THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS

MONOGRAPH 2

Living and Fossil Macrocyprididae (Ostracoda)

Rosalie F. Maddocks

The University of Kansas Paleontological Institute

The University of Kansas, Lawrence, Kansas
February 27, 1990
ISSN 0278-9744

Library of Congress Cataloging-in-Publication Data Maddocks, Rosalie F.

Living and fossil Macrocyprididae (Ostracoda) / Rosalie F.
Maddocks.
p. cm.- (The University of Kansas paleontological contribu-
tions. Monograph, ISSN 0278-9744; 2)
Includes bibliographical references.

1. Macrocypridida-Classification. 2. Macrocyprididae, Fossil.
I. Title. II. Series.

QL444.O86M33 1990 595.3'3—dc20 89-78041

CONTENTS

PAGE
PAGE
Abstract 1
Introduction 1
Taxonomic principles and objectives 2
Procedures and conventions 4
History of project 6
Acknowledgments 7
Anatomy of Macrocyprididae 8
Carapace 8
Appendages 18
Body and genitalia 18
Interpretive Morphology 19
Developmental Biology 24
Biogeography 26
Evolution 38
Systematic Descriptions 41
Family Macrocyprididae Müller, 1912 41
Genus Macrocypris Brady, 1868 42
Genus Macromckenziea n. gen. 48
Genus Macropyxis n. gen. 57
Genus Macrocypria Sars, 1923 80
Genus Macrocyprissa Triebel, 1960 84
Genus Macrosarisa n. gen. 87
Genus Macroscaphan. gen. 95
Genus Macrocyprina Triebel, 1960 108
References 131
Appendix I: Some Other Species Referrable to Macrocyprididae 143
Appendix II: Some Species Excluded from Macrocyprididae 145
Appendix III: List of Collections Studied 149
Appendix IV: List of Numbered Specimens 161
Explanation of Figures 179
Explanation of Plates 278
Index 403
ILLUSTRATIONS
TEXT-FIGURES PAGE

1. Postulated homologies of macrocypridid, pontocypridid, cypridid, bythocy- pridid, and bairdiid adductor muscle scars 18
2. Locations of BLM collecting stations on the middle Atlantic outer continental shelf 26
3. Locations of collecting stations in the northwestern Gulf of Mexico 28
4. Collecting stations and geographic distributions of species in the western Atlantic, Caribbean, Gulf of Mexico, and central eastern Pacific oceans 29
5. Collecting stations and geographic distributions of species in the southeastern Atlantic Ocean 30
6. Collecting stations in the southwestern Atlantic and southeastern Pacific oceans 31
7. Geographic distributions of species in the southwestern Atlantic and south- eastern Pacific oceans 32
8. Collecting stations and geographic distributions of species in Antarctic waters 38
9. Bathymetric and latitudinal ranges of Macroscapha turbida 33
10. Collecting stations and geographic distributions of species in the Mozam- bique Channel and western Indian Ocean 33
11. Collecting stations around Nosy Be, northwestern Madagascar 34
12. Collecting stations in the Strait of Magellan and nearby region 35
13. Collecting stations and geographic distributions of species around Australia and New Zealand 35
FIGURES 1-80 following page 189
PLATES 1-114 following page 285
TABLES
14. Numbers of living adult males and females in each species and genus of Macrocyprididae 21
15. Total number of specimens of three species of Macrocyprididae at BLM stations on the middle Atlantic continental shelf for all seasons 27
16. Total number of specimens of three species of Macrocyprididae at BLM stations A1 through G7 on the middle Atlantic continental shelf for each of the eight collecting seasons 27
17. Total number of specimens of three species of Macrocyprididae at BLM stations H1 through L6 on the middle Atlantic continental shelf for each of the four collecting seasons 28
18. Total number of living specimens of 10 species at stations in the southeastern Atlantic Ocean 30
19. Numbers of species of Macrocyprididae found in 479 living and dead (but not fossil) samples 37
20. Bathymetric distribution of 207 samples yielding live Macrocyprididae for this study 37

Now, clearly if we are going to get sense into the classification of ostracods we must use both the characters of the carapace and the characters of the soft parts, and the mystery lying behind classification must always be which characters are evolving and which are remaining static in the phylogeny; we need to know which are the conservative characters, the ones which mark common ancestry, and which characters are evolving quickly and therefore adapting themselves to environment and likely to produce convergences. Now as far as I can make out, there is not one character in the ostracods which does not sometimes behave in one way and sometimes in the other. You cannot lay down general rules of what is important in classification and what is not.

LIVING AND FOSSIL MACROCYPRIDIDAE (OSTRACODA)

Rosalie F. Maddocks
Department of Geosciences, University of Houston, Houston, Texas 77204-5503

Abstract

This comprehensive taxonomic revision of the family Macrocyprididae is based on the analysis of 138 species, of which 123 are living and 15 are fossil. Thirty-six previously named species are redescribed from type and additional specimens, 54 new species are named, and 48 additional species are described in open nomenclature. Appendage and genital characters are described for 73 of these species. A review of more than 100 additional species that have at one time or another been classified in Macrocyprididae suggests that at least 23 are likely to belong there, bringing known diversity to at least 161 species. Seven species names (Macroypprina decora, Mn. hieroglyphica, Mn. maculata, Macrocypris calabra, M. compressa, M. elongata, M. trigona) should be abandoned as nomina dubia.

Eight genera are recognized, of which four are existing or elevated from subgeneric rank (Macroypris, Macrocypria, Macrocyprissa, Macrocyprina) and four are new (Macropyxis, Macromckenziea, Macrosarisa, Macroscapha). Paramacroypris is shown to be a synonym of Macrocyprissa. Pseudomacrocypris is referred to the Pontocyprididae as a close relative of Propontocypris. Novocypris is a marine cypridid related to Paracypris. Premacrocypris and the Acratiinae, so far as known at present, lack the diagnostic features of Macrocyprididae as here revised.

The Macrocyprididae are morphologically homogeneous and conservative with compellingly cypridacean rather than bairdiacean affinities. No Paleozoic or Triassic and only two Jurassic species can be identified, but Cretaceous and Cenozoic species abound. There are many more species with correspondingly narrower geographic ranges than previously recognized. There may be several hundred living species of Macrocyprididae, which are most abundant on coral reefs, near the edges of continental shelves, in the oxygen-minimum zone, in bathyal and abyssal depths, and beneath cold or upwelling surface currents, wherever high biological productivity produces food-rich bottom sediments. Adult and juvenile anatomy, development of late instars, sexual dimorphism, size-depth clines, and geographic and bathymetric distributions are analyzed.

INTRODUCTION

The family Macrocyprididae is the smallest and most homogeneous of the three families that make up the superfamily Cypridacea. Although globally ubiquitous in nearly all euhaline environments, the family is rarely represented at any one location by more than one or two species, and those species are never predominant and rarely common constituents of the local podocopid ostracode fauna. The external morphological features are remarkably constant, so much so that until 1960 a single genus was considered sufficient to comprehend almost
the entire family, and several of the constituent species were reported worldwide. Unlike the burgeoning complex of Paracypridinae, the Macrocyprididae have not adapted to low or fluctuating salinities, and they are poorly represented in most coastal habitats. There is also no evidence for any commensal or ectoparasitic associations with larger invertebrates, such as those displayed by some of the Pontocyprididae. Instead, they are solitary, sluggish, sediment-ingesting bottom-crawlers. They tend to be relatively large and include the largest known marine podocopid ostracodes.

Like other podocopid Ostracoda, populations of
macrocypridid species show considerable individual variation, analysis of which must precede species identification. The right and left valves are distinctly asymmetrical, and the shape of the larger right valve is more distinctive and representative of the species than is that of the smaller left valve, most characters of which can be predicted from the right valve. Both sexes are present, and male and female carapaces may show either size or shape dimorphism or both. Juveniles develop through a series of eight instars before reaching the adult size and shape (Müller, 1894), up to six of which have been recognized in the material studied here. Late instars have a fairly broad calcified inner lamella, broader than that found in comparable developmental stages of other podocopid ostracodes though not as wide as in the adult. This makes it easy to mistake isolated juveniles for adults of the same or a different species and has contributed to past misidentifications. Species of Macrocyprididae also show variability in size and shape between populations from different depths and geographic locations, which has further contributed to difficulties in identification. This unreliability of species recognition has hindered use of the family in paleoecologic and biostratigraphic interpretation.

This is a family of respectable antiquity. There are probable records in the Jurassic, and by the Cretaceous it was already very diverse. The family has remained stubbornly conservative, with relatively few morphological innovations. The adductor muscle-scar pattern, for example, remains curiously devoid of taxonomic significance below the family level. Though complex, with more constituent scars than any other cypridacean taxon, this scar is invariant in its general features, while displaying vigorous but apparently meaningless variability in its minor details. It offers neither the distinctive rearrangements of a few discrete scars seen in the Cyprididae and Pontocyprididae nor the repetitive fusion or fission of individual scars within a constant spatial deployment that characterizes Cytheracea and Bairdiacea.

It is this deceptively primitive scar pattern that has caused some workers to link the Macrocyprididae with the Bairdiacea rather than the Cypridacea. There is no other anatomical evidence for such a classification, of course, in the appendages, genitalia, or carapace characters. Nonetheless, some macrocypridid scar configurations invoke homologies with basic pontocypridid, cypridid, and bairdiid scar patterns. If real, these homologies would sustain a unitary, five-clade concept of the living Podocopida (Maddocks, 1976,1982), as contrasted to the two-or three-clade model espoused by McKenzie et al. (1983) and Gründel (1969, 1978). In other words, it is the Macrocyprididae through which it is easiest to trace connections of Cypridacea with the other four living branches of the Podocopida.

Within the Cypridacea the Macrocyprididae stand well apart from the other two main branches and deserve full
family rank, coequal with the Pontocyprididae and the Cyprididae (Alm, 1915; Sars, 1922-1928; Maddocks, 1969a; Danielopol, 1976). Indeed, their conservatism of morphology and habitat provides a refreshing contrast to the unruly Cyprididae, which have swarmed over nearshore marine, brackish-water, freshwater, subterranean, and damp subaerial habitats. The extraordinary breadth of adaptive radiations and frequency of convergence within the Cyprididae have generated disproportional inflationary tendencies in the classification of Cypridacea, such as the proposed segregation of marine representatives into a separate "Family Paracyprididae" (see McKenzie, 1979, 1982 for rationale) or the proposed isolation of supralittoral invaders into a "Family Terrestricyprididae" (Schornikov, 1980). The Pontocyprididae also show prolific ecological diversification, encompassing phytal, soft-bottom crawling and burrowing, ectoparasitic or symbiotic, interstitial, anchialine, xylophile, and many other specializations; they occupy the full range of marine habitats from the strandline to the deep sea. By contrast, the Macrocyprididae seem monotonous, even humdrum, in their archaic morphology and lack of ecomorphotypic innovation. Nevertheless, from the perspective of one who works with the Macrocyprididae the tripartite division of the Cypridacea is plain.

TAXONOMIC PRINCIPLES AND OBJECTIVES

Zoological classification attempts to find order in the diversity of animals and to express their inferred evolutionary relationships (Mayr, 1969). Although the functional unit in nature and in taxonomy is the species, which is essentially a genetic and ecologic phenomenon, for ostracode species we know little of the genome except its morphologic expression. By their functions, skeletons are both conservative and subject to homeomorphy, so that evolutionary hypotheses based on only skeletal characters are likely to oversimplify the true history. In Ostracoda, fortunately, the skeleton is part of the external integument of the body and therefore likely to have more numerous biological functions and more taxonomically useful characters than a mere external secretion or test. Even so, there are all too many podocopid ostracodes with smooth, elongate carapaces that are almost featureless externally. For these cypridiform taxa, extra emphasis must be given to the few available distinguishing features, chiefly valve overlap, hingement, muscle scars, pore canals, and marginal structures. In the case of the Macrocyprididae these internal details are nearly invariant as well, while the ineffable shape differences are extremely difficult to define, communicate, and evaluate. It is also not easy to recognize male, female, and juvenile carapaces, all of which must be included in a natural species concept. As a result, most species have not been consistently recognizable, and the diversity of Macrocyprididae has been underestimated.

For optimal taxonomy, both carapace and soft-part characters should be used, and it cannot be denied that the species and genera of Macrocyprididae are most easily recognized by using a combination of both. A primary strategy of this revision has been to incorporate as much information as possible from the external soft anatomy, mostly appendages and genitalia, to supplement that from the carapace. In this way it has been possible to distinguish males and females, adults and juveniles, and probable species with much less uncertainty than if carapace traits alone were used. With this larger pool of characters, it then becomes possible to calibrate, as it were, those carapace traits that show high correlations with the softpart features and to use them as reliable diagnostic characters for fossils.

Experience with Bairdiidae and Pontocyprididae has suggested that trends or relationships marked by obvious carapace features are always corroborated by soft-part characters, when the latter become available, and that trends determined from soft parts are always confirmed by carapace traits, albeit often subtle ones that had been overlooked previously or that are ambiguous when taken alone. The conservative carapace of Macrocyprididae makes the family ideal for further testing of this thesis. Indeed, any macrocypridid species diagnosed by soft-part characters also turns out to be recognizable from the carapace features, and vice versa. This familiar but often queried premise has been reconfirmed for the 73 macrocypridid species represented by soft parts in this study, making it possible then to describe many additional species from empty and fossil carapaces with only slightly less confidence.

Genera are clusters of species thought to share common ancestry, but most ostracode genera have been proposed initially with too few species. Even though most names have proved to be useful later on, as newly discovered species leafed out this branch of the evolutionary tree, rarely have the original taxonomic diagnoses proved satisfactory. Undue emphasis on one or a few key taxonomic characters has hindered phylogenetic analysis. Indeed, only after most of the member-species are known can the shared-derived attributes of a taxon be listed; and because each lineage evolves independently of others, the more numerous the species the fewer attributes are likely to be shared by all. Again, the twigs-on-a-branch analogy reminds us that a genus should be defined, not by the boundaries of the morphological space those species occupy but by their common origin. To attempt to specify, a prion, which anatomical structures should have taxonomic value at any particular hierarchical level (DeDeckker, 1979) is futile. Most ostracode genera and higher taxa prove to be polythetic, with rampant mosaic evolution, as SylvesterBradley (1969), Daniclopol (1976), Maddocks (1976), McKenzie (1982), and others have warned.

The family Macrocyprididae presents in a microcosm
the classic problems of ostracode taxonomy. Developmental stages and sexual dimorphs have not always been clearly distinguished within local populations of a species, while depth and other components of geographic variability among populations of a species have never been analyzed. Of the four genera and subgenera (Macrocypris, Macrocypria, Macrocyprissa, Macrocyprina) established before this study, one had only a single fossil species (Mc. cylindracea), and another contained only a single living species (Ma. sarsi) (see p. 5 for abbreviations). For the third and fourth, only two species had been fully described for each (M. minna, Mx. sapeloensis, Mn. propinqua, Mn. succinea), although partial or inaccurate soft-part information had been published for a few other species. The relatively small number of species, as was then supposed, their conservative carapace characters, and their very broad reported geographic ranges made it seem feasible to attempt a comprehensive, global review of this family.

Therefore, this taxonomic revision of the family Macrocyprididae was undertaken with the following objectives: (1) to describe and analyze the ontogenetic development of soft parts and carapace, especially to find criteria for reliable distinction of adults from late instars, and also to evaluate the likelihood of postmaturational molting; (2) to describe and recognize sexual dimorphism, if present, in carapace and soft parts; (3) to examine the variability of carapace and soft parts within local populations in order to evaluate the relative taxonomic usefulness of carapace and soft-part characters; (4) to examine the betweenpopulation variability within species, especially to analyze the possible influence of depth on size and shape; (5) from these insights, to develop regionally applicable species concepts that permit accurate recognition of biological species; (6) to redescribe in full, from type specimens and additional material, the carapace and soft parts of the previously named species of living Macrocyprididae; (7) to describe in full the carapace and soft parts of a sufficient number of new living species to provide a satisfactory estimate of taxonomic diversity and trends in this family; (8) to establish sound generic concepts, both by revising previously named genera and by establishing new genera, as necessary and appropriate to express the taxonomic and probable evolutionary affinities of these species; (9) to apply numerical taxonomic methods to the resulting compilation of character traits for a large number of species; (10) to determine which carapace characters are suitable for accurate, consistent identification and generic classification of fossil species; (11) to test the applicability of these findings by redescribing and reclassifying a few previously named fossil species; (12) to compile ecological information for living species, for possible future application in paleoecologic interpretations; (18) to ascertain the geographic distributions of living species and their possible historical implications; (14) to review the stratigraphic occurrences of fossil species, with possible biostratigraphic
and evolutionary implications; and (15) to evaluate present evidence relevant to the origin and evolution of Macrocyprididae, and especially to resolve, finally, the question of whether they have cypridacean or bairdiacean affinities.

PROCEDURES AND CONVENTIONS

Dissections.-Most of the specimens collected living had been preserved in alcohol and were not stained. First the assemblage was transferred to a drop of glycerin, and all specimens were counted, measured, and the sex determined if possible. One or more representative specimens of each sex, growth stage, and geographic population were then selected for dissection. With fine needles, the appendages and external genitalia were teased from the body, in the same drop of glycerin that became the mounting medium for the dissection-mount slide. The valves were washed with water, dried, measured again separately, and stored in paper micropaleontological slides. Decalcified or very fragmented carapaces were mounted on the dissection slide. Years later, when much of the glycerin had evaporated from these unsealed slides, it was necessary to remove the cover slip and add additional glycerin or in some cases to transfer all body parts to a new slide mount. The slides were then sealed with Murrayite.

Photographs and drawings.-The carapace and soft parts of most dissected specimens were photographed with a Leitz Orthomat automatic camera microscope, to provide a permanent record. Kodak Panatomic-X film was developed in Kodak Microdol-X or D-19, the latter to increase contrast for soft parts. Only a small number of those many thousands of photographs could be included in this report. Photographs were taken in plane and cross-polarized transmitted light, reflected light, a combination of these, or Zernike phase contrast illumination. For wet valves, the transparency and depth of field improve with immersion in glycerin. Dry valves may be wetted with water or ethanol and immersed again in glycerin, but it is then more difficult to prevent air bubbles from being trapped in the vestibules, especially in specimens of Macropyxis with capacious air-filled radial pore canals. Such air bubbles can be seen in the plates, as well as surfaces that resisted wetting, dirt, and cracks or other flaws, especially in the older type specimens. Adhering epidermis and uncalcified inner lamella also are visible in many photographs of live specimens. These unretouched photographs were printed at standard sizes but varying magnifications to facilitate comparison of shapes among species and geographic populations. Within each species, however, the magnifications of the published figures are constant or nearly so.

SEM micrographs were taken with a Cambridge machine at 5 kV and 0°. The relatively large size of deep-sea macrocypridids and the greatly protruding hinge elements and ventral bow-shaped processes made it difficult to ob-
tain more than three points of contact of a specimen with the stage, producing charging and poor resolution. Electronic problems caused distortion of the left edge of many images, distorting lateral outlines slightly, and therefore most of the SEM photos taken are not published here. As for most smooth ostracodes, SEM micrographs proved to be less satisfactory than transmitted-light photographs.

The drawings were done with a mirror mounted on a Leitz research petrographic microscope with a high-intensity xenon lamp, which projects the image onto the drawing surface. In a darkened room the desired structures can be accurately traced by pencil and then inked. All proportions and structures shown in the drawings are traced from actual specimens. However, all legs are shown from the left side to facilitate comparisons, and for complex structures or crumpled specimens some structures may have been moved slightly, separated, or straightened out in the drawing to clarify their relationships. Because all drawings were done after mounting, some structures may be slightly displaced or distorted from life position by the overlying cover glass. Nevertheless, the resulting configurations are standard among such mounted material and readily comparable with each other. Broken or missing structures are represented by dotted or dashed lines. Some minute structures that could not be drawn accurately at the scale of the drawings, such as the fine secondary hairs or barbs that characterize certain setae, have been omitted. To assure standard orientations and comparability of shapes, nearly all drawings of valves are external views, with internal features shown as seen from the exterior in transmitted light. All drawings were done at a constant magnification, so that the range of sizes on the figures presents the true size ranges of these species.

Contrary to usual taxonomic procedures, in this monograph the drawings and photographs are grouped by structure rather than by species. The morphologic conservatism of the Macrocyprididae is such that in isolation many of the species look pretty much alike. Only a close comparison shows subtle differences of shape or details of soft parts. To facilitate such comparisons and to emphasize the differences, or in some cases the lack of significant differences, the illustrations of the same structures of closely related species are grouped together on the same figures and plates, approximately in taxonomic sequence. As much as possible, legs are illustrated in standard, lifelike orientations and as viewed from the left side. For valves, right valves are always on the left-hand pages and left valves of the same species in corresponding positions on the facing right-hand pages. The photographs of valves and genitalia include a selection of specimens from different geographic localities, to illustrate geographic variability in size and shape as well as sexual dimorphism, and to portray a population concept for the species.

Specimen catalog and repositories.-A total of 6783 specimens was examined. Specimens borrowed from museums or individuals have been returned to that museum or
individual. All other specimens have been deposited in the United States National Museum of Natural History (USNM). Paratypes for certain species have been deposited in The University of Kansas Museum of Invertebrate Paleontology (KUMIP). The repositories and museum catalog numbers are given within the species descriptions and also in Appendix IV. Abbreviations for other institutions are explained in Appendices III and IV and in the species descriptions.

Specimens that were dissected, illustrated, or in any other way singled out have been given identification numbers in my specimen catalog. This includes some museum specimens for which the museum catalog number applies to the whole assemblage rather than to individual specimens. Appendix IV gives a complete listing of these 939 specimens. Those numbers were recorded on both slides containing the valves and soft parts of each individual, on the drawings, photographs, and measurements of that individual, and in all specimen by specimen records. So essential did these numbers become for accurate records, as species multiplied and identifications of certain specimens altered, that they have been retained on the illustrations and in the text of this monograph, even though most of these specimens now have additional museum catalog numbers. Indeed, because most macrocypridid species look very much alike and are easily confused in isolation, only the fact that these specimen numbers were affixed to the illustrations through every step of preparation assures the accuracy of the final figure and plate captions. Therefore, again contrary to tradition, the specimen numbers and species names have been labeled directly on the drawings and photos, though never obscuring any important structure, to help the reader make direct comparisons without having to make frequent reference to the captions.

Systematic descriptions.-For each species, a full synonymy of the name and species concept is given. All disposition of previously identified material is based on study of actual specimens, unless otherwise noted. "Derivation of Name" explains the Greek or Latin source of a new name. "Material" describes the number and preservation of living (preserved in alcohol, containing soft parts), dead, and fossil specimens that were actually studied. "Types" lists the repository and museum catalog numbers for the primary types. Lectotypes were designated from the available syntypes for many previously named species. "Type locality" lists the age, location, and other data for the sample or station where the holotype or lectotype was found. Some of the depths listed are beginning and end points of dredgings rather than ecological depth ranges. "Occurrence" lists all the stations or samples in which this species was found in the material studied, including the type locality, together with counts of live (carapace plus soft body) and other specimens (empty valves or carapaces). In parentheses the numbers of living males, females, and instars are given for each sample, as identified
from soft parts. Full locality data are listed for these samples in Appendix III. "Distribution" describes the known geographic, bathymetric, and chronostratigraphic range of the species, taking into account both these occurrence data and reports in previous literature. "Dimensions" lists the length, measured parallel to the ventral margin, and height, measured perpendicular to length, of the holotype or lectotype. Additional measurements, identified by sex (as determined from soft parts), by instar, and by station, are presented in the accompanying length-height graphs. Sex and instar were always determined from appendage structure, not inferred from carapace dimensions. "Diagnosis" presents a brief verbal list of diagnostic morphologic characters of the carapace and soft parts, ignoring those that prevail throughout the genus and emphasizing those that distinguish the species from other closely related species. "Comparisons" explains how this species may be distinguished from others that occur at the same locality or nearby or from other closely related species. "Remarks" adds other taxonomic, distributional, or ecologic comments.

Abbreviations.-The abbreviations appended to the specimen numbers to indicate sex and age are as follows: $\mathrm{J}=$ juvenile, $\mathrm{J}-1=$ the last or $\mathrm{A}-1$ (adult minus one) instar, $\mathrm{J}-2=$ the next-to-last or A-2 instar, etc., $\mathrm{LV}=$ left valve, $\mathrm{RV}=$ right valve, $\mathrm{W}=$ a whole carapace without soft body, $\mathrm{M}=$ male (determined from soft parts), $\mathrm{F}=$ fernale (determined from soft parts), MF? = pathological adult individual of indeterminate sex or combining both male and female characters in the soft parts, M? = presumed male (determined from valves), F ? = presumed female (determined from valves). The podomeres of certain legs may be numbered from proximal to distal.

Names of genera are abbreviated as follows: $M .=$ Macrocypris; $M k=$ Macromckenziea; $M x .=$ Macropyxis; $M a .=$ Macrocypria; Mc. $=$ Macrocyprissa; Ms. $=$ Macrosarisa; Mh. $=$ Macroscapha; $M n$. $=$ Macrocyprina.

Individual drawings within the Figures and Plates are designated by decimals (e.g., Fig. $1.3=$ part 3 of Fig. 1, Plate 2.7 = part 7 of Plate 2).

All measurements of carapaces are given in millimeters (mm). All bathymetric depths are given in meters (m). N and S designate north and south latitude; E and W designate east and west longitude.

The samples, collecting stations, or museum catalog numbers from which these specimens came are identified in the text and plate captions by a brief alphanumeric code. For example, AB-7-361B stands for the United States Research Vessel Anton Bruun cruise 7 station 361B; the prefix UH introduces four-digit sample numbers for washed sediment residues in the University of Houston micropaleontological collections; and USNM introduces a six-digit specimen catalog number in the United States National Museum of Natural History. Full listings of the location and other accompanying data are given for each of these in Appendix III, in alphabetical order according to this
code, together with the names and number of specimens of macrocypridid species found there.

Quotation marks around a genus or species name have been used to flag an archaic or erroneous use of a name and should warn readers that the contents of the taxon differ from the revised concept presented in this study.

Length-height graphs.-In the length-height graphs that accompany each species, measurements of individuals with male soft parts (adultor juvenile) are marked by a dot (.), adult or juvenile individuals with female soft parts are marked by a prime ('), and the holotype is underlined. Measurements of the smaller, left valve, if plotted, are marked by a right parenthesis ()). For most species only dimensions of right valves were plotted. Numerals and letters designate geographic populations of a species or in some cases different species, according to the legend provided in each diagram. For some very abundant species, numerous additional specimens were measured but not plotted because their dimensions fell on top of points already plotted. The dashed lines separate successive instars and adults, as interpreted from this evidence. An accompanying bar scale shows the bathymetric depths where these populations were collected, and size-depth clines are apparent for many but not all species. The sketch map shows the approximate geographic locations of these populations for easy assessment of geographic ranges. The alphanumeric codes used for collecting localities are explained in Appendix III, where full locality data are given.

HISTORY OF PROJECT

In 1964 I had the good fortune to participate in the International Indian Ocean Expedition by collecting shal-low-water Ostracoda around Nosy Be, Madagascar. These collections yielded an extraordinarily diverse array of reefal podocopid ostracode species, hardly any of which could be identified at that time. Tantalizing glimpses of IndoPacific ostracode diversity had been provided by Brady (1880, 1890), A. Scott (1905), Hartmann (1964a), and a few others, but poor illustrations, heterogeneous syntypes, and inadequate generic concepts precluded identification from most previous faunal monographs without accompanying reanalysis of type material and lectotype selection. For these and other reasons, my initial paper (Maddocks, 1966) emphasized the live and dead distribution patterns, focusing on then-new numerical methods and leaving all species in open nomenclature.

At the Smithsonian Institution from 1965 to 1967, as a postdoctoral research associate with Richard H. Benson, I began the formal taxonomic analysis. Virtually every species was new, and most could not be accommodated in existing genera. Plainly, merely proposing an endless series of new names would have been of little value without accompanying clarification of the taxonomic concepts associated with established taxa. With egregious opti-
mism, I decided to revise each of the families in turn. The Indian Ocean Expedition and other collections were searched for additional species to flesh out and test the emerging new generic concepts. A major though unavoidable defect of the resulting monographs on Bairdiidae and Pontocyprididae (Maddocks, 1969a, 1969b) was their focus on new species without accompanying restudy of type material for already named species. At that time the two most significant collections were inaccessible, the Chat lengercollection of Brady (1880) being studied by Puri and Hulings (1976) and the G. S. Brady collection in the Hancock Museum being studied by McKenzie (1967b). Through the courtesy of Harbans S. Puri and Kenneth G. McKenzie, I was able to examine briefly a few of the most important specimens, however.

At the University of Houston from 1967 on, the responsibilities of academic life precluded concentration on a monograph, although the framework for comparable revisions of Macrocyprididae and the more formidable marine Cyprididae had already been sketched out. My intermittent attacks eventually yielded a set of tentative but premature and parly erroneous interpretations (Maddocks, 1977), showing both the potential value of a thorough analysis and the unsuspected taxonomic richness of this supposedly small, homogeneous family. From 1978 to 1980 a grant from the National Science Foundation supported intensive accumulation and examination of species, tripling the initially predicted number of species and exploding the original assumption that this would be a relatively easy family to analyze. Another defect of my earlier monographs was targeted by deliberately including selected fossil species in addition to living ones. Some unusual morphological phenomena were described, and a preliminary R-mode numerical taxonomic analysis of appendage characters was presented (Maddocks, 1979, 1988a). In 1979 Roger L. Kaesler applied Fourier analysis to selected lateral carapace outlines (Kaesler and Maddocks, 1988).

After 1980, preparations for the Eighth International Symposium on Ostracoda and increased academic responsibilities again took precedence, and progress was slow. As word of the project spread, additional species were proffered by other workers, and in some years progress in analyzing the species on hand was exceeded by influx of new acquisitions. Enough! After two cycles of reconstructing the plates to insert additional species, in 1984 a halt was called and no further species accepted.

Not all of the original objectives have been achieved. Definitive numerical taxonomic and cladistic analyses remain as much in the future as ever. Full anatomical illustration was possible for only 22 of the 73 living species. Time, expense, and the difficulty of achieving consistent accuracy for these more elaborate structures made it impractical to illustrate the first four cephalic appendages for the remaining species or to investigate their ontogenic development. The resulting emphasis on characters of
the carapace and posterior body may be rationalized on grounds of practical use but remains, nonetheless, a deficiency. Yet the rapid progress of ostracodology and the impending Treatise revision dictate publication of these partial results in order that they may be tested by other workers. Coverage of taxonomic literature (except Russian, Indian, and Chinese) is fairly complete to 1984 but spotty thereafter, and other inconsistencies and omissions may have arisen from the intermittent pace of this project. The lists in Appendices I and II are not complete, as the period of this study has coincided both with exponential growth of ostracode literature and with cuts in library holdings. Indeed, like Robert Ripley's (Believe It or Not.) Chinese marching eternally in single file past a fixed point, we may well have reached the point where new names and records are generated in the regional and alpha-taxonomic literature more rapidly than the reviser can evaluate and dispose of them. At times, it has seemed so for Macrocyprididae.

ACKNOWLEDGMENTS

Taxonomic research, even more than other kinds, depends upon the contributions of others. While joking to geologist colleagues that "I don't have to do field workmy research comes to me in the mail," I have been truly grateful for the generosity of the many institutions and individuals who have loaned valuable collections by mail, often for lengthy periods. Without their patient support, this work would have been impossible. I especially thank those kind individuals who voluntarily postponed or relinquished describing species of Macrocyprididae in deference to this long-promised project. If, by mischance, in the following lists I have failed to mention any person who has contributed specimens or information or has helped in any other way, it is my records and not my appreciation that are lacking.

The following people and institutions loaned collections or provided information contributing to this project, for which I am deeply grateful. The affiliations given are those at the time of their assistance, in some cases different from their present ones. The collections themselves are described in Appendix III.

John Athersuch, School of Biological Sciences, University of Leicester, England; H. W. Ball, Department of Palaeontology, British Museum (Natural History); Raymond H. Bate, Department of Palaeontology, British Museum (Natural History); Gerhard Becker, Natur-Museum und Forschungs-Institut Senckenberg, Frankfurt am Main; Richard H. Benson, Department of Paleobiology, Smithsonian Institution, Washington, D.C.; W. A. van den Bold, Department of Geology, Louisiana State University, Baton Rouge; Gioacchino Bonaduce, Stazione Zoologica di Napoli; Marcia Bowen, Virginia Institute of Marine Science, Gloucester Point; G. A. Boxshall, Crustacea Section, Department of Zoology, British Museum (Natural History);

Thomas E. Bright, Department of Oceanography, Texas A\&M University, College Station; Elisabeth Brouwers, U.S. Geological Survey, Denver, Colorado; Francesca Caraion, Institute of Biology Traian Savulescu, Bucharest; Marit E. Christiansen, Department of Invertebrates, Zoologisk Museum, University of Oslo; Anne Cohen, Crustacea Section, Department of Invertebrate Zoology, Smithsonian Institution, Washington, D.C.; Frederick J. Collier, Department of Paleobiology, Smithsonian Institution, Washington, D.C.; Murray J. Copeland, Geological Survey of Canada, Toronto; Odette Ducasse, Département Géologie et Océanographie, Université de Bordeaux I, Talence, France; Joan Ellis, Crustacea Section, Department of Zoology, British Museum (Natural History); Harold S. Feinberg, Department of Fossil and Living Invertebrates, American Museum of Natural History, New York; J. R. van de Fliert, Paleontological Department, Instituut voor Aardwetenschappen, Vrije Universiteit Amsterdam; Julia Golden, Department of Invertebrates, American Museum of Natural History, New York; H. E. Gruner, Zoologisches Museum, Museum für Naturkunde der Humboldt-Universität zu Berlin, Germany DDR; Ann Gurney, Crustacea Section, Department of Zoology, British Museum (Natural History); Gerd Hartmann, Zoologisches Institut und Zoologisches Museum, Universität Hamburg; Joseph E. Hazel, U.S. Geological Survey, Reston, Virginia; Richard L. Hodgkinson, Department of Palaeobiology, British Museum (Natural History); John Holden, Department of Paleontology, University of California at Berkeley; Arthur G. Humes, Biology Department, Boston University, Massachusetts; Roger L. Kaesler, Museum of Invertebrate Paleontology, Department of Geology, The University of Kansas, Lawrence; Jon E. Kalb, Department of Paleobiology, Smithsonian Institution, Washington, D.C.; Myra Keen, Department of Geology, Stanford University, Stanford, California; Robert V. Kesling, Museum of Palcontology, The University of Michigan, Ann Arbor; Mervin Kontrovitz, Department of Geosciences, Rider College, Lawrenceville, New Jersey; Louis S. Kornicker, Crustacea Section, Department of Invertebrate Zoology, Smithsonian Institution, Washington, D.C.; Vidmantas R. Labutis, Department of Geosciences, University of Houston, Texas; A. G. Long, The Hancock Museum, Newcastle upon Tyne, England;Heinz Malz, Mikropaläontologie, Natur-Museum und Forschungs-Institut "Senckenberg," Frankfurt am Main; Raymond B. Manning, Department of Invertebrate Zoology, Smithsonian Institution, Washington, D.C.; Kenneth G. McKenzie, Riverina College of Advanced Education, Wagga Wagga, New South Wales; John W. Neale, Department of Geology, The University, Hull, England; Tomohide Nohara, Department of Geology, College of Education of the Ryukyus, Naha, Okinawa; Linda Pequegnat, TerEco Corporation, College Station; Willis Pequegnat, Department of Oceanography, Texas A\&M University, College Station; Hans Petersen, Zoologisches Institut und Zoologisches Museum, Universität Hamburg; Alvin Phillips,

Henry V. Howe Ostracode Collection, School of Geosciences, Louisiana State University, Baton Rouge; J. A. Postuma, Paleontology Department, Instituut voor Aardwetenschappen, Vrije Universiteit Amsterdam; Harbans S. Puri, Florida Bureau of Geology, Tallahassee; Paul H. Scott, Santa Barbara Museum of Natural History, California; Walter B. Sikora, Department of Oceanography, Texas A\&M University, College Station; Paul Lewis Steineck, Division of Natural Sciences, SUNY College at Purchase, New York; Frederick M. Swain, Department of Geology and Geophysics, University of Minnesota, Minneapolis; Kerry Swanson, Department of Geology, University of Canterbury, Christchurch, New Zealand; Peter C. SylvesterBradley, Department of Geology, University of Leicester, England; James Teeter, Geology Department, University of Akron, Ohio; Richard Titgen, Department of Oceanography, Texas A\&M University, College Station; A. M. Tynan, The Hancock Museum, Newcastle upon Tyne, England; Robin Whatley, Department of Geology, University College of Wales, Aberystwyth; Torben Wolff, Zoological Museum, University of Copenhagen.

Many students, alumni, and friends have contributed samples to the University of Houston Department of Geosciences Micropaleontological Collections that yielded Macrocyprididae for this study or have assisted in other ways, including John T. Barnhart, Warren W. Brooks, Elizabeth Garbett, Dwight Hayworth, Gene Ross Kellough, Gary Kocurek, Alex C. Maddocks, Harold M. Maddocks, Edward A. McQuade III, Joseph Millo, M. M. Osborne, David J. Webb, and Jabe Wills. Some of the Flower Gardens samples were collected in programs of the University of Texas Marine Biomedical Institute, Flower Gardens Ocean Research Center at Galveston. The Gyre samples were collected with the assistance of Elizabeth Garbett, Captain T. K. Treadwell, crew, and students on Texas A\&M University Department of Oceanography Research Vessel Gyre cruise 77-G-14.

This work was supported in part by National Science Foundation grant no. DEB-7638018. Collections made during the International Indian Ocean Expedition were supported by grants from the National Science Foundation to Richard H. Benson. The collections at Nosy Be were made with facilities provided by the International Indian Ocean Expedition and the National Science Foundation and with the advice and assistance of Arthur G. Humes (Boston University Marine Science Program). Additional facilities and the cooperation of the staff of the Centre d'Oceanographie et des Péches, Office de Recherches Scientifiques d'Outre-Mer at Nosy Be (M. Angot, Director) were much appreciated. Smithsonian Institution research grants to Richard H. Benson facilitated other collections and my initial work on this project. The Bermuda collections were made during Keith Chave's "Or-ganism-Sediment Interrelationships" Seminar at the Bermuda Biological Station for Research, Inc. (W. E. Sterrer, Director), in 1962, 1963, and 1970, supported by the Na-
tional Science Foundation. Financial support for collecting the specimens loaned by Gioacchino Bonaduce and Kenneth G. McKenzie was provided to them by "C. N. R. Italy funding for the Ecological Program of Stazione Zoologica di Napoli and for the informal group Paleobenthos." The collections on R.V. Hero cruise $69-5$ were made by Roger L. Kaesler (NSF GA-12472), on Hero cruise 71-5 by H. Meade Cadot (NSF GV-25157), on Anton Bruun cruises 7, 8, and 9 by Richard H. Benson, and on Anton Bruun cruise 11 by Jon E. Kalb. The Smithsonian Oceanographic Sorting Center provided many specimens collected under auspices of the U.S. Antarctic Research Program to Richard H. Benson, who made these and many other materials available from his research programs. I was fortunate to have the capable help of Lois Hawk, Vidmantas R. Labutis, and Ming-Jung Jiang as graduate research assistants for varying periods between 1978 and 1980. The scanning electron micrographs were taken with the assistance of Robert R. Keith and John Randall, Electrical Engineering Department, University of Houston. I learned the techniques used for the light photographs from Richard H. Benson at The University of Kansas. Preparation of this text was facilitated by a Digital Equipment Corporation Rainbow microcomputer awarded by the University of Houston. Samuel E. Chan, Microcomputer Services, University of Houston, translated the text from CP/M Wordstar to IBM language. I especially thank W. A. van den Bold for his thorough and helpful review of the manuscript and Elizabeth Brosius for her meticulous editing. Roger L. Kaesler's continued encouragement and careful editing have been invaluable.

Finally, I wish once again to thank Richard H. Benson, who in the spring of 1960 walked into the student cubicles at The University of Kansas and asked a first-year graduate student, in need of both a thesis and a summer job, whether she could type. That was the real beginning of this study.

ANATOMY OF MACROCYPRIDIDAE

CARAPACE

Color.-Most Macrocyprididae have a thick, yellowishwhite, translucent carapace, which may become opaque white in long-preserved specimens in alcohol and in fossils. Cold-water species of Macroscapha and some species of Macromckenziea have thick, yellow-brown inner chitinous linings that give the whole animal a yellow, medium brown, or even dark brown color. In shallow water, species of Macrocyprina have two to four central, white, opaque patches and additional marginal patches in an otherwise glassy, transparent carapace. Adjacent regions of the central epidermis may be bright yellow to light brown. The result is a tricolored living animal with a mottled pattern of light yellow, dark yellow, and brown. In the anterodorsal region just above the end of the inner margin there may be a small colorless patch, although no recognizable eye struc-
ture is present below, and there is never an eye tubercle on the carapace.

Surface.-The exterior surface of the macrocypridid carapace is completely smooth. Once dry, fresh specimens may be very difficult to wet again and and may cling stubbornly to the water surface. Elofson (in Neale, 1964, p. 296) suggested that this property might provide an effective means of local ($50-100 \mathrm{~m}$) dispersion of smoothshelled, shallow-water ostracodes. It is more likely that this smooth surface protects the carapace against attaching bacteria and diatoms, which are not usually found on live animals.

Though smooth, the surface is not flat but gently undulating, especially near pore canals (see Plates 65.4 and 74.7). Occasional specimens show minute surface irregularities, which are of primary origin but of unknown cause and probably have no taxonomic significance. Examples include the quilted epicuticle in Plates 71.1,2 and 74.5, the rippled pattern of Plate 76.1, and the zig-zag, en echelon grooves of Plates 75.5,8 and 76.1. Juveniles and recently molted adults have clean, inviolate surfaces, but some live adults, which probably last molted a long time ago, show finely abraded, scratched, etched, or corroded valves (see, for example, Plates 67.1, 71.8-6, and 75.1,2,6,8). In general, the normal pore canals are more resistant to corrosion than is the intervening surface (see Plates $76.5,77.1,6$).

In species of Macroscapha the chitinous phase of the carapace may be conspicuous, including a separate, thick, brown inner chitinous lining of the outer lamella. In some specimens of Mh. tensa, Mh. inaequata, Mh. sinuata, and Mh. opaca the calcified layer of the outer lamella has cracked and peeled away from this brown inner lining. In Plate 35.8 , the apparent hole is actually covered by this transparent lining. In Plates 36 to 39 other photos show air bubbles trapped in the space between the calcified layer and this inner chitinous lining. This thick lining also imparts a brown color to the valve in transmitted light. It cannot be confused with the soft epidermis of the uncalcified inner lamella, as Bate and East $(1972,1975)$ supposed. The latter is nearly colorless, flexible, and shows cell structure. Plates 38.3-6 and 39.3-6 show strands of uncalcified inner lamella still adhering to the inner margin, which is not uncommon in dissected live animals but has never been seen in dead carapaces. It may be noteworthy that the inner chitinous lining is most conspicuous in these cold-water, Antarctic dwellers. A few specimens of Macromckenziea also had a brown inner carapace surface, but none showed the cracking and separation of the carapace layers that was common in Antarctic Macroscapha.

Pore Canals and Setae.-Small, simple, funnel-shaped normal pore canals (type A" of Puri, 1974) are scattered sparsely and non-uniformly over the exterior. They are too small to show distinctly in SEM photos over more than a small region of the strongly curved carapace, and they are also too small to be traced and mapped accurately in
transmitted-light photos and drawings. Thus, it has not been possible to determine whether their relative positions are fixed, and whether each pore is a unique entity, as has been repeatedly demonstrated for the pore-conuli of cytheracean ostracodes. It seems likely that this is the case. But so far, all that is known is that they are far less numerous and much smaller than the pores of Propontocypris (Pontocyprididae) and are smaller and less conspicuous than those of Paracypris and other marine Cyprididae. Contrary to some statements (Puri and Dickau, 1969; Puri, 1974; Keyser, 1980), the three families of Cypridacea display significant differences in their array of pores and setae, and these characters have greater taxonomic value at the generic and familial ranks than at the species level. The following description applies to the entire family Macrocyprididae, except as noted, and is based on SEM examination of more than 30 species.

On a single individual, these funnel-pores may vary somewhat in diameter and in prominence, from a simple funnel set almost flush with the surface (Plate 64.4) to a thick-rimmed, steeply sloping funnel (Plate 64.5). Some pores have the outer rim demarcated from the inner funnel by a narrow groove (Plate 74.4). Occasional pores with tassel-setae (Sylvester-Bradley and Benson, 1971) tend to have excentric openings and a local, mound-shaped prominence (Plate 76.5). None of these details appears to have taxonomic significance at the species or genus level.

Most normal pores have simple, straight setae. The length and thickness may vary somewhat on the same specimen. They are rarely large enough to be seen in lateral views at low magnifications. A few pores on each specimen have tassel-setae with two to five dichotomous or sequential branches (Plates 65.3, 66.11, 76.3). One such pore with tassel-seta is consistently located in the anteroventral region (Plates 74.7, 76.7). It is not known whether their number and locations are consistent.

The anterior and posterior margins are bordered by a narrow, flattened rim and a row of deep, elongate, almost rectangular, rimless, regularly spaced, marginal pores with short, thick, smooth, stiff setae (Plates 64.6,66.10). In an SEM photo they resemble a row of boot lacings.

Dentiform Corner.-Sars (1922-1928) used the term dentiform corner to describe the sharp anterior angle of Ma. sarsi, but Maddocks (1979) first illustrated its detailed structure. Plates 68 through 73 illustrate the varied forms of this unique organ. Basically, it consists of a pair of modified marginal pores and a toothlike projection of the carapace edge. These two pores are enlarged, circular, deep, rimless, and displaced inward from the usual marginal position. They may be connected by grooves or a sulcate depression with the more or less scalloped valve edge. Ventral to these two pores, the valve edge is thickened and projects forward as a tiny, curved tooth or hook. The radial pore canals leading to the two pores diverge from each other and are separated by wide spaces from the others. These pores have large, fan-shaped or blade-shaped,
lamelliform setae with short, thick, cylindrical shafts. Generally, the upper seta is directed ventrally and the lower one anteriorly, so that they overlap each other and cover the sulcate depression in front of the tooth. This canopy of setae may effectively mask the sulcus and tooth even in SEM photos.

A dentiform corner is located anteroventrally in both the right and left valves and forms a more or less distinct anteroventral angle in the lateral outline. In Macrocypria, its location is asymmetrical, near the venter in the right valve but distinctly above the venter and just below midheight in the left valve. As a consequence, the left and right anterior margins do not match in these species. The degree of development of the tooth varies, from the conspicuous tusk of Ma. sarsi to the faintly scalloped margin of Ms. capacis. In empty and fossil valves with abraded edges, the dentiform corner may be more difficult to detect. It has been recognized, however, in several Cretaceous species, in which a tiny notch consistently indents the valve edge at this position even in abraded specimens.

Posterior dentiform corners are located at the posteroventral angles of both valves, although they are often not as strongly developed as the anterior ones. They generally have smaller, blade-like or leaf-shaped setae, lack the tooth, and are approximately symmetrical in the two valves.

The dentiform corner is a unique character complex that is diagnostic of the genera Macrocypria, Macrocyprissa, and Macrosarisa. In all other genera the pores, setae, and valve edge at this position are identical to others elsewhere around the margin. No sexual dimorphism exists. Juveniles also have well-developed dentiform corners. In fact, perhaps because the juvenile carapace is used for a shorter time, its conservation is often better than that of the adult, and minute details such as the dentiform corner may be better preserved in juveniles.

The function of the tooth is unknown, although the setae might be chemosensory. The location of the anterior dentiform corner in Macrocyprissa and Macrosarisa is not far from the point where the antennules and antennae emerge from the carapace. By analogy with insects, this notch might serve as a cleaning tool or foot-scraper or even to apply some kind of secretion from the specialized pores to these limbs. The posterior dentiform corner might come in contact with the distal claw of the sixth limb.

The dentiform corner is an ancient character and perhaps a primitive one. Already demonstrated in Cretaceous representatives, its presence should be sought in earlier Macrocyprididae. Because the accompanying carapace shape is often similar to that of Paleozoic and early Mesozoic Acratiinae, possible functional analogies with the rostral notch of that taxon should be examined, as well. Also of potential relevance are the nonhomologous manifestations of a rostrum and rostral notch (Triebel, 1960) in some large freshwater Cyprididae (Cypridea and Chlamydo-
theca). The specialized, fan-shaped setae are not known elsewhere in the Macrocyprididae, Cyprididae, or most Pontocyprididae. They are somewhat like the flat, oval, leaflike marginal setae of Argilloecia, however.

Hinge and valve contact.-The hinge is unique, and its parts are not readily homologized with those of any other ostracode. To describe it as merodont-entomodont, as Morkhoven (1963) and others have done, is misleading, because macrocypridids certainly are not closely related to merodont cytheraceans, and the hinge elements are not homologous. A better adjective would be macrocypridid, as the hinge structure appears to be uniform throughout the family and is restricted to this family. The hinge is most fully developed or at least easiest to see in very thickwalled carapaces and in those with steeply arched dorsal margins, but the differences within the family are of degree rather than of kind.

The hinge occupies the whole thickness of the dorsal carapace wall. There is no separate development of any submarginal ridge that could be called a selvage, either in the hinge region or around the free margin; neither is the valve edge folded to produce ridge-and-groove elements as such, although artistic limitations may cause the hinge to be drawn in such conventional symbols. The hinge is three-dimensional, arched in both the vertical and the horizontal planes, and its curving, beveled surfaces are neither horizontal nor vertical, making it difficult to illustrate convincingly. The retouched photos of Triebel (1960, pl. 14) remain unsurpassed (see also Plates 60 to 63). The three-dimensional sinuosity of the dorsal valve-contact and the beveled surfaces of the hinge allow the arched valves to rotate against each other around the hinge axis. Conspicuous valve asymmetry, which is most extreme in higharched, thick-walled forms, may also facilitate this action. An analogous solution to the functional problem of hinging a strongly arched dorsum has developed independently in Xestoleberis (a cytheracean).

The hinge may be described in terms of five elements, although one flows into another without sharp boundaries. In the right valve these consist of anterior and posterior crenulate platform-grooves; two shorter, thinner, sharpedged, crenulate, arcuate to discoidal, anteromedian and posteromedian teeth; and a fairly smooth median bar. The crenulate faces of the anterior and posterior platformgrooves are approximately vertical, but toward the anterior and posterior ends they slope downward and to the right. They are set back deeply under an overhanging, sharp-edged flange formed by the dorsal edge of the valve, which may be traced around the base of the anteromedian and posteromedian teeth as a shallow step. The median bar of the right valve is rounded or beveled, and a very shallow, incised step may separate it from the dorsal surface. The lateral and ventral faces of the median bar are smooth, although faintly crenulate texture may sometimes be seen on the dorsal face, especially near the ends. The thin, lenticular anteromedian and posteromedian teeth
may be crescentic to triangular in profile; they project obliquely ventrally and to the left.

In the left valve, complementary, crenulate anterior and posterior ridges project beyond the dorsal edge of the valve. The arcuate, crenulate sockets into which the terminal teeth of the right valve fit are incised diagonally into the dorsomedian faces of these crenulate ridges and coalesce with the retreating median valve edge, so that in many views these sockets are not easily distinguished from adjacent elements. The median element of the left valve hinge consists only of the sharp dorsal margin, which retreats inside as a smooth, beveled or curved surface; there is no submarginal inner ridge and therefore no groove as such.

The imaginary straight line of the functional hinge axis passes through the anteromedian and posteromedian teeth of the right valve. The median elements are smooth, rounded or beveled surfaces, allowing rotation around this axis as the left valve edge slides over the right valve bar. In most cases this median element of the hinge is nearly straight and relatively short, especially in the more highly arched species. Closed empty carapaces and reassembled valves from which the body has been removed may show a narrow, arcuate gap over the median hinge element, suggesting that ligamentary (cuticular) fibers must stretch across this region when the valves are fully closed. The anterior and posterior crenulate platform-ridges and grooves slope both anteriorly or posteriorly and away from the midline to the right or left, so that they are not in full contact except when the valves are closed. This irregular, rough-edged, finely crenulate texture suggests that they are part of the ligamentary connection, where bundles of elastic chitinous fibers pass from one valve to the other, rather than denticulate teeth fitting into locellate sockets in the fashion of a ball-and-socket joint. [A comparable fine crenulation is visible on the dorsal connecting surfaces, not to be confused with the lateral articulating surfaces, of podocopid hinges as taxonomically distant as Neonesidea and Actinocythereis. This crenulation was described but not interpreted by Morkhoven (1962, p. 74) and has often been mistaken for tooth-and-socket, articulatory hinge crenulation by other writers.] In species with a thick layer of uncalcified endocuticle, such as Mh. turbida, all parts of the hinge are covered with dark brown cuticle. In very thick-walled, well-calcified species with thin endocuticle, such as most Macropyxis, the median hinge element may be stark white with thinner cuticular covering than the terminal elements.

The dorsal surface of the right valve forms a thin projecting flange that overhangs the anterior and posterior platform-grooves and overlaps the complementary crenulate ridges of the left valve. Anteriorly it expands into a sinuous stragulum (Guber and Jaanusson, 1964; Adamczak, 1966). The left valve margin is depressed anterodorsally to accommodate this overlap. The arching median element of the right valve may project slightly across the
midline into the retreating left valve, although if there is any overlap at this position it is actually left valve over right. The resulting sinuous embayment may be conspicuous in dorsal view. The posterodorsal edge of the right valve slightly overlaps the left. At the posterior end, the right valve reaches beyond the left valve to a greater or lesser degree but does not overlap it, although in some thick-walled, very asymmetrical species the left valve may nestle snugly inside this overreach. Around the anterior margin the right valve may slightly overreach but never overlaps the left valve. In Macrocypria the asymmetric locations of the dentiform corners produce alternately overreaching anterior margins that do not match.

The ventral edge of each valve projects well over the midline, just posterior to the mouth, to form triangular bow-shaped processes (Cannon, 1926; Adamczak, 1966). The right process overlaps the left one, which is of similar size and shape and extends equally far into the ventral interior of the right valve. Inside the anteroventral and posteroventral region of the right valve, a thick-walled carapace may show a groove and stop-ridge where the edge of the left valve fits. The mutual overlap of these bow-shaped processes is considerable, even when the valves are partly open with legs protruding in front and behind. Presumably it functions to channel domiciliary water currents in the fashion described by Cannon (1926) and Adamczak (1969). Inside, the ventral duplicature is fused without vestibule, and the result is a nearly impregnable ventral surface. If potential predators probe the closed carapace in the same frustrated fashion as does the dissecting needle, the protective value of this strong venter is obvious.

The stragulum and bow-shaped process of the right valve are visible in the left lateral view of a closed carapace. In thick-walled species the posterodorsal overlap and posterior overreach may be visible as well. In ventral view the overlap of the right bow-shaped process is obvious. In dorsal view, the contact line of the two valves is doubly sinuous, with two left-convexities formed by the overlapping stragulum and the left-arching median hinge element of the right valve. This contact is readily distinguishable from the nearly straight or convex-to-the-right contact line of most podocopid ostracodes with left-valve overlap. While a few other podocopids have right valve overlap, none have the doubly sinuous dorsal contact-line as well.

The antiquity and origin of this hinge and valve contact are not known. In the Cretaceous and Cenozoic fossil specimens studied, it has essentially its modern development. Kozur (1971) stated that supposedly ancestral Triassic Praemacrocypris and Acratina have smooth hinges, but he did not illustrate or describe them or demonstrate their macrocypridid character. Michaelsen (1975, p. 130) described a "markedly dentate," tripartite hinge of Jurassic species of Pseudomacrocypris, which is referred to the Pontocyprididae herein. That hinge is convergent with Macrocyprididae in its robustness and fine, irregularly striate
texture, but other features are normal for Pontocyprididae. Likewise the prionodont hinge of Nowoypris, an Eocene form here referred to the Paracypridinae, is unique and not homologous with that of the Macrocyprididae. Although numerous Paleozoic species have been referred to "Macrocypris," none have the features of overlap and hingement described here (see Appendix II).

Radial Pore Canals and Vestibules.-The duplicature of Macrocyprididae is very broad and well calcified in adults. The inner margin is regular and predictable in its course. In instars the calcified inner lamella is somewhat thinner and more fragile, and the duplicature is narrow, growing wider with each molt. However, because even the young instars have a duplicature that is as broad as the adult condition in some other families of podocopid ostracodes, this has been a source of some confusion. Although somewhat more fragile than in adults, this calcified inner lamella is usually preserved in dead and fossil carapaces of juveniles, which has often caused them to be misinterpreted as adults.

The fused zone (zone of concrescence) is narrow in juveniles, and therefore the juvenile radial pore canals are short, straight, and separate. In adults the fused zone is broader, especially in the anterodorsal, anteroventral, posterodorsal, and posteroventral regions. The broader the fused zone, the longer and more complexly branching the radial pore canals that traverse this zone, and the more numerous the false radial pore canals (captured normal pore canals) incorporated into this pattern. There is a wide range of variation in the pore canals, from the severely simple marginal fringe of Macrocypris to the baroque curlicues of Macropyxis.

The size of the vestibule depends also on the breadth of the fused zone. In Macropyxis and in some Macrocyprina the fused zone is expanded in scalloped lobes in the anterodorsal and anteroventral regions, partially constricting the entrance to the vestibule. Around the anterior margin, however, the fused zone remains narrow and the vestibule is deep even in these genera. The posterior vestibule is usually open and not constricted.

Peypouquet $(1975,1979)$ has shown that the breadth of the fused zone in Krithe and Parakrithe is proportional to the ambient dissolved-oxygen concentration, so that narrow fused zones and large, open vestibules characterize low-oxygen conditions. Although the cause has been linked speculatively to a need for more respiratory cells of the epidermis to be housed in the vestibule (Peypouquet, 1979), it is also likely that calcification is directly affected. Biological calcification is an oxygen-intensive process, and in ostracodes these marginal features are the last to be finished after molting.

Some part of the variability in breadth of fused zone and complexity of branching of radial pore canals that was noticed within and between populations of a species in this study might prove to be physiologically linked to such a cause. Mechanical strengthening of the ends of the
carapace may be another contributing factor, because the species with most elaborate development of pore canals (chiefly Macropyxis) are also very elongate, whereas more equant species of Macrocypris and Macromckenziea have simple marginal structure. Because species of Macropyxis are especially characteristic of bathyal depths, including the oxygen-minimum zone, it is unlikely that Peypouquet's (1979) interpretation of Krithe can be generalized for application to Macrocyprididae.

Muscle Scars.-The dorsal muscle scars are often easy to see and occupy consistent locations, especially in the larger deep-sea species. They have not been carefully studied. A pair of oval or teardrop-shaped frontal scars and a pair of elongate mandibular scars are located in front of the adductor complex. Neither show any taxonomically useful variation.

The adductor muscle scar pattern of Macrocyprididae has often been described as a rosette, but such a designation is as meaningless here as it is for the many other ostracodes, especially bairdiaceans and cypridaceans, to which this adjective has been indiscriminately applied (see also Maddocks, 1969a, 1969b). The term rosette should be reserved for the ancient, unique darwinulacean scar, in which the circular group is divided radially into angular wedge-shaped scars.

The adductor muscle scar pattern of the Macrocyprididae should be simply termed macrocypridid. It is unique to this family, nearly uniform throughout the family, and markedly distinct from bairdiacean and other cypridacean scars. The adductor scar-group is fairly large, elongateovate in elongate species to nearly equant in subquadrate species, and located centrally within the valves at a little below mid-height and slightly posterior to the ventral indentation, at the thickest point of the carapace. It is asymmetrical, reflecting shape differences between the right and left valves. Topographically, the individual scars are elevated bosses, separated and surrounded by narrow channels.

The adductor scars comprise two groups, which may be labeled simply the upper and lower groups, separated diagonally by an open space. The upper group always consists of three scars in an arcuate row. These three scars are almost never fused with each other or individually subdivided. The lower group consists of about nine scars arranged in a diagonally elongated oval. Of these, there are usually four fairly large, quadrate scars in an upper horizontal row, two anteroventral scars, one posteroventral scar, and two ventromedian scars. These scars may be subdivided or may fuse with adjoining scars in variable fashion. They have individual identity in the larger, thickshelled species but are not consistently separable in the tiny species, especially of Macrocyprina. There does not appear to be much independent taxonomic significance to this variability.

Within this macrocypridid pattern, which is easily distinguished from those of Bairdiacea, Pontocyprididae, and

Text-fig. 1. Postulated homologies of generalized muscle-scar patterns of Macrocyprididae, Pontocyprididae (Argilloecia), marine Cyprididae (Paracypridinae), freshwater Cyprididae (Cypridinae, Candoninae), Bythocyprididae, and Bairdiidae. Individual scars and their divisions are numbered and lettered ($1 A, B$ through $4 A, B$) to emphasize possible homologies with Bairdiidae. See also Maddocks (1969a, fig. 3; 1969b, fig. 7, 32-35).

Cyprididae, occasional configurations of individual scars seem, perhaps accidentally, to suggest underlying homologies with bairdiacean and other cypridacean scar patterns. Maddocks (1977, fig. 3) illustrated some of these provocative individuals, and others may be seen in the plates of this volume (see especially Plates 78.12,14,27). It seems likely, for example, that the upper group or crescent of three scars is homologous with the upper scar-pair of the bairdiid pattern (scars 1A,B of Text-fig. 1), with the anterodorsal scar of the pontocypridid pattern (Text-fig. $1)$, and with the two anterodorsal scars (cap scar plus uppermost of the three anterior scars) of the cypridid pattern (Text-fig. 1). The two posterior scars of the lower macrocypridid group seem to correspond to the posterior scar-pair of the bairdiid pattern (scars 4A,B of Text-fig. 1) and to the two posterior scars of the pontocypridid and cypridid patterns. According to this hypothesis, the anterior and middle scars of the lower macrocypridid group, whose identities and positions are less stable, correspond to the two anteroventral scar-pairs of the bairdiid pattern (scars $2 A, B$ and $3 A, B$ of Text-fig. 1) or the two anteroventral scars of the pontocypridid and cypridid patterns.

An advantage of this hypothesis as compared with alternatives is that most parts of the scar pattern remain in stable configurations throughout the various Cypridacea. Most of the differentiation is localized in the cap scar (scar 1B of Text-fig. 1) of the freshwater Cyprididae. This inter-
pretation of the cap scar as an errant member of the closing-muscle group is compatible with Kesling's (1965, fig. 9) analysis of musculature in Candona and with Smith's (1965) description of Chlamydotheca.

It should be emphasized that these speculations are based only on scar morphoseries in living species and do not necessarily represent an evolutionary hypothesis. Also, the individuality of discrete scars results merely from the distal divergence of a few of the many bundles of adductor-muscle fibers, a phenomenon in which, surely, some part of the variation is likely to be random. In most of the fossil specimens studied, only generalized macrocypridid patterns could be discerned, which were not adequate for tracking individual scars. It will be essential to test the evolutionary implications of this hypothesis by examining muscle scars of Paleozoic and better-preserved Mesozoic representatives.

The pontocypridid scar pattern dates back at least to the Jurassic, the cypridid scar pattern to the late Paleozoic, and the bairdiacean scar pattern to the early or middle Paleozoic. Although the fossil record of Macrocyprididae at present is shorter than most of these, the inherent conservatism of the macrocypridid scar pattern is such that we seem to get a glimpse of an earlier, less organized condition appropriate for some common ancestor. No homologies can be traced with the darwinulacean scar pattern, which has remained both individually variable and persistently conservative in its unique, radial-rosette configuration at least since the Carboniferous (Sohn, 1976, 1987).

APPENDAGES

Antennule.-The antennule consists of seven distinct, more or less cylindrical podomeres. Another, vestigial podomere may be represented by the chitinous framework at the attachment of the basal podomere, as interpreted by Schulz (1976). If so, the remaining podomeres ought to be renumbered II through VIII, to designate homologies with this limb in Bairdiidae and other podocopid Ostracoda (see also Maddocks, 1976).

The basal podomere (I) is broader than long and bears no setae. Podomere II articulates obliquely on a swivelsleeve joint with podomere I; it bears two thick, rigid, long ventral setae. The joint between podomeres II and III varies from a flexible articulation in species of Macrocypris and Macromckenziea; to a more or less rigid suture in most species of Macrosarisa, Macroscapha, and Macrocyprina; to complete fusion with little or no remaining trace of a suture in Macrocypria, Macrocyprissa, and some species of Macrosarisa. Podomere III is broader than long and bears one dorsal and one ventral distal setae. The articulation between podomeres III and IV is a flexible elbow-joint, made more distinct by the abruptly smaller diameter of podomeres IV to VII. Podomere IV is relatively long and bears one dorsal and one ventral distal setae. Podomeres

V, VI, and VII diminish regularly in length and diameter. Podomere V bears one dorsal and one ventral distal setae. Podomere VI bears three dorsal distal setae, one of which is usually much shorter than the other two, and two ventral distal setae. Podomere VII bears four terminal setae, of which the most ventral seta is usually only about half as long as the longest seta. All these setae are simple, smooth, and relatively rigid.

The relative proportions of this limb vary considerably, even though its structure and setal armature are nearly invariant throughout the family. Slender, elongate podomeres with long, thin, flexible setae are characteristic of most species of Macrosarisa, Macrocypria, Macroscapha, and Macrocyprina. Species of Macrocyprina crawl as epifauna on surfaces, and these delicate, flexible antennules might have primarily tactile function. Short, thick podomeres with short, thick, rigid setae are found in Macrocyprissa and Macromckenziea. In some species of the latter two genera, the robust antennal proportions approach those of some other ostracodes that are known to have burrowing habits, such as Cytherella and Argilloecia. This homeomorphy, which is echoed also in carapace shape, suggests infaunal habits for these genera and a backward-pushing, upwardshoveling, burrowing function for this limb. The antennal proportions in Macrocypris and most Macropyxis are intermediate between these extremes.

Antenna.-The macrocypridid antenna is rather large and consists of six more or less flexibly jointed podomeres. The basal podomere is short, very broad, and has two ventral setae, which are frequently damaged in dissection. Podomere II is a more or less elongate cylinder bearing one long ventrodistal seta. A scale carrying three setae of graduated sizes, usually interpreted as the exopodite, arises dorsally at this joint but is actually attached to the proximal edge of podomere III. Ventrally near the proximal edge of podomere III a clump of eight sensory aesthetascs arises at a single, elongate-oval opening. Each aesthetasc has a very long, narrow, flexible, cylindrical sensory portion mounted on a slightly thicker proximal shaft; all eight are about the same length. At the ventrodistal edge of podomere III, four or five so-called swimming setae (admittedly, a misleading term since macrocypridids don't swim) of graduated sizes and one thicker, longer ventral seta arise. There are no dorsal setae on podomere III.

Near but not at the dorsodistal edge of podomere IV, two short setae of equal length arise together. A pair of short, thin sensory aesthetascs arise near the proximal end on the ventral surface. The ventrodistal corner of podomere IV carries one long, thick ventral seta, one or two small setae, and two dimorphic setae, which are small and inconspicuous in the female. In the male the dimorphic setae are thick, candlelike pegs with flame-shaped sensory tips.

Podomere V is short, irregularly wedge-shaped, and partly encloses podomere VI, which is much narrower and partly fused with podomere V . The distal antennal setae
arise along all sides of these dog-leg joints, lying one on top of another in confusing fashion. Four clawlike setae and a smaller seta arise in an overlapping row at the dorsodistal edge of podomere V. Another thick claw and a short seta arise at the ventral joint between podomeres V and VI. Podomere VI bears four terminal setae consisting of a large claw, a smaller claw, and two setae of unequal size.

Considerable variability may be seen in the number, size, and locations of antennal setae in the drawings of this volume, in spite of time-consuming efforts at accuracy and observation of multiple specimens. Reliable renditions of antennae by other authors are few as well. An exception is the careful analysis by Danielopol (1978, fig. 21), which emphasizes homologies of the sensory aesthetascs with those of other Cypridacea. Many though not all of the apparently missing setae in drawings represent damage in dissection, while in other cases these setae are hidden from view, lying accidentally beneath some obscuring claw or thicker structure. The reader is also reminded that the width of an ink line can make a disproportionate alteration in the apparent thickness of a seta, and that the shapes and sizes of setae as shown in these drawings are not and cannot be exactly accurate at these small magnifications. Transmitted-light photographs are accurate but undiscriminating, and multiple detail-views are necessary for complete description of a single limb, again at considerable time and expense. Until more reliable techniques of documentation are routinely applicable, perhaps by microdissection and SEM, it does not seem appropriate to rely heavily on this limb for taxonomic purposes. Also to be considered is the fact that these antennal details are usually visible only after dissection, making them useless for routine sorting of specimens. Because of these practical considerations, the antenna is not given much attention in this study.

At the generic level there are characteristic differences in overall shape and proportions, even if small differences in detailed structure are ignored. Podomeres III and IV are short, thick, and nearly equant in species of Macromckenziea and Macropyxis and are only slightly more elongate in Macrocypris. In Macrocyprissa podomeres III and IV are only about half as long as broad. In Macrosarisa, Macroscapha, Macrocyprina, and especially in Macrocypria this elongation is more extreme, and podomere IV becomes especially stretched out. These trends are accompanied by tendencies toward shorter, thinner, and fewer setae, so that while Macrocypris and Macropyxis have numerous, thick, long, well-developed setae, many of which are clawlike, in Macrocyprina and Macrocypria most of these setae are much shorter and thinner, only a few are clawlike, and several may be represented only by inconspicuous, easily overlooked vestiges. This tendency is especially marked in the swimming setae but affects the terminal claws as well.

Mandible.-The macrocypridid mandible is of familiar
podocopid form but robust and profusely setose. A long, triangular, heavily sclerotized dorsal blade bends mouthward to form a broad, truncate masticatory jaw armed with numerous setae and teeth. These begin with a large, smooth, conical tooth, followed by about four bicuspate to tricuspate, curved teeth, followed by several much smaller pegs or laminar processes. Approximately two slender setae originate between each pair of teeth, and several more smaller setae, accessory pegs, and laminae terminate the jaw. A single, thick, smooth seta arises on the outer corner of the base between the dorsal blade and the masticatory jaw.

No significant differences were seen in the armament of masticatory teeth of the various species and genera, except that the larger forms have more numerous setae and accessory pegs or laminae. Of course these tiny features are also easier to see in the larger species, but there is real simplification of this structure in the smaller species as well.

A large, sturdy, flexibly jointed mandibular palp of four podomeres is profusely armed with long, slender, simple, flexible setae. The elongate basal podomere carries a dorsal vibratory plate (exopodite of some interpretations) with six long, flexible, transparent, faintly feathered rays of graduated lengths, all fairly long. Three (rarely one or two) setae are located at the ventral end of the first podomere. Podomere II of the palp is short and carries about eight (five to nine) setae ventrally and along the distal edge. Podomere III is longer and possibly represents the fused remnants of two podomeres. Although no vestige of the joint is now visible, a clump of three setae is often set back from the others at a dorsodistal corner, where the joint might have been. Four or five setae originate in a ventrodistal clump and about four (two to five) more in a dorsodistal cluster. Podomere IV tapers toward a terminal row of five or six smooth, curved setae of graduated leng ths and thicknesses.

The sheer number of setae and the three-dimensional form of this limb make it more difficult to see and draw accurately than some. Some part of the variability in numbers and locations of setae is related to size; larger species really do have more complex structure as well as easier visibility. This limb deserves more careful study and will prove to have taxonomic value. Careful analysis of homologies of this limb will help clarify evolutionary relationships within the Cypridacea, but so far only Danielopol (1978, fig. 23) has attempted this.

Maxillule.-The basal part of the maxillule (the maxilla of some authors, or fourth cephalic appendage) is relatively large and approximately rectangular in shape. The dorsal vibratory plate, also nearly rectangular in outline, bears a series of finely feathered, nearly transparent, tapering, flexible rays of graduated sizes along the posterior and ventral margins. Two long, rigid setae are attached at the base of the vibratory plate and directed mouthward.

The slender, jointed palp is relatively long and flexible.

As Triebel (1960) pointed out, species of Macrocyprina and Macroscapha have three articulated podomeres in the palp, whereas in species of Macrocypris, Macropyxis, Macromckenziea, and Macrocyprissa podomeres I and II are fused. All degrees of intermediate condition are seen in Macrocypria and Macrosarisa, which have a partially fused joint with visible suture between the first two podomeres of the palp. Because fusion of existing joints is more common in ostracodes than subdivision of existing podomeres by the insertion of new joints, the three-segmented condition should be the more primitive. By this line of reasoning the deepsea genera (Macrocypris, Macropyxis, Macromckenziea, Macrocyprissa) have the more derived state.

Podomere I of the palp has a single, simple dorsodistal seta, which may remain separate from the others after the joint between podomeres I and II is fused. Podomere II has a clump of three dorsodistal setae. The last podomere (III) of the palp has four to six terminal setae.

Three slender endites or masticatory lobes (processes) complete the maxillule. Each is armed distally with a dense double fringe of slender, simple, curved, smooth setae. In some cases all setae are about the same length and thickness. In others two or three setae of each lobe may be thickened and clawlike. The numbers of setae vary, especially in the larger species, and are not usually easy to count. As a general approximation, lobe 3 (numbering as in Müller, 1894) next to the palp has eight setae, lobe 2 has ten setae, and lobe 1 has twelve setac. A longer, simple seta originates at the base of each of these three lobes.

These masticatory lobes bend toward the mouth from either side and are aligned along a different plane from that of the palp and vibratory plate. The palp curves across the ventral part of the upper lip, and the vibratory plate streams posteriorly over the lateral body surface. Compression of this three-dimensional limb beneath the cover glass of a dissection slide causes some variability in orientation of these parts.

Female fifth limb.-The basal podomere is short, thick, poorly sclerotized, and rather formless. The posterior marginal vibratory plate of Pontocyprididae and Cyprididae, sometimes interpreted as an exopodite, is represented in Macrocyprididae at most, if at all, by a single, unremarkable, unfeathered seta. On the anterodorsal edge two setae of unequal size originate; another originates lower down, near the anterior lobe, and a fourth seta originates ventrally near the palp. A tapering, lamellar anterodistal lobe extends toward the mouth, armed usually with two dorsal, two ventral, and five or more distal setae of various sizes. This lobe projects inward somewhat, out of the plane of the rest of the limb, and so its exact shape varies according to its orientation on the dissection slide. It is comparatively robust and consistently recognizable compared to that of other Cypridacea.

A large, four-segmented, flexible, pediform palp (the endopodite of some interpretations) is always present. The
first two podomeres have no setae, except in pathological individuals. The third has one ventrodistal seta, and the fourth has three terminal setae, which are often short, thick, and curved enough to be described as claws. They may be smooth or finely barbed. The dorsodistal seta is set apart from the others, which share a common distal point of origin, suggesting that the terminal podomere may include the remnant of a former fifth segment. All in all, the structure of this palp is much like the sixth limb, lacking only the ventral setae of the two proximal podomeres. This well-muscled, flexibly jointed limb is usually retracted within the carapace and extended posteriorly, although it can be flexed and projected ventrally. Exactly how it is used is not known. The right and left limbs are always symmetrical.

Male fifth limb.-The basal part and anterior lobe of the male limb are like those of the female. The palp, however, is contracted and distorted into a large, compressed, curved, hook-like clasping limb. This hook consists of a thick basal segment and a narrower, sinuously flexed terminal projection. Ventrodistally the basal segment bears a pair of short, thick, heavily sclerotized, peglike, modified setae and a thin, flexible seta. The adjacent region may be strongly sclerotized. There may also be a dorsodistal seta of variable size. The terminal hook is flexibly articulated with the basal segment and can be rotated slightly by the muscles of that segment. The exact shape, taper, and angle vary considerably from species to species and between right and left sides. In normal individuals the hook is not jointed, but vestigial cuticular seams provide evidence that it is homologous with the terminal three podomeres of the female limb. Three sensory aesthetascs are present on the hook. A ventral aesthetasc near the base, inside the curve of the hook, is delicate and sometimes hard to see. An even tinier one is located dorsally, often indicated only by a minute gap or seam in the neighboring cuticle. At the distal tip of the hook a delicate, elongated aesthetasc provides the pedestal for a terminal, circular disk. The function of this disk might be sensory, but its resemblance to a rubber suction cup also suggests an attachment function (see Plate 83.11).

The left and right male limbs are more or less asymmetrical, with the left limb being overall smaller, narrower, often more recurved, and always the more bizarre of the two. In some Caribbean species of Macrocyprina the left limb apparently has abandoned the clasping function and has increased its sensory role, by straightening and shrinking the former hook but enlarging the terminal aesthetasc. In Mn. hawkae the terminal hook has almost disappeared, and the flared, hirsute, flattened distal face of the basal segment has become the functional part of this limb.

Homologies between this grotesque clasping limb and the female leg may be traced via pathological individuals that are intermediate between the male and female conditions, such as $848 \mathrm{M}, 1358 \mathrm{MF}$?, 715 F , and 2385 F . The basal podomere is the same unit in both sexes. So also is the
first podomere of the palp (II), but the ventrodistal pegs and seta are ordinarily expressed only in the male. The terminal hook of the male corresponds to the three terminal podomeres of the female palp, with the former joints indicated by the vestigial seams and gaps in the cuticle of the hook. The sensory aesthetascs of the hook appear to be modified homologues of the female terminal setae. This hypothesis is different from that illustrated by Schornikov (1980), although similar in premise. Danielopol's (1978, fig. 37) numeration of podomeres and evolutionary hypothesis are in agreement, except that the setae designated p are probably not homologous.

Sixth limb.-As usual in Cypridacea, the sixth limb is a large, powerful walking leg. The protopodite or basal part of the limb may represent the fused remains of at least two podomeres, as Schulz (1976) suggested. The dividing suture is now incomplete, and the more proximal of the two segments is poorly sclerotized and easily damaged in dissection. One or two short setae arise from this more basal segment, just behind that suture. This variability is real, in that some species always have one seta, while others always have two. Because this part of the limb is easily damaged in dissection, however, for species represented by few or fragmentary specimens it has not always been possible to verify this number, and some of the absences shown in Figures 32 through 35 for such species may be due to damage. This variability in number of setae apparently has no taxonomic significance at the generic level and may merely reflect the vestigial character of this segment and suture. On the more distal part of the protopodite, another short, smooth seta arises inside the knee, and three smooth setae arise on the outside of the curve of the knee.

Four elongate, tubular to lamellar, flexibly articulated podomeres follow the knee joint. Each of the first three bears one ventrodistal seta. The penultimate podomere sometimes has a second, very tiny, vestigial seta. Three curved, clawlike, larger setae terminate the last podomere. Usually they are of graduated lengths, the middle one longest and the ventral one shortest. Their relative sizes may have taxonomic value at the species level.

Seventh limb.-By comparison with the sixth limb and with the seventh limb of other cypridaceans, the seventh limb is small and weak. Possible structural homologies with other Cypridacea were illustrated by Danielopol (1978, figs. 26, 39). As usual for cypridaceans, it is a cleaning limb, curved back and held tightly against the posterior part of the body. One of the three terminal setae is reflexed dorsally, enlarged, and pinnate. However, this leg also retains structural similarities to the fifth and sixth limbs, allowing serial homologies in these limbs to be discerned that are no longer self-evident in the Cyprididae and Pontocyprididae.

Again, the basal segment probably represents at least two fused podomeres, separated now by only a weak, incomplete suture. One seta arises behind this suture, and
another originates inside the back of the knee; both may be minutely bristled. Three setae originate along the outer curve of the knee; the most ventral one is small, smooth, simple in structure, and occasionally absent.

The other two of these knee setae are specialized for some peculiar, possibly sensory function. On a slender, rigid, cylindrical shaft, each seta is flattened, bladelike, very thin, and minutely serrate or barbed on both edges. These serrations grow larger and more asymmetric distally. Each seta terminates in a flared plume of reversechevron barbs and a rigid, dartlike needle or a long, flexible distal filament. In Macrocyprina, these setae are relatively short, broad, coarsely barbed, and conspicuously plumed distally, terminating in a long, flexible filament. In Macrocypris and Macropyxis the setae are very long, almost invisibly serrate, with hardly any increase in size of barbs distally, terminating in a long, smooth, rigid, acutely pointed, dartlike needle. These serrations and barbs are mostly far too small to be drawn. A few examples are illustrated in Plates 112.12-15. All macrocypridid species have these specialized knee setae, whether or not their nature is indicated in the drawings. In life position, they are directed horizontally along the anterior-posterior axis. They are identically formed in males, females, and juveniles.

Four cylindrical to lamellar, elongate podomeres complete the leg, of which the middle two are fused along an inflexible suture, while the others have flexible articulations. The first two podomeres each bear one ventrodistal seta. The third bears two ventrodistal setae, approximately equal in size, but one may be curved out (laterally) and up (dorsally) in a different plane from the rest of the limb, explaining its variable position in drawings of dissection mounts. Of the three terminal setae, two are usually very small, smooth, tapering, and simple in structure. They vary more in size than has been supposed, however, and in $M x$. kornickeri, for example, one of these setae is nearly as long as the reflexed, feathered seta. Such a development has been thought to characterize the cypridid genus Paracypris, but there is, likewise, more variability within Paracypris and other paracypridine genera of marine Cyprididae than has been usually recognized (Maddocks, 1988b). This shows the futility of generic and familial diagnoses based on few species and a few key characters.

The third terminal seta is very large and reflexed, with a strong shaft and a more or less coarsely feathered cleaning plume. The fine, tapering, close-set, parallel hairs or barbs on both sides of this flexible comb can only be approximately rendered in the drawings. This terminal plume is twisted or divided at about midlength, and the barbs or hairs of the distal part are set in a different plane than those of the proximal part. There may also be an abrupt change in size of barbs at this point, sometimes marked by one or a few especially conspicuous barbs. The size of this reflexed seta relative to the rest of the limb varies recognizably among species, but the high correla-
tion of that character with overall size and other limb dimensions shows that this obvious feature may have less taxonomic value than might be supposed (Maddocks, 1988a).

Furcae.-The furcae of Macrocyprididae consist of two cylindrical, rodlike rami, fused near their base and not separately movable. One long terminal seta completes each ramus. Up to four very tiny setae originate in a clump far back on the ramus. Although they are so small as to be hardly more than secondary cuticular hairs, they are set in a large circular opening like those that mark the insertions of other setae. Their consistent number and position suggest that they are vestiges of and homologous with the proximal furcal setae found in other cypridaceans and bairdiaceans.

In Macrocypris and many Macropyxis the furcae are inconsequential in size and unlikely to have locomotory function. The terminal seta is long, flexibly tapering, and distinctly separated from the rather short ramus. The four proximal setae, though small, are generally easy to distinguish against the small, weakly sclerotized ramus. In Macromckenziea the terminal seta and the distal portion of the ramus have been lost, so that the furcae consist of two vestigial nubs surmounted by two to four proximal setae. In the remaining genera the furcae are very large and rigid. The terminal seta is short and swollen to the thickness of the ramus, and the dividing suture may disappear. The result is a thick, stiff, curved or straight pair of tweezerlike rods, which are not separately movable, however. By comparison, the two to four proximal setae are often hard to distinguish against the heavily sclerotized ramus, though they are probably always present. In Macrocypria one of the two rami is greatly reduced, and moderate asymmetry is not uncommon in certain species of other genera.

In Macrocypris and Macromckenziea the furcae are usually sexually dimorphic, those of the male being reduced in comparison to the female and sometimes drastically so. Dimorphism has not been observed in the furcae of the othergenera.

The furcae of some species and genera may be highly distinctive, although the possibility of sexual dimorphism and sometimes considerable individual variability dictate caution in taxonomic use of this character. The generic diagnoses proposed in this monograph include furcal characters as an important element, though certainly only one of many criteria that should be evaluated. The visibility of the furcae, even on an undissected animal, and the ease of description are practical arguments for taxonomic reliance on this limb. As is ever the case in ostracode taxonomy, however, the macrocypridid furca is subject to homeomorphy. The asymmetry of certain species of Macroscapha and the Macromckenziea-like sexual dimorphism of Macrocypris minna are examples of features that have been interpreted as homeomorphic herein. Mx. amoena and Mk. sp. 19 are other examples of species that might be
assigned to different genera if the furca were given more taxonomic weight. Some part of the variability apparent in Figures 46 and 47 also results from position on the dissection slide, but this rarely causes difficulties in evaluation. For example, Figures 47.39,40 show lateral and flattened posterior views of what is essentially the same configuration.

The taxonomic consistency of furcal structure suggests genetic control and a significant function in the life of the animal, but any hypothesis concerning that function must await observation of living animals. It may be significant that the size of the furcae is inversely related to the robustness of the antennae and antennules. For example, species of Macromckenziea have thick, muscular antennules reminiscent of those of burrowers (such as Cytherella and Argilloecia) but vestigial furcae, while species of Macrocyprina have delicate, possibly tactile, elongate antennules but stout, possibly propulsive furcae.

BODY AND GENITALIA

Forehead and mouth.-The head capsule of Macrocyprididae is a large, quadrate sheath with the forehead and upper lip joining at nearly right angles, with two diagonal, posterodorsal processes, but without fringes of hairs or other accessory elaboration (see also Schulz, 1976, fig. 84-87). Two rather feebly denticulate, arcuate ridges border the lower lip, which is otherwise narrow and weakly sclerotized. It is easily pulled apart, yielding two L-shaped structures that may be homologous with the rake-shaped structures of other cypridaceans. The margins of the upper lip usually bear a single row of very tiny, short cuticular hairs. This rather simple mouth structure is consistent throughout the family, suggesting uniformity of diet. There is nothing similar to the fan-shaped, tongue-in-circle chewing apparatus of the Bairdiidae, even though bairdiids are also sediment ingesters.

Two large, brown, spherical fecal balls occupy the gut. They consist of silty, sharp-edged, fragmental sedimentary detritus in a yellow-brown, amorphous matrix. Under plane transmitted and cross-polarized light, the birefringent mineral particles and biotic skeletal fragments are distinct but rarely identifiable, although coccoliths, fragmentary diatom frustrules, spicules, and both planktonic and benthic foraminiferal tests have been seen. The marine sediments inhabited by Macrocyprididae have substantial biogenic components, and the few recognizable bioskeletal fragments likely were ingested as sedimentary detritus rather than as living prey. Usually, roughly half to much more than half of the fecal ball consists of this mineral detritus. Occasional wisps, shreds, spines, and clumps of possible chitin or other organic composition were seen. Spherical cells and clumps of cells or eggs, fecal pellets, and black-walled spores or algal cysts were also noted occasionally. Large-scale inhomogeneities of color and composition within a single fecal ball suggest
that macrocypridids have a variable, adventitious diet, with the animal feeding on whatever it encounters in scavenging fashion, rather than consistently selecting a particular food item. SEM examination of fecal balls might yield more information than optical analysis. Plates 82 and 83 illustrate some typical fecal balls and a few of the tantalizing, almost identifiable, biological structures seen in them.

Furcal attachment.-The framework of chitinous bands to which the furcal muscles attach is called the furcal attachment. The taxonomic value of this apparatus was first demonstrated by Rome (1969) for freshwater Cyprididae. In general in Macrocyprididae, the furcal attachment is thick and well developed in those genera that have large, rigid furcae, chiefly Macroscapha and Macrocyprina, and in males. In forms with small, delicate furcae, such as Macrocypris and Macromckenziea, and in females it may be very weakly developed or even absent. Within a genus or species, this apparatus shows sexual dimorphism in its robustness of development. It is likely that details of its morphology differ among species and genera and have taxonomic value, as Rome postulated for the Cyprididae, but these differences were not systematically studied for this monograph. Plates 110 and 111 illustrate the potential diversity and taxonomic value of this character.

The furcal attachment consists of a paired series of articulated chitinous rods that run along the posterolateral flanks of the body. The posterior branch, probably homologous with the extrémité articulaire and partie médiane of Cyprididae (Rome, 1969), articulates with the furca. Although its exact shape differs, this posterior branch is rather short, approximately straight, and runs horizontally or slightly dorsally. At its anterior end it articulates with or is fused with a second, dorsal rod, presumably homologous with the branche dorsal, which rises obliquely. The cuspate margins give this dorsal branch a meandering course, but no branching offshoots comparable to those of some Cyprididae have been observed. The furcal muscles attach to the posterodorsal edge of this dorsal branch.

In males only, a third, ventral pair of chitinous rods articulates at the same joint, probably homologous with the branche ventrale of Rome (1969). These two short, ventral branches fuse together almost immediately to form a single, very thick, broad ventral plank with expanded articulatory ends, in the shape of an I, Y, or X. This I-beam runs forward along the ventral midline of the body to articulate with the copulatory organ. The muscles that rotate the copulatory organ forward attach at the expanded anterior end of this I-beam and along the anteroventral edge of the dorsal branch. This ventral branch is absent in females, unless the muscularized, arched, chitinous loops of the genital lobes are homologues.

In species and genera that have robust, well-muscled furcae, the posterior and dorsal branches are well developed in both males and females. A sturdy ventral branch is present only in males, and the dorsal branch is thicker and more uniformly sclerotized in males than in females,
probably because muscles attach to both the anterior and posterior edges of this branch in males but only to the posterior edge in females. In forms with small, weak furcae, males have well-developed dorsal and ventral branches but a thinner, poorly sclerotized posterior branch. In the corresponding females the dorsal and posterior branches are very thin or entirely absent. The degree of reduction corresponds to the decreasing size and muscularity of the furca. Conspicuous sexual dimorphism of the furca is accompanied by enhanced sexual dimorphism of this apparatus.

Male genitalia.-The testes are paired, compact, spindleshaped, dark brown glands housed in the dorsal midsection of the body. They do not enter the vestibules or press tightly against the carapace, as is the case in Cyprididae and Pontocyprididae. The sperm have exceedingly long, sticky, finely spiral tails and very tiny, optically nondescript heads. The sperm generally are wound tightly together in looped bundles like skeins of yarn. Sperm start to form before the last molt, and sperm bundles have been seen within an A-1 male instar preparing to molt, together with poorly sclerotized but recognizable Zenker's organs and the flabby precursors of hemipenes.

The paired Zenker's organs are large, heavily sclerotized, symmetrical, located posterodorsally, and usually visible from outside the carapace. Each has a swollen anterior bulb and a heavily muscularized, dense, bristlelike, cylindrical array of numerous chitinous spikes surrounding the tubular extension of the vas deferens. A daisy-wheel pattern on the end of the anterior bulb marks the entrance for sperm, whose tiny heads are often seen tightly clumped within this bulb. There is a wide range of variability in shape of the Zenker's organ, and each configuration is characteristic of a species group (see Plates 98 to 109). The proximal portion of the vas deferens as it leaves the Zenker's organ is heavily sclerotized, relatively wide in diameter, and rather inflexible; it is usually coiled or looped in a taxonomically distinctive fashion. The distal portion of the vas deferens is a narrow, undistinguished tube running down into the hemipenis.

The hemipenes or copulatory organs are inflexibly mounted on a short, thick, heavily sclerotized, chitinous rod, which articulates with the end of the fused ventral branches of the furcal attachment. The hemipenes are not separately movable. Each hemipenis consists of a muscularized, more or less compressed, lamelliform basal capsule, with one or more distal accessory lamellae. The vas deferens enters the heavily sclerotized, short, curved, tubular copulatory tube. The accessory copulatory rod near its exit may be short, thick, and straight to long and flexibly coiled. The variety of accessory structures defies verbal description and functional interpretation. Nevertheless, each configuration is unique to a species and readily facilitates its identification. It is also possible to trace structural homologies among the hemipenes of groups of two or more species, though not yet systemati-
cally across all species of the family. Danielopol (1978, fig. 28,40) illustrated possible homologies with other Cypridacea.

Although individual variability exists in this organ, especially in the degree of sclerotization, it is certainly the second-best source of evidence for identifying a species, after the carapace. Plates 85 to 97 illustrate several different males for each species to document the extent of the intraspecific variation and to show the taxonomic reliability of this organ. Its complexity should make it relatively easy to detect homeomorphs and to trace phylogenetic connections among closely related living species.

Female genitalia.-Unfortunately, as is generally the case with ostracodes, the corresponding female genitalia are nondescript and offer little taxonomic assistance. The ovaries are compact, spindle-shaped, dark brown glands much like the testes. The uterus and seminal receptacles are generally invisible except for their contents. Developing eggs in the uterus become dark yellow spheres, and the posterior region of the body of a mature female may contain 10 to 20 or more of these eggs. No eggs or developing young have ever been found in the domicilium, nor does the posterior part of the carapace offer enough space to make brooding likely.

The external genital lobes are low, poorly sclerotized mounds without distinctive shape, with short, thick, weakly coiled ducts. Two very large, dense, cocoon-shaped bundles or open, wheel-like coils of sperm are usually present in the seminal receptacles, which may occupy much of the posterior volume of a mature female. How long the sperm may be kept is not known.

The posterior body of the female is a weakly sclerotized, chitinous sack. The posterior and dorsal branches of the furcal attachment are more weakly developed in the female than in the corresponding male. Whereas the tapering posterior body of the male is rigid and has conspicuous furcal and copulatory muscles, the posterior body of the female is flimsy and expandable, ballooning as it is packed full of sperm and eggs.

INTERPRETIVE MORPHOLOGY

SEXUAL DIMORPHISM

The sex of adult macrocypridids is readily determinable if the carapace is gaping to reveal appendages and genitalia. If the closed carapace is transparent, the paired Zenker's organs of the male or the eggs of an ovigerous female may be visible through the dorsal region of the carapace. To determine the sex of closed, opaque adults and nearly all juvenile specimens it is necessary to open the carapace, a procedure often accompanied by damage. In this study it was possible to ascertain the sex of nearly every live adult (specimens collected living, preserved in alcohol, containing soft parts) of all but two species, Mc.
arcuata, which had over 900 specimens, and Mh. atlantica, an abundant, opaque species for which most of the borrowed specimens were returned before this question was investigated.

Secondary sexual dimorphism is visible in the carapace proportions for most species and genera of Macrocyprididae (see Graphs 1 to 76). Males are usually similar in shape to females but somewhat more elongate. In many species the males are not quite as long or as high as females, and in others they are about the same length but not as high, while in a few species the males are distinctly longer as well as lower than the females. The thickness of the carapace is difficult to measure accurately and routinely in Macrocyprididae, especially in living specimens, and has not been measured in this study. No differences in thickness or in dorsal outline between males and females were apparent by inspection.

All of this differentiation takes place in the posterior region of the carapace. If drawings of male and female valves are superposed, it will be seen that they overlap nearly identically around the whole anterior region, and that it is only the region of the carapace posterior to the adductor muscle scars that differs by being more stretched out in males. Although these differences in carapace dimensions are statistically significant, the male and female clusters commonly overlap on the length-height graphs, so that the sex of some nondescript carapaces may be in doubt according to this criterion. Even so, in sufficiently large fossil populations it should be possible to sort most adult carapaces by sex.

Incipient or precocious sexual dimorphism in the sense of Whatley and Stephens (1977) is apparent in the last and next-to-last instars, as discussed below. Its magnitude is slight, however, and there is little hope of determining the sex of juveniles from the carapace alone. Sexual dimorphism is also apparent in the structure of the antennae, fifth limbs, furcal attachment, and in some cases the furcae, as described above for those structures.

SEX RATIOS

Table 1 presents the numbers of adult males and females for each living species, determined from soft parts and pooled for all sampled populations of that species. Rare sexually indeterminate specimens and empty or fossil carapaces are not included in these tallies. These counts total 560 males and 1172 females, a male:female ratio of a little less than 1:2.

Before interpreting sex ratios, it is necessary to assess their validity. The choice of screen size for washing sediment and other sampling methods may bias sex ratio in the recovered assemblage, if one sex is larger than the other. In Macrocyprididae it is the females that are both larger and more abundant, and thus there is little doubt that the overabundance of females in nature is at least as great as that seen in these samples. Because two or more
juvenile size classes were represented in the sampled populations of most species, the lesser abundance of males is real and not the result of sampling bias.

It is common in marine invertebrates for males to die younger, to be present in the population only during certain seasons, or to be smaller. Such partitioning of biomass between the sexes may promote trophic efficiency and maximum production of offspring by a food-limited population. The first two strategies would be discernable in the sex ratios of seasonal collections of living populations but not in time-averaged thanatocoenoses or fossil assemblages. Because adult ostracodes do not grow, survivorship or mortality rates for adults cannot be directly inferred from size-frequency analyses of dead or fossil assemblages.

Nearly all adult females examined had eggs in the ovaries and sperm in the seminal receptacles. This ability to stockpile sperm for future use would facilitate life histories in which males are less abundant and infrequently encountered. It is not known how long the sperm remain viable, whether either males or females copulate more than once, or whether females can produce more than one clutch of eggs from one mating. Observation of living animals will be necessary to establish the exact life history.

Parthenogenesis, the ultimate inequity of sex ratio and a common phenomenon in freshwater ostracodes, is rare to nonexistent in marine ostracodes, and there is no evidence for it in Macrocyprididae. Males are known in all except the very rarest species studied, and it seems that all Macrocyprididae are syngamic.

Van Harten (1983) explained the decreasing male:female ratio in late instars and adults of subfossil assemblages of Cyprideis (Podocopida, Cytheracea) as the result of intraspecific resource competition. Juvenile males of Cyprideis are larger in volume than corresponding females, he said, although adult males and females are approximately equal in volume. Specifically, he proposed (p. 577) "for ostracodes with intersexual size differences in their juveniles that resource competition between successive instars will lead to differential survival of the sexes and hence to a progressive shift of the sex ratio in the later phases of development. The ratio changes in favour of the sex that has the smaller larval dimorphs." Invoking Przibram's rule of ostracode growth by doubling in volume at each molt (Przibram, 1931; Kesling, 1952), van Harten interpreted this phenomenon as an extension of Hutchinson's empirical rule that noncompetitive coexistence of similar species requires a size differential of about $2 \times$ (Hutchinson, 1959; MacArthur, 1972).

In living populations of Macrocyprididae, males are both smaller and less abundant as late instars and as adults. Van Harten's mechanism of inter-instar competition (between the smaller members of one instar and the larger members of the next-younger instar) seems not to apply here. His hypothesis also does not explain why competition should exist between instars but not within instars.

Table 1. Total numbers of living adult males and females in each species and genus of Macrocyprididae. The counts do not include juveniles, empty carapaces, or sexually indeterminate individuals. The asterisk (*) indicates additional specimens too opaque to determine sex or too numerous to count. The dagger (\dagger) indicates type specimens, not necessarily representative of sex ratios in natural populations.

Species	Males	Females
M. minna	1	30
M. maioris	9	4
M. metuenda	46	115
M. miranda	3	13
M. proclivis	-	2
M. sp. 1	-	1
Mk. siliquosa	33	39
Mk. glacierae	7	17
Mk. ligustica	-	2
Mk. sp. 3	-	1
Mk. sp. 5	-	1
Mk. sp. 6	-	1
Mk. sp. 19	1	-
Mx. sapeloensis	112	151
Mx. adrecta	1	3
Mx. adunca	2	4
Mx. amanda	3	10
Mx, amoena	2	1
Mx. antonbruunae	6	2
Mx. arta	4	1
Mx, audens	3	6
Mx. bathyalensis	4	8
Mx. eltaninae	1	3
Mx. kaesleri	1	9
Mx. kalbi	5	4
Mx. kornickeri	1	1
Mx. labutisi	139	512
Mx. similis	1	3
M x. sp. 8	-	1
Mx. sp. 11	-	1
Mx. sp. 16	-	1
Mx. sp. 17	-	1
Mx. sp. 18	-	1
Mx. sp. 21	-	1
Mx. sp. 46	-	2
Ma. sarsi	6	31
Ma. semesa	1	1
Mc. arcuata	*	*
Ms. bensoni	1*	$3 *$
Ms. capacis	1	8
Ms. hiulca	1	2
Ms. sp. 23	1	-
Ms. sp. 47	-	1
Mh. atlantica	$25 *$	29*
Mh. heroica	1	1
Mh. inaequalis	2	2
Mh. inaequata	5	6
Mh. marchilensis	1*	1*
Mh. opaca	28	38
Mh. sinuata	4	4

Species	Males	Females
Mh. tensa	1	8
Mh. turbida	18	13
Mh. sp. 25	1	-
Mh. sp. 30	$*$	$*$
Mn. propinqua	$3 \dagger$	$2 \dagger$
Mn. africana	1	2
Mn. barbara	5	7
Mn. bermudae	9	8
Mn. captiosa	3	1
Mn. dispar	1	2
Mn. hartmanni	1	2
Mn. hawkae	11	2
Mn. hortuli	3	1
Mn madagascarensis	11	11
Mn. moza	-	1
Mn. noharai	-	1
Mn. schmitti	5	2
Mn. skinneri	16	11
Mn. succinea	8	11
Mn. swaini	$1 \dagger$	$2 \dagger$
Mn. vargata	-	2
Mn. sp. 39	-	1
Mn. sp. 40	-	2
Mn. sp. 42	-	1
GEnERA		
Macrocypris	59	165
Macromckensiea	41	61
Macropyxis	285	726
Macrocypria	7	32
Macrocyprissa	$*$	$*$
Macrosarisa	4	14
Macroscapha	86	102
Macrocyprina	78	72
Total	560	1172

Resource competition within instars would favor the larger dimorphs (females of Macrocyprididae, males of Cyprideis). If both within- and between-instar modes of competition exist, one may negate the effect of the other. It is hard to see why trophic competition should exist at all in populations of Cyprideis inhabiting food-rich estuarine and lagoonal environments, where biological productivity is so high that unutilized organic detritus accumulates in sediments to make future fossil hydrocarbons. It is also difficult to explain why intraspecific competition would be more severe than (and how it would be distinguished from) competition with other species, not only of ostracodes but of many other kinds of meiobenthos.

Van Harten's suggestion that clinally varying sex ratios of geographic populations of a species may indicate the magnitude of resource competition and, therefore, serve as paleoecologic or paleoceanographic indicators merits further study. In shallow waters where seasonal influences are likely to cause seasonal changes in population age-and
sex-structure, such studies should be conducted on timeaveraged, subfossil or fossil thanatocoenoses. The counts in Table 1 are of living individuals, and these sex ratios represent time-specific rather than time-averaged measures. Nonetheless, it is of interest to examine the compiled sex ratios for genera in Table 1. The greatest inequalities are found in the deep-sea genera Macrocypris, Macromckenziea, and Macropyxis, in which females average more than twice as abundant as males. Is it coincidental that these genera also exhibit the most conspicuous size dimorphism? At the other extreme, species of Macrocyprina and Macroscapha, which live in relatively shallower, food-rich environments and which show much less size dimorphism, have nearly equal sex ratios. Perhaps the sex ratio and the magnitude of size dimorphism in Macrocyprididae would provide useful paleo-indicators for the trophic regimen and thus for the depth and organic content of sediment. This hypothesis needs further testing in dead and fossil assemblages.

INTRASPECIFIC MORPHOLOGICAL VARIABILITY

Many taxonomists, impressed by the demonstrated ecophenotypic plasticity of the ostracode carapace, have wondered whether the appendages and genitalia show as much intraspecific variability. In this study, within-population variability of carapace and appendage characters was estimated subjectively by dissecting many individuals. Carapace length and height were measured for every specimen, but no other character was measured systematically. The soft-part anatomy is very consistent within species of Macrocyprididae. Individual variation does exist, but for the most part it is noticeable only in vestigial characters that are not likely to have taxonomic value. More variability is introduced into published illustrations, including those of this volume, by dissection damage, pressure of the cover glass, artistic limitations, and the author's ignorance than from true within-population sources. Occasional pathological individuals may show interesting anatomical discrepancies or distortions, but their taxonomic identity is never in question.

The carapace shows more and more subtle variation. Calcification of the carapace and sclerotization of some cuticular structures may vary among adults of a population in a manner consistent with aging of the adult following the final molt. The width of the zone of concrescence and the degree of complexity of branching of radial pore canals are especially influenced by this process and should be described for populations rather than isolated individuals. Carapace shape, especially of the posterior end, shows real differences within and between populations and sexes. To document the nature and degree of variability recognized within species, and to allow the reader to draw independent conclusions, the carapaces and male hemipenes of several different individuals are illustrated for each species in the plates of this volume.

SIZE AND BATHYMETRY

In many species, size appears to increase with depth. This common size-depth cline is not as clear-cut in Macrocyprididae as originally supposed (Maddocks, 1977), however, as the length-height plots (Graphs 1 to 76) of this volume show. This phenomenon is most conspicuous in bathyal species; see, for example, Mk. siliquosa (Graph 7), Mx. bathyalensis (Graph 22), and Mh. turbida (Graph 52). It is weak to nonexistent in species of Macrocyprina, perhaps because most of these have depth ranges of only a few tens of meters (but see Mn. skinneri, Graph 73). A reverse trend toward decrease of size with depth appears in some abyssal macrocypridids.

Other environmental factors also influence size, and the heterogeneous data of this study do not readily allow these separate effects to be discriminated. For some deepsea species there is a weak trend toward increased size at higher latitude. Commonly a size difference exists between populations of the same species from adjacent geographic basins, as for example in the Sierra Leone, Angola, and Cape basins of the southeast Atlantic. Two regions that yield especially large species are the southeast Pacific Ocean off Peru and Chile and the southeast Atlantic Ocean off Angola, Namibia, and South Africa. Both regions have very high biological productivity in surface waters, which may be reflected in higher organic content of sediment and lower oxygen levels in bottom waters. It is likely that both oxygen and temperature influence size, as well as depth, and that hydrographic parameters control much of the geographic variability seen. Peypouquet (1979) suggested that increased size in Parakrithe is directly linked to high concentrations of dissolved phosphate, reaching a maximum in the epibathyal zone.

Macrocyprididae do not show the bimodal size-frequency distributions within populations (apart from sexual dimorphism) that have been demonstrated for Krithe (Kaesler and Lohmann, 1976) and other ostracodes.

SIZE AND SYMPATRY

Hutchinson's empirical rule predicts that similar, sympatric species must differ in size by a factor of about $2 \times$ in order to coexist (Hutchinson, 1959; MacArthur, 1972). Przibram's rule states that ostracode instars double in volume and increase in linear measures of size by a factor of about 1.26 with each molt. Van Harten (1983) pointed out that both of these empirical generalizations may result from competition for food or other resources. This idea has been expanded to govern competition between instars and sexes as well as species (Angel, 1977; van Harten, 1983). Angel (1977) suggested that competition between sibling species of halocyprid ostracodes is responsible for maintaining discrete size-clusters of instars as well as for the phenomenon he called (p. 54) "interdigitating instar sizes," in which instars of two coexisting species alternate
in size, one instar-cluster falling within the gap between adjacent clusters of the other species.

Macrocyprididae show discrete size clusters at any one station, if only one sex is plotted, and in practice the blurring of these clusters is often the first sign that two species are mixed in the material being studied. The best example in the material studied is provided by $M x$. sapeloensis and Mx. Labutisi, which caused considerable confusion and labor in separation. These two species are fairly similar in external appearance and nearly always occur together. Adults of the smaller species, Mx. labutisi, are approximately the same size as or slightly larger than the A-1 instar of the larger species. Superposing Graphs 18 (Mx. sapeloensis) and 28 (Mx. labutisi) produces an amorphous swarm of points. If just one sex is plotted, however, it can then be seen that the interdigitation is not exact and may be fortuitous. The exact cause of this interdigitation, if it requires one, must be regarded as yet undetermined. It seems unlikely that food would be a limiting resource for sediment-ingesting animals such as macrocypridids. Food balls in the gut of many species of Macrocyprididae have been examined during this project without finding any consistent compositional differences that would be evidence for selectivity of diet.

The relatively small number of species (usually one, two, or three) found at one locality also suggests that species of Macrocyprididae may compete with one another, but whether any of the discrepancies in size between geographic populations of the same species can be attributed to competition with cooccurring species is another matter. Inspection of the length-height graphs for those few species whose geographic and bathymetric ranges are fairly well established shows no effect attributable to presence or absence of another species. A real test of this hypothesis will require more detailed sampling, control of bathymetric and hydrographic effects, and statistical evaluation.

MORPHOLOGY AND BATHYMETRY

Neale (1988) speculated that deep-sea ostracodes of many taxa develop longer, thinner walking legs and greatly expanded, hirsute, tactile sensory setae on appendages. There is little evidence for such trends in Macrocyprididae. The only walking leg is the sixth limb (see Figures 32 to 35), which is exceptionally conservative in its proportions and setal development. R-mode principal component analysis (Maddocks, 1988a) showed that the dimensions of this limb are strongly and nearly equally controlled by overall size. In fact, the first eigenvector, interpretable as the effect of general size, explained 78 percent of the total variance and had very high loadings on nearly every dimension. The second and only other significant eigenvector explained only nine percent of the variance and had its highest loadings on two or three of the terminal setae, highlighting different setal configura-
tions. Neither eigenvector discriminated podomere lengths from podomere widths, as would be necessary if there were systematic changes in podomere proportions. Neale (1988) suggested possible tactile function for the carrot-seta on the ventral margin of the basal podomere of the walking legs in deep-sea cytheraceans, which is especially conspicuous in Trachyleberididae. The homologous seta in Macrocyprididae arises under the knee of the sixth leg, is small and simple, never hirsute, and shows no variation of taxonomic or bathymetric value.

Hartmann and Hartmann-Schröder (1988) reviewed a list of morphological attributes thought to typify deep-sea dwellers (thin carapace wall, ventral flattening, ventrolateral wings, reduced number of marginal bristles and spines) and concluded that none is restricted to this habitat. Some of these characters are not found in any Macrocyprididae, while others occur equally in shallow and deep residents. Diminution of reticulate and costate ornament obviously is never seen in Macrocyprididae, which do not have any trace of reticulate or cryptoreticulate ornament. Reversal of valve overlap and hingement, said by Peypouquet $(1979,1980)$ to typify lower bathyal species of Krithe and Parakrithe, does not appear in Macrocyprididae. The deepest known Macrocyprididae are species of Macropyxis, but that genus is also well represented by bathyal species, including live records as shallow as 49 m (Mx. labutisi).

CARAPACE SHAPE ANALYSIS

With smooth, nearly featureless ostracodes such as the Macrocyprididae, the lateral outline of the carapace perforce assumes extra importance. Most of the species in this monograph present distinctive lateral outlines, and even though they vary in outline among individuals, sexes, and geographic populations, it is not hard to sort specimens into species. To describe and communicate the exact nature of these differences is more difficult, however. Harmonic analysis was applied to outlines of Macrocyprididae by Kaesler and Maddocks (1988) with some success. Multivariate morphometric techniques of shape analysis have been found effective with other smooth ostracodes (Lohmann, 1983; Kaesler and Foster, 1988; Foster and Kaesler, 1988). Roger Kaesler is applying these methods to the species in this monograph.

GENERAL COMMENTS ON CHAETOTAXY

Macrocypridid limbs consist basically of a series of tubular, rigidly sclerotized podomeres, articulated at flexible joints. Movement at these joints is usually restricted to two dimensions and to a few tens of degrees of arc. Cylindrical setae arise at socketlike, round perforations through the sclerotized cuticle of the podomere, mostly at the distal margin. These sockets may testify to the former presence of a seta at a particular location in damaged individuals or in taxa in which the seta has become reduced or vestigial. Terminology for describing setae has
not been standardized for Ostracoda (but see Broodbaker and Danielopol, 1982).

All setae are hollow, with a thickened, rigid proximal shaft and a narrower, tapering distal part. The rigidity of the seta is determined by the thickness of its cuticle and the ratio of diameter to length. Such somewhat redundant descriptions as robust claw or slender, flexible seta merely label extremes of setal development. The tip of the seta may taper symmetrically or obliquely to a needlelike point or slender whip, or it may be flattened and taper symmetrically to a bladelike, angulate, or spatulate hook. A thick example of the latter is likely to be termed a chela or claw. In many species the antennal claws end in flared, slightly spatulate tips with sinuous outlines, resembling a ballet dancer's foot on point, except that the heel is anterior. The exquisite detail of these varied setal terminations is difficult to render in line drawings except for the largest species and setae, but fortunately the character of a seta is markedly uniform across most species and genera of the family.

The proximal part of a seta may be smooth (often termed simple), or it may carry numerous, tiny, secondary cuticular setules (hairs or scales). Depending on the number, size, and arrangement of setules, such setae may be described as barbed, serrate, or plumed setae or as bristles. Setules are solid rather than hollow and do not contain nerves or other soft-tissue elements. They probably do not have discrete identities in the sense of homology. These setules are mostly too small to be drawn to scale, and they have generally been omitted from the line drawings in this paper. Their development on a particular seta is a very consistent taxonomic character, hardly varying at all throughout the species of a genus or the genera of this family. Most variation is strictly a function of size, so that the setules are more easily seen and illustrated for a large species than a small one-another reason why they have been indicated only sporadically and perfunctorily in these illustrations.

Setae with inferred chemosensory function (aesthetascs of Danielopol, 1971, 1978; Broodbakker and Danielopol, 1982) have a very thin, transparent, slightly granular-textured cuticle. Beyond the stout proximal shaft, the distal portion may flare to a balloonlike vesicle or a flambent tongue, or may be flattened into an ovate disk, or may be extended as an elongate, sausagelike lobe or flattened ribbon. The location and development of these chemosensory setae, likewise, is extremely consistent throughout the family, although the differentiating details are more easily seen and more readily illustrated for the larger species.

In fact, in spite of the proliferation of terminology (e.g., feather, claw, griffe, balloon) to describe these setal forms and inferred functions, it appears that all these types of setae are basically elaborations of a single structure. Many cases are known in which the same, homologous seta has different aspects in two sexes or taxa. The
insertion or point of origin of a seta is a highly reliable clue to its identity and rarely changes throughout the family, while details of the form, inferred function, and appearance of the seta may vary. Danielopol's (1978) analyses suggest that these homologies persist in very conservative fashion across all families of the Cypridacea. Taxonomically, each seta may be treated as a unit character, while its form is a character state (as asserted on less evidence by Maddocks, 1976). This distinction is more than semantic, inasmuch as careful recognition of homologies is a necessary prerequisite to morphometric evaluation of taxonomic distance and to reconstruction of cladistic sequences in evolution.

NUMERICAL ANALYSIS OF APPENDAGE STRUCTURES

Historically, the appendage anatomy of ostracodes has been evaluated and communicated largely by intuitive, descriptive, nonquantitative means, and the systematic descriptions and illustrations of this monograph do not depart from that tradition. However, considerable effort in this study has been devoted to ascertaining homologies, on which future numerical taxonomic analysis must depend. Maddocks (1988a) presented a preliminary R-mode multivariate analysis of macrocypridid appendages, exploring the potential taxonomic usefulness of 104 dimensions of the female fifth limb, male right and left fifth limbs, sixth limb, seventh limb, and male and female furcae (measured on Figures 25 to 47) of 71 species. The interpreted results emphasized the relative independence and consequent potential taxonomic significance of individual characters as well as possible nonlinear relationships among certain characters. Certain characters, such as the reflexed seta of the seventh limb, were shown to be so strongly dependent on general size as to have much less independent taxonomic information than hitherto supposed. The next step is to use these insights to compile a matrix of selected characters versus species for Q-mode multivariate analysis of phenetic relationships among species and to develop cladistic models. This analysis will be published separately.

DEVELOPMENTAL BIOLOGY

To study ontogenetic development, the carapace, posterior appendages, and furcae were emphasized. These have relatively simple structure and may often be recognized without dissecting the animal, a practical convenience. The results show that the maturational stage of an individual of any species may be readily ascertained by examining the development of the fifth, sixth, and seventh limbs and furcae. The developmental trends illustrated by Müller (1894) for Mn. succinea are shown to be accurate and to be generally valid for other species and genera of Macrocyprididae as well. The four cephalic
appendages also show systematic, interesting ontogenetic changes, but because of their morphologic complexity and relative inaccessibility they are less well suited to routine determination, and these changes were not analyzed in detail. Juvenile antennules, antennae, mandibles, and maxillules, however, should be compared carefully and would yield many valuable insights concerning homologies and phylogenetic relationships.

In the past, macrocypridid juveniles have often been mistaken for adults. In this study, the presence of a rather wide calcified inner lamella and deep vestibules in juvenile carapaces was confirmed, and the subtle changes in late instars are illustrated. It is relatively simple to recognize an isolated valve as adult or juvenile, but it is not easy to determine which instar is represented unless a population growth series is available. The length-height graphs showing growth series for each species will facilitate future identification of instars of these species.

Occasional pathological individuals have adult size, carapace structure, and nondimorphic appendage anatomy but have poorly developed genitalia and ambivalent secondary dimorphic characters, especially of the fifth limb. A few such specimens appear to be males in which, for some reason, the heteromorphic, male characteristics failed to emerge during the last molt. More are females with normal genital lobes and antennae but with partially masculinized fifth limbs. Such specimens are useful to trace the probable homologies between male and female configurations of the fifth limb.

MOLTING

A juvenile preparing to molt may be recognized by a milkiness of the normally translucent carapace, as the new cuticle inside withdraws from contact. The old carapace splits around the inner margin, and an opalescent white band in this position is another external sign that withdrawal has begun. The anterior and posterior edge of the new carapace, with setae and pores, may be seen within the vestibules of the old carapace as withdrawal takes place. The old carapace does not separate along the hinge, and the valves remain attached.

Both living and subfossil populations include an occasional specimen of adult size and shape but with a narrower zone of concrescence and shorter radial pore canals than the others. It is hypothesized that such a specimen has not yet finished calcification following the last molt (see also Maddocks, 1979). The appendages of such a specimen show more conspicuous cell structure in the epidermis of carapace and appendages, with less welldefined bands of striated muscle. The cuticle also may be lighter in color, and some places that will later be heavily sclerotized may be still quite thin. The calcified parts of the carapace may be thin and britule. The interior surface of incompletely calcified specimens is smooth, however, rather than hummocky as in some cytheraceans.

No evidence has been found for postmaturational molting. In some subfossil assemblages there may be an occasional valve that is much larger than the other adults, but all such cases have turned out to be separate species. Although it is not uncommon for the larger of two or more sympatric species to be also the rarer, the reverse is somewhat more common, perhaps because of sampling methods. No adult specimen preparing to molt was ever seen, in spite of the fact that adults outnumber juveniles in the collections studied, and numerous molting juveniles were seen. It is likely that the calcification and sclerotization that take place immediately after the final molt would physically prevent a successful subsequent molt.

DEVELOPMENT OF JUVENILES

Carapace.-The juvenile carapace resembles that of the adult in the anterior region, but the posterior region may be shortened or undeveloped, producing a characteristically hunchbacked or foreshortened look in many cases. The calcified inner lamella of late instars is very broad, as broad as adults of some other taxa of Cypridacea, though not quite as broad as that of the macrocypridid adult will be. For this reason, juveniles have rather frequently been mistaken for adults in the past. The differences in shape and course of inner margin are subtle but real and readily apparent if a growth series is examined. The juvenile fused zone is narrow with short, straight radial pore canals. The hinge and muscle scars are like those of the adult. Instars of Macrocyprina have fewer, smaller opaque spots than the corresponding adult. Growth series for as many as four (for live animals) to six (empty carapaces) instars are presented in Figures 48 to 55 . The absence of very early instars probably is an artifact of sampling procedures for most collections studied.

Fifth limb.-Sexual dimorphism is visible in the last instar (A-1), not only in the carapace dimensions but in the fifth limbs. The male palp is swollen but usually retains faint sutures that help to establish structural homologies with the corresponding female limb. One or two ventral pegs and one or more terminal and other setae may be represented by tiny precursors or anlagen. The exact configuration is variable, however, even among individuals of the same species, showing that such details must not be relied upon too heavily either for taxonomic identification of a species or for developmental evidences of homologies. The corresponding female fifth limb has the foursegmented palp of the adult and anlagen of the four setae, although these are not invariably present.

In the penultimate stage (A-2), sexual dimorphism is weaker and not always reliable. Usually there are two morphs, of which the more inflated, unsutured palp probably represents the male, while the female-to-be usually has only three rather than four podomeres and may or may not still have retained the long terminal seta of the earlier stages.

The A-3 juvenile has a three-segmented palp with four long terminal and ventrodistal setae. Males and females cannot be distinguished. The structure is obviously homologous with that of the adult female, even though it will be obliterated in the coming molt only to take form again in the next two molts. This shows that in these metamorphoses it is the male that will be transformed, while the female remains ontogenetically conservative.

The A-4 instar has a very similar three-segmented palp and up to four setae, although in small species the sutures may be indistinct and the whole limb is flexible.

Sixth limb.-The sixth limb of the last (A-1) instar is adult in its structure and setal configuration. The A-2 instar differs only in the occasional rigidity of the suture between podomeres III and IV, which was just formed in the last molt. The A-3 instar has only three podomeres after the knee, and the additional suture and seta are yet to form within the penultimate podomere. In the A-4 instar the sixth limb is represented only by a weakly twosegmented, nearly formless anlage.

Seventh limb.-The seventh limb of the last (A-1) instar is adult in all details. The suture between the penultimate and antepenultimate podomeres (III and IV) is rigid but complete, as it will remain in the adult. It forms in the preceding molt from the A-2 instar, which has no suture or seta at that location and has only three podomeres after the knee. The ventrodistal seta of podomere II is also missing, giving the A-2 limb a setal configuration similar to the adult female fifth limb and, correspondingly, an ontogenetically generalized or archaic aspect. The A-3 instar has a weakly two-segmented, nearly formless anlage without setae. In the $\mathrm{A}-4$ instar there is no recognizable precursor of this limb.

Furca.-The furca of the A-1 instar is generally like that of the adult in all but size, including sexual dimorphism or reduction of the terminal portion, if such conditions prevail in the adult. The furca of the A-2 instar is rather short but foreshadows the adult structure. The A-3 instar has a tiny, rather nondescript furca with a weakly developed terminal seta. In the A-4 instar no furcal rudiment or precursor could be recognized.

BIOGEOGRAPHY

NORTH ATLANTIC OCEAN

M. minna ranges from the Norwegian Sea to the Bay of Biscay and west to Iceland and the Azores (see Graph 1). Also within parts of this range are found the rarer M. nimia (see Graph 5), Ma. sarsi (see Graph 33), and Ms. sp. 24 (see Graph 76). Records off the coast of Morocco may belong to M. minna or a related species, but those in the western Atlantic off Greenland, Canada, and New England belong to $M x$. bathyalensis (see Graph 22). On the shelf edge of the middle and southern Atlantic coast of the

Text-fig. 2. Locations of BLM collecting stations on the middle Atlantic outer continental shelf. Dots without labels show stations that did not yield Macrocyprididae.

United States Mx. labutisi, Mx. sapeloensis, and Mh. atlantica occur in abundance (see Graphs 13, 28, 43). Mx. tenuicauda (see Graph 32) is recorded in epibathyal depths near the U.S. Virgin Islands and on the Florida-Hatteras continental slope. The genera Macrocypris and Macrocypria are not restricted to a boreal North Atlantic distribution, as supposed by McKenzie (1967a), but are represented in other oceans as well. There appears to be a curious segregation of Macrocypris to the east and Macropyxis to the west in the Atlantic Ocean, but sampling is still too sparse to speculate on causes.

Macrocyprididae have not been reported from the Greenland Sea, Davis Strait, Baffin Bay, the Gulf of St. Lawrence, the circum-Arctic Shelf, or the Arctic Ocean basin. Joy and Clark (1977) remarked on the total absence of Cypridacea in their bathyal and abyssal sediment cores from the Arctic Ocean and pointed out that the deepwater ostracode fauna of the Arctic is not the psychrospheric fauna found at these depths elsewhere. Benson, DelGrosso, and Steineck (1983) suggested that changes in
thermohaline circulation with the onset of Pleistocene glaciation caused and still maintain this difference. The northernmost record of Macrocyprididae in the eastern North Atlantic is Sars's record of M. minna off the Lofoten Islands of central Norway, about 68° N. M. minna and Ma. sarsi reach at least to Ingolf station 85 at $63^{\circ} 21^{\prime} \mathrm{N}$ in the central Atlantic. The northernmost record in the western North Atlantic is the holotype of Mx. bathyalensis at V-17-118, at only $55^{\circ} 50^{\prime} \mathrm{N}$.

MEDITERRANEAN SEA

At least three species of Macrocyprididae are living in the western Mediterranean basin, and several more are known or suspected in Quaternary deposits. The genus Macrocypris is not included, however, and the exceptionally broad reported bathymetric ranges result partly from taxonomic confusion, as van Harten (1986b) suggested. Mn. succinea is common in the sublittoral fringe of the entire Mediterranean, while Mk. ligustica and Mx. adriatica have broad bathyal distributions in the western Mediterranean. The dearth of live sampling programs makes it difficult to confirm the supposed "autochthonous" occurrences (e.g., Peypouquet and Nachite, 1984). In the upper Neogene and Pleistocene these are joined by Mc. arcuata, by a species very closely related to Ms. bensoni, and by several unnamed species of Macropyxis.

MIDDLE ATLANTIC OUTER CONTINENTAL SHELF

From 1975 to 1977 the U.S. Bureau of Land Management sponsored an environmental study of the middle Atlantic outer continental shelf. This seasonal collecting program sampled bottom sediments and live macrofauna at 51 stations between 15 m and 760 m depth on the continental shelf and upper slope off New Jersey, Delaware, Maryland, and Virginia (Text-fig. 2; data supplied by Marcia Bowen, correspondance 1978-1979). All stations were sampled in February and August of 1976 and 1977, and about half, in the northern part of this area, were also

Table 2. Total number of specimens of three species of Macrocyprididae at BLM stations on the middle Atlantic continental shelf for all seasons. Stations are arranged in order of increasing water depth.

Station	Depth (m)	Mx. sapeloensis	Mx. labutisi	Mh. atlantica
D4	49	-	1	-
E2	64	1	-	1
E4	77	1	-	28
I1	78	-	-	10
F1	85	-	-	28
G5	90	11	58	3
A1	91	183	173	64
I2	94	1	1	26
L4	94	-	-	3
K4	105	42	25	40
F2	113	32	21	142
A2	128	17	153	51
A3	136	3	23	1
K5	151	-	1	-
F3	152	-	7	1
G6	167	2	31	-
I3	180	7	4	-
F4	183	16	11	1
L5	$180-200$	1	4	4
A4	196	1	7	-
G7	$310-350$	-	13	5
J1	342	-	5	-
K6	$340-360$	4	6	-
L6	350	1	3	-
H1	$350-400$	1	-	8
I4	460	-	-	2
Total all stations	324	547	418	

sampled in November 1975 and 1976 and in June 1976 and 1977. Voluminous physical, chemical, sedimentary, and biological data are on file at Virginia Institute of Marine Sciences for this project.

Three species, $M x$. sapeloensis, $M x$. labutisi, and $M h$. atlantica, were common at the deeper stations of this array,

Table 3. Total number of specimens of three species of Macrocyprididae at BLM stations A1 through G7 on the middle Atlantic continental shelf for each of the eight collecting seasons.

	Mx. sapeloensis			Mx. labutisi			Mh. atlantica
	male	female	juvenile	male	female	juvenile	
November 1975	14	13	4	4	40	-	87
March 1976	4	4	7	8	54	14	70
June 1976	7	14	8	7	28	8	33
August 1976	9	12	8	13	63	2	37
November 1976	7	18	18	5	40	2	24
March 1977	11	11	8	14	60	3	8
June 1977	21	21	7	8	42	2	56
August 1977	17	19	5	13	66	2	10
Total	90	112	65	72	393	33	325

Table 4. Total number of specimens of three species of Macrocyprididae at BLM stations H1 through L6 on the middle Atlantic continental shelf for each of the four collecting seasons.

	Mx. sapeloensis			Mx. labutisi			Mh. atlantica
	male	female	juvenile	male	female	juvenile	
March 1976	8	12	4	3	7	1	42
August 1976	2	3	1	2	7	3	10
March 1977	4	2	4	1	5	9	18
August 1977	2	12	3	7	8	3	22
Total	16	29	12	13	27	7	92

along the outer shelf, shelf break, and upper slope, on sediments containing at least two percent silt and clay (Table 2). They generally did not occur in central shelf swales with fine muds nor on inner and central shelf sands. The patterns of station occurrence are very similar for all three species, with depth ranges of 64 to 400 m for $M x$. sapeloensis, 49 to 400 m for Mx. labutisi, and 64 to 460 m for Mh. atlantica. High abundances at stations A1, A2, F2, and K4 suggest distributional acmes at the shelf break between 90 and 130 m . High variability between replicates of the same sample indicates patchy distributions, and, therefore, no statistically significant seasonal trends in abundance could be discerned. Males were less common than females in $M x$. labutisi and equally common in $M x$. sapeloensis, but there was no significant seasonal pattern in sex ratio. Males, females, and juveniles were present during all four seasons for all three species (Tables 3,4). Overall, $M x$. labutisi was most abundant and $M x$. sapeloensis least abundant, but at any particular station and season any one of the three species could predominate.

NORTHWESTERN GULF OF MEXICO

The most common species in the terrigenous clastics on the continental shelf off eastern Texas and Louisiana (Text-fig. 3) is Mn. skinneri, with a live depth range of 50 to 101 m (empty valves as shallow as 18 m). On the outer Texas shelf and shelf edge, elevated prominences formed by subsurface salt diapirs have been colonized by reef corals. These coralline banks and pinnacles, such as the Flower Gardens, support outliers of the Caribbean-West Indian tropical reef fauna. On the shelly gravels and algal hardgrounds of these carbonate banks Mn. hortuli is abundant. Nearby shelf-edge sediments yield Ms. texana and Mh. gyreae. The calcareous Globigerina oozes of the upper continental slope yield $M x$. improcera, Mx. simulans, and Ms. bensoni.

CARIBBEAN-WEST INDIAN REGION

A complex mosaic of diverse species of Macrocyprina characterizes the shallow-water, coral-reef sands of this region (Text-fig. 4). In general, only one or two species are found at any one locality, and many species appear to
be geographically restricted. Sometimes it seems that almost every island of the West Indies has its own endemic species of Macrocyprina. In some instances there is also a small degree of geographic shape variation among different populations of the same species. Although soft parts were not available for all of these species, in those cases for which they were available they confirmed the separate species identities inferred from carapace evidence. Therefore, corresponding variation in carapace features has been interpreted to indicate species rank for some populations lacking soft-part control. Although the resulting species concepts are narrow, they are consistent with the available evidence. For example, some of the species most similar to Mn. hawkae in carapace features, such as Mn. belizensis, are

Text-fig. 3. Locations of collecting stations in the northwestern Gulf of Mexico.

Text-fig. 4. Collecting stations and geographic distributions of species in the western Atlantic, Caribbean, Gulf of Mexico, and central eastern Pacific oceans.
known to be sympatric with Mn. hawkae, which is further evidence for their separate species rank.

The most widespread, virtually ubiquitous species is Mn. hawkae, which has been found so far in the Florida Keys, the Bahamas, Jamaica, Belize, Honduras, and the Gulf of Paria. The carbonate platform off Belize and Honduras also supports the more restricted species $M n$. belizensis, Jamaican samples yield Mn. jamaicae, and the Florida Keys yield Mn. schmitti. Mn. propinqua has not yet been found away from the type locality off Bonaire. Bermuda, which is a far-flung outpost of this biogeographic province, supports an endemic species, Mn. bermudae, as well as Mn. hortuli. The latter also turns up on the shelfedge coralline banks of the northwestern Gulf of Mexico. In addition, there are enough rare species, here left in open nomenclature, to show that additional sampling will yield more species and a complex fabric of geographic distributions.

SOUTHEASTERN ATLANTIC OCEAN

Nine species of Macrocypris, Macromckenziea, and Macropyxis were found living at 16 stations in the eastern basins
of the South Atlantic Ocean (Table 5, Text-fig. 5). M. miranda occurs in the Sierra Leone, Angola, and Cape basins, having a latitudinal range of more than 35° and a known depth range of 706 to 3779 m (see Graph 4). M. maioris occurred at 2185 m in the Sierra Leone Basin but between 4559 and 4630 m in the Angola Basin. It also was found near the Romanche fracture zone of the Mid-Atlantic Ridge, the most western occurrence of any species of Macrocypris (see Graph 2). Mk. siliquosa ranges from off Morocco to south of the Cape of Good Hope, having a latitudinal range of more than 65° and a known depth range of 97 to 8111 m (see Graph 7). The inclusion of slightly dissimilar forms (Mk. sp. 2 and $M k . \mathrm{sp} .7$) would extend the range of this species-group to the Mozambique Channel and the southwest Atlantic. Mx. adunca has been found at three stations in the Angola and Cape basins and one in the southwest Atlantic, west of the Rio Grande Plateau, the westernmost occurrence of any species in this fauna. Mx. adrecta, Mx. amanda, Mx. arta, and Mx. audens occur in the Angola Basin but apparently not in the others, on the evidence of present sampling.

Peypouquet and Benson (1980) reported the distributions of other ostracode genera at some of these same

Table 5. Total number of living specimens of 10 species at stations in the southeastern Atlantic Ocean, arranged by depth within each basin. $1=M$. maioris, $2=M$. metuenda, $3=M$. mirand $a, 4=M k$. siliquos $a, 5=M x$. adrecta, $6=M x$. adunca, $7=M x$. amanda, $8=M x$. arta, $9=M x$. audens, $10=M x$. sp. 20 .

stations. They pointed out that at all depths these faunas are more diverse and have larger individuals than those of comparable basins in the northeastern Atlantic, a fact that is true also of Macrocyprididae. They explained this by the higher dissolved oxygen and phosphate levels of these bottom waters. However, because most ostracodes and all Macrocyprididae are detritus-feeders, it seems likely that the proximate cause is the resulting higher organic content of the sediments, especially in the northern Cape Basin, where intermittent upwelling causes very high biological productivity in surface waters. They also emphasized that the Walvis Ridge hinders access by Antarctic Bottom Water to the Angola Basin and by North Atlantic Deep Water to the Cape Basin. This hydrologic barrier does not constitute a biogeographic boundary for Macrocyprididae, however, as many species are known to occur both north and south of the Walvis Ridge (Table 5, Textfig. 5). Peypouquet and Benson (1980, fig. 2) reported significant differences in the generic percent-composition of ostracode microfaunas at equivalent depths north and south of the Walvis Ridge, but they did not distinguish species, except of Krithe. There is no corresponding geographic segregation of macrocypridid genera.

Text-fig. 5. Collecting stations and geographic distributions of species in the southeastern Atlantic Ocean.

SOUTHWESTERN ATLANTIC OCEAN

Few abyssal samples were available in the southwest Atlantic (Text-fig. 6, 7). Mx. kornickeri, Mx. similis, Ms. bensoni, and Mh.sp. 30 are recorded at three stations in the northern Brazil Basin (587 to 1007 m, empty valves to 1235 m). Mx. adunca, which is widespread in the southeast Atlantic, was also found at one station west of the Rio Grande Plateau. An unnamed species of Macropyxis (Mx. sp. 21) is all that is known in the Argentine Basin.

The bathyal fauna is dominated by one species. Mh. opaca is widely distributed throughout the Argentine continental shelf-edge and slope, the Falkland Plateau, Burdwood Bank, South Ceorgia, Cape Horn, and even the Palmer Peninsula of Antarctica, with a known live depth range of 95 to 2738 m and a latitudinal range of almost 30° (Text-fig. 7). The Antarctic species association, including especially Mh. turbida and Mh. inaequata, becomes established around $55^{\circ} \mathrm{S}$ at Cape Horn, Burdwood Bank, and South Georgia.

ANTARCTIC REGION

The Antarctic macrocypridid fauna is characterized by a swarm of species of Macroscapha plus a few of Macromckenziea (Text-fig. 8). Mh. turbida is ubiquitous, abundant all around Antarctica but also reaching north to the Strait of Magellan, Cape Horn, South Georgia, and Macquarie Island, with a depth range of 16 to 494 m . Mh. inaequata, likewise, is found in the Weddell and Ross seas of Antarctica, off Cape Horn and Burdwood Bank, and on the Bellingshausen abyssal plain in the far South Pacific, with a spectacular depth range of 311 to 3694 m . Mh. tensa also occurs north of the Drake Passage near Cape Horn as well as around Antarctica, while Mh. inaequalis appears to be confined to Antarctic waters. Mk. glacierae is abundant in the Weddell Sea and South Shetland Islands and also occurs near South Georgia Island. It has not yet been found around Cape Horn or eastern Antarctica.

