus Brower, 1975, Myelodactylus 

parvispinifer (Brower, 1975), and Dendrocrinus extensidiscus Brower, 1975. The 

remainder of the sessile aspect is composed of a moderately abundant brachiopod fauna 

consisting of Erinostrophia undata (M’Coy, 1846), Strophochonetes cornuta (Hall, 

1843), Skenidioides lewisii (Davidson, 1848), Isorthis (Ovalella) aff. mackenziei 

Walmsley in Walmsley & Boucot, 1975, Visbyella visbyensis (Lindström, 1861), 

Dicoelosia aff. alticavata Whittard & Barker, 1950, Sphaerirhynchia sphaeroidalis 

(M’Coy, 1852), Oglupes aff. alba (Lamont, 1978), and Pseudolingula Mickwitz, 1909. 

The motile benthos is dominated by eurypterids and stelleroids. While the stelleroid 

population is diverse, consisting of Schuchertia wenlocki Spencer, 1922, Taeniactis 

wenlocki Spencer, 1922, Lepyriactis nudus Spencer, 1927, Urasterella gutterfordensis 

Spencer, 1918, Protactis wenlockensis (Spencer, 1922), Crepidosoma wenlocki Spencer, 

1930 and Furcaster leptosoma (Salter, 1857), they are not especially abundant. The 

echinoid Aptilechinus caledonensis Kier, 1973 is also a rare component of the fauna. The 

benthic chelicerates comprise rare scorpions, Dolichophonus loudonensis (Laurie, 1899), 

and uncommon synziphosurines, Bembicosoma pomphicus, but are composed mostly of 

the stylonurine eurypterids Parastylonurus ornatus (Laurie, 1892), Parastylonurus 

hendersoni Waterston, 1979, Hardieopterus macrophthalmus (Laurie, 1892), 

Drepanopterus pentlandicus Laurie, 1892 and Laurieipterus elegans (Laurie, 1899). 

There is also a single eurypterine eurypterid restricted to the benthic environment, 

Stoermeropterus conicus, which is the single most common arthropod present in the 
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fauna. Finally a single species of gastropod, Euomphalopterus cf. apedalensis Pitcher, 

1939, is also present in the community. 

The demersal component of the fauna is restricted to two species of eurypterids; 

‘Eurypterus’ minor Laurie, 1899 and ‘Carcinosoma’ scoticum (Laurie, 1899). 

‘Eurypterus’ minor is comparatively rare and would have been limited to swimming 

close to or walking on the substrate, while ‘Carcinosoma’ scoticum is known from a 

handful of specimens that likely represent only two or three large individuals. Unlike 

‘Eurypterus’ minor, ‘Carcinosoma’ scoticum probably had the capability to be a strong 

swimmer, moving from site to site via the pelagic environment before returning to the 

demersal system to hunt. It could also have lain on, or partially in, the substrate waiting 

for prey to come within reach. Fully pelagic organisms are also preserved in the 

Eurypterid Bed, albeit as a very small fraction of the fauna restricted to rare specimens of 

the eurypterid Slimonia dubia Laurie, 1899, the more common cephalopod Geisonoceras 

maclareni (Murchison, 1859), and very rare monograptid graptolites Retiolites 

angustidens Elles & Wood, 1908, Monograptus priodon, Monoclimacis geinitzi (Bouček, 

1932) and Monoclimacis vomerina (Nicholson, 1872). 

The nature of preservation in the Eurypterid Bed provides a rare view into a single 

moment within a relatively complete fossil community, with a number of different 

trophic levels preserved in direct association with each other. This can provide additional 

information on the environment and on the potential relationships and life habits of the 

faunal constituents. The presence of a benthic primary producer such as Dictyocaris in 

large quantities indicates that the sea floor must have been within the photic zone, and 

also provides an abundant source of food. Modern echinoids generally graze on algae but 
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will also feed on sponges, bryozoans and other seafloor detritus, and so it is likely that 

Aptilechinus and the gastropod Euomphalopterus fed predominantly on the vast sheets of 

Dictyocaris. The brachiopods, octocorals, crinoids and bryozoans meanwhile would have 

taken their food out of suspension, capturing organic particles and microfauna that passed 

within reach as they fell out of the pelagic environment. The stelleroids could have fed on 

the brachiopods, bryozoans and corals in the same manner as modern starfish do. The 

eurypterids Parastylonurus and Hardieopterus along with the synziphosurine 

Bembicosoma were probably detritivores, scavenging for food on the sediment surface, 

however the forward-placed lateral eyes with a forward and lateral field of vision and 

small chelicerae and anterior spinous appendages of Parastylonurus led Waterston (1979) 

to suggest that it may have browsed the abundant algal matter. Hardieopterus meanwhile 

could have lived partially buried in the substrate as indicated by the somewhat flattened 

prosomal appendages that appear well adapted for shovelling, the pedunculate epimera 

that could have acted in a manner similar to the lunules and notches on the tests of 

scutellinid and rotulinid echinoids, the large centrally-placed lateral eyes that would have 

afforded an all-round field of vision and the dorsal pustular ornamentation which would 

have provided camouflage and sensory input (Waterston 1979). This sort of niche 

separation among organisms living in the same environment would be logical so as to 

avoid direct competition with each other, particularly when given the large number of 

individuals preserved in the Eurypterid Bed. Another variation on the scavenging mode 

of life is exhibited by Drepanopterus and Laurieipterus, sweep-feeders (Lamsdell et al. 

2009; 2010a) that may also have taken invertebrate prey such as Keilorites out of the 

substrate. Stoermeropterus would undoubtedly also have scavenged for food, however 
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may have also hunted for live prey. The scorpion Dolichophonus was a medium-sized 

predator that could have hunted Bembicosoma and ‘Eurypterus’ minor along with smaller 

specimens of Stoermeropterus. ‘Eurypterus’ minor is another predator that could have 

scavenged as well as taken small invertebrates from the substrate. Slimonia and 

Geisonoceras, larger predators from the pelagic system, would have been able to tackle 

larger prey such as Hardieopterus and adult Stoermeropterus, however only the giant 

carcinosomatid ‘Carcinosoma’ scoticum was capable of dispatching the larger 

eurypterids such as Parastylonurus and Drepanopterus. An apex predator within the 

community, ‘Carcinosoma’ scoticum would have made short work of any of the other 

chelicerates. 

 

HISTORY OF RESEARCH 

 

The Silurian eurypterid fauna of the Pentland Hills was first described by Malcolm 

Laurie (1892) as a result of the collecting of some 54 specimens by John Henderson, who 

discovered the Eurypterid Bed in 1880. Five new species – including ‘Eurypterus’ 

conicus – were described, along with a new genus, Drepanopterus Laurie, 1892. During 

this time most eurypterids were assigned to one of two genera; Stylonurus Page, 1856 (if 

the sixth prosomal appendage was modified for walking) or Eurypterus De Kay, 1825 (if 

the sixth appendage was modified into a paddle) – exceptions were Pterygotus Agassiz, 

1839 and Slimonia Page, 1856, both swimming eurypterids but of large size and with 

oval lateral eyes positioned on the carapace margin. Thus the erection of Drepanopterus 

was the first step in recognizing the true generic diversity of eurypterids, assigning 
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greater taxonomic importance to appendage morphology beyond the obvious function of 

appendage VI. The acquisition of David Hardie’s collection (237 specimens) and 

excavations conducted by Laurie himself resulted in the description of a further eight new 

species, including a scorpion, and two new genera (Laurie 1899). The site was recognized 

as being of extreme importance, with only the Bertie Waterlime of New York State, 

USA, yielding a greater diversity of species. 

No further extensive collecting was carried out until the late 1940s, when Lamont 

began to collect and describe many specimens from the Pentland region. He was the first 

to recognize the pre-Wenlock age of the strata (Lamont 1952), and described in detail the 

structure of the telson in ‘Stylonurus’ ornatus and the cuticular sculpture of 

‘Hughmilleria’ conica (Lamont 1955). All works since then have consisted of restudies 

of the original material. The prosoma of ‘Ctenopterus’ elegans (transferred to the genus 

by Clarke and Ruedemann (1912), later becoming type species of the new genus 

Laurieipterus Kjellesvig-Waering, 1966) was described in detail by Waterston (1962), 

with particular focus on the well-preserved ventral structures characteristic of the 

Pentland Hills material, while ventral structures and the prosomal appendages of 

‘Drepanopterus’ bembycoides were figured by Størmer (1974). Waterston (1979) 

undertook a detailed review of Scottish Silurian ‘stylonuroids’, including a detailed 

redescription of Parastylonurus ornatus, making it one of the most completely known 

stylonurines. The new species Parastylonurus hendersoni was also erected, along with 

the genus Hardieopterus Waterston, 1979 (type species H. macrophthalmus), and in-

depth analysis of their relationships and functional morphology attempted.  
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Work on the Pentland Hills material largely ground to a halt until the turn of the 

century, when renewed interest in the site resulted in the further redescription of several 

of Laurie’s original taxa; Bembicosoma pomphicus was shown to be a xiphosuran 

(Anderson & Moore 2004) and further specimens of ‘Eurypterus’ minor were identified 

(Tetlie 2006), which has since been shown to probably represent a genus separate from 

Eurypterus sensu stricto (Tetlie & Cuggy 2007) while Kiaeropterus cyclophthalmus, 

originally considered to be another species of Eurypterus from the site, was shown to be a 

stylonurine (Tetlie et al. 2007). Finally Anderson et al. (2007) described the Eurypterid 

Bed in its depositional context and revised the stratigraphy of the Pentland Hills and an 

updated list of the eurypterid fauna was compiled by Anderson (2007). 

‘Eurypterus’ conicus was among the first eurypterids described by Laurie (1892), 

based on two figured specimens. Both showed a long, conical body in ventral view that 

gave the species its name but did not preserve much of the prosomal appendages beyond 

the proximal segments, the posterior-most of which was interpreted as a broad paddle. 

One also showed details of the genital appendage and metastoma, which was oval with an 

anterior notch. Several years later Laurie (1899) figured a further specimen preserving 

the postabdomen and telson, along with two new species of his genus Drepanopterus. 

The first, ‘D.’ lobatus, was based on largely fragmentary material preserving lobate 

epimera on the pretelson, while ‘D.’ bembycoides was represented by a series of 

relatively complete, broad specimens. Both species preserved good examples of the 

prosomal appendages with ‘D.’ bembycoides also preserving the genital appendage and 

metastoma. At the time Laurie noted that ‘D.’ bembycoides and ‘E’. conicus looked 

similar, but differentiated them based on the proportions of the body. 
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Laurie had more specimens to draw on than the handful he described, and these 

formed the basis of further work. ‘Eurypterus’ conicus was transferred to the genus 

Hughmilleria Sarle, 1903 based on lateral eye shape by Kjellesvig-Waering (1950). 

Lamont (1955) then described in detail the cuticular sculpture and ventral structures of 

the prosoma for the first time, also altering the species name to ‘conica’, before 

Kjellesvig-Waering (1961) transferred the species again to his then subgenus 

Nanahughmilleria Kjellesvig-Waering, 1961, elevated to full generic status by 

Kjellesvig-Waering & Leutze (1966). The prosomal appendages and genital appendage 

of ‘Drepanopterus’ bembycoides were studied in detail by Størmer (1974), who was the 

first to note the presence of a podomere 7a on appendage VI. Tetlie (2007a) suggested 

that these three species belonged within the basal Eurypterina, an opinion shared by 

Lamsdell et al. (2009) who further suggested they may all by synonyms before assigning 

‘Drepanopterus’ bembycoides to their new family Moselopteridae (Lamsdell et al. 

2010a) at the base of the Eurypterina. 

 

TERMINOLOGY 

 

Eurypterid terminology largely follows Selden (1981) for prosomal structures and 

cuticular sculpture, Tollerton (1989) for morphology of the carapace, metastoma, lateral 

eyes, prosomal appendages, genital appendage, opisthosomal differentiation, telson, and 

patterns of ornamentation, and Waterston (1979) for segmentation of the genital 

operculum. Where discussed, chasmataspidid terminology follows that for eurypterids 

but as applied by Dunlop et al. (2001), Dunlop (2002) and Tetlie & Braddy (2004). 
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Prosomal appendages are labeled with Roman numerals, and individual podomeres are 

labeled with Arabic numerals, proximally to distally. Podomere 1 is termed the coxa. The 

systematics of the basal Eurypterina families follows Tetlie & Cuggy (2007) while 

Lamsdell et al. (2010a) is followed for Stylonurina. The relationships of the remaining 

Eurypterina families are as set out by Tetlie (2007a). 

While Tollerton’s (1989) morphological standards greatly aid in the standardization 

of eurypterid descriptions it has become apparent that, in the decades since their initial 

publication, there exist several morphological variants not covered by his criteria while 

some of his morphologies represent either preservational or combinational variants, or are 

named based on what is now outdated taxonomy. As such, the morphological standards 

applied to eurypterids ideally need updating, utilizing current understanding of eurypterid 

systematics, however this is far beyond the scope of the current work. Despite this, 

several revisions to Tollerton’s system have to be adopted herein.  

The terminology for the different morphologies of ventral plates and sutures follows 

the revised types of Tetlie et al. (2008), note however that where Tetlie et al. figure the 

different ventral plates (their figure 12) they have confused the Hallipterus- and 

Brachyopterella-types: the transverse suture of Brachyopterella curves in at the midline, 

whereas in Hallipterus it continues without deviation. Also, the Eurypterus-type of 

ventral plate occurs in stylonurines with an additional transverse suture. 

Tollerton’s Drepanopterus-type prosomal appendage was shown to be absent on 

Drepanopterus sensu stricto by Lamsdell et al. (2009), but is a diagnostic feature of 

moselopteroids and so is herein referred to as being of Moselopterus-type. The 

Brachyopterella-type prosomal appendage is as described by Tollerton, however its 
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cuticular ornamentation is variable and a distinction is here made between ornamented 

and unornamented forms. A new type of prosomal appendage is also recognized, one 

where there are no moveable spines but each podomere has a pair of small, fixed spine-

like projections on the ventral side of its distal margin. These appendages are 

predominantly found on rhenopterids and are referred to herein as Rhenopterus-type. 

Furthermore an additional carapace shape is described herein, its morphology 

intermediate between that of the existing semicircular and horseshoe-shaped carapaces. 

Characterized by a lateral angle ranging from 60˚ to 85˚ and a length: width ratio of 

between 0.50 and 0.70, this new type is specified as wide horseshoe-shaped. 

The eurypterid opisthosoma has traditionally been divided into the mesosoma 

(segments 1-6) and metasoma (segments 7-12) or the preabdomen (segments 1-7) and 

postabdomen (8-12). The latter, based on the contraction of the opisthosoma, has become 

adopted as the standard terminology in most recent literature. However there are 

problems with this system, as identifying the point of contraction can be somewhat 

arbitrary, with the sixth segment shown to contract into the postabdomen in 

Megalograptus (Caster & Kjellesvig-Waering 1964), Onychopterella (Braddy et al. 

1995) and Rhenopterus (Poschmann & Franke 2006) while other eurypterids can show no 

differentiation at all. Dividing the opisthosoma into mesosoma and metasoma is a much 

more natural system: the anterior six segments consist of a tergite/unsclerotized sternite 

pairing and bear operculae (the non-genital operculae being termed Blattfüsse), while the 

posterior six are predominantly single ankylosed rings (the first of which consists of a 

tergite and sclerotized sternite joined via soft integument as in scorpions) lacking 

externally expressed trunk appendages. This is true of all eurypterids, and is considered 
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herein a preferable division as there is a clear-cut differentiation in form and function 

between the two. 

Explanations for the abbreviations used in the interpretive drawings are as follows: 1–

12: individual segments of the opisthosoma (somites VIII–XIX); II–VI: prosomal 

appendages II-VI; VI-1–VI-9: the individual podomeres of prosomal appendage VI; AF: 

articulation facet; AOP: anterior opercular plate (somite VII); C: carapace; CE: coxal 

‘ear’; CH: chelicera (appendage I); CL: cardiac lobe; DP: deltoid plate; EC: epicoxa; 

EN: endostoma; EP: epimeron; ES: epistomal sutures; GA: genital appendage; LA: 

labrum; LE: lateral eye; ME: metastoma; MOP: median opercular plate (somite VIII); 

MR: marginal rim; MS: moveable spine; POP; posterior opercular plate (somite IX); O: 

oral opening; T: telson; TB: telson boss; TL: ‘terrace lines’; VK: ventral telsonic keel; 

VP: ventral plate. 

 

SYSTEMATIC PALAEONTOLOGY 

 

Order EURYPTERIDA Burmeister, 1843 

Diagnosis. Aquatic chelicerates with a genital operculum consisting of two fused 

opercular plates from somites VIII and IX. 

 

Suborder EURYPTERINA Burmeister, 1843 

Diagnosis. Eurypterida with the anterior of coxa VI developed into an 'ear'; a 

flattened, modified spine, on the postero-distal corner of podomere VI-7; without 

transverse sutures on the prosomal ventral plates (emended from Lamsdell et al. 2010a). 
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Superfamily ONYCHOPTERELLOIDEA superfam. nov. 

Diagnosis.  Eurypterina with appendage VI forming a narrow paddle with spinous 

terminal podomere; metastoma narrow ovate. 

Remarks. While the basal Eurypterina (comprising the superfamilies Moselopteroidea 

and Onychopterelloidea) were considered a plesion by Tetlie (2007a) the fact that they 

form two distinct clades in the phylogenetic analysis is deemed justification enough to 

segregate them here into two superfamilies. 

 

Family ONYCHOPTERELLIDAE fam. nov. 

Type genus. Onychopterella Størmer, 1951. 

Included genera. Onychopterella Størmer, 1951, Tylopterella Størmer, 1951. 

Diagnosis. Onychopterelloidea with legs II-IV spiniferous, Hughmilleria-type; legs 

V-VI non-spiniferous, V of Eurypterus-type and VI a paddle of Erieopterus-type, 

occasionally with spurs on podomere VI-8; preabdomen and postabdomen consisting of 

six segments each; telson lanceolate. 

Occurrence. Upper Ordovician to late Silurian. 

Remarks. Tylopterella is an enigmatic genus, and has been considered to be allied to 

Drepanopterus based on the paired tubercles on tergites 2-5. Paired tubercles can be 

found on a number of eurypterid genera, however, and the shape of the carapace and 

lateral eyes and the preabdominal/postabdominal divide at the sixth and seventh segments 

shows the genus to be an onychopterellid. 
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Superfamily MOSELOPTEROIDEA Lamsdell, Braddy & Tetlie, 2010 

Diagnosis.  Eurypterina with prosomal appendage VI modified into a walking leg; 

metastoma ovate, notched anteriorly; type A genital appendage with spatulae (emended 

from Lamsdell et al. 2010a). 

Remarks.  The reported podomere 7a on appendage V of Moselopterus is not 

convincing – study of the type material showed several examples of appendage V clearly 

without a 7a, and the previously supposed appendage V could well be a VI. 

  

Family MOSELOPTERIDAE Lamsdell, Braddy & Tetlie, 2010 

Type genus. Moselopterus Størmer, 1974. 

Included genera. Moselopterus Størmer, 1974, Stoermeropterus gen. nov, 

Vinetopterus Poschmann & Tetlie, 2004. 

Diagnosis. Moselopteroidea with legs II-IV spiniferous, Rhenopterus-type; legs V-VI 

non-spiniferous, V of unornamented Brachyopterella-type and VI of Moselopterus-type 

(emended after Lamsdell et al. 2010a). 

Occurrence. Early Silurian to Lower Devonian. 

Remarks. Moselopterus purportedly has a podomere 7a on appendage V, although the 

evidence for this is not convincing. 

 

Genus STOERMEROPTERUS gen. nov. 

Name. In honour of Professor Leif Størmer, who published many detailed works on eurypterids from the 
1930s to the 1970s and first described the eurypterid fauna including Stoermeropterus latus from 

Rudstangen, Ringerike, Norway in 1934. 
 

Type species. Eurypterus conicus Laurie, 1892. 
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Other species. Stoermeropterus latus (Størmer, 1934a), Stoermeropterus nodosus 

(Kjellesvig-Waering & Leutze, 1966). 

Diagnosis. Moselopteridae with ventral prosomal plates of Hallipterus-type lacking 

transverse suture; carapace wide horseshoe-shaped; opisthosoma with posterior second 

order differention; mesosoma with moveable lateral spines; base of telson with bulbous 

ventral boss. 

Remarks. FMNH PE6212, figured by Kjellesvig-Waering & Leutze (1966) may be a 

further specimen of S. nodosus, based on the ornamentation and similarities with a genital 

appendage (PMO H1808) assigned to S. latus by Tetlie (2000). Also, some specimens 

previously assigned to Nanahughmilleria clarkei Kjellesvig-Waering, 1964a (e.g. YPM 

204297), from the Shawangunk Formation of Otisville, New York State, should probably 

be assigned to the new genus Stoermeropterus.  

The genus name was first proposed by Tetlie (2000) to accommodate ‘Hughmilleria’ 

lata (of which is known the carapace, postabdomen and telson, prosomal appendage VI 

and the base of the type A genital appendage) in an unpublished MSc thesis. 

‘Nanahughmilleria’ conica and ‘H’. lata are co-generic, and as ‘N’. conica is the more 

completely known it is here designated the type species. The diagnosis remains largely 

unchanged, if somewhat expanded from Tetlie’s original, and while the genus is 

published here for the first time the name Stoermeropterus is retained for consistency. 

 

Stoermeropterus conicus (Laurie, 1892)  Plates 1–16; Text-figs 4–5, 7–10, 12–14, 17–18 

v* 1892  Eurypterus conicus n. sp.; Laurie, p.157, pl. 2, figs 12-13, pl. 3 fig.  

   14. 
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v. 1899 Drepanopterus lobatus n. sp.; Laurie, p. 582, pl. 2, fig. 16, pl. 3, figs  

  17-18. 

v. 1899 Drepanopterus bembycoides n. sp.; Laurie, p. 583, pl. 3, figs. 20-21. 

v. 1899 Eurypterus conicus Laurie; Laurie, pl. 5, fig. 29. 

 1924 Eurypterus conicus Laurie; Diener, p. 16 [Listed]. 

 1924 Drepanopterus bembicoides Laurie; Diener, p. 22 [Listed]. 

 1924 Drepanopterus lobatus Laurie; Diener, p. 22 [Listed]. 

 1950 Hughmilleria conicus (Laurie); Kjellesvig-Waering, p. 228 [Listed]. 

 1955 Drepanopterus bembicoides Laurie; Lamont, p. 201 [Listed]. 

 1955 Drepanopterus lobatus Laurie; Lamont, p. 201 [Listed]. 

v.  1955 Hughmilleria conica (Laurie); Lamont, p. 202, pl. 2 figs 1-2. 

 1958a Hughmilleria conica (Laurie); Kjellesvig-Waering, p. 1140 [Listed]. 

 1961 Hughmilleria (Nanahughmilleria) conica (Laurie); Kjellesvig- 

  Waering, p. 796. 

 1966  Drepanopterus bembicoides Laurie; Kjellesvig-Waering, p.186. 

 1966 Drepanopterus lobatus Laurie; Kjellesvig-Waering, p. 186. 

v. 1974  Drepanopterus bembycoides Laurie; Størmer, p. 379, text-figs. 14-  

   16. 

 1999  Drepanopterus bembycoides; Plotnick, p. 120. 

 1999  Nanahughmilleria conica; Plotnick, p. 120. 

v. 2007  Nanahughmilleria conica (Laurie); Anderson, p. 136, text-fig. 12.1A. 

v. 2007  Drepanopterus lobatus Laurie; Anderson, p. 147, pl. 26, fig 1. 

v. 2007  Drepanopterus bembicoides Laurie; Anderson, p. 147, pl. 26, fig 2. 
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 2007a  Drepanopterus (?) bembycoides; Tetlie, table 2. 

 2007a  Drepanopterus (?) lobatus; Tetlie, table 2. 

 2007a  Nanahughmilleria (?) conica; Tetlie, table 2. 

 2009 Drepanopterus bembycoides; Lamsdell, Braddy and Tetlie,  

  table 1 [Suggested synonym of Nanahughmilleria (?) conica]. 

 2009 Drepanopterus lobatus; Lamsdell, Braddy and Tetlie, table 1  

[Suggested sexual dimorph of Drepanopterus bembycoides]. 

2010 ‘Drepanopterus’ bembycoides Laurie; Lamsdell, Braddy and Tetlie, 

 p. 51. 

Diagnosis. Stoermeropterus lacking extensive dorsal scale ornamentation; lunate 

lateral eyes positioned centrilaterally; ventral prosomal plates with prominent striate 

sensory grooves and pits; opisthosoma with anterior second order differentiation; 

posterior margin of opisthosomal segments 10, 11 and 12 serrate. 

Type material. Holotype, NMS G.1885.26.72.14 part and counterpart. Paratype, NMS 

G.1885.26.72.13.  

Referred material. NMS G.1885.26.72.1; G.1885.26.72.17; G.1885.26.72.19; 

G.1897.32.12.9; G.1897.32.85; G.1897.32.88 (holotype of Drepanopterus lobatus); 

G.1897.32.89; G.1897.32.121; G.1897.32.123–126; G.1897.32.130–131; G.1897.32.132 

(holotype of Drepanopterus bembycoides); G.1897.32.133 (paratype of Drepanopterus 

bembycoides); G.1897.32.134; G.1897.32.136–140; G.1897.32.145; G.1897.32.164 

(paratype of Drepanopterus lobatus); G.1897.32.165; G.1897.32.167; G.1897.32.170; 

G.1897.32.172–174; G.1897.32.176; G.1897.32.180; G.1897.32.182; G.1897.32.184–

186; G.1897.32.191–192; G.1897.32.197–198; G.1897.32.207–208; G.1897.32.211. 
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It should be noted that specimens in the NMS collections often have a letter as 

opposed to a final number; Anderson (2007) changed all these letters to a numerical value 

according to their position in the alphabet (i.e. a = 1, b = 2, c = 3, etc.); this convention is 

followed herein. 

Distribution. Known only from the Llandovery age Gutterford Burn Eurypterid Bed, 

Deerhope Formation, Pentland Hills, Scotland. 

Remarks. Originally considered three separate species, two of Drepanopterus and one 

of Eurypterus (later Nanahughmilleria), these are herein synonymized with 

Nanahughmilleria conica having priority. Drepanopterus lobatus (NMS G.1897.32.88; 

G.1897.32.164; G.1897.32.165; G.1897.32.167; G.1897.32.173; G.1897.32.197) is 

shown to be defined on sexually dimorphic traits whilst Drepanopterus bembycoides 

(NMS G.1897.32.132; G.1897.32.133; G.1897.32.136) represents large, undeformed 

specimens.  

 

ANATOMICAL DESCRIPTION 

PROSOMA 

The prosomal region of Stoermeropterus is well known from a number of specimens  

which between them preserve the entirety of its external anatomy. The most commonly 

preserved structures besides the carapace are the large lateral eyes and the coxae of the 

appendages, often on the same specimen with either the eyes or coxae projecting through 

to the exposed surface due to flattening. Prosomal appendages II and III are rarely 

preserved, likely due to their comparatively delicate nature, while appendages IV-VI 

more frequently remain articulated to the carapace. The holotype (NMS G.1885.26.72.14: 
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Text-fig. 4a, Pl. 2, figs. 1&3) retains appendages II, IV and VI, the latter imperfectly 

preserved although obviously a pediform walking leg. The articulated nature of the 

appendages suggests that these specimens represent mortalities rather than exuviae, as 

Tetlie et al. (2008) have demonstrated that the prosoma rapidly disarticulated after 

ecdysis. 

Carapace and visual structures. The carapace is known from a total of 32 specimens 

and accounts for about 17% of the animal’s total length, ranging in length from 6.5 mm 

to a maximum of 38 mm and from 10 mm to 41 mm in width (Table 1), with an overall 

shape similar to that of Onychopterella augusti Braddy, Aldridge & Theron, 1995. Their 

length: width ratios range from 0.52 to 1.11, which extends beyond the remit of any one 

of the fourteen carapace shapes set out by Tollerton (1989), however many of the 

specimens have undergone post-mortem distortion and are laterally compressed. Several 

have had their carapace compacted such that is has an almost parabolic shaped with a 

lateral angle of between 90–100˚ (NMS G.1885.26.72.13: Text-fig. 5b, Pl. 1, figs. 3&4; 

G.1897.32.85: Pl. 3, fig. 3; G.1897.32.174: Pl. 12, figs. 1&3), however these just 

represent the most extreme examples of a series of increasingly compacted specimens 

resulting in higher length: width ratios (Text-fig. 6). As recognized by Laurie (1892) the 

lower ratios in the spectrum represent Stoermeropterus that have retained their original 

shape with a length: width ratio of between 0.50 and 0.70 and a lateral angle of 60˚ to 85˚ 

(NMS G.1885.26.72.14; G.1897.32.132: Text-fig. 7, Pl. 7, figs. 2–4; G.1897.32.133: 

Text-fig. 8, Pl. 8, figs. 1&3; G.1897.32.136: Text-fig. 9, Pl. 8, figs. 2&4; G.1897.32.139: 

Text-fig. 10a, Pl. 10) – this lateral angle is based on the angle of widening after the waist 

of the carapace, as the posterior flare gives angles ranging from 100˚–120˚. As these 
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dimensions fail to resolve within any of Tollerton’s (1989) existing carapace shapes they 

form the basis for the new wide horseshoe-shape.  

An alternative potential cause for the differences in carapace shape is ontogeny, 

although this is considered unlikely. The carapace of eurypterids is known to change 

shape throughout their ontogeny, with juveniles having a more rounded anterior margin 

(Andrews et al. 1974), however the length: width ratio of the carapace remains largely 

unchanged throughout growth (Cuggy 1994). Furthermore it is considered unlikely that 

the different Stoermeropterus carapace proportions represent different ontogenetic stages 

as comparing the carapace lengths to their length: width ratios reveals no correlation 

between length: width ratio and specimen size (Text-fig. 11). While there is some 

indication that certain individuals where comparatively narrower than others in life (see 

Sexual dimorphism in Stoermeropterus conicus), NMS G.1885.26.72.17 (Text-fig. 12; Pl. 

2, fig. 2) confirms the influence of post-mortem compression on the specimens, partial 

lateral deformation having warped the carapace into an asymmetrical shape.  

The carapace has a rounded anterior margin (NMS G.1885.26.72.14; G.1897.32.134: 

Pl. 7, fig. 5; G.1897.32.139) and straight sides that constrict slightly along the mid third 

of their length to form a ‘waist’ in some specimens (NMS G.1885.26.72.17; 

G.1897.32.12.9: Pl. 6, fig. 2; G.1897.32.131: Pl. 7, fig. 1). A constriction or ‘waist’ in the 

carapace is also seen in a number of other Eurypterina (Waeringopterus cumberlandicus 

(Swartz, 1923): FMNH PE6131; Slimonia acuminata Salter, 1856: GLAHM 131299; 

Grossopterus overathi (Gross, 1933): MfN MB.A. 2a) and some Stylonurina 

(Brachyopterus stubblefieldi Størmer, 1951: BGS D 3124), although these all vary from 

the form of Stoermeropterus conicus. A constriction almost identical to that of 
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Stoermeropterus is seen in the ‘carapace’ of the problematic Melbournopterus crossotus 

Caster & Kjellesvig-Waering, 1953, however the specimen is probably not a eurypterid 

(Plotnick 1999), and may not even be an arthropod. The marginal rim of Stoermeropterus 

conicus is narrow, usually 1 mm in width, maintaining this width to the carapace 

posterior (NMS G.1885.26.72.14; G.1885.26.72.17; G.1897.32.85). A narrow marginal 

rim is often associated with the marginal rim being present only anterior to the lateral 

eyes, as in Herefordopterus banksii (Salter, 1856) (BGS GSM Zf2866), however 

continuous narrow marginal rims are seen in a number of adelophthalmoids (e.g. 

Nanahughmilleria norvegica (Kiær, 1911): PMO H1632; Parahughmilleria hefteri 

Størmer, 1973: SMF 26054; Pittsfordipterus phelpsae (Ruedemann, 1921): NYSM 

10102). Among Stylonurina narrow marginal rims are only known from the 

Rhenopteroidea, and often appear to be folded underneath the carapace such that there is 

seemingly no marginal rim when viewed dorsally (e.g. Brachyopterus stubblefieldi: BGS 

D 3124; Rhenopterus diensti Størmer, 1936a: MfN 48/48a). The marginal rim clearly 

appears folded under the carapace in a number of Stoermeropterus conicus specimens 

(NMS G.1897.32.85; G.1897.32.134) and therefore appears to be more homologous to 

the rhenopteroid narrow marginal rim than to the adelophthalmoid form. 

The lateral eyes are often well preserved (NMS G.1885.26.72.13; G.1885.26.72.14; 

G.1897.32.123: Pl. 5, fig. 1; G.1897.32.12.9; G.1897.32.131; G.1897.32.133; 

G.1897.32.134; G.1897.32.137.2: Pl. 8, fig. 5; G.1897.32.140: Pl. 9, figs. 2&4; 

G.1897.32.172: Pl. 13, fig. 4; G.1897.32.174; G.1897.32.191: Pl. 14, fig. 4; 

G.1897.32.208: Pl. 15, fig. 2), sometimes visible in ventral views due to flattening of the 

specimens, and bear comparison with Pittsfordipterus phelpsae. The eyes are lunate, 
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ranging from 4 to 9 mm in length and 0.5 to 2.3 mm in width, and placed centrilaterally 

on the carapace. The visual surface itself accounts for approximately half of the eye’s 

width, the rest consisting of a narrow palpebral lobe; a similar lateral eye but with a more 

expanded palpebral lobe is seen in Moselopterus ancylotelson Størmer, 1974 (SPW 999-

D), while this form of a narrow visual surface on an expanded palpebral lobe occurs in all 

Stylonurina (e.g. Alkenopterus brevitelson Størmer, 1974: SMF VIII 150; Stylonurella 

spinipes (Page, 1859): NMS G.1891.92.33; Drepanopterus abonensis Simpson, 1951: 

BGS GSM 84718). The eyes are comparatively large, averaging around a third of the 

length of the carapace, however the narrow visual strip means the field of vision would 

have been limited to the dorsal plane, instead giving an almost 360˚ lateral view. The 

form of the lateral eyes is almost identical to those of Pittsfordipterus phelpsae (NYSM 

10102), although these are half the length of the carapace and are positioned 

centrimesially. In Stoermeropterus conicus the eyes are positioned abnormally close to 

the carapace edge, reaching almost as far as the marginal rim along their anterior curve, 

however they just fall short of being semimarginal and are considered intramarginal. 

Their proximity to the marginal rim is similar to that of the reniform lateral eyes of 

Orcanopterus manitoulinensis Stott, Tetlie, Braddy, Nowlan, Glasser & Devereux, 2005 

(ROM 56451) where their anterior curve all but touches the marginal rim. 

The median ocelli are not clearly represented in any known specimen, despite the 

carapace being otherwise well-preserved. One specimen (NMS G.1897.32.134) displays 

a poorly preserved paired structure between the lateral eyes, situated towards their 

posterior limit, but the superimposition of the ventral coxae means any interpretation of 

these structures is extremely tentative. Parastylonurus ornatus, the other predominant 
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Pentland eurypterid species, also fails to preserve any median ocelli (Waterston 1979). 

Despite the lack of evidence from the specimens it is considered almost certain that 

Stoermeropterus conicus, along with all other eurypterids, had median ocelli. Their lack 

of preservation is probably due to their small, delicate anatomy and the flattened nature 

of the specimens, with the superimposition of the dorsal and ventral structures 

obliterating any trace of them. Assuming they would be similar to the median ocelli 

preserved in Stoermeropterus latus (PMO H1874) they would be simple, separate eyes 

without an ocellar tubercle and located between the lateral eyes, which is similar to the 

observed structures in NMS G.1897.32.134. 

Ventral plates and sutures. The prosomal ventral plates and sutures are preserved in 

ten specimens, three of which only preserve the gross morphology of the plates without 

any visible sutures (NMS G.1885.72.1: Text-fig. 5a, Pl. 1, figs. 1&2; G.1885.26.72.19: 

Pl. 3, fig. 1; G.1897.32.139). The plates are broader anteriorly, narrowing posteriorly 

along the lateral edge as in Eurypterus lacustris Harlan, 1834 (YPM 209023), and are 

preserved intact which is the strongest indication that these specimens represent 

mortalities. The remaining seven specimens (NMS G.1885.72.13; G.1885.72.14; 

G.1885.26.72.17; G.1897.32.12.9; G.1897.32.132; G.1897.32.134; G.1897.32.174) show 

that the ventral plates are divided by two sutures, forming a medial epistoma that is 

around one third the width of the carapace (Table 2). The epistoma differs from that 

found in other Eurypterina, not remaining the same width for its length or widening 

posteriorly as it does in the Adelophthalmoidea (e.g. Nanahughmilleria norvegica: PMO 

H192; Adelophthalmus sievertsi (Størmer, 1969): PWL 2004/5008-LS) and the 

Pterygotoidea (e.g. Herefordopterus banksii: BGS GSM 88910; Erettopterus bilobus 
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(Salter, 1856): BMNH In 59343) but rather widening anteriorly as in the Stylonurina (e.g. 

Brachyopterella pentagonalis (Størmer, 1934a): PMO H1792; Hallipterus excelsior 

(Hall, 1884): USNM 25673). The sutures in Stoermeropterus most closely resemble the 

Hallipterus-type, being situated just either side of the midline resulting in a narrower 

epistoma (NMS G.1897.32.12.9), however it lacks the transverse suture seen in 

Stylonurina such as Parastylonurus ornatus (NMS G.1897.32.12).  

Sutures with an almost identical morphology are however seen in the ‘trilobite’ larval 

stage in modern Limulus Müller, 1785 (Størmer 1934a, fig. 10) and the chasmataspidids 

‘Eurypterus’ stoermeri Novojilov, 1959 (PIN 1138/1) and Diploaspis casteri Størmer, 

1972 (SMF VIII 39). This provides compelling evidence that Stoermeropterus may 

represent the plesiomorphic condition for ventral plates and not Megalograptus Miller, 

1874 as suggested by Tetlie et al. (2008) (see Plesiomorphic states within the 

Eurypterida). 

Prosomal appendages and metastoma. The prosomal appendages and metastoma, 

when known, are always preserved articulated to the rest of the prosomal unit. 

Appendages are preserved in part on seventeen specimens, although most commonly 

preserved are the coxae (Table 3). The chelicerae are preserved as rounded outlines in six 

specimens (NMS G.1885.26.72.14; G.1885.26.72.17; G.1897.32.12.9; G.1897.32.85; 

G.1897.32.123; G.1897.32.132) and range from 2 to 7 mm in length and 1.5 to 4 mm in 

width (Table 2). The chelicerae, while neither enlarged nor denticulated, appear to have 

been relatively robust. Morphologically they are similar to the chelicerae seen in most 

other eurypterids (e.g. Parastylonurus ornatus: NMS G.1897.32.12; Strobilopterus 

princetonii (Ruedemann, 1934a): YPM 204947; Eurypterus tetragonophthalmus Fischer, 
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1839: NRM Ar 49952), however their more robust structure is reminiscent of the 

rhenopterid Leiopterella tetliei Lamsdell, Braddy, Loeffler & Dineley, 2010b (CMN 

53573) and the chasmataspidid Loganamaraspis dunlopi Tetlie & Braddy, 2004 (NMS 

G.1957.1.649). Appendages II-IV are of the newly diagnosed Rhenopterus-type and 

increase in size posteriorly, appendage II being much slighter in form than appendage IV. 

Appendage II is known from only two specimens (NMS G.1897.32.123; G.1897.32.133), 

consists of seven podomeres and in NMS G.1897.32.133 has a total length (including 

coxa) of 36 mm while the other, smaller specimen would have been about half that length 

(Table 4). While appearing much more delicate than the other appendages its short 

length, not extending much beyond the carapace, means it was unlikely to have a tactile 

sensory function like that suggested for the ‘antenniform’ second appendage in Slimonia 

(Laurie 1893). Appendage III is known from three specimens (NMS G.1885.26.72.14; 

G.1897.32.123; G.1897.32.133) and consists of eight podomeres and has a total length 

ranging from 17.5 mm in the smallest complete specimen to 53 mm in the largest (Table 

5). Appendage IV is very robust with the podomeres thickening somewhat distally and 

having a clear depression running along their length. Known in its completeness from one 

specimen (NMS G.1885.26.72.14) it has eight podomeres, with a total length of 30 mm, 

however there are five specimens that preserve incomplete appendages (NMS 

G.1897.32.123; G.1897.32.133; G.1897.32.136; G.1897.32.137.1; G.1897.32.138: Text-

fig. 13b, Pl. 9, figs. 1&3), some of which indicate a prosomal appendage IV with a length 

of 67.5 mm (Table 6). 

The ‘spines’ on these appendages are difficult to make out due to their small size but 

fit with the general morphology of the Rhenopterus-type (e.g. Rhenopterus diensti: MfN 
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48/48a), being fixed cuticular extensions of the distal edge of the podomeres (e.g. NMS 

G.1897.32.133), however on the smaller individuals (NMS G.1885.26.72.14; 

G.1897.32.123) the podomeres appear to lack these cuticular extensions and more closely 

resemble the unornamented Brachyopterella-type. This is probably due to the smaller 

specimens being earlier instars, and indicates that the spines only begin to form during 

later moults through the eurypterid’s ontogeny.  

Appendage V is known completely from three specimens (NMS G.1897.32.133; 

G.1897.32.136; G.1897.32.137.1), incompletely from another two (NMS G.1897.32.138; 

G.1897.32.140), and may be tentatively identified in NMS G.1885.26.72.17. Unlike the 

three preceding appendage pairs appendage V lacks any form of ventral spiniferous 

extensions on the podomeres, even on the larger specimens, and corresponds to the 

unornamented Brachyopterella-type. It comprises nine podomeres which again thicken 

slightly distally and bear a depression along their length while podomere 6 has a slight 

dorsal anterior spur (NMS G.1897.32.136), also seen on appendage VI (NMS 

G.1897.32.132). The longest preserved appendage has a total length of 83 mm, while the 

shortest is 38.5 mm long (Table 7). This appendage is unlike any other known from the 

Eurypterina, with the exception of Vinetopterus martini Poschmann & Tetlie, 2004 (PWL 

2000/5015b LS), which preserves some fragmentary appendages with a similar podomere 

morphology. Among the Stylonurina, Alkenopterus brevitelson (SPW 697-Da) shows 

similarly robust appendages however these are crested rather than depressed and have 

more rounded podomere lateral edges. The depressions are reminiscent of the grooves 

found on the appendages of hibbertopteroids (e.g. Drepanopterus pentlandicus: NMS 

G.1897.32.91; Dunsopterus stevensoni (Etheridge Jr., 1877): NMS G.1964.6.4), however 
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the Stoermeropterus appendages are not as deeply grooved nor overall as stocky. The 

closest resemblance is found in Brachyopterella ritchiei Waterston, 1979 (NMS 

G.1968.14), appendages V and VI of which are well preserved. These bear both a ridge 

and a depression and are heavily ornamented with scales; however the general podomere 

shape, their relative dimensions, and the tendency for the podomeres to expand distally 

all matches the morphology of appendage V in Stoermeropterus. 

The posterior-most prosomal appendage, appendage VI, is different again in 

morphology. Preserved completely in five specimens (NMS G.1885.26.72.13; 

G.1897.32.132; G.1897.32.133; G.1897.32.136; G.1897.32.140), incompletely in NMS 

G.1885.26.72.14 and possibly G.1885.26.72.17, it is pediform and consists of nine 

podomeres with an ancillary, posteriorly situated podomere 7a at the joint between 

podomeres 7 and 8. Podomere 7a is triangular in shape and about half the length of 

podomere 8 in larger specimens (e.g. NMS G.1897.32.133) but only a quarter the length 

of podomere 8 in smaller specimens (e.g. NMS G.1885.26.72.13). The podomeres 

themselves are similar to those in appendage V, being robust, flaring slightly distally and 

with a depression running along their length. The coxae are distinguished from the others 

not only by their increased size but by the possession of an anterior cuticular extension, 

termed the ‘ear’ (e.g. NMS G.1897.32.12.9). This appendage was the morphotype for the 

Drepanopterus-type appendage of Tollerton (1989), here reclassified as the 

Moselopterus-type appendage. The largest preserved appendage is 102 mm long, while 

the smallest is 41.5 mm (Table 8). Only two other currently known eurypterids bear 

similar appendages, and both of these are also grouped in the Moselopteridae alongside 

Stoermeropterus. Moselopterus elongatus Størmer, 1974 (SMF VIII 184a) – potentially a 
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synonym of M. ancylotelson – also has an appendage VI with distally thickening 

podomeres and a triangular podomere 7a. The appendage differs in lacking the 

longitudinal depressions, appearing generally more gracile and in having a more 

developed ‘ear’ on the coxa. Vinetopterus struvei (Størmer, 1974) (SPW 614-D) also has 

an appendage VI with podomere 7a, although it is poorly preserved and lacks the coxa. 

The appendages are again relatively robust and have longitudinal depressions; however 

podomere 7a is more oval than triangular. On the holotype, where coxa VI is faintly 

preserved (SMF VIII 191a) there is some indication of an ‘ear’ however it is closer to the 

Stoermeropterus morphology and is not as prominent as in Moselopterus Størmer, 1974. 

The occurrence of podomere 7a and the coxal ‘ear’ - often associated with a swimming 

function in eurypterid paddles (Selden 1981) - in a pediform appendage is of some 

interest as it suggests that their development was not initially linked to swimming and 

may suggest an alternative function for the paddles as has been hypothesized in some of 

the Eurypterina (Laurie 1893; Størmer 1934a; Tetlie 2007b) (see Plesiomorphic states 

within the Eurypterida). 

The metastoma, or post-oral feeding plate, is preserved in only four specimens (NMS 

G.1885.26.72.17; G.1897.32.85; G.1897.32.132; G.1897.32.136) however these offer a 

comprehensive view of its morphology. The average length: width ratio of the specimens 

is 1.65, while the lateral angle and angle of cordation (sensu Tollerton 1989) of 70˚ and 

140˚ respectively indicate that the metastoma fits closest to the oval type in shape. In 

NMS G.1885.26.72.17 the length: width ratio is only 1.25, however this specimen has 

undergone distortion and the metastoma has been laterally squeezed, as indicated by the 

offsetting and acuter angle of the right-hand anterior shoulder. Another specimen (NMS 
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G.1877.32.132) has a metastoma with a length: width ratio of 2.1, however this specimen 

does not appear to have undergone preservational warping. It is however larger than the 

other three animals, and so suggests that the metastoma became relatively narrower in 

larger animals and therefore comparative width decreased throughout ontogeny, 

something also observed in Moselopterus (Lamsdell pers. obs.). The posterior of the 

metastoma is rounded, as in the majority of Eurypterina, while the anterior bears a 

shallow notch flanked by rounded shoulders (NMS G.1877.32.132); the notch is deeper 

and the shoulders more angular in NMS G.1885.26.72.17 but this is probably due to 

distortion as in juveniles of Moselopterus the notch is, if anything, less expressed than in 

the adults (SPW 704-D). 

The metastoma in Stoermeropterus resembles that seen in a number of other 

eurypterids, particularly among the Eurypterina. Of the Stylonurina only Drepanopterus 

has an oval metastoma, however this laterally divided by a deep posterior cleft (e.g. 

Drepanopterus abonensis: BRSUG 28647; Drepanopterus pentlandicus: NMS 

G.1897.32.91), and the rhenopterids have a metastoma with a rounded posterior margin 

but the anterior is altogether much narrower giving it an overall turbinate shape (e.g. 

Rhenopterus diensti: MfN 48/48a; Leiopterella tetliei: CMN 53573). Within the 

Eurypterina similar metastoma morphologies are observed within all of the superfamilies 

bar the Mixopteroidea and its sister group consisting of Orcanopterus Stott, Tetlie, 

Braddy, Nowlan, Glasser & Devereux, 2005, Grossopterus Størmer, 1934b and 

Waeringopterus Leutze, 1961. Within the Pterygotoidea the metastoma has a deeper, 

more angular anterior notch among pterygotids (e.g. Jaekelopterus rhenaniae (Jaekel, 

1914): PWL 2004/5051-LS) while in the hughmilleriids the metastoma is narrower, again 
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with a deeper anterior notch but also with a flattened posterior (e.g. Herefordopterus 

banksii: BGS GSM 89481). The nanahughmillerids of the Adelophthalmoidea have a 

very prominent, angular anterior notch and a narrow posterior (e.g. Nanahughmilleria 

norvegica: PMO H1778) while the adelophthalmids have a broad, rounded posterior and 

an anterior with a shallow notch. The metastoma narrows somewhat towards the anterior 

(e.g. Adelophthalmus mazonensis (Meek & Worthen, 1868): UI X345) in a fashion 

similar to the rhenopterids. Among the Eurypteroidea the metastoma has a deeply 

notched anterior and truncated posterior in Dolichopterus Hall, 1859 (e.g. Dolichopterus 

macrocheirus Hall, 1859: UMMP 62642) however in more basal dolichopterids the 

metastoma is a narrower, petaloid shape with a rounder posterior and angular notched 

anterior (e.g. Strobilopterus princetonii: YPM 204947), a morphology shared with the 

Eurypteridae (e.g. Eurypterus lacustris: UMMP 62582A). Stoermeropterus shares an 

almost identical metastoma morphology with the onychopterellid Onychopterella 

kokomoensis (Miller & Gurley, 1896) (FMNH UC6638) and the other moselopterid 

Moselopterus ancylotelson (SMF 26061). Poorly preserved metastomae have also been 

described from the chasmataspidids Loganamaraspis dunlopi (NMS G.1957.1.649b) and 

Octoberaspis ushakovi Dunlop, 2002 (GIL 35/712), but in both these specimens the 

metastoma narrows drastically towards the posterior and has a relatively well-developed 

anterior notch, giving it an almost heart-shaped morphology. 

Prosomal cuticular sculpture. The carapace is only preserved in dorsal aspect in six 

specimens (NMS G.1897.32.88: Text-fig. 4b, Pl. 3, fig. 2; G.1897.32.137; 

G.1897.32.138; G.1897.32.164: Text-fig. 10b, Pl. 11, fig. 2; G.1897.32.172; 

G.1897.32.191), however in half of these the preservation is too poor to permit study of 
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the cuticle. Of the three that do show the sculpture, two (NMS G.1897.32.164; 

G.1897.32.172) do not preserve much detail, just giving an indication of a fine, granular 

sculpture with the impressions of the coxae obscuring much of the detail in NMS 

G.1897.32.164. NMS G.1897.32.138 shows the ornament in much greater detail, 

revealing the dorsal part of the carapace to be devoid of scales but covered in a scattered 

granular sculpture consisting of very fine pustules and is not tuberculate as suggested by 

Poschmann et al. (2005). These are much finer than those of Drepanopterus abonensis 

(BGS GSM 84718), Hardieopterus macrophthalmus (NMS G.1897.32.84) or 

Chasmataspis laurencii Caster & Brooks, 1956 (USNM 125099), similar instead to the 

ornament of Moselopterus ancylotelson (SPW 999-D). 

While the majority of specimens are preserved in ventral aspect, the prosomal 

sculpture is only known from seven specimens (NMS G.1885.26.72.13; G.1885.26.72.14; 

G.1885.26.72.17; G.1885.26.72.19; G.1897.32.85; G.1897.32.132; G.1897.32.134; 

G.1897.32.139). The sculpture in all of the specimens bar NMS G.1885.26.72.17 is 

limited to the ventral marginal prosomal plate and is composed of a mixture of ‘terrace 

lines’ (sensu Selden 1981) grading anteriorly into broad lunules and pits (e.g. NMS 

G.1885.26.72.13, G.1897.32.139). NMS G.1885.26.72.17 preserves the ventral plate 

sculpture in exquisite detail, consisting of ‘terrace lines’ along the lateral edge postero-

lateral edge of the ventral plate that are angled anteriorly along up to the margin of the 

doublure (ventral expression of the marginal rim). Along the anterior of the ventral 

plates, where they curve around to meet at the epistoma, the ‘terrace lines’ follow the 

contours of the carapace margin and are arranged into several rows that between them 

extend from the anterior to ventral margin of the plates. The foremost ‘terrace lines’ 
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break up into broad, rounded lunules and pits. Pits are also directly associated with the 

lunules and ‘terrace lines’ themselves, where they follow the folliculated pattern of being 

situated centrally within the structure. Macerated cuticle from the Lower Devonian of 

Willwerath, Germany shows eurypterids to have been quite hirsute (Braun 1997) and 

hairs can be seen without visual aid on well preserved Scottish Pterygotus specimens 

(Lamsdell pers. obs.) and so it seems likely that these pits were the attachment points for 

setae, as seen in Eurypterus tetragonophthalmus (NRM Ar 50013b), Hibbertopterus 

scouleri (Hibbert, 1836) (GLAHM A23078) and exuviae of the extant xiphosuran 

Limulus polyphemus Linnaeus, 1758 (Selden 1981, fig. 23d). NMS G.1885.26.72.17 also 

preserves sculpture on the coxae. This takes the form of ‘terrace lines’ that run along the 

length of each coxa, concentrated particularly along the anterior edge. An exception is the 

greatly expanded coxa of appendage VI, where the ‘terrace lines’ are more evenly spread 

out across the entirety of its surface. 

The ‘terrace lines’ of NMS G.1885.26.73.19 were studied under the scanning electron 

microscope by Miller (1975) as part of a broader treatment of terrace lines in trilobites. 

The eurypterid ‘terrace lines’ Miller described as sub-parallel concentric ridges with a 

scarp slope and a dip slope of low relief ranging from 30 – 50 µ with the ridges facing 

forwards and peripherally as on a trilobite cephalic doublure. The ridges on NMS 

G.1885.26.73.19 were spaced from 200 – 1000 µ apart and became more sinuous and 

increased in anastomosis frequency on the ‘genal’ part of the plates. Passing inwards 

across the width of the ventral plates Miller reported that the ridges became shorter and 

more curved, eventually assuming a scale-like appearance but with the outward facing 

being consistently maintained. At the inner part of the plates in the midline region was a 
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field of deep, circular hollows in the matrix that Miller considered to be the moulds of 

setae originally projecting from the cuticle. 

Terraced cuticular sculpture patterns are also found in several other eurypterids. Well-

preserved specimens of Eurypterus tetragonophthalmus (e.g. NRM Ar 35320) reveal 

similar terrace patterns, with rows of closely spaced terraces running parallel to the plate 

outer margin and angling towards the peripheral along the lateral edge, while the ventral 

plates of Parahughmilleria hefteri (SMF VIII 60) bear an almost identical sculpture to 

Stoermeropterus conicus with a series of terraces running parallel to the margin that 

develop anteromedially into small squamae. Fine ‘creases’ similar to terrace lines have 

also been described on the inner margin of the ventral plates of Parastylonurus ornatus 

(NMS G.1897.32.13), however while having a similar morphology to the ‘terrace lines’ 

in S. conicus, E. tetragonophthalmus and Parahughmilleria hefteri the creases are absent 

from the majority of the ventral plate and were considered by Waterston (1979) to be 

where the plates passed into the thinner, flexible integumen connecting the bases of the 

prosomal appendages. The rest of the ventral plates is ornamented by rounded squamae 

and as the specimens come from the same locality as S. conicus combined with the fact 

that ‘terrace lines’ are found on some of the abdominal segments of Parastylonurus their 

absence from the ventral plates is not considered preservational. Dorsal structures similar 

to the ventral ‘terrace lines’ described above are also seen in a number of Eurypterina 

(i.e. Parahughmilleria bellistriata (Kjellesvig-Waering, 1950): USNM 115448; 

Eysyslopterus patteni (Størmer, 1934c): AMNH 32720; Orcanopterus manitoulinensis: 

ROM 56462) located on the carapace anterior and between the lateral eyes. These 

terraces probably performed the same function as the ventral terraces, as they are located 
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on the same region of the animal (the prosoma anterior) in both cases, however the 

homology of the dorsal and ventral terraces is unclear and it is possible that ‘terrace lines’ 

have developed independently at least twice in eurypterids. 

Outside of eurypterids, ‘terrace lines’ are known from a number of arthropod groups, 

including trilobites (Miller 1975; Schmalfuss 1981) and decapod crustaceans (Schmalfuss 

1978; Savazzi 1985). The most obvious analogue to the ‘terrace lines’ seen in 

Stoermeropterus are those of trilobites, as they share many features including their basic 

structure and attitude (Miller 1975), consisting of a terrace with the overhang angled 

anteriorly and towards the peripheral of the carapace margin (e.g. Holotrachelus 

punctillosus (Törnquist, 1884): NRM Ar 45493). There are several differences however, 

as trilobite terrace lines are frequently found on the dorsal cuticular surface as well as the 

ventral doublure (Schmalfuss 1981), and are continuous across the anterior of the 

doublure (e.g. Paralejurus rehamnanus Alberti, 1970: SMF 86050) unlike the ‘terrace 

lines’ in Stoermeropterus that become broken up into discrete scales towards the anterior 

of the ventral plates (e.g. NMS G.1897.32.139). The cuticular terraces of extant decapods 

differ somewhat in their pattern to those of trilobites and Stoermeropterus, being largely 

localized to the appendages and the lateral margins of the carapace (Savazzi 1985). When 

present on the carapace dorsal or ventral surfaces the terraces are discontinuous and tend 

to have the overhang angled anteriorly irrespective of their position on the carapace. 

These cuticular terraces are found almost exclusively in burrowing decapods (Schmalfuss 

1978), and are thought to function by increasing friction against the burrow wall as the 

animal wedges itself to avoid being extracted by predators. Discussion on the function of 

terrace lines in trilobites has been necessarily speculative, however they have been 
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suggested to act as a way of strengthening the exoskeleton (Whittington 1961), a current-

monitoring system (Miller 1975), as an aide for burrowing and providing increased 

friction against soft sediments (Schmalfuss 1981), as increasing frictional resistance to 

movement during enrollment (Fortey 1986), and as an aid in maintaining the enrolled 

position or in preventing sediment particles gripping articulation surfaces (Feist et al. 

2010).  

Sensory organs consisting of isolated or loose groups of slits in the cuticle known as 

slit sensilla are found in arachnids and perform a range of sensory functions including 

detecting loads on the cuticle, gravitational forces and substrate vibrations (Barth 1985). 

While possible slit sensilla have been reported from well-preserved eurypterids (Dunlop 

& Braddy 1997) the ‘terrace lines’ in Stoermeropterus are not considered homologous to 

arachnid slit sensilla as they occur on the carapace rather than the appendage podomeres 

where they are most common and are far larger and extensive than any known slit sense 

organ. Despite this they may have served a similar function; the ‘terrace lines’ likely had 

some sensory role, as indicated by their co-occurrence with setae. Their positioning on 

the ventral surface of the prosoma may indicate that they also served in some frictional 

function, especially if the animal was scavenging or hunting within the substrate surface, 

while it is considered extremely unlikely that a eurypterid could enroll itself in a manner 

similar to trilobites and so their function as some form of locking mechanism can be 

discounted. 

OPISTHOSOMA AND TELSON 

The opisthosoma is preserved in its entirety in several specimens while the majority 

of specimens preserve at least some opisthosomal segments. The telson is also well 

148



 

represented although due to its delicate nature it appears to have been frequently broken 

off before its natural termination. Again, the entirety of the external anatomy is 

preserved, and although there is no evidence for the internal respiratory organs or 

reproductive systems both types of genital appendage are represented in the material and 

one specimen (NMS G.1897.32.145: Pl. 11, fig. 3) may preserve an alimentary canal. 

Due to the superimposition of dorsal and ventral structures the Blattfüsse are difficult to 

distinguish from the associated tergite in many specimens; furthermore the mesosoma is 

occasionally crumpled antero-posteriorly to around half of its usual length (e.g. NMS 

G.1885.26.72.1; G.1897.32.89: Pl. 4, fig. 1; G.1897.32.132; G.1897.32.138; 

G.1897.32.176: Pl. 13, fig. 3) in a manner very similar to specimens of Moselopterus 

ancylotelson (e.g. SMF VIII 56; VIII 164; SPW 701-D) and Vinetopterus struvei (e.g. 

SMF VIII 191; VIII 165).  In these cases the metasoma is left intact and un-distorted, 

presumably because of the more robust nature of the ankylosed rings that form the 

posterior body segments. This form of taphonomic distortion is distinct to segment 

telescoping, when the body segments pull in into each other so their boundaries overlap. 

Telescoping segments are undocumented in xiphosurans and taphonomic experiments 

have shown telescoping to be present only occasionally in scorpion moults and never in 

carcasses (McCoy & Brandt 2009), while in eurypterids telescoping is recorded in the 

metasoma of Tylopterella boylei (Whiteaves, 1884) (GSC 2910), Jaekelopterus rheninae 

(PWL 2004/5057-LS), Vinetopterus martini (PWL 2000/50156), Nanahughmilleria 

norvegica (PMO H1656; H1642; H1633), questionably from a poorly preserved 

specimen of Herefordopterus banksii (BGS GSM Zf2871), and Drepanopterus abonensis 

(BMAG Cb4668) – although this last example may actually be flattening of the 
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ankylosed segments causing the dorsal and ventral margins to be superimposed as 

described in Loganamaraspis dunlopi (NMS G.1957.1.649) by Tetlie & Braddy (2004). 

Telescoping involving the metasoma and posterior segments of the mesosoma has also 

been identified in Parahughmilleria hefteri (SMF VIII 43) and Brachyopterus 

stubblefieldi (BGS D 3124). Despite this list of documented cases, telescoping in 

eurypterids is relatively rare, like scorpions occurring in a minority of presumably 

exuvial specimens. Postabdominal telescoping is however widespread in 

chasmataspidids; Octoberaspis ushakovi (GIL 35/735; 35/707; 35/379; 35/336; 35/337) 

showed telescoping in so many specimens that at one point they were considered to 

potentially be examples of sexual dimorphism or even a separate species (Dunlop 2002), 

while Diploaspis casteri (SMF VIII 36; VIII 39; VIII 73; PWL 1999/8-LS), ‘Eurypterus’ 

stoermeri (PIN 1138/1), and Diploaspis muelleri Poschmann, Anderson & Dunlop, 2005 

(PWL 2002/5020-LS; 2002/5021-LS) also all display postabdominal telescoping. While 

the fossils of the two Diploaspis species were considered to represent mortalities by 

Dunlop et al. (2001) and Poschmann et al. (2005), the evidence for this is circumstantial 

and the telescoping would suggest that some, at least, are exuviae. This disparity in 

telescoping frequency between eurypterids and chasmataspidids may indicate a 

difference in moulting techniques between the two groups, possibly due to the fused 

nature of the buckler in chasmataspidids. 

As previously stated the mesosomal crumpling in Stoermeropterus conicus does not 

indicate that the specimens are the result of exuviae. Despite the correlation between 

opisthosomal telescoping and moulting there is greater evidence that the specimens 

represent mortalities (namely the lack of isolated carapaces, the in situ preservation of the 
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prosomal ventral plates and the articulated nature of the prosomal appendages), and based 

on the way the segments have been distorted rather than displaced between each other, 

and the lack of metasomal telescoping, the indication is that this is a separate taphonomic 

phenomenon. Its co-occurrence in specimens of Moselopterus (which are considered 

exuviae – see Størmer 1974) and Vinetopterus would seem to suggest it is a characteristic 

of the Moselopteridae, however the holotype of Cyrtoctenus wittebergensis Waterston, 

Oelofsen & Oosthuizen, 1985 (USS IT01) - a clear mortality - also shows mesosomal 

crumpling (referred to as telescoping by Waterston et al.). Both Cyrtoctenus and 

moselopterids were deep-bodied compared to most other eurypterids and it seems likely 

that the crumpling is due to the segments being compacted during the taphonomic 

process due to the increased size of the body cavity offering less resistance to external 

pressure. 

Mesosoma and genital appendage. The mesosoma is known from a total of 34 

specimens, ranging in total length from 13 to 40 mm (Table 9), accounting for 

approximately 23% of the animal’s total length in un-crumpled specimens (e.g. NMS 

G.1885.26.72.13; G.1885.26.72.14; G.1897.32.12.9; G.1897.32.88; G.1897.32.121: Pl. 4, 

fig. 2). The smallest specimens (e.g. NMS G.1897.32.137.2) have a maximum width of 

around 12 mm while the largest (e.g. NMS G.1897.32.133) have a maximum width of 55 

mm, the widest point occurring at the fourth segment as in most eurypterids. Tergites 2–6 

(equivalent to somites IX–XIII) are generally all very similar in length, being about 5 mm 

long on average with a maximum length of 10 mm seen in some of the larger specimens 

(e.g. NMS G.1885.26.72.17). Tergite 2 is marginally shorter than 3–6, however tergite 1 

(somite VIII) is clearly reduced, ranging from two-thirds to half the length of the 
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following segments. A reduction in the first visible opisthosomal tergite is seen in most 

eurypterids (e.g. Stylonurella spinipes: NMS G.1891.92.33; Pagea plotnicki Lamsdell, 

Braddy, Loeffler & Dineley, 2010b: CMN 53570; Eurypterus tetragonophthalmus: NRM 

Ar 35307; Mixopterus kiaeri Størmer, 1934a: PMO H2044; Nanahughmilleria norvegica: 

PMO H2199), both extinct scorpions (e.g. Proscorpius osborni (Whitfield, 1885): 

AMNH 2257, which also shows a slight reduction in segment 2) and their extant 

counterparts, and synziphosurines (e.g. Bembicosoma pomphicus: NMS G.1897.32.149; 

Willwerathia laticeps (Størmer, 1936a): SLK 1a, a plaster cast of which is stored in NMS 

under G.2007.23.2). Chasmataspidids however do not follow this trend, as the first 

reduced tergite or microtergite is considered homologous to the reduced opisthosomal 

segment found folded underneath the prosoma-opisthosoma junction belonging to somite 

VII (Dunlop & Webster 1999). While this massively reduced true first tergite is not 

observed in Stoermeropterus, this is probably due to the cryptic nature of the segment 

which is likely present in the majority of eurypterids at least as a plesiomorphic trait, and 

it is considered likely that the ‘posterior doublure’ of Kjellesvig-Waering & Heubusch 

(1962) and Caster & Kjellesvig-Waering (1964) - in Buffalopterus pustulosus (Hall, 

1859) (BMS E2866) and Megalograptus ohioensis Caster & Kjellesvig-Waering in 

Størmer, 1955 (UCM 24113) respectively - and the ‘posterior ventral plate’ in 

Kiaeropterus cyclophthalmus (NMS G.1885.26.72.16) of Tetlie et al. (2007) may in fact 

represent the tergite. Therefore the second segment in the chasmataspidid opisthosoma 

corresponds to the commonly held first segment in eurypterids and is the anterior-most 

segment to be fused into the buckler. Well-preserved specimens show it to be of equal 

length to the other buckler segments (e.g. Octoberaspis ushakovi: GIL 35/324, 35/336; 
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Forfarella mitchelli Dunlop, Anderson & Braddy, 1999: BMNH In 60023; ‘Eurypterus’ 

stoermeri: PIN 1138/1; and well preserved Diploaspis casteri: SMF VIII 39). 

Some Stoermeropterus specimens (NMS G.1885.26.72.1; G.1897.32.12.9; 

G.1897.32.137.2) appear to show trilobation of the mesosoma, however the majority of 

well-preserved specimens show the mesosoma to be undifferentiated. Trilobation in 

eurypterids is delineated by furrows running along the length of the body (e.g. 

Megalograptus ohioensis: UCM 24122A; Mixopterus kiaeri: PMO H2044; 

Hardieopterus macrophthalmus: NMS G.1897.32.95) – trilobation suggested by ridges 

on the opisthosoma (as in Stylonurus powriensis Page, 1856: NMS G.1891.92.102 and 

Cyrtoctenus wittebergensis: USS IT01) is not considered homologous to this type – 

which is not apparent in the Pentland Hills specimens. Furthermore those that do appear 

to show trilobation have been either laterally compressed or completely flattened, and so 

it is considered a taphonomic artefact caused by compression and the deep-bodied nature 

of the specimens. 

All the tergites bear an articulation point along their dorsal margin, consisting of a 

smooth facet followed by a slight ridge before the normal dorsal ornamentation begins. 

This is best seen in NMS G.1897.32.88 and G.1897.32.138 but can be made out in a few 

others (e.g. NSM G.1885.26.72.13; G.1897.32.139; G.1897.32.173: Pl. 12, fig. 2) and 

probably represents the point of overlap with the preceding tergite, with the following 

segment slotting underneath it. A similar ‘smooth articulating facet’ was described by 

Lamsdell et al. (2009) in specimens of Drepanopterus abonensis (e.g. BGS GSM 84694, 

GSM 84718). While it has been recognized for some time that the segments of the 

eurypterid opisthosoma would have overlapped, and implied that a ridge on the tergite 
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marks the maximum point of overlap with the preceding tergite (see Wills 1965 and 

Caster & Kjellesvig-Waering 1964), the articulation points have been largely neglected in 

descriptions by previous authors or have been described without the articulation function 

of the structure being realized (e.g. Kjellesvig-Waering & Heubusch 1962, Tetlie & 

Dunlop 2005), a notable exception being the description of Adelophthalmus sievertsi by 

Poschmann (2006), where a transverse furrow on the anterior third of each segment was 

stated to delineate the maximum overlap of the preceding segment. Such articulation 

points are actually known from many eurypterids (e.g. Eurypterus lacustris: BMS E6468; 

Eurypterus henningsmoeni (Tetlie, 2002): PMO 70705; Adelophthalmus granosus Jordan 

in Jordan & von Meyer, 1854: MfN MB.A. 890; Buffalopterus pustulosus: BMS E2866; 

‘Carcinosoma’ scorpioides (Woodward, 1868): NMS G.1986.34.5; Drepanopterus 

pentlandicus: NMS G.1885.26.72.5; Rhenopterus diensti: MfN 48/48a), and appear to be 

consistent within the group. Recognizing the morphology of tergite articulations is 

important for several reasons; several species may have had their total body lengths 

overestimated by not accounting for the fact that the articulation point would have been 

slotted beneath the preceding tergite, also the mode of articulation can give some 

indication of the degree of movement possible between the segments and can be useful 

for working out functional morphology including locomotion, posture, and the potential 

or otherwise for enrollment. The morphology of segment articulation may also have some 

phylogenetic signal useful for resolving the relationships of basal chelicerates and their 

ancestors (see Excursus on segment articulations in arthropods).  

One of the more unusual features of Stoermeropterus conicus is its possession of 

moveable spines on the lateral margin of the mesosoma as evidenced from seven 
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specimens (NMS G.1885.26.72.13; G.1885.26.72.14; G.1885.26.72.17; G.1897.32.85; 

G.1897.32.131; G.1897.32.139; G.1897.32.165: Pl. 11, fig. 1). These spines are also 

known from the other Stoermeropterus species (i.e. S. latus: PMO H1715, H1734, 

H1808; S. nodosus: FMNH PE6214) and so appear to be a defining characteristic of the 

genus. The spines appear to attach beneath the tergite and are most frequently preserved 

flattened against the body, making them difficult to discern, however occasionally a spine 

will be shown projecting out giving clear indication of their mobile nature. Despite being 

positioned between the tergite and operculae the spines appear to be more closely 

associated with the unsclerotized sternite as they are absent from the first (genital) 

segment which ventrally has fused with the second segment to form the genital 

operculum. The spines are narrow, never more than 3 mm in width, and extend for about 

half the length of the following segment but are otherwise undifferentiated. The 

mesosomal segments rarely bear any form of lateral ornamentation in eurypterids; fixed 

epimeral projections consisting of lateral cuticular extensions of the tergite are found in 

some species of Adelophthalmus Jordan in Jordan & von Meyer, 1854 (e.g. A. sievertsi: 

PWL 2004/5000-LS, 2004/5002-LS; A. granosus: MfN MB.A. 890; A. mazonensis: UI 

X345) and Strobilopterus princetonii (PU 13854), but these are clearly not homologous 

to the articulating spines in Stoermeropterus. Moveable spines are unknown in the 

remaining chelicerates (and potentially all arthropods) with the exception of limuloid 

xiphosurids as defined by Selden & Siveter (1987). In these taxa the freely articulating 

abdominal tergites have fused to form a thoracetron and the moveable spines originate 

from the ventrum of each segment, being interspersed with dorsal fixed epimera (e.g. 

Rolfeia fouldenensis Waterston, 1985: NMS G.1984.67.1) that are highly reduced in 
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more modern species (e.g. Mesolimulus walchi (Desmarest, 1822): ROM 53253), and 

function as mechanoreceptors that aid in righting behaviour (Fisher 1981) and in 

monitoring the posture of the opisthosoma in relation to the substrate (Waterston 1985). 

The moveable spines in Stoermeropterus and limuloids clearly developed through the 

same developmental process, being associated with the ventral surface of the 

preabdomen, having a non-appendicular origin and consisting of a conical spine situated 

within a semi-spherical socket, probably formed from enlarged and highly sclerotized 

setae. Furthermore they both lack the spines on the genital segment. Direct homology is 

unlikely however, as limuloids have six pairs of moveable spines (with the exception of 

Rolfeia, which is also lacking spines on the second tergite for a total of five pairs) and the 

fusion of tergites into the thoracetron probably occurred in xiphosurans before the 

development of the moveable spines (Anderson & Selden 1997). The moveable spines 

therefore probably represent an example of parallelism (Simpson 1961) via generative 

homology (Butler & Saidel 2000). 

Unusually for eurypterids, which are usually preserved so that the rock splits along 

the specimen’s dorsal surface because of the thinner nature of the ventral cuticle 

(Simpson 1951), the rocks containing Stoermeropterus conicus are often split to reveal 

the ventral structures. A similar phenomenon is seen in Moselopterus, and in both cases 

the cause is likely to be the granular dorsal ornament of the exoskeleton that hinders the 

splitting of the rock along that surface (Størmer 1974), instead dividing along the smooth 

ventral cuticle. Despite this, observing the ventral mesosomal structures can be difficult 

because of the aforementioned thinness of the cuticle combined with compression during 

preservation resulting in superimposition of the dorsal tergites. The genital operculum 
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and genital appendage can be seen in seven specimens (NMS G.1885.26.72.1; 

G.1885.26.72.13; G.1885.26.72.17; G.1897.32.12.9; G.1897.32.133; G.1897.32.136; 

G.1897.32.137) which between them demonstrate the dimorphic morphology of both 

sexes. The genital operculum itself consists of three fused plates, the median and 

posterior plates corresponding to the appendages of somite VIII and IX and the anterior 

plate potentially representing the true sternite of somite VII (see Plesiomorphic states 

within Eurypterida). The anterior opercular plate is little more than a strip that can be 

seen on only well preserved specimens and accounts for about a tenth of the operculum’s 

length (NMS G.1885.26.72.17). Anterior opercular plates are known among the 

Stylonurina (Parastylonurus ornatus: NMS G.1897.32.8; Stylonurella spinipes: BGS 

GSM 87357; Drepanopterus abonensis: BGS GSM 84704) and other relatively basal 

Eurypterina (Eurypterus tetragonophthalmus: BNHM In 59752; Dolichopterus jewetti 

Caster & Kjellesvig-Waering, 1956: NYSM I13138) but appear to be lost in more derived 

Eurypterina (Parahughmilleria hefteri: SMF VIII 59; Erettopterus bilobus: KM 

09.123.go), while it has also been reported in the chasmataspidid Loganamaraspis 

dunlopi (NMS G.1957.1.649). The median and posterior opercular plates are 

approximately equal in length with a clear transverse suture at the point where the first 

and second opercular plates are joined (NMS G.1897.32.136). This is very similar to the 

stylonurine condition, where there is a prominent transverse opercular suture (as in 

Rhenopterus diensti: MfN 48/48a), whereas in Eurypterina the transverse suture becomes 

less obvious (Eurypterus lacustris: UMMP 62582A) before being lost entirely with the 

only indication that the genital operculum consists of two segments being a difference in 

cuticular ornamentation between the two (Slimonia acuminata: KM 09.123.aa). 

157



 

As in all eurypterids, the genital appendage in Stoermeropterus conicus is sexually 

dimorphic, with a long type A appendage (NMS G.1885.26.72.1; G.1885.26.72.13; 

G.1897.32.12.9) and a short type B (NMS G.1885.26.72.17; G.1897.32.133; 

G.1897.32.136; G.1897.32.137). The type A appendage is longer comparatively, however 

the individuals preserving the type B tend to be larger and so both appendages appear to 

be of a similar size (Table 10), however comparing two similarly sized specimens (NMS 

G.1885.26.72.1 and G.1897.32.137) reveals that while the appendages have a similar 

width (about 4 mm at the base) the type A appendage is approximately double the length 

of the type B (11 mm compared to 6 mm).  

The type A genital appendage is associated with deltoid plates that are apparent even 

in the most poorly preserved specimen (NMS G.1885.26.72.1) that are shown to be 

almost pentagonal in outline (NMS G.1897.32.12.9), similar to the deltoid plates of 

Eurypterus tetragonophthalmus (BMNH I 3406) rather than the more triangular plates of 

Parahughmilleria hefteri (SMF VIII 256) and Adelophthalmus sievertsi (PWL 

2004/5018-LS). The deltoid plates are situated at the base of the genital appendage and 

extend back for the length of the median opercular plate. The posterior opercular plate 

bears a pair of spatulae that lie either side of the genital appendage and have rounded 

terminations that marginally extend beyond the posterior plate margin (NMS 

G.1885.26.72.13; G.1897.32.12.9). Spatulae are generally only known from the 

Adelophthalmoidea where they vary in morphology from having a pointed termination 

(Adelophthalmus sievertsi: PWL 2004/5018-LS; Parahughmilleria hefteri: SMF VIII 

256) to a rounded termination like that seen in Stoermeropterus (Adelophthalmus 

mazonensis: UI X345; Adelophthalmus moyseyi (Woodward, 1907): LM 751). Spatulae 
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have also been reported in Dolichopterus jewetti (NYSM I13138) and the Stylonurina 

Parastylonurus ornatus (NMS G.1897.32.7) and Drepanopterus abonensis (BGS GSM 

84700) and these appear to have angular terminations. The genital appendage itself is 

lanceolate and originates from the median opercular plate, extending down to the 

posterior margin of the first Blattfüsse. The number of appendage segments is difficult to 

ascertain, however it appears there is a long tubular proximal segment and two short 

distal segments (NMS G.1897.32.12.9). The termination appears unicate in NMS 

G.1897.32.12.9 but bifurcate in NMS G.1885.26.72.13, and as this is the better preserved 

of the two this morphology is assumed to be the correct one. This morphology of type A 

genital appendage appears unique among Eurypterida, being somewhat similar to genital 

appendages found in adelophthalmoids (for example Nanahughmilleria norvegica: PMO 

H1873 and Adelophthalmus mazonensis: UI X345) but the appendage is broader at its 

base than in N. norvegica and far shorter than in A. mazonensis.  

The type B genital appendage is also associated with a genital operculum that consists 

of an anterior, median and posterior opercular plate with the transverse suture between 

the median and posterior opercular plates curving towards the anterior as it extends 

laterally and the posterior opercular plate bowing downwards around the appendage 

(NMS G.1897.32.136). There are no deltoid plates on the type B operculum despite this 

region being well preserved in some specimens, something that is also seen in 

Parastylonurus ornatus (NMS G.1897.32.8). Spatulae may be faintly present, however 

NMS G.1885.26.72.17 and G.1897.32.136 appear to show narrow structures with angular 

terminations while on NMS G.1897.32.133 and G.1897.32.139 there appears to be no 

structures present. An alternative explanation for these structures could be as lateral 
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lamellae; the ‘rim’ and ‘flange’ structures described by Størmer (1974) on the type B 

operculum of Moselopterus and also observed in Eurypterus tetragonophthalmus 

(Braddy & Dunlop 1997) and Parastylonurus ornatus (Waterston 1979). The genital 

appendage itself initially appears lozenge-shaped in specimens where the preservation is 

poor (NMS G.1897.32.136; G.1897.32.139), however this is largely due to the spatulae 

partially folding under the appendage compounded by the very tip of the appendage 

breaking off. NMS G.1885.26.72.17 and G.1897.32.133 show the type B appendage to be 

obpyriform with its distal termination narrowing to a point. NMS G.1885.26.72.17 also 

shows the genital appendage narrowing towards its base, however the appendage in this 

specimen has been displaced from its natural position and it appears that this structure 

would normally project underneath the median opercular plate as shown in the type B 

appendage of Eurypterus tetragonophthalmus (Braddy & Dunlop 1997). 

Posterior to the genital operculum the remaining operculae (the Blattfüsse) are 

represented by only a handful of specimens (NMS G.1885.26.72.14; G.1885.26.72.17; 

G.1897.32.12.9; G.1897.32.136). The sternites, being fully covered by the operculae, are 

unsclerotized in eurypterids and so are not preserved (Størmer 1934a). Of the specimens 

preserving Blattfüsse, NMS G.1897.32.12.9 shows the central suture between the 

opercular plates but does not preserve enough detail to provide a verifiable count of the 

number of plates, while the holotype (NMS G.1885.26.72.14) shows that there were five 

operculae covering the area corresponding to tergites 1-6 and that at least the posterior 

three Blattfüsse are medially fused. The clearest indication of opercular morphology 

comes from NMS G.1885.26.72.17, which shows five operculae, the genital operculum 

extending for the length of the first two dorsal tergites. The operculae bear strong 
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ornamentation (see Opisthosomal cuticular sculpture) and slightly overlap, being 

marginally longer than their corresponding tergite. Each operculum spans the width of 

the body and bears a faint suture, while the first Blattfüsse may be unfused; most 

eurypterids have the Blattfüsse fused with a clear suture (e.g. Parahughmilleria hefteri: 

SMF VIII 57b2; Stoermeropterus latus: PMO H1650), while a suture is lacking in the 

Blattfüsse of Megalograptus ohioensis (UCM 24100E), Erettopterus osiliensis Schmidt, 

1883 (YPM 174601), Rhinocarcinosoma dosonensis Braddy, Selden & Doan Nhat, 2002 

(IGMR BT166/1), Hibbertopterus scouleri (KM G55/76), Adelophthalmus mazonensis 

(UI X345) and Adelophthalmus moysei (LM 751). The first Blattfüsse in Stoermeropterus 

conicus is clearly unfused (as shown by NMS G.1897.32.136), unlike the first Blattfüsse 

in the other moselopterids (e.g. Vinetopterus struvei: SMF VIII 145; Moselopterus 

ancylotelson: SMF 26061) which appears to be fused, a condition shared with many 

eurypterids (e.g. Onychopterella augusti: GSSA C373; Onychopterella kokomoensis: 

FMNH UC6638; Nanahughmilleria norvegica: PMO H1795; Parastylonurus ornatus: 

NMS G.1897.32.8; Carcinosoma newlini Claypole, 1890: AMNH 502; Eurypterus 

henningsmoeni: PMO 70696) although several do also have the first Blattfüsse unfused 

(e.g. Slimonia acuminata: SM A16237; Orcanopterus manitoulinensis: ROM 56459; 

Eurypterus remipes: YPM 9003; Drepanopterus pentlandicus: NMS G.1897.32.71; 

Leiopterella tetliei: CMN 53573; Rhenopterus diensti: MfN 48/48a). There appears to be 

no clear phylogenetic pattern for Blattfüsse suturing within Eurypterida however, with 

the fusion of the Blattfüsse apparently variable even within genera while the presence or 

absence of median sutures on the operculae does not correlate with whether the first 

Blattfüsse is fused or not (Leiopterella has an unfused first Blattfüsse with visible sutures 
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on the remainder while Orcanopterus also has the first Blattfüsse unfused but no sutures 

on the fused operculae) while Mixopterus kiaeri unusually has not only the first 

Blattfüsse unfused but a deep cleft in the second and a notch in the third before the fourth 

is fully fused (PMO H2044). However, the fusion of opercular plates may have 

ramifications for broader chelicerate phylogeny (see Plesiomorphic states within the 

Eurypterida).  

Metasoma and telson. The metasoma (comprising the last six opisthosomal segments) 

and the telson are preserved in a total of 33 specimens (Table 11) and are about 108 mm 

long in larger specimens (e.g. NMS G.1897.32.138), of which the telson accounts for 35 

mm, and 43 mm long including a 15 mm telson in smaller individuals (e.g. NMS 

G.1897.32.164). Altogether the metasoma and telson accounts for 60% of the animal’s 

total length, 34% of the total being the metasoma and 26% being the telson. The anterior 

three metasomal segments have an average length of 6 mm, while the last three become 

progressively longer until the pretelson is approximately double the length of segment 7. 

The metasomal segments are ankylosed, each forming a single sclerotized ring that 

completely encases the body, and so better withstand the taphonomic warping, resulting 

in some specimens appearing to have a proportionally longer metasoma (e.g. NMS 

G.1897.32.89) or a proportionally narrower, apparently undifferentiated prosoma and 

mesosoma (e.g. NMS G.1897.26.72.13); unwarped specimens show the opisthosoma to 

begin slightly narrowing from the fourth segment onwards, with an increased contraction 

at the seventh opisthosomal segment that continues constricting regularly until the 

pretelson (NMS G.1885.26.72.14; G.1897.32.88). Segment 7 is around 44 mm wide in 

the largest specimens (NMS G.1897.32.132; G.1897.32.133; G.1897.32.136) but has an 
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average width of 21 mm while the largest pretelson has a width of 20 mm with the 

average width being 10 mm. The pretelson itself varies, being as long as or longer than it 

is broad in some specimens but broader than it is long in others.  

All metasomal segments bear lateral epimera although these are only preserved on 

just under a third of the specimens, a phenomenon seen in other Pentland Hills 

eurypterids such as Hardiopterus macrophthalmus, which occasionally appears to lack its 

distinctive pedunculate epimera (e.g. NMS G.1885.26.72.11). This is also seen in the 

chasmataspidids Achanarraspis reedi Anderson, Dunlop & Trewin, 2000 (AU 12242) 

and Chasmataspis laurencii (USNM 125099) which preserve some but not all of their 

epimera and was noted to be common in the adelophthalmid eurypterid Adelophthalmus 

sievertsi by Poschmann (2006), who stated that the lateral epimera tended to break off 

during collection and that the presence or absence of postabdominal epimera should be 

used as taxonomic criterion only after detailed taphonomic investigation. Waterston 

(1979) explained this propensity for missing the epimera as due to the postabdominal 

segments being dorso-ventrally deep while the epimera are positioned only slightly 

ventral to the dorsal surface of the segments, therefore when a specimen is split along the 

dorsal surface the epimera are well represented while if the specimen splits along a more 

ventral plane the epimera may not be well seen or even absent. This explains their 

apparent absence in many of the Stoermeropterus specimens, most of which are exposed 

in ventral view. Of further interest is the apparent difference in epimeron morphology 

between certain specimens, with most appearing to have angular epimera on the pretelson 

(NMS G.1885.26.72.1; G.1897.32.89; G.1897.32.124: Pl. 5, fig. 3; G.1897.32.126: Pl. 6, 

fig. 1; G.1897.32.130: Text-fig. 13a, Pl. 6, fig. 3; G.1897.32.170: Pl. 11, fig. 4; 

163



 

G.1897.32.185: Text-fig. 14c; G.1897.32.192: Pl. 14, fig. 3; G.1897.32.198: Pl. 15, fig. 4) 

while in others they appear lobate (NMS G.1897.32.88; G.1897.32.164; G.1897.32.167: 

Pl. 13, figs. 1&2; G.1897.32.197: Pl. 15, fig. 3). These lobate specimens were separated 

into their own species as Drepanopterus lobatus by Laurie (1899), however Lamsdell et 

al. (2009) suggested that D. lobatus represented a sexual dimorph of D. bembycoides. 

Restudy of these specimens suggests that sexual dimorphism is indeed the cause of the 

variation, as there is also a consistent difference in pretelson length: width ratios that 

correlates between the epimeral morphology and the two types of genital appendage (see 

Sexual dimorphism in Stoermeropterus conicus).  

The epimera of segments 7-11 are angular even on those specimens with lobate 

epimera on their pretelson (e.g. NMS G.1897.32.88). These are comparatively small – 

 the first being about the same length as the moveable spines on the mesosoma – and 

increase in size only slightly in each succeeding segment. By segment 11 the epimera 

have approximately doubled in size, while the epimera on the pretelson are double the 

size of those on segment 11. Waterston (1979) considered the epimera of Parastylonurus 

ornatus to be part of a hydrodynamic stabilization system hypothesized for several long-

legged Stylonurina generally consisting of a lengthening of the pretelson or telson, 

however such a system would not seem to apply for Stoermeropterus as with the 

exception of the pretelson the epimera do not drastically project out from the curve of the 

body and the prosomal appendages are much shorter in relation to the animal’s length. It 

is possible that the epimera served a function similar to that proposed by Waterston 

(1979) in Hardieopterus macrophthalmus, acting to facilitate the working of sediment 

during excavation and burial.  
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The telson is known from 22 specimens, ranging in total length from 20 mm to 54 

mm (Table 11), with a minimum width of 4 mm and a maximum width of 10 mm at its 

base. The telson appears lanceolate in the majority of specimens (e.g. NMS 

G.1897.32.138; G.1897.32.164), however some specimens appear to possess a styliform 

telson (NMS G.1885.26.72.1; G.1897.32.89) and one seems to have a needle-shaped 

telson (NMS G.1897.32.12.9), but again these differences are taphonomic in origin. The 

overall telson shape was lanceolate, however at its base the telson has a ventral ‘boss’ 

that was probably the site of muscle attachments allowing for flexure of the telson and an 

associated ventral carina. A similar telson morphology is seen in Onychopterella augusti 

(GSSA C373a) which possesses both a ventral boss and carina, however the overall 

telson length is short in comparison to that of Stoermeropterus, which is almost equal in 

length to the postabdomen (e.g. NMS G.1885.26.72.13). Dorsally the telson lacked any 

form of keel or carina (NMS G.1897.32.138), making it almost identical to the telson of 

Parahughmilleria hefteri (SMF VIII 55; VIII 59; VIII 97), which also lacks a dorsal 

carina but clearly displays the ventral carina and ‘boss’ with and an overall telson length 

almost equal to the postabdomen. The Parahughmilleria specimens also apparently show 

a number of telson variants, and it seems likely that the different observed morphologies 

merely reflect differences in preservation; the telson morphologies noted in 

Stoermeropterus represent various planes of splitting through the three-dimensional 

telson structure; the lanceolate shape encompasses the whole telson, while the styliform 

shape preserves the ventral ‘boss’ and carina while the single needle shape preserves only 

the carina.  
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This telson type also appears similar to the isolated telson representing 

Marsupipterus sculpturatus Caster & Kjellesvig-Waering, 1955 (BGS GSM 89467) 

which was considered a ceratiocarid crustacean by Rolfe (1963). Braddy et al. (1995) 

suggested that the ‘pouch’ of Marsupipterus might be a ventral ‘boss’ where the cuticle 

has broken away to reveal the hollow attachment site within and returned it to 

Eurypterida, drawing attention to similarities with Onychopterella augusti. It is also 

possible that the telson has been interpreted upside down, and that the dorsal carina is 

actually ventral. This, combined with the elongate nature of the telson, could suggest its 

affinities lie closer to Stoermeropterus.  

