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ABSTRACT 

 
 

The model organism Hydra belongs to the hydrozoan clade Aplanulata. Despite being a popular model 

system for diverse fields of biological research, the morphology and development of Hydra are atypical of 

most hydrozoans. For example, most hydrozoans develop gonophores (structures housing gametes) on the 

body of the polyp, or release free-swimming medusae that spawn in the water column. In contrast, Hydra 

produce no gonophores or medusae and instead form gametes directly in the epithelia of the body column. 

Additionally, Hydra embryos are difficult to isolate for developmental studies (embryos encyst and are 

thus difficult to study), so there is currently no model species in Aplanulata for examining gene 

expression in developing polyps. In this dissertation, I examine the phylogenetic relationships of 

Aplanulata and the clade Capitata sensu stricto, originally thought to group with Aplanulata, and examine 

the evolution and development of the Aplanulata species Ectopleura larynx. This close relative of Hydra 

is ideally suited for evolutionary developmental studies because it develops directly in brooding 

structures, and produces attached gonophores. Because Ectopleura larynx broods on the body of the 

polyp, its juveniles and gonophores are easily procured for gene expression and developmental studies. 

My examination of Ectopleura larynx development reveals a unique type of colony formation that has 

never before been described in Hydrozoa in that Ectopleura larynx colonies form through sexual 

reproduction followed by epithelial fusion of offspring polyps to adult colonies.  I characterize the 

expression of the paired-like homeobox gene manacle to determine polyp-colony boundaries, and suggest 

that stalks beneath the neck of Ectopleura larynx polyps do not have polyp identity and instead are 

specialized structures that interconnect polyps (stolons).  Lastly, I characterize the canonical Wnt pathway 

in Ectopleura larynx, and examine its role in axial patterning of polyp and gonophore structures. My 

results are consistent with the Wnt pathway playing a role in patterning oral structures of the polyp and 

gonophore, and suggest that changes in expression patterns of Wnt pathway genes could explain the 

sexually-dimorphic morphologies of male and female gonophores of Ectopleura larynx, and the 

truncation of medusa development in this species. 
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INTRODUCTION 

 

The integration of phylogenetic and developmental information in order to better understand the 

evolution of morphological complexity is a pivotal part of understanding organismal evolution. 

This dissertation integrates phylogenetic, character mapping, developmental and gene expression 

data to understand the evolution of morphology in the clade Aplanulata.  I accomplish this by 

resolving phylogenetic relationships, exploring the evolution of developmental characters in a 

phylogenetic context, and then investigating some of the genes putatively involved in the 

evolution of morphology in a key Aplanulata taxon, Ectopleura larynx. 

 

A phylogenetic framework for Aplanulata 

Interpreting gene expression data in an evolutionary context requires a robust phylogeny of both 

the genes studied as well as the taxa of interest. The first two chapters of this dissertation provide 

well-sampled phylogenies of two hydrozoan clades in order to confirm taxonomic membership 

and lay the foundation for future evo-devo studies. While capitate hydrozoans (aka, Capitata 

sensu Petersen 1990) were originally described as containing most non-filiferan species, recent 

studies demonstrate that this clade is not monophyletic, and that instead, two well supported but 

non-sister clades, Capitata sensu stricto and Aplanulata exist (Collins, Schuchert, Marques et al. 

2006, Collins, Winkelmann, Hadrys et al. 2005, Cartwright, Evans, Dunn et al. 2008). The 

freshwater model organism Hydra falls within the latter (Collins, Winkelmann, Hadrys et al. 

2005). Chapter 1 of this dissertation provides a well-sampled phylogeny of the hydrozoan sub-

order Capitata, previously thought to belong with Aplanulata, and an update of the systematics of 

the most speciose family in this clade, Corynidae. This chapter has been published in the journal 
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Zoologica Scripta (Nawrocki, Cartwright and Schuchert 2010). Chapter 2 of this dissertation 

investigates the phylogenetic relationships of Aplanulata. In this study, I provide the most well-

sampled phylogeny of Aplanulata to date, solidify the placement of Hydra in Aplanulata, and 

discusses the morphology of the component families of Aplanulata. Lastly, I provide taxonomic 

recommendations for two Aplanulata species. This chapter is currently in preparation for 

submission for publication. 

 

Colony development of Ectopleura larynx 

Chapter 3 of this dissertation presents a character mapping and developmental study of colony 

formation in the Aplanulata species Ectopleura larynx. In this chapter, I examine the evolution of 

coloniality in Aplanulata, and demonstrate that coloniality has re-evolved in the Aplanulata 

genus Ectopleura. I then examine the ontogeny of colony formation, and find that re-evolved 

colonies in Ectopleura are unique in that they form through offspring settlement on and fusion to 

adult colonies. I show that this behavior is correlated with a number of life history characters. 

Lastly, I use the expression of a developmental regulatory gene, manacle, to examine polyp-

colony boundaries in Ectopleura larynx. This chapter is in press at Current Biology and will 

shortly be published.  

 

Developmental gene expression of Ectopleura larynx  

One aspect that Chapter 3 revealed is that direct development and the reduction of gonophores 

both play a key role in the evolution of coloniality in Aplanulata. Understanding the genetic 

mechanisms patterning polyps and gonophore structures is vital to understanding their evolution. 

Wnt proteins are cysteine-rich secreted proteins that are part of a signaling pathway that is 
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implicated in larval formation and/or metamorphosis in the hydrozoans Hydractinia echinata 

(Duffy, Plickert, Kuenzel et al. 2010, Muller, Frank, Teo et al. 2007, Plickert, Jacoby, Frank et 

al. 2006), Clytia hemaespherica (Momose, Derelle and Houliston 2008) and Hydra vulgaris 

(Broun, Gee, Reinhardt et al. 2005, Guder, Pinho, Nacak et al. 2006, Hobmayer, Rentzsch, Kuhn 

et al. 2000, Lengfeld, Watanabe, Simakov et al. 2009, Philipp, Aufschnaiter, Özbek et al. 2009). 

Thus, the canonical Wnt signaling pathway serves as a good candidate pathway for examining 

the genetic mechanisms behind polyp and gonophore development in the Aplanulata species 

Ectopleura larynx. 

 

Chapter 4 of this dissertation characterizes key elements of the canonical Wnt signaling 

pathway in Ectopleura larynx. Using next-generation sequencing technologies, I isolated Wnt3, 

Wnt5, the Wnt receptor Frizzled1, a secreted frizzled related protein (SFRP), -catenin, Tcf and 

GSK3 . I then used whole-mount in situ hybridization and Quantitative Real-Time-PCR (qRT-

PCR) to examine the expression of genes in the canonical Wnt signaling pathway during polyp 

and gonophore development. Expression patterns suggest that members of the Wnt pathway 

specify and maintain oral structures in Ectopleura larynx polyps, and are also involved in 

patterning in the different morphologies displayed in male and female gonophores. This work 

also reveals that a Wnt inhibitor may play a role shifting the expression of canonical Wnt3 in 

gonophore development, and suggests that downregulation of the canonical Wnt pathway may be 

responsible for medusa loss in Ectopleura larynx.  Lastly, I find evidence for separate roles for 

Wnt5 and Wnt3 in specifying and maintaining (respectively) developing axes in Ectopleura 

larynx polyps and gonophores. This chapter is currently in preparation for submission for 

publication. 
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Appendix 

As the first three of chapters of this dissertation are formatted for publication, the process 

necessitated the exclusion of some data and methods from the main text. This information has 

been instead moved to the Appendix at the end of the document. 
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CHAPTER 1: Phylogenetic relationships of Capitata sensu stricto 
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ABSTRACT 

Generic- and family-level classifications in Hydrozoa have historically been problematic due to 

limited morphological characters for phylogenetic analyses and thus taxonomy, as well as 

disagreement over the relative importance of polyp versus medusa characters. Within the 

recently redefined suborder Capitata (Cnidaria: Hydrozoa: Hydroidolina), which includes 15 

families and almost 200 valid species, family-level relationships based on morphology alone 

have proven elusive, and there exist numerous conflicting proposals for the relationships of 

component species. Relationships within the speciose capitate family Corynidae also remain 

uncertain, for similar reasons. Here, we combine mitochondrial 16S and nuclear 18S, and 28S 

sequences from capitate hydrozoans representing 12 of the 15 valid capitate families, to examine 

family-level relationships within Capitata. We further sample densely within Corynidae to 

investigate the validity of several generic-level classification schemes that rely heavily on the 

presence/absence of a medusa, a character that has been recently questioned for its generic-level 

utility in classification. We recover largely congruent tree topologies from all three markers, with 

28S and the combined dataset providing the most resolution. Our study confirms the monophyly 

of the redefined Capitata, and provides resolution for family-level relationships of most sampled 

families within the suborder. These analyses reveal Corynidae as paraphyletic and suggest that 

the limits of the family have been underestimated, thus contradicting available generic-level 

classification schemes for Corynidae.  Classification schemes for Corynidae have been largely 

based on reproductive characters such as the presence/absence of a medusa, yet our results 

suggest that these are not valid generic-level characters for the clade. We suggest a new 

taxonomic structure for the lineage that includes all members of the newly redefined Corynidae, 

based on molecular and morphological synapomorphies for recovered clades within the group. 
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INTRODUCTION 

The classically defined suborder Capitata is a large and diverse clade of hydrozoans that includes 

26 families and 375 valid species. Capitata has been the subject of a number of classic 

morphological studies (e.g. Rees 1957; Petersen 1990) as well as a more recent molecular 

phylogenetic analysis (Collins et al. 2005). Capitata lacks obvious morphological 

synapomorphies, and molecular phylogenetic analyses question the monophyly of the clade 

(Collins 2002; Collins et al. 2005, 2006). These studies instead suggest that capitate hydrozoans 

comprise two well supported clades, Aplanulata (Collins et al. 2006) and non-aplanulate 

capitates, or Capitata sensu stricto (Cartwright et al. 2008). This second clade, herein defined as 

the new meaning of 'Capitata' and given equal weight to Aplanulata, is the subject of this 

analysis. 

 

Members of the newly redefined clade Capitata are morphologically diverse. This group 

comprises roughly 15 families, and includes members with floating pelagic colonies, species 

with free-swimming medusae or fixed gonophores, as well as tropical and sub-tropical species 

possessing skeletonized, upright colonies. Capitata includes the family Corynidae, which is the 

most speciose family within the clade. To date, marker resolution, limited sampling, and the lack 

of obvious morphological synapomorphies have precluded the resolution of family-level 

relationships within Capitata. Additionally, recent molecular phylogenetic studies have provided 

evidence that this clade may not conform to traditional views of capitate taxonomy, and that 

some capitate families may be polyphyletic (Collins et al. 2005, 2006). These molecular studies 

find little evidence for classic family-level groupings, such as many of those proposed by 
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Petersen (1990) and suggest the need for a comprehensive study to further investigate capitate 

relationships.  

 

Generic limits within some capitate families have been similarly difficult to disentangle. 

Corynidae is a capitate family whose members inhabit numerous shallow-water marine 

environments. Previous morphological analyses did not find convincing synapomorphies for the 

family, and suggest it may be polyphyletic (Schuchert 2001). A recent molecular phylogenetic 

study lends support to this hypothesis (Collins et al. 2005), and furthermore suggests that the 

three major corynid genera, Sarsia Lesson, 1843, Dipurena McCrady, 1859, and Coryne 

Gaertner, 1774 are polyphyletic. Grouping hydrozoans into appropriate genera is challenging in 

clades whose members lack a sufficient number of taxonomically informative morphological 

characters (Brinckmann-Voss 1970; Schuchert 2001, 2005; Collins et al. 2005). This is 

exacerbated in clades where the frequent reduction or disappearance of the medusa in some taxa 

further limits available characters for taxonomy, and has led to conflicting classification schemes 

(Russell 1953; Rees 1957; Naumov 1969; Brinckmann-Voss 1970; Petersen 1979, 1990; 

Bouillon 1985; Schuchert 2001; Bouillon et al. 2006).   

 

Early generic-level classification schemes for corynid hydrozoans relied primarily on the 

presence/absence of a medusa, as well as on the presence/absence of two types of tentacles in the 

polyp stage (Stechow 1923; Russell 1953). However, rearing experiments of Picard (1960) and 

Brinckmann-Voss (1970) showed that tentacle types of the polyp are not reliable characters for 

delimiting corynid genera. Picard (1960) and Naumov (1969) merged all or most corynid species 

into the single genus Coryne, while Brinckmann-Voss (1970) followed a two genera system. 
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Coryne was reserved for species with sessile gonophores while Sarsia was reserved for species 

with free medusae. Later authors (e.g. Millard 1975; Bouillon 1985) added the genus Dipurena, 

separating species from Sarsia based on a single character: the number of gonads (Schuchert 

2001). Bouillon (1985) further expanded the classification by adding Bibrachium Stechow, 1919, 

Dicodonium Haeckel, 1879, and Sarsiella Hartlaub, 1907 (Figure 1).  

 

Classification schemes based on fixed versus free medusae have been rejected by many 

hydrozoan taxonomists (e.g. Levinsen 1893; Kramp 1935; Petersen 1979). Recent molecular 

phylogenetic analyses have additionally demonstrated that hydrozoan reproductive characters are 

labile amongst closely related species (Cunningham & Buss 1993; Govindarajan et al. 2006; 

Leclère et al. 2007, 2009, Nawrocki et al., in review), suggesting that classification schemes 

reliant on the criterion of medusa reduction are not necessarily congruent with the evolutionary 

history of some hydrozoan lineages. Brinckmann-Voss (1970) recognized that establishing a 

generic-level classification scheme based on fixed versus free medusae alone was not ideal for 

Corynidae, but pointed out that the lack of available characters for generic classification limited 

the establishment of a classification scheme based on other criteria.  

 

Petersen recognized the problem of relying on fixed versus free medusae as a generic separator, 

and in his 1990 classification attempted to redefine corynid genera with other characters. His 

generic subdivision of Corynidae places species with both free medusae and reduced medusae 

within the genera Coryne and Sarsia (Petersen, 1990). His study relies on both  polyp and 

medusa characters, including the shape of the manubrium and placement of gametes in the  
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Figure 1. Major classification schemes for Corynidae proposed to date. 
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medusa, and the arrangement and structure of tentacles and reproductive elements on the polyp 

(Petersen 1990). 