The Antarctic convergence, which coincides with an important biogeographic boundary between the Antarctic and Subantarctic provinces for most planktonic and many benthic invertebrates, apparently has little effect on Macrocyprididae in the far South Atlantic. The abyssal Scotia Basin, likewise, does not constitute the barrier that it does for benthic foraminifera (Herb, 1971), as six of the ten Antarctic mainland species of Macrocyprididae also occur around Cape Horn, Burdwood Bank, and South Georgia (Text-fig. 7, 8). Of the 19 Antarctic and Subantarctic species of Macrocyprididae, 10 species occur at just one station, nine occur north of the Antarctic convergence, five to the south of this line, and five occur both north and south of this line (see Text-fig. 7, 8). Of the nine species that recur at two or more stations, two occur only to the

Text-fig. 6. Collecting stations in the southwestern Atlantic and southeastern Pacific oceans.
north, two only to the south, and five both to the north and south of this line.

Kaesler et al. (1977) delineated the effect of the Antarctic convergence on myodocopine (cypridinacean) ostracode distribution by cluster analysis and ordination of part of Kornicker's (1975) data (six of 88 species occurring at five or more of 64 stations). Kornicker's data set is qualitatively similar to, though more comprehensive than, the data base for this monograph and, in fact, includes many of the same stations. A comparable selection of data for Macrocyprididae comprises six species recurring at 56 stations. The resulting nexus of similarities distinguishes very sharply a compact cluster of inland Magellanic stations with $M x$. amoena and Mh. heroica from a larger, rather diffuse constellation of intermingled Antarctic and

Text-fig. 7. Geographic distributions of species in the southwestern Atlantic and southeastern Pacific oceans.

Subantarctic stations with assorted Mk. glacierae, Mh. inaequala, Mh. opaca, and especially Mh. turbida. It is not surprising that Macrocyprididae are less sensitive oceanographic indicators than Cypridinacea. Cypridinacea are taxonomically and ecologically much more diverse, with many tens of genera and several hundred living species, with abundances averaging half of the total ostracode standing crop at any locality, with varied life habits ranging from actively swimming predators to infaunal filterfeeders, and with diverse life histories that may include an epipelagic mating stage or brooding the young. Hence, they participate in more trophic levels of oceanic communities than do the rarer, benthic, detritus-feeding Macrocyprididae.

There is a little evidence for depth zonation of macro-
cypridid species in Antarctic and Subantarctic waters but none for submergence. Indeed, the data plotted in Text-fig. 9 for stations within the depth range and geographic range of Mh. turbida, the most common Antarctic species, seem to show, very roughly, a reverse phenomenon. Occurrences of Mh. turbida are concentrated in the shallow parts of its depth range in lower latitudes and at deeper levels in higher latitudes. This trend may be spurious, to the extent that fewer shallow samples were available in Antarctic coastal waters. Yet, it is likely that the ice cover and influx of glacial detritus render nearshore Antarctic benthic habitats even less suitable for Macrocyprididae than those of other continents, while the usual population acme at the shelfslope break occurs at a greater depth than usual because of glacial loading of the Antarctic crust.

MOZAMBIQUE CHANNEL

The available samples are insufficient to do more than hint at the species diversity and geographic ranges (Text-fig. 10). The intensive shallow-water sampling around Nosy Be, Madagascar (Text-fig. 11), produced three species of Macrocyprina, two of which are very rare. The low specimen counts for other species elsewhere in this region result from small sample size, however.

EASTERN PACIFIC OCEAN

On the southern California shelf off Santa Barbara and La Jolla, Mn. barbara provides the northernmost occurrence of Macrocyprina known on the Pacific coast of North America (Text-fig. 4). Swain (1969) and Swain and Gilby (1974) found no Macrocyprididae in their collections from the shelf off northern California, Oregon, and Washington. Valentine (1976) did not include any Cypridacea in his comprehensive biogeographic analysis of Holocene Ostracoda of the West Coast. Mn. swaini is recorded from Scammon Lagoon in Baja California and the Gulf of California. Mn. vargata is endemic to Clipperton Island reefs.

Bathyal, abyssal, and even hadal stations west of Central and South America yield many very large species of Macropyxis (Text-fig. 4, 7). Mx. kalbi, the largest of all, is known to range from approximately $13^{\circ} \mathrm{N}$ to $10^{\circ} \mathrm{S}$ latitude and from 2599 to 6134 m in depth. Mx. kaesleri ranges from approximately $8^{\circ} \mathrm{N}$ to $17^{\circ} \mathrm{S}$ and from 1749 to 6134 m . $M x$. antonbruunae is known from roughly $5^{\circ} \mathrm{S}$ to $28^{\circ} \mathrm{S}$ and 4332 to 6134 m . The co-occurrence of all three of these species at AB-11-113, 5986-6134 m depth, on the edge of the Peru-Chile trench, marks the deepest occurrence of Macrocyprididae and, indeed, the deepest occurrence of living cypridacean Ostracoda yet recorded. Equally dramatic is the latitudinal range of Mx . eltaninae from $10^{\circ} \mathrm{S}$ on the edge of the Peru-Chile Trench to almost $62^{\circ} \mathrm{S}$ in the South Shetland Islands and from 3149 to $5666 \mathrm{~m} . M a$.

Text-fig. 8. Collecting stations and geographic distributions of species in Antarctic and subantarctic waters.
semesa, the only species of Macrocypria yet known outside the North Atlantic, has been found at three Eltanin stations south of Lima, Peru, between 3402 and 5195 m . An unnamed species of Macrocypris also occurs here.

The taxonomic resemblance of the East Pacific abyssal fauna to North and central Atlantic species shows an effec-

Text-fig. 9. Occurrences of Macroscapha turbida at stations within its bathymetric and latitudinal range. Vertical scale shows depth in meters; horizontal scale indicates south latitude; closed circles represent 28 stations yielding Mh. turbida; open circles represent 28 other stations without Mh. turbida but yielding other species of Macrocyprididae. Occurrence data taken from this study (see Appendix III) and from Hartmann $(1986,1987)$.
tive trans-isthmian corridor and a conservative pace of Cenozoic divergence. The large size of these East Pacific species may reflect food-rich sediments generated by high biological productivity in cool surface waters.

The northernmost representative of the southern swarm of Macroscapha species is Mh. sinuata, which ranges roughly 16° to $25^{\circ} \mathrm{S}$ and 1025 to 2858 m (Text-fig. 7, 12). Mh. marchilensis is known only in relatively shallow waters near central Chile. The Strait of Magellan and associated fjords and channels of southern Chile are abundantly populated by $M x$. amoena and Mh. heroica. Here also the northernmost occurrences of characteristic Antarctic species begin, first Mh. turbida, and then, south of Cape Horn, Mh. tensa, Mh. inaequata, and Mh. opaca. The much higher species diversity of Macrocyprididae in the southeast Pacific than in the southwest Atlantic is not an artifact of sampling. Again, it probably results from the food-rich sediments and higher biological productivity in these cold, nutrient-rich waters.

AUSTRALIA AND NEW ZEALAND

The seas around Australia and New Zealand appear to be rich in species of Macrocyprididae, but available

Text-fig. 10. Collecting stations and geographic distributions of species in the Mozambique Channel and western Indian Ocean.
collections were insufficient to analyze their distributions (Text-fig. 13). Whatley (1983) indicated the presence of one Miocene bathyal species of "Macrocypria" (including Macrosarisa) and three Quaternary abyssal species of "Mac-
rocypris" (probably including Macromckenziea and Macropyxis) in drilling sites of the Deep Sea Drilling Program in the southwestern Pacific. He stated that during this time many bathyal stocks invaded abyssal depths, causing in-

Text-fig. 11. Collecting stations around Nosy Be , northwestern Madagascar.

Text-fig. 12. Collecting stations in the Strait of Magellan and nearby region.
creased species diversity in abyssal faunas, decrease in species restricted to bathyal depths, and increase in species ranging from bathyal into abyssal depths. It is certainly true that many of the macrocypridid species in this region are atypical representatives of the genera to which they are assigned, and that normally shallow-water morphotypes seem to occur in deeper locations than is usual elsewhere. Whether this represents a second, late Cenozoic invasion of deeper habitats by Macrocyprididae or whether it simply shows the inadequate sampling and lack of soft-part control cannot yet be determined.

Only two genera are common in the bathyal materials studied, Macromckenziea and Macroscapha. Mk. gregalisdominates a single sample on the Tasman Ridge that is unusually rich in Macrocyprididae, yielding also Mh. jäangi and three other species. Curiously, other stations of this transect have yielded no Macrocyprididae. Exceptionally abundant barnacles, attached foraminifera, echinoderm fragments, and bryozoans suggest the proximity of hard substrate and an unusual community for the 960 m depth of this station. Mk. swansoni is common in the Tasman Sea, accompanied by five rare, unnamed, and sometimes perplexing species of Macromckenziea, Macropyxis, and Macroscapha. Mn. hartmannioccurs near Albany, southwestern Australia, and Mn. quadrimaculata on the southern part of the Great Barrier Reef. Several unnamed species of Macrocyprina show the likelihood that many others await discovery.

CENTRAL AND NORTH PACIFIC AND INDIAN OCEANS

Regrettably, no deep-water collections were available from most of the Indian Ocean and the Central and North

Pacific Ocean, and the relatively few South Pacific samples did not happen to yield Macrocyprididae. The published record of Macrocyprididae from these regions is also meager, reflecting the lower intensity of oceanographic exploration. Abyssal species of Macropyxis ought to be fairly numerous, although the relatively low biological productivity and great depths over much of this region suggest that standing crops will be low and difficult to sample adequately.

It is likely that a swarm of Macrocyprina species infests Indo-Pacific island reefs in the same fashion as in the Caribbean. Two species are described here from Okinawa, and many others have been noted in collections from Indonesia, the Philippines, the Hawaiian Islands, and elsewhere. Most are not described here, because specimens were few and soft parts were not widely available for taxonomic control.

TAXONOMIC ASPECTS OF GEOGRAPHIC VARIABILITY

Morphological differences between geographic populations are present but generally slight, so far as soft parts and most carapace features are concerned. The ventral margin and posterior angle of the carapace seem especially liable to subtle variation, and as these parts of the carapace are also the sites of most sexual dimorphism and intra-population variability, the geographic component of this variability may not be easy to isolate.

Far more conspicuous are the size differences among populations, which might allometrically determine these minor shape differences, although this has not been analyzed. Size consistently increases with depth for bathyal species, although some of the abyssal and hadal species

Text-fig. 13. Collecting stations and geographic distributions of species around Australia and New Zealand.
show a reversal of this trend, and shallower species are inconsistent. Because samples from different depths often represent geographically distant populations from ocean basins with distinct hydrographic parameters as well, it is not always possible to discriminate the separate effects of these factors on size and shape. The length-height graphs analyze these bathymetric trends for the species described in this volume, and the plates illustrate selected specimens from different geographic populations of each species. The differences are not usually a source of taxonomic difficulty, except in the case of single juvenile or female specimens from isolated geographic localities.

For the most part in this monograph, geographically isolated single specimens are treated as separate species in open nomenclature, especially if their inclusion in another species would greatly enlarge the morphologic, geographic, or bathymetric scope of that species. This may seem excessively cautious, but in fact so-called splitting and lumping in practical taxonomy are much like Type I and Type II error in statistics: both are undesirable, yet one is inevitable, and to minimize one necessarily increases the risk of the other. Only if the associated costs are asymmetrical can a choice be made a priori between these types of error. Hitherto, the species concepts applied to the Macrocyprididae have been so broad as to be worthless for biogeographic or biostratigraphic interpretation, so it is appropriate to test the efficacy of much stricter definitions here.

SUPERSPECIES IN THE DEEP SEA?

It is a common misconception that stable physical conditions in the abyss should cause deep-sea species to have very broad or even cosmopolitan geographic ranges. Lacking the extensive collections and soft-part anatomy necessary to discriminate deep-sea species, many workers have opted to treat them as global in range and broadly inclusive in morphologic scope-truly a self-fulfilling prophecy. Brady's (1880) overly conservative taxonomic disposition of Challenger ostracodes generated a century of misidentification of these classic species.

Of course, the smooth, cypridiform taxa have suffered most under this view. Even Hartmann and HartmannSchröder (1988), arguing emphatically and accurately that very few, if any, deep-sea ostracodes have especially broad geographic ranges, paused to cite "Macrocypris similis," Argillocia pusilla, and "Aglaiocypris meridionalis" as evidence that Cypridacea are exceptions to this rule! This they are not! The eight listed species of deep-sea "Macrocypris" (Hartmann, 1985; Hartmann and Hartmann-Schröder, 1988) have grown to a minimum of 60 species in three genera in the present monograph, while large tracts of the world ocean with their presumptive macrocypridid inhabitants remain uncensused. Not one of the eight cited species, it should be repeated, has a global or even hemispheric distribution on present evidence. The real $M x$.
similis, in particular, remains so elusive as to be, in all probability, confined to an unusually small sector of the central-western Atlantic Ocean.

Whatley and Ayress (1988), in a stupendous synthesis of global Quaternary deep-sea ostracodes, asserted that a very large proportion of deep-sea species have pandemic distributions. The validity of this allegation must await thorough taxonomic analysis of many families. It is of interest, however, that their tables show Macrocyprididae to be an exception, with no species listed in common among the Atlantic, Indian, or Pacific oceans. That endemism is in accord with the findings of the present study and signals caution in the interpretation of other taxa.

The geographic and genetic structure of population variability in deep-sea Ostracoda has been a matter for puzzlement, conjecture, and controversy ever since Brady (1880) first marveled at the heterogeneity of carapace ornament in his "Cythere dictyon." However, Sylvester-Bradley (1976, p. 36) pointed out that, this variability is not random; rather, it is systematic and directional, that is, clinal:

> The pattern of speciation found in psychrospheric ostracods seems to differ from that found in shallowwater faunas. Most of the species are cosmopolitan. They show some geographic variation, but this variation seems not to be discontinuous. Where the data are sufficient to indicate a pattern, it seems that clines are established between one area and another. One hypothesis would suggest that this pattern is controlled by the same genetic mechanism that produces "ecotypes" in plants.

Maddocks (1977) attempted to apply the superspecies concept of Mayr (1969) to Macrocyprididae. Although the species concepts of that paper turned out to be too broad, too plastic, and not accurate, the superspecies, defined as an array of geographically contiguous species of close evolutionary affinities, remains a very attractive principle. Such sequences of species may mark the routes taken by stocks migrating from one ocean basin into another, or one bathymetric realm into another. Unsequenced or randomly juxtaposed constellations of species might represent vicarience events, speciation in parts of formerly farflung ancestral populations. Macrocyprididae would be a suitable taxon on which to test such hypotheses.

Given the difficulties of distinguishing fossil species of cypridiform Ostracoda accurately, it may be that in the future the most useful unit for analyzing global paleobiogeographic and biostratigraphic trends of deep-sea ostracodes will be the superspecies. The results of this taxonomic revision show that, contrary to previous reports, no species of Macrocyprididae has a worldwide distribution. In like manner, the two- and three-ocean distributions of some other Cenozoic deep-sea ostracodes, such as those reported by Whatley and Ayress (1988), may prove to represent superspecies as well.

Table 6. Numbers of species of Macrocyprididae found in 479 living and dead (but not fossil) samples.

Number of Species	Number of Samples
0	$1000+$
1	355
2	84
3	32
4	5
5	3
Total	479

DIVERSITY AND SYMPATRY

Much has been made of the apparent species poverty of deep-sea faunas and of their characteristic smooth-shelled genera. Of course, the inability to distinguish macrocypridid species has contributed to the reputed monotony of abyssal assemblages. Difficulties in obtaining and processing sufficiently large samples, whether measured by volume, area, or number of specimens, have hampered assessment of true abyssal diversity. Whatley and Coles (1987) and Whatley and Ayress (1988) have emphasized that when very large samples are picked, including the tiniest fractions, the number of species recovered rises dramatically. For Macrocyprididae one should add that, because of their large size, nondescript juveniles, and relative rarity, recognition of species requires much larger volumes of relatively coarse grain-sizes than are normally retained for micropaleontological study.

Sampling considerations aside, it remains true that the within-sample diversity of Macrocyprididae is always low. Of 479 Holocene (subfossil and living) samples listed in Appendix I, fully 355 (74 percent) produced only one species. Another 84 yielded two species, but only 32 yielded three species, only five yielded four species, and only three yielded five species (see Table 6). It must be remembered that more than twice this number of samples were searched but did not yield any Macrocyprididae and are not included in Appendix I. This nearly Poisson distribution of species per sample contrasts with the log-normal frequency distributions of Kornicker (1977) for MyodocopinaCypridinacea, which average three or more species per sample. Of course, Cypridinacea are of higher taxonomic rank and greater global diversity, with 400 to 500 living species (Kornicker, 1977) compared to the 123 living species of Macrocyprididae described here, and are ecologically more varied.

Steineck et al. (1984) speculated that the low incidence of sympatry of congeneric species in the deep sea results from the monotonous substrate. This premise seems especially valid for the bottom-crawling, sediment-eating Macrocyprididae. By contrast, ostracode genera suspected of
trophic dependence on other invertebrates, such as Propontocypris and Xylocythere in deep-sea wood-fall communities, regularly present up to three coexisting species (Maddocks and Steineck, 1987). Unlike many other invertebrates, Macrocyprididae show low levels of sympatry in shallow waters as well, for which the constancy of diet and substrate preference may be equally responsible. It is instructive that, of the eight samples yielding four or five species of Macrocyprididae, four were taken at a depth of 96 m on the Flower Gardens, which are shelf-edge coral banks in the northwestern Gulf of Mexico where reefal and clastic-shelf species mingle in an ecotone assemblage. Another sample (E-39-32 at 960 m depth) in which two distinct but adjacent habitats are recorded is a planktonic foraminifer-pteropod ooze rich in barnacles, brachiopods, bryozoans, attached foraminifera, serpulids, echinoderm plates, and other indicators of a nearby deep-water biotic reef or hardground.

BATHYMETRY

Table 7 shows the depth distribution of 207 stations yielding live Macrocyprididae for this study. The distribution is greatly influenced by the provenance of samples. For example, the Nosy Be collections yield 23 of the 59 samples shallower than 51 m . Even so, it is apparent that Macrocyprididae are represented at all depths in the world ocean, from euhaline coastal waters to hadal depths.

Many workers have recognized that Macrocyprididae are especially abundant in and characteristic of deep-sea assemblages. Though always less numerous than Krithidae, various Bairdiacea, and ornate Cytheracea, Macrocyprididae are typical members of bathyal and abyssal faunas. Neale (1985) summarized the percent contributions of this family to living deep-sea faunas of the Bay of Biscay: 14.5 percent between 1000 and $2000 \mathrm{~m}, 1.2$ percent between 2000 and $3000 \mathrm{~m}, 17.2$ percent between 3000 and

Table 7. Bathymetric distribution of 207 samples yielding live Macrocyprididae for this study.

Depth (m)	Stations
$0-50$	59
$51-100$	18
$101-200$	24
$201-500$	26
$501-1000$	11
$1001-2000$	15
$2001-3000$	14
$3001-4000$	18
$4001-5000$	10
$5001-6000$	6
$6001+$	1
Total	202

4000 m , and 3 percent between 4000 and 5000 . McKenzie and Peypouquet's (1984, p. 294) characterization of the sea floor below 4500 m as "virtually an azoic zone" is misleading; taxonomically diverse Ostracoda including Macrocyprididae are represented at depths exceeding 6000 m , although population densities may be very low. The record depth for any ostracode is held by two pelagic forms (Myodocopida, Halocypridacea), Metaconchoecia abyssalis Rudjakov, 1962, and Paraconchoecia vitjazi Rudjakov, 1962, at 9000 m in the northwest Pacific, according to Hartmann's (1985) compilation. Among the benthic Podocopida, both Bairdiacea and Cytheracea have been reported from hadal depths: Zabythooppris heliaina Maddocks, 1969b, at 6184 m in the Peru-Chile Trench, Krithe selosa Rudjakov, 1961, at 6487 m in the Java Trench, and Vitjasiella belyaevi Schornikov, 1976, at 5100 m in the Kamtchatka Trench. The co-occurrence of Mx. kalbi, Mx. antonbruunae, and $M x$. keesleri at $\mathrm{AB}-11-113$, depth 5986 6134 m, in the Peru-Chile Trench marks the deepest record of Cypridacea to date.

EVOLUTION

SYSTEMATIC POSITION

Macrocypriswas initially classified by Brady (1868a, 1868b) in the family Cypridae of Sars's (1866) classification, which also included Bairdia and Pontocypris. After the separation of the family Bairdiidae by Sars (1887), Brady and Norman (1889) referred the genus to that family. Müller (1912) established the Macrocyprinae parallel with Pontocyprinae and three other subfamilies within the family Cypridae. Since then, its systematic position has continued to oscillate, although nearly all authors agree that it has affinities to both the cypridaceans and bairdiaceans.

Alm (1915) and Sars (1922-1928) ranked Macrocyprinae as one of five subfamilies of Cypridae, along with Bairdiinae and Darwinulinae. Sylvester-Bradley (1948) elevated it to the family Macrocyprididae within the superfamily Bairdiacea. Pokorný (1958) ranked Macrocyprididae as one of five branches of the suborder Podocopa, parallel with Bairdiidae, Cyprididae (including Pontocypridinae), Cytheridae, and Darwinulidae, in a classification without superfamilies. Sylvester-Bradley (1961) included the Macrocyprididae with Beecherellidae and Bairdiidae in the Bairdiacea. Triebel (1960) analyzed the supposed similarities between macrocypridid and bairdiacean musclescar patterns and emphasized the cypridacean affinities of the appendages and genitalia, reassigning the Macrocypridinae to the Cyprididae. Morkhoven $(1962,1963)$ and Hartmann (1964b) also ranked the Macrocypridinae as one of seven or eight subfamilies (including Pontocypridinae) within the family Cyprididae. This placement was followed by Hartmann (1966). Reluctantly accepting the higher ranks of Sylvester-Bradley (1961), Hartmann and Puri (1974) placed Macrocyprididae as one of six families
of Cypridacea. Similar arrangements have been adopted by Pokorný (1978) and De Deckker (1979). Meanwhile, Maddocks (1969a, 1976, 1977, and herein) and Danielopol (1976) have attempted to revive Alm's tripartite division of Cypridacea into families Macrocyprididae, Pontocyprididae, and Cyprididae.

Gründel (1967) again elevated the classification, proposing the suborder Bairdiocopina with superfamilies Bairdiacea, Darwinulacea, and Cypridacea. He included Macrocyprididae in Cypridacea but emphasized the bairdiid aspect of its scars. Kozur (1971) likewise retained Macrocyprididae in Cypridacea but transferred the subfamily Acratiinae Gründel, 1962, from Bairdiidae to Macrocyprididae to accommodate supposed late Paleozoic and Triassic ancestors of Macrocypridinae (Jurassic to Holocene). Kozur (1972) resurrected the suborder Cypridocopina of Jones (1901), parallel with Bairdiocopina and Cytherocopina, to contain Cypridacea, Darwinulacea, Macrocypridacea, Bairdiocypridacea, and three metacopine superfamilies. Raising the taxon to a superfamily, he stated (p .14) that the "Macrocypridacea" ought to exhibit equally close soft-part relationships to Healdiacea (including the living Saipanetta), Cytheracea (especially Bythocytheridae), Bairdiacea (especially Bythocypridinae), and Cypridacea. That prediction is not upheld by the results of this study. They originated, he said, either directly from the Bairdiocypridacea but distinctly earlier than the Cypridacea, or else from a side branch of the Bairdiocypridacea that also produced the common ancestor of the Cytherocopina and Bairdiacea (Kozur, 1972).

Hartmann and Puri (1974, p. 56) warned somewhat ambiguously that "the Macrocyprididae are the most original group of Cypridacea, but they include in their organization a series of characters of Candonidae s. L." By this, they probably meant that Macrocyprididae are more primitive than other Cypridacea, and that they may be closely related to the ancestral stock of that superfamily. In "Candoninae s. l " they included all the marine and brackish Cyprididae, that is, the Candoninae, Cyclocypridinae, Paracypridinae, and Thalassocypridinae. While some similarities exist between Macrocyprididae and Paracypris, for example, many of these may be the result of convergence in life habits.
W. A. van den Bold (1974) suggested that Macrocyprididae do not belong in either Bairdiacea or Cypridacea but should be placed in a new, unnamed superfamily together with Saipanettidae as the modern descendants of Healdiidae. These he tentatively placed in Podocopina, leaving Darwinula in Metacopina, while stressing affinities between Darwinula and Macrocypris and admitting that the boundary between Metacopina and Podocopina remains unclear. These and other contradictory definitions of the contentious taxon Metacopina were briefly analyzed by Maddocks (1982) (but see McKenzie, 1975, for an opposing view). Maddocks's (1976) numerical phenetic and cladistic analyses of antennule and antenna characters
repeatedly separated Macrocyprididae from other Cypridacea and from Bairdiidae, but the closest connection was usually to Bythocyprididae rather than to Saipanella. Again, the present study shows no close resemblances of Macrocyprididae to Darwinulacea.

Gründel (1978) classified the Macrocypridacea in the Bairdiocopina again, citing bairdiacean affinities for the muscle scars and stating that early representatives (not identified or described) are very close to the Bairdiidae, even though living representatives have cypridacean soft parts. His figure 1 derived both Macrocypridacea and Bairdiacea from Beecherellacea but derived Cypridacea from Bairdiocyprididae (both classified in Cypridocopina). He warned that the ever-changing combinations of bairdiacean, cypridacean, and healdiacean hard- and soft-part characters show both the futility of any classification based on only a few key hard-part characters and also the close phylogenetic relationships of these three lineages. He also stressed that an evolutionary classification must be based on the phylogenetic relationships of the ancestors rather than on phenetic similarities of the living descendants and deplored the ambiguous nature of the Paleozoic evidence at present (Gründel, 1978).

In this monograph, the family Macrocyprididae is classified with Pontocyprididae and Cyprididae in the superfamily Cypridacea. It contains eight genera, all living, but no subfamilies are delineated. While it would be possible to represent the close relationships of Macrocypris with Macropyxis and Macromckenziea, of Macrocypria with Macro-cyprissa and Macrosarisa, and of Macroscapha with Macrocyprina by naming three subfamilies or tribes, there would be no benefit and some risk in doing so. The eight genera studied have Cenozoic, Cretaceous, and probably Jurassic species (see Appendix I). The Triassic and Paleozoic forebears, whatever they may be, have not been well studied; and taxonomic flexibility should be left within the family to accommodate them as necessary. Appendix I lists other species, not studied, that appear from their published descriptions and illustrations to be valid Macrocyprididae. Appendix II presents a much longer list of species that probably ought not to be classified in Macrocyprididae on the basis of present information. For the purpose of compiling these appendices the diagnostic characters of modern Macrocyprididae were the arbitrary standard.

The appendages and genitalia of Macrocyprididae are indubitably cypridacean in character. By comparison with those of Pontocyprididae and Cyprididae, they have a conservative, generalized, possibly archaic aspect. In turn, it is somewhat easier to trace structural homologies of these parts through the Macrocyprididae to other Podocopida than would be the case with the other families of Cypridacea. The muscle scar pattern is unique, neither bairdiid, pontocypridid, nor cypridid, although occasional, possibly spurious homologies with all three suggest themselves. The hinge and dentiform corner are unique spe-
cializations, while the right-valve overlap, broad calcification of the juvenile inner lamella, and distinctive pores and setae emphasize the separate identity of the macrocypridid carapace. In short, the family Macrocyprididae stands firmly within the superfamily Cypridacea but perhaps near the ancestral stock. There are almost no detailed similarities to Bairdiacea, Cytheracea, Darwinulacea, or Sigilliacea (Saipanetta).

FOSSIL RECORD

Gründel (1962) established the subfamily Acratiinae within the Bairdiidae for the genera Acratia Delo, 1930, Bohlenatia Gründel, 1962, Camdenidea Swain, 1953, and (with reservations) Bairdianella Harlton, 1929. Sohn (1960) dismissed Bairdianella as based on a steinkern. Kozur (1971) left Bohlenatia in the Bairdiidae, interpreting resemblances to Acratina as homeomorphic. He transferred the remaining two genera of Acratiinae to the family Macrocyprididae in the superfamily Cypridacea, adding Acratina Egorov, 1953, and Praemacrocypris Kozur, 1971. Kozur's argument depends on Swain's (1953, p. 279) verbal description of the muscle scar pattern of Camdenidea: "Muscle scar a large medially placed spot, bordered by a shallow groove and consisting of numerous smaller slightly elevated spots; accessory spots occur anteroventrally of the main spot." Swain did not illustrate the scar, and the description would fit nearly all cypridacean and bairdiacean patterns. Copeland (1977) stated that "the position within the Cypridacea of Camdenidea and related Paleozoic forms is unknown." Sohn (1975) reillustrated the holotype of the type species of Acratia and provided a new diagnosis, emphasizing the rostrate shape. He considered Acratina to be a synonym of Acratia and queried the validity of Acratia (Cooperuna) Gründel, 1962, and of Egorovia. Sohn assigned Acratia and the Acratiinae to the Bairdiidae without discussion.

Kozur (1971) postulated the evolutionary series Camdenidea (Devonian) to Acratina (Devonian-Upper Triassic) to Praemacrocypris (Triassic) to "Macrocypris" (JurassicHolocene). Triassic species of Acratina, he said, already have acquired a broad duplicature (but he failed to state whether this is true of juveniles as well as adults), while the transition from left-valve to right-valve overlap may have occurred in either Praemacrocypris or "Macrocypris." Praemaorocypris supposedly differs from "Macrocypris" only in having a smooth hinge, but its valve overlap is unknown, and Kozur (1971) did not illustrate this hinge or describe any muscle scars. He further stated that, if the muscle scars of Acratia turned out to be macrocypridid, and the hinge of Macrocypria turned out to be smooth, then Macrocypria should be transferred to the Acratiinae as a living descendant of Acratina.

The medially inflated, ventrally flattened, anteriorly and posteriorly acuminate shapes of species of Acratia do, indeed, resemble living Macrocypria and also several

Cretaceous species of Macrosarisa. However, homeomorphy of shape is so common in ostracodes that much additional evidence is needed. If right-valve overlap were to be demonstrated in Praemacrocypris, this would support Kozur's hypothesis; but left-valve overlap would not contradict it, because reversal of valve overlap is known at many times and taxonomic levels in the history of Ostracoda. Although right-valve overlap today uniformly characterizes living Macrocyprididae, the existence of even one pathological individual with left-valve overlap (specimen 1999F of Ma. sarsi) demonstrates that the genetic or developmental mechanism is simple and still exists. Obviously, the muscle scars of the Paleozoic and Triassic representatives should be examined, because the nearly perfect conformity of younger Macrocyprididae to a single pattern gives hope of great antiquity for this key character. Hinges also need more systematic investigation; the five-part macrocypridid hinge is probably not homologous with the hinges of other Cypridacea or Bairdiacea, and detecting its origin would clarify these relationships. The broad, well calcified duplicatures of instars and sexual dimorphism of adults are other diagnostic attributes of modern Macrocyprididae that might be recognized, but it will be necessary to collect much larger fossil populations for these species than has normally been the case. The most promising line
of investigation would be to determine whether the rostrum and ventral indentation of Acratia include homologues of the dentiform corner of Macrocypria, Macrocyprissa, and Macrosarisa. The prevalence of the dentiform corner in Cretaceous macrocypridids makes it likely that this is an archaic character. Incidentally, demonstrating this homology would overturn a common misconception: Мастocypria would become an ancient, conservative stock rather than a modern aberration, while the nominotypical Macrocypris would be a relative newcomer. The known stratigraphic ranges of these genera support this interpretation.

No confirmation of this or conflicting phylogenies is offered, because only Cretaceous and Cenozoic species were studied. Macrocyprididae presumably originated in the late Paleozoic or early Mesozoic, but most published descriptions and illustrations of possible relatives for this age are not detailed enough to compare them with the taxa described here. This monograph will not add another speculative phylogeny to the chimerical hypotheses that already outnumber the species placed in evidence. Rather, the taxonomic diversity and morphological attributes documented here for younger Macrocyprididae will provide a more accurate and comprehensive standard of reference against which the ancient representatives may later be interpreted.

SYSTEMATIC DESCRIPTIONS

Order PODOCOPIDA Müller, 1894
Superfamily CYPRIDACEA Baird, 1845

Family MACROCYPRIDIDAE Müller, 1912

Macrocyprinae Muller, 1912, p. 120; Alm, 1915, p. 28; Sars, 1923, p. 57.
Macrocypridinae Müller Kozur, 1971, p. 10.
Macrocyprididae Müller Sylvester-Bradley, 1948, p. 67; Pokorny, 1958, p. 123; Sylvester-Bradley, 1961, p. 207; Hartmann and Puri, 1974, p. 56; Pokorny, 1978, p. 138.

Type genus.-Macrocypris Brady, 1868b.
Genera included.-The eight genera are listed in the following sequence in the systematic descriptions and illustrations of this monograph:

Macrocypris Brady, 1868b
Macromckenziea n. gen.
Macropyxis n. gen.
Macrocypria Sars, 1923
Macrocyprissa Triebel, 1960
Macrosarisa n. gen.
Macroscaphan. gen.
Macrocyprina Triebel, 1960
Three of these have previously been ranked as subgenera, and it may become desirable later to reestablish a hierarchial arrangement of subgenera within larger genera after more is known of their origins. Obviously, Macropyxis and Macromckenziea are related to Macrocypris, Macrocyprissa and Macrosarisa to Macrocypria, and Macroscapha to Macrocyprina. However, the more narrowly defined genera show ecological and perhaps geographic unities that would disappear if they were combined. Little would be gained except longer names. As one purpose of this monograph is to test and clarify specific and generic concepts, they are treated here simply as eight separate genera.

Genera excluded.-On the basis of published information, the following genera probably do not belong to the family Macrocyprididae as here revised: Acratia Delo, 1930; Acratina Egorov, 1953; Camdenidea Swain, 1953; Novocypris Ducasse, 1967; Praemacrocypris Kozur, 1971; and Pseudomacrocypris Michaelsen, 1975. In addition, Paramacrocypris Colalongo and Pasini, 1980, is a junior subjective synonym of Macrocyprissa.

The four genera (Acratia, Acratina, Camdenidea, Praemacrocypris) that Kozur assigned to the subfamily Acratiinae within the family Macrocyprididae do not show the diagnostic characters of modern Macrocyprididae, and the postulated ancestral relationship remains tenuous on present evidence. See discussion under "Evolution" above. Delineation of subfamilies is deferred until the early evolution of this family is better known.

Pseudomacrocypris has right over left valve overlap but in all other ways lacks the diagnostic characters of Macrocyprididae, contrary to statements by Michaelsen (1975). It
is very close to and perhaps synonymous with Propontocypris and is here reassigned to the family Pontocyprididae. The "rosette of $5-6$ spots" described (p. 180) and illustrated by Michaelsen (1975, pl. 2, fig. 21) for the type species, Pseudomacrocypris subtriangularis Michaelsen, and the "central rosette of 5 scars" specified (p. 75) by Kaye (1965, pl. 41, fig. 578-579) for Pseudomacrocypris parva (Kaye) (see also Plate 113.6) prove to be the diagnostic muscle-scar pattern of Propontocypris. The hinge, described by Michaelsen (1975, p. 130) as "dentate" and "tripartite," is unusual for Pontocyprididae chiefly in being very robust and finely striated. Such features are liable to convergence. Careful comparison of this hinge with those of other early Mesozoic Pontocyprididae and Macrocyprididae, however, might show whether any homologies can be traced between the hinges of these two cypridacean families. The laterally compressed carapace, subtriangular to subovate lateral outline, tiny size $(\mathrm{L}=0.41 \mathrm{~mm})$, smooth exterior with numerous tiny normal pore canals, right valve overlap, straight dorsal valve-contact line, and deep vestibules are all typical characteristics of Propontocypris. The unusual development of the hinge and the age (Early Jurassic to Early Cretaceous) of Pseudomacrocypris justify retaining it as a genus separate from but closely related to Propontocypris within the Pontocyprididae, at least for the time being.

Novocypris, described by Ducasse (1967) from the Eocene of France and correctly assigned to the Cyprididae, has left valve overlap and a paracypridine muscle scar pattern. The robust, taxodont hinge consists of a uniform row of rounded denticles and sockets without division into three or five hinge elements. It is not homologous with the macrocypridid hinge. The carapace shape is similar to that of several other paracypridine genera, especially Tasmanocypris McKenzie, 1979, and Triangulocypris Teeter, 1975, but the hinge is unique. See Plate 114 and the discussion of N. eocaenana in Appendix II.

Diagnosis.-A cypridacean family with relatively large, elongate, smooth carapace; right valve larger than and overlapping left anterodorsally, posterodorsally, and ventrally; macrocypridid hinge and muscle scar pattern; deep anterior and posterior vestibules, juveniles with broad calcified inner lamella; sensillum pores small, infrequent, funnel-shaped, with simple sensillum setae and a few tas-sel-setae.

Female fifth limb pediform, with four-segmented palp and no vibratory plate; male limb transformed into asymmetrical hooks. Sixth limb pediform, with one long and two shorter setae. Seventh limb with a long, reflexed, feathered cleaning seta and two other smaller setae. Furcae rod-shaped, with one long terminal seta but only vestiges of proximal setae, very large to very small, may be sexually dimorphic. Hemipenes morphologically diverse but less complex than those of Cyprididae. Zenker's organ with enlarged anterior bulb and numerous chitinous spikes, not arranged in rosettes; proximal part of vas deferens differentiated, coiled or looped in distinctive fashion.

Genus MACROCYPRIS Brady, 1868

Macrocypris Brady, 1868a, p. 119 [part.]; Brady, 1868b, p. 391 [part.]; Müller, 1912, p. 120 [part.]; Triebel, 1960, p. 115 [part.]; Sylvester-Bradley, 1948, p. 67 [part.]; Sllvester-Bradley, 1961, p. Q207 [payl.]; Morkhoven, 1963, p. 85 [part.]; SARS, 1923, p. 58 [part.]; Maddocks, 1977, p. 153 [part.].

Type species.-Cythere minna BAIRD, 1850. Species included.-Listed by original binomen:
Cythere minna Baird, 1850; Holocene, northeastern Atlantic.
Macrocypris maiorisn. sp.; Holocene, equatorial and eastern Atlantic.
Macrocypris metuendan. sp.; Holocene, southeastern Atlantic.
Macrocypris miranda n. sp.; Holocene, equatorial and southeastern Atlantic.
Macrocypris nimia n. sp.; Holocene, northeastern Atlantic.
Macrocypris opinabilis n. sp.; Holocene, southwestern Indian Ocean.
Macrocypris proclivis n. sp.; Holocene, southwestern Indian Ocean.
Macrocypris sp. 1; Holocene, southeastern Pacific. Geologic range.-Holocene.
Geographic range.-Known species are restricted to the eastern side of the Atlantic Ocean and adjacent regions of the Indian and Pacific oceans, but this may be an artifact of sampling. The known composite depth range is 54 to 4630 m .

Diagnosis.-Carapace large, smooth; right valve roundedsubtriangular in lateral outline; anterior margin broadly rounded; dorsal margin more or less angulate and higharched, with or without distinct posterodorsal angulation; posteroventral angle sharply acute; ventral margin straight to gently indented, rarely slightly sinuate. Moderately inflated in dorsal view, with greatest thickness located anterior to midlength, posterior margins converging, anterior and posterior ends bluntly rounded. Zone of concrescence fairly narrow, with numerous short, straight to weakly branching radial pore canals, no dentiform corner. Few, small, funnel-shaped sensillum pores with smooth, thick, unbranched setae.

Antennule robust, tapering, with short podomeres and fairly short, thick setae; podomeres II and III flexibly articulated. Antenna robust, with numerous, fairly long, thick, bladelike terminal claws; very long sensory aesthetascs on podomere II; with four fairly long swimming setae on podomere III; anterodorsal setae of podomere IV very long. Podomeres I and II of maxillule palp completely fused without suture; the anterodistal setae of the two podomeres remain distinct.

Palp of male fifth limb forms a right-angled hook on the right side, somewhat more recurved on the left, with a well-developed sensory seta near its base and sensory disk at its tip, two tapering ventral pegs of approximately equal
size, and a ventral seta but no dorsal seta. Female fifth limb robust, having the three distal setae graduated in length with the ventral one the longest or with the middle and ventral setae nearly equal in length. Sixth limb large, with the longest distal seta slightly longer than half again as long as the next-Iongest distal seta. Seventh limb moderately large, with conspicuously feathered, reflexed cleaning seta; one of the two distal setae is much longer than the other and may be nearly as long as the reflexed seta. Furcae quite small, symmetrical; each half consists of a cylindrical rod, which bears a cluster of four proximal setae midway along the ventral surface and a slender, elongate, flexible terminal seta. In several species the furca is dimorphic, with much larger proximal setae in the male or with the terminal seta and distal part of the rod entirely missing in the male, but in other species sexual dimorphism is not obvious. Zenker's organ with a moderately slender, elongate muscular segment and a distinctly broader anterior bulb; vas deferens tightly coiled into four or five circular loops. Hemipenis subtriangular to subrhomboidal to oblong in lateral outline, anterior segment longer or much longer than basal segment; copulatory rod small to medium-sized, slightly curved.

Affinities.-It is ironic that the nominal and most-cited genus of this family turns out to have the fewest species and the most restricted geographic distribution. It is also of interest that, so far, most reported fossil species of Macrocypris turn out to belong to other genera, usually Macropyxis. The species described here comprise a south to north succession along the east side of the bathyal and abyssal Atlantic Ocean, with the smallest, shallowest, and northernmost species being M. minna. The existence of three species in adjacent regions of the Pacific and Indian oceans must restrain any temptation to equate this geographic succession with an evolutionary or migrational sequence, however, at least until comparable sampling has been carried out in other oceans.

MACROCYPRIS MINNA (Baird, 1850)

Graph 1; Figures 2.1-3, 3.1-3, 18.4, 24.1, 25.1,2, $29.14,16,17,32.3,9,36-37.3,39.4,46.1-4,65.7,70.2$, $75.3,4,78.2$; Plates $2.1-4,3.1-4,63.18,64.1,2,78.1,2$, $81.21,82.1,2,5,6,11,12,85.1,98.1,2,110.1$

Cythere minna Baird, 1850, p. 171, pl. 20, fig. 4A-D; SARs, 1863, p. 251.
Bairdia minna (Baird) SARs, 1866, p. 21.
Macrocypris minna (Baird) Brady, 1868a, p. 119; Brady, 1868 b, p. 392 , pl. 27 , fig. $5-8$, pl. 38 , fig. 4 ; Norman, 1869, p. 290; Brady and Robertson, 1872, p. 65; Brady, 1886 (1881-1887), p. 164; Brady and Norman, 1889, p. 117, 243; Ostenfeld, 1906, p. 97; Ostenfeld and Wesen-berg-Lund, 1909, p. 114; Müller, 1912, p. 122; Sars, 1923, p. 59, pl. 24, 25; SOot-Ryen, 1927, p. 19 (fide Elofson, 1941, p. 30); Klie, 1929, p. 11; Elofson, 1941, p. 30, map 12, 13; Elofson, 1943, p. 3; Sylvester-

Bradley, 1948, p. 70; Triebel, 1960, pl. 18, fig. 34; Kesling in Howe et al., 1961, fig. 6 (after Sars, 1922-1928); Neale, 1964, p. 264; Kornicker, 1969, table I, II; ?Danielopol, 1971, p. 596, fig. 1A-C, 2A; Maddocks, 1977, fig. 1, 9 [part.]; Danielopol, 1978, fig. 21A-E, 26G, 27A-E, 28.
?Macrocypris sp. Rosenfeld and Bein, 1978, p. 18, pl. 1, fig. 14.

Not Macrocypris minna (Baird) Tressler, 1941, p. 98, pl. 19, fig. 26; Seguenza, 1880, p. 191; Seguenza, 1883-1886, p. 10; McKenzie et al., 1979, p. 12.

Not Macrocypris sp. cf. M. minna (Baird) Whatley and Coles, 1987, pl. 1, fig. 7.

Material.-Thirty-eight specimens in alcohol, including 1 male, 30 females, 4 juveniles, and 3 valves; and 31 subfossil specimens; for a total of 69 specimens.

Types.-In the British Museum (Natural History), catalog number 1945.9.26.105, labeled "Cythere minna Baird. 114. Zetland, R.," is a round cardboard box containing a smaller pill box. On the floor of the smaller box, glue shows where a specimen was formerly attached. Loose in this box are a paper label (quoted above), a straight pin, and a small black square of paper labeled "Cythere minna. Zetland. n. m. a. $50-60$." in old-fashioned handwriting. Glued on this paper is a tiny fragment of the mid-ventral region of a left valve, which is apparently all that now remains of Baird's type specimen.

Fortunately, there has never been any doubt about the identity of Baird's species, and there is no need to select a neotype. The concept here described is based on Norwe-
gian specimens identified by Sars and on British, Norwegian, and North Atlantic specimens identified by Norman and restudied by Sylvester-Bradley (1948).

Type locality.-"Dredged in from eighty to ninety fathoms of sand, twenty miles east of the Noss in the Shetland Isles, R. M'Andrew, Esq." (Baird, 1850, p. 172).

Occurrence.-In BMNH 1945.9.26.105, one fragment; in BMNH 1900.3.6.166, 2 specimens; in BMNH 1900.3.6.167, 1 specimen; in BMNH 1911.11.8.M.3066, 4 specimens; in BMNH 1911.11.8.M.3067, 4 specimens plus fragments; in BMNH 1911.11.8.M.3069, 4 specimens; in BMNH 1911.11.8.M.3070A, 5 specimens; in BMNH 1911.11.8.M.3070B, 3 specimens; in BMNH 1911.11.8.M.3071, 2 specimens; in BMNH 1911.11.8.M.3072, 1 specimen; in BMNH 1911.11.8.33669-683, 3 live specimens (3F); in BMNH 1911.11.8.33691-694, 2 live specimens (2F); at Ingolf 85, 1 live plus 4 specimens (1F); in UOZMF1485, 29 live plus 3 specimens ($1 \mathrm{M}, 24 \mathrm{~F}, 4 \mathrm{~J}-1$).

Distribution.-Holocene; northeastern Atlantic Ocean on the continental shelf and slope, known live depth range in the material studied 247 to 324 m , known dead depth range 54 to 1326 m .

Brady and Norman (1889) reported M. minna from four additional Talisman dredgings off the west coast of Morocco. This material was not studied, and the identifications have not been verified here. The stations are plotted on Graph 1 to show how their inclusion would extend the known geographic range of M. minna southward and would increase the depth range to 2792 m . Kornicker (1969, table II) provided corrected station data for those stations as follows: Talisman station 55, 22 June
$1883,28^{\circ} 35^{\prime} \mathrm{N}, 13^{\circ} 16^{\prime} \mathrm{W}$, depth 1238 m , bottom temperature $7.2^{\circ} \mathrm{C}$, yellow mud. Talisman station 34,17 June 1883 , $32^{\circ} 31^{\prime} \mathrm{N}, 9^{\circ} 48^{\prime} \mathrm{W}$, depth 1350 m , reddish mud. Talisman station 85,12 July $1883,23^{\circ} 00^{\prime} \mathrm{N}, 17^{\circ} 30^{\prime} \mathrm{W}$, depth 932 m , bottom temperature $7.0^{\circ} \mathrm{C}$, green muddy sand. No further information was provided by Kornicker for "636-1200 m, off West Coast Morocco, June 1883" of Brady and Norman (1889).

Brady (1881-1887) reported M. minna from two additional stations, for which Kornicker (1969) gave the following information: Travailleur station 58, 25 July 1882, $36^{\circ} 40^{\prime} 0^{\prime \prime} \mathrm{N}, 8^{\circ} 11^{\prime} 30^{\prime \prime} \mathrm{W}, 770 \mathrm{~m}$, mud. Talisman station 127 , 11 August $1883,36^{\circ} 12^{\prime} \mathrm{N}, 31^{\circ} 54^{\prime} \mathrm{W}, 2792 \mathrm{~m}$, sand and rocky hard ground, bottom temperature $3.5^{\circ} \mathrm{C}$. These specimens were not seen, and the identifications have not been verified. The stations are plotted on Graph 1 to show how far south and west their inclusion would extend the range of M. minna.

Sars (1923) reported M. minna to be common on the Norwegian coast from Christiania Fjord to the Lofoten Islands, in water depths of 50 to 300 fathoms (92 to 549 m). Elofson (1941) stated that it lives on all types of soft sediments but not on substrates containing hard materials, in a depth range of 53 to 680 m , a temperature range of 4° to $9^{\circ} \mathrm{C}$., and nearly always in salinities above 34%.

Dimensions.-Male 2002M, RVL 2.41 mm , RVH 1.00 mm , LVL 2.39 mm, LVH 0.94 mm . See also Graph 1. The single male is one of the smallest adult specimens and not quite as high in proportion to length as the females. There is a definite tendency for size to increase with water depth. Sylvester-Bradley (1948) reported a range of length for North Atlantic forms of 2.5 to 3.0 mm .

Diagnosis.-Right valve elongate-subtriangular in lateral view, ventral margin nearly straight and weakly indented, posteroventral angle acute, 55° to 60°. Narrow zone of concrescence with short, straight radial pore canals.

Palp of male fifth limb relatively small and elongate. Distal setae of female fifth limb relatively short, clawlike, of graduated lengths, and finely hispid. Furcae of male reduced, consisting of 2 short nubs, each with 4 large proximal setae at the end; the distal portion of each rod and the terminal setae are absent. The female furca is normal for the genus. Male copulatory organ lamellar, rounded-subtriangular in outline, with bluntly rounded distal termination.

Comparisons.-The carapace of M. minna is smaller than that of M. meluenda, M. maioris, M. nimia, and M. sp. 1; is much larger than M. opinabilis, has a more subtriangular lateral outline than M. miranda and M. opinabilis, is not as high in proportion to length as M. maionis and M. metuenda; lacks the posterodorsal angle of M. maioris, M. metuenda, M. proclivis, and M. sp. 1; lacks the tendency toward irregularly branching radial pore canals of M. proclivis, M. nimia, and M. sp. 1, and lacks the terminal spine of M. miranda.

Remarks.-The reduction of the male furcae is unique
in the genus, although a comparable reduction is seen in males of Macropyxis labutisi. The male and female soft anatomy of M. minna was well illustrated by both Brady (1868b) and Sars (1923). Danielopol (1971) illustrated only the antenna and its sensory aesthetascs of material identified as M. minna in the Museum of Natural History, Stockholm.

The specimens reported by Tressler (1941) from two shallow sediment cores in the North Atlantic belong to Macropyxis bathyalensis (USNM 153744) and to Krithe spp. (USNM 153745).
M. minna was reported from the Quaternary of Italy by Seguenza (1880, 1883-1886), but this identification cannot be confirmed (see also Ruggieri, 1973).

The specimen illustrated by Rosenfeld and Bein (1978) from off North Africa appears to be a juvenile, very similar to juveniles of M. minna. By itself it is not sufficient evidence to extend the range of M. minna this far south. The posterior region of juveniles is shortened, although the anterior region generally resembles in shape that of the adult species. This gives juveniles a characteristically high-arched, posteriorly truncate, foreshortened appearance. Juveniles of M. minna would be difficult to distinguish from those of M. nimia, M. metuenda, or M. maioris, unless large populations and a growth-series of each were available. In fact, Brady (1881-1887) reported having mistaken Mk. siliquosa at first for a juvenile of M. minna.

MACROCYPRIS MAIORIS new species

> Graph 2; Figures $2.7,8,3.7,8,18.2,22.18,24.3,25.3,4$, $29.12,32.10,36-37.9,46.9,11,48.1-4,49.1-4$, $56.1,20,35,58.2,59.13,35,60.2,63.12,64.3,66.4,71.2$, 80.1 ; Plates $2.8-12,3.8-12,58.8,59.10,64.3,4,78.3-5$, $82.8-10,85.9,84.6,85.2,3,6,99.5-9,112.11$

Macrocypris minna (Baird) s.l. Maddocks, 1977, p. 153, fig. 1,9 [part.].
Macrocypris n. sp. 4 Maddocks, 1979, pl. 1, fig. 22, 23, pl. 2, fig. 14.

Derivation of name.-Latin maior, -oris, larger, the comparative of magnus, large; because it is smaller than M. metuenda and larger than M. miranda, with which it often occurs.

Material-Twenty-nine specimens in alcohol, including 9 males, 4 females, 15 juveniles belonging to 4 instars, and 1 empty carapace.

Types.-Holotype male 1774M USNM 240258, paratypes USNM 240259-240273.

Type locality.-Atlantis II cruise 42 station $198,10^{\circ} 24^{\prime} \mathrm{S}$, $9^{\circ} 09^{\prime} \mathrm{E}$, depth $4559-4566 \mathrm{~m}$.

Occurrence.-At AII-31-145, 1 live specimen (1J-2); at AII-31-156, 1 live specimen (1J-3); at AII-42-196, 2 live specimens ($1 \mathrm{~J}-1,1 \mathrm{~J}-2$); at AII-42-197, 14 live plus 1 specimens ($6 \mathrm{M}, 2 \mathrm{~F}, 1 \mathrm{MJ}-1,3 \mathrm{~J}-1,2 \mathrm{~J}-2$); at AII-42-198, 10 live specimens ($3 \mathrm{M}, 2 \mathrm{~F}, 1 \mathrm{MJ}-1,1 \mathrm{FJ}-1,2 \mathrm{~J}-2,1 \mathrm{~J}-4$).

Distribution.-Holocene; equatorial eastern Atlantic Ocean, on the continental slope and abyssal plain off North Africa, known live depth range $2185-4630 \mathrm{~m}$.

Dimensions.-Holotype male 1774 M, RVL 2.87 mm , RVH 1.16 mm , LVL 2.78 mm , LVH 1.06 mm . See also Graph 2. Males are longer but proportionally less high than females.

Diagnaris.-Right valve angulate-subtriangular in lateral outline with more or less distinct dorsal angle located above muscle scar pattern; posterodorsal angle indistinct; posterior angle sharp, acute, 50° to 65°; ventral margin nearly straight to obscurely sinuate, with weak anteroventral indentation and slight medial convexity; zone of concrescence fairly broad, up to 25 percent of width of anterior inner lamella; anterior radial pore canals mostly straight, a few weakly and irregularly branching.

Male fifth limb has large, tightly recurved hook, with long ventral sensory seta; upper peg longer than lower one. The middle and ventral distal setae of the female fifth limb are of equal length, the dorsal seta only about half that length. Seventh leg has a long reflexed seta, feathered portion abruptly divided into two segments with different sizes of barbs; the longer of the two distal seta is about as long as podomeres V plus VI. Furcae well devel-
oped, with long terminal setae and large proximal setae in both sexes. Hemipenis swollen, subrhomboidal in lateral outline with acute distal angle, lateral surface flat, medial surface pyramidal with four flat to concave, triangular to crescentic facets sloping away from a median crest.

Comparisons. - M. maioris is smaller than M. metuenda, M. nimia, and M. sp. 1 ; is larger than M. minna and M. proclivis, is proportionally higher with a more pronounced dorsal angle than M. minna, M. miranda, M. nimia, and M. opinabilis, lacks the irregularly branching radial pore canals of M. proclivis, M. nimia, and M. sp. 1 ; and lacks the terminal spine of M. miranda.

MACROCYPRIS METUENDA new species

Graph 3; Figures 1.1-4, 18.1, 22.19, 24.4, 25.13,14, $29.15,32.13,36-37.4,46.5,6,48.6-9,49.6-9,56.1,14$, $57.2,29,58.3,59.11,27,60.5,63.15,23,64.1,43,52,53$, $65.5,70.1,75.2,78.1$; Plates $4.1-6,5.1-6,58.7,78.6,7$, 83.11, 85.4,5, 7-9, 98.8-11, 99.1-4, 110.4, 112.12

Macrocypris minna (Baird) s.L Maddocks, 1977, p. 153, fig. 1,9 [part.].
Mactocypris n. sp. 6 Maddocks, 1979, pl. 2, fig. 7, 17.

Derivation of name.-Latin metuendus, fearful, terrible, dreadful; for its enormous size.

Material- 198 specimens in alcohol, including 46 males, 115 females, 1 of indeterminate sex, 1 empty valve, and 35 juveniles belonging to 3 instars.

Types.-Holotype male 1405M USNM 240274, paratypes USNM 240275-240293.

Type locality.-Atlantis II cruise 42 station $194,22^{\circ} 54^{\prime} \mathrm{S}$, $11^{\circ} 55^{\prime} \mathrm{E}, 2864 \mathrm{~m}$.

Occurrence.-At AII-42-194, 172 live specimens (37 M , 106F, 2FJ-1, 1MJ-1, 20J-1, 4J-2, 2J-3); at AII-42-195, 4 live specimens ($1 \mathrm{M}, 2 \mathrm{~F}, 1 \mathrm{~J}-1$); at V-12-4, 5 live plus 1 specimens ($2 \mathrm{M}, 1 \mathrm{~F}, 2 \mathrm{~J}-1$); at V-14-33, 16 live specimens ($6 \mathrm{M}, 6 \mathrm{~F}$, 1MF?, 3J-1).

Distribution.-Holocene; southeastern Atlantic Ocean, on continental slope and abyssal plain off southern Africa, known live depth range 706 to 3797 m .

Dimensions.-Holotype male 1405 M , RVL 3.50 mm , RVH 1.49 mm , LVL 3.38 mm , LVH 1.40 mm . See also Graph 3. Males may be shorter or longer than females but are never as high proportional to length. Size appears to decrease markedly with depth. This is the largest known species of Macrocyprididae.

Diagnosis.-Carapace gigantic, ranging from 2.8 mm to nearly 3.8 mm in length. Right valve angulate-subtriangular in lateral view, with dorsal angle and greatest height located near midlength; anterodorsal and posterodorsal margins nearly straight and sloping; posterodorsal angle fairly distinct, located just posterior to midlength; posteroventral angle acute, variable, 45° to 70°; ventral margin rather sinuate, with a shallow posteroventral indentation in addition to the anteroventral indentation. Radial pore canals short, straight, simple or weakly branching.

Female fifth limb robust, with the mediodistal seta slightly longer than the others. Male furca with smaller proximal setae than female. Male hemipenis elongateovate in outline, with a slender, inwardly curved, hookshaped distal process; contraction of muscles causes elongation of the main lobe and outward rotation and extension of this distal process (see Plate 85.7).

Comparisons.-M. metuenda is much larger, with a proportionally higher, more angulate dorsal margin and less elongate posterior region than most other species. It has a more sinuate ventral margin than M. nimia, a larger posterior angle than M. maioris, and lacks the tiny spine of M. miranda.

Remarks.-This is the largest macrocyprid species known and probably the largest living marine podocopid ostracode.

One female fifth limb (1402F, illustrated in Figure 29.15) is pathological, with two setae instead of one on the second podomere.

MACROCYPRIS MIRANDA new species

Graph 4; Figures 2.5.6, 3.5.6, 18.3, 22.17, 24.2, $25.11,12,29.18,32.11,38.3,46.7 .8,48.10-13$, $49.10-13,56.17,36,57.1,31,58.1,59.12,29,34,60.3$, $68.18,22,64.2,65.1,80.2$; Plates 4.7-12, 5.7-12, 58.1,2,9-15, 59.1,2,11, 64.5-8, 78.8-10, 82.13,14, $83.5,6,85.10-12,98.3-7,110.2,3$

Macrocypris minna (Baird) s.L Maddocks, 1977, p. 153, fig. 1,9 [part.].

Derivation of name.-Latin mirandus, wonderful, strange; for the consistently recognizable spine in spite of the variable carapace shape.

MateriaL-Sixty-nine specimens in alcohol, including 8 males, 13 females, 51 juveniles belonging to 4 instars, and 2 valves.

Types.-Holotype 1419M USNM 240294, paratypes USNM 240295-240318.

Type locality.-Atlantis II cruise 42 station 201, $9^{\circ} 29^{\prime}-9^{\circ} 25^{\prime} \mathrm{S}, 11^{\circ} 34^{\prime}-11^{\circ} 35^{\prime} \mathrm{E}$, depth $1964-2031 \mathrm{~m}$.

Occurrence.-At AII-31-142, 8 live specimens ($1 \mathrm{~F}, 5 \mathrm{~J}-2$, $2 \mathrm{~J}-4$); at AII-31-145, 8 live specimens ($1 \mathrm{M}, 1 \mathrm{FJ}-1,1 \mathrm{~J}-1$, 4J-2, 1J-4); at AII-42-191, 2 specimens; at AII-42-199, 12 live specimens ($1 \mathrm{~F}, 1 \mathrm{MJ}-1,3 \mathrm{~J}-1,3 \mathrm{~J}-2,3 \mathrm{~J}-3,1 \mathrm{~J}-4$); at AII-42-200, 13 live specimens ($3 \mathrm{~F}, 8 \mathrm{~J}-1,2 \mathrm{~J}-2$); at AII-42-201, 16 live specimens (1M, 1F, $1 \mathrm{FJ}-1,4 \mathrm{~J}-1,3 \mathrm{~J}-2,4 \mathrm{~J}-3,2 \mathrm{~J}-4$); at

GRAPH 4

V-12-10, 1 live specimen ($1 \mathrm{~J}-1$); at $\mathrm{V}-14-33$, 9 live specimens ($1 \mathrm{M}, 7 \mathrm{~F}, 1 \mathrm{~J}-1$).

Distribution.-Holocene; east-central and southeastern Atlantic Ocean, on the continental slope and abyssal plain off Africa, known live depth range 706 to 3779 m .

Dimensions.-Holotype male 1419M, RVL 2.59 mm , RVH 0.99 mm , LVL 2.55 mm , LVH 0.95 mm . See also Graph 4. Males are the same length but not as high as females. Size is variable but not directly related to depth. Graph 4 gives some indication of both an inverse relationship with depth and a direct relationship with latitude, but neither is conclusive.

Diagnosis.-Right valve elongate-subtriangular, with broadly arched dorsal margin and weakly expressed posterodorsal angle; venter straight to slightly sinuate; posteroventral angle variably acute, from 50° to 75°. Radial pore canals short, straight to weakly branching. A single, very tiny, short spine is invariably present at the posteroventral angle of each valve and is especially conspicuous in juveniles.

Female fifth limb with rather short, graduated, clawlike terminal setae. Male furca with larger proximal setae than female. Male hemipenis subrectangular in outline, with right-angled, blunt distal termination.

Comparisons.-M. miranda is larger than M. opinabilis, is smaller than M. metuenda, M. maioris, M. nimia, and M. sp. 1 ; and is not as high and lacks the dorsal angle of M. maioris, M. metuenda, M. proclivis, and M. sp. 1. Although the carapace shape and size are somewhat variable, this species may be reliably recognized by the very tiny posteroventral spine, which is consistently present in adults, prominent in all juveniles, and never seen in other species.

MACROCYPRIS NIMIA new species

Graph 5; Figures 2.4, 3.4, 48.5, 49.5; Plates 2.6, 8.6
Macrocypris minna (Baird) s.L. Maddocks, 1977, p. 153, fig. 1,9 [part.].
?Macrocypris sp. 1 Bonaduce and Sprovieri, 1985, p. 134, pl. 2, fig. 5.
Derivation of name.-Latin nimius, beyond measure, excessive, too great, too much; because it is much larger than its geographic neighbor, M. minna.

Material-Ten empty valves and carapaces.
Types.-Holotype 1524RV USNM 240819, paratypes USNM 240320-240322.

Type locality.-Chain cruise 106 station $313,51^{\circ} 32.2^{\prime} \mathrm{N}$, $12^{\circ} 35.9{ }^{\prime} \mathrm{W}, 1500-1491 \mathrm{~m}$.

Occurrence.-At C-106-313, 10 specimens.
Distribution.-Holocene; known only as subfossil specimens at one station in the North Atlantic, southwest of Ireland, depth $1500-1491 \mathrm{~m}$. A left valve that is strikingly similar in shape was illustrated from the Pliocene of Sicily (Bonaduce and Sprovieri, 1985).

Dimensions.-Specimen 1524, RVL 8.45 mm , RVH 1.39

GRAPH 5
mm . Specimen 1738, LVL 3.23 mm , LVH 1.35 mm . See also Graph 5.

Diagnosis.-Carapace large, thick-shelled; right valve with high, broadly arched dorsal margin, indistinct dorsal angle and distinct, rounded posterodorsal angle; posterior angle 58°, located ventrally; ventral margin straight, fused zone narrow.

Comparisons.-M. nimia is much larger than all other species known except M. metuenda, from which it differs by a less pronounced posterodorsal angle and a straight rather than swollen or sinuate ventral margin. It may be distinguished from M. minna by the more prominent, curved posterodorsal angle, slightly upswung posterior angle, and much larger size.

Remarks.-Although M. minna has been identified at a nearby Porcupine station (BMNH 1911.11.8.M.3067), M. nimia and M. minna have not been found together in the material studied.

MACROCYPRIS OPINABILIS new species

Graph 6; Figures 4.2, 5.2; Plates 58.3, 59.3
Macrocypris minna (Baird) s.L Maddocks, 1977, p. 153, fig. 1,9 [part.].
Derivation of name.-Latin, opinabilis, $-\ell$, conjectural, imaginary; because its affinities are uncertain.

Material.-Ten empty valves.
Types.-Holotype 2404RV USNM 240323, paratypes USNM 240324-240325.

Type locality.-Anton Bruuncruise 7 station 365D, $23^{\circ} 20^{\circ} \mathrm{S}$, $43^{\circ} 32^{\prime} \mathrm{E}, 695-475 \mathrm{~m}$.

Occurrence.-At AB-7-365D, 10 specimens.
Distribution.-Holocene; found only as subfossil specimens at one station in the southwestern Indian Ocean, south of Madagascar, depth 695-475 m.

Dimensions.-Holotype 2404, RVL 1.89 mm , RVH 0.74 mm . Paratype 2405, LVL 1.98 mm , LVH 0.80 mm . See also Graph 6.

Diagnosis.-Carapace small, siliquose; right valve with

broadly arched dorsal margin and nearly straight ventral margin, without dorsal or posterodorsal angle; posterior angle rounded, about 60°, ventral margin straight; anterior radial pore canals short and straight.

Comparisons.-M. opinabilis is the smallest and proportionally the most elongate of the species assigned to Macrocypris. The shape of the carapace is intermediate between Macrocypris and Macropyxis, but the even width of the zone of concrescence, the regularly arranged, straight radial pore canals, and the straight ventral margin suggest assignment to Macrocypris.

MACROCYPRIS PROCLIVIS new species

Graph 6; Figures 4.3-5, 5.3-5, 18.9, 29.19, 32.12, 38.2, 46.10; Plates 2.5, 3.5, 59.9, 64.9

Derivation of name.-Latin proclivis, $-\ell$, sloping, steep, going downward; for the sloping posterior margin.

Material-Five specimens in alcohol, including 2 fe males and 3 valves.

Types.-Holotype female 361F USNM 240326, paratypes USNM 240327-240328.

Type locality.-Anton Bruun cruise 7 station 363D, $23^{\circ} 45^{\prime} \mathrm{S}$, $43^{\circ} 11^{\prime} \mathrm{E}, 1605 \mathrm{~m}$.

Occurrence.-AtAB-7-363D, 2 live specimens (2 F); at AB -$7-365 \mathrm{D}, 3$ specimens.

Distribution.-Holocene; southwestern Indian Ocean south of Madagascar, known live at depth 1605 m, empty valves at 475-695 m.

Dimensions.-Holotype female 361F, RVL 2.72 mm , RVH 1.19 mm . See also Graph 6.

Diagnasis.-Right valve elongate-subtriangular in lateral view with arched dorsum and nearly straight venter; anterior radial pore canals long and branching.

Female fifth limb of average proportions with graduated distal setae. Furcae short with short, thick terminal setae.

Comparisons.-M. proclivis is distinguished from M. minna by larger size, prominent posteroventral angle, and branching radial pore canals. It is very similar to M. maioris in size and shape, differing in the more narrowly rounded anterior margin, more steeply sloping anterodorsal and posterodorsal margins, and more acute posterior angle.

MACROCYPRIS sp. 1

Graph 6; Figures 4.6, 5.6, 29.18, 32.8, 36-37.2, 46.37; Plates 2.7, 3.7, 78.11

Macrocypris minna (Baird) s.L Maddocks, 1977, p. 153, fig. 1,9 [part.].
Material-One female in alcohol, USNM 240329.
Occurrence.-At E-3-43, one live specimen (1F).
Distribution.-Holocene; known live at only one station in the eastern Pacific Ocean, on the continental slope off Peru, depth 3494-3402 m.

Dimensions.-Female 858F, RVL 2.87 mm , RVH 1.22 mm . See also Graph 6.

Comparisons.-M. sp. 1 is very similar to M. proclivis but has a slightly up-curved posteroventral margin, and the posterior angle is located slightly above the venter. It is distinguished from most other species by the smoothly arching dorsal margin with indistinct dorsal angle and no posterodorsal angle, the slightly sinuate venter, and the weakly branching anterior radial pore canals.

Remarks.-The female fifth limb is slender with long, flexible setae of graduated sizes. The female furca is very large, with inflated lobes but tiny proximal setae.

Genus MACROMCKENZIEA new genus

Derivation of name.-For Kenneth G. McKenzie, in recognition of his contributions to our knowledge of the Cypridacea.

Type species.-Macrocypris siliquosa Brady, 1887.

Species included.-Listed by original binomen:
Macrocypris siliquosa Brady, 1887; Holocene, eastern Atlantic Ocean.
Macrocypris australiana Neale, 1975; Cretaceous, Australia.
Macromckenziea glacierae n. sp.; Holocene, Drake Passage and Weddell Sea.
Macromckenziea gregalis n. sp.; Holocene, south of Tasmania.
Macrocypris ligustica Bonaduce, Masoli, and Pugliese, 1977; Plio-Pleistocene to Holocene, Mediterranean region.
Macrocypris porcelanica Whatley and Downing, 1983; Miocene, Australia.
Macromckenziea swansonin. sp.; Holocene, Tasman Sea.
Macromckenziea sp. 2; Holocene, southwestern Atlantic Ocean.
Macromckenziea sp. 3; Holocene, Drake Passage.
Macromckenziea sp. 4; Holocene, Mozambique Channel.
Macromckenziea sp. 5; Holocene, Weddell Sea.
Macromckenziea sp. 6; Holocene, Tasman Sea.
Macromckenziea sp. 7; Holocene, Mozambique Channel.
Macromckenziea sp. 19; Holocene, Drake Passage.
Geologic range.-Cretaceous to Holocene.
Geographic distribution.-Atlantic, Indian, and Southern oceans; known composite live depth range 97 to 3111 m , dead from 95 to 3829 m .

Diagnosis.-Carapace smooth, thick-walled, small to medium-sized, often cream to light tan in color, sometimes with a visible layer of brown chitinous endocuticle lining the inner margin, selvage, and interior of valves. Carapace shape elongate-oblong, asymmetrical; right valve subquadrate to subhemispherical in lateral view; anterior margin broadly rounded; dorsal margin straight to gently arching; posterior margin truncate or rounded ending in nearly right-angled posteroventral angle; ventral margin nearly straight to gently sinuate. Carapace elongate-ovate in dorsal view with very slight anterior and posterior taper; sides nearly straight, parallel or gently curving; greatest thickness located medially; lines of dorsal and ventral overlap gently sinuate, not exaggerated. Hinge normal for the family, thick and easily seen. Zone of concrescence narrow, vestibules open, radial pore canals mostly short and straight, no dentiform corner. Adductor muscle scar pattern relatively large with numerous discrete scars, occupying as much as one quarter of the height; within the lower group of adductor scars the upper and posterior scars often are arranged compactly in a single curved line, with the anteroventral scars being segregated as a separate spot; the result being a scar pattern with possible homologies to Bairdiidae.

Antennule robust, thick, tapering, with nearly equant podomeres and thick, short setae; podomeres II and III flexibly articulated. Antenna compact, thick-proportioned, tightly curled, with numerous, thick, long, clawlike terminal setae; very long sensory aesthetascs on podomere II; 4 or 5 rather long swimming setae on podomere III; anterodistal setae of podomere IV very long. Podomeres I and II
of maxillule palp completely fused without suture or with very faint, partial, vestigial suture; the anterodistal seta of podomere I may remain separate or may migrate distally to join the three setae of podomere II.

Palp of male fifth limb forms a robust right-angled hook on right side, somewhat more recurved on left, with ventral seta, two slender pegs, and sensory seta but with no dorsal seta. Palp of female fifth limb slender; either the mediodistal or ventrodistal seta may be the longest. Sixth limb small, with the two distal setae equal or nearly equal in length. Seventh limb small, with rather short cleaning seta, one distal seta much longer than the other. Furca may be similar to that of Macrocypris, or it may be vestigial, lacking the terminal seta and the distal portions of the cylindrical rods, with the proximal regions fused into a single, very small, inflexible shaft or nub terminated by two pairs of tiny proximal setae. Male hemipenis roundedsubtriangular in lateral outline, with anterior segment very small; copulatory rod short and straight or long and coiled. Zenker's organ with large, elongate bulb and short muscular segment; proximal part of vas deferens greatly enlarged, coiled into three or four tight coils.

Affinities.-Some species of Macromckenziea are easily confused with Argilloecia and related genera, which have very similar carapace shape and overlap. They may be distinguished externally by the greater sinuosity of the dorsal and ventral overlap, by the muscle scar pattern, and by the macrocypridid rather than argilloeciine pores and setae. Some species of Abyssocypris, Bythocypris, and Krithe also show striking resemblances in external carapace morphology to Macromckenziea. Some life habit or adaptation common to the deep-sea representatives of these unrelated lineages may be responsible for this pronounced evolutionary convergence.

In soft-part characters, Macromckenziea is closest to Macrocypris. There may be at least two species-groups within the genus, the siliquosa-group and the glacieraegroup, as shown by the existence of both a normal and a reduced furca and by the two different kinds of hemipenis. Alternatively, two or more different stocks of Macrocyprididae may have independently adopted this small, robust, oblong carapace shape, just as so many other deep-sea podocopids have done. In the latter case, the similarities would be due to convergence, and the genus would be polyphyletic. Not enough species with good soft parts are available yet to distinguish between these possibilities.

When both carapace and soft-part characters vary independently within a taxon, contradictory interpretations may be possible, depending on which set of characters is given more weight. The generic classification proposed here groups all species with similar carapaces into Macromckenziea, even though this produces heterogeneity in some soft-part characters. It has the practical advantage of being applicable to fossils and, therefore, potentially testable as an evolutionary hypothesis. The type species, Mk. siliquosa, is regarded as morphologically typical, and Mk.
ligustica appears to be very closely related to it. Mk. glacierae, Mk. gregalis, Mk. porcelanica, and perhaps Mk. swansoni represent a second species-group. Several additional species in open nomenclature show the potential diversity of this new genus, and Mk. australiana demonstrates its antiquity.

Remarks.-Kenneth G. McKenzie also suspected that Mk. ligustica and Mk. siliquosa might need to be classified together in a new genus (personal communication, letter of 18 May 1979).

MACROMCKENZIEA SILIQUOSA (Brady, 1887)

> Graph 7; Figures 4.12,18, 5.11,12, 18.5, 24.28, 25.5,6, $29.6,32.7,36-37.5,46.29-34,54.39-43,55.32-36$, $56.11,28,57.15,38,58.6,59.17,32,36,60.6,63.10,18$, $64.28-80,66.9,70.3,75.5,78.4 ;$ Plates $6.1-6,7.1-6$, $60.1-4,61.1-4,65.1-6,78.12-14,81.22,84.4$, $86.1-4,10,11,100.7-9,11,12,14,110.8,9$

Macrocypris siliquosa Brady, 1887, p. 164, 194, pl. 14, fig. $1-3$; Brady and Norman, 1889, p. 118, 243, fig. 143; Müller, 1912, p. 122; Kornicker, 1969, tables I, II; Maddocks, 1977, fig. 1, 3, 4 [part.]; Maddocks, 1979, pl. 2, fig. 9, 16, 21, 22, 24, 25.

Material- 139 specimens in alcohol, including 33 males, 39 females, 64 juveniles belonging to 4 instars, and 3 carapaces; and 14 dry specimens, including Brady's syntypes; for a total of 153 specimens.

Types.-Four slides labelled Macrocypris siliquosa Brady are in the G. S. Brady cabinet in the Hancock Museum, Newcastle-upon-Tyne. Only one slide corresponds to a locality mentioned by Brady in the original description. That slide HM 1.45.29 is labelled "Talisman, 932 m , Lat. $23^{\circ} \mathrm{N}$, Long. $19^{\circ} 50^{\prime} \mathrm{W}, 11 / 7 / 83$." This is probably Talisman station 85 , according to the corrected station data provided by Kornicker (1969). Brady and Norman (1889, p. 119) stated that the types of this species came from this Talisman dredging. On this slide, "Argilloecia" has been crossed out and replaced by "Macrocypris," with "siliquosa" unchanged. Also crossed out but still readable is " $=$ Macrocypris minna, juv." Brady (1887) mentioned having taken $M k$. siliquosa for a juvenile of M. minna at first, and in fact the early juveniles of the two species are much alike. This slide contains six whole dry carapaces and one right valve. One of the whole carapaces is here designated the lectotype and has been removed to a new slide HM 1.45.28, labelled with my specimen number 1949. The lectotype specimen, probably a fermale, shows a good muscle scar pattern and corresponds well to the original illustration by Brady, although it cannot now be determined which specimen was actually illustrated by Brady.

The other three slides correspond to localities reported by Brady and Norman (1889, p. 243) and are not primary types. One slide, HM 1.45.30, is labelled "Arguin Bank, Africa, $20^{\circ} \mathrm{N}, 15$ July $1883,2333 \mathrm{~m}$, M. de Folin." This is probably Talisman station 99, according to Kornicker
(1969). In another handwriting the words "SYNTYPES B122" have been added, but because this is not a "Fonds de la Mer" station, these cannot be syntypes. The slide contains a well preserved whole specimen, my specimen number 1950, which corresponds well with the illustration given by Brady and Norman (1889). There are also a right valve with dry female body and a left valve, probably halves of the same carapace, in this slide.

Another slide, HM 1.45.31, is labelled "West Coast of Morocco (Travailleur), $630 \mathrm{~m}, 30 / 7 / 82$." It contains one whole carapace in poor condition.

The fourth slide is labelled "West Coast of Morocco, 832 mètres, (Talisman), 17/5/83." This is probably Talismanstation 35, according to Kornicker (1969). It contains two whole carapaces, a left valve, and a right valve of $M k$. siliquosa, together with one whole carapace and one left valve of Bythocypris bosquetiana. Both species names are written on the label.

The new material for this species is catalogued as USNM 240330-240348.

Type locality. -The original label on the slide with the lectotype and paralectotypes reads "Talisman, 932 m , Lat. $23^{\circ} \mathrm{N}$, Long. $19^{\circ} 50^{\prime} \mathrm{W}, 11 / 7 / 83$." Kornicker (1969) provided the following corrected station data (Table I, line 3): 12 July 1883 , depth $932 \mathrm{~m}, 23^{\circ} 00^{\prime} \mathrm{N}$. Lat., $17^{\circ} 30^{\prime} \mathrm{W}$ Long., greenish muddy sand, temperature 7°, Talismanstation 85 .

Occurrence.-In HM 1.45.28 and HM 1.45.29, Talisman station 85,7 specimens; in HM 1.45 .30 , 2 specimens; in HM 1.45.31, 1 specimen; at HM Talisman station 35, 4 specimens; at AII-81-145, 10 live specimens ($5 \mathrm{~F}, 1 \mathrm{FJ}-1$, 1FJ-2, 2J-2, 1F-3); at AII-42-194, 114 live plus 1 specimens (31M, 30F, 1MJ-1, 2FJ-1, $45 \mathrm{~J}-1,1 \mathrm{FJ}-2,3 \mathrm{~J}-2,1 \mathrm{~J}-4$); at AII-$42-200,10$ live plus 2 specimens ($2 \mathrm{M}, 2 \mathrm{~F}, 1 \mathrm{FJ}-1,5 \mathrm{~J}-1$); at $\mathrm{V}-12-4,1$ live specimen (1F); at V-14-33, 1 live specimen (1F).

Distribution.-Holocene; eastern Atlantic Ocean, continental slope and abyssal plains off North, Central, and South Africa, known live depth range 706 to 2864 m , dead from 630 to 2995 m .

Brady (1887) also reported the species from Talisman station 144, 22 August $1883,38^{\circ} 38^{\prime} \mathrm{N}, 25^{\circ} 06^{\prime} \mathrm{W}$, depth 2995 m , soft white sand, temperature $3.4^{\circ} \mathrm{C}$ (station data by Kornicker, 1969); this material was not located.

Brady and Norman (1889) reported the species from Talisman station 34,17 June $1883,32^{\circ} 31^{\prime} \mathrm{N}, 9^{\circ} 48^{\prime} \mathrm{W}$, depth 1350 m , reddish mud (station data according to Kornicker, 1969); this material was not located.

Dimensions.-Lectotype specimen 1949W, RVL 1.50 mm , RVH 0.67 mm . See also Graph 7. Females are distinctly higher than males and perhaps slightly longer on average, as well as higher in proportion to length. Size appears to increase both with depth and toward the southern end of the geographic range.

Diagnosis.-Right valve oblong to subquadrate in lateral view; anterior margin broadly rounded; ventral margin straight to gently sinuate; dorsal margin gently arched to

nearly straight with greatest height located medially; posterior margin gently curved, truncate, joining dorsal margin at broadly rounded posteroventral curve; posteroventral angle rounded, indistinct, less than 90°. The adductor muscle scar pattern of many specimens has the scars clumped in four groups to form a pattern approaching that of Bythocypris (Fig. 24.23; see also Text-fig. 1).

Palp of male fifth limb slender, with slender pegs of nearly equal size; right hook right-angled, left hook only slightly more recurved. Palp of female fifth limb robust with clawlike distal setae of graduated lengths. Mediodistal claw of sixth limb about 25 percent longer than dorsodistal claw. Reflexed seta of seventh limb short, lined with tiny hairs too fine to draw; mediodistal seta exceptionally long. Furca vestigial in both sexes, larger in female than in male, distal portions and terminal setae missing, proximal regions fused into a single blade-shaped process capped by two pairs of tiny proximal setae. Hemipenis roundedsubtriangular, nearly equilateral in lateral view, with small, lobate anterior segment; copulatory tube small, nearly straight. Anterior bulb of Zenker's organ very much enlarged, ovate; muscular segment rather short; vas deferens enlarged, thicker than outside diameter of the muscular segment, very tightly coiled into about three irregular loops.

Comparisons.-Mk. siliquosa is larger and thicker-shelled than Mk. ligustica, with a more rounded, usually acute posteroventral angle. Several rather similar species in distant parts of the world are represented in this material only by scattered specimens, without soft parts or information about sexual dimorphism. These species, here designated as $M k$. 2 through 7, cannot yet be diagnosed unambiguously from Mk. siliquosa. Species of the Mk. glacierae group have a more subtriangular lateral outline with higher-arched dorsal margin.

MACROMCKENZIEA AUSTRALIANA (Neale, 1975)

Graph 42; Figure 6.9; Plates 6.7, 7.7, 78.15
Macrocypris australiana Neale, 1975, p. 11, pl. 1, fig. 11. Macrocypris simplex var. africana Chapman, 1917, p. 53, pl.

13, fig. 4; Howe and Laurencich, 1958, p. 394; De Deckerer and Jones, 1978, p. 57.

Material.-A single fossil left valve.
Types.-Chapman's holotype right valve (not seen) is in the Canberra Bureau of Mineral Resources Collection, No. CPC 7134 (fide Neale, 1975). An external view by SEM was figured by Neale (1975).

Type locality.-Upper Cretaceous (Santonian), Gingin Chalk, One Tree Hill, Australia.

Occurrence.-In HU.65.C.6.60, one left valve.
Distribution.-Cretaceous, western Australia.
Dimensions.-HU.65.C.6.60, LVL 1.12 mm , LVH 0.50 mm. See also Graph 42.

Diagnosis.-Carapace elongate-oblong; right valve with very gently arched dorsal margin in lateral view, obliquely rounded anterior margin, nearly straight ventral margin, rounded posteroventral angle of about 70° located at venter, obscurely rounded posterodorsal angle, and slightly truncate posterior margin.

Comparisons.-Mk. australiana is more elongate than any other species known.

Remarks.-The diagnosis above is based on the illustration of the holotype right valve by Neale (1975) (see also Figure 6.9). The very well preserved adductor muscle scars (Pl. 78.15), what can be seen of the hinge, the general shape, and the right valve overlap support the assignment to Macromckenziea. As well as being a "potential source of confusion" (Neale, 1975, p. 11), Macrocypris simplex africana Chapman, 1917, is a junior primary homonym of Macrocypris africana Müller, 1908.

MACROMCKENZIEA GLACIERAE new species

Graph 8; Figures 4.14,15, 5.13.14, 18.13, 24.19, 25.7.8, $29.1,32.2,36-37.8,46.20-25,54.44-46,55.38-40$, $56.25,31,57.26,34,58.5,59.16,30,60.1,63.9,64.48-50$, 66.2, 71.1, 75.1, 78.3; Plates 8.3-6, 9.3-6, 65.7-10, $78.16,17,83.3,86.5-9,100.1-6,110.5,7$

Macrocypris n. sp. (OTU 18) Maddocks, 1976, p. 42. "aff. Macrocypris spec." Hartmann, 1987, p. 132, fig. 78-90.

Derivation of name.-For the U.S. Coast Guard Ship Glacier.

Material-Forty-two specimens in alcohol, including 7 males, 17 females, 14 juveniles belonging to 3 instars, and 4 carapaces and valves.

Types.-Holotype male 880M USNM 240349, paratypes USNM 240350-240370.

Type locality.—Glacier cruise 1 station 0001, $74^{\circ} 06^{\prime}-07^{\prime} \mathrm{S}$, $39^{\circ} 38^{\prime} \mathrm{W}$, depth 400 fathoms (732 m).

Occurrence.-At GL-1-0001, 17 live plus 3 specimens (6 M , 7F, 1FJ-1, 1MJ-2, 2FJ-3); at GL-2-004, 5 live plus 1 specimens ($1 \mathrm{~F}, 2 \mathrm{FJ}-2,2 \mathrm{FJ}-3$); at GL-2-0022, 1 live specimen (1F); at E-6-412, 2 live specimens (2F); at E-22-1535, 1 live specimen (1M); at Y-2-6, 7 live specimens (1F, $6 \mathrm{~J}-1$); at $\mathrm{V}-14-21,5$ live specimens (5 F).

Distribution.-Holocene; Drake Passage and Weddell Sea, Antarctica, known live depth range 97 to 3111 m . Hartmann (1987) reported it living at eight stations in the South Shetland Islands and the Palmer Archipelago at depths between 140 and 180 m .

Dimensions.-Holotype male 880 M , RVL 1.82 mm , RVH 0.77 mm , LVL 1.78 mm , LVH 0.73 mm . Females longer, higher, and proportionally higher than males. See also Graph 8.

Diagnosis.-Right valve elongate-subtriangular in outline, with broadly arched dorsal margin and without distinct dorsal or posterodorsal angles; greatest height located medially, sloping smoothly to narrowly but evenly rounded anterior margin and steep posterior margin; ventral margin nearly straight; posteroventral angle distinct, located ventrally, about 70° to 80°.

Palp of male fifth limb robust with prominent sensory seta and slender pegs of unequal size; left hook strongly recurved. Palp of female fifth limb with extremely long middle distal seta. Sixth limb has two distal claws of equal length. Reflexed seta of seventh limb very short but con-
spicuously feathered; mediodistal seta very long. Furca vestigial in both sexes; distal region and terminal seta entirely missing; proximal region reduced to a very tiny nub with four tiny proximal setae. Hemipenis roundedsubtriangular in lateral view, higher than long, without conspicuous anterior lobe; copulatory tube very long and coiled. Anterior bulb of Zenker's organ enlarged, muscular segment fairly long; vas deferens regularly coiled in circular disk of about four loops.

Comparisons.-In shape Mk. glacierae is most similar to Mk. gregalis, but it is very much smaller and more elongate. The reduced furca and other soft-part characters support its classification in Macromckenziea.

MACROMCKENZIEA GREGALIS new species

Graph 9; Figures 4.10,11, 5.9,10, 24.20, 54.31-36, 55.26-81; Plates 8.10-12,9.10-12, 78.18

Derivation of name.-Latin gregalis, - e, of a flock, of the same flock; for its abundance at the type locality.

Material-More than 355 carapaces and valves.
Types.-Holotype specimen 1912 USNM 240371, paratypes USNM 240372-240381, KUMIP 1,123,136-1,124,297.

Type locality.-Eltanin cruise 39 station $32,47^{\circ} 26.4^{\prime} \mathrm{S}$, $148^{\circ} 17.2^{\prime} \mathrm{E}$, depth 960 m .

Occurrence.-At E-39-32, 355 specimens.
Distribution.-Holocene; known only from one station south of Tasmania on the Tasman Plateau, depth 960 m .

Dimensions.-Holotype specimen 1912, RVL 2.14 mm , RVH 0.93 mm , LVL 2.09 mm , LVH 0.88 mm . Presumed females much higher than presumed males. See also Graph 9.

Diagnosis.-Carapace large, thick-shelled, opaque white. Greatest height located slightly posterior to midlength. Right valve rounded-subtriangular to hemicircular in

lateral outline; dorsal margin very highly arched sloping steeply anteriorly to narrowly rounded anterior margin, broadly inflated posteriorly with indistinct posterodorsal angle and nearly vertical posterior margin; posteroventral angle sharp, about 70° to 85°, located ventrally; ventral margin nearly straight with weak anteroventral indentation.

Comparisons.-Mk. gregalis is the largest species known in the genus. Presumed males are very similar in shape to the females of Mk. glacierae but larger and slightly more elongate.

Remarks.-There appear to be six juvenile instars represented in this material, the largest number represented for any species studied (see Graph 9).

MACROMCKENZIEA LIGUSTICA

(Bonaduce, Masoli, and Pugliese, 1977)
Graph 10; Figures 4.8, 5.7, 18.10, 24.21, 29.5, 32.1, 36-37.7, 46.26-28, 66.3; Plates 6.11,12, 7.11,12, 78.19,20

Macrocypris ligustica Bonaduce et al., 1977, p. 245, fig. 3, pl. 1, fig. 1-3; Colalongo and Pasini, 1980, p. 62, pl. 23, fig. 6-9; Bonaduce and Sprovieri, 1985, p. 194, pl. 2, fig. 7; Bonaduce et al., 1988, p. 463.
?Macrocypris ligusta [sic] Bonaduce, Masoli, and Pugliese Peypouquet and Nachite, 1984, table 2, 4.
Material-Two females in alcohol and 27 empty valves and carapaces; for a total of 29 specimens. The illustrated specimens are deposited as USNM 240382-240384, and the rest are in the collection of Giaocchino Bonaduce.

Types.-Holotype right valve, Collezioni Ostracodi B.C.M. n. 322; paratype left valve, B.C.M. n. 383, deposited
in the Zoological Station in Naples, fide Bonaduce et al., 1977 (not seen).

Type locality.-Station 89 of Bonaduce et al. (1977) in the Ligurian Sea, south of Cape Martola, depth 102 m .

Occurrence.-At Bonaduce 2, 5 specimens; at Bonaduce 3, 2 live plus 1 specimens (2 F); at Bonaduce 4,19 specimens; at Bonaduce 9,1 specimen; at Bonaduce 10, 1 specimen.

Distribution.-Holocene; in the Bay of Naples, known live at a depth of 145 m and dead from 95 to 340 m ; in the Ligurian Sea, dead in depths of 77 to 86 m , where a range of 20 to 107 m was reported by Bonaduce et al. (1977). Bonaduce et al. (1988) considered it to be a good marker for the circalittoral zone (36 to 123 m) on the Tunisian shelf. Peypouquet and Nachite (1984) reported "autochthonous" subfossil specimens from 950 to 2640 m depth south of the Rhone Delta in the northeastern Mediterranean. The species is also reported in the Plio-Pleistocene of Calabria and Sicily.

Dimensions.-Female 2274F, RVL 1.05 mm , RVH 0.43 mm . See also Graph 10.

Diagnosis.-Right valve oblong in lateral outline; anterior margin broadly and evenly rounded; venter gently sinuate; posteroventral margin upswing; posteroventral angle distinctly obtuse, located well above venter. Dorsal margin very gently arching, without dorsal or posterodorsal angles, highest medially, sloping gradually and continuously to bluntly rounded posterior.

Female fifth limb slender, with distal setae of graduated sizes. Distal claws of sixth limb equally long. Reflexed seta of seventh limb short but conspicuously feathered, mediodistal seta exceptionally long. Furcae much reduced, with distal regions and terminal setae missing; proximal regions fused into a single, tiny, elongate process bearing just two small, rodlike proximal setae.

Comparisons.-Mk. ligustica is similar to Mk. siliquosa but smaller, a little more elongate, and a little less inflated, with a more sinuate venter and a more distinct, obtuse posteroventral angle. Soft-part differences include the equally long terminal claws of the sixth limb, conspicuously feathered reflexed seta of the seventh limb, and the reduction of each half of the furca to a single seta. Juveniles of $M k$. siliquosa are notably higher and thicker in proportion to length, more rotund in shape.

Remarks.-This species is probably closely related to $M k$. siliquosa, which is not known in the Mediterranean. Good SEM photos were published by Bonaduce et al. (1977). The report by Peypouquet and Nachite (1984) is queried because they did not illustrate the species and spelled the name differently.

Ruggieri (1984) designated a right valve (apparently a juvenile) from the Lower Pleistocene of Sicily as a neotype for "Macrocypris" compressa Seguenza, 1883, and he placed Mk. ligustica into the synonomy of that species. He did not redescribe the species, did not compare it with Mk. ligustica, Mk. siliquosa, or any other species, and did not discuss the evidence for this synonymy. He provided line drawings of a juvenile right valve interior, a dorsal view of a whole carapace of the same size, and a left muscle-scar pattern, but no exterior lateral views and no photographs or SEM illustrations. While Ruggieri's species probably does beIong to Macromckenziea, his rather generalized drawings show some small differences of shape from Mk. ligustica. The dimensions of the proposed neotype specimen (RVL 1.31 mm , RVH 0.51 mm) are considerably larger than those reported by Seguenza ($\mathrm{L} 1.15 \mathrm{~mm}, \mathrm{H} 0.45 \mathrm{~mm}$), showing that Seguenza, likewise, may have based his species on juvenile material. The dimensions of this instar would fit well into the A-1 cluster of $M k$. siliquosa but would correspond to the adult of Mk. ligustica (see Graphs 7,10). Of course, size discrepancies are to be expected in populations from different depths, temperatures, hydrographic regimens, and geologic ages. The excellent musclescar pattern drawn by Ruggieri (fig. 3) is one often seen in individuals of Mk. siliquosa and related species as well as

Mk. ligustica. Doubtless, this Pleistocene population is very closely related and perhaps ancestral to one or both of the living species, as well as to the Pleistocene assemblages of Mk. ligustica reported at other localities and horizons (Bonaduce et al., 1977; Colalongo and Pasini, 1980). Nevertheless, in the interest of nomenclatural precision and stability, it is recommended that Seguenza's name not be revived. The species connoted by the name Mk. ligustica has been well described and illustrated, is readily identifiable, and its ecologic, geographic, and chronostratigraphic distribution can be established with precision, while the status of "Macrocypris compresssa" remains equivocal. See further discussion of the latter species in Appendix I.

Argilloecia anceps Rome, 1942, was dredged living in $80-100 \mathrm{~m}$ depth off Monaco, well within the range of $M k$. ligustica. Rome's illustrations show clearly that this species, which he regarded as anomalous for Argilloecia, belongs, in fact, to Macromckenziea. In particular, the reduced, clubshaped furca (Rome, 1942, pl. 1, fig. 13) is very like that of Mk. ligustica. However, the outline drawing of a left valve (pl. 1, fig. 3) differs greatly in shape, being much more highly arched dorsally, shorter in the posterior region, and much more acutely pointed posteriorly than Mk. ligustica. The length given (0.86 mm) would fit the A-1 instar of $M k$. ligustica but is too small for the adult. The two drawings of the mandible (pl. 1, fig. 7; pl. 2, fig. 8) were made from a molting specimen, in which the masticatory teeth are being withdrawn from the old exoskeleton. Although Rome reported only adults (one male, three females) and illustrated a hemipenis with a spiral copulatory tube (pl. 1, fig. 14), it is possible that the dimensions and several of the illustrations apply to a juvenile. The types of A. anceps should be restudied and compared with males of $M k$. ligustica to determine whether the latter is a junior synonym (see also Appendix I).

MACROMCKENZIEA PORCELANICA (Whatley and Downing, 1983)

Graph 42
Macrocypris porcelanica Whatley and Downing, 1983, p. 353, pl. 1, fig. 11-13.

Material-Not seen. This evaluation is based on the illustrations by Whatley and Downing (1983).

Remarks.-Whatley and Downing (1983) described this species from the Middle Miocene Balcombian Clay, Victoria, southeast Australia, and provided good SEM photos. The size, shape, and internal characters of this species as described and illustrated show that it belongs to the $M k$. glacierae species-group. The illustrated right valve (their pl. 1, fig. 12) is very similar in shape to females of Mk. glacierae and to presumed males of Mk. gregalis, differing by its somewhat more angulate outline and sinuous ventral margin. It apparently is a little higher and more angulate in

outline than Mk. swansoni. Definitive diagnoses of these closely related species must await information about softpart anatomy and sexual dimorphism as well as additional geographic and stratigraphic populations from which to assess variability.

Their statement (p. 353) that Mk. porcelanica "is similar in all salient characteristics, with the exception of size, to Macrocypris similis Brady 1880 from 160 fathoms off Ascension Island, the holotype of the species being 2.1 mm . in length and so nearly double that of the present species" merely illustrates the longstanding confusion that has surrounded the identity of Brady's species. Mx. similis belongs to Macropyxis and is not at all similar to this or other species of Macromckenziea. For further discussion of that species, see below.

MACROMCKENZIEA SWANSONI new species

Graph 11; Figures 4.9, 5.8; Plates 8.8,9,9.7-9
Macrocypris (Macrocypris) sp. Swanson, 1979a, p. 11, fig. 9.
Derivation of name.-For Kerry Swanson, who loaned the specimens.

Material-Twenty-five empty carapaces and valves.
Types.-Holotype specimen 2332RV USNM 240385, paratypes USNM 240386-240391, other paratypes in the collections of Dr. Swanson.

Type locality.-Swanson Northland station P464, $34^{\circ} 24.1^{\prime} \mathrm{S}, 171^{\circ} 42.0^{\circ} \mathrm{E}, 655 \mathrm{~m}$.

Occurrence.-At Swanson Northland P461, 7 specimens; at Swanson Northland P462, 3 specimens; at Swanson Northland P464, 11 specimens; at Swanson Northland P476, 1 specimen; at Swanson Tasman Sea P662, 3 specimens.

Distribution.-Holocene; west of North Island and east of South Island, New Zealand, known dead depth range 196 to 655 m . Swanson (1979a) reported a live depth range of 82 to 500 m for this species.

Dimensions.-Holotype 2332RV, RVL 1.33 mm , RVH 0.59 mm . See also Graph 11.

Diagnosis.-Carapace medium-sized, moderately inflated throughout; right valve elongate-subtriangular in lateral outline, with broadly arched dorsal margin separated by indistinct dorsal and posterodorsal angles into three slop-
ing segments; greatest height located slightly behind midlength; anterodorsal margin sloping steeply to narrowly rounded anterior margin; ventral margin nearly straight; posterior margin curved and indistinctly truncate; posteroventral angle rounded, about 70°, located ventrally; radial pore canals indistinct, possibly irregularly branching.

Comparisons.-In shape Mk. swansoni somewhat resembles Mk. glacierae but is much smaller and less elongate, with a more highly arched dorsal margin and more rounded posteroventral angle. It differs from Mk. gregalis in being much smaller, with somewhat more angulate, elongate lateral outlines.

McKenzie (1974, fig. 3c, "Macrocyprissa sp.") illustrated a right valve from Bass Strait that is also very similar in shape to $M k$. swansoni. Its length (1.43 mm) is a little less than adults of the populations here described, and it has elaborately branching radial pore canals.

Remarks.-The specimen illustrated by Swanson (1979a) from the Otago Shelf east of South Island, New Zealand, appears to be an A-1 instar (not seen).

The classification of Mk. swansoni in Macromckenziea is tentative and based on the similarity of carapace shape to Mk. glacierae. Information about radial pore canals and soft parts is needed.

MACROMCKENZIEA sp. 2

Graph 12; Figures 4.1, 5.1; Plates 6.8, 7.8

Material-One empty carapace, USNM 240392.
Occurrence,-At V-18-9, 1 specimen.
Distribution.-Holocene; known only from one station in the southwestern Atlantic Ocean, on the continental slope of South America off Rio de la Plata, depth $676-547 \mathrm{~m}$.

Dimensions.-Specimen 1960W, RVL 1.64 mm , RVH 0.73 mm, LVL 1.60 mm , LVH 0.69 mm . See also Graph 12.

Comparisons.-This oblong, light tan carapace has

approximately the right shape and dimensions for $M k$. siliquosa but has a somewhat more narrowly rounded anterior margin and slightly greater posterodorsal inflation. Side-by-side comparison of specimens shows sufficient though subtle differences in carapace shape to treat it as a separate species, at least until geographic and morphological intermediates or soft parts are known. It has a gently arched dorsal margin, highest at midlength, a somewhat narrowly but evenly rounded anterior margin, a gently indented and curving ventral margin, a slightly upturned posteroventral margin, a truncate posterior margin with distinct posteroventral angle of about 85° to 90°, and a narrow zone of concrescence with short, straight radial pore canals.

Remarks.-This is the only known occurrence of the $M k$. siliquosa species-group in the western side of the Atlantic Ocean.

MACROMCKENZIEA sp. 3

Graph 12; Figures 6.10, 7.8, 29.2, 32.4, 36-37.6, 46.18, $66.6,80.19$; Plates $6.10,7.10,78.21$

Material.-One adult female in alcohol, USNM 240393. Occurrence.-At Y-2-11, 1 live specimen (1F).
Distribution.-Holocene; Drake Passage, near South Shetland Islands, Antarctica, depth 240 m .

Dimensions.-Adult female 1995F, RVL 1.49 mm , RVH 0.64 mm ; LVL 1.47 mm , LVH 0.64 mm . See also Graph 12.

Comparisons.-This elongate carapace with its distinctly obtuse posteroventral angle obviously fits the Mk. siliquosa species-group, but ambiguous furcal characters signal caution in its classification. On the single specimen available for study, the furca is small but apparently not reduced, with at least three proximal setae and one terminal seta. This furca is damaged, with the distal portion of the rod and the terminal seta missing from one side. Other distinctive features of $M \mathrm{k}$. sp. 3 include the female fifth limb, which has an exceptionally long mediodistal seta, and the reflexed seta of the seventh limb, which is very short but conspicuously feathered. These soft-part characters suggest a close relationship to $M k . \mathrm{sp} .5$ and $M k$. sp. 6.

MACROMCKENZIEA sp. 4

Graph 12; Figure 4.7; Plate 8.7
Material.-Four empty valves, USNM 240394-240395.
Occurrence.-At AB-7-361B, 4 specimens.
Distribution.-Holocene; known only at one station in the southern Mozambique Channel, depth 3829 m .

Dimensions.-Specimen 2406RV, RVL 1.43 mm , RVH 0.68 mm . See also Graph 12.

Comparisons.-The subtriangular to subtrapezoidal lateral outline with a high, distinct posterodorsal angle, sharp posterior angle of 65°, and narrowly rounded, bluntly truncate anterior margin easily distinguish Mk. sp. 4 from others of the genus.

MACROMCKENZIEA sp. 5

Graph 12; Figures 6.1, 7.1, 29.3, 32.5, 40.7, 46.53, 66.1, 80.17; Plates 8.1, 9.1, 78.22

Material-One female specimen in alcohol, USNM 240396.

Occurrence.-At GL-2-002, 1 live specimen (1F).
Distribution.-Holocene; known only from one station in the Weddell Sea, Antarctica, depth 412 m .

Dimensions.-Adult female 1460F, RVL 1.61 mm , RVH 0.71 mm , LVL 1.57 mm , LVH 0.69 mm . See also Graph 12.

Comparisons.-The elongate-ovoid carapace of $M k$. sp. 5 has a more rounded posterior angle, located slightly above venter, but otherwise fits the Mk. siliquosa species-group very well. The furcae are small but not vestigial, symmetrical, have three proximal setae and one terminal seta, and seem to be morphologically intermediate between Macrocypris and Macromckenziea. The mediodistal seta of the female fifth limb is also much longer than usual. Both of the latter characters suggest a close relationship with $M k$. sp. 3 and $M k$. sp. 6.

MACROMCKENZIEA sp. 6

Graph 12; Figures 6.2, 7.2, 29.4, 32.6, 41.4, 46.51, 66.5, 80.20; Plates 8.2, 9.2

Material-One female specimen in alcohol, USNM 240397.

Occurrence.-At Swanson Tasman Sea P665, 1 live specimen (1 F).

Distribution.-Holocene; known only in the Tasman Sea, west of New Zealand, depth 768-531 m.

Dimensions.-Adult female 2319F, RVL 1.57 mm , RVH 0.77 mm , LVL 1.55 mm , LVH 0.69 mm . See also Graph 12.

Comparisons.-The very broadly arched, oblong carapace outline, indistinct posteroventral angle of about 75°, and characters of the posterior limbs support assignment of $M k$. sp. 6 to Macromckenziea, but the furca is not reduced. The female fifth limb ends in an extremely long mediodistal seta, and the terminal claws of the sixth limb are of equal length. The reflexed seta of the seventh limb is short but conspicuously feathered, and the mediodistal seta is very short. The furca is rather large, with long rods, two extremely tiny proximal setae, and fairly short terminal seta. Several of these characters suggest a relationship to Mk. sp. 3 and Mk. sp. 5.

MACROMCKENZIEA sp. 7

Graph 12; Figures 6.11, 7.9; Plates 6.9, 7.9
Macrocypris siliquosa Brady Maddocks, 1977, p. 153, fig. 1, 4 [part.].
Material-One empty carapace, USNM 240398. Occurrence.-At AB-7-363K, 1 specimen.
Distribution.-Holocene; known only at one station in the southern Mozambique Channel, depth 1190 m .

Dimensions.-Specimen 836W, RVL 1.52 mm , RVH 0.67 mm, LVL 1.48 mm , LVH 0.61 mm . See also Graph 12.

Comparisons.-The general shape and dimensions of this elongate-oblong carapace with indistinct, rounded posterior angle of about 80° fit $M k$. siliquosa, but side-by-side comparison shows subtle differences of shape. In the absence of geographically and morphologically intermediate populations and of soft parts, Mk. sp. 7 is treated here as a separate species.

MACROMCKENZIEA sp. 19

Graph 12; Figures 6.4, 7.3, 26.20,21, 34.4, 40.4, 46.14,15, 65.2, 80.18; Plates 18.1, 19.1, 78.23, 86.12,13, 100.20,21

Material-One male in alcohol, USNM 240399.
Occurrence.-At E-5-322, one live specimen (1M).
Distribution.-Holocene; Drake Passage, south of Tierra del Fuego, depth 1806-2018 m.

Dimensions.-Male specimen 1495M, RVL 1.84 mm , RVH 0.61 mm , LVL 1.81 mm , LVH 0.64 mm . See also Graph 12.

Comparisons.-This very elongate siliquose carapace has a bluntly rounded, truncate anterior margin, a sharp posterior angle of about 45°, and a straight ventral margin. There are also numerous, closely spaced, short, branching radial pore canals, although these are not sufficiently distinct to draw. In spite of this shape, placement of $M k . \mathrm{sp}$. 19 in Macromckenziea is supported by the blunt, oblong hemipenis with long, hemicircular copulatory rod, which closely resembles that of Mk. glacierae, by the short Zenker's organ, which has a very large terminal bulb, by the short, thick vas deferens, and by the reduced, fused, lamellar furcae lacking terminal setae.

Genus MACROPYXIS new genus

Derivation of name.-Greek macro, large; Greek and Latin pyxis, a small box or casket (feminine gender).

Type species.-Macrocypris sapeloensis Darby, 1965.
Species included.-Listed by original binomen:
Macrocypris sapeloensis Darby, 1965; Holocene, northwestern Atlantic Ocean.
Macropyxis adrecta n. sp.; Holocene, equatorial Atlantic Ocean.
Macrocypris adriatica Breman, 1975; Pleistocene and Holocene, Adriatic Sea and Italy.
Macropyxis adunca n. sp.; Holocene, South Atlantic Ocean.
Macropyxis amanda n. sp.; Holocene, equatorial Atlantic Ocean.
Macropyxis amoena n. sp.; Holocene, Strait of Magellan and southeastern Pacific.
Macropyxis antonbruunae n. sp.; Holocene, southeastern Pacific Ocean.
Macropyxis artan.sp.; Holocene, equatorial Atlantic Ocean. Macropyxis audens n. sp.; Holocene, equatorial Atlantic Ocean.
Macrocypris bathyalensis Hulings, 1967a; Holocene, North Atlantic Ocean.

Macropyxis ellaninaen. sp.; Holocene, southeastern Pacific Ocean.
Macropyxis improcera n. sp.; Holocene, Gulf of Mexico.
Macropyxis kaesleri n. sp.; Holocene, equatorial eastern Pacific.
Macropyxis kalbin. sp.; Holocene, equatorial eastern Pacific. Macropyxis kornickeri n. sp.; Holocene, equatorial West Atlantic.
Macropyxis labutisin. sp.; Holocene, northwestern Atlantic.
Macrocypris longana van den Bold, 1960; Eocene, Trinidad.
Macrocypris rhodana van den Bold, 1960; Eocene-Miocene, Trinidad and Cuba.
Macrocypris similis Brady, 1880; Holocene, equatorial western Atlantic Ocean.
Macropyxis simulansn. sp.; Holocene, Gulf of Mexico.
Macropyxis steineckin. sp.; Miocene, Jamaica.
Macrocypris tenuicauda Brady, 1880; Holocene, northwestern Atlantic.
Macropyxis sp. 8; Holocene, southwestern Indian Ocean.
Macropyxis sp. 9; Holocene, Gulf of Gascony.
Macropyxis sp. 10; Miocene, Aquitaine Basin, France.
Macropyxis sp. 11; Holocene, equatorial western Atlantic Ocean.
Macropyxis sp. 12; Holocene, Gulf of Mexico.
Macropyxis sp. 13; Holocene, Mozambique Channel.
Macropyxis sp. 14; Holocene, Tasman Sea.
Macropyxis sp. 15; Holocene, Tasman Sea.
Macropyxis sp. 16; Holocene, southwestern Pacific Ocean.
Macropyxis sp. 17; Holocene, equatorial East Pacific Ocean.
Macropyxis sp. 18; Holocene, equatorial Atlantic Ocean.
Macropyxis sp. 20; Holocene, southeastern Atlantic Ocean.
Macropyxissp. 21; Holocene, southwestern Atlantic Ocean.
Macropyxis sp. 46; Holocene, southeastern Pacific Ocean.
Geologic range.-Eocene to Holocene.
Geographic range.-Cosmopolitan, known composite live depth range 49 to 6134 m , dead specimens as shallow as 9.3 m .

Diagnosis.-Carapace large, thick-shelled, smooth, translucent to opaque white without patch pattern. Elongateovate in lateral view; anterior margin broadly and evenly rounded; dorsal margin very broadly and gently arched, without dorsal or posterodorsal angles; ventral margin straight to slightly convex, which is usually more or less sinuous, especially posteriorly, with prolonged and gently tapering posterior region ending in more or less acutely pointed to truncate posterior angle. Moderately inflated in dorsal view; margins not compressed; anterior and posterior ends bluntly rounded; lateral margins gently curving to nearly parallel; valves distinctly asymmetrical. Hinge thick and sturdily developed; zone of concrescence moderately wide to very wide, even; radial pore canals more or less regularly and complexly branching; vestibule not constricted; few, small sensillum pores with short, smooth, simple, unbranched setae; adductor muscle-scar group fairly small in proportion to carapace size, asymmetrical in the two valves, usually diagonally oriented.

Antennules of moderately robust proportions, tapering, with most podomeres longer than wide, with short, thick setae; podomeres II and III more or less flexibly articulated. Antenna robust with numerous, fairly long, thick terminal claws; very long sensory aesthetascs on podomere II; four or more long swimming setae on podomere III; anterodorsal setae of podomere IV very long. Podomeres I and Π of maxillule palp completely fused without suture; the anterodistal setae of these two podomeres remain distinct.

Palp of male right fifth limb forms a fairly large, thick, right-angled to recurved hook; left limb more tightly recurved; two small to large, fairly slender, tapering ventral pegs and one small ventral seta; proximal sensory seta and very conspicuous terminal sensory disk present, but no dorsal seta. Palp of female fifth limb slender to robust, with three terminal setae of graduated lengths, the dorsal one the shortest and the ventral one usually the longest. Sixth leg with two distal claws of equal or nearly equal size. Seventh limb with well-feathered, short to moderately long, reflexed seta and two distal setae, the longer of which varies from half the length of the reflexed seta to distinctly longer than the reflexed seta and may be weakly pinnate. Furca small to fairly large, consisting of two long, cylindrical proximal rods, each bearing a cluster of up to four very tiny to medium-sized proximal setae located near the base, in the middle, or near the end of the rod and each terminating with a long, flexible, tapering seta; often dimorphic, usually somewhat larger in males but otherwise of similar construction to females, but occasionally absent in males, in which case it is represented only by a vestigial nub bearing four tiny proximal setae. Male hemipenis roughly subtriangular to rhomboidal to ovate in outline, with straight dorsal margin and acute to obtuse anterior angle; copulatory rod short, nearly straight to weakly curved. Zenker's organ with medium-sized to long muscularized portion and a small to large, spherical terminal bulb; vas deferens somewhat thickened, coiled in an irregular disk, a tight, regular spiral, or a tangled knot of 4 to 10 or more coils. The strands of sperm may also be coiled in a long tight spiral of 10 or more coils like a telephone cord before entering the terminal bulb.

Affinities.-Macropyxis includes many species formerly assigned to Macrocypris, and most general statements about that genus by most previous authors actually apply to Macropyxis. Certain undescribed Australian species referred to Macrocyprissa (McKenzie, 1967a, 1974, 1976; McKenzie and Peypouquet, 1984) probably belong to Macropyxis (or possibly to Macromckenziea), and the generalizations of those authors about "Macrocypris" should be regarded as referring to Macropyxis.

Macropyxis is represented by numerous species in bathyal and abyssal environments of all oceans and is far more diverse than Macrooypris or Macromckenziea. It is, in fact, the typical representative of the Macrocyprididae in psychrospheric faunas.

Remarks.-Although the branching radial pore canals are the most visible, characteristic attribute of this genus, they show considerable interspecific and intraspecific variability as well. A few specimens in any species population have narrower fused marginal zones with correspondingly shorter, less elaborately branching radial pore canals than usual for the species. Perhaps some of these specimens had molted only recently and had not completed calcification of the carapace at the time of collection. Of course this phenomenon is not, by any means, restricted to Macropyxis; a few thin-edged, juvenile-appearing adults may be found in large populations of any other genus and species of Macrocyprididae. It deserves special mention for Macropyxis only because failure to recognize this variability in marginal development may hinder identification of the genus as well as the species. Generally, the most completely developed specimens, with the most complexly branching radial pore canals, should be selected for comparison and identification.

Many species of Macropyxis also show moderate variability in the degree of prolongation of the posterior carapace angle, with accompanying variability of the exact shape of the posterior and posteroventral margin. In large populations at one station this intraspecific variation is readily assessed and recognized. For small populations or for single specimens from isolated stations, though, the evaluation of shape may be equivocal, especially as the shape of the posterior angle also varies with sex and sometimes with depth or geographic distance. Thus, isolated specimens of some species may be difficult to identify reliably from carapace shape alone. Several such specimens are here treated conservatively as separate species in open nomenclature.

MACROPYXIS SAPELOENSIS (Darby, 1965)

$$
\begin{aligned}
& \text { Graph 18; Figures } 10.10,11,11.9,10,19.8,22.15, \\
& 26.1-3,30.1,34.9,38.1,46.55,36,50.25-27,51.16-18 \text {, } \\
& 56.4,23,57.16,58.8,59.21,61.6,63.4,64.11,12,42, \\
& 67.1,71.3,4,75.7,78.5 ; \text { Plates } 10.7-12,11.7-12,62.4,5 \text {, } \\
& 63.5,6,66.8-11,78.24-26,82.7,87.1-6,101.1-4, \\
& 111.11
\end{aligned}
$$

Macrocypris sapeloensis DARBy, 1965, p. 24, pl. 8, fig. 1-9, pl. 9 , fig. 1-9; Maddocks, 1977, fig. 5; MAddocks, 1979, pl. 2, fig. 6, 8, 13, 18-20, 23.
Material-The holotype; plus 366 specimens in alcohol, including 112 males, 151 females, 99 juveniles, and 4 empty capaces and valves; for a total of 367 specimens.

Types.-The holotype (University of Michigan Paleontological Museum catalog number 48780) is the adult male illustrated by Darby ($1965, \mathrm{pl} .8,9$). The two valves are on a paper slide, and the appendages and genitalia are mounted separately on 16 glass slides.

New material for this species is deposited as USNM 240400-240420.

Type locality.-The holotype is labeled only "Recent near

Sapelo Island, Georgia." Darby (1965, p. 25) reported the habitat as follows: "Taken from 625 feet (191 m) of water, salinity approximately 35%, water temperature $23^{\circ} \mathrm{C}$., 75 miles offshore near edge of Gulf Stream." To this he added, "One living specimen from Sapelo Sound," but it is unlikely that this or any macrocypridid species lives in the polyhaline environment of Sapelo Sound.

Occurrence.-In UMMP 48780, 1 live specimen (1M); at AII-40-172, 8 live plus 4 specimens ($4 \mathrm{~F}, 2 \mathrm{FJ}-1,2 \mathrm{MJ}-1$); at AII-40-173, 25 live specimens ($3 \mathrm{M}, 5 \mathrm{~F}, 1 \mathrm{MF}$, $8 \mathrm{MJ}-1,5 \mathrm{FJ}-1$, $2 \mathrm{FJ}-2,1 \mathrm{FJ}-3$); at "Chain" C \# 1, 5 live specimens (1M, 1F, $3 \mathrm{FJ}-1$); at stations of the Bureau of Land Management, Middle Atlantic Outer Continental Shelf Environmental Study, a total of 324 live specimens, as follows: at BLM-A1, 183 live specimens ($55 \mathrm{M}, 82 \mathrm{~F}, 46 \mathrm{~J}$); at BLM-A2, 17 live specimens (7M, 3F, 7J); at BLM-A3, 3 live specimens (3J); at BLM-A4, 1 live specimen (1M); at BLM-E2, 1 live specimen (1M); at BLM-E4, 1 live specimen (1M); at BLM-F2, 32 live specimens ($17 \mathrm{M}, 13 \mathrm{~F}, 2 \mathrm{~J}$); at BLM-F4, 16 live specimens ($5 \mathrm{M}, 6 \mathrm{~F}, 5 \mathrm{~J}$) ; at BLM-G5, 11 live specimens ($2 \mathrm{M}, 8 \mathrm{~F}$, 1J); at BLM-G6, 2 live specimens (2M); at BLM-H1, 1 live specimen (1J); at BLM-I2, 1 live specimen (1 F); at BLM-I3, 7 live specimens ($1 \mathrm{M}, 3 \mathrm{~F}, 3 \mathrm{~J}$); at BLM-K4, 42 live specimens (12M, 22F, 8J); at BLM-K6, 4 live specimens (2M, 2F); at BLM-L5, 1 live specimen (1 F); at BLM-L6, 1 live specimen (1M).

Distribution.-Holocene; Atlantic continental shelf of the United States, known live depth range 74 to 400 m , most abundant near shelf edge.

Dimensions.-Holotype male UMPM 48780, RVL 1.47 mm , RVH 0.61 mm , LVL 1.47 mm , LVH 0.58 mm . Females are longer and higher than males and higher in proportion to length. No effect of depth on size is evident. See also Graph 13.

Diagnosis.-Carapace elongate-ovate in lateral outline, with smoothly curving, uninterrupted contours, greatest height located near midlength; ventral margin gently indented in mouth region, gently upswung posteriorly to rounded posterior angle of about 85° to 95°; moderately inflated in dorsal view; zone of concrescence moderately
wide with weakly, irregularly branching radial pore canals.
Male fifth limb with quadrate hook recurved at about 55° for right limb and 48° for left. Female fifth limb quite short, with sturdy, curved terminal claws of graduated lengths. Sixth limb with three sturdy distal claws of graduated lengths, each about 1.5 times the length of the nextshorter one. Seventh leg has exceptionally long setae on podomeres I, II, and III; reflexed seta is quite short, reaching only to joint between podomeres II and III, with extremely fine pectination (too fine to draw); longer distal seta is half again as long as the reflexed seta. Furcal rami rather thick in proportion to length, with thick, curved, flexible terminal setae, thicker in male; proximal setae located at midlength. Male hemipenis rounded-subtriangular in outline, broadening anteriorly to curved, blunt anterior margin; copulatory rod short, straight. Terminal bulb of Zenker's organ spherical, about twice the diameter of the muscularized portion; vas deferens coiled in a tight, regular spiral of about eight coils; strands of sperm also spirally coiled.

Comparisons.-Mx. sapeloensis may be distinguished from Mx. labutisi, which occurs at the same localities, by its larger size, more evenly arched dorsal margin, gently convex ventral margin, more distinct posterior angle, narrower zone of concrescence, deeper anterior and posterior vestibules, less elaborately branching radial pore canals, and nondimorphic furca. Externally adults of the two species are fairly similar, however, and juveniles are even more difficult to distinguish. Here size and appendage development are useful, as the average size of any instar of $M x$. labutisi tends to fall below the equivalent instar of $M x$. sapeloensis and above the preceding one, in the gap between size-clusters of the other species. Superposing the lengthheight scatter plots for these two species (Graphs 18 and 28) produces a continuous smear of points.
$M x$. bathyalensis is much larger, with a straight or sinuous ventral margin, more acutely truncate to pointed posterior angle, broader zone of concrescence, and elaborately branching radial pore canals grouped in large bundles. Mx. simulans is much larger, with more sinuous contours and a straight-line, sloping posterodorsal margin. $M x$. amoena is slightly larger, with a sinuously upswung, slightly concave posteroventral margin. Mx. improcera is much smaller with a sloping, acutely terminated posterior.

Remarks.-Darby (1965) illustrated this species thoroughly and accurately. It is one of the smallest, simplest, and shallowest-living species of the genus but completely typical for the genus and the best known.

MACROPYXIS ADRECTA new species

[^0]

Derivation of name.-Latin adrectus, upright, erect; for the rectilinear shape of the posterodorsal margin.

Material-Eight specimens in alcohol, including 1 male, 3 females, 3 juveniles, and 1 empty valve.

Types.-Holotype male 1448M USNM 240421, paratypes USNM 240422-240428.

Type locality.-Atlantis II cruise 42 station $198,10^{\circ} 24^{\prime} \mathrm{S}$, $9^{\circ} 09^{\prime} \mathrm{E}$, depth $4559-4566 \mathrm{~m}$.

Occurrence.-At AII-42-197, 2 live specimens (1MJ-1, $1 \mathrm{~J}-2$); at AII-42-198, 3 live plus 1 specimens ($1 \mathrm{M}, 1 \mathrm{~F}$, $1 \mathrm{FJ}-2$); at $\mathrm{KN}-25-307$, 2 live specimens (2 F).

Distribution.-Holocene; in the Angola Basin, eastern South Atlantic Ocean, known live depth range 45595631 m .

Dimensions.-Holotype male 1448M, RVL 2.17 mm , RVH 0.76 mm , LVL 2.08 mm , LVH 0.71 mm . See also Graph 14. The male is longer than the females but not as high. There are not enough specimens to detect any influence of depth on size.

Diagnosis.-Female carapace elongate-oblong in lateral outline with high-arched dorsal margin and greatest height located near midlength; ventral margin gently sinuate, upswung near posterior; posterodorsal margin steeply sloping, straight; sharp posterior angle of about 65° in female and 45° in male; zone of concrescence broad to very broad, with elaborately branching radial pore canals.

Palp of male fifth limb has elongate basal segment; recurved terminal segment is somewhat constricted near base and more or less swollen near tip, recurved at 72° in right limb and 44° in left. Female fifth limb has normal proportions and three terminal setae of graduated lengths. Sixth limb has three slender terminal claws of unequal lengths. Seventh limb has a moderately long, finely pectinate reflexed seta; the longer of the distal setae is about half the length of the reflexed seta. Furcae long and slender in female, thicker and somewhat shorter in male, with small proximal setae located about midway on rami. Male hemipenis oblong with blunt, wrinkled anterior end; copulatory rod short, straight. Terminal bulb of Zenker's organ about twice the diameter of the relatively short
muscularized portion; vas deferens thick, coiled in a tight, irregular spiral knot of about seven coils.

Comparisons.-The hemipenis of $M x$. adrecta is very similar to that of $M x$. arta but is not bent in the middle and is more heavily sclerotized overall. Mx. arta is smaller and more siliquose than $M x$. adrecta, but the female of $M x$. arta is roughly the same shape and size as the male of $M x$. adrecta. Mx. adunca, which also occurs in the same region, has much more sinuous contours, a more upswung posterior angle, and distinctive soft parts.

MACROPYXIS ADRIATICA (Breman, 1975)

Graph 15; Figures 8.9,10, 9.9.10, 19.10, 22.20, 24.6; Plates 16.9-12, 17.9-12, 78.30
Macrocypris adriatica Breman, 1975, p. 210, pl. 2, fig. 6a-c, pl. 4, fig. 17a-d; ?Colalongo and Pasini, 1980, p. 62; Tsapralis, 1981, p. 116; Bonaduce et al., 1983, table 2; ?Van Harten, 1986a, table 1; ?Van Harten, 1987, table 1-3; Montcharmont-Zei et al., 1984, pl. 1, fig. 2.
Macrocypris sp. 1 Ascoli, 1964, p. 218, pl. 4 [part.]; Ascols, 1965, p. 88 , pl. 4,5 [part.].
Macrocypris sp. Colalongo, 1965, p. 89, pl. 10, fig. 7; Sissingh, 1971, p. 408 (fide Breman, 1975).
Material.-Fifteen paratype fossil valves.
Types.-In the Instituut voor Aardwetenschappen, Vrije Universiteit, Amsterdam. The holotype adult right valve (EB-NS-223C-2) was not seen; the interior of that specimen

was illustrated by SEM by Breman (1975, pl. 4, fig. 17a,c,d). The 15 paratype valves of slide EB-NS-223A have been given my specimen numbers 2077-2091; paratypes EB-NS223B,C,D were not seen.

Type locality.-Core 353, interval $250-585 \mathrm{~cm}$ of Breman (1975), in upper Pleistocene sediments of the Adriatic Sea.

Occurrence.-In VUA EB-NS-223A, 15 specimens.
Distribution.-Pleistocene and Holocene of Italy, Greece, and the Adriatic and Ionian seas; interpreted by Breman (1975) as bathyal and low-temperature. Colalongo and Pasini (1980) stated that the first appearance of this species helps to characterize the Pliocene-Pleistocene boundary. Van Harten (1986a, 1987) and van Harten and Droste (1988) reported it from 335 m to 1669 m in several basins of the western Mediterranean, stating that it became extinct in the eastern Mediterranean after an early Holocene anoxic event (about 9000 years ago).

Dimensions.-Paratype 2085, RVL 2.16 mm , RVH 0.82 mm ; paratype 2086 , RVL 2.37 mm , RVH 0.96 mm ; paratype 2082, LVL 2.20 mm , LVH 0.81 mm ; paratype 2083, LVL 2.25 mm , LVH 0.87 mm . See also Graph 15.

Diagnosis.-Carapace oblong-subtrapezoidal in lateral outline with straight or very weakly indented ventral margin; dorsal margin straight, sloping, with more or less distinct anterodorsal and posterodorsal angles; anterior margin broadly and regularly rounded; posterodorsal margin sloping steeply, straight, forming sharp posterior angle of about 45° in male to 55° in female; zone of concrescence moderately wide, radial pore canals complexly and more or less regularly branching.

Comparisons.- $M x$. adriatica is fairly similar to $M x$. bathyalensis but is higher in proportion to length, with a more broadly rounded anterior end, a nearly straight rather than weakly arched dorsal margin, more distinct anterodorsal and posterodorsal angles, somewhat narrower zone of concrescence, less complexly branching radial pore canals, and a thinner, less robustly developed hinge. However, both species show considerable variability in details of shape. $M x$. adrecta is very similar but smaller, shorter, proportionately higher, with a slightly arched dorsal
margin, a shorter distance between the less distinct anterodorsal and posterodorsal angles, a broader fused zone, more complexly branching radial pore canals, a curving ventral margin, and greatest height located posterior to midlength. Mx. sp. 20 is also remarkably similar but has a more arching dorsal margin.

Remarks.-Breman (1975) published good SEM pictures of this species.

MACROPYXIS ADUNCA new species

Graph 16; Figures 8.2,3, 9.2,3, 19.6, 22.11, 24.18, $26.30,31,30.3,33.2,41.6,46.58,59,50.22,51.33,57.8$, 58.12, 61.5, 64.7, 66.7, 80.10; Plates 14.1,2,7.8, $15.1-3,7,8,58.5,78.29,88.18-17,100.10,13,15-19$, 111.3

Macrocypris sp. 3 Maddocks, 1977, fig. 10.
Derivation of name.-Latin aduncus, bent inwards, hooked; for the hooked ventral process of the hemipenis.

Material-Fifteen specimens in alcohol, including 2 males, 4 females, and 9 juveniles.

Types.-Holotype male 1520M USNM 240429, paratypes USNM 240430-240438.

Type locality.-Knorr cruise 25 station $306,15^{\circ} 59.5^{\prime} \mathrm{S}$, $1^{\circ} 38.5^{\prime} \mathrm{E}$, depth 5550 m .

Occurrence.-AtAII-42-198, 1 live specimen (1F); at KN-25-287, 1 live specimen (1F); at $\mathrm{KN}-25-303,5$ live specimens (1M, 1F, 1FJ-1, 2J-1); at $\mathrm{KN}-25-306,8$ live specimens (1M, 6F, 1FJ-1).

Distribution.-South Atlantic Ocean, known live depth range 4559-5550 m.

Dimensions.-Holotype male 1520, RVL 2.14 mm , RVH 0.80 mm , LVL 2.09 mm , LVH 0.75 mm . See also Graph 16. The males are somewhat longer but distinctly less high than females, with more elongate shape. Size appears to increase with depth.

Diagnosis.-Carapace elongate-ovate in lateral outline with sinuous contours; dorsal margin smoothly but gently arched; anterior margin somewhat narrowly rounded; ventral margin sinuous, distinctly indented in mouth region

and upswung posteriorly; somewhat flared, truncate, sinuate posterior angle of about 45° to 55°; zone of concrescence broad, line of concrescence deeply scalloped, radial pore canals complexly branching, arranged in large bundles.

Right male fifth limb has small oblong pegs and short, thick hook recurved at 76°; left limb has longer, tapering pegs and thinner hook recurved at 55°. Female fifth limb robustly proportioned, with three terminal claws of graduated sizes. Sixth limb has two slender terminal claws of equal size. Seventh leg has distinctly pectinate but very short reflexed seta, reaching only to about the middle of podomere III; the longer of the distal setae is half again as long as the reflexed seta. Furca fairly large, dimorphic; clusters of four proximal setae are located near the base of the cylindrical rami; female rami and terminal setae slender, flexible; male rami and terminal setae not much longer but distinctly thicker, with longer proximal setae. Male hemipenis approximately subtriangular in outline, tapering anteriorly to obliquely truncate, curved anterior angle; a narrow, long, curved, thumblike, lamellar process extends anteriorly from the lowest part of the ventral margin; an oblong lamellar flap covers an indentation in the dorsal margin; copulatory rod short and straight. Spherical bulb of Zenker's organ about 1.5 times as thick as muscularized portion; vas deferens tightly coiled in a tangled knot of at least six coils.

Comparisons.-Mx. audens is similar to $M x$. adunca but exaggerated in shape, with grotesquely sinuous contours and a more broadly rounded anterior margin. Mx. adrecta has less sinuous contours, a more nearly straight ventral margin, and sharply angled posterior end. Mx. simulans is much larger and more inflated, especially posteroventrally. $M x$. similis is larger and much more elongate, with more complexly branching radial pore canals. The male hemipenis of $M x$. adunca is unique and diagnostic.

MACROPYXIS AMANDA new species

Graph 17; Figures 8.6.7, 9.6,7, 19.1, 22.7, 24.9, $26.26,27,30.10,33.8,41.5,46.54,55,67.10,80.4$; Plates 12.1-6, 18.1-6, 79.1,2, 83.1, 88.5-7, 102.1-4

Macrocypris sp. 5 Maddocks, 1979, fig. 10.
Derivation of name.-Latin amandus, pleasing; for the graceful, sinuous outline.

Material-Fifteen specimens in alcohol, including 3 males, 10 females, and 2 empty carapaces and valves.

Types.-Holotype male 1406M USNM 240439, paratypes USNM 240440-240447.

Type locality.-Atlantis II cruise 42 station 200, $9^{\circ} 41^{\prime}-9^{\circ} 43.5^{\prime} \mathrm{S}, 10^{\circ} 55^{\prime}-10^{\circ} 57^{\prime} \mathrm{E}$, depth $2644-2754 \mathrm{~m}$.

Occurrence.-At AII-42-200, 13 live plus 2 empty specimens (3M, 10F).

Distribution.-Holocene; known only at one station in the Angola Basin, eastern South Atlantic Ocean, depth 2644-2754m.

Dimensions.-Holotype male 1406M, RVL 2.69 mm , RVH 0.98 mm , LVL 2.68 mm , LVH 0.97 mm . See also Graph 17. The males are slightly shorter and distinctly less high than the females, with more elongate shape.

Diagnosis.-Carapace large, elongate-oblong in lateral outline with pointed posterior angle; anterior margin broadly and slightly obliquely rounded; ventral margin slightly sinuous to nearly straight, slightly upswung posteriorly; dorsal margin broadly arched in a high, sweeping curve, greatest height located anterior to midlength; posterior angle sharp, about 45° to 55°; zone of concrescence wide; radial pore canals complexly and somewhat irregularly branching.

Right male fifth limb short and thick, with stout hook recurved at 51°; left limb less robust, with widely separated pegs, and slender hook recurved at 20°. Female fifth limb long, with graduated terminal setae. Sixth limb robustly proportioned with terminal claws of unequal length. Seventh limb small, with long, very finely pectinated reflexed seta (too fine to draw); the longer distal seta is not quite as long as the reflexed seta. Furca quite large, dimorphic; female furca has thick cylindrical rami, with clusters of four fairly large proximal setae located near base of rami and fairly short, thin, flexible terminal setae. Male furca smaller, with short cylindrical rami consisting only of the
proximal portion, distal portion missing, proximal setae located at end of ramus; terminal setae not reduced, fairly long and flexible. Male hemipenis oblong, with cushionlike contours, five-sided; ventral margin obtusely angled; anterior margin truncate, sloping ventrally; dorsal margin indented; a curved, sclerotized chitinous lamella stiffens the anterodorsal region of the margin; copulatory rod quite large, tapering, directed posterodorsally, curved into a right angle near its tip. Zenker's organ has a very large spherical bulb, about three times the diameter of the rather short muscularized portion; vas deferens thick, coiled into an irregular, discoidal spiral of about six loops of increasing diameter.

Comparisons.-Mx. kalbi is similar to $M x$. amanda in size and shape but has a convex ventral margin and less elaborately branching radial pore canals; its posterior angle is located distinctly above the venter. $M x$. sp. 8 and $M x$. sp. 21 are higher, with distinct dorsal angle located at midlength. Mx. simulans is smaller, more oblong, and more sinuous in shape. Mx. bathyalensis has different dimorphism and much more elaborately organized branching radial pore canals.

Remarks.-Specimen 1792F and perhaps 1526F are newly molted with incompletely calcified marginal zones.

MACROPYXIS AMOENA new species

Graph 18;Figures 6.15.16, 7.18,14, 18.12, 22.16, 24.22, $25.9,10,30.20,36-37.10,46.16-19,54.26-30,55.37$, 57.27, 58.7, 60.9, 64.27; Plates 20.7.8, 21.7.8, 79.3, 86.14,15

Macrocypris sp. 7 Maddocks, 1977, fig. 10.
Derivation of name.-Latin amoenus, pleasant, charming; for the graceful, sinuous outline.