Opisthosomal cuticular sculpture. The opisthosomal ornament is visible in several 

specimens, but in only one (NMS G.1897.32.138) is the dorsal sculpture preserved. As on 

the carapace it consists of fine pustules forming a granular sculpture to the exclusion of 

scales. The pustules do not appear to show any openings for setae to attach and so 

probably did not serve a sensory function, however due to the very small nature of the 

structures any attachment points that were there may not have been preserved or would 

be very difficult to identify. The ventral ornament is again quite different from the dorsal, 

lacking pustules but possessing a seemingly random scattering of broad lunule scales 

(NMS G.1885.26.72.13; G.1897.32.12.9; G.1897.32.133; G.1897.32.136) that can be 

seen across the operculae and underside of the postabdominal segments. Again these 

appear to lack follicles, and are orientated so that the ‘tip’ of the scale points posteriorly, 

as is usual in eurypterids. 

‘Terrace lines’ similar to those on the prosoma are also located on the ventral surface 

of the opisthosoma, with the majority localized on the operculae (NMS G.1885.26.72.17; 
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G.1897.32.131; G.1897.32.136; G.1897.32.139; G.1897.32.176) where they form a series 

of anastomising veins. These are best seen on NMS G.1885.26.72.17 and were suggested 

by Lamont (1955) to represent the position of the respiratory organs (Kiemenplatten) due 

to similarities with the supposed Kiemenplatten of Slimonia acuminata as reconstructed 

by Laurie (1893). The ornament on Stoermeropterus conicus consists of three furrows 

that originate at the lateral margin of the operculae and run inwards along the anterior of 

the plate, splitting into veins that curve down towards the plate posterior, each vein itself 

splitting once more and petering out just before the posterior margin where they are 

almost perpendicular to the main furrows. The main furrows themselves continue to the 

median join between the two opercular plates, where they deflect slightly towards the 

posterior before intersecting with the suture. Thus they cover almost all of the 

operculum’s surface area. Although three-dimensionally preserved Kiemenplatten have 

been retrieved from macerated cuticle (Manning & Dunlop 1995, Filipiak & Zatoń 2010), 

several species are known to possess imperfectly preserved ‘scars’ that were thought to 

be due to the attachment of the Kiemenplatten on the body wall and transposed onto the 

underlying operculae by compaction during burial, however the observation of similar 

scars on modern Limulus operculae, which does not possess Kiemenplatten, makes this 

unlikely. Limulus does however have book-gills, and book-gills have been described 

from well-preserved Onychopterella augusti (Braddy et al. 1999), although these appear 

to be oriented so the gill lamellae are arranged vertically as in scorpions as opposed to the 

horizontal lamellae in xiphosurans. However, the book-lungs of scorpions are actually 

oriented horizontally at their point of attachment and then curve up into the vertical 

position (Kamenz & Prendini 2008) and it is probable that the lamellae in O. augusti had 
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a similar structure, with the observed vertical orientation just representing the distal-most 

part of the book-gills. Therefore it is likely that these scars represent the attachment of the 

book-gills onto the actual operculae. Direct comparison with the structures in 

Stoermeropterus therefore can only be made with these scars. These have been described 

in detail from Slimonia acuminata by Moore (1941), Eurypterus tetragonophthalmus by 

Wills (1965) and Tarsopterella scotica (Woodward, 1872) by Waterston (1975), and in 

all cases the book-gill occupies less than half the surface area of the operculum. The scars 

are situated within a darkened, oval area that probably represents organic staining from 

the respiratory organs themselves, something that is absent from the Stoermeropterus 

specimens. The ‘veins’ of the book-gills also originate from the lateral edge of the 

operculum and run inwards, however the main veins are situated centrally on the segment 

as shown well in Slimonia acuminata (SM A16237a) and branch towards both the 

anterior and posterior of the plate (e.g. Tarsopterella scotica: NMS G.1891.92.103; 

Eurypterus tetragonophthalmus: MCZ 109062, 109063, NRM Ar 47265), giving them a 

more dendritic appearance. The number of main veins appears to be three in Slimonia but 

is more difficult to ascertain in Eurypterus and Tarsopterella, however in all three genera 

the main veins stem from a single, large channel rather than having individual 

originations.  

The clear differences in structure between the opercular ornamentation of 

Stoermeropterus conicus and the form of the book-lung imprints shared between 

Eurypterus, Slimonia and Tarsopterella indicates that these are not in fact the remains of 

respiratory organs but the actual ornamentation of the operculae. An almost identical 

ornamentation is seen on the operculae of Parahughmilleria hefteri (SMF VIII 57: 
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30033) and Parahughmilleria major Størmer, 1973 (SMF VIII 148), from which gill 

areas have also been identified that are independent of the opercular ornamentation 

(Størmer 1973). Stoermeropterus conicus also has a distinct striate ornament on the 

ventral surface of the postabdominal segments (NMS G.1897.32.125: Pl. 5, fig. 2) that it 

shares with Parahughmilleria hefteri (SMF VIII 55) which consists of a series of four 

grooves angled postero-laterally. Postabdominal ‘terrace lines’ are also found on 

Parastylonurus ornatus where they are associated with the epimera (NMS G.1897.32.43), 

and although these are on the dorsal side of the postabdomen and therefore probably not 

homologous they are angled away from the body at an angle similar to those in 

Stoermeropterus. The ‘terrace lines’ in Parastylonurus have been interpreted as 

functioning in sensing water flow across the body (Waterston 1979) and the striations in 

Stoermeropterus may have had a similar function, although it is also possible that they 

acted in order to increase friction between the animal and the substrate surface (see 

Prosomal cuticular sculpture), or to aid in the movement of sediment when burying 

itself, as the striae angle so as to move particles backwards and away from the body and 

could facilitate a forward motion through the sediment surface. 

The final three segments have a dentate (sensu Tollerton 1989) posterior margin in 

several specimens (NMS G.1897.32.89; G.1897.32.126; G.1897.32.184: Text-fig. 14a), 

however these are heavily dependent on preservation with the majority of specimens not 

exhibiting any sign of ornamentation on segments 10–12 and so it is not clear whether 

their apparent absence in the specimens with lobate pretelsonic epimera is significant or a 

taphonomic relic. Dentate posterior margins are present on all the metasomal segments of 

Moselopterus ancylotelson (SMF VIII 146, SPW 701-D, 703-D) and crenulate margins 
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on every tergite are reported from Vinetopterus struvei and V. martini (Poschmann & 

Tetlie 2004). Ornamented tergite margins are rare outside of the moselopterids, however 

a posterior crenate ornamentation is also known from all segments of Parastylonurus 

ornatus (NMS G.1885.26.27.12) and the last two or three postabdominal segments of 

Parahughmilleria hefteri have dentate posterior margins (SMF VIII 42; VIII 59; VIII 98; 

PWL 2004/5042-LS; 2004/5044-LS). 

 

DISCUSSION 

 

SEXUAL DIMORPHISM IN STOERMEROPTERUS CONICUS 

Sex determination. Woodward (1866-1878) first recognized sexual dimorphism in 

the Eurypterida through differences in the genital appendage and, although compared to 

two separate genera of extant xiphosurid erroneously believed by Woodward to be 

different genders of the same species, a long and a short morphology of genital 

appendage were accurately determined in Slimonia and Erettopterus Salter in Huxley & 

Salter, 1859. Holm (1898) identified the two genital appendage morphologies in 

Eurypterus and noted an increased complexity of the longer appendage, including the 

possession of internal horn organs, and the association with the short appendage of a 

hook-like clasping organ on the third prosomal appendage. The clasping organ is found 

only in the males of modern Limulus (although on the second prosomal appendage), and 

so Holm determined the short genital appendage to represent the male and the long 

appendage the female. Gaskell (1908), however, concluded the opposite based on 

comparison with the extant uropygid Thelyphonus Latreille, 1802 rather than xiphosurans 
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which have operculae lacking sexual dimorphism (Pocock 1902) or scorpions which are 

differentiated by the males having genital papillae which project from underneath the 

operculum (Crucitti et al. 1998). It was Holm’s interpretation that became adopted for 

wide use in the literature (e.g. Sarle 1903; Clarke & Ruedemann 1912) until Størmer 

(1934a) described Mixopterus kiaeri based on two remarkable specimens from Ringerike, 

Norway. These preserved a long genital appendage associated with a clasping organ on 

the second prosomal appendage, the same as male Limulus, and after comparison with 

other chelicerates (modern amblypygids in particular) Størmer adopted the view of 

Gaskell, that the long appendage (which he termed type A) is the male and the short 

appendage (type B) the female; the claspers described from the third prosomal appendage 

of Eurypterus were considered analogues to similar structures found on the third 

appendages of female amplypygids. This determination of the sexes was accepted by the 

majority of subsequent workers, including Prantl & Přibyl (1947), Kjellesvig-Waering 

(1951, 1958a,b, 1959, 1961, 1963), Lamont (1955), Caster & Kjellesvig-Waering (1956), 

Waterston (1960), and Størmer (1936a, 1955) himself, however Wills (1964) rejected 

Størmer’s assignments, favouring Holm’s original conclusions. The following year this 

view was further expounded (Wills 1965), dismissing any comparisons between aquatic 

Palaeozoic chelicerates and Recent terrestrial arachnids due to the great disparity in 

adaptation to their environments. Prior to this second paper however Kjellesvig-Waering 

(1964a) had adopted the convention of referring to the type A as female, while Waterston 

(1964) cites too great a controversy to attribute either appendage type to a sex. Ritchie 

(1968b) followed Waterston in mentioning the controversy but not assigning a sex to 

either morphology. Despite Kjellesvig-Waering (1966) reverting to a female type B and 
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male type A and an attempted revival of Størmer’s interpretations (Størmer & Kjellesvig-

Waering 1969) only Størmer (1973), Andrews et al. (1974) and Hanken & Størmer 

(1975) continued to use Gaskel’s assignments. Kjellesvig-Waering (1979a) re-adopted 

the classification of Holm and Wills, and this has been followed by Kues & Kietzke 

(1981), Selden (1981, 1984) and Braddy & Dunlop (1997). This last publication has set 

the standard for sex determination in recent years (e.g. Braddy 2000, 2001; Braddy et al. 

2002; Tetlie et al. 2004; Tetlie 2006, 2007b; Poschmann & Franke 2006), however many 

authors simply refer to the different morphologies as type A and B without attempting to 

assign a gender (e.g. Tollerton 1989, Miller 2007, Lamsdell et al. 2009, 2010b). Recently 

however this assignment has been questioned again through comparison with modern 

arachnids, with Kamenz et al. (2009) interpreting the horn organs found on the type A 

appendage as hemispermatophores rather than spermathecae as espoused by Braddy & 

Dunlop (1997), resulting in a male type A appendage and female type B. This view is 

tentatively supported herein, however the different appendage morphologies shall be 

referred to simply as type A and type B without any inferred sex determination from 

hereon. 

Primary sexual dimorphism. Following the considerations of Darwin (1871), 

primary sexually dimorphic traits are considered to be those directly concerned with and 

necessary for reproduction; in eurypterids this is limited to the genital appendage and 

operculum, and possibly the clasping organs on the second appendage (assuming an 

analogy with the similar structures in male Limulus). Only one specimen of 

Stoermeropterus conicus preserves all the podomeres of appendage II (NMS 

G.1897.32.133) and this does not possess any form of clasper as found in Brachyopterus 
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stubblefieldi (BGS D 3124) and Mixopterus kiaeri (PMO H 2044), although as the 

specimen has a type B genital appendage this would not be considered unusual. No 

scimitar lobe is present on appendage III either (NMS G. 1885.26.72.14; G.1897.32.133), 

as is known from specimens of Eurypterus tetragonophthalmus (BMNH I3406/1; 

I3406/11) and Stylonurella spinipes (NMS G.1891.92.33; BGS GSM 87357) with type B 

appendages, however other well-known species (e.g. Eurypterus remipes) also lack 

scimitar lobes on this appendage, and it seems likely that the occurrence of claspers on 

appendage II of type A individuals and scimitar lobes on appendage III on type B 

individuals varies from species to species. 

The genital appendage of Stoermeropterus is similar to other Eurypterida in having a 

long, type A morphology consisting of three segments and a shorter type B morphology 

consisting of two segments. There are exceptions to this rule, as pterygotid eurypterids 

have a type A genital appendage that is comparatively short, not extending much beyond 

the genital operculum, and composed of a single segment (Waterston 1964) that probably 

represents the fused three segments of the primitive condition. The pterygotid type B 

appendage is short and broad and also consists of a single segment, although there is a 

clear suture in some taxa where the two segments have fused (e.g. Erettopterus bilobus: 

KM 09.123.go, BGS GSM 87331). Parahughmilleria hefteri has been described as 

having three segments in its type B genital appendage (Størmer 1973), although the 

terminal two segments are small and poorly preserved and the available material needs 

reanalyzing to verify this. Slimonia acuminata also has a type B appendage apparently 

consisting of three segments (Waterston 1960), although the genital appendages of this 

taxon are highly unique compared to other eurypterids with the distal segments of the 
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type B appendage potentially being eversible as part of an ovipositor. In Stoermeropterus 

conicus the type A appendage consists of three segments, the posterior segment of which 

has a bilobed termination, and extends as far as the posterior margin of the first Blattfüsse 

(Text-fig. 15a). Anterior to the appendage where it joins with median opercular plate are 

a pair of deltoid plates which have been interpreted as functioning as articulations for the 

lowering of the appendage during flexure of the operculum (Braddy & Dunlop 1997), 

while alongside it are paired, narrow spatulae with slightly rounded terminations. None of 

the available specimens preserve any evidence of horn organs, however as these are 

internal structures it is considered likely that Stoermeropterus did possess them. The type 

B appendage consists of two segments, the proximal segment being expanded and oval 

with a small, triangular terminal segment giving it an overall obpyriform shape (Text-fig. 

15b). Deltoid plates are not apparent despite the area being well preserved, however 

when deltoid plates are present on the type B appendage (e.g. Parahughmilleria hefteri: 

SMF VIII 206; Slimonia acuminata: NMS G.1859.35.7) they are less defined than on the 

type A and so their absence in Stoermeropterus could still be preservational. On balance 

however it is thought likely that the deltoid plates are genuinely absent given their 

absence in Eurypterus tetragonophthalmus (LM 735), Parastylonurus ornatus (NMS 

G.1897.32.8), Moselopterus ancylotelson (SMF 26061) and Rhenopterus diensti (MfN 

48/48a); their occurrence in Parahughmilleria and Slimonia appears to be a derived trait. 

Spatulae are also absent from the type B appendage, with the associated lateral structures 

being interpreted as the dorsal portion of the genital appendage which is usually covered 

by the operculum – the ‘wing’ of Wills (1965), ‘flange’ of Størmer (1974), ‘lateral 

lamella’ of Waterston (1979), which is the term used herein, and the ‘dorsal surface of 
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the proximal joint’ according to Braddy & Dunlop (1997). The lateral lamellae closely 

resemble those of the type B appendage in Moselopterus (SMF VIII 184a; 26061) and 

Vinetopterus (SMF VIII 145), existing as a narrow rim around the genital appendage and 

being visible between the appendage and the ala of the operculum. Spatulae have been 

known to be present on both types of genital appendage (e.g. Parahughmilleria hefteri: 

SMF VIII 256, VIII 266), and Caster & Kjellesvig-Waering (1956) state that spatulae are 

probably usually present in eurypterids but concealed by the operculae, only being 

apparent in some species in which they have hypertrophied and so become visible. The 

spatulae however have an opercular origin as they are sutured onto the margin between 

the ala and the genital appendage, and so they are not homologous to the lateral lamellae. 

Secondary sexual dimorphism. Secondary sexual dimorphism has been poorly 

studied in eurypterids, largely due to the small number of specimens available for any 

given species and the difficulty in identifying the different sexes when the genital 

appendage is absent or obscured. When studies of sexual dimorphism have been 

attempted they have naturally focused on the form and structure of the genital appendage, 

however variations in body proportions and ornamentation have also been noted. Wills 

(1965) suspected, but could not prove, that the body of the type B Eurypterus 

tetragonophthalmus was broader than that of type A individuals, as did Holm (1898) who 

thought that type B individuals were generally larger but again could not prove this by 

measurement, however Andrews et al. (1974) found no evidence for sexual dimorphism 

(but see comments by Waterston (1979, p. 257) on the limitations of this study). Størmer 

& Kjellesvig-Waering (1969) measured a limited number of E. tetragonophthalmus 

specimens that, despite the small sample size, suggested that the type B is wider than type 
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A. Tetlie et al. (2004) suggested that specimens of Rhenopterus with a type B appendage 

are broader than those that supposedly possess a type A, although a type A genital 

appendage has not been directly observed in the genus, and type B specimens in 

Moselopterus appear broader than type A individuals (Lamsdell pers. obs.). However, 

Waterston (1979) noted that type A specimens of Parastylonurus ornatus seem broader 

than those of type B. Waterston also reported two clusters of length: width ratios for 

Hardieopterus macrophthalmus, although none of these preserve genital appendages and 

so determination as to which type is broader is impossible. 

Despite the lateral compression of the Stoermeropterus conicus specimens (see 

Carapace and visual structures) there is evidence for some degree of variation in the 

width of morphotype A (those with a type A genital appendage and/or angular pretelsonic 

epimera) specimens and those of morphotype B (type B genital appendage and/or lobate 

pretelsonic epimera); undistorted specimens of morphotype A (e.g. NMS G.1885.72.14) 

are narrower than those of morphotype B (e.g. NMS G.1897.32.133), having a carapace 

length: width ratio range that overlaps with the standard horseshoe-shaped carapace of 

Tollerton (1989), while morphotype B specimens are also overall larger. The most 

obvious dimorphic characteristic of S. conicus however is the form of the pretelson and 

its associated epimera, which are so distinct as to have resulted in the two dimorphs 

initially being described as separate species (Laurie 1892, 1899). The most obvious 

difference between the two is the epimera, with morphotype A possessing angular 

epimera while morphotype B bears lobate epimera, however the epimera are often broken 

off and so identifying the morphotypes using this criterion can be problematic. The other 

difference in pretelson morphology is, however, frequently preserved, and this is a 
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difference in length: width ratio; morphotype A individuals have an elongated pretelson 

with a length: width ratio range of 1–1.5, while morphotype B possesses a pretelson with 

a length: width ratio between 0.6 and 0.7 (Text-fig. 16). The elongate telson morphology 

is found exclusively with angular epimera, as is the lobate epimera with the ‘short’ type, 

and type A genital appendages are found exclusively associated with the elongate 

pretelson morphology (NMS G.1885.26.72.1; G.1885.26.72.13; G.1897.32.12.9). Only 

one specimen preserving a type B appendage also shows the pretelson (NMS 

G.1897.32.133), which is of the short morphology, however no lobate epimera or short 

pretelson are found associated with type A genital appendages. This, alongside the 

overall broader nature of the specimens, permits the differences in pretelson morphology 

to be assigned to sexual dimorphism with some certainty.  

As well as correlation with other fossil species, comparison with extant chelicerates 

may be of use in identifying sexually dimorphic traits and in assigning the different 

morphotypes to a specific gender. Modern Limulus does not generally exhibit secondary 

sexual dimorphism, although females are generally larger than males (Botton & Loveland 

1992), however extant scorpions often show a number of distinct sexually dimorphic 

traits. Females are often (but not always) larger than the males (Koch 1977), while the 

males themselves can be more gracile with elongated metasomal segments, particularly 

the pretelson (Kraepelin 1907). However the most obvious dimorphic trait of 

Stoermeropterus, the form of the epimera, currently appears to be unique among 

Chelicerata although this may change as more eurypterids are described. 

There is also some indication that the telson in S. conicus is broader and somewhat 

shorter in the morphotype B individuals, yet the propensity for the telson to break off 
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from about halfway along its length makes comparison difficult. Specimens of 

Ciurcopterus ventricosus (Kjellesvig-Waering, 1948) do however appear to show a 

difference in length: width ratio which Tetlie & Briggs (2009) suggested could be due to 

sexual dimorphism, among other things, while variation in the length of the telson of the 

synziphosurine Willwerathia laticeps was considered a potentially sexually dimorphic 

trait (Anderson et al. 1998), although intraspecific variation in telson length of extant 

Limulus is conspicuous (as Anderson et al. noted) and telson width is known to change 

through eurypterid ontogeny (Poschmann & Tetlie 2006). Finally, the granulation of the 

chitinous integuments has been reported to vary slightly between the two sexes in 

eurypterids, with Wills (1965) recording that individuals with type A genital appendages 

have a more conspicuous and continuous ornament of granules on the triangular area 

between the front of the prosoma and the lateral eyes than do those with type B 

appendages, and that the genital appendage of type A is more strongly ornamented than 

type B. Unfortunately, the integument of Stoermeropterus conicus is not well enough 

known to permit comparison. In modern scorpions the cuticular ornamentation also varies 

between the sexes, with males having a coarser granulation (Polis & Sissom 1990), 

similar to type A eurypterids. Although some aspects of secondary sexual dimorphism 

obviously varied somewhat between eurypterid species, as in modern scorpions, 

comparison with the secondary sexual dimorphism of Limulus and extant scorpions 

supports the interpretation of eurypterids with a type B genital appendage as being female 

and those with a type A appendage as male.  

Gender frequency within populations. As noted by Størmer & Kjellesvig-Waering 

(1969) the ratio of males to females is characteristic for several chelicerate groups. 
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Within scorpions the sex ratio of litters at hatching is 1:1 for non-parthenogenetic species, 

a ratio that is widespread among arachnids (Savory 1977), however high rates of male 

mortality result in adult populations with average male: female ratios between 1:2 and 1:3 

(Polis 1990). Scorpions however are generally solitary, interacting with other members of 

their species only at birth or during courtship (or during cannibalism), with social or sub-

social occurrences mentioned specifically due to their infrequency (Polis & Lourenço 

1986; Shivashankar 1994). Eurypterids have been hypothesized to congregate during 

mass-moult-mate events through comparison with horseshoe crabs (Braddy 2001) and are 

often preserved en masse as both accumulations of exuviae and as sites of mass mortality 

(something never encountered for Palaeozoic scorpions), and so may be closer to Limulus 

in terms of sex ratios. Studies of Limulus have shown that, away from breeding grounds, 

the average male: female ratio is 1:1 (Hata & Berkson 2003), although this could partly 

be due to the preferential capture of adult females by commercial fishers (Botton & 

Ropes 1987), while at the breeding grounds the sex ratio is invariably dominated by 

males, with a male: female average of 3:1 (Rudloe 1980; Shuster & Botton 1985). 

Data are limited for eurypterids due to the small sample sizes and propensity for 

individuals to fail to preserve the genitalia. Størmer & Kjellesvig-Waering (1969) 

presented a brief overview of sex ratios in eurypterids, suggesting that type A individuals 

were more common in Eurypterus while type B individuals were predominant in 

Parahughmilleria Kjellesvig-Waering, 1961, Hughmilleria socialis Sarle, 1903 and 

Herefordopterus banksii, however half of these reported ratios are erroneous. Tetlie et al. 

(2008) showed the type A appendages are more common in Eurypterus from the Fiddlers 

Green Formation, New York and Williamsville Formation, Ontario, with a type A: type B 
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ratio of 6.4:1 and 5.3:1 respectively and a ratio of 1:1.25 is retrieved from the nine 

genital-bearing specimens of Herefordopterus banksii figured by Kjellesvig-Waering 

(1951) and Tetlie (2006), while among the specimens of Parahughmilleria described by 

Størmer (1973) (comprising both P. hefteri and P. major which still, admittedly, is a 

small sample size consisting of only fourteen specimens) the type A: type B ratio is 1.3:1 

and in Hughmilleria socialis Sarle (1903) reported that the type A and type B appendages 

were approximately equally represented, the type A: type B ratio from his thirteen 

published genital appendages being 1.1:1. Due to the small number of specimens 

involved (bar Eurypterus, where the ratios are derived from 37 and 51 specimens 

respectively) these ratios are only extremely rough estimates but, as most of weighting 

towards one appendage or the other is due to the occurrence of only one or two extra 

specimens, the frequency of the sexes tend to be more or less equal. Of the eurypterid 

species that are known by a number of specimens, but where not considered by Størmer 

& Kjellesvig-Waering (1969), Nanahughmilleria norvegica shows a clear preponderance 

for type A appendages, with fourteen specimens preserving genital structures (Størmer 

1934a) resulting in a type A: type B ratio of 1.8:1, while Parastylonurus ornatus exhibits 

a type A: type B ratio of 2:1 from six preserved genital appendages with a ratio of 1.75:1 

when all eleven of Waterston’s (1979) morphotype A and B individuals are included. 

Two species of Adelophthalmus Jordan in Jordan & von Mayer, 1854 are preserved in 

numbers but with very few genitalia; A. sievertsi has a type A: type B ratio of 3:1 from 

four specimens (Poschmann 2006) and A. luceroensis Kues & Kietzke, 1981 has a ratio 

of 6:1 from seven specimens, however in both cases the type B appendage is known only 

from a single specimen and the high disparity in occurrence of the sexes is likely to be an 
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artefact of small sample size. In Stoermeropterus conicus seven genital appendages are 

known and give a type A: type B ratio of 1:1.3, however when all 25 specimens 

assignable to one of the two morphotypes are considered the ratio essentially inverts to 

1.5:1, highlighting the danger on relying on very small sample sizes, especially 

considering that the type B appendage is more robust and may be more likely to survive 

the taphonomic process. 

Many eurypterid species are known only from isolated or very few specimens, 

however when these are found with genitalia preserved the appendage is commonly of 

type A – e.g. Hughmilleria sp. (Braddy 2000), Rhinocarcinosoma dosonensis (Braddy et 

al. 2002), Dolichopterus jewetti (Caster & Kjellesvig-Waering 1956), Carcinosoma 

newlini (Kjellesvig-Waering 1958b), Drepanopterus abonensis (Lamsdell et al. 2009), 

Lanarkopterus dolichoschelus Størmer, 1936b (Ritchie 1968b), Mixopterus simonsoni 

Schmidt, 1904, Mixopterus kiaeri (Størmer 1934a), Strobilopterus princetonii (Tetlie 

2007b), Ciurcopterus ventricosus (Tetlie & Briggs 2009), Brachyopterella ritchiei 

(Waterston 1979), Adelophthalmus mazonensis and Adelophthalmus moyseyi (Wills 

1964), and Brachyopterus stubblefieldi (Størmer 1951), as well as Megalograptus 

ohioensis (Caster & Kjellesvig-Waering 1964) and Jaekelopterus rhenaniae (Størmer 

1936a; Poschmann & Tetlie 2006) which do each have a single type B appendage 

preserved but are known from multiple type A appendages – with only comparatively 

few possessing a type B appendage – e.g. Grossopterus overathi (Dunlop et al. 2002), 

Leiopterella tetliei (Lamsdell et al. 2010b), Rhenopterus diensti (Størmer 1936a; 

Poschmann & Franke 2006), Orcanopterus manitoulinensis (Stott et al. 2005), and 

Stylonurella spinipes (Waterston 1979) – indicating that, overall, type A genital 
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appendages are more common in the fossil record. Assuming that eurypterid populations 

followed similar gender ratio dynamics as in modern Limulus, these results support the 

observed secondary sexually dimorphic characters in suggesting a male assignment to the 

type A appendage and a female assignment to the type B, although further work on the 

structure of the genitalia themselves will be needed to resolve this issue. 

COMPARISON WITH OTHER SPECIES ASSIGNED TO STOERMEROPTERUS 

Besides the specimens dealt with herein, two other currently known species can be 

assigned to Stoermeropterus. S. latus, from the late Wenlock of Ringerike, Norway, is 

known from 26 disarticulate specimens (Størmer 1934a), while S. nodosus, from the early 

Pridoli of Virginia, USA, is represented by its holotype and counterpart and potentially 

an isolated genital appendage and operculum (Kjellesvig-Waering & Leutze 1966). The 

known morphology of both species fits well with that of S. conicus in regard to the 

carapace shape, ventral telson boss and carina, moveable mesosomal spines, and type A 

genital appendage with spatulae. Although unknown from S. nodosus the morphology of 

prosomal appendage VI and the epistomal sutures of S. latus correspond well with those 

of S. conicus. 

Stoermeropterus latus (Text-fig. 17a,b) in particular strongly resembles S. conicus, 

especially in regard to the features of the carapace (PMO H1839; H1874) which preserve 

a clear waist and large lunate lateral eyes located centrilaterally. The median ocelli are 

also preserved and situated between the lateral eyes in a position similar to possible 

ocellar structures found in S. conicus (NMS G.1897.32.134). Only prosomal appendage 

VI is known from S. latus and this is comparatively short and robust (PMO H2194), also 

possessing a podomere 7a (PMO H1874), while only a single genital operculum with the 
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proximal portion of a type A appendage can be recognized from the available material 

(PMO H1753). The genital appendage appears relatively short, consists of at least two 

segments, and is flanked by rounded spatulae. The mesosoma clearly displays moveable 

spines (PMO H1753), while the metasoma shows some indication of angular epimera 

(PMO H1713; H1875) with at least segments 11 and 12 having a dentate posterior margin 

(PMO H1715; H1875; H1920). Four specimens of S. latus preserve the pretelson (PMO 

H1713; H1734; H1875; H1920), all of which resemble the pretelson associated with the 

type A genital appendage in S. conicus, being elongated so they are longer than broad 

(L:W >1) and having large angular epimera. Despite there being no indication of a 

second pretelson morphology in the Ringerike material the small sample size and absence 

of any type B appendages means that it is equally likely that only one sex is present, a 

possibility reinforced by the far greater occurrence of type A specimens than type B in 

the Pentland Hills. The telson of S. latus is all but identical to S. conicus, with its ventral 

boss (PMO H1713) and carina (PMO H1734; H1920) and smooth dorsal surface (PMO 

H1875). S. latus differs from S. conicus principally in the nature of its cuticular 

ornamentation; although the ventral side is not well known the ‘terrace line’ ornament is 

not present on a specimen which has been prepared to show the epistomal sutures (PMO 

H1839) nor on the genital operculum (PMO H1753) or Blattfüsse (PMO H1650). 

Furthermore, the dorsal sculpture includes angular and semi-lunate scales (PMO H1808) 

in addition to the fine granulation seen in S. conicus. Another notable difference in S. 

latus is that the metasoma appears to undergo a much more gradual narrowing than in S. 

conicus, giving the animal a more squat appearance (PMO H1713). The Ringerike 

Stoermeropterus probably represent exuviae, as indicated by the fragmentary nature of 
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the specimens and the occurrence of one of the carapaces articulated with the first tergite 

to the exclusion of the rest of the opisthosoma (Tetlie et al. 2008), and therefore the 

broader postabdomen could theoretically be due to telescoping of the metasomal 

segments, however it is repeated in several specimens and the relative length of the 

metasoma compared to the total length of the animal is the same as in S. conicus, and so 

it is considered to be a genuine feature of the species. 

In comparison Stoermeropterus nodosus (Text-fig. 17c,d), while clearly belonging to 

the genus, shows marked difference from S. conicus. The lateral eyes, while still lunate, 

are comparatively smaller and located more anteriorly on the carapace in the most 

forward possible centrimesial position. Again, the median ocelli are located between the 

lateral eyes and consist of two separate pits on the carapace surface. The carapace 

anterior margin is somewhat flatter than in S. conicus, and the lateral margins appear to 

lack a clear waist (FMNH PE6214). The metastoma (FMNH PE6215), which is unknown 

from S. latus, is identical to that of S. conicus. An isolated type A genital appendage and 

operculum previously assigned to Parahughmilleria bellistriata (FMNH PE6212) 

strongly resembles the type A appendage of S. conicus in having a short, three-segmented 

appendage with a bilobed termination and spatulae, and so is herein considered to be 

assignable to S. nodosus. The spatulae are similar to those of S. latus, being rounded and 

marginally broader distally. The mesosoma preserves some indication of moveable 

spines, while the metasoma bears short, rounded epimera on every segment culminating 

in large, lobate epimera on the pretelson. The pretelson itself is not elongate and it seems 

likely that the holotype represents a type B individual; if this is the case it is unclear 

whether the rounded epimera on segments 7-11 would be consistent between the two 
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sexes. The posterior margins of segments 10-12 are unornamented, potentially 

reinforcing the possibility that the dentate margins are a sexually dimorphic trait, 

however the difference could also be preservational. Segments 7 and 8 contract markedly 

in width so the postabdomen more closely resembles that of S. conicus than S. latus, 

while the ventral telson boss is comparatively shorter than either species. The dorsal 

cuticular ornamentation, mainly consisting of a faint granular sculpture, is dominated by 

a row of node-like scales which give the species its name located along the posterior of 

the carapace and each mesosomal segment. It is unclear if these continued onto the 

metasoma as this is known only from the ventral surface. Angular and semi-lunate scales 

are found on the isolated genital operculum, which lacks any ‘terrace line’ ornamentation. 

Stoermeropterus conicus (Text-figs. 18–19) shares characteristics of both S. latus and 

S. nodosus, somewhat fitting given its older stratigraphical (and hence presumably 

ancestral) position. Although both non-Scottish species differ from S. conicus, S. nodosus 

appears the most distinct as befits its occurrence in North America and as the youngest 

occurrence of the genus. 

PHYLOGENETIC POSITION OF STOERMEROPTERUS 

Stoermeropterus conicus represents one of the best-preserved eurypterid species and, 

along with Parastylonurus ornatus from the same locality, is the earliest eurypterid for 

which the external morphology is almost comprehensively known. Given the age and 

completeness of S. conicus the species is conceivably of considerable importance for 

studies on eurypterid phylogeny, however not being particularly well known and lacking 

a modern description it has been omitted from most recent studies (e.g. Tetlie 2007a; 

Tetlie & Cuggy 2007). When it has been included only those specimens published by 
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Laurie (1892, 1899) as Drepanopterus bembycoides were used to derive the 

morphological detail, the synonymy of the various Pentland species being at the time 

only conjectural. These analyses placed S. conicus at the base of a moselopteroid clade 

also including the genera Moselopterus and Vinetopterus (Lamsdell et al. 2010a,b), 

which itself resolved at the base of the Eurypterina when Vinetopterus and S. conicus 

were incorporated into the analysis of basal Eurypterina by Tetlie & Cuggy (Lamsdell et 

al. 2010a). Due to the potential for Stoermeropterus to yield important information about 

a poorly understood period of eurypterid evolution, namely the radiation of forms during 

the early Silurian and the evolution of swimming in the Eurypterina, it is important that it 

should be included in future analyses of eurypterid and chelicerate phylogeny. In pursuit 

of this a limited analysis is presented utilizing the new data for the three Stoermeropterus 

species in order to preliminarily test whether the topology of the tree presented by Tetlie 

(2007a) has been affected by the reinterpretation of these taxa. 

Methodology. For the analysis a matrix of 43 characters for 24 taxa was compiled 

(Table 12) using novel characters (17, 22, 32, 35-37, 39, 41, 43), characters derived 

directly from previous analyses (5: Dunlop & Selden 1997; 2, 11, 13, 19-21, 24, 29: 

Tetlie & Cuggy 2007; 1, 7, 12, 16, 25: Lamsdell et al. 2010a), or characters modified 

from previous analyses (34: Dunlop & Selden 1997; 3-4, 6, 10, 14-15, 18, 23, 28, 38, 40: 

Tetlie & Cuggy 2007; 30-31, 33: Tetlie & Poschmann 2008; 8-9, 26-27, 42: Lamsdell et 

al. 2010a) (Table 13). All three species of Stoermeropterus were included in the analysis, 

along with the two known species of Vinetopterus and two species of Moselopterus in 

order to test the intra-relationships of the Moselopteroidea as defined by Lamsdell et al. 

(2010a). A third species of Moselopterus, M. lancmani (Delle, 1937), was excluded from 
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the analysis due to it being based on undiagnostic material and the inability to trace the 

location of the holotype. The synziphosurine Weinbergina opitzi Richter & Richter, 1929 

was specified as the outgroup following Lamsdell et al. (2010a,b) as it supposedly 

represents the most plesiomorphic known xiphosuran (Anderson & Selden 1997) which 

are sister group to Eurypterida (Selden & Dunlop 1998), however this is done with 

reservations given the unclear nature of synziphosurine intra-relationships and their 

uncertain position within the chelicerate phylogeny (see Excursus on segment 

articulations in arthropods); it is feasible that a chasmataspidid or one of the other 

‘arachnomorph’ arthropods (sensu Cotton & Braddy 2004) would be a more suitable 

outgroup, and although a more comprehensive analysis of chelicerate phylogeny is 

required before this can be properly assessed. The chasmataspidids Loganamaraspis 

dunlopi, Diploaspis casteri and Octoberaspis ushakovi are included due to their potential 

to help inform on the plesiomorphic character states in eurypterids and to test whether 

chasmataspidids fall outside Eurypterida or are a clade within Eurypterina (as suggested 

by Shultz (2007)). 

Several other eurypterid groups are also included in the analysis, each represented by 

multiple exemplars as they more accurately represent the character states and transitions 

of the group than a single exemplar, such as a single species or a composite taxon, would 

(see Brusatte 2010). Three stylonurines (Brachyopterus stubblefieldi, Rhenopterus diensti 

and Parastylonurus ornatus) were included in order to help polarize the characters that 

typify the transition towards swimming among the basal Eurypterina. The other major 

group of basal Eurypterina as defined by Tetlie & Cuggy (2007), Eurypteroidea, is 

represented by Eurypterus remipes De Kay, 1825 and Erieopterus microphthalmus (Hall, 

187



 

1859) for Eurypteridae and Dolichopterus macrocheirus along with Strobilopterus 

princetonii for Dolichopteridae. Two species of Onychopterella, O. augusti and O. 

kokomoensis, were included as the genus appears to occupy a position in eurypterid 

evolution where appendage VI has begun to expand into a paddle (indeed, Tetlie & 

Cuggy (2007) resolved the genus as paraphyletic based on the development of the sixth 

appendage, suggesting that the paddle might have developed within the genus as 

currently defined). Unfortunately a third species, O. (?) pumilis (Savage, 1916), was not 

included in the analysis due to the unavailability of the holotype for study and the 

insufficient quality of the published figure, however it has been suggested by Kjellesvig-

Waering in Plotnick (1999) to be a Drepanopterus, and is therefore another species in 

dire need of redescription. Tylopterella boylei was included as several characters (namely 

the shape of the carapace, position of the lateral eyes and preabdominal/postabdominal 

division between the sixth and seventh segments) suggest a relationship with the basal 

Eurypterina and Onychopterella in particular. ‘T’. menneri (Novojilov, 1959), from the 

early Devonian of Siberia, was however excluded from the analysis. Originally described 

as a Stylonurus (clearly erroneous given the paddle-like morphology of appendage VI), it 

was transferred to Tylopterella by Novojilov (1962) based on its possession of paired 

tubercles located centrally on the dorsal tergites, a characteristic only doubtfully present 

in the ‘T’. menneri holotype. Restudy of the available figures suggests that the paddles of 

‘T’. menneri have an anterior podomere 7a and that the opisthosoma is divided into a 

three-segmented fused buckler and a nine-segmented postabdomen (Lamsdell pers. obs.) 

indicating that the specimen in fact represents a new genus of chasmataspidid, a fact to 

which D. Marshall has been made aware and is now working on a full description of the 
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taxon. Megalograptus ohioensis was also included due to its uncertain position within 

Eurypterida, being hypothesized to be both allied with the Mixopteroidea (Caster & 

Kjellesvig-Waering 1964) and nestled among the basal Eurypterina (Tetlie & Cuggy 

2007), in an attempt to ascertain its relationships phylogenetically. To this end 

Mixopterus kiaeri was also incorporated into the analysis. Finally, Hughmilleria socialis 

was included to represent the remainder of the derived Eurypterina.  

The analysis was performed using TNT (Goloboff et al. 2008; made available with 

the sponsorship of the Willi Hennig Society) employing implicit enumeration with all 

characters unordered and of equal weight. Jackknife (Farris et al. 1996) and Bremer 

support (Bremer 1994) values were calculated in TNT and the Consistency, Retention 

and Rescaled Consistency Indices were calculated in Mesquite 2.73 (Maddison & 

Maddison 2010). Nonparametric bootstrapping is often difficult with morphological data 

due to the limited size of the dataset (Zander 2003) and so was not performed for this 

analysis. Jackknifing was performed using simple addition sequence and tree bisection-

reconnection (TBR) branch swapping, with 1,000 repetitions and 30% character deletion 

rather than the 20% (e.g. Lamsdell et al. 2010a,b) or 10% (e.g. Tetlie & Cuggy 2007; 

Tetlie & Poschmann 2008) deletion used in previous analyses. Another departure from 

recent analyses is that the Relative Completeness Index (Benton & Storrs 1994), 

Stratigraphic Consistency Index (Huelsenbeck 1994), Gap Excess Ratio (Wills 1999) and 

Modified Gap Excess Ratio (Wills et al. 2008) were not calculated for the resulting 

consensus tree, the reasoning being that the analysis contains representatives of several 

diverse clades that, without including all their constituent taxa (something beyond the 
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scope of the current study), will only serve to negatively impact these indices and so 

produce skewed results. 

The matrix has been reposited in the online MorphoBank database (O’Leary & 

Kaufman 2007) under the project code p542 and can be accessed from 

http://morphobank.org/permalink/?P542.  

Results. Analyzing the matrix as detailed above yielded a single most parsimonious 

tree with a tree length of 105, an ensemble Consistency Index of 0.514, Retention Index 

of 0.726, and Rescaled Consistency Index of 0.373 (Text-fig. 20a). Of primary 

importance the three species herein assigned to Stoermeropterus are retrieved as one of 

the most strongly supported monophyletic clades (based on their possession of an 

epistoma, a deeply notched metastoma anterior, moveable preabdominal spines, an 

undifferentiated postabdomen and a bulbous expansion at the base of the telson) with S. 

conicus at its base (due to it having angular spatulae) as befitting its stratigraphic 

position, although the relationships of the species are less well supported. S. latus and S. 

nodosus are united by their possession of rounded genital spatulae, while the various 

characteristics that would seem to unite S. conicus and S. latus (the position of the lateral 

eyes and the carapace ‘waist’) are actually plesiomorphic. The analysis also recovers a 

monophyletic Moselopteridae (united by a ridged podomere cuticular sculpture, having 

spatulae on the type A genital appendage, and dentate posterior margins of segments 10-

12) again with strong support, with Stoermeropterus as sister-group to a clade consisting 

of Vinetopterus and Moselopterus (sharing dentate posterior margins of segments 7-9), 

both of which are also shown to be monophyletic. The Moselopterus clade has the best 

support in the analysis, which is unsurprising given that the species are probably 
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synonyms and are coded identically in the matrix bar for three characters, which are 

uncertain in M. elongatus. The Moselopteridae are resolved as the basalmost family of 

the Eurypterina (due to a pediform appendage VI, oval VI-7a, and lacking a recessed VI-

8/9 joint), which is itself monophyletic (although with remarkably low support, however 

this is likely to be due to low sampling of the Stylonurina), with a monophyletic 

Stylonurina as sister-group to the suborder and chasmataspidids as sister-group to 

Eurypterida (again, however, with low support). The next clade within Eurypterina 

consists of Onychopterella and Tylopterella which comprise the new family 

Onychopterellidae (see Systematic Palaeontology), defined by having a preabdomen and 

postabdomen of six segments each and separated from the other Eurypterina by having a 

triangular coxal ear, VI-5 longer than VI-4, an unmodified distal margin to VI-6, and a 

spinose VI-9. Onychopterella is here resolved as monophyletic contra to the results of 

Tetlie & Cuggy (2007), and the jackknife support for this is among the higher in the 

analysis. Removing Tylopterella did not render Onychopterella paraphyletic, and so its 

monophyly is accepted here (paraphyly in Onychopterella would of course also render 

Onychopterellidae paraphyletic and invalidate it as a family). The results deviate from 

Tetlie & Cuggy (2007) in another major way; resolving Eurypteroidea as paraphyletic. 

Dolichopterus and Strobilopterus (representative of Dolichopteridae) here form the 

monophyletic sister-group to Eurypteridae and the remaining derived Eurypterina, 

separated based on having a narrow VI-7a, a long VI-9 and possessing large 

postabdominal epimera. Eurypteridae (Erieopterus Kjellesvig-Waering, 1958a and 

Eurypterus in this analysis) is also monophyletic, and separated from the remaining 

Eurypterina based on having a centralized lateral eye position and a genital operculum 
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consisting of three visible segments. Interestingly, Megalograptus resolves as sister-taxon 

to Mixopterus due to its trilobation, supporting the views of Caster & Kjellesvig-Waering 

(1964) over Tetlie & Cuggy (2007). A more comprehensive analysis including the 

remaining mixopteroids and further members of Eurypteridae is ideally needed to 

confirm this placement though, as its Ordovician age and several seemingly primitive 

character states strongly argue against Megalograptus being a derived member of 

Mixopteroidea. It seems likely that Megalograptus may in fact belong at the base of the 

mixopteroids, or intermediate between Eurypteridae and the derived Eurypterina, and it is 

unlikely that its brief treatment here will be the final word on this enigmatic taxon. 

Of further interest is the position of the chasmataspidids. In in this analysis they form 

the monophyletic sister-group to Eurypterida, similar to the scenario envisioned by 

Tetlied & Braddy (2004). Chasmataspis laurencii was however not included in the 

analysis, and its greater age and distinctly different morphology to the diploaspids means 

that although diploaspid monophyly can be supported the concept of Chasmataspidida as 

a monophyletic group is still uncertain. 

BIOGEOGRAPHICAL AND STRATIGRAPHICAL IMPLICATIONS 

The confirmation of Stoermeropterus conicus as a member of the Moselopteridae 

places the earliest known record of the family in the Llandovery (early Silurian) (Text-

fig. 20b), an important discovery as this apparently basal family was previously only 

known from the late Pragian and Emsian of the early Devonian (Størmer 1974; 

Poschmann & Tetlie 2004). The temporal gap between S. conicus and the Devonian 

genera is breached somewhat by S. latus and S. nodosus, which are known from the 

Wenlock and late Ludlow to early Pridoli respectively (Størmer 1934a; Kjellesvig-
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Waering & Leutze 1966). The existence of late Ordovician moselopterids is heavily 

implied by the occurrence of Brachyopterus stubblefieldi from the Sandbian of Wales 

(Størmer 1951) and Onychopterella augusti from the Hirnantian-Rhuddanian boundary 

(see Vandenbroucke et al. 2009) of South Africa (Braddy et al. 1995) which 

phylogenetically bracket the Moselopteridae, indicating that the stylonurine and 

eurypterine lineages split during Darriwilian at the very latest and that, even allowing for 

another more basal, currently undiscovered eurypterine clade, moselopterids must have 

diverged by the end of the Hirnantian. Furthermore, if the position of Megalograptus 

(from the Katian: Caster & Kjellesvig-Waering 1964) retrieved here is accepted then the 

Dolichopteridae and Eurypteridae clades, as well as some of the more derived eurypterine 

families, should also diverge by the Katian. Currently, the earliest known unequivocal 

dolichopterid is Dolichopterus gotlandicus Kjellesvig-Waering, 1979b from the early 

Wenlock of Gotland, Sweden, while the earliest Eurypteridae are jointly Eurypterus 

serratus Kjellesvig-Waering, 1979b from the same formation and Erieopterus (?) 

phillipsensis Copeland, 1971 (potentially a Eurypterus according to Tetlie & Cuggy 

2007) from the early Wenlock of Cornwallis Island, Canada. The first occurrence of 

Dolichopteridae is a matter of some debate however, as Ruedemannipterus stylonuroides 

(Clarke & Ruedemann 1912) from the Shawangunk Formation, New York, may be older 

(located at the Llandovery-Wenlock boundary) however uncertainty as to the age of the 

exact age of the Shawangunk Formation make this uncertain (Epstein 1993), and 

‘Eurypterus’ minor Laurie, 1899 known from the same formation as Stoermeropterus 

conicus (hence being upper Llandovery in age) is probably a basal dolichopterid (Tetlie 

& Cuggy 2007). Even with these occurrences, there is still a 20 MY discrepancy between 
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the first occurrences of the eurypteroids (sensu Tetlie & Cuggy 2007) and their inferred 

origination based on the phylogenetic position of Megalograptus. Other derived 

eurypterid clades are also known to have originated by the Ordovician; Orcanopterus 

manitoulinensis, from Manitoulin Island, Canada, is the basalmost member of an 

unnamed clade including Waeringopterus and Grossopterus (Tetlie & Poschmann 2008), 

while Eysyslopterus patteni, the basalmost member of the Adelophthalmoidea, may be 

present in biotas from Manitoba, Canada (MM I-4064A; Young et al. 2007), both from 

the Hirnantian-Rhudanian boundary, and so even invoking a more basal position for 

Megalograptus it seems that the fossil record for the early evolution of the Eurypterina is 

incredibly patchy.  

Eurypterid biogeography has been analyzed by Tetlie (2007a), who investigated their 

known occurrences based on a phylogenetic hypothesis formed from a composite of 

published analyses and unpublished data. Eurypterids are predominantly found around 

the palaeocontinents of Laurentia, Avalonia and Baltica during the Silurian, when all 

three were in close proximity to one another, with their range expanding into the Rheno-

Hercynian Terrane when it was sutured onto Laurussia during the Devonian, while the 

formation of Pangaea during the Carboniferous and Permian allowed the surviving 

eurypterid groups to gain a more global distribution. The palaeocontinent of Siberia was 

also close to Laurentia and Baltica during the Silurian and Devonian, and the reports of 

eurypterid faunas from the region (e.g. Novojilov 1959) indicate that their sparse record 

from the area may be due to lack of sampling rather than a real biogeographic signal. As 

noted by Tetlie (2007a), placing the origin of Eurypterida is difficult due to the paucity of 

its Ordovician record, however it is clear that its origins lie within the mid Ordovician at 
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the latest. The oldest stylonurine is known from Avalonia (Størmer 1951), however this is 

a probable exuviae preserved in a graptolite shale and so its provenance cannot be known 

with certainty. Of the remaining Ordovician eurypterid occurrences, only one is not from 

Laurentia; Onychopterella augusti, from South Africa which at the time was part of 

Gondwana. Gondwanan eurypterids are rare, and usually only consist of Pterygotoidea, 

Adelophthalmoidea or Carcinosomatidae, which are thought to have been able to disperse 

across ocean bodies. The occurrence of O. augusti, which does not have an overly broad 

sixth prosomal appendage and was therefore not likely to be a good swimmer, is 

something of a puzzle. Avalonia and Laurentia were last within easy reach of Gondwana 

for a population of non-oceanic eurypterids during the early Cambrian, however it is 

exceedingly unlikely that their origins predate the Ordovician and so some other method 

must have presented itself for the ancestors of the O. augusti population to reach 

Gondwana. One possibility is that periods of sea level lowstand during the Late 

Ordovician allowed the eurypterids to cross to Gondwana as they would traverse shallow 

seas. Two potential lowstand events present themselves, the first during the Sandbian and 

the second during the Hirnantian itself (Saltzman & Young 2005), both giving the South 

African population plenty of time to establish itself, and this hypothesis of dispersal 

during a period of lowstand seems more likely than invoking a non-existent Cambrian 

record for eurypterids. 

The phylogenetic position of Stoermeropterus conicus, combined with its Llandovery 

age, lends further support to a Laurentian origination for the Order. While there may have 

been opportunities for limited dispersal between palaeocontinents prior to the Silurian the 

morphology of basal forms (broad bodies and short limbs lacking any form of swimming 
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paddle) makes it appear unlikely that they would have spread far and the great 

concentration of Laurentian occurrences during the Ordovician and early Silurian make it 

the more likely point of origin. 

PLESIOMORPHIC STATES WITHIN THE EURYPTERIDA 

The recognition and redescription of Stoermeropterus conicus as a basal member of 

the Eurypterina, combined with a better understanding of the evolution of the Suborder 

(Tetlie & Cuggy 2007) and a well-resolved stylonurine phylogeny (Lamsdell et al. 

2010a), permits the exploration of evolutionary trends within Eurypterida and is crucial 

to the identification of plesiomorphic characters and the resolution of the eurypterid 

ground pattern. Key to this is the identification of the eurypterid outgroup and the 

development of the swimming paddle in the Eurypterina, along with shared traits of the 

basalmost families in both suborders. 

The eurypterid outgroup. The relationship of eurypterids to the other merostome 

groups is something that has been the subject of much debate over the years of research. 

Laurie (1893), in the first attempt to explore the relationships of the various eurypterid 

groups, considered them to have evolved from a trilobite ancestor – presumably a view 

derived from the conclusions of Walcott (1881) – however workers soon began to search 

for additional forms to bridge the gap between the distinctive trilobite morphology of a 

variable number of trilobate segments, divided into a cephalon, thorax and pygidium, and 

the conservative eurypterid morphology of a prosoma, twelve segmented opisthosoma 

and telson. The description of a number of Ordovician eurypterids, predominantly by 

Clarke & Ruedemann (1912) and Ruedemann (1916, 1926, 1934b, 1942) (incidentally all 

of which have since been shown to be pseudofossils by Tollerton (2004), who reduced 
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the number of valid Ordovician species by 75%), meant that the search for the last 

common eurypterid ancestor was focused on the Cambrian, leading to a degree of 

‘merostome spotting’ (an almost identical phenomenon and rationale to the ‘crustacean 

spotting’ of Edgecombe (2010)) that has only recently begun to be abandoned. Clarke & 

Ruedemann (1912) found their proto-eurypterid in Strabops thacheri Beecher, 1901, 

while Raymond (1920) considered Sidneyia inexpectans Walcott, 1911 and Emeraldella 

brocki Walcott, 1912 to be merostomes bridging the trilobite and eurypterid 

morphologies. While a relationship between xiphosurans and eurypterids had been 

recognized since M’Coy (1849) proposed to unite them as a tribe within the 

Entomostraca, a group formalized under Merostomata Woodward, 1866 (defined as 

including eurypterids, xiphosurans, and trilobites) which was transferred intact to 

Chelicerata when Lankester (1881) described Limulus as a chelicerate, the exact nature of 

this association remained largely unexplored until Raasch (1939) hypothesized an origin 

for synziphosurines and eurypterids from an aglaspidid ancestor. Størmer (1944), in a 

revision of the Arachnomorpha, maintained xiphosurans as the sister-group of eurypterids 

however considered aglaspidids to be basal xiphosurans and erected a ‘prochelicerata’, 

including Sidneyia Walcott, 1911 and Leanchoilia Walcott, 1912, as ancestral to both 

xiphosurans (including aglaspidids) and eurypterids. Størmer later added Emeraldella 

Walcott, 1912 to the ‘prochelicerata’, considering them transitional forms between 

trilobites and xiphosurans (Størmer 1952), and also considered Strabops Beecher, 1901 to 

be an aglaspidid rather than a primitive eurypterid along with the other problematic 

Cambrian arthropods Paleomerus Størmer, 1956, Neostrabops Caster & Macke, 1952 

and Beckwithia Resser, 1931 (Størmer 1955). Raw (1957) however did not consider the 
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aglaspidids to have given rise to either the xiphosurans or the eurypterids; instead the 

Aglaspidida represented a separate group of primitive chelicerates from which 

Weinbergina Richter & Richter, 1929 and Pseudoniscus Nieszkowski, 1859 were directly 

descended, the remaining synziphosurans formed a group distinct of the Xiphosura, 

which were sister-group to Eurypterida. Furthermore, the chelicerates were considered to 

share a common ancestor with olenellid trilobites, a concept later taken further by 

Lauterbach (1980) who considered olenellids to be separate from other trilobites and part 

of the chelicerate stem lineage.  

The description of two taxa in the latter half of the twentieth century (Chasmataspis 

laurencii and Kodymirus vagans Chlupáč & Havlíček, 1965) have since dominated much 

of the discussion surrounding the relationship of eurypterids to the other aquatic 

chelicerates. Bergström (1968) considered Chasmataspis to be a xiphosuran while 

maintaining aglaspidids as a separate, more primitive, group while Kodymirus 

(considered an aglaspidid in its initial description) was evoked as a Cambrian proto-

eurypterid much as Strabops had been almost six decades before. Kodymirus was largely 

accepted as a proto-eurypterid (Bergström 1975, 1979; Chlupáč 1995), although Cotton 

& Braddy (2004) clearly considered it an aglaspidid, until it was transferred into a group 

of ‘aglaspidid-like’ arthropods by Van Roy (2006). The exact affinities of Kodymirus are 

still uncertain, however the ‘epistoma’ of Chlupáč & Havlíček (1965) bears closer 

resemblance to a hypostome and contrary to the proposed reconstruction bearing six pairs 

of appendages (Chlupáč 1995, fig. 4) only one pair of appendages ever appears to be 

present on articulated specimens (MR 65789, 20490, 65794, 65795, 65796, 65783, 

20690) with the appendages themselves composed of six podomeres (MR 65789, 65798). 
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In this it seems to correspond with the ‘great appendage’ arthropods such as Leanchoilia 

illecebrosa (Hou, 1987a) which have an enlarged first pair of appendages consisting of a 

bipartite peduncle and four distal articles (Liu et al. 2007), and it is possible that 

Kodymirus may be a megacheiran. Aglaspidids meanwhile were removed from the 

Chelicerata by Briggs et al. (1979) – a revision disputed by Weygoldt & Paulus (1979) 

and Bergström (1980) but corroborated by subsequent phylogenetic analyses (Briggs & 

Fortey 1989; Briggs et al. 1992; Cotton & Braddy 2004) – while Chasmataspis was 

retained within the Xiphosura and placed in a group with the newly described Diploaspis 

casteri (Størmer 1972). 

With a consensus forming on the sister-group relationship between xiphosurans and 

eurypterids attention increasingly turned to whether chasmataspidids formed a natural 

group and their position in relation to the two other merostome groups (monophyletic 

Merostomata having been abandoned as a concept when Weygoldt & Paulus (1979) 

suggested that its represented a paraphyletic grade with eurypterids being the sister-group 

to arachnids). They were largely considered to be a monophyletic group of xiphosurans 

(e.g. Selden & Siveter 1987), although Eldredge (1974) separated chasmataspidids from 

the xiphosurans and placed them as the monophyletic sister-group to eurypterids, a view 

more recently shared by Dunlop & Selden (1997).  Bergström (1975, 1980) however 

considered chasmataspidids to be polyphyletic, retaining Chasmataspis basally within 

xiphosurans but placing Diploaspis as the ancestor to terrestrial arachnids. Selden & 

Dunlop (1998) once again envisaged a monophyletic Chasmataspidida but considered 

them to be the sister group to aglaspidids, outside of Chelicerata, resolving a xiphosuran 

clade consisting solely of synziphosurines and xiphosurids as sister-group to eurypterids. 
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Paraphyly of chasmataspidids has been proposed once (Tetlie & Braddy 2004) where 

diploaspids were considered to be sister-group to eurypterids while Chasmataspis was 

sister-taxon to the diploaspid/eurypterid group. Due to their problematic morphology 

chasmataspidids have been left out of a number of larger-scale phylogenetic analyses, 

most of which retrieved a monophyletic Xiphosura as sister-group to Eurypterida and 

arachnids with a paraphyletic stem of ‘great appendage’ arthropods (e.g. Briggs & Fortey 

1989; Cotton & Braddy 2004), however there have also been a few anomalous results; 

Wills (1996) placed Fuxianhuia Hou, 1987b as the sister-taxon to eurypterids and 

scorpions to the exclusion of xiphosurans, however Fuxianhuia is more likely to be a 

derivative of the euarthropod stem lineage (Chen et al. 1995; Edgecombe & Ramsköld 

1996), while Wills et al. (1998) considered xiphosurans to be paraphyletic with 

synziphosurines sister-group to xiphosurans and eurypterids (but see Excursus on 

segment articulations in arthropods). Shultz (2007) did include chasmataspidids in his 

phylogenetic analysis of chelicerates and resolved them as a monophyletic group within 

Eurypterida, with Stylonurina being sister-group to Chasmataspidida plus Eurypterina. 

This result is probably due to the paucity of eurypterids in the analysis (only two species 

were coded) but is a hypothesis that will require more rigorous testing in the future. This 

uncertainty about chasmataspidid relationships resulted in Lamsdell et al. (2010a,b) using 

Weinbergina as the outgroup for their analyses of the Stylonurina, however the presence 

of a metastoma and genital appendage in diploaspids (Dunlop 2002; Tetlie & Braddy 

2004) indicates that these would be a more appropriate outgroup for eurypterid analyses, 

although the position of Chasmataspis is more uncertain. Ideally an analysis including 

xiphosurans, chasmataspidids and eurypterids as ingroup taxa with a euchelicerate stem 
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lineage taxon as the outgroup needs to be undertaken in order to resolve this matter. A 

megacheiran would probably make a suitable outgroup (see Dunlop 2006) however this 

interpretation of ‘great appendage’ arthropods is not yet universally accepted (Budd & 

Telford 2009). The issue of the relationships between xiphosurans, chasmataspidids and 

eurypterids is still very much a current one in need of further study, especially as certain 

characters in the form of the seventh appendage and the form of tergite articulations 

might suggest that synziphosurines are a paraphyletic with respect to the remaining 

Euchelicerata and not just Xiphosurida as in the analysis of Anderson & Selden (1997). 

Excursus on segment articulations in arthropods. The plesiomorphic state for 

segment articulations in Arthropoda is difficult to determine, however for several groups 

(such as Artiopoda, Megacheira and Chelicerata) the ground pattern for articulations 

appears to involve a narrow transverse ridge on the tergite preceded by a smooth 

articulation facet. Chen et al. (1995) described the stem-euarthropod Fuxianhuia protensa 

Hou, 1987b (ELRC 19250a) as having tergites that connect through ‘articulating half-

rings’ consisting of a central projection in front of a transverse articulating furrow with a 

smooth facet along the anterior of the tergopluerae, however the central projection is 

highly variable and is probably not a true half-ring articulation. Articulating half-rings 

have also been initially described from trilobites (e.g. Hydrocephalus carens Barrande, 

1846: SM A1345; Gyrometopus lineatus (Angelin,1854) NRM Ar 47940) which also 

have a central half-ring with pleural facets or flanges (Whittington 1990), while 

euthycarcinoids such as Schramixerxes gerem (Schram & Rolfe, 1982) (MNHN 

SOT89291) also have half-ring-type articulations however the projecting ring is raised 

above the tergite and there appears to be no pleural articulation (Racheboeuf et al. 2008); 
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it seems likely that the use of the term half-ring needs to be reconsidered, and a 

distinction made between articulating half-rings sensu stricto (e.g. the trilobite-type) and 

the half-ring articulations found in euthycarcinoids and other arthropods which have 

probably evolved independently.  

The aglaspidids Aglaspis barrandei Hall, 1862 (UW 4002/9) and Chlupacaris dubia 

Van Roy, 2006 (NMS G.2005.103.1) have a raised articulating ridge along the tergite 

anterior preceded by a smooth articulating facet (Hesselbo 1992; Van Roy 2006) that 

seems more similar to the eurypterid style of articulation. Emereldella brocki (USNM 

136642, 144933) also bears articulating ridges on the tergites that bear close similarity to 

the aglaspidid articulating ridges (Stein & Selden in press) as does Leanchoilia superlata 

Walcott, 1912 (USNM 155655). Aglaspidids and Emereldella have been considered 

closely allied to chelicerates in the past (e.g. Dunlop & Selden 1997; Hou & Bergström 

1997; Cotton & Braddy 2004) while Leanchoila is considered by some to belong to the 

euchelicerate stem lineage (Chen et al. 2004) and the morphology of their tergite 

articulations may support this, however the majority of synziphosurine xiphosurids 

appear to have articulated using a narrow, flattened half-ring system (Eldredge 1974; 

Eldredge & Plotnick 1974). This type of articulation appears to be part of the ground 

pattern for at least xiphosurids as it can be confirmed in a number of well-preserved 

specimens (e.g. Bunodes lunula Eichwald, 1854: AMNH 28734, 29279; Legrandella 

lombardi Eldredge, 1974: AMNH 29273; Pseudoniscus roosevelti Clarke, 1902: NYSM 

10164; Cyamocephalus loganensis Currie, 1927: BMNH I 25; Willwerathia laticeps: 

PWL 472-D) and appears to be vestigial in the fused thoracetron of the earliest 

xiphosurids (e.g. Lunataspis aurora Rudkin, Young & Nowlan, 2008: MM I-3990). The 
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tergite articulations of fossil scorpions are identical to those of eurypterids (e.g. 

Compsoscorpius elegans Petrunkevitch, 1949: BMNH In 15862; Proscorpius osborni: 

BMS E25162), being a smooth, flattened facet with a slight ridge posterior to it, as are 

the articulations in the postabdomen of the newly-identified chasmataspidid 

‘Tylopterella’ menneri (PIN 5116-1), and all three are considered homologous. 

Interestingly the holotype of Chasmataspis laurencii (USNM 125099) may show 

indications of articulating half-rings at its postabdominal articulations, while the 

synziphosurines Kasibelinurus amicorum Pickett, 1993 (USNM 484524) and 

Weinbergina opitzi (SMF VIII 7a) have articulating facets as opposed to articulating half-

rings. Further work (and ideally specimens of Chasmataspis) is needed before this can be 

confirmed but if correct is further evidence suggesting that chasmataspidids may not be a 

natural monophyletic group, while Kasibelinurus and Weinbergina may suggest that at 

least some synziphosurines were ancestral to all the more derived chelicerates as opposed 

to just Xiphosurida. While the segment articulations in these taxa are probably 

plesiomorphic, further evidence for them being derivatives of a stem lineage to all other 

merostomes and arachnids may exist in the presence of free lobes (sensu Selden & 

Siveter 1987) on the genital segment in as yet undescribed chasmataspidids from Siberia 

(Marshall pers. comm.); also if the proposed homology of the xiphosuran chilaria and the 

eurypterid metastoma (Dunlop & Webster 1999) is accepted then the fully pediform 

appendage VII of Weinbergina (probably the plesiomorphic state, as pycnogonids also 

have a fully pediform VII) must be accounted for. A more parsimonious model of 

evolution would be for the fully pediform appendages for Weinbergina to be reduced into 

the chilaria through the synziphosurine lineage (some of which, such as Venustulus 
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waukeshaensis Moore in Moore et al. 2005b, clearly only have five post-cheliceral 

pediform appendages) that were retained in xiphosurids but fused to form the metastoma 

in eurypterids. While chilaria have ostensibly not been observed in fossil xiphosurans 

(Rachebeouf et al. 2002; Moore et al. 2005b) this may be preservational as they are very 

small and easily lost among the coxae, sometimes difficult to pick out even in extant 

individuals. As an aside, one specimen of Alanops magnificus Rachebeouf, Vannier & 

Anderson, 2002, MNHN SOT1784, may actually show the chilaria between the coxae of 

appendage VI, and undescribed specimens of Paleolimulus signatus (Beecher, 1904) held 

at the University of Kansas clearly show the chilaria (Lamsdell pers. obs.). 

Despite the stratigraphic problems of some synziphosurines being basal, paraphyletic 

euchelicerates (Kasibelinurus and Weinbergina are known from the Devonian), the 

discovery of Ordovician xiphosurids (Rudkin et al. 2008; Van Roy et al. 2010) suggests 

that the monophyly of Xiphosura needs to be questioned and should be fully tested 

phylogenetically, monophyly being something most previous studies have assumed a 

priori, therefore including no non-xiphosuran taxa except the outgroup (Anderson & 

Selden 1997) or including only a single taxon for the whole order (Cotton & Braddy 

2004). Two exceptions are the analyses of Dunlop & Selden (1997) and Shultz (2007), 

however two of the three synapomorphies listed by Dunlop & Selden for the order 

(namely the presence of a cardiac lobe and a reduced first opisthosomal segment) are also 

known from both chasmataspidids and eurypterids, while it appears that Shultz used 

Xiphosura as his outgroup and so essentially forced their monophyly. Wills et al. (1998) 

included a synziphosurine (Weinbergina) and a xiphosurid (Tachypleus Leach, 1819) in 

their analysis of arthropod phylogeny and did retrieve a paraphyletic Xiphosura, however 
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successive reweighting of the dataset refashioned the topology of the chelicerate clade 

and rendered Xiphosura polyphyletic and so it seems that without a more comprehensive 

analysis their status as a monophyletic group is still uncertain.  

Plesiomorphic condition of gross body form. The basalmost eurypterid groups 

(specifically Rhenopteroidea and Moselopteroidea) comprise a number of species that 

have traditionally been difficult to differentiate phylogenetically, being as they seem to 

possess little in the way of quantifiable characters to differentiate them. The recognition 

that many of the stylonurine taxa belong within a redefined rhenopterid clade (Lamsdell 

et al. 2010a) has done much to resolve some of the issues surrounding basal eurypterids, 

however the similarities between the early representatives of Stylonurina and Eurypterina 

are truly striking and can sometimes lead to confusion regarding their phylogenetic 

placement. It seems that the more ‘quaint’ aspects of morphology of these taxa are due to 

them being very plesiomorphic; both Brachyopterus stubblefieldi and Stoermeropterus 

conicus are rather short-limbed, squat species with broad, deep bodies that are 

appreciably synziphosuran-like. The differentiation of the opisthosoma into a pre- and 

post-abdomen is often indistinct and the telson is lanceolate. The presence of metasomal 

epimera are considered equivocal, as they appear to be absent in rhenopterids, however 

their presence in the other Stylonurina (e.g. Parastylonurus ornatus: NMS G.1897.32.43; 

Drepanopterus abonensis: BGS GSM 84707) along with their occurrence 

plesiomorphically in moselopterids (e.g. Stoermeropterus conicus: NMS G.1897.32.88; 

Vinetopterus martini: PWL 2002/5010-LS), many of the other basal Eurypterina (e.g. 

Onychopterella augusti: GSSA C373a; Dolichopterus macrocheirus: AMNH 2250) and 
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their being seemingly vestigial in Eurypterus lacustris (YPM 207290) suggests that their 

absence is an apomorphy of rhenopterids. 

An opisthosoma of thirteen segments is shared by eurypterids and scorpions (Dunlop 

& Webster 1999) as well as chasmataspids, and it seems likely that this segment count 

was shared by their most common ancestor. Dunlop & Webster also showed that the 

ventral structures could be homologized between eurypterids, scorpions and 

synziphosurans, with synziphosurans having eleven opisthosomal segments. This 

segment count for synziphosurans is somewhat contentious: Eldredge (1974) described 

eleven tergites in the opisthosoma of Legrandella lombardii Eldredge, 1974, the first of 

which was partially covered by the carapace, and stated that Limuloides Woodward, 

1865, Bunodes Eichwald, 1854, Pseudoniscus and Weinbergina also had eleven 

opisthosomal segments. Eldridge & Plotnick (1974) however considered Pseudoniscus to 

possess only ten opisthosomal tergites while Anderson et al. (1998) concluded that it was 

unlikely that any synziphosuran had more than ten opisthosomal somites. Moore et al. 

(2005a) however stated that while Weinbergina showed no dorsal expression of an 

independent somite the first opisthosomal segment may have been fully incorporated into 

the prosoma. Bunodes at least does seem to genuinely possess a small tergite usually 

covered by the carapace anterior to the first tergite as identified by Anderson et al. (1998) 

(Lamsdell pers. obs. on BMNH 92774) and the unnamed synziphosurine figured by Van 

Roy et al. (2010, fig. 2d) also seems to possess eleven opisthosomal tergites with the first 

partially covered by the carapace. The homologization of structures as presented by 

Dunlop & Webster (1999) therefore appears to be valid (incidentally giving them the 

same number of somites as the megacheirans Haikoucaris ercaiensis Chen, Waloszek & 
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Maas, 2004 and Tanglangia longicaudata Luo & Hu in Luo, Hu, Chen, Zhang & Tao, 

1999) whereby the ancestor of chasmataspidids, eurypterids and scorpions gained two 

metasomal segments, which they implicitly assume occurred posterior to the existing 

segments but before the telson.  

The plesiomorphic state of the cuticular sculpture is also difficult to determine. 

Several rhenopterids (Brachyopterus stubblefieldi, Alkenopterus brevitelson, Leiopterella 

tetliei and possible Kiaeropterus cyclophthalmus) possess an integument devoid of 

ornamentation, however the widespread occurrence of cuticular sculpture in the other 

Stylonurina, Eurypterina, chasmataspidids and synziphosurines means that this is again 

probably a rhenopterid apomorphy. Scales are frequently found on eurypterids (e.g. 

Parastylonurus ornatus: NMS G.1885.26.72.7; Eurypterus dekayi: YPM 212043; 

Hibbertopterus scouleri: NMS G.1955.15; Pterygotus anglicus: NBMG 10000), 

including (sparsely) on Stoermeropterus, but are not recorded on chasmataspidids or 

xiphosurans, however Stoermeropterus conicus (NMS G.1897.32.138) and Moselopterus 

ancylotelson (SPW 999-D) predominantly have a granular cuticular sculpture. Granular 

ornamentation and pustules are known from several chasmataspidids (Chasmataspis 

laurencii: USNM 125099; Diploaspis muelleri: PWL 2002/5022-LS; Octoberaspis 

ushakovi: GIL 35/707) and synziphosurines (Weinbergina opitzi: SMF VIII 7a; 

Limuloides limuloides (Woodward, 1865): BMNH In 60018) and this is likely to be the 

plesiomorphic condition for eurypterids, with scales and pustules developing from 

modified granules. The terrace ornamentation of Stoermeropterus conicus could be 

apomorphic, however Parahughmilleria hefteri bears almost identical ornamentation 

(SMF VIII 55) and terrace lines are present on the prosomal ventral plate of Eurypterus 
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tetragonophthalmus (NRM Ar 35320) while a specimen displaying striae on the ventral 

plates assigned to Erieopterus sp. was described by Poschmann & Tetlie (2006). Dorsal 

terrace lines also occur on a number of other eurypterine eurypterids, and while it is 

possible that terrace lines evolved a number of times in Eurypterina it is also possible that 

they are an inherited characteristic. A potential argument against this is the lack of any 

terrace lines in synziphosurines, chasmataspidids or Stylonurina (although 

Parastylonurus does have similar cuticular structures associated with its postabdominal 

epimera), however the ventral structures of synziphosurines and chasmataspids are 

largely unknown and specimens of Eurypterus tetragonophthalmus that have not been 

prepared through acid etching do not preserve enough detail to show the terrace lines, and 

these structures may be more widespread in aquatic chelicerates than is currently 

recognized.  

Plesiomorphic condition of the carapace, visual structures and marginal rim. The 

plesiomorphic condition of the carapace shape in eurypterids is difficult to determine as, 

utilizing the definitions set out by Tollerton (1989), carapace shape varies considerably 

between different genera and the issue is further complicated by the ease with which the 

carapace shape is modified by taphonomic distortion. Some plesiomorphic characteristics 

can be discerned, however. The median constriction of the carapace (the ‘waist’) in 

Stoermeropterus is also known from Onychopterella augusti (GSSA C373a), implying it 

is a plesiomorphy for Eurypterina, and may also be present in Brachyopterus stubblefieldi 

(BGS D 3124) although it is difficult to discern due to the anterior of the carapace being 

broader than the posterior. This would indicate that a ‘waist’ to the carapace is the 

plesiomorphic state for Eurypterida as a whole, something that may be corroborated by 
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the possible occurrence of similar constrictions in the carapaces of the chasmataspidids 

Loganamaraspis dunlopi (NMS G.1957.1.649) and undistorted specimens of Diploaspis 

casteri (SMF VIII 39). The chasmataspidid specimens also indicate that the broadest 

point being anterior in the carapace of Brachyopterus is not a plesiomorphic condition, 

and it appears that the plesiomorphic carapace shape was likely to have been largely 

equal in length and width with its widest point at the carapace posterior. The carapace 

marginal rim is narrow in rhenopterids (Brachyopterus stubblefieldi: BGS D 3124; 

Rhenopterus diensti: MfN 48/48a) and in Stoermeropterus and largely deflected ventrally 

to partially overlap the ventral plates (thus forming the true doublure), a condition shared 

with the xiphosurids Alanops magnificus (Rachebeouf et al. 2002, pl. 3 figs. 1 & 3), 

Lunataspis aurora (MM I-4000A), Paleolimulus signatus (USNM 484407, 484409) and 

modern Limulus, and the synziphosurines Bembicosoma pomphicus (NMS 

G.1897.32.149) and Legrandella lombardii (AMNH 29273). Chasmataspidids meanwhile 

have rather broad marginal rims (Chasmataspis laurencii: USNM 125099; Diploaspis 

casteri: SMF VIII 39), with the anteriorly broadening marginal rim of Octoberaspis 

ushakovi (GIL 35/324) bearing particular resemblance to the marginal rim of the 

synziphosuran Pasternakevia podolica Selden & Drygant, 1987 (LSM 35611), however, 

while the marginal rim remains narrow in Eurypterina some more derived stylonurines 

(e.g. Stylonurus powriensis: NMS G.1891.92.102; Drepanopterus abonensis: BRSUG 

28635;) and xiphosurids (e.g. Euproops danae (Meek & Worthen, 1865): BMNH 

It.61012) also have broad marginal rims, possibly linked to a sediment-grubbing mode of 

life, and it is clear that marginal rim thickness is a somewhat variable character. 

209



 

The lateral eyes of all known Stylonurina are lunate or arcuate while those of 

moselopterids are lunate, and neither moselopterids nor rhenopterids show an enlarged 

palpebral lobe associated with the lateral eye as is seen in more derived Eurypterina (e.g. 

Eurypterus remipes: YPM 211408; Parahughmilleria hefteri: SMF VIII 55) and some 

Stylonurina (Stylonurella spinipes: NMS G.1891.92.33; Drepanopterus abonensis: BGS 

GSM 4718), so it seems the plesiomorphic condition of the lateral eyes was as a narrow 

visual surface abutted by small palpebral lobe that could conceivably be the reduced 

remnants of the opthalmic ridge found in xiphosurans (e.g. Weinbergina opitzi: SMF VIII 

7a; Legrandella lombardii: AMNH 29273; Limuloides limuloides: BMNH In 60018; 

Xaniopyramis linseyi Siveter & Selden, 1987: HU P1986; Paleolimulus signatus: USNM 

484408). Support for this homology may be found in the chasmataspidid Octoberaspis 

ushakovi (GIL 35/324, 35/336) which appears to possess a reduced but clearly definable 

ophthalmic ridge in association with its lateral eyes. The median ocelli are often poorly 

preserved or completely obliterated in the fossil material due to their small, delicate 

structure, and definite ocelli are not preserved in Stoermeropterus conicus, however 

Stoermeropterus latus shows them to be positioned separately on the carapace without a 

median eye tubercle (PMO H1839, H1874), as does Stoermeropterus nodosus (FMNH 

PE6214). This appears at odds with the condition seen in other aquatic chelicerates, 

however, as the synziphosurine Limuloides limuloides may have the ocelli positioned 

atop a tubercle (BGS GSM 32393) and the same condition was reported in Bunodes 

lunula by Bergström (1975, pl. 1 fig. 8) while the ocelli are positioned on a median 

tubercle in the xiphosurid Alanops magnificus (MNHN SOT1951) and are interpreted to 

be so in the Ordovician Lunataspis aurora by Rudkin et al. (2008) while the median eye 
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tubercle has merged with the median ridge in modern Limulus. Among chasmataspidids 

the ocelli are clearly located on a median eye tubercle in Chasmataspis laurencii (USNM 

125099, 125101), Diploaspis casteri (PWL 1999/5-LS, 1999/6a-LS, SMF VIII 39), and 

Octoberaspis ushakovi (GIL 35/324, 35/713) and so appears to be a constant feature – the 

report of paired ocellar tubercles in Diploaspis muelleri is based on a specimen (PWL 

2002/5023) that has been interpreted upside down (Marshall pers. comm.) – while 

Palaeozoic scorpions also have their ocelli located on a large median eye tubercle that is 

observable on their earliest Silurian representatives, Dolichophonous loudenensis (NMS 

G.1897.32.196) and Proscorpius osborni (Dunlop et al. 2008, pl.1 fig. 5). The lack of a 

median eye tubercle in Stoermeropterus is therefore likely to be a reversal, however the 

lack of an eye tubercle in the other moselopterids (Vinetopterus struvei: SPW 614-D; 

Moselopterus ancylotelson: SPW 999-D), dolichopterids (Strobilopterus princetonii: 

YPM 204949), Eurypteridae (Eurypterus lacustris: BMS E6468; Eurypterus 

tetragonophthalmus: NRM Ar55307; Erieopterus hypsophthalmus Kjellesvig-Waering, 

1958a: OSU 19572) Nanahughmilleria norvegica (PMO H1798; H1799), 

Parahughmilleria hefteri (PWL 2004/5040-LS, 2004/5041-LS), Eysyslopterus patteni 

(AMNH 32720), Orcanopterus manitoulinensis (ROM 56450) and pterygotids 

(Herefordopterus banksii: BGS GSM 88910; Jaekelopterus rhenaniae: PWL 2004/5055-

LS) suggests that the loss of the median eye tubercle is not an apomorphy solely of 

Stoermeropterus. The lack of a median eye tubercle in rhenopterids (Kiaeropterus 

cyclophthalmus: NMS G.1885.26.72.16; Kiaeropterus ruedemanni (Størmer, 1934a): 

PMO H1733; Brachyopterella pentagonalis: PMO H1792, H2050; Alkenopterus 

brevitelson: SPW 624-Da; Alkenopterus burglahrensis Poschmann & Tetlie, 2004: PWL 
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2002/5011-LS; Rhenopterus diensti: MfN 48a), the probable rhenopterid Stylonuroides 

dolichopteroides (Størmer, 1934a) (PMO H2179) and the parastylonurid Stylonurella 

spinipes (BGS GSM 87357) of Stylonurina suggests that the lack of a clear median eye 

tubercle is a characteristic that developed prior to the split of the two suborders. In a 

number of these taxa the ocelli are positioned on a slight inflation of the carapace that 

may be the remnant of a median tubercle, however the compressed nature of many 

eurypterid specimens makes determining the presence or otherwise of a carapace 

inflation difficult; several rhenopterids (Brachyopterus Størmer, 1951, Kiaeropterus 

Waterston, 1979 and Brachyopterella Kjellesvig-Waering, 1966) have their ocelli 

preserved within an ocellar area (sensu Tetlie et al. 2007), however this is considered a 

rhenopterid apomorphy that is secondarily lost in Alkenopterus Størmer, 1974 and 

Rhenopterus Størmer, 1936a. Both of the more derived Stylonurina and Eurypterina 

possess the median eye tubercle, however among stylonurines the tubercle is only ever 

found associated with a median carapace ridge in stylonurids (Pagea plotnicki: UA 

10477), hardieopterids (Tetlie 2008), drepanopterids (Drepanopterus abonensis: BGS 

GSM 84718, BMAG Cb4168), and with the ridge secondarily reduced in hibbertopterids 

and mycteropids (Megarachne servinei Hünicken, 1980: CORD-PZ 2110; 

Hibbertopterus scouleri: KM G55/76; Cyrtoctenus wittebergensis: USS IT.01), while in 

the Eurypterina it is found as an isolated tubercle (Adelophthalmus sievertsi: PWL 

1995/7511-LS, 2004/5001-LS, 2004/5002-LS; Lanarkopterus dolichoschelus: NMS 

G.1967.65.3; GSE 12433), suggesting that the median eye tubercle in the two suborders 

has re-evolved independently. 
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Plesiomorphic condition of prosomal appendages I-V. The anterior five pairs of 

prosomal appendages are primarily divided into the preoral chelicerae and the four pairs 

of postoral locomotary appendages. The chelicerae were previously used to differentiate 

the two suborders, separating Eurypterida into the small chelicera-bearing Eurypterina 

and the Pterygotina with enlarged chelicerae (Caster & Kjellesvig-Waering 1964), 

however this distinction has been abandoned since enlarged chelicerae have been shown 

to evolve within the Eurypterina (Tetlie 2007a). The plesiomorphic condition of the 

chelicerae in eurypterids (which varies little throughout much of the Order) is as in 

Xiphosura, consisting of a proximal peduncle articulating with a podomere that folds 

back inwards towards the body and extends into a single fixed finger with the terminal 

podomere forming the movable finger. The morphology of the non-pteryotid chelicerae is 

observed best in the macerated specimens of Eurypterus tetragonophthalmus (Selden 

1981, fig. 24j), however the orientation and general morphology can also be seen in a 

number of stylonurine (Parastylonurus ornatus: NMS G.1978.28.3; Rhenopterus diensti: 

MfN 48a) and eurypterine (Strobilopterus princetonii: YPM 204947; Parahughmilleria 

major: SMF VIII 148; ‘Carcinosoma’ scoticum: NMS G.1897.32.153) taxa. Although the 

fossil pycnogonid Palaeoisopus problematicus Broili, 1928 has five segments in the 

chelicerae (Bergström et al. 1980) and the Silurian pycnogonid Haliestes dasos Siveter, 

Sutton, Briggs & Siveter, 2004 (OUM C.29571) along with the possible basal chelicerate 

Offacolus kingi Orr, Siveter, Briggs & Siveter, 2000b (Sutton et al. 2002) have chelicerae 

composed of four segments, no eurypterid possesses anything other than three-segmented 

chelicerae, Kjellesvig-Waering’s (1964b) hypothesis that pterygotids possessed a fourth 

segment having been disproved by Laub et al. (2010). 
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Størmer (1963, 1974) believed the plesiomorphic state for all the non-cheliceral 

prosomal appendages to be the Hughmilleria-type of appendage, based on comparison 

with the spinosity of the legs of supposedly ancestral trilobites, however this hypothesis 

is not supported by the current theories of eurypterid phylogeny. Appendages II-IV of 

Stoermeropterus conicus are of the Rhenopterus-type, lacking socketed spines but 

possessing paired fixed cuticular projections anteroventrally, a characteristic shared with 

Vinetopterus martini (PWL 2002/5010-LS) within Moselopteridae and rhenopterids 

(Brachyopterus stubblefieldi: BGS D 3124; Brachyopterella pentagonalis: PMO H1792; 

Leiopterella tetliei: CMN 53573; Rhenopterus diensti: MfN 48a) at the base of 

Stylonurina. The Rhenopterus-type appendage being plesiomorphic for eurypterids is 

further suggested by the occurrence of appendages with short, fixed cuticular extensions 

in the chasmataspidid Diploaspis casteri (SMF VIII 171), while several eurypterids also 

possess slight cuticular extensions on the podomeres of their fifth and sixth appendages 

(Stoermeropterus conicus: NMS G.1897.32.133; Moselopterus ancylotelson: SMF VIII 

146; Brachyopterella ritchiei: NMS G.1968.14; Brachyopterus stubblefieldi: BGS D 

3124; Parastylonurus ornatus: NMS G.1897.32.57) suggesting that fixed projections are 

the plesiomorphic condition on every prosomal limb. Another probable plesiomorphic 

characteristic is the possession of denticulations on the distal podomere margins; while 

such denticulations have been recognized in Slimonia (e.g. S. acuminata: BMNH 59658) 

and Adelophthalmus (e.g. A. mazonensis: MCZ 7162) they are also present in 

Parastylonurus ornatus (NMS G.1885.26.72.7; G.1897.32.57), Eurypterus 

tetragonophthalmus (BMNH I 3406/12), Parahughmilleria major (SMF VIII 148) and 

Strobilopterus princetonii (PU 13854), and it is considered likely that they are present on 
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more (if not all) species but that their small and delicate structure means they are often 

not preserved. 

Plesiomorphic condition of prosomal appendage VI. Størmer (1974) considered the 

sixth appendage in eurypterids to have followed different evolutionary pathways from a 

generalized Hughmilleria-type of spiniferous appendage. In the case of the Stylonurina 

the spines were lost completely to form the non-spiniferous walking legs, however 

among the Eurypterina the swimming paddle developed through the Moselopterus-type 

appendage before separately evolving into the Dolichopterus-type paddle and the 

Eurypterus-type, from which the other types of paddle were hypothesized to have arisen. 

Størmer also considered the paddle of Onychopterella kokomoensis to potentially have 

independent origins from the other paddle types, and suspected that the Carcinosoma- 

and Slimonia-type paddles may also be independently derived. In contrast, Tetlie & 

Braddy (2004) considered Dolichopterus to be intermediate between Stylonurina and the 

remaining Eurypterina, presumably placing Moselopterus within the Stylonurina, 

invoking a single evolution of the paddle from a non-spiniferous, pediform appendage. 

Dolichopterus had traditionally been placed within the Stylonurina (e.g. Kjellesvig-

Waering 1966) or positioned as its sister-group (e.g. Waterston 1979), necessitating either 

a dual origin of the swimming paddle or presenting the Dolichopterus-type paddle as the 

primitive state within Eurypterina. Subsequent phylogenetic analysis by Tetlie & Cuggy 

(2007) however showed that Dolichopterus was not closely allied with Stylonurina but 

was sister-group to Eurypteridae and they proposed a single origin of the swimming 

paddle from a non-spiniferous pediform appendage, through the Moselopterus-type 

appendage and the Onychopterella paddles (as they considered the genus paraphyletic) 
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before diverging into the dolichopterid paddles and those of the Eurypteridae. This latter 

interpretation of paddle evolution is supported here, as the phylogenetic position of 

Stoermeropterus shows that the plesiomorphic condition of appendage VI is as pediform, 

with the paddle evolving only once within Eurypterida. Evidence for all the paddle 

morphologies having evolved through the same pathway comes from juvenile specimens 

of forms which, as adults, have radically distinct paddle morphologies from those seen in 

Onychopterella kokomoensis and Erieopterus (which are considered to be among the 

most basic forms of paddle); Strobilopterus princetonii has a heavily serrated paddle with 

a large ninth podomere set into a recess on the posterior margin of the eighth (Tetlie 

2007b), however a juvenile specimen (PU 13854) preserves a paddle with a much smaller 

podomere nine set within a much shallower recess, resembling a more serrated and 

slightly broader Erieopterus-type of paddle. ‘Carcinosoma’ scorpioides, meanwhile, has 

a variation on the Carcinosoma-type paddle with an elongated eighth podomere and a 

large, rounded podomere nine set into it (BGS GSM 103939), however Paracarcinosoma 

obesus (Woodward, 1868) from the same locality probably represents a juvenile of the 

same species (Lamsdell pers. obs.) and has a more rounded eighth podomere and smaller 

podomere nine that again bears a closer resemblance to the Erieopterus-type paddle.  