 

In contrast with Bouillon's 1985 classification, Petersen maintained a three-genus system 

(Coryne, Sarsia, and Dipurena). The three major corynid genera he redefined, Dipurena, Sarsia, 

and Coryne, contain the bulk of the species of the Corynidae (Figure 1). In redefining these 

genera, Petersen synonymized Cladosarsia Bouillon, 1978 with Dipurena and the genus 

Bicorona Millard, 1966 with Dicyclocoryne Annandale, 1915, but followed Bouillon (1985) in 

keeping Dicyclocoryne in a separate family (Dicyclocorynidae). Petersen's analysis represents an 

important step in developing a unified and phylogenetically congruent classification scheme for 

corynid hydroids, although his choice of characters has been questioned (Schuchert 1996, 2001). 

Despite this, Petersen’s ideas for classifying Corynidae have gained acceptance and largely 

remain in use today, with some modification (e.g. Bouillon et al., 2006).  

 

Schuchert (2001) examined Corynidae in detail and modified Petersen's classification scheme by 

returning members of Dicyclocorynidae to Corynidae, and by examining and resolving some 

species of uncertain affinity (Figure 1). However, he refrained from establishing a new 

classification scheme for Corynidae, due to the inability of available morphological characters to 

resolve the family, and concluded that the collection of molecular data was necessary to resolve 

the clade (Schuchert 2001). 

 

In their recent synthesis of the classification of Hydrozoa, Bouillon et al. (2006) largely adopted 

classification scheme for Corynidae presented by Schuchert (2001), which includes the genera 
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Coryne, Dipurena, Sarsia, Cladosarsia, Bicorona, Dicyclocoryne, and Nannocoryne. Within 

Corynidae, Coryne, Dipurena, and Sarsia comprise the vast majority of all Corynidae (currently 

about 44 valid species of a total about 51), with the remaining three comprising a small number 

of species. However, Bouillon et al. additionally included genera in their classification that 

Schuchert describes as doubtful or indeterminate but that Bouillon (1985) included within 

Corynidae (Bibrachium Stechow, 1919; Dicodonium Haeckel, 1879; Paulinum Brinckmann-

Voss & Arai, 1998; and Sarsiella Hartlaub, 1907. Figure 1 summarizes the major taxonomic 

classification schemes proposed for Corynidae to date. 

 

Despite the rich taxonomic history that Corynidae embodies, a consensus on corynid 

classification has not been established based on morphological characters alone. In this study, a 

molecular phylogenetic approach, which included a comprehensive sampling of capitate taxa, 

was performed in order to provide further insight into family-level capitate relationships. In 

addition, given the conflicting hypotheses regarding the status of Corynidae (Collins et al., 2006) 

and its component genera (Schuchert 2001), a detailed sampling of Corynidae species was 

included in this study to further test for monophyly, and investigate whether the currently used 

genera Coryne, Dipurena, and Sarsia as delimited by Petersen's 1990 scheme are valid clades. 

We provide an alternative suggestion for generic classification for Corynidae based on our 

results.  
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MATERIALS AND METHODS 

Taxonomic sampling and marker selection 

Sampling for this study aimed for both representation of the diversity of capitate families, as well 

as dense sampling of the species-rich family Corynidae. With one exception, corynid species 

were identified as listed in Schuchert (2001), a classification based on the morphological 

phylogenetic analysis of Petersen (1990). Coryne tricycla Schuchert, 1996 is here used in its new 

combination, despite that it was transferred to the genus Bicorona by Schuchert (2001). Recent 

molecular analyses (Collins et al. 2005; Schuchert 2005) demonstrate that this species is clearly 

related to Coryne in the sense of Petersen (1990). Duplicate species were included if they were 

from different localities in order to determine if there were genetic differences between 

populations. A list of taxa sampled for this study can be found in Table 1. Three separate 

markers were chosen for this study: the small subunit nuclear ribosomal gene, 18S (SSU), the 

large subunit nuclear ribosomal gene, 28S (LSU), and the large subunit mitochondrial ribosomal 

gene, 16S (Table 2). 

 

Table 1. Sampled Taxa. New sequences are in bold. New classification suggested by this study indicated 
in parenthesis. 
 
Family Genus Species Locality 16s 18s 28s VOUCHER  

 

Asyncorynidae Asyncoryne ryniensis Japan EU876552 EU876578 GQ424289 
KUNHM 
2639 

Cladocorynidae Cladocoryne  floccosa Spain, Mallorca AY512535   
MHNG 
INVE29808 

Cladocorynidae Cladocoryne  floccosa Brazil  EU272608 EU272551 
A.Lindner: 
AL1407 

Cladonematidae Cladonema californicum    AF358085   

Cladonematidae 

Cladonema 
(now 
Staurocladia) 

radiatum 
Italy; Island of 
Elba 

AM088482 EU448096 GQ424290  

Cladonematidae Cladonema sp.   AM088484   
MHNG 
INVE37640 

Cladonematidae Eleutheria claparedii France, Roscoff AM088486 GQ424320 GQ424292 
MHNG 
INVE49494 
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Cladonematidae Eleutheria dichotoma Mediterrannean AM088485 GQ424321 GQ424291 
MHNG 
INVE34228 

Cladonematidae Eleutheria dichotoma 
Australia; 
Sydney Harbor 

AM159500   
MHNG 
INVE37416 

Cladonematidae Staurocladia bilateralis Japan AY512537     

Cladonematidae 

Staurocladia 
(now 
Cladonema) 

oahuensis Japan AY512536      

Cladonematidae Staurocladia vallentini New Zealand GQ395332 GQ424322 GQ424293   

Cladonematidae Staurocladia wellingtoni New Zealand AY787882 GQ424323 EU879948 
MHNG 
INVE25379 

Corynidae Coryne tricycla New Zealand AJ608640     H-641, NIWA 
Wellington 

Corynidae 

Coryne 
(now 
Stauridiosarsia) 

cliffordi 
Canada, British 
Columbia 

GQ395313 GQ424324 GQ424294 
MHNG 
INVE36025 

Corynidae Coryne epizoica 
Italy; Island of 
Elba 

GQ395314  GQ424295 
MHNG 
INVE37171 

Corynidae Coryne eximia South Africa AJ878713 GQ424325 GQ424296 
MHNG 
INVE34009 

Corynidae Coryne eximia France, Atlantic AY512541    

Corynidae Coryne fucicola France, Roscoff AM084259 GQ424326  
MHNG 
INVE36328 

Corynidae Coryne japonica New Zealand AY512540   
MHNG 
INVE27293 

Corynidae Coryne muscoides France, Roscoff AJ878689 GQ424327 GQ424297  

Corynidae Coryne muscoides France, Atlantic GQ395315 GQ424328 GQ424298  

Corynidae Coryne muscoides France, Roscoff AY512553 
 AY92076
1 

  

Corynidae 

Coryne 
(now 
Stauridiosarsia) 

nipponica 
Japan, Seto 
Marine Station 

GQ395316 EU448096 EU305530 
KUNHM 
2627 

Corynidae 

Coryne 
(now 
Stauridiosarsia) 

nipponica Japan, Okinawa GQ395333 GQ424329 GQ424299  

Corynidae Coryne pintneri 
France, 
Villefranche 

AJ878717 GQ424330 GQ424300 
MHNG 
INVE31976 

Corynidae Coryne pintneri 
France, 
Marseille 

AJ878718    GQ424301  

Corynidae 

Coryne 
(now 
Stauridiosarsia) 

producta 
Norway, 
Raunefjord 

GQ395316 GQ424331 GQ424302 
MHNG 
INVE48751 

Corynidae 
Coryne 
(now Codonium) 

prolifera France, Roscoff GQ395318   GQ424303 
MHNG 
INVE49490 

Corynidae Coryne pusilla France, Roscoff AY787874    
MHNG 
INVE29386 

Corynidae Coryne pusilla 
Scotland, Firth 
of Lorn 

AY512552   GQ424304 
MHNG 
INVE35756 

Corynidae Coryne pusilla Korea   Z86107   

Corynidae Coryne uchidai Japan GQ395319   GQ424305 
KUNHM 
2809 

Corynidae Coryne uchidai Japan, Oshoro GQ395320 GQ424332 GQ424306 
MHNG 
INVE49102 

Corynidae 

Dipurena 
(now 
Stauridiosarsia) 

gemmifera France, Roscoff EU876547 EU876573 EU879945  

Corynidae Dipurena halterata 
France, 
Villefranche 

AM084261 EU883544 EU883550 
MHNG 
INVE31741 

Corynidae 

Dipurena 
(now 
Stauridiosarsia) 

ophiogaster 

Japan, 
Shirahama 
harbor 

EU305473 EU272615 EU272560 
KUNHM 
2803 

Corynidae 

Dipurena 
(now 
Stauridiosarsia) 

ophiogaster France, Banyuls AJ878721   GQ424307 
MHNG 
INVE32963 
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Corynidae 

Dipurena 
(now 
Stauridiosarsia) 

ophiogaster Japan  GQ424333   

Corynidae 

Dipurena 
(now 
Stauridiosarsia) 

reesi 
Aquarium Zoo 
Basel GQ395321 GQ424334 GQ424308  

Corynidae 

Dipurena 
(now 
Stauridiosarsia) 

reesi Brazil AY512546      

Corynidae Dipurena simulans France, Roscoff AY512547      

Corynidae 

Dipurena 
(now 
Stauridiosarsia) 

sp. Japan GQ395331 GQ424335 GQ424309   

Corynidae Sarsia apicula 
Canada, British 
Columbia 

GQ395330 GQ424336   MHNG 
INVE29806 

Corynidae Sarsia lovenii 
Iceland, 
Sandgerdi 

AY787876    MHNG 
INVE29592 

Corynidae Sarsia lovenii 
Norway, 
Raunefjord 

GQ395329 GQ424337 GQ424310 
MHNG 
INVE48736 

Corynidae Sarsia lovenii 
Iceland, 
Sandgerdi 

AJ608796     

Corynidae 

Sarsia 
(now 
Stauridiosarsia) 

marii 
France, 
Mediterannean 

AY512544    

Corynidae Sarsia princeps 
Canada, British 
Columbia 

EU876549 EU876575 EU879947  

Corynidae Sarsia striata 
Scotland, Firth 
of Lorn 

GQ395328 GQ424338 GQ424311 
MHNG 
INVE35765 

Corynidae Sarsia tubulosa 
Scotland, Firth 
of Lorn 

EU876548 EU876574 EU879946 
MHNG 
INVE35763 

Corynidae Sarsia tubulosa 
Norway, 
Raunefjord 

GQ395327 GQ424339 GQ424312  

Corynidae Sarsia tubulosa  AY512545    

Hydrocorynidae Hydrocoryne miurensis Japan GQ395326   GQ424313 
KUNHM 
2814 

Hydrocorynidae Hydrocoryne iemanja Brazil GQ389713    

Milleporidae Millepora sp.   EU876551 AF358088 EU879950   

Moerisiidae Moerisia sp. 
USA -  
California 

AY512534 AF358083 AY920801  

Moerisiidae Moerisia inkermanica Brazil  GQ424340   

Moerisiidae Odessia maeotica 
France, 
Portiragnes 

GQ395324 GQ424341 GQ424314 
MHNG 
INVE53642 

Pennariidae Pennaria disticha   AY512533 EU883545 GQ424315  

Pennariidae Pennaria disticha Spain, Mallorca AM088481 GQ424342 GQ424316 
MHNG 
INVE29809 

Pennariidae Pennaria disticha     AY920762   

Pennariidae Pennaria sp.   GQ424343   

Polyorchidae 
(now Corynidae) 

Polyorchis haplus 
USA - 
California 

AY512549
* 

GQ424344 GQ424317   

Polyorchidae 
(now Corynidae) 

Polyorchis penicillatus 
USA - Friday 
Harbor 

AY512550 AF358090   

Polyorchidae 
(now Corynidae) 

Scrippsia pacifica 
USA - 
California 

AY512551 AF358091 AY920804  

Porpitidae Porpita porpita  AY935322 GQ424319 EU883551  

Porpitidae Porpita sp. Guam AY512529 AF358086 AY920803  

Porpitidae Velella sp.   AF358087 EU272597  

Porpitidae Velella velella 
France, 
Villefranche 

EU305487 EU876576 EU879949  

Solanderiidae Solanderia ericopsis New Zealand AY512530 EU272636 EU272593 
MHNG 
INVE29593 
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Solanderiidae Solanderia secunda 
Japan, Seto 
Marine Station 

EU305484 EU305502 EU305533 
KUNHM 
2611 

Solanderiidae Solanderia secunda South Korea  AJ133506    

Sphaerocorynidae Sphaerocoryne agassizi Florida GQ395323   GQ424318   

Sphaerocorynidae Sphaerocoryne bedoti Panama GQ395322     KUNHM 
2787 

Zancleidae Zanclea costata 
France, 
Mediterannean 

AY512531 EU876579 EU879951 
MHNG 
INVE26507 

Zancleidae Zanclea prolifera 
Japan, Seto 
Marine Station 

EU305488 EU272639 EU272598 
KUNHM 
2793 

Zancleidae Zanclea sessilis Spain, Mallorca AY512532     

OUTGROUPS  

Tubulariidae Ralpharia gorgoniae 
Panama, Bocas 
del Toro, Crawl 
Cay 

EU305482 EU272633 EU272590 
KUNHM 
2778 

Eudendriidae Eudendrium californicum 

USA, 
California, 
Monterey Bay, 
Scott Creek 

EU305476 EU305492 EU305513 
KUNHM 
2816 

Ptilocodiidae Hydricthella epigorgia 
Japan, Hazema, 
Takane 

EU305478 EU272622 EU272569 
KUNHM 
2665 

Hydractiniidae Hydractinia sp. USA, California EU305477 EU305495 EU305518 
KUNHM 
2876 

Oceaniidae Turritopsis sp. 
Japan, Seto 
Marine Station 

EU305486 EU305504 EU305538 
KUNHM 
2817 

Melicertidae Melicertum octocostatum  EU305479 AY920757 EU272575 
USNM 
1073342 

                            * Different specimen from same locality amplified 
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Table 2. Primer profiles 
 

Target Gene Primer Pair Sequences Reference 

F63Mod 

R2077 

5’-ACCCGCTGAAYTTAAGCATATHANTMAG-3’ 

5’-GAGCCAATCCTTWTCCCGARGTT-3’ 

Medina et al. (2001)  28s - A 

Fragment 

F97 

R2084 

5’-CCYYAGTAACGGCGAGT-3’ 

5’-AGAGCCAATCCTTTTCC-3’ 

Evans et al. (2008) and 

Cartwright et al. (2008) 

28s – B 

Fragment 

F1383 

R3238 

5’-GGACGGTGGCCATGGAAGT-3’ 

5’-SWACAGATGGTAGCTTCG-3’ 

Evans et al. (2008) and 

Cartwright et al. (2008) 

18s 18sA 

18sB 

5’-AACCTGGTTGATCCTGCCAGT-3’ 

5’-TGATCCTTCCGCAGGTTCACCT-3’ 

Medlin et al. (1988) 

16s F2 

R2 

5’-TCGACTGTTTACCAAAAACATAGC-3’ 

5’-ACGGAATGAACTCAAATCATGTAAG-3’ 

Cunningham & Buss (1993) 

 
 

DNA extraction, PCR amplification and sequencing 

DNA was extracted from polyp or medusa tissue using a CTAB protocol established by Coffroth 

et al. (1992), a standard phenol-chloroform procedure (available on request), or a Qiagen 

DNeasy Tissue kit following manufacturer’s instructions (QIAGEN Inc., Mississauga, ON). A 

600-bp fragment of 16S was amplified following Cunningham & Buss (1993), an 1,800-bp 

fragment of 18S was amplified following Medlin et al. (1988), and a 3,200 bp fragment of 28S 

was amplified following Evans et al. (2008) (Table 2). Purification and direct sequencing of PCR 

products were conducted by Cogenics, Inc. (Houston, TX). Sequencher v4.5 was used for contig 

assembly and editing (GeneCodes 2005). Mesquite was utilized for concatenation and matrix 

editing (Maddison & Maddison 2007). 