Material-Five specimens in alcohol, including 2 males, 1 female, and 2 juveniles; plus 187 empty dry carapaces and valves; for a total of 192 specimens.

Types.-Holotype male 1463M USNM 240448 , paratypes USNM 240449-240455 and KUMIP 1,123,685-1,123,888.

Type locality.-Hero cruise 69-5 station $213,51^{\circ} 27.5^{\prime} \mathrm{S}$, $74^{\circ} 03^{\prime} \mathrm{W}$, depth 696.3-916.3 m.

Occurrence.-At H-69-5-49, 1 specimen; at H-69-5-53, 130 specimens; at H-69-5-57, 2 live plus 24 specimens (1M, $1 \mathrm{MJ}-1$); at H-69-5-201, 1 specimen; at H-69-5-210, 6 specimens; at H-69-5-212, 1 specimen; at H-69-5-213, 3 live plus 13 specimens ($1 \mathrm{M}, 1 \mathrm{~F}, 1 \mathrm{FJ}-1$); at H-69-5-220, 3 specimens; at H-69-5-222, 5 specimens; at H-69-5-259, 1 specimen; at H-69-5-268, 1 specimen; at H-69-5-282, 1 specimen.

Distribution.-Holocene; Strait of Magellan and southeastern Pacific Ocean, known live depth range 214 to 916 m , dead specimens as shallow as 9.3 m .

Dimensions.-Holotype male 1463M, RVL 1.78 mm , RVH 0.66 mm , LVL 1.56 mm , LVH 0.64 mm . See also Graph 18. Males are not as high as females. Size increases with depth.

Diagnosis.-Carapace elongate-ovate in lateral outline with sinuous contours; dorsal margin very broadly arched, greatest height located slightly anterior to midlength; anterior margin broadly and somewhat narrowly rounded; ventral margin sinuous, slightly indented in mouth region, upswung posteriorly to acute posterior angle of about 65° to 70°; anterior zone of concrescence broad, radial pore canals more or less elaborately branching.

Male fifth limbs with thick, nearly right-angled hook. Female fifth limb robustly proportioned. Seventh limb with long, thick, conspicuously pectinate recurved seta; both distal setae fairly short. Female furca small, with very short cylindrical rami bearing clusters of three or more small proximal setae and short, flexible terminal seta; male furca vestigial, consisting of a tiny chitinous nub bearing two pairs of very tiny proximal setae, without any rami or terminal setae. Male hemipenis subrhomboidal in outline with slightly concave dorsal, posterior, and anterior margins and convex ventral margin; subrhomboidal lamellar

process projects anterodorsally; copulatory rod short, thick, straight.

Comparisons.-The carapace of $M x$. amoena is smaller and more compact than most others in the genus; the sinuous posterior angle is especially distinctive. Mx. labutisi is somewhat similar in shape and furcal dimorphism but much smaller, with more elaborately branching radial pore canals. Mx. eltaninae has similar size and proportions but has less sinuous outlines and a nearly straight ventral margin, and the male furca is not reduced. $M x . \mathrm{sp} .46$ is nearly identical in shape and female soft parts but very much larger.

Remarks.-The soft parts of the holotype male 1463M are fragmentary and incomplete.

MACROPYXIS ANTONBRUUNAE new species

Graph 19; Figures $6.17,18,7.15,16,20.10,22.6,24.11$, $26.6-9,80.18,33.1,40.3,46.66-68,50.4,51.14,57.7$, 58.10, 61.1, 64.6, 65.6, 80.15; Plates 18.7-12, 19.7-12, $62.8,66.3,4,79.4,5,83.7,89.1-6,99.10-15$

Mactocypris sp. P Maddocks, 1977, fig. 8, 10.
Macrocypris n. sp. 3 Maddocks, 1979, pl. 1, fig. 17, 18, 20, 21.

Derivation of name.-For the Research Vessel Anton Bruun. Material-Eleven specimens in alcohol, including 6 males, 2 females, and 3 juveniles.

Types.-Holotype male specimen 332M USNM 240456, paratypes USNM 240457-240466.

Type locality.-Anton Bruun cruise 11 station $179,8^{\circ} 54^{\prime} \mathrm{S}$, $80^{\circ} 41^{\prime} \mathrm{W}$, depth $4823-4925 \mathrm{~m}$.

Occurrence.-At $\mathrm{AB}-11-36,4$ live specimens $(2 \mathrm{M}, 1 \mathrm{~F}$, $1 \mathrm{FJ}-1$); at $\mathrm{AB}-11-95$, 2 live specimens ($1 \mathrm{M}, 1 \mathrm{FJ}-1$); at $\mathrm{AB}-$ 11-113, 1 live specimen ($1 \mathrm{FJ}-1$); at $\mathrm{AB}-11-179,3$ live specimens ($2 \mathrm{M}, 1 \mathrm{~F}$); at V-15-84, 1 live specimen (1M).

Distribution.-Holocene; in the Peru-Chile Trench, known live depth range 4332 m to 6134 m .

Dimensions.-Holotype male 332M, LVL 1.77 mm , LVH 0.62 mm . See also Graph 19. Males are lower and longer than females. Size decreases with depth.

Diagnosis.-Carapace elongate-siliquose in lateral outline with smoothly curving contours; dorsal margin very gently arched, greatest height near midlength; anterior margin broadly and somewhat obliquely rounded; ventral margin straight or slightly convex to weakly sinuous, upswung posteriorly to sharp posterior angle of 50° to 60°; zone of concrescence broad; anterior radial pore canals complexly branching.

Male fifth limbs nearly symmetrical, with short, moderately thick hooks recurved at 72° to 98°. Female fifth limb has an exceptionally long ventrodistal seta. Terminal claws of the sixth leg are nearly equal in length. Reflexed seta of seventh limb fairly short, reaching only to middle of podomere II, finely pectinate; distal seta about three-quarters as long as reflexed seta. Furca large, with long cylindrical rami and flexible terminal setae in both sexes; clusters of at least three small to medium-sized proximal setae are located at about one-third length on cylindrical rami. Male hemipenis oblong with large, rostrate anterodorsal projection, strengthened by chitinous struts; copulatory rod short, straight. Muscularized portion of Zenker's organ thin, long; spherical terminal bulb only slightly thicker; vas deferens slightly thickened, coiled in a tight, irregular spiral of at least eight loops.

Comparisons. $-M x$. antonbruunae is much smaller and more elongate than $M x$. kalbi and $M x$. kaesleri, with which it occurs; the latter species is also much more sinuous in shape and has more elaborately organized radial pore canals. Mx. arta has a straight ventral margin and greatly extended posterior end with deep posterior vestibules. Mx. eltaninae is shorter and higher, with a nearly straight ventral margin and domed dorsal margin; its hemipenis is less elongate than but shows structural homologies with that of Mx. antonbruunae. Mx. bathyalensis also has a higher, more strongly sclerotized hemipenis of similar structure.

Remarks.-The occurrence of this species (with Mx. kalbi and Mx. kaeslen) at AB-11-113, depth 5986-6134 m, marks the deepest known occurrence of live Macrocyprididae. Specimen 341 M is recently molted and incompletely calcified.

MACROPYXIS ARTA new species

Graph 20; Figures 8.11,12, 9.11,12, 19.3, 22.8.4, $24.16,17,26.4,5,30.9,34.2,40.1,46.60,61,56.18,57.4$, $58.4,59.15,61.9,63.5,64.10,44,67.2,80.13$; Plates $16.2-4,17.9-5,79.6,7,89.4,8,88.2-4$
Macrocypris similis Brady Maddocks, 1977, fig. 1, 6.
Derivation of name.-Latin artus, close, strait, narrow; for the extremely elongate shape.

Material-Nine specimens in alcohol, including 4 males, 1 female, and 4 juveniles belonging to 2 instars.

Types.-Holotype male specimen 1456M USNM 240467, paratypes USNM 240468-240471.

Type locality.-Atlantis II cruise 42 station 201, $9^{\circ} 29^{\prime}-9^{\circ} 25^{\prime} \mathrm{S}, 11^{\circ} 34^{\prime}-11^{\circ} 25^{\prime} \mathrm{E}$, depth $1964-2031 \mathrm{~m}$.

Occurrence.-At AII-42-201, 9 live specimens (4M, 1F, 1FJ-1, 3J-1).

Distribution.-Holocene; known only from one station in the Angola Basin, eastern South Atlantic Ocean, depth 1964-2031 m.

Dimensions.-Holotype male 1456M, RVL 2.01 mm , RVH 0.68 mm , LVL 1.96 mm , LVH 0.65 mm . See also Graph 20. The female is distinctly higher than the males.

Diagnosis.-Carapace medium-sized, elongate-siliquose in lateral outline; dorsal margin gently arching; anterior margin broadly and somewhat obliquely rounded; ventral margin straight to slightly sinuate, only very slightly upswung posteriorly; posterior region greatly extended, ending in slightly truncate angle of about 45° to 50°; anterior zone of concrescence very broad, with elaborately branching radial pore canals arranged in bundles.

Male fifth limbs large, thick, with short, thick pegs and thick, tapering hooks recurved at 65° for right limb and 33° for left. Female fifth limb robustly proportioned, ending in rather short, thick claws of graduated lengths. Sixth limb ends in two claws of nearly equal length. Seventh limb has a short, distinctly pectinate reflexed seta, reaching only to the joint between podomeres II and III; the longer of the distal setae is much longer than the reflexed seta and finely pectinate. Furca large, weakly
dimorphic, larger in males than in female, consisting of long, stout cylindrical rami with flexible terminal setae, plus clusters of four large proximal setae located at about one-third length of rami. Male hemipenis oblong, flexed at midlength, with concave dorsal margin, angulate-convex ventral margin, bluntly truncated anteriorly, weakly sclerotized, without lamellar projections; copulatory rod short, straight.

Comparisons.-Mx. adrecta is higher and somewhat larger than $M x$. arta, with a more domed dorsum and more truncate, tapering posterior angle; its hemipenis is more quadrate in outline but shows structural homologies with that of Mx. arta. Mx. adunca, Mx. audens, Mx. similis, and Mx. kornickeri are larger, less elongate, and have more sinuous contours. Mx. antonbruunae is smaller with a less tapered posterior angle, shallower posterior vestibules, and more evenly rounded anterior margin.

MACROPYXIS AUDENS new species

Graph 21; Figures $8.4,5,9.4,5,19.2,22.12,24.8$, $26.22,28,30.4,33.7,39.1,46.56,57,50.23,51.34,57.5$, $58.15,61.7,64.9,67.8,80.11$; Plates 14.9-12, 15.9-12, $60.5-7,63.3,4,79.8-10,81.26,27,82.3,4,88.8-12$, 102.5-9

Macrocypris sp. 4 Maddocks, 1977, fig. 10.
Derivation of name.-Latin audens, daring, bold, courageous; for its relatively large size and deep habitat.

Material-Eighteen specimens in alcohol, including 9 males, 6 females, and 7 juveniles belonging to 3 instars.

Types.-Holotype male 1446M USNM 240472, paratypes USNM 240473-240281.

Type locality.-Atlantis II cruise 42 station 199, $9^{\circ} \mathbf{4 7}^{\prime}$ $9^{\circ} 49^{\prime} \mathrm{S}, 10^{\circ} 29^{\prime}-10^{\circ} 33^{\prime} \mathrm{E}$, depth $3764-3779 \mathrm{~m}$.

Occurrence-At AII-42-195, 3 live specimens (1M, 2F); at AII-42-199, 10 live specimens ($2 \mathrm{M}, 4 \mathrm{~F}, 1 \mathrm{FJ}-1,3 \mathrm{~J}$); at AII-42201, 5 live specimens ($1 \mathrm{MJ}-1,1 \mathrm{FJ}-2,1 \mathrm{~J}-4,2$ undetermined).

Distribution.-Holocene; in the Angola Basin, southeastern Atlantic Ocean, known live depth range 1964 m to 3797 m .

Dimensions.-Male 1446M, RVL 2.14 mm , RVH 0.77 mm , LVL 1.05 mm , LVH 0.71 mm . See also Graph 21. Females distinctly higher than males. Size may increase with depth.

Diagnosis.-Carapace elongate-ovate in lateral outline with very sinuous contours; dorsal margin gently arched to nearly straight, greatest height located anterior to midlength, anterior margin broadly and evenly rounded; ventral margin sinuate, indented in mouth region, upswung posteriorly to prolonged, acutely tapering, slightly flared posterior angle of 35° to 40°; anterior zone of concrescence broad, with elaborately branching radial pore canals.

Male fifth limbs with small, elongate palps and small hooks recurved at 39° to 50°. Female fifth limb of moderate proportions; the lower two of the three distal claws are nearly equal in length. The two distal claws of the sixth limb are nearly equal in length. Seventh leg rather small, with fairly short but very coarsely pectinate reflexed seta, reaching back to midddle of podomere III; the longer of the distal setae is also finely pectinate, about three-fourths as long as pectinate seta. Furca dimorphic, larger in males than females; female with long, thick, cylindrical rami and slender, flexible terminal setae, and with clusters of moderately large proximal setae located at about onethird length on rami; male rami about twice as long and proportionally thicker than in female, with shorter, much thicker, tapering, flexible terminal setae. Male hemipenis fusiform with curved, triangular anterodistal projection; copulatory rod rather large, tapering, bent in obtuse angle. Spherical terminal bulb of Zenker's organ hardly any wider than muscularized portion; vas deferens thickened, curled into broad, irregular coil of about five loops; strands of sperm also spirally coiled.

Comparisons.-The carapace of $M x$. audens is similar in shape to those of $M x$. adrecta, $M x$. arla, and especially $M x$. adunca but is more exaggerated in its features, with more extended posterior angle and more conspicuously sinuate ventral and posterior contours. The hemipenis of $M x$.
audens is similar in outline to those of $M x$. antonbruunae and $M x$. eltaninae but lacks the chitinous stiffening struts; it is more elongate and curving in shape than that of $M x$. labutisi but structurally quite similar.

MACROPYXIS BATHYALENSIS (Hulings, 1967)

> Graph 22; Figures $10.2-4,11.2-4,18.8,19.4,22.2,10$, $24.5,26.16,17,30.7,12,33.5,34.5,39.5,46.41-43$, $50.24,51.19,20,67.3,80.7 ;$ Plates $12.7-12,13.7-12$, $22.7,62.1,63.7-10,12,66.5,79.11-13,90.5-8,11,13$, $102.11,12,103.4-9$

Macrocypris bathyalensis Hulings, 1967a, p. 638, fig. 4r-u, 3f [part.]; Hulings, 1967b, p. 314, fig. 8a-d, pl. 4, fig. 1 [part.].
Not Macrocypris bathyalensis Hulings Maddocks, 1977, fig. 1,5, 10; Cronin, 1983, p. 107, pl. 4, fig. A, C, D.
Macrocypris minna (Baird) Tressler, 1941, p. 98, pl. 19, fig. 26.
?Macrocypris sp. cf. M. minna (Baird) Whatley and Coles, 1987, pl. 1, fig. 7.
Material-The holotype plus 34 specimens in alcohol, including 4 males, 8 females, 4 juveniles belonging to 2 instars, and 19 empty carapaces and valves; and 1 fossil valve; for a total of 36 specimens.

Types.-Holotype female AMNH 12733, labelled "VEMA station V-17-118, $57^{\circ} 50^{\prime}$ N. Lat., $56^{\circ} 06^{\prime}$ W. Long., Depth 3369 m ." The specimen consists of two valves in a vial of alcohol, without any corresponding dissection-mount. This is probably one of the two live female specimens mentioned by Hulings (1967a, p. 639, line 3 of "Occurrence"; also $1967 \mathrm{~b}, \mathrm{p} .314$). The soft parts of this specimen, the second live specimen reported by Hulings, and the dead specimens identified as this species that were collected from between Cape Hatteras and Jupiter Inlet by Hulings cannot be located in the American Museum of Natural History (Julia Golden, personal communication, 6 October 1977).

The new material for this species is deposited as USNM 240282-240289.

Type locality.-Vema cruise 17 station $118,55^{\circ} 50^{\prime} \mathrm{N}$, $56^{\circ} 06^{\prime} \mathrm{W}$, depth 3369 m .

Occurrence.-In AMNH 12738, 1 live specimen (1F); at All-12-65, 1 specimen; at AII-24-118H, 12 live plus 10 specimens ($3 \mathrm{M}, 5 \mathrm{~F}, 2 \mathrm{~J}-1,2 \mathrm{~J}-2$); at C-50-85, 2 live specimens ($1 \mathrm{M}, 1 \mathrm{~F}$); at Ingolf 18,7 specimens; at Ingolf 38a, 1 live plus 1 specimens (1F); in USNM 153744, 1 specimen.

Distribution.-Living and Quaternary in the North Atlantic Ocean, known live depth range 1135 m to 3834 m .

Hulings (1967a) reported this species at four stations between Cape Hatteras and Jupiter Inlet, on the middle Atlantic continental shelf of the United States at depths of 201 to 667 m , but those records probably belong to $M x$. sapeloensis. The report from the Florida slope by Cronin (1983) probably applies to Mx. tenuicauda.

The juvenile valve reported by Whatley and Coles (1987) as "Macrocyprissp. cf. M. minna" from the Quaternary (zone NN 19) at Deep Sea Drilling Program leg 94 site 606 (hole 606 A , core catcher 4 and $5,37^{\circ} 20.32^{\prime} \mathrm{N}, 35^{\circ} 29.99^{\prime} \mathrm{W}$, present water depth 3022 m) may belong to $M x$. bathyalensis.

Dimensions.-Holotype female AMNH 12733, RVL 2.18 mm , RVH 0.96 mm , LVL 2.13 mm , LVH 0.86 mm . See also Graph 22. Males are longer but not as high as females and have a more elongate shape. Size increases with depth. The much smaller dimensions given by Hulings (1967a) probably belong instead to $M x$. sapeloensis.

Diagnosis.-Carapace large, elongate-oblong in lateral outline with tapered posterior; dorsal margin arching smoothly to greatest height near midlength in females or slightly anterior to midlength in males; anterior margin broadly and fairly evenly rounded; ventral margin nearly straight to slightly sinuate, with weak indentation in mouth region, weakly upswung posteriorly in females, nearly straight in males; posterodorsal margin sloping steeply and continuously to sharp posterior angle of 45° to 50°; anterior zone of concrescence very wide, with complexly branching radial pore canals arranged in elaborate bundles, anterior vestibule correspondingly shallow; posterior zone of concrescence of moderate width, vestibule deep, especially in males.

Male fifth limbs slender, with elongate pegs and small hooks recurved at 91° for right limb and 25° for left. Female fifth limb of moderate proportions with setae of graduated lengths. Terminal claws of sixth limb of nearly equal lengths. Reflexed seta of sixth leg finely pectinate, of moderate length, reaching only to joint between podomeres II and III; the longer of the two distal setae is nearly as long as the reflexed seta. Furca of moderate size, larger in male, with long cylindrical rami and slender, flexible terminal setae in both sexes; clusters of medium-sized to large proximal setae located near end of ramus. Hemipenis oblong, strongly muscularized, with overhanging, beaklike anterodistal portion, sinuous ventral margin, and strongly sclerotized anteroventral, arcuate-triangular plate;
copulatory rod short, thick, nearly straight. Zenker's organ with long, narrow muscularized portion and large, circular terminal bulb; vas deferens coiled in a tight spiral of about six whorls.

Comparisons. $-M x$. bathyalensis is distinguished from most other Atlantic species of the genus by its nearly straight ventral margin and tapering posterior end. Mx. adriatica is similar in size but of more rectilinear shape, having distinct anterodorsal and posterodorsal angles and less complexly branching radial pore canals. Mx. audens, Mx. adunca, $M x$. simulans, and $M x$. adrecta have more sinuous shapes and less domed dorsal margins. $M x$. sp. 11 is similar but much smaller and proportionally not as high. Mx. amanda is larger and proportionally more elongate with a more gently arched dorsum. Mx. sapeloensis and Mx. labutisi are much smaller, with more rounded posterior ends and less angular outlines. The hemipenis of $M x$. bathyalensis is like those of Mx. antonbruunae and Mx. eltaninae in structure but proportionally higher, with a larger, less pointed anterodistal region, more irregular outline, and conspicuously sclerotized anteroventral plate.

Remarks.-Mx. bathyalensis has been confused with at least five other other species of Macrocyprididae. Hulings (1967a) reported dead specimens under this new name at four stations between Cape Hatteras, North Carolina, and Jupiter Inlet, Florida, on the middle Atlantic continental shelf of the United States, at depths of 201,576,585, and 667 m . However, he selected the holotype specimen from a Vema station off Labrador. The dimensions he reported (L 1.67 to $1.80 \mathrm{~mm}, \mathrm{H} 0.6$ to 0.8 mm) for the southern specimens are more appropriate for $M x$. sapeloensis, which is known to live in that area. Yet, the comparative statements (1967a, p. 638, in "Remarks") appear to apply to the Vema specimens of $M x$. bathyalensis. The same set of four drawings was published in both papers, identified as female in both captions and identified as the holotype in figures $4 \mathrm{r}-\mathrm{s}$ (Hulings, 1967a, fig. $4 \mathrm{r}-\mathrm{u}$; 1967b, fig. 8a-d); they probably illustrate the Vema holotype of Mx. bathyalensis. The original photograph (1967a, fig. 13f) shows a right valve published at 36 mm long; plate IV, fig. 1 (1967b) appears to be the same photograph published at 38 mm long. If so, the actual magnifications would be $\times 16.5$ and $\times 17.4$, respectively, rather than $\times 40$ as reported by Hulings in both captions. These photographs show little except the outline of a right valve, but that outline is appropriate for Mx. bathyalensis.

The species misidentified by Maddocks (1977) as $M x$. bathyalensis is $M x$. labutisi. Because $M x$. sapeloensis and $M x$. labutisi nearly always occur together, Hulings (1967a) may have included both species within his concept of $M x$. bathyalensis.

The species illustrated under this name by Cronin (1983) from bathyal stations east of Florida is smaller, with a more highly arched, angulate dorsal margin and truncate posterior angle. It is probably Mx. Lenuicauda (as revised below).

The specimen (USNM 153744) figured by Tressler
(1941) as "Macrocypris minna" from a deep-sea core in the North Atlantic, depth 1955 m , belongs to Mx. bathyalensis (see Plate 22.7). It is likely that the juvenile left valve illustrated by Whatley and Coles (1987, pl. 1, fig. 7) from the Quaternary of DSDP leg 94 also belongs to $M x$. bathyalensis.

MACROPYXIS ELTANINAE new species

Graph 28; Figures 6.8, 7.7, 26.10,11, 30.18, 33.9, 40.2, $46.69,70,50.5,51.15,57.6,58.11,61.3,64.5,65.4$, 80.14; Plates 20.10-12, 21.10-12, 62.6,7,66.6,7, $79.14,15,89.7-9$
Derivation of name.-For the U.S.N.S. Eltanin.
Material-Eightspecimens in alcohol, including 1 male, 3 females, 1 specimen of indeterminate sex, and 3 juveniles belonging to 1 instar.

Types.-Holotype male 881M USNM 240490, paratypes USNM 240491-240497.

Type locality.-Eltanincruise 4 station $65,25^{\circ} 43^{\prime}-25^{\circ} 42^{\prime} \mathrm{S}$, $71^{\circ} 07^{\prime} \mathrm{W}$, depth $3149-3257 \mathrm{~m}$.

Occurrence.-At E-4-65, 5 live specimens (1M, 2F, $2 \mathrm{FJ}-1$); at $\mathrm{E}-4-127,2$ live specimens tentatively identified ($1 \mathrm{~F}, 1 \mathrm{FJ}-1$); at $\mathrm{V}-15-70,1$ live specimen (1MF?).

Distribution.-Holocene; Drake Sea and Peru-Chile Trench, known live depth range 3149 to 5666 m .

Dimensions.-Holotype male 831M, RVL 1.99 mm , RVH 0.78 mm , LVL 1.95 mm , LVH 0.73 mm . See also Graph 23. The single male is longer than the female from the same station but the same height. It is not clear whether size increases with depth.

Diagnosis.-Carapace fairly small, ovoid-oblong; dorsal margin high, smoothly arched, greatest height located at midlength; anterior margin broadly and somewhat obliquely rounded; ventral margin nearly straight with slight median sinuosity, and sharp posterior angle of about 60°; anterior zone of concrescence moderately wide, anterior radial pore canals irregularly branching.

Male fifth limb with fairly elongate palps, straight-sided hooks recurved at 68° in right limb and 56° in left. Female fifth limb fairly robustly proportioned; the mediodistal claw is the longest. Both distal claws of the sixth limb are the same length. Seventh limb very large, with long, finely pectinate reflexed seta reaching at least to middle of podomere II; the longer of the distal setae is about half as long as the reflexed seta. Furca large, apparently dimorphic, larger in male; female has slender cylindrical rami bearing clusters of very tiny proximal setae at about midlength and slender, flexible terminal setae; male has longer, thicker rami, slightly larger proximal setae, and very much thickened terminal setae. Male hemipenis fusiform in outline, with sinuate dorsal margin, very convex, smoothly rounded ventral margin, and curved, triangular anterodistal projection supported by weak chitinous struts; copulatory rod very small, straight.

Comparisons.-Mx. eltaninae differs from most western

Pacific species of the genus by its compact carapace with nonsinuate outline. Mx. antonbruunae has a hemipenis of homologous structure, differing in shape and strength of chitinous supports; its carapace is not as high in proportion to length and has a straight to smoothly convex ventral margin. Mx. amoena is similar in size and shape but has more sinuous ventral and posterior margins and very different furcal dimorphism. Mx. amanda is much larger and more elongate, especially posteriorly.

Remarks.-Because most specimens are nearly opaque, the radial pore canals could not be seen clearly.

MACROPYXIS IMPROCERA new species

Graph 24; Figures 6.18,14, 7.11,12; Plates 24.1,7, $25.1,7,59.6$
Macrocyprissa sp. Howe and van den Bold, 1975, p. 308, pl. 3, fig. 2.
Derivation of name.-Latin improcerus, of small stature, undersized; because it is the smallest species in the genus.

Material.-Twenty-four empty valves and carapaces, including juveniles of one instar; plus 2 fossil specimens; for a total of 26 specimens.

Types.-Holotype 2413RV USNM 240498, paratypes USNM 240499-240503 and HVH 9738.

Type locality.-UH 4125, Gyre cruise 77-G-14 station 7, $27^{\circ} 53.8^{\prime} \mathrm{N}, 93^{\circ} 37.7^{\prime} \mathrm{W}$, depth 91.5 m .

Occurrence.-At UH 1617, 7 specimens; at UH 4125, 17 specimens; in HVH 9738, 2 specimens.

Distribution.-Pleistocene and Holocene, Gulf of Mexico. Howe and van den Bold reported it from mudlumps on the Mississippi River delta with radiocarbon date of 15,000 years B.P.

Dimensions.-Holotype 2413RV, RVL 0.96 mm , RVH $0.40 \mathrm{~mm} ; 2412 \mathrm{LV}$, LVL 0.99 mm , LVH $0.38 \mathrm{~mm} ; 2415 R V$, RVL 0.83 mm , LVH 0.33 mm ; 2414LV, LVL 0.83 mm , LVH 0.33 mm ; HVH 9738 (the illustrated, gold-coated left.valve), LVL 0.96 mm , LVH 0.33 mm . See also Graph 24. Adult specimens show considerable range in size, perhaps attributable to sexual dimorphism. The measurements for the smallest and largest adult specimens are listed above, and those specimens are illustrated in Figures 6.13,14 and 7.11,12.

Diagnosis.-Carapace small, laterally compressed, elon-gate-ovate; dorsal margin broadly and smoothly arched; anterior margin somewhat narrowly but regularly rounded; ventral margin straight to slightly sinuate, only slightly upswung near posterior; rounded posterior angle of about 45° to 50°; anterior zone of concrescence of moderate width, anterior radial pore canals irregularly branching.

Comparisons.-Mx.sp. 13 and $M x$. sp. 14 , which are also very small and tentatively assigned to this genus, are much more elongate than $M x$. improcera. The smallest species whose soft parts are known, Mx. labutisi, is similar in lateral outline but less compressed, with more elaborately branching radial pore canals.

Remarks.-This is by far the smallest species referred to this genus. Within the family Macrocyprididae, only Macrocyprina bermudae has adults of such small size. The shape, radial pore canals and absence of patch pattern support tentative assignment to Macropyxis, pending discovery of soft parts.

The adult left valve illustrated by Howe and van den Bold (HVH 9638) is slightly lower, with a longer, lower, more tapered posterior end and slightly narrower anterior end than any of the adult specimens in UH 1617 and 4125, but these differences most probably fall within the range of individual variability in the species. The gold coating has been almost entirely removed, and it shows well developed branching radial pore canals.

MACROPYXIS KAESLERI new species

> Graph 25 ; Figures $6.6,7,7.5,6,20.11,12,24.12,13$,
> $26.18,19,30.17,39.11,40.5,46.64,65,67.4,71.5,75.6$,
> 78.6 ; Plates $20.2-6,21.1-6,79.16,17,87.7,111.2$

Derivation of name.-For Roger L. Kaesler, who loaned numerous samples for this study.

Material-Twelve specimens in alcohol, including 1 male, 9 females, and 2 juveniles belonging to 1 instar.

Types.-Holotype male 1967M USNM 240504, paratypes USNM 240505-240514.

Type locality.-Vema cruise 15 station $42,7^{\circ} 55^{\circ} \mathrm{N}, 86^{\circ} 00^{\circ} \mathrm{W}$, depth 3078-3085 m.

Occurrence.-At E-3-25, 3 live specimens (2F, 1J-1); at $\mathrm{AB}-11-113$, 2 live specimens ($1 \mathrm{~F}, 1 \mathrm{FJ}-1$); at $\mathrm{V}-15-37$, 1 live specimen (1F); at V-15-42, 4 live specimens (1M, 3F); at V-15-59, 1 live specimen (1 F); at V -15-67, 1 live specimen (1F).

Distribution.-Holocene; in the eastern Pacific Ocean off northern Peru, on the continental slope and northern part of the Peru-Chile Trench, known live depth range 1749 m to 6134 m .

Dimensions.-Holotype male 1976M, RVL 2.21 mm , RVH 0.78 mm , LVL 2.16 mm , LVH 0.74 mm . See also Graph 25. The single female is longer than but almost as high as the females from the same station. The relationship of size to depth is unclear.

Diagnosis.-Female carapace of moderate size, elon-gate-ovate in lateral outline; dorsal margin very high-arched, rising to greatest height anterior to midlength; anterior margin narrowly and somewhat obliquely rounded; ventral margin convex and slightly sinuate, smoothly upswung posteriorly to slightly flared, truncate posterior angle of about 50°; lateral outline of male carapace much more elongate both anteriorly and posteriorly, with sinuous posterodorsal margin and greatly extended posterior angle; anterior zone of concrescence quite wide, anterior radial pore canals elaborately branching, grouped in bundles.

Male fifth limb with somewhat elongate palp, long, thin pegs, and small, straight-sided hook recurved at 92° in right limb and 57° in left. The two lower distal claws of the female fifth leg are equal in length. The two distal claws of the sixth leg are nearly equal in length. The conspicuously pectinate reflexed seta of the seventh limb is short, reaching only to the joint between podomeres II and III; the longer of the two distal setae is about half again as long as the reflexed seta. Furca slightly larger in male than fcmale, having clusters of fairly large proximal setae located at half or two-thirds length on the cylindrical rami, and slender, flexible terminal setae. Male hemipenis fusiform-
subtriangular, with nearly straight dorsal margin, convex, angulate ventral margins, ending in large, triangular anterodistal projection without any chitinous stiffening struts; copulatory rod short, curved. Zenker's organ with long muscularized portion and large, teardrop-shaped to spherical terminal bulb; vas deferens fairly thick and tightly coiled in a spiral.

Comparisons.-The hemipenis of $M x$. labutisi is structurally very similar to that of $M x$. kaesleri, with the most important differences being details of the internal, heavily chitinized copulatory rod and tube and supporting chitinous elements; the carapace of $M x$. labutisi is much smaller, more elongate, and has different dimorphism. In size, shape, dimorphism and marginal features, Mx. kaesleri resembles $M x$. adunca and $M x$. audens, differing in details of shape and soft parts. $M x$. sp. 17 is smaller and less produced posteriorly, with a nearly straight ventral margin.

Remarks.-The occurrence of this species (with Mx. antonbruunae and Mx. kalbi) at AB-11-113, depth 5986-6134, marks the deepest known occurrence of live Macrocyprididae.

MACROPYXIS KALBI new species

Graph 26; Figures $6.20,21,7.18,19,20.9,22.5,24.10$, $26.32,38,30.14,38.4,40.6,46.71,50.28-31,51.21-24$, $56.15,16,57.3,28,58.14,59.14,28,61.2,63.7,21$, 64.4,41, 67.5, 80.5; Plates 1, 18.3-6, 19.2-6, 60.9, 61.9, $67.1-4,79.18-20,89.10-15,101.12-15,110.6,112.5$

Macrocypris sp. O Maddocks, 1977, fig. 10.
Derivation of name.-For Jon Kalb, who collected many of the samples in which this species occurs.

Material.-Thirty-one specimens in alcohol, including 5 males, 4 females, and 22 juveniles belonging to 3 instars.

Types.-Holotype male 351M USNM 240515, paratypes USNM 240516-240538.

Type locality.-Anton Bruun cruise 11 station $36,5^{\circ} 43^{\prime} \mathrm{S}$, $82^{\circ} 00.5^{\prime} \mathrm{W}$, depth 5047 m .

Occurrence.-At AB-11-36, 5 live specimens ($1 \mathrm{M}, 1 \mathrm{~F}$, $1 \mathrm{MJ}-1,1 \mathrm{FJ}-2,1 \mathrm{FJ}-3)$; at $\mathrm{AB}-11-59,1$ live specimen (1FJ-3); at $\mathrm{AB}-11-109,1$ live specimen (1FJ-2); at $\mathrm{AB}-11$ 113, 1 live specimen ($1 \mathrm{FJ}-2$); at $\mathrm{AB}-11-157$, 1 live specimen (1M); at AB-11-169, 3 live specimens ($1 \mathrm{M}, 1 \mathrm{~F}, 1 \mathrm{MJ}-2$); at $\mathrm{AB}-11-179,1$ live specimen ($1 \mathrm{FJ}-1$); at $\mathrm{AB}-11-196,1$ live specimen ($1 \mathrm{FJ}-2$); at E-3-40, 2 live specimens ($1 \mathrm{~J}-2,1 \mathrm{~J}-3$); at $\mathrm{E}-3-48,5$ live specimens ($1 \mathrm{M}, 2 \mathrm{MJ}-1,1 \mathrm{MJ}-2,1 \mathrm{~J}$); at E-350,1 live specimen ($1 \mathrm{FJ}-2$); at $\mathrm{V}-15-40$, 2 live specimens (2F); at V-15-55, 7 live specimens ($1 \mathrm{M}, 1 \mathrm{MJ}-1,2 \mathrm{~J}-1,3 \mathrm{~J}-2$).

Distribution.-Holocene; in the eastern Pacific Ocean off northern South America and Central America, on the continental slope and northern part of the Peru-Chile Trench, known live depth range 2599 m to 6134 m .

Dimensions.-Holotype male 351M, LVL 2.60 mm, LVH 0.96 mm , RV not measurable. See also Graph 26. Males are not as high as females. Size appears to increase with depth down to about 4000 m and then to decrease thereafter.

Diagnosis.-Carapace very large, ovate-siliquose; dorsal margin very broadly arched, rising to highest point anterior to midlength; anterior margin narrowly and evenly rounded; ventral margin slightly convex and sinuate; posterior angle smoothly upswung to slightly truncate, about 50° to 60°; anterior zone of concrescence of moderate width, anterior radial pore canals irregularly branching.

Male fifth limb with large palps and thick tapering hooks recurved at 51° in right limb and 33° in left. Female fifth limb robustly proportioned, with distal claws of graduated lengths. Sixth limb has two distal claws of equal length. Seventh limb has long, finely pectinate reflexed seta that reaches to middle of podomere II; the longer of the two distal setae is only one-third as long as the reflexed seta. Furcae with rather thick cylindrical rami and stout, barbed terminal setae; proximal setae located near base of rami. Male hemipenis oblong-subtriangular in outline, with sinuous, angulate margins; an oblong, lamellar projection of curved outline projects anterodistally, accounting for about one-third of the area of the whole organ; the

copulatory rod is very thick, curved, tapering, with a minutely papillose surface. The Zenker's organ has a spherical terminal bulb no wider than the muscularized portion; the vas deferens is enlarged and coiled in an irregular knot; strands of sperm are coiled in a tight, irregular spiral of at least 12 loops.

Comparisons.-Mx. sp. 21 is very similar to $M x$. kalbi in shape and size, with slightly less convex ventral margin and less elongate posterior, but differs in appendage details. $M x$. amanda is more elongate with a nearly straight ventral margin and more elaborate radial pore canals.

Remarks.-This is one of the largest species in the genus, exceeded only by $M x$.sp. 12 and some species of Macrocypris. The structure of the hemipenis is unique. The occurrence of this species (with Mx. antonbruunae and Mx. kaeslen) at AB-11-113, depth 5986-6134 m, marks the deepest known occurrence of live Macrocyprididae.

MACROPYXIS KORNICKERI new species

> Graph 27; Figures $10.15,16,11.18,14,18.7,22.1$, $26.14,15,30.8,34.7,41.2,46.47,48,67.7,80.8$; Plates $24.4,5,25.4,5,79.21,90.4,12,103.1-3$

Derivation of name.-For Louis S. Kornicker, who loaned these and many other specimens.

Material-Thirteen specimens in alcohol, including one male, one female, and 11 empty valves and carapaces.

Types.-Holotype male 2384M USNM 240539, paratypes 240540-240541.

Type locality.-Atlantis II cruise 31 station $169 \mathrm{~A}, 8^{\circ} 2-3^{\prime} \mathrm{S}$, $34^{\circ} 23-25^{\circ} \mathrm{W}, 587 \mathrm{~m}$.

Occurrence.-At AII-31-167, 1 live plus 11 specimens (1F); at AII-81-169A, 1 live specimen (1 M).

Distribution.-In the western Atlantic Ocean on the continental slope off Brazil, known live depth range 587 m to 1007 m .

Dimensions.-Holotype male 2384M, RVL 2.30 mm , RVH 0.80 mm , LVL 2.23 mm, LVH 0.78 mm . See also Graph 27. The male is longer than but not as high as the female. The relationship between size and depth cannot be determined.

Diagnosis.-Carapace oblong-siliquose with extended posterior; dorsal margin broadly arched, with indistinct dorsal and posterodorsal angles separating nearly straight segments; greatest height located anterior to midlength; anterior margin broadly and evenly rounded; ventral margin straight, without indentation in mouth region, but with very slight sinuosity in the posteroventral region, slightly upswung posteriorly to sharp, only slightly flared posterior angle of about 35° to 50°; anterior zone of concrescence extremely wide, with elaborately branching radial pore canals grouped into bundles, anterior vestibule correspondingly shallow; posterior zone of concrescence moderately wide, posterior vestibule deep.

Male fifth limbs somewhat elongate with narrow pegs and short, distally expanded hooks recurved at 92° in right limb and 70° in left. Female fifth limb of normal propor-

tions with graduated distal claws. The sixth limb has two stout distal claws, one half again as long as the other. Seventh limb large with fairly short reflexed seta, reaching only a little past the joint between podomeres II and III, finely pectinate; the longer of the distal setae is almost as long as the reflexed seta. Furca in both sexes consists of slender cylindrical rami, on which the clusters of tiny proximal setae are located beyond midlength to two-thirds length of rami, and slender, flexible terminal setae, which are shorter and thicker in the male. Hemipenis oblong, compressed, with smoothly curving outlines, blunt anterior margin, triangular anteroventral expansion connected to venter only by a nearly transparent film, without anterodistal or other accessory lamellae or appendages; copulatory rod short, straight, located posteriorly. Zenker's organ with long, narrow muscularized portion and large, spherical terminal bulb; vas deferens tightly coiled in a spiral of about 10 whorls, like a telephone cord.

Comparisons. $-M x$. similis, which occurs at the same stations, is larger and more elongate, with more curving, sinuous contours, a concave ventral margin, and a more extended, flared posterior end. Mx. bathyalensis is similar in shape but higher in proportion to length, with greatest height located near midlength, more sinuous ventral margin, and less prolonged posterior angle. $M x . \mathrm{sp} .18$ is very similar but slightly smaller, with a convex ventral margin, more smoothly arched dorsal margin, and less extended posterior angle. $M x$. sp. 20 is larger and higher in proportion to length, with distinct ventral indentation and smoothly domed dorsal margin. Mx. kaesleri is smaller and more elongate, with more curving, sinuous outlines. $M x$. sp. 11 is smaller and less elongate, with a less extended posterior angle. Mx. adunca and $M x$. audens are somewhat smaller, with much more curving, sinuous contours. $M x$. adrecta is more siliquose with a less arched dorsal margin, higher in the posterodorsal region, and a less extended posterior angle.

The hemipenis of $M x$. kornickeri is unusually simple and not closely similar to that of any other known species of the genus. Its general structure is not unlike that of some
species of Macrocypris but lacks the long copulatory rod, sclerotized marginal struts, and lengthwise-contracting musculature of that genus.

Remarks.-This species has the most elaborately branched anterior radial pore canals in the family.

MACROPYXIS LABUTISI new species

Graph 28; Figures $10.8,9,11.7,8,19.9,22.14,24.15$, $26.12,18,30.16,38.10,38.5,46.38-40,50.6-11$, $51.25-30,56.6,26,29,38,34,57.17,18,30,58.9$, $59.22,81,37,38,61.4,63.1,20,64.81-34,45-47,54-57$, $66.8,80.16$; Plates $10.1-6,11.1-6,62.2,8,67.5-7$, $79.22,23,87.8-13,101.5-11,111.4$

Macrocypris bathyalensis Hulings, 1967a, p. 638 [part.]; MadDocks, 1977, p. 151, fig. 5, 10 [part.].
Derivation of name.-For Vidmantas R. Labutis, who helped as graduate research assistant on this project.

Material.-728 specimens in alcohol, including 139 males, 512 females, and 77 juveniles belonging to 4 instars.

Typer.-Holotype male 1351M USNM 240542, paratypes USNM 240543-240569.

Type locality.-Atlantis $I I$ cruise 40 station 173, $40^{\circ} 10.8^{\prime}-40^{\circ} 10.6^{\prime} \mathrm{N}, 70^{\circ} 43.6^{\prime}-70^{\circ} 44.0^{\prime} \mathrm{W}$, depth 122.6 m .

Occurrence.-At AII-40-172, 118 live specimens (30 M , 70F, $9 \mathrm{MJ}-1,6 \mathrm{FJ}-1,1 \mathrm{MJ}-2,2 \mathrm{FJ}-2$); at AII-40-173, 53 live specimens ($17 \mathrm{M}, 19 \mathrm{~F}, 7 \mathrm{MJ}-1,5 \mathrm{FJ}-1,3 \mathrm{FJ}-2,1 \mathrm{~J}-3,1 \mathrm{~J}-4$); at Chain C \# 1, 2 live specimens ($1 \mathrm{~F}, 1 \mathrm{~J}$); at V-16-65, 8 live specimens (1M, 2F, 1MJ-1, 1FJ-1, 1J-1, 2J-2); at stations of the Bureau of Land Management, Middle Atlantic Outer Continental Shelf Environmental Study, a total of 547 live specimens, as follows: at BLM-A1, 173 live specimens (26 M , 138F, 9J); at BLM-A2, 153 live specimens ($22 \mathrm{M}, 115 \mathrm{~F}, 16 \mathrm{~J}$); at BLM-A3, 23 live specimens (3M, 18F, 2J); at BLM-A4, 7 live specimens (7 F); at BLM-D4, 1 live specimen (1J); at BLM-F2, 21 live specimens ($3 \mathrm{M}, 18 \mathrm{~F}$); at BLM-F3, 7 live specimens ($6 \mathrm{~F}, 1 \mathrm{~J}$); at BLM-F4, 11 live specimens (1 M , 10F); at BLM-G5, 58 live specimens ($8 \mathrm{M}, 49 \mathrm{~F}, 1 \mathrm{~J}$); at BLMG6, 81 live specimens ($3 \mathrm{M}, 26 \mathrm{~F}, 2 \mathrm{~J}$); at BLM-G7, 13 live specimens ($6 \mathrm{M}, 6 \mathrm{~F}, 1 \mathrm{~J}$); at BLM-I2, 1 live specimen (1 F); at

BLM-I3, 4 live specimens ($1 \mathrm{M}, 3 \mathrm{~F}$); at BLM- $\mathrm{J} 1,5$ live specimens (3M, 2F); at BLM-K4, 25 live specimens ($7 \mathrm{M}, 15 \mathrm{~F}$, 3J); at BLM-K5, 1 live specimen (1F); BLM-K6, 6 live specimens (3M, 2F, 1J); at BLM-L5, 4 live specimens ($3 \mathrm{M}, 1 \mathrm{~F}$); at BLM-L6, 3 live specimens (1M, 2F).

Distribution.-Holocene; Atlantic outer continental shelf, northeastern United States to Newfoundland, known live depth range 49 to 410 m , most abundant near shelf edge.

Dimensions.-Holotype male 1351 M , RVL 1.29 mm , RVH 0.53 mm , LVL 1.25 mm , LVH 0.50 mm . See also Graph 28. Females are slightly longer and higher than males and a little higher in proportion to length. No effect of depth on size is apparent.

Diagnosis.-Carapace small, elongate-ovate in lateral outline; ventral margin nearly straight to very gently sinuous, only slightly upswung posteriorly; anterior margin broadly rounded; dorsal margin smoothly arched with greatest height located just anterior to midlength, sloping in a gentle, continuous curve to rounded posterior angle of about 55° to 60°; anterior zone of concrescence broad, anterior radial pore canals complexly branching.

Male fifth limbs short, with thick hooks recurved at 54° in right limb and 15° in left. Female fifth limb robust; mediodistal seta is longer and thicker than the others. The sixth limb ends in two rather short claws of nearly equal length. Reflexed seta of seventh limb very short, reaching almost to joint between podomeres II and III; the larger of the distal setae is fairly short, half as long as reflexed seta. Furcae conspicuously dimorphic; females have short, almostly completely fused cylindrical rami, small but conspicuous proximal setae located near end of rami, and long, flexible, tapering terminal setae; males have only a tiny, vestigial nub bearing two clusters of three or four proximal setae, from which the cylindrical rami and terminal setae are entirely missing. Male hemipenis weakly sclerotized, subrhomboidal in outline with sinuous margins and an acute anterodistal angle; copulatory rod short, nearly straight. Terminal bulb of Zenker's organ about 1.5 times as wide as muscularized portion; vas deferens slightly thickened for a short distance, not coiled.

Comparisons. $-M x$. labutisi may be distinguished from $M x$. sapeloensis, which occurs at many of the same stations, by its smaller size, more tapered posterior region, broader zone of concrescence, more elaborately branched radial pore canals, and dimorphic furca. Juveniles of the two species may be difficult to separate, however, unless size and development of appendages are carefully compared. Mx. bathyalensis, with which this species has formerly been confused, is much larger, with a straight ventral margin and more truncate, angulate posterior region. Mx. improcera is much smaller with a more highly arched dorsum. Mx. amoena is much larger, with a sinuate venter, especially posteriorly.

Remarks.-The adults of $M x$. labutisi are approximately the same size as or slightly larger than the A-1 instar of $M x$. sapeloensis, and the late instars roughly correspond in
size to the next-earlier instars of $M x$. sapeloensis or to the gaps between size-clusters in that species. Presence or absence of a furca is the best criterion for distinguishing these sympatric species.

MACROPYXIS LONGANA (van den Bold, 1960)

Graph 42; Plates 22.10-12, 23.8-12, 79.24
Macrocypris longana van den Bold, 1960, p. 156, pl. 1, fig. $7 \mathrm{a}, \mathrm{b}$.

Material-Four fossil type specimens.
Types.-Holotype USNM 563493, paratypes USNM 563494, 563495.

Type locality.-Eocene, San Fernando Formation, Harmony Well 2, depth 686-698 feet, San Fernando area, Trinidad.

Occurrence.-In USNM 563493 to 563495,4 specimens.
Distribution.-Eocene and Oligocene of Trinidad.
Dimensions.-Holotype USNM 563493, H 1.95 mm , L 0.70 mm . See also Graph 42.

Diagnosis.-Carapace fairly large, not very thick in dorsal view, only moderately asymmetrical; siliquose in lateral outline; dorsal margin very gently and smoothly arched; anterior margin evenly and somewhat narrowly rounded; ventral margin straight, not upswung posteriorly; posterior angle slightly rounded, about 40°.

Comparisons.-Mx. longana is much larger and more elongate than $M x$. thodana, which occurs in the same interval, and also has a more tapered, less sinuate shape and less asymmetrical valves. It has no dentiform corner and lacks the sinuous contours of contemporary species of Macrocyprissa, such as Mc. vandenboldi or Mc. cylindracea, and also lacks the delicately tapering, sinuous shape of Macrosarisa. $M x$. steinecki is much higher and has a much more angulate, sinuous shape. Among living species, Mx. antonbruunae is fairly similar in shape, though with a slightly upturned posterior angle.

Remarks.-The anterior radial pore canals are not visible on these specimens, and the assignment to Macropyxis is tentative, based on shape alone. The three paratypes are probably juveniles. USNM 568494 may be a juvenile of a different species, perhaps $M x$. rhodana.

MACROPYXIS RHODANA (van den Bold, 1960)

> Graph 42; Plates 22.4-6, 23.3-6, 79.25

Macrocypris thodana van den Bold, 1960, p. 156, pl. 1, fig. 6a,b.
Macrocyprina rhodana (van den Bold) van den Bold, 1971b, p. 123, 126, table 1; 1973, p. 161, pl. 1, fig. 7.

Material-Four fossil type specimens.
Types.-Holotype USNM 563496, paratypes USNM 563497-563499.

Type locality.-Eocene, San Fernando Formation, Harmony Well 2, depth 609-618 feet, San Fernando area, Trinidad.

Occurrence.-In USNM 563496-563499, 4 specimens.
Distribution- -Van den Bold $(1960,1971,1973)$ reported this species in the Eocene and Oligocene of Trinidad and the Oligocene to lower Miocene of Cuba.

Dimensions.-Holotype USNM 563496, L $1.48 \mathrm{~mm}, \mathrm{H}$ 0.59 mm . See also Graph 42.

Diagnosis.-Carapace medium-sized, rather asymmetrical, elongate-ovoid in lateral outline; dorsal margin smoothly arching and rising to more or less distinct dorsal angle located at or slightly anterior to midlength; anterior margin narrowly and obliquely rounded; ventral margin sinuous with indentation in mouth region, upswung posteriorly to rounded, slightly flared posterior angle of about 45°; broad zone of concrescence, and branching radial pore canals.

Comparisons.-Mx. thodana is smaller, much less elongate and much less sinuous in shape than $M x$. longana, with which it occurs. It is much smaller, less expanded dorsally, and has less angular, less exaggerated outlines than $M x$. steinecki.

Remarks.-The complexly branching radial pore canals cannot be traced in detail from these whole carapaces.

MACROPYXIS SIMILIS (Brady, 1880)

Graph 29; Figures 10.6.7, 11.5.6, 18.6, 22.13, 26.28,29, $30.5,34.16,38.4,46.49,50,67.6,80.6$; Plates
$24.2,3,11,12,25.2,3,79.26,27,90.9,10,14,103.10-12$
Macrogypris similis Brady, 1880, p. 42, pl. 2, fig. 2a-d; Mütuer, 1912, p. 122; Puri and Hulings, 1976, p. 260, pl. 1, fig. $18,14$.
Not Macrocypris similis Brady A. Scott, 1905, p. 370 ; Chapman, 1919, p. 20, pl. 2, fig. 2a-d; Tressler, 1954, p. 433; Maddocks, 1977, fig. 3, 6, 7; Hanal et al., 1980, p. 121.

Not Macrocypris sp. aff. similis Brady Herrig, 1977, p. 1156. Not Macrocypris cf. M. similis Brady Neale, 1967, p. 7, pl. 1, fig. $s, s^{\prime}, \mathrm{t}$.
Not Macrocyprina similis (Brady) Bhatu et al., 1972, p. 87.
Material-Ten type specimens (empty carapaces and valves); and 27 specimens in alcohol, including 3 females, 1 male, 4 juveniles; and 19 carapaces and valves; for a total of 37 specimens.

Types.-The lectotype specimen selected by Puri and Hulings (1976) is a right valve in the British Museum (Natural History), G. S. Brady Challenger collection, labeled "Challenger no. 120, Depth 675, 80.38.14." There are also four paralectotype specimens, all right valves, in a slide labeled "153, Challenger no. 120, Depth 675, 80.38.14." Puri and Hulings (1976) mentioned additional topotypic specimens BMNH 1974.143 and 1974.244 from additional sediment at this locality (not examined).

Five more specimens from the same Challenger station are in the G. S. Brady cabinet in the Hancock Museum, Newcastle-upon-Tyne, in a slide labeled "Cytherella lata, n.

s., Macrocypris similis, n. s., Bythocypris reniformis, n. s., Challenger no. 120, depth 675 fath., washing of dredge, G. S. Brady, $9 / 9 / 73$." The two juvenile left valves that Brady reported at Challenger station 305 are in the Hancock Museum in a slide labeled "Bairdia amygdaloides B., Macrocypris similissp. nov., Challenger No. 305, depth 160 fath., sounding, G. S. Brady, 13/1/76." However, they belong to a different species of Macropyxis than those from Challenger 120, which cannot be identified with any of the species discussed in this monograph.

Brady also reported this species from Challenger station 344, off Ascension Island at a depth of 420 fathoms (768 $\mathrm{m})$, but this material has not been located, and this record cannot be verified.

The whole carapace illustrated and described by Brady (1880) and said by him to have a length of 2.1 mm is apparently not present in either museum. All of the type specimens appear to be juveniles.

The new material for this species is catalogued as USNM 240570-240573.

Type locality.-Challenger station $120,8^{\circ} 37^{\prime} \mathrm{S}, 34^{\circ} 28^{\prime} \mathrm{W}$, depth 675 fathoms (1234 m), off Pernambuco, Brazil, September 9, 1878.

Occurrence.-In BMNH 80.38.14, 1 specimen; in BMNH 80.38.14, slide 153, 4 specimens; in HM Challenger 120,5 specimens; at AII-81-167, 14 specimens; at AII-31-169A, 8 live plus 5 specimens ($1 \mathrm{M}, 3 \mathrm{~F}, 2 \mathrm{~J}-1,1 \mathrm{~J}-2,1 \mathrm{~J}-3$).

Distribution.-Holocene; in the western Atlantic Ocean off Brazil, known live depth range 587 to 1007 m, dead specimens as deep as 1234 m .

Dimensions.-Lectotype BMNH 80.38.14, my specimen number 2148 , a juvenile right valve, RVL 1.72 mm , RVH 0.63 mm ; adult male 2382 M , RVL 2.50 mm , RVH 0.86 mm , LVL 2.46 mm , LVH 0.79 mm ; adult female 2383F, RVL 2.45 mm , RVH 0.94 mm , LVL 2.41 mm , LVH 0.86 mm . See also Graph 29. The male is as long as the females but not as high. Size appears to decrease with depth.

Diagnosis.-Carapace elongate-siliquose in lateral outline with sinuous contours; dorsal margin low-arched, somewhat irregular, with greatest height located at midlength; anterior margin broadly and evenly rounded; ventral indentation shallow but distinct; posteroventral margin nearly straight in female, slightly upturned in male; prolonged, truncate angle of about 30° to 40°, located a little above venter, flared in male; zone of concrescence very broad, vestibules correspondingly small, anterior radial pore canals elaborately branching.

Male fifth limbs very elongate, with slender hooks recurved at 77° in right limb and 38° in left, with very slender pegs of moderate length. Terminal claws of female fifth limb of average thickness and graduated lengths. Sixth limb rather large, robustly proportioned; posterodistal claw about four-fifths as long as mediodistal claw. Recurved seta of seventh limb very short, flexible, with hairs too fine to draw (accidentally bent forward in Fig. 38.4); one of the distal setae is very long. Furcae long but very thin, with tiny proximal setae, apparently dimorphic, male twice as large as female. Hemipenis oblong, irregularly subrectangular in outline, with sinuously curved anterior margin, a thick, curved copulatory rod of moderate length, and a larger, curved, tapering, hooklike appendage. Zenker's organ with long, narrow muscularized portion and moderately large, spherical terminal bulb; vas deferens coiled into a clump of about 5 circular whorls.

Comparisons.-Mx. similis is larger and more elongate, with a less angular, more equilateral outline, than $M x$. kornickeri, which occurs at the same stations. The female of $M x$. similis is quite similar in size and shape to the male of $M x$. bathyalensis but has a more extended anterior region, a deeper ventral indentation, and a more truncate posterior angle. Mx. arta is similar in general proportions but much smaller and less sinuate. $M x$. kaesleri is also somewhat similar in shape but has more extreme dimorphism. The hemipenis is unique, not to be confused with any other.

Remarks.-Brady's illustration of a relatively nondescript, high-arched carapace with truncate posterior has been the basis for considerable misidentification of $M x$. similis. Neither Brady's illustrated specimen nor any syntypes from Challengerstation 344 can be located, from which to obtain more information about the characters of that species. The remaining syntypes from Challenger stations 120 and 305 represent a different species or perhaps two different species from the one Brady intended to describe. Moreover, all remaining type specimens are juveniles, probably A-1 and A-2. Thus, by selecting this juvenile lectotype specimen, Puri and Hulings (1976) transferred Brady's name to a different species, one for which the adult characters were neither known nor easily predictable.

Isolated juveniles of Macrocyprididae are not easily identifiable to species. Large populations with long growth series are needed, preferably from multiple localities and depths, if such identifications are to have any validity. This is especially true of Macropyxis, which seems to have more species, more sympatric species, more influence of depth on general size, and more geographic shape variability within species than do many of the other genera.

In the case of $M x$. similis, juveniles from AII-31-167 and AII-81-169A are very similar in shape to the juvenile Challenger syntypes, in side-by-side comparisons. The size difference corresponds in direction and magnitude to that established for the adults and confirms the predicted depthsize cline. Juveniles of other species of Macropyxis from nearby stations cannot be reconciled to $M x$. similis in this same fashion. For example, fig. 7 of Maddocks (1977), drawn before the collections at AII-31-167 and AII-31-169A had become available, erroneously attempted to identify populations of $M x$. arta as $M x$. similis, but the discrepancies are obvious.
A. Scott (1905) and Tressler (1954) did not illustrate the species they reported under this name, and there is no evidence that $M x$. similis occurs in either the Gulf of Mexico or the Indian Ocean. The unusually attenuate valve reported under this name by Chapman (1919) from a depth of 2633 m east of Tasmania might belong to an unknown species of Macropyxis, or else to a homeomorphic genus, such as Argilloecia, but is certainly not $M x$. similis. The juvenile valves reported by Neale (1967) from Halley Bay, Antarctica, belong, as he thought, to a different species. They are redescribed below as Macroscapha sp. 26.

MACROPYXIS SIMULANS new species

Graph 30; Figures 8.8, 9.8; Plates 24.6, 25.6
Derivation of name.-Latin simulans, imitative; because it is one of a large group of species with very similar shapes.

Material-Fifteen empty carapaces and valves.
Types.-Holotype 2416RV, USNM 240574, paratypes USNM 240575-240577.

Type locality.-UH 4132, Texas A\&M R.V. Gyre 77-G-14 station $13,27^{\circ} 20.9^{\prime} \mathrm{N}, 95^{\circ} 9.0^{\prime} \mathrm{W}$, depth 1079 m .

Occurrence.-At UH 4130, 3 specimens; at UH 4132, 12 specimens.

Distribution.-Holocene; northwestern Gulf of Mexico, known dead depth range 1079-1116 m.

Dimensions.-Holotype 2416, RVL 2.29 mm , RVH 0.90 mm . Paratype 2417, LVL 2.22 mm , LVH 0.79 mm . See also Graph 30.

Diagnosis.-Carapace elongate-oblong in lateral outline without distinct anterodorsal or posterodorsal angles; dorsal margin high-arched; greatest height at or slightly posterior to midlength; posterodorsal margin sloping steeply and nearly straight; anterior margin broadly rounded; ventral margin gently sinuate and broadly convex posterior to mouth region, rising slightly posteriorly to slightly truncate, distinct posterior angle of about 30°; anterior zone of concrescence only moderately broad, with several bundles of curved, branching radial pore canals and false pore canals.

Comparisons.- $M x$. sapeloensis is much smaller than $M x$. simulans, with less sinuous contours and more curving dorsal margin. Mx. bathyalensis is proportionally higher, with a nearly straight venter. Mx. amanda is larger, tapering posteriorly to a more siliquose shape, and has a more sinuous outline. $M x$. adunca, $M x$. adrecta, and $M x$. audens are smaller, proportionally not as high, and have broader zones of concrescence with more elaborately branching radial pore canals.

Remarks.-Even though none of the individual characters of this species are especially distinctive, taken together they readily distinguish it from others. Although the available specimens do not give unambiguous evidence of sexual dimorphism, it is likely that the holotype is a female.

MACROPYXIS STEINECKI new species

> Graph 31; Plates 22.1-3, 23.1,2,7

Macrocypris sp. 1 Steineck, 1981, p. 348-350, fig. 7.

Derivation of name.-For Paul Lewis Steineck, who loaned the specimens.

Material.-Twenty-eight fossil specimens.
Types.-Holotype 2101 W USNM 438230, paratypes USNM 438231-438257 and in the collection of Paul Steineck.

Type locality.-Lower Miocene, Montpelier Group, Spring Garden Formation, Steineck sample M27A, exposed in road cuts along the Montego Bay-Adelphi road in northwestern Jamaica. The age of this sample is N7 or N8 according to the planktonic foraminifera (Steineck, personal communication).

Occurrence.-At Steineck M17, 3 specimens; at Steineck M23, 2 specimens; atSteineck M25, 3 specimens; at Steineck M27, 1 specimen; at Steineck M27A, 9 specimens; at Steineck M28, 4 specimens; at Steineck M29, 6 specimens. The planktonic foraminiferal biozones to which these samples belong are N4 to N8 (Steineck, personal communication).

Distribution.-Lower Miocene of Jamaica.
Dimensions.-Holotype 2101W, L $2.19 \mathrm{~mm}, \mathrm{H} 0.94 \mathrm{~mm}$. It is likely that the somewhat shorter, more elongate specimens are males. See also Graph 31.

Diagnosis.-Carapace large, oblong-ovoid with angulatesinuate contours, relatively high in proportion to length; dorsal margin with distinct dorsal and posterodorsal angles, straight posterodorsal and dorsomedial segments, anterodorsal segment slightly concave; anterior margin broadly but somewhat obliquely rounded; ventral margin sinuate, with marked indentation in mouth region, convex ventromedially, smoothly upswung and slightly concave posteroventrally; sharp, slightly flared posterior angle of about 60° located distinctly above venter.

Comparisons.-Mx. steinecki is the largest, most sinuate, most angulate, and most abundant of the several species of Macrocyprididae that occur together in this stratigraphic interval (Steineck, 1981), most of which are not considered in this monograph. Mx. thodana is similar but smaller and less sinuate in outline. Among living species, a comparably sinuous but less angular shape is seen in $M x$. audens,
while $M x$. kaesleri has similar angularity and the arrowshaped posterior angle but not the anterior shape.

Remarks.-Although the radial pore canals cannot be traced distinctly from these whole carapaces, they appear to branch in a complex fashion.

MACROPYXIS TENUICAUDA (Brady, 1880)

Graph 32; Plates 25.10-12

Macrocypris tenuicauda Brady, 1880, p. 41 [part.; not pl. 2, fig. la-f, pl. 3, fig. 2a,b]; Müller, 1912, p. 122 [part.]; Puri and Hulings, 1976, p. 261, pl. 1, fig. 11, 12.
Not Macrocypris tenuicauda Egger, 1902, p. 424, pl. 1, fig. 13-24; Crespin, 1943, p. 101; De Deckker and Jones, 1978, p. 133; Ruggieri, 1960, p. 124; Maddocks, 1977, fig. 11.
Macrocypris bathyalensis Hulings Cronin, 1983, p. 107, pl. 4, fig. A, C, D.

Material.-Two type specimens.
Types.-The lectotype specimen selected by Puri and Hulings (1976) is a left valve, labeled "Macrocypris tenuicauda Brady, lectoholotype H. S. Puri 7/67, Challenger no. 24, D 390, N. of St. Thomas, 80.38.16" in the G. S. Brady Challenger collection in the British Museum (Natural History). This specimen does not belong to the species illustrated as M. tenuicauda by Brady and as understood by later workers. By selecting this specimen as the lectotype, Puri and Hulings transferred the name tenuicauda from one species to another. The species formerly considered to be M. tenuicauda is herein renamed Macrosarisa bensoni (see below).

A paralectotype left valve from the same station is labeled "Macrocypris tenuicauda Brady, lectoparatype H. S. Puri, 7/67, Challenger No. 24, D. 390, N. of St. Thomas, 80.38.16,154."

Several topotype specimens of this species were recovered by Puri and Hulings (1976) from additional sediment from Challenger station 24; they are catalogued as BM 1971.242 (not seen).

GRAPH 32

The numerous syntype specimens of "M. tenuicauda" collected at Challenger station 122 do not belong to the revised $M x$. tenuicauda but belong to to Macrosarisa bensoni. Three such slides in the British Museum are catalogued as BMNH 80.38.15 and 1961.12.4.65; another slide is in the Hancock Museum.

Type locality.-Challenger station 24, north of St. Thomas Island, $18^{\circ} 38^{\prime} 30^{\prime \prime} \mathrm{N}, 65^{\circ} 05^{\prime} 30^{\prime \prime} \mathrm{W}$, depth 390 fathoms (713 m).

Occurrence.-In BMNH 80.38.16, 1 specimen; in BMNH 80.38 .16 , slide 154,1 specimen.

Distribution.-Holocene; West Indies to Florida-Hatteras Slope, known dead depth range 664 to 713 m . Cronin (1983) reported that "Macrocypris spp." (including this species) together range from 136 to 1029 m on the FloridaHatteras Slope, being especially common in the oxygenminimum zone above 750 m .

Dimensions.-Lectotype BMNH 80.38 .16 , LVL 1.70 mm , LVH 0.60 mm . Paralectotype BMNH 80.38 .16 , slide 154 , LVL 1.39 mm , LVH 0.52 mm . See also Graph 32. According to Cronin (1983), presumed females are proportionally higher than presumed males.

Diagnosis.-Carapace elongate-siliquose in lateral outline, broadly arched dorsally, with greatest height located slightly in front of midlength, with indistinct anterodorsal and posterodorsal angles; anterior margin narrowly rounded; ventral margin nearly straight to slighly concave; posterodorsal margin nearly straight, sloping steeply to acute posterior angle of about 40°; anterior zone of concrescence extremely broad, with several elaborately organized bundles of branching radial pore canals.

Comparisons.-Mx. tenuicauda is less extreme in its characters and therefore less distinctive than most other very
elongate species of Macropyxis. It is proportionally higher, more arched dorsally, and has rather more angulate contours than Mx. similis, Mx. arta, or Mx. simulans. It tapers more regularly than such oblong, sinuous species as $M x$. kornickeri, Mx. adrecta, Mx. adunca, and Mx. audens.

MACROPYXIS sp. 8

Graph 32; Figures 10.12,13, 11.11,12, 18.11; Plates 59.4, 79.28

Material.-Three specimens in alcohol, including 1 female and 2 empty valves, USNM 240578-240579.

Occurrence.-AtAB-7-363D, 1 live plus 2 specimens (1F).
Distribution.-Holocene; southwestern Indian Ocean south of Madagascar, depth 1605 m .

Dimensions.-Adult female 126F, RVL 2.45 mm , RVH 0.93 mm . See also Graph 32.

Comparisons. $-M x$. sp. 8 has an elongate-subtriangular lateral outline with indistinct dorsal angle located a litule ahead of midlength; a nearly straight ventral margin, not upturned posteriorly, a narrowly but evenly rounded anterior margin, a slightly rounded, sharp posterior angle of about 55°; a moderately broad anterior zone of concrescence, very irregular line of concrescence, and irregularly branching radial pore canals. Mx. simulans and Mx. amanda are similar in size and general proportions but have convex, sinuous ventral margins and more truncate posterior angles. Mx. kalbi is much larger but similarly proportioned, with slightly convex, curving, upswung ventral margin. Mx. sp. 13, which occurs at a nearby station, is much smaller and more elongate, with a more flared, truncate posterior angle and slightly more sinuous ventral margin. Species of Macrocypris, such as M. proclivis and
M. sp. 1, have even more angulate, straight-line contours and proportionally greater height, although there are some similarities of shape and radial pore canals.

MACROPYXIS sp. 9

Graphs 32 , 42; Plates 16.1, 79.29
Macrocypris minna (Baird, 1850) McKenzie et al., 1979, p. 12.

Material.-One fossil right valve.
Occurrence.-In UB IGBA slide no. 693 of the reference collection of the Institut de Géologie du Bassin d'Aquitaine, University of Bordeaux, labeled "Macrocypris minna (Baird 1850), CREO 6502-37, 2100 m , Atlantique, C. O. 693," 1 specimen.

Distribution.-Holocene; Gulf of Gascony.
Dimensions.-UB IGBA slide no. 693, my specimen 2338, RVL 2.32 mm , RVH 0.92 mm . See also Graph 32.

Comparisons.-This specimen of $M x$. sp. 9 differs from all other Atlantic species in such details of shape as dorsal curvature, ventral sinuosity, posterior angle, and overall size. It is most similar to the Ingolf specimens of $M x$. bathyalensis, from which it differs by larger size, proportionately lower height, more elongate shape, and less steeply sloping posterodorsal margin. It may prove to be a geographic variant of $M x$. bathyalensis, but this cannot be demonstrated from the evidence available. Mx. adrecta is much smaller, proportionally higher, more oblong, and has a more sinuate ventral margin. Mx. adunca is smaller, with a much more sinuate ventral margin and a more truncate posterior angle. Mx. amanda is much larger, with a more sinuate ventral margin, rather more truncate posterior angle, and much narrower zone of concrescence. $M x$. arta and $M x$. audens are smaller with more sinuate ventral margins, more truncate posterior angles, and narrower zones of concrescence.

MACROPYXIS sp. 10

Graph 42; Plates 16.7, 17.1,2,7, 84.9,10
Macrocypris wrightiijones and Hinde Ducasse, 1977, p. 420. Macrocyprissa cf. wrightii (Jones and Hinde, 1890) McKenzIE et al., 1979, p. 12.

Material.-One fossil carapace.
Occurrence.-In UB IGBA slide 296 in the reference collection of the Institut de Geologie du Bassin d'Aquitaine, University of Bordeaux, labeled "Macrocypris gr. wrightii Jones \& Hinde, forage Sanbrigues H.1, 331 m, Miocene, CO 296," 1 specimen.

Distribution.-Miocene; Maremne, Aquitaine Basin, France.

Dimensions.-UB IGBA slide no. 296, my specimen 2337, L $1.37 \mathrm{~mm}, \mathrm{H} 0.52 \mathrm{~mm}$. See also Graph 42.

Comparisons.-This elongate-oblong, streamlined, somewhat featureless specimen of $M x$. sp. 10 is smaller than
most other species of Macropyxis and does not closely resemble any other species described here. It is far less attenuated than Ms. wrightii and has no dentiform corner.

MACROPYXIS sp. 11

Graph 32; Figures 8.1, 9.1, 19.7, 22.9, 24.14, 30.2, 34.3, 39.2, $46.45,65.3,80.9$; Plates $16.6,17.6$

Material-One female in alcohol, USNM 240580.
Occurrence.-At AII-31-159, one live specimen (1F).
Distribution.-Holocene; central Atlantic Ocean off the eastern tip of South America, depth 834-939 m.

Dimensions.-Female specimen 1416F, RVL 2.04 mm , RVH 0.83 mm , LVL 1.96 mm , LVH 0.75 mm . See also Graph 32.

Comparisons.-The sinuate-oblong carapace of $M x . \mathrm{sp}$. 11 with its distinct dorsal and posterodorsal angles, nearly straight ventral margin, sharp and slightly flared posterior angle of about 55°, and elaborately branching radial pore canals resembles $M x$. adunca, Ms. audens, Mx. similis, $M x$. bathyalensis, and $M x$. kornickeri, but details of shape and curvature prevent ready assignment to any of these closely related species. It is here treated as a separate species until a better understanding of the geographic variability among populations of these Atlantic species is achieved.

MACROPYXIS sp. 12

Graph 32; Figure 11.1; Plate 22.9
Material.-Three empty valves, USNM 240581-240582.
Occurrence.-At UH 4127, two specimens; at UH 4132, one specimen.

Distribution.-Holocene; northwestern Gulf of Mexico, depth 841-1079 m.

Dimensions.-Adult RV specimen 2411, RVL 3.25 mm , RVH 1.31 mm . See also Graph 32.

Comparisons.-This huge carapace of $M x . \mathrm{sp} .12$, the largest species of the genus, is similar in shape to $M x$. kalbi but much larger, somewhat more elongate, with indistinct posterodorsal angle and less triangular lateral outline.

MACROPYXIS sp. 13

Graph 82; Figures 6.12, 7.10; Plates 24.8,9, 25.8,9
Material.-Four empty valves, USNM 240583-240586.
Occurrence.-At AB-7-365D, 4 specimens.
Distribution.-Holocene; southern Mozambique Channel near southwestern Madagascar, 475-695 m.

Dimensions.-Specimen 2376, RVL 1.35 mm , RVH 0.47 mm. See also Graph 32.

Comparisons.-The tiny carapace of $M x$. sp. 13 is very elongate, with a more streamlined, siliquose shape than even $M x$. arta or $M x$. similis. The low triangular shape and indistinct radial pore canals would permit assignment to Macrocypris, but the smooth outline, obliquely truncate
anterior margin, and fairly wide zone of concrescence suggest that it is a Macropyxis.

MACROPYXIS sp. 14

Graph 32; Figure 6.3; Plate 24.10
Material-Three empty valves, USNM 240587 and in the collection of Kerry Swanson.

Occurrence.-At Swanson Tasman Sea P653, 1 specimen; at Swanson Tasman Sea P667, 2 specimens.

Distribution.-Holocene; Tasman Sea west of New Zealand, 1047 m .

Dimensions.-Adult specimen 2424, RVL 1.55 mm , RVH 0.54 mm . See also Graph 32.

Comparisons.-The small, siliquose carapace of $M x . \mathrm{sp}$. 14 with its narrowly rounded, obliquely truncate anterior margin and sharp, slightly truncate posterior angle is not unlike Mc. arcuata in the North Atlantic or such Cretaceous species as Ms. graysonensis, but it has no dentiform corner and lacks the flattened venter, compressed anterior and posterior margins, and obscurely sinuous contours of those genera. The slightly sinuous ventral margin and sharp posterior angle suggest assignment to Macropyxis.

MACROPYXIS sp. 15

Graph 32; Figures 6.5, 7.4; Plates 16.8, 17.8
Material.-Two empty valves, USNM 240588-240589.
Occurrence.-AtSwanson Tasman Sea P654, 2 specimens.
Distribution.-Holocene; Tasman Sea west of New Zealand, depth 769 m .

Dimensions.-Specimen 2425, RVL 1.86 mm , RVH 0.78 mm . Specimen 2426, LVL 1.82 mm , LVH 0.69 mm . See also Graph 32.

Comparisons.-This medium-sized, thick-walled, oblong carapace of $M x . \mathrm{sp} .15$ lacks the sinuous ventral margin of $M x$. amoena and is not as highly arched dorsally as Mx. ellaninae. Although several species of Macromckenziea have a similar lateral outline, the broad, irregular anterior and posterior zones of concrescence and branching radial pore canals support classification of this species in Macropyxis.

MACROPYXIS sp. 16

Graph 32; Figures $1.5,6,30.19,33.3,36,37.1,46.12$; Plate 79.30
Material-One female in alcohol, USNM 240590. Occurrence.-At NZOI B-303, one live specimen (1F).
Distribution.-Holocene; southwestern Pacific Ocean near the New Zealand Plateau, depth 2888 m .

Dimensions.-Female specimen 327F, RVL 3.15 mm , RVH 1.24 mm . See also Graph 32.

Comparisons.-The large, smoothly arched, subtriangular carapace of $M x$. sp. 16 is not unlike Macrocypris in general proportions but has a bluntly truncate posterior angle of about 55°, elevated distinctly above the venter, and a broad zone of concrescence with irregularly branch-
ing radial pore canals, which suggest affinity to Macropyxis. It is much higher and has a more broadly rounded anterior margin than $M x$. kalbi. The truncate posterior angle and slightly anterior location of greatest height distinguish it from $M x, \mathrm{sp} .21$.

MACROPYXIS sp. 17

Graph 32; Figures 10.1, 46.44; Plates 20.1, 80.1
Material-One dry, fragmentary female, USNM 240591. Occurrence.-At Albatross 3375, 1 live specimen (1F).
Distribution.-Holocene; eastern Pacific Ocean south of Panama, depth 2197 m .

Dimensions.-Female specimen 1150F, RVL 1.88 mm , RVH 0.76 mm , LVL 1.86 mm , LVH 0.70 mm . See also Graph 32.

Comparisons.-This medium-sized, very thick-walled, elongate-oblong carapace of $M x . s p .17$ has an exceptionally broad anterior zone of concrescence with very elaborately branching radial pore canals, a nearly straight ventral margin, and a sharp, slightly flared and truncate posterior angle of about 60°, slightly elevated above the venter. It is proportionally much higher than $M x$. kaesleri and lacks the sinuate, convex ventral margin of the latter. $M x$. sp. 11 is a little higher and has a much more angulate shape, including a sinuous, ventrally extended posterior angle. Mx. adunca is larger and proportionally higher with a much more sinuous outline. Mx. bathyalensis is much larger and proportionally higher, with a more acute posterior angle and more broadly rounded anterior margin. $M x$. sp. 20 is much larger and proportionally higher but otherwise fairly similar, while $M x$. kornickeri is larger and has a more angulate outine. $M x, \mathrm{sp} .17$ is here treated as a separate species until the geographic variability of these and related species is better understood.

MACROPYXIS sp. 18

Graph 32; Figures 10.14, 30.11, 33.6, 41.1, 46.46; Plates $16.5,80.2$

Material-One female in alcohol, USNM 240592.
Occurrence.-At AII-31-156, one live specimen (1F).
Distribution.-Holocene; equatorial Atlantic Ocean off the eastern tip of South America, depth 3459 m .

Dimensions.-Female specimen 1443F, RVL 2.18 mm , RVH 0.86 mm . See also Graph 32 .

Comparisons.-Mx.sp. 18 is very similar in size and general shape to $M x$. kornickeri but has a slightly less angulate dorsal margin, a more acute, upturned posterior angle, and a slightly convex ventral margin. It is more elongate and more acutely terminated than $M x$. sp. 11, Mx. adunca, $M x$. bathyalensis, and $M x$. audens but less so than $M x$. similis and $M x$. adrecta. It is here treated as a separate species until the complex geographic variability in shape and size seen in populations of these and related species can be better understood.

MACROPYXIS sp. 20

Graph 32; Figure 10.5; Plate 22.8
Material-One right valve, USNM 240593.
Occurrence.-At KN-25-306, one specimen.
Distribution.-Holocene; southeastern Atlantic Ocean on the Angola abyssal plain, depth 5550 m .

Dimensions.-Specimen 1784RV, RVL 2.34 mm , RVH 0.94 mm . See also Graph 32.

Comparisons.-Mx. sp. 20 is similar in size and general shape to $M x$. bathyalensis but has less sinuous contours. The shape is also fairly similar to that of of Mx. adriatica. The radial pore canals are not visible on this opaque specimen. Because no geographically intermediate populations are known, and the patterns of geographic variability in $M x$. bathyalensis and closely related species are not well understood, this specimen is treated as a separate species for the time being.

MACROPYXIS sp. 21

Graph 32; Figures 6.19, 7.17, 30.15, 34.14, 41.3, 46.52, 68.15, 80.3; Plates 18.2, 80.3, 111.1

Material-One female in alcohol, USNM 240594.
Occurrence.-At V-16-15, one live specimen (1F).
Distribution.-Holocene; southwestern Atlantic Ocean between South Georgia and the Falkland Islands, depth 1622 m.

Dimensions.-Female specimen 1962F, RVL 2.55 mm , RVH 1.06 mm , LVL 2.55 mm , LVH 0.97 mm . See also Graph 32.

Comparisons.-Mx. sp. 21 is similar in size and shape to $M x$. kalbi but has a more narrowly rounded anterior margin, a slightly truncate posterior angle, and more central location of greatest height. It is larger and proportionally higher than $M x$. sp. 8 but similar in its subtriangular shape. The narrowly rounded, slightly truncate, slightly upswung posterior angle supports the assignment to Macropyxis rather than Macrocypris.

MACROPYXIS sp. 46

Graph 18; Plates 20.9, 21.9

Material-Two females in alcohol, USNM 240595. Occurrence.-At V-17-5, 2 live specimens (2F).
Distribution.-Holocene; off the west coast of Chile, depth 3824-3739 m.

Dimensions.-Female 1965F, RVL 1.88 mm , RVH 0.82 mm , LVL 1.84 mm , LVH 0.75 mm .

Comparisons.-Mx. sp. 46 is much larger than but very similar in shape to Mx. amoena, and the female soft parts are also very similar though inconclusive. Because no males and no geographically or bathymetrically intermediate populations are known, and because including these specimens in Mx. amoena would give that species the unlikely depth range of 9 to 3824 m , they are here treated as a separate species.

Genus MACROCYPRIA Sars, 1923
Macrocypria Sars, 1923, p. 60; Sylvester-Bradley, 1961, p. Q207; Triebel, 1960, p. 115; Howe, 1962, p. 189; Morkhoven, 1963 , p. 87.
Type species.-Macrocypris sarsi Müller, 1912. Species included.-Listed by original binomen:
Macrocypris sarsi Müller, 1912; Holocene, North Atlantic Ocean.
Macrocypris canariensis Brady, 1880; Holocene, northeastern Atlantic Ocean.
Macrocypria semesa n. sp.; Holocene, southeastern Pacific Ocean.
Geologic range.-So far, known only by living species.
Geographic range.-North Atlantic and southeast Pacific oceans. The known composite live depth range is 36 to 5195 m .

Diagnosis.-Carapace elongate, boat-shaped, very asymmetrical; right valve with dorsal margin broadly arched in lateral view, sloping steeply to acutely pointed or narrowly and obliquely rounded, angulate anterior margin; ventral margin sinuous, convex to nearly straight, upswung in posterior; posteroventral angle acute, prolonged or flared, located well above venter; greatest height and greatest thickness located near midlength; anterior and posterior dentiform corners well developed, conspicuous, asymmetrical; vestibules deep, open; greatly swollen medially in dorsal view, with abruptly compressed, sharply tapering anterior and posterior ends; line of dorsal overlap sinuous, exaggerated; zone of concrescence fairly broad, traversed by numerous, straight radial pore canals; hinge thin but finely crenulate.

Antennule long, slender, with setae of graduated lengths from short to very long; podomeres II and III inflexibly articulated or joined by rigid suture. Antenna very slender, elongate, with fairly short sensory aesthetascs on podomere II; podomere III with at most two vestigial swimming setae; podomere IV with short proximoventral and anterodorsal setae; three thick, clawlike terminal setae of moderate length, all others much reduced. Podomeres I and II of maxillule palp separated by suture (Ma. semesa) or fused without suture (Ma. sarsi); anterodistal setae of the two podomeres remaining distinct.

Mediodistal seta of female fifth limb much longer than the other two. Dorsodistal seta of sixth limb much reduced. Distal seta of seventh limb very short. Furcae large, asymmetrical, with left ramus much shorter than right but not fused with it; distal seta continuous with proximal rod to make a single, smoothly tapering, terminally pointed, slightly flexible, leverlike appendage; proximal setae exceedingly tiny. Zenker's organ with large spherical anterior bulb; vas deferens coiled into a broad spiral of five to seven loops. Hemipenis oblong with straight dorsal margin, truncate anterior margin, obliquely curved ventral margin; short, thick, curved copulatory tube and short, conical copulatory rod.

Affinities.-Asymmetrical furcae are characteristic but not diagnostic of Macrocypria, being well developed in at least three species of Macroscapha. Weak asymmetry may be noted in species of other genera as well.

The new genera Macrocyprissa and Macrosarisa also have a well developed dentiform corner, and other morphological similarities show them to be fairly closely related to Macrocypria. They have a symmetrical furca and a bluntly rounded rather than pointed anterior carapace margin.

Kozur (1971, p. 10, translated from German) stated that "The hinge of Macrocypria has not yet been described. In the drawing in the Treatise, Part Q, no crenulate hingeelements are to be seen. If the hinge-elements of Macrocypria should be smooth, this genus must be placed in the Subfamily Acratiinae." It can now be stated that the hinge of Macrocypria is crenulate and of normal macrocypridid character. However, because the degree of visibility of hinge crenulation in Macrocyprididae depends on the thickness of the hinge, which is a function of the thickness of the shell, it probably ought not to have much taxonomic significance. There is no reason to classify Macrocypria separately from other genera of Macrocyprididae.

Remarks.-The wide geographic separation of the three species of Macrocypria argues for geological antiquity and the existence of additional, unknown, living and fossil species in this genus.

MACROCYPRIA SARSI (Müller, 1912)

Graph 83; Figures $12.14,15,18.14,15,21.25,23.21$, $24.35,28.40,41,29.11,35.20,44.7,47.2,3,50.2,51.7$, $57.9,58.16,60.8,64.25,68.2,72.4-6,76.6,78.8$; Plates $26.2-7,27.2-6,68.1-5,69.2-8,80.4,81.23,84.2$, $91.1,2,105.4,5,111.12$

Bairdia angusta Sars, 1866, p. 22.
Not Cythere angusta Münster, 1830, p. 63, pl. 6, fig. 10.
Not Cythere (Bairdia) angusta (Münster) Jones, 1849, p. 26, pl. 6, fig. 18a-f.
Not Bairdia angusta (Münster) Reuss, 1854, p. 189.
Macrocypris angusta (Sars) Brady and Norman, 1889, p. 117, 243, pl. 9, fig. 17, 18; Sars, 1891, p. 18; Norman, 1891, p. 110; Kornicker, 1969, table II.
Not Macrocypris angustata Brady, 1887, p. 164, 194 (nomen nudum, probably intended to be Bairdia angustata); Kornicker, 1969, table 1.
Macrocypria angusta (Sars) Sars, 1923, p. 61, pl. 28; Elofson, 1941, p. 31, map 14; Klie, 1929, p. 11; Morkhoven, 1963, p. 89; Neale, 1964, p. 264, table 1; Maddocks, 1977, p. 154, fig. 1.
Mactocypris sarsi Müluer, 1912, p. 123 (replacement name).
Mactocypria sarsi (Müller) Sylvester-Bradley, 1961, p. Q207, fig. 146-2; Maddocks, 1979, fig. 11, 12, 14, 15, pl. 2, fig. 1-4.

Material.-Thirty-eight specimens in alcohol, including 6 males, 31 females, and 1 juvenile.

Types.-The G. O. Sars collection in the Zoological

Museum of the University of Oslo has the following material for "Macrocypria angusta G. O. Sars": F1483 (alcohol, not seen), F1484 (alcohol, described here), F8017 and F8018 (slides, not seen). Dr. Marit Christiansen wrote (March 18, 1980) that "we don't have any material registered on Bairdia angusta. Unfortunately, Sars never labeled his original material as type material . . . [and] no locality is given on any of the three samples of M. angusta, so I cannot tell you if this is his original material or not." Since Sars did not illustrate the species in 1866, it is unlikely that those syntypes can now be distinguished reliably from the specimens he used for the more complete description and illustration in 1923. Fortunately, the species is so distinctive that no confusion is possible. As no immediate purpose would be served by the designation of a lectotype, and there is some risk of making an erroneous designation, no lectotype has been selected.

Type locality.-Not specified. Sars (1866) reported the species from the coast of Norway, off Christiania and Nidaros.

Occurrence.-In UOZM F1484, 37 live specimens (6 M , $30 \mathrm{~F}, 1 \mathrm{FJ}-1$); at Ingolf 85,1 live specimen (1 F).

Distribution.-Holocene; in the high North Atlantic near Iceland and off the coast of Norway and Sweden, reported depth range 36 to 541 m . Elofson (1941, p. 32) described the species as living "on various types of soft bottoms" and as being "stenothermic and stenohaline."

Brady (1887, p. 164) listed "Macrocypris angustata" at Talisman station 85, but at the end of that paper he suggested that he meant Bairdia angustata instead. This mistaken citation was carried over to the appendix of the North Atlantic monograph by Brady and Norman (1889, p. 243), even though earlier in that paper (p. 117) they had stated that "Macrocypris angusta" had not been found outside of Norwegian waters. Kornicker (1969) provided corrected station data for Talisman station 85, but this is probably not a valid record for the species. Sars (1866, 1891, 1923), Norman (1891), and Elofson (1941) reported this species only from the southern coast of Norway and Sweden. The occurrence at Ingolf station 85 extends its known range to southwest of Iceland.

Dimensions,-Male 1998 M, L. 1.68 mm , H 0.58 mm ;
female 2000F L $1.72 \mathrm{~mm}, \mathrm{H} 0.62 \mathrm{~mm}$. See also Graph 33. Females are longer than males but have similar proportions. The Ingolf specimen is distinctly larger than the Norwegian population.

Diagnosis.-Carapace elongate, thin-shelled, very asymmetrical, especially at the anterior margins, boat-shaped; dorsal margin of right valve broadly arched in lateral view, sloping steeply anteriorly to pointed, truncate anterior margin, sloping less steeply posteriorly to slightly flared posterior angle; greatest height located slightly anterior to midlength; ventral margin slightly convex to nearly straight, upswung in posterior. Anterior dentiform corner consisting of two broad, triangular, fan-shaped, sensory setae emerging from indented, enlarged radial pore canals; located just above a projecting, toothlike, solid spine, located near venter in right valve, located at one-quarter to one-third of height in left valve; posterior dentiform corner similar but less conspicuous, with narrow, triangular sensory setae and less prominent spine. Vestibules deep, open; zone of concrescence fairly broad, with straight, evenly spaced radial pore canals.

Palp of male fifth limb slender, with narrow hook, longer on left than right side, recurved at 45° on right limb and 49° on left; two slender pegs of equal size on the right limb, of unequal size on the left. Female fifth limb slender, with flexible setae; mediodistal seta much longer than the other two, which are of equal length. Sixth limb small, slender; podomere II has a conspicuous fringe of tiny hairs along the dorsal edge; mediodistal seta very long, dorsodistal and ventrodistal setae very much reduced. Seventh limb with long, conspicuously feathered reflexed seta and very tiny distal setae. Furca large, tapering to fine, curved point, asymmetrical; smaller left side thinner than and only about one-third as long as right side. Hemipenis elongate in lateral view, with obliquely truncate anterior margin, straight dorsal margin, and obliquely upswung ventral margin; two large, triangular, platelike, anterior lamellar projections; copulatory rod short, straight. Zenker's organ with enlarged, spherical anterior bulb, rather short muscularized segment; vas deferens coiled into about 5 broad coils.

Comparisons.-Ma. sarsi differs from Ma. semesa by its very much smaller size; less elongate shape; slightly flared posterior angle; small, normally constructed male fifth limb with recurved hooks; greater reduction of dorsodistal seta of sixth limb; more reduced, more asymmetrical furca; and by the distinctive hemipenis. It may be distinguished from Ma. canariensis by the broader, more truncate anterior margin and the upswung, less attenuate posterior end.

Remarks.-The female specimen (1340F) from Ingolf station 85 is a little larger than the Norwegian specimens but very similar in carapace and soft-part characters.

One female specimen (1999F) in the Norwegian population shows reversal of valve overlap and hingement (left over right); but the left side of its furca is reduced, which is
the normal condition for this species, and other internal characters are normal.

Nomenclaturalremarks.-G. W. Müller (1912) considered Bairdia angusta Sars, 1866, to be a junior homonym of "Bairdia angusta Reuss, 1854," and proposed the replacement name Macrocypris sarsi. In point of fact, the Cfetaceous species identified by Reuss as Bairdia angusta had been named originally by von Münster (1830) as Cythere angusta and later transferred to the subgenus Bairdia by Jones (1849) as Cythere (Bairdia) angusta (Münster). None of the two or three Cretaceous species that have been identified by these combinations are today classified as Bairdia or as Macrocyprididae.

According to Mayr (1969, p. 364), "the 1901 Code [of Zoological Nomenclature] said that a junior homonym was to be rejected. Some zoologists interpreted this to mean only primary junior homonyms, others both primary and secondary junior homonyms." In the 1961 Code (International Commission on Zoological Nomenclature, 1961, p. 57), Article 59 provided that "a species-group name that is a junior primary homonym must be permanently rejected," that "a species-group name that is a junior secondary homonym must be rejected by any zoologist who believes that the two species-group taxa in question are congeneric," and that "a name rejected after 1960 as a secondary homonym is to be restored as the valid name whenever a zoologist believes that the two species-group taxa in question are not congeneric, unless it is invalid for other reasons." The Third Edition of the Code (International Commission on Zoological Nomenclature, 1985, p. 111) unambiguously states that "ajunior secondary homonym replaced before 1961 is permanently invalid," and that "if the use of a replacement name for such a junior secondary homonym is a cause of confusion, the case is to be referred to the Commission for a ruling" (Article 59).

Bairdia angusta Sars was a junior secondary homonym at the time of its establishment, although probably no worker ever considered the two species to be congeneric. It corresponds to Type I in table 14 (Types of Homonyms) of Mayr etal. (1953, p. 226), and by the actuality principle (Mayr, 1969) such a historical homonym ought not to have been renamed. However, Müller did rename it, and the rejected name is now permanently invalid. The species is rare, and the redescription by Sars (1923) represents its only subsequent occurrence in the primary taxonomic literature, not counting catalogs, treatises, and ecological surveys. It cannot be argued that continued use of sarsi will cause confusion.

MACROCYPRIA CANARIENSIS (Brady, 1880)

Graph 53; Plates 26.18,14, 27.14,15
Macrocypris canariensis Brady, 1880, p. 42, pl. 2, fig. 3a-d; Müller, 1912, p. 122; Puri and Hulings, 1976, p. 260, pl. 1, fig. 15, 16.

Not Macrocypris canariensis Brady Egger, 1902, p. 423, pl. 1, fig. 30-32.

Material.-One empty carapace.
Types.-The single type specimen, designated the lectotype by Puri and Hulings (1976), is BMNH 81.5.6, slide 148 of the G. S. Brady Challenger Collection.

Type locality.-Challenger station $8,28^{\circ} 03^{\prime} 15^{\prime \prime} \mathrm{N}$, $17^{\circ} 27^{\prime} 0^{\prime \prime} \mathrm{W}$, depth 620 fathoms (1134 m), a dredging off Gomera, the Canary Islands, "on a bottom of sandy mud and shells."

Occurrence.-In BMNH 81.5.6, one specimen.
Distribution.-Holocene; known only from one locality near the Canary Islands, depth 1134 m .

Dimensions.-Lectotype BMNH 81.5.6, RVL 1.99 mm , RVH 0.70 mm , LVL 2.03 mm , LVH 0.61 mm . See also Graph 53.

Diagnosis.-Carapace very elongate, asymmetrical, boatshaped, with flattened venter and somewhat triangular cross-section; dorsal margin of right valve broadly and evenly arched in lateral outline; anterior margin narrowly and obliquely truncated; ventral margin sinuous, upswung posteriorly to flared, narrowly truncate posterior margin; greatest height and thickness located near midlength. Left valve with more narrowly pointed anterior and especially posterior angles in lateral view, extending in front of right valve anteriorly. Anterior and posterior dentiform corners present. Inner lamella broad, vestibules deep, open; zone of concrescence fairly broad; radial pore canals straight, evenly spaced,

Comparisons.-Ma. canariensis differs from Ma. sarsi by the more prolonged, lower anterior region, more angulate dorsal margin, and the more flaring, attenuate posterior angle. Ma. semesa is much larger and has a more acutely pointed posterior angle.

Remarks.-In carapace characters this species differs only slightly from Ma. sarsi, but until the soft anatomy, sexual dimorphism, geographic range and population variability can be studied, it is best to treat it as a separate species.

Two small elevated rings on the left valve of this specimen may have been caused by a parasite or epibiont.

Egger (1902) incorrectly reported this species at Gazelle station 13 near the Cape Verde Islands, depth 63 m ; at station 90 near Australia, $18^{\circ} 52^{\prime} \mathrm{S}, 116^{\circ} 18{ }^{\prime} \mathrm{E}$, depth 357 m ; and at station 66 near Mauritius at depth 411 m . The reported dimensions ($\mathrm{L} 0.36 \mathrm{~mm}, \mathrm{H} 0.12 \mathrm{~mm}$), the wide geographic range, and the illustrations show plainly that these were nonmacrocypridid specimens.

MACROCYPRIA SEMESA new species

Graph 53; Figures 12.7, 13.7, 28.42,43, 29.10, 35.17, 44.2, 47.1, 50.1, 51.1-3, 56.12, 57.10, 58.19, 60.7, $64.26,68.1,72.7,76.4,5,78.7$; Plates $26.1,27.1,9,69.9$, 105.6

Derivation of name.-Latin semesus, half-eaten, half-consumed; to describe the asymmetrical furca, and also to describe the soft, fragmentary carapaces of most of the available specimens.

Material.-Five specimens in alcohol, including 1 male, 1 female, and 3 juveniles.

Types.-Holotype male 843M USNM 240596, paratypes USNM 240597-240600.

Type locality.-Eltanin cruise 3 station $48,14^{\circ} 11^{\prime}-14^{\circ} 08^{\prime} \mathrm{S}$, $77^{\circ} 8^{\prime}-77^{\circ} 9^{\prime} \mathrm{W}$, depth $3889-4004 \mathrm{~m}$.

Occurrence.-At E-3-40, 3 live specimens (3J); at E-3-43, 1 live specimen (1F); at E-9-48, 1 live specimen (1M).

Distribution.-Holocene; southeastern Pacific Ocean, known live depth range 3402 to 5195 m .

Dimensions.-Paratype female specimen 857F, L 2.99 mm, H approximately 0.88 mm . Other specimens not measurable. See also Graph 53.

Diagnosis.-Carapace very elongate, thin-shelled; dorsal margin of right valve unevenly arched in lateral view, with greatest height located slightly behind midlength, sloping steeply posteriorly to elevated, very pointed posterior angle, sloping less steeply anteriorly to narrowly truncated anterior margin; ventral margin gently convex; anterior dentiform corner located slightly above venter in right valve, at about midheight on left valve; posterior angle very acute, located at about one-third height, with dentiform corner; vestibules deep and open, zone of concrescence broad, especially ventrally, radial pore canals straight; hinge thin, with finely crenulate elements.

Palps of male fifth limb very asymmetrical; right hook recurved at 73°, with two small pegs and no dorsal seta; left hook much larger, curved at 159°, with two large, unequal pegs and a short dorsal seta. Palp of female fifth limb tapering rapidly to fairly thick, clawlike distal seta. Sixth limb very large and elongate, with dorsodistal seta about one-third as long as the slender mediodistal claw. Seventh limb has conspicuous feathering of two sizes on the reflexed seta; both distal setae are short. Furcae large, asymmetrical, right ramus tapering to bluntly curved point, reduced left ramus just as thick as right proximally but tapering more rapidly, about one-half as long as right side. Hemipenis elongate-oblong in lateral view with straight dorsal margin, perpendicularly truncate anterior margin, and convex, upswung ventral margin; anterior lobe inconspicuous, copulatory rod sigmoid, labyrinthine passages near distal end strongly chitinized. Zenker's organ with large, spherical anterior bulb, muscularized segment of normal length; vas deferens coiled into about seven broad coils.

Comparisons.-Ma. semesa may be distinguished from both Ma. sarsi and Ma. canariensis by the much greater size and more elongate shape, with more acutely pointed posterior angle. It also differs from Ma. sarsi by the very asymmetrical male fifth limb with straight left hook, the less reduced dorsodistal seta of the sixth limb, the less asymmetrical furcae, and the distinctive hemipenis.

Remarks.-Because of the fragmentary and partially decalcified condition of these specimens, the carapace shape, dimensions, and sexual dimorphism cannot be precisely defined.

Genus MACROCYPRISSA Triebel, 1960

Macrocypris (Macrocyprissa) Triebel, 1960, p. 116.
Paramactocypris Colalongo and Pasint, 1980, p. 106.
Type species.-Bairdia cylindracea Bornemann, 1855. Species included.-Listed by original binomen:
Bairdia cylindracea Bornemann, 1855; Oligocene of Germany and Miocene of Sardinia.
Paramacrocypris arcuata Colalongo and Pasini, 1980;
Holocene, North Atlantic, and Pleistocene of Italy.
Macrocyprissa vandenboldi n. sp.; Miocene, Jamaica.
Macrocyprissa sp. 22; Eocene, Aquitaine Basin.
Geologic range.-Oligocene to Holocene.
Geographic range.-Europe, North Atlantic, West Indies. The only live record is at a depth of 1491-1500 m.

Diagnosis.-Carapace elongate-oblong to siliquose in lateral outline, tapered, smooth, fairly thick-shelled; dorsal margin of right valve arched to nearly straight in lateral view; ventral margin nearly straight to highly sinuous; posterior margin tapered to truncate, with distinct posteroventral angle. Carapace lozenge-shaped in dorsal view, with subparallel flanks and bluntly rounded or gradually tapering anterior and posterior ends, with conspicuous stragulum and sinuous valve-contact line; inner lamella broad, fused zones especially broad anterodorsally and posterodorsally, narrow anteriorly; anterior radial pore canals short and straight, anterodorsal and posterodorsal radial pore canals few, curving, irregular; anterior vestibule crescent-shaped, dorsally constricted by lobate zone of concrescence; posterior vestibule reduced, triangular, constricted by expanded posterodorsal zone of concrescence; well developed anterior dentiform corner; hinge robust, normal for family; adductor muscle-scar pattern fairly small, elongate, normal for family.

Antennule moderately slender, with short setae; podomeres II and III fused completely, without any trace of a vestigial suture. Antenna of moderate proportions with numerous, long, thick terminal claws; very long sensory aesthetascs on podomere III; two moderately long anterodorsal setae on podomere IV; four short so-called swimming setae of graduated sizes on podomere III. Podomeres I and II of maxillule palp completely fused without suture; the anterodistal seta of podomere I has migrated distally to join the three setae of podomere II.

Palps of male fifth limbs slender, tapering, asymmetrical , with long ventral peg on left limb. Seventh limb with short reflexed seta and short distal setae. Furcae long, slender, tapering, curved, distally pointed. Zenker's organ with very small anterior bulb; vas deferens makes two short, oblong loops.

Affinities.-Macrocyprissa does not have close affinities to the genus Macrocypris as revised here, and Macrocyprissa is here elevated to generic rank.

The well-developed dentiform corner is a mark of affinity with Macrocypria and Macrosarisa, and this hypothesis is also supported by the structure of the furca and other soft-part characters.

The most characteristic attribute of Macrocyprissa is the constricted vestibule with dorsally and ventrally scalloped line of concrescence and lobate zone of concrescence. Around the anterior margin proper, the zone of concrescence is narrow, and the radial pore canals are mostly short and straight. Contrary to the interpretations of some authors, the anterior radial pore canals of Macrocyprissa rarely branch.

Most species referred to "Macrocyprissa" on the basis of branching radial pore canals, including the Indo-Pacific and Australasian species referred to "Macrocyprissa" by McKenzie (1967a, 1974) and McKenzie and Peypouquet (1984), probably belong to the new genus Macropyxis or perhaps to Macromckenziea (see discussion above). Accompanying ecological generalizations about "Macrocyprissa" (for example, by McKenzie and Peypouquet, 1984) apply to Macromckenziea or Macropyxis, likewise.

Some species of Macromckenziea approach Macrocyprissa in elongate lateral outline, though they do not show as much ventral sinuosity and never have the restricted vestibules. An even more interesting convergence is seen with some species of Krithe, Argilloecia, and Phlyctenophora, which also have this thick-shelled, oblong shape and constricted vestibules. Species of Macrocyprissa may be easily distinguished from these homeomorphs by the right-valve overlap, sinuous dorsal valve contact, macrocypridid hinge, and distinctive muscle-scar pattern that characterize all Macrocyprididae.

Colalongo and Pasini (1980) proposed the genus Paramacrocyprisfor one Pleistocene species, P. arcuata, diagnosing the genus as follows (p. 106, translated from Italian): ". . . carapace elongated, of large dimensions and with maximum height about at mid-length. Paramacrocypris is distinguished from Macrocyprissa by having a more elongate, narrower carapace, pointed posteriorly; different form of vestibule; different grouping of marginal pore canals." Obviously here, as has so often been the case, "Macrocyprissa" refers to the large, inflated, sinuously curved, deepsea forms with branching radial pore canals, which comprise the new genus Macropyxis, rather than to the concept typified by Mc. cylindracea. Only with this interpretation can meaning be found in this vague diagnosis. With this substitution, the characters illustrated for Paramacrocypris arcuata Colalongo and Pasini agree exactly with those that Triebel (1960) gave for Macrocyprissa cylindracea and that he considered to be diagnostic of the genus Macrocyprissa. To confirm this identity, the excellent illustrations of Colalongo and Pasini show conspicuous anterior and posterior dentiform corners, not mentioned in their description.
Mc. arcuata is redescribed below on the basis of a living North Atlantic population. It certainly should be classified in the genus Macrocyprissa.

Remarks.-Because three of the four known species are fossils, the soft parts are known only for Mc. arcuata.

MACROCYPRISSA CYLINDRACEA (Bornemann, 1855)

Graph 42; Plates $30.11,12,31.12,13,63.11,14,72.5,12$, 80.5,6

Bairdia cylindracea Bornemann, 1855, p. 359, pl. 20, fig. 5.
Argilloecia cylindracea (Bornemann) Lienenklaus, 1900, p. 507; SOHN, 1970, p. 49.
Macrocypris (Macrocyprissa) cylindracea (Bornemann) Triebel, 1960, p. 116, pl. 13, fig. 1-3, pl. 14, fig. 4-6; SOHN, 1970, p. 49; ?Bonaduce and Russo, 1984, p. 424, 425; ?MonOSTORI, 1985, p. 215.
?Macrocypris cylindracea (Bornemann) Ciampo, 1980, p. 7; Ciampo, 1981, p. 55.
Not Macrocypris cylindracea (Bornemann) van den Bold, 1946, p. 65, pl. 4, fig. 2; Ruggieri, 1960, p. 124, pl. 1, fig. 1, pl. 2, fig. 11, 12; Russo, 1964, p. 239, pl. 43, fig. 5a,b; Diecl and Russo, 1964, p. 57, pl. 14, fig. 8a,b.
Not Nesidea cylindracea (Bornemann) Kulper, 1918, p. 16, pl. 1, fig. 3 (fide Triebel, 1960).
Not Bairdia cylindracea (Bornemann) Staesche and Hiltermann, 1940, pl. 24, fig. 11 (fide Triebel, 1960).

Material-In the Natur-Museum und Forschungs-Institut Senckenberg, slide Xe 3959, four fossil valves. This slide, labeled "Macrocypris cylindracea (Bornemann), Trb. 1960, Xe 3359, Septarienton b. Berlin," contains the topotype specimens described and illustrated by Triebel (1960). The additional specimens (Xe 3354-3360) reported by Triebel from the Septarienton of the Walsrode well, Lower Saxony, were not studied.

Types.-The location of Bornemann's types is unknown. The following description is based on material studied by Triebel (1960).

Type locality.-Oligocene, Septarian Clay, Hermsdorf, near Berlin.

Occurrence.-In NMFIS Xe 3359, 4 specimens.
Distribution.-Reported from the Oligocene of Germany, Eocene to Oligocene of Hungary, and Miocene of Sardinia.

Dimensions.-Specimen 2305, LVL 1.05 mm , LVH 0.37 mm . Specimen 2306, LVL 1.03 mm , LVH 0.35 mm . Specimen 2307, RVL 1.00 mm , RVH 0.41 mm . Specimen 2308 , RVL 1.07 mm , RVH 0.40 mm . See also Graph 42.

Diagnosis.-Carapace elongate-oblong, thick-shelled, very asymmetrical, flattened ventrally and compressed laterally in the posterior region; dorsal margin of right valve gently convex to nearly straight in dorsal view; anterior margin broadly and obliquely rounded; ventral margin sinuous, upswung anteriorly, convex anteromedially,
straight to slightly concave medially, slightly convex posteromedially, and strongly concave to stepped posteriorly; posterior margin truncate, straight, steeply sloping from rounded posterodorsal region, meeting ventral margin at acute angle, which is located distinctly above venter; anterior and posterior dentiform corners present but not conspicuous.

Comparisons.-Mc. cylindracea differs from Mc. vandenboldi by being less elongate, less sinuous, with a more truncate posterior, and with posteroventral angle distinctly elevated above venter. It is easily distinguished from $M c$. arcuata and Mc. sp. 22 by its less elongate, oblong, sinuous shape.

Remarks.-This species was well illustrated by Triebel (1960). However, the fourth, anterior scar of the upper muscle-scar group in his pl. 13, fig. 3b, which has been retouched, does not exist.

The illustrations given by Ruggieri (1960), Russo (1964), and Dieci and Russo (1964) belong to species of Macromckenziea and Macropyxis. The specimen illustrated by van den Bold (1946) could be a species of Macropyxis, Macroscapha, or Macrocyprina.

MACROCYPRISSA ARCUATA

(Colalongo and Pasini, 1980)

Graph 34; Figures $12.17,18,13.17,18,21.24,23.24$, 24.34, 28.29,30, 29.9, 35.19, 44.5, 47.6.7, 50.15-19, $51.9-13,56.10,24,27,57.11,32,58.18,59.26,83,60.4$, $68.9,17,64.23,40,51,68.5,72.1-3,76.3,78.9,10$; Plates $30.7-10,81.7-11,67.8,9,68.6-14,69.1,70.1-4,80.7$, 91.10-14, 104.1-5, 111.6

Paramacrocypris arcuata Colalongo and Pasini, 1980, p. 106, pl. 25, fig. 1-8; ?Bonaduce and Sprovieri, 1985, p. 134.

Macrocypris sp. Colalongo, 1965, p. 89, pl. 1, fig. 7.
Macrocypria (?) n. sp. 2 Maddocks, 1979, pl. 1, fig. 6-10.
Material.-Approximately 900 specimens in alcohol, including males, females, and juveniles belonging to three instars.

Types.-Holotype I.O.179/a, paratypes I.O.179/b, in the Instituto di Geologia e Paleontologia dell' Universitá di Bologna (not seen).

The new material for this species is USNM 240601-240613.

Type locality.-Plio-Pleistocene, the Vrica Section at Crotone, Calabria, Italy.

Occurrence.-At C-106-313, approximately 900 live specimens ($59 \mathrm{M}, 44 \mathrm{~F}, 2 \mathrm{FJ}-1,2 \mathrm{MJ}-1,42 \mathrm{~J}-1,1 \mathrm{MJ}-2,1 \mathrm{FJ}-2$, $16 \mathrm{~J}-2,2 \mathrm{~J}-3$, and at least 730 additional adults whose sex was not determined).

Distribution.-Live at a depth of $1500-1491 \mathrm{~m}$ in the northeastern Atlantic Ocean, and Plio-Pleistocene of Italy.

Dimensions.-Male 1533M, RVL 1.52 mm , RVH 0.47

mm, LVL 1.48 mm , LVH 0.46 mm . See also Graph 34. Females are the same length as males but distinctly higher.

Diagnosis.-Carapace very elongate, siliquose; dorsal margin of right valve broadly and smoothly arched, greatest height located medially; anterior margin narrowly and evenly rounded, with distinct anteroventral dentiform corner; ventral margin straight overall, gently sinuous in posteromedial region; posterior margin narrowly produced, flared, truncate.

Palp of male right fifth limb slender, with tapering hook recurved at 66°, ventral peg longer than dorsal peg; left leg smaller, with short, thin hook recurved at 85°, very long ventral peg; ventral setae present, no dorsal or sensory setae. Mediodistal seta of female fifth limb longest. Dorsodistal claw of sixth limb two-thirds as long as mediodistal claw. Seventh limb with fairly short reflexed seta and short distal setae. Furcae quite large, symmetrical; base and terminal seta fused, with no boundary line visible; tapering steadily to flexible, pointed ends; no proximal setae visible. Male hemipenis rounded-subrhomboidal in lateral view, with straight dorsal margin, sinuous anterior and ventral margins, and convex posterior margin; anterior lobe accounts for about half of total size; copulatory rod fairly short, straight. Zenker's organ with thick, cylindrical to slightly ovate muscularized part; anterior bulb very small, not as thick as muscularized part; vas deferens makes about two oblong loops, about one-third as long as muscularized part.

Comparisons.-Mc. arcuata differs from Mc. cylindracea and Mc. vandenboldi by the concave to nearly straight venter and tapering posterior. It is similar in shape to Mc. sp. 22 but much larger and more elongate.

Remarks.-The specimens of the Atlantic population described here are a little smaller than the dimensions given for the Italian Pleistocene population (L $1.93 \mathrm{~mm}, \mathrm{H}$ 0.58 mm) and have a slightly less concave, less sinuous ventral margin, but all other characters agree.

MACROCYPRISSA VANDENBOLDI new species

Graph 35; Plates 30.1-5, 31.1-6, 80.8

Macrocypris sp. van den Bold, 1971, p. 339, pl. 1, fig. 7a,b. Macrocypris sp. 2 Steineck, 1981, p. 348, 349, 351, fig. 8.

Derivation of name.-For W. A. van den Bold, who first. described the species.

Material.-Twenty-seven fossil specimens.
Types.-Holotype 2118RV USNM 438258, paratypes USNM 438259-438281.

Type locality.-Lower Miocene; Montpelier Group, Spring Garden Formation, Steineck sample M27A, exposed in road cuts along the Montego Bay-Adelphi road in northwestern Jamaica.

Occurrence.-At Steineck M15, 5 specimens; at Steineck M25, 2 specimens; atSteineck M27, 1 specimen; at Steineck M27A, 5 specimens; at Steineck M28, 3 specimens; at Steineck M29, 5 specimens; at Steineck M32, 6 specimens.

Distribution.-Miocene of Jamaica. The ages of these samples range from zones N4 to N9, lower Miocene to lower middle Miocene (Steineck, 1981, and personal communication).

Dimensions.-Holotype 2118, RVL 1.18 mm , RVH 0.43 mm . See also Graph 35. These specimens show much variability in length-height proportions. It is likely that the more elongate, more sinuous ones are males.

Diagnosis.-Carapace very elongate, siliquose; dorsal margin of right valve gently arched to sloping, greatest height located anterior to midlength; anterior margin broadly and evenly rounded; ventral margin very sinuous,
with broad, deep ventral indentation in mouth region and upswung, concave to nearly straight posterior segment; posterior margin short, truncate, steeply sloping down to rounded, acute posterior angle.

Comparisons.-Mc. vandenboldi differs from Mc. cylindracea by being more elongate and more sinuous in shape, with a more tapered posterior. The oblong, sinuous outline distinguishes it from Mc. arcuata and Mc. sp. 22.

Remarks.-Because no dentiform corner is visible on these specimens, the generic assignment is tentative.

MACROCYPRISSA sp. 22

Graph 42; Plates 30.6, 80.9
Macrocypris wrightii Jones and Hinde Ducasse, 1973, unnumbered table; Ducasse, 1974, p. 130; DUcasse, 1975, fig. 1.
Macrocyprissa wrightii (Jones and Hinde) McKenzie et al., 1979, p. 12.

MateriaL-One fossil valve, in the reference collections of the Institut de Géologie du Bassin d'Aquitaine, University of Bordeaux, Slide BD.1086, labeled "Macrocypris wrightii Jones et Hinde 1890, X868, BD. 1086."

Occurrence.-In UB IGBA slide 1086, 1 specimen.
Distribution.-Eocene, Aquitaine Basin and Gulf of Gascony.

Dimensions.-Specimen UB IGBA slide 1086, my specimen no. 2336, RVL 1.11 mm , RVH 0.40 mm . See also Graph 42.

Comparisons.-The elongate-siliquose carapace of $M c$. sp. 22 with constricted vestibules is very similar to $M c$. arcuata but less elongate and much smaller. The straight ventral margin and tapered posterior distinguish it from Mc. cylindracea and Mc. vandenboldi.

Genus MACROSARISA new genus

Derivation of name.-From Greek macro, large, and Latin sarisa (feminine), a long Macedonian lance; for the elongate proportions and lanceolate shape of many of these species.

Type species.-Macrosarisa bensoni new species.
Species included.-Listed by original binomen:
Macrosarisa bensoni n. sp.; Holocene, Atlantic Ocean; Miocene?-Pleistocene?, Sicily and Greece?.
Macrosarisa capacis n. sp.; Holocene, Mozambique Channel.
Macrocypria elegantula Whatley and Downing, 1983; Miocene, Australia.
Macrocypris exquisita Kaye, 1964; Lower Cretaceous, England.
Macrocypris graysonensis Alexander, 1929; Lower Cretaceous, Texas.
Macrosarisa hiulca n. sp.; Holocene, south of Madagascar.
Macrocypris muensteriana Jones and Hinde, 1890; Cretaceous, England.

Cythere (Bairdia) siliqua Jones, 1849; Upper Cretaceous, Europe.
Macrocypris simplex Chapman, 1898; Upper Cretaceous, England.
Macrosarisa texanan. sp.; Holocene, Gulf of Mexico.
Macrocypris wrightii Jones and Hinde, 1890; Upper Cretaceous, England.
Macrosarisa sp. 23; Holocene, mid-equatorial Atlantic Ocean.
Macrosarisa sp. 24; Holocene, coast of Norway.
Macrosarisa sp. 47; Holocene, Mozambique Channel.
Geologic range.-Lower Cretaceous (Albian) to Holocene.

Geographic range,-Atlantic Ocean and southwestern Indian Ocean, known composite live depth range 40 to 3783 m , dead specimens 38 to 1079 m in the material studied.

Diagnosis.-Carapace elongate, with gently arched to angulate dorsal margin; ventral margin concave, straight, or sinuate; anterior margin unevenly rounded to broadly truncate; posterior end acutely tapered to narrowly truncate, often with a slight posterodorsal concavity and a flared, flange-like posterior margin; distinct anteroventral dentiform corner on both valves; medially swollen in dorsal view, with abruptly compressed, flattened or tapering anterior and posterior ends; conspicuous stragulum and very sinuous dorsal line of valve contact; vestibules deep and open; zone of concrescence may be narrow, with short, straight radial pore canals, to fairly broad, with numerous, fairly straight, nearly parallel radial pore canals and occasional false radial pore canals.

Antennule elongate, very slender, with setae of graduated lengths from short to very long; podomeres II and III inflexibly articulated or fused, with complete or partial, vestigial suture between them. Antenna elongate; podomere II with fairly long or variable sensory aesthetascs; podomere III with two or three small, variable swimming setae; podomere IV with short or fairly long proximoventral setae and short anterodorsal setae; with three thick terminal claws; other terminal setae greatly reduced. Podomeres I and II of maxillule palp separated by distinct, inflexible suture, which may be partially obsolete; the anterodistal setae of the two podomeres remain distinctly separated.

Mediodistal seta of female fifth limb longer than the other two, which may be very tiny. Furca large, symmetrical; terminal seta enlarged and fused to proximal rod. Zenker's organ with large, ovate anterior bulb; muscularized segment short; vas deferens variable.

Affinities.-Species of this genus differ from those of Macrocypria by the broadly rounded, truncate anterior margin and the symmetrical furca, as well as the laterally compressed anterior and posterior regions. From Macrocyprissa they differ chiefly in the open nature of the vestibule and the straight, nearly parallel radial pore canals, as well as in the laterally compressed and tapering anterior

and posterior regions. The three genera are probably closely related.

Remarks.-The available specimens for Ms. muensteriana, Ms. wrightii, and Ms. simplex do not show a dentiform corner. Because this feature may be damaged in poorly preserved fossils, those species are tentatively assigned here on the basis of overall shape.

MACROSARISA BENSONI new species

Graph 36; Figures 12.8,9, 13.8,9, 21.20, 23.28, 24.31, $28.31,32,29.7,35.28,44.4,47.4,5,50.3,51.8,57.12$, $58.17,62.4,64.24,68.4,73.6,7,9,76.1,2,79.8$; Plates 28.9-14, 29.9-14, 60.8, 61.8, 68.15,16, 69.10, 70.5, $71.1,2,4,72.1,2,78.1-3,16,74.1,84.3,91.3,4,104.6,7$, 111.5

Macrocypris tenuicauda BRady, 1880, p. 41, pl. 2, fig. 1a-f, pl. 3, fig. 2a,b [part.]; Müller, 1912, p. 122 [part.]; ?Ruggieri, 1960, p. 124 [part.]; Maddocks, 1977, fig. 11 [part.].
Not Macrocypris tenuicauda Brady Egcer, 1902, p. 424, pl. 1, fig. 23, 24; Puri and Hulings, 1976, p. 261, pl. 1, fig. 11, 12.

Probably not Macrocypris tenuicauda Brady Crespin, 1943, p. 101.
?Macrocypris sp. 1 Sissingh, 1972, p. 79, pl. 3, fig. 14.
Macrocypria (?) n. sp. 1 Maddocks, 1979, pl. 1, fig. 1-5.
?Mactocypris sp. Colalongo and Pasini, 1980, p. 62.
?Macrocypris sp. 3 Ciampo, 1981, p. 55.
Derivation of name.-For Richard H. Benson, who loaned numerous samples for this study, and whose photographs of the Challenger lectotypes were published by Puri and Hulings (1976).

Material-Ninety-one specimens in alcohol, including 1 male, 3 females, 5 juveniles, 2 carapaces and valves, and 80 undetermined; plus 81 subfossil specimens; for a total of 172 specimens.

Types.-Holotype male 1869M USNM 240614, paratypes 240615-240622.

Type locality.-Atlantis II cruise 31 station $159,7^{\circ} 58.0^{\prime} \mathrm{S}$, $34^{\circ} 22.0^{\prime} \mathrm{W}$, depth $834-939 \mathrm{~m}$.

Occurrence.-At AII-31-159, 9 live specimens (1M, 3F, $2 \mathrm{FJ}-1,3 \mathrm{~J}-1$); at AII-31-167, 15 live specimens (undetermined); at AII-31-169A, 65 live plus 2 specimens (undetermined); at UH 4132, 2 specimens; in BMNH 80.38.15, 5 specimens; in BMNH 80.38 .15 slide 157 , 4 specimens; in BMNH 1961.12.4.65, 7 specimens; in HM Challenger st. 122, 29 specimens.

Also, at Challenger station 122, off north Brazil, $9^{\circ} 5^{\prime} \mathrm{S}$, $34^{\circ} 49^{\prime} \mathrm{W}$, depth 350 fathoms (640 m), 15 syntype specimens of Macrocypris tenuicauda Brady that belong now to Ms. bensoni. These specimens are in the G. S. Brady Chal lenger collection of the British Museum (Natural History), as slides BMNH 80.38.15 (two slides) and 1961.12.4.1965.

Also, from the same Challenger station, 19 specimens of Macrocypris tenuicauda Brady that do not belong to that species as revised. This slide, in the G. S. Brady cabinet at the Hancock Museum, Newcastle-upon-Tyne, is labeled "Macrocypris tenuicauda Brady, Challenger no. 122, depth 350 fath., washings of dredge, G. S. Brady, 10/9/73."

Distribution.-Holocene; tropical eastern Atlantic Ocean and Gulf of Mexico, known live depth range 834 to 939 m , dead from 640 to 1079 m . Ruggieri (1960) reported this species from the Miocene of Sicily. Sissingh (1972) and Colalongo and Pasini (1980) reported and illustrated it from the Lower Pleistocene of Greece and Italy.

The report from the Arabian Sea by Müller (1912) has not been confirmed. Egger (1902) reported this species from Gazelle station 90 near Australia ($18^{\circ} 52^{\prime} \mathrm{S}, 116^{\circ} 13^{\prime} \mathrm{E}$, depth 357 m) and from station 18 off the coast of Monrovia (Liberia, $6^{\circ} 27.8^{\prime} \mathrm{N}, 11^{\circ} 02.0^{\prime} \mathrm{W}$, depth 68 m). The dimensions ($\mathrm{L} 0.33 \mathrm{~mm}, \mathrm{H} 0.12 \mathrm{~mm}$), the illustrations, and the shallow depths, however, indicate that the species was misidentified.

Nomenclatural remarks.-This is the species Brady (1880) originally described under the name Macrocypris tenuicauda. Puri and Hulings (1976) selected as lectotype for $M x$. tenuicauda a specimen from Challenger station 24. That lectotype specimen is a juvenile of a species of Macropyxis (described above) and is not conspecific with the species illustrated by Brady or with the population at Challenger
station 122. Thus, Puri and Hulings transferred the name tenuicauda to an entirely different, though luckily unnamed, species, leaving Brady's species with no name. I take pleasure in naming it now for Richard H. Benson in recognition of the excellent photomicrographs he prepared to illustrate the Challenger lectotypes (in Puri and Hulings, 1976) and in appreciation of the voluminous collections he loaned for this study.

Dimensions.-Holotype male 1869M, L $1.67 \mathrm{~mm}, \mathrm{H} 0.65$ mm ; see also Graph 36. The male is shorter than most females and not as high in proportion to length. Size appears to increase with depth.

Diagnosis.-Carapace large, thick-shelled, asymmetrical, ventrally flattened, posteriorly caudate, compressed anteriorly and posteriorly; right valve lozenge-shaped to trapezoidal in lateral view, with broadly arched dorsal margin, sloping steeply to narrowly and obliquely rounded, truncate anterior margin; anteroventral dentiform corner distinct; ventral margin gently convex, nearly straight anteriorly, stepped or upswung posteriorly, rising steeply to prominent posteroventral dentiform corner; posterodorsal margin distinctly concave, sloping from indistinct, rounded posterodorsal corner to flared, elongated, caudate, truncate posterior angle; greatest height located at midlength; fused zone very broad, vestibules small, triangular; radial pore canals numerous, long, straight.

Palp of right male fifth limb with slender, sinuate hook recurved at 66°, two pegs of unequal size, and sensory seta; left palp with shorter hook recurved at 68°, longer ventral peg, and no sensory seta; ventral seta present but no dorsal seta. Palp of female fifth limb with mediodistal seta much longer than the other two, conspicuously feathered. Sixth limb slender with long mediodistal claw, dorsodistal and ventrodistal setae both very tiny. Seventh limb with long reflexed seta, short distal setae; dorsal edge of terminal podomere with numerous short hairs. Furca slender, tapering, with three short proximal setae; line of demarcation between proximal rod and terminal seta fairly distinct. Hemipenis approximately hemicircular, with bilobate anterior projections; copulatory tube short, curved. Zenker's organ with extremely short muscularized portion, greatly enlarged ovate anterior bulb; vas deferens arranged in an irregular double loop; sperm very thick, coarsely spiral.

Comparisons.-Ms. bensoni is much larger than Ms. texana, with more angulate dorsal margin, more convex ventral margin, and broader, more upturned caudal process. The large size, convex ventral outline, and absence of patch pattern distinguish it from Ms. texana. Ms. sp. 24 is smaller, less elongate, and less sinuate. The single specimen of Ms. sp. 47 from the Mozambique Channel is much larger, with a more domed dorsum and more pointed posterior angle. Ms. elegantula is distinctly smaller, with nearly straight ventral margins, but otherwise quite similar.

Remarks.-Ms, bensonishows some variability of size and shape, especially in length of caudate posterior, within and
between geographic populations. The size appears to increase with depth. Some Challenger specimens have a more bluntly truncated posterior angle, as do those illustrated by Sissingh (1972) from the Pleistocene of Greece, rather like Ms. sp. 24. The fossil identifications should be reconfirmed after the geographic variability of the living populations has been delimited.

Specimen 2023 is very fragile, with a narrow zone of concrescence, incompletely calcified, and probably had molted recently. The populations at AII-31-167 and AII-31-169A were received too late to be studied fully and are not included in Graph 36.

MACROSARISA CAPACIS new species

> Graph 37 ; Figures $12.19,20,13.19,20,20.8,23.25$, $24.28,31.1,34.1,42.4,47.13,68.9,73.4,5,80.22$; Plates $34.1-6,35.1-6,72.6,7,16,17,73.6-9,17-19,80.10-12$, $93.5,6,106.12-15$

Derivation of name.-From Latin capax, capacis, containing much, spacious, capacious; for the posteroventral, lateral swelling of the valves, and for the inflated vas deferens.

Material-Nine carapaces containing dry soft parts, including 1 male and 8 females.

Types.-Holotype male specimen 2360M USNM 240623 , paratypes USNM 240624-240628.

Type locality.-AB-8-403F, $19^{\circ} 09^{\prime} \mathrm{S}, 36^{\circ} 55^{\circ} \mathrm{E}$, depth 88 m , near Beira, Mozambique.

Occurrence.-At AB-8-403F, 9 live specimens (1M, 8F).
Distribution.-Holocene; southeastern African continental shelf off Mozambique, depth 88 m .

Dimensions.-Holotype male 2360M RVL 1.80 mm , RVH 0.69 mm , LVL 1.80 mm , LVH 0.68 mm . See also Graph 37.

Diagnosis.-Carapace sinuously elongate-subtriangular in outline; anterodorsal and posterodorsal margins of right valve straight or gently curved, sloping steeply from distinct dorsal angle located at midlength; anterior margin bluntly truncate, angular, nearly square, with very tiny dentiform corner consisting only of two enlarged radial pore canals; broad anteroventral indentation in mouth region; middle sector of ventral margin nearly straight, meeting upswung, straight posteroventral sector at distinct obtuse angle of 165° to 170°; lateral flanks of carapace

swollen, obscurely bulging, with a swelling located just above this obtuse angle and extending dorsally to just below midheight; posterior angle located above venter, narrowly and obliquely truncate, slightly flared, about 52°; zone of concrescence broad, line of concrescence rather irregular; numerous straight and slightly curved radial pore canals, numerous false radial pore canals located in anteroventral and posteroventral regions.

Female fifth limb large, elongate, with only one, thick, short, straight mediodistal claw; other claws represented only by short, vestigial setae. Sixth limb slender with very long terminal claw; anterodistal and posterodistal setae very tiny, vestigial. Seventh limb large, with long reflexed seta, lined with fine hairs and ending in a slightly flared, bladelike tip; distal setae short, equal in length. Furcae large, thick, nearly straight, symmetrical; terminal setae not clearly demarcated from rami; proximal setae not visible. Hemipenis rounded-subtriangular with concave dorsal margin, convex ventral margin, and acute anterodorsal angle; copulatory tube short, straight. Zenker's organ rather short; terminal bulb ovoid-elongate, only slightly thicker than muscularized portion; vas deferens extremely thick, even wider than Zenker's organ, arranged in just one S-shaped loop.

Comparisons.-Ms. capacis is larger than most other species of this genus, and the bulging, angular posteroventral swelling is distinctive. The pointed posterior angle, tiny dentiform corners, tiny setae of the sixth and female fifth limbs, angulate hemipenis, and enlarged vas deferens show its relationship to Macrosarisa. It is most similar in carapace and soft-part characters to Ms. hiulca, which is smaller, more subtriangular in outline, and has sharply developed anterior and posterior dentiform corners.

Remarks.-The distinctively bulging posterolateral flanks of the carapace are more conspicuous in a tilted dorsal view (Plate 34.5) than in the true dorsal and lateral views. The anterior and posterior dentiform corners are minute and easily overlooked, consisting of hardly more than slightly enlarged radial pore canals, which do not interrupt the curving ventrolateral outline.

MACROSARISA ELEGANTULA

(Whatley and Downing, 1983)

Graph 42

Macrocypria elegantula Whatley and Downing, 1983, p. 353, pl. 1, fig. 14-16.
?Macrocypris tenuicauda Brady Crespin, 1943, p. 101.
Material-Not seen. This evaluation is based on the illustrations of Whatley and Downing (1983).

Remarks.-Whatley and Downing (1983) recognized the general affinities of this species and mentioned the existence of similar undescribed species in their southwestern Pacific collections: "The present species appears to be intermediate between the genera Macrocypris and Macro-
cypria in having a very acuminate posterior margin and an elongate, narrow subrounded anterior margin. Due to its general similarity to other Macrocypria species from the southwest Pacific, however, it is included in that genus." They apparently did not notice the well-developed dentiform corner. They described this species from the Middle Miocene of Victoria, southeast Australia, and provided good SEM pictures. The nearly straight ventral margin distinguishes it from Ms. bensoni. The very elongate posterior angle is quite similar to that of Ms. sp. 24. It is likely that the reports by Crespin (1943) from the Oligocene and Miocene of Victoria apply to Ms. elegantula or a closely related form.

MACROSARISA EXQUISITA Kaye, 1964

Graph 38; Plates 32.9-18, 38.9-14, 72.10,18, 73.18,14, 81.24

Macrocypris exquisita Kaye, 1964, p. 42, pl. 4, fig. 12, 16.
Material.-Five fossil specimens.
Types.-Holotype BMNH Io. 1270 and paratypes BMNH Io.1271-1274, in the collections of the Department of Palaeontology, British Museum (Natural History), labeled "Macrocypris exquisita Kaye, U. Gault, Burwell, Cambs."

Type locality.-Lower Cretaceous (Albian), Upper Gault, Fisions brick pit, Burwell, Cambridgeshire, England.

Occurrence.-In BMNH Io.1270, 1 specimen; in BMNH Io.1271, 1 specimen; in BMNH Io.1272, 1 specimen; in BMNH Io.1273, 1 specimen; in BMNH Io.1274, 1 specimen.

Distribution.-Cretaceous, England.
Dimensions.-Holotype Io. 1270, RVL 1.57 mm , RVH 0.54 mm. See also Graph 38.

Diagnosis.-Carapace small, very elongate, asymmetrical; right valve with broadly arched dorsal margin, greatest height located anterior to midlength at rounded dorsal angle; anterior margin narrowly rounded to truncate, with inconspicuous but definite anteroventral dentiform corner; ventral margin sinuate, medially convex, with concave anteromedial and posteromedial segments; posterior end prolonged, tapering evenly to a very acute posterior angle;

fused zone fairly broad, vestibules deep and rounded, anterior radial pore canals straight.

Comparisons.-The sharply pointed posterior distinguishes Ms. exquisita from other Cretaceous and living species of the genus.

Remarks.-The dorsal and posterior regions are broken on some of the illustrated specimens (Io.1273, Io.1271). This species has very distinct anteroventral and posteroventral dentiform corners.

MACROSARISA GRAYSONENSIS (Alexander, 1929)

$$
\text { Graph 39; Plates 32.1-4, 33.1-4, } 73.10
$$

Macrocypris graysonensis Alexander, 1929, p. 59, pl. 2, fig. 13,14; Alexander, 1932, p. 364, 396; Shimer and Shrock, 1944, p. 683; Howe and Laurencich, 1958, p. 391; Coryell, 1963, p. 985; Mancini, 1977, p. 342.
Probably not Macrocypris graysonensis Alexander Bonnema, 1940, p. 107, pl. 2, fig. 27; Rescher, 1968, p. 76.
Not Macrocypris graysonensis Alexander Jain, 1961, p. 341; Bhatia et al., 1972, p. 37.
Material.-Five fossil specimens.
Types.-The holotype is a whole carapace, slide TMM 11518, in the Alexander Collection of the Texas Memorial Museum, University of Texas at Austin, labeled "Macrocypris graysonensis Alexander, n. sp., Holotype, Grayson, Cret., 11518, B 2907, 34, pl. 2, fig. 18-14, no. 92."

The new material for this species is deposited as USNM 438282-438285.

Type locality.-Lower Grayson Formation, Washita Group, Lower Cretaceous (Lower Cenomanian), exposed in high south-facing bluff on Denton Creek, two miles by road east of the Fort Worth-Denton highway, at a point 3.5 miles northeast of Roanoke, Denton County, Texas.

Occurrence.-In TMM 11518, 1 specimen; at UH 1672, 4 specimens.

Distribution.-Cretaceous (Cenomanian) of Texas.
Dimensions.-Holotype TMM 11518, L $0.89 \mathrm{~mm}, \mathrm{H}$ 0.33 mm . See also Graph 39.