While the expansion of the appendage into a paddle demonstrably occurs within the 

eurypterine lineage, the coxal ear and podomere 7a appear suddenly in the basalmost 

members of the Suborder and so ascertaining whether they are plesiomorphic or derived 

characters is more problematic. Neither occur in the Stylonurina, which would seem to 

indicate that they are autapomorphies of Eurypterina, however it is possible that these 

characters were present in the eurypterid ancestor and lost in the Stylonurina. There may 
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be some argument for suggesting that podomere 7a is homologous to one of the tarsal 

spurs found in some Palaeozoic scorpions, which are located overlying the telotarsus 

(equivalent to the eighth podomere in eurypterids, which have a divided femur) but 

originate from the distal margin of the basitarsus (equivalent to the seventh podomere in 

eurypterids); the similarity is particularly striking in Palaeophonus nuncius Thorell & 

Lindström, 1884 (NRM Ar 32235) where the triangular spurs appear to almost lie flat 

against the appendage. These tarsal spines may be homologous to the ‘spatulate organs’ 

(sensu Moore et al. 2005a) which are located between the tibial-tarsal joint on appendage 

VI of Limulus (which has both a fused femur and tarsus, resulting in an appendage with 

only seven podomeres), however these would therefore overlie the seventh podomere in 

eurypterids (sixth in scorpions) and so the evidence for direct homology is not 

compelling. The sixth appendage of Weinbergina opitzi, with a fused femur but divided 

tarsus as in scorpions, possesses several lobate spines at the distal margin of the tibia 

which are probably homologous to those in Limulus and a pair of lobate spines 

originating at the distal margin of the basitarsus (Stürmer & Bergström 1981) that may be 

homologous to the tarsal spurs in scorpions and potentially podomere 7a in Eurypterina. 

It is unclear whether a similar structure occurs in chasmataspidids; the chelate supposed 

sixth appendage of Chasmataspis laurencii (USNM 125106) shows no evidence of a 

podomere 7a or any accessory spines while the pediform sixth appendage of 

Loganamaraspis dunlopi (NMS G.1957.1.649) does not preserve the distal podomeres. 

Where paddles are known from the Devonian diploaspids (Diploaspis casteri: SMF VIII 

171; Octoberaspis ushakovi: GIL 35/735) they appear to possess a podomere 7a on the 

anterior edge of the appendage, however this difference in position suggests it may have 
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an independent origin from the posterior 7a of Eurypterina. The coxal ear has no clear 

homologues in other chelicerates although the dorsally expanded coxae of xiphosurans 

sometimes bear a semblance to the state, but these more closely resemble an extension of 

the basipod itself rather than a differentiated dorsal structure as appears to be the case in 

eurypterids (the cuticle is often preserved as darker than the rest of the coxa). A 

somewhat similar structure is found at the attachment of the exopod to the basipod in 

Chasmataspis laurencii, which forms an ear-like dorsal projection from which the rest of 

the exopod projects. It could be that the ear in Eurypterina represents the vestiges of the 

sixth appendage exopod (which is retained as the flabellum in Limulus), however the 

evidence for this is currently equivocal. If this were the case the coxal ear represents a 

plesiomorphic state that is lost in the stylonurine lineage. 

The expanded sixth appendage of Eurypterina has traditionally been considered 

primarily as an adaptation for swimming (e.g. Størmer 1974; Selden 1981; Plotnick 

1985), with the ‘ear’ on coxa VI serving to lock the proximal segment against the other 

coxae, immobilizing it to allow greater generation of thrust by the paddle while the 

expanded lobe (‘podomere’ 7a) served to increase the surface area of the paddle and 

allowed podomere eight to fold back almost completely against podomere seven during 

the recovery stroke (Selden 1981, figs. 16 & 17). It has also sometimes been suggested 

that the ‘paddle’ evolved as an aid for digging into the substrate (Laurie 1893; Størmer 

1934a; Tetlie 2007b) in a manner similar to the sixth appendage ‘pusher’ of Limulus, and 

the possession of a podomere 7a and coxal ear by moselopterids like Stoermeropterus 

which were clearly not swimmers lends support to this alternative hypothesis. The initial 

function of the ear was likely the same, to immobilize the coxa to allow for greater force 
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to be applied by the posterior appendages in an anterior-posterior sweeping motion, while 

podomere 7a may have been incidental or more likely acted to strengthen and support the 

appendage during digging as was suggested in Moselopterus by Størmer (1974). The 

balance of evidence therefore suggests that the modifications of the sixth prosomal 

appendage during the early evolution of the Eurypterina were related to digging at the 

substrate surface rather than swimming, and that the function of the paddle as a 

swimming aid was a secondary adaption that developed within the eurypterine lineage as 

denoted by the modification of the distal margin of the sixth podomere to allow for 

greater manoeuvrability of the paddle, a characteristic that seems to be genuinely linked 

with the adoption of swimming as a regular method of locomotion. Stylonurina, the 

moselopterids and Onychopterella all lack this modified podomere margin, and so when 

they did swim they would not have been particularly efficient. Dolichopterids such as 

Strobilopterus, meanwhile, probably remained relatively poor swimmers and may have 

used the sixth appendage for both digging and swimming (Tetlie 2007b), while it is only 

the most derived taxa such as pterygotids (see e.g. Plotnick & Baumiller 1988) that were 

capable of swimming for longer durations and so able to disperse across a wider 

geographical range (Tetlie 2007a). 

As the plesiomorphic condition of appendage VI in eurypterids is that of a pediform 

non-spiniferous appendage homology between the eurypterid swimming paddle and that 

of diploaspid chasmataspidids is rejected. There are both good morphological and 

stratigraphical grounds for this; the diploaspid paddle appears to lack a small ninth 

podomere (e.g. Diploaspis casteri: SMF VIII 171; Octoberaspis ushakovi: GIL 35/735) 

while the podomere 7a is located on the anterior side of the appendage; either the paddle 
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in diploaspids has one less podomere than in eurypterids and an anterior podomere 7a has 

developed independently or podomere 8 has been reduced into a 7a-like structure and the 

enlarged, terminal paddle podomere is podomere 9. Furthermore, paddle-bearing 

diploaspids are only known from the Devonian, while the only known Silurian 

chasmataspidid, Loganamaraspis dunlopi, has a pediform appendage VI, and so it 

appears that the diploaspid paddle developed some time after the eurypterid paddle. 

Plesiomorphic condition of the prosomal ventral plates and sutures. Tetlie et al. 

(2008) considered the plesiomorphic condition of the ventral plates in eurypterids to be 

the Megalograptus-type due to the ventral plates being two distinctly separate units. 

Størmer (1934a) however had considered the Hughmilleria-type ventral plates, with a 

central epistomal plate, to be the plesiomorphic form and that the innovation of the other 

ventral plate types had occurred through the merging of these three initial plates, with an 

epistomal plate retained in forms such as pterygotids with well-developed chelicerae. The 

occurrence of an epistoma in Stoermeropterus conicus and Stoermeropterus latus (PMO 

H1839) and some rhenopterid species (Kiaeropterus ruedemanni: PMO H1733; 

Brachyopterella pentagonalis: PMO H1792) seems to suggest that Størmer’s theory is 

correct, reinforced by the apparent identification of epistomal sutures in the 

chasmataspidids Diploaspis casteri (SMF VIII 39) and ‘Eurypterus’ stoermeri (PIN 

1138/1), however the sutures of modern Limulus more closely resemble those of the 

Erieopterus-type (Størmer 1934a, fig. 11g), as seemingly does the doublure of Rolfeia 

fouldenensis (NMS G.1984.67.1b), the synziphosurine Venustulus waukeshaensis (UW 

4001/1b) and the Silurian chasmataspidid Loganamaraspis dunlopi (NMS 

G.1957.1.649a). Tetlie et al. (2008, p. 192) reported that Tollerton now believes the 
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Erieopterus-type of ventral plate to be indistinguishable from the Eurypterus-type, 

however those taxa with the Eurypterus-type ventral plate clearly display a median suture 

at the joint between the two plates with the plates remaining a constant width as they 

curve anteriorly  (e.g. Eurypterus remipes: YPM 9003A; Parastylonurus ornatus: NMS 

G.1885.26.72.7) while the Erieopterus-type appears to consist of two plates (not a single 

plate as originally described by Kjellesvig-Waering (1958a), which is presumably the 

reason that Tollerton and Tetlie et al. considered them identical to the Eurypterus-type) 

that narrows anteriorly with the true doublure forming a ‘triangular area’ as recognized 

by Størmer (1974, p. 384 & fig. 18). This type of ventral plate morphology is seen in 

Vinetopterus struvei (SMF VIII 191), Moselopterus ancylotelson (SMF VIII 164), 

Erieopterus eriensis (Whitfield, 1882) (OSU 19614, 19571, USNM 155678) and 

potentially Strobilopterus princetonii (YPM 204947), Buffalopterus pustulosus (AMNH 

2249), Onychopterella augusti (GSSA C373a) and Onychopterella kokomoensis (FMNH 

UC6638), all of which are members of the three basalmost eurypterine clades. It is worth 

noting that, given current understanding of eurypterid phylogeny, the Erieopterus-type 

ventral plate is the only one that does not develop convergently in different groups, as the 

Eurypterus-type is shown to develop independently in rhenopterids (Størmer 1936a; 

Lamsdell et al. 2010b), parastylonurids and basal hardieopterids (Waterston 1979), 

hibbertopterids (Waterston 1957) and Eurypterus (Clarke & Ruedemann 1912) while 

epistomal sutures are found in Stoermeropterus, basal rhenopterids (Størmer 1934a), 

stylonurids (Waterston 1962), hardieopterids (Hall & Clarke 1888), adelophthalmoids 

(Størmer 1934a, 1973; Poschmann 2006) and pterygotoids (Sarle 1903; Kjellesvig-

Waering 1964b), further suggesting that the Erieopterus-type ventral plate morphology 
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may be the plesiomorphic type. The convergence of ventral plate morphology between 

Stylonurina and Eurypterina is further reinforced by the occurrence of transverse ventral 

sutures on the ventral plates of Stylonurina, which are an autapomorphy of the suborder. 

One obstacle to this is the presence of epistomal sutures in Stoermeropterus, 

Brachyopterella and Kiaeropterus. The ventral plates of Brachyopterus are unknown 

while Stoermeropterus is the only moselopterid to possess an epistoma and so it tempting 

to consider the epistoma apomorphic in Stoermeropterus and the 

Brachyopterella/Kiaeropterus clade, however the morphology of the epistomal plate in 

Stoermeropterus bears closer relation to the epistomae of the Stylonurina groups than 

those of the other Eurypterina, and so it is feasible that the possession of an epistoma is 

the plesiomorphic characteristic that was rapidly lost in both suborders. However, the 

larvae of modern Limulus possess epistomal sutures (Størmer 1934a, figs. 10 & 11f) that 

are lost in adult instars whilst eurypterids that possess an epistoma often exhibit the 

traditional juvenile characteristics of large lateral eyes, reduced or absent socketed spines 

on the prosomal appendages, and (in the case of pterygotids) enlarged chelicerae, 

suggesting that these characteristics have been paedomorphically retained into adulthood. 

If larval eurypterids also possessed an epistoma then this could account for its repeated, 

convergent occurrence within the group, and could explain the similarities between 

Stoermeropterus and Stylonurina as the evolution of epistoma morphology within the 

Eurypterina would be largely unobservable until it is retained in the adult pterygotoids 

and adelophthalmoids, both of which are highly derived groups.  

Plesiomorphic condition of the metastoma. The metastoma, along with the genital 

appendage, was traditionally considered the defining autapomorphic character for 
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Eurypterida (Dunlop & Selden 1997), however the identification of both structures in 

diploaspid chasmataspidids (Dunlop 2002; Tetlie & Braddy 2004) has left eurypterids 

without any clear autapomorphies, until the identification of the fused operculae of 

somites VIII and IX as a potentially unique eurypterid characteristic in this volume. The 

metastoma is considered to be part of the first (reduced) opisthosomal segment and may 

have either an appendicular or sternal derivation, however the presence of paired muscle 

scars on many well-preserved metastomae (e.g. Hardieopterus macrophthalmus: NMS 

G.1897.32.106; Eurypterus tetragonophthalmus: BMNH I 3406/20) and a possible fused 

median suture in others (e.g. Pagea sturrocki Waterston, 1962: NMS G.1956.14.11; 

Eurypterus hankeni: PMO 206.625) along with the identification of the anterior opercular 

plate as the sternite of the first opisthosomal segment suggests that the metastoma is 

indeed appendicular in nature. The metastoma has been suggested to be homologous to 

the xiphosuran chilaria and the scorpion sternum (Jeram 1998; Dunlop & Webster 1999), 

of which the chilaria has been shown developmentally to comprise the appendages of 

somite VII (Farley 2010) while scorpions possess an embryonic limb pair (Brauer 1895) 

anterior to the remaining trunk limbs that is not expressed in adults (its eventual fate is 

currently unknown) that could conceivably form the sternum (Dunlop & Webster 1999). 

The presence of the metastoma in chasmataspidids suggests that the fusion of the seventh 

appendage pair occurred some time before the eurypterid lineage diverged, and although 

known from only two species (Octoberaspis ushakovi: GIL 35/712; Loganamaraspis 

dunlopi: NMS G.1957.1.649b) the metastoma of chasmataspidids appears to be fairly 

uniform in morphology, consisting of a broad anterior portion with a shallow notch and 

narrowing posteriorly, giving it an overall heart-shape distinct from any of Tollerton’s 
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(1989) metastoma shapes but closest to the cardioid form. An anterior metastomal notch 

is common in eurypterids and is found both in moselopterids (Stoermeropterus conicus: 

NMS G.1885.26.72.17; Moselopterus elongatus: SMF VIII 184) and rhenopterids 

(Leiopterella tetliei: CMN 53573; Rhenopterus diensti: MfN 48a) and so appears to be 

the plesiomorphic condition. Few eurypterids however have a narrow posterior margin, 

and those that do (e.g. Acutiramus cummingsi (Grote & Pitt, 1875): UMMP 62581; 

Hughmilleria socialis: BMNH I7505; Slimonia acuminata: SM A16237a; Mixopterus 

kiaeri: PMO H2032; Lanarkopterus dolichoschelus: NMS G.1954.26.3) occupy a derived 

position within eurypterid phylogeny and have a very different overall metastoma 

morphology to the chasmataspidids. More common in eurypterids is having a rounded 

metastoma posterior with an overall oval metastoma morphology, which is present in 

Moselopteridae, Onychopterellidae, Eurypteridae, Adelophthalmidae, and most 

Pterygotidae, and this is considered the plesiomorphic state. The metastoma of 

Stylonurina is less conservative in its morphology than in Eurypterina, possibly due to 

each clade being highly specialized and probably inhabiting a distinct ecological niche 

with separate feeding strategies (it is worth noting that among the Eurypterina the highly 

specialized predatory mixopteroids show the most distinct metastoma morphology), 

however the rhenopterids possess an obturbinate metastoma that greatly resembles the 

oval form but which narrows anteriorly and Drepanopterus (a relatively derived 

stylonurine) has an oval metastoma but with a posterior cleft (D. abonensis: BRSUG 

28647; D. pentlandicus: NMS G.1897.32.91), suggesting that an oval metastoma is part 

of the ground plan for Stylonurina too. 
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Plesiomorphic condition of the genital appendage and operculum. As with the 

metastoma, the genital appendage was considered an autapomorphy for eurypterids until 

it was also identified in two species of chasmataspidid (Dunlop 2002; Tetlie & Braddy 

2004). The genital appendage is known to be sexually dimorphic in all eurypterids where 

it is preserved on multiple specimens, and the presence of sexual dimorphism of the 

appendage in both Stylonurina and Eurypterina as well as potentially in Octoberaspis 

ushakovi (Dunlop 2002, fig 6c,d) indicates that dimorphism of the genital appendage 

developed before chasmataspidids and eurypterids diverged, and it is possible that genital 

appendages were always sexually dimorphic. 

The most in-depth study of eurypterid genital appendages was undertaken by Braddy 

& Dunlop (1997), who studied well-preserved material of Eurypterus 

tetragonophthalmus, and the type A appendage was shown to consist of three segments 

while the type B appendage consisted of only two segments (the terminal ‘segment’ in 

both appendages consisting of the furca). In some more derived eurypterine taxa such as 

pterygotids (see Waterston 1964) the type A appendage has become fused into a single 

segment, and while the rhenopterid Brachyopterella ritchiei (NMS G.1968.14) and the 

chasmataspidid Octoberaspis ushakovi (GIL 35/711) appear to possess a type A 

appendage consisting of a single segment the preservation in Brachyopterella is relatively 

poor while the morphology of the chasmataspidid appendage (with a seemingly trilobed 

termination possibly representing the furca) is distinctly different to anything found in 

eurypterids. Furthermore the supposed type A appendage of Loganamaraspis dunlopi 

NMS G.1957.1.649b) consists of two segments and so it seems likely that the single-

segmented appendage in Octoberaspis is a derived condition. Based on the presence of a 
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three-segmented type A genital appendage in Stoermeropterus conicus, the proliferation 

of three-segmented type A appendages in the non-pterygotoid Eurypterina, and the 

presence of a three-segmented type A appendage in Parastylonurus ornatus (NMS 

G.1885.26.72.3) it is considered likely that this represents the plesiomorphic state. The 

plesiomorphic condition of the type B appendage is even more complicated. The 

condition in Eurypterus tetragonophthalmus is of a short plate with two long furca 

projecting from it (Braddy & Dunlop 1997, fig. 2b) with a larger portion of the proximal 

plate hidden dorsally behind the operculum. In pterygotids (Waterston 1964), 

Parahughmilleria hefteri (Størmer 1974) and Nanahughmilleria norvegica (Størmer 

1934a) however the entire basal plate is visible, being broad and oval shaped, with the 

furca appearing only as a small terminal segment, while in other taxa the furca appear to 

fuse into a single elongate plate (Dunlop et al. 2002). Dunlop et al. considered both these 

morphologies to be derived from the Eurypterus type B appendage, however the type B 

genital appendage in Stoermeropterus and Moselopterus most resembles the oval type of 

Parahughmilleria and Nanahughmilleria. The morphology of the apparent type B 

appendage of Octoberaspis ushakovi (GIL 35/712) is more similar to the moselopterid 

type of genital appendage and so this morphology as exemplified in Stoermeropterus, 

rather than that of Eurypterus, is considered the plesiomorphic type. Among Stylonurina 

the type B appendage appears closer in morphology to the type A, consisting of a narrow 

proximal segment with the tips of the furca projecting from underneath (Parastylonurus 

ornatus: NMS G.1897.32.8; Stylonurella spinipes: BGS GSM 87357; Leiopterella tetliei: 

CMN 53573; Rhenopterus diensti: MfN 48a; and possibly Brachyopterus stubblefieldi: 
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BGS D 3124) which may represent another stylonurine autapomorphy that became 

secondarily modified into a broad lobe in Hibbertopterus (Waterston 1957, fig. 6). 

Genital spatulae associated with the genital appendage have traditionally been 

considered a defining characteristic of adelophthalmoids, however similar structures have 

also been described from Dolichopterus jewetti (Caster & Kjellesvig-Waering 1956), 

Parastylonurus ornatus (Waterston 1979) and Drepanopterus abonensis (Lamsdell et al. 

2009) and so appear to be more widespread in eurypterids than is generally supposed. 

Caster & Kjellesvig-Waering (1964, p, 312) lamented the ‘Eurypterus influence’ 

affecting interpretation of eurypterid morphology and it could be argued that a similar 

phenomenon still exists today; as Eurypterus lacks genital spatulae they are considered to 

be rare occurrences whereas their presence in a number of different eurypterid clades 

would appear to suggest the opposite. The occurrence of genital spatulae in 

Stoermeropterus conicus may suggest that their possession is a plesiomorphic character 

within Eurypterida, however current knowledge of their occurrence in other eurypterid 

clades (including the remaining moselopterids) is too scant to determine this with any 

certainty. Caster & Kjellesvig-Waering (1956) considered that the spatulae may have 

been present in all eurypterids but commonly concealed above the operculum, becoming 

hypertrophied in a number of eurypterids in which they are easily observable. If this were 

to be the case it would explain why they seem to appear multiple times throughout both 

the eurypterine and stylonurine lineages. 

The possession of deltoid plates anterior to the genital appendage was considered to 

be a defining characteristic of Eurypterina by Tetlie & Braddy (2004), who stated 

categorically that stylonurines possess no deltoid plates, however Lamont (1955, pl. 4, 
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fig. 6) figured a genital operculum of Parastylonurus ornatus bearing deltoid plates as 

did Waterston (1979, pl. 6, fig. 6) in Brachyopterella ritchiei and deltoid plates were 

subsequently described in specimens of Drepanopterus abonensis (Lamsdell et al. 2009, 

pl. 1, fig. 11 & pl. 2, fig. 1). Considering that different specimens of the same species can 

appear both to possess and lack deltoid plates (e.g. Parastylonurus ornatus: NMS 

G.1897.32.7 compared to G.1885.26.72.3; Eurypterus remipes: YPM 210824 compared 

to YPM 9003B; Nanahughmilleria norvegica: PMO H1632 compared to PMO H1795) it 

is likely that the apparent presence or otherwise of deltoid plates is heavily dependent on 

preservation. 

The number of segments in the genital operculum has been suggested to be another 

character of taxonomic importance at subordinal level (Tetlie & Braddy 2004), with the 

possession of an anterior opercular plate being the primitive state retained in stylonurines.  

However with Moselopteridae at the base of the Eurypterina and the basal eurypterine 

taxa Dolichopterus (Caster & Kjellesvig-Waering 1956), Eurypterus (Wills 1965) and 

Erieopterus (Tetlie & Cuggy 2007) also possessing this anterior opercular plate it seems 

that this character, like the pediform appendage VI, is the plesiomorphic state in both 

suborders and is gradually lost along the eurypterine lineage. The anterior opercular plate 

described by Wills (1964) in Adelophthalmus is actually a taphonomic artefact formed by 

the impression of the posterior margins of the enlarged coxae VI on the genital 

operculum, and it is thought that the anterior opercular plate was completely lost by the 

time the mixopteroids diverged from the main eurypterine lineage. The chasmataspidid 

Loganamaraspis dunlopi (NMS G.1957.1.649b) also possesses an anterior opercular 

plate which is much closer in morphology to a fully expressed ventral segment than that 
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found in eurypterids, and this fits with its origination from somite VII which is also more 

strongly expressed dorsally than it is in eurypterids. Whether it is homologous to the 

appendages of somite VII or the sternite has been a subject of some speculation (e.g. 

Tetlie & Braddy 2004), however Holm (1898) and Wills (1965) showed the anterior 

opercular plate to be positioned above the metastoma and the operculae with the genital 

operculum articulating with it, a morphology and position more in line with it being a 

true sternite than a reduced appendage. This then allows for the metastoma to be derived 

from the appendages of somite VII, and in turn the endostoma to be formed from the 

fused epicoxa of appendage VI (see Laurie 1893 and Lamsdell et al. 2009 for evidence of 

the lack of separate epicoxa on appendage VI). 

The median and posterior opercular plates represent the appendages of somites VIII 

and IX and are fused into a single functional operculum in all eurypterids (as recognized 

by Wills (1965) and shown by the manner in which the operculum is always preserved 

with both segments, even when complete disarticulation of the rest of the animal has 

occurred), a characteristic that may be the only reliable eurypterid autapomorphy; the 

genital operculum of xiphosurans and scorpions consists of a single appendage pair 

originating from somite VIII (Dunlop & Webster 1999) while the genital appendage of 

Octoberaspis ushakovi is located on the operculum of somite VIII which is preserved 

distinctly separate from somite IX (GIL 35/711, 35/712) (the genital operculum of 

Loganamaraspis dunlopi is too poorly preserved to differentiate the operculae of somite 

VIII and IX). Despite the operculae being fused in eurypterids a clear, non-functional 

suture is visible in Stylonurina (e.g. Parastylonurus ornatus: NMS G.1885.26.72.3, 

G.1897.32.8; Rhenopterus diensti: MfN 48a; Drepanopterus abonensis: BGS GSM 
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84700) and the basal Eurypterina e.g. Stoermeropterus conicus: NMS G.1885.26.72.17; 

Moselopterus ancylotelson: SMF 26061; Eurypterus tetragonophthalmus: BMNH I. 

3406.3, I. 3406.23; Dolichopterus jewetti: NYSM I13138), however this suture is lost in 

many more derived taxa, resulting in the median and posterior opercular plates being 

distinguishable only by the change in cuticular ornamentation (e.g. Megalograptus 

ohioensis: UCM 24117E; Slimonia acuminata: SM A16237a; Pterygotus anglicus: 

NBMG 10000); see Dunlop et al. (2002, figs. 4 & 5) for an overview of the development 

of the eurypterine genital operculum. 

Plesiomorphic condition of the non-genital trunk appendages. The presence of plate-

like operculae on the ventral surface of the opisthosoma is one of the defining characters 

for Euchelicerata (Weygoldt & Paulus 1979) and can be reliably observed in many 

eurypterid fossils, as well as the Devonian synziphosurine Weinbergina (Stürmer & 

Bergström 1981), the xiphosurids Alanops magnificus (Racheboeuf et al. 2002) and 

Paleolimulus signatus (Babcock et al. 2000) and the chasmataspidids Loganamaraspis 

dunlopi (Tetlie & Braddy 2004) and Octoberaspis ushakovi (Dunlop 2002). Xiphosurans 

possess six pairs of opercular plates, the first pair being the genital operculum, while the 

genital operculum and the succeeding opercula has fused in eurypterids (potentially the 

sole autapomorphy for eurypterids) while some Palaeozoic scorpions have five operculae 

after the genital segment (Jeram 1998) which is reduced to four in modern forms. 

Embryological work on scorpions has shown the abdominal ‘sternites’ to actually 

represent the opercular plates that have fully fused onto the body wall (Farley 2001) and 

the first two ‘sternites’ of uropygids have also been shown to be sutured operculae 

(Shultz 1993), suggesting the possession of operculae is a plesiomorphic state for 
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arachnids. Where operculae have been identified in chasmataspidids they appear to be 

restricted to the buckler region and are therefore found only on three segments, however 

the Cambrian trace fossil first described by Wahlman & Caster (1978) and later figured 

by Dunlop et al. (2004, fig. 9) as possibly belonging to a chasmataspidid producer seems 

to show the imprints of six operculae, corresponding to the number found in xiphosurans 

and suggesting that despite the presence of the fused buckler the mesosoma/metasoma 

division is the same as in eurypterids and scorpions. 

Within eurypterids the four operculae following the genital operculum are usually 

medially fused, however in the stylonurines Stylonurella spinipes, Leiopterella tetliei, 

Rhenopterus diensti and Drepanopterus pentlandicus the first postgential opercular plate 

is unfused, a condition shared with Stoermeropterus conicus, Eurypterus remipes, 

Orcanopterus manitoulinensis, Slimonia acuminata and Mixopterus kiaeri. The presence 

of this opercular plate being fused in Eurypterus henningsmoeni and the first two 

operculae being unfused in Mixopterus kiaeri however suggests that its fusion is a highly 

variable character. Evidence from embryological work on scorpions and Limulus (Farley 

2001, 2010) suggests that a lack of fusion of the anterior operculae may be a 

paedomorphic characteristic, which would again explain why it appears independently so 

many times within different eurypterid clades; the presence of unfused opercular 

appendages in xiphosurans and the chasmataspidid Loganamaraspis suggests that this is 

the plesiomorphic state which is lost in most eurypterid groups but with several species 

undergoing paedomorphic reversals. 

IMPLICATIONS FOR FUTURE EURYPTERID RESEARCH. 
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Recent work has made much progress in resolving the phylogenetic relationships of 

the eurypterid groups, however further discoveries may force a reconsideration of these 

views. As shown by the redescription of Stoermeropterus conicus, revisiting specimens 

held in museum collections, particularly those that have not received much scientific 

attention for several decades, can yield much new information when they are treated in a 

modern systematic context, while the discovery of new specimens and fossil localities is 

also of key importance. Two Canadian localities, the Silurian Eramosa Lagerstätte (von 

Bitter et al. 2007) and the late Ordovician Manitoba biotas (Young et al. 2007) have both 

yielded as yet undescribed eurypterid specimens that have the potential to inform greatly 

on a poorly-understood period of eurypterid evolution, namely its origins within the 

Ordovician and radiation into the Silurian. Tollerton (2004) rightly showed that many of 

the Ordovician records of eurypterids were incorrectly identified, reducing the then 

recognized number of Ordovician eurypterids to just ten named species, however a 

number of discoveries since then, including the Manitoba biotas, has shown that 

Ordovician eurypterids were probably not as rare an occurrence as has been assumed. 

Our current understanding of eurypterid phylogeny suggests that a number of basal 

eurypterine clades (namely moselopterids and dolichopterids) probably have a currently 

undiscovered Ordovician record, and so description of Ordovician eurypterids such as 

those of the Middle Ordovician St. Peter Formation in Iowa (Liu et al. 2006) – which is 

Darriwilian in age and therefore would represent the oldest record of Eurypterida to date 

– is of extreme importance. These earliest eurypterids may help resolve the relationships 

of the basal Chelicerata (xiphosurans, chasmataspidids and eurypterids) which, as shown 

by the analysis of Shultz (2007), are still poorly resolved phylogenetically and are 
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important to unravel as it has implications for the plesiomorphic character states of 

Arachnida and hence may provide a solution to the competing hypotheses of scorpions 

being derived arachnids within a Dromopoda clade or resolving as sister group to all 

other arachnids. 
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NMS specimen Carapace 
length 

Carapace 
width 

Lateral 
eye 
length 

Lateral eye 
width 

Marginal 
rim width 

G.1885.26.72.1 23 25 - - - 
G.1885.26.72.13 20 22 8.5 2 - 
G.1885.26.72.14 23 27 8.3 1.6 - 
G.1885.26.72.17 30 41 - - 1 
G.1885.26.72.19 35 40* - - 1 
G.1897.32.12.9 20 22 6 0.5 - 
G.1897.32.85 32 35 - - 1 
G.1897.32.88 - 26.5 - - - 
G.1897.32.121 14 15 - - - 
G.1897.32.123 18 20 5 0.5 - 
G.1897.32.125 10 12 - - - 
G.1897.32.131 12.5 24 7.5 1.2 - 
G.1897.32.132 38 55 - - - 
G.1897.32.133 35 50 9 2 - 
G.1897.32.134 19.2 28.8 7.5 2.3 0.5 
G.1897.32.136 27.5 44 - - 1 
G.1897.32.137.1 23 30 - - - 
G.1897.32.137.2 10 10 4 0.5 - 
G.1897.32.138 32 35* - - 1 
G.1897.32.139 34 35* - - 2 
G.1897.32.140 18 31 7 1 - 
G.1897.32.164 14 22 - - - 
G.1897.32.165 27.5 33 - - - 
G.1897.32.167 11.5 13* - - - 
G.1897.32.172 15* 13* 6 0.5 - 
G.1897.32.173 17* 19* - - - 
G.1897.32.174 39 35 9 1.5 1 
G.1897.32.176 22 20 - - - 
G.1897.32.186 10 15 - - - 
G.1897.32.191 17 23 5 0.5 - 
G.1897.32.207 16 20 - - - 
G.1897.32.208 17 15* 6 1.5 - 
 

 

TABLE 1. Dorsal prosomal measurements (in mm) for Stoermeropterus conicus (Laurie, 

1892). An asterisk indicates an incomplete measurement. 
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NMS specimen Chelicerae Metastoma Epistoma 
G.1885.26.72.13 - - 6.5/5 
G.1885.26.72.14 3/3 - 5/7 
G.1885.26.72.17 7/4 19/9 7.5/10 
G.1897.32.12.9 4/2.5 - 5/5 
G.1897.32.85 3/3 15/9 - 
G.1897.32.123 2/1.5 - - 
G.1897.32.132 5/3 25/11 11/13 
G.1897.32.134 - - 9.5/10.5 
G.1897.32.136 - 22/14 - 
G.1897.32.174 - - 5/5 
 

TABLE 2. Ventral prosomal (length/width) measurements (in mm) for Stoermeropterus 

conicus (Laurie, 1892).  
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NMS specimen II III IV V VI 
G.1885.26.72.1 - - 8/3 10/3 12/12 
G.1885.26.72.13 3/1.5 3.5/2 4/3 6/3 8/10 
G.1885.26.72.14 3/2 5/2.5 8/3 8/3 10/12 
G.1885.26.72.17 7/4 8/5 12/5 13/6 13/18 
G.1885.26.72.19 6/4 10/5 16/6 16/6 16/20 
G.1897.32.12.9 3/2 4/3 5/3 7/4 8/11 
G.1897.32.85 6/3 8/4 11/5 12/6 12/16 
G.1897.32.123 4/2 5/2.5 6/3 7/4 8/11 
G.1897.32.132 8/4 10/5 13/6 15/8 15/25 
G.1897.32.133 10/5 12/5 17/7 20/10 20/34 
G.1897.32.134 4/2 7/2 9.5/3 10/3 11/11 
G.1897.32.136 - 12/4 18/6 22/7 22/18 
G.1897.32.174 5/2.5 7/4 8/4 10/6 10/18 
 

TABLE 3. Prosomal appendage coxae (length/width) measurements for Stoermeropterus 

conicus (Laurie, 1892). 

 

 

 

 

 

 

 

 

 

 

 

 

 

275



 

NMS 
specimen 

Appendage II 

G.1897.32.123 (podomeres 1 – 3): Coxa; 4/2. 2; 2/2. 3; 2/2. 
G.1897.32.133 (podomeres 1 – 7): Coxa; 10/5. 2; 5/4. 3; 5/3.5. 4; 5/3. 5; 4/3. 6; 

4/2.5. 7; 3/2. 
 

TABLE 4. Prosomal appendage II (length/width) measurements (in mm) for 

Stoermeropterus conicus (Laurie, 1892). 
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NMS specimen Appendage III 
G.1885.26.72.14 (podomeres 1 – 8): Coxa; 5/2.5. 2; 2/2.5. 3; 1.5/2. 4; 1.5/2. 5; 1.5/1. 

6; 1.5/1. 7; 1.5/0.75. 8; 3/0.75. 
G.1897.32.123 (podomeres 1 – 4): Coxa; 5/2.5. 2; 2.5/2.5. 3; 2.5/2. 4; 2/2. 
G.1897.32.133 (podomeres 1 – 8): Coxa; 12/5. 2; 5/5. 3; 5/4.5. 4; 7/4.5. 5; 8/4. 6; 

6/3.5. 7; 5/3. 8; 5/2.5. 
 

TABLE 5. Prosomal appendage III (length/width) measurements (in mm) for 

Stoermeropterus conicus (Laurie, 1892). 
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NMS specimen Appendage IV  
G.1885.26.72.14 (podomeres 1 – 8): Coxa; 8/3. 2; 3/2.5. 3; 2.5/2. 4; 3.5/2. 5; 4/2. 6; 

3/2. 7; 3/1.5. 8; 3/1.5. 
G.1897.32.123 (podomeres 1 – 5): Coxa; 6/3. 2; 2.5/3. 3; 2/2.5. 4; 2.5/2. 5; 2/2. 
G.1897.32.133 (podomeres 1 – 2, 7 – 8): Coxa; 17/7. 2; 6/7. — 7; 6/3. 8; 6/3. 
G.1897.32.136 (podomeres 1 – 4): Coxa; 18/6. 2; 6/6. 3; 7/5. 4; 7/5. 
G.1897.32.137.1  (podomeres 1 – 6): Coxa; 6.25/2.5. 2; 2/2.5. 3; 2/2.5. 4; 3.75/2. 5; 

3/2. 6; 3.75/2.  
G.1897.32.138 (podomeres 4 – 6): 4; 10/4. 5; 7.5/4. 6; 7.5/3. 
 

TABLE 6. Prosomal appendage IV (length/width) measurements (in mm) for 

Stoermeropterus conicus (Laurie, 1892). 
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NMS specimen Appendage V  
G.1885.26.72.17  (podomeres 1 – 5): Coxa; 13/6. 2; 5/5. 3; 5/5. 4; 8/4. 5; 7/4. 
G.1897.32.133 (podomeres 1 – 9): Coxa; 20/10. 2; 6/7. 3; 5/7. 4; 10/7. 5; 13/6. 6; 

9/4. 7; 6/3.5. 8; 8/3. 9; 6/3. 
G.1897.32.136 
 

(podomeres 1 – 9): Coxa; 22/7. 2; 3/5. 3; 3/5. 4; 7.5/5. 5; 6/4. 6; 
5.5/4. 7; 5.5/2. 8; 5/2. 9; 4/1.5. 

G.1897.32.137.1  (podomeres 1 – 9): Coxa; 7.5/3.75. 2; 1.75/4.5. 3; 2/4. 4; 5.5/3.5. 5; 
5/3.5. 6; 5/3. 7; 4/2.5. 8; 4/2.5. 9; 3.75/2. 

G.1897.32.138 (podomeres 4 – 8): 4; 10/4. 5; 10/4. 6; 9/4. 7; 9/3.5. 8; 9/3. 
G.1897.32.140 
 

(podomeres 1 – 6): Coxa; 11/3. 2; 3/3. 3; 3/3. 4; 6/3. 5; 5/2.5. 6; 
5/2.5. 

 

TABLE 7. Prosomal appendage V (length/width) measurements (in mm) for 

Stoermeropterus conicus (Laurie, 1892). The appendage in NMS G.1885.26.72.17 is very 

poorly preserved and is not shown on any of the figures. 
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NMS specimen Appendage VI  
G.1885.26.72.13  (podomeres 1 – 9): Coxa; 8/10. 2; 2.5/3. 3; 3/ 3. 4; 6/ 3. 5; 5.5/3. 6; 

5/2.5. 7; 4/ 2.5. 7a; 1/0.5. 8; 4/1.5. 9; 3.5/1. 
G.1885.26.72.14 (podomeres 1 – 7): Coxa; 10/12. 2; 3/4. 3; 3/4. 4; 5.5/ 4. 5; 5/4. 6; 

4/3. 7; 5/3. 
G.1885.26.72.17  (podomeres 1 – 4): Coxa; 13/18. 2; 6/6. 3; 6/ 6. 4; 10/5. 
G.1897.32.132  (podomeres 1 – 9): Coxa; 15/25. 2; 6/7. 3; 7/7. 4; 12/7. 5; 11/6. 6; 

10/6. 7; 9/5.5. 7a; 5/2.5. 8; 7.5/5. 9; 7.5/3.5. 
G.1897.32.133 (podomeres 1 – 9): Coxa; 20/34. 2; 5/9. 3; 5/9. 4; 17/7. 5; 14/7. 6; 

10/7. 7; 11/6. 7a; 5/2.5. 8; 10/5. 9; 10/4.5. 
G.1897.32.136  (podomeres 1 – 9): Coxa; 22/18. 2; 8/6. 3; 8/6. 4; 12.5/6. 5; 9/5. 6; 

7.5/4. 7; 6/3. 7a; 1.5/1. 8; 6/3. 9; 4/2. 
G.1897.32.140  (podomeres 1 – 9): Coxa; 11/12. 2; 4/4. 3; 4/4. 4; 7/4. 5; 5/4. 6; 

5/3.5. 7; 4/3.5. 7a; 2.5/1. 8; 5/3. 9; 5/3. 
 

TABLE 8. Prosomal appendage V (length/width) measurements (in mm) for 

Stoermeropterus conicus (Laurie, 1892). The appendage in NMS G.1885.26.72.17 is very 

poorly preserved and is not shown on any of the figures. 
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NMS specimen 1 2 3 4 5 6 
G.1885.26.72.1 4/25 5/25 5/26 6/27 6/26 6/25 
G.1885.26.72.13 3/20 5/20 5/21 5/22 5/20 5/18 
G.1885.26.72.14 2/24 4/24 5/25 5/26 5/25 6/24 
G.1885.26.72.17 5/41 6/41 8/42 9/43 10/41 10/23* 
G.1885.26.72.19 5/31* 7/27* 7/25* - - - 
G.1897.32.12.9 3/20 5/20 5/21 5/22 5/21 5/20 
G.1897.32.85 4/34 6/35 6/35 6/36 7/34 7/32 
G.1897.32.88 3/24 4/25 4/26 5/27 5/25 5/22 
G.1897.32.89 - - 2.5/21 3/20 3/20 4/20 
G.1897.32.121 2/16 4/17 4/17 4/18 4/16 4/15 
G.1897.32.123 2/20 4/22 4/23 4/24 4/22 5/12* 
G.1897.32.125 2/12.5 2.5/13 2.5/13.5 3/14 3/12 2.5/11 
G.1897.32.130 - - 3/6* 3/7* 3/13 3/11 
G.1897.32.131 1/23 2/23 3/22 3/22 3/20 4/20 
G.1897.32.132 4/55 6/53 6/52 6/50 7/48 6/47 
G.1897.32.133 4/49 6/49 6/50 7/55 6/50 6/45 
G.1897.32.136 3/44 4/44 4/45 4/46 5/45 5/44 
G.1897.32.137.1 1.5/25 3/26 3/30 4/33 5/31 4/29 
G.1897.32.137.2 2/10 4/11 3/12 3/12.5 3/12 3/10 
G.1897.32.138 5/35* 7/35* 7/43* 7/44* 7/42 7/40 
G.1897.32.139 3/35 5/36 5/38 6/40 5/38 5/36 
G.1897.32.140 3/31 4/30* 4/26* 4/34 5/33 5/32 
G.1897.32.164 2/22 3/22 4/23 4/24 4/23 4/22 
G.1897.32.165 4/35 4/31* 5/31* 5/32* 6/25* 5/20* 
G.1897.32.167 3/14* 3/16* 3/17* 4/17* 4/15* 4/12* 
G.1897.32.172 3/15* 3/15* 4/15* 4/16* 4/16* 4/16* 
G.1897.32.173 3/20* 4/21* 4/22 4/23 4/22 4/21 
G.1897.32.176 2/19 3/20 4/20* 3/20* 3/18* 2/17 
G.1897.32.180 4/14* 6/13* 5/12* 5/14* 4/12 4/10 
G.1897.32.182 2/26 3/26 3/28 3/29 4/27 4/26 
G.1897.32.186 2/14 3/14 3/13 3/13 3/10* 3/7* 
G.1897.32.191 5/20* 5/16* 5/16* 4/12* 4/11* 3/10* 
G.1897.32.207 3/20 4/21 5/22 5/23 5/15* - 
G.1897.32.208 3/15* 4/15* 4/10* - - - 
 

TABLE 9. Mesosomal segment measurements (length/width in mm) for Stoermeropterus 

conicus (Laurie, 1892). An asterisk indicates an incomplete measurement. 
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NMS specimen Type Appendage 
Length 

Appendage 
Width 

Deltoid 
Plate 
Length 

Deltoid 
Plate Width 

G.1885.26.72.1 A 11 4 3 2.5 
G.1885.26.72.13 A 7 3 3.5 2.5 
G.1885.26.72.17 B 11 4 - - 
G.1897.32.12.9 A 8 3 3 2.5 
G.1897.32.133 B 13 8 - - 
G.1897.32.136 B 8 4.5 - - 
G.1897.32.137 B 6 4 - - 
 

TABLE 10. Genital appendage measurements (in mm) for Stoermeropterus conicus 

(Laurie, 1892). 
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NMS specimen 7 8 9 10 11 12 Telson 
G.1885.26.72.1 8/21 10/21 10/20 10/18 10/16 15/15 32/7 
G.1885.26.72.13 6/16 7/14 7/12 7/10 7/9 8/7 32/6 
G.1885.26.72.14 6/21 6/19 6/18 6/16 7/13 11/11 31/6 
G.1897.32.12.9 6/18 6/17 6/15 6/13 8/10 9/8 32/5 
G.1897.32.88 5/19 5/17 5/15 5/12 5/10 6/9 21/5 
G.1897.32.89 5/17 6/15 8/14 8/12 8/11 10/10 18*/4 
G.1897.32.121 4/14 5/13  5/11 5/10 6/9 7/6 24/6 
G.1897.32.124 4/13 4/12 4/11 5/8* 7/8 8/7 21*/4 
G.1897.32.125 2.5/10 2.5/10 3/10 4/9 4/7 5/5 - 
G.1897.32.126 5/15*  8/15* 8/14* 8/16 10/15 15/13 54/5 
G.1897.32.130 3/11 3/10 3/9 3.5/7 3/6 5/5 26/4 
G.1897.32.131 4/18 6/17 7/12* - - - - 
G.1897.32.132 8/45 9/40 9/34 10/29 12/25 13/20 25*/10 
G.1897.32.133 7/43 7/40 8/35 8/30 10/20 9/14 - 
G.1897.32.136 5/44 6/41 9/38 8/35 10/31* - - 
G.1897.32.137.1 5/27 5/26 5/25 - - - - 
G.1897.32.137.2 2.5/8 2.5/6 2.5/5 2/4 2/3 2/2 - 
G.1897.32.138 7/35 9/31 10/30 14/29 15/23 18/18 35/8 
G.1897.32.139 6/31 8/27 8/25 8/23 10/20 5*/13 - 
G.1897.32.145 4/12 4/9 4/8 4/8 3/7 3/5 15*/4 
G.1897.32.164 4/21 4/20 4/17 5/14 5/12 6/9 15/3 
G.1897.32.167 4/12* 3/11* 3/10* 3/5* - - - 
G.1897.32.170 5/8* 5/16 5/15 6/13 7/10 8/7 10*/6 
G.1897.32.173 5/18 4/16 5/15 5/12 5/10 7/5* - 
G.1897.32.176 5/16 6/15 6/12 8/11 8/10 8/8 - 
G.1897.32.180 5/9 5/8 5/7 4/6 4/5 4/4 - 
G.1897.32.182 5/25 5/23 6/20 7/18 8/16 8/13 25*/4 
G.1897.32.184 - - - 10/20* 12/19 18/18 30/5 
G.1897.32.185 - - - 13/18 14/17 23/16 27*/6 
G.1897.32.192 - - - - - - 20/6 
G.1892.32.197 - - - 5/10 4/9 5/7.5 20/5 
G.1897.32.198 - - 6/24 8/22 10/20 15/15 30/6 
G.1897.32.211 - - - 5/12 5/10 7/5* 25/4 
 

TABLE 11. Metasomal segment and telson measurements (length/width in mm) for 

Stoermeropterus conicus (Laurie, 1892). An asterisk indicates an incomplete 

measurement. 
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TABLE 12. Full data matrix for the phylogenetic analysis. 

Taxon Coding     
Weinbergina opitzi 0 0 0 0 0 3 1 1 1 0 0 1 0 – 0 0 0 0 – – 0 0 0 0 0 
 – – 2 – – – 0 0 0 0 0 0 0 0 0 0 1 0  
Brachyopterus stubblefieldi 0 0 0 1 1 ? 0 0 0 0 0 0 0 – 0 0 0 0 – – 0 0 0 0 1 
 0 ? ? ? ? ? 0 ? 0 0 0 0 0 0 0 0 2 0  
Rhenopterus diensti 0 0 0 0 1 0 0 0 0 0 0 0 0 – 0 0 0 0 – – 0 0 0 0 1 
 0 0 0 0 0 – 0 0 1 1 0 0 1 0 0 0 0 0  
Parastylonurus ornatus 0 0 0 0 1 0 0 1 1 0 0 0 0 – 0 0 0 0 – – 0 0 0 0 0 
 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0   
Stoermeropterus conicus 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 
 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0  
Stoermeropterus latus 0 0 0 0 1 1 1 ? 0 ? 0 ? ? ? 0 0 0 1 0 0 0 0 0 0 1 
 ? ? 0 ? 1 1 1 0 0 0 0 1 0 1 0 0 0 0  
Stoermeropterus nodosus 0 0 0 0 1 ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
 0 0 0 0 1 1 1 0 0 0 0 ? 0 1 0 0 1 1  
Vinetopterus struvei 1 0 0 0 1 3 1 0 0 0  0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 
 0 0 0 ? ? ? 0 0 0 1 1 1 0 ? 0 0 1 1  
Vinetopterus martini 1 0 ? 0 1 3 1 0 0 0 0 ? ? ? 0 0 0 1 0 0 0 0 0 0 1 
 ? 0 ? ? ? ? 0 0 0 1 1 1 0 ? 0 0 1 1  
Moselopterus ancylotelson 0 0 0 0 1 3 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 
 0 0 0 ? 1 0 0 1 0 1 1 1 1 0 1 0 1 1  
Moselopterus elongatus 0 0 0 0 1 3 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 
 0 0 0 ? ? ? 0 1 0 1 1 1 1 0 1 0 1 ?  
Onychopterella augusti 0 0 ? 0 1 ? ? 1 1 ? 1 1 1 0 0 0 0 1 0 1 0 1 0 0 0 
 ? ? ? ? 0 – 0 0 1 1 0 0 0 1 0 0 0 0  
Onychopterella kokomoensis 0 0 1 0 1 3 1 1 1 0 1 1 ? ? 0 0 0 1 0 1 0 1 0 0 0 
 0 0 0 ? 0 – 0 0 1 1 0 0 0 1 0 0 0 0  
Dolichopterus macrocheirus 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 
 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0  
Strobilopterus princetonii 0 0 0 0 1 ? ? 1 0 ? 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 
 1 ? ? 0 1 0 0 0 0 1 0 0 ? ? ? 0 0 0  
Eurypterus remipes 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 
 0 0 0 1 0 – 0 1 0 1 0 0 0 0 1 0 0 0  
Erieopterus microphthamus 0 1 0 0 1 3 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 
 0 1 0 1 0 – 0 1 0 1 0 0 1 0 0 0 0 0  
Hughmilleria socialis 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 
 1 1 1 0 0 – 0 1 0 1 0 0 0 0 0 0 0 0  
Tylopterella boylei 0 0 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
 ? ? ? ? ? ? 0 0 1 1 0 0 0 0 0 0 0 0  
Megalograptus ohioensis 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 0 1 1 1 0 1 2 – 0 
 0 0 1 0 0 – 0 1 1 1 0 0 0 0 0 1 0 0  
Mixopterus kiaeri 0 1 1 1 1 ? 1 2 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 
 0 0 1 0 0 – 0 1 0 1 0 0 1 0 0 1 0 0  
Loganamaraspis dunlopi 0 0 ? ? ? 3 1 ? ? ? 0 0 0 – ? ? ? ? ? ? ? ? ? ? 0 
 0 2 2 0 0 – 0 1 2 1 0 0 0 ? ? 0 2 0  
Diploaspis casteri 0 0 1 1 0 1 ? 0 0 ? 1 ? ? ? ? 0 0 2 – – 0 0 2 – 0 
 ? ? 2 ? ? ? 0 0 2 1 0 0 2 0 1 0 3 1  
Octoberaspis ushakovi  0 0 0 0 0 ? ? ? ? 0 1 ? ? ? ? ? 0 2 – – 0 0 2 – 0 
 0 2 2 0 0 – 0 0 2 1 0 0 0 0 0 0 3 0  
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01. Anterior margin of carapace. [0 = unornamented; 1 = denticulate]. 
02. Carapace genal facets. [0 = absent; 1 = present]. 
03. Lateral eye shape.  [0 = crescentic; 1 = expanded]. 
04. Lateral eye position on carapace. [0 = central; 1 = anterior]. 
05. Lateral eyes associated with ophthalmic ridge. [0 = present; 1 = absent]. 
06. Suture on ventral plates. [0 = Eurypterus-type; 1 = Hughmilleria- or 

Hallipterus-type; 2 = Megalograptus-type; 3 = Erieopterus-type]. 
07. Transverse suture on ventral plates. [0 = present; 1 = absent]. 
08. Morphology of spines prosomal appendages II–IV. [0 = reduced (length < 

width of podomere); 1 = regular (length ≈ width of podomere); 2 = enlarged 
(length > width of podomere)].  

09. Mobility of spines on appendages II–IV. [0 = fixed, 1 = moveable].  
10. Function of appendage V. [0 = solely walking or prey-capture; 1 = adapted to 

aid in balance during swimming]. 
11. Prosomal appendage VI. [0 = walking leg; 1 = swimming leg]. 
12. Shape of proximal podomere of appendage VI. [0 = narrow (L/W≥2.0); 1 = 

expanded (L/W<2.0)]. 
13. Anterior margin of coxa VI. [0 = undifferentiated; 1 = expanded to form ‘ear’]. 
14. Shape of ‘ear’ on coxa VI. [0 = triangular; 1 = rectangular/subquadrate]. 
15. Length of podomeres VI-4 and VI-5. [0 = VI-5≥VI-4; 1 = VI-4>VI-5]. 
16. Distal podomere margin of VI-6 modified. [0 = absent; 1 = present]. 
17. VI-7 lateral margins. [0 = unornamented; 1 = serrated]. 
18. Podomere 7a on appendage VI. [0 = absent; 1 = present on posterior of 

appendage; 2 = present on anterior of appendage]. 
19. Width of posterior VI-7a. [0 = narrow (less than 50% of width of VI-7); 1 = 

wide (more than 50%)]. 
20. Shape of posterior VI-7a. [0 = oval; 1 = triangular]. 
21. VI-8 lateral margins. [0 = unornamented; 1 = serrated]. 
22. Morphology of VI-8/VI-9 joint. [0 = joint flush; 1 = VI-9 set into VI-8]. 
23. Length of VI-9 (as ratio of VI-8). [0 = large (>50% of VI-8 length); 1 = small 

(<22% of VI-8 length); 2 = totally absent]. 
24. Shape of podomere VI-9. [0 = spinose; 1 = triangular, pentagonal or oval]. 
25. Podomere cuticular morphology. [0 = rounded; 1 = ridged]. 
26. Metastoma anterior. [0 = smooth or shallow notch; 1 = deeply notched]. 
27. Shape of posterior margin of metastoma. [0 = rounded; 1 = flattened or 

recurved; 2 = angular]. 
28. Genital operculum morphology. [0 = consisting of three visible segments; 1 = 

consisting of two visible segments; 2 = unfused]. 
29. Morphology of type-A genital appendage furca. [0 = fused; 1 = unfused]. 
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30. Spatulae on type-A genital appendage. [0 = absent; 1 = present]. 
31. Morphology of genital spatulae. [0 = angular; 1 = rounded]. 
32. Moveable preabdominal spines. [0 = absent; 1 = present]. 
33. Postabdominal epimera. [0 = present; 1 = absent]. 
34. Preabdominal/postabdominal boundary. [0 = between 7th and 8th segments; 1 = 

between 6th and 7th segments; 2 = between 4th and 5th segments]. 
35. Postabdomen. [0 = undifferentiated; 1 = narrowing from preabdomen]. 
36. Posterior margin of segments 7-9. [0 = smooth; 1 = dentate]. 
37. Posterior margin of segments 10-12. [0 = smooth; 1 = dentate]. 
38. Telson shape. [0 = straight; 1 = curved; 2 = paddle-like]. 
39. Telson base. [0 = flattened; 1 = bulbous expansion]. 
40. Telson margin. [0 = smooth; 1 = serrated]. 
41. Opisthosoma lateral division. [0 = none; 1 = trilobed]. 
42. Primary dorsal ornamentation. [0 = scales; 1 = closely spaced pustules; 2 = 

none; 3 = coarse pustules]. 
43. Row of node-like scales on dorsal opisthosomal segments. [0 = absent; 1 = 

present]. 
 

TABLE 13. Character list for the data matrix in Table 12. 
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TEXT-FIG. 1. Eurypterids from the Pentland Hills Gutterford Burn Eurypterid Bed: a, 

‘Eurypterus minor’ Laurie, 1899, from Tetlie (2006); b, Drepanopterus pentlandicus 

Laurie, 1892, modified from Lamsdell et al. (2009); c, Parastylonurus ornatus (Laurie, 
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1892), from Waterston 91979); d, Hardieopterus macrophthalmus (Laurie, 1892), from 

Tetlie (2008). Scales bars equal 50 mm.  

 

 

 

 

 

 

 

 

 

 

  

288



 

 

TEXT-FIG. 2. Locality and horizon for Stoermeropterus conicus (Laurie, 1892): a, map of 

the British Isles with inset map of the Pentland Hills showing the position of the 

Eurypterid Bed outcrop; b, simplified geological column of the Gutterford Burn section 

showing fossiliferous horizons and the horizon in which eurypterids are found. 
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TEXT-FIG. 3. Palaeoenvironmental reconstruction of the Eurypterid Bed: Ap, Aptilechinus 

caledonensis; At, Atractosella andreae; Be, Bembicosoma pomphicus; Ca, 

‘Carcinosoma’ scoticum; Cr, Crepidosoma wenlocki; Dc, Dicoelosia aff. alticavata; De, 

Dendrocrinus extensidiscus; Di, Dictyocaris ramsayi; Dm, Dimerocrinites pentlandicus; 

Do, Dolichophonus loudonensis; Dr, Drepanopterus pentlandicus; Eo, Euomphalopterus 

cf. apedalensis; Er, Erinostrophia undata; Eu, ‘Eurypterus’ minor; Fu, Furcaster 

leptosoma; Ge, Geisonoceras maclareni; Ha, Hardieopterus macrophthalmus; Is, 

Isorthis (Ovalella) aff. mackenziei; Ke, Keilorites; La, Laurieipterus elegans; Le, 

Lepyriactis nudus; Ma, Macrostylocrinus silurocirrifer; MnG, Monoclimacis geinitzi; 

MnV, Monoclimacis vomerina; Mo, Monograptus priodon; My, Myelodactylus 

parvispinifer; Og, Oglupes aff. alba; Ok, Oktavites excentricus; PaH, Parastylonurus 

hendersoni; PaO, Parastylonurus ornatus; Pr, Protactis wenlockensis; Ps, 
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Pseudolingula; Re, Retiolites angustidens; Sc, Schuchertia wenlocki; Si, Stictopora; Sk, 

Skenidioides lewisii; Sl, Slimonia dubia; Sp, Sphaerirhynchia sphaeroidalis; Sr, 

Strophochonetes cornuta; St, Stoermeropterus conicus; Ta, Taeniactis wenlocki; Ur, 

Urasterella gutterfordensis; Vi, Visbyella visbyensis. 
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TEXT-FIG. 4. Stoermeropterus conicus (Laurie, 1892): a, Sketch of NMS 

G.1885.26.72.14; b, Sketch of NMS G.1897.32.88. The shading represents where the 

original cuticle has been preserved. Scale bars equal 10 mm. 
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TEXT-FIG. 5. Stoermeropterus conicus (Laurie, 1892): a, Sketch of NMS G.1885.26.72.1. 

The circular structure beneath the chelicerae may represent the oral opening, however the 
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prosomal region between the coxae is crumpled and such an assignment cannot be made 

with certainty; b, Sketch of NMS G.1885.26.72.13. The shading represents where the 

original cuticle has been preserved. Scale bars equal 10 mm. 
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TEXT-FIG. 6. Diagram detailing taphonomic warping in carapaces of Stoermeropterus 

conicus: a, Unwarped carapace; b, c, intermediate forms created due to lateral 

compression of the carapace; d, ‘narrow’ form caused due to severe lateral compression 

of the carapace as exemplified by NMS G.1897.32.174. 
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TEXT-FIG. 7. Stoermeropterus conicus (Laurie, 1892). Sketch of NMS G.1897.32.132. 

The shading represents where the original cuticle has been preserved. Scale bar equals 10 

mm. 
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TEXT-FIG. 8. Stoermeropterus conicus (Laurie, 1892). Sketch of NMS G.1897.32.133. 

The shading represents where the original cuticle has been preserved. Scale bar equals 10 

mm. 
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TEXT-FIG. 9. Stoermeropterus conicus (Laurie, 1892). Sketch of NMS G.1897.32.133. 

The shading represents where the original cuticle has been preserved. Scale bar equals 10 

mm. 
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TEXT-FIG. 10. Stoermeropterus conicus (Laurie, 1892): a, Sketch of NMS 

G.1897.32.139; b, Sketch of NMS G.1897.32.164. The shading represents where the 

original cuticle has been preserved. Scale bars equal 10 mm. 
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TEXT-FIG. 11. Graph plotting the carapace length: width ratio of all Stoermeropterus 

conicus specimens against carapace length. The regression line is length: width ratio = 

11.068(length) + 13.447 and is not significant (r2 = 0.053, 21 degrees of freedom, p = 

0.292) indicating that the relationship between carapace length and carapace length: 

width ratio is highly variable and likely to be caused by taphonomic warping, not due to 

ontogeny. 
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TEXT-FIG. 12. Stoermeropterus conicus (Laurie, 1892). Sketch of NMS G.1885.26.72.17. 

The lobe-like structure located between the chelicerae may be the labrum as described by 
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Selden (1981) in Eurypterus tetragonophthalmus, while small cuticular structures located 

proximally on some of the coxa may represent the epicoxa and the seemingly notched 

structure anterior to the metastoma may be the endostoma, however as in the other 

Stoermeropterus specimens the area between the coxa is poorly preserved and so none of 

these structures can be confidently identified. The shading represents where the original 

cuticle has been preserved. Scale bar equals 10 mm. 

 

305



 

 

306



 

TEXT-FIG. 13. Stoermeropterus conicus (Laurie, 1892): a, Sketch of NMS G.1897.32.130, 

which may also show the oral opening; b, Sketch of NMS G.1897.32.138. The shading 

represents where the original cuticle has been preserved. Scale bars equal 10 mm. 
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TEXT-FIG. 14. Stoermeropterus conicus (Laurie, 1892): a, Telson and posterior 

metasomal segments (NMS G.1897.32.184) showing serration of the pretelson. 

Orientation unknown; b, Prosoma and mesosoma (NMS G.1897.32.186) in ventral view 

showing the arrangement of the coxae and chelicerae; c, Telson and posterior metasomal 

segments (NMS G.1897.32.185) with epimeron preserved on the pretelson. Orientation 

unknown. Scale bars equal 10 mm. 
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TEXT-FIG. 15. Reconstructions of the genital appendage of Stoermeropterus conicus 

(Laurie, 1892): a, Reconstruction of the type A appendage; b, reconstruction of the type 

B appendage. Not drawn to scale. 
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TEXT-FIG. 16. Graph plotting the pretelson length:width ratio of all known specimens of 

Stoermeropterus conicus (Laurie, 1892) against pretelson length. Diamonds indicate 

specimens preserving angular epimera, crosses represent specimens with a preserved type 

A genital appendage, triangles are specimens with lobate epimera and circles are those 

with a type B genital appendage, while squares represent specimens that lack either 

epimera or a genital appendage. Where two specimens plotted in the same position one 

point as been marked in white above the other. The distribution clearly shows two 

discrete concentrations, the first with a length: width ratio between 0.6 and  0.7 and the 

second with a length: width ratio between 1.0 and 1.4, which is considered strong 

evidence for a bimodal distribution through sexual dimorphism. 
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TEXT-FIG. 17. Reconstructions of Stoermeropterus latus (Størmer, 1934a) and 

Stoermeropterus nodosus (Kjellesvig-Waering & Leutze, 1966): a, dorsal view of S. 
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latus. Appendages II–V are reconstructed from S. conicus; b, ventral view of S. latus with 

type A appendage. Appendages II–V are reconstructed from S. conicus, while the distal 

portion of the genital appendage is reconstructed from comparison with S. conicus and S. 

nodosus; c, dorsal view of S. nodosus, all appendages reconstructed from S. nodosus; d, 

ventral view of S. nodosus with type A appendage. Appendages I–VI reconstructed from 

S. conicus. The genital appendage is from the specimen FMNH PE6212, herein interpretd 

as belonging to S. nodosus. The appendage is isolated however, and it is possible that the 

reconstruction presented here is actually the body of a type B individual. Scale bars equal 

10 mm. 
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TEXT-FIG. 18. Reconstruction of Stoermeropterus conicus (Laurie, 1892) bearing type A 

genital appendage: a, dorsal view; b, ventral view. Scale bars equal 10 mm. 
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TEXT-FIG. 19. Reconstruction of Stoermeropterus conicus (Laurie, 1892) bearing type B 

genital appendage: a, dorsal view; b, ventral view. Scale bars equal 10 mm. 
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TEXT-FIG. 20. Results of the phylogenetic analysis performed using the data matrix in 

Table 12: a, Single most parsimonious tree. The labels to the left of each branch represent 
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jackknife values, while those in bold to the right are Bremer support: b, Evolutionary tree 

derived from plotting the ranges of taxa to the tree from part a. Ages are in Ma and are 

derived from Gradstein et al. (2004) and Ogg et al. (2008). Epoch/Age abbreviations are: 

Dap, Dapingian; Dar, Darriwilian; San, Sandbian; Kat, Katian; H, Hirnantian; 

Llandovery, Llandovery; Wen, Wenlock; L, Ludlow; P, Pridoli; Lo, Lochkovian; Pra, 

Pragian; Emsian, Emsian; Eif, Eifelian; Giv, Givetian; Frasnian, Frasnian; Famennian, 

Fammenian. 
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PLATE 1 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1 Specimen lacking appendages (NMS G.1885.26.72.1) in ventral view, showing 

type A genital appendage.  

2 Counterpart of specimen in figure 1 (NMS G.1885.26.72.1) showering lateral 

edges of mesosomal segments and carapace base.  

3  Paratype. Almost complete specimen with partially preserved prosomal  

appendage VI (NMS G.1885.26.72.13) in ventral view, showing type A  

genital appendage.  

4  Expanded view of specimen in figure 3 (NMS G.1885.26.72.13) showing the  

arrangement of the coxae and the genital appendage.  

Scale bars represent 10 mm. 
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PLATE 2 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Holotype. Almost complete specimen preserving prosomal appendages III, IV  

and VI (NMS G.1885.26.72.14) in ventral view.  

2  Well-preserved specimen (NMS G.1885.26.72.17) detailing the ornamentation of 

the prosomal and mesosomal regions in ventral view showing metastoma and type 

B appendage.  

3  Counterpart of holotype specimen in figure 1 (NMS G.1885.26.72.14) showing 

the position of the chelicerae and more complete appendage VI.  

Scale bars represent 10 mm. 
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PLATE 3 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Partial carapace and mesosoma (NMS G.1885.26.72.19) in ventral view.  

2  Holotype of Drepanopterus lobatus. Specimen lacking appendages (NMS 

G.1897.32.88) in dorsal view showing lobate epimera on the pretelson.  

3  Specimen lacking appendages (NMS G.1897.32.85) in ventral view.  

Scale bars represent 10 mm. 
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PLATE 4 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1 Specimen lacking prosoma and showing the typical crumpling of the mesosoma 

(NMS G.1897.32.89), possibly in dorsal view.  

2  Specimen lacking appendages or detail of the prosoma (NMS G.1897.32.121), 

orientation uncertain.  

Scale bars represent 10 mm. 
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PLATE 5 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Specimen lacking telson (NMS G.1897.32.123) in ventral view preserving 

prosomal appendages II-IV.  

2  Small specimen (NMS G.1897.32.125) showing ornamentation of the metasomal 

segments in ventral view.  

3  Metasoma and telson (NMS G.1897.32.124) possibly in dorsal view showing 

pretelsonic epimera.  

Scale bars represent 10 mm. 
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PLATE 6 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Metasoma and telson (NMS G.1897.32.126) showing pretelsonic epimera, 

orientation uncertain.  

2  Specimen lacking appendages (NMS G.1897.32.12.9) in ventral view showing the 

arrangement of the coxae and the position of the type A genital appendage.  

3  Metasoma and telson (NMS G.1897.32.130) probably in dorsal view showing 

epimera on the pretelson and the central keel of the telson.  

Scale bars represent 10 mm. 
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PLATE 7 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Carapace and mesosoma (NMS G.1897.32.131) in ventral view showing 

mesosomal epimera and cuticular ornamentation. 

2  Holotype of Drepanopterus bembycoides. Prosoma, appendage VI and  

opisthosoma minus pretelson and telson (NMS G.1897.32.132) in ventral view. 

3  Expanded view of appendage VI from figure 2 (NMS G.1897.32.132). 

4  Telson from specimen in figure 2 (NMS G.1897.32.132). 

5  Carapace and coxae (NMS G.1897.32.134) in ventral view showing the cuticular 

sculpture of the marginal plates and the position of the lateral eyes pressed 

through the flattened carapace. 

Scale bars represent 10 mm. 
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PLATE 8 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Paratype of Drepanopterus bembycoides. Almost complete specimen lacking 

telson (NMS G.1897.32.133) in ventral view showing type B genital appendage 

and the position of the lateral eyes through the carapace.  

2  Specimen with complete prosomal appendages V and VI but lacking posterior 

part of metasoma (NMS G.1897.32.136) showing type B genital appendage and 

metastoma in ventral view.  

3  Expanded view of prosomal appendages from specimen in figure 1 (NMS 

G.1897.32.133).  

4  Expanded view of prosomal appendages from specimen in figure 2 (NMS 

G.1897.32.136).  

5  Associated specimens, the larger (NMS G.1897.32.137.1), consisting of prosoma 

with appendages IV and V and mesosoma in ventral view. Smaller specimen 

(NMS G.1897.32.137.2) in dorsal view almost complete but lacking appendages.  

Scale bars represent 10 mm. 
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PLATE 9 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Specimen consisting of opisthosoma and telson with partial carapace and 

prosomal appendages V and VI (NMS G.1897.32.138) in dorsal view showing 

telescoping of the mesosoma.  

2  Counterpart of specimen in figure 4 (NMS G.1897.32.140) showing the ventral 

marginal prosomal plates.  

3  Expanded view of specimen in figure 1 (NMS G.1897.32.138) showing the lateral 

edge of the carapace and the prosomal appendages.  

4  Specimen consisting of prosoma and mesosoma (NMS G.1897.32.140) in ventral 

view showing prosomal appendages V and VI and the position of the lateral eyes.  

Scale bars represent 10 mm. 
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PLATE 10 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Incomplete carapace and opisthosoma (NMS G.1897.32.139) in ventral view 

showing the cuticular sculpture of the prosomal ventral plates.  

2  Expanded view of mesosoma of specimen in figure 1 (NMS G.1897.32.139) 

showing the lateral margins of the segments with moveable spines and the ventral 

cuticular ornament.  

3  Expanded view of metasoma of specimen in figure 1 (NMS G.1897.32.139) 

showing the ventral margins of the segments with epimera.  

Scale bars represent 10 mm. 
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PLATE 11 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Carapace and mesosoma (NMS G.1897.32.165), probably in dorsal view with the 

carapace flattened to reveal ventral structures, showing lateral moveable spine on 

second opisthosomal segment. 

2  Paratype of Drepanopterus lobatus. Almost complete specimen lacking 

appendages (NMS G.1897.32.164) in dorsal view showing epimera on the 

pretelson. 

3  Metasoma and telson (NMS G.1897.32.145) showing potential gut trace. 

Orientation unknown. 

4  Metasoma and base of telson (NMS G.1897.32.170) showing pretelsonic epimera. 

Orientation unknown. 

Scale bars represent 10 mm. 
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PLATE 12 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Prosoma and first two opisthosomal segments (NMS G.1897.32.174) in ventral 

view showing the arrangement of the coxae, including a transverse section 

through several podomeres. 

2  Opisthosoma and partial prosoma (NMS G.1897.32.173) in ventral view. 

3  Counterpart to specimen in figure 1 (NMS G.1897.32.174) preserving more 

mesosomal segments. 

Scale bars represent 10 mm. 
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PLATE 13 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Partial carapace and opisthosoma (NMS G.1897.32.167) in ventral view. 

2  Counterpart to specimen in figure 1 (NMS G.1897.32.167) showing epimera on 

metasomal segments. 

3  Prosoma and opisthosoma (NMS G.1897.32.176) in ventral view with the 

prosoma expanded laterally due to post-mortem flattening. Cuticular 

ornamentation visible on the mesosomal segments. 

4  Partial carapace showing lateral eye and mesosoma (NMS G.1897.32.172) in 

dorsal view. 

Scale bars represent 10 mm. 
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PLATE 14 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Opisthosoma showing crumpling of the mesosoma (NMS G.1897.32.180). 

Orientation unknown. 

2  Opisthosoma and telson (NMS G.1897.32.182) in ventral view showing slight 

telescoping of the mesosoma and median keel of the telson. 

3  Telson and partial pretelson (NMS G.1897.32.192) showing epimeron. 

Orientation unknown. 

4   Carapace showing lateral eyes and mesosoma (NMS G.1897.32.191) in dorsal 

view. 

Scale bars represent 10 mm. 
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PLATE 15 

Fig. 

Stoermeropterus gen. nov. conicus (Laurie, 1892) 

1  Poorly preserved prosoma and mesosoma (NMS G.1897.32.207) in ventral view. 

2  Partial carapace and mesosomal segments (NMS G.1897.32.208) in ventral view 

showing lateral eye and coxa VI. 

3  Metasoma and telson (NMS G.1897.32.197) preserving pretelsonic epimera. 

Orientation unknown. 

4  Metasoma and telson (NMS G.1897.32.198) with pretelsonic epimeron preserved. 

Orientation unknown. 

5  Metasoma and telson (NMS G.1897.32.211) with epimeron preserved. 

Orientation unknown. 

 Scale bars represent 10 mm. 
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Chapter 4 

First eurypterid from Italy: a new species of Adelophthalmus (Chelicerata: 

Eurypterida) from the Upper Carboniferous of the Carnic Alps (Friuli, NE 

Italy) 

James C. Lamsdell, Luca Simonetto and Paul A. Selden  

(Formatted for submission to Revista Italiana di Paleontologia e Stratigrafia) 
 
 

Abstract: The first eurypterid known from Italy is described, as Adelophthalmus piussii 

sp. nov. It comes from the Upper Carboniferous of the Carnic Alps (Friuli, NE Italy). 

Relationships with related species are discussed. Adelophthalmids are the commonest 

eurypterids of the late Palaeozoic, at which time the disparity of the order was waning. The 

new record enhances our knowledge of adelophthalmid distribution and diversity.  

Introduction  

Eurypterids form a group of extinct Palaeozoic aquatic chelicerates found in marginal marine, 

brackish and freshwater environments. Although globally widespread, eurypterids tend to be 

restricted to Konservat-Lagerstätten due to their unmineralized cuticle (Gupta et al. 2007). 

Despite having a fossil record from every continent with the exception of Antarctica, it is only 

with the amalgamation of the palaeocontinents in late Devonian and early Carboniferous  times 

that these animals gained a truly cosmopolitan distribution (Tetlie 2007, but see Lamsdell et al. 
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2013), with the radiation of hibbertopterid and adelophthalmid eurypterids following the 

extinction of every other major eurypterid group (Lamsdell & Braddy 2010).  

Of the two eurypterid groups found in the Carboniferous, adelophthalmids are by far the 

commonest, with over 40 species currently recognized (Tetlie & Poschmann 2008), the majority 

of which are assigned to the genus Adelophthalmus Jordan in Jordan & von Meyer, 1854. 

Adelophthalmus reached its peak diversity in the late Carboniferous, although the earliest known 

species occurred in the early Devonian (Siegenian and Emsian in terms of Rhenish stratigraphy) 

of Germany (Poschmann 2006, 2012). Three other Devonian occurrences have been reported: a 

single specimen from the Frasnian of Australia (Tetlie et al. 2004), material from North America 

that is most likely Famennian in age (Hall & Clarke 1888), and a series of poorly preserved 

specimens from the Middle Devonian of Russia (Shpinev 2012) which exhibit a number of 

bizarre characteristics that warrant further investigation and may suggest that their assignment to 

Adelophthalmus is erroneous. There is a dearth of specimens from the early Carboniferous, with 

a single species described from the Tournaisian of Russia (Shpinev 2006). Any occurrence of the 

genus is important for reconstructing the biogeography of post-Devonian eurypterids. Here, we 

report the first eurypterid known from Italy, describe the new species as Adelophthalmus piussii 

sp. nov. from the Upper Carboniferous of the Carnic Alps, and discuss its position within the 

genus. 

Geological Setting  

The specimen comes from the debris of a large loose block found in the gravel bank of a small 

creek, a tributary of Bombaso creek, near to Malga Tratte (Fig. 1). The site is located north of the 
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village of Pontebba, on the main road (SP110) that leads to the mountain border post of Passo 

Pramollo–Naßfeld between Italy and Austria. It is preserved as a cast in a small slab of thin 

sandstone. In the block from where the slab originated is a thin level with several fragments of 

fossil plants, mostly fern-like foliage. A small piece of the slab was sent to Professor Paola 

Pittau, Dipartimento di Scienze Chimiche e Geologiche, Cagliari University, for palynological 

analysis, but it was not possible to obtain accurate dating because of the poor preservation of the 

microfossils; only long-ranging microspores were found. Based on lithological features, and 

according to the geological setting of the area, it is most likely that the specimen comes from the 

upper part of the Meledis Formation (upper Moskovian–lower Kasimovian) (Venturini pers. 

com.), the oldest among the five formations of the Pramollo Group (upper Moskovian-Gzhelian, 

Upper Carboniferous) (Venturini 1990, Venturini 2002). The whole group is characterized by 

alternation of transgressive–regressive cycles related to glacio-eustatic control and tectonic 

activity (Vai &Venturini 1997). The result is a thick sequence of conglomerates and arenites 

with high quartz content, from a fluvio-deltaic environment, intercalated with marine shallow-

water carbonates and pelites. In the lower part of the Meledis Formation, the carbonate levels are 

intercalated with bioturbated siltstones with abundant ichnofossils and marine fossils, arranged in 

a transgressive sequence mostly driven by transtensive tectonics which produced several 

slumping episodes. Alternatively, the deposits of the upper part of the Meledis Formation reflect 

local transpressive tectonics which were responsible for a fluvio-deltaic environment, testified by 

channelized quartz-rich conglomerates and shoreface arenites. The specimen seems to be from 

this upper sequence. 
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Material and Methods 

The single specimen (part only; Fig 2) is preserved as a three-dimensional representation of the 

dorsal surface in a fine sandstone. It was studied under a Leica MZ605 stereomicroscope, drawn 

using a camera lucida attachment on the microscope, and photographed dry, in low-angle light, 

with a Canon 5D MkII digital camera and 50 mm macro lens. Note that, unconventionally, the 

lighting in Fig. 2 is directed from the SW in order to illuminate the specimen which would 

otherwise be in the shadow of higher rock matrix. The final drawing and photographs were 

prepared for publication using the Adobe CS6 software suite. All measurements are in mm; the > 

symbol indicates an incomplete article and hence a minimum measurement. 

Systematic Palaeontology 

Subphylum Chelicerata Heymons, 1901 

Order Eurypterida Burmeister, 1843 

Suborder Eurypterina Burmeister, 1843 

Infraorder Diploperculata Lamsdell, Hoşgör & Selden, 2013  

Superfamily Adelophthalmoidea Tollerton, 1989 

Family Adelophthalmidae Tollerton, 1989  

Genus Adelophthalmus Jordan in Jordan & von Meyer, 1854 
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Adelophthalmus piussii sp. nov. 

Fig 2 

Material. Holotype and only known specimen, number MFSNgp 31681, Museo Friulano di 

Storia Naturale, Udine. 

Horizon and locality. Upper Moskovian–lower Kasimovian (Upper Carboniferous); from near 

Malga Tratte, Bombaso valley, Pontebba, Udine. 

Etymology. The species is named in honour of the collector, Stefano Piussi of Udine. 

Diagnosis. Adelophthalmus with median furrow on carapace; carapace lacking expanded 

posterolateral corners; lateral margins of first opisthosomal tergite angled anteriorly; first 

opisthosomal tergite maintains constant width at lateral margins. 

Description. Body length >37.89. Carapace parabolic (sensu Tollerton 1989), 16.98 long, >18.53 

wide, bordered by narrow marginal rim. Lateral eyes reniform, 2.88 long, 1.69 wide, located 

centrimesially 7.96 from carapace posterior border on outer margin of vaulted central portion of 

carapace. Ocellar mound located between lateral eyes at rear of median furrow 5.82 from 

carapace posterior border. Four partial prosomal appendages (IV–VI) preserved on left side, but 

no details discernible. Anterior seven opisthosomal tergites preserved; first reduced, with lateral 

margins converging slightly forwards. Opisthosomal tergite lengths/widths: 1 = 0.92/>17.36; 2 = 

2.06/>19.66; 3 = 3.21/>20.08; 4 = 4.29/>21.24; 5 = 4.61/21.52; 6 = 3.47/>15.76; 7 = 

>2.35/>8.74. Slight epimera on all opisthosomal tergites. Cuticular ornamentation of lunate 

scales (preserved as impressions). 
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Remarks. The specimen is considered to belong to a new, undescribed species on account of its 

possession of a carapace median furrow combined with its lack of expanded posterolateral 

corners of the carapace. 

Discussion 

The genus Adelophthalmus is speciose, widespread, long-ranging, taxonomically old (being 

named in 1854), and the nominate form of a higher taxon (in this case the family 

Adelophthalmidae); it therefore meets every criterion for the identification of wastebasket taxa as 

set out by Plotnick & Wagner (2006). The phylogeny of the genus is poorly known; Tetlie & 

Poschmann (2008) performed an analysis of the Adelophthalmoidea and retrieved 

Adelophthalmus as monophyletic; however, there was a general lack of resolution within the 

genus, and 18 of the 25 then-known species were excluded from the study. It seems unlikely that 

the genus is polyphyletic or paraphyletic, though it may suffer simultaneously from under-

splitting at the generic level and, paradoxically, over-splitting at the species level. The species 

now assigned to Adelophthalmus have previously been divided into five genera: Adelophthalmus, 

Lepidoderma Reuss, 1855, Anthraconectes Meek & Worthen, 1868, Polyzosterites Goldenberg, 

1873, and Glyptoscorpius Peach, 1882. These taxa have all subsequently been synonymized into 

Adelophthalmus, which has priority, for reasons that appear valid for the type species in question 

(see Tetlie & Dunlop 2005 for a full review). It is possible, however, that Adelophthalmus may 

consist of two or more large clades that could be considered to be distinct genera; it is also 

uncertain how the Carboniferous genus Unionopterus Chernyshev, 1948 resolves in relation to 

the various Adelophthalmus species (Tetlie & Van Roy 2006).  
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A number of species of Adelophthalmus have also been suggested to be synonyms, with Van 

Oyen (1956) suggesting that as many as 11 species may be junior synonyms of Adelophthalmus 

imhofi (Reuss, 1855). Many of these species are in need of restudy, however, and Van Oyen’s 

proposed synonymies have not been widely accepted, with three of the supposedly synonymous 

species resolving disparately in the phylogeny of Tetlie & Poschmann (2008). A number of 

characteristics used to define species are also suspect; the type species, Adelophthalmus 

granosus Jordan in Jordan & von Meyer, 1854, was originally described as lacking lateral eyes, 

something that is almost certainly a preservational artifact (Tetlie & Dunlop 2005), while 

Adelophthalmus luceroensis Kues & Kietzke, 1981, was described as possessing no median 

ocelli however they can be clearly seen on two figures (Kues & Kietzke 1981 pl. 1, figs. 5 & 8). 

Ultimately only a redescription of museum specimens will resolve these issues, however until 

this is done the true number of true Adelophthalmus species currently known will remain 

uncertain. 

The current specimen can clearly be distinguished as a novel species by the autapomorphy of a 

median carapace furrow and the unique character combination of the carapace lacking expanded 

posterolateral corners along with the lateral margins of first opisthosomal tergite being angled 

anteriorly and maintaining a constant width at its lateral margins. The morphology of the first 

opisthosomal segment also reveals close affinities to some other species of Adelophthalmus, with 

Adelophthalmus wilsoni  (Woodward, 1888) possessing a first tergite with almost identical 

morphology (see Owens & Bassett 1976, pl. 29, fig. 5). Adelophthalmus luceroensis and 

Adelophthalmus dumonti (Stainier, 1917) also exhibit an anterior curvature of the lateral regions 

of the first tergite; however, Adelophthalmus dumonti also has extended posterolateral regions of 

the carapace that dorsally overlap the tergite. This configuration is also seen in Adelophthalmus 
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moyseyi (Woodward, 1907) and Adelophthalmus granosus which, together with Adelophthalmus 

dumonti, resolved as a clade in the analysis of Tetlie & Poschmann (2008). Adelophthalmus 

piussii sp. nov. exhibits slight posterolateral extension of the carapace margin but not to the 

degree seen in Adelophthalmus dumonti, with the lateral portions of the first tergite not being 

completely covered. Adelophthalmus piussii thus appears to be an intermediate form between 

taxa with an anteriorly deflected first tergite such as Adelophthalmus luceroensis and the 

Adelophthalmus dumonti clade. It is also possible to polarize these characters, as the earliest 

known species, Adelophthalmus sievertsi (Størmer, 1969), lacks both posterolateral extensions of 

the carapace and any lateral differentiation of the first tergite. The trend in Adelophthalmus thus 

appears to be one of increasing anterior deflection of the lateral regions of the first opisthosomal 

tergite followed by an expansion of the posterolateral regions of the carapace eventually 

resulting in the total dorsal overlap of the lateral regions of the first tergite. Adelophthalmus 

piussii, with its first tergite exhibiting marked lateral deflection, appears to show the onset of 

posterolateral carapace extension. 
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Figure 1. Position of the fossil locality (star) near the road SP110 from Pontebba to Passo 

Pramollo, which is situated on the Italy–Austria border; spot heights in metres. Inset: location 

map of the Passo Pramollo area near Pontebba in the north of Friuli.  
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Figure 2. Adelophthalmus piussii sp. nov. from the Upper Carboniferous (upper Moskovian–

lower Kasimovian) Meledis Formation, Friuli, specimen MFSNgp 31681. A) photographed 

under low-angle light (illumination from the SW). B) Interpretive drawing for A. Scale bar: 5 

mm. 
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Chapter 5 

A new Ordovician eurypterid (Arthropoda: Chelicerata) from 

southeast Turkey: evidence for a cryptic Ordovician record of 

Eurypterida 

 

James C. Lamsdell, İzzet Hoşgör and Paul A. Selden 

(Formatted for submission to Gondwana Research) 

 
Abstract 

A new species of eurypterid, Paraeurypterus anatoliensis gen. et sp. nov., is 

described from the Upper Ordovician (Katian) Şort Tepe Formation of southeast Turkey. 

The single specimen, preserving the carapace, mesosoma and fragments of appendages, 

appears morphologically intermediate between the eurypteroid families Dolichopteridae 

and Eurypteridae. P. anatoliensis retains the plesiomorphic conditions of crescentic eyes 

with enlarged palpebral lobes and a quadrate carapace with ornamentation consisting of 

small pustules but also displaying the derived characteristics of genal facets and a row of 

large acicular scales across the posterior of each tergite. Phylogenetic analysis 

incorporating each of the major eurypterine clades and all Eurypterina having a three-

segmented genital operculum (the triploperculate condition) resolves eurypteroids to be 

an unnatural group, with Dolichopteridae and Eurypteridae forming part of a grade 

leading to diploperculate Eurypterina. P. anatoliensis is intermediate between the two 

eurypteroid families, as is ‘Eurypterus’ minor from the Pentland Hills of Scotland, which 
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is shown to be a distinct genus and assigned to Pentlandopterus gen. nov. Using the 

phylogenetic topology to infer ghost ranges for each of the major eurypterid clades 

reveals that the majority of eurypterid superfamilies must have originated by the Katian, 

indicating a largely unsampled record of Ordovician eurypterids. The occurrence of poor 

dispersers such as Paraeurypterus in the Ordovician of Gondwana is puzzling, and it has 

been suggested that they dispersed to the continent during periods of sea level lowstand 

in the Sandbian and Hirnantian, however this does not explain the lack of Ordovician 

species in North America and Europe, given the well-sampled nature of these continents, 

and an alternative is proposed whereby eurypterids originated in Gondwana and radiated 

out to Laurentia and Baltica in the late Ordovician and early Silurian, thus explaining 

their sudden appearance in the European and North American rock record. 

 

Key words: Katian, Eurypterina, Paraeurypterus, ghost ranges, phylogeny 

 

1. Introduction 

Eurypterids are a monophyletic group of Palaeozoic aquatic chelicerates with a 

distribution largely limited to the palaeocontinents of Avalonia, Armorica, Baltica, Iberia 

and Laurentia. Of the 246 currently valid eurypterid species only 22 have been reported 

from outside these palaeocontinents; however, of these, only 13 can be confidently 

assigned to a eurypterid clade (Table 1). While it has been suggested that the lack of 

eurypterids other than from Europe and North America is a collecting and research bias 

(Plotnick, 1999), and a number of further unnamed or fragmentary eurypterids have been 

reported from outside of these continents (Braddy et al., 1995, 2002; Braddy and 
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Almond, 1999; Tetlie et al., 2004), it is the currently held view that the observed 

distributions represent a true signal, with eurypterids originating in Laurentia and being 

limited to dispersal along coastlines, with only the pterygotoids being able to cross open 

oceans (Tetlie 2007a). Any new record of eurypterids from outside North America and 

Europe is, therefore, of extreme interest, especially if they can be assigned to a group 

lacking the dispersal capabilities of the pterygotoids, and have a pre-Carboniferous age.  

The majority of eurypterid occurrences outside North America and Europe consist of 

presumably poor dispersers (hibbertopteroids) which occurred during the Carboniferous 

and Permian, after Gondwana has come into close proximity to Laurentia as a prelude to 

the amalgamation of Pangaea, or taxa with higher dispersal potential such as pterygotoids 

or carcinosomatids. Adelophthalmus Jordan in Jordan and von Meyer, 1854, another 

widespread genus, is also known from Gondwanan localities from the Devonian onwards 

and it is likely that it was able to cross the already narrowing gulf between Gondwana 

and Laurentia. One occurrence, however, appears to defy explanation: Onychopterella 

augusti Braddy, Aldridge and Theron, 1995, from the Soom Shale of South Africa, which 

has been dated as latest Hirnantian to earliest Rhuddanian (Vandenbroucke et al., 2009). 