 

Sequence alignment and model selection 

Preliminary DNA alignments were generated with MUSCLE (MUltiple Sequence Comparison 

by Log-Expectation) (Edgar 2004a, b). The alignments were then adjusted by hand in Seaview 

version 2.4 (Galtier et al. 1996) according to secondary structure models based on either Hydra 
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for 16S (Dunn et al. 2005), or all of Cnidaria for 18S and 28S (M. S. Barbeitos, pers comm). The 

final alignments were end-trimmed to remove characters missing in the majority of taxa. Model 

testing of the alignments was conducted in PAUP v 4.0 (Swofford 2003) using Model Test 

(Posada and Crandall, 1998) and the suggested model following the AIC (Akaike Information 

Criterion) value (Akaike 1987) was chosen for each analysis. Final alignments are available on 

Treebase (ID SN4691-25510). 

 

Phylogenetic analyses 

Parsimony analyses were conducted for each gene and on the complete, concatenated dataset in 

the program TNT (Goloboff et al. 2000). In all cases, a New Technology search was conducted,  

with sectorial searching and tree fusing selected. For each dataset, a strict consensus was 

calculated and 1000 bootstrap replicates were generated to assess support.  

 

Maximum likelihood analyses were conducted on the three gene datasets separately, and also on 

the partitioned and unpartitioned concatenated dataset in the parallel version of RaxML 

(Stamatakis et al. 2005). For the partitioned dataset, data was partitioned by gene. A GTRMIX 

model was applied to the dataset, and 500 (16S) or 1000 (18S, 28S and combined datasets) 

bootstrap replicates were generated. Replicates were summarized in PAUP v4.0 (Swofford 

2003).  Only taxa with at least two of the three markers available were included in the combined 

analysis, with the exception of Moerisia inkermanica. 

 

Bayesian analyses were conducted on all three gene datasets separately, and also on the 

partitioned and unpartitioned concatenated dataset in the parallel version of MrBayes. Two runs 
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of 10 million generations with one heated chain and three cold chains were cued in MrBayes. 

Analyses for 16S, 18S, and 28S were allowed to run for 10 million generations. Convergence 

was assessed and analyses stopped for the partitioned dataset at approximately 6.6 million 

iterations, and for the unpartitioned dataset at approximately 4.9 million iterations. The burnin in 

each case was set to one million. Chain convergence and the presence of a sizeable effective 

sample size (ESS) was assessed in Tracer (Rambaut & Drummond 2007), and topological 

convergence was evaluated using AWTY (Are We There Yet) (Nylander et al. 2007). A Bayes 

factors test was conducted between the harmonic mean of the -lnL scores from the posterior 

distributions of the partitioned and unpartitioned analyses to determine preference for the 

partitioned versus unpartitioned dataset. 
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RESULTS 

Taxon sampling, alignment, and analyses 

A summary of taxon sampling, matrix length, and parsimony tree number and length can be 

found in Table 3. Our complete dataset included a total of 60 specimens representing 13 capitate 

families, 20 capitate genera, and 46 different capitate species. For this study we contributed 99 

new capitate sequences, including sequences from species representing three previously 

unsampled families - Hydrocorynidae, Asyncorynidae, and Sphaerocorynidae - four previously 

unsampled genera - Odessia, Hydrocoryne, Asyncoryne, and Sphaerocoryne - as well as over 15 

previously unsampled species (Table 1). To date, this is the largest sampling of capitates 

collected for molecular analysis. 

 

ModelTest selected the GTR +  + I model for 16S, 18S, and 28S separately and for the 

concatenated dataset based on AIC criterion. This model was applied for all ML (GTRMIX) and 

Bayesian analyses. A Bayes Factors (BF) test confirmed preference for the partitioned dataset 

over the unpartitioned dataset for the Bayesian analyses. 

 
Table 3. Data Summary 
 

Marker Positions Number of taxa Tree length (parsimony) Number of most 
parsimonious trees 

16S 594 75 2493 8 

18S 1824 57 926 10 

28S 3301 55 3353 5 

Concatenated 5880 60 6462  1  

 

Phylogenetics of Capitata  

16S, 18S, 28S and the combined, concatenated dataset (Figures 2-5) recover Capitata as a well-

supported clade using all three optimality criteria. Separate analyses are largely congruent, both 

between markers as well as between optimality criterion. Some relationships differ between the 



 17 

16S and the combined topology (the placement of Cladonema radiatum and members of 

Sphaerocorynidae); however, the recovered 16S placement of these taxa is not well supported. In 

general, 16S recovered well-supported relationships toward the tips of the tree (with deeper 

relationships only supported by BPP), 18S recovered a limited number of lower-level nodes, and 

28S and the combined, concatenated dataset recovered topologies with most nodes supported 

throughout the tree. Given that the combined topology represents the most complete sampling of 

our data and displays the largest number of well-supported nodes, we consider this our most 

robust hypothesis (Figure 5). 
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Figure 2. Hypothesis of relationships of Capitata based on mitochondrial 16S and run in RaxML 
under a GTR +  + I model. 
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Figure 3. Hypothesis of relationships of Capitata based on 18S (SSU) and run in RaxML under a 
GTR +  + I model. 
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Figure 4. Hypothesis of relationships of Capitata based on 28S (LSU) and run in RaxML under a 
GTR +  + I model. 
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Figure 5. Combined topology of Capitata based on concatenated and partitioned 16S, 18S and 
28S analysis. GTR +  + I model applied separately to each partition. 
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Our combined phylogeny of Capitata (Figure 5) questions classic relationships reliant on 

morphology (Petersen 1990) and is congruent with previous molecular phylogenetic analysis, 

while adding resolution at a number of nodes as well as including several previously unsampled 

families.  Although the monophyly of Sphaerocorynidae, Asyncorynidae and Milliporidae could 

not be tested due to the inclusion of just one species, all other families, with the exception of 

Zancleidae and Corynidae were recovered as monophyletic with strong support.  In addition, the 

phylogenetic relationships between the families were well resolved, except Moersiidae and 

Sphaerocorynidae, but they clearly belong to one of the two subclades of Capitata.  

 

Within Capitata, there is a deep and well-supported split separating the clade 

Corynidae/Polyorchidae/Cladonematidae and the remaining sampled families within Capitata. 

Within the latter lineage, the families Porpitidae, Zancleidae, Asyncorynidae, Milleporidae, 

Cladocorynidae and Solanderiidae form a clade.  There is also strong evidence that Pennaridae 

and Hydrocorynidae are sister families, as are Milleporiidae and Solanderidae.  Within 

Corynidae/Polyorchidae/Cladonematidae clade, we recover Cladonematidae as sister to all else, 

and Polyorchidae nested within Corynidae. Two of the sampled genera within the 

Cladonematidae are polyphyletic (Staurocladia and Eleutheria), although sampling within this 

family is not dense enough to determine structural patterns. 

 

Phylogeny of Corynidae 

Corynidae is rendered paraphyletic by its inclusion of polyorchiid taxa (Figure 5).  The exact 

placement of Polyorchidae within Corynidae is not well supported although it has a weakly 
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supported position within a clade of Coryne species. Strong support is recovered for most nodes 

within Corynidae (Figure 5), most of which challenge classic assumptions of relationships based 

on morphology (Figure 1). Of the three sampled genera, Coryne and Dipurena are polyphyletic 

and Sarsia forms a clade with Dipurena halterata as its sister taxon. Our results reject a 

Corynidae classification reliant on only two genera (Sarsia and Coryne, sensu Brinckmann-Voss 

1970), a classification scheme reliant on three genera Sarsia, Coryne, and Dipurena, (sensu 

Millard 1975 & Bouillon 1985), as well as more recent classifications reliant on other generic 

limits (sensu Petersen 1990 and Bouillon et al. 2006) (Figure 1).    
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DISCUSSION 

Phylogenetics of Capitata 

The capitates are recovered as a well-supported monophlyetic group (Figure 5) and this clade, 

which excludes aplanulate taxa, should henceforward be used in the new meaning of Capitata. 

The combined and 16S topologies place Ralpharia gorgoniae (a member of Aplanulata) as the 

closest sampled outgroup to the capitates; however, the limited sampling of outgroups in this 

analysis does not allow for testing of the placement of Capitata within Hydroidolina. A recent 

higher-level analysis of Hydroidolina further indicates that the sister group relationship to 

Capitata is not resolved (Cartwright et al. 2008). We suggest that a synapomorphy for Capitata is 

the complex, cup-shaped ocelli found in many species (for the structure see Weber, 1980; 

Thomas & Edwards, 1991), although the structure appears to have been lost in the clade 

Zancleoida (see below). We recovered family-level relationships that are inconsistent with 

Petersen's 1990 hypothesis derived from a phylogenetic analysis of morphological data; 

however, our results are consistent with recent molecular phylogenetic analyses (Collins 2002; 

Collins et al. 2005, 2006). The approach of Petersen (1990) did not allow for the non-monophyly 

of Capitata (to the exclusion of aplanulate taxa) nor did it explicitly test for the phylogenetic 

status of its component genera. 

 
Our analyses reveal two well supported clades of Capitata (Figure 5). The first of these is 

delimited by the families Porpitidae, Zancleidae, Asyncornidae, Milleporidae, Cladocorynidae 

and Solanderiidae. A similar association has been proposed by earlier authors and given different 

names: Pteronematoidea by Picard (1957), Zancleoidea by Bouillon et al. (1987), or Zancleida 

by Petersen (1990). We call this clade Zancleida (Figure 5). The scope of each of these groups 

differs slightly depending on the author but all basically unite a group of capitate hydroids that 
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possess macrobasic eurytele stinging capsules, with the exception of the Solanderiidae. Its 

placement within this clade indicates that members of Solanderiidae likely lost these capsules 

secondarily. Petersen (1990) associated the Solanderiidae with Corynidae, and Collins et al. 

(2005) associated Solanderiidae with Zancleidae and Moerisidae, although this grouping was not 

well supported and Milleporidae was not sampled. Our results unambiguously group the 

Solanderiidae with Zancleidae and Milleporidae. The sister relationship of Solanderiidae with the 

coral-like Milleporidae means that the large, erect colonies found in both groups is a likely a 

synapomorphy. Our combined analysis (Figure 5) recovers the genus Zanclea as paraphyletic. 

However, Z. prolifera has only been provisionally classified in the genus Zanclea, as its polyp 

stage is unknown (Uchida & Sugiura, 1976). We suggest that it could instead belong to the genus 

Asyncoryne due to its sister group relationship (Figure 5), or that one group gave rise to the 

other.  Asyncoryne and Zanclea have identical medusae (Migotto et al. 1996; Bouillon et al. 

2006) and differ only in the tentacles of their polyp stages. We find evidence for a sister 

relationship between Hydrocorynidae and Pennaridae, which has not been previously suggested. 

The second clade of capitates we recover is delimited by the families Cladonematidae, 

Corynidae, and Polyorchidae. We name this clade Corynida (Figure 5). Cladonematidae is the 

sister group to the Corynidae-Polyorchidae clade, an expected affiliation as the polyps of some 

Cladonematidae species are indistinguishable from Corynidae polyps (Schuchert 2001, 2006). 

Also, Petersen (1990) placed Cladonematidae as sister to Corynidae. A previous molecular study 

recovered Cladonematidae as polyphyletic and more closely related to the Zancleida than 

Corynidae, although this relationship, based solely on 16S data, was not well supported (Collins 

et al. 2005). 
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A previous study of Cladonematidae based on morphological characters has shown that the 

current generic-level subdivision within this family is problematic (Schuchert 2006), and a 

previous molecular study utilizing 16S rDNA proposed that the genus Staurocladia is 

polyphyletic (Collins et al. 2005). As predicted by both Schuchert (2006) and Collins et al. 

(2005), our molecular analyses renders the genus Staurocladia polyphyletic, grouping 

Cladonema radiatum with Staurocladia wellingtoni, and Eleutheria species with Staurocladia 

vallentini (Figures 2, 4, 5). The genus Staurocladia is separated from Eleutheria based on the 

number of nematocyst clusters on its tentacles: one for Eleutheria, more than one for 

Staurocladia (Browne & Kramp 1939; Brinckmann-Voss 1970; Schuchert 2006). Our trees 

suggest that this is not a valid character and that the genus may need to be redefined following 

further analyses with more taxa. Interestingly, Cladonematidae has two distinct subclades, one 

containing Eleutheria species and S. vallentini (all of which have a reduced mesoglea), and the 

other C. radiatum as well as S. wellingtoni (a species with a more developed umbrella). We 

suggest that in the interest of nomenclatural stability it is advisable to emend the diagnoses of the 

genera Cladonema and Eleutheria so that they correspond to the two evolutionary lineages found 

here. The diagnosis of Cladonema given by Schuchert (2006) corresponds de facto to this new 

view, while the diagnosis of Eleutheria can be simplified to include Staurocladia species that 

have tentacles with one or more nematocyst clusters. Staurocladia, the type species for which is 

S. vallentini, is thus synonymized with Eleutheria. 

 

Phylogenetics of Corynidae 

The second major goal of this study was to obtain a detailed phylogeny of Corynidae in order to 

evaluate current generic-level classification schemes; therefore, this family contributed the 
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majority of taxa in our analysis. In all analyses, we recover a paraphyletic Corynidae that 

includes the family Polyorchidae nested within it, here represented by the genera Scrippsia and 

Polyorchis. This result is not unexpected, as a recent phylogenetic analysis placed the 

Polyorchidae within Corynidae, though this relationship was not well-supported (Collins et al. 