Diagnosis.-Carapace very small, elongate-oblong; right valve with broadly and unevenly arched dorsal margin, greatest height located anterior to midlength; anterior
margin obliquely and bluntly truncate, ventrally projecting, with dentiform corner present but inconspicuous; ventral margin concave overall, slightly sinuate near midlength; posteroventral margin sloping downward to narrowly rounded, downturned, acute posterior angle. Internal characters not visible.

Comparisons.-Ms. graysonensis has a more broadly truncate anterior and a less acuminate posterior than Ms. exquisita, Ms. simplex, or Ms. wrightii, and it has a less sinuous ventral margin and more elongate shape than Ms. siliqua. Among living species, Ms. sp. 23 has a similarly streamlined but more elongate shape.

Remarks.-The species reported by Jain (1961) has left valve overlap, and Jain (1975) reidentified it as Pontocyprella? sp. indet.

MACROSARISA HIULCA new species

Graph 40; Figures 12.10,11, 13.10,11, 21.23, 24.32,
$28.19,20,29.8,35.22,44.6,47.8,68.7,73.1,2,76.7$,
79.10-18; Plates 28.4-7, 29.4-7, 72.8,13-15,19, $78.11,12,20,80.13,91.5,6,105.1,2$

Derivation of name.-From Latin hiulcus, gaping, split open; for the very prominent dentiform corner, and for the constricted distal portion of the male copulatory organ.

Material-Four carapaces containing dry soft parts, including 1 male, 2 females, and 1 juvenile; plus 8 empty valves; for a total of 12 specimens.

Types.-Holotype male 2856M USNM 240629, paratypes USNM 240630-240633.

Type locality.-Anton Bruun cruise 7 station $381 \mathrm{C}, 33^{\circ} 13^{\prime} \mathrm{S}$, $43^{\circ} 53^{\prime} \mathrm{E}$, depth 40 m , Walterson Shoal.

Occurrence.-At AB-7-371C, 1 live specimen (1F); at AB-7-371G, 8 specimens; at AB-7-381C, 2 live plus 1 specimens (1M, 1F).

Distribution.-Holocene; on Walterson Shoal, south of Madagascar, in the southern Mozambique Channel, live at 40 m depth, known dead depth range 40 to 73 m .

Dimensions.-Holotype male 2356M, RVL 1.43 mm , RVH 0.54 mm , LVL 1.43 mm , LVH 0.51 mm . See also Graph 40. The male is slightly smaller than but similar in shape to the female.

Diagnosis.-Carapace transparent, thin-shelled, posteroventrally inflated; right valve elongate-subtriangular in lateral view, with high-arched dorsal margin, greatest height located at midlength at indistinct dorsal angle; anterior margin obliquely rounded, truncate, with prominent dentiform corner; ventral margin sinuous, with broad anteroventral indentation and prominent posteroventral convexity, posterior segment only slightly upswung or stepped; posterodorsal margin steeply sloping, nearly straight; posteroventral angle only slightly flared, acute; posterior dentiform corner inconspicuous; zone of concrescence broad, vestibules restricted, with numerous, straight to irregularly branching radial pore canals and false radial pore canals.

Palp of right male fifth limb with very slender hook recurved at 63°, slender pegs of unequal size; left palp with thick hook curved at 101° and greatly enlarged, unequal pegs; ventral seta present but no dorsal or sensory seta on either palp. Palp of female fifth limb has much reduced ventral, dorsodistal, and ventrodistal setae; mediodistal seta is thickened, straight, rodlike. Sixth limb slender, mediodistal claw very long; short ventrodistal seta is longer than the dorsodistal seta. Seventh limb with long reflexed seta and short distal setae. Furca large, tapering, straight, without visible proximal setae or line of demarcation of terminal setae. Hemipenis rounded-subtriangular in outline with rounded ventral margin and very broad, wedgeshaped anterior projection; copulatory tube V-shaped. Zenker's organ with short muscularized portion, anterior bulb not seen; vas deferens arranged in a tight, discoidal coil of four to six circles.

Comparisons.-In lateral outline Ms, hiulca resembles certain species of Macroscapha, but it is medially swollen and has a very large, prominent anteroventral dentiform corner. It is very similar to the Cretaceous species Ms. siliqua but smaller and more sinuate ventrally, especially posteroventrally, with slightly elevated rather than ventrally located posterior angle. Ms. capacis is larger and more sinuously rounded, with bulging posteroventral flanks and extremely tiny dentiform corners.

MACROSARISA MUENSTERIANA

(Jones and Hinde, 1890)
Graph 42; Plates 42.10-12, 43.10-12, 72.20
Bairdia siliqua var. alpha Jones, 1849, p. 25, pl. 5, fig. $16 \mathrm{c}-\mathrm{g}$. Macrocypris? arcuata (Münster) Jones, 1870, p. 75, 77.
Macrocypris muensteriana Jones and Hinde, 1890, p. 10, pl. 2, fig. 45-47; Howe and Laurencich, 1958, p. 393; Kaye, 1964, p. 43, pl. 4, fig. 9, 10; Weaver, 1982, p. 27, pl. 4, fig. 11,12.
Material.-Two fossil specimens.

Types.-In the British Museum (Natural History), Department of Palaeontology, Lectotype BMNH In.51622, labeled "Macrocypris muensteriana Jones \& Hinde, 1890, Detritus, Charing, Kent."

Type locality.-In the Chalk Detritus (Cenomanian, Upper Cretaceous), village of Charing, Kent, England.

Occurrence.-In BMNH In. 51618 , 1 specimen; in BMNH In. 51622,1 specimen.

Distribution.-Cenomanian, England. Weaver (1982) reported this species from several additional Cenomanian localities in southern England.

Dimensions.-Lectotype BMNH In.51622, L. 1.06 mm , H 0.46 mm . See also Graph 42.

Diagnosis.-Carapace small, inflated, elongate-oblong in lateral outline; dorsal margin broadly and evenly arched, without angle, greatest height located at midlength; anterior margin broadly and obliquely rounded, slightly truncate; distinct ventral indentation in mouth region, located unusually far forward; rest of ventral margin regularly convex, then abruptly upswung to sharply pointed posterior angle of about 70° to 80°; radial pore canals not visible.

Comparisons.-The upswung, pointed posterior angle of Ms. muensteriana is similar to that of Ms. capacis, though without the overhanging posterolateral bulge, while the truncate, angulate anteroventral margin is similar to though less exaggerated than some specimens of Mh. turbida.

Remarks.-The sharp anteroventral and posterior angles of the lateral outline of Ms. muensteriana are similar to those of other species of Macrosarisa, but dentiform corners are indistinct on these specimens. Good SEM pictures were published for this species by Weaver (1982).

MACROSARISA SILIQUA (Jones, 1849)

Graph 42; Plates $32.5-8,33.5-8,72.9$
Cythere (Bairdia) siliqua Jones, 1849, p. 25, pl. 5, fig. 16a,d.
Macrocypris siliqua (Jones) Jones, 1870, p. 75, 77; Jones and Hinde, 1890, p. 9, pl. 2, fig. 38-41; ?Chapman, 1898, p. 333; Howe and Laurencich, 1958, p. 393; Kaye, 1964, p. 43 , pl. 4 , fig. $11,14,15,18$; ?Rescher, 1968, p. 76 ; Weaver, 1982, p. 28, pl. 4, fig. 9, 10; Wilkinson, 1988, pl. 3, fig. 5.

Material.-Four fossil specimens.
Types.-The lectotype is a single whole carapace catalogued as BMNH In. 51617 in the collections of the Palaeontology Department, British Museum (Natural History). The paralectotypes are two fragmentary right valves catalogued as BMNH In. 51619 and In. 51620.

Type locality.-The lectotype is labeled "Detritus, Charing, Kent."

Occurrence.-In BMNH In.51617, 1 specimen; in BMNH In. 51619,1 specimen; in BMNH In. 51620, 1 specimen; in BMNH Io.1276, 1 specimen (described by Kaye, 1964).

Distribution.-Cretaceous of Europe. Kaye (1964) and

Wilkinson (1988) reported this species from the Albian and Cenomanian of England and Ireland. Rescher (1968) reported it from the Upper Cretaceous of Germany. Weaver (1982) reported it from eight Cenomanian sections of southern England.

Dimensions.-Lectotype BMNH In.51617, L $1.70 \mathrm{~mm}, \mathrm{H}$ 0.57 mm . See also Graph 42.

Diagnosis.-Carapace elongate-siliquose; dorsal margin broadly and evenly arched; anterior margin obliquely rounded, ventrally produced, with inconspicuous anteroventral dentiform corner; venter straight to slightly sinuate; posteroventral angle acute, located at venter, not truncate; internal characters not seen.

Comparisons.-Ms. siliqua is less elongate and less acutely terminated than Ms. exquisita or Ms. graysonensis but more so than Ms. wrightii. In shape it closely resembles the living Ms. hiulca, but it is larger, with less sinuous ventral margin, lacks the posteromedial convexity of the ventral margin, and has the posteroventral angle located at the venter rather than elevated above it.

Remarks.-Specimens BMNH In. 51619 and Io. 51620 are broken dorsally, which explains the unusual outlines in Plates $32.7,8$. The dentiform corners are small but distinct.

MACROSARISA SIMPLEX (Chapman, 1898)

Graph 42; Plates 32.14, 33.15, 84.7,8

Macrocypris simplex Chapman, 1898, p. 333, fig. 1a-c; Kaye, 1964, p. 44, pl. 4, fig. 13; Howe and Laurencich, 1958, p. 394.

Not Macrocypris simplex Chapman Chapman, 1903, p. 233, pl. 29, fig. 22a,b.

Material.-One fossil specimen.
Types.-According to Kaye (1964), the holotype is in the Sedgwick Museum, No. B40618 (not seen).

Type locality.-Cambridge Greensand, Swaffham.
Occurrence.-In BMNH Io.1275, one specimen (described by Kaye 1964).

Distribution.-Cretaceous; England.
Dimensions.-BMNH Io. 1275, L 1.37 mm , H 0.42 mm . See also Graph 42.

Diagnosis.-Carapace extremely elongate, siliquose; dorsal margin gently arched, greatest height located at about one-third of length; anterior margin narrowly and obliquely rounded; ventral margin straight; posterior end tapering to acute, narrowly rounded angle, located ventrally; zone of concrescence narrow; dentiform corner and internal characters not seen.

Comparisons.-Ms. simplex differs from Ms. siliqua, Ms. exquisita, and Ms. graysonensis by the more gently and more evenly arched dorsal margin, straight venter, and more anterior location of greatest height.

Remarks.-No dentiform corner was seen. The tentative generic assignment is based on the very elongate shape and the narrow zone of concrescence. The species re-
ported by Chapman (1903) under this name from the Cretaceous of South Africa may be Paracypris (?) umzambaensis Dingle, 1969.

MACROSARISA TEXANA new species

Graph 41; Figures 12.12, 13.12, 21.21,22, 23.22, 24.33, 50.12-14, 51.4-6; Plates 26.9-12, 27.10-13, 72.3,4,11, 73.4,5,15, 80.14-16, 81.25

Derivation of name.-For the State and former Republic of Texas, which, by the agreement under which it joined the United States, retains jurisdiction over the continental shelf where this species was collected.

Material-Forty-one empty carapaces and valves.
Types.-Holotype 2020W USNM 240634, paratypes USNM 240635-240646.

Type locality.-UH 1617, West Flower Garden, depth 96 m , in the northwest Gulf of Mexico.

Occurrence.-At UH 1617, 20 specimens; at UH 1618, 2 specimens; at UH 3086, 9 specimens; at UH 4125,10 specimens.

Distribution.-Holocene; Gulf of Mexico and off Puerto Rico, known dead depth range 86 to 96 m .

Dimensions.-Holotype 2020W, RVL 1.20 mm , RVH 0.47 mm , LVL 1.19 mm , LVH 0.44 mm . See also Graph 41.

Diagnosis.-Carapace small, thin-shelled, transparent, elongate, with two circular opaque spots in the middle of each valve; right valve elongate-subtriangular in lateral outline, with high, evenly arched dorsal margin, greatest height located just anterior to midlength; anterior margin narrowly and obliquely rounded, with inconspicuous anteroventral dentiform corner; ventral margin overall nearly straight to slightly concave, with slight medial sinuosity; posterodorsal margin steeply sloping, slightly concave; distinctly produced, flared, obliquely truncate posterior angle, with a dentiform corner, located at venter; zone of concrescence broad, vestibules broad, open; radial pore canals long, nearly straight to regularly, complexly branching. Left valve has che anterior dentiform corner located at about one-third height, rather than ventrally. Dimorphism not established.

Comparisons.-Ms. texana is similar in shape to Ms. bensoni

but differs by much smaller size, more acutely pointed posterior, less angular dorsal margin, and straight to indented ventral margin.

MACROSARISA WRIGHTII (Jones and Hinde, 1890)

Graph 42; Plates 32.15, 83.16

Macrocypris wrightii Jones and Hinde, 1890, p. 10, pl. 2, fig. 43, 44; Howe and Laurencich, 1958, p. 394; ?Grekoff and Deroo, 1956, p. 219.
Macrocypris wrightii Jones and Hinde Kaye, 1964, p. 44, pl. 4 , fig. 17.
Not Macrocypris wrightii Jones and Hinde Ducasse, 1973, unnumbered table; Ducasse, 1974, p. 130; Ducasse, 1975, fig. 1; McKenzie et al., 1979, p. 12; Egger, 1910, p. 130, pl. 27, fig. 21, 22.

Not Macrocypris cf. wrightii Jones and Hinde Ducasse, 1974, p. 130; Oertli, 1970, unpaginated.

Material-Two fossil type specimens.
Types.-Lectotype BMNH Io. 1595, paralectotype BMNH Io. 2473 , in the Department of Palaeontology, British Museum (Natural History).

Type locality.-Upper Chalk of Magee, Antrim, northern Ireland.

Occurrence.-In BMNH Io.1595, 1 specimen; in BMNH Io. 2473,1 specimen.

Distribution.-Cretaceous; England, Ireland, and Spain.
Dimensions.-Lectotype BMNH Io.1595, LVL 2.46 mm, LVH 0.75 mm . See also Graph 42.

Diagnosis.-Carapace elongate-siliquose, right valve with broadly arched dorsal margin, convex and sinuate ventral margin; posterior margin sloping steeply to very acute, tapering posterior angle located near venter; greatest height located slightly posterior to midlength. Dentiform corner and internal characters not seen.

Comparisons.-Ms. wrightii differs from Ms. exquisita by
the less prolonged posterior angle and more prolonged anterior end, as well as by the more posterior location of the greatest height.

Remarks.-Because no dentiform corner is visible on the specimens examined, the generic assignment is tentative.

MACROSARISA sp. 23

Graph 53; Figures 12.16, 28.44,45, 35.18, 44.1, 47.9, 68.8,80.21; Plates 28.1-8, 29.1-8, 74.2,4,83.12, 84.1, $91.7,8,104.8,9$

Material-One male in alcohol, USNM 240647.
Occurrence.-At AII-31-155, one live specimen (1M).
Distribution.-Holocene; equatorial Atlantic Ocean, depth 3730-3783 m.

Dimensions.-Male 1415M, RVL 1.94 mm , RVH 0.63 mm . See also Graph 53.

Comparisons.-This thin-shelled, elongate-siliquose species with truncate anterior and posterior margins is more elongate and has a less angulate, less sinuous outline than any of the other living species. In fact, Ms. sp. 23 it is most similar to the Cretaceous species Ms. graysonensis. The male fifth limb has a thick, right-angled hook, recurved at 77° in the right limb and 105° in the left, two pegs of unequal size, a ventral but no sensory or dorsal seta; the left palp is smaller, with a much longer ventral peg, ventral and dorsal setae present but no sensory seta. The furcae are symmetrical, extremely long and slender, forceps-like, without visible proximal setae or line of demarcation between distal and proximal regions. The male hemipenis is rounded-subtriangular in outline, with a wedge-shaped, beaklike anterior extension and a short, straight copulatory tube, rather similar to that of Ms. hiulca. The Zenker's organ is fairly similar to that of Ms. bensoni, with a short muscularized portion and very large, ovate anterior bulb. The vas deferens is unique, very thick and stiff, not coiled
or looped, shaped like an elongate question mark, and more than twice as long as the muscularized part of the Zenker's organ.

MACROSARISA sp. 24

Graph 76; Plates 27.7.8
Material-Five empty carapaces and valves.
Occurrence.-In BMNH 1911.11.8.M.3071, 1 specimen; in BMNH 1911.11.8.M.3069, 4 specimens.

Distribution.-Holocene; coast of Norway, known depth range $38-96 \mathrm{~m}$.

Dimensions.-Specimen 2315, L $1.47 \mathrm{~mm}, \mathrm{H} 0.60 \mathrm{~mm}$. See also Graph 76.

Comparisons.-These compressed, truncate specimens of Ms. sp. 24 closely resemble some of the Challenger specimens of Ms. bensoni in size and shape but are less elongate, less angulate, and less sinuous in lateral outline. Because the geographic variability of Ms. bensoni is not well understood, and no geographically intermediate populations are known, these specimens are treated as a separate species for the time being. The Cretaceous species Ms. graysonensis is similar in general shape but not as high and much smaller overall. Juveniles of M. minna, which occur on the same slides with this species, are much more inflated and very much more highly arched dorsally; they lack the dentiform corner.

Remarks.-Specimens of Ms. sp. 24 occur intermingled with juveniles of M. minna on two slides labeled M. minna in the Norman Collection. It is puzzling that this species appears not to have been recognized previously. Only two species of Macrocyprididae, Macrocypris minna and Macrocypria sarsi, have been reported from the coast of Norway hitherto.

MACROSARISA sp. 47

Graph 36; Figures 68.12, 80.28; Plates 28.8, 29.8, 70.6, 71.3,5,6

Macrocypris tenuicauda Brady (OTU 19) Maddocks, 1976, p. 42 [part.]; Maddocks, 1977, fig. 11 [part.].

Macrocypria (?) n. sp. 1 Maddocks, 1979, pl. 1, fig. 3 [part.].
Material-One female in alcohol, USNM 240648.
Occurrence.-At AB-7-363D, 1 live specimen (1F).
Distribution.-Holocene; Mozambique Channel near Tulear, at a depth of 1605 m .

Dimensions.-Female 127F, RVL 2.30 mm , RVH 0.86 mm , LVL 2.24 mm , LVH 0.79 mm .

Remarks.-Ms. sp. 47 is similar to Ms. bensoni but much larger, with a more highly arched dorsal margin and a more elongate, more acutely pointed posterior angle.

Genus MACROSCAPHA new genus

Derivation of name.-Greek macro, large, and Greek skaphion and Latin scapha, -ae, a light boat or skiff.

Type species.-Mactoscapha atlantica new species. Species included.-Listed by original binomen:
Macroscapha atlantica n. sp.; Holocene, Atantic continental shelf of North America.
Macroscapha gyreaen. sp.; Holocene, Gulf of Mexico.
Macroscapha heroica n. sp.; Holocene, Patagonia.
Macrocypris inaequalis Müller, 1908; Holocene, Antarctica.
Macroscapha inaequata n. sp.; Holocene, Antarctica.
Macroscapha jüangi n. sp.; Holocene, southwestern Pacific Ocean west of New Zealand.
Macrocypris (Macrocyprina) marchilensis Hartmann, 1961; Holocene, Chile.
Macroscapha opaca n. sp.; Holocene, Patagonia.
Macroscapha sinuata n. sp.; Holocene, Antarctica.
Macrocypris tensa Müller, 1908; Holocene, Antarctica.
Macrocypris turbida Müller, 1908; Holocene, Antarctica.
Macroscapha sp. 25; Holocene, Drake Passage.
Macroscapha sp. 26; Holocene, Antarctica.
Macroscapha sp. 27; Holocene, Tasman Plateau.
Macroscapha sp. 28; Holocene, Tasman Plateau.
Macroscapha sp. 29; Holocene, Tasman Plateau and Tasman Sea.
Macroscapha sp. 30; Holocene, equatorial Atlantic Ocean off Brazil.
Macroscapha sp. 31; Holocene, Tasman Sea.
Macroscapha sp. 32; Holocene, Tasman Sea.
Geologic range.-Known so far only in the Holocene.
Geographic range.-Widely distributed in sublittoral and bathyal depths, but best represented in Antarctic and southern regions of the Southern Hemisphere. Only one typical species has been recognized, so far, in the Northern Hemisphere. Known live composite depth range 16 to 3694 m, dead from 9.3 m .

Diagnosis.-Carapace medium-sized to large, smooth, usually thin-walled, translucent to opaque, yellowish white or white, sometimes with cloudy central region, sometimes with a distinct layer of brown chitinous endocuticle lining the interior of the valves; carapace shape elongate-subtriangular to siliquose in lateral outline, valves fairly symmetrical; right valve nearly equilateral, smoothly arching to indistinct dorsal angle near midlength, without anterodorsal or posterodorsal angles; anterior margin narrowly rounded to obliquely truncate; ventral margin gently sinuate, with more or less distinct indentation in the mouth region, often with an angulate sinuosity or protuberance just anterior to the mouth region, nearly straight to gently convex behind to the mouth region; posterior angle located at venter or just above venter, narrowly rounded to truncate or obliquely flared; carapace elongate-ovoid in dorsal view, with greatest thickness located near midlength, tapering to gently rounded anterior and posterior ends; weakly sinuous valve contact line; duplicature broad, zone of concrescence narrow to moderately wide, broader in anteroventral and posterodorsal regions; radial pore canals numerous, straight or slightly curving, not branched; false radial pore canals may be numerous in anteroventral
region; vestibules deep, unrestricted; no dentiform corners.

Antennule elongate, tapering, with long setae; podomeres II and III inflexibly articulated or fused, with complete or partial vestigial suture. Antenna elongate to very elongate, with short, stout, clawlike terminal setae of various lengths, often variably reduced; podomere III with fairly long sensory aesthetascs and 1 to 3 vestigial, variable, reduced swimming setae; podomere IV with 2 short to moderately long proximoventral setae. Podomeres I and II of maxillule palp separated by distinct, more or less flexible joint.

Male fifth limbs relatively large, very asymmetrical, with thick-walled palp; terminal hook elongate, tapering, recurved at angles varying from 12° to 72°; dorsal peg varying from small and triangular to very large, elongate, sinuously tapering and tusklike, often extending beyond terminal hook in one limb or both; distal seta present; dorsal seta very tiny or absent, often present on just one limb; ventrodistal region of palp sinuously indented, strongly chitinized, projecting as a thick, chitinous ridge, fold, or platform surrounding the insertion of the ventral peg, especially in left limb. Female fifth limb slender, mediodistal seta longest. Sixth limb large, with stout, curved terminal claw; anterodistal seta small, usually less than one-quarter as long as terminal claw; posterodistal seta variably developed, robust to vestigial, usually about one-third or less of length of terminal claw, but occasionally much longer or much shorter; dorsal edge of podomere II often bears tufts of fine hairs. Seventh limb thick, long, with long reflexed seta reaching back to podomere I, lined with dense comb of fine barbs or coarse hairs, which diminish in size distally; distal setae equal or unequal in length, usually quite short, never longer than the setae of podomere IV. Furcae large, symmetrical to very asymmetrical, curved, tapering; proximal setae large; terminal setae swollen, thickened, fused with rami, with or without a more or less conspicuous line of demarcation between seta and ramus. Hemipenis large, compressed, consisting of very thin lamellae; hemispherical to oblong to subtriangular in outline; ventral region may be curved inward, close-pressed around ventral region of body, likely to be folded under on dissection slide; a tongue-like accessory lamella may be present on ventral or dorsal margin; copulatory rod short, thick, slightly curved to straight. Zenker's organ long, thick, with terminal bulb of variable size and shape; vas deferens thick, usually arranged in three or four long, loose, oblong loops, which vary from half as long as to equal in length to the muscularized portion of the Zenker's organ.

Comparisons.-Species of Macroscapha are similar in many ways to those of Macrocyprina, and the differences between the two genera are rather subtle. On the whole, species of Macroscapha are larger, less transparent, and lack the conspicuous patch patterns found in virtually all species of Macrocyprina. The carapace shape is more elongate, more sinuate, and sometimes has angulate or truncate segments.

The curvature of the lateral flanks of the carapace also is subtly irregular, with the anterior and posterior regions tending to be marginally compressed, and with a tendency for the central posteroventral region to be somewhat swollen in some species. These undulating contours contrast with the compact, continuously curving, oblong carapaces of Macrocyprina. The ventral indentation in the mouth region is more distinct in Macroscapha, with more pronounced overlap of the two valves here, and the anteroventral margin is usually distinctly angulate or sinuate. Locally widened regions of the zone of concrescence with conspicuous radial pore canals also are distinctive of Macroscapha. Some species of Macrosarisa approach Macroscapha in lateral outline but may be distinguished by the dentiform corners. Species of Macroscapha are most common on terrigenous clastic sediments and at greater depths than Macrocyprina species, which are characteristic of warm, shallow, carbonate environments. Except for the type species, which may be a recent migrant, most species of Macroscapha live in the southern Hemisphere.

MACROSCAPHA ATLANTICA new species

Graph 43; Figures 12.21,22, 13.21,22, 20.7, 24.29, $27.12,13,31.24,25,35.25,43.5,47.12,52.30,53.26$, $57.25,59.1,62.8,64.17,69.1,73.3,8,77.7,9,79.6,7$; Plates 34.9-12, 85.9-12, 80.17,18,95.10-15, 106.3-8

Derivation of name.-For the Atlantic continental shelf of North America.

Material- 418 specimens in alcohol, including males, females, and juveniles of two instars.

Types.-Holotype male 1982M USNM 240649, paratypes USNM 240650-240660. Additional paratypes are in the BLM collection at the Virginia Institute of Marine Science.

Type locality.-BLM-F2, $38^{\circ} 44.3^{\prime} \mathrm{N}, 73^{\circ} 09.2^{\prime} \mathrm{W}$, depth 113 m .

Occurrence.-At 19 stations of the Bureau of Land Management Middle Atlantic Outer Continental Shelf Environmental Study, a total of 418 live specimens, as follows: at BLM-A1, 64 live specimens; at BLM-A2, 51 live specimens; at BLM-A3, 1 live specimen; at BLM-E2, 1 live specimen; at BLM-E4, 28 live specimens; at BLM-F1, 28 live

specimens; at BLM-F2, 142 live specimens; at BLM-F3, 1 live specimen; at BLM-F4, 1 live specimen; at BLM-G5, 3 live specimens; at BLM-G7, 5 live specimens; at BLM-H1, 8 live specimens; at BLM-I1, 10 live specimens; at BLM-I2, 26 live specimens; at BLM-I4, 2 live specimens; at BLM-K4, 40 live specimens; at BLM-L4, 3 live specimens; at BLM-L5, 4 live specimens. (Only 65 specimens in 5 subsamples, representing one seasonal collection at a station, were measured and determined for sex or instar, as follows: at BLM-A1, August 1977, 1F, IW; at BLM-F2, March 1976, 17M, 15F, 3FJ-1, 1W; at BLM-H1, August 1977, 1M, 6F, 1J-1; at BLM12, August 1977, 6M, 4F, 2J-1; at BLM-K4, November 1977, $1 \mathrm{M}, 3 \mathrm{~F}, 3 \mathrm{FJ}-1$; these total $25 \mathrm{M}, 29 \mathrm{~F}, 6 \mathrm{FJ}-1,3 \mathrm{~J}-1,2 \mathrm{~W}$).

Distribution.-Holocene; middle Atlantic continental shelf of North America, known live depth range 75 to 460 m , most abundant near shelf edge.

Dimensions.-Holotype male 1982M, RVL 1.79 mm , RVH 0.71 mm , LVL 1.79 mm , LVH 0.69 mm . See also Graph 43.

Diagnosis.-Carapace elongate-arcuate in lateral outline, dorsal margin of right valve smoothly low-arched, without any angles or concavities, greatest height located at midlength; anterior margin obliquely truncate, angulate, downturned; broad ventral indentation in mouth region, remainder of ventral margin very gently convex or nearly straight; posterior angle narrowly rounded, only slightly upturned, about 50° to 55°. Zone of concrescence broad, uniform, line of concrescence somewhat irregular; radial pore canals numerous, straight or slightly curving; numerous false radial pore canals in anteroventral and posteroventral regions.

Male fifth limbs rather asymmetrical, with tapering terminal hook recurved at approximately 58° in right limb and 26° in left limb; ventral peg sinuously elongate; ventrodistal region indented, strengthened into flaring chitinous ridge; dorsal seta short, thick. Female fifth limb with slender, clawlike terminal setae, dorsodistal seta rather short, ventral seta of podomere IV rather long. Sixth limb long, slender; posterodistal seta thin, about one-third as long as terminal claw. Seventh limb large, with long reflexed seta lined with fine hairs, distal setae short. Furcae large, thick, curved, tapering, asymmetrical; with terminal setae well demarcated, accounting for more than one-third of length of furcae, and with two large proximal setae. Hemipenis oblong, scoop-shaped; copulatory rod short, straight. Zenker's organ moderately long, with slender muscularized portion; terminal bulb elongate, teardropshaped; vas deferens arranged in about four long, arcuate, tightly bent loops,

Comparisons.-Mh. atlantica is smaller, more elongate, and more sinuate than most other species of Macroscapha. Only Mh. sinuata is more elongate and more sinuate in outline, while $M h$. heroica is proportionally higher with more angulate contours. The asymmetrical, yet gracefully tapering, pointed furcae are easily distinguished from the thick, blunt-tipped, less flexible furcae of Mh . inaequata and M h. inaequalis. The broadly scoop-shaped
hemipenis shows distant homologies with those of Mh. sp. 25, Mh. inaequata, Mh. sinuata, and Mh. heroica but lacks the ventral lobe and other detailed similarities. Mh. sp. 30 shares several of these distinctive characters and may be closely related to Mh. allantica. No other species has such a narrow, elongate terminal bulb on the Zenker's organ, and the close-kinked, arcuate loops of the vas deferens may also be distinctive.

MACROSCAPHA GYREAE new species

Graph 44; Figures 12.13, 13.13, 20.4, 24.30, 52.12-15, 53.9,10; Plates 40.1,2, 41.1,2, 80.19

Derivation of name.-For the Texas A\&M University Oceanographic Research Vessel Gyre.

Material.-Seventy-seven empty carapaces and valves.
Types.-Holotype 1509RV USNM 240661, paratypes USNM 240662-240671.

Type locality.-UH 1617, near the West Flower Garden Bank, northwest Gulf of Mexico, 24 October 1972, depth 96 m .

Occurrence.-At UH 1617, 56 specimens; at UH 1618,18 specimens; at UH 4125, 8 specimens.

Distribution.-Holocene; Northwest Gulf of Mexico near the Flower Garden banks, known dead depth range 86-96 m.

Dimensions.-Holotype 1509, RVL 1.35 mm , RVH 0.48 mm. See also Graph 44.

Diagnosis.-Carapace small, elongate-siliquose in lateral outline; dorsal margin of right valve low-arched, curving smoothly, without dorsal angle; greatest height located just anterior to midlength; anterior margin very angulate, obliquely truncate, with distinct anterior angle; indistinct anteroventral indentation, remainder of ventral margin gently convex, posteriorly upswung without interruption to form a narrowly rounded, symmetrical posterior angle of about 35°; zone of concrescence of moderate width, radial pore canals straight, somewhat irregular.

Comparisons.-The tiny size and convex venter of Mh. gyreaeare unusual for this genus, but the angulate-truncate

anterior margin is not unlike that of larger, more sinuous species, such as Mh. sinuata. The generic assignment is tentative.

MACROSCAPHA HEROICA new species

Graph 45; Figures $12.5,6,18.5,6,20.5,23.17,27.2,3$, 31.26, 47.30,52.22-25, 53.14-18; Plates 42.8,9, 43.8,9, 80.20,98.12-16, 106.1,2

Derivation of name.-For the R. V. Hero.
Material-Two specimens in alcohol, including one male and one female; and 176 empty carapaces and valves; for a total of 178 specimens.

Types.-Holotype male specimen 1462M USNM 240672, paratypes USNM 240673-240682 and KUMIP 1,124,3081,124,576.

Type locality.-Hero cruise $69-5$ station $214,51^{\circ} 27.5^{\prime} \mathrm{S}$, $74^{\circ} 03^{\prime} \mathrm{W}$, depth 200 m .

Occurrence.-At H-69-5-53, 125 specimens; at H-69-5-57, 6 specimens; at H-69-5-201, 31 specimens; at H-69-5-210, 6 specimens; at H-69-5-212, 2 specimens; at H-69-5-213, 1 specimen; at H-69-5-214, 2 live specimens ($1 \mathrm{M}, 1 \mathrm{~F}$); at H-69-5-219, 2 specimens; at H-69-5-220, 2 specimens; at H-69-$5-259,1$ specimen.

Distribution.-Strait of Magellan and nearby fjords and channels of southern Chile, live at 421-512 m, known dead depth range 9.3 to 916.3 m .

Dimensions.-Holotype male specimen 1462M, RVL 1.98 mm, RVH 0.88 mm , LVL 1.98 mm , LVH 0.89 mm . See also Graph 45.

Diagnosis.-Carapace moderately large, oblong-subtriangular in lateral view, transparent except for elongate, central opaque patch; dorsal margin of right valve higharched, smoothly convex, without angles or concavities, greatest height located at midlength; anterior margin obliquely truncate, angulate; broad ventral indentation in the mouth region, rest of ventral margin convex to nearly
straight, somewhat upswung posteriorly to join the narrowly rounded, slightly flared posterior angle of about $50^{\circ}-55^{\circ}$; zone of concrescence broad, radial pore canals numerous, straight.

Male fifth limbs rather asymmetrical, terminal hook recurved at about 36° in left limb; ventrodistal region projecting as thick chitinous ridge; ventral pegs short, thick. Female fifth limb has short, thick, curved, heavily barbed terminal claws. Furcae large, symmetrical, tapering gracefully to slender, curved points; proximal setae large, conspicuous. Hemipenis equant, oblong, with rounded margins, and ventral, thick, tonguelike, lamellar flap. Zenker's organ with narrow, elongate terminal bulb, narrow muscularized portion; vas deferens thick, arranged in three or four long, loose loops.

Comparisons.-Mh. heroica is similar in its sinuate, angulate outline to Mh. sinuata and Mh. atlantica but much less elongate and very much more highly arched than either. The barbs on the distal seta of the female fifth limb are like but even more prominent than those of Mh. sinuata. The tips of the furcae taper to sharper points than in $M h$. sinuata. The hemipenis is like that of Mh. sinuata in many features but is more equant, with a slightly thicker ventral lobe.

Remarks.-The sixth and seventh limbs are missing or fragmentary in the available live specimens.

MACROSCAPHA INAEQUALIS (Müller, 1908)

Graph 46; Figures $14.18,14,15.14,15,27.20,21,31.8$, 34.13, 42.5, 47.38, 69.2, 74.6, 77.8, 79.2; Plates $36.11,12,37.11,12,80.21,98.1-4,105.9-18,111.10$

Macrocypris inaequalis Müller, 1908, p. 95, pl. 12, fig. 1-7; Müller, 1912, p. 121.
Material-Three syntype specimens and 2 others in alcohol, including 2 males, 2 females, and 1 juvenile; for a total of 5 specimens.

Types.-G. W. Müller's syntypes are in the Crustacea Division of the Zoological Museum of Humboldt University, Berlin, bearing the type-series catalog number 13129. This material consists of three glass slides, each with the carapace and soft parts of one dissected specimen, mounted in Canada balsam. All three slides are labeled "Gauss-Stat., 385 m ., D. Südpolar-Exp." A male specimen, labeled " 181 " and "2.12.2," is here designated the lectotype and given my specimen number 1940 M . The female, my specimen 1939 F , and the remaining male, my specimen 1941 M , are here designated paralectotypes.

The new material for this species is catalogued as USNM 240683-240684.

Type locality.-The Gauss-Station, $65^{\circ} \mathrm{S}, 90^{\circ} \mathrm{E}, 385 \mathrm{~m}$, off the coast of Antarctica.

Occurrence.-In ZMHUB 13129, 3 live specimens (2M, 1F); at $\mathrm{E}-6-418$, 2 live specimens ($1 \mathrm{~F}, 1 \mathrm{~J}-1$).

Distribution.-Holocene; Antarctic region, known live depth range 311 to 426 m .

Dimensions.-Lectotype male 1940M, RVL 2.08 mm , RVH 0.82 mm . See also Graph 46.

Diagnosis.-Carapace elongate-oblong in lateral outline, dorsal margin of right valve broadly and smoothly arched, without distinct dorsal angle, greatest height located just behind midlength; anterior margin narrowly and obliquely rounded, somewhat truncate; ventral margin slightly concave anteriorly, slightly convex medially, weakly sinuate, and only slightly upswung posteriorly; posterior angle narrowly rounded, located ventrally, about 45°; zone of concrescence narrow, radial pore canals straight.

Male fifth limbs slender, elongate, with right-angled, straight-sided terminal hooks recurved at approximately 68° in right limb and 56° in left limb; dorsal peg triangular, ventral peg sinuously elongate, flanked by chitinous reinforcement ridges; tiny dorsal seta. Female fifth limb slender, elongate, with very long, flexible, tapering terminal setae, not clawlike. Sixth limb with well-developed posterodistal seta, about two-thirds as long as terminal claw, and anterodistal seta, about one-fourth as long as terminal claw. Seventh limb large, with long reflexed seta
lined with fine hairs; distal setae of moderate length, unequal. Furcae very large, thick, irregularly tapering; both rami fused together for half the length of the larger ramus; smaller ramus wedge-shaped, only one-third as long as larger; large proximal setae, terminal seta not clearly demarcated. Hemipenis rounded right-triangular in outline, tapering to bluntly rounded anterodistal corner, with an additional, rounded-subtriangular, anterodorsal lamellar flap; copulatory tube moderately thick, long, straight. Zenker's organ with long muscularized portion and tiny, ovoid terminal bulb; vas deferens coiled into compact disk of about 3 whorls.

Comparisons.-Mh. inaequalis has nearly the same size and shape as $M h$. inaequata, from which it differs by its more convex, more sinuous ventral margin, as well as by the nearly right-angled, triangular hemipenis. Mh. marchilensis is proportionally higher with a less truncate anterior margin, while Mh. opaca has a more acute posterior angle. Such a long posterodistal claw on the sixth limb is otherwise seen only in Mh. turbida and in species of Macropyxis; that of Mh. inaequata is thinner and shorter. The furcal asymmetry is more extreme than in Mh. atlantica or Mh. inaequata; the smaller ramus is smaller and more wedge-shaped than in Mh. inaequata, and the furcal tips are blunter and less flexible than in Mh. atlantica. The terminal bulb of the Zenker's organ is much smaller than that of Mh. inaequata. No other species in this genus has a discoidally coiled vas deferens, which is a character seen elsewhere only in Macrocypria and Macrosarisa.

MACROSCAPHA INAEQUATA new species

Graph 47; Figures 14.15,16, 15.16,17, 20.2, 23.19, $24.26,27.10,11,81.9,34.12,42.2,47.37,52.29,57.20$, 59.3, 62.5, 64.13, 69.13, 80.24; Plates 36.1-6, 37.1-6, $74.3,6,80.22,92.3,7,10,107.15,16$
Macrocyprina n. sp. 7 Maddocks, 1979, pl. 2, fig. 11.

Derivation of name.-Latin inaequatus, unequal; for the asymmetrical furca.

Material-Fourteen specimens in alcohol, including 5 males, 6 females, 2 juveniles, and 1 of indeterminate sex.

Types.-Holotype male specimen 714M USNM 240685, paratypes USNM 240686-240698.

Type locality.-Eltanin cruise 6 station $350,55^{\circ} 03^{\prime}-55^{\circ} 00^{\prime} \mathrm{S}$, $58^{\circ} 57^{\prime}-58^{\circ} 51^{\prime} \mathrm{W}$, depth 2452 m .

Occurrence.-At E-6-350, 5 live specimens (3M, 1F, $1 \mathrm{FJ}-1$); at E-9-740, 3 live specimens (3 F); at E-25-364, 1 live specimen (1MF?); at E-32-2025, 1 live specimen (1F); at GL-1-0001, 1 live specimen (1 M); at GL-2-0001, 2 live specimens (1M, 1J); at GL-2-002, 1 live specimen (1F).

Distribution.-Holocene; Antarctic region, known live depth range 311 to 3694 m .

Dimensions.-Holotype male 714M, LVL 2.01 mm , LVH 0.83 mm . See also Graph 47.

Diagnasis.-Carapace elongate-subtriangular to oblong in lateral outline; dorsal margin of right valve evenly sloping anteriorly and posteriorly from indistinct dorsal angle located at midlength, slightly convex to nearly straight; anterior margin somewhat truncate, rounded, without distinct angles; ventral indentation prominent, remainder of ventral margin nearly straight; posterior angle very broadly rounded, about 40° to 45°; zone of concrescence broad, especially in dorsal and ventral portions; radial pore canals straight, indistinctly visible.

Male fifth limbs very asymmetrical, with thick, long terminal hook, recurved at about 40° in right limb and 26° in left limb; elongate, sinuous pegs; ventrodistal margin sinuate with thickened chitinous platform; no dorsal seta. Female fifth limb slender, with rather short, thick, rectilinear, clawlike terminal setae. Sixth limb with very long terminal claw; posterodistal seta about half as long as terminal claw; anterodistal seta about one-fifth as long as terminal claw. Seventh limb large, long, with long reflexed seta lined with dense fringe of short hairs; distal setae unequal, of moderate length. Furcae long, smoothly tapering, gently curved, asymmetrical, smaller ramus about three-fourths as long as longer ramus; proximal setae very thick, conspicuous; terminal setae well demarcated. Hemipenis rounded-subtriangular to nearly hemispherical, height greater than width; copulatory rod short, straight. Zenker's organ narrow, long, with elongate, ovoid terminal bulb; vas deferens fairly thick, arranged in about four long, loose loops.

Comparisons.-Mh. inaequata is the same size and nearly the same shape as Mh. inaequalis, with slightly more distinct dorsal angle, more broadly rounded posterior angle, and a more nearly hemicircular hemipenis. Mh. turbida is generally smaller and less elongate, while Mh. tensa and Mh. opaca are much more elongate, with more acute posterior angles and more angular outlines. Mh. marchilensis is a little smaller and less elongate, with more evenly rounded anterior and posterior margins. The posterodistal seta of the sixth leg is shorter and thinner than that
of Mh. inaequalis. The furcae are more asymmetrical, thicker, and more bluntly terminated than those of $M h$. atlantica and less asymmetrical than those of Mh. inaequalis. The deep, rounded, symmetrical hemipenis is easily distinguished from the subtriangular shape of $M h$. inaequata. The terminal bulb of the Zenker's organ is much larger than that of $M h$. inaequalis, and the vas deferens is loosely looped rather than discoidally coiled.

Remarks.-The illustrated female fifth limb (Figure 31.9) is pathological, with an extra seta on podomere II.

MACROSCAPHA JIANGI new species

Graph 48; Figures 12.1,2, 18.1,2, 52.36,37, 58.34, 35 ; Plates 42.2-6, 43.2-6

Derivation of name.-For Jiang Ming-Jung, who helped as a graduate research assistant on this study.

Material.-Fifty-four empty carapaces and valves.
Types.-Holotype specimen 1922W USNM 240699, paratypes USNM 240700-240707 and KUMIP 1,123,8941,123,935.

Type locality.-Eltanin cruise 39 station $32,47^{\circ} 26.4^{\prime} \mathrm{S}$, $148^{\circ} 17.2^{\prime} \mathrm{E}$, depth 960 m .

Occurrence-At E-39-32, 31 specimens; at Swanson Northland P461, 9 specimens; at Swanson Northland P462, 1 specimen; at Swanson Northland P464, 1 specimen; at Swanson Northland P476, 2 specimens; at Swanson Northland P484, 7 specimens; at Swanson Northland P573, 3 specimens.

Distribution.-Holocene; Tasman Plateau, south of Tasmania, and Lord Howe Rise, northwest of New Zealand, known dead depth range 427 to 960 m .

Dimensions.-Holotype specimen 1922W, RVL 1.79 mm , RVH 0.71 mm , LVL 1.75 mm , LVH 0.70 mm . See also Graph 48.

Diagnosis.-Carapace fairly small, elongate-subtriangular in lateral outline; dorsal margin of right valve highly

and broadly arched, indistinct dorsal angle located at midlength; anterior margin obliquely rounded; ventral margin gently sinuous with slight ventral indentation in mouth region, may be slightly upswung posteriorly; posterior angle narrowly and evenly rounded, slightly flared, about $40^{\circ}-45^{\circ}$; zone of concrescence moderately wide, radial pore canals indistinctly visible.

Comparisons.-Mh. j̈angi is slightly larger than most Mh. turbida and slightly smaller than Mh. marchilensis, with higher, more distinct dorsal angles and more acute posterior angles than either. The slight sinuosity of the posterodorsal margin separates it from Mh. turbida and Mh. marchilensis. It is much smaller, less sinuate, and more nearly triangular in outline than most other species.

MACROSCAPHA MARCHILENSIS (Hartmann, 1965)

Graph 53; Figures 12.3.4, 13.3,4, 27.1, 31.2, 35.26, 44.3, 47.10,11, 63.8; Plates $34.7,8,35.7,8,105.7,8$

Macrocypris (Macrocyprina) marchilensis Hartmann, 1965, p. 332, fig. 45-51.

Material.-Three type specimens.
Types.-In the Zoological Museum of the University of Hamburg, the holotype male UHZM K-27321a(FZ) is a plastic slide containing a right and left valve. Paratype female UHZM K-27321b(FZ) is a plastic slide containing a right and left valve. Paratype UHZM K-27321(Cl) is a tube of glycerin containing an undissected juvenile with decalcified carapace, the anterior and posterior halves of an undissected female body, several loose male and female appendages, and several decalcified carapace fragments. The hemipenis is missing, and there are not enough legs to complete one individual, although as many as three individuals appear to be represented in this tube.

Type locality.-"Mar Chile I" expedition, station 96, $39^{\circ} 59.9^{\prime} \mathrm{S}, 74^{\circ} 01.5^{\prime} \mathrm{W}$, off Punta Galera, south of Valdivia, in southern Chile, depth 260 m .

Occurrence.-In UHZM K-27321, at least 3 live specimens ($1 \mathrm{M}, 1 \mathrm{~F}, 1 \mathrm{~J}$).

Distribution.-Holocene; off southern Chile, known live depth range 190 to 260 m . Hartmann (1965) reported five specimens at the type locality. He also reported one specimen each at "Mar Chile I" station 95 ($39^{\circ} 59^{\prime} \mathrm{S}, 78^{\circ} 54^{\prime} \mathrm{W}$, depth 162 m), station X1 ($42^{\circ} 57{ }^{\prime} \mathrm{S}, 72^{\circ} 57^{\prime} \mathrm{W}$, depth 190 m), and station X2 $\left(42^{\circ} 24^{\prime} \mathrm{W}, 72^{\circ} 57^{\prime} \mathrm{W}\right.$, depth 240 m$)$, off southern Chile.

Dimensions.-Holotype male UHZM K-27321a(FZ), RVL 1.85 mm , RVH 0.81 mm , LVL 1.88 mm , LVH 0.79 mm . Paratype female UHZM K-27321b(FZ), RVL 1.76 mm , RVH 0.74 mm , LVL 1.76 mm , LVH 0.72 mm . See also Graph 53. Hartmann (1965) reported the following dimensions: males, L $1.75-1.85 \mathrm{~mm}$, H $0.70-0.75 \mathrm{~mm}$; females, L $1.90-1.95 \mathrm{~mm}, \mathrm{H} 0.75-0.80 \mathrm{~mm}$.

Diagnosis.-Carapace elongate-oblong in lateral outline, dorsal margin of right valve broadly arched, evenly curv-
ing, greatest height located at or behind midlength; anterior margin narrowly and obliquely rounded; ventral margin with distinct ventral indentation, posterior sector gently convex, slightly upswung posteriorly; posterior angle narrowly and evenly rounded, about 45°; zone of concrescence moderately wide, radial pore canals indistinctly visible.

Male left fifth limb small, straight-sided, with very short terminal hook recurved at about 63° in right limb; sinuous, elongate-triangular pegs inserted on strongly chitinous, projecting platform; no dorsal seta. Female fifth limb short, thick, with very short, rectilinear, clawlike setae. Sixth limb slender, with strongly bent, tapering terminal claw, short posterodistal seta and even shorter anterodistal seta. Seventh limb large, long, with long reflexed seta lined with thick comb of long hairs; distal setae short. Furcae of moderate size, symmetrical, slender, smoothly tapering, straight to gracefully curved; terminal setae weakly demarcated. Zenker's organ short, terminal bulb very small; vas deferens thick, arranged in about three loose loops, which are nearly as long as the muscularized portion of the Zenker's organ.

Comparisons.-Mh. marchilensis is larger than most Mh. turbida and slightly larger than Mh. jiangi, with more broadly rounded dorsal and posterior angles. It is smaller, less elongate, and less sinuate in outline than $M h$. heroica, Mh. tensa, and Mh. sinuata, but less elongate and less sinuate than Mh. atlantica. Few species have so thick a vas deferens, and no other species has the loops of the vas deferens arranged in a single plane, so that the concentric loops increase in size outward. Hartmann (1965) illustrated an oblong hemipenis, which is not now present in the vial. It apparently is similar to that of Mh. heroica but more elongate, with a longer, sinuous copulatory rod.

MACROSCAPHA OPACA new species

Graph 49; Figures 14.1,2, 15.1,2, 27.18,19, 31.7,34.8, $42.1,47.36,52.19,53.13,56.13,57.19,59.2,62.2$, $64.15,68.14,80.28$; Plates $38.2-6,12,39.2-6$, $74.5,7-10,92.1,2,4-6,105.14-19,112.4$
?Macrocyprina tensa (Müller) Hartmann, 1986, p. 173, pl. 5, fig. 6; Hartmann, 1987, p. 132.

Derivation of name.-Latin opacus, shady, dark, obscure; for the opaque carapaces and consequent lack of information about marginal characters.

Material-Seventy-six specimens in alcohol, including 28 males, 38 females, 6 juveniles, and 4 empty carapaces.

Types.-Holotype male specimen 1479 M USNM 240708, paratypes USNM 240709-240732.

Type locality.-Eltanin cruise 6 station $355,54^{\circ} 04^{\prime} \mathrm{S}$, $58^{\circ} 46^{\prime}-58^{\circ} 45^{\prime} \mathrm{W}$, depth 119 m .

Occurrence-At E-6-344, 36 live specimens (18M, 16F, $1 \mathrm{FJ}-1,1 \mathrm{MJ}-1$); at E-9-740, 1 live specimen, tentatively identified (1J); at E-22-1535, 3 live specimens, tentatively

identified ($1 \mathrm{MJ}-1,1 \mathrm{FJ}-1,1 \mathrm{~J}$); at V -14-2, 4 live specimens ($2 \mathrm{M}, 2 \mathrm{~F}$); at V-14-21, 3 live specimens ($1 \mathrm{M}, 2 \mathrm{~F}$); at V-15124, 1 specimen; at $\mathrm{V}-15-131$, 2 live specimens ($1 \mathrm{M}, 1 \mathrm{~F}$); at $\mathrm{V}-16-39$, 2 live specimens ($1 \mathrm{M}, 1 \mathrm{~F}$); at $\mathrm{V}-17-74,1$ live specimen (1F); at V-17-93, 1 live specimen (1M); at V-17-101, 1 specimen;at V -18-9, 7 live plus 1 specimens (7 F); at $\mathrm{Y}-2-6,3$ live specimens (3F); at $\mathrm{Y}-2-9,1$ specimen; at $\mathrm{Y}-2-11,9$ live specimens ($4 \mathrm{M}, 5 \mathrm{~F}$).

Distribution.-Holocene; continental shelf and slope off Argentina, Cape Horn, Falkland Plateau, Burdwood Bank, and Palmer Archipelago of Antarctica, known live depth range 95 to 2738 m .

Dimensions.-Holotype male specimen 1479M, RVL 1.89 mm, RVH 0.78 mm, LVL 1.90 mm, LVH 0.81 mm . See also Graph 49.

Diagnosis.-Carapace elongate-subtriangular in lateral outline; dorsal margin of right valve high-arched, sloping steeply anteriorly and posteriorly from indistinct dorsal angle located at midlength; anterior margin narrowly rounded, obliquely truncate; ventral indentation promi-
nent, angulate; posteroventral margin nearly straight, not upswung posteriorly; posterior angle narrowly rounded, ventrally located, about 45°; zone of concrescence very broad, radial pore canals numerous, straight.

Male fifth limbs very asymmetrical, with tapering, slender terminal hooks, recurved at 57° in right limb and 72° in left limb; very elongate, sinuously tapering, tusklike pegs and long dorsal seta. Female fifth limb large, thick, with very short, curved, clawlike setae; mediodistal and ventrodistal setae of equal length. Sixth limb with thick, curved terminal claw, posterodistal seta one-fourth as long as terminal claw, and short anterodistal seta. Seventh limb large, long; reflexed seta long, edged with a dense fringe of coarse barbs that diminish in size distally to fine hairs; distal setae unequal, of moderate size. Furcae long, thin, symmetrical, smoothly curved, tapering; proximal setae small, terminal setae not clearly demarcated. Hemipenis triangular with prominent, narrowly rounded angles and sinuous, concave margins; ventral tip curved inward and likely to be folded under; copulatory rod short, straight.

Zenker's organ long, moderately thick; terminal bulb very small, nearly spherical; vas deferens narrow, arranged in about three loose loops that are only slightly longer than half the length of the muscularized portion of the Zenker's organ.

Comparisons.-Mh. opaca is very similar in lateral outline to Mh. tensa but more elongate, with a more smoothly curving dorsal margin. It is smaller and more acutely terminated than Mh. inaequalis and Mh. inaequata. The concave, acutely triangular hemipenis is unique in shape, although distant homologies can be traced with Mh. inaequata and Mh. sp. 25. The Zenker's organ with small terminal bulb and the short-looped vas deferens closely resemble those of $M h$. lensa and some specimens of Mh. turbida.

There is considerable variation in size and shape in this species. Particularly at stations Y-2-11 and V-15-181, the longest specimens approach Mh. tensa in size and shape. The two species are obviously closely related.

The "immature male" specimen identified as Mh. tensa by Hartmann $(1986,1987)$ might be an adult of Mh. opaca. It is possible that Hartmann's population includes some specimens of Mh. opaca as well as Mh. tensa (see discussion under that species below).

Remarks.-The tentatively identified specimens at E-9740 and E-22-1535 are decalcified, fragmentary juveniles.

MACROSCAPHA SINUATA new species

> Graph 50; Figures 14.3,4, 15.3,4, 20.3, 23.16, 24.25, 27.4,5,16,17,31.3, 35.24,43.1,47.32, 52.20,21, $53.24,25,56.8,57.24,59.6,62.7,64.16,69.14,80.26$; Plates $36.7-10,37.1,7-10,63.15,75.8,80.23,98.7-11$, $106.9-11,111.7,9$

Macrocyprina n. sp. 5 Maddocks, 1979, pl. 2, fig. 5, 10, 12, 15.

Derivation of name.-Past participle of Latin sinuo, to bend, to wind, to swell out in curves; for the carapace shape.

Material-Fourteen specimens in alcohol, including 4 males, 4 females, 5 juveniles, and 1 of indeterminate sex.

Types.-Holotype male specimen 845M USNM 240733, paratypes USNM 240734-240746.

Type locality.-Eltanincruise 3 station $50,16^{\circ} 12^{\prime}-16^{\circ} 10^{\prime} \mathrm{S}$, $74^{\circ} 41^{\prime} \mathrm{W}$, depth $2599-2858 \mathrm{~m}$.

Occurrence-At E-8-50, 12 live specimens ($2 \mathrm{M}, 4 \mathrm{~F}, 1 \mathrm{MF}$?, $2 \mathrm{MJ}-1,3 \mathrm{FJ}-1$); at $\mathrm{AB}-18 \mathrm{~B}-714 \mathrm{C}$, 2 live specimens tentatively identified (2M).

Distribution.-Holocene; Southeast Pacific Ocean off Peru and Chile, known live depth range 1025 to 2558 m .

Dimensions.-Holotype male specimen 845 M , RVL 2.16 mm , RVH approximately 0.80 , LVL 2.16 mm , LVH unmeasurable. See also Graph 50.

Diagnosis.-Carapace fairly large, elongate-sinuate in lateral outline; dorsal margin of right valve broadly arched, smoothly convex except for slight posterodorsal concavity,
greatest height located slightly anterior to midlength; anterior margin obliquely truncate, angulate; ventral margin smoothly sinuous with prominent anteroventral indentation, convex elsewhere, posterior sector sharply upswung; posterior angle narrowly rounded, flared, located distinctly above venter, about 45° to 55°;zone of concrescence broad, radial pore canals numerous, with a few canals joining to form branching clusters located at the anterior and posterior angles.

Male fifth limbs with short, angular hook recurved at about 48° in right limb and 12° in left limb; ventral pegs elongate-triangular; no dorsal seta. Female fifth limb large, thick, with very short, thick, curved, thickly barbed, clawlike setae of nearly equal length. Sixth limb large with very long terminal claw, short posterodistal seta about onefourth as long as terminal claw, and very short anterodistal seta. Seventh limb large, very long; reflexed seta thick, very long, lined with dense comb of fine hairs of diminishing size; distal setae very short. Furcae large, symmetrical, sinuously bowed, thick, tapering; terminal setae clearly demarcated, proximal setae large. Hemipenis oblongsubovate with broadly convex ventral and posterior margins, sinuously indented anterior margin; with tapering, tonguelike, lamellar ventral flap; copulatory rod fairly short, sinuous. Zenker's organ short, thin, with very thick, ovoid terminal bulb; vas deferens very thick, arranged in about three very long, loose loops.

Comparisons.-Mh. sinuata is very similar in shape to Mh. heroica except much more elongate. It also has less prominent barbs on the distal setae of the female fifth limb, less sharply pointed furcal tips, a slightly more elongate hemipenis, and a thinner ventral lobe on the hemipenis (especially in specimens 328 M and 329 M). In the holotype specimen (845 M) the ventral lobe is located more posteriorly than in Mh. heroica, and the outline of the entire hemipenis is more oblong, approaching that of $M h$. atlantica. Mh. sinuata also resembles Mh. atlantica in shape but is larger and more exaggerated. The ovate terminal bulb of the Zenker's organ is larger than that of any species except Mh. sp. 25.

Remarks.-Mh. sinuata and Mh. heroica are very similar morphologically and have similar depth distributions but different geographic distributions.

MACROSCAPHA TENSA (Müller, 1908)

> Graph 51 ; Figures $14.5-7,15.5-7,20.1,23.20,24.24$, $27.22,23,81.4,34.11,43.4,47.39,40,52.33-35$, $53.31-33,56.5,19,57.23,59.4,19,62.9,63.6,64.14,35$, $69.12,80.25 ;$ Plates $38.7-11,39.7-12,75.1-4,80.24$, $83.10,107.17-19$

Macrocypris tensa Müller, 1908, p. 96, pl. 12, fig. 8, 9; Müller, 1912, p. 121.
?Macrocyprina tensa (Müller) Maddocks, 1979, pl. 1, fig. 16, 19; Hartmann, 1986, p. 173, pl. 6, fig. 1, 2, text-fig. 87-89; Hartmann, 1987, p. 132, fig. 73-76 [part.].

Material-One type specimen and 19 specimens in alcohol, including 1 male, 8 females, and 10 juveniles; for a total of 20 specimens.

Types.-There are two slides catalogued as type-series 13131 in the Crustacea Division of the Zoological Museum of Humboldt University, Berlin. Each is labeled "GaussExp." and has the valves and soft parts of one individual specimen imbedded in Canada balsam. The female specimen, labeled "Macrocypris tensa G. W. Müller, Gauss Stat., D. Südpolar-Exp., 178 f, 1.03," and bearing my specimen number 1935 F , is here designated the lectotype.

The male specimen, labeled "Macrocypris tensa, 178 male, $8.02,1403$ " and bearing my specimen number 1934 M , does not belong to the same species and should not be considered a paralectotype of $M h$. tensa. It is a specimen of Mh. turbida (Müller). Müller (1908) reported only a single female specimen and no male of this species.

The new material for this species is catalogued as USNM 240747-240758.

Type locality.-The Gauss-Station, $65^{\circ} \mathrm{S}, 90^{\circ} \mathrm{E}$, depth 385 m , off the coast of Antarctica.

Occurrence.-In ZMHUB 13131, 1 live specimen (1F); at E-5-322, 1 live specimen (1F); at GL-1-0001, 17 live specimens (1M, 6F, 5MJ-1, 2FJ-1, 2J-1, 1FJ-2); at CL-2-0001, 1 live specimen (1 F).

Distribution.-Holocene; Antarctic region. The live depth range in the material studied is from 385 to 2013 m . Hartmann $(1986,1987)$ reported it live at seven stations in the Scotia Sea and Palmer Archipelago from depths of 68 to 850 m .

Dimensions.-Holotype female specimen 1935F, RVL 2.42 mm , RVH 0.91 mm , LVL 2.42 mm , LVH 0.96 mm . See also Graph 51.

Diagnosis.-Carapace large, elongate-siliquose, subtriangular in lateral outline; dorsal margins of right valve sloping steeply away from distinct dorsal angle located at midlength; anterior margin narrowly and obliquely rounded, slightly truncate; anteroventral margin sinuate,
with distinct ventral indentation; remainder of ventral margin straight to gently curving, only slightly upswung posteriorly; posterior angle acute, narrowly rounded, about 40°; zone of concrescence broad, radial pore canals indistinctly visible.

Male fifth limbs very asymmetrical, with tapering terminal hook recurved at about 41° in right limb and 29° in left limb, and with very elongate, sinuous, tusklike ventral pegs and short, thick dorsal seta. Female fifth limb large, elongate, with rather thick, blunt, clawlike setae. Sixth limb large, robust, with stout terminal claw; posterodistal seta about one-third as long as terminal claw, anterodistal seta short. Seventh limb large, long; reflexed seta thick, moderately long, reaching only to the middle of podomere II; thick reflexed seta, lined with dense comb of coarse barbs, which diminish distally into fine hairs; distal setae unequal, of moderate length. Furcae very large, symmetrical, thick, smoothly tapering; proximal setae large, terminal setae not clearly demarcated from rami. Zenker's organ long, moderately thick, with very small, spherical terminal bulb; vas deferens of moderate thickness, arranged in three or four loose loops, which are a little shorter than the muscularized portion of the Zenker's organ.

Comparisons.-The elongate, rectilinear, subtriangular carapace shape of Mh. tensa is like but more exaggerated than those of $M h$. inaequata, Mh. inaequalis, Mh. opaca, and Mh. marchilensis. Mh. tensa is especially similar to Mh. opaca but considerably larger, with a straight or sinuate rather than concave ventral margin and a weakly convex rather than straight anterodorsal margin; the anterior end is also somewhat more prolonged. The Zenker's organ and vas deferens of Mh. tensa closely resemble those of Mh. turbida and Mh. opaca.

Hartmann's illustration (1987, fig. 76) of an adult male hemipenis of $M h$. tensa shows strong homologies with that of $M h$. opaca, differing chiefly in its rounded-triangular rather than acutely triangular outline. Hartmann's illustration of the left adult male fifth limb (1987, fig. 74)
resembles that of $M h$. opaca in shape of the slender terminal hook and in the sinuate, reinforced curvature of the ventral region of the main podomere, but the greatly enlarged, longer peg is like that of $M h$. tensa as here interpreted. The illustration of the furca is approximately correct for either species but lacks the exceptionally slender, curved, forceps-like terminations of Mh. tensa as illustrated here. The reported carapace length of 2.07 to 2.20 mm (for the whole population according to Hartmann, 1986; for the adult males according to Hartmann, 1987) is distinctly smaller than Müller's Gauss-Station type and the Weddell Sea populations (see Graph 51), perhaps because of the lower latitude and shallower depth. However, these reported dimensions are approximately right though a little small for Mh. opaca, and it is of interest in this respect that the population of Mh. opaca at Y-2-11, not far from where Hartmann's material was collected, is especially variable in shape and size and yet unequivocally monospecific.

The "subadult male" identified as Mh. tensa, for which the hemipenis (Hartmann, 1987, fig. 77) and left valve (Hartmann, 1986, pl. 5, fig. 6) were illustrated, might be an adult male of Mh. opaca. Macrocypridid males do not have well-formed hemipenes until just before molting from the A-1 to the adult stage. Hartmann did not state whether this specimen was a molting $\mathrm{A}-1$ or a just-molted adult and did not provide carapace dimensions or illustrations of the appendages to show their immaturity.

In the material studied, Mh. tensa and Mh. opaca are readily distinguishable. Both have broad geographic ranges, which overlap between Cape Horn and the Palmer Peninsula of Antarctica (Graphs 49,51). It is concluded that they represent two separate though closely related species. Because Mh. opaca is very variable, and information about the male of Mh. tensa is scant, the exact delimitation of these two species must wait for description of additional material. It seems likely that specimens of $M h$. opaca are
included in Hartmann's $(1986,1987)$ populations of $M h$. tensa, while others are correctly identified as Mh. tensa. If so, then Mh. tensa is both variable and very similar to Mh. opaca.

Remarks.-The hemipenis is missing from the only adult male specimen (861 M), broken off at the joint with the supporting ventral branch of the furcal attachment. Perhaps it was lost during copulation, or perhaps by rough handling of the sample. Several such specimens were observed in the preserved collections of Macrocyprididae examined for this study.

MACROSCAPHA TURBIDA (Müller, 1908)

Graph 52; Figures 14.10-12, 15.11-13, 20.6, 23.18, $24.27,27.6-9,31.10,11,34.10,15,43.2,3,47.33-35$, $52.1,2,53.11,12,56.7,57.22,59.5,62.1,64.18,69.8$, $74.2,77.6,79.3$; Plates $40.8-13,41.5-14,62.12$, $63.13,16,75.5-7,80.25,26,83.2,94.1-13,107.1-14$, $112.6,7$

Macrocypris turbida Müluer, 1908, p. 94, fig. 11-14, pl. 12, fig. 12, 13; Müller, 1912, p. 121.
Macrocyprina turbida (Müller) Maddocks, 1977, fig. 1, 8; Maddocks, 1979, pl. 1, fig. 13; Hartmann, 1986, p. 174, fig. 90-94, pl. 6, fig. 3-7; Hartmann, 1987, p. 132.
Material-Twenty-eight type specimens, including 6 males, 2 females, 18 juveniles, and 2 empty carapaces and valves; 29 specimens in alcohol, including 12 males, 11 females, and 6 juveniles; and 11 empty carapaces and valves; for a total of 68 specimens.

Types.-There are seven slides catalogued as type-series 13133 in the Crustacea Division of the Zoological Museum of Humboldt University, Berlin. Each contains the carapace and usually the soft parts of one specimen imbedded in Canada balsam. All are labeled "Gauss-Exp.," and most are labeled "178." The male specimen labeled

"2-4.12.1, 1364 " and bearing my specimen number 1943 M is here designated the lectotype. The other six slides are here designated paralectotypes and bear my specimen numbers 1942, 1944-1948. Also catalogued within this type-series is a jar containing three small vials, which contain 20 undissected paralectotype specimens in alcohol. Another specimen, catalogued in type series 18131 and mislabeled "Macrocypris tensa," bearing my specimen number 1934 M , also belongs to Mh. turbida.

The new material for this species is catalogued as USNM 240759-240781 and KUMIP 1,124,298-1,124,307.

Type locality.-The Gauss-Station, $65^{\circ} \mathrm{S}, 90^{\circ} \mathrm{E}$, depth 385 m , off the coast of Antarctica.

Occurrence.-In ZMHUB 18133, 26 live plus 2 specimens ($6 \mathrm{M}, 2 \mathrm{~F}, 5 \mathrm{~J}-1,2 \mathrm{~J}-2,7 \mathrm{~J}-3,2 \mathrm{~J}-4,2$ undeterminable juveniles); in ZMHUB 13131, 1 live specimen (1M); at E-6-418, 3 live specimens ($1 \mathrm{M}, 2 \mathrm{~F}$); at E-9-740, 4 live specimens (2M, 2F); at E-12-993, 1 live specimen (1M); at E-22-1535, 1 live specimen (1M); at E-27-1885, 1 live specimen (1F); at E-27-1974, 2 live specimens (1M, 1FJ-1); at E-32-1996, 1 live specimen ($1 \mathrm{FJ}-1$); at E-32-2085, 1 live specimen (1M); at GL-2-002, 1 live specimen (1F); at GL-2-004, 1 live specimen (1F); at H-69-5-225, 1 specimen; at H-71-5-15, 1 specimen; at H-71-5-20, 3 specimens; at H-71-5-22, 1 specimen; at H-71-5-24, 4 specimens; at H-71-5-25, 1 specimen; at H-71-5-874, 5 live specimens ($3 \mathrm{M}, 1 \mathrm{~F}, 1 \mathrm{FJ}-1$); at H-71-5-893, 1 live specimen ($1 \mathrm{MJ}-1$); at Arthur Harbour Stat III, 3 live specimens (1F, 1J-1, 1J-2); at Wilkes Stat. AH, 1 live specimen (1M); in HU.13.CA.3.N.582-10, 2 live specimens (2F).

Distribution.-Holocene; Antarctic and Subantarctic regions, reaching as far north as Cape Horn, the Strait of Magellan, South Georgia, and Macquarie Island; known live depth range 16 to 494 m in the material studied. Hartmann $(1986,1987)$ reported it live from six stations in the Scotia Sea in 68 to 290 m depth.

Dimensions.-Lectotype male specimen 1943M, RVL 1.91 mm , RVH 0.79 mm , LVL 2.01 mm , LVH 0.891 mm . See also Graph 52. Size increases with depth, and the relatively small dimensions ($\mathrm{L}=1.64-1.80 \mathrm{~mm}$) reported by Hartmann (1986) fall within the ranges of the material studied here. Müller's Gauss-Station specimens are much larger than the others; indeed, A-1 instars at the Gauss-Station are as large as adults from most other stations, making it impossible to delineate instars by dotted lines on Graph 52 in the fashion of the other graphs.

Diagnosis.-Carapace fairly small, elongate-oblong in lateral outline, exact shape rather variable; dorsal margin broadly and continuously arched, without dorsal angle, greatest height located at midlength; anterior margin broadly and obliquely rounded, slightly truncate but not angulate; ventral margin gently sinuate to nearly straight, with small ventral indentation, not upswung posteriorly; posterior angle broadly and obliquely rounded, ocassionally somewhat truncate, about 40° to 50°; zone of concrescence narrow, with numerous, straight radial pore canals.

Male fifth limb asymmetrical; elongate-angulate termi-
nal hook recurved at 35° to 48° in right limb and 39° to 52° in left limb; elongate-sinuate, tusklike dorsal and ventral pegs; left limb has small, thick dorsal seta and sinuate, ridged, ventrodistal platformlike ridge. Female fifth limb large, with rather short, thick, straight, tapering, clawlike setae. Sixth limb robust with stout, curved terminal claw; thick, long posterodistal claw, about two-thirds as long as terminal claw; anterodistal seta about one-fourth as long as terminal claw. Seventh limb slender, with long reflexed seta lined with fine hairs; distal setae short. Furcae thick, symmetrical, lined with fine barbs; terminal setae well demarcated, coarsely barbed or tuberculate; proximal setae large. Hemipenis rounded-subtriangular with sinuous, irregular margins; copulatory rod fairly long, straight. Zenker's organ long, very thick, with tiny, spherical terminal bulb; vas deferens fairly thick, arranged in three to four loose loops, which may be from half as long up to almost as long as the muscularized portion of the vas deferens.

Comparisons.-The elongate-oblong shape of Mh. turbida varies considerably among different geographic populations, as Hartmann (1986) also remarked. It always remains less elongate and less extreme than those of $M h$. inaequata and Mh. inaequalis. The size also varies greatly, and A-1 instars at the Gauss-Station are as large as or even larger than adults at other stations. As a consequence, although growth stages are apparent for individual stationpopulations on Graph 52, it is not possible to isolate clusters by dashed lines as is done for other species. Such a long posterodistal claw on the sixth limb is seen elsewhere only in Mh. inaequalis and in species of Macropyxis. The barbed or tuberculate texture of the tips of the furcae is a consistent, diagnostic character. It should not be confused with the serrate line of very tiny, regularly arranged barbs along the middle-posterior edge of the ramus, which are usually too small to draw although consistently present in all Macrocyprididae (for representative illustration see $M h$. sp. 25, Figure 47.31). The compact, rounded-subtriangular hemipenis with thick, long, straight copulatory rod shows structural homologies with that of Mh. inaequalis, which has an even larger, diagonally oriented copulatory rod.

MACROSCAPHA sp. 25

Figures 27.14,15, 35.21, 42.3,47.31, 69.11,80.27; Plates 92.8,9, 105.8
Material-One poorly preserved male in alcohol, USNM 240782.

Occurrence.-At E-9-740, one live specimen (1M).
Distribution.-Holocene; Drake Passage south of Tierra del Fuego, depth 384-494 m.

Dimensions.-Fragmentary carapace could not be measured.

Comparisons.-The fragile, poorly calcified, newly molted carapace of $\mathrm{Mh} . \mathrm{sp}$. 25 was fairly similar in size and shape to Mh. turbida but had a more acute posterior angle. It

GRAPH 53
disintegrated before it could be measured and illustrated. The oblong hemipenis with its small, fingerlike ventral lobe and acute anterodorsal angle shows some similarity to both Mh. opaca and Mh. heroica. The very large, elongate, teardrop-shaped terminal bulb of the Zenker's organ resembles those of Mh. inaequata and Mh. sinuata. The vas deferens is thick, arranged in about three long, loose loops. The symmetrical, distally pointed furcae are lined with unusually large posteromarginal barbs.

MACROSCAPHA sp. 26

Graph 53; Figures 52.38, 53.36,37; Plates 58.6, 59.8
Macrocypris cf. M. similis Brady Neale, 1967, p. 7, pl. 1, fig. s, t.

Material-Six juvenile empty valves.
Occurrence.-In HU.18.R.12.1-100, 6 specimens.
Distribution.-Holocene; Halley Bay, Weddell Sea, Antarctica.

Dimensions.-HU.13.R.12.91, RVL 1.40 mm , RVH 0.59 mm . HU.18.R. 12.93 , LVL 1.40 mm , LVH 0.57 mm . See also Graph 53.

Remarks.-These specimens, described by Neale (1967), are late instars, with thin valves and thin, narrow, fragmentary inner lamellae. Instars of Macrocyprididae are difficult to identify, and these do not exactly match the available juveniles of any of the several Antarctic species of Macroscapha. They may be A-2 instars of Mh. inaequata or Mh. opaca.

MACROSCAPHA sp. 27

Graph 53; Figure 15.10; Plate 41.3
Material.-Three empty valves, USNM 240783-240784.

Occurrence.-At E-39-32, 3 specimens.
Distribution.-Holocene; south of Tasmania on the Tasman Plateau, depth 960 m .

Dimensions.-Specimen 2410, LVL 1.53 mm , LVH 0.52 mm . See also Graph 53.

Comparisons.-This elongate-siliquose left valve ends in a sharp 45° posterior angle. It is smaller, more elongate, and more streamlined than most species of Macroscapha, although the general shape is not unlike that of some specimens of $M h$. tensa and Mh. opaca. It is here treated as a separate species until soft parts and geographically intermediate populations can be studied.

MACROSCAPHA sp. 28

Graph 53; Figure 13.16; Plate 41.4
Material-One empty valve, USNM 240785.
Occurrence.-At E-39-32, one specimen.
Distribution.-Holocene; south of Tasmania on the Tasman Plateau, depth 960 m .

Dimensions.-Specimen 2408, LVL 2.03 mm , LVH 0.71 mm . See also Graph 53.

Comparisons.-This elongate-subtriangular left valve has a symmetrical, boat-shaped outline and flattened venter. It is much larger and proportionally higher than Mh. gyreae but has the same general shape.

MACROSCAPHA sp. 29

Graph 53; Figures 14.8, 15.8; Plates 42.7, 43.7
Material-Four empty carapaces and valves, USNM 240786 and in the collection of Kerry Swanson.

Occurrence,-At E-39-32, 1 specimen; atSwanson Northland $P 476,3$ specimens.

Distribution.-Holocene; south of Tasmania on the Tasman Plateau, and west of New Zealand, known depth range $508-960 \mathrm{~m}$.

Dimensions.-Specimen 2407, RVL 1.26 mm , RVH 0.55 mm, LVL 1.24 mm , LVH 0.53 mm . See also Graph 53.

Comparisons.-This sinuate-oblong carapace resembles that of Mh. marchilensis but is much smaller and ventrally more deeply indented. Mh. jiangi, which occurs at the same locality, is much larger, lacks this deep ventral indentation and has a more acute posterior angle. This shape and the broad zone of concrescence would also be appropriate for Macrocyprina, but there is no patch pattern.

MACROSCAPHA sp. 30

Graph 53; Figures 52.41, 53.40, 64.19
Material-Twenty-nine specimens in alcohol, USNM 240787.

Occurrence.-At AII-31-159, one live specimen (1FJ-1); at AII-31-167, 13 live specimens; at AII-31-169A, 15 live specimens.

Distribution.-Holocene; equatorial Atlantic Ocean off Brazil, depth 834-839 m.

Dimensions.-Juvenile female specimen $1418 \mathrm{~F}-1$, RVL 1.17 mm , RVH 0.47 mm , LVL 1.17 mm , LVH 0.47 mm . See also Graph 53.

Comparisons.-The carapace and asymmetrical, distally pointed furcae of $M h$.sp. 30 resemble those of juveniles of Mh. atlantica. However, it is treated as a separate species until adults or geographically intermediate populations can be studied.

Remarks.-The material at AII-31-167 and AII-31-169A was received too late to be studied and is not included in Graph 53.

MACROSCAPHA sp. 31

Graph 53; Plates 42.1, 43.1
Material.-One empty carapace.
Occurrence.-At Swanson Northland P484, one specimen.

Distribution.-Holocene; west of New Zealand, depth 350 m .

Dimensions.-Specimen 2423W, RVL 1.23 mm , RVH 0.52 mm , LVL 1.23 mm , LVH 0.50 mm . See also Graph 53.

Comparisons.-Mh. sp. 31 is very similar in shape to $M h$. sp. 29, which occurs at a nearby locality, but it has a narrower, more sinuously flared posterior angle and a less deeply indented ventral margin. Mh. jiangi is much larger, more triangular, and more narrowly terminated anteriorly and posteriorly. This specimen is best treated as a separate species until soft parts or large populations can be studied.

MACROSCAPHA sp. 32

Graph 53; Figures 14.9, 15.9; Plates 38.1, 89.1
Material-Four empty carapaces and valves, USNM 240789 and in the collection of Kerry Swanson.

Occurrence.-At Swanson Northland P566, 4 specimens. Distribution.-Holocene; west of New Zealand, depth 514 m .

Dimensions.-Specimen 2427, RVL 1.80 mm , RVH 0.75 mm , LVL 1.80 mm , LVH 0.74 mm . See also Graph 53.

Companisons.-This subovate-oblong carapace has evenly, bluntly rounded anterior and posterior margins and a broad zone of concrescence, characters that would also be appropriate for Macrocyprina. It resembles Mh. inaequalis in shape but is smaller, proportionally higher, and more narrowly produced anteriorly. It has more rounded contours than most Mh. turbida. Mh. j̈angi is the same size but more narrowly terminated anteriorly and posteriorly and more triangular in lateral outline.

Genus MACROCYPRINA Triebel, 1960

Macrocyprina Triebel, 1960, p. 118 [part.]; Morkhoven, 1963, p. 88 [part.]; Maddocks, 1977, p. 153 [part.].

Type species.-Macrocyprina propinqua Triebel, 1960. Species included.-Listed by original binomen:
Macrocyprina propinqua Triebel, 1960; Holocene, Bonaire.
Macrocypris africana Müller, 1908; Holocene, South Africa.
Macrocyprina barbara n . sp.; Holocene, California.
Macrocyprina belizensis n. sp.; Holocene, Belize.
Macrocyprina bermudae n. sp.; Holocene, Bermuda.
Macrocyprina bonaducein. sp.; Holocene, Gulf of Aqaba.
Macrocyprina caiman n. sp.; Holocene, Cayman Islands.
Macrocyprina captiosa n. sp.; Holocene, Madagascar.
Cytherideis (Cytherideis) decora Brady, 1866 (nomen dubium).
Macrocypris dispar Müller, 1908; Holocene, South Africa.
Macrocyprina hartmannin. sp.; Holocene, Australia.
Macrocyprina hawkae n. sp.; Holocene, Bahamas and West Indies.
Macrocyprina hortulin. sp.; Holocene, Gulf of Mexico.
Macrocyprina jamaicaen. sp.; Holocene, Jamaica.
Cytherideis maculata Brady, 1866 (nomen dubium).
Macrocyprina madagascarensis n. sp.; Holocene, Madagascar.
Macrocyprina moza n. sp.; Holocene, Madagascar.
Macrocyprina noharai n. sp.; Holocene, Okinawa.
Macrocyprina okinawaen.sp.; Holocene, Okinawa.
Macrocyprina parcens n . sp.; Pleistocene, California.
Macrocyprina quadrimaculata n. sp.; Holocene, Great Barrier Reef.
Macrocypris schmitti Tressler, 1954; Holocene, Florida.
Macrocyprina skinneri Kontrovitz, 1976; Holocene, Gulf of Mexico.
Macrocypris succinea Müller, 1894; Pleistocene-Holocene, Mediterranean.
Macrocyprina swainin. sp.; Holocene, Gulf of California.
Macrocyprina vargata Allison and Holden, 1971; Holocene, Clipperton Island.
Macrocyprina sp. 33; Holocene, Tasmania.
Macrocyprina sp. 34; Holocene, New Zealand.
Macrocyprina sp. 35; Holocene, Tasmania.
Macrocyprina sp. 36; Holocene, New Zealand.

Macrocyprina sp. 37; Holocene, U.S. Virgin Islands. Macrocyprina sp. 38; Holocene, Jamaica. Macrocyprina sp. 39; Holocene, Cuba.
Macrocyprina sp. 40; Holocene, Atlantic continental shelf off South Carolina.
Macrocyprina sp. 41; Holocene, Cuba.
Macrocyprina sp. 42; Holocene, Madagascar.
Macrocyprina sp. 43; Holocene, Madagascar.
Macrocyprina sp. 44; Holocene, U.S. Virgin Islands.
Macrocyprina sp. 45; Holocene, west of New Zealand.
Macrocyprina sp. 48; Holocene, Colon Harbour, Panama.
Geographic range.-Worldwide, known composite depth range live 1 to 232 m , dead to 427 m . Species of this genus are especially well represented in warm, shallow water between 0 and 40 m depth. The majority are known from tropical carbonate environments associated with coral reefs, but a few species live in the clastic sedimentary environments of continental shelves at midlatitudes.

Geologic range.-Only Pleistocene and Holocene species were studied, but it is likely that examination of appropriate environments will yield many older Cenozoic and perhaps Cretaceous species as well. The genus is well represented in Oligocene, Miocene, and younger faunas (McKenzie, 1967a), according to reports of "Mn. decora," "Mn. maculata," and Mn. spp.

Diagnosis.-Carapace small, relatively thin-shelled, transparent in fresh specimens, with three or more circular to irregular, opaque, white patches (brown in living animal) in the central lateral region of each valve, with additional opaque patches in the anteroventral and posteroventral regions; lateral outline oblong, with more or less strongly arched dorsal margin, rounded posteroventral angle, distinct anteroventral indentation; elongate-ovate to strongly compressed in dorsal view, with gently tapering to nearly parallel flanks and narrowly rounded anterior and posterior ends; stragulum and dorsal valve-contact line weakly sinuous and inconspicuous; lower group of adductor muscle scars dorsoventrally compressed and diagonally elongated; anterior zone of concrescence moderately wide, especially anteriorly and posteriorly, with shallow but only moderately restricted vestibule; numerous, irregularly arranged, short, curved radial pore canals and false pore canals.

Antennule slender, tapering, with setae of moderate length; podomeres II and III inflexibly articulated or fused with complete or partial vestigial suture. Antenna sturdy, fairly slender, with sturdy but short, clawlike terminal setae; podomere III with long sensory aesthetascs and 3 vestigial swimming setae of variable lengths; podomere IV with 2 short- to medium-length proximoventral setae; the 2 anterodistal setae of podomere IV may be short and thin or may be missing. Podomeres I and II of maxillule palp separated by a conspicuous, flexible joint.

Male fifth limbs small with long dorsal setae; right limb with more or less right-angled hook; left limb with smaller, more strongly recurved hook or with much reduced, nearly straight hook. Female fifth limb with fairly short, thick distal claws, the mediodistal claw longest. Dorsodistal claw
of sixth limb varies from half as long to nearly as long as mediodistal claw; ventrodistal claw one-fifth to one-half as long as mediodistal claw. Recurved seta of seventh limb long, lined with a comb of fine setae; distal setae short to very short. Furcae large, very thick, rigid, symmetrical. Hemipenes hemicircular, oblong, or subtriangular in outline, with an additional subtriangular, oblong or tongueshaped anterodorsal lamellar flap, often with additional accessory lamellar extensions or complex chitinous protuberances; copulatory rod short to fairly long, straight or curved. Zenker's organ with long muscularized portion and spherical terminal bulb; vas deferens arranged in three or four loose loops that are about as long as the muscularized portion.

Remarks.-Sars (1923, p. 57) first pointed out that Mn. succinea should be separated from Macrocypris and Macrocypria as a third genus.

MACROCYPRINA PROPINQUA Triebel, 1960

Graph 54; Figures 16.1,2, 17.1,2, 21.19, 23.1, 24.36, $28.1,2,31.16,35.7,45.5,47.24,69.4,74.5,77.1$; Plates $44.7-12,45.7-11,62.11,80.27,96.1-3,109.4,5,112.15$

Macrocyprina propinqua Triebel, 1960, p. 119, pl. 14, fig. $7-10$, pl. 15, fig. 11-17, pl. 16, fig. 18-24.
Not Macrocyprina propinqua Triebel Teeter, 1975, p. 424, fig. 4j, 5b; Valentine, 1971, p. 6.
Material.-Nine paratype specimens.
Types.-In the Natur-Museum und Forschungs-Institut Senckenberg, Frankfurt-am-Main, holotype female NMFIS Xe 3361 (not seen, but well illustrated by Triebel); paratypes Xe 3362-3370. The dissection slides accompanying these specimens have varying numbers of soft parts, but none has a complete complement. Specimen Xe 3362 has a third, stray maxillule that is obviously from a different genus and species of Macrocyprididae.

Type locality.-Punt Vierkant, on the coast of Bonaire, depth 1-2 m.

Occurrence.-In NMFIS Xe 3362-3370, 9 live specimens (3M, 2F, 4 adult).

Distribution.-Holocene; Bonaire, depth 1-2 m.
Dimensions.-Paratype male NMFIS Xe 3362, RVL 1.00 mm , RVH 0.44 mm . Paratype female NMFIS Xe 3364, RVL 1.05 mm , RVH 0.47 mm . See also Graph 54.

Diagnosis.-Carapace very small, ovate-oblong in lateral view; dorsal margin broadly and gently arched; anterior margin broadly rounded and slightly truncate; ventral margin with rather shallow ventral indentation, not upswung posteriorly, broadly rounded posterior angle of about 50°; zone of concrescence broad, vestibules correspondingly restricted.

Male fifth limbs very asymmetrical; right limb with sinuate podomere II, just one elongate peg, one very long dorsal seta, and a short, right-angled, tapering distal hook recurved at 85°; left limb with slender podomere II, one acutely pointed peg, a long dorsal seta, and a tiny, nearly straight, acutely pointed distal hook curved at 158°. Female fifth limb slender with slender terminal claws. Sixth limb with dorsodistal claw nearly as long as mediodistal claw. Recurved seta of seventh limb with very tiny hairs and spatulate distal tip. Furcae long, slender, gracefully tapering, curved, with small proximal setae. Hemipenis crescent-shaped, with straight dorsal margin, obliquely arcuate, convex ventral margin, and bluntly rounded anterodorsal margin, and with additional lobate anterodorsal accessory lamella; copulatory rod short, straight. Zenker's organ with small terminal bulb; vas deferens arranged in three loose loops as long as the Zenker's organ.

Comparisons.-Mn. propinqua is similar in size and shape to Mn. hortuli but more gently arched dorsally, with a more narrowly rounded posterior angle, a shallower ventral indentation, a broader zone of concrescence and a more irregular line of concrescence; the male fifth limbs are more elongate and lack one of the ventral pegs. Mn. skinneri, Mn. belizensis, Mn. schmitti, and Mn. hawkae are larger or much larger, with more highly arched dorsal margins, slightly concave posterodorsal margins, and slightly flared posterior angles. The male fifth limbs of $M n$. propinqua are similar to those of Mn. skinneri and Mn. schmitti but more reduced and distally more tapering, without the grotesque specializations of Mn. hawkae. Mn. caiman is the same height but shorter, with a deeper ventral indentation, slightly upswung posteroventral margin, and obliquely truncate, more narrowly rounded anterior margin. Mn. bermudae is smaller and more elongate with a deeper,

broader ventral indentation and thicker, less tapered male fifth limbs. The hemipenis of $M n$. propinqua is more elongate than that of any other species studied, although the structure of the anterior end shows close homology with such other Caribbean species as Mn. bermudae, Mn. hortuli, and Mn. skinneri.

Remarks.-Mn. propinqua was thoroughly and accurately illustrated by Triebel (1960). The species recorded by this name in Belize by Teeter (1975) is Mn. belizensis.

MACROCYPRINA AFRICANA (Müller, 1908)

Graph 55; Figures 16.43,44, 17.42, 21.1, 28.10,11, $31.22,35.16,45.15,47.17,52.16-18,53.19-22,69.5$, 74.3, 77.2, 79.4; Plates 54.8,9, 55.8,9, 96.12,18, 108.1,2, 112.3

Macrocypris africana Müller, 1908, p. 97, pl. 12, fig. 10, 11, 14-17; Müller, 1912, p. 121; Hartmann and HartmannSchröder, 1975, p. 360, table 4.
Not Macrocypris africana Müller Tressler, 1949, p. 341, fig. 23; Tressler, 1954, p. 433; Hulings, 1967c, p. 94.

Material.-Three type specimens, including 1 male and 2 females; plus 10 juvenile carapaces and valves; for a total of 13 specimens.

Types.-Müller's syntypes consist of three glass slides, type-series catalog number 13132, in the Crustacea Division of the Zoological Museum of Humboldt University, Berlin. Each slide has the valves and soft parts of one specimen mounted in Canada balsam. All are labeled "Simonstown, D. Südpolar Exp., Gauss-Exp. 222., 1-4.7.03." The male specimen bearing my specimen number 1937M is here designated the lectotype. The female specimens bearing my specimen numbers 1936 F and 1938 F are here designated paralectotypes.

The new material for this species is catalogued as USNM 240790-240797.

Type locality.-Near Simonstown, South Africa. Müller did not give the exact location and depth.

Occurrence.-In ZMHUB 13132, 3 live specimens (1M, 2F); at GIL 127, 10 specimens, tentatively identified.

Distribution.-Holocene; South Africa. Hartmann and Hartmann-Schröder (1975) listed this species in their Table 4, but they did not find any additional specimens in their coastal South African collections (Gerd Hartmann, personal communication).

Dimensions.-Lectotype male ZMHUB 13132, my specimen number 1937 M , as mounted, RVL 1.28 mm , RVH unmeasurable. See also Graph 55. Müller (1908) reported the length of the female as 1.35 mm and of the male as 1.25 mm .

Diagnosis.-Carapace oblong-subtriangular in lateral outline, nearly equilateral; anterior and posterior margins obliquely rounded; ventral indentation broad, shallow; posteroventral margin not upswung, posterior angle of about 40°.

Male fifth limbs small, arcuate-elongate, fairly symmet-
rical; both limbs with very long podomere II, slender distal hooks recurved at 57° in right limb and 03° in left limb, two small, tapering pegs, small ventral seta, and moderately large dorsal seta. Female fifth limb robustly proportioned with rather short claws; dorsodistal claw longer than mediodistal claw. Dorsodistal claw of sixth limb about four-fifths as long as mediodistal claw. Recurved seta of seventh limb long; proximal section of plume lined with numerous fine hairs, which abruptly give way to a few very coarse, thick barbs, diminishing in size to distal tip. Furcae rather long, gracefully curved, with long proximal setae. Hemipenis lobate, rounded-subtriangular in outine; anterior portion consists of two slightly overlapping, equant lamellar extensions; copulatory rod short, straight. Zenker's organ without distinct terminal bulb (or damaged); vas deferens arranged in three short loops, about one-third as long as Zenker's organ.

Comparisons.-Mn. africana is slightly smaller than Mn. dispar, with more narrowly rounded anterior and posterior margins, shallower ventral indentation, and slighty more distinct dorsal angle. It also has thinner male fifth limbs with more tightly recurved distal hooks, as well as much larger anterior lamellar flaps on the hemipenis. Mn. okinawae is larger, with a more triangular shape, an upswung posteroventral margin, and a more pointed posterior angle.

Remarks.-The uncertainly identified specimens at GIL 127 are juvenile valves.

Tressler $(1949,1954)$ reported three specimens of this species from Loggerhead Key, off the Tortugas, Florida. This material is USNM 88859, a glass vial filled with alcohol, which is empty except for wisps of chitinous fragments that cannot be identified. According to Tressler's illustration and dimensions, it may have been a late instar of Macroyprina hawkae, which is common in the Florida Keys.

MACROCYPRINA BARBARA new species

Graph 56; Figures $16.14,15,17.14,15,28.38,39,31.18$, $35.2,45.9,47.28,54.24,25,55.24,25,56.32,57.21$, $59.9,18,62.11,64.22,39,69.9,74.7,77.5,79.1$; Plates $56.8,9,57.8,9,90.1-3,15,109.6,9$
Macrocyprina pacifica (LeRoy) Swain, 1969, p. 456 [part.]; Swain and Gilby, 1974, p. 283, pl. 2, fig. 3-5 [part.].
Derivation of name.-Latin barbarus, strange, foreign; for the Santa Barbara Museum of Natural History, which collected and loaned the material.

Material-Eighteen specimens in alcohol, including 5 males, 7 females, and 6 juveniles.

Types.-Holotype male 2400M USNM 239150, paratypes USNM 239151-239153; and SBMNH 35107-35109.

Type locality.-SBMNH Chevron/PL. Arguello Field Project station $29,34^{\circ} 31^{\prime} 27^{\prime \prime} \mathrm{N}, 120^{\circ} 46^{\circ} 01^{\prime \prime} \mathrm{W}$, depth 732 feet (232 m), 31 August 1982.

Occurrence.-At SBMNH 1, 11 live specimens (2M, 6F, $3 \mathrm{~J}-1$); at SBMNH 14,3 live specimens ($2 \mathrm{M}, 1 \mathrm{~J}$); at SBMNH 28, 3 live specimens ($1 \mathrm{~F}, 2 \mathrm{~J}$); at SBMNH 29, 1 live specimen (1M).

Distribution.-Holocene; off southern California, known live depth range 95 to 232 m .

Dimensions.-Holotype specimen 2400 M , RVL 1.06 mm , RVH 0.44 mm , LVL 1.03 mm , LVH 0.41 mm . See also Graph 56.

Diagnosis.-Carapace small, elongate, greatest height located slightly anterior to midlength; anterior margin broadly rounded and slightly truncate; ventral indentation very shallow; ventral margin sinuous, not upswung posteriorly; posterior angle broadly rounded, about 50° to 60°, not inflated, may be slightly truncate; central opaque pattern consists of a single, narrow, elongate patch.

Male fifth limbs very small, asymmetrical, rectilinear, with slender ventral pegs and short dorsal seta; distal hook short, rapidly tapering, curved at 87° in right limb and 125° in left limb. Dorsodistal claw of fifth limb about half as long as mediodistal claw. Recurved seta of seventh limb rather short, reaching only to middle of podomere II, lined with fine hairs that decrease in size distally. Furcae fairly robust, gracefully curved. Hemipenis elongate, tear-drop-shaped, with broadly rounded anterior margin; copulatory rod fairly short, straight. Zenker's organ with tiny terminal bulb; vas deferens arranged in four loops, as long as the Zenker's organ.

Comparisons.-Mn. barbara is much smaller than Mn. parcens but somewhat similar in shape and patch pattern; it is also a little more elongate posteriorly. Mn. swaini and Mn. vargata are smaller but proportionally higher, with deeper ventral indentation, more highly arched dorsal margin, and three or more discrete opaque spots. Mn. barbara also differs from Mn. swaini by its more elongate hemipenis with thinner, less conspicuous copulatory rod, and its larger, less sinuate male fifth limb.

Remarks.-Swain's (1969) and Swain and Gilby's (1974) concept of "Macrocyprina pacifica" included at least three species. Their figure 3 compares favorably with Mn. barbara except for the somewhat angular outline, which may be an artifact of illustration. Their figure 4 is a juvenile, The records from off Baja California and the Gulf of California probably apply to Mn. swaini. The records off Santa Catalina Island and La Jolla, California, including
these two illustrated specimens, probably apply to $M n$. barbara. Their figure 5 illustrates the adductor muscle scars of a species of Paracypris. See Appendix II for a discussion of Paracypris pacifica LeRoy, which belongs to the Paracypridinae and not to the Macrocyprididae (see also Maddocks, 1988b). See also remarks under Mn. swaini, below.

MACROCYPRINA BELIZENSIS new species

Graph 57; Figures $16.8,17.7,21.17,28.6,24.40$, 54.21-23, 55.22,23; Plates 50.5,6,11,12, 51.6,12, 80.28

Macrocyprina propinqua Triebel Teeter, 1975, p. 424, fig. 4j, 5b.

Derivation of name.-For the country of Belize.
Material-One juvenile carapace with dry fragments of soft parts, provided by James Teeter; and 79 empty carapaces and valves; for a total of 80 specimens.

Types.-Holotype specimen 1828RV USNM 240798, paratypes USNM 240799-240809; and KUMIP 1,124,5771,124,642.

Type locality.-UH 2742, near Caye Chappel, Belize, depth 7 m .

Occurrence.-At UH 2742, 78 specimens; at UH 2961, one specimen; from James Teeter, one live specimen (1 FJ).

Distribution.-Holocene; Belize, known dead depth range 1 to 7 m .

Dimensions.-Holotype specimen 1828, RVL 1.21 mm , RVH 0.54 mm . See also Graph 57. Teeter (1975) reported the adult length for this species as 1.20 to 1.38 mm .

Diagnosis.-Carapace oblong in lateral outline; dorsal margin high-arched; anterior margin broadly and evenly rounded; ventral indentation deep, broad; posteroventral margin gently up-curved; posterior angle of about 48° very broadly rounded and flared; slight posterodorsal sinuosity. Carapace has three large, irregular opaque spots, two of which reach the dorsal margin, additional large opaque patches located anteroventrally and posteroventrally. Zone of concrescence very broad, anterior vestibule correspondingly small.

Comparisons.-Mn. belizensis is slightly larger than $M n$. schmitti but much smaller than Mn. hawkae; it is similar to these species but less exaggerated in shape, more elongate, and has a smaller middle opaque spot.

MACROCYPRINA BERMUDAE new species

Graph 58; Figures $16.21,17.21,21.11,23.2,24.38$, $28.21,22,31.14,35.5,45.2,47.29,54.8-10,55.8-10$, 68.10, 80.35; Plates 46.3-6, 47.3-6, 62.9,10, 76.1-8, $80.29,30,97.5,6,109.12-14,112.8$
Macrocyprina sp. Maddocks and Kornicker, 1985, p. 285, fig. 91.
Macrocyprina propinqua Triebel (OTU 21) Maddocks, 1976, p. 42.

Derivation of name.-For the island of Bermuda.
Material-Eighteen specimens in alcohol, including 9 males, 8 females, and 1 juvenile; and 70 empty carapaces and valves; for a total of 88 specimens.

Types.-Holotype male specimen 1759M USNM 240810 , paratypes USNM 240811-240829; and KUMIP 1,124,6431,124,673.

Type locality.-UH 1497, sand between patch reefs in North Lagoon near North Rock, Bermuda, depth 1-2 m.

Occurrence.-At UH 1497, 18 live plus 25 specimens (9M, 8F, 1J-1); at UH 1499, 17 specimens; at UH 1504, 1 specimen; at UH 1510, 2 specimens; at UH 1549, 8 specimens; at UH 1556, 3 specimens; at UH 1558, 3 specimens; at UH 1559,5 specimens; at UH 1564, 1 specimen; at UH 1565, 2 specimens; at UH 1571, 3 specimens.

Distribution.-Holocene; in North Lagoon, Castle Harbour, and on the South Shore of Bermuda, live at depth of 1 to 2 m and dead at depth range of 1 to 18 m .

Dimensions.-Holotype male specimen 1497M, RVL 0.92 mm , RVH 0.36 mm , LVL 0.89 mm , LVH 0.34 mm . See also Graph 58.

Diagnosis.-Carapace elongate-oblong in lateral outline; dorsal margin broadly and smoothly arched, with obscurely indicated posterodorsal angle; greatest height located at midlength; anterior margin narrowly and evenly rounded; ventral indentation deep and somewhat angulate; posteroventral margin not upswung posteriorly; posterior margin broadly and obliquely rounded, forming somewhat truncate angle of about 72°; zone of concrescence fairly wide; patch pattern consisting of three variable spots.

Male fifth limbs very asymmetrical, with tiny pegs and long dorsal seta; distal hook robust and recurved at 66° in right limb, reduced almost to nothing and curved at 151° in left limb. Female fifth limb slender with fairly long claws. Dorsodistal claw of sixth limb about two-thirds as long as mediodistal claw. Recurved seta of seventh limb
rather short, reaching only to middle of podomere II, lined with very fine hairs decreasing in size distally. Furcae rather short, straight, rapidly tapering, with small proximal setae. Hemipenis oblong with rounded outlines, with short lobate anterodorsal lamellar flap; copulatory rod fairly short, irregularly bent. Zenker's organ with very small terminal bulb; vas deferens arranged in three loose loops, almost as long as Zenker's organ.

Comparisons.-Mn. bernudae is much smaller and more elongate than most other species. It is somewhat similar in shape to Mn. hortuli, which also occurs in Bermuda, but is smaller and more elongate, with a more angulate, truncate posterior and dorsal outline and deeper ventral indentation; it also has less tapering male fifth limbs and a slightly less elongate hemipenis with a lobate rather than triangular anterodorsal lamellar flap. Mn. caiman, Mn.sp. 44, and $M n$. succinea are proportionally higher and less equilateral, with more highly arched dorsal margins and more tapering posterior angles. Mn. succinea also has more sinuate, more tapering male fifth limbs. Mn. vargata is similar in size and in its angulate anterior and posterior outlines but is more highly arched dorsally, with a more or less distinct dorsal angle but no posterodorsal angle.

MACROCYPRINA BONADUCEI new species

Graph 59; Figures 16.33, 17.32, 21.9, 28.12, 24.44; Plates 54.3,4, 55.2,3, 81.1
?Macrocypris sp. Bonaduce et al., 1980, p. 144.
Derivation of name.-For Gioacchino Bonaduce, who collected and loaned the specimens.

Material.-Nineteen empty valves.
Types.-Holotype 2264RV USNM 240830, paratypes USNM 240831-240835.

Type locality.-Bonaduce 5, Gulf of Aqaba, Sansone II, station 1, southeast coast of Sinai between Sharm-el-Sheikh and Na'ama, at Fiasko Reef, depth 40 m .

Occurrence.-At Bonaduce 5, 5 specimens; at Bonaduce 6,14 specimens.

Distribution.-Holocene; Gulf of Aqaba, known dead depth range $15-40 \mathrm{~m}$.

Dimensions.-Holotype 2264, RVL 1.11 mm , RVH 0.47 mm. See also Graph 59.

Diagnosis.-Carapace elongate-subtriangular in lateral outline, inequilateral; dorsal margin steeply arched with more or less distinct dorsal angle, located at or slightly anterior to midlength; anterior margin evenly rounded and slightly truncate; ventral indentation fairly deep, broad, angulate; posteroventral margin slightly upswung; posterior margin broadly and obliquely rounded, posterior angle slightly truncate, about 45° to 50°; zone of concrescence irregularly broad; patch pattern consisting of four irregular, small scars.

Comparisons.-Mn. bonaducei is slightly higher and more broadly rounded anteriorly and posteriorly than Mn. captiosa, with smaller, separate, opaque spots and a less angulate ventral indentation. It is much smaller than $M n$. okinawae, with a less prominent dorsal angle and less narrowly terminated posterior end. It is larger, less elongate, and more deeply indented ventrally than the species reported as "Macrocypris sp." by Bonaduce et al. (1976), which is another species of Macrocyprina that also occurs in the Gulf of Aqaba.

MACROCYPRINA CAIMAN new species

Graph 60; Figures 16.19, 17.20; Plates 44.5,6, 45.6
Derivation of name.-Spanish caiman, of Arawakan and Cariban origin, the American alligator, to be treated as an indeclinable Latin noun; for the Cayman Islands, where the species lives.

Material- 27 empty carapaces and valves.
Types.-Holotype specimen 2418RV USNM 240836, paratypes USNM 240837-240838.

Type locality.-UH 2860, Grand Cayman Island, off south end, in coralline sand, depth 18 m .

Occurrence.-At UH 2860, 27 specimens.
Distribution.-Holocene; Grand Cayman Island, in coralline sand, depth 18 m .

Dimensions.-Holotype specimen 2418, RVL 0.97 mm , RVH 0.45 mm . See also Graph 60.

Diagnosis.-Carapace small, inequilateral in lateral outline; dorsal margin high-arched, smoothly curving; anterior margin narrowly rounded; ventral margin moderately indented, only slightly upswept posteriorly; posterior angle of about 45° broadly rounded, slightly flared; zone of concrescence broad, vestibules correspondingly small; patch pattern of three variable spots.

Comparisons.-Mn. caiman is much smaller and proportionally higher than most other species. It is most similar in size and shape to $M n$. sp. 44 of St. Croix but has a more evenly and narrowly rounded anterior margin and tapers to a narrower posterior angle. Mn. hawkae, Mn. schmitti, and $M n$. belizensis are much larger and more elongate, with more sinuously flared posterior angles and more evenly rounded anterior margins, and they also tend to have larger, more irregular opaque spots. Mn. propinqua is slightly larger and more elongate, with a more broadly rounded, truncate anterior margin and less flared posterior angle.

MACROCYPRINA CAPTIOSA new species

Graph 61; Figures 16.34,35, 17.33,34, 21.5, 24.43, $28.27-30,31.6,35.13,45.11,47.15,68.16,80.38$; Plates 52.7-9, 53.8-10, 81.2,3, 96.14-17, 108.5,6,8,9

Derivation of name.-Latin captiosus, fallacious, deceptive; because adults are the same size and nearly the same shape as juveniles of $M n$. madagascarensis, with which they occur.

Material-Eleven valves and carapaces, including 4 with fragmentary, dry soft parts.

Types.-Holotype male specimen 2351M USNM 240839, paratypes USNM 240840-240847.

Type locality.-Anton Bruuncruise 8 station $412 \mathrm{C}, 12^{\circ} 47^{\prime} \mathrm{S}$, $47^{\circ} 42^{\prime} \mathrm{E}$, depth 23 m , near Nosy Be, Madagascar.

Occurrence.-At AB-8-412C, 4 live plus 2 specimens (3M, 1F); at Nosy Be 230, 1 specimen; at Nosy Be 366, 2 specimens; at Nosy Be 381, 2 specimens.

Distribution.-Holocene; Nosy Be, Madagascar, known live at 1 m and dead depth range 1 to 23 m .

Dimensions.-Holotype male specimen 2351M, RVL 1.12 mm, RVH 0.46 mm , LVL 1.10 mm , LVH 0.47 mm . See also Graph 61.

Diagnosis.-Carapace elongate-subtriangular; dorsal margin high-arched, smoothly curving, broadly domed; anterior margin fairly broadly and evenly rounded; ventral indentation deep, angular; posteroventral margin straight or nearly so, not upswung posteriorly; posterodorsal margin steeply sloping or slightly sinuate; posterior angle narrowly rounded, slightly flared, about 50°; zone of concrescence broad, irregular; patch pattern consisting of three

irregular spots, which may be joined by a central, less opaque streak.

Male fifth limbs with small pegs, long dorsal seta, and narrow distal hook recurved at 89° in right limb and 42° in left limb. Female fifth limb of average proportions with rather short, very thick distal claws; dorsodistal claw about half as long as exceptionally thick mediodistal claw. Seventh limb with recurved seta lined proximally with fine hairs, which abruptly give way at about midlength to four coarse barbs, after which the barbs decrease regularly in size to fine distal hairs. Furcae fairly short, thin, bowed only near tips. Hemipenis rounded-subtriangular in outline, with nearly straight posterior and slightly concave anterior margins, anterodorsal margin bluntly rounded; copulatory rod fairly long, curved. Zenker's organ with long muscularized portion, very small terminal bulb; vas deferens arranged in about eight long loose loops, varying in size from two-thirds as long to as long as Zenker's organ.

Comparisons.-Adults of $M n$. captiosa are the same size as the A-1 instar of $M n$. madagascarensis but can be distinguished by the much more deeply indented ventral margin, the more narrowly rounded anterior margin, and the less flared posterior angle; also the male fifth limbs are less robust and less angulate. Mn. moza, which also occurs near Nosy Be, is even smaller, has a nearly straight ventral margin with almost no ventral indentation, a more angulate posterior margin, and more robust, angulate male fifth limbs. Mn. okinawae is much larger with a distinct dorsal angle and more sinuous contours. Mn. africana is larger, less deeply indented ventrally, proportionally more elongate, and has similarly elongate male fifth limbs but more recurved distal hooks. The sinuate-subtriangular hemipenis without accessory lamellar flaps is unique and diagnostic.

MACROCYPRINA DECORA (Brady, 1866)

Cytherideis (Cytherideis) decora Brady, 1866, p. 366, pl. 57, fig. 13a-c.
Not Macrocypris decora (Brady) Brady, 1880, p. 44, pl. 1, fig. 3a-d, pl. 6, fig. 8a, b; Brady, 1890, p. 492; A. Scott, 1905, p. 370; Chapman, 1907, p. 6; Brady, 1911, p. 595; Müller, 1912, p. 122; Chapman, 1914, p. 29; Chapman, 1915, p. 37; Chapman, 1916, p. 351; Chapman, 1919, p. 20; Ghapman, 1926, p. 128; Chapman and Crespin, 1928, p. 168; Chapman, 1941, p. 194; Crespin, 1941, p. 254; Crespin, 1943, p. 101; Crespin, 1944, p. 17; van den Bold, 1946, p. 65, pl. 1, fig. 14; Key, 1954, p. 219, pl. 3, fig. 10, pl. 6, fig. 4; Tressler, 1954, p. 432; van den Bold, 1958, p. 397, pl. 1, fig. 2; van den Bold, 1963, p. 365 ; Benson, 1964, p. 416; van den Bold, 1965, p. 386; Baker and Hulings, 1966, p. 119, pl. 3, fig. 15; Hulings, 1967c, p. 94; Bhatia et al., 1972, p. 37; Ishizaki, 1977, table 4; De Deckker and Jones, 1978, p. 132; Khosla, 1978, p. 262, pl. 2, fig. 10; Hanal et al., 1980, p. 120; Zhao and Wang, 1988, fig. 5, 7.

Not Macrocyprina decora (Brady) van den Bold, 1968, p. 19. Not Macrocypris sp. cf. M. decora (Brady) Hornibroor, 1952, p. 16; Eagar, 1971, p. 54.
Not Macrooypris sp. aff. M. decora (Brady) van den Bold, 1971, p. 386, 338; van den Bold, 1973, table 1; van den BoL.d, 1975, table 1.
Material-No authentic material could be located.
Types.-No primary types of this species are present in the G. S. Brady cabinet of the Hancock Museum, Newcaste-upon-Tyne. The slide labeled "Cytherideis maculata \&c decora (Brady), Australia, West Indies" contains only a single specimen, a juvenile left valve that is much more elongate than Brady's illustrations. Two other slides labeled "Macrocypris decora Brady" contain material from Challenger stations 122 and "Nares Harbour, Admiralty Islands" of Brady (1880).

Type locality.-Brady (1866) reported it as "Australia, 17 fathoms (Prof. Juke's soundings)." The exact location of this sounding is not known.

Dimensions.-Brady (1866) reported a length of 1.05 mm for this species.

Remarks.-Brady (1866) stated that this species was "closely related to Cythere minna Baird," exceptsmaller and with a less acute posterior angle. In later papers it is clear that Brady's concept of this species was equivalent to the total present contents of the genus Macrocyprina. He subsequently reported it worldwide, from material that represents many different species of Macrocyprina. Later authors also have designated a great many distinct species of Macrocyprina by this name. McKenzie (1967b, unpublished manuscript) assigned the species to Macrocyprina in his list of the G. S. Brady cabinet.

It is perplexing, therefore, to note that Brady's original illustrations (1866, pl. 47, fig. 13a-c) appear to represent a paracypridine rather than a macrocypridid ostracode. Figure 13a shows that the greatest height is located distinctly behind midlength, which is found in no other Macrocyprina but is possible for a paracypridine or cytheracean. The muscle-scar pattern was described by Brady as "lucid spots arranged in an obliquely transverse row near the centre of the carapace"; his figure 13 c shows this clearly. This pattern is most easily interpreted as the cytheracean vertical row of four scars, but the lateral outline is unusual for a cytheracean. Alternatively, a small dot below and behind this row of scars in Brady's illustration can be interpreted as an indistinct, imperfectly seen scar, in which case the scar pattern could be that of the Subfamily Paracypridinae, with the posterior two scars drawn as one scar by the artist. Other features of the drawing are also puzzling. Numerous normal pore canals have been represented as dots; the pores of Paracypridinae are often large enough to draw in this conspicuous manner, but those of Macrocyprididae never are. No patch pattern is drawn, a character invariably seen in fresh specimens of Macrocyprina but not in Paracypridinae. Brady described the surface as "smooth, with scattered hairs," and yet the setae
associated with the normal pore canals of Macrocyprididae are so tiny that they can be seen only under the SEM or at extremely high magnification. Lines at the anterior and posterior margins may be intended to indicate long, complexly branching radial pore canals, as seen from the exterior in reflected light. Such regularly arranged bundles of canals are not known in Macrocyprina but would be appropriate for the paracypridine genus Paracypnis and its relatives. Brady's figure 13b, labeled as an interior view, shows an extremely narrow calcified inner lamella, too narrow for the adult or any of the last five instars of Macrocyprina. In most Paracypridinae, on the other hand, the calcified inner lamella is extremely narrow or very fragile until the adult stage. Brady's figure 18c, a dorsal view of this right valve, seems to show an adont hinge appropriate for Paracypridinae, rather than the distinctive macrocypridid hinge, and it certainly lacks the sinuous curvature of the dorsal valve-contact line that characterizes Macrocyprididae. In sum, the characters of the original illustrations are most appropriate for Paracypris or a related genus of Paracypridinae.

Apparently, there is no type material, and the type locality was not specified precisely enough to be recollected for topotypes. The concept associated with $M n$. decora has been as broad as the entire genus Macroypprina, which may contain hundreds of living species, and no taxonomist with a narrow concept for species of Macrocyprina has referred any material to this species. None of the known Australian or West Indian species of Macrocyprina resemble Brady's illustration.

The International Code of Zoological Nomenclature expressly forbids the designation of neotypes except when strictly necessary to conserve stability. That is not the case here. Past usage of the name decora can hardly be described as stable, nor are there other than sentimental reasons to retain Brady's name. I recommend that Macrocyprina decora (Brady, 1866) be ignored as a nomen dubium and that no further material be referred to this species.

MACROCYPRINA DISPAR (Müller, 1908)

> Graph 62; Figures $16.41,42,17.40,41,21.2,28.17,18$, $81.23,85.15,45.16,47.18,52.28,53.23,69.7,74.4$, $77.3,79.5$; Plates $54.10-12,55.10-12,96.7 .8,109.1,2$, 112.2

Macrocypris dispar Müluer, 1908, p. 96, pl. 13, fig. 1-7; Müller, 1912, p. 121; Hartmann and HartmannSchröder, 1975, p. 360, table 4.

Material-Four type specimens, including 1 male, 2 females, and 1 juvenile; and four empty valves; for a total of 8 specimens.

Types.-Müller's syntypes include three dissection slides, type-series 13130, in the Zoological Museum of the Humboldt University of Berlin. Each has the soft parts and valves of one specimen imbedded in Canada balsam. Each

slide is labeled "Macrocypris dispar, (13130), 1741, GaussExp., 217, 1-4.7.03." There are two females and one male, labeled correctly on the slides, rather than one female and two males as reported by Müller. The male, bearing my specimen number 1933M, is here chosen as the lectotype. The females, bearing my specimen numbers 1931F and 1932F, are here designated paralectotypes. In addition, there is a vial labeled "Nr. 13130, Macrocypris dispar G. W. Müller, Simonstown, Deutsche Südpolar Exp., 217-1-4.7.4." This vial contains one undissected, juvenile, paralectotype specimen with decalcified carapace in alcohol.

The new material for this species is catalogued as USNM 240848-240850.

Type locality.-Near Simonstown, South Africa. Müller did not give the exact location or depth.

Occurrence.-In ZMHUB 13130, 4 live specimens (1M, 2F, 1J); at GIL 616, 1 specimen tentatively identified; at GIL 623, 3 specimens tentatively identified.

Distribution.-Holocene; South Africa. Hartmann and Hartmann-Schröder (1975) listed this species in a table but found no additional specimens in their coastal South African collections (Gerd Hartmann, personal communication).

Dimensions.-Lectotype male specimen 1933M, RVL 1.23 mm , RVH 0.52 mm , LVL 1.23 mm , LVH 0.46 mm . See also Graph 62. Müller reported a length of 1.25 mm for both male and female.

Diagnosis.-Carapace subovate-oblong in lateral view; dorsal margin highly arched, smoothly curving; anterior margin moderately and evenly rounded; ventral indentation broad; posteroventral margin curving upward to a very broadly and obliquely rounded posterior angle of about 50°, not flared; zone of concrescence fairly narrow, even; patch pattern consists of a broad, high, roughly triangular central opaque region.

Male fifth limbs fairly large, elongate, with elongate pegs, long dorsal setae, and blunt distal hooks recurved at 56° in right limb and 37° in left limb. Female fifth limb slender with comparatively long claw on podomere IV; dorsodistal claw rather long and mediodistal claw rather short, so that all four claws terminate at nearly the same position. Sixth limb with rather slender claws; dorsodistal claw about half as long as mediodistal claw. Seventh limb
with very long, recurved seta, lined proximally with fine hairs, in midsection with more widely spaced, coarser barbs, and distally with fine hairs again. Furcae fairly robust, straight, bowed near tips, with long proximal setae. Hemipenis oblong with sinuously indented anterior margin, with small anteroventral and larger anterodorsal lobate lamellar extensions; copulatory rod long, curved. Zenker's organ with very tiny terminal bulb; vas deferens arranged in three loose loops that are as long as Zenker's organ.

Comparisons.-Mn. dispar is smaller than Mn. africana but fairly similar in carapace shape, differing in the more broadly, more evenly rounded anterior and posterior margins and the deeper ventral indentation; it also has slightly thicker male fifth limbs with less recurved distal hooks and has much smaller anterodorsal and anteroventral lamellar extensions on the hemipenis. The scalloped anterior profile of the hemipenis is unique among the species studied.

Remarks.-The small number of adult specimens available for study makes it difficult to diagnose this species on carapace characters. The tentatively identified specimens in the GIL samples are juveniles.

Müller (1908, p. 97, pl. 13, fig. 6, 7) remarked on some small differences between the male and female furcae, such as sizes of proximal setae, stating that sexual dimorphism of the furca was unknown in Macrocyprididae and rare in other ostracodes. Sexual dimorphism is now demonstrated in the furcae of Macrocypris and Macromckenziea and suspected in some species of other genera (see Figures 46 and 47). Nevertheless, as Müller pointed out, more than four specimens will be needed to evaluate the significance of the variability in Macrocyprina dispar. In any case, the posterior setae are very tiny and often obscured by the edge of the ramus, so their absence from a drawing is not always significant.

MACROCYPRINA HARTMANNI new species

Graph 76; Figures 16.26,27, 17.26,27, 21.3, 23.11, $24.45,28.25,26,31.20,35.14,45.12,47.19,52.26,27$, $53.1,2,56.22,57.14,59.7,24,62.3,63.16,64.21,87$, 68.17, 80.34; Plates 50.3,4, 51.4,5, 81.4, 84.5, 96.9,10, 109.20-24,112.1,10

Derivation of name.-For Gerd Hartmann, who collected and loaned the specimens.

Material-Six specimens in alcohol, including 1 male, 2 females, 2 juveniles, and 1 empty valve.

Types.-Holotype male specimen 2130M UHZM (FZ)K33987, (DP)K-33987A; paratypes UHZM K-83988-K-33992.

Type locality.-UHZM K-31358, Goode Beach, Frenchmans Bay, near Albany, southwestern Australia, Septem-ber-October 1975.

Occurrence.-In UHZM K-31358, 5 live plus 1 specimens (1M, 2F, 2J).

Distribution.-Holocene; near Albany, southwest Australia.

Dimensions.-Holotype male specimen 2130M, RVL 1.22
mm , LVH 0.51 mm , LVL 1.21 mm , LVH 0.52 mm . See also Graph 76.

Diagnosis.-Carapace of moderate size, elongate-oblong in lateral outline; dorsal margin low-arched, smoothly curving; anterior margin narrowly but evenly rounded; ventral margin deeply indented, rather angulate; posteroventral margin straight, not upswung posteriorly; posterior angle narrowly and obliquely rounded, not flared, about 50° to 58°; zone of concrescence broad, irregular, vestibules slightly constricted; patch pattern consists of three irregular opaque spots connected by a less opaque, linear central band.

Male fifth limbs somewhat asymmetrical, with elongate ventral pegs and dorsal setae; short distal hook recurved at 64° in right limb and 79° in left limb. Female fifth limb very slender and elongate, with long, slender claws. Sixth limb with dorsodistal claw more than four-fifths as long as mediodistal claw. Seventh limb with short recurved seta, reaching about to the middle of podomere II, lined with long fine hairs proximally, which thicken and lengthen in midsection before decreasing again in size toward the distal tip. Furcae long, slender, gracefully curved with conspicuous proximal setae and well-demarcated terminal portions. Hemipenis elongate, with scoop-shaped, folded, subtriangular, ventral lamellar extension, and an overlapping anterodorsal lamellar lobe; copulatory rod short, nearly straight. Zenker's organ long, thick, without differentiated terminal bulb; vas deferens arranged in short loops, less than half as long as Zenker's organ.

Comparisons.-Mn. hartmanni is distinguished from most other species by its elongate shape and acutely tapering posterior end. It is slightly smaller than Mn. quadrimaculata, with a more deeply indented, less sinuous ventral margin and more evenly rounded anterior margin. Mn. sp .35 is even more elongate and has a more narrowly rounded anterior margin, although the patch and color patterns are quite similar. The scoop-shaped, triangular lobe that fits around both sides of the ventral margin of the hemipenis is unique among the species studied. Somewhat similar ventral lamellar extensions are developed in

Mh. sinuata, Mh. heroica, and Mx. adunca, but these are only two-dimensional lamellae that do not actually wrap around both the inner and outer faces of the ventral margin. The folded, overlapping ventral tip that is seen in some photographs of Mh. opaca results from compression of this curved, ventral, lamellar structure by the cover glass of the dissection mount and is not homologous with these lobate lamellae of Mn. hartmanni.

MACROCYPRINA HAWKAE new species

Graph 68; Figures $16.11,12,17.11,12,21.15,23.7$, 28.14-16, 31.18, 35.10, 45.7.47.20, 54.11-14, 55.11-13, 69.8, 80.30; Plates 48.1-6, 49.1-6, 81.5, $97.15-18,109.16,17$

Derivation of name.-For Lois Hawk, who helped as a graduate research assistant in this study.

Material-Thirteen dry carapaces and valves with dried remains of body and appendages; and 203 empty ones; for a total of 216 specimens.

Types-Holotype male specimen 1817M USNM 240851, paratypes USNM 240852-240874; HVH 10880-10891; KUMIP 1,124,674-1,124,763.

Type locality.-UH 2371, near Man O' War Cay, Bahamas, in about 5 m of water.

Occurrence.-At UH 2371, 18 live plus 51 specimens (11M, 2F); at UH 2376, 5 specimens; at UH 2638,5 specimens; at UH 2648, 3 specimens; at UH 2740, 89 specimens; at UH 2742,17 specimens; at UH 2744,5 specimens; at UH 2963, 1 specimen; at UH 2973, 2 specimens; at Fithian st. 1040, 1 specimen; at Fithian st. 1041, 1 specimen; at Fithian st. 1047, 1 specimen; at Fithian st. 1055, 1 specimen; at Fithian st. 1076, 2 specimens; at Fithian st. 1108, 1 specimen; at Fithian st. 1109, 1 specimen; at Fithian st. 1185, 4 specimens; at Fithian st. 1189, 2 specimens; at Fithian st. 1200, 2 specimens; at Fithian st. 1202, 5 specimens; at Fithian st. 1203, 1 specimen; at Fithian st. NT, 3 specimens.

Distribution.-Holocene; Bahamas, Jamaica, Florida Keys, Belize, Honduras, and Gulf of Paria, known live at 1 m , dead depth range 1 to 183 m .

Dimensions.-Holotype male specimen 1817M, RVL 1.34 mm, RVH 0.60 mm . See also Graph 63.

Diagnosis.-Carapace large, elongate-oblong in lateral outline; dorsal margin highly and evenly arched; anterior margin broadly and evenly rounded; ventral indentation deep, sinuate; posteroventral margin not upswung or only slightly so; posterodorsal margin slightly concave; posterior angle broadly rounded and slightly flared, about 50°; zone of concrescence very broad, anterior vestibule slightly constricted; patch pattern of three large, irregular scars, middle scar tending to fuse with a dorsal opaque spot.

Male fifth limbs very asymmetrical. Right limb large, robustly proportioned, with thick ventral pegs, long dorsal seta, and thick, angulate distal hook recurved at 78°. Left limb bizarre, highly specialized; podomere II sinuously
flared and bell-shaped distally, terminating in an ovate distal surface densely armed with short spines or tubercles, and with small ventral pegs, but with distal hook almost totally reduced, represented only by vestigial, triangular extension. Female fifth limb robustly proportioned, with short, thick claws. Sixth limb with rather short, thick dorsodistal and mediodistal claws of nearly equal length. Furcae tapering, curved at tips. Hemipenis oblong, with broad, blunt, irregularly lobate anterior lamellar extension; copulatory rod fairly short, straight. Zenker's organ long, with tiny terminal bulb; vas deferens arranged in three loose loops about as long as Zenker's organ.

Comparisons.-Mn. hawkae is larger than Mn. schmitti and $M n$. belizensis but similar in shape and patch pattern; it differs by its proportionally higher, more exaggerated, sinuate shape and especially by the slightly concave posterodorsal margin. Mn. propinqua and Mn. caiman are even smaller, with more narrowly rounded, more truncate anterior and posterior margins and shallower ventral indentation. The hemipenis is fairly similar to that of Mn. schmitti but deeper, with a deeper, broader, irregular anterior extension. The grotesque, vestigial, brushlike, hirsute male left fifth limb is unique.

MACROCYPRINA HORTULI new species

Graph 64; Figures $16.3,4,17.3,4,21.10,28.3,24.37$, $28.12,13,31.17,35.6,45.3,47.21,54.17-20,55.16-19$, $68.8,80.36$; Plates $46.1,2,7,47.1,2,7,8,77.1,2,81.6-8$, $97.1-4,109.3,7,8,112.9$

Macrocyprina sp. Maddocks, 1974, p. 208, pl. 1, fig. 14-16, 19.

Derivation of name.-Latin hortulus, $-i$, a little garden; named for the East and West Flower Gardens, two shelfedge coralline banks in the northwestern Gulf of Mexico.

Material.-Four specimens in alcohol, including 3 males and 1 female; and 96 empty carapaces and valves; for a total of 100 specimens.

GRAPH 64

Types.-Holotype male specimen 1762 USNM 240875 , paratypes USNM 240876-240877; and KUMIP 1,124,7641,124,780.

Type locality.-UH 2433, West Flower Garden, sand flat among coral masses, depth $21-24 \mathrm{~m}$.

Occurrence.-At UH 166, 4 specimens; at UH 1220, 19 specimens; at UH 1264, 1 live plus 4 specimens (1M); at UH 1494, 1 specimen; at UH 1495, 16 specimens; at UH 1510, 3 specimens; at UH 1511, 1 specimen; at UH 1559, 1 specimen; at UH 1571, 5 specimens; at UH 1613, 1 live plus 14 specimens (1M); at UH 1617, 3 specimens; at UH 1985, 7 specimens; at UH 2018, 18 specimens; at UH 2433, 2 live specimens (1M, 1F).

Distribution.-Holocene; East and West Flower Gardens, northwestern Gulf of Mexico, and Bermuda; known live depth range 21 to 27 m , dead from 5 to 96 m .

Dimensions.-Holotype male specimen 1762M, RVL 1.08 mm, RVH 0.46 mm , LVL 1.06 mm , LVH 0.46 mm . See also Graph 64.

Diagnosis.-Carapace fairly small, oblong in lateral outline, subequilateral; dorsal margin low-arched without any angles; anterior margin narrowly rounded, slightly truncate; ventral margin broadly indented; posteroventral margin not upswung; posterior angle broadly and obliquely rounded, slightly truncate, not flared, about 55° to 60°; patch pattern of three small spots; zone of concrescence of moderate width.

Male fifth limb slender, with tiny pegs and long dorsal seta; right limb with gracefully tapering distal hook recurved at 81°; left limb with distal hook much reduced, acutely tapering, and curved at 142°. Female fifth limb slender with slender claws. Sixth limb with dorsodistal claw nearly as long as mediodistal claw. Recurved seta of seventh limb short, reaching only to the middle of podomere II, lined with fine hairs that decrease regularly in size. Furcae tapering to blunt tips, only slightly curved, with tiny proximal setae. Hemipenis oblong, with small, triangular anterodorsal lamellar extension; copulatory rod fairly long, sinuate. Zenker's organ very long, with small terminal bulb; vas deferens arranged in three loose loops that are nearly as long as Zenker's organ.

Comparisons.-Mn. hortuli is only slightly smaller than Mn. skinneri but is proportionally less high, with a lower dorsal margin and less tapering posterior. Mn. bermudae is somewhat similar in shape but much smaller and even more elongate; it also has more compact, reduced male fifth limbs. Mn. propinqua is a little smaller, with a higherarched dorsal margin, narrower posterior angle, and broader, more irregular zone of concrescence, as well as more sinuous, more acutely tapering male fifth limbs. The hemipenis of $M n$. hortuli is very similar in its structure to that of Mn. bermudae and Mn. skinneri, with only slight differences in proportions. Mn. schmitti, Mn. belizensis, and Mn. hawkae are much larger, with more sinuate, inequilateral outlines, and more reduced, specialized male fifth limbs.

MACROCYPRINA JAMAICAE new species

Graph 65; Figures $16.32,17.30,21.14,23.8,24.41$,
$54.37,38,55.20,21$; Plates $50.7-10,51.8-11,81.9,10$
Derivation of name.-For the island of Jamaica.
Material-Forty-five empty carapaces and valves.
Types.-Holotype specimen 1835RV USNM 240900, paratypes USNM 240901-240913; and KUMIP 1,124,7811,124,787.

Type locality.-UH 2648, Jamaica, fore-reef sand near Negril, depth 1 m .

Occurrence.-At UH 2638, 7 specimens; at UH 2645, 15 specimens; at UH 2648, 23 specimens.

Distribution.-Holocene; Jamaica, in coralline sand, known dead depth range 1 to 6 m .

Dimensions.-Holotype specimen 1835, RVL 1.47 mm , RVH 0.61 mm . See also Graph 65.

Diagnosis.-Carapace large, elongate-subtriangular in lateral oudine, with sinuous contours; dorsal margin steeply arching to more or less distinct dorsal angle, located at or slightly posterior to midlength; anterior margin broadly and obliquely rounded, slightly truncate; ventral margin sinuate, with small ventral indentation; posteroventral margin slightly upswung; posterior angle broadly and evenly rounded, truncate and slightly flared, about 40°; patch pattern of three irregular spots, anterior spot tending to divide; zone of concrescence broad, irregular.

Comparisons.-Mn. jamaicae is larger than any other known Caribbean species and easily distinguished by the elongate, subtriangular, subequilateral shape and nearly straight, weakly sinuate ventral margin. Mn. madagascarensis is similar but smaller and more elongate, with a more prolonged posterior angle. Mn. noharai is smaller and more elongate, with a more broadly and deeply indented ventral margin and a more pointed, upturned posterior angle.

MACROCYPRINA MACULATA (Brady, 1866)

Cytherideis (Cytherideis) maculata Brady, 1866, p. 367, pl. 57, fig. 12a,b.

Not Macrocypris maculata (Brady) Brady, 1868c, p. 179; Brady, 1867-1871, p. 152; Brady, 1880, p. 44, pl. 1, fig. 2a-d; A. Scott, 1905, p. 370; Müluer, 1912, p. 124; T. Scott, 1912, p. 581, pl. 14, fig. 1, 2; Chapman, 1915, p. 51; Chapman and Crespin, 1928, p. 168; Tressler, 1954, p. 433; Benson, 1964, p. 403; van den Bold, 1966, p. 46, pl. 1, fig. 3; Hulings, 1967c, p. 94; Ishizaki, 1977, table 4; van den Bold, 1977, p. 182; De Deckker and Jones, 1978, p. 133; Hanat et al., 1980, p. 120.
Not Macrocyprina maculata (Brady) Bhatia et al., 1972, p. 37.

Material.-No useful material could be located for this species.

Types.-There is just one slide for this species in the G. S. Brady cabinet in the Hancock Museum, Newcastle-upon-Tyne. It is labeled "Cytherideis maculata \& decora (Brady), Australia, West Indies." It contains only one specimen, an opaque, juvenile left valve, on which the patch pattern and marginal features cannot be seen (see Plate 51.7). As the specimen is quite useless for determining to which of the many Australian and West Indian species of Macroypprina this name should apply, I am not designating it as the lectotype of either species.

Type locality.-Unknown. Brady (1866) reported it as "Australia, West Indies."

Dimensions.-For the juvenile specimen in the Brady collection, LVL 1.01 mm , RVH 0.43 mm . Brady (1866) reported a length of $1 / 23$ inch (1.16 mm).

Remarks.-There has never been any consensus among later workers or even among Brady's own later papers as to the diagnostic characters of this species, except that it was obviously an elongate species of Macrocyprina. Brady's (1866) original illustrations clearly show three opaque spots, but the illustrated specimen apparently has not survived. Brady's (1880) specimens and illustrations belong to other species of Macrocyprina. Later workers have used the name maculata for several different species of Macrocyprina and for very young juveniles of other macrocypridid genera. The single juvenile reported by this name by van den Bold (1966) from Colon Harbour, Panama, is fairly similar in size, proportions, and anterior shape to the Hancock Museum specimen but has a slightly more broadly rounded anterior margin and a more elongated, pointed posterior end. See Mn. sp. 48, described below (Plate 59.7). These small but significant differences, the absence of adults, and the uncertainty of provenance for Brady's species prevent identification of these specimens.

None of the well known West Indian species of Macroopprina of this size are sufficiently elongate to have provided the illustrations of Brady (1866). Of the named species described in this report, Macrocyprina hartmanni and $M n$. skinneri are the most similar in size and shape, but there is no evidence that either is the species Brady meant to describe. Usage of maculata has not been stable, and only sentiment urges retention of Brady's name. Common

sense concludes that Mn. maculata should be ignored as a nomen dubium.

MACROCYPRINA MADAGASCARENSIS new species

Graph 66; Figures $16.39,40,17.88,39,28.8,9,31.21$, $35.12,45.13,47.16,52.39,40,53.38,39,57.13,59.10,23$, $62.10,63.14,64.20,36,68.6,80.29$; Plates 52.1-9, $53.1-3,7,63.17,77.7-9,81.11,12,95.1-6.9$, $108.12,16-20,111.8,112.13$

Species MA Maddocks, 1966, p. 64, fig. 50.
Macrocyrina n. sp. (OTU 20) Maddocks, 1976, p. 42.
Derivation of name.-For the island of Madagascar.
Material-Sixty-six specimens in alcohol, including 11 males, 11 females, and 44 juveniles; and 432 empty carapaces and valves; for a total of 498 specimens.