O. augusti does not appear to be a good disperser, as its posterior pair of appendages are 

not overly expanded into a swimming paddle, and its relatively basal phylogenetic 

position combined with its early occurrence (before the major period of eurypterid 

radiation during the early Silurian) makes its appearance in Gondwana somewhat 

problematic.  

Here, we report a second Gondwanan Ordovician eurypterid, Paraeurypterus 

anatoliensis gen. et sp. nov., a single specimen from the Şort Tepe Formation (middle 
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Katian) near Çukurca, southeast Turkey. The new species is placed in a phylogenetic 

context as intermediate between the families Dolichopteridae and Eurypteridae and forms 

part of a basal grade of Eurypterina leading to a clade defined by having only two fused 

plates in the genital operculum. The phylogeny allows for ghost ranges to be estimated 

for each of the main eurypterid clades which indicate the existence of a diverse record of 

Ordovician eurypterids and the potential for discovery of further early Palaeozoic 

eurypterids in Gondwana. 

 
 

2. Geological Setting 

The Border Folds of southeast Turkey represent the northern part of the Arabian Plate 

dominated by the East Anatolian Fault where it contacts the Anatolian Plate (Fig. 1A), 

and consists largely of Mesozoic and Cenozoic surface crops with subsurface Palaeozoic 

formations cropping out in places (e.g. at the Derik, Mardin, Şort Tepe, and Zap areas) 

that represent an almost complete Cambrian–Ordovician succession (Fig. 1B). The 

eurypterid specimen was discovered during a geological survey of the most southeastern 

regions of Anatolia, near the border with Iraq. Here, the early Palaeozoic strata 

encompass the Derik and the Habur groups which extend from the Amanos-Pazarcık area 

in the west to Hakkari-Çukurca in the east (Cater and Tunbridge, 1992; Bozdoğan and 

Ertuğ, 1997) and palaeogeographically belong to the northern margin of the Arabian 

Plate of Gondwana throughout the Palaeozoic.  

Lower Palaeozoic strata were first recognised in southeastern Turkey about 30 km 

southwest of Hakkari by Altınlı (1963) who reported unnamed, thick, Cambrian 

limestones overlain by approximately 1000 m of the Giri Formation, comprising Silurian 
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(actually Cambrian and Ordovician) quartzites with subsidiary limestones and siltstones. 

Some of the latter contained Cruziana trace fossils and have been compared to analogous 

strata in northern Iraq (Dean and Monod, 1990; Dean, 2006). Between Hakkari and 

Çukurca the River Zap cuts a deep valley to expose two inliers of Cambrian and 

Ordovician sediments, mostly clastics, that form part of the Arabian Platform (Ghienne et 

al., 2010). Dean et al. (1981) recognised that the Giri Formation was equivalent to the 

shales and sandstones of the Seydişehir Formation, described from the western Taurus 

Mountains but widespread in the eastern Taurus, southeastern Turkey, and neighbouring 

parts of Iraq, and of Upper Cambrian and Lower Ordovician age. The strata 

disconformably overlying the formation, mainly comprising shales and siltstones, were 

named the Şort Tepe Formation and considered to be of Ashgillian age (Upper 

Ordovocian, late Katian–Hirnantian). In the Zap Valley, the thick Seydişehir Formation is 

unconformably overlain by a Lower and Upper Palaeozoic succession that comprises the 

Upper Ordovician Şort Tepe Formation, the Upper Devonian Yıgınlı Formation and the 

Lower Carboniferous Köprülü Formation (Fig.2A) (Higgs et al., 2002). It is in the Şort 

Tepe beds of this succession, on the northeast side of the Zap Valley 7.5 km northwest of 

Çukurca (Fig. 2B), that the eurypterid specimen was discovered. The depositional 

environment of the Şort Tepe Formation is considered to be that of an outer shelf 

environment representing the culmination of a period of marine transgression throughout 

the Seydişehir Formation which it unconformably overlies (Ghienne et al., 2010). 

In the Hakkari–Çukurca area the Şort Tepe Formation is known for its well-preserved 

trilobite faunas, with Dean and Zhou (1988) reporting the genera Lonchodomas Angelin, 

1854, Dindymene Hawle and Corda, 1847, Prionocheilus Rouault, 1847, Calymenesun 
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Kobayashi, 1951 and Birmanites Sheng, 1934, along with fragments of diplograptid 

graptolites and the brachiopod Aegiromena Havlíček, 1961, all located in the grey shale 

beds within the formation, the same lithology from which the eurypterid was discovered. 

These macrofossils were used, through comparison with similar faunas elsewhere, to 

infer a pre-Hirnantian Ashgill age for the formation. Palynological investigations on 

Ordovician deposits from Turkey are fairly rare and deal principally with the less mature 

organic-walled microfossils recorded in the Border Folds area where rich and well 

preserved Upper Ordovician acritarchs, sporomorphs, and chitinozoans have been 

reported from the Habur Group (Steemans et al., 1996). More recently, Paris et al., 

(2007a and 2007b) have determined chitinozoan assemblages in the upper parts of the 

Şort Tepe Formation dated to the late Caradoc (middle Katian), thus making the new 

eurypterid older than Orcanopterus manitoulinensis Stott, Tetlie, Braddy, Nowlan, 

Glasser and Devereux, 2005 and Megalograptus ohioensis Caster and Kjellesvig-

Waering in Størmer, 1955 (both from the late Katian of Laurentia) and Onychopterella 

augusti (from the Hirnantian of Gondwana), but younger than the stylonurine 

Brachyopterus stubblefieldi Størmer, 1951 (from the Sandbian of Avalonia). 

 

3. Materials and Methods 

The specimen was recovered from the Upper Ordovician Şort Tepe Formation of 

southeast Turkey and is deposited in the Natural History Museum of Maden Tetkik ve 

Arama Genel Müdürlüğü, Ankara (MTANHMSETR). Material of Eurypterus minor 

(Laurie, 1899), studied for comparison, is held at the National Museums of Scotland 

(NMS), Edinburgh, UK. Eurypterid terminology largely follows Tollerton (1989) for 
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morphology of the carapace, metastoma, lateral eyes, prosomal appendages, genital 

appendage, opisthosomal differentiation, telson, and patterns of ornamentation; however, 

the terminology for the ventral plate morphologies follows the revised types of Tetlie et 

al. (2008). Selden (1981) is followed for prosomal structures and cuticular sculpture and 

the labelling of the appendages. Terminology for the segmentation of the genital 

operculum follows Waterston (1979). The specimen was studied using a Leica M205 C 

stereomicroscope and photographs were taken on a Canon EOS 5D Mk II digital camera 

with a Canon macro MP-E 65 mm 1:2.8 lens with a polarizing filter and a polarized light 

source with the specimen submerged in alcohol. Image processing was carried out using 

Adobe Photoshop CS4, and interpretive drawings were prepared for publication using 

Adobe Illustrator CS4, on a MacBook Pro running OS X. 

The specimen consists of parts of the prosoma and mesosoma preserved in a pale grey 

siltstone with red-brown coloured cuticle preserved in places (Fig. 3), such as on the 

carapace dorsal surface anterior to the left lateral eye, where it shows a concentric, 

pustular ornament. Part of the posterior part of the carapace is broken away, revealing the 

prosoma–opisthosoma junction and the usually hidden, poorly sclerotized, true first 

tergite. Anteriorly on the right side, the carapace is broken away to reveal the ventral 

plate (doublure). The median suture of the doublure is not visible, but there is clearly no 

epistomal plate or transverse suture. Lateral eyes are preserved, but median ocelli seen as 

pale, circular impressions, and the right one is mostly obscured by a crack. Anterior to the 

right lateral eye, and posterior to the left lateral eye, are what appear to be worm burrows 

or grazing traces. 
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To the right of the carapace, the remains of four appendages can be seen. The most 

anterior (appendage III) consists of a single podomere that is angled underneath the 

following appendage and thus lost from view. Appendage IV consists of a single visible 

podomere and a spine from the preceding podomere that is hidden under the carapace. No 

details are available of appendage V apart from its existence: it appears from beneath the 

carapace but is then covered by the overlying, forward-thrust appendage VI. 

In the mesosoma, seven fully expressed tergites and the first, usually hidden, true 

tergite are preserved which, though poorly preserved, can be seen on both lateral margins. 

On the right side of the specimen, the opercular plates can be seen projecting from 

beneath the tergites. The exact number of large, acicular scales on each tergite is difficult 

to ascertain due to damage around the posterior margins; however, it is clear that each 

tergite bore three sets of large scales for a total of six to nine scales on each segment.  

For the phylogenetic analysis, a matrix of 81 characters and 45 taxa was compiled, 

which can be found in Appendix 2 along with character descriptions. The synziphosurine 

Weinbergina opitzi Richter and Richter, 1929 was specified as the outgroup following 

Lamsdell et al. (2010a,b) as it supposedly represents the most plesiomorphic known 

xiphosuran (Anderson and Selden, 1997) which are sister group to Eurypterida (Selden 

and Dunlop, 1998); however, given the unclear nature of synziphosurine intra-

relationships (see Lamsdell, 2011) the chasmataspidids Chasmataspis laurencii Caster 

and Brooks, 1956, Loganamaraspis dunlopi Tetlie and Braddy, 2004, Diploaspis casteri 

Størmer, 1972 and Octoberaspis ushakovi Dunlop, 2002 are included due to the shared 

synapomorphies of a metastoma and genital appendage. These, however, were left as 

ingroup taxa to test whether chasmataspidids fall outside Eurypterida or are a clade 
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within Eurypterina, as suggested by Shultz (2007). In order to test the placement of the 

Turkish specimen among the basal Eurypterina, all the taxa from the analysis of Tetlie 

and Cuggy (2007) were included, along with taxa from the analysis of Lamsdell (2011). 

In order to test the ramifications of the ghost ranges for each of the major Eurypterina 

clades, representatives from each of the more derived groups were also included, each 

represented by multiple exemplars which more accurately represent the character states 

and transitions of the group than a single exemplar, such as a single species or a 

composite taxon (see Brusatte, 2010). Mixopterus kiaeri Størmer, 1934a and 

Carcinosoma newlini (Claypole, 1890a) were included to represent the mixopteroids, 

Adelophthalmus sievertsi (Størmer, 1969) and Nanahughmilleria norvegica (Kiær, 1911) 

for the adelophthalmoids, and Hughmilleria socialis Sarle, 1903 and Pterygotus anglicus 

Agassiz, 1844 for the pterygotoids. Two other problematic Ordovician taxa were also 

included: Megalograptus ohioensis and Orcanopterus manitoulinensis. O. 

manitoulinensis was considered by Tetlie (2007a) and Tetlie and Poschmann (2008) to be 

part of an unnamed clade consisting of Orcanopterus Stott, Tetlie, Braddy, Nowlan, 

Glasser and Devereux, 2005, Waeringopterus Leutze, 1961 and Grossopterus Størmer, 

1934b which forms the sister-group to adelophthalmoids and pterygotoids, while M. 

ohioensis has traditionally been considered a member of the Mixopteroidea (Caster and 

Kjellesvig-Waering, 1964), although Tetlie (2007a) considered it to be a basal taxon 

positioned between Onychopterella Størmer, 1951 and Eurypteroidea. 

The analysis was performed using TNT (Goloboff et al., 2008; made available with 

the sponsorship of the Willi Hennig Society) employing random addition sequences 

followed by branch swapping (the mult command in TNT) with 100,000 repetitions with 
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all characters unordered and of equal weight. Jackknife (Farris et al., 1996) and Bremer 

support (Bremer, 1994) values were calculated in TNT and the Consistency, Retention 

and Rescaled Consistency Indices were calculated in Mesquite 2.73 (Maddison and 

Maddison, 2010). Nonparametric bootstrapping is often difficult with morphological data 

due to the limited size of the dataset (Zander, 2003) and so was not performed for this 

analysis. Jackknifing was performed using simple addition sequence and tree bisection-

reconnection (TBR) branch swapping, with 100,000 repetitions and 25% character 

deletion. The matrix and character listing can be found in the Appendix 2 has been 

deposited in the online MorphoBank database (O’Leary and Kaufman, 2007) under the 

project code p568 and can be accessed from http://morphobank.org/permalink/?P568.  

 

4. Systematic Palaeontology 

Phylum Arthropoda Latreille, 1829 

Subphylum Chelicerata Heymons, 1901 

Superclass Sclerophorata Kamenz, Staude and Dunlop, 2011 

Order Eurypterida Burmeister, 1843 

Diagnosis 

Chelicerates with the opercula of somites VIII and IX fused into a genital opercular 

plate. 

Remarks 

After the identification of a metastoma and genital appendage in two species of 

chasmataspidid (Dunlop, 2002; Tetlie and Braddy, 2004), Lamsdell (2011) determined 

the sole eurypterid autapomorphy to be the possession of the fused opercula of somites 
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VIII and IX forming the genital operculum. The fact that the median and posterior 

opercular plates were functionally fused had also been recognised by Laurie (1893), 

Holm (1898) and Wills (1965) but appears to have been missed by subsequent authors. 

Suborder Eurypterina Burmeister, 1843 

Grade ‘Eurypteroidea’  

Remarks 

Tetlie and Cuggy (2007) retrieved Eurypteroidea as a natural group; however, the 

analysis herein resolves the group as paraphyletic with a monophyletic Dolichopteridae 

sister-group to Eurypteridae and the remaining Eurypterina (Mixopteroidea, 

Adelophthalmoidea and Pterygotoidea). This result was somewhat foreshadowed by 

Tetlie and Cuggy (2007), who remarked that the Eurypteridae were, in most respects, 

more derived morphologically than the Dolichopteridae and appears to confirm the 

results from a less inclusive analysis performed by Lamsdell (2011). Paraphyly 

invalidates Eurypteroidea as a superfamily; however, the term is currently retained as an 

identification for the grade of basal Eurypterina that it encompassed. In due course, this 

may be expanded to also encompass both the Moselopteridae and Onychopterellidae; but 

these are, for the moment, retained in their own superfamilies. 

Genus Paraeurypterus gen. nov. 

Type species  

Paraeurypterus anatoliensis gen. et sp. nov. 

Etymology 

From the greek παρά (similar) and Eurypterus due to its close similarities to the genus 

Eurypterus DeKay, 1825. 
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Diagnosis 

‘Eurypteroid’ with quadrate carapace possessing genal facets; small, crescentic lateral 

eyes with large palpebral lobe; carapace ornamentation consists of small pustules, 

opisthosomal ornamentation consists of scales with a series of large acicular scales across 

the posterior region of the tergites. 

Paraeurypterus anatoliensis gen. et sp. nov. (Figs. 3–4) 

Holotype 

MTANHMSETR 10-İZ-01-1. 

Etymology 

Named after the Anatolian Peninsula where the specimen was found. 

Locality and Age 

The only known specimen is derived from the Upper Ordovician (middle Katian) Şort 

Tepe Formation, southeast Turkey. 

Diagnosis 

As for genus. 

Description 

Preserved body length 84 mm; maximum width (at third tergite) 46 mm. Carapace 

maximum width 45 mm (at posterior), 32 mm long. Carapace anterior margin relatively 

straight, very slightly procurved medially; length:width ratio 0.70; genal angle 85°, 

therefore carapace subquadrate (Tollerton, 1989); posterior margin recurved, angling 

anteriorly for 2 mm. No epistomal plate or transverse suture (therefore Eurypterus- or 

Erieopterus-type); plates ornamented with series of striate terrace lines (Fig. 4A), as seen 

in Eurypterus tetragonophthalmus Fischer, 1839 (Selden, 1981), Stoermeropterus 
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conicus (Laurie, 1892) (Lamsdell, 2011), Parahughmilleria hefteri Størmer, 1973 and 

Erieopterus sp. (Poschmann and Tetlie, 2006). Lateral eyes centrilateral at most antero-

lateral limit of quadrant (Tollerton, 1989); crescentic, associated with small palpebral 

lobe giving appearance of circular outline (Fig. 4B; the defunct ovocrescentic of 

Tollerton, 1989); 6 mm long, 3 mm wide (5 mm including palpebral lobe). Median ocelli 

central between posteriormost limit of lateral eyes; 1 mm × 1 mm diameter. Carapace 

marginal rim narrow, extends across entire width of anterior and lateral margins, 

narrowing very slightly towards posterior, 1.5 mm at widest.  

Only small part of one podomere of appendage III preserved. Single preserved 

podomere of appendage IV 5.5 mm long, 3 mm wide, unornamented; spine from 

preceding podomere 3.48 mm long, 1.22 mm wide at base, ornamented with series of 

longitudinal striations; appendage of Hughmilleria-type. Only small part of one 

podomere of appendage V preserved. Visible portions of appendage VI consists of long, 

slightly curved podomere ornamented with slight scale projections or distally angled 

serrations on dorsal and ventral (probably podomere 4); longitudinal, parallel grooves run 

down length of podomere; 15 mm long, 7.5 mm wide; podomere 5 is 7 mm long, flaring 

distally from 6 mm to 7 mm wide. 

True first tergite 1 mm long. Opercular plates project from beneath tergites. First fully 

expressed tergite (from hereon just ‘first tergite’) shorter than following tergites; broadest 

point of body at third tergite (Table 2). Dorsal ornamentation consisting of continuous 

row of semilunate scales 1–1.5 mm from each tergite anterior border (Fig. 4C). Scale 

ridges indicate degree of overlap with preceding tergite; portion of tergite before ridge 

forms smooth articulating facet. Posterior to scale ridge are three discontinuous rows of 
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semilunate scales before ornamentation becomes sparse, still consisting of isolated 

semilunate scales. Row of acicular scales interspersed with much larger acicular scales 

across posterior region of each tergite. Large scales, absent from first tergite, increase in 

size from second to seventh tergite. Each tergite with three sets of large scales (total 6–9 

scales), number of scales possibly increasing with size of tergite.  

Remarks 

In general appearance, Paraeurypterus anatoliensis looks very much like a species of 

Eurypterus, drawing initial comparison with Eurypterus tetragonophthalmus. A number 

of features, however, show it to be distinct from that genus: the quadratic carapace, which 

is trapezoidal in all Eurypterus species, the crescentic lateral eyes with an enlarged 

palpebral lobe (a plesiomorphic state which is lost in the Eurypteridae and the remaining 

derived Eurypterina), and the carapace ornamentation consisting of small pustules. 

Pustules are known from the carapace of a number of Eurypterus species, including E. 

dekayi Hall, 1859 and E. tetragonophthalmus; however, in all of these, the pustules are 

limited to the margins of the carapace and anterior to the lateral eyes, and not covering 

the carapace, as appears to be the case in P. anatoliensis. The scale ornamentation of the 

opisthosoma in P. anatoliensis also appears different to that of Eurypterus, possessing 

more large acicular scales than in any known Eurypterus species, although the number of 

scales can vary between them. While the species resembles Eurypterus, it possesses a 

number of plesiomorphic characteristics that have already been lost in Erieopterus 

Kjellesvig-Waering, 1958, the sister-taxon of Eurypterus, and this is considered 

justification for its erection as a new genus, a conclusion born out by the phylogenetic 

analysis presented herein. 

373



 

Pentlandopterus gen. nov. 

Type species  

Eurypterus minor (Laurie, 1899) 

Etymology  

Named after the Pentland Hills, Scotland, from which the only known species is 

described. 

Diagnosis  

‘Eurypteroid’ with a quadrate carapace possessing genal facets; cuticular 

ornamentation consisting of closely spaced pustules; lateral eyes crescentic with large 

palpebral lobe. 

Pentlandopterus minor (Laurie, 1899) 

1899 Eurypterus minor Laurie, pp. 587–588, plate V figs 27–29. 

1899 Eurypterus minor Peach and Horne, pp. 594. 

1912 Eurypterus minor Clarke and Ruedemann, pp. 132. 

1916 Eurypterus minor O’Connell, pp. 40. 

1955 Eurypterus minor Lamont, pp. 200. 

1958 Eurypterus minor Kjellesvig-Waering, pp. 1123–1124. 

1999 Eurypterus minor Plotnick, pp. 120. 

2006 Eurypterus minor Tetlie, pp. 403–405, fig. 4. 

2007a ‘Eurypterus’ minor Tetlie, pp. 560. 

Holotype 

NMS G.1897.32.120 

Additional material 
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NMS G.1897.32.166 (paratype), G.1897.32.129, G.1897.32.152, G.1897.32.867. 

Remarks 

The species was given a modern redescription by Tetlie (2006), who considered it to 

be a Eurypterus. Tetlie and Cuggy (2007), however, showed it to be phylogenetically 

distinct from Eurypterus but did not change the taxonomy due to uncertainty as to the 

exact position of the species. Our analysis confirms that Pentlandopterus minor is not a 

Eurypterus and it is here assigned to its own genus. While it shares many characteristics 

with Paraeurypterus anatoliensis, the difference in opisthosomal ornamentation clearly 

places P. anatoliensis phylogenetically closer to the Eurypteridae and the two species are 

therefore assigned to different genera. 

Tetlie (2006) listed NMS G.1897.32.110 as a second paratype, but this specimen 

number is actually associated with a specimen of Drepanopterus pentlandicus Laurie, 

1892. The accession number of the Pentlandopterus second paratype is at present 

unknown. 

Infraorder Diploperculata nov. 

Included groups 

Mixopteroidea, Adelophthalmoidea, Pterygotoidea and the ‘waeringopterid’ clade. 

Etymology 

From the greek διπλόω (double) and operculum. 

Diagnosis 

Eurypterina with a genital operculum consisting of two fused segments. 

Remarks 
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Diploperculata represents the clade of ‘derived Eurypterina’ as denoted by Tetlie and 

Cuggy (2007); those eurypterine groups to which ‘Eurypteroidea’ is sister-taxon, 

incorporating Mixopteroidea, the unnamed ‘waeringopterid’ clade, Adelophthalmoidea 

and Pterygotoidea. Two characters potentially define the clade: the first, having a fused 

genital operculum composed of two segment (the diploperculate condition), gives the 

clade its name and is used to define the limits of the infraorder. The form of the genital 

operculum is thought to be an important character, as the possession of a fused genital 

operculum may be the only eurypterid synapomorphy (Lamsdell, 2011), with the 

Stylonurina and the basal Eurypterina (Moselopteridae, Onychopterellidae, 

Dolichopteridae, and Eurypteridae) sharing the plesiomorphic triploperculate (three 

segmented) condition (Tetlie and Braddy, 2004; Lamsdell, 2011). The other potential 

characteristic of the clade is having a podomere VI-4 of equal length to podomere VI-3 

and VI-5, however Megalograptus (which is clearly diploperculate) has a VI-4 longer 

than VI-3 and VI-5 while the dolichopterid Strobilopterus Ruedemann, 1934 also has all 

three podomeres of equal length and so the character is not included in the diagnosis of 

the clade. 

 

5. Comparison with other eurypterids  

Paraeurypterus is clearly differentiated from the supposedly more primitive suborder 

Stylonurina, based on the lack of a transverse suture on the prosomal ventral plates and 

having prosomal appendage VI expanded into a swimming paddle. Although the distal 

podomeres of the paddle (including those that undergo the characteristic broadening) are 

not preserved, the fourth, fifth and sixth podomeres are. In eurypterids with a pediform 
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prosomal appendage, the fifth podomere is longer than the fourth, whereas those with a 

paddle have a fourth podomere that is longer or equal in length to the fifth. 

Paraeurypterus has a VI-4 that is longer than VI-5, and therefore has a swimming paddle. 

Furthermore, the fact that VI-4 is longer than VI-5 precludes it from comparison with the 

mixopteroid, adelophthalmoid and pterygotoid clades, which all have a VI-4 equal in 

length to VI-5. Paraeurypterus is therefore most comparable to Megalograptus Miller, 

1874, Eurypteridae and Dolichopteridae (which with the exception of Strobilopterus all 

have VI-4 longer than VI-5). 

Paraeurypterus, along with Pentlandopterus, shares several characteristics with 

dolichopterids, including a dorsal carapace ornamentation consisting of granular pustules, 

and crescentic lateral eyes associated with enlarged palpebral lobes; however, these are 

plesiomorphic conditions, also observed in onychopterellids, moselopterids and 

Stylonurina. Both Paraeurypterus and Pentlandopterus lack the synapomorphies of either 

dolichopterid clade, namely a short appendage VI that barely projects from beneath the 

carapace or an articulating angle between VI-3 and VI-4 of less than 180°. Both genera 

are separated from Eurypterus, however, in lacking a scale ornament on the carapace and 

having a quadratic rather than trapezoid carapace. Eurypterus has also lost the 

plesiomorphic lateral eye condition, instead having an expanded visual surface with 

reduced palpebral lobe. One character that separates Paraeurypterus from 

Pentlandopterus, but suggests a closer affinity to Eurypterus and Megalograptus, is its 

possession of a row of large acicular scales across the posterior margin of each tergite. It 

is predominantly similarities in opisthosomal ornamentation, along with the morphology 

of appendage V, that have led to comparison between Eurypterus and Megalograptus and 
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so encountering a similar morphology in a new taxon may help indicate whether the 

similarities between the two are synapomorphies, due to convergence or a result of 

retained plesiomorphic conditions. 

Several species of Eurypterus (E. tetragonophthalmus, E. dekayi, E. ornatus Leutze, 

1958 and E. hankeni Tetlie, 2006) have a pustular carapace ornament; however, in all 

four species the pustules are smaller than in Paraeurypterus and Pentlandopterus, and in 

E. tetragonophthalmus the pustules are only found around the carapace margin. Most 

species of Eurypterus also have a row of principal scales across the posterior of the 

carapace which is absent in Pentlandopterus, Paraeurypterus and Megalograptus; 

however, these are absent in E. dekayi, E. ornatus and E. laculatus Kjellesvig-Waering, 

1958. The opisthosomal ornament of Paraeurypterus is very similar to that of E. 

tetragonophthalmus (Wills, 1965 pl. 2 fig. 4) with a row of tightly packed semi-lunate 

scales across the anterior margin, delineating the articulating facet, followed by three 

discontinuous rows of loosely spaced scales, and a posterior row of larger acicular scales. 

This type of ornamentation is also seen in Megalograptus; however, Megalograptus and 

Eurypterus differ from Paraeurypterus in having each acicular scale preceded by a 

longitudinal row of smaller scales. It seems clear that the similarities in ornamentation 

between the three taxa are not due to convergence, and the age of Paraeurypterus and 

Megalograptus, combined with the fact that Megalograptus shares several 

synapomorphies with mixopteroids that are absent from Eurypterus, indicates that the 

rows of acicular scales likely represent a plesiomorphic characteristic for the more 

derived Eurypterina. This is supported by some other eurypterine species, such as the 
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adelophthalmoid Adelophthalmus sievertsi, also having similar rows of scales across the 

posterior margins of the tergites. 

 

6. Phylogenetic analysis of basal Eurypterina 

Analysing the matrix as detailed above yielded two most parsimonious trees with a 

tree length of 229, an ensemble Consistency Index of 0.498, Retention Index of 0.782, 

and Rescaled Consistency Index of 0.389, the strict consensus of which is presented here 

(Fig. 5). The two most parsimonious trees differ solely in the internal topology of the 

mixopteroid clade, with one tree having Carcinosoma Claypole, 1890b as sister taxon to 

Megalograptus and Mixopterus Ruedemann, 1921a and the other with Megalograptus 

sister to Mixopterus and Carcinosoma. The polytomy of Eurypterus species is present in 

both trees.  

Eurypterids are resolved as a monophyletic clade with Chasmataspidida forming their 

monophyletic sister-group. Chasmataspidid monophyly is, in itself, a noteworthy result as 

they have previously been suggested not to represent a natural group (Tetlie and Braddy, 

2004). However, in order to test this fully, all the chasmataspidid species should ideally 

be included in the analysis with synziphosurines and xiphosurids as in-group taxa to test 

whether Chasmataspis Caster and Brooks, 1956 has closer affinities to xiphosurans. 

Eurypterida is split into two broad clades: Stylonurina and Eurypterina. Although only a 

few Stylonurina were included in the analysis, their monophyly was also retrieved in 

more comprehensive studies of their relationships by Lamsdell et al. (2010a, b). This is 

the first time that representatives of every major eurypterine clade have been included in 

a published analysis, and it is interesting to compare the topology with the composite tree 
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presented by Tetlie (2007a). Tetlie’s composite tree was compiled using the internal 

topologies of clades retrieved by Tetlie and Cuggy (2007), Tetlie and Poschmann (2008), 

and Braddy et al. (2008), with the relationships between the major clades inferred based 

on Tetlie’s unpublished PhD thesis. The topology retrieved in this analysis broadly 

correlates with that presented by Tetlie (2007a), with Mixopteroidea as sister-group to a 

large clade consisting of Pterygotoidea, Adelophthalmoidea and the waeringtopterid 

clade, within which waeringopterids are sister-group to Adelophthalmoidea and 

Pterygotoidea. The analysis differs, however, in the treatment of the basal Eurypterina, 

including the eurypteroids. 

The data for the phylogeny of the basal Eurypterina in Tetlie’s (2007a) tree 

predominantly comes from the analysis of Tetlie and Cuggy (2007) which united 

Dolichopteridae and Eurypteridae as a monophyletic clade, sister-group to the newly 

named Diploperculata, with Moselopterus Størmer, 1974 and Onychopterella forming a 

paraphyletic stem-lineage. The genus Onychopterella was resolved as paraphyletic and 

‘Eurypterus’ minor was shown to be phylogenetically separate from Eurypterus sensu 

stricto. Megalograptus was excluded from the analysis, however, and in the strict 

consensus of the eight most parsimonious trees, the dolichopterid clade broke down into a 

number of smaller clades that formed a polytomy with Eurypteridae. Lamsdell et al. 

(2010a) later added Vinetopterus Poschmann and Tetlie, 2004 and ‘Drepanopterus’ 

bembycoides Laurie, 1899 to the matrix, resulting in them forming a clade with 

Moselopterus to which they assigned the name Moselopteridae. 

Tetlie’s (2007a) tree differs in placing Megalograptus above Onychopterella in the 

eurypterine stem-lineage and ‘Eurypterus’ minor well within the dolichopterid clade. The 
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position of Megalograptus is based on a single character, the lack of a modified distal 

margin of the sixth podomere of the swimming leg, but has never been recovered in a 

phylogenetic analysis. Lamsdell (2011) conducted a more restricted analysis of the basal 

Eurypterina and retrieved a topology that differed in three ways: Onychopterella 

monophyletic; Megalograptus forming a clade with Mixopterus rather than the more 

basal taxa; and eurypteroids paraphyletic, with Eurypteridae phylogenetically closer to 

Diploperculata than Dolichopteridae. The current analysis supports these results, even 

with a more inclusive sampling of the dolichopterid and eurypterid clades. 

Dolichopteridae is shown to be monophyletic and composed of two clades: one 

comprising Buffalopterus Kjellesvig-Waering and Heubusch, 1962, Strobilopterus and 

Syntomopterella Tetlie, 2007b, the other Dolichopterus Hall, 1859, Ruedemannipterus 

Kjellesvig-Waering, 1966 and Clarkeipterus Kjellesvig-Waering, 1966. Clarkeipterus 

has been suggested to be a dolichopterid before (Tetlie et al., 2007b) however this is the 

first time the genus has been given phylogenetic treatment. ‘Eurypterus’ minor is again 

distinct from Eurypterus sensu stricto but neither is it a dolichopterid, instead resolving 

as a transitional form between the two clades and elevated to the new genus 

Pentlandopterus. Paraeurypterus anatoliensis is also a transitional form, appearing 

morphologically closer to Eurypteridae but still separated from the clade due to its 

possession of crescentic lateral eyes with enlarged palpebral lobes and the lack of scales 

on the carapace. Neither of these two species are assigned to any taxon higher than the 

level of genus; instead, they are considered members of a grade incorporating the basal 

members of the Eurypterina of which the Dolichopteridae and Eurypteridae represent 

radiations of offshoots from the main lineage. 
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7. Implications for the Ordovician record of eurypterids 

Since Tollerton (2004) recognized that the majority of Ordovician eurypterids from 

New York State (accounting for approximately 75% of Ordovician eurypterid diversity at 

the time) were either pseudofossils or, in one case, a phyllocarid carapace, Ordovician 

eurypterids have been considered rare, with the majority of family-level clades 

originating in the early Silurian. The recent discovery of as yet undescribed eurypterids 

from the late Ordovician Manitoba biotas (Young et al., 2007) and the Middle 

Ordovician St Peter Formation in Iowa (Liu et al., 2006) suggests, however, that 

Ordovician eurypterids are not as rare as has been assumed, and the discovery of 

Paraeurypterus serves to strengthen this possibility. Furthermore, by combining the 

deeper-level relationships of eurypterine clades retrieved here with those of Stylonurina 

recovered by Lamsdell et al. (2010a, b), it is possible to estimate ghost ranges of the 

superfamily-level clades, each of which represent a major species diversification within 

Eurypterida. Ghost ranges are simply the inferred ranges of clades in time based on 

sister-group comparison where the sister taxa do not have the same observed temporal 

point of origination (see Wills, 1999 fig. 1) given a cladogenetic mode of speciation. 

Furthermore, if the range of the sister taxon to the initial pair temporally predates this 

ghost range, then a ghost range for their ancestor is inferred. Ghost range inference can 

drastically affect estimations of speciation rates (Pachut and Anstey, 2007), lineage 

survival across mass extinctions (Davis et al., 2010), and the nature of lineage 

diversification (Davis et al., 2011) and so can have a major impact on our understanding 

of the evolution of a group and responses to global climatic and tectonic changes. One 

key condition for inferring ghost ranges is that the sister taxa compared are both 
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monophyletic, something of particular concern at taxonomic levels higher than species. 

Monophyly of the eurypterid superfamilies is generally well supported; exceptions are 

the eurypteroids, dealt with herein, and uncertainty over the position of Megalograptus. 

For the purposes of ghost range inference, Megalograptus has been considered to be a 

mixopteroid, probably in a basal position; however, one of the strongest characters 

uniting Megalograptus with the mixopteroids, the enlarged spines on appendage III, 

show some differences in structure that may suggest that they are convergent. Further 

study of Megalograptus is needed; however, even if it is eventually shown to be distinct 

from Mixopteroidea and has closer affinities to Eurypteridae this will have little effect on 

the ghost ranges inferred under the present topology. 

After inferring the relationships of the major eurypterid clades, and comparing their 

temporal ranges (Fig. 6), it is apparent that the majority have extensive ghost ranges. The 

majority of these stem from the triploperculate Eurypterina such as moselopterids and 

dolichopterids. The ages of Paraeurypterus, Megalograptus and Orcanopterus suggest 

that major cladogenesis of eurypterine groups occurred before the Silurian period, during 

the Katian at the latest. The longest ghost ranges, however, are jointly those of 

Dolichopteridae and the inferred stylonurine ancestor of the 

stylonuroid/kokomopteroid/hibbertopteroid clade, each extending for approximately 25 

million years, while the ghost range for Eurypteroidea extends some 22 million years. If, 

indeed, chasmataspidids are monophyletic and sister group to Eurypterida, then the entire 

order has a ghost range of 7 million years given the estimated age of Chasmataspis 

(Dunlop et al. 2004). However, if the Cambrian resting trace is indeed assignable to a 

Chasmataspis-like creature, as suggested by Dunlop et al. (2004), then this ghost range 
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would be extended by a further 33 million years. Alternatively, the trace maker could 

represent a form ancestral to both chasmataspidids and eurypterids; potential support for 

this stems from the possible identification of a metastoma-like plate on one of the traces, 

the apparent lack of a genital appendage, and most clearly the possession of six unfused 

opercula. Where opercula have been identified in chasmataspidids they have only been 

recognized on the three buckler segments (Tetlie and Braddy, 2004; Dunlop, 2002), while 

having six unfused opercula is the plesiomorphic condition found in xiphosurids. Another 

potential ghost range extension would be required if some of the eurypterids from the St 

Peter Formation are related to Orcanopterus, as suggested by Liu et al. (2006), resulting 

in a further inferred gap of 20 million years for all of the triploperculate Eurypterina. 

Even without this further extension, it is clear that the majority of eurypterid clades must 

have existed prior to the late Ordovician extinction pulses during the Hirnantian 

(Brenchley et al., 2001) and were, therefore, either largely unaffected by the mass 

extinction events or were able to rapidly diversify in their aftermath. 

Despite the recognition that eurypterids were able to persist through the end-

Ordovician mass extinction, with few long-term detrimental effects, it is still unclear 

where the clade originated geographically, and to what degree their range included 

Gondwana prior to its collision with Laurussia during the late Devonian and 

Carboniferous. Tetlie (2007a) considered eurypterids to have originated in Laurentia, 

with Gondwanan occurrences being the result of isolated transoceanic dispersal, 

something generally limited to pterygotoids and some mixopteroids. Lamsdell (2011) 

proposed a method by which the population of Onychopterella augusti – which was not 

likely to have been a strong swimmer – could have become established in what is now 
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South Africa by traversing the sea floor during periods of sea level lowstand during the 

Sandbian or Hirnantian (Saltzman and Young, 2005). Paraeurypterus, phylogenetically 

bracketed by dolichopterids and Eurypteridae, was also unlikely to have been a good 

swimmer and may have crossed to Gondwana during the Sandbian lowstand. It is also 

possible that the opposite occurred: periods of lowstand allowed Gondwanan eurypterids 

to cross into Laurentia and then undergo an explosive radiation. Currently, the earliest 

known eurypterid is a stylonurine from the Sandbian of Avalonia, which was at the time 

located southwards of Laurentia, and this may, in fact, represent an early stylonurine 

colonist from Gondwana. This would explain the dearth of Ordovician eurypterids in the 

well-sampled regions of Europe and North America, and would also go some way to 

explaining why so many of the earliest encountered species are relatively advanced 

swimming forms – these would have had a greater dispersal ability than the basal walking 

forms and so could conceivably appear first in the Laurentian and Baltic fossil record if 

the group did indeed have its origin in Gondwana. In this scenario, it should still be no 

surprise that eurypterids are rare in Gondwanan provinces; being a single large continent 

Gondwana had comparatively less of the shallow marine environments that eurypterids 

tend to favour, meaning that populations would likely have been smaller and had a more 

restricted range. Colonizing the shallow seas and island coastlines of Laurentia and 

Baltica would have lead to a period of explosive radiation, resulting in the relatively 

sudden appearance of multiple clades in the European and North American fossil record. 

The fact that the only eurypterids known from the Silurian and Devonian of Gondwana 

are able swimmers suggests the possibility that the Late Ordovician mass extinction did, 

indeed, impact the eurypterids, causing them to go extinct on Gondwana while the 
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Laurentian species were relatively unaffected, with subsequent Gondwanan records 

representing re-colonization by good dispersers.  

The concept that there is an unsampled, early record of chelicerates in Gondwana has 

been mooted previously by Anderson (1996) who suggested that the sudden appearance 

of weinberginid synziphosurines during the early Devonian, which retain an extreme 

number of plesiomorphic morphological features, was due to their radiation from a 

Gondwanan refuge. The discovery of synziphosurines and xiphosurids (which together 

probably are not a monophylum – see Lamsdell, 2011) from the Tremadocian and Floian 

Lower and Upper Fezouata Formations of Morocco (Van Roy et al. 2010) shows that 

these groups certainly had a Gondwanan presence early in their evolution and their 

dispersal may have followed a pattern similar to that proposed here for eurypterids. 

Eurypterids and xiphosurans often co-occur throughout the Palaeozoic and eurypterids 

were probably also present in the Fezouata Formations (Van Roy, pers. comm.); if this is 

the case it would further strengthen the possibility that the group had a Gondwanan 

origin.  

 

8. Conclusions 

Paraeurypterus anatoliensis gen. et sp. nov., described from a single specimen, is the 

tenth eurypterid species known from Ordovician strata and is only the second of that age 

from Gondwana. Morphologically it appears intermediate between the eurypteroid 

families Dolichopteridae and Eurypteridae, possessing the plesiomorphic conditions of 

crescentic eyes with enlarged palpebral lobes and a quadrate carapace with ornamentation 

consisting of small pustules but also displaying the derived characteristics of genal facets 
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and a row of large acicular scales across the posterior of each tergite. These two last 

characters are therefore plesiomorphic for both Eurypterus and Megalograptus, an 

important recognition as they have previously been used to suggest a sister-group 

relationship between the two taxa. The eurypterine nature of Paraeurypterus is further 

supported by prosomal appendage VI having a fourth podomere that is longer than the 

fifth and appears to expand distally into a swimming paddle, while a megalograptid 

affinity can be ruled out because appendage IV is unspecialized, with only a single pair of 

spines on each podomere. The new species most closely resembles Pentlandopterus 

minor, differing only in size and the possession of the acicular opisthosomal scales. 

Phylogenetic analysis incorporating representatives of each of the major eurypterine 

clades and all triploperculate Eurypterina retrieves a topology similar to that of Tetlie 

(2007a), with a few differences: Onychopterella is retrieved as a monophyletic genus and 

Megalograptus is considered to be part of the mixopteroid clade rather than resolving 

among the more basal Eurypterina while eurypteroids are shown not to be a natural group 

but that Dolichopteridae and Eurypteridae are part of a grade leading to diploperculate 

Eurypterina with Pentlandopterus and Paraeurypterus being intermediate taxa between 

the two families. Combining this revised topology of eurypterine relationships with that 

of Stylonurina retrieved by Lamsdell et al. (2010a,b) permits calculation of ghost ranges 

for each of the major clades of Eurypterida and reveals that the majority of eurypterid 

superfamilies must have originated by the Katian. The occurrence of Onychopterella and 

Paraeurypterus in the Ordovician of Gondwana is puzzling as neither genus was likely to 

have had a spectacular dispersal ability, however it is possible that they colonized the 

continent during periods of sea level lowstand in the Sandbian and Hirnantian. One 
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problem with this interpretation is the implication of a large undocumented record of 

Ordovician eurypterids in the well-sampled regions of North America and Europe. An 

alternative scenario is proposed whereby eurypterids originated in Gondwana and 

radiated out to Laurentia and Baltica in the late Ordovician and early Silurian, explaining 

their sudden appearance in the European and North American rock record and shifting 

the Ordovician record to the historically understudied Gondwanan continents. It is likely 

that further study of Gondwanan Ordovician Fossil-Lagerstätten such as the Fezouata 

formations will reveal more eurypterid species. 
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Eurypterids by 
period 

Author Age Region  

Ordovician     

Onychopterella augusti Braddy et al., 1995 Hirnantian South 
Africa 

 

Silurian     

Hughmilleria wangi  Tetlie et al., 2007a Llandovery China  

Rhinocarcinosoma 
dosonensis  

Braddy et al., 2002 Ludlow–Pridoli Vietnam  

Slimonia boliviana  Kjellesvig-Waering, 
1973 

Ludlow/Pridoli Bolivia  

Devonian     

Acutiramus cf. 
bohemicus  

Burrow et al., 2002 Pridoli Australia  

Adelophthalmus 
waterstoni  

Tetlie et al., 2004 Frasnian Australia  

Pterygotus bolivianus  Kjellesvig-Waering, 
1964a 

Emsian/Eifelian Bolivia  

Carboniferous     

Adelophthalmus irinae  Shpinev, 2006 Tournaisian Siberia  

Cyrtoctenus 
wittebergensis 

Waterston et al., 1985 Tournaisian South 
Africa 

 

Megarachne servinei Hünicken, 1980 Gzhelian–
Asselian 

Argentina  

Unionopterus 
anastasiae 

Chernyshev, 1948 Tournaisian–
Visean 

Kazakhsta
n 

 

Permian     

Adelophthalmus 
chinensis 

Grabau, 1920 Asselian China  

Campylocephalus 
oculatus 

Kutorga, 1838 Guadalupian? Russia  

Hastimima whitei White, 1908 Sakmarian Brazil  

 
 

Table 1. Chronological list of undoubted eurypterids from palaeocontinents other than 

Baltica, Laurentia, Avalonia, Iberia and Armorica. Stylonurus (?) menneri and 

Borchgrevinkium taimyrensis from the early Devonian of Siberia (Novojilov, 1959) and 

Melbournopterus crossotus from the Silurian of Australia (Caster and Kjellevig-Waering, 
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1953) are not eurypterids and so have not been included. Eurypterus loi, Eurypterus 

styliformis and Eurypterus yangi from the Silurian of China (Chang, 1957) are probably 

based on undiagnostic material and have been excluded pending reevalution of the 

original material, as have Nanahughmilleria schiraensis and Parahughmilleria 

matarakensis from the Devonian of Siberia (Pirozhnikov, 1957), Adelophthalmus 

carbonarius (Chernyshev, 1933) from the Carboniferous of Ukraine, and Pterygotus (?) 

australis from the Silurian of Australia (McCoy, 1899). Note however that reports of 

unnamed or undescribed eurypterids (Braddy et al., 1995, Braddy & Almond, 1999, 

Braddy et al., 2002, Tetlie et al., 2004) are not listed here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

405



 

1 2 3 4 5 6 7 
5/44 7/34* 7/46 8/45 8/42 8/40 8/31* 

 
 

Table 2. Proportions (length/width) of the holotype specimen MTANHMSETR 10-

İZ-01-1 of Paraeurypterus anatoliensis  

*Preserved dimensions. 
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Fig. 1. A, map showing the region surrounding the border between the Arabian and 

Anatolian plates. Early Palaeozoic outcrops are shown in black. The Zap Valley is 

located between Hakkari and Çukurca; B, diagram showing the lateral extent of the early 

Palaeozoic formations between Antakya and Hakkari on the Arabian plate. After 

Bozdoğan and Ertuğ, 1997. 
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Fig. 2. A, generalized columnar section of the Upper Cambrian-Lower 

Carboniferous rock units of the Zap Valley section (after Ghienne et al., 2010) with 

the location of the eurypterid shown within the Şort Tepe Formation; B, location 

and geological maps of the Zap Valley and Şort Tepe section. 
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Fig. 3. Paraeurypterus anatoliensis gen. et sp. nov. MTANHMSETR 10-İZ-01-1. 

A, Photograph of holotype and only known specimen; B, Interpretive drawing of 

holotype. Shaded areas represent preservation of original cuticle. Label 

abbreviations: A, acicular scales; C, carapace; G, grooves; LE, lateral eye; MR, 

marginal rim; O, ocelli; OP, opercular plate; PL, palpebral lobe; S, spine; TA; 

tergite articulation; TT1, true tergite 1; VP, ventral plate; 1–7, tergites; III–VI, 

prosomal appendages; VI-4–VI-6, podomeres of prosomal appendage VI. Scale 

bars equal 10 mm.  
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Fig. 4. Paraeurypterus anatoliensis gen. et sp. nov. MTANHMSETR 10-İZ-01-1. 

A, Magnification of exposed ventral plate, showing fine striate ‘terrace line’ 

ornament; B, Magnification of crescentic lateral eye with enlarged palpebral lobe; 

C, Magnification of tergite ornament, showing the row of flattened scales at the 

posterior of the articulating facet and the large acicular scales towards the rear of 

the tergite. Scale bars equal 2 mm. 
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Fig. 5. Strict consensus of phylogenetic analysis consisting of 81 characters coded 

for 45 taxa, resulting in two most parsimonious trees of 229 steps each. The 

numbers above the branches are Bremer support values while those beneath each 

branch are jackknife support values after 100,000 repetitions with 25% deletion. 

Paraeurypterus anatoliensis is highlighted in bold. 
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Fig. 6. Composite tree showing the relationships of the major eurypterid clades 

derived from this analysis and that of Lamsdell et al. (2010a,b) with the inferred 

chasmataspidid sister-group. Solid black bars indicate known ranges, while the 

black dashed bars show ghost ranges. Grey dashed bars are potential range 

extensions suggested by fossils in need of further study. The circles indicate single 
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species occurrences; where these are solid grey the taxonomic assignment is certain 

but the dating is uncertain, while hollow black circles are species that have a 

confirmed date but are of uncertain taxonomic assignment. Solid black are of 

definite age and taxonomic assignment. These single species are as follows: 1, 

Chasmataspidid-like trace fossil (Dunlop et al., 2004); 2, Stylonurella (?) beecheri 

(Hall, 1884), which is probably a Ctenopterus Clarke and Ruedemann, 1912; 3, 

Onychopterella (?) pumilus (Savage, 1916), which is probably a Stoermeropterus 

Lamsdell, 2011; 4, Moselopterus lancmani (Delle, 1937); 5, Dolichopterus 

gotlandicus Kjellesvig-Waering, 1979; 6, Undescribed ‘waeringopterid’ from the 

St. Peter Formation (Liu et al., 2006); 7, Grossopterus inexpectans (Ruedemann, 

1921b); 8, ‘Hughmilleriid’ bearing resemblance to Eysyslopterus Tetlie and 

Poschmann, 2008 from the Manitoba formations (Young et al., 2007 fig 4f); 9, 

Parahughmilleria maria (Clarke, 1907); 10, Nanahughmilleria clarkei Kjellesvig-

Waering, 1964b. 
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Chapter 6 

Babes in the wood – a unique window into sea scorpion 

ontogeny 

 

James C. Lamsdell and Paul A. Selden 

(Formatted for submission to BMC Evolutionary Biology) 

 

Abstract  

Background 

Few studies on eurypterids have taken into account morphological changes that occur 

throughout postembryonic development. Here two species of eurypterid are described 

from the Pragian Beartooth Butte Formation of Cottonwood Canyon in Wyoming, and 

included in a phylogenetic analysis. Both species comprise individuals from a number of 

instars, and this allows for changes that occur throughout their ontogeny to be 

documented, and how ontogenetically variable characters can influence phylogenetic 

analysis to be tested. 

Results 

The two species of eurypterid are described as Jaekelopterus howelli (Kjellesvig-Waering 

and Størmer, 1952) and Strobilopterus proteus sp. nov. Phylogenetic analysis places them 

within the Pterygotidae and Strobilopteridae respectively, both families within the 

Eurypterina. Jaekelopterus howelli shows positive allometry of the cheliceral denticles 
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throughout ontogeny, while a number of characteristics including prosomal appendage 

length, carapace shape, lateral eye position, and relative breadth all vary during the 

growth of Strobilopterus proteus. 

Conclusions 

The ontogeny of Strobilopterus proteus shares much in common with that of modern 

xiphosurans, however certain characteristics including apparent true direct development 

suggest a closer affinity to arachnids. The ontogenetic development of the genital 

appendage also supports the hypothesis that the structure is homologous to the endopods 

of the trunk limbs of other arthropods. Including earlier instars in the phylogenetic 

analysis is shown to destabilise the retrieved topology. Therefore, coding juveniles as 

individual taxa in an analysis is shown to be actively detrimental and alternatives ways of 

coding ontogenetic data into phylogenetic analyses should be explored. 

 

Key words: Palaeozoic, Pragian, Eurypterida, Strobilopterus, Syntomopterella, 

Jaekelopterus, Cottonwood Canyon, development, instars, phylogeny. 

 

Background 

Eurypterids represent a major clade of extinct chelicerate arthropods that probably 

represent the sister group to arachnids [1, 2]. They are relatively common in Silurian and 

Devonian Lagerstätten, to which they are generally restricted due to their unmineralized 

cuticle [3] and have a total range extending from the mid-Ordovician until the end-

Permian, throughout which time they exhibited a euryhaline distribution, with an 

increasing trend towards freshwater habitats apparent through the Carboniferous and 
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Permian [4]. By the Middle Devonian, eurypterids had become increasingly rare, with the 

last of the phylogenetically basal swimming forms occurring in the Emsian Beartooth 

Butte Formation of Wyoming. One of the species described from that locality, 

Strobilopterus princetonii (Ruedemann, 1934), is of particular interest because juvenile 

specimens have been recognised that show distinct morphological differences from the 

adults [5]. 

Here, we describe new eurypterid material from an older section of the Beartooth 

Butte Formation at Cottonwood Canyon, Wyoming, which is Pragian in age. Two species 

can be recognised from the locality: the pterygotid Jaekelopterus howelli (Kjellesvig-

Waering and Størmer, 1952) which is also known from the younger section at Beartooth 

Butte [6], and Strobilopterus proteus sp. nov. Both species are included in a broad 

phylogenetic analysis of the Eurypterida. Remarkably, multiple instars of both species are 

also recognisable at the Cottonwood Canyon locality, and these represent a unique 

opportunity to study the postembryonic development of extinct chelicerate species. There 

have been few previous studies on eurypterid ontogeny, and these have tended to rely on 

the same few well-sampled species and focused on changes in the dorsal carapace 

structures or relative length/width rations of the carapace and opisthosoma [7-9]. 

Strobilopterus proteus, meanwhile, preserves individuals from at least four instars and 

exhibits previously unrecognised changes in appendage and body segment dimension and 

structure. Chelicerate palaeontologists have tended to neglect the influence of ontogeny 

when describing species [10, 11] and it is important to recognise that a number of taxa 

may be over-split taxonomically. What is largely unknown, however, is what effect 
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including such ontogenetic species into phylogenetic analyses would have, and so the 

instars of Strobilopterus proteus are used in a brief case-study of this possibility. 

The current work comprises a complete description of both eurypterid species 

present at Cottonwood Canyon and a phylogenetic analysis of the Eurypterida. The 

ontogeny of these species is then analysed using a holomorph approach [10] in order to 

identify morphological trends that occur during postembryonic development and 

compared with the known ontogeny of other eurypterid species. Finally, the influence of 

including juvenile taxa in phylogenetic analysis is tested using the current analysis and 

material. 

 

Methods 

Material 

The bulk of the material described herein is the result of fieldwork carried out by Robert 

H. Denison and Eugene S. Richardson, Jr. in 1962, and accessioned in the Field Museum 

of Natural History, Chicago. A single specimen was collected during fieldwork led by 

Hans-Peter Schultze in 1983, and is held in the University of Kansas Museum of 

Invertebrate Paleontology, Lawrence, Kansas. All specimens are derived from the 

Pragian Beartooth Butte Formation section at Cottonwood Canyon, Big Horn County, 

Wyoming. Photographs were taken on a Canon EOS 5D Mk II digital camera with a 

Canon macro EF 100 mm 1:2.8L IS USM lens with the specimens submerged in ethanol. 

Image processing was carried out using Adobe Photoshop CS4, and interpretive drawings 

were prepared for publication using Adobe Illustrator CS4, on a MacBook Pro running 

OS X. 
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Geological settings and preservation 

The Lower Devonian Beartooth Butte Formation is widespread throughout much of 

Wyoming and Montana; however, it is the type section in Beartooth Butte and another 

section in Cottonwood Canyon – both in Wyoming – that are of particular 

palaeontological interest. The Beartooth Butte section (Park Co., 44°57'N 109°37'W) was 

discovered by Erling Dorf [12], who interpreted the lithology as one of a non-marine, 

local channel-fill deposited in quiet, shallow, estuarine conditions, and he undertook 

preliminary descriptions of the abundant plant material found at the locality [13, 14]. 

Most attention, however, has focused on the diverse fish fauna, which was described by 

Bryant [15-18], while low numbers of associated eurypterids were described by 

Ruedemann [19, 20], Kjellesvig-Waering [21] and Kjellesvig-Waering and Størmer [6, 

22]. The eurypterid fauna was recently redescribed [5], with the number of confirmed 

eurypterid species reduced to just two: Jaekelopterus howelli (Kjellesvig-Waering and 

Størmer, 1952) and Strobilopterus princetonii (Ruedemann, 1934). Tetlie also suggested 

that Dorfopterus angusticollis Kjellesvig-Waering, 1955 could represent the telson of 

Strobilopterus; however the style of preservation is different to that of the other 

arthropods at the locality and the morphology does not bear close comparison to any 

other eurypterid species. The eurypterid affinities of Dorfopterus need to be seriously 

questioned.  

The plant material, representing a rare extensive Lower Devonian assemblage in 

western North America, is also receiving renewed attention with flora from both 

Beartooth Butte and neighbouring Cottonwood Canyon being described [23-25]. A fish 
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fauna has also been described from Cottonwood Canyon [26-28] although it is much less 

diverse than at Beartooth Butte, consisting of two species of Protaspis Bryant, 1933, two 

species of Cardipeltis Branson and Mehl, 1931, and a species each of Cosmaspis 

Denison, 1970 and Lampraspis Denison, 1970 (all heterostracans), and the dipnoan 

(lungfish) Uranolophus Denison, 1968. Three scorpions from Cottonwood Canyon have 

also been described, each assigned to its own monospecific genus: Hydroscorpius 

denisoni Kjellesvig-Waering, 1986, Acanthoscorpio mucronatus Kjellesvig-Waering, 

1986 and Branchioscorpio richardsoni Kjellesvig-Waering, 1986. Given Kjellesvig-

Waering’s propensity for over-splitting scorpion species (see Dunlop et al. [29] and Legg 

et al. [11]) it would perhaps be wise to re-evaluate the scorpion material; however, the 

suggestion that Acanthoscorpio mucronatus is a juvenile Strobilopterus [30] is not 

supported by new eurypterid material (unfortunately the scorpion material is not currently 

available for study and so its true affinities and taxonomic diversity at present remains 

uncertain). Notwithstanding this body of work, the most abundant component of the 

Cottonwood Canyon fauna, the eurypterids, have not received a systematic treatment 

with the exception of an isolated pterygotid ramus [31]. 

The Cottonwood Canyon (Big Horn Co., 44°52'N 108°02'W) section is situated in 

the Big Horn Mountains of northern Wyoming [32], roughly 100 km east of the type 

section in Beartooth Butte. The Beartooth Butte Formation at the Cottonwood Canyon 

section consists of long, narrow bodies of sediment with lenticular cross-sections 

comparable to channel fill deposits; is underlain by the Ordovician Bighorn Dolomite and 

overlain by the Upper Devonian Jefferson Limestone [33]. The formation largely 

comprises clastic sediments deposited in a carbonate-rich context, with the fossiliferous 
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layers at Cottonwood Canyon consisting predominantly of siltstone and shale, with 

dolomitised sandstone interbeds rather than the massive dolomitised limestones found at 

Beartooth Butte. The eurypterids at Cottonwood Canyon are preserved with the original 

cuticle forming a reddish-brown film over dorso-ventrally flattened impressions, while 

the plant material is preserved predominantly as carbonaceous compressions with rare 

occurrences of oxidised preservation [34]. It is possible that the eurypterid material 

represents moulted exuviae that became entangled with waterlogged uprooted plant 

material – similar associations can be found in the Lower Devonian of Alken, Germany 

[35-37]. The eurypterid and plant material lay on the sediment surface for some time 

before burial, as shown by the encrustation of microconchids on both the plant material 

[34] and eurypterids. Ostracodes are also present, which may have been feeding on the 

decaying plant matter and eurypterid cuticle. 

Vertebrate biostratigraphy [38, 39] indicates that the Cottonwood Canyon section 

is late Lochkovian to early Pragian whereas the type section at Beartooth Butte is Emsian 

in age. Stable oxygen and isotope data [40] indicate that the Beartooth Butte Formation 

was deposited in an estuarine environment, with the Cottonwood Canyon section being 

slightly less saline than the type section. It is interesting to note that, whereas eurypterids 

are common at Cottonwood Canyon where the fish are less prominent, the fauna at 

Beartooth Butte is clearly dominated by fish, and eurypterids are relatively scarce. This is 

unlikely to be due to Beartooth Butte representing a more saline environment that the 

eurypterids could not inhabit because eurypterids were capable of tolerating a wide range 

of salinities [41], and a third locality for the Beartooth Butte Formation, Half Moon 

Canyon, is considerably less saline than either of the other localities and appears to be 
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totally devoid of eurypterids. One possibility is that the eurypterid population dwindled in 

size in the period between the deposition of the Cottonwood Canyon sediments and that 

of the younger sediments at Beartooth Butte, eventually going extinct before formation of 

the beds at Half Moon Canyon, which are Givetian in age. Eurypterid diversity did 

decline throughout the early and mid Devonian with the majority of swimming forms, 

including the clades including Strobilopterus and Jaekelopterus, going extinct prior to the 

Frasnian [4]. 

 

Institutional abbreviations 

FMNH, Field Museum of Natural History, Chicago, USA; KUMIP, University of Kansas 

Museum of Invertebrate Paleontology, Kansas, USA; PU, Princeton University 

Geological Museum, New Jersey, USA; YPM, Peabody Museum, Yale University, New 

Haven, Connecticut, USA.   

 

Terminology 

Eurypterid terminology largely follows Tollerton [42] for morphology of the carapace, 

metastoma, lateral eyes, prosomal appendages, genital appendage, opisthosomal 

differentiation, telson, and patterns of ornamentation; however, the terminology for the 

ventral plate morphologies follows the revised types of Tetlie et al. [43]. Selden [44] is 

followed for prosomal structures and cuticular sculpture, and the labelling of the 

appendages, with pterygotid cheliceral denticle terminology as used by Miller [45]. 

Terminology for the segmentation of the genital operculum follows Waterston [46]. 

 

Phylogenetic analysis 
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For the phylogenetic analysis, the matrix of Lamsdell et al. [47] was expanded and 

partially combined with the existing Stylonurina matrix [48-50] and the pterygotoid 

matrix of Braddy et al. [51], resulting in a new matrix consisting of 104 characters and 63 

taxa, which can be found in Appendix 3 along with character descriptions. All of the taxa 

from Lamsdell et al. [47] and Braddy et al. [51] were included along with the addition of 

Laurieipterus elegans (Laurie, 1899), Hardieopterus macrophthalmus (Laurie, 1892), 

Kokomopterus longicaudatus (Clarke and Ruedemann, 1912), Drepanopterus 

pentlandicus (Laurie, 1892), Megarachne servinei Hünicken, 1980 and Hibbertopterus 

scouleri (Hibbert, 1836) from the Stylonurina matrix so that each major stylonurine clade 

was represented by at least two taxa. Finally, Jakelopterus howelli (Kjellesvig-Waering 

and Størmer, 1952), Strobilopterus proteus sp. nov. and ‘Erieopterus’ laticeps (Schmidt, 

1883) in order to ascertain the phylogenetic position of the taxa described herein and to 

resolve the affinities of ‘Erieopterus’ laticeps, which was considered by Tetlie [52] and 

Tetlie and Cuggy [53] to represent a dolichopterid.  

The analysis was performed using TNT [54] (made available with the sponsorship of 

the Willi Hennig Society) employing random addition sequences followed by tree 

bisection-reconnection (TBR) branch swapping (the mult command in TNT) with 

100,000 repetitions with all characters unordered and of equal weight. Jackknife [55] and 

Bremer support [56] values were calculated in TNT and the Consistency, Retention and 

Rescaled Consistency Indices were calculated in Mesquite 2.73 [57]. Nonparametric 

bootstrapping is often difficult with morphological data due to the limited size of the 

dataset [58]; however, bootstrapping with 50% resampling was performed. Jackknifing 

was performed using simple addition sequence and tree bisection-reconnection branch 
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swapping, with 100,000 repetitions and 33% character deletion. The matrix and character 

listing can be found in Appendix 3 and has been deposited in the online MorphoBank 

database [59] under the project code p780 and can be accessed from 

http://morphobank.org/permalink/?P780.  

 

Results 

Systematic Palaeontology 

Subphylum CHELICERATA Heymons 1901 

Order EURYPTERIDA Burmeister 1843 

Suborder EURYPTERINA Burmeister 1843 

Family STROBILOPTERIDAE fam. nov. 

 

Type genus.  Strobilopterus Ruedemann, 1935. 

Included genera.  Buffalopterus Kjellesvig-Waering and Heubusch, 1962. 

Stratigraphical range and distribution.  Middle Silurian (Wenlock) to Lower Devonian 

(Emsian) of Estonia, Norway and Ohio, New York and Wyoming, USA. 

Diagnosis.  Eurypterina with semicircular carapace; appendage VI short, barely 

projecting from beneath carapace; carapace ornamentation radiating out from the lateral 

eyes and curving around the carapace margins; row of angular scales across the posterior 

of metasomal tergites. 

 

Genus Strobilopterus Ruedemann 1935 

v* 1935 Strobilopterus Ruedemann, p. 129 
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v. 1961 Syntomopterus Kjellesvig-Waering, p. 91 [preoccupied] 

2007 Syntomopterella Tetlie, p. 1424 [replacement name for Syntomopterus] 

 

Type species. Pterygotus princetonii Ruedemann, 1934, by original designation. 

Included species. Strobilopterus laticeps (Schmidt, 1883) [= Dolichopterus stoermeri 

Caster and Kjellesvig-Waering, 1956], Strobilopterus richardsoni (Kjellesvig-Waering, 

1961), Strobilopterus proteus sp. nov. 

Stratigraphical range and distribution. Middle Silurian (Wenlock) to Lower Devonian 

(Emsian) of Estonia, Norway and Ohio and Wyoming, North America. 

Emended diagnosis.  Large Strobilopteridae with wide semicircular carapace; lateral eyes 

lunate to crescentic with palpebral lobe, situated between central and centrimesial sectors; 

I small, no denticles; II–V small with fixed spines and serrated distal podomere margins; 

VI short but with powerful serrations on anterior podomere margins; VI-9 larger in later 

instars; metastoma almost elongate petaloid; type A genital appendage undivided and 

long; type B genital appendage oval; both genital appendage morphs with angular 

spatulae; genital operculum striate ornament marked by highly sclerotized, broad lunate 

scales; tergite of somite VIII reduced; preabdomen short and wide; second order 

opisthosomal differentiation on segments 2 to 12, especially pronounced on 7; cuticular 

sculpture of minute pustules, adults with narrow, elongate scales arranged across the 

posterior of the metasomal tergites in large individuals (emended from Tetlie [5]). 

Remarks.  The new species of Strobilopterus described from Cottonwood Canyon herein 

shows the characteristic ventral and appendicular morphology of Strobilopterus and the 

diagnostic dorsal carapace structure and ornamentation of Syntomopterella. Kjellesvig-
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Waering, in a personal communication to Waterston [46], considered the Cottonwood 

Canyon species to be assignable to Syntomopterella; however, the available opisthosomal 

material corresponds well with the type species of Strobilopterus. The discovery of the 

Syntomopterella-type carapace ornamentation in a species of Strobilopterus renders 

Syntomopterella without any unique, defining characteristics, and the two genera are 

therefore synonymised herein, with Strobilopterus being the senior synonym. 

Consequently, the material of Strobilopterus richardsoni, and that of the other 

eurypterids from the Holland Quarry Shale, should be re-evaluated because a number of 

swimming paddles assigned to Dolichopterus asperatus Kjellesvig-Waering, 1961 bear 

close resemblance to the paddles of Strobilopterus princetonii and Strobilopterus proteus. 

Larger specimens of the Cottonwood Canyon Strobilopterus also reveal a number 

of characteristics that the genus shares with Buffalopterus, particularly the elongate scales 

along the posterior metasomal tergite margins, along with the dorsal carapace 

ornamentation of scales angled away from the lateral eyes, and cuticular ornamentation 

of the sternites. The type A genital appendage of Buffalopterus is, however, markedly 

different from that of Strobilopterus, consisting of three segments rather than a single 

fused segment, and so the two genera are retained as distinct entities. 

Strobilopterus laticeps (Schmidt, 1883) is based on material described by Schmidt 

[60], Holm [61] and Størmer [62] and considered by Caster and Kjellesvig-Waering [63] 

to be two distinct species. The two carapaces figured by Schimdt [60] (his pl. 3, fig. 16, 

pl. 6, fig. 6), including the holotype, were assigned to Erieopterus along with a poorly 

preserved carapace described by Størmer ([62], fig. 1). Subsequently, a genital operculum 

figured by Holm ([61], pl. 4, fig. 23) was made the holotype of Dolichopterus stoermeri 

426



 

Caster and Kjellesvig-Waering, 1956, to which a metastoma figured by Holm ([61], pl. 

10, fig. 10) and a swimming paddle figured by Schmidt ([60], pl. 7, fig. 9) were also 

assigned. The carapaces clearly belong to a strobilopterid due to their semicircular shape 

while the paddle is short and the type A genital operculum is a good match for 

Strobilopterus itself, possessing an elongate appendage that dorsally consists of a single 

unit, angular spatulae and the striate ornament on the operculum being demarcated by 

highly sclerotised lunate scales. Given that the dorsal and ventral material both indicates 

assignment to Strobilopterus the two species are synonymised and transferred to the 

genus herein. 

 

Strobilopterus proteus sp. nov. 

Figures 1, 3–15 

Etymology.  Named for Proteus, a sea-god of Greek mythology and one of several deities 

referred to by Homer in his Odyssey as ‘Old Man of the Sea’, known for his ability to 

change shape, and origin of the adjective ‘protean’.  

Material.  Holotype: FMNH PE 28961, relatively complete large individual consisting of 

articulated carapace, opisthosoma and proximal portion of telson, also preserving part of 

prosomal appendage VI. Paratypes: FMNH PE 6165–6166, PE 6168, PE 9236, PE 

26079, PE 61154–61155, PE 61163, PE 61166, PE 61197–61199. Additional Material: 

FMNH PE 6167, PE 7077, PE 9242, PE 61150–61151, PE 61162, PE 61165, PE 61168–

61172, PE 61179–61180, PE 61185, PE 61187, PE 61191–61192.   
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Horizon and locality.  All specimens were collected from the sole locality, the Pragian 

Beartooth Butte Formation section at Cottonwood Canyon, Big Horn County, Wyoming, 

by Robert H. Denison and Eugene S. Richardson, Jr. in 1962. 

Diagnosis.   Strobilopterus with lateral eyes positioned on outer limits of central region; 

carapace cuticular ornamentation consisting of elongate pustules angling away from the 

lateral eyes and curving around the carapace margin; podomere VI-9 serrate, enlarged 

(greater than half the length of VI-8) but not longitudinally drawn-out; podomere VI-7a 

lacking serrations. 

Description.  Strobilopterus proteus is known from 31 specimens which, between them, 

provide an almost complete view of the external morphology of the animal. Furthermore, 

these specimens represent a number of different instars (see discussion below) that allows 

for some morphological changes that occur throughout the ontogenetic development of 

the species to be documented.  

The carapace is known from 13 specimens (Figs. 1–10), most of which also 

preserve details of the lateral eyes, median ocelli, and marginal rim. The carapaces range 

in length from 8–83 mm and from 9–133 mm in width (Table 1), with adult specimens 

having a length/width ratio of between 0.55 and 0.62 (Figs. 1, 3–6); the length/width ratio 

increases in the juveniles, up to a maximum of 0.83 (Figs. 7–10). The carapace in 

juveniles is, therefore, horseshoe-shaped, broadening to semicircular in adults. A 

marginal rim is present, extending all the way around the front and lateral edges of the 

carapace, and narrowing towards the posterior. This marginal rim is consistently 0.5 mm 

wide except in the largest specimens, where it expands in width to 1 mm; the marginal 

rim is, therefore, comparatively wider in juveniles compared to adults. Lateral eyes are 
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positioned centrally in the largest specimens (e.g. FMNH PE 61151) and are crescentic, 

surrounding a large, moderately inflated, palpebral lobe. The lateral eyes are equivalent 

to 14–16% of the carapace length in adults; in the smallest juveniles they correspond to 

25–30% of the carapace length and are positioned centrimesially (FMNH PE 6165), 

while larger adolescents have lateral eyes equal to 19–22% of the carapace length. The 

median ocelli are located between the lateral eyes at the carapace anteroventral midline 

and each circular ocellus is consistently around 1 mm in diameter so that, again, they are 

larger in juveniles relative to carapace size compared to adults. The ocelli in the juveniles 

are positioned independently on the carapace surface while in larger individuals they are 

located on a slight inflation (FMNH PE 61154) that appears to be cardioid in shape 

(FMNH PE 61154) but is not as pronounced as a true ocellar node. The greatest 

difference between the larger adolescent and adult specimens and the smallest juveniles is 

the occurrence of elongate genal spines in the latter. These are most clearly seen in 

FMNH PE 6165 (Fig. 7C) which is dorsally preserved and shows the genal spine 

projecting from the posterior termination of the carapace marginal rim and extending 

back as far as the posterior of the second tergite. Genal spines can also be seen in the 

ventrally preserved specimen FMNH PE 61199 (Fig. 10A) and a posterior flaring of the 

carapace consistent with the formation of genal spines is present in FMNH PE 61197 

(Fig. 9A). In adults, these genal spines are much reduced into genal facets that totally 

overlap the lateral margins of the first tergite (e.g. FMNH PE 6166). The carapace 

ornamentation consists of small, closely spaced pustules that evenly cover the dorsal 

surface. In both juveniles and adults, the ornamentation appears to radiate out from the 

lateral eyes; however, it is most noticeable in the largest individuals in which a number of 
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pustules are somewhat elongated and clearly angled away from the lateral eyes before 

curving around the carapace margin (e.g. FMNH PE 61154, PE 61168).  

The ventral prosomal structures, including the appendages, are known in detail 

from a number of specimens, most of which are juveniles. The position of the ventral 

prosomal plates are visible in FMNH PE 9236 (Fig. 7A), in which the plates have broken 

away, and FMNH PE 61197 (Fig. 2C). The ventral plates appear to widen towards the 

posterior of the carapace while the anterior region forms a ‘triangular area’ sensu Størmer 

[36] and Lamsdell [64]. There is no evidence of a median suture and so the ventral plates 

are of the Erieopterus-type. Deep grooves anterior to the ventral plates in FMNH PE 

61197 represent the sutures between the plates and the prosomal body wall that have 

opened up during ecdysis, as seen also in Moselopterus Størmer, 1974; these are distinct 

from the transverse sutures in Stylonurina, which occur on the ventral plates themselves. 

The chelicerae, which would insert close to the triangular area, are not preserved in any 

specimens. Elements of all the postoral prosomal appendages (II–VI) are known (Table 

2), although all but appendage VI are known only from juveniles. Appendages II–V are 

largely homonomous in gross form, possessing an anterior spur at the distal margin of 

each podomere and an armature of paired, ventral, mediodistal cuticular projections. An 

ancillary socketed moveable spine, also located on the ventral surface of the appendage, 

is associated with each pair of cuticular projections. The distal margin of each podomere 

is denticulate. Each successive appendage increases in length, so that the second 

appendage is the shortest and the fifth the longest; the appendages in the smallest 

juveniles are also comparatively longer than in more mature individuals (e.g. FMNH PE 

6165), with appendage V extending back as far as the sixth tergite in FMNH PE 61197, 
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while in the slightly larger FMNH PE 9236 appendage II does not extend beyond the 

carapace margin. 

Appendage VI is known from five specimens (Figs. 4, 8–11), three of which are 

juveniles (FMNH PE 61197–61199) with the remaining two, including the holotype, 

being adults (FMNH PE 28961, PE 61155). The juvenile specimens preserve the 

proximal podomeres: the coxa (equivalent to the basipod of non-chelicerate arthropods) 

is expanded, with a length/width ratio of < 2.0, and has its anterior margin expanded to 

form an ear, although the exact shape of the ear cannot be ascertained. Podomeres VI-2–

VI-5 are equal in dimension and unusually short (FMNH PE 61197), with carapace 

margin extending over podomere VI-6 which is still short but widens distally compared 

to the preceding podomeres (FMNH PE 61198). The angle between each of these 

podomeres is consistently 180°. VI-7 is shown in FMNH PE 61198 (Fig. 8C) to be 

elongated and laterally expanded, although its full dimensions are not known. Podomeres 

VI-7–VI-9 are, however, known in detail from the adult specimens and are laterally 

expanded into a swimming paddle. VI-7 is at least equal in length to VI-8 and can be seen 

projecting out from underneath the carapace margin in the holotype (FMNH PE 28961), 

the VI-6/VI-7 joint being located underneath the carapace itself. The dorsal margin of VI-

7 bore enlarged serrations as hinted at by the proximal region of FMNH PE 28961 (Figs. 

2A, 3) that shows a single serration before the dorsal margin is obscured by overhanging 

sediment and smaller serrations along its distal margin. The modified spine, so-called 

podomere 7a, is long and triangular, being about half the length of VI-8 and 

approximately 50% of its width. Although poorly preserved, there is no evidence on 

serrations along the anterior margin of VI-7a, nor are there serrations along the posterior 
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margins of VI-7 or VI-7a. VI-8 and VI-9 are best preserved in FMNH PE 61155 (Fig. 

11A) which consists of both podomeres in isolation. VI-8 is longer than wide and has its 

dorsal margin ornamented with a series of alternating large and small serrations, although 

the ventral margin is devoid of ornamentation. Proximally the posterior margin of VI-8 

curves anteriorly into the joint with VI-7 so that at the joint the podomere is only half its 

total width, which is also the width of VI-7. The gap created by this curvature of the 

ventral margin is covered by VI-7a. VI-9 is deeply set into VI-8, with VI-8 the ventral 

margin of VI-8 drawn out into an ancillary lobe, although it is unclear if this lobe 

articulates with the rest of VI-8 or is simply an extension of the podomere. VI-9 is large 

and expands distally to maintain the outline of the paddle; however, it is not distally 

drawn out, instead maintaining a roughly diamond-shaped outline. The antero-distal 

margins of VI-9 are serrated, bearing six serrations that successively decrease in size. 

The metastoma is known from two juvenile specimens (FMNH PE 61197, 

61199). Both are markedly wider than long, with length/width ratios of 2.0; the FMNH 

PE 61197 (Fig. 9) metastoma has a length of 4 mm and a width of 2 mm while the 

metastoma of FMNH PE 61199 (Fig. 10) has a length of 6 mm and a width of 3 mm. The 

anterior notch is comparatively deep and the anterior shoulders rounded, while the 

posterior margin of the metastoma is narrow and appears rounded. In shape it is closest to 

elliptical (sensu Tollerton [42]) and is ornamented by minute scales. 

Of the 15 specimens revealing dorsal details of the opisthosoma (Table 3), ten 

pertain to the six anterior tergites, or mesosoma (Figs. 1, 3, 7–10, 12). The second to sixth 

tergites are broadly similar, each being approximately equal in length and possessing 

short epimera (FMNH PE 61192). These epimera are much larger in the smallest 
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juveniles, extending out from the anterior tergite margin into a triangular process (FMNH 

PE 61197). The third tergite is the broadest, measuring 137 mm in the largest specimen 

(FMNH PE 28961) and only 10 mm in the smallest juvenile (FMNH PE 6165). The first 

tergite (that of somite VIII) is however shorter than the succeeding tergites in larger 

individuals and is laterally reduced, lacking epimera and being overlapped by the genal 

regions of the carapace. The lateral portions of the second tergite also curve anteriorly, so 

that the carapace and second tergite occlude either side of the reduced first tergite 

(FMNH PE 6166, PE 28961). This is not the case in juvenile specimens, however, in 

which the anteriormost tergite is not differentiated and is fully laterally expressed 

(FMNH PE 6165, PE 9236). The cuticular ornamentation of the mesosomal tergites 

consists of the same small pustules as on the carapace; however, these are evenly spaced 

and show no differentiation in orientation. A smooth articulating facet occurs across the 

anterior margin of each tergite, demarcated by a row of closely spaced pustules at its 

posterior.  

Of the ventral mesosomal structures, both type A and type B genital appendages 

are known (Table 4); however, the type A morphology is only seen in juvenile specimens 

while only the adult type B morphology is preserved (Fig. 13). The type A genital 

operculum is known from two specimens: FMNH PE 61197 (Figs. 2C, 9) and PE 61199 

(Figs. 2B, 10). Neither specimen shows the sutures between the anterior, median, and 

opercular plates, however the right ala of FMNH PE 61199 displays portions of a striate 

ornament consisting of highly sclerotised semi-lunate scales alongside a dark circular 

structure that indicate the position of Kiemenplatten (ancillary respiratory organs; see 

Selden [65] and Manning and Dunlop [66]). In both specimens the centre of the genital 
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operculum is slightly longer than its lateral portions. The type A genital appendage is 

long and narrow (length/width ratio ranging from 6.0–7.3), extending as far as the sixth 

opisthosomal segment, and is undivided with paired carinae proximally which then merge 

into a larger median carina. Deltoid plates are not preserved; however, angular spatulae 

can be seen flanking the appendage in FMNH PE 61197. The type B operculum, on the 

other hand, is also known from two specimens (FMNH PE 26079 and PE 61150), both of 

which are disarticulated and consist of an isolated type B genital appendage with a single 

associated ala. The most striking feature of the operculum is the striate ornament of 

highly sclerotized semi-lunate scales that extends laterally across the ala; these are also 

seen on the genital operculum of the holotype (FMNH PE 28961), although the genital 

appendage itself is not preserved. The genital operculum bears a clear suture dividing the 

median and posterior opercular plates (FMNH PE 26079) which each comprise 

approximately 50% of the length of the operculum. A strip of lightly coloured cuticle 

anterior to the main operculum near the genital appendage may represent the remnants of 

the anterior opercular plate. The type B genital appendage itself is oval and short, having 

a length/width ratio of around 1.6 and only barely projecting beyond the posterior 

margins of the operculum. The central portion of the appendage appears more highly 

sclerotised than the lateral regions, while anteriorly it is hastate where it inserts on the 

operculum. Triangular deltoid plates are faintly preserved either side of the hastate 

region. An angular spatula is preserved alongside the genital appendage in FMNH PE 

26079 (Fig. 13A) and is covered in short, dense setation. The internal margin of the 

operculum alongside the appendage also bears short bristles (Fig. 14). These bristles can 

also be seen preserved in the post-genital opercula (Blattfüsse) of FMNH PE 61197 and 
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PE 61199, where they from a fringe at the distal margins, and in the holotype FMNH PE 

28961 (Figs. 1, 3). The Blattfüsse of these specimens are medially fused with the 

exception of the first (i.e. that of the third opisthosomal tergite) and are ornamented with 

fine pustules and small scales (Fig. 15). An isolated Blattfüsse of a larger individual 

(FMNH PE 61171) shows ornamentation similar to that of the genital operculum 

consisting of striations formed by highly sclerotised semi-lunate scales, suggesting this 

ornamentation develops in later instars. 

Aspects of the metasoma (comprising the six posterior opisthosomal segments) 

are known from 12 specimens, representing both the juvenile and adult morphology 

(Figs. 1, 3, 7–10, 16). The first metasomal segment (the seventh tergite) is differentiated 

from the rest, being of similar breadth to the mesosomal tergites and possessing large 

angular epimera (FMNH PE 28961). There is a sudden constriction between the seventh 

and eighth tergites, marking the differentiation into the preabdominal and postabdominal 

non-functional pseudotagmata (sensu Lamsdell [2]), with segments 8 to 12 narrowing 

evenly thereafter. These segments also bear short epimera (FMNH PE 61163), as in the 

mesosomal segments, while in the smallest juveniles these epimera are again enlarged, 

appearing peg-like and projecting from the segments at a consistent 120° angle (FMNH 

PE 6165, PE 61197, PE 61199). The length of the first five metasomal segments tends 

not to vary, while the length of segment 12 (the pretelson) is increased. The degree of 

pretelson elongation is comparatively greater in the juvenile specimens which have a 

pretelson length/width ratio of 1.7–2.0 compared to that of 1.0–1.2 in larger, adult 

specimens. The ornament of these metasomal segments is uniform, however, consisting 

of small pustules that not only decrease in density towards the posterior of the segment 
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but also increase in size and become asymmetrical, eventually forming narrow lunate 

scales (FMNH PE 61163, 61170). The anterior margin of the segments comprises a 

smooth articulating facet with a row of dense pustules along its posterior margin (FMNH 

PE 61180, PE 61185). The largest specimens also possess an ornamentation of six large, 

acicular scales across their posterior margin (e.g. FMNH PE 28961) that are themselves 

covered in the regular cuticular ornamentation (FMNH PE 6168). The telson, however, is 

not preserved in detail on any specimen, being consistently broken off a few millimetres 

posterior to its articulation with the pretelson in those specimens where it is visible. A 

long, strait structure preserved alongside the pretelson of FMNH PE 61197 (Fig. 9) 

probably represents a portion of the disarticulated telson, however this is still only a 

fragment and no further details of its morphology are available. 

Remarks. Strobilopterus proteus exhibits clear characteristics supporting its assignment 

to the genus Strobilopterus, specifically the morphology of the carapace and lateral eyes, 

the pronounced epimera on the seventh opisthosomal tergite, the cuticular ornament 

consisting of fine pustules with a striate ornament of highly sclerotised scales on the 

genital operculum and, particularly, the distinctive morphology of appendage VI. Despite 

the morphological disparity between the smallest juveniles and the adult specimens, both 

possess the pustular cuticular ornamentation and pronounced epimera on tergite seven. 

Furthermore, the type A genital appendage and morphology of prosomal appendages II–

V, which are known only from juvenile specimens of Strobilopterus proteus, correspond 

well to those structures in Strobilopterus princetonii. The type A genital appendage in 

FMNH PE 61197 and PE 61199 is identical in morphology to that of the Strobilopterus 

princetonii holotype, YPM 204947, while the anterior prosomal limbs in FMNH PE 
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61197 strongly resemble those of the juvenile Strobilopterus princetonii specimen PU 

13854 in both armature and ornamentation, the only difference being their comparative 

increased length in the Strobilopterus proteus specimen. 

Strobilopterus proteus can be differentiated from other species of Strobilopterus 

by the position of the lateral eyes on the outer limits of the central region, compared to 

their fully central position in Strobilopterus princetonii and Strobilopterus richardsoni 

and their centrimesial position in Strobilopterus laticeps. The carapace cuticular 

ornamentation consisting of elongate pustules angling away from the lateral eyes and 

curving around the carapace margin is clearly present in Strobilopterus proteus and 

Strobilopterus richardsoni but appears to be absent from Strobilopterus princetonii; the 

presence or absence of this ornamention cannot be ascertained in Strobilopterus laticeps 

but, given its presence in Buffalopterus pustulosus, it is most likely the plesiomorphic 

condition for the genus. Another difference between Strobilopterus proteus and 

Strobilopterus princetonii is that the latter possesses serrations on podomere VI-7a and 

has a longitudinally drawn-out VI-9, both of which are lacking in Strobilopterus proteus. 

 

Infraorder DIPLOPERCULATA Lamsdell, Hoşgör & Selden, 2013 

Superfamily PTERYGOTOIDEA Clarke and Ruedemann, 1912 

Family PTERYGOTIDAE Clarke and Ruedemann, 1912  

Genus Jaekelopterus Waterston, 1964 

 

Type species. Pterygotus rhenaniae Jaekel, 1914, by original designation. 
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Included species. Jaekelopterus howelli (Kjellesvig-Waering and Størmer, 1952b), 

Jaekelopterus marylandicus (Kjellesvig-Waering, 1964). 

Stratigraphical range and distribution. Silurian to Lower Devonian (Wenlock to Emsian) 

of Maryland and Wyoming, USA, and Alken an der Mosel, Germany. 

Emended diagnosis.  Pterygotidae with triangular telson; principal denticles on cheliceral 

ramus inclined (emended from Waterston [67]). 

 

Jaekelopterus howelli (Kjellesvig-Waering and Størmer, 1952) 

Figures 17–22 

p 1934 Pterygotus princetonii Ruedemann, pl. 2 [non pp.163–167, pls. 1 & 3 = 

Strobilopterus princetonii (Ruedemann, 1934)] 

* 1952 Pterygotus (Pterygotus) howelli Kjellesvig-Waering and Størmer, pp. 997–998, 

fig. 1 

1964 Pterygotus (Pterygotus) howelli Kjellesvig-Waering, tables 1 and 2 

v. 1986 Pterygotus mcgrewi Kjellesvig-Waering and Richardson in Kjellesvig-Waering, 

p. 73 [nomen nudum] 

2007 Jaekelopterus (?) howelli Tetlie, p. 1430 

v. 2010 Jaekelopterus cf. howelli Lamsdell and Legg, pp. 1206–1207, fig. 1  

 

Material.  Holotype: YPM 204946 (originally PU 13740), posterior of telson. Additional 

Material: YPM 204945 (originally PU 13661), FMNH PE 6177.2, PE 6179–6180, PE 

7076, PE 9436, PE 9238–9241, PE 9245–9246, PE 26078, PE 60395, PE 61152–61153, 

438



 

PE 61156, PE 61161, PE 61164–61165, PE 61169, PE 61175–61176, PE 61181–61184, 

PE 61186, PE 61189–61190, PE 61193, KUMIP 292563. 

Horizon and locality.  Specimens YPM 204945 and 204946 were collected by Erling 

Dorf in 1932 from the type section of the Beartooth Butte Formation at Beartooth Butte, 

Park County, Wyoming, and are Emsian in age. The remaining Field Museum material 

originates from excavation of the Beartooth Butte Formation section at Cottonwood 

Canyon, Big Horn County, Wyoming, by Robert H. Denison and Eugene S. Richardson, 

Jr. in 1962 and is Pragian in age. The University of Kansas specimen is also from the 

Cottonwood Canyon locality and was collected during fieldwork led by Hans-Peter 

Schultze in 1983. 

Diagnosis.   Jaekelopterus with serrated telson margin; second intermediate denticle 

massively elongate in larger instars; type A genital appendage without median distal 

indentation. 

Description.  Jaekelopterus howelli is known in total from 33 specimens, which reveal 

details of the chelicera, appendage VI, metastoma, genital appendage, opisthosomal 

tergites, and pretelson and telson. The material from Beartooth Butte is scant, consisting 

of only the holotype YPM 204946 (the posteriormost portions of a telson) and YPM 

204945 (isolated trunk tergite). The Beartooth Butte material is not restudied here; 

instead, see Kjellesvig-Waering and Størmer [6] for a full description of these specimens, 

and Ruedemann [19] for a photograph of the holotype. Similarly, the cheliceral ramus 

referred to Jaekelopterus cf. howelli (FMNH PE 6177.2) by Lamsdell and Legg [31] is 

not refigured and reference should be made to that paper for a full account of the 

specimen. The ramus is, however, herein assigned to Jaekelopterus howelli without 
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reservation and measurements of the specimen are presented alongside those of the newly 

described chelicerae. 