2005). The Polyorchidae (sensu Mills 2000; Bouillon et al. 2006) are only known from their 

medusa phase, which limits comparison with Corynidae. There is no apparent synapomorphy for 

the grouping of corynid and polyorchid species, and the medusae of both families are so distinct 

that it is difficult to provide a useful diagnosis for a family that comprises both of them. 

Currently, then, an emended diagnosis for Corynidae must be based on a phylogenetic definition 

alone: e.g. the least inclusive clade comprising Coryne pusilla, Polyorchis penicillatus, Sarsia 

tubulosa, and Coryne producta. (See Appendix). 

 

Two genera that were previously included in the Polyorchidae, Tiaricodon and Urashimea, were 

recently placed back in the revised family Halimedusidae by Mills (2000). Despite this, the 

medusae of Halimedusidae and Polyorchidae are at least superficially rather similar (comp. 

Bouillon et al. 2006). The polyps of Halimedusidae are solitary, club-shaped, and with 4 to 5 

long, capitate tentacles in one whorl (Mills 2000 for Halimedusa; Xu & Chen 1998 for 

Tiaricodon; Uchida & Nagao 1961 for Urashimea). Except for the non-colonial mode of life, 

they are thus identical to some polyp types of Corynidae and Cladonematidae. Another detail 

that links Tiaricodon with Corynidae is the juvenile Tiaricodon medusae are indistinguishable 

from juvenile corynid medusae (Schuchert 1996). Given these similarities, members of 

Halimedusidae likely belong to the Corynida, if not to Corynidae. 
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The recovered generic-level subdivisions of Corynidae are mostly incongruent with classification 

schemes that have been suggested to date. Although the genus Sarsia sensu Petersen (1990) was 

retrieved as monophyletic, the genera Coryne and Dipurena sensu Petersen were recovered as 

polyphyletic. Our topology furthermore rejects a generic-level subdivision based solely on the 

presence/absence of a medusa (Figure 6). The placement of Sarsia marii outside of the clade 

including all other Sarsia species is not surprising, as the species is incompletely described (the 

adult medusa is unknown) and it has been previously suggested that it may instead be more 

closely aligned to some Dipurena species (Schuchert 2001). 

 

Based on the tree topology as well as supporting morphological characters, a generic-level 

structure emerges for Corynidae (Figure 6; See Appendix). Sarsia sensu Petersen is recovered as 

monophyletic and can retain its generic label and diagnosis, despite the placement of the 

incompletely described species S. marii in the 16S topology (see Schuchert 2001). Scrippsia and 

Polyorchis can be designated as genera belonging to Corynidae, although further sampling of 

this clade is needed to confirm the monophyly of the two genera as well as the exact placement 

of the two genera within the family.  

 

The clade containing the bulk of the Coryne species is well supported and must retain the name 

Coryne [type species is Coryne pusilla].  This genus is well supported and includes members 

with reduced reproductive structures as well as species with free medusae (Coryne eximia and 

Coryne japonica).  Most members of this clade share a distinct morphological synapomorphy: 

their gonophores arise in the upper axils of the tentacles, whereas in nearly all other Corynidae 

they are independent of the tentacles (comp. Schuchert, 2001). There are two exceptions to this  
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Figure 6. Phylogenetic relationships of genera within Corynide, and new classification (see 
Appendix). Dashed line indicates that the specimen was not included in the combined analysis.
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as Coryne tricycla has the plesiomorphic state (Figure 2, and Schuchert 2005), and C. japonica is  
 
polymorphic. 
 

The remaining Coryne species sampled in this analysis produce medusae and cluster either with 

some Dipurena species, or form their own lineage, like C. prolifera. The medusa of Coryne 

prolifera is unique in that it buds medusae on its tentacle bulbs. This apomorphy together with its 

isolated position in the tree justify a transfer to a separate genus. Codonium Haeckel, 1879 could 

be made available for it by designating Codonium codonoforum Haeckel, 1879 as the type 

species of the genus. Codonium  codonoforum Haeckel, 1879 is a subjective synonym of Sarsia 

prolifera Forbes, 1848 (Mayer 1910; Schuchert 2001) (See Appendix).  

 

Like Coryne, Dipurena sensu Petersen is also recovered as polyphyletic in our analysis. Some 

Dipurena species cluster with C. producta (here grouped in Stauridiosarsia), while Dipurena 

halterata emerges as sister to Sarsia (Figure 5). 16S analyses suggest that Dipurena simulans is 

also part of this clade (Figure 2). The available 16S sequence of D. simulans is rather short and 

the position of the species is not well resolved. Unfortunately, it was not possible to include the 

type species of the genus Dipurena, D. strangulata, in our molecular analysis. However, D. 

strangulata, D. simulans and D. halterata all possess very similar medusae with capitate 

tentacles and their polyps are associated with sponges (see Schuchert, 2001). These 

morphological and ecological similarities suggest that D. strangulata belongs to the same clade. 

This group thus retains the generic name Dipurena.   

 

The association of Coryne producta and other similar species with a subset Dipurena species is 

unexpected and no morphological diagnosis is currently possible for this clade, which notably 
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contains medusae with long Dipurena-type and short Coryne-type manubria (cf. Petersen, 1990). 

The designated name for this genus is Stauridiosarsia Mayer, 1910 [type species S. producta by 

monotypy] (See Appendix).  

 

In summary, we suggest that Polyorchidae be subsumed within Corynidae and the family 

Polyorchidae be disbanded, with the sub-family name Polyorchinae to refer to the grouping of 

the genera Scrippsia and Polyorchis.. The species within Corynidae will be distributed into the 

following genera: Coryne, Codonium, Dipurena, Sarsia, Stauridiosarsia, Scrippsia, and 

Polyorchis (Fig 6; see See Appendix for diagnoses). Future sampling of genera not included in 

this analysis (Bicorona, Dicyclocoryne, Cladosarsia, and Nannocoryne) may expand or alter 

these diagnoses. The current analyses includes a species that was once included in the genus 

Bicorona (B. tricycla, now Coryne tryicycla), but for a taxonomically correct evaluation of any 

genus, the type species of this genus must be examined. The type species, Bicorona elegans 

Millard 1966, has sporosacs in the upper axils of its tentacles and is thus potentially also a 

member of the genus Coryne sensu stricto. 

 

This study did not include all species currently attributed to either Coryne, Sarsia, or Dipurena 

(see Schuchert 2001 or Bouillon et al. 2006 for a full listing). These species are best left in their 

current genus within Corynidae until their relationship has been tested by more thorough 

taxonomic sampling. Moreover, there exist a number of incompletely described Corynidae which 

cannot be attributed reliably to any of these clades (see Schuchert, 2001). We suggest including 

them provisionally in the genus Coryne pending further sampling.  
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CONCLUSION 

We have provided the largest sampling of capitates to date and have made progress in resolving 

family-level relationships within this hydrozoan lineage.  We designate this group of hydrozoans 

Capitata, and subdivide them into two clades, the Zancleida (sensu Petersen 1990) and Corynida. 

Furthermore, we have provided strong support for relationships within the well-studied family 

Corynidae, and suggest a new classification based on these phylogenetic relationships. 

Preliminarily, we propose a generic-level classification for Corynidae supported by both 

molecular and, in most cases, morphological characters. Although we provide molecular 

phylogenetic evidence for both family-level relationships within the new Capitata as well as 

lower-level relationships within Corynidae, future sampling is needed to uncover relationships 

between genera established here in order to further refine and stabilize classification of 

Corynidae. 
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CHAPTER 2: Phylogenetic placement of Hydra and the relationships of Aplanulata 
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ABSTRACT 

The model organism Hydra belongs to the hydrozoan clade Aplanulata. Despite being a 

popular model system for development, little is known about the phylogenetic placement 

of this taxon or the relationships of its closest relatives. Previous studies have been 

conflicting regarding sister group relationships and have been unable to resolve deep 

nodes within the clade.  In addition, there are several putative Aplanulata taxa that have 

never been sampled for molecular data or analyzed using multiple markers. Here, we 

combine the fast-evolving cytochrome oxidase 1 (CO1) mitochondrial marker with 

mitochondrial 16S, nuclear small ribosomal subunit (18S, SSU) and large ribosomal 

subunit (28S, LSU) sequences to examine relationships within the clade Aplanulata. We 

further discuss the relative contribution of four different molecular markers to resolving 

phylogenetic relationships within Aplanulata. Lastly, we report morphological 

synapomorphies for some of the major Aplanulata genera and families, and suggest new 

taxonomic classifications for two species of Aplanulata, Fukaurahydra anthoformis and 

Corymorpha intermedia, based on a preponderance of molecular and morphological data 

that justify the designation of these species to different genera.  
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INTRODUCTION 

The model organism Hydra belongs to the hydrozoan clade Aplanulata (Collins, 

Schuchert, Marques et al. 2006, Collins, Winkelmann, Hadrys et al. 2005). Despite 

numerous studies on this species spanning as disparate fields as immunology (Bosch, 

Augustin, Anton-Erxleben et al. 2009), stem cell biology (Ambrosone, Marchesano, Tino 

et al. 1012, Hartl, Mitterstiller, Valovka et al. 2010) and evolutionary biology 

(Hemmrich, Anokhin, Zacharias et al. 2007, Martinez, Iniguez, Percell et al. 2010), little 

is known about the precise phylogenetic placement of Hydra or the relationships between 

major lineages of Aplanulata. Recent studies have begun to shed light on these 

relationships, particularly within the families Hydridae (Martinez, Iniguez, Percell et al. 

2010) Tubulariidae (Marques and Migotto 2001) and Corymorphidae (Nawrocki and 

Cartwright in press, Cartwright and Nawrocki 2010). However there is little support for 

relationships between major lineages of Aplanulata, and many putative Aplanulata taxa 

have not been sampled or studied in a phylogenetic context with multiple markers. 

 

Aplanulata comprises 8 families (Collins, 2006) and approximately 170 valid species 

(Daly, Brugler, Cartwright et al. 2007). These species demonstrate great morphologically 

diversity (Figure 1), inhabit several disparate ecological habitats, and display a wide 

variety of life cycles.  Unlike members of all other major hydrozoan lineages, most 

Aplanulata species display a solitary, as opposed to a colonial, polyp stage (but see 

Nawrocki and Cartwright, in press).   Species vary greatly in their morphology and 

habitats. The solitary polyps range in size from a few millimeters in length (i.e. Hydra) to 

over a meter in length (i.e. Branchiocerianthus). This clade includes species that inhabit  
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Figure 1. Eight Major families belonging to Aplanulata (Collins 2006) (A-H) and current 
hypotheses of Aplanulata relationships (I). A. Acaulis ilonae; Acaulidae. B. Candelabrum 
phrygium; Candelabridae. C. Ectopleura crocea; Tubulariidae. D. Tricyclusa singularis; 
Tricyclusidae. E. Margelopsis haeckeli; Margelopsidae. F. Hydra sp.; Hydridae. G. 
Paracoryne huevi; Paracorynidae. H. Corymorpha bigelowi; Corymorphidae. I. Recent 
morphological and molecular hypotheses of relationships of members of Aplanulata. 
Left: Hypothesis based on morphological data (Petersen 1990). Center: Hypothesis of 
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Aplanulata relationships based on mitochondrial 16S (Collins et al. 2005). Right: 
Hypothesis of Aplanulata relationships based on mitochondrial 16S, and nuclear 28S and 
28S (Cartwright & Nawrocki 2010; Nawrocki & Cartwright in press). Acaulis ilonae 
modified from Brinckmann-Voss 1966; Candelabrum phrygium modified from Schuchert 
2006; Ectopleura crocea modified from Hargitt 1901; Tricyclusa singularis modified 
from Schulze 1876. Margelopsis haeckeli modified from Schuchert 2006; Paracoryne 
huevi and Hydra images from Schuchert 2012, Corymorpha bigelowi modified from 
Sassman & Rees 1978.  
 
 
cold and deep waters, as well as intertidal species, and tropical species that may live 

symbiotically with sponges or corals. And while most species in Aplanulata are marine, 

this clade also includes Hydra, one of the few hydrozoan species that inhabits fresh water 

environments. (Figure 1). Aplanulata species also vary greatly in their possession of a 

pelagic medusa (jellyfish) stage, with some species producing fully-independent, free-

swimming medusae, while others exhibit various stages of medusae truncation. Reduced 

medusae, called gonophores, remain attached to the body of the polyp and often possess 

remnants of medusa morphology, such as tentacles. Despite their diversity, the group is 

united by a striking developmental synapomorphy: individuals bypass a planula larval 

stage typical of hydrozoans and instead develop directly into juvenile polyps inside a 

gonophore or within a cyst. 

 

The relationships within Aplanulata families have not been thoroughly investigated 

within a molecular phylogenetic context, with the exception of Hydridae (Martinez, 

Iniguez, Percell et al. 2010, Nawrocki and Cartwright in press). Hydridae (approximately 

30 valid species) (Daly, Brugler, Cartwright et al. 2007) includes the single genus Hydra, 

and all members of this genus are solitary and inhabit freshwater environs. Hydridae is 
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split into three large, well-supported clades, and the relationships between and within 

these major lineages are well resolved (Martinez, Iniguez, Percell et al. 2010).   

 

Candelabridae is comprised of 20 valid species, most of which are solitary (but see 

(Brinkmann-voss and Lindner 2008)) (Daly, Brugler, Cartwright et al. 2007). Species in 

this family all have a large number of randomly scattered capitate (knobbed) tentacles 

along the body column, and reproductive structures are localized below the tentacles. No 

more that two species have been previously sampled for phylogenetic analyses. 