Types.-Holotype male specimen 1757M USNM 240914, paratypes USNM 240915-240957; KUMIP 1,000,097, 1,124,788-1,124,921.

Type locality.-Nosy Be 362, washings of green calcareous alga, Lac du Cratère, Nosy Be, Madagascar, 22 July 1964.

Occurrence.-At AB-8-409J, 1 specimen; at AB-8-412C, 1 specimen; at JR-29, 3 live specimens ($2 \mathrm{M}, 1 \mathrm{~F}$); at Nosy Be 019, 4 specimens; at Nosy Be 020, 8 specimens; at Nosy Be 023, 1 specimen; at Nosy Be 068, 1 live specimen (1J); at Nosy Be 070,6 specimens; at Nosy Be 079 , 1 live specimen (1J-3); at Nosy Be 089, 1 live specimen (1J-3); at Nosy Be 094, 2 specimens; at Nosy Be 095, 1 live specimen ($1 \mathrm{~J}-3$); at Nosy Be 117, 2 specimens; at Nosy Be 127, 1 specimen; at Nosy Be 155, 1 live specimen (1F); at Nosy Be 158, 1 live specimen (1J-3); at Nosy Be 159, 2 live specimens (2J); at Nosy Be 212, 9 live specimens (2M, 1F, 2J-1, 1J-2, 3J-3); at Nosy Be 219, 1 live specimen (1J-2); at Nosy Be 220, 11 live specimens (1F, 2J-1, 4J-2, 4J); at Nosy Be 229, 1 live specimen (1J-2); at Nosy Be 230, 2 live specimens (1F, 1J-1); at Nosy Be 248, 8 specimens; at Nosy Be 249, 1 specimen; at Nosy Be 270, 9 live specimens (1M, 2MJ-1, 2FJ-1, 4J); at Nosy Be 271, 1 live specimen (1J-1); at Nosy Be 275,

1 live specimen (1J-2); at Nosy Be 276, 2 live specimens (1F, 1J-2); at Nosy Be 277, 2 live specimens (1M, IF); at Nosy Be 327, 4 specimens; at Nosy Be 329B, 1 specimen; at Nosy Be 344, 3 specimens; at Nosy Be 353, 1 live specimen (1J-2); at Nosy Be 359, 10 live specimens (3M, 3F, 2J-1, 2J-2); at Nosy Be 361, 7 specimens; at Nosy Be 362, 1 live specimen (1M); at Nosy Be 363, 1 live specimen (1M); at Nosy Be 366, 27 specimens; at Nosy Be 381, 5 specimens; at Nosy Be 382, 4 specimens; at Nosy Be 394, 5 specimens; at Nosy Be 395, 1 specimen; at Nosy Be 400, 26 specimens; at Nosy Be 401, 23 specimens; at Nosy Be 403, 1 specimen; at Nosy Be 404, 6 specimens; at Nosy Be 405, 1 specimen; at Nosy Be 419, 2 specimens; at Nosy Be 427, 2 live specimens (1F, 1J-1); at Nosy Be 465, 6 specimens; at Nosy Be 466, 1 specimen; at Nosy Be 472, 16 specimens; at Nosy Be 473, 1 specimen; at Nosy Be 474, 1 specimen; at Nosy Be 474A, 1 specimen; at Nosy Be 477, 1 specimen; at Nosy Be 478, 4 specimens; at Nosy Be 480, 4 specimens; at Nosy Be 484, 1 specimen; at Nosy Be 487, 1 specimen; at Nosy Be 491, 160 specimens; at Nosy Be 496, 51 specimens; at Nosy Be 497, 20 specimens; at Nosy Be 498, 7 specimens; at Nosy Be 504, 3 specimens; at Nosy Be 508, 1 specimen; at Nosy Be 521, 1 live specimen (1J-2); at Nosy Be 528, 2 specimens.

Distribution.-Holocene; Nosy Be, Madagascar. Live animals were found in washings of calcareous and noncalcareous algae, live coral heads, coralline debris, sponges, and other invertebrates of the fringing reefs, in depths of 1 to 2 m . Empty carapaces and valves are common in reef sands and rare in nearby sandy muds; known dead depth range, 1 to 40 m .

Dimensions.-Holotype male specimen 1757M, RVL 1.36 mm, RVH 0.54 mm , LVL 1.36 mm , LVH 0.53 mm . See also Graph 66.

Diagnosis.-Carapace elongate-oblong in lateral outline, subequilateral, with sinuous contours; dorsal margin broadly but irregularly arched, greatest height located at or slightly behind midlength; anterior margin broadly but obliquely rounded, somewhat truncate; ventral margin weakly sinuate, nearly straight, with or without faint ventral indentation, slightly or not at all upswung posteriorly;
posterodorsal margin nearly straight; posterior angle very broadly rounded, truncate, about 45°; patch pattern of three or four small spots; zone of concrescence fairly broad, irregular; vestibules may be slightly restricted.

Male fifth limbs large, robustly proportioned, not very asymmetrical, with thick pegs, long dorsal setae, and thick, angulate distal hook recurved at 60° in right limb and 49° in left limb. Female fifth limb robust with short thick claws, mediodistal and ventrodistal claws the same length. Sixth limb with tufts of fine hairs on the dorsal surface of podomere II; distal claws rather short and thin, dorsodistal claw about half as long as mediodistal claw. Recurved seta of seventh limb short, reaching only to middle of podomere II, lined with a proximal comb of very fine hairs of regularly decreasing size; these are abruptly interrupted by about four large, sharp barbs, which are followed again by a comb of regularly decreasing barbs to fine distal hairs. Furcae slender, gracefully bowed, with long proximal setae. Hemipenis ovoid, with a thick, projecting anteroventral ridge and other, complex, heavily chitinized anterodorsal protuberances; copulatory rod short, straight. Zenker's organ with very large terminal bulb and rather short muscularized portion; vas deferens arranged in about eight loose loops, about equal in length to Zenker's organ.

Comparisons.-Mn. madagascarensis is much larger, more elongate, and more nearly equilateral than either $M n$. moza or Mn. captiosa, which have more deeply indented ventral margins and more tapered posteriors. Mn. madagascarensis has larger, more robust, more nearly symmetrical male fifth limbs than most other species of the genus, which are quite similar to those of Mn. moza but much larger and more angulate than those of Mn. captiosa. The hemipenis of $M n$. madagascarensis is similar to that of $M n$. moza but differs in details of the anterodorsal structures, particularly in having thicker projecting anterodorsal and anteroventral ridges separated by a concave region, whereas the corresponding ridges in Mn . moza are shorter, and the intervening surface is convex. Mn. quadrimaculata is similar but smaller and slightly more elongate, with more pointed posterior angle and more deeply and broadly indented ventral margin. Mn. jamaicae is smaller and proportionally higher, with a more evenly rounded posterior angle and more distinct ventral indentation.

MACROCYPRINA MOZA new species

Graph 67; Figures 16.37, 17.36, 21.4, 23.10, 24.42, $28.6,7,81.5,35.11,45.14,47.14,69.6,80.31$; Plates $52.4-6,53.4-6,81.13-15,95.7,8,108.3,4.7$

Derivation of name.-For the Mozambique Channel; to be treated as an indeclinable Latin noun.

Material-Thirty carapaces and valves, including one with dry remains of female soft parts.

Types.-Holotype female specimen 2344 F USNM 240958, paratypes USNM 240959-240972.

Type locality.-Nosy Be 270, Madagascar, washings of dead coral behind the fringing reef near the beach at the village of Ambatoloaka, water depth $1-2 \mathrm{~m}$.

Occurrence.-At Nosy Be 020, 1 specimen; at Nosy Be 023, 1 specimen; at Nosy Be 094, 1 specimen; at Nosy Be 220, 1 specimen; at Nosy Be 280, 10 specimens; at Nosy Be 248, 1 specimen; at Nosy Be 270, 1 live plus 2 specimens (1F); at Nosy Be 465, 2 specimens; at Nosy Be 474, 1 specimen; at Nosy Be 474A, 1 specimen; at Nosy Be 478, 3 specimens; at Nohara Okinawa station 20, 5 specimens tentatively identified (?).

Distribution.-Holocene; Nosy Be and neighboring islets, Madagascar, and perhaps Okinawa; known live depth range in Madagascar 1 to 2 m , dead to 16 m .

Dimensions.-Holotype female specimen 2344F, RVL 1.10 mm , RVH 0.47 mm , LVL 1.08 mm , LVH 0.46 mm . See also Graph 67.

Diagnosis.-Carapace fairly small, elongate-oblong in lateral outline, inequilateral; dorsal margin broadly arched, with indistinct dorsal and posterodorsal angles, greatest height located at or slightly anterior to midlength; anterior margin evenly rounded, slightly truncate; ventral margin nearly straight except for small but distinct ventral indentation; posteroventral margin not upswung posteriorly; posterior angle narrowly and obliquely rounded, truncate, slightly flared, about 50°; patch pattern of three irregular scars; zone of concrescence of moderate width, irregular, vestibules somewhat restricted.

Male fifth limbs robust, nearly symmetrical, with large ventral pegs and thick, angulate distal hook recurved at 57° in right limb and 49° in left limb. Female fifth limb slender, with thick, fairly short claws. Sixth limb with tufts of fine hairs along dorsal surface of podomere II; dorsodistal claw about two-thirds as long as mediodistal claw. Recurved seta of seventh limb short, reaching only slightly beyond middle of podomere II; lined proximally by extremely fine hairs, too tiny to draw; interrupted by about five very large, angular barbs, which decrease in size distally into fine hairs again. Furcae rather large, slender, curved at tips. Hemipenis ovoid, with projecting, triangular, chitinous anterodorsal and anteroventral ridges and complexly lobate anterior margin; copulatory rod short, nearly straight.

Comparisons.-Mn. moza is much smaller and less elongate than Mn. madagascarensis, with more narrowly
rounded posterior angle and more smoothly curving contours; also with shorter, slightly more sinuate distal hooks on the male fifth limbs, as well as thinner projecting anterodorsal and anteroventral ridges on the hemipenis, separated by a lobate anterior margin. Mn. captiosa and $M n$. bonaducei are similar in general size and shape but have deeper, broader ventral indentations, somewhat upswung posteroventral margins, and more tapered posterior regions; $M n$. captiosa also has much smaller, less angulate male fifth limbs and a sinuate-triangular hemipenis without projecting anterior ridges.

MACROCYPRINA NOHARAI new species

Graph 68; Figures $16.30,31,17.29,21.6,23.13,24.46$, 52.8-11, 53.8-5, 68.11; Plates 54.1,2, 55.1, 81.16

Derivation of name.-For Mr. Tomohide Nohara, who collected and loaned these specimens.

Material.-One female carapace with dry soft parts, and 18 empty carapaces and valves; for a total of 19 specimens.

Types.-Holotype female specimen 2058F USNM 240973, paratypes USNM 240974-240979, additional paratypes in the personal collection of Mr. Nohara.

Type locality.-Nohara sample, Sesoko Island, Okinawa, near biological station of Ryukyu University, six samples of sand from fringing reef, depth less than 5 m .

Occurrence.-At Nohara Sesoko Island, 1 live plus 17 specimens (1F); at Nohara station 20, 1 specimen.

Distribution.-Holocene; fringing reef and continental shelf of Okinawa, known dead depth range 1 to 135 m .

Dimensions.-Holotype female specimen 2058F, RVL 1.34 mm , RVH 0.56 mm . See also Graph 68.

Diagnosis.-Carapace fairly large, elongate-subovate in lateral outline, subequilateral; dorsal margin very broadly and smoothly arched, without any angles; anterior margin broadly but obliquely rounded, obliquely truncate; ventral margin sinuous, with broad but shallow ventral indentation, upswung posteriorly; posterior angle located distinctly above venter, narrowly but evenly rounded, about 45°; anterior zone of concrescence moderately wide, irregular,

widened in anterodorsal and anteroventral region; posterior zone of concrescence very wide, both vestibules slightly restricted; patch pattern of three large, irregular spots, the posterior and middle spots tending to fuse.

Comparisons.-Mn. noharai is smaller and more elongate than Mn. okinawae, with more truncate anterior margin and without any dorsal angle. It has a deeper ventral indentation and more smoothly curving contours than Mn. madagascarensis or Mn. jamaicae.

MACROCYPRINA OKINAWAE new species

Graph 69; Figures 16.29, 17.28, 52.3-7,53.6-8; Plates 54.7,55.7

Derivation of name.-For the island-group of Okinawa. Material.-Twenty-five dry specimens.
Types.-Holotype specimen 2068 USNM 240980, paratypes 240981-240989, additional paratypes in the personal collection of Mr. Tomohide Nohara.

Type locality.-Nohara Okinawa continental shelf station $4,27^{\circ} 16^{\prime} 5^{\prime \prime} \mathrm{N}, 124^{\circ} 50^{\prime} 5^{\prime \prime} \mathrm{E}$, depth 106 m .

Occurrence.-At Nohara station 3, 1 specimen; at Nohara station 4, 6 specimens; at Nohara station 6,2 specimens; at Nohara station 14, 8 specimens; at Nohara station 15, 5 specimens; at Nohara station 18, 2 specimens; at Nohara station 19,1 specimen.

Distribution.-Holocene; Okinawa continental shelf, known dead depth range 106 to 250 m .

Dimensions.-Holotype specimen 2068, RVL 1.37 mm , RVH 0.61 mm . See also Graph 69.

Diagnosis.-Carapace oblong-subtriangular in lateral outline, inequilateral; dorsal margin highly and somewhat irregularly arched, with fairly distinct dorsal angle located at or slightly behind midlength; anterior margin rather narrowly but evenly rounded; ventral indentation distinct; posteroventral margin gently upswung posteriorly; posterior angle narrowly but evenly rounded, not truncate or flared, about 45°; zone of concrescence moderately wide; no patch pattern visible.

Comparisons.-Mn. okinawae is roughly the same size as Mn. noharai but less elongate and more subtriangular, with a distinct dorsal angle but no posterodorsal angle. Mn. dispar and Mn. africana have more broadly rounded anterior and posterior margins and deeper ventral indentations.

MACROCYPRINA PARCENS new species

Graph 70; Figures 16.13, 17.18, 21.7; Plates 56.10, 57.10

Derivation of name.-Latin parcens, sparing, niggardly; because no soft-part characters are known.

Material-Twenty-seven fossil specimens.
Types.-Holotype specimen 2266RV USNM 240990, paratypes 240991-240994.

Type locality.-UH 2741, Lower Pleistocene, San Pedro Sands Formation, Timms Point, California.

Occurrence.-At UH 2741, 25 specimens; at UH 3049, 2 specimens.

Distribution.-Lower Pleistocene, San Pedro Formation, California.

Dimensions.-Holotype specimen 2266RV, RVL 1.40 mm , RVH 0.61. See also Graph 70.

Diagnosis.-Carapace fairly large, subovate-subtriangular in lateral outline; dorsal margin high-arched, with indistinct dorsal angle located at midlength; anterior margin broadly and evenly rounded, slightly truncate; ventral margin deeply and broadly indented, slightly sinuate, not upswung posteriorly; posterior margin very broadly and evenly rounded, slightly truncate, about 45°; zone of concrescence of moderate width, fairly regular; patch pattern of three indistinct opaque spots connected by broad, triangular, less opaque region.

Comparisons.-Mn. parcens is much larger and proportionally higher than Mn. barbara, with more distinct dorsal angle and ventral indentation. It is much larger and more elongate than $M n$. swaini and $M n$. vargata, with less prominent ventral indentation and more broadly and evenly rounded anterior and posterior margins.

MACROCYPRINA QUADRIMACULATA new species

Graph 71; Figures 16.25, 17.25, 52.81,32, 53.27-30;
Plate 45.12
Derivation of name.-Latin quadri, four, plus maculatus, spotted, stained; for the four opaque patches of the carapace.

Material-Twenty-five empty carapaces and valves.
Types.-Holotype specimen 1699RV USNM 240995, paratypes USNM 240996-240999, 239050-239061, and in the personal collection of V. R. Labutis.

Type locality.-Labutis GBR 1305, Great Barrier Reef, $23^{\circ} 17^{\prime} \mathrm{S}, 151^{\circ} 38^{\prime} \mathrm{E}$, depth 20 m .

Occurrence.-At Labutis GBR 1305, 20 specimens; at Labutis GBR 1306, 3 specimens; at Labutis GBR 1369, 1 specimen; at Labutis GBR 1374, 1 specimen.

Distribution.-Holocene; southern part of the Great Barrier Reef, known dead depth range 20 to 40 m .

Dimensions.-Holotype specimen 1699RV, RVL 1.03 mm , RVH 0.43 mm . See also Graph 71.

Diagnosis.-Carapace elongate-oblong in lateral outline; dorsal margin very smooth, low-arched, without any angles; anterior margin narrowly and obliquely rounded, truncate; ventral margin broadly and shallowly indented; posteroventral margin gently upswung; posterior angle abruptly truncate, about 60°; zone of concrescence broad, irregular, anterior and posterior vestibules somewhat restricted; patch pattern of four irregular spots.

Comparisons.-Mn. quadrimaculata is similar in size and general proportions to Mn. hartmanni but has a more narrowly rounded anterior margin, a shallower ventral indentation, an upswung posteroventral margin, and a truncate, angulate posterior angle. Mn. noharai has a more sharply, obliquely truncate anterior margin and more acutely tapering, flared posterior angle.

Remarks.-Most of the available specimens are juveniles.

MACROCYPRINA SCHMITTI (Tressler, 1949)

Graph 72; Figures $16.9,10,17.8-10,21.16,23.5$, 28.3-5, 35.9, 45.1, 47.22, 54.4-7, 55.4-7, 69.10, 74.1, 77.4, 79.9; Plates 48.7-12, 49.7-12, 77.6, 97.11-14, 109.18,19

Macrocypris schmitti Tressler, 1949, p. 341, fig. 17-20; Tressler, 1954, p. 433; Puri, 1960, p. 133; Hulings, 1967c, p. 94.
?Macrooypris sp. cf. M. schmitti Tressler Hulungs, 1967a, p. 639 , fig. 2c, 3g.
Macrocyprina skinneri Kontrovitz, 1976, p. 58 [parl.; not pl. 1, fig. 2].

Material-Eight live type specimens, including 2 males, 2 females, and 4 juveniles; plus 272 valves and carapaces, including 3 males with dry body and appendages; for a total of 280 specimens.

Types.-Holotype male USNM 88847, paratypes USNM 88852 (six specimens) and USNM 168088 (a dissected male with my specimen number 1538 M).

Additional material for this species is deposited as USNM 239062-239077 and KUMIP 1,124,922-1,125,020.

Type locality.-West side of Loggerhead Key, Tortugas, Florida, coll. W. L. Schmitt, June 26, 1931.

Occurrence.-In USNM 88847, 1 live specimen (1M); in USNM 88852,6 live specimens ($2 \mathrm{~F}, 3 \mathrm{~J}-1,1 \mathrm{~J}-2$); in USNM 168088, 1 live specimen (1M); at UH 1295, 20 specimens; at UH 1297, 18 specimens; at UH 2738, 116 specimens; at UH 2739, 2 live plus 101 specimens (2 M); at UH 2740, 1 live plus 12 specimens (1M); in HVH 9440, 1 specimen; in HVH 9441, 1 live specimen (1M).

Distribution.-Holocene; Florida Keys, in coralline sands, known live and dead depth range 1 to 5 m . Puri (1960) also reported the species from Key Largo, Florida.

Dimensions.-The carapace of the holotype is decalcified. Tressler (1949) reported its dimensions as L $1.22 \mathrm{~mm}, \mathrm{H}$ 0.60 mm . See also Graph 72.

Diagnosis.-Carapace medium-sized, subovate-oblong in lateral outline, inequilateral; dorsal marg in broadly, evenly, and highly arched; anterior margin broadly and evenly rounded; ventral margin deeply and broadly indented; posteroventral margin not upswung; posterodorsal margin steeply sloping, straight or very slightly concave; posterior angle very broadly and obliquely rounded, flared, about 50°; patch pattern of three irregular lateral spots plus

anterior and posteroventral spots; zone of concrescence very wide, irregular; anterior vestibule somewhat restricted.

Male fifth limbs slender, very asymmetrical, with tiny elongate pegs and long dorsal seta; distal hook recurved at 82° in right limb but much reduced and nearly straight at 151° in left limb. Dorsodistal claw of sixth limb about twothirds as long as mediodistal claw. Recurved seta of fifth limb fairly long, lined with very fine hairs of diminishing size distally. Furcae rather short, nearly straight, with welldemarcated tips. Hemipenis oblong with sinuate outline, with obliquely truncate, sinuate anterior margin and projecting anterodorsal corner; copulatory rod fairly long, sinuate. Zenker's organ long with medium-sized terminal bulb; vas deferens arranged in three loose loops that are longer than the Zenker's organ.

Comparisons.-Mn. schmitti is smaller than Mn. hawkae and $M n$. belizensis but very similar in shape, with somewhat more elongate proportions and less sinuous, less exaggerated contours. The hemipenis is similar to that of $M n$. hawkae but lacks the irregularly lobate anterior extension. $M n$. skinneri has a more angulate-truncate posterior angle and nearly straight ventral margin; it also has more compact, more reduced male fifth limbs.

Remarks.-The specimens from Vaca Key, Florida, identified as Mn. skinneri by Kontrovitz (1976) belong to Mn. schmitti.

MACROCYPRINA SKINNERI Kontrovitz, 1976

Graph 73; Figures $16.5-7,17.5,6,21.18,23.4,24.39$, 28.38-35, 31.19, 35.8,45.8, 47.23, 54.1-3, 55.1-3, 69.15, 80.32; Plates 46.8-12, 47.9-12, 58.4, 59.5, 97.7-10, 109.10,11, 112.14

Macrocyprina skinneri Kontrovirz, 1976, p. 58, pl. 1, fig. 2, 3.
Macrocyprina? sp. Howe and van den Bold, 1975, pl. 3, fig. 3.
Pontocypris sp. Hall, 1965, p. 28, pl. 1, fig. 1-6.
Material-Three type specimens; 30 specimens in alcohol, including 16 males, 11 females, and 3 juveniles; and 220 empty carapaces and valves; for a total of 253 specimens.

Types.-The holotype left valve HVH 9437 and two paratypes HVH 9438-9439 are in the H. V. Howe Ostracod Collection at Louisiana State University. The remaining paratypes, HVH 9440-9441, belong to Macrocyprina schmitti (Tressler) (see above).

The new material for this species is catalogued as USNM 239078-239103 and KUMIP 1,125,021-1,125,065.

Type locality.-Kontrovitz Louisiana continental shelf station $97,28^{\circ} 29.4^{\prime} \mathrm{N}, 92^{\circ} 08.4^{\prime} \mathrm{W}$, depth 48 m .

Occurrence.-In HVH 9437, 1 specimen; in HVH 9438, 1 specimen; in HVH 9439, 1 specimen; in HVH 9739, 1 specimen; at UH 182, 11 specimens; at UH 270, 18 specimens; at UH 679, 5 specimens; at UH 1263, 20 speci-

mens; at UH 1617,57 specimens; at UH 1618,3 specimens; at UH 1986, 7 specimens; at UH 2019, 28 specimens; at UH 2369, 40 specimens; at UH 4123, 25 specimens; at UH 4125, 4 specimens; at TA\&MU OBS STB4C, 1 live specimen (1 M); at TA\&MU OBS UNB-2B, 1 live specimen (1M); at TA\&MU OBS 28F1, 1 live specimen (1M); at TA\&MU OBS 28F3, 27 live specimens (13M, 11F, 3J); in UMMP 48679, 1 specimen.

Distribution.-Late Pleistocene to Holocene, Northwest Gulf of Mexico, on the Texas-Louisiana continental shelf and Mississippi Delta, and off Sapelo Island, Georgia; known live depth range 50 to 101 m , dead from 18 m . The specimens from Vaca Key, Florida, identified as this species by Kontrovitz (1976) belong to Mn. schmitti.

Dimensions.-Holotype HVH 9437, LVL 1.14 mm, LVH 0.50 mm . See also Graph 73.

Diagnosis.-Carapace elongate-oblong in lateral outline, subequilateral; dorsal margin broadly and evenly lowarched, with indistinct dorsal angle, greatest height located slightly anterior to midlength; anterior margin broadly and evenly rounded, somewhat truncate; ventral margin broadly and deeply indented, not upswung posteriorly; posterior margin narrowly and obliquely rounded, somewhat truncate, about 50°; zone of concrescence of moderate width, regular, vestibules open; patch pattern of three rather small spots.

Male fifth limbs small, asymmetrical, with thick, angulate distal hook recurved at 61° in right limb, greatly reduced and curved at 153° in left limb. Female fifth limb slender with thick terminal claws. Sixth limb with tufts of fine hairs along dorsal surface of podomere II and with rather thick terminal claws; dorsodistal claw about threefourths as long as mediodistal claw. Recurved seta of moderate length, lined with fine hairs of regularly decreasing size. Furcae slender, arched, tapering to fine tips. Hemipenis oblong, with convex anteroventral margin and lobate anterodorsal lamellar extension; copulatory rod short, straight. Zenker's organ long, with tiny terminal bulb; vas deferens arranged in three loose loops that are as long as the Zenker's organ.

Comparisons.-Mn. skinneri is only slightly larger than Mn. hortuli and very similar, but proportionally higher, with more tapered posterior angle, and with shorter distal hooks on the male fifth limb. It is much larger and more elongate than $M n$. propinqua, with narrower zone of concrescence, smaller opaque spots, and shorter, thicker distal hooks on the male fifth limb. Mn. schmitti, $M n$. belizensis, and Mn. hawkae are larger or much larger, with more sinuous outlines, larger opaque spots, flared posterior angles, and more sinuous male fifth limbs. The hemipenis has essentially the same structure as that of Mn. hortuli and Mn. bermudae, differing by its slightly more elongate proportions and smoothly curved anterior margin.

Remarks.-The SEM illustrations of the type specimens by Kontrovitz (1976, pl. 1, fig. 2, 3) exaggerate their length slightly (Kontrovitz, personal communication), a common hazard in SEM micrography. The published dimensions are accurate, however.

Specimen HVH 9739, reported by Howe and van den Bold (1975) from Mississippi mudlumps, is a single right valve, very similar in shape to the smallest adults of $M n$. skinneri at UH 2369 though differing in minute details from those of other samples. It falls within the range of geographic variability seen in $M n$. skinneri on the Texas continental shelf.

Hall's (1965) specimen UMMP 488679 is a juvenile left valve of Macrocyprina. It is exactly the same size and very nearly the same shape as specimen 1903J-2 (an A-2 instar) of Mn. skinneri.

MACROCYPRINA SUCCINEA (Müller, 1894)

Graph 74; Figures $16.17,18,17.18,19,21.12,28.9$, $24.47,28.28,24,31.15,35.1,45.6,47.26,54.15,16$, $55.14,15,56.9,50,59.8,25,62.6,63.11,64.38,68.13$, 80.37; Plates 44.1-4, 45.1-4, 81.17, 96.4-6, 108.10,11,13-15

Macrocypris succinea Müller, 1894, p. 242, text-fig. 8, p. 54, text-fig. 5, p. 67, text-fig. 5, p. 71; pl. 1, fig. 3-4; pl. 13, fig. 8-26, 28; pl. 38, fig. 1-21; pl. 35, fig. 1; pl. 36, fig. 13, $23,29,47,53$; pl. 37 , fig. 22-25, 30, 39, 46, 47, 52, 54, 55,

67 ; pl. 38 , fig. $6,8,25,33-40,55,74$; pl. 40 , fig. 26 ; Müller, 1912, p. 120; De Buen, 1916, p. 7; Triebel, 1960, p. 109, 199; Reys, 1961a, p. 60; Reys, 1961b, p. 62; Puri, 1963, p. 2; Reys, 1964, p. 187; Rome, 1964, p. 209; Puri et al., 1964, p. 168; Reys, 1965, p. 260; Puri et al., 1969, p. 377, 384; Bonaduce and Masoli, 1970, p. 48; Puri, 1974, p. 146; ?Bonaduce and Pugliese, 1975, p. 130; Sissingh, 1976, p. 282; Athersuch, 1976, p. 346 ; Nascimento, 1983, table 1, fig. 3-24; Bonaduce et al., 1983, table 2; van Harten and Droste, 1988, p. 724, 726, 727.

Material-Forty-five specimens in alcohol, including 8 males, 11 females, 20 juveniles, and 6 empty carapaces and valves.

Types.-The three syntype specimens (not examined) are catalogued as No. 9173 in the Crustacea Division of the Zoological Museum, Humboldt-University, Berlin. Dr. Gioacchino Bonaduce will select the lectotype as part of his revision of the Bay of Naples fauna.

The new material for this species is deposited as USNM 239104-239110 and in the collection of Gioacchino Bonaduce.

Type locality.-Bay of Naples.
Occurrence.-At Bonaduce 1, 15 live specimens ($5 \mathrm{M}, 4 \mathrm{~F}$, $1 \mathrm{MJ}-1,4 \mathrm{~J}-1,1 \mathrm{~J}-2$); at Bonaduce 7, 17 live plus 5 specimens ($3 \mathrm{M}, 4 \mathrm{~F}, 3 \mathrm{~J}-1,7 \mathrm{~J}-2$); at Bonaduce 8,7 live plus 1 specimens (3F, $1 \mathrm{~J}-1,2 \mathrm{~J}-3,1 \mathrm{~J}-4$).

Distribution.-Pleistocene-Holocene; Bay of Naples and Mediterranean Sea; the live depth range in the material studied is 27 to 50 m . This species has been widely reported around the Mediterranean Sea, but most authors have not provided illustrations to confirm the identifications. Sissingh (1976) chose this species to name a biostratigraphic zone in the post-Calabrian Pleistocene of the Mediterranean region.

Dimensions.-Male 1904M, RVL 1.01 mm , RVH 0.40 mm , LVL 0.98 mm , LVH 0.42 mm . See also Graph 74. Müller (1894) reported the length of the female as 1.08 mm and of the male as 1.0 mm .

Diagnosis.-Carapace small, very elongate in lateral outline, greatest height located at or slightly anterior to midlength; dorsal margin broadly but unevenly arched; anterior margin narrowly and obliquely rounded, somewhat truncate; ventral margin sinuate, with fairly deep, broad ventral indentation, posteroventral margin upswung; posterodorsal margin nearly straight; posterior angle narrowly rounded, bluntly truncate, about 45°; patch pattern of three to four small opaque spots connected by elongate, less opaque central area;zone of concrescence very broad, irregular, enlarged in anterodorsal and posteroventral region; anterior vestibule may be somewhat constricted.

Male fifth limbs small, sinuously tapering, very asymmetrical, with slender distal hooks recurved at 63° in right limb and 142° in left limb. Female fifth limb slender with thick terminal claws. Dorsodistal claw of sixth limb about
half as long as mediodistal claw. Recurved seta of moderate length, lined with fine hairs of decreasing size. Furcae rather thick, tapering to blunt ends, terminal portions well demarcated, no proximal setae visible. Hemipenis roundedsubtrapezoidal in outline, with anteroventral indentation, sinuate, obliquely truncate anterior margin, and acute anterodorsal angle; copulatory rod short, straight. Zenker's organ short, with large terminal bulb; vas deferens very thick, arranged in three to four irregular loops of varying sizes, the longest of which is as long as the Zenker's organ.

Comparisons.-Mn. succinea is about the same size as Mn. propinqua but more elongate, with a more sinuate, angulate, truncate posterior angle; and with a shorter, more tightly recurved distal hook on the male right fifth limb. The structure of the hemipenis is quite different from that of any other species studied. According to the published illustration, "Macrocypris sp. 2" of Sissingh (1972, p. 80, pl. 3 , fig. 15 ; Upper Pliocene of Greece) is quite similar but considerably larger (L $1.42 \mathrm{~mm}, \mathrm{H} 0.58 \mathrm{~mm}$), somewhat more highly arched, especially posteriorly, and has a more narrowly rounded anterior margin.

Remarks.-Mn. succinea was thoroughly and accurately illustrated by Müller (1894). Triebel (1960) reassigned it to the genus Macrocyprina but did not actually cite the new combination.

MACROCYPRINA SWAINI new species

> Graph 75 ; Figures $17.16,21.8,23.14,24.48,28.36,37$, $35.3,45.10,47.25$; Plates $56.5,6,12,57.6,11,12,96.11$, 109.15

Macrocyprina pacifica (LeRoy) Swain, 1967, p. 42, fig. 35, 37, 38b-g; pl. 1, fig. 12; McKenzie and Swain, 1967, p. 286, fig. 4; pl. 30, fig. 3; Swain, 1969, p. 456 [part.]; Swain and Gilby, 1974, p. 283 [part.; not pl. 2, fig. 3-5]. Not Paracypris pacificus LeRoy, 1943, p. 358, fig. 2z; pl. 60, fig. 38, pl. 61, fig. 15-18.

Derivation of name.-For Frederick M. Swain, who first collected this species.

Material-Five type specimens, including 1 male, 2 females, 1 carapace, and 1 juvenile right valve; plus 6 additional empty carapaces and valves; for a total of 11 specimens.

Types.-Holotype specimen 2284W USNM 239111, paratypes USNM 239112-239113. Other paratypes in the University of Minnesota Museum of Paleontology, as follows: UMnMP 11278, labeled "Rec., Gulf of Calif. VS 143, GSA Mem. 101, Pl. 1, f. 12, Macrocyprina pacifica (LeRoy)," one juvenile right valve. From UMnMP Scammon Lagoon, station 76 of McKenzie and Swain (1967), a dissection mount labeled "Macrocyprina pacifica (LEROY)" and a vial of alcohol containing decalcified valves labeled "Macrocypris sp.," both apparently belonging to the same female specimen and both now bearing my specimen number 1994F. From UMnMP Scammon Lagoon, station 90 of

McKenzie and Swain (1967), labeled "Macrocyprina pacifica (LeRoy)," a male dissection slide labeled "specimen 2" and bearing my specimen number 1992M, a female dissection slide labeled "specimen 1 " and bearing my specimen number 1993F, a paper slide containing one whole carapace and bearing my specimen number 1995A, and a vial of alcohol labeled "valves" but apparently empty (perhaps supposed to contain the valves of specimens 1992 M and 1993F).

Type locality.-UH 4286, Gulf of California, east side of San Pedro Island, 17 nautical miles west of San Carlos, Guayamas area, Sonora, Mexico, depth 30 m .

Occurrence.-At UH 4286, 6 specimens; at UMnMP 11278, 1 specimen; at UMnMP Scammon Lagoon station 76, 1 live specimen (1F); at UMnMP Scammon Lagoon station 90,2 live plus 1 specimens ($1 \mathrm{M}, 1 \mathrm{~F}$).

Distribution.-Holocene; Gulf of California and Scammon Lagoon, Mexico, known live depth range 15 to 40 m .

Dimensions.-Holotype specimen 2284W, L $1.08 \mathrm{~mm}, \mathrm{H}$ 0.51 mm . See also Graph 75.

Diagnosis.-Carapace small, subtriangular to subovateoblong in lateral outline; dorsal margin very highly arched, obscurely angulate, greatest height located at or just behind midlength; anterior margin narrowly and evenly rounded; ventral margin with moderate ventral indentation, not upswung posteriorly; posterior angle very broadly and evenly rounded, slightly truncate, about 45°; patch pattern of three large, irregular spots; zone of concrescence very wide, irregular, anterior vestibule may be slightly constricted.

Male fifth limbs very asymmetrical, with sinuous outlines, elongate pegs, and gracefully tapering distal hooks recurved at 122° in right limb and 132° in left limb. Sixth limb with elongate podomeres but rather thick claws; dorsodistal claw about half as long as mediodistal claw. Recurved seta of seventh limb short, reaching only to middle of podomere II, lined with fine hairs decreasing in size distally. Hemipenis rounded-subtriangular, tapering to bluntly rounded anterior margin without accessory lamellae; copulatory rod long, nearly straight. Zenker's organ with long muscularized portion, lacking terminal bulb or damaged; vas deferens arranged in about three loose loops, about three-fourths as long as Zenker's organ.

Comparisons.-Mn. swaini is much larger, proportionally higher, and has more broadly rounded anterior and posterior angles than Mn. vargata. Mn. barbara is larger and much more elongate, with shallower ventral indentation, more gently tapering posterior angle, and more rectilinear, reduced male fifth limbs with more tightly recurved distal hooks. Mn. parcens is more elongate with more narrowly rounded anterior and posterior margins and a less distinct patch pattern. Furcae rather thick, arched, lined with regularly spaced, fine barbs; terminal portions well demarcated.

Remarks.-The holotype of Paracypris pacifica LeRoy, 1943, is a single whole carapace cataloged as no. 6769 of the Stanford University Paleontological and Conchological Collections (see Appendix II and Plates 114.9,11,12,17). It has good paracypridine shape and muscle scar pattern, left over right valve overlap, and branching radial pore canals. It is correctly classified in Paracypris (see also Maddocks, 1988b).

LeRoy described Paracypris pacifica from the Pleistocene Timms Point Formation of California, in which Mn. parcens and a second, unnamed species of Paracypridinae are also common. LeRoy's statement that P. pacifica is living today along the Pacific Coast cannot be confirmed, yet. Reexamination of specimens has shown that the reports of "Macrocyprina pacifica" by Swain (1967), McKenzie and Swain (1967), and in part by Swain and Gilby (1974) are based on Mn. swaini. Benson's (1959) illustrated specimen (USNM 113119) of P. pacifica appears to be a species of Macrocyprina but not Mn. swaini, although a species of Paracypridinae is also present in Todos Santos Bay. A third species living off the coast of southern California is described above as Mn. barbaran. sp.; it was reported as "Macrocyprina pacifica" by Swain and Gilby (1974), although the scar pattern they illustrated in their plate 2, figure 5 , is that of Paracypris. See remarks under Mn. barbara, above, and under Paracypris pacifica in Appendix II, below.

MACROCYPRINA VARGATA

Allison and Holden, 1971

Graph 76; Figures $16.16,17.17,21.13,23.15,31.12$,
35.4, 45.4, 47.27; Plates 56.1-4, 57.1-5, 77.4,5, 81.18

Macrocyprina vargata Allison and Holden, 1971, p. 181, fig. 10, 11.

Material-Five carapaces, including 2 females with dry fragments of appendages.

Types.-Holotype USNM 128095, paratypes USNM 128098, additional paratypes in the San Diego Natural History Museum, SDNH 04201-04203 (not seen).

New material for this species is deposited as USNM 239114-239115.

Type locality.-Clipperton Island, station G-1 of Allison and Holden (1971), depth $10-15 \mathrm{~m}$.

Occurrence.-At Holden Clipperton Island, 2 live plus 3 specimens (2 F).

Distribution.-Holocene; Clipperton Island. Allison and Holden reported living specimens at depth of 10 to 12 m off the outer edge of the reef flat and empty carapaces on the steep slope on the north side of the atoll at depths of 40 to 45 m .

Dimensions.-Holotype USNM 128095, L $0.97 \mathrm{~mm}, \mathrm{H}$ 0.44 mm . See also Graph 76. Allison and Holden (1971, fig. 10) provided a length:height plot showing dimensions of a large population, including adults and six instars. They reported the carapace length for adults as $0.90-0.94$ mm , with no sexual dimorphism apparent in the carapace.

Diagnosis.-Carapace small, elongate-subtriangular in lateral outline, greatest height located at or slightly behind midlength; dorsal margin broadly arched with indistinct dorsal angle; anterior margin narrowly and obliquely rounded, slightly truncate; ventral margin broadly and deeply indented, not upswung posteriorly; posterior angle fairly broadly and evenly rounded, about 45°; patch pattern of three small opaque spots, the middle spot tending to divide; zone of concrescence broad, rather irregular, anterior vestibule may be slightly restricted. Female fifth limb robust with thick claws. Dorsodistal claw about twothirds as long as mediodistal claw of sixth limb. Recurved seta of seventh limb reaching only to middle of podomere Π, lined with very fine hairs that decrease in size distally.

Comparisons.-Mn. vargata is much smaller, more elongate, and more angulate in its contours than Mn. swaini, Mn. barbara, and Mn. parcens. Mn. hortuli and Mn. bermudae have somewhat similar, angulate outlines but are more elongate, more rounded, and less exaggerated. Furcae fairly large, with tiny proximal setae and well demarcated, slender tips.

MACROCYPRINA sp. 33

Graph 76; Figure 17.23; Plate 51.1
Material-One left valve, USNM 239116.
Occurrence.-At Wynyard Beach, 1 specimen.
Distribution.-Holocene; Wynyard Beach, Tasmania.
Dimensions.-Specimen 1707F, LVL 1.09 mm , LVH 0.67 mm . See also Graph 76.

Comparisons.-Mn. sp. 33 is smaller than Mn. hartmanni but similar in shape, with more steeply sloping anterodorsal and posterodorsal margins and more truncate anterior and posterior margins. Mn. sp. 34 is larger and proportionally higher, with more acutely pointed posterior angle. Mn. sp. 35, at the same locality, is a little longer and not nearly as high.

MACROCYPRINA sp. 34

Graph 76; Figures 16.24, 17.24; Plate 51.2
Material.-Five empty valves, USNM 239117-239120.
Occurrence.-At NZOI RM1001, 5 specimens.
Distribution.-Holocene; near East Cape, New Zealand. Dimensions.-Specimen 1512, RVL 1.21 mm , RVH 0.51 mm . Specimen 1513, LVL 1.18 mm , LVH 0.52 mm . See also Graph 76.

Comparisons.-Mn. sp. 34 resembles Mn. hartmanni in size and shape but has a somewhat more broadly rounded anterior margin and a slightly flared posterior angle. It is the same length as but much higher than $M n$. sp. 36 , which occurs at the same locality, and has a sharper posterior angle. It resembles Macrocyprina sp. of Swanson (1979a) from the Otago Shelf east of South Island, New Zealand, but is considerably larger, with a more broadly arched dorsal margin and more broadly rounded anterior and posterior margins.

MACROCYPRINA sp. 35

Graph 76; Figure 16.22; Plates 50.2, 51.3, 77.3, 81.19
Material.-Five empty valves, USNM 239121-239125.
Occurrence.-At Wynyard Beach, 5 specimens.
Distribution.-Holocene; Wynyard Beach, Tasmania.
Dimensions.-Specimen 1344, RVL 1.20 mm , RVH 0.45 mm . See also Graph 76.

Comparisons. $-M n$. sp. 35 is a little longer than $M n$. sp. 33 , which occurs at the same locality, and much more elongate in shape. It is the same length as $M n$. sp. 34 but proportionally more elongate. Mn. hartmanni is very similar, especially in patch pattern, but proportionally a little higher.

MACROCYPRINA sp. 36

Graph 76; Figure 16.23; Plate 50.1
Material.-Two empty valves, USNM 239126-239127.
Occurrence.-At NZOI RM1001, 2 specimens.
Distribution.-Holocene; near East Cape, New Zealand.
Dimensions.-Specimen 1705, RVL 1.21 mm , RVH 0.48 mm . See also Graph 76.

Comparisons. $-M n$. sp. 86 is the same length as $M n$. sp. 34 , which occurs at the same locality, but not as high, with a more obliquely truncate anterior margin and more broadly rounded, slightly flared posterior angle. Mn. hartmanni has a broader ventral indentation and more narrowly rounded posterior angle.

MACROCYPRINA sp. 37

Graph 76; Plate 52.12
MateriaL-One valve, USNM 239128.
Occurrence.-At UH 3046, 1 specimen.
Distribution.-Holocene; St. Croix, U.S. Virgin Islands, depth 15 m .

Dimensions.-Specimen 2291RV, RVL 1.04 mm , RVH 0.48 mm . See also Graph 76.

Comparisons.-Mn. sp. 37 is much smaller than $M n$. jamaicae and less triangular in outline, with a broadly arched dorsal margin and nearly straight ventral margin. Mn. propinqua is about the same size and shape but is ventrally more indented and has larger opaque spots.

MACROCYPRINA sp. 38

Graph 76; Plate 54.5
Material-One valve, USNM 239129.
Occurrence.-At UH 2648, 1 specimen.
Distribution.-Holocene; Jamaica, depth 1 m .
Dimensions.-Specimen 2004RV, RVL 1.34 mm , RVH 0.54 mm . See also Graph 76.

Comparisons.-In size and shape, Mn. sp. 38 is very like Mn. hawkae, which occurs in the same locality, but Mn. sp. 38 has more narrowly rounded anterior and posterior
margins, a nearly straight ventral margin, and a divided anterior opaque spot. It is strikingly similar to Mn . sp. 39 in shape and patch pattern but significantly larger. It is smaller than $M n$. jamaicae, less equilateral, and has larger opaque spots and a more narrowly rounded posterior angle. Because the geographic variability of Caribbean species of Macrocyprina is poorly understood, it is treated as a separate species for the time being.

MACROCYPRINA sp. 39

Graph 76; Plates 54.6, 55.6, 81.20

Material-Two specimens, including one female carapace with fragmentary dry body and one empty juvenile carapace, USNM 239180.

Occurrence,-At Caraion Cuba Station II, 1 specimen (1F).

Distribution.-Holocene; Batabano, Cuba, depth 4 m.
Dimensions.-Female 1854F, RVL 1.23 mm , RVH 0.54 mm , LVL 1.20 mm , LVH 0.52 mm . See also Graph 76.

Comparisons.-Mn.sp. 39 is similar in shape to Mn . hawkae but distinctly smaller, with more narrowly rounded, more produced anterior and posterior margins, smaller opaque spot, and a divided anterior opaque spot. It is virtually identical to $\mathrm{Mn} . \mathrm{sp} .38$ in shape and patch pattern but significantly smaller. It is much smaller than $M n$. jamaicae, less equilateral in shape, with larger opaque spots and a more narrowly produced posterior angle. It is here treated as a separate species until the geographic variability of Macrocyprina is better understood.

MACROCYPRINA sp. 40

Graph 76; Plates 55.4,5
Material.-Three specimens in alcohol, including 2 females and 1 juvenile male, USNM 239131-239133.

Occurrence.-At Pequegnat 0131-3(2B), 2 live specimens (2F); at Pequegnat 0146-2(2E), 1 live specimen ($1 \mathrm{MJ}-1$).

Distribution.-Holocene; Atlantic continental shelf off South Carolina, depth $16-36 \mathrm{~m}$.

Dimensions.-Female specimen 1901F, RV not measurable, LVL 1.00 mm , LVH 0.45 mm . See also Graph 76.

Comparisons.-Mn. sp. 40 is very similar in shape to $M n$. skinneri but smaller, with more broadly rounded anterior and posterior margins and larger opaque spots. It also is very similar to Mn. bermudae but a little larger and more elongate than most specimens of that species, with a less arched dorsal margin. It is a little smaller than Mn. hortuli, with larger opaque spots and a less angular outline. It is here treated as a separate species until the geographic variation in these species is better known.

MACROCYPRINA sp. 41

Graph 76; Figure 17.31; Plate 45.5
Material-Seven valves, USNM 239134-239135.

Occurrence.-At UH 2882, 7 specimens.
Distribution.-Holocene; Guantanamo Bay, Cuba, depth 3 m .

Dimensions.-Specimen 2421, LVL 1.54 mm , LVH 0.70 mm . See also Graph 76.

Comparisons.-Mn. sp. 41 is very similar to Mn. hawkae but much larger, with a more obliquely rounded anterior margin and a slightly flared posterior angle. It is the largest known species of the genus as revised here.

MACROCYPRINA sp. 42

Graph 76; Figures 16.38, 17.37; Plates 52.11, 53.12
Material.-Three specimens in alcohol, including 1 female carapace with fragmentary body and 2 valves, USNM 239136-239137.

Occurrence.-At AB-8-412L, 1 live plus 2 specimens (1 F).
Distribution.-Holocene; Banque de Cinq Mètres, near Nosy Be, Madagascar, depth 30 m .

Dimensions.-Female specimen 2422F, RVL 1.30 mm , RVH 0.48 mm , LVL 1.29 mm , LVH 0.52 mm . See also Graph 76.

Comparisons.-Mn. sp. 42 is similar in shape to Mn . madagascarensis and occurs in the same area, but it is distinctly smaller, falling into the size-gap between the adult and the A-1 instar of that species. It also has a more narrowly rounded and truncate anterior margin and a more acute posterior angle. It is much larger and more elongate than Mn. moza, which also occurs nearby, and has a less flared, more extended posterior angle. It is similar in size and shape to Mn. noharai but has four small, discrete opaque spots, more truncate anterior and posterior margins, and a more acute posterior angle.

MACROCYPRINA sp. 43

Graph 76; Figures 16.86, 17.35; Plates 52.10, 53.11
Material-One empty carapace, USNM 239138.
Occurrence.-Nosy Be 070, 1 specimen.
Distribution.-Holocene; Nosy Be, Madagascar, depth 3-5 m.

Dimensions.-Specimen 2409, RVL 1.02 mm , RVH 0.40 mm , LVL 1.00 mm , LVH 0.38 mm . See also Graph 76.

Comparisons.-Mn.sp. 43 is smaller, more elongate, and more deeply indented ventrally than $M n$. moza, $M n$. sp. 42, and Mn. madagascarensis, all of which occur near Nosy Be, Madagascar. The single specimen has no patch pattern.

MACROCYPRINA sp. 44

Graph 76; Figures 16.20; Plate 44.5
Material.-Six valves, USNM 239139-239140.

Occurrence.-At UH 3046, 6 specimens.
Distribution.-Holocene; St. Croix, U.S. Virgin Islands, depth 15 m .

Dimensions.-Specimen 2420, RVL 0.99 mm , RVH 0.48 mm . See also Graph 76.

Comparisons.-Mn. sp. 44 is very similar in size, patch pattern, marginal characters, and shape to Mn. caiman but has a more narrowly rounded, more truncate anterior margin and a more acute posterior angle.

MACROCYPRINA sp. 45

Graph 76; Figures 16.28, 17.22; Plates 56.7, 57.7
Material-Two empty carapaces, USNM 239141-239142. Occurrence.-At Swanson Northland P462, 2 specimens. Distribution.-Holocene; west of New Zealand, depth 427 m .

Dimensions.-Specimen 2428, RVL 1.23 mm , RVH 0.43 mm . Specimen 2429, LVL 1.30 mm , LVH 0.53 mm . See also Graph 76.

Comparisons.-Mn. sp. 45 is fairly small and unusually elongate, with a sinuate ventral margin, sharply upswung, truncate posterior angle, and rather broad zone of concrescence.

MACROCYPRINA sp. 48

Plate 59.7

Macrocypris maculata (Brady) VAN DEN BoLd, 1966, pl. 1, fig. 3.

Material-One juvenile A-1 or A-2 right valve, HVH 8267.

Occurrence.-In HVH 8267, one specimen.
Distribution.-Holocene; Colon Harbour, Panama.
Dimensions.-HVH 8267 , RVL 1.00 mm , RVH 0.42 mm .
Comparisons.-This specimen has an exceptionally elongated anterior margin and very pointed posterior end, more so than the juveniles of any other Caribbean species described here. The boomeranglike shape is more extreme even than in Mn. skinneri. Juveniles of Mn. hawkae are somewhat similar but less exaggerated. The pointed posterior angle and deeply indented venter resemble those of juveniles of Ms. texana, but there is no dentiform corner. The juvenile valve labeled "Macrocypris maculata + decora" in the Brady Collection in the Hancock Museum has an even more narrowly produced anterior end and a less pointed posterior angle. Although the sizes and proportions of these two specimens are similar, it is not possible to establish their conspecificity. Mn. maculata is best abandoned (see discussion above), and it is not possible to identify this Panamanian species until adult material can be studied.

REFERENCES

Adamczak, Franciszek. 1966. On kloedenellids and cytherellids (Ostracod Platycopa) from the Silurian of Gotland. Stockholm Contributions in Geology 15:7-21.
1969. On the question of whether the palaeocope ostracods were filter-feeders, p. 98-98. In J. W. Neale (ed.), Taxonomy, Morphologyand Ecology of Recent Ostracoda. Oliver \& Boyd (Edinburgh).
Alexander, C. I. 1929. Ostracoda of the Cretaceous of north Texas. University of Texas Bulletin 2907:1-187.
. 1982. Ostracoda. In E. H. Sellards, W. S. Adkins, and F. B. Plummer, The Geology of Texas, Volume 1, Stratigraphy. University of Texas Bulletin 3232:239-518.
Allison, E. C., and J. C. Holden. 1971. Recent ostracodes from Clipperton Island, eastern tropical Pacific. San Diego Society of Natural History Transactions 16:165-214.
Alm, Gunnar. 1915. Monographie der schwedischen SüsswasserOstracoden nebst systematischen Besprechungen der Tribus Podocopa. Zoologicke Bidrag fran Uppsala 4:1-247.
Angel, M. V. 1977. Some speculation on the significance of carapace length in planktonic halocyprid ostracods, p. 45-54. In Heinz Löffler and Dan Danielopol (eds.), Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda. Dr. W. Junk b. v. Publishers (The Hague).
Ascoli, Piero. 1964. Ecological study on Ostracoda from bottom cores of the Adriatic Sea. Pubblicazioni della Stazione Zoologica Napoli 33(Suppl.):218-246.
. 1965. Ricerche ecologiche sugli ostracodi contenuti in 16 carote prelevate sul fondo del Mare Adriatico-Crociera talassographica Adriatica 1955, VI. Archivio di Oceanografia e Limnologia, Venice 16:70-137.
Athersuch, John. 1976. The G. W. Müller collection. Pubblicazioni della Stazione Zoologica di Napoli 40:344-348.
Baird, William. 1845. Arrangement of the British Entomostraca, with a list of species, particularly noticing those which have as yet been discovered within the bounds of the club. Berwickshire Naturalists Club [History] Proceedings (1842-1849):145158.
1850. The Natural History of the British Entomostraca. The Ray Society (London). 364 p .
Baker, J. H., and N. C. Hulings. 1966. Recent marine ostracod assemblages of Puerto Rico. University of Texas Institute of Marine Science Publications 11:108-125.
Bassler, R. S., and Betty Kellett. 1934. Bibliographic Index of Paleozoic Ostracoda. Geological Society of America Special Paper 1:1-500.
Bate, R. H. 1967. The Bathonian Upper Estuarine Series of eastern England. Part I: Ostracoda. Bulletin of the British Museum (Natural History), Geology 14:21-66.
Bate, R. H., and D. D. Bayliss. 1969. An outline account of the Cretaceous and Tertiary Foraminifera and of the Cretaceous ostracoda of Tanzania. Proceedings of the Third African Micropaleontological Colloquium:113-164.
Bate, R. H., and B. A. East. 1972. The structure of the ostracode carapace. Lethaia 5:177-194.
1975. The ultrastructure of the ostracode (Crustacea) integument. Bulletins of American Paleontology 65(282):529547.

Benson, R. H. 1959. Ecology of recent ostracodes of the Todos Santos Bay region, Baja California, Mexico. University of

Kansas Paleontological Contributions, Arthropoda, Article 1:180.

- 1964. Recent marine podocopid and platycopid ostracodes of the Pacific. Pubblicazioni delle Stazione Zoologica di Napoli 33(Suppl.): 387-420.
Benson, R. H., R. M. DelGrosso, and P. L. Steineck. 1983. Ostracode distribution and biofacies, Newfoundland continental slope and rise. Micropaleontology 29:430-453.
Bhatia, S. B., D. K. Guha, and K. G. McKenzie. 1972. Check List of Ostracoda Recorded from the Indian Continent and Ceylon (1841-1971). K. G. McKenzie (ed.), Shallow Marine and Freshwater Ostracoda of Tethys IPU Study Group, 55 p.
Bold, W. A. van den. 1946. Contribution to the Study of Ostracoda with Special Reference to the Tertiary and Cretaceous Microfauna of the Caribbean Region. J. H. de Bussy (Amsterdam). 167 p .
- 1958. Ostracoda from the Brasso formation of Trinidad. Micropaleontology 4:391-418.
-1960. Eocene and Oligocene Ostracoda of Trinidad. Micropaleontology 6:145-196.
_- 1963. Upper Miocene and Pliocene Ostracoda of Trinidad. Micropaleontology 9:361-424.
- 1965. Middle Tertiary Ostracoda from northwestern Puerto Rico. Micropaleontology 11:381-414.
- 1966. Ostracoda from Colon Harbour, Panama. Caribbean Journal of Science 6:48-64.
-1968. Ostracoda of the Yague Group (Neogene) of the northern Dominican Republic. Bulletins of American Paleontology 54:1-106.
_. 1971a. Ostracoda of the Coastal Group of formations of Jamaica. Gulf Coast Association of Geological Societies Transactions 21:325-348.
__. 1971b. Distribution of ostracodes in the Oligo-Miocene of the northern Caribbean. Fifth Caribbean Geological Conference, Transactions, Queens College, Department of Geology, Geological Bulletin 5:123-126.
-. 1973. Distribution of Ostracoda in the Oligocene and Lower and Middle Miocene of Cuba. Caribbean Journal of Science 18:145-162.
-1974. Taxonomic status of Cardobairdia (van den Bold, 1960) and Abyssocypris n. gen.: Two deepwater ostracode genera of the Caribbean Tertiary. Geoscience and Man 6:65-79.
. 1975. Ostracodes from the late Neogene of Cuba. Bulletins of American Paleontology 68:119-167.
__. 1977. Distribution of marine podocopid Ostracoda in the Gulf of Mexico and the Caribbean, p. 175-186. In Heinz Löffler and Dan Danielopol (eds.), Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda, Dr. W. Junk b. v. Publishers (The Hague).
-1988. Neogene paleontology in the northern Dominican Republic. 7. Subclass Ostracoda (Arthropoda: Crustacea). Bulletins of American Paleontology 94:1-105.
Bonaduce, Gioacchino, Bruna Ciliberto, Mario Masoli, Genzianella Minichelli, and Nevio Puglicse. 1983. The deep-water benthic ostracodes of the Mediterranean, p. 459-471. In R. F. Maddocks (ed.), Applications of Ostracoda, Proceedings of the Eighth International Symposium on Ostracoda, University of Houston Department of Geosciences.
Bonaduce, Gioacchino, and Mario Masoli. 1970. Benthic marine Ostracoda from Malta. Pubblicazioni della Stazione Zoologica di Napoli 38:47-56.

Bonaduce, Gioacchino, Mario Masoli, and Nevio Pugliese. 1976. Ostracoda from the Gulf of Aqaba (Red Sea). Pubblicazioni della Stazione Zoologica di Napoli 40:372-428.

- 1977. Ostracodi bentonici dell'alto Tirreno. Studi Trentini di Scienze Naturali, Acta Biologica 54:243-261.
. 1988. Remarks on the benthic Ostracoda on the Tunisian Shelf, p. 449-466. In Tetsuro Hanai, Noriyuki Ikeya, and Kunihiro Ishizaki (eds.), Evolutionary Biology of Ostracoda, Its Fundamentals and Applications. Kodansha (Tokyo), and Elsevier (Amsterdam).
Bonaduce, Gioacchino, Mario Masoli, Genziana Minichelli, and Nevio Pugliese. 1980. Some new benthic marine ostracod species from the Gulf of Aqaba (Red Sea). Bollettino della Societa Palcontologica Italiana 19:148-178.
Bonaduce, Gioacchino, and Nevio Pugliese. 1975. Ostracoda from Libya. Pubblicazioni della Stazione Zoologica di Napoli 39:129-185.
Bonaduce, Gioacchino, and Antonio Russo. 1984. The Miocene ostracodes of Sardinia. Bolletino della Societa Paleontologica Italiana 28:421-437 (1984).
Bonaduce, Gioacchino, and Rodolfo Sprovieri. 1985. The appearance of Cytheropteron testudoSars (Crustacea: Ostracoda) is a Pliocene event. Evidences from a Sicilian sequence (Italy). Bolletino della Societa Paleontologica Italiana 23:131-136.
Bonnema, J. H. 1940. Ostracoden aus der Kreide des Untergrundes der nordöstlichen Niederlande. Natuurhistorisch Maandblad 29(10):104-108.
Bornemann, J. G. 1855. Die Mikroskopische Fauna des Septarienthons von Hermsdorf bei Berlin. Zeitschrift der Deutschen Geologischen Gesellschaft 7:307-871.
Boucek, Bedrich. 1936. Die Ostracoden des böhmischen Ludlows Stufe e ${ }^{\text {b }}$. Neues Jahrbuch fuer Mineralogic, Geologie und Palaeontologie (part B) 76:81-98.

1937. Uber einige Ostracoden aus der Stufe e ${ }^{\alpha}$ des Böhmischen Silurs. Vestnik Ceskoslovenske Spolecnosti Zoologicke (1936) 2:1-11.
Boucek, Bedrich, and Alois Príbyl. 1955. O silurskych ostrakodech a stratigrafii vrstev budnskych (e^{0}) z nejblizsiho okoli Kosova a Koledníku u Berouna. Sbornik Ustredniho Ustavu Geologickeho Ved, Prague (paleontological series) 21:638-652. [On the Silurian ostracodes and the stratigraphy of the Budnany Beds (e^{0}) from the immediate vicinity of the Kosov and the Koledník near Beroun].
Bradfield, H. H. 1935. Pennsylvanian ostracods of the Ardmore Basin, Oklahoma. Bulletins of American Paleontology 22:1145.

Brady, G. S. 1866. On new or imperfectly known species of marine Ostracoda. Transactions of the Zoological Society of London 5:359-393.
. 1867-1871. Ostracoda. In L. De Folin and L. Périer (eds.), Les Fonds de la Mer. Libraire-Editeur (Paris)

- 1868a. A Synopsis of the recent British Ostracoda. Intellectual Observer 12:110-130.
- 1868b. A Monograph of the recent British Ostracoda. Transactions of the Linnean Society of London 26:353-495.
-. 1868c. Contributions to the study of the Entomostraca. No. II. Marine Ostracoda from the Mauritius. Annals and Magazine of Natural History (series 4) 2:178-184.
. 1880. Report on the Ostracoda dredged by H. M. S. Challenger during the years 1873-1876. Report on the Scientific Results of the Voyage of H. M. S. Challenger, Zoology 1(3):1-184.

1881-1887. Ostracoda. In L. De Folin and L. Périer (eds.), Les Fonds de la Mer. Libraire-Editeur (Paris).
1886. Notes on Entomostraca collected by Mr. A. Haley in Ceylon. Journal of the Linnean Society of London, Zoology 19:293-317.
1890. On Ostracoda collected by H. B. Brady, Esq., L.L.D., F.R.S., in the South Sea Islands. Transactions of the Royal Society of Edinburgh (1888) 35:489-525.

- 1911. Notes on marine Ostracoda from Madeira. Proceedings of the Zoological Society of London:595-601.
Brady, G. S., and A. M. Norman. 1889. A Monograph of the marine and freshwater Ostracoda of the North Atlantic and of north-western Europe. Section I. Podocopa. Scientific Transactions of the Royal Dublin Society (series 2) 4:63-270.
Brady, G. S., and David Robertson. 1872. Contributions to the study of the Entomostraca. VI. On the distribution of the British Ostracoda. Annals and Magazine of Natural History (series 4) 9:48-70.
Breman, Evert. 1975. Ostracodes in a bottom core from the deep southeastern basin of the Adriatic Sea. Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings (series B) 78:197-218.
Broodbakker, N. W., and D. L. Danielopol. 1982. The chaetotaxy of Cypridacea (Crustacea, Ostracoda) limbs: Proposals for a descriptive model. Bijdragen tot di dierkunde 52:103-120.
Cannon, H. G. 1926. On the feeding mechanism of a freshwater ostracod, Pionocypris vidua (O. F. Müller). Journal of the Linnean Society of London 35:325-335.
Chapman, Frederick. 1898. Ostracoda from the Cambridge Greensand. Annals and Magazine of Natural History (series 7) 3:381-346.

1903. Foraminifera and Ostracoda from the Cretaceous of East Pondoland, South Africa. Annals of the South African Museum (series 4) 3:221-237.
1904. New or little known Victorian fossils in the National Museum, Melbourne. Part 4. Some Silurian Ostracoda and Phyllocarda. Proceedings of the Royal Society of Victoria 17:298-819.
-. 1907. Report on Microzoa from a boring in the bed of the Buffalo River, East London. Records of the Albany Museum, Grahamstown 2:6-17.
-. 1914. Description of new and rare fossils obtained by deep boring in the Mallee. Part 3. Ostracoda to fishes. Proceedings of the Royal Society of Victoria 27:28-71.

- 1915. Report on the Foraminifera and Ostracoda, p. 151. In Zoological Results of the Fishing Experiments carried on by the F.I.S. "Endeavour," 1909-14, Vol. 8. Commonwealth of Australia, Department of Trade and Customs, Fisheries (Sydney).
-. 1916. Caenozoic geology of the Mallee and other Victorian bores. Geological Survey of Victoria Records 3:327-430.

1917. Foraminifera and Ostracoda of the Gingin Chalk. Geological Survey of Western Australia Bulletin 72:1-87.
1918. Ostracoda. Australasian Antarctic Expedition 1911-14, Scientific Reports, Series C.-Zoology and Botany, 5(7):1-45.
1919. Geological notes on Neumerella and the section from Bairnshale to Orbost. Proceedings of the Royal Society of Victoria (new series) 38:126-142.
1920. Report on foraminiferal soundings and dredgings of the F.I.S. "Endeavour" along the continental shelf of the
south-east coast of Australia. Transactions of the Royal Society of South Australia 65:143-211.
Chapman, Frederick, and Irene Crespin. 1928. Description of Ostracoda, p. 5-195. In F. Chapman, The Sorrento Bore, Mornington Peninsula. Geological Survey of Victoria, Record 5 .
Christensen, O. B. 1968. Biostratigrafisk undersogelse af øresunds-boringerne-overvejende pá grundlag af ostracoder, p. 53-62, 81-85. In G. Larsen, O. B. Christensen, I. Bang, and A. Buch (eds.), Øresundsboringerne Helsingør-Hälsingborg Linien. Gcologiske Rapport, Danmarks Geologisk Undersogelse RapportNo. 1.
Ciampo, Giuliano. 1980. Ostracodi Miocenici (TortonianoMessiniano) della Regione di Ragusa (Sicilia). Bollettino della Societa Palcontologica Italiana 19:5-20.

- 1981. Ostracodi fossili (Oligocene Superiore-Serravalliano) del Monte Cammarata (Sicilia Centro-Occidentale) edel Ragusano (Sicilia Sud-Orientale). Bollettino della Societa Paleontologica Italiana 10:53-72.
Colalongo, M. L. 1965. Gli ostracodi della serie de le Castella (Calabria). Giornale di Geologia 33:83-123.
Colalongo, M. L., and Giancarlo Pasini. 1980. La Ostracofauna plio-pleistocenica della Sezione Vrica in Calabria (con considerazioni sul limite Neogene Quaternario). Bollettino della Societa Palcontologica Italiana 19:44-126.
Conti, S. 1953. Ostracodi e Foraminiferi Hettangiani della Val Solda, p. 215-229. In Stratigrafia e Paleontologia della Val Solda. Servizio Geologico d'Italia, Memoire Descrittive della Carta Geologica.
Cooper, C. L. 1941. Chester ostracodes of Illinois. Illinois State Gcological Survey, Report of Investigations 77:1-101.
-_ 1946. Pennsylvanian ostracodes of Illinois. Illinois State Geological Survey Bulletin 70:1-177.
Copeland, M. J. 1977. Early Paleozoic Ostracoda from southwestern district of Mackenzie and Yukon Territory. Geological Survey of Canada, Bulletin 275:1-88.
Coryell, H. N. 1963. Bibliographic index and classification of the Mesozoic Ostracoda. University of Dayton Press (Dayton, Ohio). 2 vol., 1174 p .
Coryell, H. N., and Suzanne Fields. 1997. A Gatun ostracod fauna from Cativa, Panama. American Museum Novitates 956:1-18.
Coryell, H. N., and S. C. Johnson. 1939. Ostracoda of the Clore Limestone, Upper Mississippian, of Illinois. Journal of Paleontology 18:214-224.
Crespin, Irene. 1941. Palacontological review of the Holland's Landing bore, Gippsland. Mining GeologyJournal 2:252-256.
__. 1943. The stratigraphy of the Tertiary marine rocks in Gippsland, Victoria. Australia Bureau of Mineral Resources 9:1-101.
_- 1944. Middle Miocene limestone from King Island, Tasmania. Royal Society of Tasmania Papers and Proceedings 78:15-18.
Croneis, Carey, and H. M. Bristol. 1939. New ostracodes from the Menard Formation. Journal of the Scientific Laboratories of Denison University 34:65-101.
Croneis, Carey, and R. L. Gutke. 1939. New ostracodes from the Renault Formation. Journal of the Scientific Laboratories of Denison University 33:33-63.
Cronin, T. M. 1983. Bathyal ostracodes from the Florida-Hatteras slope, the straits of Florida, and the Blake Plateau. Marine Micropaleontology 8:89-119.
Danielopol, D. L. 1971. Sur la structure des aesthetascs de
l'antenne de quelques Cyprididae (Crustacea, Ostracoda, Podocopida). Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences de Paris 272:596-599.

1976. The Superfamily Cypridacea: Some remarks on the phylogenetical affinities between the main ostracod cypridacean groups. Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, (NF) 18/19 (Suppl.):77-85.
__ 1978. Über Herkunft und Morphologie der Süsswasserhypogäischen Candoninae (Crustacea, Ostracoda). Sitzungsberichten der Oesterreichische Akademie der Wissenschaften Mathematisch-Naturwissenschaftlich Klasse (Abt. I) 187(1-5):1162.

Darby, D. G. 1965. Ecology and taxonomy of Ostracoda in the vicinity of Sapelo Island, Georgia, Report 2, p. 1-76. In R. V. Kesling, D. G. Darby, R. N. Smith, and D. D. Hall, Four Reports of Ostracod Investigations Conducted under National Science Foundation Project GB-26, privately printed.
De Buen, O. 1916. Los Crustacéos de Baleares. Boletin de la Real Sociedad Espanola de Historia Natural 16.
De Deckker, Patrick. 1979. Evaluation of features distinctive in the taxonomy of the Cypridacea, above the generic level, p. 10-17. In Nadežda Krstić (ed.), Taxonomy, Biostratigraphy and Distribution of Ostracodes, Proceedings of the VII International Symposium on Ostracods. Serbian Geological Society (Belgrade).
De Deckker, Patrick, and P. J. Jones. 1978. Check list of Ostracoda recorded from Australia and Papua New Guinea 18451973. Australia Department of National Development, Bureau of Mineral Resources, Geology and Geophysics Report 195:1-184.
Delo, D. M. 1980. Some Upper Carboniferous Ostracoda from the shale basin of western Texas. Journal of Paleontology 4:152-178.
Dias-Brito, Dimas, J. A. Moura, and Norma Würdig. 1988. Relationships between ecological models based on ostracods and foraminifers from Sepetiba Bay (Rio de Janeiro, Brazil), p. 467-484. In Tetsuro Hanai, Noriyuki Ikeya, and Kunihiro Ishizaki (eds.), Evolutionary Biology of Ostracoda, Its Fundamentals and Applications. Kodansha (Tokyo), and Elsevier (Amsterdam).
Dieci, G., and Antonio Russo. 1964. Ostracodi tortoniani dell'Appenino settentrionale. Bollettino della Societa Paleontologica Italiana 3:38-88.
Donze, Pierre, J-P. Colin, Renée Damotte, H. J. Ocrtli, J.-P. Peypouquet, and Rakia Said. 1982. Les ostracodes du Campanien terminal à l'Éocène inférieur de la coupe du Kef, Tunisie nord-occidentale. Centres de Recherche ExplorationProduction Elf-Aquitaine, Bulletin 6:279-385.
Ducasse, Odette. 1967. Nouveaux ostracodes de l'Éocène NordAquitain. Proces-Verbaux de la Societe des Sciences Physiques et Naturelles de Bordeaux, seance du 7 Fevrier 1967, p. 23-89.

- 1973. Notes complementaires à l'étude micropaléontologique (ostracodes) des falaises de Biarritz Bulletin de l'Institut de Geologie du Bassin d'Aquitaine 14:89-102.
- 1974. Quelques remarques sur la faune d'ostracodes des facies profonds du Tertiaire Aquitain. Bulletin de l'Institut de Gcologie du Bassin d'Aquitaine 16:127-135.
- 1975. Les associations fauniques d'ostracodes de l'Eocène moyen et supérieur dans le sud du Bassin d'Aquitaine. Distribution schématique et valeur paléoécologique. Bulletin de l'Institut de Geologie du Bassin d'Aquitaine 17:17-26.
- 1977. La faune d'ostracodes des dépôts Tertiaires du
plateau continental dans la partie centrale du Golfe de Gascogne: Interêt paléoécologique-relations avec le continent, p. 417-423. In Heinz Löffler and Dan Danielopol (eds.), Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda. Dr. W. Junk b. v. Publishers (The Hague).
Eagar, Stephen H. 1971. A check list of the Ostracoda of New Zealand. Journal of the Royal Society of New Zealand 1:53-64.
Egger, J. G. 1902. Ostrakoden aus Meeresgrundproben gelothet von 1874-1876 von S.M.S. Gazelle. Abhandlungen der Mathe-matisch-Physicalischen Classe der Koeniglichen Bayerischen Akademie der Wissenschaften 21:418-477.

1910. Ostracoden und Foraminiferen des Eybrunner Kreidemergels in der Umgegend von Regensburg. Regensburg Naturwissenschaftliche Verein, Berichte 12:86-133.
Egorov, V. G. 1953. Ostracoda of the Frasnian strata of the Russian platform. II. Bairdiidae, Hollinidae, Kirkbyidae. Ministry Petroleum Industry, Moscow Branch, All-Union Petroleum Scientific-research Geological-survey Institute. State Scientific Technological Publishing House (Moscow-Leningrad). 79 p . [In Russian].
Elofson, Olof. 1941. Zur Kenntnis der marinen Ostracoden Schwedens mit besonderer Berücksichtigung des Skageraks Zoologiska Bidrag fran Uppsala 19:215-534 [1969, translated as Marine Ostracoda of Sweden with special consideration of the Skaggerak, p. 1-286. Published for the Smithsonian Institution and the National Science Foundation, Washington, D.C., by the Israel Program for Scientific Translations].
1911. Neuere Beobachtungen über die Verbreitung der Ostracoden an den skandinavischen Küsten. Arkiv foer Zoologi 35:1-26.
Foster, D. W., and R. L. Kaesler. 1988. Heterochrony and shape analysis: Ideas from the Ostracoda, p. 59-69. In Michael L. McKinney (ed.), Heterochrony in Evolution. Plenum (New York).
Geinitz, H. B. 1861. Die animalischen Ueberreste der Dyas: Dyas oder die Zechsteinformation und das Rothliegende, no. 1. Leipzig. 180 p .
Grekoff, N., and G. Deroo. 1956. Algunos Ostrácodes del Cretácio medio del Norte de España. Estudios geológicos Instituto de Investigationes Geologicas "Lucas Mallada," Madrid 31-32:215235.

Gründel, Joachim. 1962. Zur Taxionomie der Ostracoden der Gattendorfia-Stufe Thüringens. Freiberger Forschungshefte series C 151:51-106.
1967. Zur Grossgliederung der Ordnung Podocopida G. W. Müller, 1894 (Ostracoda). Neues Jahrbuch fuer Geologie und Palacontologie, Monatshefte 6:321-332.
. 1969. Neue taxionomische Einheiten der Unterklasse Ostracoda (Crustacea). Neues Jahrbuch fuer Geologie und Palaeontologic, Monatshefte (1969):353-361.
1978. Die Ordnung Podocopida Sars, 1866 (Ostracoda), Stand und Probleme der Taxonomic und Phylogenie. Freiberger Forschungshefte (series C) 384:49-68.
Guber, A. L., and V. Jaanusson. 1964. Ordovician ostracodes with posterior domiciliar dimorphism. Geological Institut Uppsala, Bulletin 42:1-43.
Hall, Donald D. 1965. Paleoecology and taxonomy of fossil Ostracoda in the vicinity of Sapelo Island, Georgia, Report 4, p. 1-79. In R. V. Kesling, D. G. Darby, R. N. Smith, and D. D. Hall, Four Reports of Ostracod Investigations conducted under National Science Foundation Project GB-26, privately published.

Hanai, Tetsuro, Noriyuki Ikeya, and Michiko Yajima. 1980. Checklist of Ostracoda from Southeast Asia. The University of Tokyo Museum Bulletin 17:1-286.
Harlton, B. H. 1929. Pennsylvanian Ostracoda from Menard County, Texas. University of Texas Bulletin 2901:189-161.
Harten, Dick van. 1983. Resource competition as a possible cause of sex ratio in benthic ostracodes, p. 568-580. In R. F. Maddocks (ed.), Applications of Ostracoda. Department of Geosciences, University of Houston.
—_ 1986a. Use of ostracodes to recognize downslope contamination in paleobathymetry and a preliminary reappraisal of the paleodepth of the Prasás Marls (Pliocene), Crete, Greece. Geology 14:856-859.
—_. 1986b. Ostracode options in sea-level studies, p. 489-501. In Orson van de Plassche (ed.), Sea-Level Research: A Manual for the Collection and Evaluation of Data. Geobachs (Norwich).

- 1987. Ostracodes and the early Holocene anoxic event in the eastern Mediterranean-Evidence and implications. Marine Geology 75:263-269.
Harten, Dick van, and H. J. Droste. 1988. Mediterranean deepsea ostracods, the species poorness of the eastern basin as a legacy of an early Holocene anoxic event, p. 721-787. In Tetsuro Hanai, Noriyuki Ikeya, and Kunihiro Ishizaki (eds.), Evolutionary Biology of Ostracoda, Its Fundamentals and Applications. Kodansha (Tokyo), and Elsevier (Amsterdam).
Hartmann, Gerd. 1964a. Zum Kenntnis der Ostracoda des Roten Meeres. Kieler Meeresforschungen 20:35-127.
——. 1964b. Neontological and paleontological classification of Ostracoda. Pubblicazioni della Stazione Zoologica di Napoli 33 (Suppl.):550-587.
——. 1965. Zur Kenntnis des sublitorals der chilenischen Küste unter besonderer Berücksichtigung der Polychaeten und Ostracoden. III. Ostracoden des Sublitorals. Mitteilungen der Hamburgischen Zoologischen Museum und Institut 62:807-384.
- 1966. Ostracoda, Part 1, p. 1-216. In H. G. Bronns Klassen und Ordnungen des Tierreichs, vol. 5, no. 1 Crustacea, book 2, 4th part, Ostracoda. Akademische Verlag Gesellschaft (Leipzig).
——. 1984. Zur Kenntnis der polynesischen Inseln Huahiné (Gesellschaftsinseln) und Rangiroa (Tuamotu-Inseln). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 81:117-169.

1985. Ostracoden aus der Tiefsee des Indischen Ozeans und der Iberischen See sowie von ostatlantischen sublitoralen Plateaus und Kuppen. Mit einer Tabelle der bislang bekannten rezenten Tiefsee Ostracoden. Senckenbergiana Maritima 17:89-146.
1986. Antarktische benthische Ostracoden I (Mit einer Tabelle der bislang aus der Antarkuis bekannten Ostracoden). Auswertung der Fahrten der "Polarstern" Ant II/2 (SibexSchnitte) und der Reise 68/1 der "Walther Herwig" (1. Teil: Elephant Island) in die Antarktis. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 88:147221.

- 1987. Antarctische benthische Ostracoden II. Auswertung der Fahrten der "Polarstern" Ant. III/2 und der Reisen der "Walther Herwig" 68/1 und 2 (2. Teil: Elephant Island und Bransfield Strasse). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 84:115-156.

Hartmann, Gerd, and Gesa HartmannSchröder. 1975. Zoogeography and biology of littoral Ostracoda from South Africa, Angola and Mozambique. Bulletins of American Paleontology 65:353-368.
1988. Deep-sea Ostracoda, taxonomy, distribution and morphology, p. 699. In Tetsuro Hanai, Noriyuki Ikeya, and Kunihiro Ishizaki (eds.), Evolutionary Biology of Ostracoda, Its Fundamentals and Applications. Kodansha (Tokyo), and Elsevier (Amsterdam).
Hartmann, Gerd, and H. S. Puri. 1974. Summary of neontological and paleontological classification of Ostracoda. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 70:7-73.
Hazel, J. E., and J. C. Holden. 1971. Ostracoda of Late Eocene age from Eua, Tonga. United States Geological Survey, Professional Paper 640-D:D1-D11.
Hazel, J. E., M. D. Mumma, and W. J. Huff. 1980. Ostracode biostratigraphy of the Lower Oligocene (Vicksburgian) of Mississippi and Alabama. Gulf Coast Association of Geological Societies, Transactions 30:361-401.
Herb, René. 1971. Distribution of recent benthonic foraminifera in the Drake Passage, p. 251-300. In G. A. Llano and I. E. Wallen (eds.), Biology of the Antarctic Seas IV, Antarctic Research Series Volume 17. American Geophysical Union (Washington, D.C.).
Herrig, Ekkehard. 1977. Ostracoden aus dem Plio-/Pleistozãn der Socialistischen Republik Vietnam, Teil 1. Zeitschrift fuer Geologische Wissenschaften 5:1153-1167.
Holden, J. C. 1967. Late Cenozoic ostracodes from the drowned terraces in the Hawaiian Islands. Pacific Science 21:1-50.
——. 1976. Late Cenozoic Ostracoda from Midway Island drill holes. United States Geological Survey, Professional Paper 680-FF1-F43.
Hornibrook, N. de B. 1952. Tertiary and Recent Ostracoda of New Zealand, their origin, affinities and distribution. New Zealand Geological Survey, Bulletin 18:1-82.
1953. Some New Zealand Tertiary marine Ostracoda useful in stratigraphy. Transactions of the Royal Society of New Zealand 81:303-311.
Howe, H. V. 1962. Ostracod Taxonomy. Louisiana State University Press (Baton Rouge). 366 p .
Howe, H. V., and W. A. van den Bold. 1975. Mudlump Ostracoda. Bulletins of American Paleontology 65:303-315.
Howe, H. V., and Jack Chambers. 1935. Louisiana Jackson Eocene Ostracoda. Louisiana Geological Survey, Geological Bulletin 5:1-65.
Howe, H. V., R. V. Kesling, and H. W. Scott. 1961. Morphology of living Ostracoda, p. Q3-Q17. In R. C. Moore (ed.), Treatise on Invertebrate Paleontology, Part Q, Arthropoda 3, Crustacea Ostracoda. Geological Society of America and University of Kansas Press (New York and Lawrence).
Howe, H. V., and Laura Laurencich. 1958. Introduction to the Study of Cretaceous Ostracoda. Louisiana State University Press (Baton Rouge). 536 p.
Hu, Chung-Hung. 1979. Studies on ostracode faunas from the Hungchun Formation, Hungchun Peninsula, southern Taiwan. Petroleum Geology of Taiwan 16:59-84.
1982. Studies on ostracod faunas from the Hengchun Limestone (Pleistocene), Hengchun area, southern Taiwan. Quarterly Journal of the Taiwan Museum 35:171-195.
1984. New fossil ostracod faunas from Hengchun Pe-
ninsula, southern Taiwan. Journal of the Taiwan Museum 37:65-130.
-_ 1986. The ostracodes from the Tungshiao Formation (Pleistocene), west coast of Miaoli District, Taiwan. Journal of Taiwan Museum 39:99-174.
Hu, Chung-Hung, and Lein-Chu Yang. 1975. Studies on Pliocene ostracodes from the Chinshui Shale, Miaoli District, Taiwan. Proceedings of the Geological Society of China 18:103-114.
Hulings, N. C. 1967a. Marine Ostracoda from the western North Atlantic Ocean between Cape Hatteras, North Carolina, and Jupiter Inlet, Florida. Bulletin of Marine Science 17:629-659.
-_ 1967b. Marine Ostracoda from the western North Atlantic Ocean: Labrador Sea, Gulf of St. Lawrence, and off Nova Scotia. Crustaceana 18:810-828.
-_. 1967c. A Review of the recent marine podocopid and platycopid ostracods of the Gulf of Mexico. Contributions in Marine Science 12:80-100.
Hutchinson, G. E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals. American Naturalist $98: 145-$ 159.

International Commission on Zoological Nomenclature. 1961. International Code of Zoological Nomenclature adopted by the XV International Congress of Zoology. International Trust for Zoological Nomenclature (London). 176 p .
International Commission on Zoological Nomenclature. 1985. International Code of Zoological Nomenclature, Third Edition, adopted by the XX General Assembly of the International Union of Biological Sciences. International Trust for Zoological Nomenclature (London). 388 p.
Ishizaki, Kunihiro. 1977. Distribution of Ostracoda in the East China Sea-A justification for the existence of the Paleo-Kuroshio current in the Late Cenozoic, p. 425-440 of Ecology and Zoogeography of Recent and Fossil Ostracoda. Dr. W. Junk b. v. Publishers (The Hague).

Jain, S. P. 1961. Discovery of Ostracoda and smaller foraminifers from the Upper Cretaceous Bagh Beds, M. P. Current Science 30:341-342.
-_ 1975. Ostracoda from the Bagh Beds (Upper Cretaceous) of Madhya Pradesh. Geophytology 5:188-212.
Jones, T. R. 1849. Monograph of the Entomostraca of the Cretaceous Formation of England. Palacontographical Society (London). 40 p .

- 1870. Notes on the Cretaceous Entomostraca. Geological Magazine 7:74-77.
—_ 1884. Notes on the Foraminifera and Ostracoda from deep boring at Richmond. Journal of the Geological Society, London 40:766-777.
—. 1885. The Ostracoda of the Purbeck Formation with notes on the Wealden species. Journal of the Geological Society, London 41:311-353.
- 1887. Notes on the Palaeozoic bivalved Entomostraca. No. 23. On some Silurian genera and species (continued). Annals and Magazine of Natural History (series 5) 19:177-195. 1889. Notes on the Paleozoic bivalved Entomostraca, no. 18: On some Scandinavian species. Annals and Magazine of Natural History (series 6) 4:267-273.

1890. On some Devonian and Silurian Ostracoda from North America, France and the Bosphorus. Journal of the Geological Society, London 46:534-556.

- 1901. Ostracoda (Table of Classification). In Frederick Chapman, On some fossils of Wenlock age from Mulde, near

Klinteberg, Gotland. Annals and Magazine of Natural History (series 7) 7:141-160.
Jones, T. R., and G.J. Hinde. 1890. A supplementary monograph of the Cretaceous Entomostraca of England and Ireland. Palaeontographical Society, London 48:1-70.
Jones, T. R., and J. W. Kirkby. 1897. On Carboniferous Ostracoda from Ireland. Royal Dublin Society, Scientific Transactions (series 2) 6:178-200.
Jones, T. R., and C. D. Sherborn. 1887. On some Ostracoda from the Fullers-earth Oolite and Bedford Clay. Bath Natural History and Antiquarian Field Club, Proceedings 6:249-278.
Joy, J. A., and D. L. Clark. 1977. The distribution, ecology and systematics of the benthic Ostracoda of the central Arctic Ocean. Micropaleontology 28:129-154.
Kaesler, R. L., and D. W. Foster. 1988. Ontogeny of Bradleya normani (Brady): Shape analysis of landmarks, p. 207-218. In Tetsuro Hanai, Noriyuki Ikeya, and Kunihiro Ishizaki (eds.), Evolutionary Biology on Ostracoda. Proceedings of the Ninth International Symposium on Ostracoda. Elsevier (Tokyo).
Kaesler, R. L., and K. C. Lohmann. 1976. Phenotypic variations of populations of Krithe producta with environment. Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF) 18/19 (Suppl.):279-286.
Kaesler, R. L., and R. F. Maddocks. 1988 (submitted 1979, dated 1984, appeared 1988). Preliminary harmonic analysis of outlines of recent macrocypridid ostracodes. Proceedings of the VII International Symposium on Ostracodes, Taxonomy, Biostratigraphy and Distribution of Ostracodes, vol. 2. Serbian Geological Society (Belgrade).
Kaesler, R. L., P. S. Mulvany, and L. S. Kornicker. 1977. Delimitation of the Antarctic Convergence by cluster analysis and ordination of benthic myodocopid Ostracoda, p. 285-244. In Heinz Löffler and Dan Danielopol (eds.), Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda. Dr. W. Junk b. v. Publishers (The Hague).
Kajiyama, E. 1918. Study on the Ostracoda of Misaki, Part 3. Dobutsugaku Zasshi [Zoological Magazine, Tokyo] 15:1-16.
Kaye, Peter. 1964. Revision of British marine Cretaceous Ostracoda with notes on additional forms. Bulletin of the British Museum (Natural History), Geology 10:37-79.
1965. Further Ostracoda from the British Lower Cretaceous. Senckenbergiana Lethaia 46:78-81.
Kaye, Peter, and D. Barker. 1965. Ostracoda from the Sutterby Marl (U. Aptian) of South Lincolnshire. Palaeontology 8:375390.

Kegel, W. 1928. Beiträge zur Kenntnis palaeozoischer Ostracoden. 1. Ostracoden aus dem Oberen Mitteldevon von Mahren und der Eifel. Jahrbuch der Preussischen Geologischen Landesanstalt 48:653-661.
Keij, A. J. 1957. Eocene and Oligocene Ostracoda of Belgium. Institut Royal des Sciences Naturelles de Belgique, Memoire 136:1-210.
Kesling, R. F. 1952. Doubling in size of ostracod carapaces in each molt stage. Journal of Palcontology 26:772-780.
-. 1965. Anatomy and dimorphism of adult Candona suburbana Hoff, Report 1, p. 1-56. In R. V. Kesling, D. G. Darby, R. N. Smith, and D. D. Hall, Four Reports of Ostracod Investigations Conducted under National Science Foundation Project GB-26, privately printed.
Key, A. J. 1954. Ostracoda. In T. van Andel and H. Postma, Recent Sediments of the Gulf of Paria. Reports of the Orinoco

Shelf Expedition 1. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde 20:119-128, 218-229.
Keyser, Dietmar. 1980. Auftreten und Konstanz von Poren und Borsten auf der Schale von Podocopa (Ostracoda, Crustacea). Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF) 28:175-198.
Khosla, S. C. 1978. Lower Miocene Ostracoda from Jamnagar and Porbander Districts, Gujarat, India. Micropaleontology 24:251-290.
Kingma, J. T. 1948. Contributions to the knowledge of the Young-Caenozoic Ostracoda from the Malayan region. Academic Thesis (Utrecht). 118 p .
Kirkby, J. W. 1858. On Permian Entomostraca from the fossiliferous limestone of Durham. Annals and Magazine of Natural History (series 3) 2:817-830.
Klie, Walter. 1929. Ostracoda. Tierwelt der Nord- und Ostsee 16:1-56.
Kontrovitz, Mervin. 1976. Ostracoda from the Louisiana continental shelf. Tulane Studies in Geology and Paleontology 12:49-100.
Kornicker, Louis S. 1969. Station data on Ostracoda collected by the "Travailleur" and "Talisman" (1881-1883). Crustacea 16:111-112.
1975. Antarctic Ostracoda (Myodocopina). Smithsonian Contributions to Zoology 163:1-720.

- 1977. Diversity of benthic myodocopid ostracodes, p. 159-178. In Heinz Löffler and Dan Danielopol (eds.), Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda. Dr. W. Junk b. v. Publishers (The Hague).
Kozur, Heinz. 1968. Neue Ostracoden aus dem Rot und Muschelkalk des germanischen Binnenbeckens. Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin 10:498519.

1971. Die Bairdiacea der Trias. Teil III: Einige neue Arten triassischer Bairdiacea und Bemerkungen zur Herkunft der Macrocyprididae (Cypridacea). Geologische und Palacontologische Mitteilungen Innsbruck 1:1-18.
1972. Einige Bemerkungen zur Systematik der Ostracoden und Beschreibung neuer Platycopida aus der Trias Ungarns und der Slowakei. Geologische und Palaeontologische Mitteilungen Innsbruck 2:1-27.
Krstić, Nadežda. 1979. Ostracods of the Lower Miocene in the area between Shams Abad and Rahniz, Iran. VII International Congress on Mediterranean Neogene. Annales Geologiques des Pays Helleniques, Tome hors serie 2:675-697.
Kuiper, W. M. 1918. Oligozäne und Miozäne Ostracoden aus den Niederlanden. Dissertation, University of Gröningen, 91 pp.
Kummerow, E. 1949. Über einige Süsswasser-Ostracoden des Ruhrkohlengebietes. Neues Jahrbuch fuer Mineralogie, Geologie, und Palacontologie, Abhandlungen (part B) 1949:4559.
1973. Über Oberkarbonische und Devonische Ostracoden in Deutschland und in der Volksrepublik Polen. Geologie 2:1-75.
LeRoy, L. W. 1943. Pleistocene and Pliocene Ostracoda of the coastal region of southern California. Journal of Palcontology 17:854-873.
Lienenklaus, E. 1900. Die tertiär Ostracoden des mittleren NordDeutschlands. Zeitschrift der Deutschen Geologischen Gesellschaft 52:499-550.

Lofthouse, Patricia. 1967. Cladocera, Ostracoda, and freshwater Copepoda. British and New Zealand Antarctic Research Expedition Reports (series B) 8:141-144.
Lohmann, G. P. 1983. Eigenshape analysis of microfossils: A general morphometric procedure for describing changes in shape. Mathernatical Geology 15:659-672.
Loranger, D. M. 1954. Ireton microfossil zones of central and northeastern Alberta, p. 182-203. In L. M. Clark (ed.), Western Canada Sedimentary Basin. American Association of Petroleum Geologists (Tulsa, Oklahoma).
Lyubimova, P. S., D. K. Guha, and M. Mohan. 1960. Ostracoda of Jurassic and Tertiary deposits from Kutch and Rajasthan (Jaisalmer), India. Bulletin of the Geological, Mining and Metallurgical Society of India 22:1-61.
MacArthur, R. H. 1972. Geographical Ecology, Patterns in the Distribution of Species. Harper \& Row (New York). 269 p.
Maddocks, R. F. 1966. Distribution patterns of living and subfossil podocopid ostracodes in the Nosy Bé area, northern Madagascar. University of Kansas Palcontological Contributions, Paper 12:1-72.
-_. 1969a. Recent ostracodes of the Family Pontocyprididae chiefly from the Indian Ocean. Smithsonian Contributions to Zoology 7:1-56.

- 1969b. Revision of Recent Bairdiidae (Ostracoda). United States National Museum Bulletin 295:1-126.
——. 1974. Ostracoda, p. 199-229. In T. J. Bright and L. H. Pequegnat (eds.), Biota of the West Flower Garden Bank. Gulf Publishing Company (Houston).
-. 1976. Quest for the ancestral podocopid: Numerical cladistic analysis of ostracode appendages, a preliminary report. Abhandlungen und Verhandlungen des Naturwissenschaftichen Vereins in Hamburg (NF) 18/19 (Suppl.):39-54.
- 1977. Zoogeography of Macrocyprididae (Ostracoda), p. 147-157. In Heinz Löffler and Dan Danielopol (eds.), Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda. Dr. W. Junk b. v. Publishers (The Hague). 521 p.

1979. The "dentiform corner" of Macrocypria, and some other peculiar and pathological structures observed in Macrocyprididae, p. 247-250. In Nadez̆da Krstić (ed.), Taxonomy, Biostratigraphy and Distribution of Ostracodes, Proceedings of the VII International Symposium on Ostracodes. Serbian Geological Society (Belgrade). 227 p.
. 1982. Ostracoda, p. 221-239. In R. R. Hessler, B. M. Marcotte, W. M. Newrnan, and R. F. Maddocks, Evolution within the Crustacea, p. 150-239. In L. G. Abele (ed.), The Biology of Crustacea. Volume 1, Systematics, the Fossil Record, and Biogeography. Academic Press (London and New York). 819 p .

1988a. Multivariate analysis of leg morphology of Macrocyprididac, p. 219-234. In Tetsuro Hanai, Noriyuki Ikeya, and Kunihiro Ishizaki (eds.), Evolutionary Biology of Ostracoda, Its Fundamentals and Applications. Kodansha (Tokyo), Elsevier (Amsterdam).
——. 1988b. New species and review of the genus Paracypris (Ostracoda). Crustaceana 55:59-70.
Maddocks, R. F., and L. S. Kornicker. 1985. Class Ostracoda (Mussel Shrimps), p. 280-288. In Wolfgang Sterrer (ed.), Marine Fauna and Flora of Bermuda. Wiley-Interscience (New York).
Maddocks, R. F., and P. L. Steineck. 1987. Ostracoda from
experimental wood-island habitats in the deep sea. Micropaleontology 38:318-355.
Mancini, E. A. 1977. Depositional environment of the Grayson Formation (Upper Cretaceous) of Texas. Gulf Coast Association of Geological Societies 27:384-351.
Mayr, Ernst. 1969. Principles of Systematic Zoology. McGraw-Hill (New York). 428 p.
Mayr, Ernst, E. G. Linsley, and R. L. Usinger. 1953. Methods and Principles of Systematic Zoology. McGraw-Hill (New York). 336 p.
McKenzie, K. G. 1965. The ecologic associations of an ostracode fauna from Oyster Harbour, a marginal marine environment near Albany, western Australia. Pubblicazioni della Stazione Zoologica di Napoli 33(Suppl.):421-461.
-_ 1967a. The distribution of Caenozoic marine Ostracoda from the Gulf of Mexico to Australasia. In C. G. Adams and D. V. Ager (eds.), Aspects of Tethyan Biogeography. Systematics Association Publication 7:219-238.
——. 1967b. The ostracode cabinet of G. S. Brady at the Hancock Museum, Newcastle-upon-Tyne. Unpublished manuscript.
—_ 1974. Cenozoic Ostracoda of southeastern Australia with the description of Hanaiceratina new genus. Geoscience and Man 6:153-182.

- 1975. Saipanetta and the classification of podocopid Ostracoda. A reply to Schornikovand Gramm (1974). Crustaceana 29:222-224.
- 1976. Sahul Shelf assemblages and the evolution of postPalaeozoic Ostracoda. Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF) 18/19 (Suppl.):215-228.
1.1979. Tasmanocypris, a new marine ostracode genus: and a review of the Family Paracyprididae (Crustacea; Ostracoda). Royal Society of Tasmania, Papers and Proceedings 113:29-37. —. 1981. Chapman's "Mallee Bores" and "Sorrento Bore" Ostracoda in the National Museum of Victoria, with the description of Maddocksella new genus. Royal Society of Tasmania, Proceedings 93:105-107.
- 1982. Homocomorphy: Persistant joker in the taxonomic pack, with the description of Bradleycyprisgen. nov., p. 407-438. In R. H. Bate, E. Robinson, and L. M. Sheppard (eds.), Fossil and Recent Ostracods. Ellis Horwood Ltd. (Chichester).
McKenzie, K. G., O. Ducasse, E. DuFour, and J.-P. Peypouquet. 1979. Monographie bibliographique, stratigraphique, et palčoécologique sur les ostracodes Cénozoïques du Bassin d'Aquitaine et du Golfe de Gascogne. Bulletin de I'Institut de Geologie du Bassin d'Aquitaine, special number, 195 p .
McKenzie, K. G., K. J. Müller, and M. N. Gramm. 1983. Phylogeny of Ostracoda, p. 29-46. In F. R. Schram (ed.), Crustacean Phylogeny. A. A. Balkema (Rotterdam).
McKenzie, K. G., and J-P. Peypouquet. 1984. Oceanic environment of the Miocene Fyansford Formation from Fossil Beach, near Mornington, Victoria, interpreted on the basis of Ostracoda. Alcheringa 8:291-303.
McKenzie, K. G., and F. M. Swain, 1967. Recent Ostracoda from Scammon Lagoon, Baja California. Journal of Palcontology 41:281-305.
Mehes, G. 1996. Die Eozänen Ostracoden der Umgebung von Budapest. Geologica Hungarica, Paleontological Series 12:164.

Michaelsen, Olaf. 1975. Lower Jurassic biostratigraphy and ostracods of the Danish embayment. Danmarks Geologiske Undersoegelse (II series) 104:1-287.
Monostori, M. 1985. Ostracods of Eocene/Oligocene boundary profiles in Hungary. Annales Universitatis Scientiarum Budapestinensis de Rolando Eotvos Nominatae, Sectio Geologica 25:161-243.
Montcharmont-Zei, Maria, Bianca Russo, Franca Sgarrella, Gioacchino Bonaduce, and Patrizia Mascellaro. 1984. Paleoclimatic record from 4 cores (Gulf of Taranto, Ionian Sea), Evidence from Foraminifera and Ostracoda. Bollettino della Societa Paleontologica Italiana 28:21-51.
Morkhoven, F. P. C. M. van. 1962. Post-Palacozoic Ostracoda: Their Morphology, Taxonomy, and Economic Use, v. I. Elsevier (Amsterdam). 204 p .
1963. Post-Palacozoic Ostracoda: Their Morphology, Taxonomy, and Economic Use, v. II. Elsevier (Amsterdam). 478 p.
Mūller, G. W. 1894. Die Ostracoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. Fauna und Flora des Golfes von Neapel. Friedländer \& Sohn (Berlin). 404 p.
1908. Ostracoda der deutschen Südpolar-Expedition 1901-1903. Deutsche Südpolar-Expedition 1901-1903, im Auftrage des Reichsamtes des Inneren herausgegeben von Erich von Drygalski 10 (Zoology 2):51-181.
—_ 1912. Ostracoda. Das Tierreich 31:1-434.
Münster, G. von. 1830. Uber einige fossile Arten Cypris (Müller, Lamk.) und Cythere (Müller, Latreille, Desmarest). Neues Jahrbuch fuer Mineralogie, Geologie, und Palaeontologie 1:6067.

Nascimento, Antonio. 1983. The Ostracoda fauna of the Portuguese Neogene and its relationship to those from the Atlantic and Mediterranean basins, p. 429-436. In R. F. Maddocks (ed.), Applications of Ostracoda. Department of Geosciences, University of Houston.
Neale, J. W. 1964. Some factors influencing the distribution of Recent British Ostracoda. Pubblicazioni della Stazione Zoologica di Napoli 33(Suppl): 247-307.
1967. An ostracod fauna from Halley Bay, Coats Land, British Antarctic Territory. British Antarctic Survey Scientific Reports 58:1-50.
1975. The ostracod fauna from the Santonian Chalk (Upper Cretaceous) of Gingin, Western Australia. Special Papers in Paleontology 16:1-81.
1985. The incidence and distribution of cladocopine, platycopine and podocopine Ostracoda in certain BIOGAS and INCAL samples taken from the deeper waters of the N. E. Atlantic, p. 413-417. In L. Laubier and Cl. Monniot (eds.), Peuplements Profonds du Golfe de Gascogne. Ifremer.
1988. The anatomy of the ostracod Pelecogythere purii sp. nov. and some features connected with the abyssal mode of life in this and some other deep water forms, p. 709-720. In Tetsuro Hanai, Noriyuki Ikeya, and Kunihiro Ishizaki (eds.), Evolutionary Biology of Ostracoda, Its Fundamentals and Applications. Kodansha (Tokyo), Elsevier (Amsterdam).
Neviani, Antonio. 1928. Ostracoda fossili d'Italia. I. Vallebiaja (Calabriano). Memorie Pontificia Accademia Nuovi Lincei 11:1-120.
Norman, A. M. 1869. Shetland final dredging report. Part II. On the Crustacea, Tunicata, Polyzoa, Echinodermata, Actinozoa, Hydrozoa, and Porifera. British Association for the Advancement of Science, Report of the 38th Meeting (1868):247-386.
——. 1891. Notes on the marine Crustacea Ostracoda of Norway. Annals and Magazine of Natural History (series 6) 7:108-121.
Oertli, H. J. 1959. Malm-Ostracoden aus dem schweizerischen Juragebirge. Memoires Societe Helvetique des Sciences Naturelles 88:1-44.

- 1961. Ostracodes du Langhien-type. Rivista Italiana Paleontologica e Stratigrafia 67:17-44.
. 1970. Post-Colloquium Excursion 25-VII-1970, Côte Basque. Colloquium on the Paleoecology of Ostracodes (Pau). Unpaginated.
Ostenfeld, C. H. 1906. Catalogue des espèces de plantes et d'animaux observées dans le plancton recueilli pendant les expéditions périodiques depuis le mois d'Août 1902 jusqu'au mois de Mai 1905. Conseil Permanent International Exploration de la Mer, Publication Circonstance 39.
Ostenfeld, C. H., and Wesenberg-Lund. 1909. Catalogue des espèces de plantes et d'animaux observées dans le plancton recuelli pendant les expéditions périodiques depuis le mois d'Août 1905 jusqu'au mois de Mai 1908. Conseil International pour l'Exploration de la Mer, Publication Circonstance 48.
Peypouquet, J.-P. 1975. Les variations des caractères morphologiques internes chez les ostracodes des genres Krithe et Parakrithe: relation possible avec la teneur en O_{2} dissous dans l'eau. Bulletin de l'Institut de Geologie du Bassin d'Aquitaine 17:81-88.

1979. Ostracodes et paléoenvironnements. Méthodologie et application aux domaines profonds du Cénozoïque. Bulletin du Bureau de Recherche Geologique et Miniere, Section IV, (2eme Serie) 1:3-79.
—_ 1980. Les relations ostracodes-profondeur. Principes applicables pendant le Cénozoïque. Bulletin de l'Institut de Geologie du Bassin d'Aquitaine 28:13-28.
Peypouquet, J.-P., and R. H. Benson. 1980. Les ostracodes actuels des bassin du Cap et d'Angola: Distribution bathymétrique en fonction de l'hydrologie. Bulletin de l'Institut de Geologie du Bassin d'Aquitaine 28:5-12.
Peypouquet, J.-P., and D. Nachite. 1984. Les ostracodes en Méditerranée nord-occidentale. In J.J. Bizon and P. F. Burrollet (eds.), Ecologie des Microorganismes en Méditerranée nordoccidentale. Petrole et Technique 303:36-54.
Pokorný, Vladímir. 1958. Grundzüge der Zoologischen Mikropalāontologie, volume II. VEB Deutscher Verlag der Wissenschaften (Berlin). 453 p.
1980. Ostracodes, p. 109-149. In B. U. Haq and Anne Boersma (eds.), Introduction to Marine Micropaleontology. Elsevier (New York).
Príbyl, Alois. 1962. Upper Carboniferous ostracodes of the Hrušov and Petrkovice beds (Namurian A) in the Ostrava-Karviná Coal District. Rozpravy Ceskoslovenske Akademie Ved 72:40.
Príbyl, Alois, and Milan Snajdr. 1950. On new Ostracoda from the Chotec limestones-gy2 (Middle Devonian) of Holyne near Prague. Sbornik Uhstredniho Ustavu Geologickeho Ved, Prague (paleontological series) 17:101-179.
Przibram, H. 1931. Connecting Laws of Animal Morphology. Four lectures held at the University of London. University of London Press. 62 p.
Puri, H. S. 1960. Recent Ostracoda from the west coast of Florida. Gulf Coast Association of Geological Societies, Transactions 10:107-149.
1981. Preliminary notes on the Ostracoda of the Gulf of Naples. Experientia 19:1-6.
1982. Normal pores and the phylogeny of Ostracoda. Geoscience and Man 6:187-151.
Puri, H. S., Gioacchino Bonaduce, and J. Malloy. 1964. Ecology of the Gulf of Naples. Pubblicazione della Stazione Zoologica di Napoli 38(Suppl): 87-199.
Puri, H. S., Gioacchino Bonaduce, and A. M. Gervasio. 1969. Distribution of Ostracoda in the Mediterranean, p. 356-411. In J. W. Neale (ed.), The Taxonomy, Morphology and Ecology of Recent Ostracoda. Oliver and Boyd (Edinburgh).
Puri, H. S., and E. Dickau. 1969. Use of normal pores in taxonomy of Ostracoda. Gulf Coast Association of Geological Societies, Transactions 19:353-367.
Puri, H. S., and N. C. Hulings. 1976. Designation of lectotypes of some Ostracoda from the Challenger Expedition. Bulletin of the British Museum (Natural History), Zoology 29:249-815.
Rescher, C. K. 1968. Untersuchungen an Ostrakoden der westfalischen Oberkreide. Decheniana 121:39-88.
Reuss, A. E. 1851. Die Foraminiferen und Entomostraceen des Kreidemergels von Lemberg. Naturwissenschaftliche Abhandlungen 4:17-52.
1983. Beiträge zur Charakteristik der Kreideschichten in den Ostalpen, besonders im Gosauthale und am Wolfgangsee. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe 7:1-156.
Reys, Simone. 1961a. Note préliminaire à l'étude des ostracodes du Golfe de Marseille. Recueil des Travaux duStation Marine d'Endoume-Marseilles Fascicule Hors Serie Supplement 21:59-64.

- 1961b. Recherches sur la systématique et la distribution des ostracodes de la région de Marseille. Recueil des Travaux du Station Marine d'Endoume 22:58-109.
__. 1964. Note sur les ostracodes des phanérogames marines des côtes de Provence. Recueil des Travaux du Station Marine d'Endoume 32:183-202.

1965. Ostracodes de la biocoenose des fonds détritiques côtiers et de ses facies d'algues calcaires. Recueil des Travaux du Station Marine d'Endoume 38:255-267.
Richter, Reinhard. 1867. Aus dem thüringischen Schiefergebirge. Zeitschrift der Deutschen Geologischen Gesellschaft 19:219236.

Rome, Dom Remacle. 1942. Ostracodes marins des environs de Monaco, 2 me Note. Bulletin de l'Institut Oceanographique 819:1-31.
1964. Ostracodes des environs de Monaco, leur distribution en profondeur, nature des fonds marins explorés. Pubblicazioni della Stazione Zoologica di Napoli 33(Suppl.):200212.
1969. Morphologie de l'attache de la furca chez les Cyprididae et son utilisation en systématique, p. 168-193. In J. W. Neale (ed.), The Taxonomy, Morphology and Ecology of Recent Ostracoda. Oliver \& Boyd (Edinburgh).
Rosenfeld, Amnon, and Amos Bein. 1978. A Preliminary note on recent ostracodes from shelf to rise sediments off Northwest Africa. "Meteor" Forschungs-Ergebnisse, Reihe C, 29:14-20.
Rudjakov, J. A. 1961. A new ostracod species of the family Cytheridae from the ultra-abyssal depths of the Java trench. Trudy Instituta Okeanologii, Akademiia Nauk SSSR 51:116120 [In Russian].
-. 1962. Ostracoda Myodocopa of the Family Halocypridae from the northwestern Pacific. Trudy Instituta Okeanologii, Akademiia Nauk SSSR 58:172-201 [In Russian].

Ruggieri, Giuliano. 1960. Ostracofauna Miocenica del Ragusano. Rivista Mineraria Siciliana 11:123-129.
__. 1973. Gli ostracodi e la stratigrafia del Pleistocene marino Mediterraneo. Bollettino della Societa Geologica Italiana 92:213-282.
Russo, Antonio. 1964. Ostracodi Langhiani del Pescale (Appenino Settentrional Modenese). Bolletino della Societa Palcontologica Italiana 3:227-251.
Sars, G. O. 1863. Om em i sommeren 1862 foretagen zoologisk Reise i Christianias og Trondhjems Stifter. Nytu Magazin for Naturvidenskapans (Oslo) 12:193-362.
-_. 1866. Oversigt af Norges marine Ostracoder. Forhandlinger i Videnskabs-Selskabet (1865) (Christiania). 130 p . - 1887. Nye Bidrag til Kundskaben om Middlehavets Invertebratenfauna. 4. Ostracoda Mediterranea. Archiv for Mathematik og Naturvidenskab Oslo 12:173-324.
-_ 1891. Oversigt af Norges Crustaceer med forelebige bemerkinger over de nve eller minunde bekjendte Arter. II. Norske Videnskabs-Akademi, Oslo, Forhandlinger 1890, No. 1:1-80.
-_. 1922-1928. An account of the Crustacea of Norway. Ostracoda, v. 9. Bergen Museum (Christiania). 277 p.
Schornikov, E. I. 1976. Adaptation pathways of Ostracoda to Seistonophagy. Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, (NF) 18/19 (Suppl.):247-257.
—— 1980a. Preobazovanie makill samtsov v Ksvatatel'nyi organ u Podocopida (Ostracoda). Zoologicheskii Zhurnal 59:456-458.
-_. 1980b. Ostrakody v nazemnyx biotopax. Zoologicheskii Zhurnal 59:1306-1319.
Schulz, Knud. 1976. Das Chitinskelett der Podocopida (Ostracoda, Crustacea) und die Frage der Metamerie dieses Gruppe. Dissertation, University of Hamburg, 167 p.
Scott, Andrew. 1905. Report on the Ostracoda collected by Prof. Herdman, at Ceylon, in 1902, p. 365-384. In W. A. Herdman, Report to the Government of Ceylon on the Pearl Oyster Fisheries of the Gulf of Manaar, with supplementary reports upon the marine biology of Ceylon by other naturalists (part 3).

Scott, H. W., and H. D. Borger. 1941. Pennsylvanian ostracodes from Lawrence County, Illinois. Journal of Palcontology 15:354-358.
Scott, Thomas. 1912. The Entomostraca of the Scottish National Antarctic Expedition, 1902-1904. Transactions of the Royal Society of Edinburgh 98:521-599.
Seguenza, Giuseppe. 1880. Le formazioni tertiaria della provincia de Reggio. Atti della Reale Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali 6:1-343.
—_. 1889-1886. Gli Ostracodi del Porto di Messina. Il Naturalista Siciliano 2-5.
Shimer, H. W., and R. R. Schrock. 1944. Index Fossils of North America. John Wiley and Sons (New York). 837 p.
Sissingh, W. 1971. Bathygthere, a new genus of Ostracoda from the deep southeastern Adriatic Sea. Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, Proceedings (series B) 74:408-416.

- 1972. Late Cenozoic Ostracoda of the South Aegean Arc. Utrecht Micropaleontological Bulletins 6:1-163.
-. 1976. Tentative Middle Miocene to Holocene ostracode biostratigraphy of the central and eastern Mediterranean

Basin. I. Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, Proceedings (series B) 79:271-299.
Smith, R. N. 1965. Musculature and muscle scars of Chlamydotheca arcuata (Sars) and Cypridopsis vidua (O. F. Müller) (OstracodaCyprididae), Report 3, p. 1-40. In R. V. Kesling, D. G. Darby, R. N. Smith, and D. D. Hall, Four Reports of Ostracoda Investigations Conducted Under National Science Foundation Project GB-26, privately published.
Sohn, I. G. 1960. Paleozoic species of Bairdia and related genera. United States Geological Survey, Professional Paper 330-A:1-105.

- 1970. Early Tertiary ostracodes from West Pakistan. Memoirs of the Geological Survey of Pakistan, Palaeontologia Pakistanica 8:1-91.
——. 1975. Mississippian Ostracoda of the Amsden Formation (Mississippian and Pennsylvanian) of Wyoming. United States Geological Survey, Professional Paper 848-G:G1-G19.
-. 1976. Antiquity of the adductor muscle attachment scar in Darwinula Brady \& Robertson, 1885. Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF) 18/19 (Suppl.): 305-308.

1987. The ubiquitous ostracode Darwinula stevensoni (Brady \& Robertson, 1870), redescription of the species and lectotype description. Micropaleontology 83:150-163.
Soot-Ryen, T. 1927. Isopoda, Cumacea, Ostracoda and Pyenogonida. Tromsoe Museum Skrift 1(5).
Spivey, R. C. 1989. Ostracodes from the Maquoketa Shale, Upper Ordovician, of Iowa. Journal of Paleontology 18:163-175.
Staesche, K, and H. Hiltermann. 1940. Mikrofaunen aus dem Tertiär Nordwestdeutschlands. Reichsstelle fuer Bodenforschung, Abhandlungen 201:1-26.
Steineck, P. L. 1981. Upper Eocene to Middle Miocene ostracode faunas and paleo-oceanography of the north coastal belt, Jamaica, West Indies. Marine Micropaleontology 6:389-366.
Steineck, P. L., Marshall Breen, Nancy Nevins, and Patricia O'Hara. 1984. Middle Eocene and Oligocene deep-sea Ostracoda from the Oceanic Formation, Barbados. Journal of Paleontology 58:1468-1496.
Stewart, G. A. 1936. Ostracodes of the Silica Shale, Middle Devonian, of Ohio. Journal of Paleontology 10:789-763.
Swain, F. M. 1953. Ostracoda from the Camden Chert, western Tennessec. Journal of Paleontology 27:257-284.
1988. Ostracoda from the Gulf of California. Geological Society of America, Memoir 101:1-189.
-. 1969. Taxonomy and ecology of near-shore Ostracoda from the Pacific coast of North and Central America, p. 423474. In J. W. Neale (ed.), The Taxonomy, Morphology and Ecology of Recent Ostracoda. Oliver \& Boyd (Edinburgh).
Swain, F. M., and J. M. Gilby. 1974. Marine Holocene Ostracoda from the Pacific coast of North and Central America. Micropaleontology 20:257-352.
Swain, F. M., and J. A. Peterson. 1952. Ostracodes from the upper part of the Sundance Formation of S. Dakota, Wyoming, and S. Montana. United States Geological Survey, Professional Paper 248-A:1-17.
Swanson, K. M. 1979a. The marine fauna of New Zealand: Ostracods of the Otago Shelf. New Zealand Oceanographic Institute, Memoir 78:1-56.

1979b. Recent Ostracoda from Port Pegasus, Stewart Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 18:151-170.

Sylvester-Bradley, P. C. 1948. The shell structure of the ostracod genus Macrocypris. Annals and Magazine of Natural History (series 12) 1:65-71.
. 1961. Family Macrocyprididae Müller, 1912, p. Q207. In R. C. Moore (ed.), Treatise on Invertebrate Paleontology, Part Q Arthropoda 3. Geological Society of America and University of Kansas Press (New York and Lawrence).
_. 1969. Discussion, p. 245. In J. W. Neale (ed.), The Taxonomy, Morphology and Ecology of Recent Ostracoda. Oliver \& Boyd (Edinburgh).
__. 1976. Speciation patterns in the Ostracoda. Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF) 18/19(Suppl):29-87.
Sylvester-Bradley, P. C., and R. H. Benson. 1971. Terminology for surface features in ornate ostracodes. Lethaia 4:249-286.
Teeter, J. W. 1975. Distribution of Holocene marine Ostracoda from Belize, p. 399-499. In K. F. Wantland and W. C. Pusey III (eds.), Belize shelf-carbonate sediments, clastic sediments, and ecology. American Association of Petroleum Geologists Studies in Geology 2.
Tressler, W. L. 1941. Geology and biology of North Atlantic deepsea cores. Part 4, Ostracoda. United States Geological Survey, Professional Paper 196-C:95-106.

- 1949. Marine Ostracoda from Tortugas, Florida. Journal of the Washington Academy of Sciences 39:885-848.
- 1954. Marine Ostracoda, p. 429-487. In P. S. Galtsoff, The Gulf of Mexico, its Origin, Waters, and Marine Life. Fishery Bulletin 89 of the Fish and Wildlife Service, Vol. 55.
Triebel, Erich. 1960. Die taxionomische Stellung und die Gattungen der Unterfamilie Macrocypridinae (Ostracoda). Senckenbergiana Biologica 41:109-124.
Tsapralis, V. 1981. Contribution to the study of Pleistocene of Zakynthos Island, W. Greece (Ostracoda-Palaeoenvironment). Doctoral dissertation, Patra, 134 p. [In Greek].
Upson, M. E. 1933. The Ostracoda of the Big Blue series in Nebraska. Nebraska Geological Survey, Bulletin (series 2) 8:1-54.
Valentine, P. C. 1971. Climatic implication of a Late Pleistocene ostracode assemblage from southeastern Virginia. United States Geological Survey, Professional Paper 682-D:D1-D28.
- 1976. Zoogeography of Holocene Ostracoda off western North America and paleoclimatic implications. United States Geological Survey, Professional Paper 916:1-47.
Veen, J. E. van. 1934. Die Cypridae und Bairdiidae der Maastrichter Tuffkreide und des Kunrader Korallenkalkes von SüdLimburg. Natuurhistorisch Maanblad 23(7-10):88-182.
- 1936. Nachtrag zu der bis jetzt erschienen Revision der Ostracoden der Maastrichter Tuffkreide und des Kunrader Korallenkalkes von Süd-Limburg. Natuurhistorisch Maanblad 25(11-12):170-188.
Wang, Shang-qui. 1978. Late Permian and early Triassic ostracods of western Guizhou and northeastern Yunnan. Acta Paleontologica Sinica 17:277-308 [In Chinese].
Weaver, P. P. E. 1982. Ostracoda from the British Lower Chalk and Plenus Marls. The Palaeontographical Society, London, Monograph 185(562):1-127.
Wei, Min, Shi-wen Jiang, Long-chun Xie, and Yu-wen Li. 1983. Superfamily Bairdiacea, p. 52-79. In Paleontological Atlas of Southwest China, Volume of Microfossils. Chengdu Institute of Geology and Mineral Resources (Chengdu). 802 p.
Whatley, Robin. 1983. Some aspects of Tertiary deep-sea Ostra-
coda from the S. W. Pacific. Journal of Micropaleontology 2:83-104.
Whatley, Robin, and Michael Ayress. 1988. Pandemic and endemic distribution patterns in Quaternary deep-sea Ostracoda, p. 739-755. In Tetsuro Hanai, Noriyuki Ikeya, and Kunihiro Ishizaki (eds.), Evolutionary Biology of Ostracoda, Its Fundamentals and Applications. Kodansha (Tokyo), Elsevier (Amsterdam).
Whatley, Robin, and Graham Coles. 1987. The Late Miocene to Quaternary Ostracoda of Leg 94, Deep Sea Drilling Project. Revista Espanola de Micropaleontologia 19:33-97.
Whatley, Robin, and Sian Downing. 1983. Middle Miocene Ostracoda from Victoria, Australia. Revista Espanola Micropaleontologia 15:347-407
Whatley, Robin, and J. M. Stephens. 1977. Precocious sexual dimorphism in fossil and recent Ostracoda, p. 69-91. In Heinz Lōffler and Dan Danielopol (eds.), Aspects of Ecology
and Zoogeography of Recent and Fossil Ostracoda. Dr. W. Junk b. v. (The Hague). 521 p.
Wilkinson, I. P. 1988. Ostracoda across the Albian/Cenomanian boundary in Cambridgeshire and western Suffolk, eastern England, p. 1229-1244. In Tetsuro Hanai, Noriyuki Ikeya, and Kunihiro Ishizaki (eds.), Evolutionary Biology of Ostracoda, Its Fundamentals and Applications. Kodansha (Tokyo), Elsevier (Amsterdam).
Willey, E. C. 1970. Lower Devonian ostracodes: Revision of species described by Chapman (1904) from the Lilydale Limestone, Victoria. Proceedings of the Royal Society of Victoria 88:121-136.
Zhao, Quanhong, and Pinxian Wang. 1988. Distribution of modern Ostracoda in the shelf seas off China, p. 805-822. In Tetsuro Hanai, Noriyuki Ikeya, and Kunihiro Ishizaki (eds.), Evolutionary Biology of Ostracoda, Its Fundamentals and Applications. Kodansha (Tokyo), and Elsevier (Amsterdam).
\square

APPENDIX I: SOME OTHER SPECIES REFERRABLE TO MACROCYPRIDIDAE

It has not been possible to examine material for every species that has at some time been referred to Macrocyprididae, particularly for the many fossil species. The following list, which is not complete, notes several additional species that may belong to Macrocyprididae (on the basis of published illustrations) but have not been studied for this paper. They are listed in alphabetical order according to the trival name without regard to generic assignment. Five of these names, for which types no longer exist, should be abandoned as nomina dubia.

Argilloecia anceps Rome, 1942, p. 10, pl. 1, fig. 3, 7, 11-14, pl. 2, fig. 4-6,9, pl. 3, fig. 10; Holocene, Mediterranean Sea; a species of Macromckenziea. Rome's drawings show many features that he correctly recognized as anomalous for Argilloecia, notably the vestigial furca. Rome described this species from adult male and female specimens dredged living at 80 to 100 m depth off Monaco in the northern Mediterranean. The outline drawing of a left valve is dorsally arched and more pointed posteriorly than $M k$. ligustica from the same region, giving a somewhat juvenile appearance. Likewise, the length given by Rome (0.86 mm) fits the A-1 instar but is too small to be the adult of Mk. ligustica. The drawings of the mandible show a molting specimen, in which the masticatory processes are being withdrawn from the old skeleton. Although Rome reported finding one male and three females, it seems likely that several of these illustrations were made from juveniles. To determine whether Mk. anceps is a separate species or a senior synonym of Mk. ligustica it will be necessary to restudy Rome's specimens and to collect males of Mk. ligustica for comparison.
Macrocypris acuticaudata Bate and Bayliss, 1969, p. 130, pl. 5, fig. 18; Cretaceous of Tanzania; may be a species of Macrosanisa.
Macrocypris calabra Seguenza, 1880, p. 191, 288; not illustrated, and Seguenza's types are said to be no longer in existence (Puri, Bonaduce, and Gervasio, 1969, p. 382); a nomen dubium.
Macrocypris compressa Seguenza, 1883-1886, p. 223, pl. 1, fig. 4, 4a, 4c; Quaternary of Rizzolo; also Ruggieri, 1984, p. 125, fig. 1-3; a nomen dubium. Ruggieri's (1984) attempt to resurrect this name, unused for more than a century, was ill-advised. Article 75 a of the International Code of Zoological Nomenclature (1961, p. 81; 1985, p. 157) specifies that "a neotype is to be designated only in connection with revisory work, but only in exceptional circumstances when a neotype is necessary in the interests of stability of nomenclature; the designation of a specimen to be a neotype other than in accordance with these conditions is not valid." Ruggieri's schematic line drawings of what appear to be juvenile specimens and brief remarks, without any redescription of the species or comparisons with other species of the family, do not constitute revisory work, nor did any confusion exist before the neotype specimen was designated. Stability of nomenclature and precision of communication will be best served by continuing to consider Macrocypris compressa Seguenza a nomen dubium or nomen oblitum, while using younger names as needed for well-clarified species concepts. For a discussion of Ruggieri's proposed synonymization of Mk. ligustica, see the description of that species in the systematic section above.
Macrocypris elongata Seguenza, 1883-1886, p. 204, 76, pl. 1, fig. $5 \mathrm{a}, \mathrm{b}$; Strait of Messina; Seguenza's types are said to be no
longer in existence (Puri, Bonaduce, and Gervasio, 1969, p. 382); a nomen dubium.

Macrocypris cocuneata Hornibrook, 1953, p. 304, pl. 1, fig. 6; Eocene and Oligocene of New Zealand; may be a species of Macropyxis.
Macrocypris gigantea Conti, 1953, p. 227, pl. 13, fig. 1, 2; Lower Jurassic of Italy.
Macrocypris gracilis (Brady) of Holden, 1967, p. 16, fig. 9a,b (not Pontocypris gracilis Brady, 1890); Quaternary, Hawaiian Islands; this is a species of Macrocyprina.
Paracypris hieroglyphica Brady, 1867-1871, p. 62, pl. 7, fig. 7, 8; listed as Macrocypris hieroglyphica in the plate explanations; northern Java; may have been a species of Macrocyprina. Brady (1880) listed it in the synonymy of "Macrocypris decora," another nomen dubium that has been applied to species of Macrocyprina worldwide. The color pattern described by Brady is common in fresh specimens of Macrocyprina. According to McKenzic (1967a and letter of 8 December 1977), no specimens of this species remain in the Brady collection in the Hancock Museum. It is best to consider this a nomen dubium.
Macrocypris insignis Lienenklaus, 1900, p. 505, pl. 19, fig. 1, text-fig. 1; middle Oligocene of Germany; probably a species of Macropyxis.
Argilloecia jourrensis Keij, 1957, p. 49, pl. 1, fig, 12-14; Oligocene of the Paris Basin; the muscle scars and marginal features are those of Macrocyprina.
Paracypris lenticularis Hu, 1984, p. 78, pl. 8, fig. 18, 21, 22, text-fig. 4; Pleistocene of Taiwan; the lateral outline, hinge, opaque spots, and slightly misinterpreted muscle scars are all those of Macrocyprina.
Macrocypris limburgensis van Veen, 1986, p. 171, pl. 1, fig. 1-9; new name for Macrocypris siliqua van Veen, 1984; Upper Cretaceous, The Netherlands.
Macrocypris luganensis Conti, 1953, p. 226, pl. 12, fig. 18, 19, Jurassic of Italy; Conti's illustration resembles Macrocyprina and certain Cretaceous species of Macrosarisa.
Macrocypris mucronata Conti, 1953, p. 227, pl. 13, fig. 5; Jurassic, Italy.
Macrocypris siliqua van Veen, 1934, p. 88, pl. 1, fig. 1-9; Upper Cretaceous, The Netherlands; renamed Macrocypnis limburgonsis van Veen, 1936.
Macrocypris trigonaSeguenza, 1883-1886, p. 77, pl. 1, fig. 7a,b; Port of Messina, Quaternary of Italy; Seguenza's types no longer exist (Puri, Bonaduce, and Gervasio, 1969, p. 353); a nomen dubium.
Macrocypris uniformis Conti, 1953, p. 226, pl. 18, fig. 3, 4; Lower Jurassic of Italy.
Macrocypris sp. of Bonaduce, Masoli, and Pugliese, 1976, p. 376, pl. 1, fig. 8, 9; Holocene, Gulf of Aqaba; this is a species of Macrocyprina. The illustrated specimen is a juvenile. The size is close to that of the A-1 instar of $M n$. madagascarensis, from which it differs by more bluntly angulate anteroventral and posteroventral margins. It is smaller, more elongate, and less deeplyindented ventrally than Mn . bonaducei.
Macrocypris sp. 1 of Bonaduce and Sprovieri, 1985, pl. 2, fig. 5; Pliocene of Sicily.
Macrocypris sp. of Donze et al., 1982, pl. 2, fig. 6; Late Cretaceous or early Tertiary, North Africa.
Macrocyprissp. of Hazel and Holden, 1971, p. D16, pl. 2, fig. 15, 19, pl. 4, fig. 10; Eocene of Tonga; this is a species of Macrocyprina.

Macrocypris sp. of Sissingh, 1972, p. 80, pl. 3, fig. 15; late Cenozoic of Greece; this is a species of Macrocyprina.
Macrocypris sp. 1 of van den Bold, 1988, p. 21, pl. 1, fig. 11, 12; Pliocene of the Dominican Republic; this is a species of Macrocyprissa closely related to Mc vandenboldi but slightly more elongate, with a less angular outline. Figure 12 may be a different species, belonging to Macropyxis.
Macrocypris sp. 2 of van den Bold, 1988, p. 22, pl. 1, fig. 13; Upper Miocene and Pliocene of the Dominican Republic; this is a species of Macrosarisa closely related to Ms. texana, differing primarily by the more attenuate posterior angle.
Macrocyprina sp. of van den Bold, 1988, p. 22, pl. 1, fig. 14; Holocene, Colon Harbor, Panama; this is a species of Macrocyprina. The outline resembles $M n$. jamaicae except for the un-
usually acute posterior angle. No similar species has been seen in the material from the Gulf of Mexico examined for this paper.
Macrocyprina sp. of Swanson, 1979a, p. 11, fig. 10; Holocene, Otago Shelf, South Island, New Zealand; this is a species of Macrocyprina. Also cited by Swanson, 1979b, p. 155, fig. 2g, near Stewart Island, New Zealand; the figured specimen is an instar.
Macrocypris sp. of Dias-Brito et al., 1988, pl. 2, fig. 42; Holocene, Sepetiba Bay, Rio de Janeiro, Brazil; this is a species of Macrocyprina.
Macrocypris sp. of van den Bold, 1965, p. 386, pl. 2, fig. 8; Lares Formation, lower Miocene, Puerto Rico; may be a species of Macromскenziea.

APPENDIX II: SOME SPECIES EXCLUDED FROM MACROCYPRIDIDAE

"Macrocypris" has become something of a dumping ground for smooth, elongate, cypridiform species, especially for poorly preserved fossils. Many of these species probably belong to the Pontocyprididae, which includes several genera with elongate shapes and right valve overlap. Others may be Paracypridinae, which have left valve overlap, a variety of elongate shapes, and even more chaotic taxonomy. Those that have come to my attention are listed below, alphabetically by species name. Only the original binomen is given in most cases, without subsequent reports or full synonymy. The list is not complete even for named species, and most citations in open nomenclature are not included. For those marked with an asterisk (*), I have studied specimens of the species. For all others, the exclusion from Macrocyprididae is based on published descriptions and illustrations that fail to show the diagnostic characters of the family. In some cases, especially for the Cretaceous species, it may be that examination of well-preserved material would confirm the original assignment to Macrocyprididae, but this is not supported by the information available at present.
Macrocypris acuminata (Alth, 1850) of Brady, 1868 (1867-1871), p. 313. Brady identified "Macrocppris orientalis" (see below) with the Cretaceous species reported by Reuss (1851, p. 49, pl. 6, fig. 7a,b) under the name "Cytherina acuminata Alth, 1850," writing (translated from French): "Since the time when the description of this species was done ($\mathrm{p}, 61$ of the present volume, 1867), we have had the occasion to examine once again the specimens from the Java Sea and to compare them to the figures of Cythere acuminata given by Reuss in his 'Foram. und entomos. des Kreidenergels von Lemberg.' We believe that the species described belongs to this latter, and we would propose, in this case, to name Macroopnis acuminata, [the] M. orientalis." It would appear that Brady recognized that Reuss had misidentified Alth's species, which has since been reclassified in Monoceratina (Howe and Laurencich, 1958), and that he believed Reuss's species to be M. orientalis. He expressed surprise that a Cretaceous species should be found living. In fact, however, there is no basis for this identification, nor for Brady's combination "Macrocypris acuminata."
Macrocypris acuminata Cooper, 1941, p. 34, pl. 4, fig. 30-41; Lower Carboniferous of Illinois.
Macrocypris? acutula Stewart, 1936, p. 758, pl. 101, fig. 25, 26; Devonian of Ohio.
Macrocypris aequabilis Oerti, 1959, p. 24, pl. 3, fig. 74-82; Jurassic of Switzerland; possibly belongs in Pontocyprididae.
Macrocypnis albertensis Loranger, 1954, p. 193; Devonian of Alberta.
Macrocypris? alta Jones, 1887, p. 181, pl. 5, fig. 10a,b; Silurian of England.
Macrocpris anomala Boucek, 1997, p. 4, fig. 2; Silurian of Czechoslovakia.
Macrocypris aspera Pribyl, 1962, p. 40, pl. 10, fig. 1-3; Upper Carboniferous of Czechoslovakia.
Macrocypris baghensis Jain, 1961, p. 341; Cretaceous of India; see also Bhatia, Guha, and McKenzie, 1972, p. 37; assigned by Jain (1975) to Acutiotheretta (Cytheracea).

Macrocypris barrandei Boucek, 1936, p. 80, pl. 5, fig. 9, Silurian of Czechoslovakia.
Macrocypris? bartensteini Kummerow, 1949, p. 57, pl. 1, fig. 10, pl. 2, fig. 12; Upper Carboniferous of Germany.

Macrocypris biconcava Croneis and Gutke, 1939, p. 60, pl. 1, fig. 16-17; Lower Carboniferous of Illinois. The shape and larger right valve are appropriate for Macrocyprididae, but information is needed about the dorsal overlap, hinge, and muscle scars.
Macrocypris bicurvata Cooper, 1946, p. 61, pl. 6, fig. 25-27; Upper Carboniferous of Illinois.
Macrocypris bradiana Jones, 1884, p. 766, pl. 34, fig. 34; Lower Cretaceous of England.
Macrocypris carbonica Jones and Kirkby of Bassler and Kellett, 1934, p. 404; Carboniferous of Scotland.