No details of the dorsal carapace or visual structures are preserved. Of the ventral 

prosomal structures only the chelicerae, coxa, distal paddle of appendage VI, and the 

metastoma are preserved. The chelicerae are represented in five specimens, including the 

one described by Lamsdell and Legg [31]; four of these are isolated free rami, while one 

is a fully articulated chelicera consisting of the fixed and free rami (Fig. 17). Two of the 

specimens (FMNH PE 26078 and PE 61161) are from smaller, juvenile individuals, 

(ramus length < 40 mm) while the complete chelicera (FMNH PE 9436), KUMIP 292563 

and FMNH PE 6177.2 are from larger, presumably adult, instars (ramus length 90–110 

mm) (Table 5). The free ramus is consistent between the juvenile and adult morphologies 

in possessing a terminal denticle along with three principal and five intermediate 

denticles. The terminal denticle is oriented almost at a 90° angle to the ramus, while the 

principal denticles curve posteriorly along their anterior edge so that they are angled 

away from the terminal denticle. Paired intermediate denticles are located in front of and 

behind the anterior principal denticle, with a single intermediate denticle at the posterior 

of the ramus. In the juvenile specimens, the principal and intermediate denticles are more 

uniform, being of similar length and morphology; however, in the adult specimens, there 

is strong differentiation between and within the principal and intermediate denticles. The 

principal denticles are enlarged compared to the intermediate denticles (with the 

exception of the second intermediate denticle), with the primary denticle being almost 

twice as broad as either of the other principal denticles. The intermediate denticles are 

almost invariably half the size of the principal denticles; however, the second 

440



 

intermediate denticle is drastically elongated, being twice the length of any of the 

principal denticles but retaining the general intermediate denticle width, making it more 

of a long stiletto in contrast to the broad, slicing blades of the principal denticles or the 

short teeth of the other intermediate denticles. The only known fixed ramus is from the 

adult specimen FMNH PE 9436 (Fig. 17A), in which the denticle morphology broadly 

parallels that of the free ramus, with three principal denticles and five intermediate 

denticles arrayed in the same configuration and being of similar dimensions (Table 6). 

The fixed ramus differs primarily in the morphology of the terminal denticle, which is 

angular in comparison to the rounded terminal denticle of the free ramus but retains its 

90° angle in relation to the ramus, and in the form of the second intermediate denticle 

which is not elongated as in the free ramus. The positioning of the denticles on the fixed 

ramus would result in overlap of the principal denticles when the chelicera was closed, 

while the intermediate denticles would align but fall short of occlusion. 

The postoral prosomal appendages are known only from a single coxa of 

appendage IV or V and a number of fragmentary specimens of appendage VI (Fig. 18). 

The coxa of IV/V (FMNH PE 61181) has a preserved length of 44 mm, with a width of 

28 mm at the gnathobase and a preserved width of 29 mm distally. Twenty teeth are 

preserved at the gnathobase; these have a uniform long, narrow morphology and are 

somewhat curved. The coxa narrows markedly after the gnathobases before expanding 

distally. Eleven coxae of appendage VI are preserved, ranging in length from 8–50 mm 

(Table 7), representing both juvenile and more mature individuals. The morphology of 

coxa VI differs from that of coxa IV/V in bearing comparatively broader and having 

larger, more robust teeth, the most anterior of which is enlarged compared to the 
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succeeding teeth. There are also fewer teeth constituting the gnathobase; the most 

complete large coxa (FMNH PE 61186) preserves 13 teeth while some of the smaller 

specimens possess only 10–11 teeth, suggesting that teeth continued to develop later in 

ontogeny. The smallest coxa (FMNH PE 61176) also differs in the morphology of the 

teeth, which lack the curved anterior margin seen in larger specimens, while the largest 

coxae show signs of an ancillary tooth forming alongside the anterior enlarged tooth. 

Distally, appendage VI is only known from a single specimen (FMNH PE 61156) that 

preserves the two distal podomeres of a swimming paddle (Fig. 19A, B). The specimen 

has a preserved length of 51 mm and a maximum width of 25 mm and consists of 

podomere VI-8 with podomere VI-9 roughly preserved. The anterior margin of VI-8 

bears uniform, distally angled serrations while VI-9 is set into a notch located towards the 

posterior side of the distal margin of VI-8.  

The metastoma is represented by four specimens (Table 8), two of which (FMNH 

PE 61169 and PE 61175) only preserve the anterior portion (Fig. 19). The two complete 

specimens are oval with their widest point being located at the centre, a rounded posterior 

margin, and shallow anterior notch flanked by rounded shoulders. The notch in all 

specimens has a median angle of 120–135°, with the exception of FMNH PE 61175 (Fig. 

19D), which is laterally compressed. Of the two complete specimens, FMNH PE 61153 

(Fig. 19E) is large, with a length of 57 mm, and FMNH PE 61175 would likely have been 

of a similar size when complete; however, FMNH PE 61169 (Fig. 19C) would easily 

have been twice as large. The second complete metastoma, FMNH PE 61165 (Fig. 19G), 

is smaller (length 20 mm), however, and differs from FMNH PE 61153 (Fig. 19E, F) in 
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being comparatively broader, having a length/width ratio of 1.42 compared to the ratio of 

1.46 in FMNH PE 61153. 

Three specimens preserve details of the opisthosomal tergites (Fig. 20), all 

identifiable from the typical pterygotid ornamentation of large scales that grade from 

being broad or chevron-shaped anteriorly to more elongate semilunate and linguoid 

scales posteriorly that is also seen on the isolated tergite from Beartooth Butte (YPM 

204945). One specimen (FMNH PE 7076) is simply a fragment of cuticle, 40 mm long 

and 63 mm wide; however, FMNH PE 61189 (Fig. 20C) is a complete tergite and FMNH 

PE 61190 (Fig. 20A) consists of a number of tergites in series with their lateral margins 

missing. FMNH PE 61190 is 218 mm long in total, with a maximum preserved width of 

211 mm, and preserves four tergites with the following length/width measurements 

(asterisks indicate incomplete measurements): 47 mm/200 mm*, 40 mm/211 mm*, 54 

mm/162 mm*, 47 mm/133 mm*. The first tergite shows the smooth articulating facet 

across its anterior border with a row of flattened scales delineating the posterior extent of 

the articulation, while all the tergites also display a cuticular thickening at the posterior 

margin that can also be seen in FMNH PE 7076 (Fig. 20B). The isolated tergite FMNH 

PE 61189 has a length of 49 mm and a width of 181 mm and shows strong curvature 

between the axial and pleural regions, with the lateral margins of the tergite appearing 

swept back, probably a genuine characteristic in life magnified by the flattening of its 

three-dimensional shape during the taphonomic process. The lateral margins of the tergite 

are ornamented with a row of rectangular scales that give it a crenate (sensu Tollerton 

[42]) outline. 
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The only ventral opisthosomal structures preserved are the genital operculum and 

genital appendage, with material of both the type A and type B morphologies present 

(Fig. 21). The type A material is known from two specimens, both of which are 

fragmentary and relatively poorly preserved. FMNH PE 61193 (Fig. 21A) consists of the 

medial portions of a genital appendage and one ala (sensu Wills [68]) and has a preserved 

length of 144 mm with a preserved width of 158 mm. The ala is broad, curving smoothly 

away from the genital appendage distally, and is a single plate lacking the suture that 

marks the median and posterior opercular plates in some taxa. The lateral and distal 

margins of the ala show a thickening of the cuticle which narrows towards the base of the 

genital appendage. The anterior portions of the operculum are not preserved, so it is 

impossible to see whether deltoid plates were present. The ornamentation of the 

operculum consists of lunate scales that angle distally while following the curvature of 

the ala margin away from the genital appendage. The genital appendage itself is long and 

narrow, having a preserved length of 134 mm and a proximal width of 23 mm, and 

appears to consist of a single ventral lamella lacking segmentation which extends beyond 

the posterior margin of the operculum, thickening distally (distal width 33 mm). The 

other type A genital appendage, FMNH PE 61164 (Fig. 21B, C), is the tip of the ventral 

lamella of an exceptionally large individual, with a width of 46 mm and a preserved 

length of 54 mm. The lamella is bordered by a doublure distally that is 5 mm thick and 

narrows as it curves up the lateral margins of the lamella. The distal termination of the 

lamella is rounded with no evidence of bilobation; however, the lamella clearly begins to 

narrow anteriorly, indicating it possessed the typical pterygotid spoon-shape. Another 

structure possessing doublure or cuticle thickening overlies the lamella partway up its 
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preserved length. This structure is better preserved in the counterpart which shows the 

cuticle to be ornamented with scales and suggests that the structure is in fact a displaced 

ala from the genital operculum. 

The type B genital appendage is also known from two specimens, both of which 

preserve a single ala of the genital operculum and the genital appendage itself. Both 

specimens are large, ranging from 81–175 mm in preserved width with a maximum 

length of 54–79 mm (Table 9). The ornamentation of the operculum consists of broad 

scales that become more elongate and linguoid towards the segment posterior; there is no 

differentiation between median and posterior opercular plates, the operculum appearing 

to be a single plate lacking any joining suture as in the type A individuals. A cuticular 

thickening or doublure is present around the distal and inner margin of the operculum, 

especially prominent where the ala is in contact with the genital appendage. The genital 

operculum also curves distally around the genital appendage, encompassing the broader 

upper part of the appendage and abutting the distal lamella. The counterpart specimen of 

FMNH PE 6179 (Fig. 21E) shows clear indication of triangular deltoid plates flanking the 

anterior portion of the genital appendage, although the sutures are not clear on the part; 

the other specimen, FMNH PE 6180 (Fig. 21F) also displays deltoid plates but the sutures 

are only faintly preserved and identifying the plates is made harder as there is no break or 

differentiation in cuticular ornamentation. The type B genital appendage at first glance 

appears to be composed of two units, a proximal dorsal segment and an underlying 

lamella that comprises the main portion of the appendage; however, closer study reveals 

that these are, in fact, internal structures, and that the true ventral lamella has broken off 

near its base in both specimens. The ventral lamella is most obvious in FMNH PE 6179 
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(Fig. 21D) where its remnants are preserved at the anterior of the appendage, preserving a 

clear suture where it attached to the operculum with the lamella cuticle being the same 

colour and bearing similar ornamentation as that of the adjoining ala. The lamellar cuticle 

is then broken away to reveal the internal structures of the appendage, which are 

preserved at a different level to the surrounding operculum. The most prominent internal 

structure, the anterior portion with a broad flange-like termination marked by a distinct 

thickening, represents the internal doublure or cuticular folding of the operculum which 

is positioned dorsal to the genital appendage but has been superimposed onto the ventral 

structures due to compression. The other structure represents the dorsal plate of the 

genital appendage and consists of a broad triangular plate that narrows drastically 

posterior to the operculum internal doublure before lengthening distally into a spoon-

shaped extension with a bilobed termination. The shape of the true ventral lamella (and 

hence the genital appendage) is, therefore, uncertain; however, FMNH PE 6179 clearly 

preserves a hastate proximal portion. The shape of the dorsal plate is a reliable proxy for 

the distal shape of the ventral lamella, however cuticular fragments around the spoon-

shaped portion of the plate in FMNH PE 6180 suggests the ventral lamellar did not 

narrow as suddenly as the dorsal plate does, instead filling the available space between 

the two ala of the operculum and forming an uneven diamond. 

The telson of Jaekelopterus howelli is known from two specimens at Cottonwood 

Canyon which correspond well to the specimen from Beartooth Butte (Fig. 22). FMNH 

PE 9246 consists of an articulated telson and pretelson with a total preserved length of 89 

mm, the pretelson being 37 mm long and 46 mm wide and the telson 52 mm long with a 

preserved width of 26 mm. The pretelson is shown to have serrated lateral margins and 
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bears a median carina, while the telson broadens distally and has a flattened posterior 

margin, hinting at a more triangular shape. The lateral and posterior margin of the telson 

also bears serrations formed by angular scales. The presence or otherwise of a median 

carina cannot be ascertained; however, a flattened, ridge-like structure that runs down the 

centre of the telson may be this feature, although it could also be the result of taphonomic 

cuticular folding. The second Cottonwood Canyon specimen (FMNH PE 61152) is a 

relatively complete, isolated telson with a total length of 30 mm (24 mm discounting the 

terminal spine) and a width of 11 mm at its base, expanding to 23 mm distally. The 

posterior margin of the telson is almost flat, giving it a definite triangular outline. The 

lateral and posterior margins are ornamented with angular scales resulting in a serrate 

margin; these scales reduce in size towards the median posterior spine, which is 

triangular and 6 mm long, being 4 mm wide at its base. The dorsal surface of the 

specimen is somewhat worn, and although a structure resembling a median carina is 

present, it is far from definitive. This specimen, in particular, closely resembles the 

holotype Beartooth Butte telson (YPM 204946), which is far larger then either of the 

specimens described here, being 128 mm in width. The holotype also possesses a 

flattened posterior margin with serrated margins caused by the presence of angular scales 

that decrease in size towards a triangular posterior spine. 

Remarks. Jaekelopterus howelli shares an almost identical cheliceral denticulation pattern 

with Jaekelopterus rhenaniae along with a flattened posterior margin to the telson, 

resulting in an overall triangular shape. The Cottonwood Canyon species is clearly 

differentiated, however, through its possession of a serrated margin to the telson and the 

massive elongation of the second intermediate denticle in larger instars. The juvenile 
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chelicerae clearly exhibit the Jaekelopterus denticulation pattern and show similar trends 

to those noted in juvenile chelicerae of Jaekelopterus rhenaniae by Poschmann and Tetlie 

[69]: specifically, a more gracile terminal denticle and less differentiation between the 

principal and intermediate denticles. The form of the FMNH PE 61152 telson (Fig. 22A), 

with its flattened posterior, triangular outline and serrated margins, confirms that the 

Cottonwood Canyon species is the same as the Beartooth Butte pterygotid. 

 

Phylogenetic affinities 

Analysis of the phylogenetic matrix as detailed in the methods section yielded two most 

parsimonious trees with a tree length of 314 steps, an ensemble Consistency Index of 

0.455, ensemble Retention Index of 0.811, and Rescaled Consistency Index of 0.369, the 

strict consensus of which is presented here (Fig. 23). The topology is predominantly 

congruent with that retrieved by Lamsdell et al. [47], while the intrarelationships of the 

expanded Stylonurina is the same as in earlier analyses [48, 49] and the resolution of the 

pterygotoids is identical to the analysis of Braddy et al. [51]. The result differs from 

previous hypotheses in splitting the two constituent clades of Dolichopteridae, resulting 

in the family as presently defined being paraphyletic. The more basal clade consists of 

Dolichopterus Hall, 1859, Ruedemannipterus Kjellesvig-Waering, 1966 and 

Clarkeipterus Kjellesvig-Waering, 1966 and comprises the pruned Dolichopteridae, 

defined by the possession of antelaterally (sensu Tollerton [42]) positioned lateral eyes, 

an angle between podomeres VI-3 and VI-4 other than 180°, an angular projection on the 

anterior of VI-7, an additional moveable lobe on VI-8, and an expanded VI-9. The second 

clade constitutes the newly named Strobilopteridae and includes Strobilopterus and 

Buffalopterus. The clade is defined by the possession of a semicircular carapace, the first 
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podomere of appendage VI that fully projects beyond the carapace margin being VI-6 (as 

opposed to VI-4 as in most eurypterids), a distinctive carapace ornament consisting of 

elongate scales that angle away from the lateral eyes, and an ornamentation of angular 

scales across the posterior of the tergites. Strobilopterids are a node closer to 

Diploperculata in relation to dolichopterids due to podomere VI-7a being more than half 

the width of VI-7 and VI-9 being less than 25% the length of VI-8 (although this 

characteristic is reversed in adult Strobilopterus proteus and Strobilopterus princetonii, it 

is present in earlier ontogenetic stages of Strobilopterus princetonii [5]). 

All three taxa that are included in the phylogeny for the first time resolve within 

established clades. Jaekelopterus howelli is the sister-taxon to Jaekelopterus rhenaniae, 

united by the possession of a triangular shaped laterally expanded telson. Strobilopterus 

proteus is united with Strobilopterus princetonii by a suite of characters including the 

presence of carapace genal facets, a large podomere VI-9 which is greater than a quarter 

of the length of podomere VI-8, podomere VI-9 bearing serrations, and possibly the 

presence of an additional moveable lobe on VI-8. This last character is uncertain, 

however, as it is possible that the lobe in these taxa is a fixed extension of the podomere 

lacking the articulation reported in Dolichopterus. Strobilopterus laticeps, on the other 

hand, resolves at the base of the Strobilopterus clade, united by the presence of angular 

spatulae associated with the type A genital appendage and the occurrence of broad, 

sclerotised lunate scales in congruence with the striate opercular ornamentation. The 

position of Strobilopterus laticeps at the base of the clade is important because it suggests 

that characters that previously grouped strobilopterids with dolichopterids, such as an 

enlarged podomere VI-9 and serrated podomeres on limb VI, are not part of the 
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Strobilopterus groundplan, and developed convergently in those species that possess 

them. 

 

Discussion 

Ontogeny 

Chelicerates, like all arthropods, mature through a series of static stages called instars 

punctuated by periods of ecdysis followed by immediate rapid growth. Unlike many 

crustaceans and insects, however, chelicerates are generally considered to be direct 

developers that do not undergo extreme metamorphosis after hatching, although some 

pycnogonids gain body segments with associated limbs during postembryonic 

development [70] while extant xiphosurans hatch without their full compliment of 

opisthosomal appendages [71]. This form of hemianamorphic direct development may be 

the plesiomorphic condition for euarthropods; it is also observed in basal crustaceans, 

basal myriapods, and trilobites [72], and may be present in megacheirans [73]; the 

hexapodal larval stage of Acari and Ricinulei is, however, likely to be an independently 

derived condition [74]. True direct development was therefore thought to be a 

characteristic of arachnids; however, the veracity of larval eurypterids apparently 

showing a reduced segment count [75] is uncertain [76], and so it is unclear whether true 

direct development had already been attained by eurypterids. 

There have been few studies of ontogeny in eurypterids, the most widely cited 

being that of Andrews et al. [7], which focused on Eurypterus remipes DeKay, 1825; 

Brower and Veinus [77] and Cuggy [8] also conducted studies on Eurypterus remipes, 

with similar work also having been conducted on Hardieopterus (?) myops (Clarke, 
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1907) by Brower and Veinus [76] and Adelophthalmus luceroensis Kues and Kietzke, 

1981 [9]. The lack of work focusing on eurypterid ontogeny beyond these few examples 

probably stems from an apparent lack of juveniles in the fossil record. The co-occurrence 

of different instars at the Cottonwood Canyon locality therefore appears to be a rarity; 

aside from Eurypterus remipes, Hardieopterus (?) myops, Adelophthalmus luceroensis, 

and the newly described species herein, only juveniles of Hughmilleria shawangunk 

Clarke, 1907 [75] and Drepanopterus pentlandicus Laurie, 1892 [50] have also been 

reported. However, the influence of ontogeny has rarely been considered among 

chelicerate palaeontologists when describing species as has been shown recently in the 

case of the xiphosurid genus Euproops Meek, 1867 [10], and there remains the strong 

possibility that a number of eurypterid species are oversplit taxonomically. It has already 

been suggested that Pterygotus minor Woodward, 1864 is a juvenile of Pterygotus 

anglicus Agassiz, 1844 (the two species were synonymised by Braddy [78]), and with 

Erieopterus brewsteri Woodward, 1864 also received the same treatment as a juvenile 

specimen of Tarsopterella scotica (Woodward, 1872). Further probable synonyms 

remain: Eusacarna obesa (Woodward, 1868) is almost certainly a juvenile form of 

‘Carcinosoma’ scorpioides (Woodward, 1868) from the same locality, while 

Moselopterus elongatus Størmer, 1974 and Parahughmilleria major Størmer, 1973 are 

likely adults of the co-occurring Moselopterus ancylotelson Størmer, 1974 and 

Parahughmilleria hefteri Størmer, 1973 respectively (JCL personal observations). 

Stylonurella (?) arnoldi (Ehlers, 1935) also exhibits signs of representing a juvenile 

morphology, including enlarged lateral eyes. No adult eurypterids are found in immediate 

association, although the large hardieopterid Hallipterus excelsior (Hall, 1884) is known 
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from the same formation and may yet prove to be conspecific, although it is known only 

from its carapace and any suggested affinities are extremely tentative. Finally, a 

eurypterid from Siberia recently described as Stylonuroides orientalis Shpinev, 2012 

appears to exhibit genal spines and large lateral eyes while having a carapace breadth of 

less than 10 mm; given the juvenile material described here, it seems certain that 

‘Stylonuroides’ orientalis is an early juvenile form, possibly of one of the other 

eurypterids present in the fauna. 

It is clear that there is still much work needed in order to tease apart the 

ontogenetic pathways exhibited by eurypterids; by fully describing the ontogenetic 

changes occurring in species where it can be observed it is possible to propose general 

trends that will aid in the identification of juveniles in other assemblages, along with 

providing support for or against homology statements of various morphological features 

between different taxa. Within this framework, the Cottonwood Canyon species provide a 

unique and critical insight into eurypterid ontogeny, with multiple instars and multiple 

specimens of each instar preserved in species that are phylogenetically removed from the 

well-studied Eurypterus. 

 

Ontogeny of Jaekelopterus howelli 

The fragmentary and incomplete nature of the currently available Jaekelopterus howelli 

material makes it impossible to describe the ontogeny of the species in detail, even 

though more than one instar is present in the assemblage. Nevertheless, bservations are 

possible on changes in the chelicerae, metastoma and telson. The chelicerae are known 

from five specimens, four showing the denticles of the free ramus in some detail, of 

which two are interpreted as adults and two as juveniles. While both juvenile and adult 
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morphologies clearly correlate well with each other, possessing the same number of 

denticles in the same arrangement, there are also a number of marked differences (Fig. 

24). The principal denticles exhibit positive allometry in relation to the intermediate 

denticles, being two to three and a half times the size of the intermediate denticles in 

adult specimens in contrast to juveniles, the principal denticles of which are only one and 

a half times the size of the intermediate denticles. The terminal denticle shows further 

positive allometry in comparison to the principal denticles, being larger and more robust 

in the adult specimens; however, the most extreme example of positive allometry occurs 

in the second intermediate denticle. This denticle is in no way differentiated from the 

other intermediate denticles in juvenile specimens, yet in adults it is massively elongate, 

becoming over twice the length of any of the principal denticles. Positive allometry of the 

denticles in pterygotid chelicerae has been noted before [79]; however, there has been no 

published in-depth study on the development of the chelicerae through ontogeny. At 

present, the extreme elongation of the second intermediate denticle appears unique 

among eurypterids, although positive allometry of the terminal and principal denticles 

may be commonplace among pterygotids. 

The metastoma also appears to alter its dimensions throughout ontogeny. The 

juvenile metastoma appears comparatively broader than that of the adult, yet the 

length/width ratios are not drastically different, being 1.43 as opposed to 1.46. A decrease 

in relative width of the metastoma through ontogeny has, however, been shown in the 

related species Jaekelopterus rhenaniae [69], and the presence of larger, incomplete 

metastomae at Cottonwood Canyon means that its final length/width ratios may have 

been higher still. There may be another change occurring, with the angle of the anterior 
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notch becoming more acute in large specimens, decreasing from 135° in the juvenile 

metastoma to 120° in the largest specimen. This may, however, simply be another 

expression of the metastoma getting comparatively narrower through ontogeny, as the 

angle is defined by the breadth of the flanking shoulders. As the metastomal width 

decreases, so does that of the shoulders, which makes the notch angle more acute. A 

decrease in the relative width of the metastoma through ontogeny has also been noted in 

Stoermeropterus Lamsdell, 2011 and Moselopterus Størmer, 1974 [64] and, while it 

appears that the metastoma in Eurypterus retains its dimensions throughout ontogeny 

[80], the new evidence here from Jaekelopterus and Strobilopterus (below) suggests that 

the stasis in Eurypterus may be the exception rather than the rule. 

 

Ontogeny of Strobilopterus proteus 

Strobilopterus proteus offers a more complete, although still far from comprehensive, 

record of post-embryonic development in a eurypterid species. The Strobilopterus 

material at Cottonwood Canyon comprises at least 13 individuals, as derived from a 

simple carapace count, which encompass a broad range of sizes. Recognising moult 

stages in eurypterids can be difficult, as like in xiphosurans they are not always clearly 

discontinuous; however, it has been shown that it is possible to separate instars based on 

carapace dimensions [7]. In an attempt to differentiate instars of Strobilopterus proteus, 

measurements of carapace length were compared to carapace width (Fig. 25A). The 

resulting scatterplot suggests a number of groupings that may represent instars, although 

the smallest individuals fall very close together and are difficult to separate. What the 

plot does indicate, however, is that the carapace dimensions fall fairly neatly along the 

regression line, suggesting that any difference in relative dimensions is more likely to be 
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due to an ontogenetic trend rather than taphonomic distortion which produces a more 

random distribution. 

In order to further distinguish the possible instar groupings, comparisons of 

carapace length and width to the carapace length/width ratio were carried out (Figs. 

25B,C). These both revealed the same sets of groupings which are interpreted here as 

being true instars; a possible larval stage (termed α), a juvenile stage (β), a later juvenile 

or subadult stage (γ) and a final subadult to adult stage (δ). This final stage can 

potentially be broken down into a further four stages (δ1– δ4), all of which maintain the 

same adult morphology; however, as each potential instar is represented by only a single 

Strobilopterus proteus specimen, their identification at this time is extremely tentative. If 

these do represent instars, then this likely indicates that Strobilopterus attained its full 

adult morphology before sexual maturity, as neither modern horseshoe crabs [81] nor 

scorpions [82] moult again once becoming able to reproduce. 

Specimens of two other Strobilopterus species were also plotted alongside the 

Strobilopterus proteus distribution in order to test if they easily resolve within any of the 

recognised instars (Table 10). Three specimens were able to be included, each of which 

fit within a hypothesised moult stage: the holotype of Strobilopterus richardsoni, FMNH 

PE 5120, correlates to the possible δ1 stage while Strobilopterus princetonii specimen 

YPM 204949 falls within stage δ2. The juvenile specimen of Strobilopterus princetonii 

recognised by Tetlie [5] (PU 13854) resolves within stage γ. While each species probably 

has a somewhat different ontogenetic trajectory, it has been shown that the disparity in 

three different species of Adelopthalmus is not great [9] and so the instars of 

Strobilopterus proteus are considered a good proxy for those of the other Strobilopterus 
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species. Furthermore, the juvenile Strobilopterus princetonii corresponds in morphology 

to the specimens of Strobilopterus proteus assigned to stage γ with which it is associated. 

Therefore, these specimens may be useful in corroborating ontogenetic trends observed in 

the Strobilopterus proteus material. 

Using the available instars, it is possible to identify a number of trends operating 

during the postembryonic development of Strobilopterus proteus. The most striking, 

when comparing the α material to the δ specimens, is the presence of large epimera in the 

former (Fig. 26A). The presence of epimera in these specimens is somewhat inconsistent, 

with different specimens preserving epimera on the mesosoma, metasoma, or both. It has 

been noted in other eurypterid species, however, that the lateral epimera tend to break off 

during collection when the rock is split due to them being positioned on a slightly 

different plane in the sediment to the main body fossil [83], and this is likely also the case 

here. The epimera are much reduced in the stage β individuals but are still present as 

small projections on each of the opisthosomal segments (Fig. 26B), while the available γ 

material shows the epimera to have been completely reduced on at least the second tergite 

(Fig. 27A). By stage δ, all the epimera on opisthosomal segments 2–4, are wholly 

reduced with the epimera on segments 5–12 short and mostly vestigial, with the 

exception of those of the seventh segment which are retained as relatively large, angular 

projections (Fig. 27B). Evidence from the juvenile material of Strobilopterus princetonii 

that can be assigned to stage γ suggests that segments 2–4 are already devoid of epimera 

but that the epimera on the remaining segments are more pronounced than those seen in δ 

[5]. The observation that epimera may reduce in size throughout ontogeny has also been 

reported in the stylonurine eurypterid Drepanopterus pentlandicus [50], and a reported 
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juvenile specimen of Hardieopterus (?) myops figured by Clarke and Ruedemann [75] 

(their pl. 51, fig. 6) exhibits long epimera on the opisthosomal segments that are 

apparently absent from the adult specimens. A distinct phenomenon has been noted in the 

ontogenetic development of the xiphosuran Euproops, in which the juveniles possess 

long epimera, the bases of which expand dorsoventrally in each instar so as to increase 

the apparent width of the opisthosoma and reduce the size of the epimeral projections 

[10]. A similar situation appears to occur in Strobilopterus proteus, with each instar 

getting comparatively broader as the epimera decrease in size, and may be characteristic 

of the chelicerate ground plan.  

The other immediately obvious trend is the relative reduction in length of the 

prosomal appendages as the animal matured. The prosomal appendages of the α 

specimens are long and gracile, with elongate podomeres that result in the appendages 

projecting from beneath the carapace margin more proximally than in adult specimens, at 

around the fourth podomere; this results in appendage V curving back as far as the fifth 

opisthosomal segment. The paddle of appendage VI also possesses comparatively longer 

podomeres, also appearing to project from under the carapace at the fourth podomere, as 

is usual for Eurypterida. The appendages have begun to shorten in the β individuals, with 

appendage IV projecting from beneath the carapace margin at the fifth podomere while 

appendage VI emerges at the sixth podomere. None of the known Strobilopterus proteus 

γ stage specimens preserve the opisthosomal appendages; however, the apparent γ 

Strobilopterus princetonii shows both appendage IV and VI both appearing at the margin 

of the sixth and seventh podomeres [5]. In stage δ appendage VI has shortened further 

still, with the paddle projecting from beneath the carapace at the seventh podomere. The 
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degree of relative shortening of appendage length is extreme in Strobilopterus proteus; 

however, the same general trend has been noted in Eurypterus remipes [7] and 

Drepanopterus pentlandicus [50], and can also be observed in the material assignable to 

‘Carcinosoma’ scorpioides [84]. A similar trend can also be seen in the modern 

xiphosuran Limulus, the early free-swimming instars of which have comparatively longer 

prosomal appendages than the benthically inclined adults [81]. Strobilopterus princetonii 

also indicates that the overall morphology of the paddle changed during ontogeny, with 

juveniles having podomere VI-9 much smaller in relation to VI-8 than in adults, and the 

serrations on podomeres VI-7 and VI-8 being less developed [5], although this cannot be 

confirmed in the currently available material of Strobilopterus proteus. The 

‘Carcinosoma’ scorpiodes material also shows this trend [84], and this may be linked to 

earlier eurypterid instars being more active swimmers. 

Another major difference in the earliest α instar of Strobilopterus proteus is its 

development of the posterolateral regions of the carapace being drawn out into long genal 

spines, a plesiomorphic characteristic that is usually considered absent in Sclerophorata 

(eurypterids and arachnids) but is present in xiphosurans and chasmataspidids [2]. The 

genal spines have been reduced to small posterolateral extensions of the carapace by 

stage β, with the first opisthosomal tergite shown to be fully laterally expressed behind 

the flattened carapace posterior margin. Similar posterolateral extensions are known a 

number of other eurypterids, including Eurypterus [80], Drepanopterus [50], and 

Adelophthalmus [85], and it is possible that these, too, represent the vestigial remnants of 

genal spines. In the γ and δ instars the lateral portions of the second opisthosomal tergite 
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expand anteriorly until they are overlapped by the carapace posterolateral extensions, the 

lateral portions of the first tergite apparently having been reduced. 

The median ocelli are first observable in stage β specimens and are comparatively 

large and unpaired, set independently into the carapace cuticle without being positioned 

on a raised ocellar node. The ocelli are comparatively smaller in γ specimens but still 

situated independently on the carapace; however, in the δ instars the ocelli are now 

located together on a raised, cardioid ocellar node. The distinctive carapace cuticular 

ornamentation also changes throughout ontogeny, with the characteristic orientation of 

scales pointing away from the lateral eyes and angling around the carapace margins first 

being recognised in the γ specimens and becoming well-developed in δ individuals, the 

scales being elongated in the direction of orientation. The final definite trend observable 

during the ontogeny of Strobilopterus proteus is one of comparative shortening of the 

pretelson which is distinctly elongated in α individuals, the length of the segment being 

approximately twice the width. The length of the pretelson is gradually reduced through 

the β and γ stages, until the segment is approximately equal in length and width in δ 

instars. 

The earliest ontogenetic stages of Strobilopterus proteus also hint at some trends 

that are not directly observable within the species. The metastoma is comparatively broad 

in the α specimens, being almost oval-shaped. The adult morphology of the metastoma in 

Strobilopterus, however, appears to be narrow, as suggested by Strobilopterus princetonii 

Tetlie [5]. As noted above, the metastoma of other eurypterid species has been observed 

to narrow comparatively as the individual matured, and this could explain the more oval 

morphology of the structure in the early instars of Strobilopterus proteus. These instars 
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also preserve long hairs projecting from the margins of the opisthosomal opercula, with 

shorter hairs fringing the epimera. Hairs observed on disarticulated opercula of larger 

individuals are much shorter, often not projecting beyond the margin of the operculum, 

and it seems that these hairs, too, become comparatively reduced throughout 

development; a similar trend can be seen in early instars of Limulus [86]. Unlike Limulus, 

however, the earliest Strobilopterus instars possess the full adult complement of 

opisthosomal segments and appendages, and this suggests that true direct development 

may be another characteristic linking eurypterids and arachnids. 

Finally, it is unusual that the type A genital appendages of the α instars are so 

large and well-developed, extending as far as they do to the anterior of the seventh 

opisthosomal segment. This phenomenon has been reported previously in eurypterids, 

with juveniles having comparatively enlarged genital appendages [78]. Such development 

of the sexual organs is generally a sign of sexual maturity, and in males of modern 

Limulus this only occurs in the final moult [81]. The holotype specimen of Strobilopterus 

princetonii, however, possesses a type A genital appendage that only extends down to the 

fourth opisthosomal segment and, while drawing comparisons between species can be 

difficult, it is possible that the genital appendage also became relatively shorter 

throughout ontogeny, a trend most unexpected for a sexual organ. Such a trend is, 

however, apparent in the prosomal appendages, which represent the endopods of 

biramous limbs in which the exopod has been reduced. The genital appendage has been 

suggested to comprise the fused endopods of the genital operculum, with the ala being 

formed from the exopods [87]. The apparently conflicting ontogenetic trend seen in the 

genital appendage therefore is due to the appendage not being the sexual organ itself but 
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rather an ancillary structure that follows the development trend of the endopods from 

which it is derived, while the gonopores, which it overlies, may not fully develop until 

the final moult, as would be expected. This provides support for the hypothesis that the 

genital appendage represents a modified endopod of a biramous limb and shows the 

power of utilising ontogenetic pathways and trends in resolving homology statements. 

 

Implications of ontogenetic data for phylogenetic analyses 

Prior to this study, the Cottonwood Canyon material now assigned to Strobilopterus 

proteus had been considered to represent a number of distinct species, with notes held 

alongside the specimens at the Field Museum even suggesting that one of the juvenile 

individuals (FMNH PE 6165) was an aglaspidid. As mentioned earlier, chelicerate 

palaeontologists have traditionally neglected to consider ontogeny when describing 

species, and so it is fully possible that a number of species actually represent juveniles.  

Given the increasing application of phylogenetic methodology in chelicerate 

palaeontology it is important to recognise whether including such ontogenetic species in 

phylogenetic analyses significantly perturbs the resulting topology relative to that 

retrieved utilising only adult instars. Often the variations in juvenile morphology appear 

to reflect primitive character states and, theoretically, juveniles coded as part of an 

analysis could clade with more primitive groups than their adult counterparts due to an 

assortment of primitive character states that are lost during later ontogeny – essentially a 

similar problem to that noted for paedomorphic species [88]. This could then cause 

further problems with the juvenile taxa introducing derived character states into basal 

clades and increasing attraction of disparate taxa in different clades, reducing branch 
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support and potentially collapsing the inter-clade topology resulting in deep-level 

polytomies. 

In order to test whether this scenario holds true with the current phylogeny 

different juvenile ontogenetic stages of Strobilopterus proteus (α, β) and Strobilopterus 

princetonii (γ) were coded for the analysis and different permutations run with varying 

combinations of juvenile instars included, the results of which are shown here (Figs. 28, 

29). Performing the analysis with the inclusion of all juvenile instars alongside the 

original species codings results in a loss of resolution within the Strobilopteridae, with 

Buffalopterus pustulosus, Strobilopterus richardsoni, Strobilopterus laticeps and 

Strobilopterus princetonii γ forming a polytomy alongside a clade comprising 

Strobilopterus proteus and Strobilopterus princetonii. The two earliest instars, 

Strobilopterus proteus α and β, form a polytomy below the main strobilopterid clade. The 

broad-scale topology of the tree remains unchanged, although Dolichopteridae and 

Strobilopteridae now form a polytomy rather being fully resolved as part of the 

paraphyletic grade leading to Diploperculata (Fig. 28A). The ensemble Consistency and 

Retention Indices are both lower than in the original analysis, being 0.388 and 0.778 

respectively, resulting in a Rescaled Consistency Index of 0.302. Removing the original 

species codings so that only the juvenile instars are included in the analysis results in a 

widespread loss of resolution, with the entirety of the non-diploperculate forming a large 

polytomy with a number of smaller clades retained within it (Fig. 28B). Furthermore, the 

monophyly of Eurypterina is also uncertain as moselopterids are resolved in a polytomy 

with Stylonurina and the other Eurypterina. Further removing Strobilopterus princetonii 

γ, so that only Strobilopterus proteus α and β remained, returns much of the tree to its 
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original topology; however, the strobilopterids instead resolve in a basal polytomy as part 

of the dolichopterid clade (Fig. 28C), a relationship that is still retained when removing 

Strobilopterus proteus β from the analysis. Including solely Strobilopterus proteus β or 

Strobilopterus princetonii γ results in both cases in a similar topology to the first analysis, 

however the strobilopterid clade is completely broken down and forms a polytomy with 

Dolichopteridae and the remaining Eurypterina (Fig. 28D). Finally, including each of the 

earlier instars individually into the analysis results in Strobilopterus proteus α resolving 

at the base of Strobilopteridae, with a loss of resolution between Strobilopterus laticeps 

and Strobilopterus richardsoni along with Dolichopteridae and Strobilopteridea (Fig. 

29A), while Strobilopterus proteus β simply polytomies the entirety of Strobilopteridae 

while retaining them as a definite clade separate to dolichopterids (Fig. 29B). 

Strobilopterus princetonii γ meanwhile simply resolves as the sister to Strobilopterus 

proteus and Strobilopterus princetonii without altering the rest of the tree in any manner 

(Fig. 29C). 

These experiments are instructive in a number of ways. First, it appears that the 

earlier the instar the more basal within the clade it resolves. Second, the inclusion of 

instars can destabilise the internal topology of the clade resulting in its ground plan 

becoming uncertain or different altogether, and this can, in turn, result in loss of 

resolution over the analysis as a whole. Third, it would also seem that including 

ontogenetic species alongside more mature instars of the same species goes someway to 

conserving the tree topology. Even then, the presence of juveniles can be detrimental, 

interfering with metrics for assessing the completeness of the fossil record; if a group was 

particularly long-ranging a juvenile found in strata towards the end of its range but 
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resolved at the base of the clade would decrease the values of results calculated using the 

Relative Completeness Index [89], Stratigraphic Consistency Index [90] and Gap Excess 

Ratio [91] metrics through an inferred ghost range of the juvenile taxon back to the origin 

of its group. If the juvenile were to clade at the base of a larger clade, thereby possible 

affecting several nested clades, the influence on these metrics would be magnified. This, 

then, leads to incorrect assumptions regarding the completeness of the fossil record and 

the stratigraphical fit of a phylogenetic topology. Therefore, whenever possible, juvenile 

specimens should be excluded from phylogenies intending to ascertain inter-clade 

relationships or be used as part of a broader study; however, a broader analysis looking at 

taxa in a number of different groups both within and without Eurypterida is needed in 

order to test whether these observation are valid in a broader context or apply solely 

given the pattern of development seen in Strobilopterus. It should also be noted that 

ontogenetic data should not be completely excluded from phylogenetic analysis, and that 

when carefully integrated it has the potential to provide new information that may help 

resolve competing topologies. As an example, the juvenile specimen of Strobilopterus 

princetonii shows that the terminal podomere of the paddle is reduced in earlier instars in 

contrast to the larger podomere recognised in the adults. This is an important observation 

as a reduction of the terminal podomere of appendage VI defines part of the eurypterine 

tree, and the realisation that strobilopterids do in fact exhibit this reduction is one of the 

reasons that they have been able to be separated from dolichopterids. 

 

Conclusions 
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The new species of eurypterid described here from Cottonwood Canyon are a new and 

important source of data on the postembryological development of an extinct arthropod 

group. Trends that have been inferred in the few previous studies into eurypterid 

ontogeny [7-9] are corroborated by the new material, while new developmental 

phenomena are also described for the first time; the ontogeny of eurypterids appears to 

broadly parallel that of extant and extinct horseshoe crabs [10, 81, 86] with the major 

exception that eurypterids may hatch with their full complement of opisthosomal 

segments and appendages, thus being true direct developers like arachnids, and not 

hemianamorphic direct developers as in xiphosurans. Ontogenetic data can also be 

important for informing on homology statements and the observed development of the 

genital appendage in Strobilopterus proteus lends support to the hypothesis that the 

appendage represents a fused opisthosomal endopod [87]. 

The inclusion of these taxa into a growing phylogenetic framework provides 

further resolution of the basal Eurypterina. Previous chelicerate workers have commonly 

neglected to differentiate between juvenile and adult morphologies, and our experiments 

using the different Strobilopterus instars have shown how including juvenile individuals 

into an otherwise well-resolved phylogeny can destabilise it. It is integral that future 

workers account for ontogeny when describing species and selecting taxa for 

phylogenetic analysis; the preliminary results presented here suggest that coding 

juveniles as operational units within a phylogenetic analysis will produce unresolved, 

potentially spurious results. Ontogenetic data should not, however, be excluded without 

thought; rather, serious attempts should be made to successfully integrate ontogenetic 

data into phylogenetic analyses without resorting to coding instars as evolutionary 
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individuals. The logical alternative of coding ontogenetic data as separate characters is 

also problematic, however, as heterochronic perturbations in the timing of development 

and maturities can make the recognition of homologous developmental stages difficult. 

Recent studies on trilobites have shown that the protaspid larval phase does not 

encompass the same developmental stages in all trilobites [92], casting doubt on the 

validity of the standard direct comparison between final stage protaspides. In order to 

account for these issues, it has been suggested that comparisons be made only when the 

entire ontogenetic series is taken into account [92], and recent work has attempted to 

characterise this both descriptively [93] and quantitatively [94] in a number of trilobite 

species. In many cases however the entire ontogenetic series will not be available for 

study, and although instars can be recognised as in the current study it is impossible to 

correlate these stages with certainty between species. It is possible that in these situations 

ontogenetic data can still be included in phylogenies through careful character selection 

and definition, however a definitive procedure is at present lacking. If ontogenetic data 

could successfully be incorporated into phylogenetic analysis it could potentially have 

great utility in resolving groups that are at least partially defined by characteristics 

present only in the larval phases, as in some crustaceans [95, 96]. Furthermore, it is only 

through accurate handling of ontogenetic data that the affinities of taxa derived through 

paedomorphosis can be accurately determined phylogenetically. This is key to resolving 

conflicts in groups where paedomorphically derived species a commonplace, such as 

amphibians, where paedomorphic species have been shown to behave during analysis in a 

manner similar to the juvenile ontogenetic stages coded herein [88]. While this study 

does not present a full solution to the issue, it does suggest that incorporating well-
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constrained ontogenetic characters in a phylogenetic analysis may be a preferable 

solution to the potentially destabilising influence of juvenile instars being included as 

distinct operational units. 
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Specimen Length Width 
at base 

Margin 
width 

Eye 
length 

Eye 
width 

FMNH PE 6165 8 9* 0.5 2 0.5 
FMNH PE 6166 18 26* 0.5 4 1 
FMNH PE 7077 39* 63* 0.5 6 2 
FMNH PE 9236 10 15 0.5 3 0.5 
FMNH PE 28961 83 133 1 – – 
FMNH PE 61151 56 62* 1 8 2 
FMNH PE 61154 45 68* 1 7 2 
FMNH PE 61162 35 51* 0.5 5 2 
FMNH PE 61166 21 33* 0.5 4 1 
FMNH PE 61168 36* 52* 1 6 2 
FMNH PE 61179 27 29* 0.5 4 1 
FMNH PE 61197 10 12 0.5 – – 
FMNH PE 61198 15 13* 0.5 – – 
 

Table 1  - Strobilopterus proteus carapace measurements 

All measurements in millimetres. Asterisk (*) indicates an incomplete measurement. 
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Specimen Appendage  
FMNH PE 6165  Appendage III (podomeres 3 – 5): 3; 1*/1. 4; 1/1. 5; 1*/0.5. 

Appendage IV (podomeres 3 – 6): 3; 1*/1. 4; 1/1. 5; 2/1. 6; 1*/0.5. 
Appendage V (podomeres 4 – 7): 4; 2/1.5. 5; 2/0.5*. 6; 2/0.5*. 7; 2/0.5. 

FMNH PE 28961 Appendage VI (podomeres 7 – 8): 7; 17*/13. 7a; 11/8. 8; 19*/11*. 
FMNH PE 61155 Appendage VI (podomeres 8 – 9): 7a; 10/5.8; 20/10. 9; 6/3. 
FMNH PE 61197  Appendage II (podomeres 5 – 7): 5; 0.5/0.5. 6; 0.5/0.5. 7; 1/0.25. 

Appendage III (podomeres 2 – 5): 2; 1/1. 3; 1/1. 4; 1/1. 5; 1/1. 
Appendage IV (podomeres 1 – 4): Coxa; 2/1. 2; 1/1. 3; 1/1. 4; 0.5*/1.  
Appendage V (podomeres 1 – 9): Coxa; 3/1.5. 2; 1/1.5. 3; 1/1.5. 4; 1.5/1. 5; 3.5/1. 6; 
2.5/1. 7; 3/1. 8; 3/1. 9; 2/0.5. 
Appendage VI (podomeres 1 – 5): Coxa; 3/4. 2; 1/2. 3; 1/2. 4; 1/2. 5; 1/2.  

FMNH PE 61198 Appendage IV (podomeres 3 – 5): 5; 4/2. 6; 3/1.5. 7; 3/1. 
Appendage VI (podomeres 2 – 7): 2; 2/4. 3; 1.5/3. 4; 2/3. 5; 2.5/1*. 6; 2/2*. 7; 2*/1*. 

FMNH PE 61199 
 

Appendage V (podomeres 5 – 6): 5; 3/1. 6; 2*/1. 
Appendage VI (podomeres 1 – 2): Coxa; 3/5. 2; 1/2. 

 

Table 2  - Strobilopterus proteus prosomal appendage measurements 

All measurements in millimetres. Asterisk (*) indicates an incomplete measurement.  
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Table 3  - Strobilopterus proteus opisthosoma and telson measurements 

All measurements in millimetres. Asterisk (*) indicates an incomplete measurement.  
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Specimen Type Length 
(centre) 

Length 
(lateral) Width Appendage 

Length 
Appendage 

Width 
FMNH PE 26079 B 25* 44* 108* 23 14 
FMNH PE 61150 B 20* 24* 67* 18* 12 
FMNH PE 61197 A 3 2 11.5 9 1.5 
FMNH PE 61199 A 3 2 13 11 1.5 

 

Table 4  - Strobilopterus proteus genital operculum measurements 

All measurements in millimetres. Asterisk (*) indicates an incomplete measurement.  
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Specimen L/W td′ d1′ d2′ d3′ i1′ i2′ i3′ i4′ i5′ 
FMNH  
PE 9436 108/24 11*/6* 11/9 10/6 3*/4 2*/2 21/2 5/4 5/4 5/3 

– 43 17 62 9 13 30 35 68 
FMNH  
PE 6177.2 91/18 10/6 7/5 7/4 2*/3* 2/2 4*/3 2/3 4/4 2/2 

– 35 14 53 6 9 25 32 69 
FMNH  
PE 26078 34/8 5/2* 1*/3 3/2 2/1 1/1 1/1 1/1 2/1 1/1 

– 14 6 19 3 5 10 12 22 
FMNH  
PE 61161 24*/7* –/– 3/3 –/– 3/1 –/– –/– 2/1* 2/1 –/– 

– – – – – – – – – 
KUMIP 
292563 73*/20 –/– –/– –/– –/– –/– –/– –/– –/– –/– 

– – – – – – – – – 
 

Table 5  - Jaekelopterus howelli free ramus measurements 

All measurements in millimetres. Column headings correspond to the abbreviations listed 

in figure 23. Values in the second row indicate distance from the terminal denticle. 

Asterisk (*) indicates an incomplete measurement. 
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Specimen L/W td d1 d2 d3 i1 i2 i3 i4 i5 
FMNH  
PE 9436 110*/32* 10*/7 10/9 8/6 5/4 5/3 3/2 2*/4 4/4 2*/2 

– 46 18 62 8 14 33 38 67 
 

Table 6  - Jaekelopterus howelli fixed ramus measurements 

All measurements in millimetres. Column headings correspond to the abbreviations listed 

in figure 23. Values in the second row indicate distance from the terminal denticle. 

Asterisk (*) indicates an incomplete measurement. 
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Specimen Length Width 
(gnathobases) 

Width 
(distally) 

FMNH PE 9238 32* 20* 30* 
FMNH PE 9239 50* 47* 47* 
FMNH PE 9240 9* 10* 11* 
FMNH PE 9241 24* 37* 11* 
FMNH PE 9245 25* 36* 39* 
FMNH PE 60395 30* 30* 32* 
FMNH PE 61176 9* 6 7* 
FMNH PE 61182 37* 43* 52* 
FMNH PE 61183 8* 9 9* 
FMNH PE 61184 26* 40* 43* 
FMNH PE 61186 17* 39* 48* 
 

Table 7  - Jaekelopterus howelli coxa measurements 

All measurements in millimetres. Asterisk (*) indicates an incomplete measurement.  
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Specimen Length Width 
(centre) 

Width 
(base) 

Width 
(shoulders) 

Notch 
Depth 

Notch 
Angle 

FMNH PE 61153 57 39 16 17 4 130º 
FMNH PE 61165 20 14 4 6 1 135º 
FMNH PE 61169 45* 60* – 36 10 120º 
FMNH PE 61175 10* 23* – 10* 5 80º* 
 

Table 8  - Jaekelopterus howelli metastoma measurements 

All measurements in millimetres. Asterisk (*) indicates an incomplete measurement.  
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Specimen Length 
(centre) 

Length 
(lateral) Width Appendage 

Length 

Appendage 
Width 

(centre) 

Appendage 
Width 
(distal) 

FMNH PE 6179 54* – 81* 48 32 11 
FMNH PE 6180 79 57 175* 71 45 14 

 

Table 9  - Jaekelopterus howelli type B genital operculum measurements 

All measurements in millimetres. Asterisk (*) indicates an incomplete measurement.  
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Specimen Length Width L/W 
ratio Instar 

FMNH PE 6165 8 10 0.80 α 
FMNH PE 6166 18 32 0.56 γ 
FMNH PE 9236 10 15 0.67 β 
FMNH PE 28961 83 133 0.62 δ4 
FMNH PE 61151 56 102 0.55 δ3 
FMNH PE 61154 45 74 0.61 δ2 
FMNH PE 61162 35 59 0.59 δ1 
FMNH PE 61166 21 35 0.60 γ 
FMNH PE 61197 10 12 0.83 α 
FMNH PE 61198 15 20 0.75 β 
YPM 204949 38 77 0.49 δ2 
PU 13854 19 37 0.51 γ 
FMNH PE 5120 30 53 0.57 δ1 
 

Table 10  - Carapace data used in instar analysis 

Italics represent a carapace width retrieved from extrapolating from half a complete 

carapace. YPM 204949 and PU 13854 are specimens of Strobilopterus princetonii, and 

FMNH PE 5120 is the holotype of Strobilopterus richardsoni. All measurements in 

millimetres.   
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Figure 1  - Strobilopterus proteus 

Holotype FMNH PE 28961. Scale bars = 50 mm. 
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Figure 2  - Strobilopterus proteus 

Interpretive drawings. A: Holotype, FMNH PE 28961. Scale bar = 50 mm. B: FMNH PE 

61197. C: FMNH PE 61166. Scale bars = 10 mm. Specimens are colour-coded, with light 
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grey representing the carapace, red the prosomal appendages, orange the metastoma, blue 

the mesosoma, green the metasoma, and dark grey the telson. The Blattfüsse are 

demarcated by a lighter blue, while the first opisthosomal tergite (that of somite VIII) is 

light purple. The genital appendage is brown, and the spatula dark purple. Dashed lines 

represent unnatural edges of cuticle preservation, with solid lines delineating the outline 

of the animal. Thick lines indicated breaks in the matrix. Abbreviations for the labels are 

as follows: AF, articulating facet; Bl, Blattfüsse; Ca, carapace; DP, deltoid plate; Ea, ear 

on coxa VI; Ep, epimera; Ep7, enlarged epimeron of opisthosomal segment 7; GA, 

genital appendage; Ge, carapace genal spine; Gn, gnathobase; Ki?, Kiemenplatten?; Me, 

metastoma; MOP, median opercular plate; POP, posterior opercular plate; Se, serrations; 

Sp, spatula; Te, telson; VP, prosomal ventral plates; II–VI, prosomal appendages II–VI; 

VI-7a, appendage VI podomere 7a; VI-9, appendage VI podomere 9; 1–12, opisthosomal 

segments 1–12. 
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Figure 3  - Strobilopterus proteus 

Counterpart to holotype FMNH PE 28961. Scale bars = 50 mm. 
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Figure 4  - Strobilopterus proteus 

Details of counterpart to holotype FMNH PE 28961. A: prosomal appendage VI. B: 

Blattfüsse. Scale bars = 10 mm. 
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Figure 5  - Strobilopterus proteus 

Carapace specimens. A: FMNH PE 6166. B: Counterpart to FMNH PE 6166. C: FMNH 

PE 61151. D: Counterpart to FMNH PE 61151. E: FMNH PE 61154. F: Counterpart to 

PE 61154. Scale bars = 10 mm. 
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Figure 6  - Strobilopterus proteus 

Carapace specimens. A: FMNH PE 61162. B: FMNH PE 61168. C: FMNH PE 61179. D: 

FMNH PE 7077. Scale bars = 10 mm. 
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Figure 7  - Strobilopterus proteus 

Juvenile specimens. A: FMNH PE 9236. B: Counterpart to FMNH PE 9236. C: FMNH 

PE 6165. Scale bars = 10 mm. 
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Figure 8  - Strobilopterus proteus 

Juvenile specimens. A: FMNH PE 61166. B: Counterpart to FMNH PE 61166. C: FMNH 

PE 61198. D: Partial counterpart to FMNH PE 61198. E: Partial counterpart to FMNH 

PE 61198. Scale bars = 10 mm. 
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Figure 9  - Strobilopterus proteus 

Juvenile specimens. A: FMNH PE 61197. B: Counterpart to FMNH PE 61197. Scale bars 

= 10 mm. 
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Figure 10  - Strobilopterus proteus 

Juvenile specimens. A: FMNH PE 61199. B: Counterpart to FMNH PE 61199. Scale bars 

= 10 mm. 
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Figure 11  - Strobilopterus proteus 

Coxa, paddle and carapace cuticle specimens. A: FMNH PE 61155, appendage VI. B: 

Counterpart to FMNH PE 61155. C: FMNH PE 61172, coxa. D: FMNH PE 61165, 
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carapace cuticle. E: FMNH PE 61187, carapace cuticle showing median ocelli. F: 

Counterpart to FMNH PE 61187. Scale bars = 10 mm. 
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Figure 12  - Strobilopterus proteus 

Opisthosomal segment specimens. A: FMNH PE 61191. B: FMNH PE 61192. C: FMNH 

PE 6168. D: FMNH PE 61170. E: FMNH PE 61185. Scale bars = 10 mm. 
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Figure 13  - Strobilopterus proteus 

Type B genital operculum specimens. A: FMNH PE 26079. B: Counterpart to FMNH PE 

26079. C: FMNH PE 61150. D: Counterpart to FMNH PE 61150. Scale bars = 10 mm. 
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Figure 14  - Strobilopterus proteus 

Closeup of opisthosomal appendage setation. A: FMNH PE 61197, ventral view of lateral 

regions of first three opisthosomal appendages, prosomal appendage V alongside. B: 

FMNH PE 26079, genital operculum. Scale bars = 2 mm. 
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Figure 15  - Strobilopterus proteus 

Cuticular specimens. A: FMNH PE 6167, possible genital operculum. B: FMNH PE 

61171, Blattfüsse. C: FMNH PE 9242, possible Blattfüsse. D: Counterpart to FMNH PE 

9242. Scale bars = 10 mm. 
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Figure 16  - Strobilopterus proteus 

Metasomal segment specimens. A: FMNH PE 61163. B: Counterpart to FMNH PE 

61163. C: FMNH PE 61180. Scale bars = 10 mm. 
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Figure 17  - Jaekelopterus howelli 

Chelicera specimens. A: FMNH PE 9436. B: KUMIP 292563. C: FMNH PE 26078. D: 

FMNH PE 61161. Scale bars = 10 mm. 
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Figure 18  - Jaekelopterus howelli 

Coxa specimens. A: FMNH PE 61183. B: FMNH PE 60395. C: Counterpart to FMNH 

PE 60395. D: FMNH PE 61181. E: Counterpart to FMNH PE 61181. F: FMNH PE 9245. 
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G: FMNH PE 9238. H: FMNH PE 61182. I: Counterpart to FMNH PE 61182. J: FMNH 

PE 9241. K: FMNH PE 61176. L: FMNH PE 9239. M: FMNH PE 61186. N: Counterpart 

to FMNH PE 61186. O: FMNH PE 61184. P: Counterpart to FMNH PE 61184. Q: 

FMNH PE 9240. Scale bars = 10 mm. 
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Figure 19  - Jaekelopterus howelli 

Appendage VI and metastoma specimens. A: FMNH PE 61156, paddle. B: Counterpart 

to FMNH PE 61156. C: FMNH PE 61169, anterior of metastoma. D: FMNH PE 61175, 

anterior of metastoma. E: FMNH PE 61153, metastoma. F: Counterpart to FMNH PE 

61153. G: FMNH PE 61165, metastoma. Scale bars = 10 mm. 
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Figure 20  - Jaekelopterus howelli 

Opisthosomal segment specimens. A: FMNH PE 61190. B: FMNH PE 7076. C: FMNH 

PE 61189. Scale bars = 50 mm. 
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Figure 21  - Jaekelopterus howelli 

Genital operculum specimens. A: FMNH PE 61193, type A operculum. B: FMNH PE 

61164, tip of type A appendage. C: Counterpart to FMNH PE 61164. D: PE 6179, type B 
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operculum. E: Counterpart to FMNH PE 6179. F: FMNH PE 6180, type B operculum. G: 

Counterpart to FMNH PE 6180. Scale bars = 50 mm. 
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Figure 22  - Jaekelopterus howelli 

Telson specimens. A: FMNH PE 61152. B: FMNH PE 9246. C: Counterpart to FMNH 

PE 9246. Scale bars = 10 mm. 
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Figure 23  - Result of the phylogenetic analysis. 

Strict consensus of 2 MPTs. Clade names are shown to the right of the tree. 

Diploperculata comprises the clades Mixopteroidea, Adelophthalmoidea and 
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Pterygotoidea. Support values are shown by each node in the following format: jackknife 

support/bremer support/bootstrap support. 
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Figure 24  - Jaekelopterus howelli chelicera 

Reconstruction of the juvenile and adult morphology of the chelicera. A: Juvenile free 

ramus. B: Adult free ramus. C: Adult articulated fixed and free ramus, agape. D: Adult 

articulated fixed and free ramus, occluded. Abbreviations: td = terminal denticle of fixed 

ramus; d1–d3 = principal denticles of the fixed ramus; i1–i5 = intermediate denticles of 

the fixed ramus; td′ = terminal denticle of the free ramus; d1′–d3′ = principal denticles of 

the free ramus; i1′–i5′ = intermediate denticles of the free ramus. Scale bars = 10 mm. 
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Figure 25  - Graphs comparing carapace dimensions of instars of Strobilopterus 

Circles represent specimens of Strobilopterus proteus, while triangles represent 

Strobilopterus richardsoni and squares represent Strobilopterus princetonii. A: Carapace 

length vs. carapace width. The regression line is length = 0.5825(width) + 1.4404 and is 

statistically significant (r2 = 0.99034, 8 degrees of freedom, p = 2.39×10-9) indicating that 

the relationship between carapace length and carapace width is not random and therefore 

likely due to ontogeny. B: Carapace length:width ratio vs. carapace length. Instar 

groupings are shown, with the potential subdivision of the δ specimens shown with 

dashed lines. C: Carapace length:width ratio vs. carapace width. Instar groupings are 

shown, with the potential subdivision of the δ specimens shown with dashed lines. 
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Figure 26  - Strobilopterus proteus juvenile instars 

Reconstructions of juvenile instars. A: Possible larval instar α. Distal morphology of the 

paddle is extrapolated from a juvenile individual of Strobilopterus princetonii. The telson 

Figure 26 Strobilopterus proteus juvenile instars. Reconstructions of juvenile instars. A: Possible larval instar α. Distal morphology of the
paddle is extrapolated from a juvenile individual of Strobilopterus princetonii. The telson is reconstructed from FMNH PE 61166. B: Juvenile instar β.
Details of distal paddle morphology are extrapolated from a juvenile individual of Strobilopterus princetonii. The telson is extrapolated from FMNH
PE 61166. Scale bars = 10 mm.

Lamsdell and Selden BMC Evolutionary Biology 2013, 13:98 Page 40 of 46
http://www.biomedcentral.com/1471-2148/13/98
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reconstructed from FMNH PE 61166. B: Juvenile instar β. Details of distal paddle 

morphology are extrapolated from a juvenile individual of Strobilopterus princetonii. The 

telson is extrapolated from FMNH PE 61166. Scale bars = 10 mm. 
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Figure 27  - Strobilopterus proteus subadult and adult instars 

Reconstructions of subadult and adult instars. A: Juvenile/subadult instar γ. Limbs and 

posterior opisthosomal segments are extrapolated from a juvenile individual of 

Figure 27 Strobilopterus proteus subadult and adult instars. Reconstructions of subadult and adult instars. A: Juvenile/subadult instar γ. Limbs
and posterior opisthosomal segments are extrapolated from a juvenile individual of Strobilopterus princetonii. The telson is extrapolated from
FMNH PE 61166. B: Subadult/adult instar δ. Anterior prosomal limbs are extrapolated from Strobilopterus princetonii. The telson is extrapolated
from FMNH PE 61166. Scale bars = 10 mm.

Lamsdell and Selden BMC Evolutionary Biology 2013, 13:98 Page 41 of 46
http://www.biomedcentral.com/1471-2148/13/98
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Strobilopterus princetonii. The telson is extrapolated from FMNH PE 61166. B: 

Subadult/adult instar δ. Anterior prosomal limbs are extrapolated from Strobilopterus 

princetonii. The telson is extrapolated from FMNH PE 61166. Scale bars = 10 mm. 
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Figure 28  - Results of phylogeny experiments 

Strict consensus trees retrieved when including juvenile instars in the phylogenetic 

analysis. A: All Strobilopterus proteus and Strobilopterus princetonii instars included. B: 

Adult Strobilopterus proteus and Strobilopterus princetonii instars excluded, juvenile 

instars included. C: Only α and β  Strobilopterus proteus instars included, all other 

Strobilopterus proteus and Strobilopterus princetonii instars excluded. D: Only the 

Strobilopterus proteus β instar included, all other Strobilopterus proteus and 

Strobilopterus princetonii instars excluded. 
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Figure 29  - Results of phylogeny experiments 

Strict consensus trees retrieved when including juvenile instars in the phylogenetic 

analysis. A: With the addition of the Strobilopterus proteus α instar. B: With the addition 

of the Strobilopterus proteus β instar. C: With the addition of the Strobilopterus 

princetonii γ instar. 
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Chapter 7 

Phylogenetic support for the monophyly of proetide trilobites 

 

James C. Lamsdell and Paul A. Selden 

(Formatted for submission to Lethaia) 

 

The monophyly of the order Proetida, the only trilobite group to survive the end-

Devonian mass extinction, has been regularly questioned since its erection almost three 

decades ago. Through analysis of a novel phylogenetic dataset comprising 114 characters 

coded for 54 taxa, including both traditional members of the Proetida along with a 

number of other trilobite groups, the monophyly of proetide trilobites is rigorously tested 

for the first time. Proetida is shown to be monophyletic, united by the initial lateral eye 

formation in early protaspids occurring at the lateral margin rather than the anterior 

margin, and the form of the protaspid glabella being tapering with a preglabellar field. A 

number of adult characters, including the possession of a quadrate or shield-shaped 

hypostome with angular posterior margins, the hypostome medium body being divided 

by a deep groove that entirely transverses the median body, the presence of an enlarged 

thoracic spine on the sixth tergite, and a tergite count of between 7 and 10, also define the 

basal node. Hystricurid and dimeropygoid trilobites are shown to resolve at the base the 

group, while the remaining traditional proetide taxa are divided between large proetide 

and aulacopleuroid clades. Some traditional aulacopleuroid taxa, such as rorringotniids 

and scharyiids, are retrieved as basal members of the Proetoidea. 
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Trilobites are a monophyletic group of arthropods (Ramsköld & Edgecombe 1991) and 

are some of the most iconic Palaeozoic organisms, with some 10,000 species and an 

evolutionary history stretching some 300 million years from the Cambrian to the Permian 

(Lieberman & Karim 2010). Trilobite diversity was adversely affected by a number of 

mass extinction events, including the end-Ordovician (Chatterton & Speyer 1989; Adrain 

et al. 1998), from which trilobite diversity recovered (Adrain et al. 2000; Congreve 

2013), and the end-Devonian (Feist 1991; McNamara & Feist 2006; Feist & McNamara 

2007; McNamara et al. 2009) which marked the beginning to the terminal decline of the 

trilobites until their eventual extinction at the end-Permian (Owens 2003). The youngest 

known trilobites, and the only group to persist through the Devonian into the 

Carboniferous, belong to the order Proetida. Proetides were one of the last major trilobite 

groups to be formally recognised, and were raised to ordinal status by Fortey & Owens 

(1975). The group has had a checkered taxonomic history, however, with its monophyly 

challenged a number of times (Bergström 1997; Adrain 2011) resulting in a polyphyletic 

Proetida being implicitly considered in a number of studies (e.g. Lerosey-Aubril & Feist 

2005). Therefore, ascertaining the monophyly or otherwise of proetide trilobites is a key 

question in trilobite systematics, especially given their distinction of being the only 

trilobite group to weather the Late Devonian Biodiversity Crisis. The application of 

paraphyletic or polyphyletic groups in biodiversity studies can have drastic effects on our 

understanding of mass extinction events, with erroneous patterns of pseudoextinction 

retrieved when monophyly is not recognized while incorrect assumptions of monophyly 

can dampen the observed loss of biodiversity, especially when studies are conducted at 

higher taxonomic levels (Patterson & Smith 1989). Given that the Late Devonian may be 
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potentially unique among the Big Five mass extinctions in being driven primarily by a 

decrease in endemism and a drop in speciation rate rather than a marked increase in 

extinction rate (Stigall 2012), and that accurate phylogenetic hypotheses are required in 

order to assess the mechanisms behind changes in speciation, extinction, and 

biogeography (Stigall 2010), uncertainty of the monophyly of major groups such as 

proetides can have serious negative implications for our understanding of the patterns and 

processes underlying the biotic turnover occurring during this period. Proetides have 

already been the subject of a number of biodiversity studies focusing on the Late 

Devonian (Lerosey-Aubril & Feist 2012; Feist & McNamara 2013) and beyond (Owens 

2003), with a number of pseudoextinctions amongst Late Devonian proetides having 

already been hypothesised (Owens 1994). Uncertainty over the order’s status serves to 

only further muddy the waters, and until the issue is resolved the results of such 

biodiversity studies must be treated with caution. 

 

Taxonomic history of the Proetida 

As with many of the major trilobite groups, proetides have had a complicated taxonomic 

history. The superfamily Proetacea was first diagnosed by Hawle & Corda (1847). For 

many years trilobite classification hinged on whether authors considered cephalic suture 

morphology (Beecher 1897) or pygidium size (Gürich 1907) to be of greater importance 

for defining groups; however, following Swinnerton (1915), a more nuanced hierarchy 

began to emerge. At this time, proetids comprised part of the Olenina, while bathyurids 

where included along with illaenids in Ptychoparina; however, Richter (1933) removed 

illaenids to Bathyuriscidea within Redlichiina, and placed proetids and otarinionids 
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together as part of Ellipscocephalidea within Ptychopariina. By the 1950s, a more modern 

approach to trilobite systematics began to prevail, encapsulated by Henningsmoen (1951) 

and Hupé (1955), which discarded the use of single characteristics as the sole criterion 

for assigning relationships. In the scheme of Hupé (1955), the groups that later became 

the order Proetida fell broadly into two superfamilies: Holotrachelidae, Proetidae, 

Tropidocoryphidae, Cyrtosymbolidae, Dechenellidae, Phillipsiidae, and 

Brachymetopidae comprised the Proetoidea, while Hystricuridae, Toernquistiidae, 

Dimeropygidae, Bathyuridae, and Otarionideae were included among the 

Solenopleuroidea. This classification was heavily revised for the Treatise on Invertebrate 

Paleontology (Moore 1959), in which Proetacea was included with the superfamily 

Illaenacea in the suborder Illaenina within the Ptychopariida (Harrington et al. 1959), 

based on the general lack of glabella furrows, a general lack of eye ridges, and a usual 

thoracic segment count of between 6 and 10. At the time of the Treatise, Proetacea 

comprised the families Proetidae, Phillipsiidae, Otarionidae, Aulacopleuridae, 

Brachymetopidae, Phillipsinellidae, Celmidae, Plethopeltidae, and Dimeropygidae, with 

Holotrachelacea and Bathyuracea being included within Illaenina. Bergström (1973) later 

transferred the Holotrachelidae and Lecanopygidae (from Bathyuracea) into Proetacea, 

retaining the superfamily within Illaenida but moving the group out of the ptychopariids. 

Bathyurids and proetoids, therefore, were considered to be derived independently from 

illaenids, while hystricurids remained part of the Solenopleuroidea. 

 

Fortey & Owens (1975) raised Proetida to ordinal status, including within it the families 

Aulacopleuridae, Bathyuridae, Celmidae, Dimeropygidae, Glaphuridae, Otarionidae, 
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Proetidae, and the subfamily Hystricurinae. This new grouping was considered to exhibit 

a common larval morphology and was further defined based on twelve adult 

characteristics: (1) a medially transversely narrow rostral plate which generally tapers 

backwards; (2) a well defined vaulted glabella; (3) poorly expressed anterior glabellar 

furrows; (4) a well defined occipital ring; (5) well developed (often blade-like) genal 

spines; (6) semicircular holochroal eyes medially or backwardly positioned; (7) posterior 

sections of the facial suture diverging at a moderate to high angle, anterior branches 

usually divergent; (8) doublure of convex species usually recurved steeply beneath the 

border of the free cheek to form a lateral cephalic ‘tube’; (9) thorax usually with 8–10 

segments (maybe as few as 6 or as many as 22), width of pleurae equal to or exceeding in  

width that of the axis, thoracic segments in contact along their length, pleural furrows 

diagonal; (10) pygidium with strong pleural furrows and margin usually entire, doublure 

with strong terrace lines; (11) hypostome longer than wide with elongate, oval middle 

body and one pair of relatively posteriorly situated middle furrows, borders narrow; and 

(12) preglabellar field variously developed, species with shorter preglabellar field tending 

to have a granular surface sculpture, those with a longer preglabellar field tending to have 

a surface sculpture of fine terrace lines. As well as explicitly stating that these taxa 

formed a natural group – a monophylum – Fortey & Owens (1975) considered there to be 

no compelling link between Proetida and Illaenida. Bergström (1977) contested that 

Proetida was an unnatural group, citing the occurrence of two different types of 

enrollment, and split proetides among three groups; one consisting of the Bathyuridae, 

Proetidae, and Brachymetopidae, another comprising the Hystricurinae, Dimeropygidae, 

and Aulacopleuridae, with Glaphuridae and Celmidae forming the third group. Bergström 
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(1977) considered each of these groups to be independently derived and not closely 

related to one another, with the hystericurine group forming part of the Solenopleuracea 

and the glaphurid group being included within the Odontopleurida. Fortey & Owens 

(1979) refuted Bergström’s (1977) contention that enrollment type defined specific 

groups and maintained the validity of the order. Lütke (1980) provided an in-depth 

revision of the proetides, which were considered to be a monophyletic suborder of 

ptychopariid trilobites derived from the Hystricurinae, which had once again been placed 

within the Solenopleuracea. The group was split into two superfamilies: the Proetacea, 

incorporating the Proetidae (which included cornuproetids, phillipsiids, cyphoproetids 

and others as subfamilies) and Tropidocoryphidae, and the Aulacopleuracea, comprising 

the Aulacopleuridae (including brachymetopids, scharyiids and rorringtoniids), 

Dimeropygidae, and Cyphaspididae. Glaphuridae and Celmidae where retained within 

proetides, but were considered of uncertain affinity. This classification became widely 

adopted (e.g. Owens & Hammann 1990), and in the revision of the Treatise was refined 

to divide Proetida into three superfamies, with Proetoidea including Proetidae and 

Phillipsiidae, Aulacopleuroidea comprising Aulacopleuridae, Brachymetopidae and 

Rorringtoniidae, and Bathyuroidea consisting of Bathyuridae, Dimeropygidae, Celmidae, 

Lecanopgidae, Glaphuridae, Holotrachelidae, and Telephinidae (Fortey 1997). 

 

Recently, however, it has again been suggested that Proetida comprises at least two 

independently derived groups. Adrain (2011) presented a revised trilobite classification 

that split aulacopleuroids off into their own order, reducing Proetida to Proetidae and 

Tropidocoryphidae. Aulacopleurida was also greatly expanded beyond Aulacopleuridae, 
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Brachymetopidae, Dimeropygidae, Rorringtoniidae, and Scharyiidae to include the 

traditional proetide groups Bathyuridae and Telephinidae, along with Holotrachelidae and 

Hystricuridae, and the ptychopariid families Alokistocaridae, Crepicephalidae, 

Ehmaniellidae, Marjumiidae (including Coosellidae), Solenopleuroidae, and 

Tricrepicephalidae. The rationale for this split hinges upon morphological differences 

among the larval stages in each group, with Proetida possessing a non-adultlike globular 

form while Aulacopleurida have adultlike larvae featuring paired spines or tubercles. 

There are a number of potential flaws with the classification, however, not least that it is 

presented as a simple list with not clear justification for sweeping taxonomic changes 

beyond the few lines that appear in footnotes. Furthermore, the apparent separation of 

‘proetoid’ and ‘aulacopleuroid’ larval type is not as clear-cut as the classification 

suggests; a globular protaspis is known from both dimeropygids (Chatterton 1994) and 

aulacopleurids (Yuan et al. 2001), while the pattern of paired tubercles considered 

diagnostic of aulacopleuroids by Adrain (2011) is absent in ehmaniellids (Hu 1998), 

coosellids (Hu 1978) and crepicephalids (Hu 1971) at least. The supposedly diagnostic 

paired spines on the posterior of the aulacopleuroid larva are common in trilobites, 

including redlichiids (Dai & Zhang 2012), olenellids (Webster 2014), olenids (Månson & 

Clarkson 2012) and cheirurids (Lee & Chatterton 1997), among others. The assertion that 

there is no clear sister relationship between proetoids and aulacopleuroids also ignores 

certain characters known to be present in both groups, such as the development of the 

preglabellar field in the meraspid stage. Given the sudden expansion of the 

aulacopleuroids with the inclusion of a number of disparate ptychopariid families under 

the vague characteristic of the possession of a ‘flattened, adult-like larvae’ there is the 
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possibility that, in Adrain’s (2011) classification, the group has become something of a 

wastebasket taxon for various Cambrian taxa of uncertain affinity, much like 

Ptychopariida itself had been.  

 

Here, we present a novel phylogenetic analysis comprising both traditional members of 

the Proetida along with a number of other trilobite groups in order to test the monophyly 

of proetide trilobites and ascertain the limits of the Aulacopleuroidea. This is the first 

time that proetide monophyly has been tested phylogenetically, and represents the first 

rigorous analysis to test the balance of the various criteria used to argue for and against 

the validity of the order. 

 

Methods 

Terminology 

Trilobite terminology largely follows Whittington and Kelly (1997); however, an attempt 

has been made to quantify more accurately the distinctions between the standard pygidial 

size classifications. The current divisions between the micropygous, isopygous, and 

macropygous classifications are unclear at best, especially when such mid-tier 

classifications as subisopygous are included. A new method is set out here that compares 

the size of the pygidium to the cephalon by overlaying rectangular boxes over the 

cephalon and pygidium, from which their areas are calculated and compared, giving the 

size of the pygidium relative to the cephalon as a percentage. Distinctions between 

micropygous, isopygous and macropygous size ranges were made at major 

discontinuities of pygidial sizes: micropygous pygidia occupy less than 25% the area of 
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the cephalon, ispopygous pygidia occupy 25–110% the area of the cephalon, and 

macropygous pygidia occupy greater than 150% the area of the cephalon. Furthermore, 

micropygous and isopygous pygidia can be further subdivided, with the degree of 

micropygosity varying from micropygous (10–25%) and extremely micropygous (0.5–

5%) and the degree of isopygosity ranging from isopygous (90–105%), subisopygous 

(35–90%) and extremely subisopygous (25–35%). 

Phylogenetic analysis 

For the phylogenetic analysis, a matrix of 114 characters and 54 taxa was compiled. 

Species were coded from figures in the literature, supplemented with observations of 

specimens where possible. The redlichiid trilobite Eoredlichia intermedia (Lu, 1940) was 

specified as the outgroup, as it represents a well-known member of the group from which 

ptychopariids likely originated (Lieberman & Karim 2010), and from which both ventral 

morphological characteristics and earlier ontogenetic stages are known. Ingroup taxa 

were selected based on morphological completeness and, where possible, the existence of 

earlier ontogenetic stages assigned to the species. A number of higher-level trilobite 

groups were included alongside proetide taxa in the analysis, each represented by 

multiple exemplars where possible, as these more accurately represent the character states 

and transitions of a group than a single exemplar such as a token species or composite 

taxon would (see Brusatte 2010), as well as allowing for the potential of para- or 

polyphyly. A number of ptychopariid groups considered by Adrain (2011) to comprise 

part of his revised Aulacopleuroidea were included, specifically 

Alokistocaridea/Ehmaniellidae (represented by Altiocculus harrisi (Robison, 1971), 

Elrathia kingii (Meek, 1870), and Ehmaniella apolabella Hu, 1998), Crepicephalidae 
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(Coosella prolifica Lochman, 1936; Crepicephalus buttsi montanaensis Lochman in 

Lochman & Duncan, 1944), Holotrachelidae (Holotrachelus punctillosus (Törnquist, 

1884), Marjumiidae (Marjumia typa Walcott, 1916; Modocia kohli Robison and 

Babcock, 2011), Solenopleuridae (Solenopleura canaliculata (Angelin, 1851); 

Parasolenopleura gregaria (Billings, 1865)), and Tricrepicephalidae (Tricrepicephalus 

texanus (Shumard, 1861)). Alongside these members of the Olenidae (Olenus 

wahlenburgi Westergård, 1922; Parabolina spinulosa (Wahlenberg, 1818); Leptoplastus 

crassicorne (Westergård, 1944)) and Ellipsocephalidae (Lermontovia dzevanovskii 

(Lermontova, 1951)) were included as ptychopariids that have not been considered to be 

allied to the aulacopleuroids. Representatives of the other major trilobite groups 

hypothesised to be derived from the ptychopariids (Fortey 2001) were included in order 

to test whether the ptychopariid taxa included in the analysis resolve either as: 1) in-

group or stem proetides; 2) as part of a monophyletic Ptychopariida; or 3) as stem-taxa to 

any of the other included trilobites orders. Asaphida was represented by Asaphus 

expansus (Wahlenberg, 1818), Isotelus parvirugosus Chatterton & Ludvigsen, 1976, 

Proceratopyge rectispicatus (Troedsson, 1937), Proceratopyge promisca Choi, Kim & 

Lee, 2008, Aphelaspis brachyphasis Palmer, 1962, Remopleurides caelatus Whittington, 

1959, and Remopleurides eximius Whittington, 1959, representing asaphids, aphelaspids, 

ceratopygids and remopleurids, while Phacopida was represented by Flexicalymene 

senaria (Conrad, 1841), Calyptaulax annulata (Raymond, 1905), Ceraurinella 

nahanniensis Chatterton & Ludvigsen, 1976, Ceraurinella typa Cooper, 1953, 

Parapilekia olesnaensis (Růžička, 1935), Anacheirurus frederici (Salter, 1864), and 

Kawina arnoldi Whittington, 1963 comprising members of Calymenina, Phacopina and 
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Cheirurina. Harpetida were represented by Eskoharpes palanasus McNamara, Feist and 

Ebach, 2009, Entomaspis radiatus Ulrich in Bridge, 1930, Eoharpes benignensis 

(Barrande, 1872) and Harpes macrocephalus Goldfuss, 1839, with Harpides atlanticus 

Billings, 1865 also being included.  

Finally, 19 proetide trilobites were included in the analysis so as to test the monophyly of 

the group. Hystricurids were represented by Hintzecurus paragenalatus (Ross, 1951) and 

Politicurus politus (Ross, 1951), while dimeropygids and toernquistiids were represented 

by Dimeropyge speyeri Chatterton, 1994 and Toernquistia sanchezae (Chatterton, 

Edgecombe, Waisfeld and Vaccari, 1998) respectively. Tropidocoryphe bassei Van 

Viersen, Prescher & Savelsbergh, 2009, Scharyia micropyga (Hawle & Corda, 1847) and 

Rorringtonia kennedyi Owens, 1981 represented Tropidocoryphidae, Scharyiidae and 

Rorringtonidae. Bathyurus ulu Ludvigsen, 1979 was included for bathyurids while 

Proetus talenti Chatterton, 1971, Phillipsia belgica Osmólska, 1970 and Gerastos 

tuberculatus (Barrande, 1846) where included for proetids. Among the aulacopleurids, 

Aulacopleura wulongensis Wang, 1989, Aulacopleura longecornuta (Roemer, 1854), 

Aulacopleura konincki (Barrande, 1846), Cyphaspis dabrowni (Chatterton, 1971), 

Maurotarion struszi (Chatterton, 1971), Maurotarion periergum (Haas, 1969), 

Brachymetopus germanicus Hahn, 1964, and Otarion huddyi Adrain & Chatterton, 1994 

were selected for inclusion. 

The 114 characters are listed here. The data matrix is shown in Table 1. Characters 1–96 

are coded for holaspids only, 97–107 are coded for protaspids only, and 108–114 are 

coded for meraspids only. 
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1. Eye angle: diverging posteriorly (0); equilateral (1); diverging anteriorly (2). 

2. Lateral eye size (as percentage of carapace): 30%+ (0); 20%–29% (1); <15% (2). 

3. Eye shape: shaded dorsally by palpebral lobe – visual surface with crescentic 

outline (0); eye expands beyond palpebral lobe – visual surface scimitar-shaped 

(1). 

4. Eyes sit atop free cheek: absent [eye visual surface set into free cheek] (0); 

present, globular [visual surface sits atop free cheek and projects above it with 

roughly spherical outline] (1); present, turreted [visual surface sits atop free 

cheek and projects above it with angular outline and flat dorsal surface] (2). 

5. Eye position: posterior of carapace [0–45%] (0); midline or anterior [48%+] 

(1); eye encompasses entire carapace length (2). 

6. Eye ridges expressed dorsally on exoskeleton: present (0); absent (1). 

7. Eye ridges: angled anteriorly [>110°] (0); equal to eye [90–110°] (1); absent (–). 

8. Ridge insertion on eye: anterior of eye (0); mid-point of eye (1); ridge absent (–). 

9. Position of palpebral lobe: main body distant from axial furrow (0); main body 

abuts axial furrow (1). 

10. Size of palpebral lobe: equal to or larger than visual surface (0); smaller than 

visual surface (1). 

11. Carapace shape: wider than long [≤0.55] (0); equilateral [>0.55] (1). 

12. Posterior suture position: avoids outer margin (0); cuts through outer margin (1); 

skirts margin (2); no suture (–). 

13. Suture angle from lateral eye: 30–45° (0); ≥60° (1); ≤0° (2); 10–20° (3); no 

suture associated with eye (–). 
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14. Angle of sutures as they cross the anterior margin: parallel (0); converging (1); 

diverging (2); does not cross anterior margin (–). 

15. Cephalic sutures with marked inward curve just prior to cephalic margin: absent 

(0); present (1). 

16. Glabella extent: carapace anterior [>75%] (0); carapace midline or posterior 

[≤75%] (1). 

17. Effacement of S3: S3 deeply incised (0); S3 effaced (1). 

18. Effacement of S2: S2 deeply incised (0); S2 effaced (1). 

19. Positioning of S2 & S3: well spaced (0); S3 & S2 close together, L3 expanded 

(1); S3 or S2 effaced (–). 

20. Length of S3/S2: ~50% of glabella width (0); short, ~25% of glabella width (1); 

S3 an S2 effaced (–). 

21. Relationship of L1 to glabella: part of glabella [not separated by S1] (0); 

detached from glabella [S1 extends to occipital ring, separating L1 from 

glabella] (1); fully merged with glabella [S1 shallow or effaced] (2). 

22. Size of L1: ~25% of glabella (0); reduced, <25% of glabella (1). 

23. Lateral inflation of carapace alongside L1 (ala): absent (0); present (1). 

24. Anterior narrowing of glabella: width at anterior <75% width at base (0); width 

at anterior >75% width at base (1). 

25. Form of broad glabella anterior: <100% width of base (0); 100% width of base 

(1); >100% width of base (2); anterior width <75% that of base (–). 

26. Glabella with sudden constriction about 1/3 from anterior: glabella margins 

continuous (0); glabella margins with sudden constriction (1). 
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27. Anterior portion of cephalic rim broadens into ‘lip’: width remains unchanged 

(0); broadened into ‘lip’ (1). 

28. Paired row of spines projecting laterally from marginal rim: absent (0); present 

(1). 

29. Cephalic marginal rim demarcated by broad trough: absent (0); present (1). 

30. Cephalon margin differentiated into broad fringe ornamented with sensorial pits 

or setae: absent (0); present (1). 

31. Axial structure on occipital ring: absent (0); present (1). 

32. Form of occipital axial structure: raised node (0); enlarged spine (1); absent  

(–). 

33. Position of genal spine divergence from carapace: lateral, anterior to carapace 

posterior margin (0); posterolateral margin, posterior margin of carapace curves 

down into genal spine (1). 

34. Genal spines purely vestigial: fully expressed (0); vestigial (1). 

35. Broad genal spines: width of genal spines ≤15% width of carapace (0); width of 

genal spines >20% width of carapace (1). 

36. Genal spine curvature: strong curvature (0); slight curvature (1). 

37. Genal spine angle of divergence: high [≥30%] (0); moderate [11%–29%] (1); 

reduced [≤10%] (2). 

38. Length of genal spines: >100% carapace length (0); 35–100% carapace length 

(1); ≤30% carapace length (2). 

39. Presence of narrow ridge located in outer field of carapace between the 

glabella/lateral eyes and the marginal rim: absent (0); present (1). 
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40. Internal pattern of anastomising veins expressed on dorsal cuticle layer: not 

expressed, present only as internal structures (0); expressed dorsally (1). 

41. Degree of expression of anastomising veins: faintly expressed, veins shallow (0); 

fully expressed, veins deeply incised (1); anastomising veins not expressed 

dorsally (–). 

42. Ornamentation of free cheek (region outside of lateral eyes but before lateral 

margin): granules (0); pustules (1). 

43. Ornamentation of fixed cheek (region between lateral eyes and glabella): granules 

(0); pustules (1). 

44. Ornamentation of glabella anterior (region anterior of S1): granules (0); pustules 

(1); effaced (2). 

45. Density of anterior glabella pustules: sparse [and small] (0); dense [and large] 

(1); pustules not present on glabella (–). 

46. Ornamentation of glabella posterior (region posterior of S1): granules (0); 

pustules (1); effaced (2). 

47. Density of posterior glabella pustules: sparse [and small] (0); dense [and large] 

(1); pustules not present on glabella (–). 

48. Granular ornamentation punctuated by enlarged pustules: absent (0); present (1); 

no granular ornamentation (–). 

49. Extension of carapace ornamentation onto genal spines: absent (0); present (1). 

50. Extent of carapace ornamentation on genal spines: entire length of genal spine 

(0); proximal regions only (1); no carapace ornamentation on genal spines (–). 

51. Fixed and free cheeks of cephalon pitted: absent (0); present (1). 
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52. Hypostome with unsclerotised anterior portion: absent (0); present, short spinous 

projections (1); present, posterior margins form enlarged ‘forked’ morphology 

(2). 

53. Hypostome with paired posterior projections: absent (0); present, short spinous 

projections (1); present, enlarged projections resulting in ‘forked’ morphology 

(2). 

54. Breadth of shoulders: short, not extending beyond maximum width of hypostome 

body (0); broad, extending beyond maximum width of hypostome body (1). 

55. Form of hypostome median body: median body extends for entire length of 

hypostome, undivided (0); median body extends for entire length of hypostome, 

divided (1). 

56. Form of division of median body: division formed by lateral grooves that do not 

meet medially (0); division formed by deep groove that entirely transverses 

median body (1); posterior median body entirely separated from anterior median 

body (2); median body undivided (–). 

57. Extent of hypostome doublure/rim: present along entire lateral and posterior 

margins (0); present at posterior margin only (1). 

58. Form of hypostome posterior angles: rounded, so hypostome appears lobate (0); 

angular, so hypostome appears quadrate/shield-shaped (1). 

59. Position of hypostome constriction: anterior quarter (0); midpoint (1). 

60. Hypostome dimensions: elongate [length greater than width, l/w ration >1.30] 

(0); equilateral [length approximately equal to width, l/w ratio 0.80–1.05] (1). 
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61. Free thoracic tergite count: 14–15 (0); 18+ (1); 16 (2); 13 (3); 11–12 (4); 7–10 

(5). 

62. Enlarged thoracic spine on sixth tergite: absent (0); present (1). 

63. Form of epimera on anterior tergites (1–6): acute, spinous (0); blunt, curved (1). 

64. Form of epimera on posterior tergites (7–n): acute, spinous (0); blunt, curved (1); 

blunt, quadrate or lobate (2). 

65. Reduction of epimera on first trunk tergite: partially reduced, epimeral 

termination straight, spine small (0); undifferentiated (1). 

66. Reduction of epimera on second trunk tergite: undifferentiated (0); partially 

reduced, spine small (1). 