 

Corymorphidae (approximately 45 valid species) (Daly, Brugler, Cartwright et al. 2007) 

is exclusively comprised of solitary species, and members possess a body column lacking 

both tentacles and a hard skeleton.  Two whorls of filiform (elongated with tapering ends) 

or moniliform (elongated but with batteries of nematocysts along them) tentacles are 

found towards the oral end of the polyp and reproductive structures form between these 

two sets of tentacles. Occasionally, oral tentacles are capitate (nobbed ends). Studies 

examining the relationships of this clade in a molecular phylogenetic context using 16S 

rDNA have failed to recover this family as monophyletic (Collins, Winkelmann, Hadrys 

et al. 2005, Schuchert 2010).  More recently, an analysis using a combination of 18S, 28S 

and 16S data, which included eleven corymorphid taxa  did not recover a monophyletic 

Corymorphidae, and instead recovered Corymorpha groenlandica and Hataia parva 

separate from the rest of the Corymorphidae (Nawrocki and Cartwright in press).  This 

same study sampled the massive (1-2m), deep-water species, Branchiocerianthus 

imperator, and recovered its placement at the base of the Euphysa clade, but this 
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placement was poorly supported.  Its affiliation with Euphysa was surprising, given that 

members of this genus are some of the smallest polyps represented in Corymorphidae, 

being only 1-4 cm length (Norenburg and Morse 1983). This study also sampled 

Corymorpha intermedia, a taxon that recently was recovered as grouping with members 

of the genus Euphysa in molecular phylogenetic analyses (Cartwright and Nawrocki 

2010, Nawrocki and Cartwright in press). Fukaurahydra anthoformis, an Aplanulata 

taxon with a unique squat polyp possessing a widened, flat platform bearing gonophores, 

is classified as a corymorphid but has never before been sampled for phylogenetic 

analyses.  

 

Tubulariidae (approximately 60 valid species) (Daly, Brugler, Cartwright et al. 2007) is 

comprised of both solitary and colonial species (but see Nawrocki and Cartwright, 

accepted), with polyps sharing the general morphology of those of Corymorphidae, 

except that polyps are much smaller and have stalks covered with a hard exoskeleton 

(perisarc).  Phylogenetic studies using 16S rDNA were unable to recover this family as 

monophyletic (Collins, Winkelmann, Hadrys et al. 2005, Schuchert 2010). A more recent 

study with larger sampling of this family and two additional markers (18S and 28S) 

recovered a monophyletic Tubulariidae and suggested three well-supported lineages in 

the clade - an Ectopleura clade, a clade comprised of Hybocodon and Tubularia, and a 

clade comprised of Ralpharia and Zyzzyzus (Nawrocki and Cartwright in press). Within 

the Ectopleura clade, there are three distinct lineages, which lack clear morphological 

synapomorphies. The results of this study disagree with a former phylogenetic analysis 
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based on morphology alone, which suggested two major groupings of Ectopleura species 

based on the presence/absence of a medusa (Marques and Migotto 2001).  

 

Acaulidae is comprised of three genera and approximately 5 valid species (Daly, Brugler, 

Cartwright et al. 2007). All members of this family are solitary, and contain one set of 

tentacles surrounding the mouth, with scattered tentacles along the body column, and 

with or without an additional whorl of fleshy filiform tentacles at the base of the polyp 

(Petersen 1990, Bouillon et al. 2006). Gonophores form between the tentacles on the 

body of the polyp (Schuchert 2006, Bouillon et al. 2006). This family may (Cairns et al. 

2003) or may not (Yamada and Kubota 1991, Bouillon et al. 2006) include the solitary 

species Hataia parva (Hirai and Yamada 1965). 

 

Margelopsidae (three genera and approximately 5 valid species) (Daly, Brugler, 

Cartwright et al. 2007)  is a family comprised exclusively of pelagic members. Species 

belonging to this family resemble polyp hydranths, except that they lack a hydrocaulus 

underneath the hydranth. Instead, individuals float freely in the ocean. Members of this 

family are known to encyst (Kubota 1993), but Petersen grouped this family with 

Paracorynidae and Tubulariidae based on the length of oral and aboral tentacles, as well 

as the shape of the hydranth (Petersen 1990). 

 

Two putative Aplanulata families (Collins 2006) are not sampled in this study. 

Tricyclusidae is a monotypic family containing the single species Tricyclusa singularis 

Schulze 1876. This species is a solitary polyp with two whorls of tentacles with slightly 
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capitate ends (Schulze 1876, Schuchert 2006). Gonophores form between the two sets of 

tentacles, and below the aboral tentacles (Figure 1).  Petersen (1990) affiliated this family 

with Acaulidae and Corymorphidae, based on the gelatinous perisarc and encystment that 

members of these families all possess. Paracorynidae is another monotypic family 

containing the species Paracoryne huvei Picard 1957 (Figure 1).  Paracoryne huvei is 

described as a polymorphic colony, containing gastrozooids, gonozooids and 

dactylozooids (Picard 1957). However, it has recently been suggested that the colony is 

actually a flattened tubulariid hydranth (head) (Bouillon 1974, Bouillon 1975). Evidence 

for this lies in the morphology of the basal plate of the colony, which contains 

endodermal cavities and a large layer of parenchymatic tissue, similar to what is found in 

tubulariid heads (Bouillon 1974, Bouillon 1975). If this is the case, then dactlyozooids 

are in actuality the tentacles of the hydranth, gonozooids are the blastostyles carrying 

gonophores, and gastrozooids are duplicated hypostomes (Petersen 1990). Neither of 

these families has ever been sampled for molecular phylogenetic analyses. 

  

Relationships between the component families of Aplanulata are also not well 

understood. Petersen (1990) provided a phylogenetic hypothesis based on morphological 

data for six of the major families (Figure 1), with the exclusion of Hydridae, which he 

hypothesized to belong to a different hydrozoan lineage. Petersen split Aplanulata into 

two major clades based on developmental mode - one major lineage for families whose 

members encyst (Tricyclusidae, Acaulidae and Corymorphidae) and one for members 

who develop directly into an actinulae, which are juvenile polyps (Tubulariidae, 

Paracorynidae, Margelopsidae and Candelabridae) (Petersen 1990). However, subsequent 
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phylogenetic analyses reveal that this division is likely not reflective of the clade's 

evolutionary history, and that Tubulariidae is more closely related to Corymorphidae than 

to Candelabridae (Figure 1) (Collins, Schuchert, Marques et al. 2006, Collins, 

Winkelmann, Hadrys et al. 2005, Cartwright and Nawrocki 2010, Nawrocki and 

Cartwright in press). This aligns Corymorphidae and Tubulariidae into a clade more or 

less consistent with Bouillon's Tubularioidea (Bouillon 1985) by the presence of two 

whorls of tentacles (Collins, Schuchert, Marques et al. 2006, Collins, Winkelmann, 

Hadrys et al. 2005, Nawrocki and Cartwright in press, Cartwright and Nawrocki 2010), 

Bouillon also included in Tubularioidea some families that we did not sample here 

(Margelopsidae and Paracorynidae), and one that is known to group outside of 

Aplanulata (Nawrocki et al. 2010). Here we use Tubularioidea to reflect the grouping of 

taxa with two distinct sets of tentacles (here Corymorphidae + Tubulariidae). 

Furthermore, a phylogenetic analysis with mitochondrial 16S data places Candelabridae 

and Hydridae as sister taxa (Collins, Winkelmann, Hadrys et al. 2005), which would 

unite them by their extensile bodies. In contrast, other studies incorporating nuclear18S 

and/or 28S rDNA have suggested that Candelabridae might instead be a separate early 

diverging lineage of Aplanulata, with Hydridae being sister to Corymorphidae + 

Tubulariidae (Collins, Schuchert, Marques et al. 2006, Cartwright and Nawrocki 2010, 

Nawrocki and Cartwright in press). This latter hypothesis would unite Hydridae, 

Corymorphidae and Tubulariidae by the presence of oral tentacles organized in a whorl 

(Figure 1).  
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Here, we provide the most complete sampling of 39 Aplanulata taxa, comprising 

members of six out of the eight described families,  with four markers – and new, 

previously unsampled taxa  including the monotypic Fukaurahydra anthoformis, in an 

effort to provide support for the major lineages of Aplanulata and better understand the 

phylogenetic placement of Hydra. We compare our modern understanding of the 

evolution of characters in the clade to historical concepts of the evolution of the group, 

and demonstrate that reproductive characters that have been previously overlooked are 

likely important to understanding the evolution of this lineage. Based on these 

reproductive and morphological characters, we hypothesize a placement for four 

unsampled or under-sampled Aplanulata families. Lastly, we offer new taxonomic 

classifications for two species of Aplanualta, Corymorpha intermedia and 

Fukauarahydra anthoformis, based on their recovered phylogenetic placement in our 

analyses, as well as a re-examination of their morphology. 
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METHODS 

DNA isolation and sequencing 

Fresh, ethanol-preserved, or RNALater-preserved tissue was extracted using the Qiagen 

DNeasy tissue kit following manufacturer's instructions (Qiagen, Inc., Mississauga, ON, 

Canada), or using a standard phenol-chloroform protocol (available on request). A 640 

base pair fragment of the mitochondrial 16S, 651 base pair fragment of the mitochondrial 

cytochrome oxidase 1 (CO1), 1800 base pair fragment of the nuclear 18S (small 

ribosomal subunit, SSU), and 3201 base pair fragment of the nuclear 28S (large 

ribosomal subunit, LSU) markers were amplified as previously described (Cartwright, 

Evans, Dunn et al. 2008, Cunningham and Buss 1993, Dawson 2005, Evans, Lindner, 

Raikova et al. 2008, Folmer, Black, Hoeh et al. 1994). PCR product was purified and 

sequenced directly by the University of Washington High Throughput Sequencing Unit 

(Seattle, WA, USA), or were retrieved from Genbank. Contig assembly and sequence 

editing were conducted in Sequencher v4.9 (GeneCodes 2005). Concatenation and matrix 

editing was conducted in Mesquite v2.74 (Maddison and Maddison 2007). All new 

sequences generated for this study were deposited in Genbank (Table 1).  

 

Sequence alignment and phylogenetic analyses 

The DNA alignment for cytochrome oxidae 1 (CO1) was generated in the program 

Translator X (Abascal, Zardoya and Telford 2010), which uses the translated protein code 

to guide the generation of a nucleotide alignment. Program settings were default, except 

that we used a 'coelenterate-specific' mitochondrial genetic code, MUSCLE for alignment 

, and inferred the most likely reading frame based on the aligned data. The final 
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alignment was end-trimmed to remove characters missing from more than half of the 

sampled taxa. 

 

DNA alignments for 16S, 18S and 28S were generated with MUSCLE (Edgar 2004a, b), 

and were subsequently adjusted by hand based on developed secondary structure models 

for Hydridae (16S) following (Nawrocki and Cartwright in press), or models for Cnidaria 

(18S and 28S) (M. S. Barbeitos, personal communication). Alignments were run through 

GBlocks v0.91b (Castresana 2000) to remove ambiguously aligned regions using the 

following settings: minimum block length = 5; gaps = with half. The final alignments 

were end-trimmed to remove characters missing in more than half of the aligned taxa.  

Analyses of partial datasets employing the doublet model, that incorporates information 

of secondary structure, did not show significant improvement in topology (not shown); 

thus, we applied a general time reversible model (GTRGamma) to all alignments used in 

this analysis. An additional proportion of invariant sites was not used, as the lowest rate 

category of the gamma distribution that accounts for rate heterogeneity in the 

GTRGamma model includes sites that are close to invariant (Ren, Tanaka and Yang 

2005).  

 

Analyses were run in the parallel version of RaxML v7.2.8  (Stamatakis 2006) for all 

markers. For CO1, a GTRGamma model was applied to three different data partitions 

determined by codon position. For the concatenated analysis, the data was split into data 

partitions by marker and by codon position (CO1 only), accounting for a total of 6 

partitions in the combined analysis. 1000 bootstrap replicates were generated for each 
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analysis, including the concatenated analysis. Trees were visualized in Mesquite v2.75 

(Maddison and Maddison 2007) and FigTree (Drummond and Rambaut 2007).  
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RESULTS 

3.3 Taxon sampling, alignment and analyses 

Sixty-five sequences were included in the 16S analysis, and a total of 508bp, or 79% of 

the amplified 16S, were retained after removal of ambiguously aligned region in GBlocks 

(Castresana 2000). For 18S, 51 sequences were included in the analysis and a total of 

1398bp, or 86% of the amplified fragment were retained after GBlocks. For 28S, 51 

sequences were included in the analysis and a total of 3072bp, or 86% of the amplified 

fragment, were retained after GBlocks. Forty-three CO1 sequences were included in this 

analysis and the entire amplified CO1 (645bp with ends trimmed) was analyzed. For the 

combined analysis, all taxa with at least three sequenced markers were included in the 

final combined analysis, for a total of 51 taxa and 5623 alignment positions. This study 

contributed 34 new DNA sequences (including a new marker, CO1), and sampled 56 

species, including 39 Aplanulata species from 14 genera representing 5 out of the 8 

families in the clade. Species identifications, Genbank IDs, voucher numbers, and 

specimen localities are reported in Table 1.  

 

Relative contribution of markers to topology 

A comparison of node support between markers (Figure 2) demonstrates that 28S 

accounts for the most well-supported clades (66% of the nodes with bs >70), with 16S 

supporting 45%, 18s supporting 34%, and CO1 supporting only 5% of nodes. In general, 

the mitochondrial markers (16S and CO1) recover some relationships at the tips of the 

trees and within Hydridae, but little support for deeper relationships, while 18S recovers 

some lower-level relationships and no deep nodes, and 28S provides the most resolution  
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Table 1: Specimens and associated Genbank accession numbers. Names of specimens 
included in combined analysis are bolded. Genbank accession numbers for new 
sequences generated for this study will be bolded.  