Macrocypris chapmani Croneis and Bristol, 1939, p. 99, pl. 3, fig. 19; Lower Carboniferous of Illinois.
Macrocypris concinna Jones and Hinde, 1890, p. 11, pl. 2, fig. 66, 67; Upper Cretaceous of England.
Macrocypris? crassulajones, 1887, p. 181, pl. 7, fig. 10a,b; Silurian of England.
Macrocypris delicatula Bradfield, 1955, p. 104, pl. 8, fig. 12; Upper Carboniferous of Oklahoma. The shape is appropriate for Macrocyprididae, but more information is needed about overlap, hinge, and muscle scars.
*Macrocypris? dimorpha Hazel and Holden, 1971, p. D6, pl. 5, fig. 8, 11, 13, 17, 19; holotype USNM 651442, paratype 651441, Eocene of Tonga; see also Hartmann (1984, p. 141); $=$ Propontocypris (Propontocypris) dimonpha. The valve asymmetry is less pronounced and the line of right valve overlap much less sinuous than is the case in Macrocyprididae. Under high magnification there are numerous tiny, close-spaced normal pore canals visible, another characteristic of Propontocypris, and the paratype specimen shows a large, central opaque patch. The paratype differs in outline from the holotype and probably belongs to another species of Propontocypris. See Plates 118.9-14.
*Macrocypris? sp. aff. M. dimorpha Hazel and Holden, of Holden, 1976, p. F18, pl. 10, fig. 12-14, 19, 20; USNM 184363-184367; Miocene-Pleistocene? of Midway Island; $=$ Propontocypris (Propontocypris) sp. indet. All five specimens have the characteristic right valve overlap and triangular shape of Propontocypris. Holden's (1976) drawings are accurate. USNM 184364 is somewhat more elongate posteriorly and may be the male of the species. USNM 184365 has a good pontocypridid muscle scar pattern. See Plates 113.7,15-25.
Macrocypnis dreikanter Coryell and Fields, 1937, p. 3, fig. 4a,b; Miocene of Panama. The illustrations show characters of Pontogpris. Van den Bold $(1946,1958)$ reported the species in Pontocypris from the Miocene of Cuba and Trinidad.
Macrooypris dubia Bonnema, 1940, pl. 2, fig. 28-30; Upper Cretaceous of The Netherlands. Macrocypris elegans Jones, 1887, p. 180, pl. 5, fig. 8a-c; Silurian of England.
Novocypris eocaenana Ducasse, 1967; Eocene of France. Ducasse correctly assigned it to the Cyprididae. The lateral outline, left-valve overlap, and paracypridine muscle scar pattern all place this unusual genus and species with the Cyprididae, rather than the Macrocyprididac, where it was classified by McKenzic et al. (1979). The hinge is taxodont, consisting of a uniform series of alternating small, round teeth and sockets, not differentiated into anterior, median, and posterior elements. In the left valve, the teeth are larger and more prominent in the anterior region, diminishing slightly in diameter toward the posterior as the intervening sockets increase in size; in the right valve there is a corresponding, gradual gradient from slight dominance of sockets in the anterior portion to
slight dominance by teeth in the posterior part. It is a unique hinge, without known homologue elsewhere in the Cypridacea. See Plates 114.3-8,10,16.
Macrocypris flexuosa Chapman, 1904, p. 309, pl. 13, fig. 6a,b; Devonian of Australia.
*Macrocyprina gibsonensis (Howe and Chambers, 1935) of Hazel, Mumma, and Huff, 1980, pl. 1, fig. 4; Oligocene of Mississippi and Alabama. Originally named in "Bythocypris?", the species was transferred to Triangulocypris by Teeter (1975, p. 428). Triangulocypris, formerly classified by Teeter in the Subfamily Bythocypridinae, belongs to the Paracypridinae and may be a senior subjective synonym of McKenzie's (1979) genus Tasmanocypris (see also Maddocks, 1988b). T. gibsonensis has a good paracypridine muscle-scar pattern.
Macrocypris garnisonensis Upson, 1983, p. 25, pl. 2, fig. 14a,b; Lower Permian of Nebraska; transferred to Bairdia by Willey, 1970.
Macrocypris gracilis Chapman, 1915, p. 37, pl. 2, fig. 2a-c; Holocene, east of Tasmania. Junior primary homonym of Macrocypris gracilisSeguenza, 1883-1886. Reclassified by Neale (1967) in Xiphichilus (Cytheracea).
Pontocypris gracilis Brady, 1890, p. 491, pl. 1, fig. 5, 6; "between tidemarks, Levuka and Rambé Island, South Pacific"; a species of Paracypridinae. McKenzie (1967b) referred the material (from Fiji) of this species in the Hancock Museum to Paracypris. The species illustrated by Holden (1967, p. 16, fig. 9; Quaternary, Hawaiian Islands) as "Macrocypris" gracilis (Brady, 1890) (a junior secondary homonym of Macrocypris gracilis Seguenza) is an unnamed species of Macrocyprina. The species illustrated by Holden (1976, p. F19, pl. 10, fig. 6, 7; upper Cenozoic of Midway Island; see also Hartmann, 1984, p. 141) as Macrocyprina gracilis has left valve overlap and is probably a species of Paracypris.
Macrocypris gracillima (Richter, 1867) of Bassler and Kellett, 1984, p. 404; Permian of Germany.

Macrocypris horatiana Jones and Sherborn, 1887, p. 252, pl. 5, fig. 2a-c; Middle Jurassic of England. The species was placed in synonymy with Paracypris terraefullonica (Jones and Sherborn) by Bate (1967).
Macrocypris? illinoiensis Scott and Borger, 1941, p. 358, pl. 50, fig. 1, 2; Upper Carboniferous of Illinois.
Macrocypris jonesiana (Kirkby, 1858) of Jones and Kirkby, 1897, p. 194; Carboniferous of Ireland.
Macrocypris kayi Spivey, 1939, p. 178, pl. 21, fig. 11-13; Upper Ordovician of Iowa.
Macrocypris? kellettae Príbyl and Snajdr, 1950, p. 121, pl. 1, fig. 14; Middle Devonian of Czechoslovakia.
Macrocypris kimbbyana (Jones, 1885) of Bassler and Kellett, 1934, p. 405; Carboniferous of England.
Macrocypris kovacsiensis Mehes, 1936, p. 11, pl. 1, fig. 6-8; Eocene of Hungary.
Macrocypris lenticularis Cooper, 1946, p. 62, pl. 6, fig. 88-40; Upper Carboniferous of Illinois.
Macrocypris leptura (Richter, 1867) of Bassler and Kellett, 1984, p. 405; Permian of Germany.
Macrocypris? marginata (Richter, 1867) of Bassler and Kellett, 1994, p. 405; Permian of Germany.

Macrocypris menardensis Harlton, 1929, p. 161, pl. 4, fig. 7a,b; Upper Carboniferous of Texas. The shape and larger right valve are appropriate for Macrocyprididae, but information is needed about the overlap, hinge, and muscle scars.
Macrocypris cf. meridionalis (Lyubimova and Mohan, 1960) of Krstic, 1979, p. 676; Miocene of Iran.
*Macrocypris minutus Swain and Peterson, 1952, p. 9, pl. 1, fig. 1816; holotype USNM 117965, paratypes 117966, 116639, 116640; Jurassic, Redwater Shale, 112-117 feet above base, Red Gulch, sec. 22, T58N, R89W, Sheridan Co., Wyoming; =Propontocypris (Propontocypris) minutus. The right valve is slightly larger than and overlaps the left valve on all specimens, but the asymmetry is less pronounced and the line of overlap less sinuous than in Macrocyprididae. Although Swain and Peterson reported "a slightly dorsomedian group of four spots of which the dorsal two are the largest," no muscle scars are visible on these specimens. The minute size (0.39 mm long) is not unusual for Propontocypris. See Plates 113.2-5.
Macrocypris modesta (Reuss, 1851) of Howe and Laurencich, 1958, p. 392; Cretaceous of Poland.

Macrocypris? novaki Boucek and Príbyl, 1955, p. 601, pl. 5, fig. 1417; Silurian of Czechoslovakia.
Macrocypris orientalis Brady, 1867-1871, p. 61, pl. 7, fig. 1-8; Holocene near Java; a species of Paracypridinae. Brady's illustration shows widely spaced, conspicuous normal pore canals and branching or irregular radial pore canals, together with a somewhat misunderstood paracypridine muscle scar pattern. McKenzie (1967b) assigned Brady's type specimens to Phlydenophora, a paracypridine genus that is homeomorphic with Macrocyprissa. It was reported by Brady (1880), Egger (1902), A. Scott (1905), Müller (1912), and Hanai et al., (1980) from recent sediments near Booby Island, Papua-New Guinea, Australia, and Ceylon, but it is unlikely that these later records apply either to Brady's species or to a species of Macrocyprididae. The Challenger specimens belong to Ghardaglaia or a related genus of Paracypridinae. It was reclassified without comment in Macrocyprina by Bhatia et al., 1972, p. 87.
Macrocypris ovata Cooper, 1941, p. 34, pl. 4, fig. 25, 26; Upper Carboniferous of Illinois.
*Paracypris pacifica LeRoy, 1943, p. 358, text-fig. 2z, pl. 60, fig. 38, pl. 61, fig. 15-18; Plio-Pleistocene of California. The type specimen is a species of Paracypris (Cyprididae, Paracypridinae) and has a good paracypridine muscle scar (see Maddocks, 1988a), although Mn. parcensoccurs in the same formation. The species reported by Swain (1967) and by McKenzie and Swain (1967) as Macrocyprina pacifica (LeRoy) is Mn. swaini (see above). Swain (1969) and Swain and Gilby (1974) apparently included at least two species of Macrocyprina, Mn. swaini and Mn. barbara, plus a species of Paracypris under the label "Macrocyprina pacifica." See Plates 114.9,11,12,17.
Macrocypris pacifica Hu, 1979, p. 76, text-fig. A, B, E, F, pl. 2, fig. 13, 16; Pleistocene or Holocene of Taiwan. There are two species represented in the illustrations. The more elongate, posteriorly acuminate one may belong to Paracypris, in which case it would be a secondary homonym of Paracypris pacifica LeRoy. The more elongate, subtrapezoidal form might be a species of Macrocyprina, or it might belong to a homeomorphic cypridid such as Tasmanocypris. The muscle scars as sketched are approximately macrocypridid but too large for the specimen in which they are drawn, and the overlap and hingement cannot be determined from the illustrations. The illustrations of Hu $(1982,1986)$ may belong to a separate species of Macrocyprina.
Macrocypris? panxianensis Wang, 1978. See also Wei et al., 1983, p. 74, pl. 22, fig. 5; Permian or Triassic of southwestern China.
*Macrocypris parva Kaye, 1965, p. 75, pl. 5, fig. 1, 2; Kaye and Barker, 1965, p. 375, pl. 5, fig. 1, 2; holotype HU.10.C.7.1, paratypes HU.20.C.8.1-13. The additional paratypes in the Senckenberg Museum (Xe 4637) were not seen. Lower Creta-
ceous, Barremian-Aptian, of England; =Propontocypris (Propontocypris) parva. The type specimens show distinct right valve overlap, but not as extreme and as sinuous as in Macrocyprididae, deep open anterior and posterior vestibules, and a simple lophodont hinge consisting in the right valve of a narrow groove. One paratype shows a very distinct pontocypridid scar consisting of five oblong scars arranged in a curved anterior column of three scars and a posterior column of two posterior scars. Michaelsen (1975) assigned this species to Pseudomacrocypris, which is related to if not synonymous with Propontocypris. See Plates 113.1,6,8.
Macrocypris parvula Boucek, 1936, p. 80, pl. 5, fig. 10; Silurian of Czechoslovakia.
Macrocypris? piscis (Richter, 1867) of Bassler and Kellett, 1934, p. 405; Permian of Germany.
Macrocypris posterobtusa Wang, 1978. See also Wei et al., 1983, p. 74, pl. 22, fig. 6; Permian or Triassic of southwest China.
Macrocypris prima Mehes, 1936, p. 10, pl. 1, fig. 1-5, 27, 28; Eocene of Hungary.
Macrocypris? pusillajones, 1889, p. 268, pl. 15, fig. 10a,b; Silurian of Sweden.
Macrocypris? pusilla Kozur, 1968, p. 501, pl. 2, fig. 4, 20-27; Triassic of Germany. Junior primary homonym of Macrocypris? pusilla Jones, 1889. The shape and larger right valve are compatible with Macrocyprididae, but the tiny size (0.30 to 0.43 mm), straight-line overlap, adont hinge, narrow calcified inner lamella, lack of information about muscle scars, and occurrence in brackish facies cast doubt on that assignment.
Macrocypris reginni Coryell and Johnson, 1939, p. 222, pl. 26, fig. 14; Lower Carboniferous of Illinois.
Macrocypris? regularis (Richter, 1867) of Bassler and Kellett, 1994, p. 405; Permian of Germany.

Macrocypris remesiana Kegel, 1928, p. 654, pl. 33, fig. 4; Devonian of Czechoslovakia.
*Macrooypris setigera Brady, 1880, p. 43, pl. 1, fig. 1a-d; Puri and Hulings, 1976, p. 260, pl. 1, fig. 1-5; lectotype BMNH 80.38.2, Port Jackson, Australia, 2-10 fathoms ($4-19 \mathrm{~m}$); = Tasmanocypris setigera. The species was reclassified in ?Aglaiella by McKenzie (1965, 1974) and in Tarmanocypris by McKenzie (1979). The left valve overlap, marginal features, muscle scars, and coastal habitat all support assignment to the Paracypridinae. The "seven adductor scars" mentioned by Puri and Hulings result from the fact that the cap scar above the adductor scars is consistently divided, as is frequently the case in the Paracypridinae. Seguenza's (1883-1886) and Egger's (1902) records also probably apply to various species of Paracypridinae, while Chapman's (1941) illustration (pl. 7, fig. 5, from Bass Strait) appears to show a species of the homeomorphic genus Macromchenxiea. See Plates 114.1,2,13,14.
Macrocypris? silesiaca Kummerow, 1953, p. 20, pl. 1, fig. 15; Upper Carboniferous of Poland.
Macrocypris siliquoides Jones, 1887, p. 181, pl. 5, fig. 9a-c; Silurian of England.
Psoudomacrocypris subaequabilis Michaelsen, 1975, p. 131, pl. 2, fig. 21, pl. 4, fig. 9; Lower Jurassic of Denmark; a species of Pontocyprididae, closely related to Propontocypris.

Macrocypris? subcylindrica Jones, 1890, p. 549, pl. 21, fig. 5; Ordovician of Quebec.
Macrooppris subelongata (Geinitz, 1861) of Bassler and Kellett, 1934, p. 406; Permian of Germany.

Macrocypris subinflata Neviani, 1928, p. 26, pl. 1, fig. 1-3; "Pliocene, lower Calabrian" of Italy.
Pseudomacrocypris subtriangulan's Michaelsen, 1975, p. 132, pl. 2, fig. 22-28, pl. 4, fig. 40, 41, 44, 45; Lower Jurassic of Denmark; a species of Pontocyprididae, closely related to Propontocypris.
Pseudomacrogpris aff. subtriangularis Michaelsen, 1975, p. 134, pl. 4, fig. 42, 48; Lower Jurassic of Denmark; a species of Pontocyprididae, closely related to Propontocypris.
Macrocypris symmetrica Jones, 1887, p. 181, pl. 7, fig. 8a,b; Silurian of England.
Macrocypris? tenuis Kozur, 1968, p. 501, pl. 2, fig. 17-19; Triassic of Germany. The shape and larger right valve would be compatible with juveniles of Macrocyprididae, but information is needed about the dorsal overlap, hinge, adult inner lamella, and muscle scars. The occurrence in brackish facies also makes this identification unlikely.
Macrocypris teretis Cooper, 1946, p. 62, pl. 6, fig. 28-30; Upper Carboniferous of Illinois.
Macrocypris Lerraefullonica Jones and Sherborn, 1887, p. 252, pl. 5, fig. 3a-c; Jurassic of England. Referred to Paracypris by Bate (1967), probably belongs to another genus of Paracypridinae.
*Macrocypris tumida Brady, 1880, p. 43, pl. 6, fig. 2a-d; Puri and Hulings, 1976, p. 261, pl. 2, fig. 13-15; lectotype BMNH 80.38 .161 , Challenger st. $149,49^{\circ} 08^{\prime} 0^{\prime \prime} \mathrm{S}, 70^{\circ} 12^{\prime} 0^{\prime \prime} \mathrm{E}$, depth 28 fathoms (53 m), Royal Sound, Kerguelen Island; $=$ Argilloecia tumida. The species was transferred to Argilloecia by Maddocks (1969a) on the basis of overlap, hinge, marginal features, and the distinctive muscle scars. It has also been listed by Müller (1912), Puri and Hulings (1976), and Benson (1964). The species reported by this name by Chapman (1914) is Maddocksella tumefacta (Chapman, 1914), according to McKenzie (1981). Other records of this species-Wellington Harbour, New Zealand, by Brady (1880); Kerguelen Island and Adelie Sound by Lofthouse (1967), and the Miocene-Pliocene of Australia by Chapman (1914, 1916), Chapman and Crespin (1928), and Crespin (1943)-may have included various species of the homeomorphic genus Macromckenziea, while the record in the Gulf of Mexico by Tressler (1954) is likely to have been a species of Macropyxis.
Macrocypris vine Jones, 1887, p. 179, pl. 4, fig. 1-3; Silurian of England.
Macrocypris cf. vine Jones, 1887 of Chapman, 1904; Lower Devonian of Australia; =Bairdia flexuosa (Chapman, 1904) according to Willey (1970).
Macrocypris? sp. 855 of Christensen, 1968, pl. 23, fig. 4, Jurassic of Denmark; identified with Pseudomacrooypris subtriangularis by Michaelsen (1975); a species of Pontocyprididae, closely related to Propontocypris.
Macrocypris sp. of Oertli, 1961, p. 22, pl. 2, fig. 16; Miocene of 1taly. Macrooppris sp. of Kingma, 1948, p. 67, pl. 6, fig. 17; Miocene of Sumatra; also Hanai et al., 1980, p. 121.
Macrocypris sp. of Hu and Yang, 1975, p. 112, pl. 2, fig. 13; Pliocene or Pleistocene of Taiwan; Hanai et al., 1980, p. 121.

APPENDIX III: LIST OF COLLECTIONS STUDIED

These samples, stations, and catalogued museum specimens are listed in alphabetical order according to the alphanumeric identifying code, followed by the location, depth, stratigraphic age if fossil, and label data (copied exactly) if previously identified by other workers. Following the equals (=) sign, the true species identification (s) and number of specimens are given. Specimens containing the soft body are counted as "live." All other counts apply to empty carapaces or valves.

U.S. RESEARCH VESSEL ANTON BRUUN (Richard H. Benson)

AB-7-361B, $26^{\circ} 34^{\prime} \mathrm{S}, 35^{\circ} 59^{\prime} \mathrm{E}$, depth $1829 \mathrm{~m} ;=4 \mathrm{Mk}$. sp. 4 .
AB-7-363D $, 23^{\circ} 45^{\prime} \mathrm{S}, 43^{\circ} 11^{\prime} \mathrm{E}, 1605 \mathrm{~m}$, near Tulear, Madagascar; $=2$ live M. proclivis, 1 live plus $2 M x$. sp. 8,1 live $M s$ s. sp. 47 .
$\mathrm{AB}-7-963 \mathrm{~K}, 28^{\circ} 43^{\prime} \mathrm{S}, 48^{\circ} 25^{\circ} \mathrm{E}, 1190 \mathrm{~m}$, near Tulear, Madagascar; $=1 \mathrm{Mk}$. sp. 1 .
AB-7-365D $, 28^{\circ} 20^{\prime} \mathrm{S}, 48^{\circ} 32^{\circ} \mathrm{E}, 695-475 \mathrm{~m} ;=10 \mathrm{M}$. opinabilis, 4 Mx . sp. 13.
$\mathrm{AB}-7-371 \mathrm{C}, 24^{\circ} 54^{\prime} \mathrm{S}, 35^{\circ} 20^{\circ} \mathrm{E}, 165 \mathrm{~m} ;=1 \mathrm{Ms}$. hiulca.
AB-7-371G, $24^{\circ} 49^{\prime} \mathrm{S}, 35^{\circ} 13^{\circ} \mathrm{E}, 73 \mathrm{~m}, 18$ August 1964 , rock dredge; $=8 \mathrm{Ms}$, hiulca.
$\mathrm{AB}-7-381 \mathrm{C}, 33^{\circ} 13^{\prime} \mathrm{S}, 43^{\circ} 53^{\circ} \mathrm{E}, 40 \mathrm{~m}$, Walterson Shoal; $=2$ live plus 1 Ms. hiukca.
$\mathrm{AB}-8-403 \mathrm{~F}, 19^{\circ} 09^{\prime} \mathrm{S}, 36^{\circ} 55^{\circ} \mathrm{E}, 8 \mathrm{~m} ;=9$ live Ms. capacis.
$\mathrm{AB}-8-409 \mathrm{~J}, 16^{\circ} 02^{\prime} \mathrm{S}, 44^{\circ} 14^{\prime} \mathrm{E}, 25 \mathrm{~m}, 19$ October 1964, Oeckelman dredge; $=1 \mathrm{Mn}$. madagascarensis.
AB-8-412C, $12^{\circ} 47^{\prime} \mathrm{S}, 47^{\circ} 42^{\circ} \mathrm{E}, 28 \mathrm{~m}$, near Nosy Be, Madagascar; $=1$ Mn. madagascarensis, 4 live plus 2 Mn . captiosa.
AB-8412L, Banque de Cinq Mètres, near Nosy Be , Madagascar, 30 m , by R. H. Benson; $=1$ live plus 2 Mn . sp. 42.
$\mathrm{AB}-11-36,5^{\circ} 43^{\prime} \mathrm{S}, 82^{\circ} 00.5^{\prime} \mathrm{W}, 5047 \mathrm{~m} ;=4$ live $M x$. antonbruunae, 5 live $M \mathrm{x}$. kalbi.
$\mathrm{AB}-11-59,6^{\circ} 45.5^{\prime} \mathrm{S}, 82^{\circ} 10.5^{\prime} \mathrm{W}, 4526-4609 \mathrm{~m}$; $=1$ live Mx . kalbi.
$\mathrm{AB}-11-95,8^{\circ} 30.5^{\prime} \mathrm{S}, 81^{\circ} 40^{\prime} \mathrm{W}, 4332-4423 \mathrm{~m} ;=2$ live $M x$. antonbnunae.
$\mathrm{AB}-11-109,8^{\circ} 22^{\prime} \mathrm{S}, 80^{\circ} 43^{\prime} \mathrm{W}, 5123-2571 \mathrm{~m}$; $=1$ live Mx . kalbi.
$\mathrm{AB}-11-113,8^{\circ} 44^{\circ} \mathrm{S}, 80^{\circ} 45^{\circ} \mathrm{W}, 5986-6134 \mathrm{~m}$; $=1$ live $M x$. antonbruunae, 2 live $M x$. kaesleri, 1 live $M x$. kalbi.
AB-11-157, $12^{\circ} 02.6^{\prime} \mathrm{S}, 78^{\circ} 44.5^{\circ} \mathrm{W}, 3994-4364 \mathrm{~m} ;=1$ live $M x$. kalbi.
AB-11-169, $8^{\circ} 46.2^{\circ} \mathrm{S}, 80^{\circ} 44^{\prime} \mathrm{W}, 3909-3970 \mathrm{~m} ;=3$ live $M x$. kalbi.
$\mathrm{AB}-11-179,8^{\circ} 54 \mathrm{~S}, 80^{\circ} 41^{\prime} \mathrm{W}, 4823-4925 \mathrm{~m} ;=3$ live $M x$, antonbruunae, 1 live $M x$. kalbi.
$\mathrm{AB}-11-196,9^{\circ} 00.5^{\circ} \mathrm{S}, 80^{\circ} 40^{\prime} \mathrm{W}, 4516-4383 \mathrm{~m}$; $=1$ live $M x$. kalbi.
AB-18B-714C, $25^{\circ} 07^{\prime} \mathrm{S}, 70^{\circ} 43^{\circ} \mathrm{W}, 1025 \mathrm{~m}$, off the coast of Chile; $=2$ live Mh. sinuata.

U.S. RESEARCH VESSEL ATLANTIS II USNM ACC. NO. 307408, SANDERS COLLECTION (Richard H. Benson, Louis S. Kornicker)

AII-12-65, $38^{\circ} 46.8^{\prime} \mathrm{N}, 70^{\circ} 6.8^{\prime} \mathrm{W}$, depth $2891 \mathrm{~m} ;=1 \mathrm{Mx}$. bathyalensis. AII-24-118H, $32^{\circ} 19.4^{\prime}-19.0^{\circ} \mathrm{N}, 64^{\circ} 34.9^{\prime}-34.8^{\prime} \mathrm{W}$, depth $1135-1153$ $\mathrm{m} ;=12$ live plus 10 Mx . bathyalensis.
All-31-142, $10^{\circ} 30^{\prime} \mathrm{N}, 17^{\circ} 51.5^{\prime} \mathrm{W}, 1624-1796 \mathrm{~m} ;=8$ live M. miranda.
AII- $31-145,10^{\circ} 96^{\prime} \mathrm{N}, 17^{\circ} 49^{\circ} \mathrm{W}, 2185 \mathrm{~m}$; $=1$ live M. maions, 8 live M. miranda, 10 live Mk. siliquasa.
All-31-155, $00^{\circ} 03.0^{\prime} \mathrm{S}, 27^{\circ} 48.0^{\circ} \mathrm{W}, 3730-3783 \mathrm{~m}$; $=1$ live Ms . sp. 23.

AII- $31-156,00^{\circ} 46.0^{\circ}-00^{\circ} 46.5^{\circ} \mathrm{S}, 29^{\circ} 28.0^{\prime}-29^{\circ} 24.0^{\prime} \mathrm{W}, 3459 \mathrm{~m} ;=1$ live M. maioris, 1 live M x. sp. 18 .
AII-31-159, $7^{\circ} 58^{\prime} \mathrm{S}, 34^{\circ} 22^{\prime} \mathrm{W}, 834-939 \mathrm{~m}$; $=1$ live $M x$. sp. 11,9 live Ms. bensoni, 1 live Mh. sp. 30.
AII- $81-167,07^{\circ} 58.0^{\circ}-50.0^{\prime} \mathrm{S}, 34^{\circ} 17.0^{\circ} \mathrm{W}$, depth $943-1007 \mathrm{~m} ;=1$ live plus 11 Mx . kornickeri, 14 Mx . similis, 15 live Ms . bensoni, 12 live plus 1 Mh. sp. 30.
AII-31-169A, $8^{\circ} 2^{\prime}-8^{\prime} \mathrm{S}, 34^{\circ} 23^{\prime}-25^{\prime} \mathrm{W}$, depth 587 m ; $=1$ live Mx . kornickeni, 8 live plus 5 Mx . similis, 65 live plus 2 Ms . bensoni, 14 live plus $1 \mathrm{Mh} . \mathrm{sp} .30$.
AII-40-172, $40^{\circ} 12.3^{\prime}-40^{\circ} 10.8^{\prime} \mathrm{N}, 70^{\circ} 44.7^{\circ}-70^{\circ} 43.6^{\prime} \mathrm{W}, 119 \mathrm{~m} ;=118$ live $M x$. Labutisi, 8 live plus 4 Mx . sapeloensis.
AII-40-173, $40^{\circ} 10.8^{\prime}-40^{\circ} 10.6^{\prime} \mathrm{N}, 70^{\circ} 43.6^{\prime}-70^{\circ} 44.0^{\prime} \mathrm{W}, 122.6 \mathrm{~m}$; $=53$ live $M x$. labutisi, 25 live $M x$. sapeloensis.
AII-42-191, $23^{\circ} 05^{\prime} \mathrm{S}, 12^{\circ} 31.5^{\circ} \mathrm{E}, 1546-1559 \mathrm{~m} ;=2$ live M. miranda.
All-42-194, $22^{\circ} 54^{\prime} \mathrm{S}, 11^{\circ} 55^{\prime} \mathrm{E}, 2864 \mathrm{~m} ;=172$ live M. metuenda, 114 plus 1 live Mk. siliquosa.
AII-42-195, $14^{\circ} 49^{\prime}-14^{\circ} 40^{\prime} \mathrm{S}, 9^{\circ} 56^{\circ}-9^{\circ} 54^{\prime} \mathrm{E}, 3797 \mathrm{~m}$; $=4$ live M. metuenda, 3 live $M x$. audens.
AII-42-196, $10^{\circ} 29^{\circ} \mathrm{S}, 9^{\circ} 03^{\prime}-9^{\circ} 04^{\circ} \mathrm{E}, 4612-4630 \mathrm{~m} ;=2$ live M. maioris.
AII-42-197, $10^{\circ} 29^{\circ} \mathrm{S}, 9^{\circ} 04^{\prime} \mathrm{E}, 4597-4595 \mathrm{~m}$; $=14$ live plus 1 M . maions, 2 live $M x$. adrecta.
AII-42-198, $10^{\circ} 24^{\prime} \mathrm{S}, 9^{\circ} 09^{\prime} \mathrm{E}, 4559-4566 \mathrm{~m} ;=10$ live M . maioris, 3 live plus 1 Mx. adrecta, 1 live $M x$. adunca.
AII-42-199, $9^{\circ} 47^{\prime}-9^{\circ} 49^{\prime} \mathrm{S}, 10^{\circ} 29^{\prime}-10^{\circ} 33^{\circ} \mathrm{E}, 3764-3779 \mathrm{~m} ;=12$ live M. miranda, 10 live $M \mathrm{x}$. audens.

AII-42-200, $9^{\circ} 41^{\prime}-9^{\circ} 43.5^{\prime} \mathrm{S}, 10^{\circ} 55^{\prime}-10^{\circ} 57^{\prime} \mathrm{E}, 2644-2754 \mathrm{~m} ;=18$ live M. miranda, 11 live plus 2 Mk . siliquosa, 13 live plus 2 Mx . amanda
AII-42-201, $9^{\circ} 29^{\prime}-9^{\circ} 25^{\prime} \mathrm{S}, 11^{\circ} 34^{\prime}-11^{\circ} 35^{\prime} \mathrm{E}, 1964-2031 \mathrm{~m} ;=16$ live M. miranda, 9 live $M x$. arta, 5 live $M x$. audens.

U.S. FISH COMMISSION STEAMER ALBATROSS (Richard H. Benson)

Albatross $3375,2^{\circ} 34^{\prime} \mathrm{N}, 82^{\circ} 29^{\prime} \mathrm{W}, 2197 \mathrm{~m} ;=1$ live Mx . sp. 17 .

AMERICAN MUSEUM OF NATURAL HISTORY (Julia Golden, Harold S. Feinberg)

AMNH 12783, holotype, Macrocypris bathyalensis Hulings, Vema station V-17-118, $55^{\circ} 50^{\prime} \mathrm{N}, 56^{\circ} 06^{\prime} \mathrm{W}$, depth 3569 m ; $=1$ live M x. bathyalensis.

ARTHUR HARBOUR, ANTARCTICA
 (Richard H. Benson)

Arthur Harbour St. III, USNM Acc. No. 380141 , Podocopa, Stat. III, Arthur Harbour, Antarctica, $64^{\circ} 45^{\circ} 46^{\prime \prime} \mathrm{S}, 64^{\circ} 06^{\prime} 17^{\prime \prime} \mathrm{W}, 39$ $\mathrm{m}, 20$ February 1967; $=8$ live Mh. turbida.

U.S. BUREAU OF LAND MANAGEMENT MIDDLE ATLANTIC OUTER CONTINENTAL SHELF ENVIRONMENTAL STUDY VIRGINIA INSITUTE OF MARINE SCIENCE (Marcia Bowen)

[These stations were occupied 8 times or 4 times each. All stations were sampled in February and August of 1976 and 1977. The stations of transects A through F were also sampled in November 1975 and 1976 and in June 1976 and 1977. These seasonal samples and the six replicates within each sample have been
combined in the data given below. The latitude-longitude coordinates given are those for the first sampling period in Fall 1975; later sampling coordinates may vary slightly. See also Tables 2 and 3. Additional sedimentological, physical, chemical, and biological data for these stations are on file at Virginia Institute of Marine Science.]

BLM-A1, $39^{\circ} 14.7^{\prime} \mathrm{N}, 72^{\circ} 47.3^{\prime} \mathrm{W}, 90-91 \mathrm{~m}$, outer shelf, medium fine sand, moderate sorting, $6-9 \%$ silt and clay; $=64$ live $M h$. atlantica, 178 live $M x$. labutisi, 183 live $M x$. sapeloensis.
BLM-A2, $39^{\circ} 21.6^{\prime} \mathrm{N}, 72^{\circ} 31.0^{\prime} \mathrm{W}, 127-132 \mathrm{~m}$, shelf break, silty medium to fine sand, poor sorting, $22-25 \%$ silt and clay; $=51$ live Mh. atlantica, 158 live $M x$. labutisi, 17 live $M x$. sapeloensis.
BLM-A3, $39^{\circ} 16.5^{\prime} \mathrm{N}, 72^{\circ} 29.7^{\prime} \mathrm{W}, 136-139 \mathrm{~m}$, hummock, medium sand, poor sorting, $17-21 \%$ silt and clay; $=1$ live Mh. atlantica, 23 live $M x$. labutisi, 8 live $M x$, sapeloensis.
BLM-A4, $39^{\circ} 14.3^{\prime} \mathrm{N}, 72^{\circ} 26.7^{\prime} \mathrm{W}, 196-198 \mathrm{~m}$, shelf break, mediumfine sand, poor sorting, $14-16 \%$ silt and clay; $=7$ live $M x$. labutisi, 1 live $M x$. sapeloensis.
BLM-D4, $39^{\circ} 02.9^{\prime} \mathrm{N}, 78^{\circ} 47.1^{\prime} \mathrm{W}, 48-51 \mathrm{~m}$, swale, fine sand, moderately well sorted, 4-6\% silt and clay; $=1$ live $M x$. labutisi.
BLM-E2, $38^{\circ} 44.2^{\prime} \mathrm{N}, 78^{\circ} 25.8^{\prime} \mathrm{W}, 64-73 \mathrm{~m}$, flank, medium-fine sand, moderately well sorted, $3-7 \%$ silt and clay; $=1$ live Mh. atlantica, 1 live $M x$. sapeloensis.
BLM-E4, $38^{\circ} 42.8^{\prime} \mathrm{N}, 78^{\circ} 24.3^{\prime} \mathrm{W}, 75-80 \mathrm{~m}$, swale, shelly-mediumcoarse sand, moderately well sorted, 3-6\% silt and clay; $=28$ live Mh. atlantica, 1 live $M x$. sapeloensis.
BLM-F1, $38^{\circ} 44.0^{\circ} \mathrm{N}, 78^{\circ} 14.7^{\prime} \mathrm{W}, 84-85 \mathrm{~m}$, outer shelf, medium-fine sand, well sorted, $1-2 \%$ silt and clay; $=28$ live Mh. atlantica.
BLM-F2, $38^{\circ} 44.3^{\circ} \mathrm{N}, 78^{\circ} 09.2^{\circ} \mathrm{W}, 110-113 \mathrm{~m}$, shelf break, fine sand, well sorted, $4-7 \%$ silt and clay; $=142$ live Mh. atlantica, 21 live $M x$. labutisi, 32 live $M x$. sapeloensis.
BLM-F3, $38^{\circ} 43.8^{\prime} \mathrm{N}, 73^{\circ} 04.4^{\prime} \mathrm{W}, 150-153 \mathrm{~m}$, shelf break, mediumfine sand, moderately sorted, $6-9 \%$ silt and clay; $=1$ live M. atlantica, 7 live $M x$. labutisi.
BLM-F4, $38^{\circ} 44.3^{\prime} \mathrm{N}, 73^{\circ} 02.9^{\circ} \mathrm{W}, 189-184 \mathrm{~m}$, shelf break, mediumfine sand, moderately sorted, $7-10 \%$ silt and clay; $=1$ live Mh . atlantica, 11 live $M x$. labutisi, 16 live $M x$. sapeloensis.
BLM-G5, $39^{\circ} 48.9^{\prime} \mathrm{N}, 72^{\circ} 12.3^{\prime} \mathrm{W}, 90-92 \mathrm{~m}$, medium sand, moderately sorted, $9-11 \%$ silt and clay; $=3$ live Mh. atlantica, 58 live $M x$. labutisi, 11 live $M x$. sapeloensis.
BLM-G6, $39^{\circ} 40.6^{\prime} \mathrm{N}, 72^{\circ} 00.8^{\circ} \mathrm{W}, 167 \mathrm{~m}$, medium-fine sand, poor sorting, $18-22 \%$ silt and clay; $=31$ live $M x$. labutisi, 2 live $M x$. sapeloensis.
BLM-G7, $39^{\circ} 39.2^{\prime} \mathrm{N}, 71^{\circ} 57.4^{\prime} \mathrm{W}, 810-350 \mathrm{~m}$, fine sand, poor sorting, $21-29 \%$ silt and clay; $=5$ live $M h$. atlantica, 18 live $M x$. labutisi.
BLM-H1, $39^{\circ} 12.1^{\prime} \mathrm{N}, 72^{\circ} 23.6^{\prime} \mathrm{W}, 350-400 \mathrm{~m}$, silty-medium-fine sand, poor sorting, $28-33 \%$ silt and clay; $=8$ live Mh. atlantica, 1 live Mx. sapeloensis.

BLM-I1, $39^{\circ} 06.6^{\prime} \mathrm{N}, 72^{\circ} 59.0^{\prime} \mathrm{W}, 77-78 \mathrm{~m}$, medium-coarse sand, moderate sorting, 2-4\% silt and clay; $=10$ live Mh. atlantica.
BLM-12, $39^{\circ} 07.5^{\prime} \mathrm{N}, 72^{\circ} 49.1^{\prime} \mathrm{W}, 98-94 \mathrm{~m}$, medium-coarse sand, poor sorting, $4-5 \%$ silt and clay; $=26$ live Mh. atlantica, 1 live Mx. labutisi, 1 live Mx. sapeloensis.

BLM-IS, $39^{\circ} 08.8^{\prime} \mathrm{N}, 72^{\circ} 42.0^{\circ} \mathrm{W}, 176-181 \mathrm{~m}$, medium-fine sand, moderate sorting, $9-16 \%$ silt and clay; $=4$ live $M x$. labutisi, 7 live $M x$. sapeloensis.
BLM-I4, $39^{\circ} 06.1^{\prime} \mathrm{N}, 72^{\circ} 40.5^{\prime} \mathrm{W}, 460 \mathrm{~m}$, sand-silt-clay, poor sorting, $46-51 \%$ silt and clay; $=2$ live Mh. atlantica.
BLM-J1, $38^{\circ} 45.0^{\prime} \mathrm{N}, 78^{\circ} 00.8^{\circ} \mathrm{W}, 342-410 \mathrm{~m}$, silty-fine sand, poor sorting, $28-81 \%$ silt and clay; $=5$ live $M x$. labutisi.

BLM-K4, $38^{\circ} 04.5^{\prime} \mathrm{N}, 74^{\circ} 01.7^{\prime} \mathrm{W}, 102-105 \mathrm{~m}$, fine sand, moderately well sorted, 10% silt and clay; $=40$ live Mh. atlantica, 25 live $M x$. labutisi, 42 live $M x$. sapeloensis.
BLM-K5, $38^{\circ} 01.6^{\prime} \mathrm{N}, 79^{\circ} 53.8^{\prime} \mathrm{W}, 143-152 \mathrm{~m}$, medium-fine sand, poor sorting, $7-9 \%$ silt and clay; $=1$ live $M x$. labutisi.
BLM-K6, $38^{\circ} 00.8^{\prime} \mathrm{N}, 78^{\circ} 51.8^{\prime} \mathrm{W}, 389-370 \mathrm{~m}$, fine sand, poor sorting, $22-24 \%$ silt and clay; $=6$ live $M x$. labutisi, 4 live $M x$. sapeloensis.
BLM-L4, $87^{\circ} 08.1^{\prime} \mathrm{N}, 74^{\circ} 37.0^{\circ} \mathrm{W}, 90-94 \mathrm{~m}$, medium-coarse sand, moderate sorting, 1% silt and clay; $=3$ live Mh. atlantica.
BLM-L5, $37^{\circ} 06.1^{\prime} \mathrm{N}, 74^{\circ} 39.4^{\prime} \mathrm{W}, 180-201 \mathrm{~m}$, mixed sand, poor sorting, 8% silt and clay; $=4$ live Mh. atlantica, 4 live Mx. labutisi, 1 live $M x$. sapeloensis.
BLM-L6, $37^{\circ} 04.6^{\prime} \mathrm{N}, 74^{\circ} 33.1^{\prime} \mathrm{W}, 382-350 \mathrm{~m}$, sand-silt-clay, poor sorting, $36-53 \%$ silt and clay; $=3$ live $M x$. labutisi, 1 live $M x$. sapeloensis.

BRITISH MUSEUM (NATURAL HISTORY)
 CRUSTACEA SECTION, THE W. BAIRD COLLEGTION (Joan Ellis, Ann Gurney)

BMNH 1945.9.26.105, Cythere minna Baird, 114, Zetland, R. McAndrew, 50.60, TYPE, Norway, R. McAndrew; = 1 M. minna.

THE G. S. BRADY HMS CHALIENGER COLLECTION
BMNH 80.38.14, "Macrocypris similis Brady, lectoholotype H. S. Puri 7/67, Challenger no. 120, Depth $675^{\prime \prime}$; Challenger station 120 , off Pernambuco, $8^{\circ} 37^{\prime} 0^{\prime \prime} \mathrm{S}, 34^{\circ} 28^{\prime} 0^{\prime \prime} \mathrm{W}$, depth 675 fathoms (1235 m), red mud; $=1 \mathrm{Mx}$. similis.
BMNH 80.38.14, slide 153, "Macrocypris similis Brady, paralectotype Puri $6 / 67$, Challenger No. 120, Depth $675^{"}$; Challenger station $120,8^{\circ} 37^{\prime} \mathrm{S}, 34^{\circ} 28^{\prime} \mathrm{W}$, depth 675 fathoms (1235 m), off Pernambuco, Brazil, September 9, 1873; $=4 \mathrm{Mx}$. similis.
BMNH 80.38.15, "Macrocypnis tenuicauda Brady, lectoparatype; Challenger station $122,9^{\circ} 5^{\prime} \mathrm{S}, 34^{\circ} 49^{\prime} \mathrm{W}$, depth 350 fathoms (640 m), off North Brazil, 10/9/1973, G. S. Brady, washings of dredge"; $=5 \mathrm{Ms}$. bensoni.
BMNH 80.38.15, slide 157, "Macrocypris tenuicauda Brady, lectoparatype H. S. Puri 7/67, Challenger no. 122, D 350"; Challenger station $122,9^{\circ} 5^{\prime} \mathrm{S}, 34^{\circ} 49^{\circ} \mathrm{W}$, depth 350 fathoms (640 m), off north Brazil, $10 / 9 / 1878$, G. S. Brady, washings: $=4 \mathrm{Ms}$. bensoni.
BMNH 80.38.16, "Macrocypris tenuicauda Brady, lectoholotype H. S. Puri 7/67, no. 24, D. 390, N of St. Thomas"; Challenger station 24, off St. Thomas Island, West Indies, $18^{\circ} 38^{\prime} 30^{\prime \prime} \mathrm{N}$, $65^{\circ} 05^{\prime} 30^{\prime \prime} \mathrm{W}$, depth 390 fathoms (713 m), pteropod ooze, March 25,$1873 ;=1 M x$. tenuicauda.
BMNH 80.38.16, slide 154, "Macrocypris tenuicauda Brady, lectoparatype H. S. Puri 7/67, Challenger No. 24, D. 390, N. of St. Thomas"; Challenger station 24, off St. Thomas Island, West Indies, $18^{\circ} 38^{\prime} 30^{\prime \prime} \mathrm{N}, 65^{\circ} 05^{\prime} 30^{\prime \prime} \mathrm{W}$, depth 390 fathoms (713 m), pteropod ooze, March 25, 1873; = 1 Mx. tenuicauda.
BMNH 81.5.6, slide 148, "Macrocypris canariensis Brady, Challenger D. 600, Canary Is., Lectoholotype H. S. Puri 7/67"; Challenger station 8, a dredging off Gomera, the Canary Islands, $28^{\circ} 08^{\prime} 15^{\prime \prime} \mathrm{N}, 17^{\circ} 27^{\prime} 0^{\prime \prime} \mathrm{W}$, depth 620 fathoms (1134 m), on a bottom of sandy mud and shells; $=1 \mathrm{Ma}$. canariensis.
BMNH 1961.12.4.65, "Macrocypris tenuicauda Brady, Challenger No. 122, Depth 350 fath., washings of dredge"; Challenger station $122,9^{\circ} 5^{\prime} \mathrm{S}, 34^{\circ} 49^{\prime} \mathrm{W}$, depth 350 fathoms (640 m), off

North Brazil, 10/9/1973, G. S. Brady, washings of dredge; $=7$ Ms. bensoni.

THE A. M. NORMAN COLLECTION

BMNH 1900.3.6.166, Macrocypris minna Baird, No. 5, Oster Fjord, Norway, 375 fath. (686 m), 1878, 114; $=2$ M. minna.
BMNH 1900.3.6.167, Macrooypris minna Baird, Porcupine 1869, stat $36,45^{\circ} 50^{\prime} \mathrm{N}, 11^{\circ} 9^{\prime} \mathrm{W}, 725$ fath. (1326 m); $=1 \mathrm{M}$. minna.
BMNH 1911.11.8.M.3066, Macrocypris minna Baird, Porcupine 1869, stat. 25,160 fath. (293 m), near Rockal, $56^{\circ} 41^{\prime} \mathrm{N}, 13^{\circ} 30^{\prime} \mathrm{W} ;=4$ M. minna.

BMNH 1911.11.8.M.3067, Macrocypris minna Baird, Porcupine 1869, stat. 3, 722 fath. (1320 m), off S. W. Ireland, Lat. $51^{\circ} 38^{\prime} \mathrm{N}$, Long. $12^{\circ} 5^{\prime} \mathrm{W} ;=4 \mathrm{M}$. minna.
BMNH 1911.11.8.M.3069, Macrocypris minna, Oster Fjord \& Bukken, Norway, 114, 50-20 faths. (91-37 m), 1878; Macrocypris minna Baird, Oster Fjord, Norway, 1878, No. 6, $19+20$, off Sartoro, Bukken, Norway, 1878, No. 19, 15-40 f.; $=4 \mathrm{M}$. minna, 4 Ms . sp. 24.

BMNH 1911.11.8.M.3070A, Macrocypris minna, Dröback, Norway, stat. 44, 80-100 fath. (54-188 m); $=5$ M. minna.
BMNH 1911.11.8.M.3070B, Macrocypris minna (Baird), Dröback, Norway, Stat. 44, 30-100 fath. (54-183 m), 1879, Plesiotypes (described by P. C. Sylvester-Bradley, 1948); $=3$ M. minna.
BMNH 1911.11.8.M.3071, Macrocypris minna Sars [sic], Lervig, Norway, St. 30, 33 fath. (61 m), 1879; Lervig, Norway, 1879, St. 30. 33; = 2 M. minna, 1 Ms. sp. 24.

BMNH 1911.11.8.M.3072, Macrocypris minna, Shetland, 1861; $=1$ M. minna.

BMNH 1911.11.8.38669-683, Macrocypris minna, off Uidto Lighthouse, Hardanger Fjord, $150-180 \mathrm{fms}(247-329 \mathrm{~m}) ;=3$ live M. minna. BMNH 1911.11.8.39691-694, Macrocypris minna, off Fair Isle, coll. T. Scott; $=2$ live M. minna.

BRITISH MUSEUM (NATURAL HISTORY) DEPARTMENT OF PALAEONTOLOGY (Raymond H. Bate)

BMNH In. 51617 , Bairdia siliqua Jones, Lectotype, Detritus, Charing, Kent, Jones 1870; $=1 \mathrm{Ms}$. siliqua.
BMNH In.51618, Macrocypris muensteriana J. \& H. 1890, Detritus, Charing, Kent, Jones 1870; $=1 \mathrm{Mh}$. muensteriana.
BMNH In.51619, Bairdia siliqua Jones, Paralectotype, Chalk, Gravesend, Jones $1870 ;=1 \mathrm{Ms}$. siliqua.
BMNH In.51620, Bairdia siliqua Jones, Paralectotype, Chalk, Gravesend, Jones 1870; $=1 \mathrm{Ms}$. siliqua.
BMNH In.51622, Macrocypris muensteriana J. \&. H. 1890, Lectotype, Detritus, Charing, Kent, Jones 1870; $=1$ Mh. muensteriana.
BMNH Io.1270, Macrogypris exquisita Kaye, 1963, Holotype, U. Gault, Burwell, Cambs., L. Cretaceous (Albian), England; $=1$ Ms. exquisita.
BMNH Io. 1271, Macrocypris exquisita Kaye, 1963, Paratype, U. Gault, Burwell, Cambs., L. Cretaceous (Albian), England; $=1 \mathrm{Ms}$. exquisita.
BMNH Io.1272, Macrocypris exquisita Kaye, 1968, Paratype, U. Gault, Burwell, Cambs., Kaye 196s; $=1$ Ms. exquisita.
BMNH Io.1273, Macrooppris exquisita Kaye, 1963, Paratype, U. Gault, Burwell, Cambs.; $=1 \mathrm{Ms}$. exquisita.
BMNH Io.1274, Macrocypris exquisita Kaye, 1963, Paratype, U. Gault, Burwell, Cambs.; $=1 \mathrm{Ms}$. exquisita.

BMNH Io.1275, Macrocypris simplex Chapman 1898, Red Chalk, South Cave, E. Yorks., Kaye 1963; = 1 Ms. simplex.
BMNH Io.1276, Macrocypris siliqua (Jones) 1869, U. Chalk, Sonning, Berks., Kaye 1968; $=2$ Ms. siliqua.
BMNH Io.1595, Macrocypris wrightii Jones \& Hinde 1890, lectotype; $=1$ Ms. wrightii.
BMNH Io.2473, Macrocypris wrightiij Jones \& Hinde 1890, paralectotype; $=1 \mathrm{Ms}$. wrightii.

GIOACCHINO BONADUCE ZOOLOGICAL STATION OF NAPLES (Gioacchino Bonaduce, Kenneth G. McKenzie)

Bonaduce 1, Bay of Naples, northern side of Ischia, on Forio Bank, on calcareous algae, depth 50 m , collected by Gioacchino Bonaduce, 1975; $=15$ live $M n$. succinea.
Bonaduce 2, Bay of Naples, Pozzuoli, depth 95 m , collected by Gioacchino Bonaduce; $=5 \mathrm{Mk}$. ligustica.
Bonaduce 3, Bay of Naples, B.C. 22, depth $145 \mathrm{~m} ;=2$ live plus 1 Mk. ligustica.
Bonaduce 4, Bay of Naples, B.C. 21, depth $308-340 \mathrm{~m}$, collected by Gioacchino Bonaduce $=19 \mathrm{Mk}$. ligustica.
Bonaduce 5, Gulf of Aqaba, Sansone II station 1, collected by Pasquale Sansone on the southeast coast of Sinai between Sharm-el-sheikh and Na'ama, at Fiasko Reef, depth $50 \mathrm{~m} ;=5$ Mn. bonaducei.
Bonaduce 6, Gulf of Aqaba, Sansone III station 10, southeast coast of Sinai between Na'ama and Ros Nasrani at For Gardens Reef, depth $15 \mathrm{~m} ;=14 \mathrm{Mn}$. bonaducai.
Bonaduce 7, Gulf of Naples, BC-32, 27-40 m; $=22$ live Mn . succinea.
Bonaduce 8, Campione M, Socca di Forio, Bay of Naples, 50 m , coralligens; $=8$ live M n. succinea.
Bonaduce 9 , Mare Tirrens, St. 83, depth $86 \mathrm{~m} ;=1 \mathrm{Mk}$. ligustica.
Bonaduce 10, B.C.M. 333, St. 80, depth 77 m , Mare Tirrens, paratype; $=1 \mathrm{Mk}$. ligustica.

U.S. RESEARCH VESSEL CHAIN

 USNM ACC. NO. 307408, SANDERS COLLECTION (Richard H. Benson, Louis S. Kornicker)C \# 1, $40^{\circ} 20.5^{\prime} \mathrm{N}, 70^{\circ} 47{ }^{\circ} \mathrm{W}$, depth $97 \mathrm{~m}, 25$ May 1961; $=2$ live Mx . labutisi, 5 live $M x$, sapeloensis.
C-50-85, $87^{\circ} 59.2^{\circ} \mathrm{N}, 69^{\circ} 26.2^{\circ} \mathrm{W}$, depth 3834 m ; $=2$ live $M x$. bathyalensis.
C-106-318, $51^{\circ} 32.2^{\prime} \mathrm{N}, 12^{\circ} 35.9^{\prime} \mathrm{W}, 1500-1491 \mathrm{~m}, 17$ August 1972 , epibenthic sled; $=10 \mathrm{M}$. nimia, approximately 900 live Mc . arcuata.

FRANCESCA CARAION, INSTITUTE OF BIOLOGY TRAIAN SAVULESCU, BUCHAREST

Caraion Cuba stat. II, Gulf of Batabano, $4 \mathrm{~m}, 1$ March 1969, coll. Dr. Trajan Marian Gomoiu; $=2 \mathrm{Mn}$. sp. 39 .

U.S. NAVY SHIP ELTANIN
 (Richard H. Benson, Roger L. Kaesler)

E-5-25, $04^{\circ} 53^{\prime}-04^{\circ} 51^{\prime} \mathrm{N}, 80^{\circ} 28^{\prime} \mathrm{W}$, depth $2489 \mathrm{~m}, 2$ June 1962 , Menzies trawl; $=3$ live $M x$. kaesleri.
E-5-40, $13^{\circ} 10^{\prime}-18^{\circ} 07{ }^{\prime} \mathrm{S}, 77^{\circ} 56.5^{\prime}-77^{\circ} 57^{\prime} \mathrm{W}$, depth 1910-1860 fathoms ($3494-3402 \mathrm{~m}$), 11 June 1962, Peru-Chile Trench, Menzies trawl; $=2$ live $M x$. kalbi, 3 live $M a$. semesa.

E-3-48, $13^{\circ} 15^{\prime}-13^{\circ} 18.5^{\circ} \mathrm{S}, 78^{\circ} 06^{\prime}-78^{\circ} 06.5^{\prime} \mathrm{W}$, depth $2910-2840$ fathoms ($5323-5119 \mathrm{~m}$), 12 June 1962, Menzies trawl; $=1$ live Ma. semesa, 1 live M. sp. 1.
E-9-48, $14^{\circ} 11^{\prime}-14^{\circ} 08^{\prime} \mathrm{S}, 77^{\circ} 08^{\prime}-77^{\circ} 09^{\prime} \mathrm{W}$, depth $3888-4004 \mathrm{~m}, 18$ June 1962, Menzies trawl; $=5$ live $M x$. kalbi, 1 live Ma. semesa.
E-S-50, $16^{\circ} 12^{\prime}-16^{\circ} 10^{\prime}$ S, $74^{\circ} 41^{\prime}-74^{\circ} 41^{\prime} \mathrm{W}$, depth 2599-2858 m, 15 June 1962, Menzies trawl; $=1$ live $M x$. kalbi, 12 live Mh. sinuata.
E-S-65, $25^{\circ} 53^{\prime}-25^{\circ} 42^{\prime} \mathrm{S}, 71^{\circ} 07^{\prime} \mathrm{W}$, depth $3149-3257 \mathrm{~m}, 21$ June 1962, Menzies trawl; $=5$ live Mx. eltaninae.
E-4-127, $61^{\circ} 45^{\prime} \mathrm{S}, 61^{\circ} 14^{\prime} \mathrm{W}, 4758 \mathrm{~m}, 1$ August 1962; $=2$ live $M x$. eltaninae.
E-5-322, $56^{\circ} 04^{\prime}-56^{\circ} 05^{\prime} \mathrm{S}, 071^{\circ} 03^{\prime}-071^{\circ} 09^{\prime} \mathrm{W}$, depth $1806-2018 \mathrm{~m}$, 7 November 1962, Menzies trawl; = 1 live $M k$. sp. 19, 1 live $M h$. tensa.
E-6-344, $54^{\circ} 04^{\prime} \mathrm{S}, 58^{\circ} 46^{\circ}-58^{\circ} 45^{\prime} \mathrm{W}$, depth 119 m , Burdwood Bank, 4 December 1962, Menzies trawl; $=36$ live Mh. opaca.
E-6-350, $55^{\circ} 03-55^{\circ} 00^{\circ} \mathrm{S}, 58^{\circ} 57^{\prime}-58^{\circ} 51^{\prime} \mathrm{W}$, depth 2452 m , south side of Burdwood Bank, 4 December 1962, Menzies trawl; $=5$ live Mh. inaequata.
E-6-412, $62^{\circ} 06^{\circ} \mathrm{S}, 56^{\circ} 00^{\prime}-55^{\circ} 59^{\prime} \mathrm{W}$, depth 1180 m , Bransfield Strait, 1 January 1963, Menzies trawl; $=2$ live Mk. glacierae.
E-6-418, $62^{\circ} 39^{\prime}-62^{\circ} 40^{\prime} \mathrm{S}, 56^{\circ} 8^{\prime}-56^{\circ} 10^{\prime} \mathrm{W}$, depth $426-311 \mathrm{~m}, 2$ January 1963,5 -foot Blake trawl; $=2$ live $M h$. inaequalis, 8 live M. turbida.
E-9-740, $56^{\circ} 06^{\prime}-56^{\circ} 07 \mathrm{~S}^{\prime} \mathrm{S}, 66^{\circ} 19^{\prime}-66^{\circ} 30^{\circ} \mathrm{W}$, depth $384-494 \mathrm{~m}$, south of Cape Horn, 18 September 1963; = 3 live Mh. inaequata, 1 live Mh. opaca, 4 live Mh. turbida, 1 live Mh. sp. 25.
E-12-993, $61^{\circ} 25^{\prime}-61^{\circ} 25^{\circ} \mathrm{S}, 56^{\circ} 30^{\prime}-56^{\circ} 32^{\prime} \mathrm{W}$, depth 300 m , South Shetland Islands, 18 March 1964, 10 -foot Blake Trawl; $=1$ live Mh. turbida.
E-22-1585, $58^{\circ} 51^{\prime}-58^{\circ} 52^{\circ} \mathrm{S}, 37^{\circ} 38^{\prime}-87^{\circ} 36^{\prime} \mathrm{W}$, depth $97-101 \mathrm{~m}$, northwest of South Georgia Island, 7 February 1986, 5-foot Blake trawl; $=1$ live $M k$. glacierae, 3 live $M h$. opaca, 1 live Mh. turbida.
E-25-364, $56^{\circ} 17^{\prime}-56^{\circ} 19^{\prime} \mathrm{S}, 156^{\circ} 13^{\prime}-156^{\circ} 18^{\prime} \mathrm{W}$, depth $3694 \mathrm{~m}, 11$ November 1966; = 1 live $M \mathrm{~h}$. inaequata.
E-27-1885, $74^{\circ} 30^{\circ}-74^{\circ} 32^{\circ} \mathrm{S}, 170^{\circ} 10^{\circ}-170^{\circ} 12^{\circ} \mathrm{E}$, depth $328-311 \mathrm{~m}$, 16 January 1967, 10 -foot Blake trawl, USNM Acc. no. 292568; $=1$ live Mh. turbida.
E-27-1974, $54^{\circ} 30^{\prime}-54^{\circ} 34^{\prime} \mathrm{S}, 158^{\circ} 59^{\circ}-158^{\circ} 59^{\circ} \mathrm{E}$, depth $112-124 \mathrm{~m}$, 15 February 1967, 5-foot Blake trawl; $=2$ live Mh. turbida.
E-32-1996, $72^{\circ} 05^{\prime} \mathrm{S}, 172^{\circ} 08^{\prime}-172^{\circ} 09^{\prime} \mathrm{E}$, depth $348-352 \mathrm{~m}, 10$ January 1968,5 -foot Blake trawl; $=1$ live Mh. turbida.
E. $32-2025,75^{\circ} 24^{\prime}-75^{\circ} 28^{\prime} \mathrm{S}, 174^{\circ} 10^{\circ}-174^{\circ} 22^{\prime} \mathrm{W}, 1225-1240 \mathrm{~m}, 16$ January 1968, 5 -foot Blake Trawl; $=1$ live Mh. inaequata.
E-32-2085, $77^{\circ} 32^{\prime}-77^{\circ} 31^{\prime} \mathrm{S}, 172^{\circ} 32^{\prime}-172^{\circ} 23^{\prime} \mathrm{W}, 468-482 \mathrm{~m}, 1 \mathrm{Feb}-$ ruary 1968,10 -foot Blake trawl; $=1$ live Mh. turbida.
E-39-32, Eltanin cruise 39 station $32,47^{\circ} 26.4^{\prime} \mathrm{S}, 148^{\circ} 17.2^{\circ} \mathrm{E}, 960 \mathrm{~m}$; $=355 \mathrm{Mk}$. gregalis, 81 Mh. jiangi, 3 Mh. sp. 27, 1 Mh. sp. 28, 1 Mh. sp. 29.

PATRICIA FITHIAN, SCHOOL OF GEOSCIENCES LOUISIANA STATE UNIVERSITY

Fithian st. 1040 , Gulf of Paria, $9^{\circ} 30^{\prime} 30^{\prime \prime} \mathrm{N}, 60^{\circ} 05^{\circ} 45^{\prime \prime} \mathrm{W}, 76 \mathrm{~m}$; $=1$ Mn. hawkae
Fithian st. 1041, Gulf of Paria, $63 \mathrm{~m} ;=1 \mathrm{Mn}$. hawkae.
Fithian st. 1047, Gulf of Paria, $8^{\circ} 54^{\prime} 30^{\prime \prime} \mathrm{N}, 59^{\circ} 11^{\prime} \mathrm{W}, 93 \mathrm{~m} ;=1 \mathrm{Mn}$. hawkae.
Fithian st. 1055 , Gulf of Paria, $8^{\circ} 55^{\prime} \mathrm{N}, 59^{\circ} 04^{\prime} \mathrm{W}, 88 \mathrm{~m} ;=1 \mathrm{Mn}$. hawkae.

Fithian st. 1076, Gulf of Paria, $40 \mathrm{~m} ;=2 \mathrm{Mn}$. hawkae.
Fithian st. 1108 , Gulf of Paria, $10^{\circ} 15^{\prime} \mathrm{N}, 60^{\circ} 47^{\prime} \mathrm{W}, 44 \mathrm{~m} ;=1 \mathrm{Mn}$. hawkae.
Fithian st. 1109 , Gulf of Paria, $10^{\circ} 10^{\prime} \mathrm{N}, 60^{\circ} 52^{\prime} \mathrm{W}, 44 \mathrm{~m} ;=1 \mathrm{Mn}$. hawkae.
Fithian st. 1185 , Gulf of Paria, $10^{\circ} 36^{\prime} \mathrm{N}, 60^{\circ} 49^{\circ} \mathrm{W}, 44 \mathrm{~m} ;=4 \mathrm{Mn}$. hawkae.
Fithian st. 1189 , Gulf of Paria, $11^{\circ} 04^{\circ} 06^{\prime \prime} \mathrm{N}, 60^{\circ} 56^{\prime} 12^{\prime \prime} \mathrm{W}, 77 \mathrm{~m} ;=2$ Mn. hawkae.
Fithian st. 1200 , Gulf of Paria, $11^{\circ} 19^{\prime} 36^{\prime \prime} \mathrm{N}, 60^{\circ} 54^{\prime} 48^{\prime \prime} \mathrm{W}, 126 \mathrm{~m} ;=2$ Mn. hawkae.
Fithian st. 1202 , Gulf of Paria, $11^{\circ} 29^{\prime} \mathrm{N}, 61^{\circ} 20^{\prime} 48^{\prime \prime} \mathrm{W}, 187 \mathrm{~m}$; $=5$ Mn. hawkae.
Fithian st. 1203 , Gulf of Paria, $11^{\circ} 21^{\prime} \mathrm{N}, 61^{\circ} 20^{\prime} 30^{\prime \prime}, 156 \mathrm{~m} ;=1 \mathrm{Mn}$. hawke.
Fithian st. NT, Gulf of Paria, $11^{\circ} 30^{\prime} \mathrm{N}, 61^{\circ} 30^{\prime} \mathrm{W}, 188 \mathrm{~m} ;=3 \mathrm{Mn}$. hawhae.

SOUTH AFRICAN ECOLOGICAL SURVEY
 (Richard H. Benson, J. H. Day)

GIL 127, continental shelf off South Africa, South African Ecological Survey, collected by J. H. Day; $=10$ Mn. africana. GIL 616, False Bay, South Africa, collected by J. H. Day; $=1 \mathrm{Mn}$. dispar.
GIL 623, False Bay, South Africa, collected by J. H. Day; $=3 \mathrm{Mn}$. dispar.

U.S. COAST GUARD SHIP GLACIER

International Weddell Sea Oceanographic Expedition, program NSFGA-1125, coll. J. S. Rankin, K. Clark, and C. Biernbaum
(Richard H. Benson)
GL-1-0001, $74^{\circ} 06^{\prime} \mathrm{S}, 39^{\circ} 38^{\prime} \mathrm{W}$, depth 400 fathoms (732 m), $6 \mathrm{Feb}-$ ruary 1968, anchor dredge, WAGB-4; = 17 live plus 3 Mk . glacierae, 1 live Mh. inaequata, 17 live Mh. tensa.
GL-2-0001, $74^{\circ} 28.1^{\prime} \mathrm{S}, 30^{\circ} 81.7^{\prime} \mathrm{W}$, depth $513 \mathrm{~m}, 24$ February 1969 , anchor dredge; $=1$ live $M h$. tensa, 2 live M h. inaequata.
GL-2-002, $75^{\circ} 31^{\prime} \mathrm{S}, 30^{\circ} 08^{\prime} \mathrm{W}$, depth $412 \mathrm{~m}, 25$ February 1969, anchor dredge; $=1$ live $M k$. sp. 5,1 live $M h$. inaequata, 1 live $M h$. turbida.
GL-2-004, $77^{\circ} 54.2^{\prime} \mathrm{S}, 45^{\circ} 18.3^{\prime} \mathrm{W}$, depth $252 \mathrm{~m}, 3$ March 1969, anchor dredge; $=5$ live plus 1 Mk . glacierae, 1 live Mh. turbida.
GL-2-0022, $78^{\circ} 28.4^{\prime} \mathrm{S}, 30^{\circ} 26.9^{\prime} \mathrm{W}, 3111 \mathrm{~m}, 18$ March 1969, anchor dredge; $=1$ live $M k$. glacierae.
U.S. RESEARCH VESSEL HERO
(Roger L. Kaesler, Richard H. Benson)
H-69-5-49, $58^{\circ} 41^{\prime} 40^{\prime \prime} \mathrm{S}, 72^{\circ} 0^{\prime} 45^{\prime \prime} \mathrm{W}$, depth $16.3-46.3 \mathrm{~m}, 20$ October 1969, epibenthic dredge, outer edge of Fortescue Bay; $=1 M x$. amoena.
H-69-5-53, $52^{\circ} 51^{\prime}-52^{\circ} 50^{\prime} \mathrm{S}, 73^{\circ} 53^{\prime}-73^{\circ} 55^{\prime} \mathrm{W}, 526.7 \mathrm{~m}, 21$ October 1969, epibenthic dredge, at location of Challenger station 311; $=180 \mathrm{Mx}$. amoena, 125 Mh . heroica.
H-69-5-57, $51^{\circ} 0^{\prime} 50^{\prime \prime} \mathrm{S}, 74^{\circ} 14^{\prime} 10^{\prime \prime} \mathrm{W}$, depth $214 \mathrm{~m}, 28$ October 1969 , epibenthic dredge, sample in channel off Puerto Buena (Canal Sarmiento); $=2$ live plus 24 Mx . amoena, 6 Mh . heroica.
H-69-5-201, $50^{\circ} 9^{\circ} 55^{\prime \prime} \mathrm{S}, 74^{\circ} 48^{\prime} 25^{\prime \prime}-74^{\circ} 44^{\prime} \mathrm{W}$, depth $886.3-456.34 \mathrm{~m}$, 25 October 1969, epibenthic dredge, about same position as Challengerstation 808, Concepcion Canal, Passo Caffin; $=1 \mathrm{Mx}$. amoena, 81 Mh . heroica.

H-69-5-210, $50^{\circ} 21^{\prime} 17^{\prime \prime} \mathrm{S}, 75^{\circ} 17^{\prime} 25^{\prime \prime} \mathrm{W}$, depth $74.3 \mathrm{~m}, 28$ October 1969, Petersen grab, in Bahia Corbeta Papudo; $=6 \mathrm{Mx}$. amoena, 6 Mh . heroica.
H-69-5-212, $50^{\circ} 59^{\prime} 5^{\prime \prime} \mathrm{S}, 74^{\circ} 13^{\prime} 50^{\prime \prime} \mathrm{W}$, depth $9.8 \mathrm{~m}, 20$ October 1969 , Petersen grab, outer part of Porto Bueno; $=1 \mathrm{Mx}$. amoena, 2 Mh. heroica.
H-69-5-213, $51^{\circ} 27.5^{\prime} \mathrm{S}, 74^{\circ} 03^{\prime} \mathrm{W}$, depth 696.3-916.3 m, 30 October 1969, epibenthic dredge, off Punta Don Pedro, southern tip of Vancouver Island; = 8 live plus 18 Mx . amoena, 1 Mh . heroica.
H-69-5-214,51 ${ }^{\circ} 12.5^{\prime} \mathrm{S}, 74^{\circ} 09^{\circ} \mathrm{W}$, depth 230-280 fathoms (421-512 m), 29 October 1969, try net; $=2$ live Mh. heroica.

H-69-5-219, $53^{\circ} 11.8^{\prime} \mathrm{S}, 71^{\circ} 42.2^{\prime} \mathrm{W}, 65$ fathoms (119 m), 2 November 1969, Petersen Grab; $=2 \mathrm{Mx}$. heroica.
H-69-5-220, $53^{\circ} 11.4^{\prime} \mathrm{S}, 71^{\circ} 37.9^{\circ} \mathrm{W}, 70$ fathoms (128 m), 2 November 1969, Petersen grab; $=3 \mathrm{Mx}$. amoena, 2 Mh . heroica.
H-69-5-222, $53^{\circ} 07.7^{\prime} \mathrm{S}, 71^{\circ} 29.1^{\prime} \mathrm{W}$, depth 35 fathoms (64 m), 2 November 1969, Petersen Grab; = 5 Mx. amoena.
11-69-5-225, $53^{\circ} 05.3^{\prime} \mathrm{S}, 71^{\circ} 21.8^{\prime} \mathrm{W}$, depth 9 fathoms $(16 \mathrm{~m}) ;=1 \mathrm{Mh}$. turbida.
H.69-5-259, $52^{\circ} 53.7 \mathrm{~T}^{\mathrm{S}}, 71^{\circ} 27.4^{\prime} \mathrm{W}, 80$ fathoms (55 m), 8 November 1969, Petersen grab; = 1 Mx . amoena, 1 Mh . heтоіса.
H-69-5-268, $52^{\circ} 57.5^{\prime} \mathrm{S}, 71^{\circ} 39.1^{\prime} \mathrm{W}, 36$ fathoms (66 m), 4 November 1969, Petersen grab; $=1 \mathrm{Mx}$. amoena.
H-69-5-282, $53^{\circ} 18^{\prime} 40^{\prime \prime} \mathrm{S}, 70^{\circ} 42^{\prime} 20^{\prime \prime} \mathrm{W}$, depth $384-421 \mathrm{~m}$, off Punta Arenas; $=1 \mathrm{Mx}$. amoena.
H-71-5-15, $54^{\circ} 34^{\prime} \mathrm{S}, 64^{\circ} 20^{\circ} \mathrm{W}$, depth $92 \mathrm{~m} ;=1$ Mh. turbida.
H-71-5-20, $54^{\circ} 29^{\prime} \mathrm{S}, 64^{\circ} 00^{\prime} \mathrm{W}$, depth $104 \mathrm{~m} ;=3 \mathrm{Mh}$. turbida.
H-71-5-22, $54^{\circ} 39^{\prime} \mathrm{S}, 64^{\circ} 00^{\prime} \mathrm{W}$, depth 73 m ; $=1 \mathrm{Mh}$. turbida.
H-71-5-24,54 ${ }^{\circ} 29^{\circ} \mathrm{S}, 63^{\circ} 50^{\prime} \mathrm{W}$, depth $110 \mathrm{~m} ;=4 \mathrm{Mh}$. turbida.
H-71-5-25, $54^{\circ} 35{ }^{\prime} \mathrm{S}, 64^{\circ} 0.6^{\prime} \mathrm{W}$, depth $82 \mathrm{~m} ;=1 \mathrm{Mh}$. turbida.
H-71-5-874, $54^{\circ} 39^{\prime}-54^{\circ} 39.2^{\prime} \mathrm{S}, 62^{\circ} 50^{\circ}-62^{\circ} 50.2^{\prime} \mathrm{W}$, depth $185-187$ m, 26 October 1971, trawl; $=5$ live Mh. turbida.
H- $71-5-893,54^{\circ} 55.6^{\prime}-54^{\circ} 54.8^{\prime} \mathrm{S}, 64^{\circ} 21.8^{\prime}-64^{\circ} 19.0^{\prime} \mathrm{W}$, depth $303-358$ m, 2 November 1971, trawl; $=1$ live Mh. turbida.

HANCOCK MUSEUM, NEWCASTLE-UPON-TYNE
 G. S. BRADY OSTRACOD COLLECTION (A. M. Tynan)

HM "Cytherideis maculata \& decora Brady, Australia, West Indies"; $=1$ juvenile LV of an unknown species of Macrocyprina, not suitable as a lectotype for either species.
HM 1.45.28 Macrocypris siliquosa Brady, Lectotype, "Talisman, 932 m , Lat. $23^{\circ} \mathrm{N}$, Long. $19^{\circ} 50^{\circ} \mathrm{W}, 11 / 7 / 83^{\prime \prime}$; Talisman station 85 , $23^{\circ} 00^{\prime} \mathrm{N}, 1^{\prime} 30^{\prime \prime} \mathrm{W}$, depth 932 m , greenish muddy sand, temperature $7^{\circ} \mathrm{C}, 11 / 7 / 83 ;=1 \mathrm{Mk}$. siliquosa Brady , my specimen 1949.

HM 1.45.29, Macrocypris siliquosa Brady, paralectotypes, "Talisman, 982 m , Lat. $23^{\circ} \mathrm{N}$, Long. $19^{\circ} 50^{\circ} \mathrm{W}, 11 / 7 / 83^{\prime \prime}$; Talisman station $85,23^{\circ} 00^{\circ} \mathrm{N}, 17^{\circ} 30^{\circ} \mathrm{W}$, depth 932 m , greenish muddy sand, temperature $7^{\circ} \mathrm{C}, 12$ July $1883 ;=6 \mathrm{Mk}$. siliquosa.
HM 1.45.30, Macrocypris siliquasa Brady, "Syntypes B122, Arguin Bank, Africa, $20^{\circ} \mathrm{N}, 15 \mathrm{July} 1883,2333 \mathrm{~m} "$; Talisman station 99, 15 July $1883,19^{\circ} 19^{\prime} \mathrm{N}, 18^{\circ} 02^{\prime} \mathrm{W}$, depth 2333 m , bottom temperature $3.1^{\circ} \mathrm{C}$, greenish-gray mud; $=2 \mathrm{Mk}$, siliquosa, including my specimen 1950.
HM 1.45.31, Macrocypris siliquosa Brady, "West Coast of Morocco, 630 mètres. (Travailleur) $630 \mathrm{~m}, 30 / 7 / 82^{\prime \prime} ;=1 \mathrm{Mk}$. siliquosa.
HM Challengerstation 120, off Pernambuco, $8^{\circ} 37.0^{\circ} \mathrm{S}, 34^{\circ} 28.0^{\prime} \mathrm{W}$, depth 675 fath. (1285 m), red mud; "Cytherella lata, n. s., Macrocypris similisn. sp., Bythocypnis reniformisn. sp., Challenger
no. 120, depth 675 fath., washing of dredge, G. S. Brady 9/9/ $73^{\prime \prime} ;=5 \mathrm{Mx}$. similis.
HM Challengerst. $122,7^{\circ} 5^{\prime} \mathrm{S}, 34^{\circ} 49{ }^{\prime} \mathrm{W}$, depth 350 fath. (640 m), off North Brazil; "Macrooppris tenuicauda Brady, Challenger no. 122, depth 350 fath., washings of dredge, G. S. Brady, 10/9/ $73^{\prime \prime}$; = 29 Ms . bensoni.
HM Challenger station 305 , near $47^{\circ} 48^{\prime} \mathrm{S}, 74^{\circ} 48^{\prime} \mathrm{W}$, depth 160 fath. (304 m); "Bairdia amygdaloides B., Macrocypris similis sp. nov., G. S. Brady, $13 / 1 / 76^{\prime \prime} ;=2$ specimens of an unidentified species of Macropyxis, not Mx. similis.
HM Talisman station 35, 17 June $1883,32^{\circ} 29^{\prime} \mathrm{N}, 9^{\circ} 47^{\prime} \mathrm{W}$, depth 834 m , bottom temperature $11.0^{\circ} \mathrm{C}$, mud; "Macrocypris siliquosa Brady, Bythocypris bosquetiana Brady, West Coast of Morocco, 836 mètres (Talisman) $17 / 6 / 83^{\prime \prime} ;=4$ Mk. siliquosa.

JOHN HOLDEN

Holden Clipperton Island, $10^{\circ} 18^{\prime} \mathrm{N}, 109^{\circ} 13^{\prime} \mathrm{W}$, Macrocyprina vargata Allison and Holden (1971); $=2$ live plus 3 Mn . vargata.

HULL UNIVERSITY PALAEONTOLOGY COLLECTIONS (John W. Neale)

HU.13.CA.3.N.582-10, MYRNY STATION, Section 1, sample 3b, Depth 55 m , Ground rock, coll. Pushkin, 16.XIL.67, Macrocypris disparMüller, 1908; $=2$ live Mh. turbida.
HU.13.R.12.1-100, Macrocypris sp. aff. similis, Neale 1967, Halley Bay, Antarctica; $=6 \mathrm{Mh} . \mathrm{sp} .26$.
HU.20.C.7.1, Macrocyprisparva Kaye, 1965, holotype, Cretaceous, depth 61.25 metres is. Her base hole, Senck. leth. 1965 46(1) pl. 5, fig. 1; $=1$ Propontocypris parva.
HU.20.C.8.1-13, Macrocypris parva Kaye 1963, paratypes, Cretaceous, Barremian, mounted \& figured specimens, Senck. leth. 1965, 46(1) pl. 5, fig. 2; $=11$ Propontocypris parva.
HU.65.C.6.60, Macrocypris australiana Neale, 1975, One Tree Hill, Gingin, W. Australia, Santonian; $=1 \mathrm{Mk}$. australiana.

H. V. HOWE OSTRACOD COLLECTION SCHOOL OF GEOSCIENCES LOUISIANA STATE UNIVERSITY (Alvin Phillips, W. A. van den Bold)

HVH 8267, Macrocypris maculata (Brady) of van den Bold (1966), Colon Harbour, pl. 1, fig. $3 ;=M n$. sp. 48.
HVH 9437, Macrocyprina skinneri Kontrovit, holotype, Rec., La. cont. shelf sta. 97, pl. 1, fig. 2; Kontrovitz, 1976, station 97. $28^{\circ} 29.4^{\prime} \mathrm{N}, 92^{\circ} 08.4^{\prime} \mathrm{W}$, depth 156 feet $(48 \mathrm{~m}) ;=1 \mathrm{Mn}$. skinneri.
HVH 9438, Macrocyprina skinneri Kontrovitz, paratype, pl. 1, fig. 3, Louisiana continental shelf station $97,28^{\circ} 29.4^{\prime} \mathrm{N}, 92^{\circ} 8.4^{\prime} \mathrm{W}$, depth 156 feet (48 m); $=1 \mathrm{Mn}$. skinneri.
HVH 9439, Macrogyprina skinneri Kontrovitz, paratype, Louisiana continental shelf station $97,28^{\circ} 29.4^{\prime} \mathrm{N}, 92^{\circ} 8.4^{\circ} \mathrm{W}$, depth 156 feet $(48 \mathrm{~m}) ;=1 \mathrm{Mn}$. skinneri.
HVH 9440, Macrocyprina skinneri Kontrovitz, paratype, Vaca Key, Florida, $24^{\circ} 47^{\prime} \mathrm{N}, 81^{\circ} 07^{\prime} \mathrm{W} ;=1 \mathrm{Mn}$. schmitti.
HVH 9441, Macrogprina skinneri Kontrovitz, paratype, Vaca Key, Florida, $24^{\circ} 47^{\prime} \mathrm{N}, 81^{\circ} 07^{\prime} \mathrm{W} ;=1$ live Mn . schmitti.
HVH 9738, Macrocyprissa sp. of Howe and van den Bold, 1975, Pleistocene, Mississippi River mudlumps; $=1 \mathrm{Mx}$. improстта.
HVH 9739, Macrocyprina? sp. of Howe and van den Bold, 1975, Pleistocene, Mississippi River mudlumps; $=1 \mathrm{Mn}$. skinneri.

INGOLF EXPEDITION, 1895-1896 UNIVERSITY OF COPENHAGEN ZOOLOGICA MUSEUM (Torben Wolff)

Ingolf $18,61^{\circ} 44^{\prime} \mathrm{N}, 30^{\circ} 29^{\circ} \mathrm{W}$, depth $2137 \mathrm{~m}, 3.0^{\circ} \mathrm{C}$ bottom temperature, 17 June 1895; = 7 Mx . bathyalensis.
Ingolf $38,59^{\circ} 12^{\prime} \mathrm{N}, 51^{\circ} 05^{\prime} \mathrm{W}$, depth $3521 \mathrm{~m}, 1.8^{\circ} \mathrm{C}$ bottom temperature, 30 July 1895; = 1 live plus 1 Mx . bathyalensis.
Ingolf $85,68^{\circ} 21^{\prime} \mathrm{N}, 25^{\circ} 21^{\prime} \mathrm{W}$, depth $320 \mathrm{~m}, 17$ June 1896 ; $=1$ live plus 4 M. minna, 1 live Ma. sarsi.

JACK RUDLOE, SMITHSONIAN OCEANOGRAPHIC SORTING CENTER, INTERNATIONAL INDIAN OCEAN EXPEDITION
 (Richard H. Benson)

JR-29 (=JR-7), SOSC-IIOE, $13^{\circ} 23^{\prime} \mathrm{S}, 48^{\circ} 18^{\prime} \mathrm{E}$, depth 1.5 m , Ambatoloaka Beach, Nosy Be, Madagascar, collected byJ. J. Rudloe; $=3$ live $M n$. madagascarensis.

U.S. RESEARCH VESSEL KNORR
 (Richard H. Benson)

KN-25-287, $30^{\circ} 24.4^{\prime} \mathrm{S}, 39^{\circ} 00^{\prime} \mathrm{W}$, depth 4818 m , 21 November 1972; $=1$ live $M x$. adunca.
KN-25-808, $24^{\circ} 0.2^{\circ} \mathrm{S}, 8^{\circ} 28.5^{\circ} \mathrm{E}$, depth $4687 \mathrm{~m}, 17$ February 1978 ; $=5$ live Mx. adunca.
KN-25-806, $15^{\circ} 59.9^{\prime} \mathrm{S}, 1^{\circ} 58.5^{\circ} \mathrm{E}$, depth $5550 \mathrm{~m}, 21$ February 1973 ; $=8$ live $M x$. adunca, $1 M x$. sp. 20.
KN-25-307, $12^{\circ} 0.5^{\prime} \mathrm{S}, 1^{\circ} 58.5^{\prime} \mathrm{E}$, depth 5631 m , 22 February 1978; $=2$ live $M x$. adrecta.

VIDMANTAS R. LABUTIS
GREAT BARRIER REEF, AUSTRALIA
Labutis GBR $1305,23^{\circ} 17^{\circ} \mathrm{S}, 151^{\circ} 38^{\prime} \mathrm{E}$, depth $20 \mathrm{~m}, 5 \mathrm{~km}$ northwest of North West Reef, Great Barrier Reef, Australia; $=20 \mathrm{Mn}$. quadrimaculata.
Labutis GBR 1306, $23^{\circ} 18^{\prime} \mathrm{S}, 151^{\circ} 37{ }^{\circ} \mathrm{E}$, depth $40 \mathrm{~m}, 7 \mathrm{~km}$ west of North West Reef, Great Barrier Reef, Australia; $=3$ Mn. quadrimaculata.
Labutis GBR $1369,23^{\circ} 37^{\prime} \mathrm{S}, 151^{\circ} 32^{\prime} \mathrm{E}$, depth 30 m , Great Barrier Reef, Australia; $=1 \mathrm{Mn}$. quadrimaculata.
Labutis GBR 1374, $28^{\circ} 36^{\prime} \mathrm{S}, 151^{\circ} 344^{\prime} \mathrm{E}$, depth 30 m , Great Barrier Reef, Australia; $=1$ Mn. quadrimaculata.

NATUR-MUSEUM UND FORSCHUNGS-INSTITUT SENCKENBERG, FRANKFURT-AM-MAIN (Gerhard Becker, Heinz Malz)

NMFIS Xe 3359, Macrocyprissa gylindracea (Bornemann), plesiotypes of Triebel, 1960, Oligocene, Septarienton bei Berlin; $=4$ Mc. yylindracea.

NMFIS Xe 3862-3870, Macrocyprina propinqua Triebel, paratype, Punt Vierkant, Bonaire, $1-2 \mathrm{~m}$; $=1$ live $M n$. propinqua.

TOMOHIDE NOHARA

UNIVERSITY OF THE RYUKYU'S, OKINAWA
Nohara, Sesoko Island, Okinawa, near biological station of Ryukyu University, 6 samples of sand from fringing reef, depth less than 5 m ; = 1 live plus 17 Mn . noharai.
Nohara station 3, Okinawa Continental Shelf, $26^{\circ} 46^{\prime} 5^{\prime \prime} \mathrm{N}$, $125^{\circ} 19^{\prime} 7^{\prime \prime} \mathrm{E}$, depth 265 m , gray medium sand; = 1 Mn . okinawae.

Nohara station 4, Okinawa Continental Shelf, $27^{\circ} 16^{\prime} 5^{\prime \prime} \mathrm{N}$, $124^{\circ} 50^{\circ} 5^{\prime \prime} \mathrm{E}$, depth 106 m , fine to medium sand, dark brown to gray; $=6 \mathrm{Mn}$. okinawae.
Nohara station 6, Okinawa Continental Shelf, $26^{\circ} 51^{\prime} 3^{\prime \prime} \mathrm{N}$, $124^{\circ} 22^{\prime} 2^{\prime \prime} \mathrm{E}$, depth 130 m , fine dark gray sand; $=2 \mathrm{Mn}$. okinawae.
Nohara station 14, Okinawa Continental Shelf, $27^{\circ} 08^{\prime} 0^{\prime \prime} \mathrm{N}$, $124^{\circ} 22^{\prime} 8^{\prime \prime} \mathrm{E}$, depth 108 m , fine to medium sand, dark brown to gray; $=8 \mathrm{Mn}$. okinawae.
Nohara station 15 , Okinawa Continental Shelf, $26^{\circ} 58^{\prime} 0^{\prime \prime} \mathrm{N}$, $124^{\circ} 28^{\circ} 5^{\prime \prime} \mathrm{E}$, depth 135 m , fine dark gray sand; $=5 \mathrm{Mn}$. okinawae.
Nohara station 18, Okinawa Continental Shelf, $26^{\circ} 32^{\circ} 0^{\prime \prime} \mathrm{N}$, $124^{\circ} 20^{\prime} 6^{\prime \prime} \mathrm{E}$, depth 146 m , very fine dark gray sand; $=2 \mathrm{Mn}$. okinawae.
Nohara station 19, Okinawa Continental Shelf, $26^{\circ} 08^{\prime} 5^{\prime \prime} \mathrm{N}$, $124^{\circ} 24^{\prime} 7^{\prime \prime} \mathrm{E}$, depth 250 m , fine dark gray sand; = 1 Mn . okinawae.
Nohara station 20, Okinawa Continental Shelf, $25^{\circ} 45^{\prime} 9^{\prime \prime} \mathrm{N}$, $123^{\circ} 45^{\prime} 8^{\prime \prime} \mathrm{E}$, depth 185 m , medium brown to gray sand; $=5 \mathrm{Mn}$. moza, 1 Mn. noharai.

NOSY BE, MADAGASCAR, COLLECTIONS BY ROSALIE F. MADDOCKS (1966), JUNE-AUGUST 1964, INTERNATIONAL INDIAN OCEAN EXPEDITION

Nosy Be 019, sediment sample west of Pointe Lokobe; $=4 \mathrm{Mn}$. madagascarensis.
Nosy Be 020 , sediment sample south of Pointe Lokobe; $=8 \mathrm{Mn}$. madagascarensis, 1 Mn. moza.
Nosy Be 023 , sediment sample in shallow water near sand beach on Nosy Komba; = 1 Mn . madagascarensis, 1 Mn . moza.
Nosy Be 068, Nosy N'Tangam, washings of small dead coral fragments and some shells, encrusted with nondescript brown algae and other organisms, loose on sand about 0.5 m below low tide level; = 1 live Mn. madagascarensis.
Nosy Be 070, Nosy N'Tangam, surficial sand, mostly bare but some grass, 3 m below low tide level, bolapipe sample; $=6 \mathrm{Mn}$. madagascarensis, 1 Mn . sp. 43.
Nosy Be 079, near beach at Ankify, washings of red tunicate; $=1$ live $M n$. madagascarensis.
Nosy Be 089 ; washings of algae at Pte. Mahatsinjo; $=1$ live $M n$. madagascarensis.
Nosy Be 094, Pte. Mahatsinjo, coarse sand and gravel between reef patches in about 1.5 m at low tide; $=2 \mathrm{Mn}$. madagascarensis, 1 Mn. moza.
Nosy Be 095, washings of Tridacna squamosa, collected 15 June 1964 by Arthur G. Humes; $=1$ live Mn. madagascarensis.
Nosy Be 117, sediment sample in east side of Baie d'Ampasindava, north of Sambirano River; $=2 \mathrm{Mn}$. madagascarensis.
Nosy Be 127, west side of Ambariobe, fine sand with Thallassia; $=1$ Mn. madagascarensis.
Nosy Be 155, Nosy Tanikely, washings of coral; = 1 live Mn. madagascarensis.
Nosy Be 158, Nosy Tanikely, washings of coral; = 1 live $M n$. madagascarensis.
Nosy Be 159, Nosy Tanikely, washings of coral; $=2$ live Mn. madagascarensis.
Nosy Be 212 , Nosy Tanikely, washings of red alga; $=9$ live $M n$. madagascarensis.
Nosy Be 219, Nosy Tanikely, washings of dead coral fragments
with encrusting red sponges, lacy brown alcyonarians (?), and algae; $=1$ live Mn. madagascarensis.
Nosy Be 220, Nosy Tanikely, washings of dead coral encrusted with algae, sponges, and tunicates; $=11$ live Mn. madagascarensis, 1 Mn . moza.
Nosy Be 229, Pte. Lokobe, washings of live and dead coral; $=1$ live Mn. madagascarensis.
Nosy Be 230, Pte. Lokobe, surface sand from patches of Cymodocea, in about 1 m of water at low tide; $=2$ live Mn . madagascarensis, 1 Mn. captiosa, 10 Mn . moza.
Nosy Be 248, south of Nosy Komba, dredge sample from R. V. Ambariaka, $13^{\circ} 30^{\prime} \mathrm{S}, 48^{\circ} 22^{\circ} \mathrm{E}$, depth $16 \mathrm{~m} ;=8 \mathrm{Mn}$. madagascarensis, 1 Mn. moza.
Nosy Be 249, south of Nosy Komba, dredge sample from R. V. Ambariaka, $13^{\circ} 30^{\circ} \mathrm{S}, 48^{\circ} 20.5^{\prime} \mathrm{E}$, depth $24-20 \mathrm{~m} ;=1 \mathrm{Mn}$. madagascarensis.
Nosy Be 270, near Ambatoloaka, washings of dead coral; $=9$ live Mn . madagascarensis, 1 live plus 2 Mn . moza.
Nosy Be 271, near Ambatoloaka, washings of red alga; $=1$ live Mn. madagascarensis.
Nosy $\operatorname{Be} 275$, near Ambatoloaka, washings of green alga; $=1$ live Mn. madagascarensis.
Nosy Be 276 , near Ambatoloaka, washings of green calcareous alga and dead coral; $=2$ live $M n$. madagascarensis.
Nosy Be 277, near Ambatoloaka, washings of green calcareous alga; $=2$ live M n. madagascarensis.
Nosy Be 327, near Antsakoabe, surface sandy mud among mangrove pneumatophores; $=4$ live Mn . madagascarensis.
Nosy Be 329B, near Antsakoabe, sand at low tide level; $=1 \mathrm{Mn}$. madagascarensis.
Nosy Be 344, sediment grab sample east of Pte. Tafondro; $=3 \mathrm{Mn}$. madagascarensis. Nosy Be 353, sediment grab sample west of Pte. d'Andemby; $=1$ live Mn . madagascarensis.
Nosy Be 359, in Lac du Cratère, washings of dead coral encrusted with algae, sponges, corals, and tunicates; $=10$ live Mn . madagascarensis.
Nosy Be 361, in Lac du Cratère, fecal castings of a black holothurian, Halodeima atra (Jaeger); $=7 \mathrm{Mn}$. madagascarensis.
Nosy Be 362, in Lac du Cratère, washings of green calcareous alga; $=1$ live Mn. madagascarensis.
Nosy Be 363 , in Lac du Cratère, washings of a sponge $;=1$ live $M n$. madagascarensis.
Nosy Be 366 , in Lac du Cratère, surface sand from among coral patches in about 1 m of water; $=27 \mathrm{Mn}$. madagascarensis, 2 Mn . captiosa.
Nosy Be 381, Pte. Lokobe, surface sand between coral masses in about 3 m water; $=5 \mathrm{Mn}$. madagascarensis, 2 Mn . captiosa.
Nosy Be 382, at Nosy N'Tangam, surface coarse sand in bare patch among Cymodocea and dead coral; $=4 \mathrm{Mn}$. madagascarensis.
Nosy Be 394, south of Nosy Komba, dredge sample from R. V. Ambariaka, $13^{\circ} 28.5^{\circ} \mathrm{S}, 48^{\circ} 22^{\circ} \mathrm{E}$, depth $14 \mathrm{~m} ;=5 \mathrm{Mn}$. madagascarensis.
Nosy Be 395, south of Nosy Komba, dredge sample from R. V. Ambariaka, $13^{\circ} 28.5^{\prime} \mathrm{S}, 48^{\circ} 24^{\prime} \mathrm{E}, 11 \mathrm{~m} ;=1 \mathrm{Mn}$. madagascarensis.
Nosy Be 400 , about halfway between the Centre d'Océanographie et des Pêches and Nosy Tanikely, sediment grab sample; $=26$ Mn. madagascarensis.
Nosy Be 401, north of Nosy Tanikely, sediment grab sample; $=23$ Mn. madagascarensis.

Nosy Be 403 , in Lac du Cratère, sediment grab sample in center of crater; $=1 \mathrm{Mn}$. madagascarensis.
Nosy Be 404, south of Lac du Cratère, grab sample, shallow sand among corals of fringing reef; $=6 \mathrm{Mn}$. madagascarensis.
Nosy Be 405, south of Lac du Cratère, grab sample of sediment in deep water beyond the reef; $=1 \mathrm{Mn}$. madagascarensis.
Nosy Be 419, north of Pte. d'Ampahana, sediment grab sample, sand, depth about $40 \mathrm{~m} ;=2 \mathrm{Mn}$. madagascarensis.
Nosy Be 427, near Mahatsinjo, washings of brown and white calcareous algae among Cymodocea, $=2$ live Mn. madagascaren. sis.
Nosy Be 465 , in Lac du Cratère, sediment grab sample in interior; $=6 \mathrm{Mn}$. madagascarensis, 2 Mn . moza.
Nosy Be 466, in Lac du Cratère, bolapipe sediment sample in interior; $=1 \mathrm{Mn}$. madagascarensis.
Nosy Be 472, south of Port du Cratère, opposite the mouth of the Djabala River, sediment grab sample, depth about $20 \mathrm{~m} ;=16$ Mn. madagascarensis.
Nosy Be 478, south of Mahatsinjo, sediment grab sample, sand just beyond edge of coral reef; $=1 \mathrm{Mn}$. madagascarensis.
Nosy Be 474, near Pte. Lokobe, sediment grab sample, sand just beyond edge of reef; $=1 \mathrm{Mn}$. madagascarensis, 1 Mn . moza.
Nosy Be 474A, near Pte. Lokobe, sediment grab sample, sand just beyond edge of reef; $=1 \mathrm{Mn}$. madagascarensis, 1 Mn . moza.
Nosy Be 477, south of Ambariobe, sediment grab sample; $=1 \mathrm{Mn}$. madagascarensis.
Nosy Be 478, south of Ambariobe, east of Antamotano, sediment grab sample; $=4 \mathrm{Mn}$. madagascarensis, 3 Mn . moza.
Nosy Be 480, off the southeast coast of Nosy Komba, sediment grab sample; $=4 \mathrm{Mn}$. madagascarensis.
Nosy Be 484, off the northwest coast of Nosy Komba, opposite Passe de Nosy Vorona, sediment grab sample; $=1 \mathrm{Mn}$. madagascarensis.
Nosy Be 487, east side of the Baie d'Ampasindava, north of the mouth of the Sambirano River, sediment grab sample, muddy sand, depth $2 \mathrm{~m} ;=1 \mathrm{Mn}$. madagascarensis.
Nosy Be 491, east side of the Baie d'Ampasindava, just beyond the delta of the Sambirano River, sediment grab sample, soft black mud with oysters; $=160 \mathrm{Mn}$. madagascarensis.
Nosy Be 496 , about halfway between Centre d'Océanographie et des Pêches and Nosy Tanikely, sediment grab sample, sand, depth about $27 \mathrm{~m} ;=51 \mathrm{Mn}$. madagascarensis.
Nosy Be 497, south of Hellville, sediment grab sample; $=20 \mathrm{Mn}$. madagascarensis.
Nosy Be 498, halfway between Pte. Lokobe and Nosy Komba, sediment grab sample; $=7 \mathrm{Mn}$. madagascarensis.
Nosy Be 504, at Ambariobe, surface loose sand among coral, just below low tide; $=3 \mathrm{Mn}$. madagascarensis.
Nosy Be 508, at Nosy Tanikely, on large orange sponge, 20 m depth, collected by Arthur G. Humes; $=1 \mathrm{Mn}$. madagascarensis.
Nosy Be 521, at Ambatoloaka, rotting Cymodocea floating in tide pool at upper low tide level; $=1$ live Mn . madagascarensis.
Nosy Be 528, at Navetsy, sand with sparse sea grass at low tide level; $=2 \mathrm{Mn}$. madagascarensis.

NEW ZEALAND OCEANOGRAPHIC INSTITUTION
 (Richard H. Benson)

NZOI B-303, New Zealand Oceanographic Institution, $45^{\circ} 7.8^{\prime} \mathrm{S}$, $177^{\circ} 55^{\prime} \mathrm{E}, 2888 \mathrm{~m}$; $=1$ live $M x$. sp. 16.
NZOI RM1001, near East Cape, New Zealand; $=5$ Mn. sp. 34; 2 Mn. sp. 36 .

LINDA PEQUEGNAT

TERECO CORPORATION, COLLEGE STATION, TEXAS

Pequegnat $0131-3(2 \mathrm{~B}), 32^{\circ} 54^{\prime} \mathrm{N}, 79^{\circ} 12^{\prime} \mathrm{W}$, depth $16 \mathrm{~m} ;=2$ live Mn. sp. 40.
Pequegnat $0146-2(2 \mathrm{E}), 32^{\circ} 40^{\prime} \mathrm{N}, 78^{\circ} 47^{\prime} \mathrm{W}$, depth 36 m ; = 1 live Mn. sp. 40.

SANTA BARBARA MUSEUM OF NATURAL HISTORY
 (Paul H. Scott)

SBMNH Chevron/Pt. Arguello Field Project station 1, $34^{\circ} 28^{\prime} 29^{\prime \prime} \mathrm{N}$, $120^{\circ} 98^{\prime} 25^{\prime \prime} \mathrm{W}$, depth 360 feet (114 m), 1 September $1982 ;=11$ live $M n$. barbara.
SBMNH Chevron/Pt. Arguello Field Project station 14, $34^{\circ} 29^{\prime} 58^{\prime \prime} \mathrm{N}$, $120^{\circ} 40^{\prime} 12^{\prime \prime} \mathrm{W}$, depth 300 feet (95 m), 30 August 1982; $=3$ live Mn. barbara.
SBMNH Chevron/Pt. Arguello Field Project station $28,34^{\circ} 31^{\prime} 32^{\prime \prime} \mathrm{N}$, $120^{\circ} 43^{\prime} 25^{\prime \prime} \mathrm{W}$, depth 408 feet (129 m), 81 August 1982 ; $=3$ live Mn. barbara.
SBMNH Chevron/Pt. Arguello Field Project station 29, $34^{\circ} 81^{\prime} 27^{\prime \prime} \mathrm{N}$, $120^{\circ} 46^{\prime} 01^{\prime \prime} \mathrm{W}$, depth 732 feet (232 m), 31 August 1982; = 1 live Mn. barbara.

PAUL LEWIS STEINECK

DIVISION OF NATURAL SCIENCES

 S.U.N.Y. COLLEGE AT PURCHASEThese specimens are from samples in the Montpelier Group, exposed in road cuts along the Montego Bay-Adelphi Road in northwest Jamaica (See Steineck, 1981, fig. 2, 8, table II).
Steineck sample M15, Lower Miocene, Sign Formation; $=5$ Mc. vandenboldi.
Steineck sample M17, Lower Miocene, Sign Formation; $=3 \mathrm{Mx}$. steinecki.
Steineck sample M23, Lower Miocene, Sign Formation; $=2 \mathrm{Mx}$. steinecki.
Steineck sample M25, Lower Miocene, Sign Formation; $=3 \mathrm{Mx}$. steinecki, 2 Mc. vandenboldi.
Steineck sample M27, Lower Miocene, Spring Garden Formation; $=1 M x$. steinecki, 1 Mc. vandenboldi.
Steineck sample M27A, Lower Miocene, Spring Garden Formation; $=9 \mathrm{Mx}$. steinecki, 5 Mc . vandenboldi.
Steineck sample M28, Lower Miocene, Spring Garden Formation; $=4 M x$. steinecki, 3 Mc. vandenboldi.
Steineck sample M29, Lower Miocene, Spring Garden Formation; $=6 \mathrm{Mx}$. steinecki, 5 Mc . vandenboldi.
Steineck sample M82, Middle Miocene, Spring Garden Formation; $=6 \mathrm{Mc}$, vandenboldi.

STANFORD UNIVERSITY, PALEONTOLOGICAL
AND CONCHOLOGICAL COLLECIIONS
(Myra Keen)
SU 6769, Paracypris pacificus LeRoy, 1943, holotype; $=1$ Paracypris pacifica (not Macrocyprididae).

KERRY SWANSON, DEPARTMENT OF GEOLOGY UNVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND

Swanson Northland P461, $34^{\circ} 20.4^{\prime} \mathrm{S}, 171^{\circ} 48.2^{\prime} \mathrm{E}$, depth $440 \mathrm{~m} ;=7$ Mk. swansoni, 9 Mh. juangi.

Swanson Northland-Three Kings P462, $34^{\circ} 17.6^{\prime} \mathrm{S}, 171^{\circ} 45.8^{\prime} \mathrm{E}$, depth $427 \mathrm{~m} ;=2 \mathrm{Mk}$. swansoni, $1 \mathrm{Mh} . j$ jiangi, $2 \mathrm{Mn} . \mathrm{sp} .45$.
Swanson Northland P464, $34^{\circ} 24.1^{\prime} \mathrm{S}, 171^{\circ} 42.0^{\circ} \mathrm{E}$, depth 655 m ; $=11 \mathrm{Mk}$. swansoni, 1 Mh. jiangi.
Swanson Northland-Three Kings P476, $34^{\circ} 01.8^{\prime} \mathrm{S}, 172^{\circ} 12.0^{\prime} \mathrm{E}$, depth $508 \mathrm{~m} ;=1$ Mk. swansoni, 2 Mh. jiangi, 3 Mh. sp. 29.
Swanson Northland-Three Kings P484, $34^{\circ} 04.5{ }^{\circ} \mathrm{S}, 172^{\circ} 18.4^{\prime} \mathrm{E}$, depth $850 \mathrm{~m} ;=7$ Mh. jiangi, 1 Mh. sp. 31.
Swanson Northland P566, $33^{\circ} 56.1^{\prime} \mathrm{S}, 171^{\circ} 27.2^{\prime} \mathrm{E}$, depth 514 m ; $=4$ Mh. sp. 32.
Swanson Northland P578, $84^{\circ} 05.0^{\prime} \mathrm{S}, 172^{\circ} 00.2^{\prime}$ E, depth $850 \mathrm{~m} ;=8$ Mh. jiangi.
Swanson Tasman Sea P653, $41^{\circ} 43.2^{\circ} \mathrm{S}, 170^{\circ} 01.6^{\prime} \mathrm{E}$, depth 873 m ; $=1 M x . \mathrm{sp} .14$.
Swanson Tasman Sea P654, $42^{\circ} 02.1^{\prime} S, 170^{\circ} 12.7^{\prime} \mathrm{E}$, depth 769 m ; $=4 M x . \mathrm{sp} .15$.
Swanson Tasman Sea P662, $41^{\circ} 27.2^{\prime} \mathrm{S}, 170^{\circ} 55.7^{\prime} \mathrm{E}, 196 \mathrm{~m} ;=3 \mathrm{Mk}$. swansoni.
Swanson Tasman Sea P665, $42^{\circ} 47.2^{\prime}-42^{\circ} 52.8^{\prime} \mathrm{S}, 169^{\circ} 51.7^{\prime}-$ $169^{\circ} 48.0^{\prime} \mathrm{E}$, depth $768-531 \mathrm{~m}$, washings from box corer and letter box dredge; $=1$ live $M k$. sp. 6.
Swanson Tasman Sea P667, $42^{\circ} 24.3^{\prime} \mathrm{S}, 169^{\circ} 25.0^{\prime} \mathrm{E}$, depth 1047 m ; $=2 M x . \mathrm{sp} .14$.

JAMES TEETER

GEOLOGY DEPARTMENT, UNIVERSTTY OF AKRON
Teeter "British Honduras"; = 1 live Mn. belizensis.

TEXAS A\&M UNIVERSITY

OUTER BANKS STUDY, TEXAS CONTINENTAL SHELF
(Richard Titgen)
TA\&MU OBS 28F1, near 28 Fathom Bank, 1 September 1976, approximately $27^{\circ} 55^{\prime} \mathrm{N}, 98^{\circ} 27^{\prime} \mathrm{W}$, depth 101 m ; = 1 live Mn . skinneri.
TA\&MU OBS 28F3, 28 Fathom Bank, 4 September 1976, approximately $27^{\circ} 55^{\prime} \mathrm{N}, 99^{\circ} 27^{\prime} \mathrm{W}$, depth 77 m ; = 27 live Mn. skinneri.
TA\&MU OBS STB-4C, Stetson Bank, 6 August 1976, approximately $28^{\circ} 8^{\prime} \mathrm{N}, 94^{\circ} 17^{\prime} \mathrm{W}$, depth $50 \mathrm{~m} ;=1$ live $M n$. skinneri.
TA\&MU OBS UNB-2B, Unnamed Bank, 2 August 1976, approximately $27^{\circ} 53^{\prime} \mathrm{N}, 93^{\circ} 28^{\prime} \mathrm{W}, 75 \mathrm{~m}$; = 1 live Mn . skinneri.

TEXAS MEMORIAL MUSEUM THE UNIVERSITY OF TEXAS AT AUSTIN (Elisabeth M. Brouwers, Joseph E. Hazel)
TMM 11518, in the C. I. Alexander collection, labeled "Macrocypris graysonensis, n. sp., Holotype, Grayson, Cret, 11518, B 2907, 34, pl. 2, figs. 13-14, no. 91"; = 1 Ms. graysonensis.

UNIVERSITÉ DE BORDEAUX
 INSTITUT DE GEOLOGIE DU BASSIN D'AQUITAINE

 (Odette Ducasse)UB IGBA, slide no. 196 in the reference collection of the Institut de Géologie du Bassin d'Aquitaine, Université de Bordeaux, labeled "Macrocypris gr. wrightii Jones \& Hinde, forage Sandrigues H.1, 381 m , Miocène, C.O. $196^{\prime \prime} ;=1 \mathrm{Mx}$. sp. 10.
UB IGBA, slide no. 693 in the reference collection of the Institut de Géologie du Bassin d'Aquitaine, Université de Bordeaux, labeled "Macrocypris minna (Baird 1850), CREO 6502-97, 2100 m , Atlantique, C.O. $698^{\prime \prime}$; = 1 Mx . sp. 9.

UB IGBA, slide no. 1086 in the reference collection of the Institut de Géologie du Bassin d'Aquitaine, Université de Bordeaux, labeled "Macrocypris wrightii Jones et Hinde 1890, X868, BD1086"; $=1$ Mc. sp. 22.

UNIVERSTTY OF HOUSTON department of geosciences MICROPALEONTOLOGY COLLECTIONS

UH 166, East Flower Garden, northwest Gulf of Mexico, approximately $27^{\circ} 54^{\prime} \mathrm{N}, 93^{\circ} 36^{\prime} \mathrm{W}$, depth not recorded, probably less than 50 m , dry coralline sand; $=4 \mathrm{Mn}$. hortuli.
UH 182, Heald Bank, northwest Gulf of Mexico, 2 miles 220° from green light on Heald Bank, approximately $29^{\circ} 5^{\prime} \mathrm{N}, 94^{\circ} 15^{\circ} \mathrm{W}$, depth $18 \mathrm{~m} ;=11 \mathrm{Mn}$. skinneri.
UH 270 , Stetson Bank, northwest Gulf of Mexico, approximately $28^{\circ} 8^{\circ} \mathrm{N}, 94^{\circ} 17^{\circ} \mathrm{W}$, depth $48 \mathrm{~m} ;=18 \mathrm{Mn}$. skinneri.
UH 679, northwest Gulf of Mexico, $28^{\circ} 40^{\circ} \mathrm{N}, 94^{\circ} 33^{\prime} \mathrm{W}$, depth 27 m , station X of Gene Ross Kellough (1956); $=5 \mathrm{Mn}$. skinneri.
UH 1220, Flower Gardens, northwest Gulf of Mexico, dry coralline sand, collected by Edward A. McQuade III, November 1977; $=19 \mathrm{Mn}$. hortuli.
UH 1263, Stetson Bank, northwest Gulf of Mexico, approximately $28^{\circ} 8^{\prime} \mathrm{N}, 94^{\circ} 17^{\circ} \mathrm{W}$, depth not recorded, probably about 50 m ; $=20 \mathrm{Mn}$. skinneri.
UH 1264, East Flower Garden, northwest Gulf of Mexico, approximately $28^{\circ} 00^{\circ} \mathrm{N}, 93^{\circ} 32^{\circ} \mathrm{W}$, depth 90 feet (27 m), collected 10 August 1961, donated by Gene Ross Kellough, dry coralline sand; $=1$ live plus 4 Mn . hortuli.
UH 1295, Florida Bay, near Pigeon Key; $=20 \mathrm{Mn}$. schmitti.
UH 1297, Florida Keys, off Tavernier; $=18 \mathrm{Mn}$. schmitti.
UH 1494, West Flower Garden, northwest Gulf of Mexico, depth $23 \mathrm{~m}, 25$ May 1972, bare sand flat among corals, collected by Jabe Wills; $=1 \mathrm{Mn}$. hortuli.
UH 1495, West Flower Garden, northwest Gulf of Mexico, depth $23 \mathrm{~m}, 25$ May 1972, bare sand flat among corals, collected by Jabe Wills; $=16 \mathrm{Mn}$. hortuli.
UH 1497, Bermuda, sand from between patch reefs near North Rock, within North Lagoon, collected by R. F. Maddocks, 30 July 1963, depth $1-2 \mathrm{~m} ;=18$ live plus 25 Mn . bermudae.
UH 1499 , Bermuda, $32^{\circ} 23^{\prime} \mathrm{N}, 64^{\circ} 41^{\prime} \mathrm{W}$, depth 16 m , van Veen grab from R. V. Panulirus in North Lagoon, by R. F. Maddocks, 5 August 1963; $=17 \mathrm{Mn}$. bermudae.
UH 1504, Bermuda, $32^{\circ} 25.5^{\circ} \mathrm{N}, 64^{\circ} 43.5^{\prime} \mathrm{W}$, depth 18 m , in North Lagoon, van Veen grab from R. V. Panulirus, collected by R. F. Maddocks, 5 August 196s; $=1 \mathrm{Mn}$. bermudae.
UH 1510, Bermuda, South Shore, south of Castle Roads, grab sample from R. V. Panulirus, depth less than 15 m , collected by R. F. Maddocks, 12 August $1963 ;=2 \mathrm{Mn}$. bermudae, 3 Mn . hortul.
UH 1511, Bermuda, South Shore, south of Castle Roads, depth less than 15 m , nearer shore than UH 1510, grab sample from R. V. Panulinus, collected by R. F. Maddocks, 12 August 1968; $=1 \mathrm{Mn}$. hortult.
UH 1549, Bermuda, south of Somerset Island, sand between patch reefs, collected by R. F. Maddocks, 30 August 1963; $=8$ Mn. bermudae.
UH 1556 , Bermuda, $\mathrm{CH}-13,32^{\circ} 20.6^{\prime} \mathrm{N}, 64^{\circ} 40.3^{\prime} \mathrm{W}$, depth 4 m , in Castle Harbor, collected by John T. Barnhart, 1962; = 3 Mn . bermudae.
UH 1558 , Bermuda, $\mathrm{CH}-20,32^{\circ} 20.3^{\prime} \mathrm{N}, 64^{\circ} 39.9^{\prime} \mathrm{W}$, depth 4 m , in

Castle Roads, collected by John T. Barnhart, 1962; $=3 \mathrm{Mn}$. bermudae.
UH 1559 , Bermuda, FP-1, $32^{\circ} 21.6^{\prime} \mathrm{N}, 64^{\circ} 42.5^{\prime} \mathrm{W}$, depth 5 m , near Ferry Point, collected by John T. Barnhart, 1962; $=5 \mathrm{Mn}$. bermudae, 1 Mn . hortuli.
UH 1564, Bermuda, NR-5, $32^{\circ} 24.9^{\prime} \mathrm{N}, 64^{\circ} 44.9^{\circ} \mathrm{W}$, depth 6 m , in North Lagoon, collected by John T. Barnhart, 1962; = 1 Mn . bermudae.
UH 1565 , Bermuda, NR-6, $32^{\circ} 26.6^{\prime} \mathrm{N}, 64^{\circ} 45.0^{\prime} \mathrm{W}$, depth 9 m , in North Lagoon near North Rock, collected by John T. Barnhart, 1962; = 2 Mn. bermudae.
UH 1571 , Bermuda, SS-19, $32^{\circ} 18.4^{\prime} \mathrm{N}, 64^{\circ} 39.1^{\prime} \mathrm{W}$, depth 475 m , on South Slope, collected by John T. Barnhart, 1962; $=3 \mathrm{Mn}$. bermudae, 5 Mn . hortuli.
UH 1613, East Flower Garden, northwest Gulf of Mexico, depth 21 m, 8 December 1972, near UT-MBI-FGORC survey station, surface sand collected by diver; $=1$ live plus 14 Mn . hortuli.
UH 1617, West Flower Garden, northwest Gulf of Mexico, UT-MBI-FGORC WFG721024, depth 96 m, muddy sand, collected by diver; $=56 \mathrm{Mh}$. gyreae, 3 Mn . hortuli, 7 Mx . improcera; 57 Mn . skinneri, 20 Ms . texana.
UH 1618, West Flower Garden, northwest Gulf of Mexico, UT-MBI-FGORC WFG721024, depth 86 m , muddy sand; $=13$ Mh. gyreac, 8 Mn. skinneri, 2 Ms. texana.
UH 1672, Lower Cretaceous (Cenomanian), Grayson-Del Rio Formation, Austin, Texas; $=4 \mathrm{Ms}$. graysonensis.
UH 1985, West Flower Garden, northwest Gulf of Mexico; $=7 \mathrm{Mn}$. hortuli.
UH 1986, Stetson Bank, northwest Gulf of Mexico, collected by Edward A. McQuade III, 24 June 1973; = 7 Mn. skinneni.
UH 2018, West Flower Garden, northwest Gulf of Mexico, depth $29 \mathrm{~m}, 30$ September 1973, collected by Edward A. McQuade $\mathrm{III} ;=18 \mathrm{Mn}$. hortuli.
UH 2019, Stetson Bank, northwest Gulf of Mexico, depth 27 m, collected by Edward A. McQuade III, 1 October 1973; $=28 \mathrm{Mn}$. skinneri.
UH 2369, northwest Gulf of Mexico, off Texas coast at High Island, 6800 feet from south line, 6100 feet from east line of Block A-274, depth 51 m , collected by Joseph Millo, 15 March 1974; = 40 Mn . skinneri.
UH 2371, Bahamas, Great Abaco Island, east side of Man o' War Cay, ocean side, 50 yards offshore, 5 yards east of coral reef, weeds on bottom, water depth 1.5 m , collected by Dwight Hayworth, July 1974; = 13 live plus 51 Mn . hawkae.
UH 2376, Bahamas, Great Abaco Island, off Harbour Lodge Beach, Hope Town, Bahamas, east side, water depth $10 \mathrm{~m}, 100$ yards offshore, within living coral reef, sandy bottom, collected by Dwight Hayworth, July 1974; = 5 Mn. hawkae.
UH 2433, West Flower Garden, northwest Gulf of Mexico, depth $21-24 \mathrm{~m}$, sand flat among coral masses; $=2$ live $M n$. hortuli.
UH 2638, Jamaica, Mo Bay, back reef, depth 6 m , collected by M. M. Osborne, August 1975; $=5 \mathrm{Mn}$. hawhae, 7 Mn. jamaicae.

UH 2645, Jamaica, west shore, at Calypso anchorage, depth 6 m , collected by M. M. Osborne, August 1975; $=15 \mathrm{Mr}$. jamaicae
UH 2648, Jamaica, fore-reef at Negril, depth 0.6 m , collected by M. M. Osborne, August 1975; $=3 \mathrm{Mn}$. hawkae, 23 Mn . jamaica, 1 Mn . sp. 38.
UH 2738 Florida, Dove Key, subtidal, depth 1 m, collected by Gary Kocurek; = 116 Mn . schmitti.
UH 2739 Florida, Dove Key, depth 1 m, washings of sponge, collected by Gary Kocurek; $=2$ live plus 101 Mn . schmitti.

UH 2740 Florida, Carysfort reef, depth 5 m , collected by Gary Kocurek; $=1$ live plus 11 Mn . schmitti, 89 Mn . hawkae.
UH 2741, Lower Pleistocene, San Pedro Sands, Timms Point, California; $=25 \mathrm{Mn}$. parcens.
UH 2742, Belize, near Caye Chappel, windward side of island, inside of barrier reef, $300-400$ feet from shore, depth 7 m , collected by Edward A. McQuade, Jr., 81 October 1975; = 78 Mn. belizensis, 17 Mn. hawkae.
UH 2744, Belize, near Caye Chappel, approximately 7 m depth, inside cave, collected by Edward A. McQuade, Jr.; $=5 \mathrm{Mn}$. hawkae.
UH 2860, Grand Cayman Island, south end, depth 18 m , flat area between coral heads; $=17 \mathrm{Mn}$. caiman.
UH 2882, Guantanamo Bay, Cuba, depth 3 m , collected by Harold M. Maddocks; $=7 \mathrm{Mn}$. sp. 41.

UH 2961, Honduras, Roatan, Bay Islands, Big and Little French Keys, in shallow reef tract, depth 0.5 m , collected by Warren W. Brooks; $=1 \mathrm{Mn}$. belizensis.
UH 2963, Honduras, Roatan, Bay Islands, Half Moon Bay area, sandy bottom in open bay, depth 6 m , collected by Warren W. Brooks; $=1 \mathrm{Mn}$. hawkae.
UH 2972, Honduras, Roatan, Bay Islands, St. Anthony's Key, in the lagoon, depth 1 m , collected by Warren W. Brooks; $=1 \mathrm{Mn}$. belizensis.
UH 2978, Honduras, Roatan, Bay Islands, St. Anthony's Key, in lagoon, depth $1 \mathrm{~m} ;=2 \mathrm{Mn}$. hawkae.
UH 3046, Christiansted, St. Croix, U.S. Virgin Islands, marine sand in channel, at Salt River drop-off, depth $14 \mathrm{~m} ;=1 \mathrm{Mn}$. sp. $37,6 \mathrm{Mn}$. sp. 44.
UH 3049, Lower Pleistocene, Timms Point Silt Member, San Pedro Formation, railroad cut adjacent to Harbor Drive, San Pedro, California; $=2 \mathrm{Mn}$. parcens.
UH 3086, Texas A\&M University R. V. Gyre cruise 76-G-3, station 15, off San Juan, Puerto Rico; $=9 \mathrm{Ms}$. texana.
UH 4123, Texas A\&M University R. V. Gyre cruise 77-G-14, station $5,28^{\circ} 25.7^{\prime} \mathrm{N}, 94^{\circ} 01.7^{\prime} \mathrm{W}$, depth $40 \mathrm{~m} ;=25 \mathrm{Mn}$. skinneri.
UH 4125, Texas A\&M University R. V. Gyre cruise 77-G-14, station $7,27^{\circ} 53.8^{\prime} \mathrm{N}, 93^{\circ} 37.8^{\prime} \mathrm{W}$, depth 91.5 m ; $=10 \mathrm{Ms}$. texana, 8 Mh . gyreae, 4 Mn . skinneri, 17 Mx . improcera.
UH 4127, Texas A\&M University R. V. Gyre cruise 77-G-14, station $9,27^{\circ} 19.4^{\prime} \mathrm{N}, 93^{\circ} 36.2^{\prime} \mathrm{W}$, depth $841 \mathrm{~m} ;=2 M x$. sp. 12.
UH 4180, Texas A\&M University R. V. Gyre cruise 77-G-14, station $11,27^{\circ} 5.5^{\prime} \mathrm{N}, 94^{\circ} 08.7^{\prime} \mathrm{W}$, depth $1116 \mathrm{~m} ;=3 \mathrm{Mx}$. simulans.
UH 4132, Texas A\&M University R. V. Gyre cruise 77-G-14, station $18,27^{\circ} 20.9^{\prime} \mathrm{N}, 95^{\circ} 9.0^{\prime} \mathrm{W}$, depth $1079 \mathrm{~m} ;=1 \mathrm{Mx}$. sp. $12,2 \mathrm{Ms}$. bensoni, 12 Mx . simulans.
UH 4286, Gulf of California, east side of San Pedro Island, 17 nautical miles west of San Carlos, Guayamas area, Sonora, Mexico, depth 30 m , collected by David J. Webb; $=6 \mathrm{Mn}$. swaini.

UNIVERSITY OF HAMBURG ZOOLOGICAL MUSEUM (Gerd Hartmann)

UHZM K-81358, Goode Beach, Frenchmans Bay, near Albany, southwest Australia, September-October 1975 (see Hartmann, 1979, p. 267); $=5$ live plus 1 Mn. hartmanni.
UHZM K-27821a(FZ), Macrocyprina marchilensis Hartmann, holotype, Mar Chile I Expedition station 96, $39^{\circ} 59.9^{\prime}$ S, $74^{\circ} 01.5^{\prime} \mathrm{W}$, depth 260 m , near Punta Galera, south of Valdivia, southern Chile; $=1$ live Mh. marchilensis.

UHZM K-27321b(FZ), Macrocyprina marchilensis Hartmann, paratype, Mar Chile I Expedition Station $95,39^{\circ} 59^{\prime} \mathrm{S}, 73^{\circ} 54^{\prime} \mathrm{W}$, depth $162 \mathrm{~m} ;=1$ live Mh. marchilensis.
UHZM K-27321(GL), Macrocyprina marchilensis Hartmann, paratype, Mar Chile Expedition station $96,39^{\circ} 59.9^{\prime} \mathrm{S}, 74^{\circ} 01.5^{\prime} \mathrm{W}$, depth $260 \mathrm{~m} ;=3$ live Mh. marchilensis.

UNIVERSITY OF MICHIGAN MUSEUM OF PALEONTOLOGY
 (Robert V. Kesling)

UMMP 48679, Pontocypris sp. of Donald D. Hall, 1965, Pleistocene, Sapelo Island, Georgia, pl. 1, figs. 1-6; $=1 \mathrm{Mn}$. skinneri.
UMMP 48780, Macrocypris sapeloensis Darby, 1965, holotype, near Sapelo Island, Georgia, taken from 625 feet (191 m) of water, salinity approximately 35%, water temperature $23^{\circ} \mathrm{C}, 75$ miles offshore near edge of Gulf Stream; $=1$ live Mx. sapeloensis.

UNIVERSITY OF MINNESOTA MUSEUM OF PALEONTOLOGY

(Frederick M. Swain)
UMnMP 11278, Macrocyprina pacifica (LeRoy) of Swain (1967), Recent, Gulf of California, VS 143, G. S. A. Memoir 101, Pl. 2, fig. 12; = 1 Mn. swaini.
UMnMP Macrocyprina pacifica (LeRoy) of McKenzie and Swain (1967), Scammon Lagoon, station 76; $=1$ live Mn. swaini.

UMnMP Macrooyprina pacifica (LeRoy) of McKenzie and Swain (1967), Scammon Lagoon, station 90; $=2$ live plus 1 Mn . swaini.

UNIVERSITY OF OSLO, ZOOLOGICAL MUSEUM (Marit Christensen)

UOZM F1484, Macrocypria angusta Sars, collected by G. O. Sars, locality not recorded; $=37$ live $M a$. sarsi.
UOZM F1485, Macrocypris minna (Baird), Sunde, Norway, collected by G. O. Sars, depth not recorded; $=32$ live M. minna.

U.S. NATIONAL MUSEUM OF NATURAL HISTORY DEPARTMENT OF INVERTEBRATE ZOOLOGY (Louis S. Kornicker)

USNM 88847, Macrocypris schmitti, Holotype, Loggerhead Key, Tortugas, collected by W. L. Schmitt, June 26, 1931, Acc. No. 115488 , Willis Tressler; $=1$ live Mn. schmitti.
USNM 88852, Macrocypris schmitti, paratypes, Loggerhead Key, Tortugas, collected by W. L. Schmitt, June 26, 1981, USNM 115488, Willis Tressler; $=6$ live Mn. schmitti.
USNM 88859, Macrocypris africana Müller of Tressler $(1949,1954)$, haul of 30 -foot otter trawl in 10-11 fathoms ($18-19 \mathrm{~m}$) in channel east and south of Loggerhead Key, 8 August 1930, station 47-30, Dry Tortugas; $=$ unidentifiable specimens.
USNM 168088, Macrocypris schmitti Tressler, paratype, Loggerhead Key, Tortugas, collected by W. S. Schmitt, June 26, 1931, formerly part of USNM 88852 , Acc. No. 115488 , my specimen number 1538 M ; $=1$ live Mn . schmitti.

U.S. NATIONAL MUSEUM OF NATURAL HISTORY DEPARTMENT OF PALEOBIOLOGY (Frederick J. Collier)

USNM 117965, Macrocypris minutus Swain and Peterson, 1952,
holotype, Jurassic, Redwater Shale, 112-117 feet above base, Red Gulch, sec. 22, T58N, R89W, Sheridan Co., Wyoming, coll. Imlay and Locblich 9/48, USGS PP 243-A, p. 9, pl. 1, fig. $18 ;=1$ Propontocypris (Propontocppris) minutus (not Macrocyprididae).
USNM $117966,116639,116640$ (all in same slide, with one unnumbered specimen), Macrogppris minutus Swain and Peterson, 1952, Jurassic, Redwater Shale, 112-117 feet above base, Red Gulch, sec. 22, T58N, R89W, Sheridan Co., Wyoming, coll. Imlay and Loeblich 9/48, USGS PP 243-A, p. 9, pl. 1, fig. $14,15,16 ;=4$ Propontocypris (Propontocypris) minutus (not Macrocyprididae).
USNM 153744, "Macrocypris minna (Baird)" of Tressler 1941 (p. 98, pl. 19, fig. 26), North Atlantic Piggot Deep-Sea Core \#18, $1936,49^{\circ} 38^{\circ} 00^{\prime \prime} \mathrm{N}, 13^{\circ} 28^{\circ} 00^{\prime \prime} \mathrm{W}$, depth 1955 m , sample H137; $=1 M x$ bathyalensis.
USNM 184363, Macrocypris? aff, M. dimorpha Hazel and Holden of Holden (1976), hypotype, Lower Miocene, Pacific Ocean, Midway Island reef borehole, R320.95 m, USNM Acc. No. 324713, USGS Prof. Paper 680-F, p. F18, pl. 10, fig. 12; = Propontocypris sp. indet. (not Macrocyprididae).
USNM 184364, Macrocypris? aff. M. dimorpha Hazel and Holden of Holden (1976), hypotype, Lower Miocene, Pacific Ocean, Midway Island, reef bore hole R- 343.05 m , USGS Prof. Paper 680-F, p. F19, pl. 10, fig. 13; $=1$ Propontocypnis (Propontocypris) sp. indet. (not Macrocyprididae).
USNM 184365, Macrocypris? aff. M. dimorpha Hazel and Holden of Holden (1976), hypotype, Quaternary-Pleistocene?, USNM acc. no. 324713 , Pacific Ocean, Midway Island, sand island bore hole S-44.20 m, USGS Prof. Paper 680-F, p. F18, pl. 10, fig. 19; $=1$ Propontocypris (Propontocypris) sp. indet. (not Macrocyprididae).
USNM 184366, Macroypris? aff. M. dimorpha Hazel and Holden of Holden (1976), hypotype, USNM Acc. no. 324713, Upper Miocene, Pacific Ocean, Midway Island, reef bore hole R162.76 m , USGS Prof. Paper 680F, p. F18, pl. 10, fig. 20; $=1$ Propontocypris (Propontogpris) sp. indet. (not Macrocyprididae).
USNM 184367, Macrocypris? aff. M. dimorpha Hazel and Holden of Holden (1976), hypotype, USNM Acc. No. 324713, Lower Miocene, Pacific Ocean, Midway Island, reef bore hole, R320.95 m, USGS Prof. Paper 680-F, p. F18, pl. 10, fig. 14, short form; = 1 Propontocypris (Propontocypris) sp. indet. (not Macrocyprididae).
USNM 563493, Macrogpris longana van den Bold, 1960, holotype, Upper Eocene, lower part of the San Fernando Formation, Lower Mount Moriah Silt, Globorotalia cerroazulensiszone, Harmony Hall well no. 2, depth 686-698 feet, San Fernando area, Trinidad; $=1 \mathrm{Mx}$. longana.
USNM 563494, Macrocypris longana van den Bold, 1960, paratype, BP 342, $10,234.5$ feet, Eocene, Trinidad; $=1 \mathrm{Mx}$. longana.
USNM 563495, Macrogpris longanavan den Bold, 1960, paratypes, B 7564 Trinidad; $=2 M x$. longana.
USNM 563496, Macrogppris rhodana van den Bold, 1960, holotype, Upper Eocene, lower part of the San Fernando Formation, Lower Mount Moriah Silt, Globorotalia cerroazulensis zone, Harmony Hall well no. 2, depth 609-613 feet, San Fernando area, Trinidad; $=1 \mathrm{Mx}$. rhodana.
USNM 563497, Macrocypris thodana van den Bold, 1960, paratype, Eocene, San Fernando Formation, Calyx well no. 59, 430-440 feet, San Fernando area, Trinidad; $=1 \mathrm{Mx}$. rhodana.

USNM 563498, Macrocypris rhodana van den Bold, 1960, paratype, Eocene, Moruga, 1:5, 8-38 feet, Trinidad; $=1$ Mx. rhodana.
USNM 563499, Macrocypris rhodana van den Bold, 1960, paratypes, Eocene-Oligocene, San Fernando Formation, Calyx well 59, 290-310 feet, San Fernando area, Trinidad; $=1 \mathrm{Mx}$. rhodana.
USNM 651441, Macrooypris? dimorpha Hazel and Holden, 1971, paratype, Eocene, USGS Cenozoic loc. \#24686, Vaingava, 0.25 mile N. Eua, Tonga, Kondo, Y. Aug. 1967, USNM Acc, No, 297176, USGS Prof. Paper 640-D, p. D6, pl. 5, fig. 8, 13; = 1 Propontocypris (Propontocypris) dimorpha? (not Macrocyprididae).
USNM 651442, Macrocypris? dimorpha Hazel and Holden, 1971, holotype, Eocene, USGS Cenozoic loc. \#24686, Vaingava, 0.25 mile N. of Eua, Tonga, Kondo, Y. Aug. 1967. USNM Acc. No. 197176, USGS Prof. Paper 640-D, p. D6, pl. 5, fig. 11, 17, 19; $=1$ Propontocypris (Propontocypris) dimorpha.

U.S. RESEARCH VESSEL VEMA USNM ACC. NO. 307408
 (Richard H. Benson, Louis S. Kornicker)

V-124, $25^{\circ} 33^{\circ} \mathrm{S}, 12^{\circ} 27^{\prime} \mathrm{E}$, depth $2970 \mathrm{~m}, 3$ May 1957, upper continental rise off Walvis Bay, South Africa; $=5$ live plus 1 M . metuenda, I live Mk. siliquosa.
V-12-10, $5^{\circ} 53.5^{\prime} \mathrm{S}, 9^{\circ} 51.5^{\prime} \mathrm{E}$, depth $2997 \mathrm{~m}, 21$ May 1957, northern wall of Congo Submarine Canyon, upper continental rise; $=1$ live M. miranda.
V-14-2, $41^{\circ} 49^{\circ} \mathrm{S}, 64^{\circ} 20^{\prime} \mathrm{W}$, depth $129 \mathrm{~m}, 31$ January 1953, South Atlantic, Gulf of San Matios, Argentina; $=4$ live Mh. opaca.
V-14-21, $54^{\circ} 18^{\prime} \mathrm{S}, 39^{\circ} 23^{\prime} \mathrm{W}$, depth $237 \mathrm{~m}, 5$ March 1958 , west of South Georgia Island; $=5$ live Mk. glacierae, 3 live Mh. opaca.
V-14-33, $34^{\circ} 26^{\circ} \mathrm{S}, 17^{\circ} 32^{\circ} \mathrm{E}$, depth $706 \mathrm{~m} ; 6$ April $1958 ;=16$ live M. metuenda, 9 live M. miranda, 1 live Mk. siliquosa.
V-15-37, $7^{\circ} 25^{\prime} \mathrm{N}, 79^{\circ} 23^{\prime} \mathrm{W}$, depth 1749 m , Gulf of Panama, 14 November 1958; = 1 live Mx. kaesleri.
V-15-40, $4^{\circ} 25^{\prime} \mathrm{N}, 78^{\circ} 25^{\prime} \mathrm{W}, 3696-3755 \mathrm{~m}, 16$ November $1958 ;=2$ live $M x$. kalbi.
V-15-42, $7^{\circ} 55^{\prime} \mathrm{N}, 86^{\circ} 00^{\prime} \mathrm{W}, 3085-3078 \mathrm{~m} ;=4$ live Mx. kaesleri.
V-15-55, $12^{\circ} 45^{\prime} \mathrm{N}, 88^{\circ} 38^{\prime} \mathrm{W}$, depth $3950-3777 \mathrm{~m}, 24$ November 1958, Menzies trawl; $=7$ live M x. kalbi.
V-15-59, $7^{\circ} 05^{\circ} \mathrm{N}, 85^{\circ} 55^{\prime} \mathrm{W}, 2851 \mathrm{~m}$; $=1$ live $M x$. kaesleni.
$\mathrm{V}-15-67,9^{\circ} 43^{\prime} \mathrm{S}, 80^{\circ} 04^{\prime} \mathrm{W}, 2813-2851 \mathrm{~m} ;=1$ live $M x$. kaesleri.
V-15-70, $10^{\circ} 02^{\prime} \mathrm{S}, 80^{\circ} 21^{\prime} \mathrm{W}$, depth $5490-5666 \mathrm{~m}, 10$ December 1958, Peru-Chile Trench, Menzies Trawl; $=1$ live Mx. eltaninae.
V-15-84, $27^{\circ} 35^{\prime} \mathrm{S}, 71^{\circ} 51^{\prime} \mathrm{W}, 5627 \mathrm{~m} ;=1$ live Mx. antonbruunae.
V-15-124, $49^{\circ} 35^{\prime} \mathrm{S}, 48^{\circ} 04.6^{\circ} \mathrm{W}$, depth $2738 \mathrm{~m}, 26$ March 1959, Argentine Basin; $=1 \mathrm{Mh}$. opaca.
V-15-131, $40^{\circ} 14.6^{\prime} \mathrm{S}, 55^{\circ} 24^{\prime} 42^{\prime \prime} \mathrm{W}$, depth $1475 \mathrm{~m}, 3$ April 1959, Argentine continental slope; $=2$ live Mh. opaca.
V-16-15, $45^{\circ} 80^{\prime} \mathrm{S}, 45^{\circ} 46^{\circ} \mathrm{W}$, depth $1622 \mathrm{~m}, 8$ January $1960 ;=1$ live Mx. sp. 21.