67. Commencement of narrowing of axial rings: 4th axial ring (0); 3rd axial ring (1); 

terminal pre-pygidial axial ring (2); expanding until mid-ring before narrowing 

commences, pre-pygidial axial ring same width as first post-cephalic axial ring 

(3). 

68. Percentage of tergite width occupied by axial region: 36–45% (0); 30–35% (1); 

20–25% (2); >45% (3). 

69. Axis with central node on each segment: present (0); absent (1). 

70. Tubercular swellings in pleural field alongside axis: absent (0); present (1). 

71. Row of tubercles across the posterior margin of each tergite: absent (0); present 

(1). 

72. Ornamentation of dense granules interspersed with larger tubercles: absent (0); 

present (1). 

73. Tergites showing marked deflection at fulcrum: absent (0); present (1). 
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74. Pygidium bearing macropleural spines: absent (0); present (1). 

75. Pygidial macropleural spines on anteriormost segment, delineated from rest of 

pygidium by furrow: absent (0); present (1). 

76. Pygidium with medial posterior indentation: absent (0); present (1). 

77. Degree of posteromedial pygidial indentation: gentle [slight indentation] (0); 

acute [clear indentation] (1); no indentation (–). 

78. Pygidium with tergopleural epimera besides macropleural spines: absent (0); 

present (1).  

79. Form of pygidial epimera: spinous (0); quadrate or lobate (1). 

80. Number of axial rings in pygidium: 4/5 (0); 3 (1); 2 (2); 7/8 (3); 22 (4); 14 (5). 

81. Form of terminal ring in 4/5: fully expressed (0); suppressed, partially merged 

with terminal piece (1); pygidium has other than 4 axial rings (–). 

82. Size of pygidium in relation to cephalon (quantified via comparison of boxed area 

plots): micropygous [pygidium occupies <25% area of cephalon] (0); isopygous 

[pygidium occupies 25–110% area of cephalon] (1); macropygous [>150% area 

of cephalon] (2). 

83. Degree of micropygosity: extreme micropygosity [0–5%] (0); micropygous [10–

25%] (1); pygidium isopygous or macropygous (–). 

84. Degree of isopygosity: extreme subisopygosity [25–35%] (0); subisopygous [35–

90%] (1); isopygous [90–105%] (2); pygidium micropygous or macropygous (–). 

85. Gross pygidial morphology: simple, paddle-like [broadest at posterior] (0); tail-

like [broadest at anterior or mid-point] (1). 
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86. Termination of tergopleural grooves: at pygidial boundary (0); before pygidial 

boundary (1). 

87. Pygidial marginal rim (dorsal expression of ventral doublure) demarcated by 

visible groove: absent (0); present (1). 

88. Pygidial marginal rim developed into broad pleural fields: absent (0); present (1); 

no marginal rim (–). 

89. Pygidial marginal rim overturned onto inflated pygidial lateral margin: absent (0); 

present (1); no marginal rim (–). 

90. Tergite furrows encroach onto demarcated marginal rim: absent (0); present (1); 

no marginal rim (–). 

91. Dense, unordered ornamentation of scales/pustules: absent (0); present (1). 

92. Row of four tubercles on each axial ring: absent (0); present (1). 

93. Axial tubercle row with ancillary tubercles: present (0); absent (1); no tubercle 

row (–). 

94. Row of tubercles on lateral ribs of tergopleurae: absent (0); present (1). 

95. Terminal piece of pygidium composed of axial region and two posteriorly 

oriented lappets: absent (0); present (1). 

96. Form of lappets: long, produced into spines (0); short, reduced (1); no lappets (–

). 

97. Early protaspids with paired posterior spines: absent (0); present (1). 

98. Fate of posterior spines by end of protaspid stage: spines retained into meraspid 

stage (0); spines lost during protaspid stage (1); no spines in protaspid stage (–). 

99. Protaspids with posterior medial indentation: absent (0); present (1). 
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100. Form of glabella in protaspids: amorphous (0); tapering, with preglabellar 

field (1). 

101. Protaspid glabellar segmentation: subdued (0); fully traversing glabella, 

resembling full body segmentation (1). 

102. Position of initial lateral eye formation in early protaspids: anterior 

margin (0); lateral margin (1). 

103. Protaspid eye ridges: fully expressed (0); suppressed (1). 

104. Late protaspid stages with tubercular swelling on occipital ring: absent 

(0); present (1). 

105. Protaspids with median spines: absent (0); present (1). 

106. Protaspids with anterior spines: absent (0); present (1). 

107. Protaspid with doublure curved inward resulting in overall globular 

morphology: absent (0); present (1). 

108. Meraspid stages with coarse tubercles on the fixed cheek: absent (0); 

present (1). 

109. Meraspid stages with a row of tubercles on fixed cheek either side of 

glabella: absent (0); present (1). 

110. Meraspid stages with three pairs of tubercles on glabella: absent (0); 

present (1). 

111. Spacing of three glabellar tubercle pairs: equilateral (0); anterior two 

pairs compressed together (1); no tubercles present (–). 

112. Meraspid stages with row of short spines at pygidium fulcrum: absent (0); 

present (1). 
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113. Number of tubercles on fixed cheek row: 3 (0); 2 (1). 

114. Tubercle on eye ridge in meraspid: absent (0); present (1). 

 

Of the 114 characters included in the analysis, 59 code for features of the cephalon, 13 

for the thorax, 23 for the pygidium, 16 for cuticular ornamentation, and 19 apply only to 

juvenile instars. It has long been noted that some trilobite groups, including proetides, 

may only be united by characteristics evident during juvenile stages (Fortey & Owens 

1975; Adrain & Chatterton 1993; Fortey & Chatterton 1998). There has recently been 

increased discussion surrounding the treatment of ontogenetic characteristics in 

phylogenetic analyses; while ontogenetic data do improve the accuracy of phylogenetic 

analyses (Laurin & Germain 2011) it has been shown that incorrect handling of 

ontogenetic data can negatively impact tree resolution (Lamsdell & Selden 2013) in a 

manner similar to paedomorphic species (Weins et al. 2005). Most analyses to include 

ontogenetic data do so as discrete characters as part of a broader morphological matrix 

(Weins et al. 2005; Oleson 2009; Haug et al. 2010), and this method that has been 

applied in some previous trilobite analyses (e.g. Fortey & Chatterton 1998), while others 

have been performed utilising only larval characters (e.g. Chatterton et al. 1990) or 

performed multiple tree searches using separate larval and adult character datasets (e.g. 

Edgecombe 1992). These latter analyses parallelled an alternative method that seeks to 

assess the phylogenetic signal of different ontogenetic stages through the use of ontotrees 

(i.e. performing a number of analyses with the same taxa where each analysis includes 

data from only a single ontogenetic stage). Such a method has been utilised both 

phenetically (Michener 1977) and phylogenetically (Steyer 2000); however, while 
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absolute congruence between all the ontotrees would allow a definitive hypothesis of 

relationships between the included taxa, it is impossible to resolve any incongruence 

between the different ontotree topologies. A new method was recently proposed by 

Wolfe & Hegna (2013) that, in a number of ways, represents a progression beyond the 

ontotree concept; this method also codes individual instars as separate taxonomic units 

but includes all instars in a single analysis. This method, however. is primarily intended 

for testing the affinities of larval stages of uncertain taxonomic affinity, a situation most 

likely to arise where species undergo metamorphic development. Coding ontogenetic 

data as separate characters is also problematic, however, as heterochronic perturbations in 

the timing of development and maturities can make the recognition of homologous 

developmental stages difficult. Recent studies on trilobites have shown that the protaspid 

larval phase does not encompass the same developmental stages in all trilobites (Park & 

Choi 2011a), casting doubt on the validity of the standard direct comparison between 

final stage protaspides. In order to account for these issues, it has been suggested that 

comparisons be made only when the entire ontogenetic series is taken into account (Park 

& Choi 2011a), and recent work has attempted to characterise this both descriptively 

(Lerosey-Aubril & Feist 2006) and quantitatively (Crônier 2013) in a number of trilobite 

species. In many cases, however, the entire ontogenetic series will not be available for 

study, and although instars can be recognised as in the current study it is impossible to 

correlate these stages with certainty between species. Another concern, as noted by Wolfe 

& Hegna (2013), is that characters that describe the same structure in different 

ontogenetic stages result in an increased weighting of that characteristic in the 

phylogenetic analysis. A number of steps have been taken in this analysis in order to 
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circumvent these issues: first, rather than being coded for specific instars, juvenile 

characters are applied to the relative stages of development (e.g. protaspid, meraspid) 

rather than the supposed instar; therefore, coding equivalent stages in development rather 

than focusing on the exact timing of these stages; second, the coding of a morphological 

characteristic’s presence or absence at a juvenile stage was used to define the presence or 

absence of the characteristic in the species as a whole. In this manner, specific 

morphological characteristics were not weighted disproportionately in the analysis 

through being included as multiple characters. For the majority of characteristics used in 

this analysis, such as the presence of posterior spines on the posterior of the protaspis 

stage, this treatment is logically consistent with the occurrence of the character during 

species development as these spines are universally lost after the protaspid stage. The 

situation is more complicated when a trait is secondarily lost in only some species, or 

when seemingly homologous structures occasionally develop later in ontogeny in species 

lacking them during earlier stages. While neither situation occurs in any of the characters 

utilised for this study, they can conceivably be resolved in the future by having the first 

case occur as a dependent character (such as spines lost in adult instars) that is coded as 

inapplicable if spines are not present on the juveniles. If the primary character on which 

the dependent character relies is unknown, then the dependent character will also be 

coded as unknown. For the second scenario, the development of homologous structures at 

a different point in ontogeny could be coded as a second state within the existing 

character; in this case, when the earlier ontogenetic stages are unknown the character will 

have to be coded as unknown. Alternatively, the presence or absence of the structures in 

the species could be coded as a single character and the timing of their development 
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being a separate dependent character. While these protocols should serve to remove the 

problems of unduly weighting certain morphological traits in the analysis, further work is 

needed to ascertain how best to implement them across other datasets. 

The analysis was performed using TNT (Goloboff et al. 2008; made available with the 

sponsorship of the Willi Hennig Society) employing random addition sequences followed 

by tree bisection-reconnection (TBR) branch swapping (the mult command in TNT) with 

100,000 repetitions with all characters unordered and of equal weight. Jackknife (Farris et 

al. 1996) and Bremer support (Bremer 1994) values were calculated in TNT and the 

Consistency, Retention, and Rescaled Consistency indices were calculated in Mesquite 

2.73 (Maddison & Maddison 2010). Nonparametric bootstrapping is often difficult with 

morphological data due to the limited size of the dataset (Zander 2003), and so was not 

performed for this analysis. Jackknifing was performed using simple addition sequence 

and tree bisection–reconnection (TBR) branch swapping, with 100,000 repetitions and 

33% character deletion. The matrix and character listing has been deposited in the online 

MorphoBank database (O'Leary & Kaufman 2012) under the project code p540 and can 

be accessed from http://morphobank.org/permalink/?P540. 

 

Results 

Analysis of the phylogenetic matrix as detailed in the methods section yielded twelve 

most parsimonious trees with a tree length of 440 steps, an ensemble Consistency Index 

of 0.321, ensemble Retention Index of 0.671, and Rescaled Consistency Index of 0.215, 

the strict consensus of which is presented here (fig. 1). A traditional proetide clade is 
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retrieved, comprising Hystricuridae, Dimeropygidae, Toernquiistidae, Rorringtoniidae, 

Tropidocoryphidae, Scharyiidae, Bathyuridae, Proetidae, Phillipsiidae, Aulacopleuridae, 

Brachymetopidae, and Otarionidae. Aulacopleurida as defined by Adrain (2011) is shown 

to be paraphyletic in regard to Proetida, with hystricurids resolving as sister group to all 

other proetides and dimeropygids and toernquistiids forming a dimeropygoid clade as 

sister group to the remaining proetides. These form two clades, one consisting of proetids 

and proetid-like aulacopleuroids while the other comprises Aulacopleuroidea sensu 

stricto. This first clade, comprising Bathyridae, Proetidae, Phillipsiidae, 

Tropidocoryphidae, Rorringtoniidae, and Scharyiidae, is herein considered to represent 

the superfamily Proetoidea. There is no logical reason to ascribe ordinal status to the 

second clade of remaining aulacopleuroids, and so they are also reduced to superfamilial 

status. As defined herein, the superfamily Aulacopleuroidea therefore consists of the 

families Aulacopleuridae, Brachymetopidae, and Otarionidae (including at present the 

Cyphaspidae). 

The sister group to Proetida comprises a large clade including various ptychopariids and 

representatives of two of the other traditional trilobite orders: Phacopida and Asaphida. 

Phacopida, comprising Phacopina, Cheirurina and Calymenina, is monophyletic, with the 

relationships of Cheirurina agreeing with other recent phylogenetic analyses (Congreve 

2012). Asaphides, however, are revealed to be polyphyletic, forming part of a 

paraphyletic grade including olenids leading to Phacopida. Remopleurids and 

aphelaspids, forming Remopleuroidea, resolve as the sister group to Phacopida, while 

Asaphida sensu stricto (here represented by asaphids and ceratopygids – Asaphoidea) are 

positioned at the base of the clade, separated from the remopleuroids by the olenids. 
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Evidence of asaphide polyphyly, and some form of relationships with olenids, has been 

mounting in recent years, with supposed asaphide synapomorphies being shown to have 

non-homologous developmental origins in asaphoids and remopleuroids (Adrain et al. 

2009; Park & Choi 2011b) and some hypothesised basal asaphides having olenid-like 

larval forms (Lee & Chatterton 2005). The topology herein, therefore, corroborates these 

findings. 

The remaining ptychopariids in the analysis resolve as polyphyletic, with 

ellipsocephalids, solenopleurids, and marjumiids (in part) forming a grade of taxa at the 

base of the tree, while ehmaniellids form the sister group to the asaphide/phacopide and 

proetide clades. Harpetids resolve between ehmaniellids and the other ptychopariids, with 

tricrepicephalids, crepicephalids, coosellids, and some majumiids resolving at the base of 

the harpetid group. A non-monophyletic Ptychopariida is unsurprising and agrees with 

previous phylogenetic analyses (Edgecombe 1992). Further work, however, along with a 

more comprehensive taxonomic sampling, is needed to fully unravel the relationships of 

the various ptychopariid groups. 

 

Discussion 

The recovery of proetide monophyly through phylogenetic analysis confirms that only 

one major clade of trilobites survived through the Late Devonian into the Carboniferous, 

as has been assumed in recent studies of trilobite biodiversity over the late Palaeozoic 

(Owens 2003; Lerosey-Aubril & Feist 2012; Feist & McNamara 2013). Two ontogenetic 

characteristics define a monophyletic Proetida: the initial lateral eye formation in early 
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protaspids occurring at the lateral margin rather than the anterior margin, and the form of 

the protaspid glabella – tapering, with a preglabellar field. A number of adult characters 

also define the base of the clade, although most are subsequently lost or modified in some 

proetide groups; these include the possession of a quadrate or shield-shaped hypostome 

with angular posterior margins, the hypostome medium body being divided by a deep 

groove that entirely transverses the median body, the presence of an enlarged thoracic 

spine on the sixth tergite, and a tergite count of between 7 and 10. The two major 

proetide clades, the Aulacopleuroidea and Proetoidea, are further united by the later 

protaspid stages having a tubercular swelling on the occipital ring. Aulacopleuroids are 

united by the occurrence of a tubercle on the eye ridge in the meraspid stage, an 

extension of the carapace ornamentation onto the genal spines, L1 being detached from 

the glabella (a condition which is achieved convergently in proetids and phillipsiids), and 

S2 being effaced. Proetoids are defined by the lateral eye being scimitar shaped and 

expanding beyond the palpebral along, with a number of reversals; the lateral eyes 

diverge posteriorly as opposed to being equilateral and occupy at least 30% of the 

carapace length, while the meraspid stages lack a row of tubercles on the fixed cheek 

either side of the glabella. The division of taxa between the proetoids and aulacopleuroids 

is different to in previous classifications, with bathyurids, rorringtoniids, and scharyiids 

being aligned with tropidocoryphids and proetids under Proetoidea. The relationship of 

rorringtoniids and scharyiids to aulacopleurids and brachymetopids has always been in 

flux; rorringtoniids were considered sister group to aulacopleurids by Adrain & 

Chatterton (1993), with scharyiids and brachymetopids positioned at the base of the 

clade, while Owens & Hammann (1990) included scharyiids within brachymetopids, and 
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placed rorringtoniids at the base of the group. Both scharyiids and rorringtoniids, 

however, possess the proetoid scimitar-shaped eyes and as well as broad, blade-like genal 

spines, which they share with both proetids and tropidocoryphids. Scharyiids and 

tropidocoryphids also share the expression of a sudden constriction of the anterior third 

of the glabella. The enigmatic genus Holotrachelus, meanwhile, resolves within the 

cheirurids, an assignment suggested previously by Suzuki (2001). 

The rearrangement of the proetide familial groups serves to alter the patterns of proetide 

evolution throughout the Palaeozoic, with a number of proetoid groups going extinct 

prior to the Carboniferous. The current topology suggests a Cambrian origin for each of 

the major proetide clades; however, it is possible that both aulacopleuroids and proetoids 

originated from a paraphyletic Hystricuridae, or some currently unsampled ptychopariid 

groups, in the Ordovician. Either way, it is clear that both aulacopleuroids and proetoids 

independently survived the end-Devonian mass extinction and persisted through into the 

Carboniferous and Permian. This begs the question as to whether there was some inherent 

property of the group that permitted two of its clades to weather this biotic crisis that 

resulted in the extinction of all other trilobite groups; however, further studies are needed 

to ascertain if such a consideration bears any merit of if proetides were simply fortuitous 

benefactors of contingency. The phylogenetic framework presented here, with its support 

of proetide monophyly, is a crucial first step towards resolving this issue. 
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Table 1. Character matrix for the phylogenetic analysis. 
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Figure 1. Strict consensus of twelve most parsimonious trees. Numbers above the nodes 

are jackknife values with 33% deletion, numbers beneath the nodes in bold are bremer 

support values. 
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Chapter 8 

The systematics and phylogeny of aulacopleuroid trilobites 

(Arthropoda: Trilobita: Proetida) 

 

James C. Lamsdell and Paul A. Selden 

(Formatted for submission to Journal of Systematic Palaeontology) 

 

The first phylogenetic analysis of aulacopleuroid trilobites (112 taxa, 136 characters) is 

presented, prompting a higher-level taxonomic revision of the group. Aulacopleuroidea 

Angelin, 1854 is shown to consist of six families; Aulacopleuridae Angelin, 1854, 

Brachymetopidae Prantl & Přibyl, 1951, Chamaeleoaspidae fam. nov., Maurotarinidae 

fam. nov., Otarionidae Richter & Richter, 1926, and Strasburgaspidae fam. nov. Many of 

the aulacopleuroid genera are shown to not be monophyletic, with Brachymetopus 

McCoy, 1847, Harpidella McCoy, 1849, Maurotarion Alberti, 1969, and Strasburgaspis 

Adrain, 2005 being revealed as polyphyletic and Otarion Zenker, 1833 as paraphyletic. 

As such, the genera Conoparia Hawle & Corda, 1847, Otarionella Weyer, 1965, and 

Tricornotarion Chatterton, 1971, all previously considered to be junior synonyms, are 

shown to be valid, and the new genus Adrainops gen. nov. is named. A number supposed 

aulacopleuroid taxa are shown to resolve outside of the group, with Coignops Gandl, 

1980 and Asiagena Maksimova, 1975 shown to be phillipsiids and Proetides Walter, 

1924 and Pseudotrinodus Kobayashi & Hamada 1971 resolving as basal proetoids. 

Harpidella McCoy, 1849 and  ‘Strasburgaspis’ kielanae Repina et al. 1975 are retrieved 
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as sister taxa to the proetoid/aulacopleuroid clade. The tree topology suggests that 

aulacopleuroids and proetoids origanated during the early Ordovician. 

 

Introduction 

Aulacopleuroids are a diverse group of proetide trilobites with their earliest records 

known from the Tremadocian in the early Ordovician (Lu 1975) and one of the last 

trilobite groups to go extinct in the Permian, with their final representative known from 

the lowest Changhsingian stage (Diener 1897). While never reaching the diversity of 

their sister-group, the Proetoidea, aulacopleuroids are an important component of late 

Palaeozoic ecosystems and have the potential to be an important group for understanding 

the different processes operating during the various Palaeozoic mass extinctions because 

the evolutionary history of the group encompasses both the end-Ordovician and end-

Devonian events. Aulacopleuroids are also an important trilobite group because they 

include Aulacopleura konincki (Barrande, 1846), the ontogeny of which has been the 

subject of intense study (Hughes & Chapman 1995; Fusco et al. 2004; Fusco et al. 2014) 

resulting in the species being utilised as a model organism of sorts for understanding 

trilobite development (Hughes 2003a,b; Hughes et al. 2006; Hughes 2007). 

 

Proetide monophyly has been questioned a number of times in the past (Bergström 1977; 

Adrain 2011); however, the concept has recently gained phylogenetic support (Lamsdell 

& Selden in prep), and is followed herein. Aulacopleuroid taxonomy of recent years has 

also been in a state of flux; Lütke (1980) considered aulacopeluroids to include 

aulacopleurids, dimeropygids, and cyphaspidids, with brachymetopids incorporated 
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within aulacopleurids and including scharyiids and rorringtoniids, while Owens & 

Hammann (1990) considered aulacopleurids and brachymetopids (including scharyiids) 

to be sister-taxa with rorringtoniids forming a separate clade. Adrain & Chatterton 

(1993), meanwhile, considered rorringtoniids and aulacopleurids to be sister-taxa, with 

brachymetopids and scharyiids occurring at the base of the group. Recently, Adrain 

(2011) greatly expanded the number of taxa assigned to Aulacopleuroidea, including a 

large number of Cambrian ptychopariid trilobites within the group along with 

dymeropygids and hystricuriids; however, subsequent phylogenetic analysis has shown 

that all these taxa fall outside the clade (Lamsdell & Selden in prep). The same analysis 

removed scharyiids and rorringtoniids from Aulacopleuroidea, aligning them instead with 

the proetoids. 

 

Here, we present a comprehensive analysis of the aulacopleuroid genera. Alongside 

Aulacopleuoidae, a number of ingroup proetide taxa are included in order to test 

aulacopleuroid monophyly, and to ascertain whether further genera should be removed 

from the group. This is the first time that aulacopleuroid relationships have been tested 

through phylogenetic analysis and, with 112 taxa and 136 characters, is one of the largest 

analyses of trilobite taxa to date. 

 

Methods 

Trilobite terminology largely follows Whittington and Kelly (1997), with modifications 

to the pygidial size classifications following Lamsdell & Selden (in prep). Lamsdell & 

Selden (in prep) should also be consulted for the handling of ontogenetic data in the 
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analysis; for discussion of the various potential pitfalls of including such data in 

phylogenetic analyses see their discussion and the references therein. 

For the phylogenetic analysis, a matrix of 136 characters coded for 112 taxa was 

compiled, which can be found in Appendix 4 along with character descriptions. 

Hintzecurus paragenalatus (Ross, 1951) was selected to represent hystricurids as 

outgroup for the analysis, based on their position as the basal most proetides in the 

analysis of Lamsdell & Selden (in prep). A number of dimeropygid and proetoid taxa was 

also include alongside aulacopleuroids as ingroup taxa as the affinities of some genera 

currently assigned to Aulacopleuroidea as uncertain. Aulacopleuroid genera are each 

represented by multiple exemplars where possible, as these more accurately represent the 

character states and transitions of a group than would a single exemplar such as a token 

species or composite taxon (Brusatte 2010), as well as allowing for the potential of para- 

or polyphyly. Ingroup taxa were selected based on morphological completeness and, 

where possible, the type species of each genus was also included in the analysis. Species 

were coded from figures in the literature, supplemented with observations of specimens 

where possible. The analysis aims to include all currently recognised aulacopleuroid 

genera; the only genus excluded from the analysis is Latecephalus Nan, 1976, for which 

adequate data is lacking; however, Zhou (1989) considered Latecephalus to be a 

synonym of Cordania Clarke, 1892. In total, 33 aulacopleuroid genera are included, 

represented by 125 species. 

The analysis was performed using TNT (Goloboff et al. 2008; made available with the 

sponsorship of the Willi Hennig Society) employing random addition sequences followed 

by tree bisection-reconnection (TBR) branch swapping (the mult command in TNT) with 
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100,000 repetitions with all characters unordered and of equal weight. Jackknife (Farris et 

al. 1996) and Bremer support (Bremer 1994) values were calculated in TNT and the 

Consistency, Retention and Rescaled Consistency Indices were calculated in Mesquite 

2.73 (Maddison & Maddison 2010). Nonparametric bootstrapping is often difficult with 

morphological data due to the limited size of the dataset (Zander 2003) and so was not 

performed for this analysis. Jackknifing was performed using simple addition sequence 

and tree bisection- reconnection (TBR) branch swapping, with 100,000 repetitions and 

33% character deletion. The matrix and character listing has been deposited in the online 

MorphoBank database (O'Leary & Kaufman 2012) under the project code p852 and can 

be accessed from http://morphobank.org/permalink/?P852. 

 

Results 

Analysis of the phylogenetic matrix, as detailed in the methods section, yielded 48 most 

parsimonious trees with a tree length of 472 steps, an ensemble Consistency Index of 

0.331, ensemble Retention Index of 0.778, and Rescaled Consistency Index of 0.257, the 

strict consensus of which is presented here (Figs. 1 & 2). The overall topology of 

Proetida is congruent with that retrieved in the Lamsdell & Selden (in prep) analysis. The 

contents of Aulacopleuroidea are largely found to be as traditionally defined, with a few 

exceptions: ‘Strasburgaspis’ kielanae Repina et al., 1975 and a clade including the type 

species of Harpidella McCoy, 1849 resolve as sister taxa to Proetoidea and 

Aulacopleuroidea, while Proetides Walter, 1924 and Pseudotrinodus Kobayashi & 

Hamada, 1971 are aligned with the Proetoidea. Finally, Coignops Gandl, 1980 and 

Asiagena Maskimova, 1975, are resolved as phillipsiids. Aulacopleuroidea is shown to 
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consist of four large clades, with two smaller ancillary clades interspersed. These form 

the basis of six families: Aulacopleuridae, Brachymetopidae, Chamaeleoaspidae, 

Maurotarionidae, Otarionidae, and Strasburgaspidae. All of these, except the 

brachymetopids, comprise taxa previously assigned to Aulacopleuridae; however, the 

aulacopleurids, as previously defined, are shown to be paraphyletic in relation to 

Brachymetopidae. A number of genera, as currently defined, are shown to be para- or 

polyphyletic, and a number of genera previously considered to be junior synonyms are 

here shown to be valid. These include: Tricornotarion Chatterton, 1971, Conoparia 

Hawle & Corda, 1847, and Otarionella Weyer, 1965. 

 

Systematic Palaeontology 

Class Trilobita Walch, 1771 

Order Proetida Fortey & Owens, 1975 

(=Aulacopleurida Adrain, 2011) 

Diagnosis. Initial lateral eye formation in early protaspids occurring at the lateral margin; 

protaspid glabella tapering with a preglabellar field; quadrate or shield-shaped hypostome 

with angular posterior margins; hypostome medium body being divided by a deep groove 

that entirely transverses the median body. 

Included taxa. Aulacopleuroidea Angelin, 1854; Dimeropygoidea Hupé, 1953; 

Harpidella McCoy, 1849; Hystricuroidea Hupé, 1953; Proetoidea Salter, 1864. 

Remarks. The validity of the proetide clade has been debated since its inception, 

however recent phylogenetic analysis has shown Proetida to be monophyletic (Lamsdell 

& Selden in prep). While the majority of its constituent taxa resolve within either the 
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hystricuroid, dimeropygoid, aulacopleuroid, or proetoid clades, the Ordovician taxa 

Harpidella McCoy, 1849 and ‘Strasburgaspis’ kielanae Repina et al., 1975 fall between 

the dimeropygoids and the proetoid/aulacopleuroid clade and are currently left 

unassigned to higher taxa. 

 

Superfamily Hystricuroidea Hupé, 1953 

Diagnosis. Cranidia with short anterior sections of facial suture; anterior part of 

cranidium relatively narrow and small; very large eyes and large palpebral lobes; glabella 

violin-shaped with anterior, waisted constriction; posterior fixigenae extended 

prominently in transverse direction; pygidium relatively large, with at least three fully 

developed segments, and often prominent posterior pleural spines (Adrain et al. 2003). 

Included taxa. Hintzecuridae Adrain et al., 2003; Hystricuridae Hupé, 1953. 

Remarks. Hystricuridae is here raised to superfamilial status. Its constituent subfamilies, 

Hintzecurinae and Hystricuridae, are both raised to the rank of family. 

 

Superfamily Dimeropygoidea Hupé, 1953 

Diagnosis. Hypostome with unsclerotised anterior portion; thorax with tubercular 

swellings in pleural field alongside axis; tergites showing marked deflection at fulcrum; 

pygidial marginal rim overturned onto inflated pygidial lateral margin; protaspid eye 

ridges suppressed. 

Included taxa. Dimeropygidae Hupé, 1953 (=Celmidae Jaanusson, 1956); 

Toernquistiidae Hupé, 1953. 
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Remarks. Dimeropygoids exhibit a number of similarities with otarionids and 

cyphaspidids in the expression of fulcral spines on the pygidium during ontogeny and in 

the pygidial marginal rim being overturned onto the inflated lateral margin of the 

pygidium, however dimeropygoids lack the posterior medial indentation expressed in 

protaspids and the expression of the tubercle on the eye ridges in meraspids found in 

aulacopleuroids. Similar fulcral spines are also known from Scharyia Přibyl, 1946a while 

a number of proetoids exhibit the overturning of the pygidial margins, and it seems that 

these characteristics, along with others, represent deep-seated parallelisms within the 

proetide clade. 

 

Superfamily Proetoidea Salter, 1864 

(=Bathyuroidea Walcott, 1886) 

Diagnosis. Lateral eyes scimitar-shaped; thoracic axial rings constant width until the 

terminal pre-pygidial ring; protaspids lacking ancillary posterior spines; meraspids 

lacking row of tubercles on fixed cheek either side of the glabella.  

Included taxa. Bathyuridae Walcott, 1886; Phillipsiidae Oehlert, 1886; Proetidae Salter, 

1864; Proetides Walter, 1924; Pseudotrinodus Kobayashi & Hamada 1971; 

Raymondinidae Clark, 1924 (=Glaphuridae Hupé, 1953); Rorringtoniidae Owens & 

Hammann, 1990; Scharyiidae Osmólska, 1957; Telephinidae Marek. 1952; 

Tropidocoryphidae Přibyl, 1946b.  

Remarks. Proetides and Pseudotrinodus were traditionally considered brachymetopids; 

however, their similarities to the group are largely superficial, lacking as they do the 

vaulted carapace, the broad lateral carapace shelf, and the 14 axial rings in the pygidium. 
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A number of characteristics, including the form of the lateral eyes and the narrowing of 

the thoracic axial rings, firmly align both genera with the proetoids. Together with the 

scharyiids and rorringtoniids, they form a paraphyletic grade of aulacopleuroid-like 

proetoids that comprise the base of the proetoid clade. Proetides, however, is 

Carboniferous in age, resulting in a large ghost range given the current topology, and it 

seems likely that increased sampling of proetoid taxa will refine its relationships within 

the group. 

Phillispiids were placed within Proetidae by Jell & Adrain (2003), although subsequent 

authors have continued to recognize the two groups as distinct families (e.g. Lerosey-

Aubril & Feist 2005). The current analysis fails to resolve this issue, and the two families 

are retained here pending further analysis. Two traditionally aulacopleuroid taxa, 

Coignops Gandl, 1980 and Asiagena Maskimova, 1975, are resolved as phillipsiids 

herein. Coignops was considered to be a phillipsiid by Hahn & Brauckmann (1984), and 

both Coignops and Asiagena share an almost identical glabella morphology with 

phillipsiids, and so both are transferred to the family herein.  

 

Superfamily Aulacopleuroidea Angelin, 1854 

Diagnosis. Converging facial sutures positioned dorsally on carapace; protaspids with 

posterior medial indentation; tubercle on eye ridges in meraspid. 

Included taxa.  Aulacopleuridae Angelin, 1854; Brachymetopidae Prantl & Přibyl, 1951; 

Chamaeleoaspidae fam. nov.; Cyphaspididae Přibyl 1947; Maurotarionidae fam. nov.; 

Otarionidae Richter & Richter 1926; Strasburgaspidae fam. nov. 
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Family Aulacopleuridae Angelin, 1854 

Diagnosis. Carapace flattened, free cheeks broad; palpebral lobe equal to or larger than 

visual surface; tergite count variable; pygidium extremely subisopygous; pustular 

ornamentation subdued. 

Included taxa.  Aulacopleura Hawle & Corda, 1847 (=Arethusa Barrande, 

1846[preoccupied]; =Arethusina Barrande, 1852; = Paraaulacopleura Chaubet, 1937); 

Aulacopleuroides Zhu & Zhang in Zhu et al., 1979; Songkania Zhang, 1974. 

Remarks. ‘Beggaspis’ elongatum (Begg, 1939), ‘Beggaspis’ spinicaudatum Shaw, 1968, 

and ‘Maurotarion’ megacephalum Rustan & Vaccari, 2012 resolve as a paraphyletic 

grade to Aulacopleura, and so are transferred to the genus herein. 

 

Family Brachymetopidae Prantl & Přibyl, 1951 

Diagnosis. Carapace heavily vaulted, height gained largely from free cheeks; carapace 

lateral margin produced into broad, flattened shelf; lateral eyes globular, with visual 

surface bulging out beyond palpebral lobe; eye ridges suppressed; S2 effaced; L1 

reduced; genal spines with heavily reduced angle of divergence; 9 thoracic tergites; 

thoracic axial rings expanding until mid-ring before narrowing commences, pre-pygidial 

axial ring same width as first post-cephalic axial ring; row of tubercles on lateral ribs of 

tergopleurae; pygidium with 14 axial rings. 

Included taxa.  Acutimetopus Hahn & Hahn, 1985; Australosutura Campbell & Goldring 

in Amos et al., 1960 (=Mystrocephala Whittington, 1960 [preoccupied]); 

Brachymetopella Kobayashi & Hamada, 1978; Brachymetopus McCoy, 1847 

(=Brachymetopina Reed, 1903); Cheiropyge Deiner, 1897 (=Suturikephalion Kobayashi 
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& Hamada, 1982); Conimetopus Hahn & Hahn, 1985; Cordania Clarke, 1892 

(=Latecephalus Nan, 1976); Dixiphopyge Brezinski, 1988; Hahnus Özdikmen, 2009 

(=Eometopus Hahn & Hahn, 1996 [preoccupied]); Narinia Archbold, 1997 (=Iriania 

Archbold, 1981 [preoccupied]); Loeipyge Kobayashi & Hamada, 1979; Radnoria Owens 

& Thomas, 1975; Spinimetopus Hahn & Hahn, 1985; Tilsleyia Hahn & Hahn, 1996.  

Remarks. The genus Brachymetopus, as currently defined, is polyphyletic. The type 

species, Brachymetopus maccoyi (Portlock, 1843) shares many characteristics with 

species assigned to Conimetopus and sits at the base of a clade including both 

Conimetopus and Loeipyge. The remaining Brachymetopus species form a paraphyletic 

grade interrupted by a clade consisting of Spinimetopus, Dixiphopyge and Tilsleyia. As 

such, splitting Brachymetopus as currently defined would reduce it to the type species 

(unless it were to be synonymized with Conimetopus and Loeipyge) and result in the 

erection of at least seven new, mostly monotypic, genera. The alternative, synonymizing 

Cheiropyge, Conimetopus, Dixiphopyge, Narinia, Loeipyge, Spinimetopus, and Tilsleyia 

into Brachymetopus, is equally unsatisfying, as it would result in a single genus 

exhibiting a massive amount of morphological variation. Pending further revision of the 

group, the majority of Brachymetopus species a herein simply referred to as 

‘Brachymetopus’. 

The genus name Mystrocephala Whittington, 1960 is a homonym of Mystrocephala 

Herrich-Schaffer, 1855, which was applied to a moth. Mystrocephala Herrich-Schaffer, 

1855 was synonymized with Rhosus Walker, 1854 by Poole (1989); however, according 

to article 10.6 of the International Code of Zoological Nomenclature, a name remains 

available irrespective of its invalidity as a junior synonym. Mystrocephala Whittington, 
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1960 is herein synonymized with Australosutura Campbell & Goldring in Amos et al., 

1960; however, while Mysterocephala was published in May 1960, and so would have 

priority over Australosutura (published in August), article 23.3.5 of the Code states that 

an unavailable name must be replaced by the next oldest available name from among its 

synonyms, and so Australosutura is the correct, valid name for the genus. 

 

Family Chamaeleoaspidae fam. nov. 

Diagnosis. Carapace heavily vaulted, height gained largely from free cheeks; carapace 

marginal rim produced into laterally oriented spines; eye ridges suppressed; S2 effaced; 

enlarged axial spine on occipital ring; 10 thoracic tergites; axial spine on fourth tergite; 

row of tubercles on lateral ribs of tergopleurae. 

Included taxa.  Chamaeleoaspis Basse, 2010. 

 

Family Maurotarionidae fam. nov. 

Diagnosis. Lateral eyes set into free cheek; glabellar anterior narrowing; tergite count 

variable; row of tubercles on lateral ribs of tergopleurae; meraspid stages with three pairs 

of equally spaced tubercles on glabella. 

Included taxa.  Beggaspis Přibyl & Vaněk, 1981; Malimanaspis Baldis & Longobucco, 

1977 (=Goodsiraspis Adrain & Chatterton, 1993); Maurotarion Alberti, 1969 

(=Branisella Přibyl & Vaněk, 1981; =Goniopleura Hawle & Corda, 1847); 

Tricornotarion Chatterton, 1971. 

Remarks. The monophyly of Maurotarion is currently uncertain. ‘Maurotarion’ 

megacephalum Rustan & Vaccari, 2012 is transferred to Aulacopleura and ‘Maurotarion’ 
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thomasi (Clarkson & Howells, 1981) to Strasburgaspis herein. With the exception of 

reinstating Tricornotarion as a valid genus, no further taxonomic changes are enacted 

until a detailed analysis of the genus can be attempted. 

 

Family Otarionidae Richter & Richter, 1926 

(=Cyphaspididae Přibyl, 1947) 

Diagnosis. Carapace heavily vaulted, height gained largely from free cheeks; lateral eyes 

globular, with visual surface bulging out beyond palpebral lobe; eye ridges suppressed; 

S2 effaced; carapace ornamentation extending onto proximal region of genal spines; 

tergite count variable; row of tubercles on lateral ribs of tergopleurae; pygidial marginal 

rim overturned onto inflated pygidial lateral margin; meraspid stages with three pairs of 

tubercles on glabella, anterior two pairs closely spaced. 

Included taxa.  Adrainops gen. nov.; Conoparia Hawle & Corda, 1847; Cyphaspis 

Burmeister, 1843 (=Novakaspis Přibyl, 1946a); Cyphaspides Novák, 1890 

(=Protocyphaspides Přibyl & Vaněk, 1977); Namuropyge Richter & Richter, 1939 

(=Coignouina Reed, 1943); Otarion Zenker, 1833; Otarionella Weyer, 1965; Otarionides 

Alberti, 1969. 

Remarks. The genus Otarion, as currently defined, is paraphyletic. To resolve this, the 

genera Conoparia and Otarionella are reinstated and the new genus Adrainops erected. 

‘Otarion’ beukeboomi is not assigned to a new genus, pending further revision. 

‘Harpidella’ spinafrons (Cooper & Williams, 1935), ‘Harpidella’ triloba Hu, 1975 and 

‘Harpidella’ greggi Adrain & Chatterton, 1995 resolve within Cyphaspis and so are 

transferred to the genus herein. 
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Genus Adrainops gen. nov. 

Type species. Otarion huddyi Adrain & Chatterton, 1994. 

Additional species. Otarion brauni Perry & Chatterton, 1979; Otarion coppinsensis 

Adrain & Chatterton, 1994. 

Diagnosis. Marginal rim produced into laterally oriented spines; ancillary row of ventral 

spines projecting laterally from marginal rim; glabella moderately long; free cheek with 

moderate tubercular ornament interspaced with shallow pits; axial spine on occipital ring. 

Derivation of name. Named after Jonathan Adrain, who described the type species along 

with Brian Chatterton, and has published many taxonomic works on aulacopleuroid 

trilobites. 

Occurrence. Silurian (Wenlock). 

 

Family Strasburgaspidae fam. nov. 

Diagnosis. Lateral eyes globular, with visual surface bulging out beyond palpebral lobe; 

row of tubercles on lateral ribs of tergopleurae; meraspid stages with three pairs of 

equally spaced tubercles on glabella. 

Included taxa.  Strasburgaspis Adrain, 2005. 

Remarks. ‘Maurotarion’ thomasi (Clarkson & Howells, 1981) is transferred to 

Strasburgaspis herein. 
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Discussion 

The existing aulacopleuroid taxonomy is rife with paraphyly and polyphyly, with the 

analysis showing five genera to be polyphyletic and two paraphyletic. Aulacopleuroidea 

as traditionally defined is itself paraphyletic in regard to Proetoidea; however, there is a 

large clade that resolves as sister-group to Proetoidea that comprises the majority of the 

aulacopleuroid taxa, including Aulacopleura itself, and so the superfamily is reduced to 

consist of this clade alone. Aulacopleuridae too is shown to be a paraphyletic grade 

leading to Brachymetopidae and so is broken down into its constituent clades. One of 

these, Otarionidae, is a previously named family that was subsequently synonymized 

with Aulacopleuridae. This pattern of previously synonymized higher taxa being shown 

to be valid is repeated in a number of genera. Otarion as defined forms a paraphyletic 

grade to a clade consisting of Otarionides, Cyphaspides and Namuropyge, however parts 

of the grade include the type species of the previously synonymized genera Conoparia 

and Otarionella, which are reinstated. This results in only a single new genus, Adrainops, 

needing to be erected in order to place the various taxa in the analysis assigned to Otarion 

in monophyletic genera. 

Both Strasburgaspis and Harpidella resolve as polyphyletic, split between the base of the 

proetide clade and ingroup Aulacopleuroidea. In the case of Harpidella, the type species 

falls outside of Aulacopleuroidea while the non-Harpidella species resolve within 

Cyphaspis and so are transferred to the genus, while in Strasburgaspis it is the type 

species that resolves within the aulacopleuroids. Beggaspis is also polyphyletic, with the 

type species being the sister-taxon to Malimanaspis while the others form a paraphyletic 

grade leading to Aulacopleura. Maurotarion is also polyphyletic, with the majority of 
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taxa showing affinity with Malimanaspis while some species resolve with Aulacopleura 

and others Strasburgaspis. Again, a previously synonymized genus, this time 

Tricornotarion, is shown to be valid. Finally, Brachymetopus is also shown to be 

polyphyletic. This is far from surprising, especially as genera within the group have been 

specifically considered to be nested within Brachymetopus (Hahn & Hahn 1996). The 

situation is particularly problematic as the type species, Brachymetopus maccoyi, shares 

many characteristics with the genus Conimetopus, which is itself part of a small offshoot 

from the main brachymetopid lineage. While perhaps the most logical course of action, 

synonymizing the genera Cheiropyge, Conimetopus, Dixiphopyge, Narinia, Loeipyge, 

Spinimetopus, and Tilsleyia into Brachymetopus is an unsatisfying solution, as it would 

result in a single genus showing massive amount of morphological variation (although 

given that genera are subjective hierarchical constructs have no consistent properties 

between them this is not a problem per se). The alternative, naming a series of monotypic 

genera, could serve to only clutter the taxonomy. Further, detailed analysis of the 

brachymetopids is required before major taxonomic revision of the group is undertaken. 

 

Lamsdell & Selden (in prep) considered the timing of proetide evolution, noting that 

ghost range analysis given the proetide sister-group indicated a Cambrian origin. The 

lack of a definitive Cambrian proetide record however led them to speculate whether the 

majority of proetide groups had radiated in the Ordovician, perhaps from a paraphyletic 

Hystricuridae or some Cambrian lineage. The recovery of Harpidella and 

‘Strasburgaspis’ kielanae as a paraphyletic grade leading to proetoids and 

aulacopleuroids lends strength to the theory that the majority of proetide taxa radiated 
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during the early Ordovician; both are Ordovician taxa themselves, and as such the ghost 

range for Proetoidea and Aulacopleuroidea extends only as far back as the Tremadocian. 

While the first proetides, including early hystricuroids and dimeropygoids, most likely 

originated in the Cambrian, the diverse aulacopleuroid and proetoid clades most likely 

have Ordovician origins. 
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Figure 1. Strict consensus of 48 most parsimonious trees. Numbers above the nodes are 

jackknife values with 33% deletion, numbers beneath the nodes in bold are bremer 

support values. Details of the otarionid and brachymetopid clades are shown in figure 2. 
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Figure 2. Strict consensus of twelve most parsimonious trees, focusing on the otarionid 

and brachymetopid clades. Numbers above the nodes are jackknife values with 33% 

deletion, numbers beneath the nodes in bold are bremer support values. 

606



	  
	  
	  
	  
	  
	  
	  
	  

Part 3 
 

On mass extinctions 

607



 

 

Chapter 9 

Clade history, species ecology and external causal factors 

influence arthropod survival and recovery during Paleozoic 

mass extinctions 

 

James C. Lamsdell and Paul A. Selden 

 

(Formatted for submission to Proceedings of the National Academy of Sciences) 

Abstract 

Mass extinctions are known to be extraordinary events during which the normal rules of 

natural selection do not apply. Evidence points to the operation of a different selective 

regime, one where clade-level properties are selected upon; however, it is still unclear 

whether survivorship rules apply across different extinction events, the consequences of 

differential responses in diversity and disparity during extinction events, and the factors 

governing subsequent recoveries. Here, we compare variations in diversity and disparity 

across three arthropod clades for two extinction events: the end-Ordovician (443 Ma) and 

the late Devonian (385–359 Ma). Our study reveals different patterns of morphospace 

loss between the two extinctions, with the end-Ordovician characterized by random 

morphospace loss while a marked migration in morphospace occurs in all three clades 

during the late Devonian. The nature of these migrations is mediated by species ecology; 

in one clade, generalists survive and morphospace occupation is reduced to a portion of 

its original area, while the survivors in the remaining clades are specialists and 
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morphospace expands into previously unoccupied areas. Variations in diversity between 

the three clades, with two related groups experiencing major diversity loss during the late 

Devonian with no subsequent recovery and another undergoing an evolutionary 

bottleneck before further radiation in the Carboniferous, suggests that inherent properties 

of the clade can also influence how it responds to mass extinction events.  Therefore 

clade history, species ecology, and external causal factors of individual extinction events 

all play a role in determining clade survival. 

 

 

Significance statement 

Mass extinctions are important events in earth history that have been instrumental in 

shaping evolution. During these periods the normal rules of natural selection are 

suspended and different criteria influence the survival of species. However, it is still 

unknown whether these criteria are the same for each mass extinction event. We compare 

changes in taxic diversity and morphological disparity in three clades of Paleozoic 

arthropods across two mass extinction events, the end-Ordovician and late Devonian, 

showing that clade history, species ecology, and external factors driving the extinction 

event all play a role in determining clade survival. These results show the importance of 

studying clades across multiple extinction events and the importance of individual 

species in the clade survival during mass extinctions. 
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Mass extinctions have altered the trajectory of evolution a number of times over the 

Phanerozoic, with the severe decline of brachiopods at the end of the Permian giving way 

to the subsequent proliferation of bivalves (1) and the extinction of dinosaurs at the end 

of the Cretaceous paving the way for the rise to dominance of mammals (2). There is 

growing consensus that mass extinctions represent a differential selective regime, as 

factors positively correlated with survivorship under normal extinction intensities are 

shown to have little effect on survivorship during times of mass extinction, with other 

factors such as geographic range at the clade level playing a greater role (3). Despite 

decades of research, there remain a number of issues that require further study, including 

whether there are general survivorship rules that apply across different extinction events, 

the consequences of inexact correlations between taxonomic and morphological diversity, 

and the factors governing the dynamics and outcome of recoveries (3). One way to 

explore these issues is to study a single clade that experiences multiple extinction events; 

however, few studies have sought to trace the evolutionary history of a clade in this way, 

instead focusing on individual mass extinction events. The Paleozoic era includes three of 

the ‘big five’ mass extinctions (4), along with a number of smaller extinction events, and 

so represents the ideal timeframe in which to conduct such a study. The first mass 

extinction, occurring during the late Ordovician, has been linked to the rapid formation of 

an unstable icehouse in the middle of otherwise greenhouse conditions (5), with the 

sudden glaciation and subsequent return to greenhouse conditions resulting in pulsed 

periods of cladal turnover (6). The final Paleozoic extinction, at the end of the Permian, is 

also tied to a period of rapid climate change, with the eruption of the Siberian Traps 

resulting in a global increase in CO2 levels leading to global warming and ocean 
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acidification, and an associated increase in weathering and nutrient runoff exacerbating 

already high levels of ocean anoxia (7). Both mass extinctions exhibited heightened rates 

of extinction mediated by rapid climate change; this, however, is not true of the mass 

extinction occurring during the late Devonian, which falls temporally between the two. 

Rather, biodiversity loss during the late Devonian has been linked to a drop in speciation 

rates due to a decrease in endemism (8), with a shutdown in vicariant speciation 

attributable to widespread interbasinal species invasions mediated by a global increase in 

sea level (9–11). Therefore, in this period of time, three mass extinctions with different 

causal factors occurred, two of which (the end-Ordovician and late Devonian) transpire 

within 100 million years of one another. 

This study utilizes recent advances in the phylogenetic relationships of three Paleozoic 

arthropod clades, two belonging to the Eurypterida (12, 13) and one to the Trilobita (14), 

to compare the impact of the end-Ordovician and late Devonian mass extinctions on their 

evolutionary histories. All three clades originated in the early or mid-Ordovician, 

experience substantial loss of diversity during the Devonian, and go extinct in the 

Permian. Mass extinctions have been shown to have varying effects on the clades, in 

regard to both taxonomic richness (diversity) and morphological variety (disparity). 

While many clades will disappear completely or pass through the event without suffering 

any discernible impact, a large number persist beyond the extinction event but experience 

a decrease in diversity, disparity, or both. These clades may subsequently decline and go 

extinct (the ‘dead clade walking’ phenomenon (15)), while others persist at a low level of 

taxic diversity or undergo renewed phases of diversification; those clades that exhibit this 

last pattern are considered to have passed through an evolutionary bottleneck (16). 
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Disparity can be negatively impacted in a variety of ways, resulting in either a random, 

marginal, or directional, loss of morphospace (17). Marginal or directional loss of 

morphospace can be indicative of a selective force acting on the clade, either in relation 

to the morphological characteristics themselves or ecological traits for which morphology 

can act as a proxy (18). Disparity can be assessed from continuous morphological 

characters or from discrete characters; the latter approach is adopted here, employing the 

recent detailed cladistics analyses of all three groups. 

In this paper, we analyze taxonomic diversity and morphological disparity across the 

recorded history of the Stylonurina, Eurypterina and Aulacopleuroidea. In doing so, we 

explore the impact of the end-Ordovician and late Devonian extinctions on the 

morphospace of each clade, allowing us to examine whether clades respond uniquely to 

each extinction event or, if not, whether repeated trends manifest as a property of the 

clade or of the extinction event. 

 

 

Results 

Diversity and disparity through time. Diversity and disparity are decoupled throughout 

the evolutionary history of all three groups (Fig. 1), with disparity remaining relatively 

constant irrespective of increases and decreases in diversity. Similar patterns have been 

shown in vertebrates (19), emphasizing the importance of considering both diversity and 

disparity in studies of clade history. Eurypterina and Stylonurina exhibit low levels of 

diversity in the Ordovician before undergoing a massive increase, reaching their peak 

diversity in the Silurian. Both clades show a marked drop of diversity in the early 
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Devonian, which increases into the late Devonian. Neither eurypterid clade shows any 

meaningful recovery of diversity after the late Devonian; both persisted at low levels of 

diversity until their extinction in the Permian, fitting the pattern of ‘dead clades walking’ 

(15). Aulacopleuroid trilobites show a distinctly different pattern, with disparity reaching 

its acme in the Ordovician and decreasing in the Silurian, remaining relatively stable in 

the early Devonian before suffering a major reduction in the late Devonian. In contrast to 

the eurypterid clades, Aulacopleuroidea underwent a major radiation in the 

Carboniferous, with diversity returning to levels seen in the Silurian and early Devonian 

before a decline towards the eventual extinction of the clade in the Permian. 

Aulacopleuroid trilobites therefore experienced an evolutionary bottleneck (16) in the late 

Devonian. 

Both Stylonurina and Aulacopleuroidea attained high levels of disparity in the 

Ordovician, which they maintained through to the Permian; Eurypterina show a more 

steady increase of disparity until the early Devonian, after which disparity dropped for 

the remainder of the Paleozoic. These changes are not significant, however, and so 

overall disparity did not change drastically in any of the groups throughout the Paleozoic. 

This pattern of early maximal disparity followed by relatively constant levels is 

consistent with a clade undergoing explosive radiations, or an unsampled period of 

cladogenesis (20); as such, it seems likely that Eurypterina radiated later in the 

Ordovician than Stylonurina and Aulacopleuroidea, although it at present seems likely 

that all three groups originated after the Cambrian (14, 21). 

Despite this, morphospace occupation is shown to change drastically in all three groups 

(Fig. 2), with each clade experiencing a migration in morphospace throughout the 

613



 

 

Devonian. Statistical analysis, however, reveals a difference between these shifts in 

morphospace occupation. Non-parametric multivariate analysis of variance 

(NPMANOVA) tests show that, within the Stylonurina and Aulacopleuroidea, 

Ordovician and Silurian taxa are significantly distinct from Carboniferous and Permian 

taxa, with the shift in morphospace occupation between the early Devonian and late 

Devonian for Stylonurina and over the duration of the Devonian for Aulacopleuroidea 

(Table 1). Eurypterina taxa, meanwhile, exhibit no significant distinction from the 

Silurian to the Permian; however, Ordovician taxa are shown to be significantly distinct 

to those in later time periods. 

 

Clade- and extinction-specific trends. The pattern of morphospace loss at the end-

Ordovician and during the late Devonian is consistently different across all three clades, 

with Stylonurina, Eurypterina, and Aulacopleuroidea exhibiting a random loss of 

morphospace at the end-Ordovician but with no significant difference in morphospace 

occupation between the Ordovician and Silurian with the exception of Eurypterina (Table 

1). The difference in eurypterine morphospace occupation from the Ordovician to the 

Silurian is likely to be due to the clade continuing its radiation throughout the 

Ordovician, resulting in a proliferation of new morphotypes in the Silurian. Stylonurina 

and Aulacopleuroidea, with their earlier originations, have already undergone their initial 

radiation by the Silurian, resulting in the relative stasis of their occupied morphospace. 

This pattern of random morphospace loss is consistent with a relatively short-term 

catastrophe, in which organisms become extinct irrespective of ecology, with survival 

being ruled by contingency rather than adaptation or selection (17). This is contrasted 
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heavily with the pattern of morphospace loss shown during the late Devonian, with each 

clade experiencing a migration in morphospace consistent with lateral morphospace 

reduction, corresponding to an asymmetric, selective extinction event (17). Similar shifts 

in morphospace have been observed in Ichthyosauria and linked to changes in ecospace 

occupation (22), and it appears that ecology could, similarly, have been a major selective 

factor during the late Devonian. It has been suggested that ecological generalists 

preferentially survived this biotic crisis (8), and this selective pressure could be 

responsible for the observed migrations in morphospace. Two distinct patterns are 

apparent, however, with Stylonurina and Aulacopleuroidea expanding into previously 

unoccupied morphospace, while Eurypterina retreat to a portion of their existing 

morphospace. This difference can be attributed to differences in ecology; the post-

Devonian Eurypterina are considered generalists, however the Stylonurina and 

Aulacopleuroidea that survive the biodiversity crises are considered specialists, being 

large sweep-feeders (23) and filter-chamber feeders (24) respectively. It appears that, 

while one clade followed the expected pattern of weathering the biodiversity crisis due to 

its ecological generalists, two persisted through species occupying specialist niches that, 

presumably, did not suffer from the same competitive pressures from biotic invaders as 

did other clades. Such a pattern is consistent with clade-level sorting (25) mediated by 

selection occurring at the species or organismal levels, a manifestation of the effect 

hypothesis (26). It has been suggested that temperature tolerance was also a selective 

factor during the end Ordovician extinction event  (6); however, temperature tolerance 

may occur independently of morphology and, if survivorship is otherwise independent of 

ecospace occupation, may result in a seemingly random loss of morphospace. The 
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alternative is that the double-pulsed nature of the extinction has resulted in a seemingly 

random pattern of morphospace loss from the Ordovician to the Silurian; more detailed 

analysis of the end Ordovician extinction is required to resolve this issue.  

 

That the closely related eurypteride clades both take on the characteristics of ‘dead clades 

walking’ after the late Devonian, failing to recover their diversity, while aulacopleuroid 

trilobites underwent an evolutionary bottleneck before successfully radiating in the 

Carboniferous, suggests that some intrinsic cladal properties may also influence how 

groups respond to mass extinction events and their aftermaths. The evidence shown here 

suggests that, while mass extinctions themselves can exert different selective pressures 

due to variations in their underlying causes, how clades respond to these pressures can be 

influenced by both inherent cladal properties as well as variations in the ecology of their 

constituent species. This reinforces the importance of examining both diversity and 

disparity in studies of mass extinction events, as well as the role of individual species in 

the survival of clades during these periods. 

 

Methods 

Phylogenetic Data. For the study, recent phylogenetic matrices for the Stylonurina (12), 

Eurypterina (13) and Aulacopleuroidea (14) were utilized. The aulacopleuroid analysis 

was used without modification while the stylonurine and eurypterine analyses were 

expanded in order to make their sampling of species more comprehensive. Four 

characters and 11 taxa were added to the stylonurine analysis, while 72 characters and 51 

taxa were added to the eurypterine analysis (Appendix 5). For this study, individual 
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species were coded, in order to remove the potential for the inclusion of paraphyletic or 

polyphyletic groups. The application of paraphyletic or polyphyletic groups in 

biodiversity studies can have drastic effects on our understanding of mass extinction 

events, with erroneous patterns of pseudoextinction retrieved when monophyly is not 

recognized, while incorrect assumptions of monophyly can dampen the observed loss of 

biodiversity when studies are conducted at higher taxonomic levels (27). 

The data matrices were each subjected to cladistic analysis using TNT (28), employing 

random addition sequences followed by tree bisection-reconnection (TBR) branch 

swapping with 100,000 repetitions with all characters unordered and of equal weight. The 

strict consensus tree was constructed for each clade. 

 

Diversity. The phylogenetic trees were plotted against geological time, based on an 

existing eurypterid database (29), updated for recent discoveries, with aulacopleuroid 

ranges compiled from the literature. Taxon occurrence was extended according to implied 

ghost ranges and reconstructed ancestors included as inferred from the tree topology. 

Three measures of diversity were calculated (observed taxa, sampled taxa, and 

phylogenetically corrected sampled taxa) for the Ordovician, Silurian, Lower Devonian, 

Upper Devonian, Carboniferous, and Permian time intervals, with the phylogenetically 

corrected sampled diversity utilized for the diversity/disparity comparisons. 

 

Disparity. Disparity measures were calculated from the cladistics character data using 

standard methods (30) and phylogenetically corrected for incomplete sampling through 

the extension of species ranges and inclusion of reconstructed ancestors as necessitated 
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by tree topology (31). Pairwise (taxon to taxon) Euclidean distance matrices were 

calculated using Matrix (32) and subjected to PCO using GINGKO (33) from which 

morphospace plots were produced. Multivariate statistical tests (NPMANOVA) with 

Bonferroni correction were performed to ascertain the statistical significance of overlap 

and separation of morphospace between the Ordovician, Silurian, early Devonian 

(Lochkovian to Eifelian), late Devonian (Givetian to Famennian), Carboniferous, and 

Permian time periods. The disparity metrics retrieved from the PCO data were subjected 

to rarefaction analysis using RARE (32) to normalize for sample size. 
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P (same) 
overall Pairwise comparisons, Bonferroni-corrected 

    O S ED LD C 
Stylonurina 0*** S 1         

ED 1 1       
LD 0*** 0*** 0***     
C 0*** 0*** 0*** 1   
P 0.0008*** 0.0002*** 0.0009*** 1 1 

Eurypterina 0*** S 0         
ED 0.0033** 1       
LD 0.0005*** 1 1     
C 0*** 0.3452 0.4555 1   
P 0.0500* 1 1 1 1 

Aulacopleuroidea 0*** S 1     
ED 0*** 0***    
LD 0*** 0*** 0.0064*   
C 0*** 0*** 0*** 0.0102*  
P 0*** 0*** 0*** 0.0466* 1 

 
O, Ordovician; S, Silurian; ED, early Devonian; LD, late Devonian; C, Carboniferous; P, Permian. 
*P<0.05; **P<0.005; ***P<0.0005. 
 

Table 1. NPMANOVA test for statistical differences between taxa for each of the six 

time bins based on PCO analyses. 
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Figure 1. Disparity and diversity of Stylonurina, Eurypterina, and Aulacopleuroidea. 

Both the sum of ranges (SOR) and sum of variances (SOV) metrics are shown. Error bars 
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are 95% confidence intervals. Phylogenetically sampled diversity (taxa and implied 

ancestors included in the analyses) is shown by the solid line. Known disparity (total 

number of known species) is shown by the shaded area. 
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Figure 2. Morphospace occupation by Stylonurina, Eurypterina, and Aulacopleuroidea. 

Plots are based on the first two axes from the principal coordinate analysis for each 
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dataset. Black symbols indicate taxa present in the interval, gray symbols indicate taxa 

present in other intervals. In the Ordovician/Silurian and Carboniferous/Permian time 

intervals, Ordivician and Permian taxa are indicated by triangles. Minimal morphospace 

occupations in each time bin are indicated by colored polygons (pink, Ordovician; purple, 

Silurian; yellow, early Devonian; orange, late Devonian; pale blue, Carboniferous; dark 

blue, Permian). 
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Chapter 10 

The role of volatility and clade history in arthropod recovery 

after the late Devonian biotic crisis 

 

James C. Lamsdell and Paul A. Selden 

(Formatted for submission to Proceedings of the Royal Society B) 

 

Clades that survive mass extinction events are known two exhibit two distinct diversity 

patterns: either experiencing an evolutionary bottleneck before recovering or remaining at 

low diversity as a ‘dead clade walking’. Volatility and clade history have been considered 

important factors in contributing to the likelihood of surviving mass extinction events; 

however, it is unclear how important they are to subsequent recovery. Through 

comparing rates of character evolution and rates of origination and extinction in three 

well-studied Palaeozoic arthropod groups it is shown that clades with higher volatility fail 

to recover after the late Devonian biotic crisis, remaining at low diversity. Differences in 

ecology appear to be causing the heightened levels of volatility, resulting in fewer 

surviving species from which to radiate and limiting the possibility for expansion into 

vacant ecospace. Ecology is, therefore, shown to be an important factor in mediating 

survival and recovery during the late Devonian. Furthermore it is shown to operate on 

multiple, sometimes contradictory, levels. It is shown that ecological factors, such as 

specialization, that influence responses in morphospace act independently of the 

ecological and historical factors that influence recovery. 
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1. Introduction 

Identifying factors governing the survivorship and recovery of taxa during mass 

extinctions and their aftermath remains one of the key goals of macroevolutionary 

studies. Mass extinctions are known to be extraordinary events during which the normal 

rules of natural selection do not apply, and it has been suggested that a different selective 

regime acting upon clade-level properties operates during these periods [1]. This suggests 

that taxonomic survivorship fits the paradigm of ‘nonconstructive selectivity’ [2], caused 

by non-random extinction but with survivorship determined by traits that are not 

otherwise strongly selected for during standard periods of background extinction. 

Contingency (sensu Gould [3]) is a strong factor in such a regime and can result in the 

removal of otherwise dominant taxa, resulting in sweeping changeovers in faunal 

composition [4]. As such, clade history can be important for understanding patterns of 

survival during mass extinctions. Volatility (the measure stability of a clade through 

time) can also play a role in survivorship over mass extinctions, as highly volatile clades 

with high background rates of extinction have an increased probability of losing all their 

species during mass extinction events [5]. Rates of speciation and extinction are not, 

however, clade-level properties, with the potential of speciation and extinction tied to a 

number of different characteristics of species and populations [6]. As such, differential 

survival of low volatility clades represents an example of sorting, and there is a general 

trend for volatility in all groups to decrease over time [7]. Somewhat paradoxically, 

origination rates appear to be reset at mass extinctions, resulting in at least temporary 

increases in volatility [8]. This could in part be due to expansion into new (or previously 
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vacated) ecospace, and similar causes have been suggested for accelerated rates of 

morphological evolution [9, 10]. It has been shown that the rate at which a group invades 

available ecological space after mass extinctions can greatly influence its chances of 

long-term recovery [11]. Therefore, we may expect differences in speciation rate and 

rates of morphological evolution between groups that successfully radiate out of an 

evolutionary bottleneck [12] and those that remain at a low diversity as ‘dead clades 

walking’ [13]. Alternatively, morphological evolution and speciation could become 

decoupled, with a clade radiating into new ecospace without any marked increase in 

speciation. 

 

Here we present an analysis of three Palaeozoic arthropod groups, two clades of 

Eurypterida and one of Trilobita, studying both rates of speciation and extinction along 

with morphological character evolution throughout their history from the Ordovician to 

the Permian. Recent study on changes in diversity and disparity of these clades has 

shown that all three show drastic changes in morphospace during the late Devonian [14]. 

While the pattern of morphospace shifting appeared to be mediated by ecology, with 

Eurypterina retreating to a portion of existing morphospace populated by generalists 

while Stylonurina and Aulacopleuroidea expanded into new morphospace through the 

proliferation of specialist taxa, patterns in diversity appeared to be mediated by some 

clade-specific property. Aulacopleuroidea experienced an evolutionary bottleneck while 

the closely related Stylonurina and Eurypterina became ‘dead clades walking’. This 

provides a unique opportunity to assess the influence of volatility and clade history on 

patterns of recovery after mass extinctions. 
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2. Material and Methods 

(a) Arthropod data 

The study utilizes phylogenetic matrices of Stylonurina, Eurypterina and 

Aulacopleuroidea that have recently been the subject of detailed work on diversity and 

disparity [14]. The stylonurine dataset comprises 84 characters coded for 47 taxa, the 

eurypterine dataset comprises 176 characters coded for 114 taxa, and the aulacopleuroid 

dataset comprises 135 characters coded for 112 taxa. Individual species were coded in 

order to remove the potential for the inclusion of paraphyletic or polyphyletic groups. 

Such groups have been shown to impact negatively on the accuracy of biodiversity 

studies performed at higher taxonomic levels [15]. The data matrices were each subjected 

to cladistic analysis using TNT [16], employing random addition sequences followed by 

tree bisection-reconnection (TBR) branch swapping with 100,000 repetitions with all 

characters unordered and of equal weight. The strict consensus tree was constructed for 

each clade and used to calculate rates of character change and rates of speciation and 

extinction. 

 

(b) Rates of character change 

Rates of character change were described using the patristic dissimilarity of branch of the 

tree [17]. This method requires the reconstruction of ancestral taxa as dictated by the tree 

topology. These reconstructed ancestors were assigned temporal ranges as in Ruta et al. 

[18], with the ranges of observed taxa being extended to encompass inferred ghost 

ranges. Stage duration for all analyses was assigned based on Gradstein et al. [19]. 
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Character change can be calculated assuming either punctuated or anagenetic modes of 

evolution; while there is evidence for both punctuated and anagenetic change in the fossil 

record [20, 21], here we assume gradualistic change, and so divide each value for 

patristic dissimilarity by the estimated duration of the associated branch. This assumption 

allows for the possibility of unsampled species, which could result in larger jumps in 

character change using a punctuational model, and also accounts for unequal time bin 

size. Most importantly, these assumptions match those used in calculating rates of 

speciation and extinction, allowing for relative changes in these rates to be compared 

directly. In order to test for correlation between rates and time, Kendall’s rank correlation 

test was used to assess whether relatively large and small changes are concentrated at 

opposite ends of the time-scale; a significant negative correlation would be predicted by 

elevated rates of early change. Simple regression analysis was performed for the entire 

time series, as well as for pairs of periods, allowing for particular intervals over which 

rate shifts occurred to be recognised. 

 

(c) Rates of speciation and extinction  

Rates of speciation and extinction were calculated for each clade using modifications to 

the method of Foote [22, 23] proposed by Rode and Lieberman [24]. The ranges of 

observed taxa were extended based on inferred ghost ranges as in the character rate 

analyses, and ancestral taxa were again reconstructed as necessitated by tree topology. 

Volatility curves were generated for each group by summing the total number of 

speciation and extinction events in each time period and dividing this value by the total 

diversity of each period.   
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3. Results 

Rate of character change is shown to have decreased in all three clades from the 

Ordovician to the Permian (fig. 1, table 1), exhibiting an initial, more rapid decrease 

before leveling off in the late Palaeozoic. The decrease in rate of character change is 

accompanied by a decrease in speciation rate. Volatility meanwhile remained relatively 

constant throughout (fig. 2); while there is a slight decrease in volatility through time, the 

change is not statistically significant (table 1). Extinction rates, therefore, increased by 

roughly commensurate levels. The degree of volatility is, however, different between the 

three clades, with Stylonurina and Eurypterina showing consistently higher volatility than 

Aulacopleuroidea. Comparing speciation and extinction rates across the three clades 

reveals further differences (fig. 3), with both eurypterid clades exhibiting elevated levels 

of extinction during the Silurian while aulacopleuroid extinction levels remain relatively 

stable throughout. All three clades show suppressed rates of speciation in the mid to late 

Devonian, mirroring trends observed in other trilobite groups [25], phyllocarid 

crustaceans [24], and bivalves and brachiopods [26]. Aulacopleuroids show above 

average rates of speciation in the Tournasian, corresponding to the radiation of 

brachymetopids following the late Devonian biodiversity crisis, while the speciation rates 

of Stylonurina and Eurypterina remain relatively low compared to their levels in the 

Silurian. Both Stylonurina and Eurypterina undergo a peak in extinction during the 

Kasimovian, while all three clades exhibit high extinction rates at the earliest Permian.  
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4. Discussion 

Through comparing rates of speciation and extinction along with character evolution, a 

number of clear differences between the eurypterid clades and aulacopleuroid trilobites 

are apparent. Stylonurina and Eurypterina exhibit higher volatility than Aulacopleuroidea 

throughout the Palaeozoic, supporting a correlation between clade volatility and recovery 

after the late Devonian biotic crisis. While it is clearly understood why more volatile 

clades have an increased likelihood of extinction, as heightened levels of background 

extinction result in a greater change of heightened extinction levels during mass 

extinctions resulting in the loss of all species within a clade, it is unclear why increased 

volatility would result in a group being unable to recover from a mass extinction event. It 

could be expected that more volatile clades that survived mass extinctions would have an 

advantage during recovery, as an increased rate of speciation would result in more rapid 

proliferation once extinction levels dropped. Volatility, however, is not a particular trait 

of clades but an expression caused by a number of different traits, of which interplay of 

population structure and ecology, along with rate of genetic mutation, may be the most 

important. High volatility may, therefore, have a variety of different causes. Stylonurina 

and Eurypterina have similar evolutionary histories, both exhibiting high rates of 

extinction throughout the Silurian and a peak in extinction at the Kasimovian, neither of 

which are apparent in aulacopleuroids. Aulacopleuroids, however, show a marked loss of 

biodiversity at the end-Ordovician extinction during the Hirnantian, which is not as 

severe in either eurypterid clade. Differences in ecology appear to be at play; while both 

aulacopleuroids and the eurypterids are found in a range of marine environments, 

eurypterids appear to have been limited by the need to moult and potentially reproduce in 
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sheltered, marginal conditions [27]. Eurypterids are known to show a high degree of 

endemism [28], and this could be due to their needing to return to these marginal 

conditions; similar population segregation is seen in modern horseshoe crabs, which 

shows a strong correlation between genetic and geographic distance [29]. The Silurian 

was marked by a general trend for decreasing sea level [30] punctuated by periods of 

ocean anoxia [31], and these environmental shifts could have resulted in high species 

turnover for eurypterids through loss of these marginal environments. By the late 

Palaeozoic eurypterids had become limited to freshwater environments [32], and so are 

negatively impacted by the aridification event associated with the rainforest collapse 

during the Kasimovian [33]. The aulacopleuroids meanwhile remain in the marine realm, 

and so are not affected by the environmental changes that so negatively impacted the 

Eurypterida.  

There are, therefore, a number of potential reasons for the inability of the eurypterid 

clades to successfully recover from the late Devonian biotic crisis. The higher rates of 

extinction among the two clades during the Silurian results in Stylonurina and 

Eurypterina having a lower pool of species from which to radiate after the Devonian, 

resulting in a muted recovery compared to the Aulacopleuroidea. The fact that 

eurypterids were also limited to freshwater environments at this time means that they 

would have been unable to successfully colonise vacant marine ecospace which the 

aulacopleuroids could take advantage of. Therefore, while both Stylonurina and 

Eurypterina are characterized by high volatility in comparison to Aulacopleuroidea, the 

underlying causes of this difference in volatility is due to differences in ecology between 

the groups. The inherent clade properties considered by Lamsdell & Selden [14] to be 
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responsible for the recovery of Aulacopleuroidea and the failure of Stylonurina and 

Eurypterina to regain diversity are, therefore, the results of ecological differences 

combined with contingency mediated by climatic changes. Interestingly, ecology is 

shown to exhibit conflicting signals during the late Devonian biotic crisis, with expansion 

into new morphospace by Stylonurina and Aulacopleuroidea (both specialists) countered 

in Stylonurina by factors increasing volatility in the group that made them unable to 

successfully recover their diversity.  

The results of this study, combined with the results of previous study of disparity and 

diversity on these three clades, reveals the importance of comparing changes in disparity, 

diversity and volatility in order to tease apart the processes influencing the survival and 

recovery of clades during mass extinction events. Ecology is revealed to be a major factor 

behind the responses of individual species to the late Devonian biodiversity crisis, and 

demonstrates the bearing of the evolutionary history of a clade on such studies, along 

with the importance of having accurate phylogenetic hypotheses. Of the ‘big five’ mass 

extinctions, the late Devonian is potentially unique in its causal factors, and so further 

work is needed to test whether the patterns identify here are typical or atypical for mass 

extinctions in general. 
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 Stylonurina Eurypterina Aulacopleuroidea 
 𝜏 p 𝜏 p 𝜏 p 
Character rate change 
(Ordovician–Permian) –0.265 0.020 –0.194 9.24x10-4 –0.226 4.92x10-4 

Volatility change 
(Ordovician–Permian) –0.203 0.121 –0.260 0.090 –0.068 0.638 

 
Table 1. Correlation between time and rate of character change and time and volatility 

along stylonurine, eurypterine and aulacopleuroid phylogeny.  (𝜏 gives Kendall’s rank 

correlation coefficient.) 
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Figure 1. Rates of character change (𝚫). Partitions separate Ordovician, Silurian, 

Devonian, Carboniferous, and Permian branches.  Dashed regression lines give the 

relationship between time and change for the entire time period; solid lines give 

relationships between time and change over adjacent intervals. 
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Figure 2. Volatility, given by the fractional rate of origination and extinction of species  

(the total number of originations and extinctions divided by total diversity), through time. 

Partitions separate the Ordovician, Silurian, Devonian, Carboniferous, and Permian time 

periods. (a) Stylonurina, (b) Eurypterina, (c) Aulacopleuroidea. 
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Figure 3. Speciation and extinction rates for (a) Stylonurina, (b) Eurypterina, and (c) 

Aulacopleuroidea. Speciation rates are shown by circles and dashed lines, extinction rates 

by triangles and solid lines. 
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Conclusion 

 

The results of this dissertation reveal the importance of comparing changes in disparity, 

diversity, and volatility in order to tease apart the processes influencing the survival and 

recovery of clades during mass extinction events. The consistent differences in how 

morphospace occupation changes across the end-Ordovician and late Devonian mass 

extinction events reveal that the underlying driving factors of individual extinction events 

can result in very different selective pressures, suggesting that it may not be possible to 

identify general survivorship rules for all mass extinctions. Ecology is, however, revealed 

to be a major factor behind the responses of individual species to the late Devonian 

biodiversity crisis. The somewhat contradictory selective signal exhibited by the studied 

clades reveals how different aspects of ecology can influence diversity, disparity and 

volatility in different ways, each influencing aspects of clade survival and recovery in 

different ways. The results also demonstrate the bearing of the evolutionary history of a 

clade on such studies. Contingency is an important factor in determining the response of 

clades to mass extinctions, and only through having a firm understanding of the history of 

a group can such factors be appropriately accounted for. 

One of the overriding conclusions of this study is the importance of having accurate 

phylogenetic hypotheses. The discovery that Aulacopleuroidea, as traditionally defined, 

is rife with polyphyletic groups shows that relying on traditional taxonomy has the 

potential to result in highly spurious data. This also has ramifications for 

macroevolutionary analyses that rely on higher-level taxa. Higher-level taxa based on 

polyphyletic or paraphyletic groups can either increase the apparent severity of mass 
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extinctions or dampen their effects; the fact that both an artificial heightening and 

dampening of extinction rate can occur from the same error only makes it more 

worrisome. Finally, the fact that most studies have focused at higher taxonomic levels 

most likely accounts for the supposed occurrence of clade-level selection during mass 

extinctions. The studies presented here have shown that, when viewed appropriately at 

the species-level, it is clear that only certain members of clades are surviving mass 

extinctions. Clade survival is therefore an effect of sorting through and extension of the 

effect hypothesis; selection is occurring on properties of individuals, not on clades, and it 

is only through the preferential survival of a subset of individuals within the clade that 

the clade itself survives. Studies that treat clades as a single taxonomic unit are therefore 

likely to be overgeneralizing and, as a consequence, mistaking sorting for selection. 

Further work is needed to extend these studies beyond the few taxa presented here. A 

number of clades, including crinoids, phyllocarid crustaceans, and xiphosurans, all have 

evolutionary histories extending throughout the Paleozoic and it would be interesting to 

see whether the patterns observed for eurypterids and aulacopleuroid trilobites also occur 

in these disparate groups. Detailed analysis of disparity and morphospace in late 

Ordovician trilobite groups could also be a fruitful avenue for further research, in order to 

test whether there is any morphological signal for the supposed turnover of warm and 

cold adapted taxa occurring during the mass extinction. Finally, of the ‘big five’ mass 

extinctions the late Devonian is potentially unique in its causal factors, and so further 

work is needed to test whether the patterns identify here are typical or atypical for mass 

extinctions in general. 
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Appendix 1 

 

Redescription of Drepanopterus pentlandicus Laurie 1892, the earliest 

known mycteropoid (Chelicerata: Eurypterida) from the early Silurian 

(Llandovery) of the Pentland Hills, Scotland 

 

Comprising the morphological character list and character matrix used in the 

phylogenetic analysis 
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Character list 

  1. Antero median carapace protrusion: absent (0); present (1). 

  2. Carapace anterior: rounded (0); angular (1). 

  3. Denticulate anterior margin of carapace: absent (0); present (1). 

  4. Carapace marginal rim broad: absent (0); present (1). 

  5. Carapace marginal rim with striate ornament: absent (0); present (1). 

  6. Row of pustules along inside of marginal rim: absent (0); present (1). 

  7. Lateral carapace margin: continuous (0); stepped (1). 

  8. Deep carapace with pleural margins curving ventrally: absent (0); present (1). 

  9. Lateral regions of posterior carapace margins overlapping first opisthosomal tergite: 

absent (0); present (1). 

  10. Morphology of genal carapace regions overlapping first opisthosomal tergite: small 

(0); drawn out into posterolateral lobes (1). 

  11. Carapace position of greatest width: posterior third (0); median third (1). 

  12. Prosoma quadrate: absent (0); present (1). 

  13. Carapace vaulted: absent (0); present (1). 

  14. Median ridge between lateral eyes: absent (0); present (1). 

  15. Carapace ornament of large lunate scales surrounding and pointing away from the 

central area and eyes: absent (0); present (1). 

  16. Circular plateau ornamentation anterior to median ridge: absent (0); present (1). 

  17. Position of median eyes on carapace: median third (0); anterior third (1). 

  18. Ocellar area: absent (0); present (1). 

  19. Lateral eye shape: crescentic (0); expanded (1). 
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  20. Palpebral lobe: absent (0); circular (1); reniform (2). 

  21. Lateral eyes converging and placed anteriorly on carapace: absent (0); present (1). 

  22. Annular cuticular thickening surrounding lateral eyes: absent (0); present (1). 

  23. Shape of annular cuticular thickening: oval (0); circular (1). 

  24. Orbital ridges: absent (0); present (1). 

  25. Median ridge reduced: absent (0); present (1). 

  26. Transverse suture on ventral plates: absent (0); present (1). 

  27. Transverse suture curving back at midline: absent (0); present (1). 

  28. Groove running across doublure: absent (0); present (1). 

  29. Suture on ventral plates: epistoma absent (0); epistoma present (1). 

  30. Rostral field: absent (0); present (1). 

  31. Ventral plates widen anteriorly: absent (0); present (1). 

  32. Appendage III: spiniferous with paired spines (0); spiniferous with single spines (1). 

  33. Pairs of spines per podomere on prosomal appendage III: one pair (0); two or more 

pairs (1). 

  34. Prosomal appendage IV: spiniferous (0); non spiniferous (1). 

  35. Pairs of spines per podomere on prosomal appendage IV: one pair (0); two or more 

pairs (1). 

  36. Spines on prosomal appendage IV: moveable spines (0); both moveable and fixed 

spines (1); fixed spines (2). 

  37. Blade like structures on podomeres of anterior appendages: absent (0); present (1). 

  38. Blades enlarged and longer than podomere length: absent (0); present (1). 

  39. Rachis: absent (0); present (1). 
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  40. Coxal laden: absent (0); present (1). 

  41. Prosomal appendage V: spiniferous (0); non spiniferous (1). 

  42. Spines on prosomal appendage V reduced: absent (0); present (1). 

  43. Prosomal appendage VI: walking leg (0); swimming leg (1). 

  44. Appendage VI reaching to pretelson: absent (0); present (1). 

  45. Shape of proximal podomere of appendage VI narrow: L/W ≤ 2.0 (0); expanded 

L/W > 2.0 (1). 

  46. Podomere VI-5: half the width of VI-4 (0); equal width of VI-4 (1). 

  47. Distal podomere margin of VI-6 modified: absent (0); present (1). 

  48. Ear on coxa VI: absent (0); present (1). 

  49. Appendage VI showing lateral serrations: absent (0); present (1). 

  50. Podomere 7a on sixth prosomal appendage: absent (0); present (1). 

  51. Width of VI-7a: narrow [less than 50% of width of VI-7] (0); wide [more  

than 50%] (1). 

  52. Shape of VI-7a: oval (0); triangular (1). 

  53. Longitudinal grooves on podomeres: absent (0); present (1). 

  54. Podomeres ridged: absent (0); present (1). 

  55. Podomeres thicken distally: absent (0); present (1). 

  56. Cleft metastoma: absent (0); present (1). 

  57. Anterior margin of metastoma: notch absent (0); notch present (1). 

  58. Posterior margin of metastoma: rounded (0); flattened or recurved (1). 

  59. Metasoma: bulky (0); gracile (1). 

  60. Paired tubercles on opisthosomal tergites 2-5: absent (0); present (1). 
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  61. Pustular ornamentation: absent (0); present (1). 

  62. Acicular scales on opisthosoma: absent (0); present (1). 

  63. Row of large tongue-shaped scales on posterior margin of opisthosomal segments: 

absent (0); present (1). 

  64. Opisthosoma narrower than carapace: absent (0); present (1). 

  65. Marginal rim on opisthosoma: absent (0); present (1). 

  66. First tergite with narrow posterior margin: absent (0); present (1). 

  67. Positive opisthosomal differentiation of third order first segment: absent (0);  

present (1). 

  68. Positive opisthosomal differentiation of third order second segment: absent (0); 

present (1). 

  69. Second tergite developed into round macrotergite: absent (0); present (1). 

  70. Preabdominal epimera: absent (0); present (1). 

  71. Caudal postabdomen: absent (0); present (1). 

  72. Lateral pleurae: absent (0); present (1). 

  73. Pretelson elongated: absent (0); present (1). 

  74. Pretelson postlaterally expanded: absent (0); present (1). 

  75. Dorsal pretelson lobes: absent (0); present (1). 

  76. Telson shortened: absent (0); present (1). 

  77. Telson elongate: absent (0); present (1). 

  78. Dorsal median keel on telson: absent (0); present (1). 

  79. Paired broad rounded ventral keels on telson: absent (0); present (1). 

  80. Telson serrated: absent (0); present (1). 
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Character matrix 

Weinbergina opitzi  

00000 0010- 00000 00000 00-00 0000- 00000 00-00 00001 10000 --000 ---00 

00000 00001 00000 00000 

Alkenopterus brevitelson  

00010 0000- 00000 00000 00-00 ????? ????? ???0? 1-00? 10?00 --010 ???10 

00000 00000 10000 10000 

Brachyopterella pentagonalis  

01000 0000- 100?0 ?0100 10-00 11011 ???1- -??0? 1-000 00000 --010 ???1? 

00?00 0???0 ????? 0?0?0 

Brachyopterus stubblefieldi  

00000 0000- 10000 0?100 00-00 ????? ?1-00 00-0? 1-00? 00?00 --000 0?000 

00000 00000 00000 00000 

Ctenopterus cestrotus  

00100 0000- 00000 01?01 00-00 ??011 ?0101 20-0? 1-01? 10?00 --000 ???00 

01000 00001 ?0??? 010?0 

Cyrtoctenus wittebergensis  

10000 00111 00000 00001 01110 ????? ???00 1111? ???00 1?00? ??101 ???00 

00100 00000 00010 00010 

Drepanopterus abonensis  

00011 10010 000?0 00002 01000 1000- 1001- -1000 1-000 10000 --101 11-01 

10000 00000 00000 00100 
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Stoermeropterus conicus  

00000 0000- 00000 0?000 00-00 0-010 01000 20-00 1-001 10101 01000 01000 

00000 00000 00100 00000 

Drepanopterus pentlandicus  

00010 00010 00000 0?000 01000 ??0?? ???1- -10?0 1-000 10000 --101 11-01 

10000 00100 00000 00100 

Hallipterus excelsior  

01000 1000- 00011 10?00 01010 10011 ????? ?0-?0 ????? ????? ????? ????? 

00??? ????0 ????? ????? 

Hardieopterus macrophthalmus  

00000 0000- 00011 0?000 00-00 1000- 1???? ???0? 00000 10?00 --001 01100 

10101 00000 01001 00??0 

Hibbertopterus scouleri  

00000 00111 00010 00001 01101 ??0?? 1??00 11101 1-00? 10000 --001 11-00 

00100 00000 00000 00010 

Kiaeropterus cyclophthalmus  

00000 0000- ?0000 00100 10-00 ????? ????? ???0? 1-00? ?0??0 --010 ???10 

00000 00000 00??? ???0? 

Kokomopterus longicaudatus  

00000 0000- 000?0 ???00 00-?? ??0?? 10000 00-0? 0100? 10010 --001 01100 

00101 00000 00000 00000 
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Lamontopterus knoxae  

00000 0000- 000?? ????? ????? ????? ????? ???0? 0100? 10?00 --001 ???00 

00?01 00000 00000 00000 

Laurieipterus elegans  

00100 0100- 00000 01001 00-00 11011 10101 20-0? 1-0?0 10000 --000 001?0 

00000 00000 ????? 01??0 

Megarachne servinei  

11000 0000- 00010 00002 010?0 ????? ???1- -1101 1-0?? ??0?? ??101 ????? 

0?000 1111? ????? ????? 

Moselopterus ancylotelson  

01000 0000- 00000 0?000 00-00 ??10- 01000 20-00 1-001 10101 00000 01000 

00000 00000 00000 10?00 

Mycterops mathieui  

110?0 ?000- 000?0 ???02 01000 ????? ????? ????? ????? ????? ????? ????? 

0???0 011?? ???0? ????? 

Pagea sturrocki  

01000 0100- 111?0 ???01 00-10 1000- 11101 20-0? 1-01? 10000 --000 00100 

0101? 00000 00110 00100 

Parastylonurus ornatus  

00000 0000- 00000 0?000 00-00 1000- 10000 00-00 1-010 10000 --000 01100 

00000 00000 00110 00100 
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Rhenopterus diensti  

00000 0000- 00000 00000 00-00 1010- 11-1- -0-00 1-000 10000 --010 01010 

11000 00000 10000 10100 

Stylonurella spinipes  

01000 0100- 01000 0?001 00-00 1000- 1?110 00-00 1-010 10000 --000 ???00 

00010 00000 00??? ????? 

Stylonurus powriensis 

00000 0000- 01010 0?001 00-10 ????? ????? ????? 1-01? 10?00 --000 ???00 

01000 00000 00000 01100 

Tarsopterella scotica  

01000 0000- 00011 1?000 00-10 ????? ????? ????? ????? ????? ???01 ???00 

00100 00000 01001 000?0 

Vinetopterus struvei  

00000 0000- 00000 00000 00-00 ??0?? ????? ???0? ??001 10?01 10?0? ???00 

00?00 00000 00010 10?00 

Woodwardopterus scabrosus  

00000 0000- 000?0 ???0? 0???? ????? ???1- -110? 1-00? 10?00 --101 ???0? 

00000 01110 00??0 00?10 

Eurypterus remipes  

00000 0000- 00000 00010 00-00 0-00- 00000 00-00 1-101 11101 11000 01000 

00000 00000 00010 00001 
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Hughmilleria socialis  

00000 0000- 00000 00010 00-00 0-010 00000 00-00 00101 11101 11000 01000 

00000 00000 00000 00000 

Onychopterella augusti  

00000 0000- 00000 0?0?0 00-0? ??0?? 0??00 00-00 1-101 10101 01000 ???00 

00000 00000 000?0 00?00 

Pagea plotnicki  

01000 0100- 11010 0?001 00-10 ????? ?11?? ?0-0? 1-0?? 10?0? ??000 ???00 

01010 00000 00111 0???? 