Higher Level  Family  Species  28s 18s  16s  CO1 

Voucher or 
Published 
Reference 
Sequence 

Aplanulata  Candelabridae  
Candelabrum 
austrogeorgiae 

-  -  FN424120  - 
Cantero et al. 
(2010)  

Aplanulata  Candelabridae  
Candelabrum 
cocksii  

EU879928  EU876556  AY512520  GU812438 MHNGINVE29591  

Aplanulata  Candelabridae  Candelabrum sp.  EU879929  EU876557  EU876530  
awaiting 
GBID 

- 

Aplanulata  Corymorphidae  
Branchiocerianthus 
imperator 

JN594035 JN594046 - 
awaiting 
GBID 

- 

Aplanulata  Corymorphidae  
Corymorpha 
bigelowi  

EU272563  EU876564  EU448099  
awaiting 
GBID 

KUNHM2829  

Aplanulata  Corymorphidae  
Corymorpha 
glacialis  

JN594036 JN594047 FN687549  
awaiting 
GBID 

MHNGINVE67050  

Aplanulata  Corymorphidae  
Corymorpha 
groenlandica  

JN594037 JN594048 FN687551  - MHNGINVE67051  

Aplanulata  Corymorphidae  
Corymorpha 
groenlandica  

-  -  FN687550  - MHNGINVE63302  

Aplanulata  Corymorphidae  
Corymorpha 
intermedia  

EU879930  AY920759  FN687910 GU812436 

Collins et al. 
(2006),  
Schuchert (2010) 

Aplanulata  Corymorphidae  
Corymorpha 
nutans  

EU879931  EU876558  FN687546  
awaiting 
GBID 

MHNGINVE48745  

Aplanulata  Corymorphidae  Corymorpha nutans  -  -  FN687549  - MHNGINVE67050  

Aplanulata  Corymorphidae  Corymorpha nutans  -  -  FN687548  - Schuchert (2010)  

Aplanulata  Corymorphidae  Corymorpha nutans  -  -  FN687547  - Schuchert (2010) 

Aplanulata  Corymorphidae  
Corymorpha 
pendula  

EU879936  EU876565  EU876538  
awaiting 
GBID 

KUNHMDIZ2962  

Aplanulata  Corymorphidae  Corymorpha sarsii  JN594038 JN594049 -  
awaiting 
GBID 

- 

Aplanulata  Corymorphidae  Corymorpha sp.  -  -  FN424121  - 
Cantero et al. 
(2010)  

Aplanulata  Corymorphidae  Hataia parva  JN594034 JN594045 JN594033 
awaiting 
GBID 

UF5407  

Aplanulata  Corymorphidae  Euphysa aurata  EU879934  EU876562  EU876536  
awaiting 
GBID 

MHNGINVE48753  

Aplanulata  Corymorphidae  Euphysa aurata  -  -  FN687552  - Schuchert (2010)  

Aplanulata Corymorphidae Euphysa flammea    FJ602537  

Aplanulata  Corymorphidae  Euphysa japonica  
awaiting 
GBID 

EU301605  
awaiting 
GBID 

awaiting 
GBID 

Lindsay, D.J. et al. 
(2008)  

Aplanulata  Corymorphidae  
Euphysa 
tentaculata  

EU879935  EU876563  EU876537  
awaiting 
GBID 

Cartwright & 
Nawrocki (2010)  

Aplanulata Corymorphidae 
Fukaurahydra 
anthiformis 

awaiting 
GBID 

awaiting 
GBID 

awaiting 
GBID 

  

Aplanulata Corymorphidae Paragotea bathybia    FJ602533  

Aplanulata  Hydridae  Hydra canadensis  JN594039 JN594050 GU722797  GU722883 
Martinez et al. 
(2010)  

Aplanulata  Hydridae  Hydra circumcincta  EU879939  EU876568  GU722764  GU722857 

Cartwright & 
Nawrocki (2010) , 
Martinez et al. 
(2010) 

Aplanulata  Hydridae  Hydra hymanae  JN594040 JN594051 GU722760  GU722849 
Martinez et al. 
(2010)  

Aplanulata  Hydridae  Hydra oligactis  JN594041 JN594052 GU722781  GU722871 
Martinez et al. 
(2010)  

Aplanulata  Hydridae  Hydra utahensis  JN594042 JN594053 GU722774  GU722861 
Martinez et al. 
(2010)  

Aplanulata  Hydridae  Hydra viridissima EU879940 EU876569  GU722756  GU722845 
Martinez et al. 
(2010)  
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Aplanulata  Hydridae  Hydra vulgaris  JN594043 JN594054 GU722817  GU722914 
Martinez et al. 
(2010) 

Aplanulata  Tubulariidae  Ectopleura crocea  EU879932  EU876559  EU876533  
awaiting 
GBID 

MHNGINVE34010  

Aplanulata  Tubulariidae  Ectopleura crocea  EU883554  EU883548  EU883543  - 
Cartwright & 
Nawrocki (2010)  

Aplanulata  Tubulariidae  
Ectopleura 
dumorteri  

-  -  FN687542  - Schuchert (2010)  

Aplanulata  Tubulariidae  
Ectopleura 
dumortieri  

EU272561  EU876560  EU305474  - 
Pers. Voucher: 
Alberto Lindner, 
AL525  

Aplanulata  Tubulariidae  
Ectopleura 
dumortieri  

EU879933  EU876561  EU876534  
awaiting 
GBID 

Cartwright & 
Nawrocki (2010)  

Aplanulata  Tubulariidae  
Ectopleura 
dumortieri  

-  -  FN687543  - Schuchert (2010)  

Aplanulata  Tubulariidae  Ectopleura larynx  EU879943  EU876572  EU876545  - KUNHMDIZ2963  

Aplanulata  Tubulariidae  Ectopleura larynx  EU883549  AY920760  AY787877  
awaiting 
GBID 

MHNGINVE29389  

Aplanulata  Tubulariidae  Ectopleura larynx  -  -  FN687535  - MHNGINVE54563  

Aplanulata  Tubulariidae  Ectopleura larynx  -  -  FN687536  - MHNGINVE62576  

Aplanulata  Tubulariidae  Ectopleura marina  EU883553  EU883547  EU883542  
awaiting 
GBID 

Cartwright & 
Nawrocki (2010)  

Aplanulata  Tubulariidae  Ectopleura wrighti  JN594044 JN594055 FN687541  
awaiting 
GBID 

MHNGINVE27331  

Aplanulata  Tubulariidae  
Hybocodon 
chilensis  

EU879937  EU876566  EU876539  
awaiting 
GBID 

MHNGINVE36023  

Aplanulata  Tubulariidae  Hybocodon prolifer  EU879938  EU876567  EU876540  
awaiting 
GBID 

Cartwright & 
Nawrocki (2010)  

Aplanulata  Tubulariidae  
Ralpharia 
gorgoniae  

EU272590  EU272633  EU305482  GU812437 KUNHM2778  

Aplanulata  Tubulariidae  Ralpharia sp.  -  JN594056 -  -  

Aplanulata  Tubulariidae  Tubularia indivisa  EU879942  EU876571  EU876544  
awaiting 
GBID 

Cartwright & 
Nawrocki (2010)  

Aplanulata  Tubulariidae  Tubularia indivisa  -  -  FN687532  - Schuchert (2010)  

Aplanulata  Tubulariidae  Tubularia indivisa  -  -  FN687530  - MHNGINVE60972  

Aplanulata  Tubulariidae  Tubularia sp.  -  -  FN424153  - 
Cantero et al. 
(2010)  

Aplanulata  Tubulariidae  Zyzzyzus warreni  EU272599  EU272640  EU305489  
awaiting 
GBID  

KUNHM2777  

Capitata  Corynidae  
Stauridiosarsia 
ophiogaster  

EU272560  EU272615  EU305473  
awaiting 
GBID 

KUNHM2803  

Capitata  Solanderiidae  Solandaria secunda  EU305533  EU305502  EU305484  
awaiting 
GBID 

KUNHM2611  

Filifera I  Proboscidactylidae 
Proboscidactyla 
flavicirrata  

EU305527  EU305500  EU305480  
awaiting 
GBID 

USNM1074994  

Filifera I  Ptilocodiidae  
Hydrichthella 
epigorgia  

EU272569  EU272622  EU305478  
awaiting 
GBID 

KUNHM2665  

Filifera II Eudendriidae 
Eudendrium 
capillare 

   
awaiting 
GBID 

 

Filifera II  Eudendriidae  
Eudendrium 
californicum  

EU305513  EU305492  EU305475  - KUNHM2850  

Filifera II  Eudendriidae  
Eudendrium 
glomeratum  

FJ550440  FJ550583  AM991301  - MHNGINVE49717  

Filifera III  Hydractiniidae  
Clavactinia 
gallensis  

EU272553  EU272610  EU448101  - MHNGINVE33470  

Filifera III  Stylasteridae  
Lepidopora 
microstylus  

EU272572  EU272644  EU645329  
awaiting 
GBID 

USNM1027724  

Filifera IV  Bougainvillisae  Garveia grisea  EU272588  EU272632  AM183131  - MHNGINVE34436  

Filifera IV  Pandeidae  Hydrichthys boycei  EU272570  EU305496  EU448102  
awaiting 
GBID 

MHNGINVE37417  

Leptothecata  Campanulariidae Obelia bidentata  FJ550446  AY789754*  AY789815*  - MHNGINVE37294  

Leptothecata  Sertulariidae  
Sertularella 
mediterranea  

FJ550403  FJ550546  FJ550479  
awaiting 
GBID 

MHNGINVE32948  

Limnomedusae Olindiasidae  
Olindias 
phosphorica  

EU247808  AY920753  AY512509  
awaiting 
GBID 

MHNGINVE29811  

Siphonophorae Clausophyidae  Clausophyes ovata  EU305508  AY937336  AY935294  awaiting YPM35349  
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GBID 

Siphonophorae Forskaliidae  Forskalia edwardsi  EU305516  AY937354  AY935312  
awaiting 
GBID 

YPM35036  

Trachymedusae Rhopalonematidae Aglaura hemistoma  EU247803  EU247818  EU293984  - MHNGINVE31745 

 
 

throughout the entire tree. The combined analysis recovers 88% of nodes with a bs > 70.  

Additionally, with the combined analysis, we recover strong support for the monophyly 

of Aplanulata (bs = 100), strong support for a sister relationship between Hydridae and 

Tubularioidea , and strong support for most of the deep nodes in the phylogeny. Thus, we 

consider the combined analysis our most robust hypothesis of relationships of Aplanulata 

taxa. 
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Figure 2. Cladogram of relationships based on combined CO1, 16S, 18S and 28S, with 
nodes demonstrating boostrap support for topology based on single-gene analyses. Node 
values  are displayed if they are  70. Darkened circles on nodes indicate bootstrap values 

 70 on combined, partitioned analysis in RaxML. X indicates that one of the sampled 
taxa was not in the analysis, thus the node did not exist. 
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Phylogenetic relationships of Aplanulata 

CO1, 16S, 18S, 28S and combined analyses recover largely congruent topologies  (see 

Supplementary Information for single-gene analyses). Aplanulata is monophyletic in all 

analyses, although only the combined analysis shows strong support for the node (Figures 

2-3; bs = 100). All analyses recover a monophyletic Hydridae, and our topology within 

Hydra is completely congruent with a recently published paper with much denser 

sampling of the family (Martinez, Iniguez, Percell et al. 2010).  

 

Within Tubulariidae, the combined analysis recovers a monophyletic Ectopleura (also 

supported by 28S), a Tubularia + Hybocodon clade (but recovered with low support in all 

analyses), and a Ralpharia + Zyzzyzus clade (also supported by 18S and 28S). 

 

Corymorphidae is polyphyletic in all of the analyses that we conducted. Corymorpha 

groenlandica, an unidentified Corymorpha species from Cantero et al. 2010 (Cantero, 

Sentandreu and Latorre 2010) (in 16S analyses only), and Hataia parva (supported by 

28S and combined analyses) form a clade sister to Candelabridae. Most of the sampled 

Corymorpha species, including the type species, Corymorpha nutans, and all of the 

sampled Euphysa species, including the type species Euphysa aurata (supported by 28S 

and combined analyses) fall into a well-supported clade that is sister to Tubulariidae. 

Within this clade there is a split between members of the genus Euphysa + Corymorpha 

intermedia and a second group comprised of Corymorpha species (C. bigelowi, C. 

glacialis, C. nutans, C. sarsii, C. pendula) and Fukaurahydra anthoformis (Figures 2-3). 

We recover the corymorphid Branchiocerianthus imperator at the base of Tubularioidia 
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(Tubulariidae + most other Corymorphidae) with good support in the 28S and combined 

analyses (Figures 2-3). 
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Figure 3. Phylogenetic hypothesis of relationships of Aplanulata based on combined 
CO1, 16S, 18S and 28S analyzed under a partitioned GTR +  model in RaxML. 
Bootstrap values reported if  70, Node values indicate bootstrap support from 1000 
replicates. See Appendix for single gene analyses. 
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DISCUSSION 

Relative contribution of CO1, 16S, 18S and 28S to topology 

Our results suggest that faster evolving mitochondrial markers 16S and CO1 provide 

support at the tips of the tree, whereas ribosomal markers such as 28S provide stronger 

overall support at deep nodes. These are congruent with previous phylogenetic analyses 

utilizing CO1 or 16S (Collins, Winkelmann, Hadrys et al. 2005, Schuchert 2010, 

Nawrocki, Cartwright and Schuchert 2010, Ortman, Bucklin, Pagès et al. 2010), and 

others utilizing nuclear ribosomal markers (Collins, Schuchert, Marques et al. 2006, 

Cartwright and Nawrocki 2010, Cartwright, Evans, Dunn et al. 2008, Nawrocki, 

Cartwright and Schuchert 2010).  As the combined analysis recovers the most well-

supported nodes (94% of the nodes), we consider the recovered topology from the 

combined analysis as the strongest hypothesis of relationships of component Aplanulata 

taxa. 

 

Major Aplanulata lineages 

Our combined topology supports an early-diverging lineage comprised of Candelabridae 

and the corymorphids Corymorpha groenlandica + Hataia parva. We recover the clade 

Tubularioidea  sensu lato, which includes Corymorphidae (with the exclusion of 

Corymorpha groenlandica and Hataia parva) and a monophyletic Tubulariidae. The 

corymorphid, Branchiocerianthus imperator is recovered as the earliest diverging branch 

of Tubularioidea. Tubularioidea  is recovered as sister to Hydridae, with strong support in 

the combined analysis.  
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Relationships within Hydridae 

The monophyly of Hydridae is well supported by ours and previous studies (Hemmrich, 

Anokhin, Zacharias et al. 2007, Martinez, Iniguez, Percell et al. 2010, Nawrocki and 

Cartwright in press, Cartwright and Nawrocki 2010), and members of Hydridae are 

united by the strong synapomorphies of their freshwater habitat and by the development 

of ovaries and testes directly in the epithelia of the polyp. Our combined analysis 

supports splitting Hydridae into three major lineages (the Viridis group, the Braueri 

group, and a third clade comprised of H. oligactis, H. canadensis, and H. vulgaris), 

which is congruent with a recent study with much denser sampling of Hydridae 

(Martinez, Iniguez, Percell et al. 2010). Two of the major lineages of Hydridae that we 

recover have strong morphological synapomorphies. The Hydra viridis clade (represented 

in our analysis by only a single specimen) is united by both its distinctive green color 

(due to the presence of intracellular algae) as well as the presence of an embryotheca with 

a cobbled surface, and the Braueri group has a flattened embryotheca and holotrichous 

isorhiza nematocysts (Martinez, Iniguez, Percell et al. 2010). The oligactis-canadensis-

vulgaris clade is united by the presence of very long tentacles (longer than the length of 

the body of the animal) (Schuchert 2010, Hyman 1931). 