V-16-39, $50^{\circ} 53^{\prime} \mathrm{S}, 62^{\circ} 35^{\prime}$ W, depth $157 \mathrm{~m}, 19$ May 1960, Falkland Rise; $=2$ live Mh. opaca.
V-16-65, $46^{\circ} 45^{\prime} \mathrm{N}, 56^{\circ} 22^{\circ} \mathrm{W}, 42-42 \mathrm{~m} ;=8$ live $M x$. Labutisi.
V-17-5, $38^{\circ} 15^{\prime} \mathrm{S}, 76^{\circ} 00^{\circ} \mathrm{W}, 3824-3739 \mathrm{~m}, 16$ March 1961; $=2$ live Mx. sp. 46.

V-17-74, $41^{\circ} 27 \mathrm{~S}^{\prime} \mathrm{S}, 59^{\circ} 33^{\prime} \mathrm{W}, 71 \mathrm{~m}, 23$ May 1961, Argentine continental shelf; $=1$ live M h. opaca.
V-17-93, $44^{\circ} 35^{\prime} \mathrm{S}, 63^{\circ} 07 \mathrm{~W}, 95-95 \mathrm{~m}, 12$ June 1961, Argentine continental shelf; $=1$ live Mh. opaca.

V-17-101, $38^{\circ} 18^{\prime} \mathrm{S}, 55^{\circ} 19^{\prime} \mathrm{W}, 454-450 \mathrm{~m}, 19$ June $1961 ;=1 \mathrm{Mh}$. opaca.
V-18-9, $36^{\circ} 17^{\prime} \mathrm{S}, 53^{\circ} 21^{\prime} \mathrm{W}$, depth $676-547 \mathrm{~m}, 4$ February $1962, \mathrm{Ar}-$ gentine continental slope; $=1 \mathrm{Mk} . \mathrm{sp} .2,7$ live plus 1 Mh . opaca.

VRIJE UNIVERSITEIT AMSTERDAM PALEONTOLOGICAL DEPARTMENT INSTITUUT VOOR AARDWETENSCHAPPEN (J. R. van de Fliert)

VUA EB-NS-223A, Vrije Universiteit Amsterdam, paratypes of Macrocypris adriatica Breman, Core 353, interval 250-585 cm., Late Pleistocene including Allerød and younger Dryas, collected 1962 by R. V. Honizon from deep basin in southeastern Adriatic Sea, about 75 km southeast of Dubrovnik, Yugoslavia; $=15 \mathrm{Mx}$. adriatica.

WILKES STATION, ANTARCTICA
 (Richard H. Benson)

Wilkes St. AH, $66^{\circ} 15^{\prime} 56^{\prime \prime}-66^{\circ} 15^{\prime} 57^{\prime \prime} \mathrm{S}, 110^{\circ} 31^{\prime} 09^{\prime \prime}-110^{\circ} 31^{\prime} 47^{\prime \prime} \mathrm{E}$, depth 55-91 m, 11 December 1961, dredge, USNM Acc. No. 292568; = 1 live Mh. turbida.

WYNYARD BEACH, TASMANIA
(Richard H. Benson)
Wynyard Beach, Tasmania, 1148, Recent sand, collected by N. G. Lane; =1 Mn. sp. 33, $5 \mathrm{Mn} . \mathrm{sp} .35$.
A. G. S. YELCHO

USNM Acc. No. 307408
(Richard H. Benson)
$\mathrm{Y}-2-6,64^{\circ} 23^{\prime} \mathrm{S}, 63^{\circ} 53^{\prime} \mathrm{W}, 326 \mathrm{~m}$; $=7$ live $M k$. glacierae, 3 live $M h$. ораса.

Y-2-9, $64^{\circ} 08^{\prime} \mathrm{S}, 64^{\circ} 05^{\prime} \mathrm{W}, 527 \mathrm{~m}$; = 1 Mh . ораса.
$\mathrm{Y}-2-11,63^{\circ} 40^{\prime} \mathrm{S}, 64^{\circ} 08^{\prime} \mathrm{W}, 240 \mathrm{~m}$; $=1$ live $M k$. sp. 3, 9 live Mh. opaca.

ZOOLOGICAL MUSEUM, HUMBOLDT UNVERSITY, BERLIN

(H. E. Gruner)

ZMHUB 13129, Macrocypris inaequalis G. W. Müller, syntypes, GaussStat., 385 m, D. Süpol.-Exp., 181, 2.12.2; Gauss-Station, Antarctica, $65^{\circ} \mathrm{S}, 90^{\circ} \mathrm{E}$, depth 385 m , German South-Polar Expedition 1902-1903 (lectotype $=$ my specimen number 1940 M , paralectotypes $=$ my specimen numbers 1989F and 1941M); $=3$ live Mh. inaequalis.
ZMHUB 18180, Macrocypris dispar G. W. Müller, syntypes, 1741, Gauss-Exp., 217, 1-4.7.05; Simonstown, South Africa, German South-Polar Expedition (lectotype $=\mathrm{my}$ specimen number 1939 M , paralectotypes $=$ my specimen numbers 1931 F and 1932F);=4 live Mn. dispar.
ZMHUB 13181, Macrocypris tensa G. W. Müller, syntypes, GaussStat., D. Südpolar.-Exp., 178f, 1.03; Gauss-Station, Antarctica, $65^{\circ} \mathrm{S}, 90^{\circ} \mathrm{E}$, depth 385 m , German South-Polar Expedition $($ lectotype $=$ my specimen 1935 F$) ;=1$ live $M h$. tensa, 1 live Mh . turbida ($=$ my specimen 1934 M).
ZMHUB 18182, Macrocypris africana G. W. Müller, syntypes, Simonstown, D. Südpolar.Exp., 222, 1-4.7.03;Simonstown, South Africa, German South-Polar Expedition (lectotype $=$ my specimen number 1937 M , paralectotypes $=$ my specimen numbers 1936F, 1938F); 3 live Mn. africana.
ZMHUB 18139, Macrocypris turbida G. W. Müller, syntypes, GaussExp., 178; Gauss-Station, Antarctica, $65^{\circ} \mathrm{S}, 90^{\circ} \mathrm{E}$, depth 385 m , German South-Polar Expedition 1902-1903 (lectotype $=$ "24.12.2,1964," my specimen 1943 M ; 6 paralectotype slides $=$ my specimen numbers $1942 \mathrm{RV}, 1944 \mathrm{M}, 1945 \mathrm{RV}, \mathrm{LV}, 1946 \mathrm{M}, 1947 \mathrm{~F}$, $1948 \mathrm{M}) ;=25$ live plus 2 Mh. turbida.

APPENDIX IV: LIST OF NUMBERED SPECIMENS

The specimen number identifies individual specimens that have been dissected, illustrated, or otherwise distinguished, including muscum syntypes that do not have unique museum numbers. For most species many additional specimens were identified and measured (see "Material" under individual species). Full details concerning the collecting localities are given in Appendix III, the list of collecting localities. Specimens borrowed from museums have been returned to that museum. Abbreviations for the museum repositories for other material are as follows: HVH $=$ Henry V. Howe Ostracod Collection at Louisiana State University, UCZM $=$ University of Copenhagen Zoological Museum, UHZM = University of Hamburg Zoological Museum, USNM $240=$ U.S. National Museum of Natural History.

Specimen Number	Name	Collecting Locality	Repository	Notes
19M	Mn. madagascarensis	Nosy Be 270	USNM 240934	
20F	Mn. madagascarensis	Nosy Be 212	USNM 240928	
83 F	Mn. madagascarensis	Nosy Be 277	USNM 240986	
84 M	Mn. madagascarensis	Nosy Be 277	USNM 240937	
126F	Mx. sp. 8	AB-7-368D	USNM 240578	
127F	Ms. sp. 47	AB.7-363D	USNM 240648	Fifth limb missing
128F	M. proclivis	AB-7.963D	USNM 240327	
180M	Mn. bermudae	UH 1497	USNM 240811	
131F	Mn. bermudae	UH 1497	USNM 240812	
183M	Mx. antonbruunae	AB-11-179	USNM 240458	
184FJ-1	Mx. kalbi	AB-11-179	USNM 240523	
189F	Mh. turbida	E-6-418	USNM 240759	
190F	Mh. inaequalis	E-6-418	USNM 240683	
197M	Mh. turbida	E-9.740	USNM 240762	
198M	Mh. sp. 25	E.9.740	USNM 240782	Vas deferens missing
327 F	Mx. sp. 16	NZOI-B303	USNM 240590	
328M	Mh. sinuata	AB-18B-714C	USNM 240745	
329 M	Mh. sinuata	AB-18B-714C	USNM 240746	
381M	Mx. kalbi	AB-11-157	USNM 240524	
332M	Mx. antonbruunae	AB-11-179	USNM 240456	Holotype
333F	Mx. antonbruunae	AB-11-179	USNM 240457	
334 F	Mx. kalbi	AB-11-169	USNM 240526	
335M	Mx. kalbi	AB-11-169	USNM 240527	
$340 \mathrm{FJ}-2$	Mx. kalbi	AB-11-196	USNM 240525	
841M	Mx. antonbruunae	AB-11-95	USNM 240463	Just molted
$342 \mathrm{FJ}-1$	Mx. antonbruunce	AB-11-95	USNM 240464	
$343 \mathrm{FJ}-2$	Mx. kalbi	AB-11-109	USNM 240521	
344 F	Mx. kaeslori	AB-11-113	USNM 240518	
$345 \mathrm{FJ}-2$	Mxkalbi	AB-11-113	USNM 240522	
346 F	Mx. kaesleri	AB-11-113	USNM 240514	
$347 \mathrm{FJ}-1$	Mx. antonbruunae	AB-11-118	USNM 240465	
$348 \mathrm{FJ}-3$	Mx. kalbi	AB-11-59	USNM 240520	
$349 \mathrm{MJ}-2$	Mx. kalbi	AB-11-169	USNM 240528	
350 M	Mx. antonbruunae	AB-11-36	USNM 240459	
351 M	Mx. kalbi	AB-11-36	USNM 240515	Holotype
352 F	Mx. kalbi	AB-11-36	USNM 240516	
$353 \mathrm{FJ}-1$	Mx. kalbi	AB-11-36	USNM 240517	
354 F	Mx. antonbruunae	AB-11-36	USNM 240460	
$355 \mathrm{FJ}-2$	Mx. kalbi	AB-11-36	USNM 240519	
$356 \mathrm{FJ}-1$	Mx. antonbruunae	AB-11-36	USNM 240461	
$357 \mathrm{FJ}-3$	Mx. kalbi	AB-11-36	USNM 240518	
358 M	Mx. antonbruunae	AB-11-86	USNM 240462	
361 F	M. proclivis	AB-7-363D	USNM 240326	Holotype
373M	Mh. turbida	E-6-418	USNM 240760	
375M	Mh. turbida	E-12-993	USNM 240766	
688 F	Mx. kaesleri	E-3-25	USNM 240511	

Specimen Number	Name	Collecting Locality	Repository	Notes
639 J	Mx. kaesleri	E-9-25	USNM 240512	
$653 \mathrm{MJ}-1$	Mn. madagascarensis	Nosy Be 270	USNM 240985	
$654 \mathrm{FJ}-1$	Mn. madagascarensis	Nosy Be 270	USNM 240935	
$655 \mathrm{FJ}-1$	Mn. madagascarensis	Nosy Be 270	USNM 240935	
$656 \mathrm{MJ}-1$	Mn. madagascarensis	Nosy Be 270	USNM 240935	
657 J	Mn. madagascarensis	Nosy Be 270	USNM 240935	
658 J	Mn. madagascarensis	Nosy Be 270	USNM 240985	
659 J	Mn. madagascarensis	Nosy Be 270	USNM 240985	
660 J	Mn. madagascarensis	Nosy Be 270	USNM 240935	
661 F	Mn. madagascarensis	Nosy Be 220	USNM 240929	
$662 \mathrm{MJ}-1$	Mn. madagascarensis	Nosy Be 220	USNM 240930	
663MJ-1	Mn. madagascarensis	Nosy Be 220	USNM 240930	
$664 J$	Mn. madagascarensis	Nosy Be 220	USNM 240980	Molting
665 J	Mn. madagascarensis	Nosy Be 220	USNM 240931	
666 J	Mn. madagascarensis	Nosy Be 220	USNM 240981	
667 J	Mn. madagascarensis	Nosy Be 220	USNM 240931	
668 M	Mn. madagascarensis	Nosy Be 212	USNM 240928	
669 J	Mn. madagascarensis	Nosy Be 212	USNM 240928	
670 J	Mn. madagascarensis	Nosy Be 212	USNM 240927	Molting
671 J	Mn. madagascarensis	Nosy Be 212	USNM 240928	
672J	Mn. madagascarensis	Nosy Be 212	USNM 240928	
673J	Mn. madagas carensis	Nosy Be 212	USNM 240928	
674 J	Mn. madagascarensis	Nosy Be 212	USNM 240928	
675 J	Mn. madagascarensis	Nosy Be 212	USNM 240928	
676J	Mn. madagascarensis	Nosy Be 068	USNM 240921	
677J	Mn. madagascarensis	Nosy Be 095	USNM 240923	
713 M	Mh. inaequata	E-6-350	USNM 240689	
714 M	Mh. inaequata	E-6-350	USNM 240685	Holotype
715 F	Mh. inaequata	E-6-350	USNM 240686	
716M	Mh. inaequata	E-6-350	USNM 240687	
717J-1	Mh. inaequata	E.6-350	USNM 240688	
718 F	Mk. glacierae	GL-1-0001	USNM 240850	
719 F	Mk. glacierae	GL-1-0001	USNM 240351	
720M	Mk. glacierae	GL-1-0001	USNM 240352	
721 F	Mk. glacierae	GL-1-0001	USNM 240353	
722M	Mk. glacierae	GL-1-0001	USNM 240354	
728J-3	Mk. glacierae	GL-1-0001	USNM 240361	
$724 \mathrm{~J}-8$	Mk. glacierae	GL-1-0001	USNM 240355	
725 M	Mk. glacierae	GL-1-0001	USNM 240356	
818M	Mk. glacierae	E-22-1535	USNM 240367	
819 MJ	Mh. opaca	E-22-1535	USNM 240718	Molting, valves mounted
820FJ	Mh. opaca	E-22-1595	USNM 240718	
821M	Mh. turbida	E-22-1535	USNM 240767	
822J	Mh. opaca	E-22-1595	USNM 240718	Valves mounted
823F	Mh. turbida	E-6-418	USNM 240761	
824J-1	Mh. inaequalis	E-6-418	USNM 240684	
825F	Mh. inaequata	E-9-740	USNM 240691	
826F	Mh. inaequata	E-9.740	USNM 240692	
827M	Mh. turbida	E-9-740	USNM 240763	
828F	Mh. turbida	E-9.740	USNM 240764	
829J-2	Mh. opaca	E-9.740	USNM 240717	Valves mounted
831M	Mx. eltaninae	E.3-65	USNM 240490	Holotype, valves lost
832F	Mx. ellaninae	E-3-65	USNM 240491	Valves mounted
833F	Mx. eltaninae	E-3-65	USNM 240492	
834FJ	Mx. ellaninae	E-3-65	USNM 240493	

Specimen Number	Name	Collecting Locality	Repository	Notes
835 FJ	Mx. ellaninae	E-3-65	USNM 240494	
836W	Mk. sp. 7	AB-7-363K	USNM 240398	
887F	Mx. ellaninae	E-4-127	USNM 240495	
838J	Mx. eltaninae	E-4-127	USNM 240496	
889M	Mx. kalbi	E-3-48	USNM 240530	
840MJ-2	Mx. kalbi	E.3-48	USNM 240531	Molting
$841 \mathrm{MJ}-1$	Mx. kalbi	E-5-48	USNM 240531	
$842 \mathrm{MJ}-1$	Mx. kalbi	E-3-48	USNM 240531	
843M	Ma. semesa	E-3-48	USNM 240596	Holotype
$844 \mathrm{FJ}-2$	Mx. kalbi	E.3-50	USNM 240533	
845M	Mh. sinuata	E-3-50	USNM 240733	Holotype
846M	Mh. sinuata	E-3-50	USNM 240734	
847 F	Mh. sinuata	E-3-50	USNM 240735	
848MF?	Mh. sinuata	E-3-50	USNM 240736	Indeterminate sex
849J-1	Mh. sinuata	E-9-50	USNM 240743	
850 F	Mh. sinuata	E-3-50	USNM 240737	
851 F	Mh. sinuata	E-3-50	USNM 240738	
852 F	Mh. sinuata	E-3-50	USNM 240739	
853FJ-1	Mh. sinuata	E-3-50	USNM 240740	
$854 \mathrm{FJ}-1$	Mh. sinuata	E-3-50	USNM 240742	
$855 \mathrm{MJ}-1$	Mh. sinuata	E.3-50	USNM 240741	
$856 \mathrm{MJ}-1$	Mh. sinuata	E-3-50	USNM 240744	
857 F	Ma. semesa	E-3-48	USNM 240597	
858 F	M. sp. 1	E-5-43	USNM 240329	
859 F	Mh. tensa	GL-1-0001	USNM 240747	
860F	Mh. tensa	GL1-0001	USNM 240748	
861M	Mh. tensa	GL-1-0001	USNM 240749	
862 F	Mh. tensa	GL-1-0001	USNM 240750	Attached ciliates?
863 FJ	Mh. tensa	GL-1-0001	USNM 240756	
864 MJ	Mh. tensa	GL-1-0001	USNM 240756	
865 M	Mh. inaequata	GL-1-0001	USNM 240694	
866 F	Mh. tensa	GL-1-0001	USNM 240751	
867 F	Mh. tensa	GL-1-0001	USNM 240752	
868MJ	Mh. Lensa	GL-1-0001	USNM 240756	
869 F	Mh. tensa	GL-1-0001	USNM 240756	
870J	Mh. tensa	GL-1-0001	USNM 240753	
871MJ	Mh. Lensa	GL-1-0001	USNM 240754	
872 MJ	Mh. Lensa	GL-1-0001	USNM 240756	
873MJ	Mh. tensa	GL-1-0001	USNM 240756	
874J	Mh. Lensa	GL-1-0001	USNM 240755	
875 J	Mh. tensa	GL-1-0001	USNM 240756	
876J	Mh. tensa	GL-1-0001	USNM 240756	
877F	Mk. glacierae	GL-1-0001	USNM 240357	
878M	Mk. glacierae	GL-1-0001	USNM 240358	
$879 \mathrm{FJ}-1$	Mk. glacierae	GL-1-0001	USNM 240359	
880M	Mk. glacierae	GL-1-0001	USNM 240349	Holotype
881MJ-2	Mk. glacierae	GL-1-0001	USNM 240360	
980 J	Mn. hortuli	UH 1494	USNM 240884	
993M	Mn. hortuli	UH 1264	USNM 240882	
1089J	Mn. madagascarensis	Nosy Be 158	USNM 240926	
1149F	Mn. madagascarensis	Nosy Be 155	USNM 240925	
1150 F	Mx. sp. 17	Albatross 3375	USNM 240591	
1198M	Mn. captiosa	AB-8-412C	USNM 240840	Dry soft parts destroyed
1284LVJ	Mh. gyreae	UH 1617		Lost
1389F	M. minna	Ingolf 85	UCZM	

Specimen Number	Name	Collecting Locality	Repository	Notes
1340F	Ma. sarsi	Ingolf 85	UCZM	
1841F	Mx. bathyalensis	Ingolf 38	UCZM	
1342RV	Mn. sp. 35	Wynyard Beach	USNM 289121	
1343LV	Mn. sp. 85	Wynyard Beach	USNM 239122	
1344RV	Mn. sp. 35	Wynyard Beach	USNM 239123	
1345LV	Mn. sp. 35	Wynyard Beach	USNM 289124	
1346RV	M. minna	Ingolf 85	UCZM	
1347RV	M. minna	Ingolf 85	UCZM	Crystal overgrowth
1348LV	M. minna	Ingolf 85	UCZM	
1349LV	M. minna	Ingolf 85	UCZM	Crystal overgrowth
1850M	Mx. Labutisi	AII-40-178	USNM 240543	
1851M	Mx. labutisi	AII-40-173	USNM 240542	Holotype
1852F	Mx. Labutisi	AII-40-173	USNM 240544	
1353F	Mx. labutisi	AII-40-178	USNM 240545	
1854M	Mx. sapeloensis	AII-40-178	USNM 240403	
1355M	Mx. sapeloensis	AII-40-178	USNM 240404	
1856MF?	Mx. sapeloensis	AII-40-178	USNM 240411	Indeterminate sex
1357F	Mx. sapeloensis	AII-40-178	USNM 240405	
1858MF?	Mx. sapeloensis	AII-40-178	USNM 240406	Pathological
1859F	Mx. sapeloensis	AII-40-178	USNM 240407	
1360FJ-1	Mx. sapeloensis	AII-40-173	USNM 240411	
1361FJ-1	Mx. sapeloensis	AII-40-173	USNM 240408	
1362FJ-1	Mx. sapeloensis	AII-40-178	USNM 240411	
1363M	Mx. labutisi	AII-40-178	USNM 240546	
1364M	Mx. labutisi	AII-40-178	USNM 240547	
1865MJ-1	Mx. sapeloensis	AII-40-173	USNM 240411	
1866MJ-1	Mx. sapeloensis	AII-40-173	USNM 240411	
1367M	Mx. labutisi	AII-40-173	USNM 240548	
1368MJ-1	Mx. labutisi	AII-40-178	USNM 240558	
1369MJ-1	Mx. Labutisi	All-40-178	USNM 240549	
1370MJ-2	Mx. labutisi	AII-40-178	USNM 240558	
1371FJ-2	Mx. sapeloensis	AII-40-173	USNM 240411	
1872MJ-1	Mx. labutisi	AII-40-178	USNM 240558	
1378FJ-2	Mx. Labutisi	AII-40-173	USNM 240550	
$1374 \mathrm{FJ}-2$	Mx. sapeloensis	All-40-173	USNM 240409	
$1875 \mathrm{FJ}-3$	Mx. labutisi	AII-40-178	USNM 240558	
$1876 \mathrm{FJ}-3$	Mx. labutis!	AII-40-178	USNM 240551	
$1877 \mathrm{FJ}-3$	Mx. Labutisi	AII-40-173	USNM 240552	
1378FJ-4	Mx. labutisi	AII-40-173	USNM 240557	
$1879 \mathrm{FJ}-2$	Mx. sapeloensis	All-40-178	USNM 240411	
1380FJ-1	Mx. labutisi	All-40-178	USNM 240553	
1381FJ-1	Mx. labutisi	AII-40-178	USNM 240554	
1882F	Mx. labutisi	AII-40-173	USNM 240558	
1383MJ-1	Mx. sapeloensis	AII-40-178	USNM 240410	
1384M	Mx. labutisi	AII-40-173	USNM 240558	
$1385 \mathrm{FJ}-1$	Mx. sapeloensis	AII-40-173	USNM 240411	
1386F	Mx. labutisi	AII-40-173	USNM 240558	
1887FJ-1	Mx. sapeloensis	AII-40-178	USNM 240411	
1388F	Mx. labutisi	AII-40-178	USNM 240555	
1389FJ-1	Mx. labutisi	All-40-173	USNM 240556	
1390FJ-1	Mx. labutisi	All-40-178	USNM 240558	
1891M	Mx. sapeloensis	AII-40-173	USNM 240411	
1392MJ-1	Mx. labutisi	AII-40-178	USNM 240558	
1393F	Mx. sapeloensis	AII-40-178	USNM 240411	
1394F	Mx. sapeloensis	AII-40-178	USNM 240411	

Specimen Number	Name	Collecting Locality	Repository	Notes
1895FJ-1	Mx. sapeloensis	AII-40-172	USNM 240400	
1396FJ-2	Mx. labutisi	AII-40-172	USNM 240560	
1897FJ-2	Mx. labutisi	AII-40-172	USNM 240558	
1898MJ-2	Mx. labutisi	AII-40-172	USNM 240561	
1899MJ-1	Mx. labutisi	AII-40-172	USNM 240561	
$1400 \mathrm{MJ}-1$	Mx. sapeloensis	AII-40-172	USNM 240401	
1401F	M. metuenda	AII-42-194	USNM 240275	
1402F	M. metuenda	AII-42-194	USNM 240276	
1403F	M. metuenda	AII-42-194	USNM 240284	
1404M	M. metuenda	AII-42-194	USNM 240277	
1405M	M. metuenda	AII-42-194	USNM 240274	Holotype
1406M	Mx. amanda	AII-42-200	USNM 240439	Holotype
1407M	Mx. amanda	AII-42-200	USNM 240440	
1408F	Mx. amanda	AII-42-200	USNM 240441	
1409W	Mx. amanda	AII-42-200	USNM 240446	
1410M	Mk. siliquasa	AII-42-200	USNM 240330	
1411F	Mk. siliquosa	AII-42-200	USNM 240381	
1412F	Mk. siliquosa	AII-42-200	USNM 240332	
1413FJ	Mk. siliquosa	AII-42-200	USNM 240334	
1414M	Mk. siliquasa	AII-42-200	USNM 240383	
1415M	Ms. sp. 23	AII-31-155	USNM 240647	
1416F	Mx. sp. 11	AII-31-159	USNM 240580	
1417F	Ms. bensoni	AII-81-159	USNM 240615	
1418FJ-1	Mh. sp. 30	AII-31-159	USNM 240787	
1419M	M. miranda	AII-42-201	USNM 240294	Holotype
1420F	M. miranda	AII-42-201	USNM 240295	
1421FJ-1	M. miranda	AII-42-201	USNM 240296	
1422J-2	M. miranda	AII-42-201	USNM 240297	
1423J-3	M. miranda	AII-42-201	USNM 240298	
1424J-4	M. miranda	AII-42-201	USNM 240299	
1425 F	Mx. amanda	AII-42-201	USNM 240442	
1426F	M. miranda	AII-42-199	USNM 240309	
1427MJ	M. miranda	All-42-199	USNM 240309	
1428J-2	M. miranda	AII-42-199	USNM 240309	
1429J-3	M. miranda	AII-42-199	USNM 240309	
1430J	M. miranda	AII-42-199	USNM 240309	
1431M	M. maioris	AII-42-198	USNM 240259	
1432F	M. maioris	AII-42-198	USNM 240260	
1433M	M. maior's	AII-42-197	USNM 240267	
1434 M	M. maiors	AII-42-197	USNM 240268	
1435F	M. maion's	All-42-197	USNM 240269	
1436MJ	M. maion's	AII-42-197	USNM 240270	
1437J	M. maioris	AII-42-197	USNM 240270	
1438F	M. metuenda	AII-42-195	USNM 240286	
1439M	M. metuenda	AII-42-195	USNM 240287	
1440F	M. miranda	AII-42-200	USNM 240311	
1441M	M. miranda	AII-81-145	USNM 240303	
1442F	M. miranda	AII-31-142	USNM 240301	
1443F	Mx. sp. 18	AII-31-156	USNM 240592	
1444F	Mx. audens	AII-42-199	USNM 240473	
1445M	Mx. audens	AII-42-199	USNM 240474	
1446M	Mx. audens	AII-42-199	USNM 240472	Holotype
1447FJ	Mx. audens	AII-42-199	USNM 240475	
1448M	Mx. adrecta	AII-42-198	USNM 240421	Holotype
1449F	Mx. adunca	AII-42-198	USNM 240438	

Specimen Number	Name	Collecting Locality	Repository	Notes
1450J	Mx. adrecta	AII-42-198	USNM 240422	
1451M	Mx. arta	AII-42-201	USNM 240468	
1452J	Mx.arta	AII-42-201	USNM 240469	
1453J	Mx. arta	AII-42-201	USNM 240470	
1454F	Mx.arta	AII-42-201	USNM 240471	
1455MJ	Mx. audens	AII-42-201	USNM 240280	
1456M	Mx. arta	AII-42-201	USNM 240467	Holotype
1457F	Mx. amanda	AII-42-200	USNM 240443	
1458 F	Mh. turbida	GL-2-002	USNM 240773	
1459F	Mh. inaequata	GL-2-002	USNM 240697	
1460F	Mk. sp. 5	GL-2-002	USNM 240896	
1461F	Mh. heroica	H-69-5-214	USNM 240673	
1462M	Mh. heroica	H-69-5-214	USNM 240672	Holotype
1463M	Mx. amoena	H-69-5-214	USNM 240448	Holotype
1464J	Mx. amoena	H-695-214	USNM 240449	
1465M	Mx. amoena	H-69-5-57	USNM 240455	
1466MJ	Mx. amoena	H-69-5-57	USNM 240455	
1467F	Mh. turbida	GL-2-004	USNM 240774	
1468F	Mk. glacierae	GL-2-004	USNM 240364	
1469FJ-2	Mk. glacierae	GL-2-004	USNM 240363	
1470FJ-2	Mk. glacierae	GL-2-004	USNM 240364	
$1471 \mathrm{FJ}-3$	Mk. glacierae	GL-2-004	USNM 240364	
$1472 \mathrm{FJ}-3$	Mk. glacierae	GL-2-004	USNM 240364	
1473W	Mk. glacierae	GL-2-004	USNM 240364	
1474MJ-1	Mh. turbida	H-71-5-893	USNM 240779	
1475M	Mh. turbida	E-27-1974	USNM 240769	
1476FJ-1	Mh. turbida	E-27-1974	USNM 240770	
1477M	Mh. opaca	E.6-844	USNM 240709	
1478M	Mh. opaca	E-6-344	USNM 240710	
1479M	Mh. opaca	E-6-344	USNM 240708	Holotype
1480F	Mh. opaca	E-6-344	USNM 240711	
1481F	Mh. opaca	E-6-344	USNM 240712	
1482J	Mx. kalbi	E-3-40	USNM 240529	
1483J	Mx. halbi	E-3-40	USNM 240529	
1484J	Ma. semesa	E-3-40	USNM 240598	
1485 J	Ma. semesa	E-3-40	USNM 240599	
1486J	Ma. semesa	E-8-40	USNM 240600	
1487M	Mh. turbida	H-71-5-874	USNM 240775	
1488 F	Mh. turbida	H-71-5-874	USNM 240776	
1489F	Mh. inaequata	E-32-2025	USNM 240698	
1490M	Mh. turbida	E-32-2085	USNM 240772	
1491MF?	Mh. inaequata	E-8-25	USNM 240690	Indeterminate sex
1492F	Mk. glacierae	E-6-412	USNM 240366	
1493F	Mk. glacierae	E-6-412	USNM 240366	
1494F	Mh. Lensa	E-5-322	USNM 240758	
1495M	Mk. sp. 19	E-5-322	USNM 240399	
1496F	Mx. kaesleri	E-3-25	USNM 240510	
1500M	Mk. siliquosa	AII-42-194	USNM 240340	
1501M	M. metuenda	AII-42-194	USNM 240278	
1504FJ-1	Mh. turbida	H-71-5-874	USNM 240777	
1505M	Mn. schmitti	UH 2789	USNM 239072	
1506J-2	Mn. belizensis	James Teeter	USNM 240809	
1507F	Mn. vargata	John Holden	USNM 239114	
1508M	Mn. hortuli	UH 1618	USNM 240893	
1509RV	Mh. gyreae	UH 1617	USNM 240661	Holotype

Specimen Number	Name	Collecting Locality	Repository	Notes
1510RV	Mh. gyreae	UH 1617	USNM 240669	
1512RV	Mn. sp. 34	NZOI RM1001	USNM 239118	
1513LV	Mn. sp. 34	NZOI RM1001	USNM 239119	
1514RVJ	Mn. dispar	GIL 616	USNM 240848	
1515 LV	Mn. dispar	GIL 623	USNM 240849	
1516RVJ	Mn. dispar	GIL 623	USNM 240850	
1517RVJ	Mn. dispar	GIL 623	USNM 240850	
1518LV	Mn. africana	GIL 127	USNM 240790	
1519M	Mx. adunca	KN-25-303	USNM 240433	
1520M	Mx. adunca	KN-25-306	USNM 240429	Holotype
1521F	Mx. adunca	KN-25-306	USNM 240430	
1522F	Mx. adrecta	KN-25-307	USNM 240427	
1523F	Mx.adunca	KN-25-287	USNM 240437	
1524 RV	M. nimia	C-106-318	USNM 240819	Holotype
1525M	Mx. audens	AII-42-195	USNM 240277	
1526 F	Mx. amanda	AII-42-200	USNM 240446	
1527F	Mx. adrecta	AII-42-198	USNM 240423	
1528LV	Mx. adrecta	All-42-198	USNM 240424	
1529M	Mx. amanda	AII-42-200	USNM 240444	
1530F	Mk. siliquosa	AII-31-145	USNM 240336	
1531F	Mc. arcuata	C-106-313	USNM 240602	
1532M	Mc. arcuata	C-106-313	USNM 240603	
1533M	Mc. arcuata	C-106-313	USNM 240601	
1534M	Mc. arcuata	C-106-313	USNM 240604	
1535M	Mc. arcuata	C-106-313	USNM 240605	
1536F	Mc. arcuata	C-106-818	USNM 240606	
1598M	Mn. schmitti	USNM 88852	USNM 168088	
1539RV	Mn.parcens	UH 2741	USNM 240993	
1540 LVJ	Mn. parcens	UH 2741	USNM 240993	
1689 LV	Mx. bathyalensis	Ingolf 38	UCZM	
1697LV	Mn. quadrimaculata	Labutis 1805	USNM 240996	
1698RV	Mr. quadrimaculata	Labutis 1805	USNM 240997	
1699RV	Mn. quadrimaculata	Labutis 1305	USNM 240995	Holotype
1700LV	Mn. quadrimaculata	Labutis 1306	USNM 239055	
1701	Mn. quadrimaculata	Labutis 1305	USNM 240998	
1702LV	Mn. quadrimaculata	Labutis 1305	USNM 240999	
1703LV	Mn. quadrimaculata	Labutis 1306	USNM 239056	
1704RV	Mn. sp. 34	NZOI RM1001	USNM 239117	
1705 RV	Mn. sp. 34	NZOI RM1001	USNM 239126	
1706LVJ	Mn. sp. 36	NZOI RM1001	USNM 289127	
1707LV	Mn. sp. 33	Wynyard Beach	USNM 239116	
1708 RV	Mn. sp. 35	Wynyard Beach	USNM 239125	
1709F	Mn. vargata	John Holden	USNM 239115	
1710F	Ms. bensoni	All-31-159	USNM 240616	
1711FJ-1	Ms. bensoni	All-31-159	USNM 240617	
1712FJ-1	Mk. siliquosa	AII-31-145	USNM 240338	
1713FJ-2	Mk. siliquosa	AII-31-145	USNM 240388	
1714FJ-3	Mk. siliquosa	All-31-145	USNM 240337	
1715FJ-4	Mk. siliquosa	AII-42-194	USNM 240341	
$1716 \mathrm{FJ}-2$	Mk. siliquosa	AII-42-194	USNM 240342	
$1717 \mathrm{MJ}-1$	Mk. siliquosa	AII-42-194	USNM 240348	
$1718 \mathrm{MJ}-1$	Mk. siliquosa	AII-42-194	USNM 240345	
1719FJ-1	Mk. siliquosa	AII-42-194	USNM 240344	
1730J-3	Mc.arcuata	C-106-813	USNM 240612	
1781FJ-8	Mc. arcuata	C-106-813	USNM 240612	

Specimen Number	Name	Collecting Locality	Repository	Notes
1732MJ-1	Mc.arcuata	C-106-313	USNM 240607	
1733FJ-1	Mc. arcuata	C-106-818	USNM 240608	
1734MJ-1	Mc.arcuata	C-106-818	USNM 240609	
$1785 \mathrm{FJ}-1$	Mc. arcuata	C-106-818	USNM 240612	
1736FJ-2	Mc. arcuata	C-106-818	USNM 240610	
1787MJ-2	Mc. arcuata	C-106-813	USNM 240611	
1788 LV	M. nimia	C-106-818	USNM 240320	Etched surface
1739LVJ	M. nimia	C-106-818	USNM 240321	
1740RVJ	M. nimia	C-106-313	USNM 240322	
1741RV	Mx. bathyalensis	Ingolf 18	UCZM	
1742LV	Mx. bathyalensis	Ingolf 18	UCZM	
1743LV	Mx. bathyalensis	Ingolf 18	UCZM	
1744RVJ	Mx. bathyalensis	Ingolf 18	UCZM	
1745LVJ	Mx. bathyalensis	Ingolf 18	UCZM	
1746LVJ	Mx. bathyalensis	Ingolf 18	UCZM	
1747LVJ	Mx. bathyalensis	Ingolf 18	UCZM	
1748RV	Mn. africana	GIL 127	USNM 240791	
1749LVJ	Mn. africana	GIL 127	USNM 240792	
1750RVJ	Mn. africana	GIL 127	USNM 240793	
1751LVJ	Mn. africana	GIL 127	USNM 240794	
1752RVJ	Mn. africana	GIL 127	USNM 240795	
1752LVJ	Mn. africana	GIL 127	USNM 240796	
1754F	Mh. opaca	E-6-344	USNM 240715	
1755 FJ	Mh. opaca	E-6-344	USNM 240718	
1756MJ	Mh. opaca	E-6-344	USNM 240714	
1757M	Mn. madagascarensis	Nosy Be 362	USNM 240914	Holotype
1758 F	Mn. bermudae	UH 1497	USNM 240818	
1759M	Mn. bermudae	UH 1497	USNM 240810	Holotype, decalcified
1760M	Mn. bermudae	UH 1497	USNM 240814	
1761F	Mn. hortuli	UH 2438	USNM 240876	
1762M	Mn. hortuli	UH 2433	USNM 240875	Holotype
1763M	Mn. schmitti	UH 2740	USNM 239074	
1764M	Mn. schmitti	UH 2789	USNM 289073	
$1765 \mathrm{FJ}-1$	M. miranda	AII-81-145	USNM 240304	
1766MJ-1	M. miranda	AII-31-145	USNM 240805	
1767MJ-2	M. miranda	AII-81-145	USNM 240806	
1768J-4	M. miranda	All-81-145	USNM 240306	
1769F	M. maioris	AII-42-198	USNM 240261	
1770FJ-1	M. maioris	AII-42-198	USNM 240262	
1771MJ-1	M. maions	AII-42-198	USNM 240263	
1772J-2	M. maions	All-42-198	USNM 240264	
1773J-4	M. maioris	AII-42-198	USNM 240265	
1774M	M. maions	AII-42-198	USNM 240258	Holotype
$1775 \mathrm{FJ}-1$	M. metuenda	AII-42-194	USNM 240279	
$1776 \mathrm{FJ}-1$	M. metuenda	All-42-194	USNM 240284	
1777MJ-1	M. metuenda	AII-42-194	USNM 240280	
$1778 \mathrm{~J}-2$	M. metuenda	AII-42-194	USNM 240281	
1779J-8	M. metuenda	AII-42-194	USNM 240282	
1780M	M. metuenda	AII-42-194	USNM 240283	
1781F	Mx. audens	All-42-195	USNM 240278	
1782F	Mx. adunca	KN-25-303	USNM 240434	
$1783 \mathrm{FJ}-1$	Mx. adunca	KN-25-303	USNM 240435	
1784RV	Mx. sp. 20	KN-25-306	USNM 240593	
$1785 \mathrm{FJ}-1$	Mx. adunca	KN-25-306	USNM 240431	
1786F	Mx. adrecta	KN-25-307	USNM 240428	

Specimen Number	Name	Collecting Locality	Repository	Notes
$1787 \mathrm{MJ}-1$	Mx. adrecta	AII-42-197	USNM 240425	
1788J-2	Mx. adrecta	All-42-197	USNM 240426	
1789FJ-2	Mx. audens	AII-42-201	USNM 240280	
1790J-4	Mx. audens	AII-42-201	USNM 240280	
1791LV	Mx. amanda	AII-42-200	USNM 240446	
1792F	Mx. amanda	All-42-200	USNM 240445	Just molted
1798RVJ-1	Mn. hortuli	UH 1985	USNM 240896	
$1794 \mathrm{LVJ}-1$	Mn. hortuli	UH 1985	USNM 240897	
$1795 \mathrm{RVJ}-2$	Mn. hortuli	UH 1220	USNM 240878	
1796LVJ-2	Mn. hortuli	UH 1220	USNM 240879	
$1797 \mathrm{RVJ}-3$	Mn. hortuli	UH 1495	USNM 240885	
1798LVJ-3	Mn. hortuli	UH 1495	USNM 240886	
$1799 \mathrm{RVJ}-4$	Mn. hortuli	UH 1220	USNM 240880	
$1800 \mathrm{LVJ}-5$	Mn. hortuli	UH 1495	USNM 240887	
1801RVJ-1	Mn. bermudae	UH 1497	USNM 240815	
1802LVJ-2	Mn. bermudae	UH 1497	USNM 240816	
1803 RVJ -2	Mn. bermudae	UH 1497	USNM 240817	
$1804 \mathrm{LVJ}-2$	Mn. bermudae	UH 1497	USNM 240818	
1805WJ-3	Mn. bermudae	UH 1497	USNM 240819	
1806F	Mn. schmitli	UH 2738	USNM 289062	
$1807 \mathrm{RVJ}-1$	Mn. schmitti	UH 2738	USNM 239063	
1808LVJ-1	Mn. schmitti	UH 2738	USNM 239064	
$1809 \mathrm{RVJ}-2$	Mn. schmitti	UH 2738	USNM 289065	
1810LVJ-2	Mn. schmitti	UH 2738	USNM 23906	
$1811 \mathrm{RVJ}-3$	Mn. schmitti	UH 2738	USNM 239067	
$1812 \mathrm{LVJ}-3$	Mn. schmitti	UH 2738	USNM 239068	
1813RVJ-4	Mn. schmitti	UH 2738	USNM 239069	
1814LVJ-4	Mn. schmitti	UH 2738	USNM 239070	
1815F	M. miranda	AII-42-200	USNM 240312	
1816F	M. miranda	AII-42-200	USNM 240313	
1817M	Mn. hawkae	UH 2871	USNM 240851	Holotype
1818M	Mn. hawkae	UH 2371	USNM 240852	
1819F	Mn. hawkae	UH 2871	USNM 240853	
1820 RVJ-1	Mn. hawkae	UH 2371	USNM 240854	
$1821 \mathrm{LVJ}-1$	Mn. hawkae	UH 2371	USNM 240855	
$1822 \mathrm{RVJ}-2$	Mn. hawkae	UH 2371	USNM 240856	
$1823 \mathrm{LVJ}-2$	Mn. hawkae	UH 2971	USNM 240857	
$1824 \mathrm{RVJ}-3$	Mr. hawkae	UH 2871	USNM 240858	
$1825 \mathrm{WJ}-4$	Mn. hachae	UH 2371	USNM 240859	
1828RV	Mn. belizensis	UH 2742	USNM 240798	Holotype
1829LV	Mn. belizensis	UH 2742	USNM 240799	
1830 RVJ-1	Mn. belizensis	UH 2742	USNM 240800	
1831LVJ-1	Mn . belizensis	UH 2742	USNM 240801	
1832RVJ-2	Mn. belizensis	UH 2742	USNM 240802	
1833LVJ-2	Mn. belizensis	UH 2742	USNM 240803	
$1834 \mathrm{RVJ}-3$	Mn. belizensis	UH 2742	USNM 240804	
1885 RV	Mn. jamaicae	UH 2648	USNM 240900	Holotype
1836LV	Mn. jamaicae	UH 2648	USNM 240901	
$1837 \mathrm{RVJ}-1$	Mn. jamaicae	UH 2648	USNM 240902	
$1838 \mathrm{LVJ}-1$	Mn. jamaicae	UH 2648	USNM 240903	
1839RVJ-2	Mn. jamaicae	UH 2645	USNM 240911	
$1840 \mathrm{LVJ}-2$	Mn. jamaicae	UH 2645	USNM 240910	
1841M	M. metuenda	AII-42-194	USNM 240284	
1842M	M. metuenda	All-42-194	USNM 240284	
1843F	M. metuenda	All-42-194	USNM 240284	

Specimen Number	Name	Collecting Locality	Repository	Notes
1844F	M. metuenda	AII-42-194	USNM 240284	
1843AW	Mn. bermudae	UH 1558	USNM 193790	
1844ARV	Mn. skinneri	UH 1986	USNM 239089	
1845LV	Mn. skinneri	UH 1986	USNM 289090	
1846RVJ-1	Mn. skinneni	UH 1263	USNM 289085	
$1847 \mathrm{LVJ}-1$	Mn. skinneni	UH 1986	USNM 289091	
1848RVJ-2	Mn. skinneri	UH 270	USNM 239082	
1849LVJ-2	Mn. skinneri	UH 1263	USNM 239086	
1850 RVJ-3	Mn. skinneni	UH 1263	USNM 239087	
1851LVJ-3	Mn. skinneri	UH 270	USNM 239083	
1852M	Mn. hawkae	UH 2871	USNM 240860	
1853M	Mn. hawkae	UH 2871	USNM 240861	
1854F	Mn. sp. 89	F. Caraion	USNM 289130	
1855RVJ-1	Mh. heroica	H-69-5-53	USNM 240674	
1856LVJ-1	Mh. heroica	H-69-5-53	USNM 240675	
1857RVJ-2	Mh. heroica	H-69-5-53	USNM 240676	
1858LVJ-2	Mh. heroica	H-69-5-53	USNM 240677	
1859RVJ-8	Mh. heroica	H-69-5-53	USNM 240678	
1860LVJ-3	Mh. heroica	H-69-5-53	USNM 240679	
1861RVJ-4	Mh. heroica	H-69-5-53	USNM 240680	
1862LVJ-4	Mh. heroica	H-69-5-53	USNM 240681	
1863LVJ-5	Mh. heroica	H-69-5-53	USNM 240682	
1864F	Mx. amoena	H-69-5-218	USNM 240454	
1865RVJ-2	Mx. amoena	H-69-5-53	USNM 240450	
1866WJ-3	Mx. amoena	H-69-5-53	USNM 240451	
1867RVJ-4	Mx. amoena	H-69-5-58	USNM 240452	
1868RVJ-5	Mx. amoena	H-69-5-58	USNM 240453	
1869M	Ms. bensoni	AII-31-159	USNM 240614	Holotype
1870FJ-1	Ms. bensoni	AII-81-159	USNM 240618	
1899FJ-1	Mh. turbida	E-32-1996	USNM 240771	
$1900 \mathrm{MJ}-1$	Mn. sp. 40	Pequegnat 0146	USNM 239131	
1901F	Mn. sp. 40	Pequegnat 0181	USNM 239132	
1902F	Mn. sp. 40	Pequegnat 0131	USNM 289183	
1903LVJ-2	Mn. skinneri	UH 2869	USNM 289098	
1904M	Mn. succinea	Bonaduce 1	USNM 239106	
1905M	Mn. succinea	Bonaduce 1	USNM 289107	
1906F	Mn. succinea	Bonaduce 1	USNM 239108	
1907MJ-1	Mn. succinea	Bonaduce 1	USNM 289109	
1908J-2	Mn. succinea	Bonaduce 1	USNM 239110	
1909M	Mn. skinneni	TA\&MU OBS 28F3	USNM 239078	
1910M	Mn. skinneni	TA\&MU OBS 28F3	USNM 239079	
1911F	Mn. skinneri	TA\&MU OBS 28F3	USNM 239080	
1912WM?	Mk. gregalis	E-39-32	USNM 240371	Holotype
1913WF?	Mk. gregalis	E-89-32	USNM 240872	
1914WJ-1	Mk. gregalis	E-39-32	USNM 240378	
1915WJ-2	Mk. gregalis	E-39-32	USNM 240374	
1916WJ-3	Mk. gregalis	E-39-32	USNM 240375	
1917WJ-5	Mk. gregalis	E-39-32	USNM 240376	
1918WJ-6	Mk. gregalis	E-89-32	USNM 240877	
1921W	Mn. jiangi	E-39-32	USNM 240700	
1922W	Mn.jiangi	E-39-32	USNM 240699	Holotype
1923WJ-1	Mn.jiangi	E-89-82	USNM 240701	
1924WJ-2	Mn.jiangi	E-39-32	USNM 240702	
1930WJ-4	Mk. gregalis	E-39-32	USNM 240378	
1981F	Mn. dispar	ZMHUB 18180		

Specimen Number	Name	Collecting Locality	Repository	Notes
1932F	Mn. dispar	ZMHUB 13180		
1933M	Mn. dispar	ZMHUB 13180		Lectotype
1934M	Mh. turbida	ZMHUB 18181		
1935F	Mh. tensa	ZMHUB 18181		Lectotype
1936F	Mn. africana	ZMHUB 18182		
1937M	Mn. africana	ZMHUB 18182		Lectotype
1938F	Mn. africana	ZMHUB 18182		
1989F	Mh. inaequalis	ZMHUB 18129		
1940	Mh. inaequalis	ZMHUB 18129		Lectotype
1941M	Mh. inaequalis	ZMHUB 13129		
1942RV	Mh. turbida	ZMHUB 18189		
1943M	Mh. turbida	ZMHUB 18138		Lectotype
1944M	Mh. turbida	ZMHUB 18189		
1945W	Mh. turbida	ZMHUB 13139		
1946M	Mh. turbida	ZMHUB 18193		
1947F	Mh. turbida	ZMHUB 13183		
1948M	Mh. turbida	ZMHUB 13133		
1949W	Mk. siliquosa	HM 1.45.29		Lectotype
1950W	Mk. siliquosa	HM 1.45.30		
1951RV	Mx. tenuicauda	BMNH 80.38.15		
1952M	M. metuenda	V-14-33	USNM 240291	
1953MF?	M. metuenda	V-14-33	USNM 240292	Indeterminate sex
1954F	M. metuenda	V-14-33	USNM 240292	
1955M	M. miranda	V-14-33	USNM 240316	
1956F	M. miranda	V-14-38	USNM 240817	
1957F	Mk. glacierae	V-14-21	USNM 240369	
1958F	Mh. opaca	V-14-21	USNM 240719	
1959M	Mh. opaca	V-14-21	USNM 240720	
1960W	Mk. sp. 2	V-18-9	USNM 240392	Etched surface?
1961W	Mh. opaca	V-17-101	USNM 240727	
1962F	Mx. sp. 21	V-16-15	USNM 240594	
1963W	Mh. opaca	V-2-9	USNM 240750	
1964MF?	Mx. ellaninae	V-15-70	USNM 240497	Pathological female
1965F	Mx. sp. 46	V-17-5	USNM 240595	
1966M	Mx. antonbruunae	V-15-84	USNM 240466	
1967M	Mx. kaesleri	V-15-42	USNM 240504	Holotype
1968F	Mx. kaesleri	V-15-42	USNM 240505	
1969F	Mx. kaesleri	V-15-67	USNM 240507	
1970M	Mx. kalbi	V-15-55	USNM 240536	Just molted
1971MJ-1	Mx. kalbi	V-15-55	USNM 240537	
1972F	Mx. kalbi	V-15-40	USNM 240534	
1973F	Mx. Labutisi	V-16-65	USNM 240564	
1974FJ-1	Mx. Labutisi	V-16-65	USNM 240564	
1975F	Mx. labutisi	V-16-65	USNM 240564	
1976MJ-1	Mx. Labutisi	V-16-65	USNM 240564	
1977M	Mx. Labutisi	V-16-65	USNM 240563	
1978M	Mx. labutisi	BLM-A1	USNM 240566	
1979M	Mx. sapeloensis	BLM-A1	USNM 240412	
1980M	Mh. atlantica	BLM-F2	USNM 240650	
1981M	Mh. atlantica	BLM-F2	USNM 240651	
1982M	Mh. atlantica	BLM-F2	USNM 240649	Holotype
1983F	Mh. atlantica	BLM-F2	USNM 240652	Both fifth limbs missing
1984F	Mh. atlantica	BLM-F2	USNM 240653	
$1985 \mathrm{FJ}-1$	Mh. atlantica	BLM-F2	USNM 240655	
1986FJ-1	Mh. atlantica	BLM-F2	USNM 240654	

Specimen Number	Name	Collecting Locality	Repository	Notes
1987FJ-1	Mh. atlantica	BLM-K4	USNM 240656	
1988RV	M. metuenda	V-12-4	USNM 240289	
1991RV	Mn. parcens	UH 2741	USNM 240993	
1992M	Mn. swaini	UMnPM Scam. 90		
1993F	Mn. swaini	UMnPM Scam. 90		
1994F	Mn. swaini	UMnPM Scam. 76		Decalcified
1995F	Mk. sp. 3	Y-2-11	USNM 240393	
1995AW	Mn. swaini	UMnPM Scam. 90		
1995BRV	Mn. swaini	UMnPM 11278		
1996RV	Mn. belizensis	UH 2742	USNM 240805	
1997LV	Mn. belizensis	UH 2742	USNM 240806	
1998M	Ma. sarsi	UOZM F1484		
1999F	Ma. sarsi	UOZM F1484		Reversed overlap
2000F	Ma. sarsi	UOZM F1484		
2001FJ	Ma. sarsi	UOZM F1484		
2002M	M. minna	UOZM F1485		
2003F	M. minna	UOZM F1485		
2004RV	Mn. sp. 88	UH 2648	USNM 289129	
2005LV	Mn. jamaicae	UH 2645	USNM 240912	
2012LV	Mh. gyreae	UH 1617	USNM 240662	
2013W	Mh. gyreae	UH 1617	USNM 240663	
2014RV	Mh. gyreae	UH 1617	USNM 240669	
2015LV	Mh. gyreas	UH 1617	USNM 240669	
2016RV	Mh. gyreae	UH 1617	USNM 240664	
2017LV	Mh. gyreae	UH 1617	USNM 240665	
2018RV	Mh. gyreas	UH 1617	USNM 240666	
2019RV	Mh. gyreas	UH 1617	USNM 240667	
2020W	Ms. texana	UH 1617	USNM 240634	Holotype
2021RV	Ms. texana	UH 1617	USNM 240635	
2022LV	Ms. texana	UH 1617	USNM 240636	
2023W	Ms. texana	UH 1617	USNM 240637	Just molted
2024W	Ms. texana	UH 1617	USNM 240638	
2025RV	Mn. madagascarensis	Nosy Be 366	USNM 240940	
2026LV	Mn. madagascarensis	Nosy Be 366	USNM 240941	
2027M	Mh. opaca	Y-2-11	USNM 240781	
2058F	Mn. noharai	Nohara Sesoko	USNM 240978	Holotype
2059W	Mn. moza	Nohara 20	USNM 240970	
2060W	Mn. moza	Nohara 20	USNM 240971	
2061RV	Mn. noharai	Nohara Sesoko	USNM 240974	
2062W	Mn. noharai	Nohara Sesoko	USNM 240977	
2063RV	Mn. noharai	Nohara Sesoko	USNM 240978	
2064LV	Mn. okinawae	Nohara 18	USNM 240988	
2065LV	Mn. noharai	Nohara Sesoko	USNM 240979	
2066RV	Mn. noharai	Nohara Sesoko	USNM 240975	
2067W	Mn. noharai	Nohara Sesoko	USNM 240976	
2068RV	Mn. okinawae	Nohara 4	USNM 240980	Holotype
2069RV	Mn. okinawae	Nohara 14	USNM 240982	
2070LV	Mn. okinawae	Nohara 14	USNM 240983	
2071RV	Mn. okinawae	Nohara 18	USNM 240989	
2072LV	Mn. okinawae	Nohara 14	USNM 240984	
2073RV	Mn. okinawae	Nohara 4	USNM 240981	
2074RV	Mn. okinawae	Nohara 15	USNM 240986	
2075RV	Mn.okinawae	Nohara 14	USNM 240985	
2076LV	Mn. okinawae	Nohara 15	USNM 240987	
2077LV	Mx. adriatica	VUA EB-NS-223A		

Specimen Number	Name	Collecting Locality	Repository	Notes
2078LV	Mx. adriatica	VUAEB-NS-223A		
2079LV	Mx. adriatica	VUA EB-NS-223A		
2080LV	Mx. adriatica	VUA EB-NS-223A		
2081LV	Mx. adriatica	VUA EB-NS-223A		
2082LV	Mx. adriatica	VUA EB-NS-223A		
2083LV	Mx. adriatica	VUA EB-NS-223A		
2084LV	Mx. adriatica	VUAEB-NS-223A		
2085RV	Mx. adriatica	VUA EB-NS-223A		
2086RV	Mx. adriatica	VUA EB-NS-223A		
2087RV	Mx. adriatica	VUA EB-NS-223A		
2088RV	Mx. adriatica	VUA EB-NS-223A		
2089RV	Mx. adriatica	VUA EB-NS-223A		
2090RV	Mx, adriatica	VUA EB-NS-223A		
2091RV	Mx. adriatica	VUA EB-NS-223A		
2096RV	Mx. steinecki	Steineck M27A	USNM 438281	
2097RV	Mx. steinecki	Steineck M27A	USNM 488282	
2098RV	Mx. steinecki	Steineck M27A	USNM 438238	
2099RV	Mx. steinecki	Steineck M27A	USNM 438234	
2100RV	Mx. steinecki	Steineck M27A	USNM 488285	
2101W	Mx. sleinecki	Steineck M27A	USNM 438230	Holotype
2102W	Mx. steinecki	Steineck M27A	USNM 438236	
2103LV	Mx. steinecki	Steineck M27A	USNM 438287	
2104W	Mx. steinecki	Steineck M29	USNM 438242	
2105RV	Mx. steinecki	Steineck M29	USNM 438248	
2106 LVJ	Mx. steinecki	Steineck M29	USNM 488244	
2107 LVJ	Mx. steinecki	Steineck M29	USNM 438245	
2108 LVJ	Mx. steinecki	Steineck M29	USNM 488246	
2118RV	Mc. vandenboldi	Steineck M27A	USNM 438258	Holotype
2119 LV	Mc. vandenboldi	Steineck M27A	USNM 488259	
2120 LVJ	Mc. vandenboldi	Steineck M27A	USNM 438261	
2121W	Mc. vandenboldi	Steineck M27A	USNM 438260	
2122 LV	Mc. vandenboldi	Steineck M15	USNM 438268	
2123RV	Mc. vandenboldi	Steineck M15	USNM 438264	
2124 RV	Mc. vandenboldi	Steineck M15	USNM 438265	
2125 LV	Mc. vandenboldi	Steineck M29	USNM 488278	
2126RV	Mc. vandenboldi	Steineck M29	USNM 488279	
2127W	Mc. vandenboldi	Steineck M29	USNM 488280	
2128W	Mc. vandenboldi	Steineck M15	USNM 438266	
2129W	Mc. vandenboldi	Steineck M15	USNM 438267	
2130M	Mn. hartmanni	UHZM K-91358	UHZM K-38987	Holotype
2131F	Mn. hartmanni	UHZM K-31358	UHZM K-38988	
2132F	Mn. hartmanni	UHZM K-31358	UHZM K-38989	
$2183 \mathrm{FJ}-1$	Mn. hartmanni	UHZM K-31358	UHZM K-38990	
2134J-2	Mn. hartmanni	UHZM K-31358	UHZM K-38991	
2135 RVJ	Mn. hartmanni	UHZM K-31358	UHZM K-38992	
2148RV	Mx. similis	BMNH 80.38.14		Lectotype
2149RV	Mx. similis	BMNH 80.38.14		
2150 RV	Mx. similis	BMNH 80.88.14		
2151RV	Mx. similis	BMNH 80.98.14		
2152RV	Mx. similis	BMNH 80.38.14		
2153 LV	$M x$ unidentified	HM Chall. 305		
2154 LV	$M x$ unidentified	HM Chall. 305		
2155 W	Mx. similis	HM Chall. 120		
2156 LV	Mx. similis	HM Chall. 120		
2157 RV	Mx. similis	HM Chall. 120		

Specimen Number	Name	Collecting Locality	Repository	Notes
2158LV	Mx. similis	HM Chall. 120		
2159LV	Mx. similis	HM Chall. 120		
2160 LV	Mx. Lenuicauda	BMNH 80.38.16		Lectotype
2161LV	Mx. tenuicauda	BMNH 80.38.16		
2162RV	Ms. bensoni	BMNH 80.38.15		
2163 LV	Ms. bensoni	BMNH 80.38.15		
2164 LV	Ms. bensoni	BMNH 80.38.15		
2165RV	Ms. bensoni	BMNH 80.38.15		
2166 RV	Ms. bensoni	BMNH 80.38.15		
2167 RV	Ms. bensoni	BMNH 80.38.15		
2168 RV	Ms. bensoni	BMNH 80.38.15		
2169 RV	Ms. bensoni	BMNH 80.38.15		
2170 RV	Ms. bensoni	BMNH 196112465		
2171 RV	Ms. bensoni	BMNH 196112465		
2172RV	Ms. bensoni	BMNH 196112465		
2173 RV	Ms. bensoni	BMNH 196112465		
2174LV	Ms. bensoni	BMNH 196112465		
2175RV	Ms. bensoni	BMNH 196112465		
2176RV	Ms. bensoni	BMNH 196112465		
2177 RV	Ms. bensoni	HM Chall. 122		
2178 RV	Ms. bensoni	HM Chall. 122		
2179W	Ms. bensoni	HM Chall. 122		
2180RV	Ms. bensoni	HM Chall. 122		
2181LV	Ms. bensoni	HM Chall. 122		
2182RV	Ms. bensoni	HM Chall. 122		
2183RV	Ms. bensoni	HM Chall. 122		
2184RV	Ms. bensoni	HM Chall. 122		
2185RV	Ms. bensoni	HM Chall. 122		
2186 RV	Ms. bensoni	HM Chall. 122		
2187 LV	Ms. bensoni	HM Chall. 122		
$2188 L V$	Ms. bensoni	HM Chall. 122		
2189RV	Ms. bensoni	HM Chall. 122		
2190RV	Ms. bensoni	HM Chall. 122		
2191RV	Ms. bensoni	HM Chall. 122		
2192RV	Ms. bensoni	HM Chall. 122		
2193RV	Ms. bensoni	HM Chall. 122		
2194RV	Ms. bensoni	HM Chall. 122		
2195W	Ms. bensoni	HM Chall. 122		
2196W	Ma. canariensis	BMNH 81.5.6		Lectotype
2198LV	Mx. steinecki	Steineck M27A	USNM 488238	
2201 LV	Mc. vandenboldi	Steineck M27A	USNM 438262	
2203W	Mc. vandenboldi	Steineck M32	USNM 438270	
2204LV	Mc. vandenboldi	Steineck M32	USNM 488271	
2205 LV	Mc. vandenboldi	Steineck M32	USNM 488272	
2206 RV	Mc. vandenboldi	Steineck M32	USNM 438278	
2209 RV	Mx, steinecki	Steineck M28	USNM 488254	
2210LV	Mx. steinecki	Steineck M28	USNM 488255	
2211LV	Mx. steinecki	Steineck M28	USNM 488256	
2212W	Mx. steinecki	Steineck M28	USNM 438257	
2213W	Mc. vandenboldi	Steineck M28	USNM 488275	
2214RV	Mc. vandenboldi	Steineck M28	USNM 488276	
2215W	Mc. vandenboldi	Steineck M28	USNM 488277	
2216 LV	Mx. steinecki	Steineck M29	USNM 488247	
2217 RV	Mc. vandenboldi	Steineck M29	USNM 488281	
2218RV	Mc. vandenboldi	Steineck M27	USNM 437274	

Specimen Number	Name	Collecting Locality	Repository	Notes
2219LVJ	Mx. steinecki	Steineck M27	USNM 438253	
2223RV	Mc. vandenboldi	Steineck M25	USNM 488268	
2224RV	Mc. vandenboldi	Steineck M25	USNM 438269	
2226 LV	Mx. steinecki	Steineck M25	USNM 438240	
2227RV	Mx. steinecki	Steineck M25	USNM 488241	
2228RV	Mx. sleinecki	Steineck M25	USNM 438239	
2232LV	Mx. steinecki	Steineck M23	USNM 488251	
2233RV	Mx. steinecki	Steineck M23	USNM 488252	
2234 LVJ	Mx. steinecki	Steineck M17	USNM 488248	
2235 LVJ	Mx. steinecki	Steineck M17	USNM 488249	
2236 LVJ	Mx. steinecki	Steineck M17	USNM 438250	
2289RV	Ms. texana	UH 1618	USNM 240642	
2240 LVJ	Ms. texana	UH 1618	USNM 240643	
2241 RV	Ms. texana	UH 1617	USNM 240639	
2242LV	Ms. texana	UH 1617	USNM 240640	
2243 RVJ	Mh. gyreae	UH 1618	USNM 240670	
2244 LVJ	Mh. gyreae	UH 1618	USNM 240670	
2245 RV	Mh. gyreas	UH 1617	USNM 240668	
2246RV	Mn. jamaicue	UH 2648	USNM 240904	
2247RV	Mn. jamaicae	UH 2638	USNM 240909	
2248 LV	Mn. jamaicae	UH 2648	USNM 240905	
2249LV	Mn. jamaicae	UH 2648	USNM 240906	
2250RV	Mn.jamaicae	UH 2648	USNM 240907	
2251W	Mx. longana		USNM 568495	
2252W	Mx. longana		USNM 563495	
2255 LV	Mk. Igiustica	Bonaduce 2	Bonaduce	
2256RV	Mk. ligustica	Bonaduce 2	Bonaduce	
2257 LV	Mk. ligustica	Bonaduce 2	Bonaduce	
2258 LV	Mk. ligustica	Bonaduce 2	Bonaduce	
2259RV	Mk. ligustica	Bonaduce 2	Bonaduce	
2260 LV	Mn. bonaducei	Bonaduce 5	USNM 240833	
2261 LV	Mn. bonaducei	Bonaduce 5	USNM 240831	
2262RV	Mn. bonaducei	Bonaduce 5	USNM 240834	
2263 RV	Mn. bonaducei	Bonaduce 5	USNM 240882	
2264 RV	Mn. bonaduci	Bonaduce 5	USNM 240830	Holotype
2265 LV	Mn.parcens	UH 2741	USNM 240991	
2266RV	Mn. parcens	UH 2741	USNM 240990	Holotype
2267 LV	Mn. parcons	UH 2741	USNM 240992	
2268RV	Mn. parcens	UH 2741	USNM 240992	
2269LV	Mn. parcens	UH 2741	USNM 240992	
2270W	Ms. graysonensis	UH 1672	USNM 438282	
2271W	Ms. graysonensis	UH 1672	USNM 438283	
2272W	Ms. graysonensis	UH 1672	USNM 438284	
2273W	Ms. graysonensis	UH 1672	USNM 438285	
2274F	Mk. ligustica	Bonaduce 3	USNM 240382	
2275F	Mk. ligustica	Bonaduce 3	USNM 240383	
2276W	Mk. ligustica	Bonaduce 3	USNM 240384	
2277M	Mn. succinea	Bonaduce 7	USNM 239104	
2278F	Mn. succinea	Bonaduce 7	USNM 289105	
2279LV	Mn. hawkae	Fithian 1076	Fithian	
2280LV	Mn. hawkae	Fithian 1076	Fithian	
2281RV	Mn. hawkae	Fithian 1076	Fithian	
2282LV	Mn. hawkae	Fithian 1055	Fithian	
2283RV	Mn. hawkae	Fithian 1047	Fithian	
2284W	Mn. swaini	UH4286	USNM 239111	Holotype

Specimen Number	Name	Collecting Locality	Repository	Notes
2285LV	Mn. swaini	UH 4286	USNM 289112	
2286W	Ms. texana	UH 4125	USNM 240644	
2287 LVJ	Ms. texana	UH 3086	USNM 240646	
2288RVJ	Ms. texana	UH 8086	USNM 240646	
2289RV	Mn. hawkae	UH 2740	USNM 240868	
2290 LV	Mn. hawkae	UH 2740	USNM 240869	
2291RV	Mn. sp. 37	UH 3046	USNM 239128	
2296RV	Mn. hawkae	UH 2742	USNM 240870	
2297 LV	Mn. hawkae	UH 2742	USNM 240871	
2298RV	Mn. hawkae	UH 2638	USNM 240864	
2299LV	Mn. hawkae	UH 2638	USNM 240865	
2300LV	Mn. hawkae	UH 2963	USNM 240878	
2301RV	Mn. belizensis	UH 2972	USNM 240808	
2302RVJ	Mn. belizensis	UH 2961	USNM 240807	
2303W	Ms. bensoni	UH 4182	USNM 240622	Just molted
2304WJ	Ms. bensoni	UH 4182	USNM 240622	
2305LV	Mc. cylindracea	NMFIS Xe 3359		
2306LV	Mc. cylindracea	NMFIS Xe 3359		
2307 RV	Mc. cylindracea	NMFIS Xe 3859		
2308RV	Mc. cylindracea	NMFIS Xe 3359		
2309RV	Mk. swansoni	Swanson P464	USNM 240386	
2310RV	Mk. swansoni	Swanson P464	USNM 240389	
2311LV	Mk. swansoni	Swanson P464	USNM 240387	
2312W	Mk. swansoni	Swanson P464	USNM 240388	
2313W	Mh. jiangi	Swanson P464	USNM 240707	
2314RV	Mk. swansoni	Swanson P461	USNM 240391	
2315 RV	Mk. swansoni	Swanson P461	USNM 240391	
2316LV	Mk. swansoni	Swanson P461	USNM 240391	
2317LV	Mk. swansoni	Swanson P461	USNM 240391	
2818RV	Mh. jüangi	Swanson P461	USNM 240705	
2319F	Mk. sp. 6	Swanson P665	USNM 240397	
2322LV	Mn. hawkae	Fithian 1108	HVH 10888	
2323LV	Mn. hawkae	Fithian 1108	HVH 10884	
2324LV	Ms. sp. 24	BMNH 1911.11.8.M. 3071		
2325W	Ms. sp. 24	BMNH 1911.11.8.M.3071		
2326W	Mk. gregalis	E-89-32	USNM 240380	
2327RV	Mk. gregalis	E-39-32	USNM 240381	
2328LV	Mk. gregalis	E-39-32	USNM 240381	
2329W	Mk. gregalis	E-39-32	USNM 240381	
2830W	Mk. gregalis	E-39-32	USNM 240379	
2381 LV	Mk. swansoni	Swanson P462	USNM 240390	
2332RV	Mk. swansoni	Swanson P462	USNM 240385	Holotype
2333W	Mh. jiangi	E-89-32	USNM 240703	
2384W	Mh. jiangi	E-39-32	USNM 240706	
2335W	Mh.jiangi	E-89-32	USNM 240704	
2396RV	Mc. sp. 22	UB IGBA 1086		
2337W	Mx. sp. 10	UB IGBA 196		
2388RV	Mx. sp. 9	UB IGBA 693		
2344F	Mn. moza	Nosy Be 270	USNM 240958	Holotype
2345W	Mn. moza	Nosy Be 270	USNM 240959	
2346RV	Mn. moza	Nosy Be 230	USNM 240964	
2347 LVJ	Mn. moza	Nosy Be 230	USNM 240965	
2848RVJ	Mn. moza	Nosy Be 230	USNM 240965	
2349 WJ	Mn. moza	Nosy Be 230	USNM 240965	
2350 WJ	Mn. moza	Nosy Be 280	USNM 240965	

Specimen Number	Name	Collecting Locality	Repository	Notes
2351M	Mn. captiosa	AB-8-412C	USNM 240839	Holotype
2352F	Mn. captiosa	AB-8-412C	USNM 240841	
2353M	Mn. captiosa	AB-812C	USNM 240842	
2354 RV	Mn. captiosa	Nosy Be 366	USNM 240845	
2355 LV	Mn. captiosa	Nosy Be 366	USNM 240846	
2356M	Ms. hiulca	AB-7-881C	USNM 240629	Holotype
2357F	Ms. hiulca	AB-7-881C	USNM 240630	Holotype
2358 F	Ms. hiulca	AB-7.371C	USNM 240632	
2559J	Ms. hiulca	AB-7-881C	USNM 240631	
2360 M	Ms. capacis	AB-8403F	USNM 240623	Holotype
2361 F	Ms. capacis	AB-8403F	USNM 240624	
2362 F	Ms. capacis	AB-8-403F	USNM 240625	
2363 F	Ms. capacis	AB-8-403F	USNM 240626	
2364M	Mn. madagascarensis	JR-29	USNM 240917	
2865 M	Mn. moza	JR-29	USNM 240972	
2366 F	Ms. capacis	AB-8403F	USNM 240627	
2367 LV	Mn. quadrimaculata	Labutis 1805	USNM 239050	
2368 LV	Mn. quadrimaculata	Labutis 1305	USNM 239051	
2369RV	Mn. quadrimaculata	Labutis 1805	USNM 239052	
2370 RV	Mn. quadrimaculata	Labutis 1305	USNM 239053	
2371 F	Mh. turbida	HU.13.CA.3.N. 582-10		
2372F	Mh. turbida	HU.18.CA.3.N.582-10		
2873 LVJ	Mk. ligustica	Bonaduce 9	Bonaduce	
2374 LV	Mn. bonaducci	Bonaduce 6	USNM 240835	
2875 RV	Mn. bonaducei	Bonaduce 6	USNM 240835	
2376RV	Mx. sp. 13	AB-7-365D	USNM 240583	
2377 RV	Mx. sp. 13	AB-7-365D	USNM 240584	
2378 LV	Mx. sp. 13	AB.7-965D	USNM 240585	
2379LV	Mx. sp. 13	AB-7-365D	USNM 240586	
2380M	Mh. inaequata	GL-2-0001	USNM 240695	
2382M	Mx. similis	AII-91-169A	USNM 240570	
2383 F	Mx. similis	AII-31-169A	USNM 240571	
$2384 \mathrm{M}$	Mx. kornickeri	AII-31-169A	USNM 240539	Holotype
2385F	Mx. kornickeri	AII-31-169A	USNM 240540	
2386M	Mx. bathyalensis	All-24-118H	USNM 240282	
2387M	Mx. bathyalensis	AII-24-118H	USNM 240283	
2388F	Mx. bathyalensis	All-24-118H	USNM 240284	
2389M	Mx. bathyalensis	AII-24-118H	USNM 240288	
2390F	Mx. bathyalensis	C-50-85	USNM 240289	
2391W	Mx. bathyalensis	AII-12-65	USNM 240287	
2392M	Mx. sapeloensis	C\#1	USNM 240419	
2400M	Mn. barbara	SBMNH 29	USNM 239150	Holotype
2401 F	Mn. barbara	SBMNH 1	USNM 239151	
2402J-2	Mn. barbara	SBMNH 14	USNM 239152	
$2403 \mathrm{Fj}-1$	Mn. barbara	SBMNH 1	USNM 239153	
2404 RV	M. opinabilis	AB-7-365D	USNM 240323	Holotype
2405 LV	M. opinabilis	AB-7-365D	USNM 240324	
2406RV	Mk. sp. 4	AB.7-361B	USNM 240394	
2407 W	Mh. sp. 29	E-39-32	USNM 240786	
2408LV	Mh. sp. 28	E-39-32	USNM 240785	
2409W	Mn. sp. 43	Nosy Be 070	USNM 239138	
2410 LV	Mh. sp. 27	E-39-32	USNM 240783	
2411RV	Mx. sp. 12	UH 4182	USNM 240581	
2412LV	Mx improcera	UH 1617	USNM 240502	
2413 RV	Mx. improcera	UH 4125	USNM 240498	Holotype

Specimen Number	Name	Collecting Locality	Repository	Notes
2414LV	Mx. improcera	UH 4125	USNM 240499	
2415RV	Mx. improcera	UH 4125	USNM 240500	
2416RV	Mx. simulans	UH 4132	USNM 240574	Holotype
2417LV	Mx. simulans	UH 4132	USNM 240575	
2418RV	Mn. caiman	UH 2860	USNM 240836	Holotype
2419LV	Mn. caiman	UH 2860	USNM 240837	
2420RV	Mn. sp. 44	UH 3046	USNM 239189	
2421 LV	Mn. sp. 41	UH 2882	USNM 289184	
2422F	Mn. sp. 42	AB-8412L	USNM 289136	
242sW	Mh. sp. 81	Swanson P484	USNM 240788	
2424RV	Mx. sp. 14	Swanson P667	USNM 240587	
2425RV	Mx. sp. 15	Swanson P654	USNM 240588	
2426LV	Mx. sp. 15	Swanson P654	USNM 240589	
2427W	Mh. sp. 32	Swanson P566	USNM 240789	
2428RV	Mn. sp. 45	Swanson P462	USNM 239141	
2429LV	Mn. sp. 45	Swanson P462	USNM 239142	
3029J-3	M. maioris	AII-81-156		Lost

Figure 1
Mostly right and left valve exteriors, Macrocypris and Macropyxis, X35.-1-4. Macrocypris metuendan. sp.; 1,2, 1405M; 3,4, 1401F. -5,6. Macropyxis sp. 16, 327F, 5, interior and 6, exterior of right valve.

Figure 2
Right valve exteriors, Macrocypris, X35._1-3. Macrocypris minna (Baird); 1,1846; 2, 2002M; 3, 2003F.-4. Macrocypris nimian. sp., 1524.—5,6. Macrocypris mirandan. sp.; 5, 1419M; 6,1420F.——7,8. Macrocypris maiorisn. sp.; 7,1774M; 8, 1769F.

Figure 3
Left valve exteriors, Macrocypris, X35.-1-3. Macrocypris minna (Baird); 1,$1348 ; 2,2002 \mathrm{M} ; 3,2003 \mathrm{~F}$--4. Macrocypris nimia n . sp., 1738.—5,6. Macrocypris mirandan. sp.; 5, 1419M; 6,1420F- - 7,8. Macrocypris maiorisn. sp.; 7,1774M; 8, 1769F.

Figure 4
Mostly right valve exteriors, Macrocypris and Macromchenziea, $\times 35$.-1. Macromckenziea sp. 2, 1960.-2. Macrocypris opinabilis n. sp., 2404.-3-5. Macrocypris proclivisn. sp.; 3,4, 128F, interior and exterior; 5, 361F.-6. Macrocypris sp. 1, 858F.-7. Macromchenziea sp. 4, 2406.-8. Macromckenziea ligustica (Bonaduce, Masoli, and Pugliese), 2276.-9. Macromckenziea swansoni n. sp., 2332. -10,11. Macromckenziea gregalis n . sp.; 10, 1912M?; 11, 1918F?-12,13. Macromckenziea siliquosa (Brady); 12, 1414M; 13, 1412F. -14,15. Macromckenziea glacierae n. sp.; 14, 719F; 15, 880M.

Figure 5

Left valve exteriors, Macroypris and Mactomckenziea, X35.-1. Macromckenziea sp. 2, 1960.-2. Macrocypris opinabilis n. sp., 2405. -3-5. Macrocypris proclivisn. sp.; 3,4, 128F; 5, 361F-6. Macrocypris sp. 1,858F.-7. Macromckenziea ligustica (Bonaduce, Masoli, and Pugliese), 2276.-8. Macromckenziea swansoni n. sp., 2831.-9,10. Macromckenziea gregalis n. sp.; 9, 1912M?; 10, 1913F?. -11,12. Mactomckenziea siliquosa (Brady); 11, 1414M; 12, 1412F-13,14. Macromckenziea glacieraen. sp.; 13, 719F; 14, 880M.

Figure 6

Right valve exteriors, Macromchenziea and Macropyxis, X35.-1. Macromckenziea sp. 5, 1460F.-2. Macromchenziea sp. 6, 2319F.-3. Macropyxis sp. 14, 2424.-4. Macromchenziea sp. 19, 1495M.-5. Macropyxissp. 15, 2425.-6,7. Macropyxis kaeslorin. sp.; 6, 1967M; 7, 1968F.-8. Macropyxis ellaninae n. sp., 838F.-9. Macromckenziea australiana (Neale, 1975, from pl. 1, fig. 11).-10. Macromekenziea sp. 3, 1995F-11. Macromchenvieasp. 7, 836.-12. Macropyxis sp. 13, 2377.-13,14. Macropyxis improceran. sp.; 13, 2413; 14, 2415.-15,16. Macropyxis amoena n. sp.; 15, 1864F; 16, 1463M.-17,18. Macropyxis antonbruunae $\mathrm{n} . \mathrm{sp} . ; 17,333 \mathrm{~F} ; 18,332 \mathrm{M}$. -19. Macropyxis sp. 21, 1962F.-20,21. Macropyxis kalbin. sp.; 20, 351M; 21, 352F.

Figure 7

Left valve exteriors, Macromchenziea and Macropyxis, X35.-1. Macromckenziea sp. 5, 1460F.-2. Macromckenziea sp. 6, 2319F.-3. Macromchenxiea sp. 19, 1495M.—4. Macropyxis sp. 15, 2426.-5,6. Macropyxis kaeslerin. sp.; 5, 1967M; 6, 1968F.-7. Macropyxis eltaninaen. sp., 835F.-8. Macromckenziea sp. 3, 1995F.-9. Macromckenziea sp. 7, 836.-10. Macropyxis sp. 13, 2378.-11,12. Macropyxis improcera n. sp.; 11, 2412; 12, 2414.-13,14. Macropyxis amoena n. sp.; 13, 1864F; 14, 1463M.-15,16. Macropyxis antonbruunaen. sp.; 15, 333F; 16, 332M.-17. Macropyxis sp. 21, 1962F.-18, 19. Macropyxiskalbin. sp.; 18, 351M; 19, 352F.

Ficure 8

Right valve exteriors of Macropyxis, X $35 .-1$. Macropyxis sp. 11, 1416F.-_2,3. Macropyxis aduncan. sp.; 2, 1520M; 3, 1521F.-_4,5. Macropyxis audensn. sp.; 4, 1446M; 5, 1444F-6,7. Macropyxis amandan. sp.; 6, 1406M; 7, 1425F.-8. Macropyxis simulansn. sp., 2416- 9,10 . Macropyxis adriatica (Breman); 9, 2085; 10, 2086.-11,12. Macropyxis arta n. sp.; 11, 1454F; 12, 1456M.-13, 14. Macropyxis adrecta n. sp.; 13, 1448M; 14, 1527F.

Ficure 9

Left valve exteriors of Macropyxis, X85.-1. Macropyxis sp. 11, 1416F.-_2,3. Macropyxis adunca n. sp.; 2, 1520M; 3, 1521F.-4,5. Macropyxis audens n. sp.; 4, 1446M; 5, 1444F.-6,7. Macropyxis amandan. sp.; 6, 1406M; 7, 1425F.-8. Macropyxis simulans n. sp., 2417.-9,10. Macropyxis adriatica (Breman); 9, 2085; 10, 2082.-11,12. Macropyxis arta n. sp.; 11, 1454F; 12, 1456M.-13, 14. Macropyxis adrecta n. sp.; 13, 1527F; 14, 1448M.

Figure 10

Mostly right valve exteriors, Macropyxis, X35.-1. Macropyxis sp. 17, 1150F,-2-4. Macropyxis bathyalensis (Hulings); 2, 1741; 3, 2990F; 4, 2389M.-5. Macropyxis sp. 20, 1784-6,7. Macropyxis similis (Brady); 6, 2382M; 7, 2383F.-8,9. Macropyxis labutisin. sp.; 8, 1853F; 9, 1851M.-10,11. Macropyxis sapeloensis (Darby); 10, 1855M; 11, 1857F.-12,13. Macropyxis sp. 8, 126F, interior and exterior-14. Macropyxis sp. 18, 1443F.-15,16. Macropyxis kornickerin. sp.; 15, 2885F; 16, 2884M.

Figure 11

Mostly left valve exteriors, Macropyxis, X85.-1. Macropyxis sp. 12, 2411, right valve exterior.-_2-4. Macropyxis bathyalensis (Hulings); 2, 1742; 3, 2390F; 4, 2389M.—5,6. Macropyxis similis (Brady); 5, 2382M; 6, 2383F.-7,8. Macropyxis labutisi n . sp.; 7, 1853F; 8,1851M.-9,10. Macropyxis sapeloensis (Darby); 9,1355M; 10, 1857F.-11,12. Macropyxis sp. 8, 126F, left valve interior and exterior.-13,14. Macropyxis kornickerin. sp.; 13, 2885F; 14, 2884M.

Figure 12
Right valve exteriors, Macrocypria, Macrocyprissa, Macrosarisa, and Macroscapha, X35.-1,2. Macroscapha jiangin. sp.; 1, 1922M?; 2, 1921F?-3,4. Macroscapha marchilensis (Hartmann); 3, K-27321B(FZ)F; 4, K-27321A(FZ)M.-5,6. Macroscapha heroica n. sp.; 5, 1462M; 6, 1461F.-7. Macrocypria semesa n. sp., 857F.-8,9. Macrosarisa bensonin. sp.; 8, 1710F; 9, 1869M.-10,11. Macrosarisa hiulcan. sp.; 10, 2357F; 11, 2356M.-12. Macrosarisa texanan. sp., 2020.-13. Macroscapha gyreaen. sp., 1509.-14,15. Macrocppria sarsi (Müller); 14, 1998M; 15, 2000F.-16. Macrosarisa sp. 23,1415M.-17,18. Macrocyprissa arcuata (Colalongo and Pasini); 17, $1533 \mathrm{M} ; 18,1536 \mathrm{~F}$.-19,20. Macrosarisa capacis n. sp.; 19, 2360M; 20, 2361F.-21,22. Macrascapha atlantican. sp.; 21, 1982M; 22, 1983F.

Figure 18

Left valve exteriors, Macrocypria, Macrocyprissa, Macrosarisa, and Macroscapha, X85.-1,2. Macroscapha jiangi n. sp.; 1, 1922M?; 2, 1921F?- 3,4. Macroscapha marchilensis (Hartmann); 3, K-27321B(FZ)F; 4, K-27321A(FZ) M.-5,6. Macroscapha heroican. sp.; 5, 1462M; 6, 1461F.-7. Macrocypria semesa n. sp.; 857F.-8,9. Macrosarisa bensonin. sp.; 8, 1710F; 9, 1869M.-10,1I. Macrosarisa hiulcan. sp.; 10, 2857F; 11, 2356M.-12. Macrosarisa texanan. sp., 2020.-13. Macroscapha gyreaen. sp., 2012.-14,15. Macrocypria sarsi (Müller); 14, 1998M; 15, 2000F.-16. Macroscapha sp. 28, 2408.-17,18. Macrocyprissa arcuata (Colalongo and Pasini); 17, $1533 \mathrm{M} ; 18,1536 \mathrm{~F} .-19,20$. Mactosarisa capacis n. sp.; 19, 2860M; 20, 2361F.-21,22. Macroscapha atlantican. sp.; 21, 1982M; 22, 1983F.

Figure 14

Right valve exteriors, Macroscapha, X35.-1,2. Macroscapha opacan. sp.; 1, 1479M; 2, 1480F.-3,4. Macroscapha sinuata n. sp.; 3, 845M; 4, 852F.-5-7. Macroscapha tensa (Müller); 5, 861M; 6, 860F; 7, 1985F.-8. Macroscapha sp. 29, 2407.-9. Macroscapha sp. 32, 2427.-10-12. Macroscapha turbida (Müller); 10, 1475M; 11, 1488F; 12, 1943M.—13,14. Macroscapha inaequalis (Müller); 13, 1940M; 14, 1939F.-15,16. Mactoscapha inaequata n . sp.; 15, 714M; 16, 715F.

Figure 15

Left valve exteriors, Macroscapha, X35.-1,2. Macroscapha opaca n. sp.; 1, 1479M; 2, 1480F.-3,4. Macroscapha sinuatan. sp.; 3, 845M; 4, 852F.-5-7. Macroscapha tensa (Müller); 5, 861M; 6, 860F; 7, 1935F.-8. Macroscapha sp. 29, 2407.-9. Macroscapha sp. 32, 2427.-10. Macroscapha sp. 27, 2410._11-13. Macroscapha turbida (Müller); 11, 1475M; 12, 1488F; 13, 1943M.-14, 15. Macroscapha inaequalis (Müller); 14, 1940M; 15, 1939F-16,17. Macroscapha inaequatan. sp.; 16, 714M; 17, 715F.

Figure 16

Right valve exteriors of Macrocyprina, X35.-1,2. Macrocyprina propinqua Triebel; 1, Xe 3362M; 2, Xe 3364F-_3,4. Macrocyprina hortuli n. sp.; 3, 1762M; 4, 1761F.-5-7. Macrocyprina skinneri Kontrovitz; 5, HVH 9439; 6, HVH 9438; 7, 1844.-8. Macrocyprina belizensis n. sp., 1828.-9,10. Macrocyprina schmitti (Tressler); 9, 1763M; 10, 1806F-_11,12. Macrocyprina hawkaen. sp.; 11, 1817M; 12, 1819F.-13. Macrocyprina parcens n . sp., 2266.-14,15. Macrocyprina barbara n. sp.; 14, 2400M; 15, 2401F.-16. Macrocyprina vargata Allison and Holden, 1507F-17,18. Macrocyprina succinea (Müller); 17, 1906F; 18, 1904M.-19. Macrocyprina caimann. sp., 2418.-20. Macrocyprina sp. 44, 2420.-21. Macrocyprina bermudae n. sp., 1843a.-22. Macrocyprina sp. 35, 1708.-23. Macrocyprina sp. 36, 1705.-24. Macrocyprina sp. 34, 1704.-25. Macrocyprina quadrimaculata n . sp., composite of specimens 2369 and 2870.-26,27. Macrocyprina hartmanni n . sp.; 26, 2130M; 27, 2132F.-28. Macrocyprina sp. 45, 2428.-29. Macrocyprina okinawae n . sp., 2068.-30,31. Macrocyprina noharai n . sp.; 30, 2058F; 31, 2063.-_32. Macrocyprina jamaicae n . sp., 1835.- 33. Macrocyprina bonaducei n . sp., 2263.——34,35. Macrocyprina captiosa n. sp.; 34, 2351M; 35, 2352F.——36. Macrocyprina sp. 43, 2409. -37. Macrocyprina moza n. sp., 2344F.-38. Macrocyprina sp. 42, 2422.—39, 40. Macrocyprina madagascarensisn. sp.; 39, 1757M; 40, 1149F.-41,42. Macrocyprina dispar (Müller); 41, 1933M; 42, 1931F.—43,44. Macrocyprina africana (Müller); 43, 1938F; 44, 1937M.

Figure 17

Left valve exteriors of Macrocyprina, X 35 -——1,2. Macrocyprina propinqua Triebel; 1, Xe 3362M; 2, Xe 3364F.-3,4. Macrocyprina hortuli n. sp.; 3, 1762M; 4, 1761F.-5,6. Macrocyprina skinneri Kontrovitz; 5, 1845; 6, HVH 9437.- 7. Macrocyprina belizensis n. sp., 1829.-8-10. Macrocyprina schmitti (Tressler); 8, HVH 9440; 9, 1763M; 10, 1806F.-11,12. Macrocyprina hawkaen. sp.; 11, 1819F; 12, 1817M.-13. Macrocyprina parcens n. sp., 2265.-14,15. Macтocyprina barbara n. sp.; 14, 2400M; 15, 2401F.-16. Macrocyprina swaini n. sp., 2285.-17. Macrocyprina vargata Allison and Holden, 1507F.-18,19. Macrocyprina succinea (Müller); 18, 1906F; 19, 1904M.-20. Macroyprina caiman, 2419.-21. Macrocpprina bermudae n. sp., 1843A.-22. Macrocyprina sp. 45, 2429.-23. Macrocyprina sp. 38, 1707.-24. Macrocyprina sp. 34, 1518._-25. Macrocyprina quadrimaculata n . sp., composite of specimens 2867
and 2368.-26,27. Macrocyprina hartmanni n. sp.; 26, 2130M; 27, 2132F.-28. Macrocyprina okinawae n. sp., 2064.-29. Macrocyprina noharai n . sp., 2058F-_30. Macrocyprina jamaicae n. sp., 1836.-31. Macrocyprina sp. 41, 2421.- 32. Macrocyprina bonaduca $\mathrm{n} . \mathrm{sp} ., 2261$ - 33,34. Macrocyprina captiosa n. sp.; 33, 2351M; 34, 2352F.-35. Macrocyprina sp. 43, 2409.-36. Macrocyprina moza n . sp., 2844F.-37. Macrocyprina sp. 42, 2422.-38,39. Macrocyprina madagascarensis n . sp.; 38, 1757M; 39, 1149F.-40,41. Macrocyprina dispar (Müller); 40, 1933M; 41, 1931F.-42. Macrocyprina africana (Müller), 1936F.

Figure 18
Left anterior radial pore canals, Macrocypris, Macropyxis, and Macromckenziea, $\times 100 .-1$. Macrocypris metuendan. sp., 1405M.-2. Mactocypris maioris n. sp., 1774M.—3. Macrocypris miranda n. sp., 1419M.-4. Macrocypris minna (Baird), 2002M.-5. Macromckenziea siliquosa (Brady), 1414M.-6. Macropyxis similis (Brady), 2382M.-7. Macropyxis kornickerin. sp., 2384M.-8. Macropyxis bathyalensis (Hulings), 2389M.-9. Macrocypris proclivisn. sp., 128F.-10. Macromckenziea ligustica (Bonaduce, Masoli, and Pugliese), 2276.-11. Macropyxis sp. 8, 126F.-12. Macropyxis amoenan. sp., 1463M.-13. Macromckenziea glacieraen. sp., 880M.

Figure 19

Left anterior radial pore canals, Macropyxis, X100.-1. Macropyxis amandan. sp., 1425F.-2. Macropyxis audensn. sp., 1444F.-3. Macropyxis arta n. sp., 1456M.-4. Macropyxis bathyalensis (Hulings), 1742.-5. Macropyxis adrectan. sp., 1527F.-6. Macropyxis adunca n. sp., 1521F.-7. Macropyxis sp. 11, 1416F.-8. Macropyxis sapeloensis (Darby), 1355M.-9. Macropyxis labutisi n. sp., 1851M.-10. Macropyxis adriatica (Breman), 2082.

Ficure 20

Left anterior radial pore canals, Macropyxis, Macroscapha, and Macrosarisa, X100.-1. Macroscapha tensa (Müller), 860F.-2. Macroscapha inaequata n. sp., 715F-_3. Macroscapha sinuata n. sp., 852F.-4. Macroscapha gyreaen. sp., 2012.-5. Macroscapha heroican. sp., 1462M.-6. Macroscapha turbida (Müller), 1488F.-7. Macroscapha atlantican. sp., 1983F.-8. Macrosarisa capacis n. sp., 2360 M - 9. Macropyxis kalbi n . sp., 351M.-10. Macropyxis antonbruunaen. sp., 333F.-11,12. Macropyxis kaeslori n. sp.; 11, 1968F; 12, 1967M.

Figure 21

Mostly left anterior radial pore canals, Macrocypria, Macrocyprissa, Macrosarisa, and Macrocyprina, $\times 100 .-1$. Macrocyprina africana (Müller), 1936F.-2. Macrocyprina dispar (Müller), 1983M.-3. Macrocyprina hartmanni n. sp., 2130M.-4. Macrocyprina moza, 2344F.-5. Macrogprina captiosa n. sp., 2351M.-6. Macrocyprina noharai n. sp., 2058F.—7. Macrocyprina parcens n. sp., 2265. -8. Macrocyprina swaini n . sp., 2285.-9. Macrocyprina bonaducei n . sp., 2261.-10. Macrocyprina hortuli n . sp., 1761F., 11 . Macrocyprina bermudaen. sp., 1843a.-12. Macrocpprina succinea (Müller), 1904M.-13. Macrocpprina vargata Allison and Holden, 1507F.-14. Macrocyprina jamaicaen. sp., 1836.-15. Macrogypina hawkaen. sp., 1817M.-16. Macrocyprina schmitti (Tressler), 1763M.-17. Macrocyprina belizensis n. sp., 1829.-18. Macrocyprina skinneri Kontrovitz, 1845.-19. Macrocyprina propinqua Triebel, Xe3362M.-20. Macrosarisa bensoni n. sp., 1710F- - 21,22. Macrosarisa texana n. sp., 2020; part 22 is a right valve.- 23. Macrosarisa hiulca n. sp., 2356M.-24. Macrocpprissa arcuata (Colalongo and Pasini), 1533M.-25. Macrogppria sarsi (Müller), 1998M.

Ficure 22
Left posterior radial pore canals, Macrocypris and Macropyxis, X100.-1. Macropyxis kornickeri n. sp., 2384M.-2,10. Macropyxis bathyalensis (Hulings); 2, 2889M; 10, 1742- 3,4. Macropyxis artan. sp.; 3, 1456M; 4, 1454F.— 5. Macropyxis kalbin. sp., 351M.-6. Macropyxis antonbruunaen. sp., 333F- 7. Macropyxis amandan. sp., 1425F- 8. Macropyxis adrectan. sp., 1527F.-9. Macropyxis sp. 11, 1416F.-11. Macropyxis aduncan. sp., 1521F,-12. Macropyxis audensn. sp., 1444F.-13. Macropyxis similis (Brady), 2382M. -14. Macropyxis labutisi n. sp., 1851M.-15. Macropyxis sapeloensis (Darby), 1855M.-16. Macropyxis amoena n. sp., 1463M. -17. Macrocppris miranda n. sp., 1419M, note the terminal spine.-18. Macrocypris maioris n. sp., 1774M.-19. Macrocppris metuendan. sp., 1405M.-20. Macropyxis adriatica (Breman), 2082.

Figure 23

Left posterior radial pore canals, Macrocypria, Macrogyprissa, Macrosarisa, Macroscapha, and Macrocyprina, $\times 100 .-1$. Macrocyprina propinqua Triebel, Xe 3562M.-2. Macrocyprina bermudaen. sp., 1843a.-3. Macrocyprina hortutin. sp., 1761F.-4. Macrocyprina skinneri Kontrovitz, 1845.-5. Macrocyprina schmitti (Tressler), 1763M.-6. Macrocyprina belizensis n. sp., 1829.-7. Macrocyprina hawkaen. sp., 1817M.-8. Macrocyprina jamaicaen. sp., 1836.-9. Macrocyprina succinea (Müller), 1904M.-10. Macrocyprina moza n. sp., 2344M.-11. Macrogprina hartmannin. sp., 2130M.-12. Macrocyprina bonaducein. sp., 2261.-13. Macrocyprina noharain. sp., 2058F-14. Macrocyprina swaini n. sp., 2285.-15. Macrocyprina vargata Allison and Holden, 1507F.-16. Mactoscapha sinuata n. sp., 852F.-17. Macroscapha heroica n. sp., 1462M.-18. Macroscapha turbida (Müller), 1488F.-19. Macroscapha inaequatan. sp., 715F-20. Macroscapha tensa (Müller), 860F.-21. Macrocypria sarsi (Müller), 1998M.-22. Mactosanisa texanan. sp., 2020.-23. Macrosarisa bensoni n. sp., 1710F.-24. Macrocyprissa arcuala (Colalongo and Pasini), 1533M.-25. Macrosarisa capacisn. sp., 2360M.

Figure 24

Left exterior muscle scar patterns, X100.-1. Macrocypris minna (Baird), 2002M.-2. Macrocypris mirandan. sp., 1419M.-3. Macrogypris maioris $\mathrm{n} . \mathrm{sp} ., 1774 \mathrm{M}$ - 4. Macrocypris metuenda n. sp., 1405M.-5. Macropyxis bathyalensis (Hulings), 1742.-6. Macropyxis adriatica (Breman), 2082.-7. Macropyxis adrectan. sp., 1527F.-8. Macropyxis audensn. sp., 1444F.-9. Macropyxis amandan. sp., 1425F.-10. Macropyxis kalbin. sp., $351 \mathrm{M} .-11$. Macropyxis antonbruunaen. sp., 383F--12,13. Macropyxis kaesleri n. sp.; 12, 1967M; 13, 1968F.-14. Macropyxis sp. 11, 1416F.-15. Macropyxis labutisi, 1351M.-16,17. Macropyxis arta n. sp.; 16, 1456M;17, 1454F.-18. Macropyxis adunca n. sp., 1521F.-19. Macromckenziea glacierae n. sp., 880M.-20. Macromckenziea gregalis n. sp., 1913F.-21. Macromchenziea ligustica (Bonaduce, Masoli, and Pugliese), 2276.-22. Macropyxis amoena n. sp., 1463M.-23. Macromckenziea siliquosa (Brady), 1414M.-24. Macroscapha tensa (Müller), 860F.-25. Macroscapha sinuatan. sp., 852F-26. Macroscapha inaequata n. sp., 715F.-27. Macroscapha turbida (Müller), 1488F.-28. Macrosarisa capacis n. sp., 2360M.-29. Macroscapha atlantica n. sp., 1983F.-30. Macroscapha gyreae n. sp., 2012.-31. Macrosarisa bensoni n. sp., 1710F. -32. Macrosarisa hiulcan. sp., 2356M.-33. Macrosarisa texanan. sp., 2020.-34. Macroyprissa arcuata (Colalongo and Pasini), 1533M.-35. Macrocypria sarsi (Müller), 1998M.-36. Macrocyprina propinqua Triebel, Xe 3362.-37. Macrocyprina hortuli n. sp., 1761F.-38. Macrocyprina bermudaen. sp., 1843A.-39. Macrocyprina skinneri Kontrovit, 1845.-40. Macrocyprina belizensis n . sp ., 1829.-41. Macrocyprina jamaicaen. sp., 1896.-42. Macrocyprina moza n. sp., 2344F.-43. Macrocyprina captiosa n. sp., 2351M. -44. Macrocyprina bonaducein. sp., 2261.-45. Macrocyprina hartmannin. sp., 2150M.-46. Macrocyprina noharai n. sp., 2058F. -47. Macrocyprina succinea (Müller), 1904M.-48. Macrocyprina swainin. sp., 2285.

Figure 25
Male right and left fifth limbs (maxillae) of Macrocypris, Macromckenziea, and Macropyxis, $\mathrm{X} 155 .-1,2$. Macrocypris minna (Baird), 2002M.-3,4. Macrocypris maionis n. sp., 1744M.—5,6. Macromckenziea siliquasa (Brady), 1410M.-7,8. Macromckenziea glacieraen. sp.,880M.-9,10. Macropyxis amoena n. sp., 1463M.-11,12. Macrocypris mirandan. sp., 1419M.-13,14. Macrocypris metuendan. sp., 1405 M .

Figure 26

Male right and left fifth limbs (maxillae) of Macropyxis and Macromckenziea, $\times 155 .-1-3$. Macropyxis sapeloensis (Darby); 1,2, 1354M; 3, 1358MF? (pathological intersex or incompletely metamorphosed male).-4,5. Macropyxis arta n. sp., 1456M.-6-9. Macropyxis antonbruunae n. sp.; 6,7, $332 \mathrm{M} ; 8,9,358 \mathrm{M}$--10,11. Macropyxis eltaninae n. sp., 831M.-12,13. Macropyxis labutisi n. sp., 1351M. -14,15. Macropyxis kornickerin. sp., 2384M.-16,17. Macropyxis bathyalensis (Hulings), 2889M.-18, 19. Macropyxis kaeslerin. sp., 1967M.-20,21. Macromckenziea sp. 19, 1495M.-22,23. Macropyxis audens n . sp., 1446M.-24,25. Macropyxis adrecta n . sp., 1448M.-26,27. Macropyxis amandan. sp., 1406M.-28,29. Macropyxis similis (Brady), 2382M.-30,31. Macropyxis aduncan. sp., 1520M.-32,33. Macropyxis kalbin. sp., 351M.

Figure 27
Male right and left fifth limbs (maxillae) of Macroscapha, $\times 155 .-1$. Macroscapha marchilensis (Hartmann), K-27321 (GL) M.-2,3. Macroscapha heroica n . sp., 1462M.-4,5,16,17. Macroscapha sinuata n. sp.; 4,5, 845M; 16,17, 848MF?, pathological.-6-9. Macroscapha turbida (Müller); 6,7,1475M; 8,9, 1943M.-10,11. Macroscapha inaequata n. sp., 714M.-12,13. Macroscapha atlantican. sp., 1982M.-14,15. Macroscaphasp. 25, 198M.-18,19. Macroscapha opacan. sp., 1479M.-20,21. Macroscapha inaequalis (Müller), 1940M.-22,23. Macroscapha tensa (Müller), 861M.

Figure 28

Male right and left fifth limbs (maxillae) of Macrocypria, Macrocyprissa, Macrosarisa, and Macrocyprina, X155.-1,2. Macrocyprina propinqua Triebel, Xe 3362M.-3-5. Macrocyprina schmitti (Tressler); 3,4, 1763M; 5, 1538M.-6,7. Macrocyprina moza n. sp., 2365M.-8,9. Macrocyprina madagascarensisn. sp., 1757M.-10,11. Macrogyprina africana (Müller), 1987M.-12,13. Macrocyprina hortulin. sp., 1762M.-14-16. Macrocyprina hawkaen. sp.; 14, 1817M; 15, 1853M; 16, 1852M.-17,18. Macrocyprina dispar (Müller), 1935M.-19,20. Macrosarisa hiulca n. sp., 2856M.-21,22. Macrocyprina bermudaen. sp., 1759M.-23,24. Macrocyprina succinea (Müller), 1905M.-25,26. Mactocyprina hartmannin. sp., 2130M.-27,28. Macrocyprina captiosan. sp., 2351M.-29,30. Macrocyprissa arcuata (Colalongo and Pasini), 1533M.-31,32. Macrosarisa bensonin. sp., 1869M.-33-35. Macrocyprina skinneri Kontrovitz; 33, 1910M; 34,35, 1909M.-36,37. Macrocyprina swaini n. sp., 1992M.-38,39. Macrocyprina barbara n. sp., 2400M.-40,41. Macrocypria sarsi (Müller), 1998M.—42,43. Macrocypria semesa n. sp., 843M.-44,45. Macrosarisa sp. 23, 1415M.

Figure 29

Female fifth limbs (maxillae) of Macrocypris, Macromckenziea, Macrocypria, Macrocyprissa, and Macrosarisa, $\times 155 .-1$ - Macromckenziea glacierae n. sp., 719F.-2. Macromckenziea sp. 3, 1995F.-3. Macromckenziea sp. 5, 1460F. - 4. Macromckenziea sp. 6, 2819F.-5. Macromckenziea ligustica (Bonaduce, Masoli, and Pugliese), 2774F-6. Macromckenziea siliquosa (Brady), 1412F.-7. Macrosarisa bensoni n. sp., 1710F.-8. Macrosarisa hiulca n. sp., 2357F.-9. Macrocyprissa arcuata (Colalongo and Pasini), 1536F.-10. Macrocypria semesa n. sp., 857F.-11. Macrocypria sarsi (Müller), 2000F.-12. Macrocypris maioris n. sp., 1769F.-13. Macrocypris miranda n. sp., 1420F.-14,16,17. Macrocypris minna (Baird); 14, 2003F; 16,17, 1339F.-15. Macrocypris metuenda n . sp., 1402F. -18. Macrocypris sp. 1, 858F.-19. Macrocypris proclivis n. sp., 361F.

Figure 30

Female fifth limbs (maxillae) of Macropyxis, X155.-1. Macropyxis sapeloensis (Darby), 1357F.-2. Macropyxis sp. 11, 1416F.-3. Macropyxis aduncan. sp., 1521F.-4. Macropyxis audensn. sp., 1444F.-5. Macropyxis similis (Brady), 2383F.-6. Macropyxis adrecta n. sp., 1527F.-7,12. Macropyxis bathyalensis (Hulings); 7, 2390F; 12, 1341F.-8. Macropyxis kornickerin. sp., 2385F.-9. Macropyxis arta n . sp., 1454F.-10. Macropyxis amanda n. sp., 1425F.-11. Macropyxis sp. 18, 1443F.-13. Macropyxis antonbruunae n. sp., 333F-14. Macropyxis kalbin. sp., 352F.-15. Macropyxis sp. 21, 1962F.-16. Macropyxis labutisin. sp., 1353F.-17. Macropyxis kaeslerin. sp., 1968F.-18. Macropyxis eltaninaen. sp., 833F.-19. Macropyxis sp. 16, 327F.-20. Macropyxis amoena n. sp., 1864F.

Figure 31

Female fifth limbs (maxillae) of Macrosarisa, Macroscapha, and Macrocyprina, X155._-1. Macrosarisa capacis n. sp., 2961F.-2. Macroscapha marchilensis (Hartmann), K-27321(GL)F.-3. Macroscapha sinuata n. sp., 852F.-4. Macroscapha tensa (Müller), 860F. -5. Macrocyprina moza n. sp., 2344F.-6. Macrocyprina captiosa n. sp., 2352F.-7. Macrascapha opaca n. sp., 1480F.-8. Macroscapha inaequalis (Müller), 1939F- -9. Macroscapha inaequatan. sp., 715F (pathological, with extra seta).-10,11. Macroscapha turbida (Müller); 10, 1488F; 11, 1947F.-12. Macrocyprina vargata Allison and Holden, 1507F.-13. Macrocyprina barbara n. sp., 2401F-14. Macrocyprina bermudae $\mathrm{n} . \mathrm{sp}$., 1758F,-15. Macrocyprina succinea (Müller), 1906F--16. Macrocyprina propinqua Triebel, Xe 3364F.-17. Macrocyprina hortulin. sp., 1761F.-18. Macrocyprina hawkaen. sp., 1819F.-19. Macrocyprina skinneri Kontrovitz, 1911F.-20. Macrocypnina hartmannin. sp., 2132F.-21. Macrooyprina madagascarensisn. sp., 1149F.-22. Macrocyprina africana (Müller), 1936F-23. Macrocyprina dispar (Müller), 1931F- - 24,25. Macroscapha atlantican. sp., 1984F; 24, normal leg; 25, pathological leg with extra seta.-26. Macroscapha heroican. sp., 1461F.

Figure 32

Sixth limbs (first thoracic legs) of Macrocypris and Macromckenziea, X95.-1. Macromckenziea ligustica (Bonaduce, Masoli, and Pugliese), 2274F-2. Macromchenziea glacierae n. sp., 718F.-3,9. Macrocypnis minna (Baird); 3, 2002M; 9, 1339F.-4. Macromckenziea sp. 3, 1995F.-5. Macromchenziea sp. 5, 1460F.-6. Macromckenziea sp. 6, 2319F.-7. Macromckenziea siliquosa (Brady), 1410M.-8. Macrocypris sp. 1,858F.-10. Macrocypris maioris n. sp., 1431M.-11. Macrocypris miranda n. sp., 1419M.-12. Macrocypris proclivis n. sp., 361F.-13. Macrocypnis metuendan. sp., 1405M.

Figure 33

Sixth limbs (first thoracic legs) of Macropyxis, X95.-1. Macropyxis antonbruunae n. sp., 358M.——2. Macropyxis adunca n. sp., 1520 M - 3. Macropyxis sp. 16, 327F.-4. Macropyxis kalbi n. sp., 851 M - - . Macropyxis bathyalensis (Hulings), 2389M.-6. Macropyxis sp. 18, 1443F.-7. Macropyxis audens n. sp., 1446M.—8. Macropyxis amandan. sp., 1406M.—9. Macropyxis eltaninaen. sp., 831M.-10. Macropyxis labutisin. sp., 1367M.-11. Macropyxis kaeslerin. sp., 1967M.

Figure 34
Sixth limbs (first thoracic legs) of Macropyxis, Macromckenziea, Macrosarisa, and Macroscapha, X95.-1. Macrosanisa capacis n. sp., 2361F.-2. Macropyxis arla n. sp., 1456M.-3. Macropyxis sp. 11, 1416F.-4. Macromckenzia sp. 19, 1495M.-5. Macropyxis bathyalensis (Hulings), 1341F.-6. Macropyxis adrectan. sp., 1448M.-7. Macropyxis kornickerin. sp., 2384M.-8. Macroscapha opaca n. sp., 1479M.—9. Macropyxis sapeloensis (Darby), 1854M.—10,15. Macroscapha turbida (Müller); 10, 1475M; 15, 1943M.-11. Macroscapha tensa (Müller), 861M.-12. Macroscapha inaequata n. sp., 715F.-13. Macroscapha inaequalis (Müller), 1940M.-14. Macropyxis sp. 21, 1962F.-16. Macropyxis similis (Brady), 2382M.

Figure 35

Sixth limbs (first thoracic legs) of Macrocypria, Macrocyprissa, Macrosarisa, Macroscapha, and Macrocyprina, X95.-1. Macrocyprina succinea (Müller), 1905M.-2. Macroyprina barbara n. sp., 2400M.-3. Macrogprina swaini n. sp., 1992M.-4. Macrocpprina vargata Allison and Holden, 1507F.-5. Macrocyprina bermudae n. sp., 1759M.-6. Macrogprina hortuli n. sp., 1761F.-7. Macrocpprina propinqua Triebel, Xe 3368M.-8. Macrocyprina skinneri Kontrovitz, 1909M.-9. Macrocyprina schmitti (Tressler), 1538M.-10. Macrocyprina hawkaen. sp., 1818M.-11. Macrogprina mozan. sp., 2365M.-12. Macrocyprina madagascarensisn. sp., 1757M.-13. Macrocyprina captiosa n. sp., 2352F.-14. Macrocyprina hartmannin. sp., 2130M.-15. Macrocyprina dispar (Müller), 1931F.-16. Macrocyprina africana (Müller), 1937M.-17. Macrocypria semesa n. sp., 857M.-18. Macrosarisa sp. 23, 1415M. 19. Macrocyprissa arcuata (Colalongo and Pasini), 1533M.-20. Macrocypria sarri (Müller), 1998M.-21. Macroscapha sp. 25, 198M.-22. Macrosanisa hiulca n. sp., 2356M.-23. Macrosarisa bensoni n. sp., 1417F.-24. Macroscapha sinuata n. sp., 845M. -25. Macroscapha atlantica n. sp., 1982M.-26. Macroscapha marchilensis (Hartmann), K-27321(G).

Figures 36 and 37
Seventh limbs (second thoracic legs) of Macrocypris, Macropyxis, and Macromchenziea, X155.-1. Macropyxis sp. 16, 327F.-2. 2 . Macrocypris sp. 1, 858F.-3. Macrocypris minna (Baird), 1839F.-4. Macrocypris metuenda n. sp., 1405M.-5. Macromchenziea siliquosa (Brady), 1414M.-6. Macromchenziea sp. 3, 1995F.-7. Macromchenziea ligustica (Bonaduce, Masoli, and Pugliese), 2274F. -8. Macromckenziea glaciaaen. sp., 880M.-9. Macrogypris maionisn. sp., 1774M.-10. Macropyxis amoena n. sp.,1463M.

Figure 38

Seventh limbs (second thoracic legs) of Macrocypris and Macropyxis, X155.-1. Macropyxis sapeloensis (Darby), 1355M.-2. Macrocypris proclivis n. sp., 361F.-3. Macrocypris mirandan. sp., 1419M.-4. Macropyxis similis (Brady), 2382M.-5. Macropyxis labutisi n . sp., 1851M.

Figure 39

Seventh limbs (second thoracic legs) of Macrocypris and Macropyxis, $\times 155 .-1$. Macropyxis audens n. sp., 1446M.-2. Macropyxis sp. 11, 1416F,-3. Macropyxis adrecta n. sp., 1448M.-4. Macrocypris minna (Baird), 2002M.-5,6. Macropyxis bathyalensis (Hulings); 5, 2389M; 6, 1341F.

Figure 40
Seventh limbs (second thoracic legs) of Macropyxis and Macromckenziea, X155.-1. Macropyxis arla n. sp., 1456M.-2. Macropyxis eltaninae n. sp., 851M.-3. Macropyxis antonbruunae n. sp., 832M.-4. Macropyxis sp. 19, 1495M.-5. Macropyxis kaesleri n. sp., 1967M.-6. Macropyxis kalbin. sp., 351M.-7. Macromchenziea sp. 5, 1460F.

Figure 41
Seventh limbs (second thoracic legs) of Macropyxis and Macromckenziea, X155._-1. Macropyxis sp. 18, 1443F.-2. Macropyxis kornickerin. sp., 2384M.-3. Macropyxis sp. 21, 1962F.-4. Macromckenziea sp. 6, 2819F.-5. Macropyxis amanda n. sp., 1406M. -6. Macropyxis aduncan. sp., 1520M.

Figure 42

Seventh limbs (second thoracic legs) of Macrosarisa and Macroscapha, X155.-1. Macroscapha opacan. sp., 1479M.-2. Macroscapha inaequatan. sp., 714M.-3. Macroscaphasp. 25, 198M.-4. Macrosarisa capacisn. sp., 2961F.-5. Macroscapha inaequalis (Müller), 1940M.

Figure 43

Seventh limbs (second thoracic legs) of Macroscapha, X155.-1. Macroscapha sinuata n. sp., 845M.-2,3. Macroscapha turbida (Müller); 2, 1475M; 3, 1943M.—4. Macroscapha tensa (Müller), 861M.—5. Macroscapha atlantica n. sp., 1982M.

Figure 44

Seventh limbs (second thoracic legs) of Macrocypria, Macrocyprissa, Macrosarisa, and Macroscapha, X155.-1. Macrosarisa sp. 23, 1415M.-2. Macrocypria semesa n. sp., 857F.-3. Macroscapha marchilensis (Hartmann), K-27321 (GL).-4. Macrosarisa bensonin. sp., 1710F.-5. Macrocyprissa arcuata (Colalongo and Pasini), 1533M.-6. Macrosarisa hiulcan. sp., 2356M.-7. Macrocypria sarsi (Müller), 1998M.

Figure 45

Seventh limbs (second thoracic legs) of Macrocyprina, $\times 155 .-1$. Macrocyprina schmitti (Tressler), 1538M.-2. Macrocyprina bermudae n. sp., 1759M.-3. Macrocyprina hortuli n. sp., 1762M.-4. Macrocyprina vargata Allison and Holden, 1507F.-5. Macrocyprina propinqua Triebel, Xe 8562M.-6. Macrocyprina succinea (Müller), 1905M.-7. Macrocyprina hawkaen. sp., 1818M.-8. Macrocyprina skinneri Kontrovitz, 1909M.-9. Macrocyprina barbara n. sp., 2400M.-10. Macrocyprina swainin. sp., 1992M.-11. Macrocyprina captiosa n. sp., 2353M.-12. Macrocyprina hartmannin. sp., 2130M.-13. Macrocyprina madagascarensis n. sp., 1757M.-14. Macrocyprina moza n. sp., 2365M.-15. Macrocyprina africana (Müller), 1937M.-16. Macrocyprina dispar (Müller), 1933M.

Figure 46

Furcae of Macrocypris, Macromckenziea, and Macropyxis, $\times 155$, (except parts $2,14,15,17,18,20,21,33,40, \times 320$; parts $18,22,25,31,34$, X578).-1-4. Macrocypris minna (Baird); 1,2, 2002M; 3, 1839F; 4, 2003F-—5,6. Macrocypris metuenda n. sp.; 5, 1405M; 6, 1402F. ——7,8. Macrocypris mirandan. sp.; 7, 1419M; 8, 1420F.—9,11. Macrocypris maioris n. sp.; 9, 1432F; 11, 1774M.——10. Macrocypris proclivis n. sp., 361F-12. Macropyxis sp. 16, 327F-13. Macromckenziea sp. 3, 1995F.-14,15. Macromckenziea sp. 19, 1495M. -16-19. Macropyxis amoena n. sp.; 16-18, 1463M; 19, 1864F.-20-25. Macromckenziea glacierae n . sp.; 20-22, 719F; 23-25, 880M. -26-28. Mactomchenziea ligustica (Bonaduce, Masoli, and Pugliese); 26, 2275F, with genital lobes and posterior part of body; 27,28, 2274F.-29-34. Macromckenziea siliquosa (Brady); 29-31, 1410M; 32-34, 1412F.-35,36. Macropyxis sapeloensis (Darby); 35, 1355M; 36, 1357F.-37. Macrocypris sp. 1,858F.-38-40. Macropyxis labutisin. sp.; 38, 1353F, with genital lobes and posterior part of body; 39,40,1851M.—41-43. Macropyxis bathyalensis (Hulings); 41, 1841F; 42, 2389M; 43, 2388F.-44. Macropyxis sp. 17, 1150F.-45. Macropyxis sp. 11, 1416F.-46. Macropyxis sp. 18, 1443F.-47,48. Macropyxis kornickeri n. sp.; 47, 2385; 48, 2384M.-49,50. Macropyxis similis (Brady); 49, 2383F; 50, 2382M.——51. Macromchenziea sp. 6, 2319F.-52. Macropyxis sp. 21, 1962F.-53. Macromckenziea sp. 5, 1460F- 54,55 . Macropyxis amandan. sp.; 54, 1406M; 55, 1408F.-56,57. Macropyxis audensn. sp.; 56, 1446M; 57,1444F.-58,59. Macropyxis aduncan. sp.; 58, 1521F; 59, 1520M.——60,61. Macropyxis artan. sp.; 60, 1456M; 61, 1454F.-62,63. Macropyxis adrecta n. sp.; 62, 1786F; 63, 1448M.—64,65. Macropyxis kaesleri n. sp.; 64, 1967M; 65, 1968F.-66-68. Macropyxis
antonbruunaen. sp.; 66, 354F; 67, 392M; 68, 358M.-69, 70. Macropyxis eltaninaen. sp.; 69, 831M; 70, 838F.——71. Macropyxiskalbin. sp., 851 M .

Figure 47

Furcae of Macrocypria, Macrosarisa, Macrocyprissa, Macroscapha, and Macrocyprina, $\times 155$ (except part $33, \times 578$).-1. Macrocypria semesa n. sp., 843M.-2,3. Macrooypria sarsi (Müller); 2, 1340F; 3, 1998M.——4,5. Mactosarisa bensoni n. sp.; 4, 1710F; 5, 1869M.-6,7. Macrocyprissa arcuata (Colalongo and Pasini); 6, 1531F; 7, 1533M.-8. Macrosarisa hiulca n. sp., 2357F.-9. Macrosarisa sp. 23, 1415M.-10,11. Macroscapha marchilensis (Hartmann), K27321(GL).-12. Macroscapha atlantican. sp., 1982M.-13. Macrosarisa capacis $\mathrm{n} . \mathrm{sp}$., 2361F.-14. Macrocyprina moza n. sp., 2365M.-15. Macrocyprina captiosa n. sp., 2352F.-16. Macrocyprina madagascarensis n. sp., 1757M.-17. Macrocyprina africana (Müller), 1937M.-18. Macrocyprina dispar (Müller), 1933M.-19. Macrocyprina hartmanni n. sp., 2130M.-20. Macrocyprina hawkae n. sp., 1818M.-21. Macrocyprina hortuli n. sp., 1762M.-22. Macrocyprina schmitti (Tressler), 1538M.-23. Macrocyprina skinneri Kontrovitz, 1909M.-24. Macrocyprina propinqua Triebel, Xe 3562M.-25. Macrocyprina swaini n. sp., 1992M.-26. Macrocyprina succinea (Müller), 1905M.-27. Macrocyprina vargata Allison and Holden, 1507F--28. Macrocpprina barbara n. sp., 2400M.-29. Macrocyprina bermudae n. sp., 1759M.-30. Macroscapha heroica n. sp., 1462M.-31. Macroscapha sp. 25, 198M.-32. Macroscapha sinuata, 845M.-33-35. Macroscapha turtida (Müller); 33, 1475M; 34, 1943M; 35, 1488F.-36. Macroscapha opacan. sp., 1479M.-37. Macroscapha inaequatan. sp., 714M.-38. Macroscapha inaequalis (Müller), 1940M.—39,40. Macroscapha lensa (Müller); 39, 861M; 40, 1935F,

Figure 48

Right valve exteriors of juveniles of Macrocypris, X35.——1-4. Macrocypnis maionisn. sp.; 1, 1773J-4; 2, 1772J-2; 3, 1770F-1; 4, 1771M-1. -5. Macrocypris nimia n. sp., 1740J.-6-9. Macrocypris metuendan. sp.; 6, 1779J-3; 7, 1778J-2; 8, 1777M-1; 9, 1775F-1.——10-13. Macrocypris miranda n. sp.; 10, 1424J-4; 11, 1423J-3; 12, 1422J-2; 13, 1421F-1.

Figure 49

Left valve exteriors of juveniles of Macrocypris, X85.-1-4. Macrocypris maionisn. sp.; 1, 1778J-4; 2, 1772J-2; 3, 1770F-1; 4, 1771M-1. -5. Macrocypris nimia n. sp., 1739J.—6-9. Macrocypris metuendan. sp.; 6, 1779J-3; 7, 1778J-2; 8, 1777M-1;9, 1775F-1.——10-13. Macrocypris miranda n. sp.; $10,1424 \mathrm{~J}-4 ; 11,1423 \mathrm{~J}-3 ; 12,1422 \mathrm{~J}-2 ; 13,1421 \mathrm{~F}-1$.

Figure 50

Right valve exteriors of juveniles of Macropyxis, Macrocypria, Macrocyprissa, and Macrosarisa, $\times 35 .-1$. Macrocypria semesa n. sp., 1485F-1.-2. Macrocppria sarsi (Müller), 2001F-1.-3. Macrosanisa bensoni n. sp., 1711F-1.—4. Macropyxis antonbruunaen. sp., 356F-1.-5. Macropyxis ellaninae, 834F-1.-6-11. Macropyxis labutisi in. sp.; 6, 1378J-4; 7, 1377F-3; 8, 1398M-2; 9, 1396F-2; 10, 1369M-1; 11, 1381F-1.-12-14. Macrosanisa texana n. sp.; 12, 2024J-3; 13, 2023J-2; 14, 2021J-1.-15-19. Macrocyprissa arcuata (Colalongo and Pasini); 15, 1781J-3; 16, 1736F-2; 17, 1737M-2; 18, 1733F-1; 19, 1734M-1.-20,21. Macropyxis adrecta n. sp.; 20, 1450F-2; 21, 1787M-1.-22. Macropyxis adunca n. sp., 1785F-1.-23. Macropyxis audens $\mathrm{n} . \mathrm{sp} ., 1447 \mathrm{~F}-1$.-24. Macropyxis bathyalensis (Hulings), 1744J-1.-25-27. Macropyxis sapeloensis (Darby); 25, 1974F-2; 26, 1383M-1; 27, 1361F-1.——28-31. Macropyxis kalbin. sp.; 28, 357J-3; 29, 349M-2; 30, 844F-2; 31, 353M-1.

Figure 51

Left valve exteriors of juveniles of Macrocypria, Macrocyprissa, Macrosarisa, and Macropyxis, X35.-1-3. Macrocypria semesa n. sp.; l, 1484F-2; 2, 1486F-2; 3, 1485F-1.—4-6. Macrosarisa texanan. sp.; 4, 2024J-3; 5, 2023J-2; 6, 2022J-1.——7. Macrocypria sarsi (Müller), 2001F-1.-8. Macrosarisa bensonin. sp.,1711F-1.-9-13. Macrocpprissa arcuata (Colalongo and Pasini); 9, 1781J-3; 10, 1737M-2; 11, 1736F-2; 12, 1734M-1; 13, 1733F-1.-14. Macropyxis antonbruunae n. sp., 356-1.-15. Macropyxis eltaninae n. sp., 834F-1. -16-18. Macropyxis sapeloensis (Darby); 16, 1374F-2; 17, 1361F-1; 18, 1383M-1.-19,20. Macropyxis bathyalensis (Hulings); 19, $1746 \mathrm{~J}-2 ; 20,1745 \mathrm{~J}-1$ - 21 -24. Macropyxis kalbin. sp.; $21,357 \mathrm{~J}-3 ; 22,844 \mathrm{~F}-2 ; 23,349 \mathrm{M}-2 ; 24,353 \mathrm{M}-1$ - $25-30$. Macropyxis labutisi n. sp.; $25,1378 \mathrm{~J}-4 ; 26,1377 \mathrm{~J}-3 ; 27,1398 \mathrm{M}-2 ; 28,1396 \mathrm{~F}-2 ; 29,1369 \mathrm{M}-1 ; 30,1381 \mathrm{~F}-1$.-31,32. Macropyxis adrecta n. sp.; 31 , 1450F-2; 32, 1787M-1.—33. Macropyxis aduncan. sp., 1785F-1.—34. Macropyxis audens n. sp., 1447F-1.

Figure 52

Right valve exteriors of juveniles of Macroscapha and Macrocyprina, $\times 85$ - 1,2 . Macroscapha turbida (Müller); $1,1478 \mathrm{~F}-1 ; 2,1474 \mathrm{M}-1$. -3-7. Macrocyprina okinawaen. sp.; 3, 2075J-5; 4, 2074J-4; 5, 2073J-3; 6, 2071J-2; 7, 2069J-1.-8-11. Macrocyprina noharain. sp.; 8, 2062J-4; 9, 2061J-3; 10, 2067J-2; 11, 2066J-1.-12-15. Macroscapha gyreae n. sp.; 12, 2019J-4; 13, 2018J-3; 14, 2016J-2; 15, 2013J-1.-16-18. Macrocyprina africana (Müller); 16,1752J-3;17,1750J-2;18, 1748J-1.-19. Macroscapha opaca n. sp., 1756M-1. -20,21. Macroscapha sinuata n. sp.; 20, 855M-1; 21, 853F-1.——22-25. Mactoscapha heroica n. sp.; 22, 1861J-4; 23, 1859j-3; 24, 1857J-2; 25, 1855J-1.-26,27. Macrocyprina hartmanni n. sp.; 26, 2184J-2; 27, 2183F-1.-28. Macrocyprina dispar (Müller), 1514J-1.-29. Macroscapha inaequatan. sp., $717 \mathrm{~F}-1$ - 30. Macroscapha atlantican. sp., 1987F-1.-31,32. Macrocyprina quadrimaculata n. sp.; 31, 1699J; 32, 1698J.-33-35. Macroscapha tensa (Müller); 33, 874F-2; 34, 871M-1; 35, 870F-1.-36,37. Macroscaphajiangin. sp.; 36, 1924J-2; 37, 1923J-1.—38. Macroscaphasp. 26, HU.13.R.12.90.-39, 40. Macrocyprina madagascarensisn. sp.; 39, 1039J-2; 40, 670J-1.—41. Macroscapha sp. 30, 1418F-1.

Figure 53

Left valve exteriors of juveniles of Macrocyprina and Macroscapha, X35.——1,2. Macrocyprina hartmanni n. sp.; 1, 2134J-2; 2, 2183F-1. -3-5. Macrocyprina noharain. sp.; 3, 2062J-4; 4, 2067J-2; 5, 2065J-1.——6-8. Macrocyprina okinawaen. sp.; 6, 2076J-4; 7, 2072J-2; 8, 2070J-1.-9,10. Macroscapha gyreae n. sp.; 9, 2017J-2; 10, 2013J-1.——11,12. Macroscapha turbida (Müller); 11, 1476F-1; 12, 1474M-1.-13. Macroscapha opacan. sp., 1756M-1._14-18. Macroscapha heroican. sp.; 14, 1863J-5; 15, 1862J-4; 16, 1860J-3; 17, 1858J-2; 18, 1856J-1.—19-22. Macrocypnina africana (Müller); 19, 1753J-4; 20, 1751J-3; 21, 1749J-2; 22, 1518J-1.-23. Macrocyprina dispar (Müller), 1515J-1.—24,25. Macroscapha sinuata n. sp.; 24, 855M-1; 25, 85sF-1.-26. Macroscapha atlantica n . sp .; 1987F-1.-27-30. Macrocyprina quadrimaculata n. sp.; 27, 1703J-4; 28, 1702J-3; 29, 1700J-2; 30, 1697J-1.-31-33. Macroscapha tensa (Müller); 31, 874F-2; 32, 871M-1; 33, 870F-1.—34,35. Macroscapha jïangin. sp.; 34, 1924J-2; 35, 1923J-1.—36,37. Macroscapha sp. 26; 36, HU.13.R.12.89; 37, HU.18.R.12.90.—38,39. Macrocyprina madagascarensis n. sp.; 38, 1039J-2; 39, 670J-1.-40. Macroscapha sp. 30, 1418F-1.

Figure 54

Right valve exteriors of juveniles of Macropyxis, Macromckenziea, and Macrocyprina, X85.-1-3. Macrocyprina skinneri Kontrovitz; 1, 1850J-3; 2, 1848J-2; 3, 1846J-1.—4-7. Macrocyprina schmitti (Tressler); 4, 1818J-4; 5, 1811J-8; 6, 1809J-2; 7, 1807J-1.-8-10. Macrocyprina bermudae n. sp.; 8, 1805J-3; 9, 1803J-2; 10, 1801J-1.—11-14. Macrocyprina hawkae n. sp.; 11, 1825J-4; 12, 1824J-3; 13, 1822J-2; 14, 1821J-1.-15,16. Macrocyprina succinea (Müller); 15, 1908J-2; 16, 1907M-1.-17-20. Macrocyprina hortuli n. sp.; 17, $1799 \mathrm{~J}-4 ; 18,1797 \mathrm{~J}-3 ; 19,1795 \mathrm{~J}-2 ; 20,1793 \mathrm{~J}-1$. - 21-23. Macrocyprina belizensis n. sp.; 21, 1834J-8; 22, 1832J-2; 23, 1830J-1.-24, 25. Macrocyprina barbaran. sp.; 24, 2402F-2; 25, 2403F-1.——26-30. Macropyxis amoenan. sp.; 26, 1868J-5; 27, 1867J-4; 28, 1866J-3; 29, 1865J-2; 30, 1464F-1.—31-36. Macromckenziea gregalis n. sp.; 31, 1918J-6; 32, 1917J-5; 33, 1930J-4; 34, 1916J-3; 35, 1915J-2; 36, 1914J-1.—37,38. Macrocyprina jamaicaen. sp.; 37, 1839J-2; 38, 1837J-1.——39-43. Macromckenziea siliquosa (Brady); 39, 1715J-4; 40, $1714 \mathrm{~J}-3 ; 41,1716 \mathrm{~F}-2 ; 42,1717 \mathrm{M}-1 ; 43,1719 \mathrm{~F}-1$. - 44-46. Macromckenzie. glacierae n. sp.; 44, 724F-3; 45, 1469F-2; 46, 879F-1.

Figure 55

Left valve exteriors of juveniles of Macromckenziea, Macropyxis, and Macrocyprina, X85.-1-3. Macrocyprina skinneri Kontrovitz; I, 1851J-3; 2, 1849J-2; 3, 1847J-1.—4-7. Macrocyprina schmitti (Tressler); 4, 1814J-4; 5, 1812J-3; 6, 1810J-2; 7, 1808J-1.- 8-10. Macrocyprina bermudae n. sp.; 8, 1805J-3; 9, 1804J-2; 10, 1802J-1.-11-13. Macrocyprina hawkae n . sp.; 11, 1825J-4; 12, 1823J-2; 13, $1820 \mathrm{~J}-1 .-14,15$. Macrocyprina succinea (Müller); 14, 1908J-2; 15, 1907M-1.—16-19. Macrocyprina hortulin. sp.; 16, 1800J-5; 17, 1798J-3; 18, 1796J-2; 19, 1794J-1.—20,21. Macrocyprina jamaicaen. sp.; 20, 1840J-2; 21, 1838J-1.-22,23. Macrocyprina belizensis n . sp.; 22, 1838J-2; 23, 1831J-1.—24,25. Macrocyprina barbaran. sp.; 24, 2402J-2; 25, 2408J-1.—26-31. Macromckenziea gregalis n . sp .; 26, 1918J-6; 27, 1917J-5; 28, 1930J-4; 29, 1916J-3; 30, 1915J-2; 31, 1914J-1.—32-36. Macromckenziea siliquosa (Brady); 32, 1715J-4; 33, 1714J-3; 34, 1716F-2; 35, 1717M-1; 36, 1719F-1.—37. Macropyxis amoenan. sp., 1464F-1.——38-40. Macromckenziea glacieraen. sp.; 38, 724J-3; 39, 1469F-2; 40, 879F-1.