Leiopterella tetliei  

0000? 0000- 100?? ????? ????? 1010- 1??10 0???0 1-0?0 1000? ??010 010?? 

0??10 ?000? ????? ????? 

Pagea symondsii  

01000 0100- 11110 0?001 00-10 ??00- 1???? ????? ????? 1???? ????? ????? 

0?0?? ????? ????? ????? 

Drepanopterus odontospathus  

00011 000?? 000?0 0?002 01000 ????? ????? ????? ????? ????? ????? ?1??? 

1???? ????? ????? 00101 

Campylocephalus oculatus  

00000 00111 10010 00002 01001 ????? ????? ????? ????? ????? ????? ????? 

0???? ????? ????? ????? 
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Hastimima whitei  

????? ????? ????? ????? ????? ????? ????? ????? ????0 ??0?? ????? ????? 

000?0 11??0 ????? 00011 
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Appendix 2 

 

A new Ordovician eurypterid (Arthropoda: Chelicerata) from 

southeast Turkey: evidence for a cryptic Ordovician record of 

Eurypterida 

 

Comprising the morphological character list and character matrix used in the 

phylogenetic analysis 
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Character list 

  1. Angular projection on the anterior of the carapace: absent (0); present (1). 

  2. Anterior margin of carapace: unornamented (0); denticulate (1). 

  3. Carapace genal spines: present (0); absent (1). 

  4. Carapace shape: horseshoe or wide-horseshoe (0); semicircular (1); quadrate (2); 

trapezoidal (3); wide-rectangular (4); subquadrate (5); campanulate (6); parabolic (7); 

spatulate (8); triangular (9). 

  5. Carapace genal facets: absent (0); present (1). 

  6. Angle of genal facets: low angle (0); high angle (1). 

  7. Lateral eye shape: crescentic (0); expanded (1). 

  8. Size of palpebral lobe: small (0); large (1); absent (2). 

  9. Lateral eye position: centrilateral (0); centrimesial (1); antelateral (2); central (3); 

antemesial (4). 

  10. Lateral eye abuts carapace margin: absent (0); present (1). 

  11. Lateral eyes associated with ophthalmic ridge: present (0); absent (1). 

  12. Suture on ventral plates: Eurypterus-type (0); Hughmilleria- or Hallipterus-type (1); 

Megalograptus-type (2); Erieopterus-type (3). 

  13. Transverse suture on ventral plates: present (0); absent (1). 

  14. Chelicerae: small (0); able to extend beyond marginal rim (1). 

  15. Relative lengths of appendages II-V: increasing posteriorly (0); forward appendages 

enlarged (1). 
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  16. Morphology of spines on prosomal appendages II–IV: reduced [length < width of 

podomere] (0); regular [length ≈ width of podomere] (1); enlarged [length > width of 

podomere] (2); absent (3). 

  17. Mobility of spines on appendages II–IV: fixed (0); moveable (1). 

  18. Orientation of spines on appendages II–IV: ventral (0); anterior (1). 

  19. Spines on appendages II–IV thickened and highly sclerotised: absent (0); present 

(1). 

  20. Function of appendage V: solely walking or prey-capture (0); adapted to aid in 

balance during swimming (1). 

  21. Prosomal appendage VI: walking leg (0); swimming leg (1). 

  22. Length of prosomal appendage VI: long (0); short [barely projecting from beneath 

carapace] (1). 

  23. Shape of proximal podomere of appendage VI: narrow [L/W≥2.0] (0); expanded 

[L/W<2.0] (1). 

  24. Anterior margin of coxa VI: undifferentiated (0); expanded to form ‘ear’ (1). 

  25. Shape of ‘ear’ on coxa VI: triangular (0); rectangular (1); subquadrate/semicircular 

(2). 

  26. Angle between VI-3 and VI-4: 180˚ (0); not 180˚ (1). 

  27. Length of podomeres VI–4 and VI–5: VI–5>VI–4 (0); VI–4≥VI–5 (1). 

  28. Length of podomeres VI–4 when VI-5 is not longer: >VI–3 and VI-5 (0); VI–3 and 

VI–5 (1). 

  29. Podomere VI-5 bordering podomere VI-7: absent (0); present (1). 

  30. Distal podomere margin of VI–6 modified: absent (0); present (1). 
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  31. VI–7 lateral margins: unornamented (0); serrated (1). 

  32. Angular projection on the anterior of podomere VI-7: absent (0); present (1). 

  33. Podomere 7a on appendage VI: absent (0); present on posterior of appendage (1); 

present on anterior of appendage (2). 

  34. Width of posterior VI–7a: narrow [less than 50% width of VI–7] (0); wide [more 

than 50%] (1). 

  35. Shape of posterior VI–7a: oval (0); triangular (1). 

  36. VI–8 lateral margins: unornamented (0); small serrations (1); enlarged serrations (2). 

  37. VI–8 anterior projection: absent (0); present (1). 

  38. Additional moveable lobe on VI-8: absent (0); present (1). 

  39. Morphology of VI–8/VI–9 joint: joint flush (0); VI–9 set into VI–8 (1). 

  40. Length of VI–9 (as ratio of VI–8): large [>50% of VI–8 length] (0); small [<22% of 

VI–8 length] (1); totally absent (2). 

  41. Shape of podomere VI–9: spinose (0); triangular, pentagonal or oval (1). 

  42. VI–9 margin: no ornament (0); serrated (1). 

  43. VI–9 position: centrally on podomere 8 (0); migrating towards posterior of 

podomere 8 (1). 

  44. VI–9 expanded: absent (0); present (1). 

  45. Podomere cuticular morphology: rounded (0); ridged (1). 

  46. Metastoma anterior: smooth or shallow notch (0); deeply notched (1). 

  47. Shape of posterior margin of metastoma: rounded (0); truncated/flattened (1); 

angular (2); notched (3). 

  48. Metastoma width: as broad or broader than long (0); narrow (1). 
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  49. First segment expressed dorsally: expressed (0); folded under carapace (1). 

  50. Microtergite: absent (0); present (1). 

  51. Genital operculum morphology: consisting of three visible segments (0); consisting 

of two visible segments (1); unfused (2). 

  52. Morphology of anterior opercular plate: fully expressed (0); lateral expression only 

(1); completely supressed (2). 

  53. Thickness of anterior opercular plate: fully expressed (0); narrow (1). 

  54. MOP and POP morphology: separate/with clear suture (0); without suture but with 

ornament differentiation (1); without suture and without ornament differentiation (2). 

  55. Morphology of type A genital appendage: furca fused (0); unfused (1). 

  56. Spatulae on type A genital appendage: absent (0); present (1). 

  57. Morphology of spatulae: angular (0); rounded (1). 

  58. Moveable preabdominal spines: absent (0); present (1). 

  59. Postabdominal epimera: present (0); absent (1). 

  60. Preabdominal/postabdominal boundary: between 7th and 8th segments (0); between 

6th and 7th segments (1); between 4th and 5th segments (2). 

  61. Epimera on segment 7: absent (0); present (1). 

  62. Number of segments in postabdomen: 3 (0); 5 or 6 (1); 9 (2). 

  63. Postabdomen: undifferentiated (0); narrowing from preabdomen (1). 

  64. Caudal postabdomen: absent (0); present (1). 

  65. Posterior margin of segments 7–9: smooth (0); dentate (1). 

  66. Posterior margin of segments 10–12: smooth (0); dentate (1). 

  67. Epimera on pretelson: absent (0); angular (1); rounded (2); sexually dimorphic (3). 

664



  68. Telson shape: straight (0); curved (1); paddle-like (2). 

  69. Telson base: flattened (0); bulbous expansion (1). 

  70. Telson margin: smooth (0); serrated (1). 

  71. Opisthosoma lateral division: none (0); trilobed (1). 

  72. Primary opisthosomal ornamentation: scales (0); closely spaced pustules (1); coarse 

pustules (2). 

  73. Primary carapace ornamentation: scales (0); closely spaced pustules (1); coarse 

pustules (2). 

  74. Principal scale on carapace: absent (0); present (1). 

  75. Carapace ornament including elongate pustules that angle away from the lateral eyes 

and curve around the carapace margin: absent (0); present (1). 

  76. Row of node-like scales on dorsal opisthosomal segments: absent (0); present (1). 

  77. Ornamentation of angular scales across posterior of tergite segments: absent (0); 

present (1). 

  78. Longitudinal rows of angular scales on tergites: absent (0); present (1). 

  79. Ornament of chevron scales: absent (0); present (1). 

  80. Ornament of linguoid scales: absent (0); present (1). 

  81. Form of posterior margin of articulating facet on tergites: row of pustules (0); row of 

scales (1); groove (2). 
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Character matrix  

Weinbergina opitzi  

00000 -0-?0 03100 11000 0010- 00-00 000-- 00000 00000 ---00 22-0- --000 

00000 00000 01100 00000 0 

Brachyopterus stubblefieldi  

00180 -0010 1?0?0 00000 0000- 00-00 000-- 00000 

00001 0??10 ????? ??0?0 01000 00000 0---0 00000 ? 

Parastylonurus ornatus  

00100 -0000 10000 11000 0000- 00-00 000-- 00000 

00000 11110 00000 10000 01100 01000 00000 00000 ? 

Stoermeropterus conicus  

00100 -0010 11100 00000 00110 00-00 00100 00000 00001 10010 00100 10100 

01000 13010 01100 00000 0 

Stoermeropterus latus  

00100 -0010 1110? ????? 00??? 00-00 00100 00000 00001 

???10 0010? 11100 01000 11010 00000 00000 ? 

Stoermeropterus nodosus  

00100 -0010 1???? ????? ????? ????? ????? ????? ????? 10010 00100 11100 

01000 ?2010 01100 10000 ? 

Vinetopterus struvei  

01100 -0010 13100 00000 00110 00-00 00100 00000 00001 

00010 0010? ??000 01101 100?0 01100 10000 0 
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Vinetopterus martini  

01100 -?010 131?? 00000 00??? 00-00 00100 00000 00001 ?0?10 ????? ??000 

01101 100?0 01100 10000 ? 

Moselopterus ancylotelson  

00100 -0010 13100 10000 00110 00-00 00100 00000 00001 00010 0010? 10010 

01101 10101 01100 10000 0 

Moselopterus elongatus  

00100 -0010 13100 10000 00110 00-00 00100 00000 

00001 00010 0010? ??010 01101 10101 01100 ?0000 0 

Onychopterella augusti  

00150 -?010 1???0 1100? 10110 00-00 00101 00010 00000 ??0?0 ????? 0-001 

01100 00010 0000? 00000 ? 

Onychopterella kokomoensis  

00150 -1010 13100 11000 101?? 00-00 00101 00010 

00000 00010 0010? 0-001 01100 02010 0000? 00000 ? 

Dolichopterus macrocheirus  

00120 -0120 10100 21000 10111 11001 11101 20110 11010 11110 01100 10000 

01100 01000 00000 00000 0 

Eurypterus remipes  

00131 01010 10100 11001 10112 01001 00111 10011 10000 00010 01101 0-010 

01100 00001 00010 01100 1 
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Hughmilleria socialis  

00170 -1221 11110 11000 10112 01101 00111 00011 10100 010?0 12-20 0-010 

11100 00000 00000 00011 ? 

Tylopterella boylei  

00150 -1010 1???? ????? ????? ????? ????? ????? ????? ????0 ????? ??001 

01100 00000 00000 00000 ? 

Megalograptus ohioensis  

01121 01040 12101 21111 10112 01001 00111 00012 ----0 03010 12-10 0-011 

01100 00000 10000 01100 1 

Mixopterus kiaeri  

00121 01040 1?101 21110 10112 01111 00111 00011 10000 000?0 12-20 0-010 

01110 00100 10000 00000 ? 

Strobilopterus princetonii  

00110 -0130 1??00 1000? 11111 01101 10101 20110 10000 1?1?0 ???00 10000 

01100 00??? 0110? 00000 0 

Erieopterus microphthalmus  

00141 10010 13100 10001 10112 01001 00111 00011 00000 01010 01101 0-010 

01100 01100 00000 00000 ? 

Rhenopterus diensti  

00170 -0010 10000 00000 0000- 00-00 000-- 00000 00001 00010 00000 0-001 

01110 00100 00000 00000 0 
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Octoberaspis ushakovi  

00030 -0000 0???? ????0 10??? ???0? 002-- 00002 ----0 02001 20000 0-002 

02100 01000 02200 00000 ? 

Loganamaraspis dunlopi  

00030 -?0?? ?310? ????? 0000- 0???? ????? ????? ????0 02001 20000 0-012 

02100 000?? 0---0 00000 ? 

Diploaspis casteri  

00030 -1000 01??? 0000? 10??? ???00 002-- 00002 ----0???01 200?? ??002 

02100 00201 02200 10000 ? 

Paraeurypterus anatoliensis  

00121 00110 1?1?? 1100? 10??? 010?? ????? ????? ????0 ???10 ????? ??0?0 

0???? ????? 00100 01000 1 

Pentlandopterus minor  

00121 00110 1???? ????? 10??? 010?? ????? ????? ????? ????0 ????? ??010 

01100 00000 01100 00000 ? 

Chasmataspis laurencii  

00000 -1010 1???? ????? 0?00- 00-00 000-- 000-- ----0 ???01 ????? ??002 

02110 00000 12200 10000 ? 

Buffalopterus pustulosus  

00110 -0110 131?? ????? 11??? ????? ????? ????? ????? ???10 0110? 0-000 

01100 01201 01101 00000 0 
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Syntomopterella richardsoni  

00110 -0130 131?? ????? 1???? ????? 10111 20?1? 1???0 ????? ????? ????? 

????? ????? 01101 00000 ? 

Dolichopterus jewetti  

00120 -0120 ???00 21001 10111 11001 11101 20110 11010 11010 01100 10000 

01100 01000 00100 ?0000 0 

Ruedemannipterus stylonuroides  

10160 -0120 1???? ????? 10??? 11001 ?1101 ?0110 10110 ????0 ????? ??0?? 

????? ????? 01100 00000 ? 

Clarkeipterus testudineus  

10020 -0120 1???? ????? 10??? 11001 ?1101 ?0?10 10010 ????? ????? ????? 

????? ????? ??100 ?00?? ? 

Clarkeipterus otisius  

10020 -0120 1???? ????? ????? ????? ????? ????? ????? ????? ????? ????? 

????? ????? ??100 ????? ? 

Erieopterus eriensis  

00111 10010 131?0 1000? 10112 01001 00111 00011 00000 ???10 0110? ??010 

01100 0?000 00000 00000 ? 

Eurypterus hankeni  

00131 01010 101?? 1100? 10112 01001 00111 00011 10000 000?0 ????? 0-010 

01100 01001 00010 01100 1 
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Eurypterus tetragonophalmus  

00131 01010 10100 11001 10112 01001 00111 10011 10000 00010 01101 0-010 

01100 02001 00010 01100 1 

Eurypterus leopoldi  

00131 01010 1???? ????? 1???? ????? ?0111 10011 10000 00??? ????? ???0? 

???00 02001 ?0010 01100 ? 

Eurypterus pittsfordensis  

00131 01010 10100 11001 10112 01001 00111 10011 10000 000?0 ????? ??000 

01100 02001 00010 01100 1 

Eurypterus henningsmoeni  

00131 01010 101?0 ????1 10112 01001 00111 10011 10000 000?0 ????? 0-010 

01100 02001 00010 01100 1 

Orcanopterus manitoulinensis  

10170 -1020 1??00 21000 10??? 0??0? 00111 00010 10010 110?0 12-1? ??010 

11100 00000 00000 00010 ? 

Pterygotus anglicus  

00130 -1221 11110 3---0 10112 01101 00111 10011 10100 000?0 12-20 0-000 

01100 00201 00000 00011 1 

Adelophthalmus sievertsi  

00170 -1010 11100 3---0 10112 01101 00111 11011 10100 000?0 12-20 10010 

01100 00000 00000 00011 2 
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Eurypterus dekayi  

00131 01010 10100 11001 10112 01001 00111 00011 10000 000?0 01101 0-010 

01100 02000 00000 01000 1 

Carcinosoma newlini  

00190 -1020 1?101 21110 10112 01111 00111 10011 11010 000?0 12-20 0-010 

01110 00000 00000 00000 ? 

Nanahughmilleria norvegica  

00170 -1010 11100 11000 10112 01101 00111 11011 10100 100?0 12-20 10000 

11100 00000 00000 00011 1 
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Appendix 3 

 

Babes in the wood – a unique window into sea scorpion 

ontogeny 

 

Comprising the morphological character list and character matrix used in the 

phylogenetic analysis 
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Character list 

1. Angular projection on the anterior of the carapace: absent (0); present (1). 

2. Anterior margin of carapace: unornamented (0); denticulate (1). 

3. Carapace marginal rim: present (0); absent (1). 

4. Carapace genal spines: present (0); absent (1). 

5. Carapace shape: horseshoe or wide-horseshoe (0); semicircular (1); quadrate (2); 

trapezoidal (3); wide-rectangular (4); subquadrate (5); campanulate (6); parabolic 

(7); spatulate (8); triangular (9); long-rectangular (10). 

6. Carapace genal facets: absent (0); present (1). 

7. Angle of genal facets: low angle (0); high angle (1). 

8. Lateral eye shape: crescentic (0); expanded (1). 

9. Size of palpebral lobe: small (0); large (1); absent (2). 

10. Lateral eye position: centrilateral (0); centrimesial (1); antelateral (2); central (3); 

antemesial (4). 

11. Lateral eye abuts carapace margin: absent (0); present (1). 

12. Lateral eyes associated with ophthalmic ridge: present (0); absent (1). 

13. Suture on ventral plates: Eurypterus-type (0); Hughmilleria- or Hallipterus-type (1); 

Megalograptus-type (2); Erieopterus-type (3). 

14. Transverse suture on ventral plates: present (0); absent (1). 

15. Chelicerae: small (0); able to extend beyond marginal rim (1). 

16. Form of cheliceral peduncle: approximately equal in length to fixed ramus (0); 

longer than fixed ramus (1). 
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17. Denticles on chela: absent (0); present, small, undifferentiated (1); present, large, 

differentiated (2). 

18. Largest denticle medially on fixed ramus: erect (0); inclined (1); acute (2). 

19. Angular distal teeth on both rami: absent (0); present (1). 

20. Relative lengths of appendages II-V: increasing posteriorly (0); forward appendages 

enlarged (1). 

21. Morphology of spines on prosomal appendages II-IV: reduced [length < width of 

podomere] (0); regular [length ≈ width of podomere] (1); enlarged [length > width 

of podomere] (2); absent (3). 

22. Mobility of spines on appendages II–V: fixed (0); moveable (1). 

23. Orientation of spines on appendages II–V: ventral (0); anterior (1). 

24. Spines on appendages II–V: thickened and highly sclerotised absent (0); present (1). 

25. Armature of anterior prosomal appendages flattened and laterally expanded into 

blades: absent (0); present (1). 

26. Prosomal appendage podomeres thicken distally: absent (0); present (1). 

27. Morphology of appendage V podomeres: undifferentriated and broad (0); 

podomeres tubular, lacking armature except for penultimate distal podomere (1). 

28. Appendage V armature: non-spiniferous (0); spiniferous (1). 

29. Coxal laden: absent (0); present (1). 

30. Morphology of prosomal appendage VI: equal in width along length (0); distally 

expanded into swimming leg (1). 

31. First podomere of prosomal appendage VI that fully projects beyond carapace 

margin: Fourth podomere (0); Sixth podomere (1); Third podomere (2). 
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32. Shape of proximal podomere of appendage VI: narrow [L/W≥2.0] (0); expanded 

[L/W<2.0] (1). 

33. Anterior margin of coxa VI undifferentiated (0); expanded to form ‘ear’ (1). 

34. Shape of ‘ear’ on coxa VI: triangular (0); rectangular (1); subquadrate/semicircular 

(2). 

35. Anterior denticle of coxa VI large: absent (0); present (1). 

36. Angle between VI-3 and VI-4: 180º (0); not 180º (1). 

37. Length of podomeres VI-4 and VI-5: VI-5>VI-4 (0); VI-4≥VI-5 (1). 

38. Length of podomeres VI-4 when VI-5 is not longer: >VI-3 and VI-5 (0); equal to 

VI-3 and VI-5 (1). 

39. Podomere VI-5 bordering podomere VI-7: absent (0); present (1). 

40. Distal podomere margin of VI-6 modified: absent (0); present (1). 

41. VI-7 lateral margins: unornamented (0); enlarged serrations (1); small serrations (2). 

42. Angular projection on the anterior of podomere VI-7: absent (0); present (1). 

43. Podomere 7a on appendage VI: absent (0); present on posterior of appendage (1); 

present on anterior of appendage (2). 

44. Width of posterior VI-7a: narrow [less than 50% width of VI-7] (0); wide [more 

than 50%] (1). 

45. Shape of posterior VI-7a: oval (0); triangular (1). 

46. VI-8 lateral margins: unornamented (0); small serrations (1); enlarged serrations (2). 

47. VI-8 anterior projection: absent (0); present (1). 

48. Additional moveable lobe on VI-8: absent (0); present (1). 

49. Morphology of VI-8/VI-9 joint: joint flush (0); VI-9 set into VI-8 (1). 
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50. Length of VI-9 (as ratio of VI-8): large [>25% of VI-8 length] (0); small [<25% of 

VI-8 length] (1); totally absent (2). 

51. Shape of podomere VI-9: spinose (0); triangular, pentagonal or oval (1). 

52. VI-9 margin: no ornament (0); serrated (1). 

53. VI-9 position: centrally on podomere 8 (0); migrating towards posterior of 

podomere 8 (1). 

54. VI-9 expanded: absent (0); present (1). 

55. Podomere cuticular morphology: rounded (0); ridged (1). 

56. Metastoma anterior: smooth or shallow notch (0); deeply notched (1). 

57. Shape of posterior margin of metastoma: rounded (0); truncated/flattened (1); 

angular (2); notched (3). 

58. Metastoma with posterior median cleft: absent (0); present (1). 

59. Metastoma shape: broad (0); petaloid, markedly narrower in width (1). 

60. First segment expressed dorsally: expressed (0); folded under carapace (1). 

61. Microtergite: absent (0); present (1). 

62. Genital operculum morphology: consisting of three visible segments (0); consisting 

of two visible segments (1); unfused (2). 

63. Morphology of anterior opercular plate: fully expressed (0); lateral expression only 

(1); completely supressed (2). 

64. Thickness of anterior opercular plate: fully expressed (0); narrow (1). 

65. MOP and POP morphology: separate/with clear suture (0); without suture but with 

ornament differentiation (1); without suture and without ornament differentiation 

(2). 
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66. Unsegmented genital appendages: absent (0); present (1). 

67. Type-A genital appendage spoon-shaped: absent (0); present (1). 

68. Type-A genital appendage with median, distal indentation: absent (0); present (1). 

69. Type-B genital appendage oval: absent (0); present (1). 

70. Morphology of type A genital appendage furca: fused (0); unfused (1). 

71. Spatulae on type A genital appendage: absent (0); present (1). 

72. Morphology of spatulae: angular (0); rounded (1). 

73. Moveable preabdominal spines: absent (0); present (1). 

74. Postabdominal epimera: present (0); absent (1). 

75. Preabdominal/postabdominal boundary: between 7th and 8th segments (0); between 

6th and 7th segments (1); between 4th and 5th segments (2). 

76. Epimera on segment 7: absent (0); present (1). 

77. Number of segments in postabdomen: 3 (0); 5 or 6 (1); 9 (2). 

78. Postabdomen: undifferentiated (0); narrowing from preabdomen (1). 

79. Caudal postabdoment: absent (0); present (1). 

80. Posterior margin of all opisthosomal tergites crenulate: absent (0); present (1). 

81. Posterior margin of segments 7-9: smooth (0); dentate (1). 

82. Posterior margin of segments 10-12: smooth (0); dentate (1). 

83. Epimera on pretelson: absent (0); angular (1); rounded (2); quadrate (3). 

84. Laterally expanded pretelson: absent (0); present (1). 

85. Median carina on pretelson: absent (0); present (1). 

86. Telson shape: straight (0); curved (1); laterally expanded (2). 

87. Laterally expanded telson shape: rounded (0); triangular (1). 
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88. Telson base: flattened (0); bulbous expansion (1). 

89. Telson bilobed: absent (0); present (1). 

90. Median carina on telson: absent (0); low carina (1); vertical rudder (2). 

91. Telson laterally ornamented with scales: absent (0); present (1). 

92. Telson margin: smooth (0); serrated (1). 

93. Opisthosoma lateral division: none (0); trilobed (1). 

94. Primary opisthosomal ornamentation: scales (0); closely spaced pustules (1); coarse 

pustules (2). 

95. Primary carapace ornamentation: scales (0); closely spaced pustules (1); coarse 

pustules (2). 

96. Principal scale on carapace: absent (0); present (1). 

97. Carapace ornament including elongate pustules that angle away from the lateral eyes 

and curve around the carapace margin: absent (0); present (1). 

98. Row of node-like scales on dorsal opisthosomal segments: absent (0); present (1). 

99. Ornamentation of angular scales across posterior of tergite segments: absent (0); 

present (1). 

100. Longitudinal rows of angular scales on tergites: absent (0); present (1). 

101. Ornament of chevron scales: absent (0); present (1). 

102. Ornament of linguoid scales: absent (0); present (1). 

103. Form of posterior margin of articulating facet on tergites: row of pustules (0); row 

of scales (1); groove (2). 
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104. Genital operculum striate ornament marked by highly sclerotised, broad lunate 

scales: ornament independent of sclerotised scales (0); ornament congruent with 

broad, sclerotised lunate scales (1).  
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Character matrix (main analysis) 

(A = [0,1]; B = [1,2]) 

Weinbergina opitzi  

00100 0-0-? 00310 00--0 11000 00000 010-0 00-00 000-- 00000 00000 ----0 

022-0 ----- --000 00000 00000 0-000 00011 00000 0000 

Chasmataspis laurencii  

00000 0-101 01??? ????? ????? 0???0 ?00-0 00-00 000-- 000-- ----0 ????0 

1???? ????? ??002 02110 00000 0-000 00122 00100 00?? 

Octoberaspis ushakovi  

00003 0-000 00??? ????? ????? 000?1 0???? ???0? 002-- 00002 ----0 02000 

12000 00010 0-002 02100 00100 0-000 00022 00000 00?0 

Diploaspis casteri  

00003 0-100 001?? ????? 00000 0???1 0???? ???00 002-- 00002 ----0 ????0 

1200? ????? ??002 02100 00000 20000 01022 00100 00?? 

Loganamaraspis dunlopi  

00003 0-?0? ??310 00--? ????? 0??00 000-? 0???? ????? ????? ????0 02000 

12000 000?0 0-012 02100 00000 0-?00 0?0-- -0000 00?? 

Brachyopterus stubblefieldi  

00018 0-001 01?0? ????0 00000 000?0 000-? 00-00 000-- 00000 00001 0???1 

0???? 0???? ??0?0 01000 00000 0-000 000-- -0000 00?? 

Rhenopterus diensti  

00017 0-001 01000 00--0 00000 00000 000-0 00-00 000-- 00000 00001 00001 

00000 0??00 0-001 01110 00000 1-000 00000 00000 0000 
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Parastylonurus ornatus  

00010 0-000 01000 00--0 11000 00000 200-0 00-00 000-- 00000 00000 11011 

00000 00000 10000 01101 00100 0-001 00000 00000 00?0 

Laurieipterus elegans  

01018 0-000 0110? ????0 10000 00000 200-0 00-00 000-- 000?? ????0 1100? 

0???? ????? ??0?? ????? ????? ????? ??000 00000 00?0 

Kokomopterus longicaudatus  

00015 0-001 01??? ????0 11000 10100 000-0 00-00 000-- 00000 00000 1100? 

0???? ???0? ??010 01101 00000 0-000 00111 00000 01?0 

Hardieopteurs macrophthalmus  

00010 0-001 01000 00--0 ????? 10100 000-0 00-00 000-- 00000 00000 1100? 

0???? ????? ??000 01101 00300 0-000 00111 00000 01?0 

Drepanopterus pentlandicus  

00010 10001 01000 00--0 1A001 10000 000-0 00-00 000-- 00000 00000 11101 

00000 ?001? 10010 01100 00000 0-000 00011 00000 0000 

Hibbertopterus scouleri  

00010 11003 01000 00--0 2A001 10010 000-0 00-00 000-- 000?? ????0 1110? 

0???? ???1? ??010 01001 00000 0-000 00000 00000 01?0 

Megarachne servinei  

00013 0-003 01??? ????? 2A001 1001? ?00-0 ????? ????? ????? ????0 ????? 

0???? ????? ????? ????? ????? ????? ???00 00??? ???? 
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Stoermeropterus conicus  

00010 0-001 01110 00--0 00000 00000 01100 00-00 00100 00000 00001 10001 

00010 00010 10100 01000 01B00 0-100 00011 00000 0000 

Stoermeropterus latus  

00010 0-001 01110 00--? ????? 0???0 0???0 00-00 00100 00000 00001 ????1 

00010 000?? 11100 01000 01100 0-100 00000 00000 00?0 

Stoermeropterus nodosus  

00010 0-001 01??? ????? ????? 0???? ????? ????? ????? ????? ????? 10001 

00010 000?0 11100 01000 0?200 0-100 00011 00100 00?? 

Vinetopterus struvei  

01010 0-001 01310 00--0 00000 00000 01100 00-00 00100 00000 00001 00001 

00010 0??1? ??000 01100 11000 0-?00 00011 00100 0000 

Vinetopterus martini  

01010 0-?01 0131? ????? 00000 00000 0???? 00-00 00100 00000 00001 ????1 

0???? ????? ??000 01100 11000 0-?00 00011 00100 00?? 

Moselopterus ancylotelson  

00010 0-001 01310 00--0 10000 00000 01100 00-00 00100 00000 00001 00001 

00010 0001? 10010 01100 11000 1-000 01011 00100 0000 

Moselopterus elongatus  

00010 0-001 01310 00--0 10000 00000 01100 00-00 00100 00000 00001 00001 

00010 ???1? ??010 01100 11000 1-000 01011 00?00 0000 
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Onychopterella augusti  

00015 0-?01 01??? ????0 11000 0??01 01100 00-00 00101 00010 00000 ???0? 

0???? ????? 0-000 01100 00000 0-100 00000 0?000 00?? 

Onychopterella kokomoensis  

00015 0-101 01310 00--0 11000 00101 01??? 00-00 00101 00010 00000 00001 

00010 000?1 0-000 01100 00200 0-100 00000 0?000 00?0 

Dolichopterus macrocheirus  

00012 0-012 01010 00--0 21000 00101 01110 11001 11101 20110 11010 11011 

00110 000?0 10000 01100 00100 0-000 00000 00000 0000 

Eurypterus remipes  

00013 10101 01010 00--0 11000 01101 01120 01001 00111 10011 10000 00001 

00110 00001 0-010 01100 00000 0-000 01000 10011 0010 

Hughmilleria socialis  

00017 0-122 11111 00--0 11000 00101 01120 01101 00111 00011 10100 0100? 

012-2 00010 0-010 11100 00000 0-000 00000 00000 11?0 

Tylopterella boylei  

00015 0-101 01??? ????? ????? ????? ????? ????? ????? ????? ????? ????? 

0???? ????? ??001 01100 00000 0-000 00000 00000 00?? 

Megalograptus ohioensis  

01012 10104 01210 00--1 21110 01101 01120 01001 00111 00012 ----0 03001 

012-1 00000 0-011 01100 00000 0-000 00100 00011 0010 
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Mixopterus kiaeri  

00012 10104 01?10 00--1 21110 00101 01120 01111 00111 00011 10000 0000? 

012-2 000?0 0-010 01110 00000 1-000 00100 00000 00?0 

Strobilopterus laticeps  

00011 0-011 01??? ????? ????? ????1 1???? 01101 00111 00-11 10000 1101? 

?0110 000?0 10??? ????0 ????? ????? ????1 0???? ???1 

Strobilopterus princetonii  

00011 10013 01??0 00--0 10000 0??01 11120 01101 10111 20110 11000 1?01? 

0???0 000?0 10000 11100 00000 ????? ??011 0?0?0 0001 

Strobilopterus richardsoni  

00011 0-013 0131? ????? ????? ????1 ????? ????? 10111 20011 10000 ????? 

????? ????? ????? ????? ????? ????? ??011 010?? 00?? 

Strobilopterus proteus  

00011 10013 0131? ????0 10000 00101 111?0 01101 10111 20110 11000 1001? 

0???0 00010 10000 11100 00000 ????? ??011 01010 0001 

Buffalopterus pustulosus  

00011 0-011 0131? ????? ????? ????1 1???? ????? ????? ????? ????? ????1 

00110 000?? 0-000 01100 00100 20000 01011 01010 0000 

Erieopterus microphthalmus  

00014 11001 01310 00--0 10000 01101 01120 01001 00111 00011 00000 01001 

00110 000?1 0-010 01100 00100 1-000 00000 00000 00?0 
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Paraeurypterus anatoliensis  

00012 10011 01?1? ????? 11000 0???1 0???? 010?? ????? ????? ????0 ????1 

0???? ????? ??0?0 0???0 ????? ????? ??001 00010 001? 

Pentlandopterus minor  

00012 10011 01??? ????? ????? ????1 0???? 010?? ????? ????? ????? ????? 

0???? ????? ??010 01100 00000 0-000 00011 00000 000? 

Dolichopterus jewetti  

00012 0-012 0???0 00--0 21000 00101 01110 11001 11101 20110 11010 11001 

00110 000?0 10000 01100 00100 0-000 00001 00?00 0000 

Ruedemannipterus stylonuroides  

10016 0-012 01??? ????? ????? ????1 0???? 11001 ?1101 ?0110 10110 ????? 

0???? ????? ??0?? ????? ????? ????? ??011 00000 00?? 

Clarkeipterus testudineus  

10002 0-012 01??? ????? ????? ????1 0???? 11001 ?1101 ?0?10 10010 ????? 

????? ????? ????? ????? ????? ????? ????1 00?00 ???? 

Clarkeipterus otisius  

10002 0-012 01??? ????? ????? ????? ????? ????? ????? ????? ????? ????? 

????? ????? ????? ????? ????? ????? ????1 00??? ???? 

Erieopterus eriensis  

00011 11001 0131? ????0 10000 0??01 01120 01001 00111 00011 00000 ????1 

00110 ????? ??010 01100 00??? 0-000 00000 00000 00?? 
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Eurypterus henkeni  

00013 10101 0101? ????? 11000 0??01 01120 01001 00111 00011 10000 0000? 

0???? ????? 0-010 01100 00100 0-000 01000 10011 0010 

Eurypterus tetragonophthalmus  

00013 10101 01010 00--0 11000 01101 01120 01001 00111 10011 10000 00001 

00110 00001 0-010 01100 00200 0-000 01000 10011 0010 

Eurypterus leopoldi  

00013 10101 01??? ????? ????? ????1 ????? ????? ?0111 10011 10000 1000? 

????? ????? ???0? ???00 00200 0-000 01?00 10011 00?? 

Eurypterus pittsfordensis  

00013 10101 01010 00--0 11000 01101 01120 01001 00111 10011 10000 1000? 

0???? ????? ??000 01100 00200 0-000 01000 10011 001? 

Eurypterus henningsmoeni  

00013 10101 0101? ????0 ????? ?1101 01120 01001 00111 10011 10000 0000? 

0???? ????? 0-010 01100 00200 0-000 01000 10011 001? 

Orcanopterus manitoulinensis  

10017 0-102 01??0 00--0 21000 001?1 0???? 0??0? 00111 00010 10010 1100? 

012-1 0??0? ??010 11100 00000 0-000 00000 00000 10?0 

Pterygotus anglicus  

00113 0-122 11111 12000 3---- 00101 01121 01101 20111 10011 10100 0000? 

012-2 11000 0-000 01100 00011 2000? 11000 00000 1110 
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Adelophthalmus sievertsi  

00017 0-101 01110 00--0 3---- 00101 01120 01101 00111 11011 10100 0000? 

012-2 00000 10010 01100 00000 0-000 00000 00000 1120 

Eurypterus dekayi  

00013 10101 01010 00--0 11000 01101 01120 01001 00111 00011 10000 0000? 

00110 000?1 0-010 01100 00200 0-000 00000 00010 0010 

Carcinosoma newlini  

00019 0-102 01?10 00--1 21110 00101 01120 01111 00111 10011 11010 0000? 

012-2 000?0 0-010 01110 00000 0-000 00000 00000 00?0 

Slimonia acuminata  

00010 0-122 11??1 00--0 01000 00101 01120 01101 00111 00011 10100 1001? 

012-2 00000 0-010 01100 00000 20000 11000 00000 11?0 

Acutiramus bohemicus  

??1?? ????? ????1 1221? 3---- 0??01 01121 01101 ????? ????? ????0 1???? 

????? 110?? ????? ????? ???11 20001 ?1?0? ????? 11?? 

Acutiramus macrophthalmus  

00115 0-122 11111 12210 3---- 00001 01121 01101 20111 10011 10100 1100? 

012-2 1110? 0-000 01100 00011 20001 11000 00000 1110 

Erettopterus bilobus  

00112 0-122 11111 11000 3---- 0??01 01120 01101 20111 10011 10100 1000? 

012-2 1101? 0-000 01100 00011 20012 11000 00000 1110 
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Erettopterus osiliensis  

00112 0-122 11??1 1200? 3---- 0??01 01120 0??01 20111 10011 10100 1000? 

012-2 1111? 0-000 01100 00011 20012 11000 00000 11?0 

Erettopterus serricaudatus  

????? ????? ????1 1100? ????? ????? ????? ????? ????? ????? ????? 1000? 

????? 100?? ????? ????? ???1? 20012 11?0? ????? 11?? 

Erettopterus waylandsmithi  

00112 0-122 11??1 1200? ????? ????? ????? ????? ????? ????? ????? ????? 

????? ????? ????? ????? ????? 20?1? ???00 00??? 11?? 

Jaekelopterus rhenaniae  

00113 0-122 11??1 1210? 3---- 00001 01121 ????? ????? ????? ????0 1100? 

012-2 11100 0-000 01100 00011 21002 10000 00000 1110 

Jaekelopterus howelli  

????? ????? ????1 1210? ????? ???01 ?1121 ????? ????? 10011 10100 1100? 

?12-2 11000 0-??? ???00 ?0011 21002 11?0? ????? 1110 

Ciurcopterus ventricosus  

00104 0-122 11??? ????0 01000 00101 01??? 01101 00111 ????? ????0 ????? 

012-2 100?0 0-000 01100 00010 20000 10000 00000 11?0 

Nanahughmilleria norvegica  

00?17 0-101 01110 ????0 11000 00101 01120 01101 00111 11011 10100 1000? 

012-2 ????0 10000 11100 000?? 0?0?? ?0000 00000 1110 

 

 

689



 

Character matrix addition (juvenile instars) 

Strobilopterus proteus  α 

00001 0-011 0131? ????0 10000 0010? 011?0 0110? ????? ????? ????0 1001? 

0???0 000?0 10000 11100 00000 ????? ??011 00000 000? 

Strobilopterus proteus  β  

00011 10013 01??? ????0 10000 0??01 011?? 01101 ????? ????? ????0 ????? 

0???? ????? ??000 11100 00000 ????? ??011 00000 000? 

Strobilopterus princetonii  γ  

00011 10013 01??? ????0 10000 0???1 1???? ???01 10111 10011 10000 ????? 

0???? ????? ??000 11100 00000 ????? ??011 0?0?0 000? 
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Appendix 4 

 

The systematics and phylogeny of aulacopleuroid trilobites 

(Arthropoda: Trilobita: Proetida) 

 

Comprising the morphological character list and character matrix used in the 

phylogenetic analysis 
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Character list 

1. Eye ridges: angled anteriorly [>110°] (0); equal to eye [90–110°] (1); absent (–). 

2. Carapace heavily vaulted, with height gained largely from the free cheeks: absent, 

height largely gained from fixed cheeks and glabella (0); present (1). 

3. Carapace shape: wider than long [≤0.55] (0); equilateral [>0.55] (1). 

4. Carapace with broad surface of free cheek: absent (0); present (1). 

5. Reduction of lateral eyes: eyes fully expressed (0); eyes absent (1). 

6. Eye angle: diverging posteriorly (0); equilateral (1); diverging anteriorly (2). 

7. Free thoracic tergite count: 14–15 (0); 18+ (1); 16 (2); 13 (3); 11–12 (4); 9 (5); 6 

(6); 7 (7); 8 (8); 10 (9). 

8. Thoracic tergites postlaterally expanded at fulcrum, forming distal ‘oar’ shape 

that increases overlap of succeeding tergite: absent (0); present (1). 

9. Facial sutures fused: sutures present, functional (0); sutures absent, headshield 

fused (1). 

10. Posterior suture position: avoids outer margin (0); cuts through outer margin (1); 

skirts margin (2); no suture (–). 

11. Suture angle from lateral eye: 30–45° (0); ≥60° (1); ≤0° (2); 10–20° (3); no 

suture associated with eye (–). 

12. Angle of sutures as they cross the anterior margin: parallel (0); converging (1); 

diverging (2); does not cross anterior margin (–). 

13. Position of converging sutures: overturned onto margin (0); dorsally on carapace 

(1). 

14. Lateral eye size (as percentage of carapace): 30%+ (0); 20%–29% (1); <15% (2). 
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15. Eye shape: visual surface with bulbous or crescentic outline (0); visual surface 

scimitar-shaped (1). 

16. Eye globular, with visual surface bulging out beyond palpebral lobe: absent (0); 

present (1). 

17. Eyes sit atop free cheek: absent [eye visual surface set into free cheek] (0); 

present, globular [visual surface sits atop free cheek and projects above it with 

roughly spherical outline] (1); present, turreted [visual surface sits atop free 

cheek and projects above it with angular outline and flat dorsal surface] (2). 

18. Eye position: posterior of carapace [0–45%] (0); midline or anterior [48%+] 

(1); eye encompasses entire carapace length (2). 

19. Lateral eye kidney-shaped, palpebral lobe recessed: absent, palpebral lobe 

partially overlaps eye (0); present (1). 

20. Visual surface dorsally expanded, palpebral lobe curves upwards behind eye to 

accommodate: absent (0); present (1). 

21. Position of palpebral lobe: main body distant from axial furrow (0); main body 

abuts axial furrow (1). 

22. Size of palpebral lobe: equal to or larger than visual surface (0); smaller than 

visual surface (1). 

23. Large dorsal spine on palpebral lobe: absent (0); present (1). 

24. Large ancillary pustule positioned centrally at lateral eye interior: absent (0); 

present (1). 

25. Eye ridges expressed dorsally on exoskeleton: present (0); absent (1); 

inapplicable, eyes abut glabella (–). 
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26. Pair of preglabella spines: absent (0); present (1). 

27. Glabella extent: carapace anterior [>75%] (0); carapace midline or posterior 

[≤75%] (1). 

28. Effacement of S3: S3 deeply incised (0); S3 effaced (1). 

29. Effacement of S2: S2 deeply incised (0); S2 effaced (1). 

30. Positioning of S2 & S3: well spaced (0); S3 & S2 close together, L3 expanded 

(1); S3 or S2 effaced (–). 

31. Length of S3/S2: ~50% of glabella width (0); short, ~25% of glabella width (1); 

S3 an S2 effaced (–). 

32. Relationship of L1 to glabella: part of glabella [not separated by S1] (0); 

detached from glabella [S1 extends to occipital ring, separating L1 from 

glabella] (1); fully merged with glabella [S1 shallow or effaced] (2). 

33. Size of L1: >25% of glabella (0); reduced, <25% of glabella (1). 

34. Enlarged L1 when L1 is at least 25% of glabella: absent, ~25% (0); presents, 

>40% (1). 

35. Anterior narrowing of glabella: width at anterior <75% width at base (0); width 

at anterior >75% width at base (1). 

36. Form of broad glabella anterior: <100% width of base (0); 100% width of base 

(1); >100% width of base (2); anterior width <75% that of base (–). 

37. Glabella with sudden constriction about 1/3 from anterior: glabella margins 

continuous (0); glabella margins with sudden constriction (1). 

38. Glabella with median node at its anterior: absent (0); present (1). 

39. Carapace anterior to glabella with median depression: absent (0); present (1). 
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40. Glabella separate from occipital ring by deep trough: absent (0); present (1). 

41. L1 teardrop-shaped: absent (0); present (1). 

42. L1 separated from glabella by broad, trough-like S1: absent (0); present (1). 

43. Glabella anterior lobe diamond-shaped: absent (0); present (1). 

44. L1 with prominent tubercle pair: absent (0); present (1). 

45. Enlarged thoracic spine on sixth tergite: absent (0); present (1). 

46. Spine on 4th tergite: absent (0); present (1). 

47. Axial structure on occipital ring: absent (0); present (1). 

48. Form of occipital axial structure: raised node (0); enlarged spine (1); absent (–). 

49. Ancillary axial structures: absent (0); paired ancillary nodes (1); no primary 

axial structure (–). 

50. Hypostome with unsclerotised anterior portion: absent (0); present (1). 

51. Hypostome with paired posterior projections: absent (0); present, short spinous 

projections (1); present, enlarged projections resulting in ‘forked’ morphology 

(2). 

52. Postlateral corners of carapace expanded into short lappets: absent (0); present 

(1). 

53. Position of genal spine divergence from carapace: lateral, anterior to carapace 

posterior margin (0); posterolateral margin, posterior margin of carapace curves 

down into genal spine (1). 

54. Genal spines purely vestigial: fully expressed (0); vestigial (1). 

55. Genal spine curvature: strong curvature (0); slight curvature (1). 
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56. Genal spine angle of divergence: high [≥30%] (0); moderate [11%–29%] (1); 

reduced [≤10%] (2). 

57. Length of genal spines: >100% carapace length (0); 35–100% carapace length 

(1); ≤30% carapace length (2). 

58. Genal spines bow outwards, away from thorax: absent (0); present (1). 

59. Anterior carapace margin forms angular projection: absent, carapace margin 

rounded (0); present (1). 

60. Ancillary row of ventral spines projecting laterally from marginal rim: absent (0); 

present (1). 

61. Carapace marginal rim morphology: smooth (0); produced into laterally oriented 

spines (1). 

62. Carapace rim with dorsally projecting row of spines: absent (0); present (1). 

63. Size of lateral marginal rim spines: short, approximately same length as rim (0); 

longer than rim width (1); no spines (–). 

64. Lateral margin produced into broad, flattened ‘shelf’: absent (0); present (1). 

65. Pustular ornamentation present on rim: absent (0); present (1). 

66. Shelf ornamentation interrupted by effaced region at shelf commencement: absent 

(0); present (1). 

67. Number of outer rows of pustules in shelf ornamentation: single row (0); multiple 

rows (1). 

68. Ornamentation of pustules on rim oriented so as to appear to be radiating out from 

carapace: absent (0); present (1); no ornamentation (–). 

696



69. Ornamentation of free cheek (region outside of lateral eyes but before lateral 

margin): granules (0); pustules (1). 

70. Ornamentation of fixed cheek (region between lateral eyes and glabella): granules 

(0); pustules (1). 

71. Ornamentation of glabella anterior (region anterior of S1): granules (0); pustules 

(1); effaced (2). 

72. Density of anterior glabella pustules: sparse (0); dense (1); pustules not present 

on glabella (–). 

73. Size of anterior glabella pustules: small, pustular (0); large, tubercular (1); 

pustules not present on glabella (–). 

74. Ornamentation of glabella posterior (region posterior of S1): granules (0); 

pustules (1); effaced (2). 

75. Density of posterior glabella pustules: sparse (0); dense (1); pustules not present 

on glabella (–). 

76. Size of posterior glabella pustules: small, pustular (0); large, tubercular (1); 

pustules not present on glabella (–). 

77. Pustular ornamentation subdued: absent, pustules fully expressed (0); present, 

pustules short and diffuse (1). 

78. Concentration of pustules between palpebral lobe and glabella: absent (0); present 

(1). 

79. Pustules around lateral eye dense and enlarged: absent (0); present (1). 

80. Extension of carapace ornamentation onto genal spines: absent (0); present (1). 
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81. Extent of carapace ornamentation on genal spines: entire length of genal spine 

(0); proximal regions only (1); no carapace ornamentation on genal spines (–). 

82. Breadth of shoulders: short, not extending beyond maximum width of hypostome 

body (0); broad, extending beyond maximum width of hypostome body (1). 

83. Form of division of median body: division formed by lateral grooves that do not 

meet medially (0); division formed by deep groove that entirely transverses 

median body (1); posterior median body entirely separated from anterior median 

body (2); median body undivided (–). 

84. Extent of hypostome doublure/rim: present along entire lateral and posterior 

margins (0); present at posterior margin only (1). 

85. Form of hypostome posterior angles: rounded, so hypostome appears lobate (0); 

angular, so hypostome appears quadrate/shield-shaped (1). 

86. Pygidium with tergopleural epimera besides macropleural spines: absent (0); 

present (1).  

87. Number of axial rings in pygidium: 4/5 (0); 3 (1); 2 (2); 7/8 (3); 22 (4); 14 (5); 9 

(6); 10-12 (7). 

88. Size of pygidium in relation to cephalon (quantified via comparison of boxed area 

plots): micropygous [pygidium occupies <25% area of cephalon] (0); isopygous 

[pygidium occupies 25–110% area of cephalon] (1); macropygous [>150% area 

of cephalon] (2). 

89. Degree of micropygosity: extreme micropygosity [0–5%] (0); micropygous [10–

25%] (1); pygidium isopygous or macropygous (–). 
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90. Degree of isopygosity: extreme subisopygosity [25–35%] (0); subisopygous [35–

90%] (1); isopygous [90–105%] (2); pygidium micropygous or macropygous (–). 

91. Pygidial marginal rim overturned onto inflated pygidial lateral margin: absent (0); 

present (1); no marginal rim (–). 

92. Dense, unordered ornamentation of scales/pustules: absent (0); present (1). 

93. Row of four tubercles on each axial ring: absent (0); present (1). 

94. Ancillary tubercles on pygidial axial ring: present (0); absent (1); no tubercle row 

(–). 

95. Row of tubercles on lateral ribs of tergopleurae: absent (0); present (1). 

96. Thin, lateral spines projecting from tergopleura: absent (0); present (1). 

97. Form of epimera on anterior tergites (1–6): acute, spinous (0); blunt, curved (1). 

98. Form of epimera on posterior tergites (7–n): acute, spinous (0); blunt, curved (1); 

blunt, quadrate or lobate (2). 

99. Reduction of epimera on first trunk tergite: partially reduced, epimeral 

termination straight, spine small (0); undifferentiated (1). 

100. Commencement of narrowing of axial rings: 4th axial ring (0); 3rd axial 

ring (1); terminal pre-pygidial axial ring (2); expanding until mid-ring before 

narrowing commences, pre-pygidial axial ring same width as first post-cephalic 

axial ring (3). 

101. Percentage of tergite width occupied by axial region: 36–45% (0); 30–

35% (1); 20–25% (2); >45% (3). 

102. Axis with central node on each segment: present (0); absent (1). 
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103. Tubercular swellings in pleural field alongside axis: absent (0); present 

(1). 

104. Row of tubercles across the posterior margin of each tergite: absent (0); 

present (1). 

105. Tergites showing marked deflection at fulcrum: absent (0); present (1). 

106. Prominent row of tubercles present solely on segment axis: absent (0); 

present (1). 

107. Form of pygidial epimera: broad, extended tergopleura (0); narrow, 

needlelike (1). 

108. Inflated node positioned centrally on pygidial axial rings: absent (0); 

present (1). 

109. Occurrence of central node on pygidial axial rings: every ring (0); 

alternating rings (1); nodes absent (–). 

110. Central node on pygidial rings produced into short, posteriorly-inflected 

conical spine: absent (0); present (1). 

111. Length of pygidial epimera: short (0); long (1); no epimera (–). 

112. Pygidial epimera broad and blunt, lobe-like: absent (0); present (1); no 

epimera (–). 

113. Pygidial macropleural spines: absent (0); present (1). 

114. Paired tubercles running down axis of pygidium: absent (0); present (1). 

115. Pygidium with pleurae deflecting posteriorly almost at right angles at 

fulcrum: absent (0); present (1). 

116. Pygidium with paired terminal spines: absent (0); present (1). 
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117. Pygidium terminating in medial lobe: absent (0); present (1). 

118. Axial region of pygidium posteriorly truncated: absent (0); present (1). 

119. Fixed cheeks of cephalon pitted: absent (0); present (1). 

120. Free cheeks of cephalon pitted: absent (0); present (1). 

121. Pustules enlarged, warty: absent (0); present (1); no pustules (–). 

122. Anterior carapace pustules oriented as to appear radiating out from 

glabella: absent, orientation random (0); present (1); no pustules on fixed or free 

cheek (–). 

123. Intermediate shelf between glabella and rim: absent (0); present (1). 

124. Tubercles bordering the lateral eye anteriorly and posteriorly enlarged: 

absent (0); present (1). 

125. Line of three enlarged tubercles position centrally on glabella: absent (0); 

present (1). 

126. Early protaspids with paired posterior spines: absent (0); present (1). 

127. Protaspids with posterior medial indentation: absent (0); present (1). 

128. Protaspid eye ridges: fully expressed (0); suppressed (1). 

129. Late protaspid stages with tubercular swelling on occipital ring: absent 

(0); present (1). 

130. Protaspids with ancillary posterior spines: absent (0); present (1). 

131. Meraspid stages with a row of tubercles on fixed cheek either side of 

glabella: absent (0); present (1). 

132. Meraspid stages with three pairs of tubercles on glabella: absent (0); 

present (1). 
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133. Spacing of three glabellar tubercle pairs: equilateral (0); anterior two 

pairs compressed together (1); no tubercles present (–). 

134. Meraspid stages with row of short spines at pygidium fulcrum: absent (0); 

present (1). 

135. Number of tubercles on fixed cheek row: 3 (0); 2 (1). 

136. Tubercle on eye ridge in meraspid: absent (0); present (1). 
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Character matrix 

Hintzecurus paragenalatus  

0 0 0 0 0 0 5 0 0 0 0 0 – 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 – 0 0 1 0 0 – 0 0 1 0 0 – 

– ? ? 0 1 0 0 1 0 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 0 0 0 1 0 ? ? ? ? 0 0 0 1 – 0 0 0 1 0 0 

0 1 0 1 0 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 1 0 0 0 1 0 – ? ? ? 

Aulacopleura wulongensis  

1 0 0 1 0 1 2 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 – 

– ? ? 0 1 0 1 1 2 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 1 0 0 1 0 ? ? ? ? 0 1 0 1 – 0 0 0 1 0 0 

1 1 1 1 2 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0 – 0 0 1 

Cyphaspis dabrowni  

– 1 0 1 0 0 ? 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 1 – 1 1 0 0 0 0 0 0 0 0 ? ? 1 1 

0 0 1 0 1 0 1 1 2 0 0 1 1 0 0 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 ? ? ? 1 0 1 0 1 0 

1 1 ? ? 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 0 1 1 1 1 1 1 1 1 

Maurotarion struszi  

0 0 ? ? 0 0 ? 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 – – 1 1 – 0 – 0 0 0 0 0 0 0 0 1 1 1 1 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 1 0 0 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 0 ? 0 0 1 1 1 1 0 1 0 1 

Brachymetopus germanicus 

 – 1 0 1 0 0 5 0 1 – – – – 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 0 5 1 – 1 0 0 1 0 1 0 

1 1 1 3 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 1 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? 
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Rorringtonia kennedyi  

1 0 0 0 0 1 5 0 0 0 3 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 – 0 0 0 0 0 – 0 0 0 0 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 0 0 0 – – 0 – – – 0 0 0 – ? ? ? ? 0 3 1 – 1 0 0 0 1 0 0 

1 1 1 1 1 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 – – 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Bathyurus ulu  

– 0 1 0 0 1 ? 0 0 0 0 1 0 0 ? ? 0 0 0 0 1 1 0 0 – 0 0 1 0 – 0 0 0 0 1 2 0 0 0 0 0 – 0 0 ? ? 0 – 

– 0 1 0 1 0 1 2 1 0 0 0 0 0 – 0 0 – – – 0 0 0 – – 1 0 0 0 0 0 0 – 0 0 0 1 0 1 1 – 1 0 1 0 1 0 0 

1 1 ? ? 1 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 – 0 0 0 0 1 0 ? ? 0 0 – ? – 0 

Dimeropyge speyeri  

– 0 0 0 0 0 5 0 0 0 2 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 2 – – 1 1 0 0 1 0 – – 0 – 1 0 0 – 

– 1 0 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 0 ? ? 1 1 0 1 1 – 0 1 1 0 1 0 0 

1 1 1 1 1 1 1 0 1 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 – 0 

Proetus talenti 

 – 0 1 0 0 1 ? 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 0 – 0 0 1 0 – 1 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 1 0 1 0 1 2 1 0 0 0 0 0 – 0 0 – – – 0 0 0 – – 1 0 0 0 0 0 0 – 0 1 0 1 0 3 ? ? ? 0 0 1 1 0 0 

1 1 ? ? 0 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 – 0 0 0 0 1 0 1 0 0 0 – 0 – 0 

Phillipsia belgica  

– 0 1 0 0 1 9 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 – 0 0 0 0 1 1 1 1 – 1 2 0 0 0 0 0 0 0 0 0 0 0 – 

– 0 1 0 1 0 1 2 1 0 0 0 0 0 – 0 0 – – – 1 0 0 – – 1 0 0 0 0 0 0 – 0 1 0 1 0 4 1 – 2 0 0 1 1 1 0 

1 1 1 2 0 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 
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Gerastos tuberculatus  

– 0 1 0 0 1 9 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 – 0 0 1 0 1 1 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 0 – 

– ? ? 0 1 0 1 1 2 0 0 0 0 0 – 0 0 – – – 0 0 1 0 0 1 0 0 0 0 0 0 – ? ? ? ? 0 3 1 – 1 0 0 1 1 0 0 

1 1 1 1 0 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 – 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Tropidocoryphe bassei  

– 0 0 0 0 1 5 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 – 0 1 1 0 – 0 1 0 0 0 – 1 0 0 0 0 0 0 0 0 0 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 0 0 0 – – 0 – – – 0 0 0 – ? ? ? ? 0 3 1 – 1 0 0 0 1 0 0 

0 0 1 2 1 0 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 – – 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Scharyia micropyga  

0 0 0 0 0 1 6 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 – 0 0 0 0 0 – 1 0 0 0 0 – 0 0 0 0 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 0 0 0 0 – ? ? ? ? 0 3 1 – 1 0 0 0 1 0 0 

1 1 1 2 1 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 – 0 

Maurotarion periergum  

0 0 0 1 0 0 3 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 – – 1 0 0 0 – 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 1 – 0 0 1 0 1 0 

1 1 1 1 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Otarion huddyi  

– 1 0 1 0 0 4 0 0 0 2 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 1 0 1 1 

0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 – 1 1 0 1 0 1 0 

1 1 1 1 1 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 1 0 0 0 0 0 ? ? ? ? ? 1 1 1 1 1 1 
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Toernquistia sanchezae  

0 0 0 0 0 0 5 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 – 0 0 1 0 0 – 0 0 1 0 1 0 

0 1 0 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 0 1 1 0 0 1 0 0 0 0 0 0 – ? ? 1 1 0 1 0 1 – 1 1 0 1 0 0 

1 1 1 1 1 1 1 0 1 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 

Aulacopleura konincki  

1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 – 

– 0 0 0 1 0 1 1 2 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 – 0 0 0 1 0 0 

1 1 1 1 2 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 1 1 0 0 0 0 0 ? ? ? ? ? 1 0 – 0 0 1 

Aulacopleura longecornuta  

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 – 

– ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 1 0 0 1 0 ? ? ? ? 0 0 0 1 – 0 0 0 1 0 0 

1 1 1 1 2 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Aulacopleura bohemica  

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 1 0 0 1 0 ? ? ? ? 0 0 0 1 – 0 0 1 0 1 0 

1 1 1 1 2 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Aulacopleura pogsoni  

0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 1 0 0 1 0 ? ? ? ? 0 0 0 1 – 0 0 0 1 0 0 

1 1 1 1 2 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

 

 

 

706



Aulacopleura reedi  

0 0 0 1 0 0 ? ? 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 1 0 0 1 0 ? ? ? ? 0 0 ? ? ? 0 0 0 1 0 ? ? 

? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Aulacopleuroides mirus  

0 ? ? ? 0 0 ? ? 0 0 0 1 1 2 0 ? ? 0 0 0 0 ? 0 0 0 0 1 1 0 – 1 1 0 0 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 0 

? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 – – – ? 1 1 0 0 1 0 0 1 0 0 ? ? ? ? ? ? 0 3 ? ? ? 1 0 0 1 0 ? ? ? ? 

? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 ? 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Chamaeleoaspis chamaeleo  

– 1 0 1 0 0 9 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 

0 ? ? 0 1 0 1 1 1 0 0 0 1 0 0 0 0 – – – 1 1 1 0 0 1 1 0 0 0 0 1 0 ? ? ? ? 0 0 0 – – 0 0 1 0 1 0 

1 1 1 1 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Chamaeleoaspis lkomalii  

– 1 0 1 0 0 9 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 

0 ? ? 0 1 0 1 1 1 0 0 0 1 0 0 0 0 – – – 1 1 1 0 0 1 1 0 0 0 0 1 0 ? ? ? ? 0 0 0 1 – 0 0 ? ? ? 0 1 

1 1 1 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Coignops martinezi  

– 0 1 0 1 – 8 0 0 0 – 2 – – – – – – – – – – – – 1 0 0 0 0 1 1 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 ? ? 1 1 1 – – – – 0 0 0 0 – 0 0 – – – 1 – 1 0 0 1 0 0 0 – – – – ? ? ? ? 0 3 1 1 1 0 0 1 1 1 0 

1 1 1 2 0 0 0 1 0 0 – 0 – – – – 0 0 0 0 0 1 0 0 0 0 0 – 0 ? ? ? ? ? ? ? ? ? ? ? 
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Coignops ymir  

– 0 1 0 1 – ? ? 0 0 – 2 – – – – – – – – – – – – 1 0 0 0 0 1 1 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

0 ? ? 1 1 1 – – – – 0 0 0 0 – 0 0 – – – 1 – 1 0 0 1 0 0 0 – – – – ? ? ? ? 0 3 ? ? ? 0 0 1 1 1 ? ? 

? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 1 0 0 0 0 0 – 0 ? ? ? ? ? ? ? ? ? ? ? 

Cyphaspides holinensis  

– 1 0 1 0 0 4 0 0 0 0 0 – 2 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 1 – 1 1 0 0 0 0 0 0 0 0 0 0 1 0 

0 ? ? 0 1 0 1 0 1 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 1 ? ? ? ? 1 6 1 – 0 1 0 1 0 1 1 

1 1 1 1 2 1 0 0 1 0 1 0 – – 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Cyphaspides comatus  

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 0 1 1 6 ? ? ? 1 0 1 0 1 ? ? ? ? ? ? ? ? 

? ? ? 1 0 – – 0 0 0 0 1 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

Cyphaspides deani  

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 6 ? ? ? 1 0 1 0 1 ? ? ? ? ? ? ? ? 

? ? ? 1 0 – – ? ? 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

Cyphaspis ceratophthalmus  

– 1 0 1 0 0 4 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 1 – 1 1 0 0 0 0 0 0 0 0 1 0 1 0 

0 ? ? 0 1 0 1 1 0 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 1 1 1 0 ? ? ? ? 0 0 0 1 – 1 0 1 0 1 0 

1 1 1 1 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 
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Cyphaspis barrandei  

– 1 0 1 0 0 4 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 1 – 1 1 0 0 0 0 0 0 0 0 1 0 1 0 

0 ? ? 0 1 0 1 1 0 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 0 ? ? ? ? 0 0 0 1 – 1 0 1 0 1 0 

1 1 1 1 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Cyphaspis lowei  

– 1 0 1 0 0 ? 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 1 – 1 1 0 0 0 0 0 0 0 0 ? ? 1 1 

0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 ? ? ? 1 0 1 0 1 ? 

? ? ? ? 1 0 0 1 0 0 1 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Cyphaspis ranuncula  

– 1 0 1 0 0 4 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 1 – 1 1 0 0 0 0 0 0 0 0 1 0 0 – 

– ? ? 0 1 0 1 1 ? ? 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 1 0 1 ? ? ? ? ? 0 0 0 1 – 1 0 1 0 1 0 1 

1 1 1 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Cyphaspis barbarossa  

– 1 0 1 0 0 ? 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 1 0 0 0 0 0 0 0 0 ? 0 0 – 

– ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 

? ? ? 1 1 0 1 0 0 ? ? ? ? ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Cyphaspis hoepfneri  

– 1 0 1 0 0 4 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 1 – 1 1 0 0 0 0 0 0 0 0 1 0 0 – 

– ? ? 0 1 0 1 1 0 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 1 0 1 0 ? ? ? ? 0 0 0 1 – 1 0 1 0 1 0 

1 1 1 1 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 
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Cyphaspis eberhardiei  

– 1 0 1 0 0 4 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 1 – 1 1 0 0 0 0 0 0 0 0 1 0 1 0 

0 ? ? 0 1 0 1 1 0 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 1 1 1 0 ? ? ? ? 0 0 0 1 – 1 0 1 0 1 0 

1 1 1 1 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Cyphaspis ellipsocephala  

– 1 0 1 0 0 ? ? 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 1 – 1 1 0 0 0 0 0 0 0 0 ? ? 0 – 

– ? ? 0 1 0 1 1 1 0 0 0 1 0 0 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 1 ? ? ? ? 0 0 ? ? ? 1 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Cyphaspis gruanum  

– ? ? ? ? ? ? ? ? ? 0 1 1 ? ? ? 1 0 0 0 0 ? 0 0 1 0 0 1 1 – – 1 1 – 1 1 0 0 0 0 0 0 0 0 ? ? 0 – – 

? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 – – – ? 1 1 1 0 1 1 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 ? 0 ? ? ? ? ? ? ? ? ? ? ? 

Beggaspis tenue  

0 0 0 1 0 0 ? 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 – – 1 0 0 1 0 0 0 0 1 1 0 0 0 ? 0 1 0 

0 ? ? 0 1 0 1 1 ? 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 

? 1 ? 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Beggaspis elongatum  

0 0 0 1 0 0 7 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 – 

– ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 1 0 0 1 0 ? ? ? ? 0 0 1 – 0 0 0 0 1 0 0 

1 1 1 1 1 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 
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Beggaspis spinicaudatum  

0 0 0 1 0 0 ? ? 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 ? ? 0 – 

– ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 1 0 0 1 0 ? ? ? ? 0 0 ? ? ? 0 0 0 1 0 ? ? 

? ? ? 1 ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 ? ? 1 ? ? ? ? ? ? 

Dixiphopyge armata  

– 1 0 1 0 0 5 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 – – 1 1 – 0 – 0 0 0 0 0 0 0 0 0 0 1 0 

0 ? ? 0 1 0 1 2 2 0 0 0 0 0 – 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 ? ? ? ? 1 5 1 – 1 0 0 1 0 1 0 

1 1 1 3 1 0 0 1 0 0 1 0 – – 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? 

Harpidella greggi  

– 1 0 1 0 0 ? ? 0 0 2 0 – 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 – – 1 0 1 0 – 0 0 0 0 0 0 0 0 ? ? 1 1 

0 0 1 0 0 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 0 – 1 1 0 1 0 0 ? ? ? 1 0 1 0 1 ? 

? ? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

Harpidella tikkaneni  

0 0 0 0 0 0 ? ? 0 0 2 0 – 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 – 1 1 0 1 0 – 0 0 1 0 0 0 0 0 ? ? 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 0 0 0 0 – ? ? ? ? 0 0 ? ? ? 0 0 0 1 0 ? ? 

? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Harpidella megalops  

0 0 0 0 0 0 ? ? 0 0 2 0 – 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 – 1 1 0 1 0 – 0 0 1 0 0 0 0 0 ? ? 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 ? ? ? 0 ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 ? ? ? ? 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 
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Harpidella kurrii  

0 0 0 0 0 0 ? 0 0 0 0 0 – 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 – – 1 0 1 0 – 0 0 1 0 0 0 0 0 ? ? 1 0 

0 0 1 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 0 0 0 0 – 0 1 0 1 0 0 ? ? ? 0 0 1 0 1 0 

? ? ? ? 1 0 0 1 0 0 1 0 – – – – 0 0 0 0 0 0 0 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Harpidella spinafrons  

– 1 0 1 0 0 ? ? 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 0 1 0 – 0 0 0 0 0 0 0 0 ? ? 1 1 

0 ? ? 0 1 0 1 1 1 0 0 1 1 0 0 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Harpidella triloba  

– 1 0 1 0 0 ? ? 0 0 2 0 – 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 – – 1 0 1 0 – 0 0 0 0 0 0 0 0 ? ? 1 0 

0 0 1 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 ? ? ? 1 0 1 0 1 ? 

? ? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 1 0 0 0 0 0 ? ? ? ? ? 1 1 1 ? 1 1 

Malimanaspis sarudianskii  

0 0 0 1 0 0 ? 1 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 – 1 1 0 1 0 – 0 0 0 1 1 1 0 0 0 0 1 0 

0 ? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 1 

1 1 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Malimanaspis packardi  

0 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 – 1 1 0 1 0 – 0 0 0 1 1 1 0 0 0 0 1 0 

0 ? ? 0 1 0 1 1 2 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 0 0 0 1 0 ? ? ? ? 0 0 0 1 – 0 0 0 1 0 0 

1 1 1 1 1 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 
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Malimanaspis angustilimbata  

0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 – 1 1 0 1 0 – 0 0 0 1 1 1 0 0 0 0 1 0 

0 ? ? 0 1 0 1 1 2 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 0 0 0 1 0 ? ? ? ? 0 0 0 1 – 0 0 1 0 1 0 

1 1 1 1 1 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Maurotarion maura  

0 ? ? ? ? ? 0 1 0 0 0 1 1 ? ? ? ? 0 0 0 0 ? 0 0 0 0 1 1 1 – – 1 0 0 0 – 0 0 0 0 0 0 0 0 ? ? 1 0 0 

? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 – – – ? 1 1 0 0 1 1 0 0 0 0 ? ? ? ? ? ? 0 0 ? ? ? 0 0 1 0 1 ? ? ? ? 

? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 ? 0 ? ? ? ? ? ? ? ? ? ? ? 

Maurotarion thomasi  

– 0 0 1 0 0 ? 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 – 1 1 0 0 0 – 0 0 0 0 0 0 0 0 1 0 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 ? ? ? 0 ? ? ? ? 0 1 1 

1 1 0 1 0 ? 0 ? – 0 – – – – 0 0 0 0 0 0 ? ? ? ? 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Maurotarion megacephalum  

0 0 0 1 0 0 4 0 0 0 2 1 1 1 ? ? 0 0 0 0 0 ? 0 0 0 0 1 1 0 – 1 1 0 0 1 1 0 0 0 0 0 0 0 0 ? ? 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 ? ? ? 0 ? ? ? ? 0 1 1 

1 1 1 ? 0 ? 0 ? – 0 – – – – 0 0 0 0 0 0 ? ? ? ? 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Maurotarion messieri  

0 0 0 1 0 0 ? 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 – 1 1 0 0 0 – 0 0 0 0 0 0 0 0 ? ? 1 0 

0 0 1 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 ? ? ? 0 0 1 0 1 ? 

? ? ? ? 1 ? ? ? 0 ? – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 ? 0 1 
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Namuropyge demaneti  

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 6 ? ? ? 1 0 1 0 1 ? ? ? ? ? ? ? ? 

? ? ? 1 0 – – 1 0 1 1 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

Namuropyge acanthina  

– 1 0 1 0 0 7 0 1 – – – – 2 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 – – 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 

0 ? ? 0 1 0 1 0 1 0 0 1 1 0 1 0 0 – – – 1 1 1 0 0 1 0 0 0 0 0 1 1 ? ? ? ? 1 6 1 – 1 1 0 1 0 1 1 

1 1 1 1 0 1 0 0 0 0 1 0 – – 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 ? ? ? ? ? ? ? ? ? ? ? 

Namuropyge muelleri  

– 1 0 1 0 0 ? ? 1 – – – – 2 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 – – 1 0 0 1 1 0 0 0 0 0 0 0 0 ? ? 1 1 

0 ? ? 0 1 0 1 0 1 0 0 1 1 0 1 0 0 – – – 1 1 1 0 0 1 0 0 0 0 0 1 1 ? ? ? ? 1 6 ? ? ? 1 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? 1 0 – – 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Namuropyge defensabilis  

– 1 0 1 0 0 ? 0 0 0 2 0 – 1 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 – – 1 0 0 0 – 0 0 0 0 0 0 0 0 ? ? 1 1 

0 ? ? 0 1 0 1 0 0 1 0 0 1 0 1 0 0 – – – 1 1 1 0 0 1 0 0 0 0 0 1 1 ? ? ? ? 1 6 1 – 1 1 0 1 0 1 1 

1 1 ? ? 0 0 0 0 0 0 1 0 – – 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Otarion diffractum 

 – 1 0 1 0 0 4 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 1 ? ? ? ? 0 0 0 1 – 1 0 1 0 1 0 

1 1 1 1 1 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 
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Otarion beukeboomi  

– 1 0 1 0 0 ? ? 0 0 2 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

0 0 1 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 ? ? ? 1 0 1 0 1 ? 

? ? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Otarion brauni  

– 1 0 1 0 0 ? ? 0 0 2 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 ? ? 1 1 

0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 ? ? ? 1 0 1 0 1 ? 

? ? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Otarion convexa  

– 1 0 1 0 0 4 0 0 0 0 1 1 2 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 

0 ? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 ? ? ? ? ? ? 0 0 ? ? ? 1 0 1 0 1 0 1 

1 1 1 1 0 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Otarion stigmatophthalmus  

– 1 0 1 0 0 ? ? 0 0 2 1 1 2 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 1 0 0 0 0 0 0 ? ? 1 0 

0 ? ? 0 1 0 1 0 2 0 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 1 ? ? ? ? 0 0 ? ? ? 1 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Otarion davidsoni  

– 1 0 1 0 0 ? ? 0 0 2 1 1 2 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

0 ? ? 0 1 0 1 0 2 0 0 0 1 0 0 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 
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Otarionides franconicus  

– 1 0 1 0 0 ? ? 0 0 2 1 1 2 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

0 ? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 – – – 1 1 1 1 0 1 1 0 0 0 0 ? ? ? ? ? ? 1 0 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? 1 0 – – 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Pseudotrinodus aenigma  

– 0 1 0 1 – ? 0 0 1 – 1 1 – – – – – – – – – – – 1 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 ? ? 0 – 

– ? ? 0 1 1 – – – – 1 0 0 0 – 0 0 – – – 0 0 1 0 0 1 0 0 0 – – – – ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 

? ? ? 0 1 0 ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 – 0 ? ? ? ? ? ? ? ? ? ? ? 

Songkania smithi  

0 0 0 1 0 0 4 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 – 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 

0 0 1 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 3 1 – 0 0 0 1 0 0 0 

1 1 1 1 1 0 0 0 0 1 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 – 0 0 1 

Songkania socialis  

1 0 0 1 0 0 4 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 – 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 1 0 0 1 0 ? ? ? ? 0 3 1 – 0 0 0 1 0 0 0 

1 1 1 1 1 0 0 0 0 1 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Strasburgaspis cona  

– 0 0 1 0 0 ? 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 – 1 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

0 0 1 0 1 0 1 2 1 0 0 0 0 0 – 0 0 – – – 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 ? ? ? 0 0 1 0 1 1 

1 1 ? ? 0 0 0 1 0 0 – 1 0 0 – – 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 ? 0 1 
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Strasburgaspis kielanae  

0 ? ? ? ? ? ? ? 0 0 0 0 – ? ? ? ? 0 0 0 0 ? 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 0 

? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 – – – ? 1 1 0 0 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 0 0 ? 0 ? ? ? ? ? ? ? ? ? ? ? 

Acutimetopus kansanensis  

– 1 0 1 0 0 5 0 1 – – – – 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

1 ? ? 0 1 1 – – – – 1 0 0 0 – 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 – – ? ? ? ? 1 5 1 – 1 0 0 1 0 1 0 

1 1 ? 2 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Acutimetopus moelleri  

– 1 0 1 0 0 ? ? 1 – – – – 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

1 ? ? 0 1 1 – – – – 1 0 0 0 – 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 – – ? ? ? ? 1 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? 0 0 – – 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Acutimetopus weberi  

– 1 0 1 0 0 ? ? 1 – – – – 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

1 ? ? 0 1 1 – – – – 1 0 0 0 – 1 1 0 1 0 1 1 1 1 1 ? ? ? 0 0 0 – – ? ? ? ? 0 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? – 1 1 0 – – 0 0 0 0 0 0 0 0 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Tilsleyia glaphyra  

– 1 0 1 0 0 ? ? 1 – – – – 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

0 ? ? 0 1 0 1 0 1 0 0 0 0 1 – 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 1 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? 1 0 – – 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 ? ? ? ? ? ? ? ? ? ? ? 
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Asiagena karaespensis  

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 1 1 1 ? ? 0 – 0 0 0 ? ? ? 0 ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 0 0 0 0 – 0 0 – – – ? 0 1 0 0 1 0 0 0 0 0 ? ? ? ? ? ? 0 5 ? ? ? 0 0 1 0 1 ? ? ? ? ? ? 

? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 ? 0 – 0 ? 0 ? ? ? ? ? ? ? ? ? ? ? 

Australosutura gardneri  

– 1 0 1 0 0 5 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 0 – 0 0 0 0 0 0 0 0 0 0 1 0 

0 ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 0 – – – 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 0 5 1 – 1 0 0 1 0 1 0 

1 1 1 3 0 1 0 1 0 0 – 1 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Australosutura gemmaea  

– 1 0 1 0 0 ? ? 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 0 – 0 0 0 0 0 0 0 0 ? ? 1 0 

0 ? ? ? ? ? ? ? ? ? 0 0 0 0 – 1 0 – – – 1 1 1 1 1 1 1 1 0 0 0 ? ? ? ? ? ? 0 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? – 1 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Australosutura elegans  

– 1 0 1 0 0 ? ? 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 0 – 0 0 0 0 0 0 1 0 ? ? 1 0 

0 ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 0 – – – 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 0 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? – 1 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Brachymetopella aikiyoshiensis  

– 1 0 1 0 0 ? ? 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? ? ? 

? ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 0 – – – 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 0 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? – 1 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 
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Brachymetopella nakoinsri  

– 1 0 1 0 0 5 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 0 – 

– ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 0 – – – 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 0 5 1 – 1 0 0 1 0 1 0 

1 1 1 3 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Brachymetopella strzeleckii  

– 1 0 1 0 0 ? ? 1 – – – – 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

0 ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 1 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? 

Brachymetopus maccoyi  

– 1 0 1 0 0 5 0 1 – – – – 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 0 – 

– ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 0 5 1 – 1 0 0 1 0 1 0 

1 1 1 3 1 1 0 1 0 0 – 1 0 0 – – 0 0 0 0 0 0 0 0 1 1 0 1 0 ? ? ? ? ? ? ? ? ? ? ? 

Brachymetopus woodwardii  

– 1 0 1 0 0 5 0 1 – – – – 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 1 5 1 – 1 0 0 1 0 1 0 

1 1 1 3 1 1 0 1 0 0 1 0 – – 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? 

Brachymetopus drevermanii  

– 1 0 1 0 0 5 0 1 – – – – 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 0 – – – 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 0 5 1 – 1 0 0 1 0 1 0 

1 1 1 3 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 
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Brachymetopus edwardsi  

– 1 0 1 0 0 ? ? 1 – – – – 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

1 ? ? 0 1 1 – – – – 1 0 0 0 – 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 – – ? ? ? ? 1 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Brachymetopus parvus  

– 1 0 1 0 0 ? ? 1 – – – – 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

0 ? ? 0 1 0 1 2 2 0 0 0 0 0 – 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 0 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 0 1 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? 

Brachymetopus senckenbergianus  

– 1 0 1 0 0 ? ? 1 – – – – 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 0 – 

– ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 1 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Brachymetopus nandanensis  

– 1 0 1 0 0 ? ? 1 – – – – 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? ? ? 

? ? ? 0 1 0 1 2 ? ? 0 0 0 0 – 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 1 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Brachymetopus longinquus  

– 1 0 1 0 0 ? ? 1 – – – – 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? ? ? 

? ? ? 0 1 0 1 2 2 0 0 0 0 0 – 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 – ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? 
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Brachymetopus arcticus  

– 1 0 1 0 0 ? ? 1 – – – – 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 0 0 0 – 0 0 0 0 0 0 0 0 ? ? 0 – 

– ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 – ? ? ? ? 0 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 0 1 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? 

Spinimetopus coignuides  

– 1 0 1 0 1 ? ? 1 – – – – 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 ? ? 0 – 

– ? ? 0 1 0 1 2 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? 

Cheiropyge himalayensis  

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 5 ? ? ? 0 0 1 0 1 ? ? ? ? ? ? ? ? 

? ? ? 0 0 – – 0 1 0 0 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

Cheiropyge koizumii 

 – 1 1 1 0 0 5 0 ? ? ? ? ? 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 0 – 

– ? ? 0 1 1 – – – – 1 0 0 0 – 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 – – ? ? ? ? 1 5 1 – 1 0 0 1 0 1 0 

1 1 1 3 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Conimetopus ouralicus 

– 1 0 1 0 0 ? ? 1 – – – – 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 0 – 0 0 0 0 0 0 0 0 ? ? 1 0 

1 ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 0 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? – 1 1 1 – – 0 0 0 0 0 0 0 0 1 1 0 1 1 ? ? ? ? ? ? ? ? ? ? ? 
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Conimetopus ornatus  

– 1 0 1 0 0 5 0 1 – – – – 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 0 – 0 0 0 0 0 0 0 0 0 0 1 0 

1 0 0 0 1 0 1 2 2 0 0 0 0 0 – 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 1 0 5 1 – 1 0 0 1 0 1 0 

1 1 1 3 1 1 0 1 0 0 – 1 1 1 – – 0 0 0 0 0 0 0 0 1 1 0 1 1 ? ? ? ? ? ? ? ? ? ? ? 

Cordania cyclurus  

– ? ? ? 0 0 ? ? 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

0 ? ? ? ? ? ? ? ? ? 0 0 0 0 – 1 0 – – – ? 1 1 1 0 1 0 0 0 0 0 ? ? ? ? ? ? 0 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 1 ? 0 1 1 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Cordania falcata  

– 1 0 1 0 0 5 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 1 0 1 0 1 2 1 0 0 0 0 0 – 1 0 – – – 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 5 1 – 1 0 0 1 0 1 0 

1 1 1 3 1 1 0 1 0 0 – 1 0 0 – – 0 0 0 0 0 0 0 0 0 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Hahnus maximowae  

– 1 0 1 0 0 5 0 1 – – – – 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 ? ? 

? ? ? 0 1 0 1 2 2 0 0 0 0 0 – 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 0 5 1 – 1 0 0 1 0 1 0 

1 1 1 3 1 1 0 1 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Loeipyge spinifer ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 ? ? ? 0 0 

1 0 1 ? ? ? ? ? ? ? ? ? ? ? – 1 1 1 – – 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

Loeipyge differens  

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 ? ? ? 0 0 ? ? 1 ? ? ? ? ? ? ? ? 

? ? ? – 1 1 1 – – 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
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Mystrocephala pulchra  

0 1 0 1 0 0 ? ? 0 0 1 2 – 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 – 0 1 0 0 0 – 0 0 0 0 0 0 1 1 ? ? ? ? 

? ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 0 – – – 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 0 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? – 1 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Mystrocephala stummi  

0 ? ? ? 0 0 ? ? 0 0 1 2 – 1 ? ? ? 0 0 0 0 ? 0 0 0 0 1 1 0 – 0 1 0 0 0 – 0 0 0 0 0 0 1 0 ? ? 0 – – 

? ? ? ? ? ? ? ? ? 0 0 0 0 – 1 0 – – – ? 1 1 1 1 1 1 1 0 0 0 ? ? ? ? ? ? 0 5 ? ? ? 0 0 1 0 1 ? ? ? ? 

? ? ? ? ? ? ? – 1 0 0 – – 0 0 0 0 0 0 1 ? 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Mystrocephala varicella  

0 ? ? ? 0 0 ? ? 0 0 1 2 – 1 ? ? ? 0 0 0 0 ? 0 0 0 0 0 1 0 – 0 1 0 0 0 – 0 0 0 0 0 0 1 1 ? ? 1 0 0 

? ? ? ? ? ? ? ? ? 0 0 0 0 – 1 0 – – – ? 1 1 1 1 1 1 1 0 0 0 ? ? ? ? ? ? 0 5 ? ? ? 0 0 1 0 1 ? ? ? ? 

? ? ? ? ? ? ? – 1 0 0 – – 0 0 0 0 0 0 0 ? 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Proetides insignis  

0 0 0 0 0 1 ? ? 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 – 0 1 0 0 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 0 0 1 0 1 1 0 1 0 0 0 1 0 ? ? ? ? 0 7 ? ? ? 0 0 1 0 0 ? ? 

? ? ? ? ? ? ? ? ? – 0 – – – – 0 0 0 0 0 0 0 0 1 – 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Proetides colemani  

0 0 0 0 0 1 5 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 – 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 ? ? 0 1 0 1 1 1 0 0 0 0 0 – 0 0 – – – 0 0 1 0 1 1 0 1 0 0 0 1 0 ? ? ? ? 0 7 1 – 1 0 0 1 0 0 0 

1 1 1 2 0 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 1 – 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

 

 

 

723



Radnoria syrphetodes  

– 0 0 1 0 0 ? 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 – 1 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? ? ? 

? ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 0 – – – 0 0 0 – – 0 – – – 0 0 0 – ? ? ? ? 0 5 1 – 1 0 0 0 1 0 0 

1 ? ? ? 1 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 – – 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Radnoria bretti  

– 0 0 1 0 0 5 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 0 – 

– 0 1 0 1 0 1 2 1 0 0 0 0 0 – 1 0 – – – 0 0 0 – – 0 – – – 0 0 0 – 1 1 0 1 0 3 1 – 1 0 0 0 1 0 0 

1 1 1 3 0 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 – – 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Radnoria triquetra  

– ? ? ? 0 0 ? ? 0 0 1 1 1 1 ? ? ? 0 0 0 0 ? 0 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 1 0 0 

? ? ? ? ? ? ? ? ? 0 0 0 0 – 1 0 – – – ? 0 0 – – 0 – – – 0 0 ? ? ? ? ? ? 0 5 ? ? ? 0 0 0 1 0 ? ? ? ? 

? ? ? ? ? ? ? – 1 0 0 – – 0 0 0 0 0 0 0 ? – – 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Radnoria carlsi  

– 0 0 1 0 0 5 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 1 – 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 ? ? 0 1 0 1 2 1 0 0 0 0 0 – 1 0 – – – 0 0 0 – – 0 – – – 0 0 0 – ? ? ? ? 0 3 1 – 1 0 0 0 1 0 0 

1 1 1 3 1 1 0 0 0 0 – 0 – – – – 0 0 0 0 0 0 0 0 – – 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

Spinimetopus subtilis  

– 1 0 1 0 1 ? ? 1 – – – – 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 1 1 

0 ? ? 0 1 0 1 2 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? 
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Irania jayae  

– 1 0 1 0 0 ? ? 1 – – – – 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 – – 1 1 – 1 0 0 0 0 0 0 0 0 0 ? ? 0 – 

– ? ? 0 1 0 1 2 2 0 0 0 0 0 – 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 ? ? ? ? 1 5 ? ? ? 0 0 1 0 1 ? ? 

? ? ? ? ? ? ? ? ? 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

 

725



Appendix 5 

 

Clade history, species ecology and external causal factors influence 

arthropod survival and recovery during Paleozoic mass extinctions 

 

Comprising the morphological character lists and character matrices used in 

the phylogenetic analyses of Stylonurina and Eurypterina 
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Stylonurina character list 

1. Antero median carapace protrusion: absent (0); present (1). 

2. Carapace anterior: rounded (0); angular (1). 

3. Denticulate anterior margin of carapace: absent (0); present (1). 

4. Carapace marginal rim broad: absent (0); present (1). 

5. Carapace marginal rim with striate ornament: absent (0); present (1). 

6. Row of pustules along inside of marginal rim: absent (0); present (1). 

7. Lateral carapace margin: continuous (0); stepped (1). 

8. Deep carapace with pleural margins curving ventrally: absent (0); present (1). 

9. Lateral regions of posterior carapace margins overlapping first opisthosomal tergite: 

absent (0); present (1). 

10. Morphology of genal carapace regions overlapping first opisthosomal tergite: small 

(0); drawn out into posterolateral lobes (1). 

11. Carapace position of greatest width: posterior third (0); median third (1). 

12. Prosoma quadrate: absent (0); present (1). 

13. Carapace vaulted: absent (0); present (1). 

14. Median ridge between lateral eyes: absent (0); present (1). 

15. Carapace ornament of large lunate scales surrounding and pointing away from the 

central area and eyes: absent (0); present (1). 

16. Circular plateau ornamentation anterior to median ridge: absent (0); present (1). 

17. Position of median eyes on carapace: median third (0); anterior third (1). 

18. Ocellar area: absent (0); present (1). 
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19. Ocellar area with cardioid shape (ocelli accommodated in paired anterior lobes): 

absent (0); present (1); no ocellar area (–). 

20. Lateral eye shape: crescentic (0); expanded (1). 

21. Palpebral lobe: absent (0); circular (1); reniform (2). 

22. Lateral eyes converging and placed anteriorly on carapace: absent (0); present (1). 

23. Annular cuticular thickening surrounding lateral eyes: absent (0); present (1). 

24. Shape of annular cuticular thickening: oval (0); circular (1). 

25. Orbital ridges: absent (0); present (1). 

26. Median ridge reduced: absent (0); present (1). 

27. Transverse suture on ventral plates: absent (0); present (1). 

28. Transverse suture curving back at midline: absent (0); present (1). 

29. Groove running across doublure: absent (0); present (1). 

30. Suture on ventral plates: epistoma absent (0); epistoma present (1). 

31. Rostral field: absent (0); present (1). 

32. Ventral plates widen anteriorly: absent (0); present (1). 

33. Appendage III: spiniferous with paired spines (0); spiniferous with single spines (1). 

34. Pairs of spines per podomere on prosomal appendage III: one pair (0); two or more 

pairs (1). 