 

Relationships within Tubulariidae 

Tubulariidae is united by the combination of a presence of a thick skeletal covering 

(perisarc) over the polyp, direct development through a brooded actinula phase, and 

unbranched blastostyles (structures housing developing gonophores). Members of this 

family also have a hydrocaulus (region below the polyp head) that is clearly divided into 
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two distinct regions - the neck, which serves as a boundary for the polyp and stalk 

(Nawrocki and Cartwright in press), and a stalk region. 28S and combined analyses 

recover a monophyletic Tubulariidae, congruent with previous analyses (Figures 2-3) 

(Nawrocki and Cartwright in press, Cartwright and Nawrocki 2010). As in a previous 

study (Nawrocki and Cartwright in press), we find support for two major groups within 

the family, with a third grouping only receiving low support. The earliest diverging group 

(recovered in 16S CO1 and combined analyses, but poorly supported) is comprised of the 

genera Tubularia and Hybocodon, which both contain solitary species with long, 

unbranched stalks covered in a hard, rigid perisarc. Members of this clade are often found 

in aggregates with  polyps often settling on one another, and have sometimes been 

mistaken for colonies (Nawrocki and Cartwright in press). These medusae have four 

tentacle bulbs along the margin of their bell, but a tentacle only develops from a single 

one of these bulbs, giving the gonophore the appearance of bilateral symmetry. This is 

also the only group of tubulariids that produce bilaterally symmetric gonophores (either 

attached or detached). 

 

The second clade of Tubulariidae is Ralpharia gorgoniae + Zyzzyzus warreni. Both taxa 

live symbiotically with other invertebrate hosts, which  Zyzzyzus warreni, imbedded in a 

sponge, and Ralpharia gorgoniae imbedded in the body of a gorgonian coral. 

 

The last well-supported clade of Tubulariidae (28S and combined analyses) is comprised 

of all sampled members of Ectopleura. This group is united by possession of a single 

whorl of oral tentacles (Petersen 1990). Ectopleura wrighti is the earliest diverging 
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sampled member of the group, followed by two sister clades comprised of E. marina-E. 

larynx and E. crocea-E. dumortieri. We find no support for grouping medusa-bearing 

species of this clade into one lineage, and gonophore-bearing species into another, as 

suggested previously (Marques and Migotto 2001).  

 

Relationships within Corymorphidae 

Our analyses find Corymorphidae as polyphyletic and recover three separate  

corymorphid lineages, two of which fall unexpectedly outside of Corymorphidae sensu 

stricto. In all of our analyses that included it, Corymorpha groenlandica grouped at the 

base of Aplanulata with Hataia parva and/or Candelabridae (Figures 2-3). In the 16S 

analysis, we were able to include another unidentified Corymorpha species from 

Genbank, which also grouped with the Corymorpha groenlandica samples, but was 

slightly divergent in sequence (see Supplemental file). This specimen was sampled only 

for 16S and was collected in Antarctica off of the Antarctic Peninsula, and could be one 

of any number of unsampled Corymorpha species, or alternatively, a more divergent 

sample of Corymorpha groenlandica, since this species has a broad range (Schuchert 

2010, Svoboda and Stepanjants 2001). Hataia parva was originally classified as a 

Clavidae based on the scattering of tentacles along the body (Hirai and Yamada 1965). 

Later the development of Hataia parva was characterized, and authors noted its ability to 

encyst (Yamada and Kubota 1991), clearly affiliating it with one of a number of 

Aplanulata families that have this capability. Later authors placed this species within 

Acaulidae (Cairns et al. 2003) or Corymorphidae (Bouillon et al. 2006), although there 

do not appear to be any strong synapomorphies that group it with one of these families, to 
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the exclusion of the other. The placement of Corymorpha groenlandica + Hataia parva 

in our analyses with Candelabridae is not completely unexpected, given the gross 

similarity that Hataia parva polyps share with members of Candelabridae (scattered 

capitate tentacles along the body column). However, its placement should be viewed as 

preliminary. While it is possible that the Corymorpha groenlandica + Corymorpha sp. + 

Hataia parva lineage is a valid grouping separate from other corymorphids given the 

strong support in the 16S analysis, the confident retrieval of its higher level placement 

will require much denser sampling of Corymorphidae.  

 

Our results do not support the recent designation to a resurrected genus, Monocaulus, by 

Svoboda & Stepanjants (Svoboda and Stepanjants 2001) to includes C. groenlandica, C. 

glacialis and C. sarsii.  Svoboda & Stepanjants (2001) suggested that these corymorphid 

taxa which lack branched gonophores should be classified as the separate genus 

Monocaulus. This however is not universally recognized due to disagreement over the 

importance of branched blastostyles as a valid taxonomic character (Schuchert 2010, 

Boullion, Gravili, Pages et al. 2006), and our study, though preliminary with regard to the 

placement of C. groenlandica, does provides phylogenetic evidence that the grouping of 

these species is not valid. 

 

Phylogenetic placement of Branchiocerianthus imperator 

Branchiocerianthus imperator is a morphologically-distinct and large (2m tall) deep-sea 

hydrozoan classified within Corymorphidae (Schuchert 2010). A previous analysis was 

unable to find strong support for the placement of this taxon, and instead placed it with 
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weak support within Corymorphidae as sister to the genus Euphysa (Nawrocki and 

Cartwright in press). Our analysis, which added CO1 for this species, recovers B. 

imperator as sister to Tubularioidea  (Figure 3). We recover this relationship in the 28S 

analysis (bs = 88) and combined analysis (bs = 100), but not in the 18S or CO1 analyses 

(Figures 2-3). The placement of B. imperator outside of Corymorphidae is surprising, 

given the morphological synapomorphies this species shares with Corymorphidae (such 

as rooting filaments and a reduced perisarc). However, this species also possesses a 

number of unique morphological apomorphies, such as its large size (over 1m tall) and 

the striking bilateral symmetry of the polyp not found in any other hydrozoan group. In 

the interest of nomenclatural stability, we recommend keeping the current classification 

of B. imperator, pending further sampling of the genus, including its type species, 

Branchiocerianthus urceolus Mark, 1898. 

 

Phylogenetic placement of Fukaurahydra anthoformis 

Fukaurahydra anthoformis is a morphologically distinct corymorphid that is monotypic. 

This species' polyp stage has a short, squat body with a whorl of rooting filaments, in 

contrast to most corymorphid polyps, which have long bodies and a section at the base of 

the polyp with densely scattered rooting filaments. These morphological characteristics 

led to the erection of a new genus for the species (Yamada, Konno and Kubota 1977). 

Our analyses recover F. anthoformis as nested within the clade that includes most 

Corymorpha species (with the exception of C. groenlandica), and sister to the species C. 

pendula (combined analysis, bs = 69). All analyses that included F. anthoformis recover 

it as sister to Corymorpha pendula, but only the combined analysis provided some 
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support for this relationship. Regardless, F. anthoformis is unequivocally nested within a 

clade of Corymorpha species, suggesting that a separate generic designation is 

unnecessary and that this species is a member of the genus Corymorpha (see section 4.12 

Taxonomic Recommendations).  

 

Phylogenetic placement of Corymorpha intermedia 

Within Corymorphidae sensu stricto, there is strong support for two major clades. One of 

these clades includes all sampled Euphysa species, as well as the species Corymorpha 

intermedia. The the polyp stage of this species of C. intermedia is currently unknown and 

the medusa possesses characteristics of of both Corymorpha and Euphysa (see section 

4.12 below) and was classified preliminarily in Corymorpha (Schuchert 1996). Our 

analyses recover Corymorpha intermedia with Euphysa, and  thus we recommend 

redesignating this species as Euphysa intermedia (see section 4.12 Taxonomic 

Recommendations). Members of Euphysa are morphologically distinct from other 

corymorphid species, in that they are markedly smaller polyps, the stalk (hydrocaulus) 

lacks endoderm canals characteristic of other corymorphids, they possess of a single 

whorl of oral tentacles on the polyp, and the medusa lacks an apical canal or a peduncle 

(Petersen 1990, Boullion, Gravili, Pages et al. 2006).  

 

Phylogenetic placement of Paragotea bathybia 

We sampled Paragotea bathybia Kramp, 1942 (Kramp 1942) for our CO1 analysis using 

a sequence available on genbank. This species grouped, albeit with low support, with 

Euphysa.  This is an interesting result because athough Paragotea bathybia has been 
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traditionally classified within Corymorphidae (Boullion, Gravili, Pages et al. 2006, Pages 

and Bouillon 1997) Euphysa and Paragotea bathybia have medusae with a single 

tentacle, and their medusae also lack an apical canal.  The affiliation of Paragotea 

bathybia with Euphysa should be viewed as preliminary and awaits sampling of 

additional markers.  

 

Other Aplanulata taxa 

Phylogenetic placement of Margelopsis hartlaubi 

 Margelopsis hartlaubi Browne 1903 (Browne 1903) is a holopelagic species with 

a narrow distribution and is thus difficult to sample. This species closely resembles 

tubulariid polyps (two whorls of tentacles between which gonophores develop), except 

that it lacks a long stalk under the neck likely due to is pelagic existance (Figure 1) 

(Boullion, Gravili, Pages et al. 2006, Mayer 1910, Schuchert 2006). We were only able to 

sample M. hartlaubi using a CO1 sequence available on Genbank (Ortman, Bucklin, 

Pagès et al. 2010). Our CO1 analysis does not suggest affiliation with Tubulariidae or 

even Tubularioidia, as one would expect given the morphology of this species and instead 

we recover it as sister to the rest of Aplanulata.  However, we did not get strong support 

for this placement nor in the nodes separating Margelopsis from Tubularioidea  and thus 

this result should be viewed as preliminary.   Thus, placement of this species and the 

scope of the family Margelopsidae awaits future sampling with more DNA markers and 

specimens, including the type species, Margelopsis haeckelii Hartlaub, 1897. 

 

Phylogenetic placement of Hataia parva 
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Hataia parva Hirai and Yamada 1965 was originally classified within Claviidae, a clade 

of filiferan hydrozoans far removed from Aplanulata, based on its possession of scattered 

filiform tentacles (Hirai and Yamada 1965, Bouillon 1985). However, its solitary habitat 

and direct development through encystment clearly affiliate it with Aplanulata, likely 

allied to one of the families whose members undergo encystment (Margelopsidae, 

Acaulidae, or Corymorphidae). Recently, authors have suggested that it is affiliated with 

Corymorphidae (Boullion, Gravili, Pages et al. 2006), although there are no strong 

morphological synapomorphies to group it with this family.  Our examination of 

specimens of this species acquired from Friday Harbor Laboratories as well as 

photographs provided by Shin Kubota (pers. comm.) reveal that the most distal ends of 

scattered tentacles of Hataia parva are slightly rounded, lending them a capitate 

appearance. This characteristic, in combination with its possession of a pedal disc, 

reduced gonophores, encystment and reduction of perisarc, align this species 

morphologically with the family Acaulidae, whose members possess this combination of 

characteristics (Schuchert 2006). Some authors have recently classified Hataia parva in 

Acaulidae, although this classification is not universally accepted (Cairns et al. 2003). 

Although we did not sample any other Acaulidae species, our analysis instead supports 

Hataia parva as grouping with the corymorphid Corymorpha groenlandica along with 

another family of Aplanulata with scattered tentacles along the body column – 

Candelabridae.  At least one author has suggested that Acaulidae and Candelabridae are 

sister families (Bouillon 1985), and morphological characteristics strongly align these 

two families. Based on both molecular and morphological evidence, we suspect that 

Acaulidae taxa would fall within our recovered Corymorpha groenlandica + Hataia 
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parva clade. Clarification of the classification of Corymorpha groenlandica and Hataia 

parva and the phylogenetic affinity of these taxa to Acaulidae and Candelabridae awaits 

further sampling.  

 

Phylogenetic placement of unsampled Aplanulata families 

We were unable to sample other Aplanulata families for this analysis, including 

Paracorynidae and Tricyclusicae. Tricyclusidae has not been documented in the 

Mediterranean since it was first described in 1876, and has only rarely been reported in 

other localities (Schuchert 2006). Furthermore, we were unable to sample additional 

members of Acaulidae and Margelopsidae. All of these families include species that are 

rare and therefore difficult to sample for molecular analysis.  

 

The strong affiliation between Corymorphidae and Tubulariidae into the superfamily 

Tubularioidea  suggests that tentacle patterning may be an important evolutionary 

character for lineages in Aplanulata. Based on this character, we would hypothesize that 

members of Margelopsidae and Tricicyclusidae are affiliated with this superfamily (both 

possess tentacles organized in groups, or whorls), while Acaulidae is associated with 

Candelabridae (both possess scattered, capitate tentacles). Reproductive characters also 

appear to be evolutionarily important in this lineage and may lend insight into 

relationships. We also did not sample Paracorynidae, but a number of features including 

reproduction through encystment and lack of a brooded actinula affiliate it with the 

Corymorphidae or Hydridae. Additional sampling and future phylogenetic studies that 

integrate morphological and molecular data will assist in determining a robust hypothesis 
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for the phylogenetic placement of these divergent taxa, and will also likely reveal novel 

and interesting synapomorphies for evolutionary lineages within Aplanulata. 

 

Taxonomic recommendations 

Based on our results as well as a number of previous studies, we formally recommend the 

following changes to the taxonomy of Aplanulata and its component species, as 

compared to modern classifications reflected in Schuchert 2010 (Schuchert 2010, 2006) 

and Bouillon et al. 2006 (Boullion, Gravili, Pages et al. 2006). 

 

(a) Fukaurahydra anthoformis falls within the genus Corymorpha, and is herein 

redesignated as Corymorpha anthoformis. We propose the following new diagnoses for 

the genus Corymorpha and for the species Fukaurahydra anthoformis. 