Figure 56

Juvenile fifth limbs (maxillae), $\times 155$ ($1-13$, male instar-1; 14-32, instar-2; 33-36, instar-4).-1,14. Macrocypris metuendan. sp.; 1 , 1777M-1, molting; $14,1778 \mathrm{M}-2$ - $2,20,35$. Macrocypris maionis n. sp.; 2, 1771M-1; 20, 1772M-2; 35, 1773J-4.-3,21. Macropyxis adrectan. sp.; 3,1787M-1; 21, 1450M-2.-4,23. Macropyxis sapeloensis (Darby); 4,1883M-1; 23, 1874F-2.-5,19. Macroscapha tensa (Müller); $5,871 \mathrm{M}-1 ; 19,874 \mathrm{~F}-2 .-6,26,29,33,34$. Macropyxis labutisin. sp.; 6, 1369M-1; 26, 1898M-2; 29, 1896F-2; 33,34, $1878 \mathrm{~J}-4$. -7. Macroscapha turbida (Müller), 1474M-1.-8. Macroscapha sinuata n. sp., 856M-1.-9,30. Macrocyprina succinea (Müller); 9, $1907 \mathrm{M}-1$, molting; 30, 1908M-2.-10,24,27. Macrocyprissa arcuata (Colalongo and Pasini); 10, 1734M-1; 24, 1736F-2; 27, 1737M-2. -11,28. Macromckenziea siliquosa (Brady); 11,1717M-1; 28, 1716F-2.-12. Macrocppria semesan. sp., 1486M-1.-13. Macroscapha opaca n . sp., 1756M-1, molting.-15,16. Macropyxis kalbi n . sp.; 15, 844F-2; 16, 349M-2.-17,36. Macropyxis miranda n. sp.; 17, 1422M-2; 36, 1424J-4.-18. Macropyxis arta n. sp., 1453M-2.-22. Macrocyprina hartmanni n. sp., 2134J-2.-25,31. Macromckenziea glacieraen. sp.; 25, 881M-2; 31, 1469F-2.-32. Macrocyprina barbara n. sp., 2402J-2.

Figure 57
Juvenile fifth limbs (maxillae), $\times 155$ ($1-27$, female instar-1; 28-34, instar-3)._-1,31. Macrocypris miranda n. sp.; 1, 1421F-1; 31, 1423J-3.-2,29. Macrocypris metuenda n. sp.; 2, 1775F-1; 29, 1779J-3-3,28. Macrocypris kalbin. sp.; 3, 353F-1; 28, 357J-3.-4. Macropyxis arta n. sp., 1452F-1.—5. Macropyxis audens n. sp., 1447F-1.-6. Macropyxis eltaninae n. sp., 834F-1.-7. Macropyxis antonbruunaen. sp., $356 \mathrm{~F}-1$-_8. Macropyxis aduncan. sp., 1785F-1.-9. Macrocypria sarsi (Müller), 2001F-1.-10. Macrocypria semesa $\mathrm{n} . \mathrm{sp} ., 1484 \mathrm{~F}-1$ - 11,32. Macrocyprissa arcuata (Colalongo and Pasini); 11, 1783F-1; 32,1781J-8.-12. Macrosarisa bensoni n . sp., 1711F-1.-13. Macrocyprina madagascarensis n . sp., 669F-1.-14. Macrocyprina hartmanni n . sp., 2138F-1.-15,33. Macromckenziea siliquosa (Brady); 15, 1719F-1; 33, 1714J-3.-16. Macropyxis sapeloensis (Darby), 1861F-1.-17,18,30. Macropyxis labutisi n. sp.; $17,1381 \mathrm{~F}-1 ; 18,1389 \mathrm{~F}-1 ; 30,1377 \mathrm{~J}-3 .-19$. Macroscapha opacan. sp., 1755F-1.-20. Macroscapha inaequata n. sp., $717 \mathrm{~F}-1$. -21. Macrocyprina barbara n. sp., 2403J-1.—22. Macroscapha turbida (Müller), 1476F-1.——23. Macroscapha tensa (Müller), $870 \mathrm{~F}-1$ - 24. Macroscapha sinuata n. sp., 853F-1.-25. Macroscapha atlantican. sp., 1986F-1.-26,34. Macromchenziea glacieraen. sp.; 26, 879F-1; 34, 724J-3.-27. Macropyxis amoena n. sp., 1464F-1.

Ficure 58

Juvenile sixth limbs (first thoracic legs), of Macrocypris, Macropyxis, Macromckenziea, Macrooypria, Macrocyprissa, and Macrosarisa, instar-1, X95.-1. Macrocypris mirandan. sp., 1421F-1.—2. Macrocypris maionis n. sp., 1770F-1.—3. Macrocypnis metuendan. sp., 1777M-1. -4. Macropyxis arla n. sp., 1452F-1.-5. Macromckenziea glacierae n. sp., $879 \mathrm{~F}-1$.-6. Macromckenziea siliquosa (Brady), 1717M-1. -7. Macropyxis amoena n. sp., 1464F-1.—8. Macropyxis sapeloensis (Darby); 1361F-1.-9. Macropyxis labutisi n. sp., 1889F-1. -10. Macropyxis antonbruunaen. sp., $356 \mathrm{~F}-1 .-11$. Macropyxis eltaninaen. sp., 884F-1.-12. Macropyxis adunca n. sp., 1785F-1. -13. Macropyxis adrectan. sp., 1787M-1.——14. Macropyxis kalbin. sp., 353M-1.——15. Macropyxis audens n. sp., 1447F-1.-16. Macrocypria sarsi (Müller), 2001F-1.—17. Macrosarisa bensonin. sp., 1711F-1.-18. Macrocyprissa arcuata (Colalongo and Pasini), 1784M-1.-19. Macrogpria semesa n. sp., 1484F-1.

Figure 59

Juvenile sixth limbs (first thoracic legs) of Macrocypris, Macropyxis, Macromckenziea, Macrocyprissa, Macroscapha, and Macrocyprina, $\times 95$ (1-10, instar-1; 11-26, instar-2; 27-33, instar-3; 34-38, instar-4.)-1. Macroscapha atlantican. sp., 1986F-1.-2. Macroscapha opaca n. sp., $1756 \mathrm{M}-1$ - 3. Macroscapha inaequata n. sp., $717 \mathrm{~F}-1 .-4,19$. Macroscapha tensa (Müller); 4, 871M-1; 19, $874 \mathrm{~F}-2$.-5. Macroscapha turbida (Müller), 1474M-1.-6. Macroscapha sinuatan. sp., 855M-1.——7,24. Macrocpprina hartmannin. sp.; 7, 2133F-1; 24, 2184J-2.-8,25. Macrocyprina succinea (Müller); 8, 1907M-1; 25, 1908-2.-9,18. Macrocyprina barbara n. sp.; 9, 2403F-1; I8, 2402J-2.—10,23. Macrocyprina madagascarensis n. sp.; 10, 669F-1; 23, 671J-2.-11,27. Macrocypris metuenda n . sp.; 11, 1778J-2; 27, 1779J-8.-12,29,34. Macrocypris miranda n. sp.; 12, 1422J-2; 29, 1423J-8; 34, 1424J-4.-13,35. Macrocypris maioris n. sp.; 13, 1772J-2; 35, 1773J-4.—14,28. Macropyxis kalbi n. sp.; 14, 349M-2; 28, 357J-3.-15. Macropyxis arta n. sp., 1453J-2.-16,30. Macromckenziea glaciaae n. sp.; 16, 881M-2; 30, 724J-3.-17,32,36. Macromckenziea siliquosa (Brady); 17, 1716F-2; 32, 1714J-3; 36, 1715J-4.-20. Macropyxis adrectan. sp., 1788J-2.-21. Macropyxis sapeloensis (Darby), 1374F-2.-22,31,37,38. Macropyxis labutisi n. sp.; 22, 1398M-2; 31, 1377J-3; 37,38, 1378J-4.—26,33. Macrocyprissa arcuata (Colalongo and Pasini); 26, 1737M-2; 33, 1731J-3.

Figure 60

Juvenile seventh limbs (second thoracic legs) of Macrocypris, Macromckenziea, Macropyxis, Macrogpria, and Macrocyprissa, instar-1, X155. -1. Macromckenziea glacierae n. sp., $879 \mathrm{~F}-1$. - 2. Macrocypria maioris n. sp., 1771M-1.-3. Macrocypris miranda n. sp., $1421 \mathrm{~F}-1$. -4. Macrocyprissa arcuata (Colalongo and Pasini), 1784M-1.-5. Macrocypris metuenda n. sp., 1777M-1.-6. Macromckenziea siliquosa (Brady), 1717M-1.-7. Macrogppria semesa n . sp., 1484F-1, reflexed seta missing.-8. Macrocypria sarsi (Müller), 2001F-1. -9. Macropyxis amoena n. sp., 1464F-1.

Figure 61

Juvenile seventh limbs (second thoracic legs) of Macropyxis, instar-1, X155.——1. Macropyxis antonbruunae n. sp., 356F-1.-2. 2 Macropyxis kalbi n. sp., 353M-1, -3. Macropyxis eltaninae n. sp., 835F-1.-4. Macropyxis labutisin. sp., 1369M-1.-5. Macropyxis adunca n. sp., 1785F-1.—6. Macropyxis sapeloensis (Darby), 1383M-1.——7. Macropyxis audens n. sp., 1447F-1.——8. Macropyxis adrectan. sp.,1787M-1.—9. Macropyxis artan. sp., 1452F-1.

Figure 62

Juvenile seventh limbs (second thoracic legs) of Macrosanisa, Macroscapha, and Macrocyprina, instar-1, $\times 155 .-1$. Macroscapha turbida (Müller), 1474M-1.-2. Macroscapha opaca n. sp., 1758M-1.-3. Macrocyprina hartmannin. sp., 2183F-1.-4. Macrosarisa bensoni n. sp., 1711F-1.—5. Macroscapha inaequatan. sp., 717F-1.-6. Macrocyprina succinea (Müller), 1907M-1.——7. Macroscapha sinuata n. sp., 855M-1.-8. Macroscapha atlantica n. sp., 1986F-1.-9. Macroscapha tensa (Müller), 871M-1.-10. Macrocyprina madagascarensis n. sp., 669F-1.-11. Macrocyprina barbara n. sp., $2403 \mathrm{~F}-1$.

Figure 63

Juvenile seventh limbs (second thoracic legs) of Macrocypris, Macropyxis, Macromckenxiea, Macrocyprissa, Macroscapha, and Macrocyprina, X155 (1-16, instar-2; 17-23, instar-3).-1,20. Macropyxis labutisi n. sp.; 1, 1873F-2; 20, 1377J-3.-2. Macropyxis adrecta n . sp ., 1450F-2.-3,17. Macrocyprissa arcuata (Colalongo and Pasini); 3, 1737M-2; 17, 1731J-3.-4. Macropyxis sapeloensis (Darby), 1974F-2.-5. Macropyxis artan. sp., 1453M-2.—6. Macroscapha tensa (Müller), 874F-2.——7,21. Macropyxis kalbin. sp.; 7, 844F-2; 21, 357J-3.-8. Macroscapha marchilensis (Hartmann), K27321(GL).-9,12. Macromckenziea glacierae n. sp.; 9, 881M-2; 19, 724J-3. -10,18. Macromckenxiea siliquosa (Brady); 10, 1716F-2; 18, 1714J-3.-11. Macrocyprina succinea (Müller), 1908J-2.-12. Macrocypris maionis n. sp., 1772J-2.-13,22. Macrocypris miranda n. sp.; 13, 1422J-2; 22, 1428J-3.——14. Macroyprina madagascarensis n . sp., 671J-2.—15,23. Macrocypris metuendan. sp.; 15, 1778J-2; 23,1779J-3.—16. Macrocyprina hartmannin. sp., 2184J-2.

Figure 64

Juvenile furcae, $\times 155$ (except parts $29,34,46,49,55,57, \times 320 ; 30,50,53, \times 578)(1-34$, instar- $1 ; 35-50$, instar-2; 51-57, instar-3). -1,43,52,53. Macrooppris metuendan. sp.; 1, 1777M-1; 43, 1778J-2; 52,53, 1779J-3._-2. Macrocypris mirandan. sp., 1421F-1.——3. Macrocypris maioris n. sp., 1770F-1.—4,41. Macropyxis kalbin. sp.; 4, 353M-1; 41, 349M-2.—5. Macropyxis ellaninaen. sp., 823F-1.
-6. Macropyxis antonbruunae n. sp., 356F-1.-7. Macropyxis adunca n. sp., 1785F-1.-8. Macropyxis adrectan. sp., 1787M-1.
9. Macropyxis audens $\mathrm{n} . \mathrm{sp} ., 1447 \mathrm{~F}-1 .-10,44$. Macropyxis arta n . $\mathrm{sp} . ; 10,1452 \mathrm{~F}-1 ; 44,1453 \mathrm{M}-2 .-11,12,42$. Macropyxis sapeloensis (Darby); 11, 1895F-1; 12, 1883M-1; 42, 1874F-2.-13. Macroscapha inaequata n. sp., $717 \mathrm{~F}-1 .-14,35$. Macroscapha tensa (Müller); 14, 871M-1; 35, 874F-2.-15. Macroscapha opaca n. sp., 1756M-1._-16. Macroscapha sinuata n. sp., 855M-1.-17. Macroscapha atlantican. sp., 1986F-1.-18. Macroscapha turbida (Müller), 1474M-1.-19. Macroscaphasp. 30, 1418F-1.-20,36. Macrocyprina madagascarensis n. sp.; 20, 669F-1; 36, 671J-2.-21,37. Macrocyprina hartmanni n. sp.; 21, 2133F-1; 37, 2134J-2. -22,39. Macrocyprina barbara n. sp.; 22, 2403F-1; 39, 2402J-2.-23,40,51. Macrocyprissa arcuata (Colalongo and Pasini); 23, $1784 \mathrm{M}-1 ; 40,1797 \mathrm{M}-2 ; 51,1731 \mathrm{~J}-3 .-24$. Macrosarisa bensoni n . sp., 1711F-1.——25. Macrocypria sarsi (Müller), 2001F-1.-26. Macrocypria semesa n. sp., 1484F-1.-27. Macropyxis amoena n. sp., 1464F-1.-28-30. Macromckenziea siliquosa (Brady), 1717M-1. -31-34,45-47,54-57. Macropyxis labutisi n. sp.; 31, 1380F-1; 32, 1381F-1; 33,34, 1369M-1; 45, 1373F-2; 46,47, 1398M-2; 54,55, 1877J-3; 56,57, 1976J-3.-38. Macrocyprina succinea (Müller), 1908J-2.-48-50. Macromckenziea glacieraen. sp., 881M-2.

Figure 65

Antennules of Macrocypris, Macromckenziea, and Macropyxis, X155 (setae not shown for some).-1. Macrocypris miranda n. sp., 1419M.-2. Macromckenziea sp. 19, 1495M.-3. Macropyxis sp. 11, 1416F.-4. Macropyxis ellaninaen. sp., 833F.-5. Macrocypris metuendan. sp., 1405M.-6. Macropyxis antonbruunaen. sp., 881M.-7. Macrogppis minna (Baird), 2002M.

Figure 66

Antennules of Macrocypris, Macromckenziea, and Macropyxis, $\times 155$ (setae not shown for some).-1. Macromckenziea sp. 5, 1460F.-2. 2 . Macromckenziea glacieraen. sp., 880M.-3. Mactomckenziea ligustica (Bonaduce, Masoli, and Pugliese), 2274F.-4. Macrocypris maioris n. sp., 1774M.-5. Macromchenziea sp. 6, 2819F.-6. Macromckenziea sp. 3, 1995F.-7. Macropyxis adunca n. sp., 1520M.-8. Macropyxis labutisi n. sp., 1851M. -9. Macromchenziea siliquosa (Brady), 1500M.

Figure 67
Antennules of Macropyxis, $\times 155$ (setae not shown for some).-1. Macropyxis sapeloensis (Darby), 1855M.-2. Macropyxis arta n . sp., 1456M.-3. Macropyxis bathyalensis (Hulings), 2389M.-4. Macropyxis kaeslerin. sp., 1967M.-5. Macropyxis kalbi n. sp., 351 M . -6. Macropyxis similis (Brady), 2382M.-7. Macropyxis kornickeri n. sp., 2385M.-8. Macropyxis audens n. sp., 1446M.-9. Macropyxis adrecta n. sp., 1448M.-10. Macropyxis amandan. sp., 1406M.

Figure 68

Antennules of Macrocypria, Macrocyprissa, Macrosarisa, Macroscapha, and Macrocyprina, $\times 155$ (setae not shown for some).-1. Macrocypria semesa n. sp., 848M.-2. Macrocypria sarsi (Müller), 1998M.——3. Macrosarisa sp. 23, 1415M.-4. Macrosarisa bensoni n . sp., 1710F.-5. Macrocyprissa arcuata (Colalongo and Pasini), 1533F.-6. Macroyprina madagascarensisn. sp., 1757M.-7. Macrosarisa hiulcan. sp., 2356M.-8. Macrocyprina hortulin. sp., 1762M.-9. Macrosarisa capacisn. sp., 2360M.-10. Macrocyprina bermudaen. sp., 1759M.-11. Macrocyprina noharai n. sp., 2058F.-12. Macrosarisa sp. 47, 127F.-13. Macrocyprina succinea (Müller), 1905M.-14. Macroscapha opaca n. sp., 1479M.—15. Macropyxis sp. 21, 1962F.-16. Macrocyprina captiosa n. sp., 2352F.-17. Macrocyprina hartmannin. sp., 2132F.

Figure 69

Antennules of Macroscapha and Macrocyprina, $\times 155$ (setae not shown for some).-1. Macroscapha atlantica n. sp., 1982M.-2. Macroscapha inaequalis (Müller), 1940M.-3. Macroscapha turbida (Müller), 1943M.-4. Macrocyprina propinqua Triebel, Xe 3367 F . -5. Macrocyprina africana (Müller), 1937M.-6. Macrocyprina moza n. sp., 2865M.-7. Macrocyprina dispar (Müller), 1933M. -8. Macrocyprina hawkaen. sp., 1817M.-9. Macrocyprina barbara n. sp., 2400M.-10. Macrocyprina schmitti (Tressler), 1538M. -11. Macroscapha sp. 25, 198M.-12. Macroscapha tensa (Müller), $861 \mathrm{M} .-13$. Macroscapha inaequata n. sp., 714M.-14. Macroscapha sinuata n. sp., 845M.-15. Macrocyprina skinneri Kontrovitz, 1909M.

Figure 70

Antennae of Macrocypris and Macromckenziea, X155.-1. Macrocypris metuenda n. sp., 1405M.-2. Macrocypris minna (Baird), 2003F.-3. Macromchenziea siliquosa (Brady), 1500M.

Figure 71

Antennae of Macrocypris, Macromckenziea and Macropyxis, $\times 810$ (except parts 3, 4, X385).-1. Macromckenziea glacierae n. sp., 880 M . -2. Macrocypris maionis n. sp., 1774M.—3,4. Macropyxis sapeloensis (Darby); 3, 1355M; 4, 1357F.——5. Macropyxis kaesleri n. sp., 1967M.

Figure 72

Antennae of Macrocypria and Macrocyprissa, $\times 155$ (except parts 1, 2, 4, 5, $\times 885$).-1-3. Macrocyprissa arcuata (Colalongo and Pasini); 1,1531F; 2,3, 1533M.—4-6. Macrocypria sarsi (Müller); 4,6, 1998M; 5, 2000F.——7. Macrocypria semesa n. sp., 843M.

Figure 73

Antennae of Macrosarisa and Macroscapha, X155 (except parts 1, 3, 5-7, X770).——1,2. Macrosarisa hiulca n. sp., 2356M.-3,8. Macroscapha atlantican. sp., 1982M.-4,5. Macrosarisa capacis n. sp., 2960M.-6, 7,9. Macrosarisa bensonin. sp.; 6, 1710F; 7,9, 1869M.

Figure 74

Antennae of Macroscapha and Macrocyprina, X155 (except part 7, X885).-1. Macrocyprina schmitti (Tressler), 1538M.-2. Macroscapha turbida (Müller), 1943M.-3. Macrocyprina africana (Müller), 1937M.-4. Macrocyprina dispar (Müller), 1933M.-5. Macrocyprina propinqua Triebel, Xe 3567F.-6. Macroscapha inaequalis (Müller), 1940M.——. Macrocyprina barbara n. sp., 2400M.

Figure 75

Mandibles of Macrocypris, Macromckenziea, and Macropyxis, X810 (except part 7, X885).-1. Macromckenziea glacieraen. sp., 880M. -2. Macrocypnis metuenda n. sp., 1405M.-3,4. Macrocypnis minna (Baird), 2003F- -5. Macromckenziea siliquosa (Brady), 1412F. -6. Macropyxis kaeslerin. sp., 1968F.-7. Macropyxis sapeloensis (Darby), 1354M.

Figure 76
Mandibles of Macrocypria, Macrocyprissa, and Macrosarisa, $\times 155$ (except parts 2, 3, 7, $\times 385$).-1, 1. Macrosarisa bensonin. sp., 1710 F , -3. Macrocyprissa arcuata (Colalongo and Pasini), 1533M.-4,5. Macrocypria semesan. sp., 843M.——6. Macrocypria sarsi (Müller), 1998M.-7. Macrosarisa hiulca n. sp., 2356M.

Figure 77

Mandibles of Macroscapha and Macrocyprina, X310 (except part 4, X320; 5, 9, X385).-1. Macrocyprina propinqua Triebel, Xe 3868M. -2. Macrocyprina africana (Müller), 1937M.-3. Macrogyprina dispar (Müller), 1933M.-4. Macrocyprina schmitti (Tressler), 1538M.-5. Macrocyprina barbaran. sp., 2400M.-6. Macroscapha turbida (Müller), 1943M.-7,9. Macroscapha atlantican. sp., 1982M.-8. Macroscapha inaequalis (Müller), 1940M.

Figure 78

Maxillules of Macrocypris, Macromchenziea, Macropyxis, Macroypria, and Macrocyprissa, X810 (except part 9, $\times 385$).-_ 1. Macrocypris metuenda n. sp., 1405M.-2. Macrocypnis minna (Baird), 2002M.-3. Macromckenziea glacieraen. sp., 880M.-4. Macromckenziea siliquosa (Brady), 1410M.-5. Macropyxis sapeloensis (Darby), 1855M.-6. Macropyxis kaeslerin. sp., 1968F.-7. Macrocypria semesa n. sp., 843M.—8. Macrocypria sarsi (Müller), 1999F--9,10. Macrocyprissa arcuata (Colalongo and Pasini), 1533M.

Figure 79

Maxillules of Macrosarisa, Macroscapha, and Macrocyprina, $\times 310$ (except parts $1,7,8,12,13, \times 385 ; 9, \times 320$).-1. Macrocyprina barbara n. sp., 2400M.-2. Macroscapha inaequalis (Müller), 1940M.-3. Macroscapha turbida (Müller), 1943M.-4. Macrocyprina africana (Müller), 1987M.-5. Macrocyprina dispar (Mûller), 1932F.-6,7. Macroscapha atlantican. sp., 1982M.-8. Macrosarisa bensonin. sp.,1710F-9. Macrogppina schmitti (Tressler), 1538M.-10-13. Macrosarisa hiulcan. sp.; 10,12, 2357F; 11,13, 2356M.

Figure 80

Maxillule palps, without setae, $\times 385$.-1. Macrocypris maionisn. sp., 1774M.-2. Macrocypris mirandan. sp., 1419M.-3. Macropyxis sp. 21, 1962F.-4. Macropyxis amanda n. sp., 1406M.-5. Macropyxis kalbi n. sp., 351M.-6. Macropyxis similis (Brady), 2882M. -7. Macropyxis bathyalensis n. sp., 2389M.-8. Macropyxis kornickeri n. sp., 2985M.-9. Macropyxis sp. 11, 1416F.-10. Macropyxis aduncan. sp., 1520M.-11. Macropyxis audensn. sp., 1444F.-12. Macropyxis adrecta n. sp., 1448M.-13. Macropyxis arta n. sp., 1456M.-14. Macropyxis eltaninaen. sp., 833F.-15. Macropyxis antonbruunaen. sp., 331 M .-16. Macropyxis labutisin. sp., 1351M.-17. Macromckenziea sp. 5, 1460F.-18. Macromckenziea sp. 19, 1495M.-19. Macromckenziea sp. 3, 1995M.-20. Macromckenziea sp. 6, 2319F.-21. Macrosarisa sp. 23, 1415M.—22. Macrosarisa capacis n. sp., 2361F.-23. Macrosarisa sp. 47, 127F.-24. Macroscapha inaequatan. sp., 714M.-25. Macroscapha tensa (Müller), 861 M.-26. Macroscapha sinuatan. sp., 845 M . -27. Macroscaphasp. 25, 198M.-28. Macroscapha opacan. sp., 1479M.-29. Macrocyprina madagascarensis n. sp., 1757M.-30. Macrocyprina hawkaen. sp., 1817M.—31. Macrocyprina moza n. sp., 2865M.-32. Macrocyprina skinneri Kontrovitz, 1909M.-33. Macrocyprina captiosa n. sp., 2352F.—34. Macrocyprina hartmanni n. sp., 2132F.-35. Macrocyprina bermudae n. sp., 1759M.-36. Macrocpprina hortuli n. sp., 1762M.—37. Macrocyprina sucainea (Müller), 1905M.

FIGURE 1

FIGURE 4

FIGURE 5

FIGURE 8

FIGURE 10

FIGURE 11

FIGURE 14

FIGURE 17

FIGURE 20

FIGURE 25

FIGURE 28

FIGURE 31

FIGURE 34

FIGURE 36

FIGURE 37

FIGURE 38

FIGURE 41

FIGURE 43

FIGURE 51

FIGURE 52

FIGURE 54

FIGURE 55

FIGURE 59

FIGURE 61

FIGURE 62

FIGURE 63

FIGURE 64

FIGURE 65

FIGURE 66

FIGURE 67

FIGURE 68

FIGURE 69

FIGURE 70

FIGURE 71

FIGURE 73

FIGURE 74

FIGURE 75

FIGURE 76

FIGURE 78

FIGURE 80

Plates

Plate 1
Macropyxis kalbin. sp., 835 M , body without carapace, $\times 80$.
Plate 2
Right valve exteriors, Macrocypris.-1-4. Macrocypris minna (Baird); 1, 2002M, $\times 30 ; 2,2003 \mathrm{~F}, \times 30 ; 3,1347, \times 30 ; 4,1846, \times 30 .-5$. Macrocypris proclivis n. sp., 361F, $\times 27.5$ - 6. Macrocypris nimia n. sp., 1524, $\times 27.5$ - 7. Macrocypris sp. $1,858 \mathrm{~F}, \times 27.5 .-8$ - 12 . Macrocypris maionis n. sp.; 8, 1435F, $\times 27.5 ; 9,1432 \mathrm{~F}, \times 27.5 ; 10,1431 \mathrm{M}, \times 27.5 ; 11,1434 \mathrm{M}, \times 27.5 ; 12,1774 \mathrm{M}, \times 27.5$.

Plate 3

Left valve exteriors, Macrocypris.-1-4. Macrocypris minna (Baird); 1, 2002M, X30; 2, 2003F, X30; 3, BMNH 1910.3.6.166, a typical juvenile, $\times 30$; 4, 1849, with crystal overgrowths, $\times 30$ - 5. Macrocypris proclivisn. sp., $361 \mathrm{~F}, \times 27.5$. - 6. Macrocypris nimian. sp., 1738 , $\times 27.5 .-7$. Macrocypris sp. $1,858 \mathrm{~F}, \times 27.5 .-8-12$. Macrocypris maionisn. sp.; $8,1435 \mathrm{~F}, \times 27.5 ; 9,1432 \mathrm{~F}, \times 27.5 ; 10,1431 \mathrm{M}, \times 27.5 ; 11$, $1434 \mathrm{M}, \times 27.5 ; 12,1774 \mathrm{M}, \times 27.5$.

Plate 4
Right valve exteriors, Macrocypris.-1-6. Macrocypris metuenda n. sp.; $1,1438 \mathrm{~F}, \times 22.5 ; 2,1489 \mathrm{M}, \times 22.5 ; 3,1952 \mathrm{M}, \times 22.5 ; 4,1401 \mathrm{~F}$, $\times 22.5 ; 5,1501 \mathrm{M}, \times 22.5 ; 6,1405 \mathrm{M}, \times 22.5-7-12$. Macrocypris miranda n. sp.; $7,1955 \mathrm{M}, \times 25 ; 8,1419 \mathrm{M}, \times 30 ; 9,1441 \mathrm{M}, \times 30 ; 10$, $1442 \mathrm{~F}, \times 30 ; 11,1956 \mathrm{~F}, \times 25 ; 12,1815 \mathrm{~F}, \times 30$.

Plate 5
Left valve exteriors, Macrocypris.-1-6. Macrocypris metuendan. sp.; 1, 1438F, $\times 22.5 ; 2,1439 \mathrm{M}, \times 22.5 ; 3,1952 \mathrm{M}, \times 22.5 ; 4,1780 \mathrm{M}$, $\times 22.5 ; 5,1501 \mathrm{M}, \times 22.5 ; 6,1405 \mathrm{M}, \times 22.5 .-7-12$. Macrocypris miranda n. sp.; $7,1955 \mathrm{M}, \times 25 ; 8,1419 \mathrm{M}, \times 30 ; 9,1441 \mathrm{M}, \times 30 ; 10$, $1442 \mathrm{~F}, \times 30 ; 11,1956 \mathrm{~F}, \times 25 ; 12,1815 \mathrm{~F}, \times 30$.

Plate 6
Mostly right valve exteriors, Macromckenziea - 1-6. Macromckenziea siliquasa (Brady); 1, 1530F, X45; 2, 1410M, X45; 3-5, 1950W, ventral, dorsal, and lateral views of whole carapace, X45; 6, 1412F, X45.—— Macromckenziea australiana (Neale), HU.65.C.6.60, interior of left valve with good muscle scar, posterodorsal region damaged, X70.-_8. Macromckenziea sp. 2, 1960, X45.-9. Macromchenziea sp. 7, 836, $\times 50$-10. Macromchenziea sp. 3, 1995F, $\times 50$-11,12. Macromchenziea ligustica (Bonaduce, Masoli, and Pugliese); 11, 2276, $\times 75$; 12, 2274F, $\times 75$.

Plate 7

Left valve exteriors, Macromchenziea.-1-6. Macromckensiea siliquasa (Brady); $1,1530 \mathrm{~F}, \times 45 ; 2,1949, \times 45 ; 3,1410 \mathrm{M}, \times 45 ; 4,1414 \mathrm{M}$, $\mathrm{X}_{45} ; 5,1950, \mathrm{X}_{45}$; 6, 1412F, X45.-7. Macromckenziea australiana (Neale), HU.65.C.6.60, X70.-8. Macromchenziea sp. 2, 1960, X45.-9. Macromckenziea sp. 7, 836, $\times 50$ - 10. Macromchenziea sp. 8, 1995, $\times 50 .-11,12$. Macromckenziea ligustica (Bonaduce, Masoli, and Pugliese); 11, 2275F, entire animal before dissection, $\times 75 ; 12,2276, \times 75$.

Plate 8

Right valve exteriors, Macromckenxiea.-1. Macromchenziea sp. 5, 1460F, X45.-_2. Macromchenziea sp. 6, 2319F, X45.-3-6. Macromchenziea glacieaen. sp.; $3,878 \mathrm{M}, \times 40 ; 4,720 \mathrm{M}, \times 40 ; 5,1957 \mathrm{~F}, \times 40 ; 6,721 \mathrm{~F}, \times 40 . —$. Macromckenziea sp. $4,2406, \times 50 .-8,9$. Macromckenziea swansoni n . sp.; 8, 2309, X45; 9, 2812, X45.-10-12. Macromckenziea gregalis n. sp.; $10,2330, \times 35 ; 11,1913, \times 35 ; 12$, $2326, \times 35$.

Plate 9

Left valve exteriors, Macromckenziea.-1. Macromckenziea sp. 5, 1460F, X45.-_2. Macromckenziea sp. 6, 2319F, X45.-3-6. Macromchenziea glacieraen. sp.; 3, 878M, $\times 40 ; 4,1957 \mathrm{~F}, \times 40 ; 5,877 \mathrm{~F}, \times 40 ; 6,721 \mathrm{~F}, \times 40 .-7-9$. Macromckenziea swansonin. sp.; 7, 2311, $\times 45 ; 8,2331, \times 45 ; 9,2312 \mathrm{~W}, \times 45$.—10-12. Macromchenziea gregalis n. sp.; $10,2330, \times 35 ; 11,1913, \times 35 ; 12,2326, \times 35$.

Plate 10
Right valve exteriors, Macropyxis.-1-6. Macropyxis labutisin. sp.; $1,1978 \mathrm{M}, \times 55 ; 2,1851 \mathrm{M}, \times 55 ; 3,1850 \mathrm{M}, \times 55 ; 4,1863 \mathrm{M}, \times 55 ; 5$, $1352 \mathrm{~F}, \times 55 ; 6,1353 \mathrm{~F}, \times 55 .-7-12$. Macropyxis sapeloensis (Darby); $7,1779 \mathrm{M}, \times 50 ; 8,1355 \mathrm{M}, \times 50 ; 9,1354 \mathrm{M}, \times 50 ; 10$, UMPM 48780 , $\times 50 ; 11,1357 \mathrm{~F}, \times 50 ; 12,1359 \mathrm{~F}, \times 50$.

Plate 11

Left valve exteriors, Macropyxis.-1-6. Macropyxis labutisi n . sp.; $1,1978 \mathrm{M}, \times 55 ; 2,1351 \mathrm{M}, \times 55 ; 3,1350 \mathrm{M}, \times 55 ; 4,1363 \mathrm{M}, \times 55 ; 5$, $1352 \mathrm{~F}, \times 55 ; 6,1353 \mathrm{~F}, \times 55$.——7-12. Macropyxis sapeloensis (Darby); $7,1779 \mathrm{M}, \times 50 ; 8,1355 \mathrm{M}, \times 50 ; 9,1354 \mathrm{M}, \times 50 ; 10$, UMPM 48780 , X50; 11, 1357F, X50; 12, 1859F, X50.

Piate 12

Right valve exteriors, Macropyxis_-1-6. Macropyxis amanda n. sp.; 1, 1457F, $\times 30$; 2, 1792F, $\times 30 ; 3,1408 \mathrm{~F}, \times 30 ; 4,1425 \mathrm{~F}, \times 30 ; 5$, $1407 \mathrm{M}, \times 30 ; 6,1406 \mathrm{M}, \times 30$.——7-12. Macropyxis bathyalensis (Hulings); $7,2886 \mathrm{M}, \times 35 ; 8,2987 \mathrm{M}, \times 35 ; 9,1841 \mathrm{~F}, \times 30 ; 10,1741, \times 30$; 11, AMNH $12783, \times 30 ; 12,1841 \mathrm{~F}$, entire animal before dissection, $\times 30$.

Piate 18

Left valve exteriors, Macropyxis.-1-6. Macropyxis amandan. sp.; $1,1457 \mathrm{~F}, \times 30 ; 2,1792 \mathrm{~F}, \times 30 ; 3,1408 \mathrm{~F}, \times 30 ; 4,1425 \mathrm{~F}, \times 30 ; 5,1407 \mathrm{M}$, $\times 80 ; 6,1406 \mathrm{M}, \times 30 .-7-12$. Macropyxis bathyalensis (Hulings); $7,2386 \mathrm{M}, \times 35 ; 8,1742, \times 30 ; 9,1341 \mathrm{~F}, \times 30 ; 10,1743, \times 30 ; 11, \mathrm{AMNH}$ $12733, \times 30 ; 12,1341 \mathrm{~F}$, entire animal before dissection, $\times 30$.

Plate 14
Right valve exteriors, Macropyxis.-1,2,7,8. Macropyxis aduncan. sp.; $1,1519 \mathrm{M}, \times 35 ; 2,1520 \mathrm{M}, \times 35 ; 7,1521 \mathrm{~F}, \times 35 ; 8,1523 \mathrm{~F}, \times 35$. -3-6. Macropyxis adrecta n. sp.; 3, 1522F, X $35 ; 4,1527 \mathrm{~F}, \times 35 ; 5,1786 \mathrm{~F}, \times 35 ; 6,1448 \mathrm{M}, \times 35$.-9-12. Macropyxis audens n . sp.; 9, $1781 \mathrm{~F}, \times 85 ; 10,1444 \mathrm{~F}, \times 85 ; 11,1525 \mathrm{M}, \times 35 ; 12,1446 \mathrm{M}, \times 35$.

Piate 15
Left valve exteriors, Macropyxis.-1-3, 7,8. Macropyxis aduncan. sp.; $1,1519 \mathrm{M}, \times 35 ; 2,1520 \mathrm{M}, \times 35 ; 3,1522 \mathrm{~F}, \times 35 ; 7,1521 \mathrm{~F}, \times 35 ; 8$, 1523F, $\times 35$.-4-6. Macropyxis adrectan. sp.; 4, 1527F, $\times 35 ; 5,1786 \mathrm{~F}, \times 35 ; 6,1448 \mathrm{M}, \times 35$.-9-12. Macropyxis audens n . sp.; 9, 1781F, $\times 35 ; 10,1444 \mathrm{~F}, \times 35 ; 11,1525 \mathrm{M}, \times 35 ; 12,1446 \mathrm{M}, \times 35$.

Plate 16
Right valve exteriors, Macropyxis.-1. Macropyxis sp. 9, 2338, $\times 32.5$ - - $2-4$. Macropyxis artan. sp.; 2, 1451M, $\times 35$; 3, 1456M, $\times 35$; 4, $1454 \mathrm{~F}, \times 35 .-5$. Macropyxis sp. 18, 1443F, X35.-6. Macropyxis sp. 11, 1416F, X40.——7. Macropyxis sp. 10, 2337, X55.-8. Macropyxis sp. 15, 2425, X40.——-12. Macropyxis adriatica (Breman); 9, 2085, X80; 10, 2091, $\times 30 ; 11,2086, \times 30 ; 12,2087, \times 30$.

Piate 17

Mostly left valve exteriors, Macropyxis.-1,2,7. Macropyxis sp. 10, 2387W; dorsal, ventral, and left lateral views of whole carapace, X55.-3-5. Macropyxis arta n. sp.; 3, 1451M, X35; 4, 1456M, X35; 5, 1454F, X35.-6. Macropyxis sp. 11, 1416F, X40.-8. Macropyxis sp. 15, 2426, X40.—9-12. Macropyxis adriatica (Breman); 9, 2080, X30; 10, 2083, X80; 11, 2082, X80; 12, 2081, X80.

Plate 18

Right valve exteriors, Macropyxis and Macromchenziea_-1. Macromckenziea sp. 19, 1495M, X40.——2. Macropyxis sp. 21,1962F, X80. -3-6. Macropyxis kalbin. sp.; 3, 1972F, $\times 27.5 ; 4,334 \mathrm{~F}, \times 27.5 ; 5,352 \mathrm{~F}, \times 27.5 ; 6,351 \mathrm{M}, \times 27.5$.-7-12. Macropyxis antonbruunaen. sp.; $7,354 \mathrm{~F}, \times 40 ; 8,333 \mathrm{~F}, \times 40 ; 9,350 \mathrm{M}, \times 40 ; 10,1966 \mathrm{M}, \times 40 ; 11,341 \mathrm{M}$, incompletely calcified carapace, $\times 40 ; 12,183 \mathrm{M}, \times 40$.

Plate 19
Left valve exteriors, Macropyxis and Macromckenziea_1. Macromchenziea sp. 19, 1495M, X40.-2-6. Macropyxis kalbi n. sp.; 2, 1962F, $\times 27.5 ; 3,1972 \mathrm{~F}, \times 27.5 ; 4,384 \mathrm{~F}, \times 27.5 ; 5,351 \mathrm{M}, \times 27.5 ; 6,381 \mathrm{M}, \times 27.5 .-7-12$. Macropyxis antonbruunaen. sp.; 7, 354F, $\times 40 ; 8,335 \mathrm{~F}$, $\times 40 ; 9,350 \mathrm{M}, \times 40 ; 10,1966 \mathrm{M}, \times 40 ; 11,341 \mathrm{M}$, incompletely calcified, $\times 40 ; 12,332 \mathrm{M}, \times 40$.

Plate 20
Right valve exteriors, Macropyxis.-1. Macropyxis sp. 17, 1150F, X40.-2-6. Macropyxis kaeslerin. sp.; 2, 1967M, X35; 3, 1968F, X35; $4,638 \mathrm{~F}, \times 35 ; 5,1496 \mathrm{~F}, \times 35 ; 6,1969 \mathrm{~F}, \times 35 .-7,8$. Macropyxis amoenan. sp.; 7, 1463M, X45; 8, 1864F, X47.——9. Macropyxis sp. 46, $1965 \mathrm{~F}, \times 40 .-10-12$. Macropyxis eltaninaen. sp.; $10,1964 \mathrm{MF}$, $\mathrm{X} 40 ; 11,833 \mathrm{~F}, \times 40 ; 12,881 \mathrm{M}, \times 40$.

Plate 21
Left valve exteriors, Macropyxis.-1-6. Macropyxis kaeslerin. sp.; 1, 1967M, X35; 2, 344F, X35; 3, 638F, X35; 4, 1968F, X35; 5, 1496F, X35; 6, 1969F, X 35 .——7,8. Macropyxis amoena n. sp.; 7, 1463M, X47; 8, 1864F, X47.——9. Macropyxis sp. 46, 1965F, X40.-10-12. Macropyxis ellaninaen. sp.; $10,1964 \mathrm{MF}, \times 40 ; 11,887 \mathrm{~F}, \times 40 ; 12,831 \mathrm{M}, \times 40$.

Plate 22
Right valve exteriors, Macropyxis.-1-3. Macropyxis steinecki n . sp.; $1,2104, \times 35 ; 2,2228, \times 35 ; 3,2096, \times 35 .-4-6$. Macropyxis rhodana (van den Bold); 4, USNM 563496, $\times 50$; 5, USNM 568497, $\times 50$; 6, USNM 563498, $\times 50$. 7. Macropyxis bathyalensis (Hulings), USNM 153744 ($=$ M. minna of Tressler, 1941) \times X Macropyxis longana (van den Bold); 10, 2252, X40; 11, USNM 563494, X40; 12, USNM 563493, X40.

Piate 23

Mostly left valve exteriors, Macropyxis.-1,2,7. Macropyxis steineckin. sp.; 1,2, dorsal and left side of 2101, X35; 7, 2104, Х35.-3-6. Macropyxis thodana (van den Bold); 3, USNM 563496, $\times 50$; 4, USNM $563497, \times 50 ; 5$, USNM $563498, \times 50 ; 6$, USNM $563499, \times 50$. -8-12. Macropyxis longana (van den Bold); $8,2252, \times 40 ; 9,2251, \times 40 ; 10$, USNM 563494, $\times 40 ; 11,12$, left and dorsal views of USNM 563493, X40.

Plate 24

Right valve exteriors, Macropyxis.-1,7. Macropyxis improcera n. sp.; 1, 2415, X80; 7, 2418, X80.-2,3,11,12. Macropyxis similis (Brady); 2, 2383F, $\times 30 ; 3,2382 \mathrm{M}, \mathrm{X} 30 ; 11,2148$, note secondary holes around normal pore canals, $\times 40 ; 12,2149, \times 40 .-4,5$. Macropyxis kornickerin. sp.; 4, 2385F, X35; 5, 2384M, X35.—6. Macropyxis simulansn. sp., 2416, X85.——8,9. Macropyxis sp. 13; 8, 2977, $\times 55 ; 9,2376, \times 55 .-10$. Macropyxis sp. 14, 2424, $\times 50$.

Plate 25

Left valve exteriors, Macropyxis.-1,7. Macropyxis improcera n. sp.; $1,2414, \times 80 ; 7,2412, \times 80$.-2,3. Macropyxis similis (Brady); 2, $2383 \mathrm{~F}, \times 30 ; 3,2382 \mathrm{M}, \times 30$ - 4,5. Macropyxis kornickerin. sp.; 4, $2385 \mathrm{~F}, \times 45 ; 5,2384 \mathrm{M}, \times 45$.-6. Macropyxis simulansn. sp., 2417 , $\times 32.5 .-8,9$. Macropyxis sp. $18 ; 8,2378, \times 55 ; 9,2379, \times 55$.-10-12. Macropyxis tenuicauda (Brady); 10, 2161, $\times 45 ; 11,12,2160, \times 45$.

Plate 26
Mostly right valve exteriors, Macrocypria and Macrosarisa_-1. Macrocypria semesan. sp., 857F, $\times 30$.- 2-8. Macrocypria sarsi (Müller); $2,1998 \mathrm{M}, \times 40 ; 3,1999 \mathrm{~F}$, female with reversed overlap, $\times 40 ; 4,2000 \mathrm{~F}, \times 40 ; 5-7,1340 \mathrm{~F}$, lateral and dorsal views, $\times 40 ; 8$, anterior dentiform corner, $\times 400$--9-12. Macrosarisa texana n. sp.; 9, 2239, X65; 10, 2286, X65; 11, 2241, X65; 12, 2020, X65.-13,14. Macrogpria canariensis (Brady), 2196, $\times 40$.

Piate 27
Mostly left valve exteriors, Macrocypria and Macrasarisa_-1,9. Macrocypria semesa n. sp.; $1,857 \mathrm{~F}, \times 30 ; 9,1484 \mathrm{~J}$, whole juvenile with body before dissection, X80-2-6. Macrocypria sarsi (Mûller); $2,1998 \mathrm{M}, \times 40 ; 3,1999 \mathrm{~F}$, female with reversed hingement, $\times 40 ; 4,2000 \mathrm{~F}$, X40; 5,6,1340F, $\times 40$ - 7,8 . Macrosarisa sp. 24; $7,2324, \times 50 ; 8,2325, \times 50-10-13$. Macrosarisa texanan. sp.; 10, 2240J, juvenile, $\times 65 ; 11,2286$, with fragments of antennules and antennae; $12,2242, \times 65 ; 13,2020, \times 65 .-14,15$. Macrocypria canariensis (Brady), 2196; note raised ring, perhaps caused by some kind of parasite, $\times 40$.

Plate 28

Right valve exteriors, Macresanisa-1-3. Macrosanisasp. 23, 1415M; part 3shows the whole animal with a conspicuous food ball before dissection, $\times 37 .-4-7$. Macrosarisa hiulcan. sp.; 4, 2356M, $\times 50 ; 5,6,2357 \mathrm{~F}, \times 50 ; 7,2358 \mathrm{~F}, \times 45 .-8$. Macrosarisa sp. 47, $127 \mathrm{~F}, \times 42$. -9-14. Macrosarisa bensoni n . sp.; $9,2162, \times 35 ; 10,2303, \times 42 ; 11,1710 \mathrm{~F}, \times 35 ; 12,1951, \times 42 ; 13,14,1869 \mathrm{M}, \times 42$.

Plate 29

Mostly left valve exteriors, Macrosarisa.-1-3. Macrosarisa sp. 23, 1415M, dorsal and left views of entire animal before dissection, X37.-4-7. Macrosarisa hiulcan. sp.; 4, 2956M, $\times 50 ; 5,6,2357 \mathrm{~F}, \times 50 ; 7,2358 \mathrm{~F}, \times 45$ - - 8. Macrosarisa sp. 47, 127F, X42.-9-14. Macrosarisa bensoni n . sp.; $9,2174, \times 35 ; 10,2303, \times 42 ; 11,1710 \mathrm{~F}, \times 35 ; 12-14,1869 \mathrm{M}$, part 14 shows the entire animal before dissection, $\times 42$.

Plate 30
Right valve exteriors, Macrocyprissa.-1-5. Macrocyprissa vandenboldin. sp.; $1,2123, \times 65 ; 2,2224, \times 65 ; 3,2118, \times 65 ; 4,2223, \times 65 ; 5$, 2123, X65.-6. Macrocyprissa sp. 22, 2336, X65.-7-10. Macrocyprissa arcuata (Colalongo and Pasini); 7, 1534M, $\times 50 ; 8,1532 \mathrm{M}$, $\times 50 ; 9,1536 \mathrm{~F}, \mathrm{X} 50 ; 10,1531 \mathrm{~F}, \times 50.11,12$. Macrocyprissa cylindracea (Bornemann); 11, 2307, $\times 70 ; 12,2308, \times 70$.

Plate 31

Mostly left valve exteriors, Macrocyprissa.-1-6. Macrocyprissa vandenboldin. sp.; 1,2,2119, $\times 65 ; 3,2203, \times 65 ; 4,2122, \times 65 ; 5,6$, dorsal and left views of $2121, \times 65$ - -111 . Macrocyprissa arcuata (Colalongo and Pasini); $7,1533 \mathrm{M}, \times 50 ; 8,1535 \mathrm{M}, \times 50 ; 9,1534 \mathrm{M}, \times 50 ; 10$, $1536 \mathrm{~F}, \times 50 ; 11,1531 \mathrm{~F}, \times 50$ - 12, 13. Macrogprissa glindracea (Bornemann); 12, 2305, $\times 70 ; 13,2306, \times 70$.

Plate 32

Mostly right valve exteriors, Macrosarisa-1-4. Macrosarisa graysonensis (Alexander); 1,4 , dorsal and right views of 2270, $\times 80 ; 2,2271$, $\times 80 ; 3,2272, \times 80 .-5-8$. Macrosanisa siliqua (Jones); 5, BMNH Io.1594, X85; 6, BMNH In.51617, X45; 7, BMNH Io.51620, X40; 8, BMNH In.51619, X45.-9-13. Macrosanisa exquisita (Kaye); 9,10, BMNH Io. 1271 (the acute posterior angle has been broken off this specimen), X50; 11, BMNH Io.1273, X50; 12, BMNH Io.1272, X50; 13, BMNH Io.1270, X50.-14. Macrosarisa simplex (Chapman), BMNH Io.1275, $\times 55$ - - 15. Macrosarisa wrightii (Jones and Hinde), BMNH Io. 2473 (anterior edge of this specimen is broken), $\times 35$.

Plate 35

Mostly left valve exteriors, Macrosanisa.-1-4. Macrosanisa graysonensis (Alexander); $1,2271, \times 80 ; 2,2270, \times 80 ; 3,2272, \times 80 ; 4$, TMM 11518, X80.-5-8. Macrosanisa siliqua (Jones); 5, BMNH Io.1599, X40; 6, BMNH Io.1276, X45; 7,8, BMNH In. 51617 , left and dorsal views, $\times 50$ - -9-14. Macrosarisa exquisita (Kaye); 9, dorsal view of BMNH Io.1270, $\times 50$; 10-12, dorsal, ventral, and left views of BMNH Io.1272, $\times 50$; 13, 14, BMNH Io.1274, $\times 50$ - - 15. Macrosarisa simplex (Chapman), BMNH Io.1275, $\times 50$--16. Macrosarisa wrightii (Jones and Hinde), BMNH Io.1595, $\times 85$.

Plate 34

Right valve exteriors, Macrosarisa and Macroscapha_-1-6. Macrosarisa capacisn. sp.; 1, 2360M, X40; 2, 2361F, X40; 3, 2363F, X40; 4, $2364 \mathrm{~F}, \times 40 ; 5,6,2362 \mathrm{~F}$, part 5 is tilted to show the posteroventral swelling of the carapace above the ventral margin, $\times 40$. - 7,8 . Macroscapha marchilensis (Hartmann); 7, K-27821B, X40; 8, K-27821A, X40--9-12. Macroscapha atlantica n. sp.; 9, 1980M, X45; 10, 1982M, X45; 11, 1983F, X45; 12, 1984F, X45.

Plate 35
Mostlyleft valve exteriors, Macrosarisa and Macroscapha_-1-6. Macrosarisa capacisn. sp.; 1, 2360M, X40; 2, 2361F, X40; 3, 2363F, X40; 4, 2364F, X40; 5,6, dorsal and left view of 2362F, X40.——7,8. Macroscapha marchilensis (Hartmann); 7, K-27321B, X40; 8, K-27321A, X40.-9-12. Macroscapha atlantican. sp.; $9,1981 \mathrm{M}, \mathrm{X}_{45} ; 10,1980 \mathrm{M}, \times 45 ; 11,1982 \mathrm{M}, \times 45 ; 12,1983 \mathrm{~F}, \times 45$.

Plate 36
Right valve exteriors, Macroscapha_-1-6. Macroscapha inaequata n. sp.; $1,1491 \mathrm{~F}, \times 35 ; 2,716 \mathrm{M}, \times 40 ; 3,714 \mathrm{M}, \times 35 ; 4,715 \mathrm{~F}, \times 35 ; 5$, $865 \mathrm{M}, \times 35 ; 6,1459 \mathrm{~F}, \times 85 .-7-10$. Macroscapha sinuata $\mathrm{n} . \mathrm{sp}$.; $7,845 \mathrm{M}, \times 35 ; 8,847 \mathrm{~F}, \times 35 ; 9,852 \mathrm{~F}, \times 35 ; 10,851 \mathrm{~F}, \times 35 .-11,12$. Macroscapha inaequalis (Müller), types embedded in Canada balsam; 11, 1940M, X85; 12, 1989F, $\times 85$.

Plate 37

Left valve exteriors, Macroscapha.-1. Macroscapha sinuata, 848MF?, specimen of indeterminate sex, X85.-_2-6. Macroscapha inaequatan. sp.; $2,714 \mathrm{M}$, note chitinous inner lining of outer lamella remaining where calcified portion of outer lamella has cracked and fallen off, $\times 35 ; 3,865 \mathrm{M}, \times 35 ; 4,825 \mathrm{~F}$, with calcareous portion of outer lamella cracked and fallen off from central part, $\times 35$; 5 , $190 \mathrm{~F}, \mathrm{X} 35$; 6, 1459F, X85.-7-10. Macroscapha sinuata n . sp.; $7,846 \mathrm{M}, \times 35 ; 8,850 \mathrm{~F}, \times 35 ; 9,852 \mathrm{~F}, \times 35 ; 10,851 \mathrm{~F}$, note air bubbles trapped between inner chitinous lining and calcified portion of outer lamella in posterodorsal region, $\times 35$.-11,12. Macroscapha inaequalis (Müller), types embedded in Canada balsam; 11, 1939F, $\times 85$; 12, 1940M, X85.

Plate 38

Right valve exteriors, Macroscapha.-1. Macroscapha sp. 32, 2427, X40.-2-6,12. Macroscapha opacan. sp.; 2, 1963, X35; 3, 1958F, $\times 40 ; 4,1959 \mathrm{M}, \times 40 ; 5,1477 \mathrm{M}, \times 40 ; 6,1480 \mathrm{~F}, \times 40 ; 12,2027 \mathrm{M}$, whole animal before dissection, $\times 30 .-7-11$. Macroscapha tensa (Müller); $7,866 \mathrm{~F}, \times 30 ; 8,859 \mathrm{~F}, \times 30 ; 9,860 \mathrm{~F}, \times 30 ; 10,861 \mathrm{M}, \times 30 ; 11,1935 \mathrm{~F}$, embedded in Canada balsam, $\times 30$.

Plate 39

Left valve exteriors, Macroscapha_-1. Macroscapha sp. 32, 2427, X40.-2-6. Macroscapha opacan. sp.; 2, 1963, X35; 3, 1958F, X35; 4, $2027 \mathrm{M}, \times 40 ; 5,1479 \mathrm{M}, \times 40 ; 6,1480 \mathrm{~F}, \times 40-7-12$. Macroscapha tensa (Mūller); $7,866 \mathrm{~F}, \times 30 ; 8,862 \mathrm{~F}, \times 30 ; 9,867 \mathrm{~F}, \times 30 ; 10,860 \mathrm{~F}$, $\times 30 ; 11,861 \mathrm{M}$, note chitinous inner lining of outer lamella where calcarous portion has cracked and fallen off, $\times 30 ; 12,1935 \mathrm{~F}$, type embedded in Canada balsam, $\times 80$.

Plate 40
Right valve exteriors, Macroscapha-1,2. Macroscapha gyreaen. sp.; 1, 2245, X55; 2, 1509, X55.——3-13. Macroscapha turbida (Müller); $3,1487 \mathrm{M}, \times 40 ; 4,375 \mathrm{M}, \times 40 ; 5,828 \mathrm{~F}, \times 40 ; 6,1488 \mathrm{~F}, \times 40 ; 7,1467 \mathrm{~F}, \times 40 ; 8,189 \mathrm{~F}, \times 40 ; 9,373 \mathrm{M}, \times 40 ; 10,1943 \mathrm{M}, \times 40 ; 11,1944 \mathrm{M}, \times 40$; 12, 1934M, in Canada balsam, $\times 40 ; 13,1945$, in Canada balsam, $\times 40$.

Plate 41
Left valve exteriors, Macroscapha.-1,2. Macroscapha gyreaen. sp.; 1, 2012, X55; 2, 1284, X55.——3. Macroscapha sp. 27, 2410, X50. -4. Macroscapha sp. 28, 2408, X35.——5-14. Macroscapha turbida (Müller); $5,1490 \mathrm{M}, \times 40 ; 6,1475 \mathrm{M}, \times 40 ; 7,197 \mathrm{M}, \times 40 ; 8,827 \mathrm{M}$, note inner chitinous lining where outer calcareous portion has cracked and fallen off, $\times 40 ; 9,1488 \mathrm{~F}, \times 40 ; 10,189 \mathrm{~F}, \times 40 ; 11,189 \mathrm{~F}, \times 45$; 12-14, types mounted in Canada balsam; 12, 1944M, X40; 13, 1946M, X40; 14, 1945, $\times 40$.

Plate 42

Mostly right valve exteriors, Mactosarisa and Macrascapha.-1. Macroscapha sp. 31, 2423, X60.-2-6. Macroscapha jiangi n. sp.; 2, $2333, \times 40 ; 3,1921, \times 40 ; 4,5$, dorsal and right views of $2313, \times 40 ; 6,1922, \times 40 .-7$. Macroscapha sp. 29, 2407, X60.-8,9. Macroscapha heroica n . sp.; $8,1462 \mathrm{M}, \times 40 ; 9,1461 \mathrm{~F}, \times 40$ - 10-12. Macrosarisa muensteriana (Jones and Hinde); 10,12, ventral and right view of BMNH $\operatorname{In} .51618, \times 70 ; 11$, BMNH In. $51622, \times 70$.

Plate 43

Mostly left valve exteriors, Macrosarisa and Macroscapha_-1. Macroscapha sp. 31, 2428, X60.-2-6. Macroscaphajiangin. sp.; 2, 2334, $\times 50 ; 3,2385, \times 40 ; 4,1921, \times 40 ; 5,2313, \times 40 ; 6,1922, \times 40$ - 7. Macroscapha sp. 29, 2407, $\times 60$ - - 8,9. Macroscapha heroican. sp.; 8, $1462 \mathrm{M}, \times 40 ; 9,1461 \mathrm{~F}, \times 40$-10-12. Macrosarisa muensteriana (Jones and Hinde); 10,12, dorsal and left views of BMNH In. 51618 , $\times 70 ; 11$, BMNH In.51622, X70.

Plate 44
Mostly right valve exteriors, Macrocyprina_-1-4. Macrocyprina sucanea (Müller); 1, 2277M, X75; 2, 1905M, X75; 3, 1906F, X75; 4, $2278 \mathrm{~F}, \times 75$ - 5. Macrocyprina sp. 44, 2420, $\times 75$ - 6. Macтocyprina caiman n. sp., 2418, $\times 75$.- 7-12. Macrocyprina propinqua Triebel; 7,11, dorsal and right views of Xe $3365 \mathrm{M}, \times 75$; 8,10, dorsal and right views of Xe 3367F, $\times 75$; 9, Xe 3362M, $\times 75$; 12, Xe 3364F, $\times 75$.

Plate 45
Left valve exteriors, Macrocyprina_-1-4. Macrocyprina succinea (Müller); $1,2277 \mathrm{M}, \times 75 ; 2,1904 \mathrm{M}, \times 75 ; 3,1906 \mathrm{~F}, \times 75 ; 4,2278 \mathrm{~F}$, $\times 75$.-5. Macrocyprinasp. 41, 2421, $\times 50$ - 6. Macrocyprina caiman n. sp., 2419, $\times 75$.- 7-11. Macrocyprina propinqua Triebel; 7 , Xe 3362M, X75; 8, Xe 3368, X75; 9, Xe 3364F, X75; 10, Xe $3367 \mathrm{~F}, \mathrm{X} 75$; 11, Xe 3365 M , whole animal with dry body inside, X75.-12. Macrocyprina quadrimaculatan. sp., 1700J-1, juvenile showing the characteristic four opaque spots, X 70 .

Piate 46
Right valve exteriors, Macrocyprina_-1,2,7. Macrocpprina hortuli n. sp.; 1, 1762M, X70; 2, 1508M, X70; 7, 1761F, X70.-3-6. Macrocpprina bermudaen. sp.; 3, 1843A, X75; 4, 130M, X75; 5,6, 181F, X75.—8-12. Macrocyprina skinneri Kontrovitz; 8, 1910M, X60; 9, $1909 \mathrm{M}, \times 60 ; 10,1911 \mathrm{~F}, \times 60 ; 11$, HVH 9438, gold-coated, X60; 12, HVH 9439, X60.

Plate 47

Left valve exteriors, Macrocyprina.——1,2,7,8. Macrocyprina hortulin. sp.; 1, 1762M, X70; 2, 1508M, X70; 7, 1761F, X70; 8, 993M, X70. -3-6. Macrocyprina bermudae n . sp.; 3, 1759M, totally decalcified, $\times 75$; 4, 1843A, $\times 75$; 5, 130M, X75; 6, 181F, X75.-9-12. Macrocyprina skinneri Kontrovitz; 9, 1910M, X60; 10, 1909M, X60; 11, 1911F, X60; 12, HVH 9437, gold-coated, X60.

Plate 48
Mostly right valve exteriors, Macrocyprina_-1-6. Macrocyprina hawkaen. sp.; $1,1818 \mathrm{M}, \times 55 ; 2,1853 \mathrm{M}, \times 55 ; 3,1852 \mathrm{M}, \times 55 ; 4,2289$, $\times 55 ; 5,2298, \times 50 ; 6,2296, \times 55$.—7-12. Macrocyprina schmitti (Tressler); 7, USNM 168088, totally decalcified, $\times 70 ; 8,1763 \mathrm{M}, \times 70 ; 9$, $1806 \mathrm{~F}, \times 70 ; 10,1764 \mathrm{M}, \times 70 ; 11,12$, dorsal and right views of HVH $9441, \times 70$.

Plate 49
Left valve exteriors, Macrocyprina.-1-6. Macrocyprina hawkaen. sp.; 1, 1819F, X55; 2, 1852M, X55; 3, 2290, X55; 4, 2299, X50; 5, 2300, $\times 55 ; 6,2323, \times 55$.-7-12. Macroopprina schmitti (Tressler); 7, USNM 88847, totally decalcified and mounted in balsam, $\times 70 ; 8$, $1763 \mathrm{M}, \times 70 ; 9,1806 \mathrm{~F}, \times 70 ; 10,1764 \mathrm{M}, \times 70 ; 11$, HVH 9441, X70; 12, HVH 9440, X70.

Plate 50
Right valve exteriors, Macrocyprina-1. Macrocyprina sp. 36, 1705, X60.-2. Macrocyprina sp. 35, 1344, colored yellow, amber, and brown, X60.-3,4. Macrocpprina hartmannin. sp.; 3, 2130M, X60; 4, 2132F, colored yellow, amber, and brown, X60.-5,6,11,12. Macrocyprina belizensisn. sp.; 5, 1828, $\times 65 ; 6,2302 \mathrm{~J}-1, \times 65 ; 11,1996, \times 65 ; 12,2301, \times 65 .-7-10$. Macrocyprina jamaicaen. sp.; 7, 1835, $\times 50 ; 8,2250, \times 50 ; 9,2247, \times 50 ; 10,2246, \times 50$.

Plate 51
Left valve exteriors, Macrogprina - 1. Macrocyprina sp. 33, 1707, X60.-2. Macrocyprina sp. 34, 1513, X60.-3. Macrocyprinasp. 35,1345 , in three shades of yellow, amber, and brown, X60.-4,5. Macrocyprina hartmannin. sp.; 4, 2130M, X60; 5, 2132F, X60; colored yellow, amber, and brown.-7. HM "Macrogprina maculata + decora (Brady)," the only remaining juvenile specimen, with adhering dirt, X60.-8-11. Macrocyprina jamaicae n. sp.; 8, 2249, X50; 9, 2248, X50; 10, 1836, X50; 11, 2005, X50.-6, 12 . Macrocyprina belizensis n. sp.; 6, 1829, X65; 12, 1997, X65.

Plate 52

Right valve exteriors, Macrocyprina.-1-3. Macrocyprina madagascarensis n. sp.; $1,2025, \times 55 ; 2,1757 \mathrm{M}, \times 55 ; 3,1149 \mathrm{~F}, \times 55 .-4-6$. Macrocyprina mozan. sp.; 4, 2059, X70; 5, 2344, $\times 70 ; 6,2345, \times 70$-——7-9. Macrocyprina captiosan. sp.; 7, 1193M, $\times 55 ; 8,2351 \mathrm{M}, \times 65$; 9, 2552F, X65.-10. Macrocyprina sp. 48, 2409, dorsal margin damaged, X75.-11. Macrogprina sp. 42, 2422, X60.- 12. Macrocyprina sp. 37, 2291, X70.

Plate 58

Left valve exteriors, Macrocyprina.-1-3,7. Macrooyprina madagascarensis n . sp.; 1, 2025, $\times 55 ; 2,83 \mathrm{~F}, \times 55 ; 3,84 \mathrm{M}, \mathrm{X} 55 ; 7,1757 \mathrm{M}$, X55.-4-6. Macrocyprina mozan. sp.; 4, 2059, X70; 5, 2344F, X70; 6, 2845, X70.-8-10. Macrocyprina captiosan. sp.; 8, 2851M, X65; $9,2352 \mathrm{~F}, \times 65 ; 10,2355, \times 65$.-11. Macrocyprina sp. 43, 2409, $\times 75$.-12. Macrocyprina sp. 42, 2422, $\times 60$.

Plate 54

Right valve exteriors, Macrocyprina.-1,2. Macrocyprina noharain. sp.; $1,2058, \times 50 ; 2,2063, \times 50$ - 3 ,4. Macrocyprina bonaducein. sp.; 3, 2264, X65; 4, 2263, X65.-5. Macrocyprina sp. 38, 2004, X55.-6. Macrocyprina sp. 39, 1854, X60.-7. Macrocyprina okinawae n. sp., 2068, X50.-8,9. Macrocyprina africana (Müller), types mounted in Canada balsam; 8, 1937M, X50; 9, 1938F, damaged, $\times 50$.-10-12. Macrocyprina dispar (Müller), types mounted in Canada balsam; 10, 1931F, X60; 11, 1933M, X60; 12, 1932F, $\times 60$.

Plate 55

Left valve exteriors, Macrocyprina.-1. Macrocyprina noharain. sp., 2058, $\times 50$-——2,3. Macrocyprina bonaducein. sp.; 2, 2260, $\times 65$; 3, $2261, \times 65$ - 4,5. Macrocyprina sp. 40; 4, 1902F, X75; 5, 1901F, X75.-6. Macrocyprina sp. 39, 1854F, X60.-7. Macrocyprina okinawaen. sp., 2064, $\times 50$ - 8,9. Macrocyprina africana (Müller), mounted in Canada balsam; 8, 1936F, $\times 50 ; 9,1938, \times 50$.-10-12. Macrocyprina dispar (Müller), mounted in Canada balsam; 10, 1933M, X60; 11, 1931F, X60; 12, 1932F, X60.

Plate 56

Mostly right valve exteriors, Macrocyprina.-1-4. Macrocpprina vargata Allison and Holden; $1,1507 \mathrm{~F}, \times 75$; 2, USNM 128096, $\times 75$; 3, USNM $128095, \times 75 ; 4$, USNM $128096, \times 75$ - - $5,6,12$. Macrocyprina swaini n . sp.; 5,6 , dorsal and right views of $2284, \times 70 ; 12,1994$, totally decalcified, $\times 70$.-7. Macrocyprina sp. $45,2428, \times 60$ - 8,9. Macrocyprina barbaran. sp.; 8, $2400 \mathrm{M}, \times 70 ; 9,2401 \mathrm{~F}, \times 70 .-10$. Macrocyprinaparcensn. sp., 2266, $\times 55$.-11. Macrocyprina sp. 34, 1704, $\times 60$.

Plate 57

Mostly left valve exteriors, Macrocyprina.-1-5. Macrocyprina vargata Allison and Holden; 1, 1507F, X75; 2,5, USNM 128096, X75; 3,4, dorsal and right views of USNM 128095, X75.——6,11,12. Macrocyprina swaini n . sp.; 6, 1995A, X70; 11, 2285, X70; 12, 2284, X70. —7. Macrocyprina sp. 45, 2429, $\times 45$.-8,9. Macrocyprina barbaran. sp.; $8,2400, \times 70 ; 9,2401 \mathrm{~F}, \times 65$.-10. Macrocyprina parcens n . sp., $2265, \times 55$.

Plate 58

Right exteriors and posterior spines, Macrocypris, Macropyxis, Macroscapha, and Macrocyprina.-1,2,9-15. Macrocypris mirandan. sp.; 1,2 , right exteriors; $1,1420 \mathrm{~F}, \times 30 ; 2,1765 \mathrm{FJ}-1, \times 30 ; 9-15$, details of posteroventral spine; $9,1765 \mathrm{FJ}-1, \times 1386 ; 10,13,1776 \mathrm{MJ}-1, \times 250$; $11,14,1440 \mathrm{~F}, \times 250 ; 12,15,1419 \mathrm{M}, \times 250 .-3$. Macrocypris opinabilis n. sp., 2404, $\times 80 .-4$. Macrocyprina skinneri Kontrovite, HVH $9739, \times 65$.-5. Macropyxis adunca n. sp., 1519M, $\times 40$.-6. Macroscapha sp. 26, HU.13.R.12.91, $\times 55$.- 7. Macrocypris metuendan. sp., $1780 \mathrm{M}, \times 20 .-8$. Macrocypris maiorisn. sp., $1774 \mathrm{M}, \times 20$.

Plate 59
Left exteriors and posterior spine, Macrocypris, Macropyxis, Macroscapha, and Macrocyprina - 1,2,11. Macrocypris mirandan. sp.; 1, $1420 \mathrm{~F}, \times 30 ; 2,1765 \mathrm{FJ}-1, \times 30 ; 11,1765 \mathrm{FJ}-1, \times 773$.——3. Macrocypris opinabilis n. sp., 2405, $\times 30$.-4. Macropyxis sp. $8,126 \mathrm{~F}, \times 33$. -5. Macrocyprina skinneri Kontrovitz, UM 48679, X90.-6. Macropyxis improcera n. sp., HVH $9738, \times 80$ - 7. Macrocyprina sp. 48, HVH $8267, \times 65$.-8. Macroscapha sp. 26, HU.13.R.12.93, $\times 55 .-9$. Macrocypris proclivisn. sp., 128F, $\times 20$ - 10. Macrocypris maionis n. sp., $1774 \mathrm{M}, \times 20$.

Plate 60
Left interior hinges, Macromckenziea, Macropyxis, and Macrosarisa_-1-4. Macromckenziea siliquosa (Brady), 1411F; $1, \times 130 ; 2, \times 63$; 3, X46; 4, X67.-5-7. Macropyxis audens n. sp., 1445M; 5, X69; 6, 7, X202.——8. Macrosarisa bensoni n. sp., 1869M, X71.-9. Macropyxis kalbin. sp., $889 \mathrm{M}, \times 30$.

Plate 61
Right interior hinges, Macromckenziea, Macropyxis, and Macrosanisa_-1-4. Macromckenziea siliquosa (Brady), 1411F; $1, \times 130 ; 2, \times 63$; 3 , $\times 46 ; 4, \times 67 .-5-7$. Macropyxis audens $\mathrm{n} . \mathrm{sp} ., 1445 \mathrm{M} ; 5, \times 69 ; 6,7, \times 202 .-8$. Macrosarisa bensoni $\mathrm{n} . \mathrm{sp} ., 1869 \mathrm{M}, \times 71 .-9$. Macropyxis kalbin. sp., 889M, $\times 30$.

Plate 62
Right and left dorsal views and hinges, Macropyxis, Macroscapha, and Macrocyprina.-1. Macropyxis bathyalensis (Hulings), 1341F, X88.—2,3. Macropyxis labutisi n . sp.; 2, 1363M, $\times 60 ; 3,1888 \mathrm{~F}, \times 60 .-4,5$. Macropyxis sapeloensis (Darby); 4, 1859F, $\times 50 ; 5,1854 \mathrm{M}$,

X50 and $\times 40$ - 6, 7. Macropyxis eltaninae n. sp.; 6, 833F, $\times 40 ; 7,831 \mathrm{M}, \mathrm{X} 40 .-8$. Macropyxis antonbruunae n . sp., $358 \mathrm{M}, \mathrm{X} 50$. -9,10. Macrocyprina bermudae n. sp., 131F; 9, X90; 10, X80,——11. Macrocyprina propinqua Triebel, Xe 3367, X75.-12. Macroscapha turbida (Müller), 823F, $\times 45$.

Plate 63

Left and right interior views of hinges and details of hinge teeth, Macropyxis, Macrocyprissa, Macroscapha, and Macrocyprina.- 1,2 . Macropyxis adrectan. sp., 1448M, X65.—3,4. Macropyxis audens n . sp., 1445M, X65.-5,6. Macropyxis sapeloensis (Darby), AMNH 12733, X65.-7-10,12. Macropyxis bathyalensis (Hulings), 1341F; 7,8,10,12, X65; 9, X60.-11,14. Macrocyprissa cylindracea (Bornemann); 11, 2306, $\times 100 ; 14,2308, \times 100 .-13,16$. Macroscapha turbida (Müller); 13, $358 \mathrm{M}, \times 110 ; 16,375 \mathrm{M}, \times 110 .-15$. Macroscapha sinuatan. sp., $328 \mathrm{M}, \times 110$-17. Macrocyprina madagascarensis n. sp., 1193M, $\times 120$ - 18. Macrocypris minna (Baird), $1347, \times 120$.

Plate 64

External setae of Macrocypris.-1,2. Macrocypris minna (Baird); 1, 1349LV, with post-mortem crystalline overgrowth, X2016; 2, $1347 \mathrm{RV}, \times 1428$ - 3,4. Macrocypris maioris n. sp., 1434M, $\times 1386$.——5-8. Macrocypris mirandan. sp.; $5,1420 \mathrm{~F}, \times 2268 ; 6,1420 \mathrm{~F}, \times 739$; $7,1765 \mathrm{FJ}-1, \times 1386 ; 8,1765 \mathrm{FJ}-1, \times 773$.-9. Macrocypris proclivisn. sp., $128 \mathrm{~F}, \times 1554$.

Plate 65

External setac of Macromckenziea.-1-5. Macromckenziea siliquasa (Brady), 1500M; 1, X2585; 2,3,5, X1175; 4, X1218.-6. Macromckenziea siliquasa (Brady), 1411F, X1646.—7-10. Macromckenziea glacierae n. sp.; 7, 722M, $\times 1386 ; 8,725 \mathrm{M}, \times 344 ; 9,722 \mathrm{M}, \times 2142$; $10,720 \mathrm{M}, \times 1327$.

Plate 66

External setae of Macropyxis.-1,2. Macropyxis adrectan. sp., 1448M; $1, \times 362 ; 2, \times 1428$.——3,4. Macropyxis antonbruunaen. sp.; 3, 358M, X3444; 4, 183M, X1327.-5. Macropyxis bathyalensis (Hulings), 1341F, X1386.-6, 7. Macropyxis eltaninae n. sp.; 6, 833F, X8192; 7, 831M, X8192.-8-11. Macropyxis sapeloensis (Darby); 8, 1354M, X1344; 9,10, 1359F, X1890; 11, 1354M, X1302.

Plate 67

External setae of Macropyxis and Macrocyprissa.——1-4. Macropyxis kalbin. sp.; 1,331M, $\times 722 ; 2,385 \mathrm{M}, \times 1470 ; 3,331 \mathrm{M}, \times 1445 ; 4,839 \mathrm{M}$, X1974.-5-7. Macropyxis labutisin. sp., 1363M; 5, X1882; 6, X336; 7, X672.-8,9. Macrocyprissa arcuata (Colalongo and Pasini), 1531F; 8, X344; 9, X672.

Plate 68

Anteroventral and posteroventral dentiform corners of Macrocypria, Macroyprissa, and Macrosanisa.-1-5. Macrocypria sarsi (Müller); 1-4, 1998M, X400; 5, 2000F, X600.-6-14. Macrocyprissa arcuata (Colalongo and Pasini); 6, 12, 1732MJ-1, $\times 900 ; 7,8,1532 \mathrm{M}, \times 600 ; 9$, $1531 \mathrm{~F}, \times 600 ; 10,11,1733 \mathrm{FJ}-1, \times 900 ; 13,1731 \mathrm{~J}-3, \times 600 ; 14,1535 \mathrm{M}, \times 900 .-15,16$. Macrosarisa bensonin. sp.; 15, 2163LV, $\times 300 ; 16$, $827 \mathrm{~F}, \times 300$.

Piate 69

Anteroventral and posteroventral dentiform corners of Macrocypria, Macrocyprissa, and Macrosarisa. Arrows point toward the anterior. -1. Macroyprissa arcuata (Colalongo and Pasini), 1535M, X900.—2-8. Macrocypria sarsi (Müller); 2, 1999F, X900; 3,4, 2000F, X900; 5, 2001J-1, X80; 6, 2001J-1, X40; 7, 1998M, X40; 8, 1998M, X200.——9. Macrocypria semesa n. sp., 857F, X600.- 10 . Macrosarisa bensonin. sp., 1869M, $\times 180$.

Plate 70
Anteroventral and posteroventral dentiform corners of Macrocyprissa and Macrosarisa. Arrows point toward the anterior.-1-4. Macroyprissa arcuata (Colalongo and Pasini); 1, 1532M, $\times 1361 ; 2,1532 \mathrm{M}, \times 1886 ; 3,1732 \mathrm{MJ}-1, \times 1861 ; 4,1531 \mathrm{~F}, \times 1352 .-5$. Macrosarisa bensonin. sp., 1869M, X1361.-6. Macrosarisa sp. 47, 127F, X1302.

Piate 71
Anteroventral dentiform corners of Macrosanisa.——1,2,4. Macrosansa bensonin. sp., 1869M, X1861.——3,5,6. Macrosarisa sp. 47, 127F; 3, X647; 5, X1302; 6, X1554.

Plate 72

Right anterior (1-10, 13-15) and posterior (11,12, 16-20) dentiform corners of Macrocyprissa and Macrasanisa-1,2. Macrosarisa bensoni n. sp.; 1, 2303, X350; 2, 1869M, X300.-3,4,11. Macrosarisa texana n. sp.; 3,11, 2286, X300; 4, 2241, X350.- $5,12$. Macrocyprissa glindracea (Bornemann), 2307; $5, \times 300 ; 12, \times 300$ - $6,7,16,17$. Macrosansa capacisn. sp.; 6, 16, 2366F, $\times 500 ; 7,17,2361 \mathrm{~F}$,

X500.——8,13-15,19. Macrosarisa hiulca n. sp; $8,19,2956 \mathrm{M}, \times 250 ; 13,2958 \mathrm{~F}, \times 250 ; 14,2358 \mathrm{~F}, \times 500 ; 15,2357 \mathrm{~F}, \times 500 .-9$. Macrosarisa siliqua (Jones), BMNH Io.1594, $\times 250-10,18$. Macrosarisa exquisita (Kaye); 10, BMNH Io.1271, X425; 18, BMNH Io.1270, X425.-20. Macrosarisa muensteriana (Jones and Hinde), BMNH In.51622, X180.

Plate 78

Left anterior (1-14) and posterior (15-20) dentiform corners of Macrosarisa.-1-3,16. Macrosarisa bensonin. sp.; 1, 1869M, $\times 130 ; 16$, $1869 \mathrm{M}, \times 200 ; 2,2303, \times 350 ; 3,1711 \mathrm{~J}, \times 400 .-4,5,15$. Macrosarisa texana $\mathrm{n} . \mathrm{sp} ; 4,15,2286, \times 300 ; 5,2242, \times 350 .-6-9,17-19$. Macrosarisa capacis n . sp.; $6,18,2360 \mathrm{M}, \times 500 ; 7,17,2363 \mathrm{~F}, \times 500 ; 8,19,2366 \mathrm{~F}, \times 500 ; 9,2361 \mathrm{~F}, \times 500 .-10$. Macrosarisa graysonensis (Alexander), 2270, $\times 250$ _-11,12,20. Macrosarisa hiulcan. sp.; 11,20, 2356M, $\times 250 ; 12,2858 \mathrm{~F}, \times 250 .-13,14$. Mactosarisa exquisita (Kaye); 13, BMNH Io.1273, X425; 14, BMNH Io.1272, $\times 250$.

Plate 74

Exterior setae of Macrosarisa and Macroscapha-1. Macrosarisa bensoni n. sp., 1417M, X1680._-2,4. Macrosarisa sp. 23, 1415M; 2, $\times 2142 ; 4, \times 5376 .-3,6$. Macroscapha inaequatan. sp; $3,825 \mathrm{~F}, \times 1344 ; 6,716 \mathrm{M}, \times 1512 .-5,7-10$. Macroscapha opacan. sp.; $5,1481 \mathrm{~F}$, $\times 1814 ; 7,1478 \mathrm{M}, \times 756 ; 8,1478 \mathrm{M}, \times 1386 ; 9,1481 \mathrm{~F}, \times 1886 ; 10,1478 \mathrm{M}, \times 1512$.

Plate 75
Exterior setae of Macroscapha.-I-4. Macroscapha tensa (Müller), 861M; 1, X798; 2, X764; 3, Х1596; 4, X2713.- $5-7$. Macroscapha turbida (Müller); $5,373 \mathrm{M}, \times 1512 ; 6,189 \mathrm{~F}, \times 1806 ; 7,350 \mathrm{M}, \times 882 .-8$. Macroscapha sinuatan. sp., $850 \mathrm{~F}, \times 3444$.

Plate 76
Exterior setae of Macrocyprina.——1-8. Macrocyprina bermudae n. sp; 1,5,150M, $\times 2646 ; 2,130 \mathrm{M}, \times 2671 ; 3,130 \mathrm{M}, \times 1327 ; 4,130 \mathrm{M}$, X3612; 6, 8, 131F, X1470, 7, 181F, X2671.

Plate 77

Exterior setae of Macrocyprina_-1,2. Macrocyprina hortuli n. sp., $993 \mathrm{M} ; 1, \times 6510 ; 2, \times 2604 .-3$. Macrocyprina sp. $35,1844 \mathrm{RV}$, X1302.-4,5. Macrocyprina vargata Allison and Holden, 1507F; 4, X3360; 5, X1344.-6. Macrocyprina schmitli (Tressler), 1505M, $\times 1886.7-9$. Macrocyprina madagascarensisn.sp., 85F; $7, \times 1428 ; 8, \times 714 ; 9, \times 2285$.

Plate 78

Right exterior muscle scars of Macrocypris, Macromckenziea, and Macropyxis.-1, 2. Macrocypris minna (Baird); 1, 1847, $\times 120 ; 2,2002 \mathrm{M}$, $\times 120$.—3-5. Macrocypris maiorisn. sp.; $3,1433 \mathrm{M}, \times 120 ; 4,1434 \mathrm{M}, \times 90 ; 5,1435 \mathrm{~F}, \times 100 .-6,7$. Macrocypris metuendan. sp.; $6,1405 \mathrm{M}$, $\times 90 ; 7,1501 \mathrm{M}, \times 90 .-8-10$. Macrocypris mirandan. sp; $8,1420 \mathrm{~F}, \times 90 ; 9,1441 \mathrm{M}, \times 90 ; 10,1442 \mathrm{~F}, \times 90$. -11 . Macrocypris sp. $1,858 \mathrm{~F}$, $\times 90$._12-14. Macromckenziea siliquosa (Brady); 12, $1530 \mathrm{~F}, \times 120 ; 13,1414 \mathrm{M}, \times 120 ; 14,1410 \mathrm{M}, \times 120 .-15$. Macromckenziea australiana (Neale), HU.65.C.6, X180_-16,17. Macromckenziea glacierae n. sp.; 16, 721F, X120; 17, 1957F, X110.-18. Macromckenziea gregalisn. sp., 2326, $\times 100$.-19,20. Macromckenziea ligustica (Bonaduce, Masoli, and Pugliese); 19, 2276, $\times 150 ; 20, \mathrm{BCM} 333$, X180.-21. Macromckenziea sp. 3, 1995F, X100.——22. Macromckenziea sp. 5, 1460F, X110.——23. Macromckenziea sp. 19, 1495M, X140.-24-26. Macropyxis sapeloensis (Darby); 24, AMNH 12733, X130; 25, 1355M, X130; 26, 1979M, X130.——27,28. Macropyxis adrectan. sp.; 27, 1527F, $\times 110 ; 28,1448 \mathrm{M}, \times 120 .-29$. Macropyxis adunca, 1521F, $\times 120$.——30. Macropyxis adriatica (Breman), 2087, $\times 120$.

Plate 79
Right exterior muscle scars of Macropyxis._-1,2. Macropyxis amandan. sp.; $1,1425 \mathrm{~F}, \times 110 ; 2,1406 \mathrm{M}, \times 110$.—— 3. Macropyxis amoena n. sp., $1463 \mathrm{M}, \times 130$ - 4,5. Macropyxis antonbruunaen. sp.; 4, 183M, X150; 5, 350M, X130.——6,7 Macropyxis arta n. sp.; $6,1456 \mathrm{M}$, $\times 130 ; 7,1451 \mathrm{M}, \times 180 .-8-10$. Macropyxis audens n. sp.; $8,1781 \mathrm{~F}, \times 130 ; 9,1445 \mathrm{M}, \times 120 ; 10,1444 \mathrm{~F}, \times 130 .-11-13$. Macropyxis bathyalensis (Hulings); 11, USNM $159744, \times 120 ; 12,2387 \mathrm{M}, \times 120 ; 13,2386 \mathrm{M}, \times 120 .-14,15$. Macropyxis eltaninae n . sp.; 14, 834 J , $\times 150 ; 15,833 \mathrm{~F}, \mathrm{X} 150$.-16,17. Macropyxis kaeslerin. sp.; $16,638 \mathrm{~F}, \times 110 ; 17,1968 \mathrm{~F}, \times 110 .-18-20$. Macropyxis kalbin. sp.; 18, 334 F , $\times 80 ; 19,1972 \mathrm{~F}, \times 80 ; 20,391 \mathrm{M}, \times 90$ - 21 . Macropyxis kornickerin. sp., 2984M, $\times 120 .-22,23$. Macropyxis labutisin. sp.; 22, 1351M, $\times 130 ; 23,1352 \mathrm{~F}, \times 130 .-24$. Macropyxis longana (van den Bold), USNM 563494, X130.-25. Macropyxis rhodana (van den Bold), USNM 563497, $\times 130$.-26,27. Macropyxis similis (Brady); $26,2382 \mathrm{M}, \times 120 ; 27,2383 \mathrm{~F}, \times 120 .-28$. Macropyxis sp. $8,126 \mathrm{~F}, \times 150$. -29. Macropyxis sp. 9, 2338, $\times 120$ - 30. Macropyxis sp. 16, 327F, X90.

Plate 80
Right exterior (1-4, 6-30) and left interior (5) muscle scars of Macropyxis, Macrocypria, Macrocyprissa, Macrosarisa, Macroscapha, and Macrocyprina.—1. Macropyxis sp. 17, 1150F, $\times 120$.——2. Macropyxissp. 18, 1443F, X100._-3. Macropyxissp. 21, 1962F, X100.-4. Macrocypria sarsi (Müller), $1998 \mathrm{M}, \times 180$ - 5, 6. Macrocyprissa cylindracea (Bornemann); 5, 2305, $\times 150 ; 6,2307, \times 150 .-7$. Macrocyprissa arcuata (Colalongo and Pasini), $1539 \mathrm{M}, \times 150 . —$. Macrocyprissa vandenboldi n . sp., 2118, $\times 130 .-9$. Macrocyprissa sp. 22, $2336, \times 250 .-10-12$. Macrosarisa capacisn. sp; 10, 2961F, X130; 11, 2964F, X130; 12, 2360M, X130.-_13. Macrosarisa hiulca n . sp.,

2957, $\times 180$.-14-16. Macrosarisa texanan. sp.; 14, 2020, $\times 210 ; 15,2241, \times 200 ; 16,2286, \times 200 .-17,18$. Macroscapha atlantican. sp.; 17, 1983F, X150; 18, 1981M, X150.-19. Macroscapha gyreae n. sp., 1509, X190.-20. Macroscapha heroica n. sp., 1461F, X150. -21. Macroscapha inaequalis (Müller), $824 \mathrm{~J}, \times 120$.-22. Macroscapha inaequatan. sp., 1459F, $\times 110$--23. Macroscapha sinuatan. sp., $329 \mathrm{M}, \times 150$ - 24. Macroscapha tensa n. sp., $861 \mathrm{M}, \times 140$ - 25,26 . Macroscapha turbida n. sp.; 25, 1934M, X100; 26, 375 M , X150.-27. Macrocyprina propinqua Triebel, Xe 3367F, X210.-28. Macrocyprina belizensis n. sp., 1506J-2, X180.-29,30. Macrocyprina bermudaen. sp.; 29, 130M, X180; 30, 181F, $\times 180$.

Plate 81

Right (1-20,27) and left (21-26) exterior (1-26) and interior (26,27) muscle scars of Macrocypris, Macromckenzie, Macropyxis, Macrocypria, Mactosarisa, and Macrocyprina.-1. Macrocyprina bonaducein. sp., 2264, X180.-2,3. Macrocyprina captiosa n. sp.; 2, 2351M, X160; 3, 2352F, X160.—4. Macrocyprina hartmanni n. sp., $2130 \mathrm{M}, \times 150$ - 5. Macrocyprina hawkaen. sp., 1858M, X150.-6-8, Macrocyprina hortuli n. sp.; 6, 1508M, $\times 180 ; 7,1762 \mathrm{M}, \times 150 ; 8,1761 \mathrm{~F}, \times 150 .-9,10$. Macrocyprina jamaicae $\mathrm{n} . \mathrm{sp} . ; 9,2247, \times 150 ; 10$, $2250, \times 150-11,12$. Macrocyprina madagascarensis n . sp.; $11,1149 \mathrm{~F}, \times 150,12,2025, \times 180$.-13-15. Macrocyprina moza n . sp.; 13 , 2346, $\times 180 ; 14,2345, \times 180 ; 15,2344, \times 180$-16. Macrocyprina noharain. sp., 2063, $\times 130$.-17. Mactocgprina succinea (Müller), 1906F, $\times 150$-_18. Macrocyprina vargata Allison and Holden, 1507, $\times 250$ - 19. Macrocyprina sp. 35, 1342, X150.-20. Macrocyprina sp. 39, 1854F, $\times 150$ - 21 . Macrocypris minna (Baird), 1347, $\times 90$ - -22 . Macromckenziea siliquosa (Brady), 1950, $\times 110$.-23. Macrocypria sarsi (Müller), 1998M, X180_-24. Macrosarisa exquisita (Kaye), BMNH Io.1270, X180.-25. Macrosarisa texanan. sp., $2242, \times 200-26,27$. Macropyxis audensn. sp., 1445M, X197.

Plate 82
Fecal balls of Macrocypris and Macropyxis in plane and cross-polarized light.-1,2,5. Macrocypris minna (Baird), 2002M; 1,2, finegrained fecal ball with rounded, birefringent mineral grains, $\times 100 ; 5$, enlarged view of same to show organic pellicle surrounding ball, $\times 250$ - 3,4. Macropyxis audens n . sp., 1445 M , same fecal ball in plane and cross-polarized light, $\times 75 .-6,11,12$. Macrocypris minna (Baird), 2003F; 6, detail of mottled texture showing rounded, quadrate, and spicular shapes, $\times 250 ; 11,12$, same fecal balls in plane and cross-polarized light, showing spherical organic clumps, $\times 40$-_7. Macropyxis sapeloensis (Darby), 1355 M , in cross-polarized light, showing lamellar and equant mineral grains, $\times 90 .-8-10$. Macrocypris maioris $\mathrm{n} . \mathrm{sp} ., 1434 \mathrm{M}$; same fecal ball in plane and crosspolarized light, and detail showing articulated calcareous plates of a skeleton; $8,9, \times 75 ; 10, \times 225$.- 13,14 . Macrocppris miranda n . sp., 1442 F , same fecal balls in plane and cross-polarized light, with prismatic mineral grains, $\times 100$.

Plate 83

Fecal balls and soft anatomy.-1. Macropyxis amanda n. sp., 1792F, fine-grained ball with dark organic clumps, X65.-2. Macroscapha turbida (Müller), 2372F, very fine-grained balls with large, irregular mineral grains, $\times 110$.-3. Macromckenziea glacieraen. sp., 721F, coarse-grained ball with large mineral grains and dark organic masses, $\times 100$.-4. Macropyxis arta n . sp., 1454F, detail of organic clump or organism (?) within very fine-grained organic matrix, $\times 400 .-5$. Macrocypris mirandan. sp., 1442F, detail of coarsegrained ball showing spherical organic clumps and wisps or shards of non-birefringent skeletal fragments, possibly arthropods or diatoms, $\times 450$-6. Macrocypris miranda n . sp., 1419 M , detail of very fine-grained organic matrix with dark, organic filaments or fragments, $\times 250$ - 7. Macropyxis antonbruunae n. sp., $356 \mathrm{FJ}-1$, detail of coarse-grained fecal ball with irregular mineral grains and numerous, non-birefringent spicules or setae, $\times 250 .-8$. Macropyxis arta n. sp., 1451 M , detail of coarse-grained fecal ball with dark organic clumps, small foraminiferal test in upper right, and possible diatom in lower center, $\times 225 .-9$. Macrocypris maioris n . sp ., 1774 M ; ventral view of entire copulatory organ to show tetrahedral form of each hemipenis, anterodistal tip is to the left, $\times 60 .-10$. Macroscapha tensa (Müller), 862 F; colony of ciliates (?) attached on dorsal edge of next-to-last podomere of seventh limb; several other colonies were attached elsewhere on the body of this animal, $\times 300$ - - 11. Macrocypris metuendan. sp., 1952M; detail of terminal hook of male fifth limb, to show the saucer-shaped distal aesthetasc resembling a suction cup, possibly sensory in function, $\times 350 .-12$. Macrosarisa sp. 23, 1415M; fecal ball in cross-polarized light to birefringent filaments or spicules (?), $\times 225$.

Piate 84

Lateral, dorsal, and ventral views of whole animals and carapaces.-1. Macrosanisa sp. 23, 1415M, lateral view of whole animal in transmitted light before dissection, $\times 75$.-2. Macrocypria sarsi (Müller), 1999F, dorsal midsection of whole animal in transmitted light before dissection, showing reversed hingement and overlap, $\times 65$.-3. Macrosarisa bensonin. sp., 1869M, dorsal view of whole animal in reflected light before dissection, $\times 45$.-4. Macromckenziea siliquosa (Brady), 1414M, right lateral view of whole animal with right valve removed, in transmitted light before dissection, $X 45$ - -5. Macrocpprina hartmannin. sp., 2130M, ventral view of whole animal in reflected light before dissection, $\times 65$.-6. Macrocypnis maioris n . sp ., 1774 M , right lateral view of animal with right valve removed, in reflected light before dissection, X20-—7,8. Macrosarisa simplex (Chapman), BMNH lo.1275, dorsal and ventral views of whole carapace, $\times 55$ - 9,10 . Macropyxis sp. 10, 2337, dorsal and ventral views of whole carapace, $\times 55$.

Plate 85

Hemipenes of Macrocypris.-1. Macrocypris minna (Baird), 2002M, X80.-2, 3,6. Macrocypris maionisn. sp.; 2, 1433M, X80; 3, 1434M, X80; 6, 1774M, X80.—4,5,7-9. Macrocypris metuenda n. sp.; 4, $1404 \mathrm{M}, \times 55 ; 5,8,1405 \mathrm{M}, \times 55 ; 7,1439 \mathrm{M}, \times 60 ; 9,1780 \mathrm{M}, \times 55$. -10-12. Macrocypris mirandan. sp.; 10, 1441M, $\times 80 ; 11,1955 \mathrm{M}, \times 65 ; 12,1419 \mathrm{M}, \times 85$.

Plate 86

Hemipenes and male furcae of Macromckenziea and Macropyxis.-1-4,10,11. Macromckenziea siliquosa (Brady); 1, 1414M, X160; 2, $1410 \mathrm{M}, \times 160 ; 3,4,1500 \mathrm{M}, \times 160 ; 10,1414 \mathrm{M}$, furcae, $\times 640 ; 11,1410 \mathrm{M}$, furcae, $\times 640$.-5-9. Macromckenziea glacierae n . sp.; $5,722 \mathrm{M}$, $\times 140 ; 6,720 \mathrm{M}, \times 150 ; 7,8,880 \mathrm{M}, \times 180 ; 9,722 \mathrm{M}, \times 130 .-12,13$. Macromckenziea sp. 19, 1495M; 12, both hemipenes, $\times 170$; 13, detail of copulatory rod, X 425 .-14,15. Macropyxis amoena $\mathrm{n} . \mathrm{sp} ., 1463 \mathrm{M}, \times 115$.

Piate 87

Hemipenes of Macropyxis.-1-6. Macropyxis sapeloensis (Darby); $1,1855 \mathrm{M}, \times 170 ; 2,1891 \mathrm{M}, \times 170 ; 3$, UMPM 48780, $\times 180 ; 4,1854 \mathrm{M}$, X170; 5,6, 1979M, X170.——7. Macropyxis kaeslerin. sp., 1967M, X130.-8-13. Macropyxis labutisin. sp.; 8, 1978M, X180; 9, 1851M, $\times 180 ; 10,12,1977 \mathrm{M}, \times 180 ; 11,1850 \mathrm{M}, \times 180 ; 13,1864 \mathrm{M}, \times 180$.

Plate 88

Hemipenes of Macropyxis.-1. Macropyxis adrectan. sp., 1448M, X130.-2-4. Macropyxis artan. sp.; 2, 1456M, X130; 3,4, 1451M, $\times 180$--5-7. Macropyxis amandan. sp.; 5, 1529M, $\times 80 ; 6,7,1406 \mathrm{M}, \times 80 .-8-12$. Macropyxis audens n . sp.; 8,9, 1525M, $\times 130 ; 10$, $1446 \mathrm{M}, \times 180 ; 11,12,1445 \mathrm{M}, \times 130 .-13-17$. Macropyxis aduncan. sp.; $13,1519 \mathrm{M}, \times 100 ; 14,1520 \mathrm{M}, \times 110 ; 15,1519 \mathrm{M}, \times 100 ; 16,17$, 1519 M , details of copulatory rod, $\times 275$.

Plate 89
Hemipenes of Macropyxis.-1-6. Macropyxis antonbruunaen. sp.; $1,183 \mathrm{M}, \times 130 ; 2,1966 \mathrm{M}, \times 130 ; 3,341 \mathrm{M}, \times 110 ; 4,358 \mathrm{M}, \times 130 ; 5,6$, 332M, $\times 130 .-7-9$. Macropyxis ellaninae n. sp., $831 \mathrm{M}, \times 120 .-10-15$. Macropyxis kalbin. sp.; $10,11,381 \mathrm{M}, \times 75 ; 12,351 \mathrm{M}, \times 75 ; 13$, $335 \mathrm{M}, \times 75 ; 14,1970 \mathrm{M}, \times 75 ; 15,839 \mathrm{M}, \times 75$.

Plate 90
Hemipenes of Macropyxis and Macrocyprina_-1-3,15. Macrocyprina barbaran. sp., 2400M; $1,2, \times 180 ; 3,15, \times 425 .-4,12$. Macropyxis kornickerin. sp., 2384M; 4, $\times 105 ; 12, \times 250-5-8,11,13$. Macropyxis bathyalensis (Hulings); $5,6,2887 \mathrm{M}, \times 100 ; 7,8,2886 \mathrm{M}, \times 115 ; 11,13$, $2886 \mathrm{M}, \times 250$. $9,10,14$. Macropyxis similis (Brady), 2382M; 9,10, $\times 110 ; 14, \times 250$.

Plate 91
Hemipenes of Macrocypria, Macrocyprissa, and Macrosarisa_-1,2. Macrocypria sarsi (Müller), 1998M, $\times 170$.-3,4. Macrosarisa bensoni n. sp., 1869 M , at high and low planes of focus, $\times 250$ - 5, 6. Macrosarisa hiulcan. sp., $2856 \mathrm{M}, \times 140 .-7,8$. Macrosarisa sp. 23, 1415M, $\times 125 .-9$. Macrocypria semesa n . sp., $843 \mathrm{M}, \times 130 .-10-14$. Macrocyprissa arcuata (Colalongo and Pasini); $10,11,1534 \mathrm{M}, \times 200 ; 12$, $1535 \mathrm{M}, \times 200 ; 13,14,1533 \mathrm{M}, \times 200$.

Plate 92
Hemipenes of Macroscapha.-1,2,4-6. Macroscapha opacan. sp.; $I, 1478 \mathrm{M}, \times 110 ; 2,1959 \mathrm{M}, \times 110 ; 4,1478 \mathrm{M}$, details of copulatory rod, $\times 120 ; 5,6,1479 \mathrm{M}, \times 110$ - $3,7,10$. Macroscapha inaequata $\mathrm{n} . \mathrm{sp} . ; 3,716 \mathrm{M}, \times 100 ; 7,2380 \mathrm{M}, \times 120 ; 10,714 \mathrm{M}, \times 100 .-8,9$. Macroscapha sp. 25, 198M; 8, X140; 9, X110.

Plate 98
Hemipenes of Macroscapha and Macrosarisa.-1-4. Macroscapha inaequalis (Müller); 1,4, 1941M, X95; 2,3, 1940M, X95.-5,6. Macrosarisa capacis n. sp., $2860 \mathrm{M}, \times 110$ - 7-11. Macroscapha sinuata n. sp.; 7, 845M, X65; 8,9, 328M, X90; 10,11, 329M, X90. -12-16. Macroscapha heroica n . sp., $1462 \mathrm{M} ; 13,14$, fragments of copulatory rod and adjacent structures, $X 90 ; 12,15,16$, fragments of capsule, $\times 90$.

Piate 94
Hemipenes of Macroscapha.-1-13. Macroscapha turbida (Müller); 1,4, 1943M, $\times 110 ; 2,1944 \mathrm{M}, \times 110 ; 3,1487 \mathrm{M}, \times 140 ; 5,197 \mathrm{M}, \times 140$; $6,9,1946 \mathrm{M}, \times 110 ; 7,10,1475 \mathrm{M}, \times 140 ; 8,821 \mathrm{M}, \times 140 ; 11,1934 \mathrm{M}, \times 100 ; 12,875 \mathrm{M}, \times 140 ; 13,827 \mathrm{M}, \times 140$.

Plate 95
Hemipenes of Macroscapha and Macrocyprina.-1-6,9. Macrocyprina madagascarensis n. sp.; $1,19 \mathrm{M}, \times 120 ; 2-5,1757 \mathrm{M}, \times 130 ; 6,668 \mathrm{M}$, $\times 130 ; 9,2364 \mathrm{M}, \times 130 .-7,8$. Macrocyprina moza $\mathrm{n} . \operatorname{sp} ., 2365 \mathrm{M}, \times 140 .-10-15$. Macroscapha atlantica $\mathrm{n} . \mathrm{sp} . ; 10,11,1982 \mathrm{M}, \times 105$; $12,13,1981 \mathrm{M}, \times 105 ; 14,15,1980 \mathrm{M}, \times 105$.

Plate 96
Hemipenes of Macrocyprina_-1-3. Macrocyprina propinqua Triebel; 1, Xe 3368, X200; 2,3, Xe 3362, X210.-4-6. Macrocyprina succinea (Müller); $4,1904 \mathrm{M}, \times 210 ; 5,6,1905 \mathrm{M}, \times 210$.——7,8. Macrocyprina dispar (Müller), 1933M, $\times 100 .-9,10$. Macrocyprina
hartmanni n. sp., 2130M, X50.-11. Macrocyprina swaini n. sp., 1992M, X120.—12,13. Macrogprina africana (Müller), 1937M, $\times 150 .-14-17$. Macrocyprina captiosan. sp.; $14,15,2853 \mathrm{M}, \times 200 ; 16,17,2851 \mathrm{M}, \times 200$.

Plate 97

Hemipenes of Macrocyprina-1-4. Macrocyprina hortutin. sp.; $1,2,1762 \mathrm{M}, \times 180 ; 3,4,1760 \mathrm{M}, \times 200$--5,6. Macrocyprina bermudaen. sp., 1759M, X200.-7-10. Macrocyprina skinneri Kontrovit; $7,8,1910 \mathrm{M}, \times 165 ; 9,1909 \mathrm{M}, \times 150 ; 10,1909 \mathrm{M}, \times 165 .-11-14$. Macrocyprina schmitti (Tressler); 11,12, 1763M, $\times 180 ; 13,14,1538 \mathrm{M}, \times 180 .-15-18$. Macrocyprina hawkae $\mathrm{n} . \mathrm{sp} . ; 15,16,1852 \mathrm{M}, \times 120$; $17,18,1853 \mathrm{M}, \times 120$.

Plate 98
Zenker's organ, vas deferens, and sperm of Macrocypris.-1,2. Macrocypris minna (Baird), 2002M, $\times 50$.-3-7. Macrocypris mirandan. sp.; $3,1441 \mathrm{M}, \times 50 ; 4,5,1419 \mathrm{M}, \times 50 ; 6,7,1955 \mathrm{M}, \times 85 .-8$-11. Macrocypris metuendan. sp.; $8,1780 \mathrm{M}, \times 85 ; 9,1952 \mathrm{M}, \times 35 ; 10,1952 \mathrm{M}$, $\times 140 ; 11,1952 \mathrm{M}, \times 85$.

Plate 99
Zenker's organ, vas deferens, and sperm of Macrocypris and Macropyxis.-1-4. Macrocypris metuenda $\mathrm{n} . \mathrm{sp} . ; 1,2,1404 \mathrm{M}, \times 35 ; 3,4$, $1405 \mathrm{M}, \times 35$ - $5-9$. Macrocypris maionis n . sp.; $5,1431 \mathrm{M}, \times 50 ; 6,7,1433 \mathrm{M}, \times 50 ; 8,1434 \mathrm{M}, \times 50 ; 9,1434 \mathrm{M}, \times 80 .-10-15$. Macropyxis antonbruunaen. sp.; $10,358 \mathrm{M}, \times 75 ; 11,13,332 \mathrm{M}, \times 85 ; 12,183 \mathrm{M}, \times 75 ; 14,15,1966 \mathrm{M}, \times 85$.

Piate 100
Zenker's organ, vas deferens, and sperm of Macromchenziea and Macropyxis.-1-6. Macromckenziea glacieraen. sp.; 1,3,5, 720M, X65; 2, $722 \mathrm{M}, \times 65 ; 4,6,880 \mathrm{M}, \times 65$ - $-7-9,11,12,14$. Macromckenziea siliquosa (Brady); $7,1410 \mathrm{M}, \times 80 ; 8,9,1500 \mathrm{M}, \times 70 ; 11,12,1414 \mathrm{M}, \times 70$; $14,1410 \mathrm{M}, \times 70 .-10,13,15-19$. Macropyxis adunca n . sp.; $10,1519 \mathrm{M}, \times 100 ; 13,1519 \mathrm{M}, \times 87 ; 15-19,1520 \mathrm{M} ; 15, \times 65 ; 16-19, \times 100$. $-20,21$. Macromckenziea sp. 19, 1495M, X80.

Plate 101

Zenker's organ, vas deferens, and sperm of Macropyxis.-1-4. Macropyxis sapeloensis (Darby); 1, UMPM 48780, X102; 2, 1391M, X95; 3,4, 1955M, $\times 95$ - 5-11. Macropyxis labutisin. sp.; $5,1367 \mathrm{M}, \times 80 ; 6,1967 \mathrm{M}, \times 90 ; 7,9,1351 \mathrm{M}, \times 80 ; 8,1977 \mathrm{M}, \times 80 ; 10,1350 \mathrm{M}, \times 90$; $11,1978 \mathrm{M}, \times 80-12-15$. Macropyxis kalbin. sp.; $12,1970 \mathrm{M}, \times 40 ; 13,335 \mathrm{M}, \times 45 ; 14,351 \mathrm{M}, \times 45 ; 15,331 \mathrm{M}, \times 85$.

Plate 102

Zenker's organ, vas deferens, and sperm of Macropyxis.-1-4. Macropyxis amanda n. sp.; 1,2,1406M, X75; 3,4, 1407M, X60.-5-9. Macropyxis audens n. sp.; $5,8,9,1525 \mathrm{M}, \times 110 ; 6,1446 \mathrm{M}, \times 75 ; 7,1446 \mathrm{M}, \times 110 .-11,12$. Macropyxis bathyalensis (Hulings); 11, 2386M, X60; 12, 2887M, X60.—10,13. Macropyxis adrectan. sp., $1448 \mathrm{M}, \times 75$.

Plate 103

Zenker's organ, vas deferens, and sperm of Macropyxis.-1-3. Macropyxis kornickerin. sp., 2384M, X85.-4-9. Macropyxis bathyalensis (Hulings); 4, 2386M, $\times 130 ; 5,2386 \mathrm{M}, \times 60 ; 6,2387 \mathrm{M}, \times 70 ; 7,2387 \mathrm{M}, \times 135 ; 8,2389 \mathrm{M}, \times 50 ; 9,2389 \mathrm{M}, \times 100 .-10-12$. Macropyxis similis (Brady), 2382M; 10,11, $\times 120 ; 12, \times 60$.

Plate 104

Zenker's organ, vas deferens, and sperm of Macrocyprissa and Macrosarisa.-1-5. Macrocyprissa arcuata (Colalongo and Pasini); 1 , $1532 \mathrm{M}, \times 65 ; 2,3,1534 \mathrm{M}, \times 65 ; 4,5,1533 \mathrm{M}, \times 65 .-6,7$. Macrosarisa bensoni n. sp., 1869M, X190.-8,9. Macrosarisa sp. 23, 1415M, $\times 90$.

Plate 105
Zenker's organ, vas deferens, and sperm of Macrocypria, Macrosarisa, and Macroscapha.-1,2. Macrosarisa hiulcan. sp., 2356M, X90. -3. Macroscapha sp. $25,198 \mathrm{M}, \times 95$ - 4,5. Macrocypria sarsi (Müller), $1998 \mathrm{M}, \times 90$ - 6. Macrocypria semesa $\mathrm{n} . \mathrm{sp} ., 843 \mathrm{M}, \times 80$. -7,8. Macroscapha marchilensis (Hartmann), K-27321; 7, $\times 90 ; 8, \times 80 .-9$ 13. Macroscapha inaequalis (Müller); 9, 10, 1941M, $\times 50$; 11-13, 1940M, $\times 55 .-14-19$. Macroscapha opaca n. sp.; $14,1479 \mathrm{M}, \times 55 ; 15,1959 \mathrm{M}, \times 65 ; 16,1959 \mathrm{M}, \times 55 ; 17,1479 \mathrm{M}, \times 55 ; 18,19$, $1478 \mathrm{M}, \times 55$.

Piate 106

Zenker's organ, vas deferens, and sperm of Macroscapha and Macrosanisa.-1,2. Macroscapha heroica n. sp., 1462M, X95.-3-8. Macroscapha atlantican. sp.; 3,8,1981M, X70; 4,5,1980M, $\times 60 ; 6,7,1982 \mathrm{M}, \times 70$.——-11. Macroscapha sinuatan. sp.; 9,10, 846M, X65; $11,845 \mathrm{M}, \mathrm{X} 65 .-12-15$. Macrosarisa capacis n. sp., $2360 \mathrm{M}, \mathrm{X} 85$.

Zenker's organ, vas deferens, and sperm of Macroscapha._1-14. Macroscapha turbida (Müller); $1,1944 \mathrm{M}, \times 50 ; 2,10,1487 \mathrm{M}, \times 70 ; 3,6$, $197 \mathrm{M}, \times 60 ; 4,1943 \mathrm{M}, \times 50 ; 5,9,1948 \mathrm{M}, \times 50 ; 7,8,827, \times 90 ; 11,375 \mathrm{M}, \times 90 ; 12,14,821 \mathrm{M}, \times 90 ; 13,1475 \mathrm{M}, \times 70 .-15,16$. Macroscapha inaequata n. sp., $865 \mathrm{M}, \times 60 .-17-19$. Macroscapha tensan. sp., $861 \mathrm{M}, \times 55$.

Plate 108
Zenker's organ, vas deferens, and sperm of Macrocyprina_-1,2. Macrocyprina africana (Müller), 1937M, Х75.- 3,4, 7. Macrocyprina moza n. sp., $2365 \mathrm{M} ; 3,7, \times 80 ; 4, \times 275 .-5,6,8,9$. Macrocyprina captiosa n. sp; $5,6,2351 \mathrm{M}, \times 100 ; 8,9,2353 \mathrm{M}, \times 90 .-10,11,13-15$. Macrocyprina succinea (Müller); $10,11,13,1905 \mathrm{M}, \times 160 ; 14,15,1904 \mathrm{M}, \times 160 .-12,16-20$. Macrocyprina madagascarensis $\mathrm{n} . \mathrm{sp}$.; 12,16,20, $1757 \mathrm{M}, \times 90 ; 17,18,2364 \mathrm{M}, \times 90 ; 19,668 \mathrm{M}, \times 90$.

Plate 109

Zenker's organ, vas deferens, and sperm of Macrocyprina__-1,2. Macrocyprina dispar (Müller), 1933M, X80._-3,7,8. Macrocyprina hortulin. sp.; 3,993M, $\times 80 ; 7,8,1508 \mathrm{M}, \times 130$._-4,5. Macrocyprina propinqua Triebel, Xe $3368, \times 85$._-6,9. Macrocyprina barbaran. sp., $2400 \mathrm{M}, \times 95 .-10,11$. Macrocyprina skinneri Kontrovitz; $10,1910 \mathrm{M}, \times 65 ; 11,1909 \mathrm{M}, \times 65 .-12-14$. Macrocyprina bermudae n . sp.; $12,1760 \mathrm{M}, \times 80 ; 13,14,1759 \mathrm{M}, \times 80 .-15$. Macrocyprina swaini $\mathrm{n} . \mathrm{sp}, 1992 \mathrm{M}, \times 90 .-16,17$. Macrocyprina hawkae $\mathrm{n} . \mathrm{sp} ., 1852 \mathrm{M}$, X65.-18,19. Macrocyprina schmitti (Tressler); 18, 1763M, $\times 65 ; 19,1538 \mathrm{M}, \times 65 .-20-24$. Macrocyprina hartmanni $\mathrm{n} . \mathrm{sp} ., 2130 \mathrm{M}$; $20,21, \times 115 ; 22-24, \times 290$.

Plate 110

Furcal attachment and male and female genitalia, Macrocypris, Macromckenziea, and Macropyxis._-1. Macrocypris minna (Baird), 200sF, posterior body of female with furcae, genital lobes, and coiled ducts, X 180 .-2. Macrocypris miranda n . sp., 1442F, posterior body of female with furcae, genital lobes, two large bundles of sperm, and numerous eggs, X110._-3. Macrocypris miranda n. sp., 1441M, posterior body of male showing furcae, furcal attachment, and support for hemipenes, $\times 110 .-4$. Macrocypris metuenda n . sp., 1438 F , posterior body of fermale with furcae, genital lobes, two large bundles of sperm, eggs, and ovaries, X90.——5. Macromckenziea glacieraen. sp., 721 F , posterior body of female with genital lobes, eggs, and two large, circular coils of sperm; furcae are too small to be seen, X90. -6. Macropyxis kalbin. sp., 351 M , posterior body of male with furcae, furcal attachment, hemipenes and support, and thoracic legs, $\times 60 .-7$. Macromckenziea glacieraen. sp., 719F, posterior body of female with genital lobes; arrow marks vestigial furcae, $\times 130 .-8,9$. Macromckenziea siliquosa n. sp., 1412F; posterior body of female with ovoid bundle of sperm, vestigial furcae, and genital lobes; $8, \times 180$; $9, \times 225$.

Plate 111

Furcal attachment and male and female genitalia, Macropyxis, Macrocypria, Macrocyprissa, Macrosarisa, Macroscapha, and Macrocyprina. -1. Macropyxis sp. 21, 1962F, posterior body of female with furcae and genital lobes, $\times 150$.-2. Macropyxis kaesleri n. sp., 1969F, posterior body of female with furcae and genital lobes, $\times 150 . _3$. Macropyxis adunca $\mathrm{n} . \mathrm{sp}$., 1521F, posterior body of fernale with furcae, genital lobes, and sperm, $\times 150$-_4. Macropyxis labutisi n . sp., 1352F, posterior body of female with furcae, genital lobes, sperm, and eggs, $\times 180 .-5$. Macrosarisa bensonin. sp., 1417 F , posterior body of female with furcae and genital lobes, $\times 150$. -6 . Macrocyprissa arcuata (Colalongo and Pasini), 1531F, posterior body of female with furcae and genital lobes, X180.-7. Macroscapha sinuatan. sp., 852F, body of female after removing carapace and limbs, showing forehead, mouth, adductor muscles, eggs, sperm, furcal attachment, and furcae, $\times 50$.-8. Macrocyprina madagascarensis n . sp., 1757 M , body of male after removing carapace and limbs, showing forehead, mouth, adductor muscles, support for hemipenes, furcal attachment, and furcae, X75.- 9 . Macroscapha sinuata n . sp., 845 M , posterior of male body with furcae, furcal attachment, support for hemipenes, and hemipenes, $\times 80 .-10$. Macroscapha inaequalis (Müller), 1939F, posterior of female body with furcae, furcal attachment, and genital lobes, X75.-11. Macropyxis sapeloensis (Darby), UM 48780, posterior of male body with furcae, furcal attachment, and support for hemipenes, $\times 200$. -12 . Macrocypria sarsi Müller, 1999F, furcae and furcal attachment, $\times 80$.

Plate 112

Furcal attachment and setae of thoracic legs, Macrocypris, Macropyxis, Macroscapha, and Macrocyprina.-1. Macrocyprina hartmannin. sp., 2180 M , posterior of male body with furcae, furcal attachment, and support for hemipenes, X180.-2. Macrocyprina dispar (Müller), 1981F, posterior of female body with furcae and furcal attachment, $\times 120$. -3. Macrocyprina africana (Müller), 1987M, posterior of male body with furcae and furcal attachment, $\times 120 .-4$. Macroscapha opacan. sp., 1480F, posterior of female body with furcae, furcal attachment, and genital lobes, $\times 120$--5. Macropyxis kalbi n . sp., 351 M , posterior of male body with furcae, furcal attachment, and part of support for hemipenes, $\times 160$ _-6. Macroscapha turbida (Müller), 1948 M , posterior of male body with furcae, furcal attachment, and part of support for hemipenes, $\times 75 .-7$. Macroscapha turbida (Müller), 1488F, posterior of female body with furcae, furcal attachment, and genital lobes, X150._-8. Macrocyprina bermudae n . sp., 1758 F , posterior of female body with furcae, furcal attachment, and genital lobes, $\times 170$-_9. Macrocyprina hortuli n. sp., 1762 M , posterior of male body with furcae and furcal attachment, $\times 120$ - 10. Macrocyprina hartmanni n . sp., 2132F, posterior of female bodywith furcae, furcal attachment, genital lobes, eggs, and ovaries, $\times 150 .-11$. Macrocypris maiorisn. sp., 1433 M , distal part of pinnate (reflexed) seta of seventh limb, $\times 150 .-12$. Macrocypris metuenda n. sp., 1401 F , distal part of very elongate, reverse-barbed knee seta of seventh limb, X500.-13. Macrocyprina
madagascarensis n . sp., 1757 M , both knee setae of seventh limb, $\times 500$--14. Macrocyprina skinneri Kontrovitz, 1910M, one knee seta of seventh limb, $\times 500=15$. Macrocyprina propinqua Triebel, Xe 3867 , both knee setac of seventh limb, X 500 .

Piate 118

Species referred to family Pontocyprididae.-1,6,8. Propontocypris (Propontocypris) parva (Kaye); 1,6, HU.20.C.8.1.13, right valve exterior and pontocypridid muscle scar pattern, $1, \times 150 ; 6, \times 250 ; 8$, HU.20.C.7.1., left valve exterior, X80.-2-5. Propontocypris (Propontocppris) minutus (Swain and Peterson); 2,3, left exterior and dorsal views of USNM $116640, \times 80 ; 4$, left exterior of USNM 117965, $\times 80 ; 5$, ventral view of USNM $116689, \times 80$.——7,15-25. Propontocypris (Propontocypris) sp. indet. ($=$ "Macrocypnis? sp. aff. M. dimorpha" of Holden, 1976); 7,18,23,24, right exterior muscle scar pattern, dorsal, right, and left exteriors of USNM 184365, 7, $\times 220 ; 18,23,24, \times 80$; $15-17$, dorsal, right, and left exteriors of USNM $184363, \times 80 ; 19,25$, dorsal and right exteriors of USNM $184367, \times 80 ; 20,21$, right and left exteriors of USNM 184364, $\times 80$; 22, right exterior of USNM 184366, $\times 80$ - -9-11. Propontocypris (Propontocypris) dimorpha Hazel and Holden, dorsal, right, and left views of holotype, USNM 651442, $\times 80 .-12-14$. Propontocypris (Propontocypris) sp. indet. (=paratype specimen of "Macrocypris? dimorpha Hazel and Holden, 1971"); dorsal, right, and left views of USNM 651441, X80.

Plate 114

Species referred to family Cyprididae, subfamily Paracypridinae_-1,2,13-15. Tasmanocypris setigera (Brady); 1,13, right exterior and muscle scar pattern of $2837,1, \times 65 ; 13, \times 180 ; 2$, left exterior of $2838, \times 65 ; 14$, right muscle scar pattern of $1041, \times 70$; 15 , right muscle scar pattern of $1042, \times 70$ - - $3-8,10,16$. Novocypris eocaenana Ducasse; 3 , right exterior of $2343 \mathrm{RV}, \times 60 ; 4,10,16$, left exterior, interior, and muscle scars of $2339 \mathrm{LV}, 4,10, \times 60 ; 16, \times 250 ; 5,8$, right exterior and hinge of $2342 \mathrm{RV}, 5, \times 60 ; 8, \times 180 ; 6$, left exterior of 2340 LV , $\times 60$; 7, right hinge of $2341 \mathrm{RV}, \times 180 .-9,11,12,17$. Paracypris pacifica Leroy; right, dorsal, and left exteriors and right muscle scar pattern of SU 6769, 9,11,12, X65; $17, \times 150$.

PLATE 2

1349 M. MINNA

PLATE 4

PLATE 6

PLATE 8

PLATE 12

1

2

PLATE 16

PLATE 20

PLATE 23

PLATE 24

2

3

6

PLATE 26

PLATE 28

2162 MS. BENSONI

3

1710F MS. BENSONI

4

11

2358F ME. HIULCA
1869M MS. BENSONI

PLATE 30

PLATE 31
2119 MC. VANDENBOLDI

3

PLATE 33

BMNH 10.1270 MS. EXQUISITA

«-BMNH IO.1272 MS. EXQUISITA

3

4 BMNH $_{4} 10.1272 \mathrm{Ms}$. EXQUISITA

BMNH 10. 1274 MS, EXOUISITA

PLATE 34

PLATE 36

$714 \mathrm{M} \mathrm{MH}$. . INAEQUATA

3

4

5

848MF? MH. SINUATA

714M MH. INAEQUATA

865M MH. INAEQUATA

825F MH. INAEQUATA

190F MH. INAEQUATA

$1459 F$ INAEQUATA

2

3

PLATE 38

7

3

PLATE 40

PLATE 42

PLATE 44

PLATE 46

1

9

10

PLATE 48

PLATE 49

1764M MN. SCHMITTI

PLATE 50

1

2

9

10

5

PLATE 52

PLATE 54

PLATE 56

1

2428 MN. SP. 45

1
2429 MN. SP. 45 7

2

$1766 \mathrm{MJ}-1$

1440F

1440F

1419 M
1419M
M. MIRANDA
15

PLATE 59

PLATE 60

PLATE 62

PLATE 64

PLATE 66

PLATE 67

1531F MC. AROUAT:

PLATE 68

PLATE 69

MS. BENSONI
1869 M

PLATE 70

PLATE 72

2356M MS. HIULCA

2286 ms. TEXANA 11
 MS. EXQUISITA 10

 MS. EXQUISITA 18

15

PLATE 73

PLATE 74

PLATE 76

PLATE 78

PLATE 79

PLATE 80

PLATE 81

PLATE 82

721F mk. glacierae 3
1454F MX. ARTA . 4

PLATE 84

1415M MS. SP. 23

4- 10.1275 MS. SIMPLEX $~-~$
7

1780 M M. METUENDA

PLATE 86

1355 M MX. SAPELOENSIS

1351M MX. LABUTISI

1977M MX. LABUTISI
10

PLATE 88

1966M MX. ANTONBRUUNAE
2341 M MX. ANTONBRUUNAE 3

5

$358 M$ MX. ANTONBRUUNAE

332 M MX. ANTONBRUUNAF

331 M MX. KALBI
10

PLATE 90

PLATE 94

1944M MH. TURBIDA

1943 M MH. TURBIDA

1946M MH. TURBIDA

91
1475M MH. TURBIDA

12

375 M MH. TURBIDA

PLATE 95

PLATE 96

PLATE 97

PLATE 98

1955M M. MIRANDA

1955M M. MIRANDA

1433M M. MAIORIS

332M MX. (2

ANTONBRUUNAE
THO MX. ANTONBRUUNAE
1966 M

M. MAIORIS
数

PLATE 100

PLATE 102

1406M MX. AMANDA
1407M MX. AMAŃDA

3

1406M MX. AMANDA 2

1

1525M MX. AUDENS
81525 M MX. AUDENS .

PLATE 104

1534 M MC. ARCUATA

1534M MC. ARCUATA

PLATE 106

xatentu1)
861M MH. TENSA

3
 6
197M MH. TURBIDA
 MH. TURBIDA

865M MH. INAEQUATA 15

PLATE 108

1937M MN. AFRICANA

2365M MN. MOZA
 2351M MN. CAPTIOSA

9
6 2353M MN. CAPTIOSA

1757 MN. MADAGASCARENSIS 12

1905M MN. SUCCINEA

2364 M MN. MADAGASCARENSIS 17
1904M MN. SUCCINEA Bi shet 5

2364M MN. MADAGASCARENSIS 18 668M MN. MADAGASCARENSIS 19

PLATE 110

PLATE 112

2132 F MN. HARTMANNI

PLATE 113

PLATE 114

Index

INDEX

The following index includes the names of all macrocypridid species, followed by the genera to which they are assigned. The first page of each systematic description is distinguished by boldface type. Other species mentioned, but not referred to the Macrocyprididae, are not included.
adrecta, Macropyxis, 29, 57, 59, 60, $61,62,65,66,67,71,75,77,78$, 79
adriatica, Macropyxis, 27, 57, 60, 61, 67,80
adunca, Macropyxis, 29, 31, 57, 60, $61,62,65,66,67,70,71,75,77$, 78, 79, 117
africana, Macrocyprina, 108, 110, 111, $114,116,123$
amanda, Macropyxis, 29, 57, 62, 63, $67,68,71,75,77,78$
amoena, Macторуxis, 17, 31, 33, 57, $59,63,64,68,72,79,80$
antonbruunae, Macropyxis, 32, 38,57, 64, 65, 66, 67, 68, 70, 71, 73
arcuata, Macrocyprissa, 20, 27, 79, 84, 85, 86, 87
arta, Macropyxis, 29, 57, 60, 64, 65, $66,74,75,77,78$
atlantica, Macroscapha, 20, 26, 27, 28, $95,96,97,98,99,100,101,103$, 108
audens, Macropyxis, 29, 57, 62, 65, 66 , $67,70,71,75,76,77,78,79$
australiana, Macromckenziea, 49,50, 51
barbara, Macrocyprina, 32, 108, 111, $112,123,127,128$
bathyalensis, Macropyxis, 22, 26, 27, $44,57,59,61,63,64,66,67,68$, $71,72,74,75,78,79,80$
belizensis, Macrocyprina, 28, 29, 108, $110,112,114,118,124,125$
bensoni, Macrosarisa, 27, 28, 31, 76, $77,87,88,89,90,93,94,95$
bermudae, Macrocyprina, 29, 69, 108, $110,112,118,118,125,128,129$
bonaducei, Macrocyprina, 108, 113, 122
caiman, Macrocyprina, 108, 110,113, $114,118,130$
canariensis, Mactocypria, 80, 82, 83
capacis, Macrosarisa, 10, 87, 89, 90 , 92
captiosa, Macrocyprina, 108, 113, 114, 121, 122
cylindracea, Macrocyprissa, 3, 73, 84, 85, 86, 87
decora, Macrocyprina, 108, 109, 114, 115
dispar, Macrocyprina, 108, 111, 115, 116, 123
elegantula, Macrosarisa, $87,89,90$
ellaninae, Macropyxis, $32,57,64,66$, $67,68,79$
exquisita, Macrosarisa, $87,90,91,93$, 94
glacierae, Macromckenziea, 31, 32, 49, $50,51,52,53,54,55,57$
graysonensis, Macrosarisa, 79, 87, 91, 93, 94, 95
gregalis, Macromckenziea, 35, 49, 50, 52, 53, 54, 55
gyreae, Macroscapha, 28, 95, 97, 107
harlmanni, Macrocyprina, 35, 108, $116,117,119,123,128,129$
hawkae, Macrocyprina, 16, 28, 29, $108,110,111,112,114,117,118$, $124,125,129,130$
heroica, Macroscapha, 31, 33, 95, 97, 98, 101, 103, 107, 117
hiulca, Macrosanisa, 87, 90, 91, 92, 93, 94
hortuli, Macrocyprina, 28, 29, 108, $110,118,118,125,128,129$
improcera, Macropyxis, 28, 57, 59, 68, 69, 72
inaequalis, Macroscapha, 31, 95, 97 . $98,99,100,103,104,106,108$
inaequata, Macroscapha, $9,31,32,33$, $95,97,99,100,103,104,106$, 107
jamaicae, Macrocyprina, 29, 108, 119, 121, 122, 129
jäangi, Macroscapha, 35, 95, 100, 101, 108
kaesleri, Macropyxis, 32, 38, 57, 64, 69, 70, 71, 74, 76, 79
kalbi, Macropyxis, $32,38,57,63,64$, 70, 71, 77, 78, 79, 80
kornickeri, Macropyxis, 17, 31, 57, 65, 71, 74, 77, 78, 79
labutisi, Macropyxis, 23, 26, 27, 28 , $44,57,59,64,66,67,69,70,72$
ligustica, Macromckenziea, 27, 49, 50, 51, 53, 54
longana, Macropyxis, 57, 73
maculata, Macrocyprina, 108, 109, 119,120, 130
madagascarensis, Macrocyprina, 108, $114,119,120,121,122,130$
maioris, Macrocypris, 29, 42, 44, 45, 46, 47, 48
marchilensis, Macroscapha, 33, 95, 99, $100,101,104,108$
metuenda, Macrocypris, 42, 44, 45, 46, 47
minna, Macrocypris, 3, 17, 26, 27, 42, 43, 44, 45, 47, 48, 50, 95
miranda, Macrocypris, 29, 42, 44, 45, 46, 47
moza, Macrocyprina, 108, 114, 121, 130
muensteriana, Macrosarisa, 87, 88,92
nimia, Macrocypris, 26, 42, 44, 45, 46, 47
noharai, Macrocyprina, 108, 119, 122, 123, 130
okinawae, Macrocyprina, 108, 111, 113, 114, 122, 123
opaca, Macroscapha, 9, 31, 32, 33, 95, $99,100,101,103,104,105,107$. 117
opinabilis, Macrocypris, 42, 44, 45, 47, 48
parcens, Macrocyprina, 108, 111,123, 127, 128
porcelanica, Macromckenziea, 49, 50, 54, 55
proclivis, Macrocypris, 42, 44, 45, 47, 48, 77
propinqua, Macrocyprina, 3, 29, 108, $109,110,114,118,125,126,129$
quadrimaculata, Macrocyprina, 35 , $108,117,121,123$
rhodana, Macropyxis, 57, 73, 76
sapeloensis, Macropyxis, 3, 23, 26, 27, $28,57,58,59,67,72,73,75$
sarsi, Macrocypria, 3, 9, 10, 26, 27, 40, $80,81,82,83,95$
schmitti, Macrocyprina, 29, 108, 110, $112,114,118,123,124,125$
semesa, Macrocypria, $33,80,82,83$
siliqua, Macrosarisa, $87,91,92,98$
siliquosa, Macromckenziea, 22, 29, 44, $48,49,50,51,54,56,57$
similis, Macropyxis, $31,36,55,57,62$, $65,71,73,74,75,77,78,79$
simplex, Macrosarisa, $87,88,91,93$
simulans, Macropyxis, 28,57,59,62, $63,67,75,77$
sinuata, Macroscapha, 9, 33, 95,97, $98,101,103,107,117$
skinneri, Macrocyprina, 22, 28, 108, $110,118,119,124,125,129,130$
sp. 1, Macrocypris, 42, 44, 45, 47, 48, 78
sp. 2, Macromckenziea, 29, 49, 55
sp. 3, Macromckenziea, 49, 56
sp. 4, Macromckenziea, 49, 56
sp. 5, Macromckenziea, 49, 56
sp. 6, Macromckenziea, 49, 56
sp. 7, Macromckenziea, 29, 49, 56, 57
sp. 8, Macropyxis, 57, 63, 77, 80
sp. 9, Macropyxis, 57, 78
sp. 10, Macropyxis, 57, 78
sp. 11, Macropyxis, 57, 67, 71, 78, 79
sp. 12, Macropyxis, 57, 71, 78
sp. 13, Macropyxis, 57, 69, 77, 78
sp. 14, Macropyxis, 57, 69, 79
sp. 15, Macropyxis, 57, 79
sp. 16, Macropyxis, 57, 79
sp. 17, Macropyxis, 57, 70, 79
sp. 18, Macropyxis, 57, 71, 79
sp. 19, Macromckenziea, 17, 49, 57
sp. 20, Macropyxis, 57, 61, 71, 79, 80
sp. 21, Macropyxis, $31,57,63,71,79$, 80
sp. 22, Macrocyprissa, $84,85,86,87$
sp. 23, Macrosarisa, 87, 91, 94
sp. 24, Macrosarisa, $26,87,89,90,95$
sp. 25, Macroscapha, $95,97,103,106$
sp. 26, Macroscapha, 75, 95, 107
sp. 27, Macroscapha, 95, 107
sp. 28, Мастоscapha, 95, 107
sp. 29, Macroscapha, 95, 107, 108
sp. 30, Macroscapha, 31, 95, 97, 108
sp. 31, Macroscapha, 95, 108
sp. 32, Macroscapha, 95, 108
sp. 33, Macrocyprina, 108, 128, 129
sp. 34, Macrocyprina, 108, 128, 129
sp. 35, Macrocyprina, 108, 117, 128, 129
sp. 36, Macrocyprina, 108, 128, 129
sp. 37, Macrocyprina, 109, 129
sp. 38, Macrocyprina, 109, 129
sp. 39, Macrocyprina, 109, 129
sp. 40, Macrocyprina, 109, 129
sp. 41, Macrocyprina, 109, 129, 130
sp. 42, Macrocyprina, 109, 130
sp. 43, Macrocyprina, 109, 130
sp. 44, Macrocyprina, 109, 113, 114, 130
sp. 45, Macrocyprina, 109, 130
sp. 46, Macropyxis, 57, 64, 80
sp. 47, Macrosarisa, 87, 89, 95
sp. 48, Macrocyprina, 109, 119, 130
steinecki, Macropyxis, 57, 73, 75, 76
succinea, Macrocyprina, 3, 24, 27, 108, $109,113,125,126$
swaini, Macrocyprina, $32,108,111$, $112,123,126,127,128$
swansoni, Macromckenziea, 35, 49, 50, 55
tensa, Macroscapha, 9, 31, 33, 95, 100, $101,103,104,105,107$
tenuicauda, Macropyxis, 26, 57, 67, 76, 77, 88
texana, Macrosarisa, 28, 87, 89, 93, 130
turbida, Macroscapha, 11, 22, 31, 32, $33,92,95,99,100,101,103,104$, 105, 106, 108
vandenboldi, Macrocyprissa, 73, 84, 85, 86, 87
vargata, Macrocyprina, $32,108,111$, 113, 123, 127, 128
wrightii, Macrosarisa, $78,87,88,94$

[^0]: Graph 14; Figures 8.13-14, 9.19-14, 19.5, 22.8, 24.7, $26.24,25,30.6,34.6,39.3,46.62,63,50.20,21,51.31,32$, $56.3,21,58.13,59.20,61.8,63.2,64.8,67.9,80.12$; Plates 14.3-6, 15.4-6, 63.1,2, 66.1,2, 78.27,28, 88.1, 102.10,18