35. Prosomal appendage IV: spiniferous (0); non spiniferous (1). 

36. Pairs of spines per podomere on prosomal appendage IV: one pair (0); two or more 

pairs (1). 

37. Spines on prosomal appendage IV: moveable spines (0); both moveable and fixed 

spines (1); fixed spines (2). 

728



38. Blade like structures on podomeres of anterior appendages: absent (0); present (1). 

39. Blades enlarged and longer than podomere length: absent (0); present (1). 

40. Rachis: absent (0); present (1). 

41. Coxal laden: absent (0); present (1). 

42. Prosomal appendage V: spiniferous (0); non spiniferous (1). 

43. Spines on prosomal appendage V reduced: absent (0); present (1). 

44. Prosomal appendage VI: walking leg (0); swimming leg (1). 

45. Appendage VI reaching to pretelson: absent (0); present (1). 

46. Shape of proximal podomere of appendage VI narrow: L/W ≤ 2.0 (0); expanded 

L/W > 2.0 (1). 

47. Podomere VI-5: half the width of VI-4 (0); equal width of VI-4 (1). 

48. Distal podomere margin of VI-6 modified: absent (0); present (1). 

49. Ear on coxa VI: absent (0); present (1). 

50. Appendage VI showing lateral serrations: absent (0); present (1). 

51. Podomere 7a on sixth prosomal appendage: absent (0); present (1). 

52. Width of VI-7a: narrow [less than 50% of width of VI-7] (0); wide [more  

1. than 50%] (1). 

53. Shape of VI-7a: oval (0); triangular (1). 

54. Longitudinal grooves on podomeres: absent (0); present (1). 

55. Podomeres ridged: absent (0); present (1). 

56. Podomeres thicken distally: absent (0); present (1). 

57. Podomere distal margins crenulate: absent (0); present (1). 

58. Cleft metastoma: absent (0); present (1). 
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59. Anterior margin of metastoma: notch absent (0); notch present (1). 

60. Posterior margin of metastoma: rounded (0); flattened or recurved (1). 

61. Metasoma: bulky (0); gracile (1). 

62. Paired tubercles on opisthosomal tergites 2-5: absent (0); present (1). 

63. Pustular ornamentation: absent (0); present (1). 

64. Pustules enlarged, resulting in warty appearance to cuticle: absent (0); present (1); 

no pustules (–). 

65. Cuticular ornamentation forms reticulate surface patterns: absent (0); present (1). 

66. Acicular scales on opisthosoma: absent (0); present (1). 

67. Row of large tongue-shaped scales on posterior margin of opisthosomal segments: 

absent (0); present (1). 

68. Opisthosoma narrower than carapace: absent (0); present (1). 

69. Marginal rim on opisthosoma: absent (0); present (1). 

70. First tergite with narrow posterior margin: absent (0); present (1). 

71. Positive opisthosomal differentiation of third order first segment: absent (0);  

2. present (1). 

72. Positive opisthosomal differentiation of third order second segment: absent (0); 

present (1). 

73. Second tergite developed into round macrotergite: absent (0); present (1). 

74. Preabdominal epimera: absent (0); present (1). 

75. Caudal postabdomen: absent (0); present (1). 

76. Lateral pleurae: absent (0); present (1). 

77. Pretelson elongated: absent (0); present (1). 
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78. Pretelson postlaterally expanded: absent (0); present (1). 

79. Dorsal pretelson lobes: absent (0); present (1). 

80. Telson elongate: absent (0); present (1). 

81. Dorsal median keel on telson: absent (0); present (1). 

82. Paired broad rounded ventral keels on telson: absent (0); present (1). 

83. Telson lateral margins and media keel ornamented with rhomboid scales: absent (0); 

present (1). 

84. Telson serrated: absent (0); present (1). 
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Stylonurina character matrix 

Weinbergina opitzi  

0 0 0 0 0 0 0 1 0 – 0 0 0 0 0 0 0 0 – 0 0 0 0 – 0 0 0 0 0 0 – 0 0 0 0 0 0 0 – 0 0 0 0 0 0 1 1 0 

0 0 0 – – 0 0 0 0 – – – 0 0 0 – 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  

Alkenopterus brevitelson  

0 0 0 1 0 0 0 0 0 – 0 0 0 0 0 0 0 0 – 0 0 0 0 – 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 1 – 1 0 ? 1 0 ? 

0 1 0 1 0 0 0 0 ? ? ? 1 0 0 – 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  

Brachyopterella pentagonalis  

0 1 0 0 0 0 0 0 0 – 1 0 0 ? 0 ? 0 1 0 0 0 1 0 – 0 0 1 1 0 1 1 ? ? ? 1 – – ? ? 0 ? 1 – 0 0 0 0 0 

0 0 0 – – 0 1 0 0 ? ? ? 1 ? 0 – 0 0 ? 0 0 0 ? ? ? 0 ? ? ? ? ? ? 0 ? 0 0  

Brachyopterella ritchiei  

0 1 0 0 0 0 0 0 0 – 1 0 0 0 0 ? ? ? ? 0 0 1 0 – 0 0 ? ? ? 1 1 ? ? ? 1 – – 0 – 0 ? 1 – 0 0 ? 0 0 ? 

0 0 – – 0 1 0 0 ? ? ? 1 0 0 – 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Brachyopterus stubblefieldi  

0 0 0 0 0 0 0 0 0 – 1 0 0 0 0 0 ? 1 0 0 0 0 0 – 0 0 ? ? ? ? ? ? 1 – 0 0 0 0 – 0 ? 1 – 0 0 ? 0 0 ? 

0 0 – – 0 0 0 0 0 ? 0 0 0 0 – 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Ctenopterus cestrotus  

0 0 1 0 0 0 0 0 0 – 0 0 0 0 0 0 1 ? ? 0 1 0 0 – 0 0 ? ? 0 1 1 ? 0 1 0 1 2 0 – 0 ? 1 – 0 1 ? 1 0 

? 0 0 – – 0 0 0 0 ? ? ? 0 0 0 – 0 1 0 0 0 0 0 0 0 1 ? 0 ? ? ? 1 0 ? 0 0  

Cyrtoctenus wittebergensis  

1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 – 0 1 0 1 1 1 0 ? ? ? ? ? ? ? ? 0 0 1 1 1 1 ? ? ? ? 0 0 1 ? 0 

0 ? ? ? 1 0 1 1 ? ? ? 0 0 0 – 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0  
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Cyrtoctenus dewalquei  

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? 

? 1 0 1 0 ? ? ? ? 0 0 – 0 0 1 ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  

Drepanopterus abonensis  

0 0 0 1 1 1 0 0 1 0 0 0 0 ? 0 0 0 0 – 0 2 0 1 0 0 0 1 0 0 0 – 1 0 0 1 – – 1 0 0 0 1 – 0 0 0 1 0 

0 0 0 – – 1 0 1 0 1 1 – 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  

Stoermeropterus conicus  

0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 ? 0 – 0 0 0 0 – 0 0 0 – 0 1 0 0 1 0 0 0 2 0 – 0 0 1 – 0 0 1 1 0 

1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 – 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  

Drepanopterus pentlandicus  

0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 ? 0 – 0 0 0 1 0 0 0 ? ? 0 ? ? ? ? ? 1 – – 1 0 ? 0 1 – 0 0 0 1 0 0 

0 0 – – 1 0 1 0 1 1 – 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0  

Hallipterus excelsior  

0 1 0 0 0 1 0 0 0 – 0 0 0 1 1 1 0 ? ? 0 0 0 1 0 1 0 1 0 0 1 1 ? ? ? ? ? ? 0 – ? 0 ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? 0 – 0 0 ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ?  

Hardieopterus macrophthalmus  

0 0 0 0 0 0 0 0 0 – 0 0 0 1 1 0 ? 0 – 0 0 0 0 – 0 0 1 0 0 0 – 1 ? ? ? ? ? ? ? 0 ? 0 0 0 0 0 1 0 ? 

0 0 – – 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 ? ? 0 0  

Hardieopterus megalops  

0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 ? 0 – 0 0 0 0 – 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  
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Hardieopterus myops  

0 0 0 0 0 0 0 0 0 – 0 0 0 0 1 0 0 0 – 0 0 0 0 – 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? 1 1 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  

Hardieopterus lanarkensis  

0 0 0 0 0 0 0 0 0 – 0 0 0 0 1 0 0 0 – 0 0 0 0 – 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? 0 0 1 1 0 0 1 0 ? 0 0 0 0 ? 0 ? 0 ? ? ? ? ? ? ?  

Hibbertopterus scouleri  

0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 – 0 1 0 1 1 0 1 ? ? 0 ? ? 1 ? ? 0 0 1 1 1 0 1 1 – 0 0 ? 1 0 

0 0 0 – – 0 0 1 0 1 1 – 0 0 0 – 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  

Kiaeropterus ruedemanni  

0 0 0 0 0 0 0 0 0 – 1 0 0 0 0 0 0 1 1 0 0 1 0 – 0 0 1 0 0 1 1 ? ? ? 1 – – 0 – 0 ? 1 – 0 0 ? 0 0 

? 0 0 – – 0 1 0 0 ? ? ? 1 0 0 – 0 0 0 ? 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ?  

Kiaeropterus cyclophthalmus  

0 0 0 0 0 0 0 0 0 – ? 0 0 0 0 0 0 1 1 0 0 1 0 – 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 1 – 0 0 ? ? 0 ? 

? 0 – – 0 1 0 0 ? ? ? 1 0 0 – 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? 0 ? ?  

Kokomopterus longicaudatus  

0 0 0 0 0 0 0 0 0 – 0 0 0 ? 0 ? ? ? ? 0 0 0 0 – ? ? ? ? 0 ? ? 1 0 0 0 0 0 0 – 0 ? 0 1 0 0 ? 1 0 0 

1 0 – – 0 0 1 0 0 1 1 0 0 0 – 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Lamontopterus knoxae  

0 0 0 0 0 0 0 0 0 – 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? 1 0 ? 0 

0 – – 0 0 1 0 ? ? ? 0 0 0 – 0 0 ? 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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Laurieipterus elegans  

0 0 1 0 0 0 1 0 0 – 0 0 0 0 0 0 1 0 – 0 1 0 0 – 0 0 1 1 0 1 1 1 0 1 0 1 2 0 – 0 ? 1 – 0 ? 0 1 0 

0 0 0 – – 0 0 0 0 0 0 1 ? 0 0 – 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? 1 ? ? 0 0  

Megarachne servinei  

1 1 0 0 0 0 0 0 0 – 0 0 0 1 0 0 0 0 – 0 2 0 1 0 ? 0 ? ? ? ? ? ? ? ? 1 – – 1 1 0 1 1 – 0 ? ? ? ? 0 

? ? ? ? 1 0 1 0 ? ? ? ? ? 0 – 0 ? 0 0 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ?  

Moselopterus ancylotelson  

0 1 0 0 0 0 0 0 0 – 0 0 0 0 0 0 ? 0 – 0 0 0 0 – 0 0 ? ? 1 0 – 0 1 0 0 0 2 0 – 0 0 1 – 0 0 1 1 0 

1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 – 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 0 0  

Mycterops mathieui  

0 1 0 0 0 0 0 0 0 – 0 0 0 ? 0 0 0 0 – 0 2 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? 0 – 1 ? ? ? 0 0 1 1 ? ? ? ? ? 0 ? ? ? ? ? ?  

Mycterops ordinatus  

0 1 0 0 0 0 0 0 0 – 0 0 0 ? 0 0 0 0 – 0 2 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? 0 – 1 ? ? ? 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ?  

Pagea sturrocki  

0 1 0 0 0 0 1 0 0 – 1 1 1 ? 0 ? ? ? ? 0 1 0 0 – 1 ? 1 0 0 0 – 1 1 1 0 1 2 0 – 0 ? 1 – 0 1 ? 1 0 

0 0 0 – – 0 0 0 0 0 0 1 0 0 0 – 0 1 0 1 ? 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0  

Parastylonurus ornatus  

0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 ? 0 – 0 0 0 0 – 0 0 1 0 0 0 – 1 0 0 0 0 0 0 – 0 0 1 – 0 1 0 1 0 

0 0 0 – – 0 0 0 1 0 1 1 0 0 0 – 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0  
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Parastylonurus hendersoni  

0 0 0 0 0 0 0 0 0 – 1 0 0 0 0 0 ? 0 – 0 0 0 0 – 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? 0 0 0 – 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0  

Stylonuroides dolichopteroides  

0 0 0 0 0 0 0 0 0 – 1 0 0 0 0 0 0 0 – 0 0 0 0 – 0 0 ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 1 – 0 ? 0 1 0 0 

0 0 – – 0 1 0 0 ? ? ? ? ? 0 – 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  

Rhenopterus diensti  

0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 0 – 0 0 0 0 – 0 0 1 0 1 0 – 1 1 – 1 – – 0 – 0 0 1 – 0 0 0 1 0 

0 0 0 – – 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0  

Stylonurella spinipes  

0 1 0 0 0 0 1 0 0 – 0 1 0 0 0 0 ? 0 – 0 1 0 0 – 0 0 1 0 0 0 – 1 ? 1 1 0 0 0 – 0 0 1 – 0 1 0 1 0 

0 0 0 – – 0 0 0 0 ? ? ? 0 0 0 – 0 0 0 1 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ?  

Stylonurus powriensis  

0 0 0 0 0 0 0 0 0 – 0 1 0 1 0 0 ? 0 – 0 1 0 0 – 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 – 0 1 ? 1 0 ? 

0 0 – – 0 0 0 0 ? ? ? 0 0 0 – 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0  

Tarsopterella scotica  

0 1 0 0 0 0 0 0 0 – 0 0 0 1 1 1 ? 0 – 0 0 0 0 – 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? 0 1 0 ? ? ? 0 0 0 – 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 ? 0 0  

Vinetopterus struvei  

0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 0 – 0 0 0 0 – 0 0 ? ? 0 ? ? ? ? ? ? ? ? ? ? 0 ? ? ? 0 0 1 1 0 ? 

0 1 1 0 ? 0 ? ? ? ? ? 0 0 0 – 0 0 ? 0 0 0 0 0 0 0 0 0 0 1 0 0 ? 0 0 0  

 

 

736



Woodwardopterus scabrosus  

0 0 0 0 0 0 0 0 0 – 0 0 0 ? 0 ? ? ? ? 0 ? 0 ? ? ? ? ? ? ? ? ? ? ? ? 1 – – 1 1 0 ? 1 – 0 0 ? 1 0 ? 

0 0 – – 1 0 1 0 ? ? ? 0 ? 0 – 0 0 0 0 0 0 1 1 1 0 0 0 ? ? 0 0 ? 1 0 0  

Eurypterus remipes  

0 0 0 0 0 0 0 0 1 – 0 0 0 0 0 0 0 0 – 1 0 0 0 – 0 0 0 – 0 0 – 0 0 0 0 0 0 0 – 0 0 1 – 1 0 1 1 1 

1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 – 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1  

Hughmilleria socialis  

0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 0 – 1 0 0 0 – 0 0 0 – 0 1 0 0 0 0 0 0 0 0 – 0 0 0 0 1 0 1 1 1 

1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 – 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Onychopterella augusti  

0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 ? 0 – ? 0 0 0 – 0 ? ? ? 0 ? ? 0 ? ? 0 0 0 0 – 0 0 1 – 1 0 1 1 0 1 

0 1 0 1 0 0 0 0 ? ? ? 0 0 0 – 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 0 ? 0 ? 0  

Pagea plotnicki  

0 1 0 0 0 0 1 0 0 – 1 1 0 1 0 0 ? 0 – 0 1 0 0 – 1 0 ? ? ? ? ? ? 1 1 ? ? ? 0 – 0 ? 1 – 0 ? ? 1 0 ? 

0 ? ? ? 0 0 0 0 ? ? ? 0 0 0 – 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 ? ? ? ? ?  

Leiopterella tetliei  

0 0 0 0 ? 0 0 0 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 1 0 – 1 ? ? 1 0 0 ? ? ? 0 1 – 0 ? 0 1 0 0 

0 ? ? ? 0 1 0 0 0 1 0 ? ? 0 – 0 ? ? 1 0 ? 0 0 0 ? ? ? ? ? ? ? ? ? ? ?  

Pagea symondsii  

0 1 0 0 0 0 1 0 0 – 1 1 1 1 0 0 ? 0 – 0 1 0 0 – 1 0 ? ? 0 0 – 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? 0 – 0 ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  
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Drepanopterus odontospathus  

0 0 0 1 1 0 0 0 ? ? 0 0 0 ? 0 0 ? 0 – 0 2 0 1 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 1 ? ? ? 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 0 1  

Campylocephalus oculatus  

0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 – 0 2 0 1 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? 0 – 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  

Hastimima whitei  

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? 0 ? ? ? 

? ? ? ? ? ? ? ? ? ? 0 – 0 0 0 ? 0 1 1 ? ? 0 ? ? ? ? ? 0 0 1 ? 1  

Dunsopterus stevensoni  

0 0 0 0 0 ? 0 1 1 1 0 0 0 1 ? 0 0 0 – 0 1 0 1 1 ? 1 ? ? ? ? ? ? ? ? ? ? ? 1 1 1 ? ? ? ? ? ? ? ? ? ? 

? ? ? 1 0 1 1 ? ? ? ? ? ? ? ? 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  

Campylocephalus permianus  

0 0 0 0 0 0 ? ? ? ? 1 ? ? ? 0 0 0 0 – 0 2 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? 0 – 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  
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Eurypterina character list 

1. Angular projection on the anterior of the carapace: absent (0); present (1). 

2. Anterior projection morphology: rounded (0); quadrate (1). Acute (2). 

3. Triangular 'doublure lock' anteriorly on carapace: absent (0); present (1). 

4. Carapace anterior: rounded (0); angular (1). 

5. Anterior indentation of carapace: absent (0); present, lateral extent independent of 

lateral eyes (1). Present, lateral extent defined by position of lateral eyes (2). 

6. Anterior margin of carapace: unornamented (0); denticulate (1). 

7. Carapace marginal rim: present (0); absent (1). 

8. Morphology of marginal rim: marginal rim with constant equal width (0); 

marginal rim narrows evenly posteriorly (1); marginal rim only present anterior to 

eyes (2). 

9. Carapace marginal rim broad: present (0); absent (1). 

10.  Lateral carapace margin: continuous (0); stepped (1); constrict to form 'waist' 

(2). 

11.  Carapace genal spines: present (0); absent (1). 

12. Carapace shape: horseshoe or wide-horseshoe (0); semicircular (1); quadrate 

(2); trapezoidal (3); wide-rectangular (4); subquadrate (5); campanulate (6); 

parabolic (7); spatulate (8); triangular (9); long-rectangular (10). 

13. Carapace flares posteriorly: absent (0); present (1). 

14.  Carapace genal facets: absent (0); present (1). 

15. Angle of genal facets: low angle (0); high angle (1). 
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16. Genal regions produced into short spurs: absent (0); present (1). 

17. Lateral eye shape: crescentic (0); expanded (1). 

18. Size of palpebral lobe: small (0); large (1); absent (2). 

19. Lateral eye position: centrilateral (0); centrimesial (1); antelateral (2); central 

(3); antemesial (4). 

20. Position of lateral eyes in relation to carapace margin: intramarginal (0); 

semimarginal (1); marginal (2). 

21. Lateral eye abuts carapace margin: absent (0); present (1). 

22. Lateral eyes closer to margin than to ocelli: present (0); absent (1). 

23. Lateral eye length: short (shorter than a quarter of the carapace length) (0); 

long (longer than a quarter of the carapace length) (1). 

24. Annular cuticular thickening surrounding lateral eyes: absent (0); present (1). 

25. Vaulted central portion of carapace: absent (0); present (1). 

26. Vaulted central portion of carapace with angular margins, resulting in 

diamond shape: absent (0); present (1). 

27. Lateral eyes associated with ophthalmic ridge: present (0); absent (1). 

28. Position of median eyes on carapace: median third (0); anterior third (1). 

29. Position of median eyes relative to lateral eyes: median eyes anterior or 

median to lateral eyes (0); median eyes posterior to lateral eyes (1). 

30. Suture on ventral plates: Eurypterus-type (0); Hughmilleria- or Hallipterus-

type (1); Megalograptus-type (2); Erieopterus-type (3). 

31. Transverse suture on ventral plates: present (0); absent (1). 

32. Ventral plates widen anteriorly: absent (0); present (1). 
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33. Chelicerae: small (0); able to extend beyond marginal rim (1). 

34. Form of cheliceral peduncle: approximately equal in length to fixed ramus (0); 

longer than fixed ramus (1). 

35. Denticles on chela: absent (0); present, small, undifferentiated (1); present, 

large, differentiated (2). 

36. Largest denticle medially on fixed ramus: erect (0); inclined (1); acute (2). 

37. Angular distal teeth on both rami: absent (0); present (1). 

38. Paired distal teeth on free ramus: absent (0); present (1). 

39. Short, raptorial claw on appendage II: absent (0); present (1). 

40. Appendage II with clasping organ at base of appendage: absent (0); present 

(1). 

41. Relative lengths of appendages II–V: increasing posteriorly (0); forward 

appendages enlarged (1). 

42. Morphology of spines on prosomal appendage III:  reduced [length < width of 

podomere] (0); regular [length ≈ width of podomere] (1); enlarged [length > width 

of podomere] (2); absent (3). 

43. Morphology of spines on prosomal appendage IV: reduced [length < width of 

podomere] (0); regular [length ≈ width of podomere] (1); enlarged [length > width 

of podomere] (2); absent (3). 

44. Mobility of spines on appendages II–IV: fixed (0); moveable (1). 

45. Terminal spine pair enlarged in relation to previous spine pairs, terminating at 

a position equal to the terminal podomere: absent (0); present (1). 
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46. Penultimate podomere appendage III: spiniferous (0); non-spiniferous (1). 

Appendage non-spiniferous (-). 

47. Relative podomere lengths of appendage III: 3 longer than 4 (0); 4 longer than 

3 (1). 

48. Longest podomere of appendage III: podomere other than 5 (0); podomere 5 

(1). 

49. Appendage III terminal segment: short, podomere (0); long, modified spine 

(1). 

50. Number of paired spines on appendage III podomere 3: one pair (0); two or 

more pairs (1). No spines (-). 

51. Pairs of spines per podomere on podomeres 4-6 of prosomal appendage III: 

one pair (0); two or more pairs (1). No spines (-). 

52. Pairs of spines per podomere on podomeres 4-6 prosomal appendage IV: one 

pair (0); two or more pairs (1). No spines (-). 

53. Orientation of spines on appendages II–IV: ventral (0); anterior (1). No spines 

(-). 

54. Spines on appendages II–IV broad-based and robust but otherwise 

undifferentiated from standard Hughmilleria-type spines; absent (0); Present (1). 

55. Spines on appendages II–IV thickened and highly sclerotised: absent (0); 

present (1). No spines (-). 

56. Prosomal appendage spines showing longitudinal striations: absent (0); 

present (1). No spines (-). 
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57. Armature of anterior prosomal appendages flattened and laterally expanded 

into blades: absent (0); present (1). 

58. Prosomal appendage podomeres thicken distally: absent (0); present (1). 

59. Morphology of appendage V: podomeres undifferentriated and broad (0); 

podomeres tubular, lacking armature except for penultimate distal podomere (1). 

60. Appendage V armature: non-spiniferous (0); spiniferous (1). 

61. Isolated large spine on V–7: absent (0); present (1). No spines (-). 

62. Penultimate podomere of appendages II–IV curved: absent (0); present (1). 

63. Terminal spine on prosomal appendages: single (0); paired (1). 

64. Coxal laden: absent (0); present (1). 

65. Morphology of prosomal appendage VI: equal in width along length (0); 

distally expanded into swimming leg (1). 

66. Type of paddle: distal paddle (0); proximal paddle (1). 

67. First podomere of prosomal appendage VI that fully projects beyond carapace 

margin: Fourth podomere (0); Sixth podomere (1); Third podomere (2). 

68. Shape of proximal podomere of appendage VI: narrow [L/W greater than or 

equal to 2.0] (0); expanded [L/W<2.0] (1). 

69. Anterior margin of coxa VI: undifferentiated (0); expanded to form "'ear"' (1). 

70. Shape of "'ear"' on coxa VI: triangular (0); rectangular (1); 

subquadrate/semicircular (2). 

71. Anterior denticle of coxa VI large: absent (0); present (1). 

72. Angle between VI–3 and VI–4: 180° (0); not 180° (1). 

73. Length of podomeres VI–4 and VI–5: VI–5>VI–4 (0); VI–4≤VI–5 (1). 
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74. Length of podomeres VI–4 when VI–5 is not longer: >VI–3 and VI–5 (0); 

equal to VI–3 and VI–5 (1). 

75. Podomere VI–5 bordering podomere VI–7: absent (0); present (1). 

76. Distal podomere margin of VI–6 modified: absent (0); present (1). 

77. VI–7 lateral margins: unornamented (0); enlarged serrations (1); small 

serrations (2). 

78. Angular projection on the anterior of podomere VI-7: absent (0); present (1). 

79. Podomere 7a on appendage VI: absent (0); present on posterior of appendage 

(1); present on anterior of appendage (2). 

80. Width of posterior VI–7a: narrow [less than 50% width of VI–7] (0); wide 

[more than 50%] (1). 

81. Shape of posterior VI‚Äì7a: oval (0); triangular (1). 

82. VI–8 lateral margins: unornamented (0); small serrations (1); enlarged 

serrations (2). 

83. VI–8 anterior projection: absent (0); present (1). 

84. Additional moveable lobe on VI–8: absent (0); present (1). 

85. Morphology of VI–8/VI–9 joint: joint flush (0); VI–9 set into VI–8 (1). 

86. Morphology of joint when VI–8 is set into VI–9: angular (0); round (1). 

87. Length of VI–9 (as ratio of VI–8): large [>25% of VI–8 length] (0); small 

[<25% of VI–8 length] (1); totally absent (2). 

88. Shape of podomere VI–9: spinose (0); triangular, pentagonal or oval (1). 

89. VI‚Äì9 margin: no ornament (0); serrated (1). 
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90. VI‚Äì9 position: centrally on podomere 8 (0); migrating towards posterior of 

podomere 8 (1). 

91. VI‚Äì9 expanded: absent (0); present (1). 

92. Podomere cuticular morphology: rounded (0); ridged (1). 

93. Walking leg podomeres distally serrated: absent (0); present (1). 

94. Metastoma anterior: smooth or shallow notch (0); deeply notched (1). 

95. Shape of posterior margin of metastoma: rounded (0); truncated/flattened (1); 

angular (2); notched (3). 

96. Metastoma with posterior median cleft: absent (0); present (1). 

97. Metastoma shape: broad (0); petaloid, markedly narrower in width (1). 

98. Metastoma widest point: mid or posterior (0); anterior (1). 

99. Posterior cordate metastoma extension: absent (0); present (1). 

100. First segment expressed dorsally: expressed (0); folded under carapace (1). 

101. Microtergite: absent (0); present (1). 

102. Laterally reduced anterior opisthosomal segment: absent (0); present (1). 

103. Rounded postlateral angles anterior segment: absent (0); present (1). 

104. Anterolateral expansion of second tergite: absent (0); present (1). 

105. Genital operculum morphology: consisting of three visible segments (0); 

consisting of two visible segments (1); unfused (2). 

106. Morphology of anterior opercular plate: fully expressed (0); lateral expression 

only (1); completely supressed (2). 

107. Thickness of anterior opercular plate: fully expressed (0); narrow (1). 
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108. MOP and POP morphology: separate/with clear suture (0); without suture but 

with ornament differentiation (1); without suture and without ornament 

differentiation (2). 

109. Unsegmented genital appendages: absent (0); present (1). 

110. Type-A genital appendage spoon-shaped: absent (0); present (1). 

111. Number of segments in type A zipfel: 3 (0); 2/1 (1). 

112. Type-A genital appendage with median, distal indentation: absent (0); present 

(1). 

113. Type-A genital appendage with complex, trifurcate termination: absent (0); 

present (1). 

114. Type-A genital appendage with lateral flanges: absent (0); present (1). 

115. Type-B genital appendage oval: absent (0); present (1). 

116. Oval type-B genital appendage with recurved medial groove: absent (0); 

present (1). 

117. Type-B genital appendage with spatulae: absent (0); present (1). 

118. Morphology of type A genital appendage furca: fused (0); unfused (1). 

119. Spatulae on type A genital appendage: absent (0); present (1). 

120. Morphology of spatulae: angular (0); rounded (1). 

121. Size of genital spatula: small (0); large (1). 

122. Anteriorly inflecting sternites: absent (0); present (1). 

123. Preabdomen expanded into 'disc': absent (0); present (1). 

124. Opisthosoma lanceolate, with mesosoma not expanding beyond carapace 

width. Absent (0); present (1). 
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125. Moveable preabdominal spines: absent (0); present (1). 

126. Preabdominal epimera: absent (0); present (1). 

127. Morphology of preabdominal epimera: small (0); large (1). 

128. Postabdominal epimera: present (0); absent (1). 

129. Morphology of postabdominal epimera: small angular cuticular extensions 

(0); small rounded cuticular extensions (1); large epimera (2). 

130. Preabdominal epimera with lateral striations: absent (0); present (1). 

131. Preabdominal/postabdominal boundary: between 7th and 8th segments (0); 

between 6th and 7th segments (1); between 4th and 5th segments (2). 

132. Degree of first order differentiation: reduced (0); prominent (1); abrupt (2). 

133. Strong curvature of opisthosomal segment 7: absent (0); present (1). 

134. Raised median triangle on segment 7: absent (0); present (1). 

135. Epimera on segment 7: absent (0); present (1). Midsection second order 

differentiation. 

136. Number of segments in postabdomen: 3 (0); 5 or 6 (1); 9 (2). 

137. Postabdomen: undifferentiated (0); narrowing from preabdomen (1). 

138. Caudal postabdoment: absent (0); present (1). 

139. Caudal postabdomen overlapped by preabdomen: absent (0); present (1). 

140. Posterior margin of all opisthosomal tergites crenulate: absent (0); present (1). 

141. Posterior margin of segments 7–9: smooth (0); dentate (1). 

142. Posterior margin of segments 10–12: smooth (0); dentate (1). 

143. Epimera on pretelson: absent (0); angular (1); rounded (2); quadrate (3). 

144. Marginal, median notch posteriorly on pretelson: absent (0); present (1). 
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145. Dorsal paired keels composed of scales on pretelson: absent (0); present (1). 

146. Laterally expanded pretelson: absent (0); present (1). 

147. Median carina on pretelson: absent (0); present (1). 

148. Telson shape: straight (0); curved (1); laterally expanded (2). 

149. Straight telson with proximal constriction resulting in clavate or xiphous 

morphology: absent (0); present (1). 

150. Straight telson with rapid proximal narrowing and subsequent needle-like 

telson morphology: absent (0); present (1). 

151. Laterally expanded telson shape: rounded (0); triangular (1). 

152. Laterally expanded telson with elongate post-telson spine: absent (0); present 

(1). 

153. Telson with ventral carina terminating proximally in broad plateau: absent (0); 

present (1). 

154. Telson base: flattened (0); bulbous expansion (1). 

155. Telson bilobed: absent (0); present (1). 

156. Median carina on telson: absent (0); low carina (1); vertical rudder (2). 

157. Telson laterally ornamented with scales: absent (0); present (1). 

158. Telson margin: smooth (0); serrated (1). 

159. Opisthosoma lateral division: none (0); trilobed (1).  

160. Primary opisthosomal ornamentation: scales (0); closely spaced pustules (1); 

coarse pustules (2). 

161. Primary carapace ornamentation: scales (0); closely spaced pustules (1); 

coarse pustules (2). 
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162. Principal scale on carapace: absent (0); present (1). 

163. Carapace ornament including differentiated, directional scales: even, 

undirected ornamentation (0); carapace ornament including elongate pustules that 

angle away from the lateral eyes and curve around the carapace margin (1); 

carapace ornament of large lunate scales surrounding and pointing away from the 

central area and eyes (2). 

164. Dorsal folds on carapace anterior: absent (0); present (1). 

165. Dorsal carapace folds concentrated within region between lateral eyes: absent 

(0); present (1). 

166. Row of node-like scales on dorsal opisthosomal segments: absent (0); present 

(1). 

167. Ornamentation of angular scales across posterior of tergite segments: absent 

(0); present (1). 

168. Longitudinal rows of angular scales on tergites: absent (0); present (1). 

169. Ornament of chevron scales: absent (0); present (1). 

170. Ornament of linguoid scales: absent (0); present (1). 

171. Cuticular sculpture of transverse striae on anterior half of mesosomal 

segments: absent (0); present (1). 

172. Ventral metasomal segments with mediolateral striations. Absent (0); present 

(1). 

173. Paired tubercles on opisthosomal tergites 2-5: absent (0); present (1). 

174. Isolated central node on each tergite: absent (0); Present (1). 
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175. Form of posterior margin of articulating facet on tergites: row of pustules (0); 

row of scales (1); groove (2). 

176. Genital operculum striate ornament marked by highly sclerotised, broad lunate 

scales: ornament independent of sclerotised scales (0); ornament congruent with 

broad, sclerotised lunate scales (1). 
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Eurypterina character matrix 

Weinbergina opitzi 

0 – 0 0 0 0 1 – – 0 0 0 0 0 – 0 0 – ? ? ? ? ? ? 0 – 0 ? ? 3 1 0 0 0 0 – – – 0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 – 0 1 0 – 0 0 0 – 0 0 0 0 0 – – 0 0 0 0 – 0 0 0 0 0 0 0 – – – 

– – – 0 0 0 0 0 2 2 – 0 – – – – – – – – – – – – – ? 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 

0 0 0 0 0 0 – – 0 0 0 0 0 0 0 1 1 0 0 0 – 0 0 0 0 0 0 0 0 1 0 0  

Chasmataspis laurencii 

0 – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 1 0 1 0 0 1 0 0 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? 0 – ? 0 0 – 0 0 0 – 0 0 0 0 0 – – 0 0 0 – – – – – – – 0 ? ? ? ? ? ? 

? 0 1 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 0 2 2 0 0 0 2 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 – – 0 0 0 0 0 0 1 2 2 0 0 0 – 1 0 0 0 0 0 ? 0 0 ? ?  

Octoberaspis ushakovi 

0 – 0 0 0 0 0 0 1 0 0 3 0 0 – 0 0 0 0 0 0 0 0 0 0 – 0 0 0 ? ? ? ? ? ? ? ? ? 0 0 ? ? ? ? ? ? ? ? 0 

? ? ? ? ? ? ? ? 0 0 0 – 0 0 ? 1 1 0 ? ? ? ? ? ? ? 0 ? 0 0 2 – – 0 0 0 0 – 2 – – – – 0 ? 0 2 0 0 1 

0 0 1 0 0 0 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 – – 0 0 0 0 0 – 0 0 0 2 0 0 0 0 2 1 0 – 0 0 0 1 0 0 0 

0 0 0 0 – – 0 0 0 0 0 0 0 2 2 0 0 0 – 0 0 0 0 0 0 0 0 0 ? 0  

Diploaspis casteri 

0 – 0 0 0 0 0 0 1 0 0 3 0 0 – 0 1 0 0 0 0 0 0 0 0 – 0 0 0 1 ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 ? ? ? ? 

? ? ? 0 0 0 ? 0 0 ? ? ? ? ? ? 1 0 0 ? ? ? ? ? ? ? 0 0 0 0 2 – – 0 0 0 0 – 2 – – – – 0 ? ? ? ? ? ? ? 

0 1 0 0 0 2 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 0 2 0 0 0 0 2 1 0 – 0 0 0 0 0 0 0 0 2 

– – 0 0 0 0 0 0 0 1 0 2 2 0 0 0 – 1 0 0 0 0 0 0 0 0 ? ?  
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Loganamaraspis dunlopi 

0 – 0 0 0 0 0 0 1 0 0 3 0 0 – 0 ? ? ? ? ? ? ? ? 0 – ? ? ? 3 1 0 0 0 0 – – – ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 0 ? ? ? ? ? 0 0 – 0 0 0 – ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 2 0 0 1 0 0 

1 0 0 0 2 0 0 0 0 0 1 0 0 0 ? ? ? 0 0 – – 0 0 0 0 0 – 1 – – 2 0 0 0 0 2 1 0 – 0 0 0 0 0 0 0 0 0 

0 0 – – 0 ? 0 0 0 ? 0 – – – 0 0 – 0 0 0 0 0 0 0 0 0 ? ?  

Brachyopterus stubblefieldi 

0 – 0 0 0 0 0 0 1 0 1 8 0 0 – 0 0 0 1 0 0 1 0 0 0 – 1 1 0 ? 0 ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 ? ? 0 

0 0 0 0 0 0 0 0 0 0 0 – 0 0 ? 0 – 0 0 0 – ? 0 0 – 0 0 0 0 0 – – 0 0 0 0 – 0 0 0 0 0 1 0 0 ? ? ? 

? ? 1 0 0 0 0 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – ? ? ? 0 0 0 0 0 1 0 0 – 0 0 0 0 0 0 0 

0 0 0 0 – – 0 0 0 0 0 0 0 – – – 0 0 – 0 0 0 0 0 0 ? 0 0 ? ?  

Alkenopterus brevitelson 

0 – 0 0 0 0 0 0 0 0 1 0 0 0 – 0 0 0 1 0 0 1 0 0 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 0 0 0 – ? ? ? 1 0 0 ? ? ? ? 0 ? ? 0 0 0 0 ? ? ? 0 0 0 0 – 0 0 0 0 0 0 ? ? ? ? ? ? ? 

? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 1 – – 0 2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 

0 0 ? ? 0 0 0 0 0 0 0 1 1 0 0 0 – 0 0 0 0 0 0 0 0 0 ? ?  

Alkenopterus burglahrenisis 

0 – ? 0 ? 0 0 0 0 0 1 0 0 0 – 0 0 0 1 0 0 1 0 0 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? 1 0 0 ? ? ? ? 0 ? ? 0 0 0 0 1 0 1 0 0 0 0 – 0 0 0 0 0 0 ? ? ? ? ? ? ? 

? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 1 – – 0 2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 

0 0 ? ? 0 0 0 0 0 0 0 1 1 0 0 0 – 0 0 0 0 0 0 0 0 0 ? ?  
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Rhenopterus diensti 

0 – 0 0 0 0 0 0 1 0 1 7 0 0 – 0 0 0 1 0 0 0 0 0 0 – 1 0 0 0 0 1 0 0 0 – – – 0 0 0 0 0 0 0 0 0 0 

0 0 0 – 0 0 0 0 0 0 0 0 – 0 0 0 0 – 0 0 0 – 0 0 0 – 0 0 0 0 0 – – 0 0 0 0 – 0 0 0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 ? ? ? ? ? 0 – 0 0 0 – – 0 0 0 0 1 – 0 0 0 1 2 0 0 0 1 1 1 0 0 0 0 0 0 

0 0 0 1 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 0 0 0 0  

Parastylonurus ornatus 

0 – 0 0 0 0 0 1 1 0 1 0 0 0 – 0 0 0 0 0 0 ? 0 0 0 – 1 ? ? 0 0 1 0 0 0 – – – 0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 – 2 0 0 – 0 0 0 – 0 0 0 0 0 – – 0 0 0 0 – 0 0 0 0 0 0 0 1 1 0 

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 1 0 0 0 0 0 0 0 – 0 2 0 0 0 0 0 0 1 1 0 – 1 0 0 1 0 

0 0 0 0 0 0 – – 0 0 0 1 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 0 0 ? 0  

Laurieipterus elegans 

0 – 0 0 0 1 0 1 1 1 1 8 0 0 – 0 0 0 0 0 0 1 0 0 0 – 1 1 0 1 0 1 ? ? ? ? ? ? ? ? 0 1 1 0 0 ? 0 0 0 

1 1 1 0 0 0 0 0 0 0 0 – ? ? 0 0 – 2 0 0 – 0 0 0 – 0 0 0 0 0 – – 0 0 0 ? ? ? ? ? ? ? 0 0 1 1 0 0 0 

0 ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 – 0 0 0 0 0 0 ? 0 0 ? 0  

Kokomopterus longicaudatus 

0 – 0 0 0 0 0 1 1 0 1 5 0 0 – 0 0 0 1 0 0 ? 0 0 0 – 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 – 0 0 0 – 0 0 0 – 0 0 0 0 0 – – 0 0 0 0 – 0 0 0 0 0 0 0 1 1 0 0 

0 0 ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? 0 – 0 ? ? ? ? 0 0 0 0 0 – 1 – – 0 0 0 0 0 1 1 0 – 1 0 0 0 0 0 0 

0 0 1 0 – – 0 0 0 0 0 0 1 1 1 0 0 0 – 0 0 0 0 1 0 0 0 0 ? 0  
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Hardieopterus macrophthalmus 

0 – 0 0 0 0 0 1 0 0 1 0 0 0 – 0 0 0 1 0 0 1 0 0 0 – 1 0 0 0 0 1 0 0 0 – – – ? ? 0 ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 1 0 1 0 0 0 0 0 – 0 0 0 – 0 0 0 – 0 0 0 0 0 – – 0 0 0 0 – 0 0 0 0 0 0 ? 1 1 0 0 0 

0 ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 2 0 0 0 0 0 0 1 1 0 – 1 0 0 3 0 0 0 0 

0 1 0 – – 0 0 0 0 0 0 1 1 1 0 0 0 – 0 0 0 0 1 0 0 0 0 ? 0  

Drepanopterus pentlandicus 

0 – 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 – 1 0 0 0 0 1 0 0 0 – – – ? ? 0 1 1 [0  1 ]0 0 

0 0 0 0 0 – 0 0 0 0 1 1 0 0 – 0 0 0 0 – 0 0 0 – 0 0 0 – 0 0 0 0 0 – – 0 0 0 0 – 0 0 0 0 0 0 0 1 

1 1 0 0 0 1 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 1 0 0 ? 1 0 0 0 0 0 0 0 – 0 2 0 0 0 0 0 0 1 1 0 – 0 0 0 

0 0 0 0 0 0 1 0 – – 0 0 0 0 0 0 0 1 1 0 0 0 – 0 0 0 0 0 0 0 1 0 0 0  

Hibbertopterus scouleri 

0 – 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 3 0 0 1 0 1 0 – 1 0 0 0 0 1 0 0 0 – – – 0 0 0 2 2 [0  1 ]0 0 

0 0 0 0 0 0 0 0 0 0 1 1 0 0 – 0 0 1 0 – 0 0 0 – 0 0 0 – 0 0 0 0 0 – – 0 0 0 ? ? ? ? ? ? ? 0 0 1 

1 1 0 0 0 ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? 1 0 0 ? ? ? ? 0 0 0 0 0 – 1 – – 0 0 0 0 0 1 0 0 – 1 0 0 0 

0 0 0 0 0 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 1 0 0 0 0 ? 0  

Megarachne servinei 

0 – 0 1 0 0 0 1 1 0 1 3 0 0 – 0 0 1 3 0 0 1 0 1 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? 2 2 [0  1 ]? ? ? 

? ? ? ? 0 0 0 0 0 1 1 0 0 – ? ? 1 ? ? ? 0 0 – 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 ? ? ? ? 

? ? ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 – ? ? ? ? ? ? ? ? ? ? ?  
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Stoermeropterus conicus 

0 – 0 0 0 0 0 0 1 2 1 0 0 0 – 0 0 0 1 0 0 0 0 0 0 – 1 0 0 1 1 0 0 0 0 – – – 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 – 0 1 1 0 0 0 0 – 0 0 0 0 1 0 0 0 0 0 0 – 0 0 0 0 0 1 0 1 0 0 

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 – 0 2 0 0 0 0 0 0 1 0 0 – 0 0 1 [1  

2 ]0 0 0 0 0 0 0 – – 0 1 0 0 0 0 0 1 1 0 0 0 – 0 0 0 0 0 0 0 0 0 0 0  

Stoermeropterus latus 

0 – 0 0 0 0 0 0 1 2 1 0 0 0 – 0 0 0 1 0 0 0 0 0 0 – 1 0 0 1 1 0 0 0 0 – – – ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? 0 – 0 ? ? ? 0 0 0 – 0 0 0 0 1 0 0 0 0 0 0 – 0 0 0 0 0 1 ? ? ? ? ? ? ? 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ? ? ? ? 1 1 0 0 0 0 1 0 – 0 2 0 0 0 0 0 0 1 0 0 – 0 0 1 1 0 0 0 0 

0 0 0 – – 0 1 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 0 0 ? 0  

Stoermeropterus nodosus 

0 – 0 0 0 0 0 0 1 2 1 0 0 0 – 0 0 0 1 0 0 0 0 0 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 ? ? ? 0 1 1 0 0 0 0 1 0 – 0 2 0 0 0 0 0 0 1 0 0 – 0 0 ? 2 0 0 0 0 0 

0 0 – – 0 1 0 0 0 0 0 1 1 0 0 0 – 1 0 0 0 0 0 0 0 0 ? ?  

Vinetopterus struvei 

0 – 0 0 0 1 0 0 1 0 1 0 0 0 – 0 0 0 1 0 0 1 0 0 0 – 1 0 0 3 1 0 0 0 0 – – – 0 0 0 1 1 0 0 0 ? ? 

0 ? ? ? 0 0 0 ? 0 0 0 0 – ? 0 0 0 – 0 1 1 0 0 0 0 – 0 0 0 0 1 0 0 0 0 0 0 – 0 0 0 0 0 1 ? 0 0 0 

0 0 0 1 0 0 0 0 0 0 1 0 0 ? ? ? ? ? 1 0 0 ? ? ? ? 0 0 0 0 0 – 0 0 0 0 0 0 0 0 1 1 0 – 0 1 1 0 0 0 

0 0 0 0 0 – – 0 ? 0 0 0 0 0 1 1 0 0 0 – 1 0 0 0 0 0 0 0 0 0 0  
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Vinetopterus martini 

0 – 0 0 0 1 0 0 1 0 1 0 0 0 – 0 ? 0 1 0 0 1 0 0 0 – 1 0 0 3 1 0 ? ? ? ? ? ? ? ? ? 1 1 0 0 ? ? ? ? 

? ? ? 0 0 0 ? 0 0 0 0 – ? 0 0 0 – 0 ? ? ? ? 0 0 – 0 0 0 0 1 0 0 0 0 0 0 – 0 0 0 0 0 1 ? ? ? ? ? ? 

? 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 0 0 0 0 0 0 1 1 0 – 0 1 1 0 0 0 0 0 

0 0 0 – – 0 ? 0 0 0 0 0 1 1 0 0 0 – 1 0 0 0 0 0 0 0 0 ? ?  

Moselopterus ancylotelson 

0 – 0 0 0 0 0 0 1 0 1 0 0 0 – 0 0 0 1 0 0 1 0 0 0 – 1 0 0 3 1 0 0 0 0 – – – 0 0 0 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 – 0 1 1 0 0 0 0 – 0 0 0 0 1 0 0 0 0 0 0 – 0 0 0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 ? 1 0 0 0 0 0 0 0 – 1 – – 0 0 0 0 0 1 1 0 – 0 1 1 0 0 

0 0 0 1 – – – – 0 0 0 0 0 1 0 1 1 0 0 0 – 1 0 0 0 0 0 0 0 0 0 0  

Onychopterella augusti 

0 – 0 0 0 0 0 0 1 2 1 5 0 0 – 0 ? ? ? ? ? ? ? ? 0 – ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 1 1 0 ? ? ? ? ? 

? 0 0 0 0 0 0 0 ? ? ? ? 0 0 1 0 0 1 1 0 0 0 0 – 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 ? ? ? 0 0 

0 ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 – – 0 0 0 0 0 – 0 1 0 0 0 0 0 0 1 1 0 – 0 0 0 0 0 0 0 0 

0 0 0 – – 0 1 0 0 0 0 0 0 0 0 ? ? ? 0 0 0 0 0 0 0 0 0 ? ?  

Onychopterella kokomoensis 

0 – 0 0 0 0 0 0 1 2 1 5 0 0 – 0 1 0 1 0 0 ? 0 0 0 – 1 ? ? 3 1 0 0 0 0 – – – 0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 ? ? ? 0 0 – 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ? ? ? 1 0 – – 0 0 0 0 0 – 0 1 0 0 0 0 0 0 1 1 0 – 0 0 0 2 0 

0 0 0 0 0 0 – – 0 1 0 0 0 0 0 0 0 0 ? ? ? 0 0 0 0 0 0 0 0 0 ? 0  
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Dolichopterus macrocheirus 

0 – 0 0 0 0 0 0 1 0 1 2 0 0 – 0 0 1 2 0 0 0 0 0 0 – 1 0 0 0 1 0 0 0 0 – – – 0 0 0 2 2 1 0 0 0 0 

0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 2 0 1 1 0 0 1 1 0 1 0 0 1 1 0 

1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 ? ? ? 0 1 0 0 0 0 0 0 0 – 0 2 0 0 0 0 0 0 1 1 0 – 0 0 0 1 1 

0 0 0 0 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 0 0 0 0  

Eurypterus remipes 

0 – 0 0 0 0 0 1 1 0 1 3 0 1 0 0 1 0 1 0 0 0 0 0 0 – 1 0 0 0 1 0 0 0 0 – – – 0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 2 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 – 0 1 0 – – 0 0 0 0 0 – 1 – – 0 0 0 0 0 1 1 0 – 0 0 0 0 1 

1 0 0 0 0 0 – – 0 0 0 0 0 1 0 0 0 1 0 0 – 0 1 1 0 0 0 0 0 0 1 0  

Hughmilleria wangi 

0 – ? 0 0 0 0 2 1 0 1 5 0 0 – 0 ? ? ? ? ? ? ? ? 0 – ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 ? ? 1 0 0 0 0 

? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 0 0 0 0 0 ? 1 1 0 – 0 0 0 1 0 0 0 0 0 

0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 1 1 0 ? 0 0 1 ?  

Hughmilleria socialis 

0 – 0 0 0 0 0 2 1 0 1 7 0 0 – 0 1 2 2 2 1 0 0 0 0 – 1 0 1 1 1 0 1 0 0 – – – 0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 

0 0 0 ? 0 0 0 0 1 2 – 2 0 0 0 0 0 0 1 0 0 0 0 – – 0 0 0 0 0 – 1 – – 0 0 0 0 1 1 1 0 – 0 0 0 0 0 

0 0 0 0 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 ? 0  
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Hughmilleria shawangunk 

0 – 0 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 2 2 1 0 0 0 0 – 1 0 1 1 1 0 ? ? ? ? ? ? ? ? 0 ? 1 1 0 0 0 0 0 

? ? 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 

0 0 ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 – 1 – – 0 0 0 0 1 1 1 0 – 0 0 0 0 0 0 0 

0 0 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 ? ?  

Herefordopterus banksii 

1 2 0 1 0 0 0 2 1 0 1 7 0 0 – 0 1 2 0 2 1 0 0 0 0 – 1 0 1 1 ? ? ? ? ? ? ? ? ? ? ? 1 ? 1 0 0 0 0 0 

0 0 ? 0 0 0 0 0 0 ? ? ? ? ? ? 1 1 ? 1 1 2 0 0 1 1 0 1 0 0 1 1 1 0 0 0 ? ? ? ? ? ? ? 0 0 0 1 0 0 0 

0 ? 0 0 0 0 1 2 – 2 0 0 0 0 1 0 1 0 0 0 0 – – 0 0 0 0 0 – 1 – – 0 0 0 0 1 1 1 0 – 0 0 0 0 0 0 0 

0 0 0 0 – – 0 0 0 0 1 1 0 0 0 0 0 0 – 0 0 0 1 1 1 0 0 0 ? 0  

Tylopterella boylei 

0 – 0 0 0 0 0 0 1 2 1 5 0 0 – 0 1 0 1 0 0 1 0 0 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 

0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 1 0 1 0 0 0 0 1 1 0 – 0 0 0 0 0 0 0 0 0 0 0 

– – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 ? 1 0 ? ?  

Echinognathus clevelandi 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? 1 0 0 0 0 0 1 1 

? ? 0 1 0 0 0 ? ? ? 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 1 0 ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? 0 ? ? ? ? ? ? ? ? 0 0 ? ? ? ? ? ?  
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Megalograptus ohioensis 

1 1 0 1 0 1 0 1 1 0 1 2 0 1 0 0 1 0 4 0 0 0 0 0 0 – 1 0 1 2 1 0 0 0 0 – – – 0 0 1 2 1 1 0 0 0 0 

0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 2 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 2 – – – – 0 0 0 3 0 

0 0 0 1 0 0 0 0 1 2 – 1 0 0 0 0 0 0 0 – 0 0 0 – – 0 0 0 0 0 – 1 – – 1 1 0 0 0 1 1 0 – 0 0 0 0 1 

1 0 0 0 0 0 – – 0 0 0 0 0 0 1 0 0 0 0 0 – 0 1 1 0 0 0 0 0 0 1 0  

Lanarkopterus dolichoschelus 

1 1 0 1 0 0 0 1 1 0 1 3 0 1 0 0 1 0 4 0 0 0 0 0 0 – 1 0 1 ? 1 0 ? ? ? ? ? ? 0 0 1 2 1 1 0 1 0 1 

1 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 2 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 0 1 2 – 2 0 0 1 0 0 0 ? ? ? 0 0 – – 1 0 0 0 0 – 1 – – 0 1 0 0 0 1 1 1 0 0 0 0 0 0 

0 0 0 1 – – – – 0 0 0 0 0 0 1 0 0 0 0 0 – 0 0 0 0 0 0 0 0 0 1 0  

Mixopterus kiaeri 

1 1 0 1 0 0 0 1 1 0 1 2 0 1 0 0 1 0 4 0 0 0 0 0 0 – 1 1 1 ? 1 0 0 0 0 – – – 0 1 1 2 1 1 ? 1 0 1 

1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 2 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 

0 1 1 ? 0 0 0 0 1 2 – 2 0 0 1 0 0 0 ? ? ? 0 0 – – 1 0 0 0 0 – 1 – – 0 1 0 0 0 1 1 1 0 0 0 0 0 0 

0 0 0 1 – – – – 0 0 0 0 0 0 1 0 0 0 0 0 – 0 0 0 0 0 0 0 0 0 ? 0  

Mixopterus multispinosus 

1 1 0 1 0 0 0 1 1 0 1 2 0 1 0 0 1 0 4 0 0 0 0 0 0 – 1 1 1 ? ? ? ? ? ? ? ? ? 0 1 1 2 1 1 0 1 0 1 1 

0 1 0 1 0 1 0 0 0 0 1 0 0 0 ? 1 1 0 ? ? ? ? 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 

1 0 ? 0 0 0 0 0 2 – 2 0 0 1 0 0 0 ? ? ? 0 0 – – 1 0 0 0 0 – 1 – – 0 1 0 0 0 1 1 1 0 0 0 0 ? ? ? 

? ? 1 – – – – 0 0 0 0 0 0 1 0 0 0 0 0 – 0 0 0 0 0 0 0 0 0 ? 0  
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Mixopterus simonsoni 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? 0 1 ? 0 1 1 2 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 1 1 ? 0 0 

0 0 1 2 – 2 ? ? ? ? ? ? 0 – 0 ? ? ? ? ? 0 0 0 0 – ? ? ? 0 1 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? 1 0 ? ? ? ? ? 0 0 0 0 0 0 ? 0 0 ? 0  

Strobilopterus laticeps 

0 – 0 0 0 0 0 0 1 0 1 1 0 0 – 0 0 1 1 0 0 1 0 0 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? 1 ? ? ? ? 0 1 1 0 1 0 0 1 1 1 0 0 – 1 0 1 1 0 0 0 0 ? 1 1 0 1 0 

0 ? ? ? ? ? 0 1 1 0 0 0 0 0 0 0 ? ? ? 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 1  

Strobilopterus princetonii 

0 – 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 3 0 0 1 0 0 0 – 1 0 0 ? ? ? 0 0 0 – – – 0 0 0 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 ? ? ? 0 0 0 1 0 1 1 1 2 0 0 1 1 0 1 1 0 1 1 1 2 0 1 1 0 0 1 1 0 0 0 0 1 ? 0 

1 0 0 ? 0 1 0 1 ? ? ? 0 0 0 0 0 0 0 ? ? ? 0 1 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 1 1 1 0 – 0 0 0 0 ? 

0 0 0 ? ? ? ? ? ? ? ? ? ? ? 0 1 1 0 ? ? ? 0 ? 0 0 0 0 0 0 0 0 1  

Strobilopterus proteus 

0 – 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 3 0 0 1 0 0 0 – 1 0 0 3 1 0 ? ? ? ? ? ? 0 0 0 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 ? 0 0 1 1 0 1 1 0 1 1 1 2 0 1 1 0 0 1 1 0 0 0 0 1 0 0 

1 0 0 ? 0 1 0 1 ? ? ? 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 1 1 1 0 – 0 0 0 0 ? 

0 0 0 ? ? ? ? ? ? ? ? ? ? ? 0 1 1 0 1 0 – 0 1 0 0 0 0 0 0 0 0 1  
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Buffalopterus pustulosus 

0 – 0 0 0 0 0 0 1 0 1 1 0 0 – 0 0 1 1 0 0 1 0 0 0 – 1 0 0 3 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 

0 1 0 0 0 1 1 0 0 0 0 0 0 0 ? ? ? ? 0 – – ? 0 0 0 0 – 0 0 0 0 0 0 0 1 1 1 0 – 0 0 0 1 ? 0 0 0 2 

– – 0 0 0 0 0 0 0 1 0 1 1 0 1 0 – 0 1 0 0 0 0 0 0 0 0 0  

Strobilopterus richardsoni 

0 – 0 0 0 0 0 0 1 0 1 1 0 0 – 0 0 1 3 0 0 1 0 0 0 – 1 0 0 3 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? 1 0 1 1 1 2 0 0 1 0 1 1 0 0 0 0 ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 0 1 1 0 1 0 – 0 ? ? 0 0 0 0 0 0 ? ?  

'Erieopterus' limuloides 

0 – 0 0 0 0 0 0 1 0 1 1 0 0 – 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 3 1 0 0 0 ? ? ? ? 0 0 0 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 2 0 0 1 1 0 1 0 0 1 1 1 0 0 0 ? ? ? ? ? ? ? 0 0 0 0 0 1 

0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 0 0 0 0 0 1 1 1 0 – 0 0 0 1 ? 0 0 0 

0 0 0 – – 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  

Erieopterus microphthalmus 

0 – 0 0 0 0 0 1 1 0 1 4 0 1 1 0 0 0 1 0 0 1 0 0 0 – 1 0 0 3 1 0 0 0 0 – – – 0 0 0 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 2 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 ? ? ? 1 0 – – 0 0 0 0 0 – 1 – – 0 0 0 0 0 1 1 0 – 0 0 0 1 ? 

0 0 0 1 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 0 0 ? 0  
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Paraeurypterus anatoliensis 

0 – 0 0 0 0 0 0 1 0 1 2 0 1 0 0 0 1 1 0 0 0 0 0 0 – 1 0 0 ? 1 0 ? ? ? ? ? ? ? ? ? ? 1 1 ? ? ? ? ? 

? ? ? 0 0 0 0 0 0 ? ? ? ? ? ? 1 ? 0 ? ? ? ? 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 ? ? ? ? ? ? 1 

0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – ? ? ? 0 0 0 0 0 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 0 0 1 0 0 0 – 0 1 0 0 0 0 ? 0 0 1 ?  

Pentlandopterus minor 

0 – 0 0 0 0 0 0 1 0 1 2 0 1 0 0 0 1 1 0 0 0 0 0 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 ? ? ? ? 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 1 – – 0 0 0 0 0 1 1 0 – 0 0 0 0 1 0 0 0 0 0 

0 – – 0 0 0 0 0 0 0 1 1 0 0 0 – 0 0 0 0 0 0 0 0 0 0 ?  

Dolichopterus jewetti 

0 – 0 0 0 0 0 0 1 0 1 2 0 0 – 0 0 1 2 0 0 0 0 0 0 – ? 0 0 ? ? ? 0 0 0 – – – 0 0 0 2 2 1 0 0 0 0 

0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 2 0 1 1 0 0 1 1 0 1 0 0 1 1 0 

0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 ? ? ? 0 1 0 0 0 0 0 0 0 – 0 2 0 0 0 0 0 0 1 1 0 – 0 0 0 1 1 

0 0 0 0 0 0 – – 0 0 0 0 0 0 0 0 1 0 0 0 – ? 0 0 0 0 0 0 0 0 0 0  

Ruedemannipterus stylonuroides 

1 2 0 0 0 0 0 0 1 0 1 6 0 0 – 0 0 1 2 0 0 0 0 0 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 ? ? ? ? 1 1 0 0 1 ? 1 1 0 1 ? 0 1 1 0 0 1 0 1 1 0 ? ? ? ? ? ? ? 

? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 0 1 1 0 0 0 – 0 0 0 0 0 0 ? 0 0 ? ?  
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Clarkeipterus testudineus 

1 2 0 1 0 0 0 0 1 0 0 2 0 0 – 0 0 1 2 0 0 0 0 0 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 ? ? ? ? 1 1 0 0 1 ? 1 1 0 1 ? 0 ? 1 0 0 1 0 0 1 0 ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? 1 0 0 0 – ? 0 0 ? ? ? ? ? ? ? ?  

Clarkeipterus otisius 

1 2 0 1 0 0 0 0 1 0 0 2 0 0 – 0 0 1 2 0 0 0 0 0 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 1 0 0 0 – ? ? ? ? ? ? ? ? ? ? ?  

Erieopterus eriensis 

0 – 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 – 1 0 0 3 1 0 ? ? ? ? ? ? 0 0 0 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? 0 1 0 0 1 1 2 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 ? ? ? ? 

? ? 1 0 0 0 0 0 1 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 1 – – 0 0 0 0 0 1 1 0 – 0 0 0 ? ? ? ? 

? 0 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 ? 0 0 ? ?  

Eurypterus henkeni 

0 – 0 0 0 0 0 1 1 0 1 3 0 1 0 0 1 0 1 0 0 0 0 0 0 – 1 0 0 0 1 0 ? ? ? ? ? ? ? ? ? 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 ? ? ? ? ? 0 1 0 0 1 1 2 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 

0 0 ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 – – ? 0 0 0 0 – 1 – – 0 0 0 0 0 1 1 0 – 0 0 0 1 1 1 0 

0 0 0 0 – – 0 0 0 0 0 1 0 0 0 1 0 0 – 0 1 1 0 0 0 0 0 0 1 0  

 

 

 

763



Eurypterus tetragonophthalmus 

0 – 0 0 0 0 0 1 1 0 1 3 0 1 0 0 1 0 1 0 0 0 0 0 0 – 1 0 0 0 1 0 0 0 0 – – – 0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 2 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 – 0 1 0 – – 0 0 0 0 0 – 1 – – 0 0 0 0 0 1 1 0 – 0 0 0 2 1 

1 0 0 0 0 0 – – 0 0 0 0 0 1 0 0 0 1 0 0 – 0 1 1 0 0 0 0 0 0 1 0  

Eurypterus leopoldi 

0 – 0 0 0 0 0 1 1 0 1 3 0 1 0 0 1 0 1 0 0 0 0 0 0 – 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 ? 1 0 0 0 0 0 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 ? ? ? ? ? ? ? 0 – 0 0 0 2 1 1 0 0 0 0 

0 – – 0 0 0 0 0 1 ? 0 0 1 0 0 – 0 1 1 0 0 0 ? 0 0 ? ?  

Eurypterus pittsfordensis 

0 – 0 0 0 0 0 1 1 0 1 3 0 1 0 0 1 0 1 0 0 0 0 0 0 – 1 0 0 0 1 0 0 0 0 – – – 0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 2 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 

0 0 0 ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 0 0 0 0 0 0 1 1 0 – 0 0 0 2 1 1 

0 0 0 0 0 – – 0 0 0 0 0 1 0 0 0 1 0 0 – 0 1 1 0 0 0 0 0 0 1 ?  

Eurypterus henningsmoeni 

0 – 0 0 0 0 0 1 1 0 1 3 0 1 0 0 1 0 1 0 0 0 0 0 0 – 1 0 0 0 1 0 ? ? ? ? ? ? 0 0 0 ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? 1 1 0 0 0 0 1 0 0 1 1 2 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 

0 ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 – – ? 0 0 0 0 – 1 – – 0 0 0 0 0 1 1 0 – 0 0 0 2 1 1 0 0 

0 0 0 – – 0 0 0 0 0 1 0 0 0 1 0 0 – 0 1 1 0 0 0 0 0 0 1 ?  
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Grossopterus overathi 

0 – 0 0 1 0 0 1 1 0 1 2 0 0 – 0 1 0 2 1 0 0 0 0 0 – 1 0 1 ? 0 0 ? ? ? ? ? ? 0 0 0 1 1 1 1 ? 0 0 

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 ? ? 1 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 1 0 0 1 

0 1 0 0 0 0 1 2 – 1 0 0 1 0 0 0 ? ? ? 0 0 – – 1 0 0 0 0 – 0 2 0 0 1 0 0 1 1 1 0 – 0 0 0 ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 ? 0  

Waeringopterus apfeli 

0 – 0 1 1 0 0 1 1 0 1 5 0 0 – 0 1 0 2 1 0 0 0 0 0 – 1 0 1 ? ? ? ? ? ? ? ? ? 0 0 ? 1 1 1 1 0 ? ? 0 

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 2 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 ? ? 0 0 

1 0 ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 0 0 – 0 2 0 0 1 0 0 1 1 1 0 – 0 1 1 1 0 0 0 

0 0 1 0 – – 0 0 0 1 0 0 0 0 0 0 0 0 – 0 0 0 1 0 0 0 0 0 ? ?  

Waeringopterus cumberlandicus 

0 – 0 1 1 0 0 1 1 0 1 5 0 0 – 0 1 0 2 1 0 0 0 0 0 – 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? 0 ? ? ? ? ? 0 ? ? 1 1 0 ? ? ? ? ? 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? 0 0 0 0 – ? ? ? 1 0 ? ? ? ? ? ?  

Orcanopterus manitoulinensis 

1 2 0 1 0 0 0 1 1 0 1 7 0 0 – 0 1 0 2 1 0 0 0 0 0 – 1 0 1 ? ? ? 0 0 0 – – – 0 0 0 1 1 1 1 0 ? ? 

0 ? ? ? 0 1 0 0 0 0 0 1 0 0 0 ? 1 1 0 ? ? ? ? 0 ? ? 0 ? 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 

1 0 ? 0 0 0 0 1 2 – 1 0 ? ? ? ? ? 0 – 0 ? ? ? ? 1 0 0 0 0 – 1 – – 0 0 0 0 1 1 1 0 – 0 0 0 0 0 0 0 

0 0 1 0 – – 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 ? 0  
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Pterygotus anglicus 

0 – 0 0 0 0 1 – – 0 1 3 0 0 – 0 1 2 2 2 1 0 0 0 0 – 1 0 1 1 1 0 1 1 2 0 0 0 0 0 0 3 3 – – – 0 0 

0 – – – – – – – – 0 0 0 – 0 0 0 1 1 0 1 1 2 1 0 1 1 0 1 2 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 

0 0 0 ? 0 0 0 0 1 2 – 2 1 1 1 0 0 0 0 – 0 0 0 – – 0 0 0 0 0 – 0 0 0 0 0 0 0 0 1 1 0 – 0 0 0 0 0 

0 1 1 2 – – 0 0 0 0 0 ? 1 1 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 1 0  

Pterygotus monroensis 

0 – 0 0 0 0 1 – – 0 0 3 0 0 – 0 1 2 2 2 1 0 0 0 0 – 1 0 0 ? ? ? ? ? 2 0 0 ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 0 0 0 0 – ? ? ? 1 1 ? ? ? ? ? ?  

Adelophthalmus sievertsi 

0 – 1 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 – – – 0 0 0 3 3 – – – 0 0 

0 – – – – – – – – 0 0 0 0 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 

0 0 0 ? 0 0 1 0 1 2 – 2 0 0 0 0 0 0 0 – 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 – 0 0 0 0 0 

0 0 0 0 0 1 – – 0 1 0 0 0 0 0 0 0 0 0 0 – 1 0 0 1 1 0 0 0 0 2 0  

Adelophthalmus kamyshtensis 

0 – ? 0 0 0 0 1 1 0 1 7 0 0 – 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 

1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 – 0 0 0 0 1 0 0 1 1 1 0 – 0 0 0 0 0 0 0 0 0 0 1 – – 

0 1 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 ? ?  
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Adelophthalmus luceroensis 

0 – ? 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 1 0 0 1 0 1 0 0 ? ? ? 0 0 0 – – – 0 0 0 3 3 – – – 0 0 

0 – – – – – – – – 0 0 1 1 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 

0 0 0 ? 0 0 1 1 1 2 – 2 0 0 ? ? ? ? 0 – 0 ? 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 – 0 0 0 0 0 

0 0 0 0 0 1 – – 0 1 0 0 0 0 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 ? ?  

Adelophthalmus mazonensis 

0 – 1 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 1 0 0 1 0 1 0 0 ? ? ? 0 0 0 – – – 0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 

0 0 0 ? 0 0 1 1 1 2 – 2 0 0 0 0 1 0 0 – 0 0 1 1 1 0 0 0 0 1 1 0 2 1 0 1 0 0 1 1 1 0 – 0 0 0 ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 1 0  

Adelophthalmus moyseyi 

0 – 1 0 0 0 0 1 1 0 1 7 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? 0 3 3 – – – 0 0 0 

– – – – – – – – 0 0 1 1 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 

0 0 ? 0 1 1 1 1 2 – 2 0 0 0 0 0 0 0 – 0 0 1 1 1 0 0 0 0 1 0 1 – 1 0 1 0 1 1 1 1 0 – 0 0 0 ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 1 0  

Adelophthalmus mansfieldi 

0 – 1 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 1 0 0 1 0 1 0 0 ? ? ? ? ? ? ? ? ? 0 0 0 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 

0 0 ? 0 0 1 1 1 2 – 2 0 0 0 0 0 0 ? ? ? 0 1 1 1 0 0 0 0 1 1 0 2 1 0 1 0 0 1 1 1 0 – 0 0 0 0 0 0 

0 0 0 0 1 – – 0 1 0 0 0 0 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 1 0  
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Adelophthalmus irinae 

0 – ? 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 1 0 0 1 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 – ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 1 ?  

Adelophthalmus imhofi 

0 – ? 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 1 0 0 1 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 

0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 0 1 – 1 0 1 0 0 1 1 1 0 – 0 0 0 0 0 0 0 0 0 0 1 

– – 0 1 0 0 0 0 0 0 0 0 0 0 – 0 0 0 1 1 0 ? 0 1 ? ?  

Adelophthalmus wilsoni 

0 – ? 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 1 0 0 1 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? 0 3 3 – – – 0 0 0 

– – – – – – – – 0 0 1 1 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 ? ? ? ? 

? ? ? 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 0 1 – 1 0 1 0 0 1 1 1 0 – 0 0 0 0 0 0 0 

0 ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 – 0 0 0 1 1 0 ? 0 1 1 ?  

Adelophthalmus waterstoni 

? ? ? ? ? ? ? ? ? ? 1 ? 0 0 – 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 

0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 0 0 0 0 0 1 0 0 1 ? 1 0 – 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? 0 0 0 0 ? ? ? 1 0 0 1 1 0 ? 0 0 ? ?  
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Adelophthalmus approximatus 

0 – ? 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 1 0 0 1 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 

0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 1 0 0 1 0 1 0 0 1 ? 1 0 – 0 0 ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 0 0 0 0 0 0 – 0 0 0 1 1 0 ? 0 0 ? ?  

Adelophthalmus granosus 

? ? ? ? ? ? ? ? ? ? 1 ? 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 

1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 0 1 – 1 0 1 0 0 1 ? 1 0 – 0 0 0 ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? 0 0 0 0 ? ? ? 0 0 0 1 1 0 ? 0 0 1 ?  

Adelophthalmus douvillei 

0 – ? 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 0 0 0 1 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? 0 3 3 – – – 0 0 0 

– – – – – – – – 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 ? 0 2 1 0 1 0 0 1 1 1 0 – 0 0 0 0 0 0 0 0 0 0 

0 – – – 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 1 1 0 ? 0 0 ? ?  

Adelophthalmus sellardsi 

0 – ? 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 0 0 0 1 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 

0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 ? 0 2 1 0 1 0 0 1 ? 1 0 – 0 0 0 ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 0 0 0 0 0 0 – 0 0 0 1 1 0 ? 0 0 ? ?  
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Adelophthalmus dumonti 

? ? ? 0 ? 0 0 1 1 0 1 7 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 ? ? ? 0 ? ? ? ? ? ? ? 0 3 3 – – – 0 0 0 

– – – – – – – – 0 0 1 1 0 0 ? 1 1 0 1 ? ? ? 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 ? ? ? ? ? 

? ? 0 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 0 1 – 1 0 1 0 1 1 1 1 0 – 0 0 0 ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 – 0 0 0 1 1 0 ? 0 0 1 ?  

Adelophthalmus zadrai 

0 – ? 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 1 0 0 1 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 3 ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 

0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 0 ? ? 1 0 ? 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? 0 0 0 0 0 0 – 0 0 0 1 1 0 ? 0 0 1 ?  

Eurypterus dekayi 

0 – 0 0 0 0 0 1 1 0 1 3 0 1 0 0 1 0 1 0 0 0 0 0 0 – 1 0 0 0 1 0 0 0 0 – – – 0 0 0 1 1 1 0 0 0 0 

0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 2 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 

0 0 0 ? 0 0 0 0 0 1 1 0 0 0 0 0 0 0 ? ? ? 1 0 – – 0 0 0 0 0 – 0 0 0 0 0 0 0 0 1 1 0 – 0 0 0 2 1 

1 0 0 0 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 1 0 0 0 0 0 0 0 1 0  

Carcinosoma scotica 

1 1 0 0 0 0 1 1 1 0 1 9 0 ? ? ? ? ? ? ? ? ? ? ? 0 – ? ? ? ? ? ? 0 0 0 – – – 1 0 1 2 2 1 0 0 0 0 1 

1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 2 0 0 ? ? ? ? 0 0 1 1 1 0 0 0 1 0 1 1 0 0 1 0 0 ? ? ? ? ? 

? ? 0 0 0 0 1 2 – 2 0 ? ? ? ? ? 0 – 0 ? ? ? ? 1 1 0 0 0 – 1 – – 0 2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 

? ? ? ? ? ? ? ? ? ? ? 0 0 ? ? ? ? ? 0 0 0 0 0 0 0 1 0 ? 0  
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Carcinosoma scorpioides 

1 1 0 0 0 0 ? ? ? 0 1 9 0 ? ? ? ? ? ? ? ? ? ? ? 0 – ? ? ? ? ? ? ? ? ? ? ? ? 1 0 1 2 2 1 0 0 0 0 1 1 

0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 2 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 

0 ? 0 0 0 0 ? ? ? ? 0 0 1 0 0 0 ? ? ? 0 0 – – 1 1 0 0 0 – 1 – – 0 2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 

0 ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 – 0 0 0 0 0 0 0 1 0 ? 0  

Carcinosoma newlini 

0 – 0 0 0 0 0 1 1 0 1 9 0 0 – 0 1 0 2 1 0 ? 0 0 0 – 1 ? ? ? 1 0 0 0 0 – – – 0 0 1 2 2 1 0 0 1 0 

1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 2 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 

0 1 0 ? 0 0 0 0 1 2 – 2 0 0 1 0 0 0 ? ? ? 0 0 – – 1 1 0 0 0 – 1 – – 0 2 1 0 0 1 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 0 0 ? 0  

Carcinosoma libertyi 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 – – – 0 0 1 2 2 1 0 0 0 0 1 0 

0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 2 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 ? 0 1 0 0 0 0 0 0 1 

0 ? ? ? ? ? 1 2 – 2 0 ? ? ? ? ? 0 – 0 ? ? ? ? 1 1 0 0 0 – 0 0 0 0 2 1 ? 0 ? 1 1 1 0 0 0 ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? 0 0 ? ? ? ? ? ? 0 0 0 0 0 0 ? ? ? 0  

Carcinosoma spiniferum 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 1 0 ? 1 0 1 ? ? 

0 ? 0 1 1 0 0 ? ? ? 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  
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Rhinocarcinosoma vaningeni 

1 0 0 0 0 0 0 1 1 0 1 9 1 1 0 0 1 0 1 0 0 0 0 0 0 – 1 0 1 ? ? ? ? ? ? ? ? ? ? ? 1 2 2 1 0 ? 1 0 1 

0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 ? ? 1 1 2 0 ? ? ? ? 1 0 0 1 1 1 ? ? ? ? ? ? ? ? ? ? 0 0 0 ? 0 0 1 

0 ? 0 0 0 0 1 2 – 2 0 ? ? ? ? ? ? ? ? ? 0 – – 1 1 0 0 0 – ? ? ? 0 ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 – 0 0 0 0 0 0 ? 0 0 ? 0  

Rhinocarcinosoma dosonensis 

1 0 0 0 0 0 ? ? ? 0 1 9 0 1 0 0 ? ? ? ? ? ? ? ? 0 – ? ? ? ? ? ? 0 0 0 – – – ? 0 ? ? 2 1 ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 0 ? ? ? ? 0 1 1 0 1 1 2 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 ? 3 0 0 ? 0 

? 0 0 0 0 1 2 – 2 ? 0 ? ? ? ? ? ? ? ? 0 – – 1 1 0 0 0 – 1 – – 0 2 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 

0 0 – – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 0 0 ? 0  

Rhinocarcinosoma cicerops 

1 0 0 0 0 0 0 1 1 0 1 9 1 1 0 0 1 0 1 0 0 1 0 0 0 – 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 2 1 ? ? ? ? ? 

? ? 0 1 0 1 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 0 0 0 – ? ? ? 0 ? 1 0 0 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 0 0 0 0 0 0 – 0 0 0 0 0 0 ? 0 0 ? ?  

Eusarcana acrocephala 

0 – 0 0 2 0 ? ? ? 0 1 9 0 0 – 0 1 0 2 1 0 0 0 0 0 – 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 1 ? ? ? ? ? ? 1 1 1 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 1 0 ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 0 – 1 – – 0 2 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 – – 

– – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 0 0 ? ?  
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Eusarcana scorpionis 

0 – 0 0 2 0 0 1 1 0 1 9 0 0 – 0 1 0 2 1 0 0 0 0 0 – 1 0 1 ? ? ? 0 0 0 – – – 0 0 1 2 2 1 0 0 1 0 

1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 2 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 

0 1 0 ? 0 0 0 0 1 2 – 2 0 0 1 0 0 0 ? ? 0 ? 0 – – 1 1 0 0 0 – 1 – – 0 2 1 0 0 1 1 1 1 0 0 0 0 0 

0 0 0 1 – – – – 0 0 0 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0 0 0 0 0 ? 0  

Slimonia acuminata 

0 – 0 1 0 0 0 2 1 0 1 A0 0 – 0 1 2 2 2 1 0 0 0 0 – 1 0 1 ? ? ? 1 0 0 – – – 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 

1 1 0 ? 0 0 0 0 1 2 – 2 0 0 0 0 0 0 0 – 0 0 0 – – 0 0 0 0 0 – 1 – – 0 0 0 0 0 1 1 0 – 0 0 0 0 0 

0 0 0 2 – – 0 1 0 0 0 0 1 1 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 ? 0  

Salteropterus abbreviatus 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 0 1 0 ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 – ? ? 0 0 0 0 0 0 2 – – 0 1 0 0 

0 0 1 1 0 0 ? ? ? ? ? ? ? ? 1 1 ? 0 ? ? ? ?  

Acutiramus bohemicus 

? ? ? ? ? ? 1 – – ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 2 2 1 0 ? ? ? 3 3 – – – 0 0 0 – 

– – – – – – – 0 ? ? ? 0 0 0 1 1 0 1 1 2 1 0 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 1 1 1 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 2 – – 0 

0 0 0 0 1 ? 1 ? 0 ? ? ? ? ? ? ? ? 1 1 0 ? 0 0 ? ?  
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Acutiramus macrophthalmus 

0 – 0 0 0 0 1 – – 0 1 5 0 0 – 0 1 2 2 2 1 0 0 0 0 – 1 0 1 1 1 0 1 1 2 2 1 0 0 0 0 3 3 – – – 0 0 

0 – – – – – – – – 0 0 0 – 0 0 0 1 1 0 1 1 2 1 0 1 1 0 1 2 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0 

0 0 0 ? 0 0 0 0 1 2 – 2 1 1 1 0 1 0 0 – 0 ? 0 – – ? 0 0 0 0 – 0 0 0 0 0 0 0 0 1 1 0 – 0 0 0 0 0 

0 1 1 2 – – 0 0 0 0 0 1 1 1 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 1 0  

Acutiramus cummingsi 

0 – 0 0 0 0 1 – – 0 1 5 0 0 – 0 1 2 2 2 1 0 0 0 0 – 1 0 1 1 1 0 1 1 2 2 1 0 0 0 0 3 3 – – – 0 0 

0 – – – – – – – – 0 0 0 – 0 0 0 1 1 0 1 1 2 1 0 1 1 0 1 2 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0 

0 0 0 ? 0 0 0 0 1 2 – 2 1 1 1 0 1 0 0 – 0 ? 0 – – ? 0 0 0 0 – 0 0 0 0 0 0 0 0 1 1 0 – 0 0 0 0 0 

0 1 1 2 – – 0 0 0 0 0 1 1 1 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 1 0  

Erettopterus bilobus 

0 – 0 0 0 0 1 – – 0 1 2 0 0 – 0 1 2 2 2 1 0 0 0 0 – 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 3 3 – – – 0 0 

0 – – – – – – – – 0 ? ? ? 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 2 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0 

0 0 0 ? 0 0 0 0 1 2 – 2 1 1 1 0 0 1 1 1 0 ? 0 – – 0 0 0 0 0 – 0 0 0 0 0 0 0 0 1 1 0 – 0 0 0 0 0 

0 1 1 2 – – 0 0 0 0 1 2 1 1 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 1 0  

Erettopterus osiliensis 

0 – ? ? ? 0 1 – – 0 1 2 0 0 – 0 1 2 2 2 1 0 0 0 0 – 1 0 1 ? ? ? 1 1 2 0 0 1 ? ? ? 3 3 – – – 0 0 0 

– – – – – – – – 0 ? ? ? 0 0 0 1 1 0 1 1 2 0 0 ? ? 0 1 2 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 

0 0 ? 0 0 0 0 1 2 – 2 1 1 1 0 1 1 1 1 0 ? 0 – – 0 0 0 0 0 – 0 0 0 0 0 0 0 0 1 1 0 – 0 0 0 0 0 0 

1 1 2 – – 0 0 0 0 1 2 1 1 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 ? 0  
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Erettopterus serricaudatus 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 0 0 0 ? ? ? 

? ? ? ? ? ? 1 0 1 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? 2 – – 0 0 0 

0 1 2 1 1 ? 0 ? ? ? ? ? ? ? ? 1 1 0 ? 0 0 ? ?  

Erettopterus waylandsmithi 

0 – 0 0 0 0 1 – – 0 1 2 0 0 – 0 1 2 2 2 1 0 0 0 0 – 1 0 1 ? ? ? 1 1 2 0 0 1 ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 – – 0 0 

0 ? 1 ? ? ? ? 0 0 0 0 0 – ? ? ? 1 1 0 ? 0 0 ? ?  

Jaekelopterus rhenaniae 

0 – 0 0 0 0 1 – – 0 1 3 0 0 – 0 1 2 2 2 1 0 0 0 0 – 1 0 1 ? ? ? 1 1 2 1 0 0 ? ? ? 3 3 – – – 0 0 

0 – – – – – – – – 0 0 0 – 0 0 0 1 1 0 1 1 2 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 1 0 0 

0 0 ? 0 0 0 0 1 2 – 2 1 1 1 0 1 0 0 – 0 0 0 – – ? 0 0 0 0 – 0 0 0 0 0 0 0 0 1 1 0 – 0 0 0 0 0 0 

1 1 2 – – 1 0 0 0 0 2 1 0 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 1 0  

Jaekelopterus howelli 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 2 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? 0 1 ? ? 1 1 2 1 ? ? ? ? ? ? ? ? ? ? 1 0 0 1 0 1 1 0 1 0 0 ? 1 1 0 0 0 0 ? ? 

? ? ? 1 2 – 2 1 1 1 0 0 0 0 – 0 0 0 – – ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 – 0 ? 0 0 0 0 1 1 2 – – 

1 0 0 0 0 2 1 1 ? 0 ? ? ? ? ? ? ? ? 1 1 0 ? 0 0 1 0  
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Ciurcopterus ventricosus 

0 – ? ? ? 0 1 – – 0 1 4 0 0 – 0 1 2 2 2 1 0 0 0 0 – 1 0 1 ? ? ? ? ? ? ? ? ? 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 ? ? ? 0 1 1 0 1 0 0 1 1 1 ? ? ? ? ? ? ? ? ? ? 0 1 ? ? ? ? ? 

? ? 0 0 0 0 1 2 – 2 1 0 1 0 0 0 ? ? ? 0 0 – – ? 0 0 0 0 – 0 0 0 0 0 0 0 0 1 1 0 – 0 0 0 0 0 0 1 

0 2 – – 0 0 0 0 0 0 1 0 0 0 0 0 0 0 – 0 0 0 1 1 0 0 0 0 ? 0  

Eysyslopterus patteni 

1 2 0 1 0 0 0 1 1 0 1 7 0 0 – 0 1 0 0 0 0 0 0 0 0 – 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 0 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ?  

Parahughmilleria salteri 

0 – 0 0 0 0 0 1 1 0 1 1 0 0 – 0 1 0 1 0 0 0 0 0 0 – 1 0 1 ? ? ? ? ? ? ? ? ? ? ? 0 0 ? 1 0 1 0 0 0 

0 0 ? 0 0 0 0 0 0 0 1 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 0 0 0 0 

? 0 0 0 0 1 2 – 2 0 ? ? ? ? ? 1 0 1 ? ? ? ? ? 0 0 0 0 – 0 0 0 0 0 0 0 1 1 0 0 – 0 0 1 0 0 0 0 0 0 

0 0 – – 1 0 0 0 0 0 ? 0 0 0 0 1 0 ? ? ? 1 1 ? ? ? ? ? 0  

Parahughmilleria bellistriata 

0 – 0 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 0 0 0 0 – 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 0 0 ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 – 

– 1 0 0 0 0 0 ? ? 0 0 0 1 0 ? ? ? ? ? ? ? ? ? ? ?  

 

 

 

776



Parahughmilleria maria 

0 – 0 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 0 1 0 1 1 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 9 ? ? ? ? 0 1 1 0 1 ? 0 1 1 1 ? 1 0 1 0 1 1 0 1 0 0 ? ? ? ? ? ? ? 

? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 – 1 – – 0 0 0 0 1 1 1 0 – 0 0 0 0 0 0 0 0 0 

0 0 – – 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 ? ?  

Parahughmilleria matarakensis 

0 – 0 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 0 0 0 0 – 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 ? ? ? ? ? ? ? 

? ? ? ? ? 1 2 – 2 0 0 3 0 0 0 ? ? ? 0 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? 0 0 0 1 0 ? ? ? ? ? ? ? ? ? ? 0  

Parahughmilleria hefteri 

0 – 0 0 0 0 0 1 1 0 1 1 0 0 – 0 1 0 1 0 0 0 0 0 0 – 1 0 1 1 1 0 0 0 0 – – – 0 0 0 1 1 1 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 

0 0 0 ? 0 0 0 0 1 2 – 2 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 – 0 0 0 0 0 0 0 1 1 1 0 – 0 0 1 0 0 

0 0 0 0 0 0 – – 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0  

Bassipterus virginicus 

0 – 0 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 0 1 0 1 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 ? 1 1 2 0 0 1 1 0 1 2 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 ? 1 1 0 0 1 

0 ? 0 0 0 0 1 2 – 2 0 0 1 1 0 0 ? ? ? 0 0 – – 0 0 0 0 1 0 1 – 0 0 0 0 0 ? 1 1 0 – 0 0 0 0 0 0 0 

0 0 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 ? 0  
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Pittsfordipterus phelpsae 

0 – 0 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 0 1 0 1 1 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 

0 0 0 ? ? ? 2 0 0 0 1 0 0 ? ? ? 0 0 – – 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 0 0 0 0 1 0 0 0 0 1 1 1 ? 0 0 ? 0  

Nanahughmilleria clarkei 

0 – 0 0 0 0 0 1 1 0 1 7 0 0 – 1 1 0 1 0 0 0 0 0 0 – 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 0 0 0 ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 0 – ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 0 0 0 0 0 ? ? 0 0 0 1 1 1 ? 0 0 ? ?  

Nanahughmilleria pygmaea 

0 – 0 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 0 0 0 0 – 1 0 1 1 1 0 0 0 0 – – – ? ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 0 ? ? ? ? 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 ? ? ? ? ? ? ? ? 

? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 0 – ? ? ? ? ? 0 0 1 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? 0 0 0 0 0 ? ? 0 0 0 1 1 1 ? 0 0 ? ?  

Nanahughmilleria norvegica 

0 – 0 0 0 0 0 1 1 0 1 7 0 0 – 1 1 0 1 0 0 0 0 0 0 – 1 0 1 1 1 0 0 ? ? ? ? ? 0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 

0 0 0 ? 0 0 0 0 1 2 – 2 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 – 0 0 0 0 0 0 0 1 1 1 0 – 0 0 0 0 0 

0 0 0 0 0 0 – – 0 0 0 0 0 0 0 0 0 0 0 ? ? 0 0 0 1 1 1 0 0 0 1 0  
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Nanahughmilleria notosiberica 

0 – 0 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 0 0 0 0 – 1 0 1 ? ? ? ? ? ? ? ? ? ? ? 0 ? 1 1 0 0 ? ? ? 

? ? 0 0 0 0 0 0 0 0 1 0 0 0 ? 1 1 0 ? ? ? ? 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 ? ? ? ? ? 

? ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 0 – 0 0 0 0 0 0 0 1 1 1 0 – 0 0 0 0 0 0 0 0 

? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 ? ?  

Nanahughmilleria lanceolata 

0 – 0 0 0 0 0 1 1 0 1 7 0 0 – 0 1 0 1 0 0 1 0 0 1 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? 0 3 3 – – – 0 0 0 

– – – – – – – – 0 0 1 0 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 

0 0 ? 0 0 0 0 1 2 – 2 0 0 0 0 0 0 0 – 0 ? ? ? ? 0 0 ? 0 1 0 0 0 0 0 0 0 0 1 1 1 0 – 0 0 0 0 0 0 

0 0 0 0 0 – – 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ? ? 0 1 0 0 ? 0  
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