Corymorpha M. Sars, 1835 
TYPE SPECIES: Corymorpha nutans M. Sars, 1835 by monotypy.  
 
DIAGNOSIS: Solitary hydroids with more or less vasiform hydranth and long caulus, or 
 with short, squat polyp with broad head. Hydranth with one or several closely 
 set whorls of 16 or more moniliform or filiform tentacles and one or more aboral 
 whorls of 16 or more long, non-contractile filiform tentacles. Gastrodermal 
 diaphragm parenchymatic. Hydrocaulus stout, covered by a thin perisarc, filled 
 with parenchymatic gastrodermis, with long peripheral canals; aboral end of 
 caulus with papillae turning more aborally into rooting filaments, rooting 
 filaments scattered or gathered in a whorl, rooting filaments composed of 
 epidermis and solid gastrodermis, sometimes tips with non-ciliated statocysts. 
 With or without asexual reproduction through constriction of tissue from aboral 
 end of  hydrocaulus. 
  Gonophores develop on blastostyles arranged in a whorl over aboral 
 tentacles. Gonophores remain either as fixed sporosacs, medusoids, or are 
 released as free medusae.  
  Medusa bell apex dome-shaped or pointed. Four marginal bulbs present, 
 lacking long exumbrellar spurs. With a single tentacle or three short tentacles and 
 one long tentacle that differs not merely in size, but also in structure. Manubrium 
 thin-walled, sausage-shaped with flared mouth rim, reaching to umbrella margin. 
 Cnidome comprises stenoteles, desmonemes, and haplonemes.  
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REMARKS: This diagnosis for the most part corresponds to Schuchert 2010 (Schuchert  
       2010) and  Petersen 1990 (Petersen 1990), but with modifications (indicated  
       in bold) to polyp body shape and arrangement of rooting filaments to include  
       Fukaurahydra (Corymorpha) anthoformis. Medusoids are also added to  
       diagnosis, as a number of species of Corymorpha produce these structures. 
 
Corymorpha anthoformis (Yamada, Konno & Kubota 1977)  
Fukaurahydra anthoformis Yamada, Konno & Kubota 1977: 151-154, fig. 1. 
 MATERIAL EXAMINED: Japan, exposed coast near Senkaku Bay, Sado Island  
        (Japan Sea); Collected by Dr. Yayoi M. Hirano on May 12, 2011. 6  
                   mature polyps. 
 DIAGNOSIS: Corymorpha polyp with short, squat hydrocaulus, completely filled  
         with parenchymatic endoderm. Base of polyp flat, with a ring of  
         rooting filaments. Hydranth broad, plate-like. Live specimens with  
         brightly-colored green, brown and red gonophores (see Figure 4. 
 DESCRIPTION: See Yamada et al. 1977 and Yamada and Kubota 1991. 
 

(b) The species Corymorpha intermedia groups with strong support within the genus 

Euphysa, and is herein redesignated as Euphysa intermedia. 

 

Euphysa Forbes, 1848 
TYPE SPECIES: Euphysa aurata Forbes, 1848 by monotypy 
 
DIAGNOSIS: Corymorphid hydroid with hydrocaulus enveloped in gelatinous perisarc, 
 covered by mud and detritus; hydrocaulus hollow, without peripheral longitudinal 
 canals. Hydranth cylindrical to ovoid, with rounded hypostome, with 3-10 oral 
 capitate tentacles and up to 20 aboral moniliform tentacles, no gastric diaphragm. 
 Near base of hydranth papillae, each with an ecto-endodermal, statocyst-like 
 structure. Gonophores singly or in clusters just above aboral tentacles, usually 
 released as free medusae, rarely remaining as fixed sporosacs. 
  Asexual reproduction through budding of polarity-reversed polyps from 
 the hydranth above aboral tentacles and through asexual bodies constricted off 
 from basal end of hydrocaulus. 
  Medusa with an evenly rounded umbrella, or rarely, a pointed umbrella 
 with thickened apical mesoglea. Umbrella without apical canal; with one to four 
 tentacles, if more than one then usually unequally developed, but all of the same 
 structure, usually moniliform; manubrium stout, cylindrical with small round 
 mouth, shorter than bell cavity. Phylogenetically, the least-inclusive clade 
 containing Euphysa intermedia, E. aurata, E. tentaculata, E. japonica, and E. 
 intermedia. 
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REMARKS: The diagnosis of Euphysa follows Schuchert 2010, except for modifications    
       made in bold to accommodate Corymorpha (Euphysa) intermedia. 
 
 
Euphysa intermedia (Schuchert 1996) 
Corymorpha intermedia Schuchert 1996: 104, fig. 62.  
 DIAGNOSIS: Euphysa medusa with apical process and a stout, cylindrical     
         manubrium that narrows into a small, round mouth. Apical mesoglea  
         thick. No apical canal or peduncle. Medusa with single moniliform  
         tentacle and three non-tentacular bulbs. 
 DESCRIPTION: See Schuchert 1996. 
 NOTES: The medusa of Euphysa intermedia strongly resembles that of Euphysa  
   aurata, with the exception of its possession of a thick, apical mesoglea  
   and apical process. 
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Figure 4. Live specimen of Corymorpha (formerly Fukaurahydra) anthoformis. Photo 
taken by Y.M. Hirano. 
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CHAPTER 3: Colony formation in Ectopleura (Hydrozoa: Aplanualta) occurs 

through the fusion of sexually-generated individuals 
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ABSTRACT/INTRODUCTION 

Coloniality, as displayed by most hydrozoans, is thought to confer a size advantage in 

substrate-limited, benthic marine environments, and affects nearly every aspect of a 

species’ ecology and evolution (Coates and Jackson 1985, Jackson 1977).  Hydrozoan 

colonies normally develop through asexual budding of polyps that remain interconnected 

by continuous epithelia and gastrovascular cavity. The clade Aplanulata is unique in that 

it comprises mostly solitary species, including the model organism Hydra, with only a 

few colonial species (Schuchert 2006, Schuchert 2010). We reconstruct a multi-gene 

phylogeny to trace the evolution of coloniality in Aplanulata, which reveals that the 

ancestor of Aplanulata was solitary, and that coloniality was regained in the genus 

Ectopleura.  Our examination of Ectopleura larynx development reveals a unique type of 

colony formation that has never before been described in Hydrozoa in that Ectopleura 

larynx colonies form through sexual reproduction followed by epithelial fusion of 

offspring polyps to adult colonies.  We characterize the expression of the paired-like 

homeobox gene manacle, which is known to be involved in foot development in Hydra 

(Bridge, Stover and Steele 2000), to determine polyp-colony boundaries. Our results 

suggest that stalks beneath the neck do not have polyp identity and instead are specialized 

structures that interconnect polyps.  The ability to fuse epithelia, brooding behavior, and 

the presence of a skeleton, were all key factors behind the evolution of this novel 

pathway to coloniality in Ectopleura.
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RESULTS AND DISCUSSION 

Coloniality is a prominent feature of most hydrozoan life cycles, and the emergence of 

colonialty represents a key event in their evolutionary history (Cartwright and Nawrocki 

2010). Hydrozoan colonies consist of asexually generated polyps that remain 

interconnected through continuous epithelia and a gastrovascular cavity. A typical 

hydrozoan life cycle consists of a free-swimming or crawling planula larva that 

metamorphoses into a benthic primary polyp.  The primary polyp generates tube-like 

epithelial structures (stolons) from its base. Stolons grow and eventually bud new polyps 

and stolons.  A chitinous exoskeleton called a perisarc is often secreted around the 

stolons.  Upon maturity, polyps either bud medusae that disperse in the water column and 

release gametes, or produce gonophores, which are reproductive structures that remain 

attached to the polyp through sexual maturity. 

 

The clade Aplanulata is unique in that most species are solitary, comprising a single 

polyp. However, a few species within the genus Ectopleura, display a colonial 

organization. Ectopleura colonies, depending on the species, are either small (only a few 

interconnected polyps) or large (hundreds of interconnected polyps on long, branched 

stalks) (Petersen 1979, Petersen 1990)  (Figure 1A). Other instances of coloniality are 

reported within Aplanulata, but these do not achieve the size or level of integration of 

Ectopleura colonies, as these other 'colonies' are either loose aggregates that do not share 

gastrovascular tissues (Schuchert 2006, Petersen 1990, Stepanjants, Svoboda and 

Anokhin 2002, Galea 2006, Hughes 1983), or polyp buds that remain attached due to the 

presence of a soft substratum (Brinkmann-voss and Lindner 2008). 
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Figure 1: The Aplanulata species Ectopleura larynx forms large, dense colonies 
consisting of hundreds of interconnected polyps. (A) A colony of Ectopleura larynx 
illustrating a network of stalks connecting individual polyps. (B) A close-up of a gravid 
female E. larynx polyp with actinulae (juveniles) emerging from gonophores. (C) Early-
stage E. larynx embryo dissected from gonophore. (D) Actinula with developed aboral 
tentacles and mouth. 
 



73

Coloniality re-evolved in the genus Ectopleura 

Phylogenetic analyses comprising three molecular markers (16S, 18S and 28s), in 

conjunction with ancestral character state reconstructions, indicate that the ancestor of 

Aplanulata was solitary and coloniality re-evolved in the genus Ectopleura (Figure 2, 

S1). Our recovered topology is largely congruent with previous studies that had smaller 

taxonomic sampling of Aplanulata (Collins, Winkelman, Hadrys and Schierwater 2005, 

Cartwright, et al. 2008, Cartwright and Nawrocki 2010). 

 

Re-evolved Ectopleura colonies are chimeras 

The Aplanulata species Ectopleura larynx Ellis & Solander 1786 produces large 

branched colonies (Figure 1) (Ellis and Solander 1786). Its life cycle lacks a medusa and 

individuals instead produce gametes within gonophores that remain attached to the polyp 

body (Figure 1). Colonies are generally comprised of a single sex, and male colonies 

release sperm and fertilize a neighboring female colony.  E. larynx, like many other 

species of  
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Figure 2. Phylogenetic reconstruction of Aplanulata relationships based on 16S, 18S and 
28S and run under a GTR + gamma + doublet (model 16) model (RaxML) . Black circles 
at nodes indicate bootstrap values greater than 70%, calculated from 1000 replicates in 
RaxML. Ancestral character state reconstruction demonstrates that coloniality re-evolved 
in this clade. See also figure S1-S5. 
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Aplanulata, lacks a planula larva and instead broods its developing young within 

gonophores.  Embryos develop directly into actinulae (juvenile polyps) within 

gonophores (Figure 1B,C). Each female releases hundreds of actinulae per reproductive 

cycle. Actinulae settle on a suitable substrate, elongate, and secrete perisarc over their 

stalks (Berrill 1952). There are reports that some Ectopleura spp. colonies can be 

hermaphroditic (Berrill 1952). It has also been observed and that actinulae can sometimes 

settle on parent colonies (Schuchert 2010, Petersen 1990). However, little is known about 

the ontogeny of Ectopleura colonies or the fate of polyps that settle on adults. 

 

Colonies are traditionally defined as being composed of genetically identical zooids that 

develop asexually (Beklemishev 1969, Jackson, Buss and Cook 1985). Our observations 

suggest that E. larynx colonies form in a completely novel manner that does not involve 

asexual budding. Released actinulae exhibit two different settlement behaviors. In the lab, 

we observed that following settlement on a hard substrate, actinulae form a few branched 

stolons at their base (no more than four).  New polyp heads can form at the tips of these 

stolons. We never observed these small, four-polyp colonies to subsequently bud new 

stolons or polyps. In the lab and in the field, we also observed that actinulae settle on the 

parent colony (Figure 3A).  Following settlement, the perisarc of the parent dissolves at 

the point of attachment, and the juvenile epithelia and perisarc fuse with those of the 

parent (Figure 3B,C). The end product of these fusion events is a chimeric colony that 

possesses features identical to integrated, asexually-formed hydrozoan colonies: an array 

of polyps interconnected by a continuous epithelia, perisarc, and gastrovascular cavity.  
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Chimerism leaves constituents vulnerable to cell-lineage competition, where the cell 

lineage of one individual of the colony overcomes another that is genetically distinct 

(Buss 1982, Buss 1987, Buss 1990, Hughes 2002). In chimeric colonies of the ascidian 

Botryllus schlosseri the germline of one  
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Figure 3: Juvenile polyps settle on the parent, and juvenile and parental tissues fuse. (A) 
Juvenile polyp settled on a parent stalk. (B-C) Histological sections demonstrating that 
following settlement, juvenile polyps fuse with parental polyps. (B) Newly-fused juvenile 
polyp showing continuous perisarc (skeleton) and epithelial tissue spanning adult-
juvenile boundary, prior to complete fusion. (C) Completely fused juvenile and parent 
demonstrating continuous perisarc and epithelial tissue. jv = juvenile/actinula; ad = adult 
polyp; sk = skeleton (perisarc); ect = ectoderm. 

 



78 

individual can overcome the other through stem cell parasitism (De Tomaso 2006, 

Pancer, Gershon and Rinkevich 1995, Sabbadin and Zaniolo 1979, Stoner, Rinkevich and 

Weissman 1999, Laird, De Tomaso and Weissman 2005).  This too may be operating in 

Ectopleura larynx. Parent-offspring fusion would be expected to result in a mixture of 

male and female polyps in a colony.  However most colonies we observed are 

predominately one sex.  Hydrozoans don’t sequester their germ-line and instead possess a 

multipotent or totipotent stem cell lineage (Bosch and David 1986, Bode 1996, Müller, 

Teo and Frank 2004), making them susceptible to stem cell parasitism (Buss 1982, Buss 

1987, Buss 1990, Hughes 2002). We suspect that the stem cell line of the parent colony 

parasitizes the stem cell line of the settled polyp (Buss 1987). However, reports that 

ageing female polyps often develop male gametes in their most distal gonophores 

(Schuchert 2010, Fenchel 1905, Hawes 1955, Perez 1925, Berrill 1952) suggests that 

competitiveness for the germline weakens in aging colonies, which could make them 

susceptible to stem cell parasitism from offspring.  

 

 Chimerism has been documented in many animal phyla, as well as in the hydrozoan 

Hydractinia (Buss 1987, Hughes 2002, Rosengarten and Nicotra 2011, Cadavid, Powell, 

Nicotra, Moreno and Buss 2004, Grossberg 1988, Ivker 1972, Rosa, et al. 2010, Powell, 

et al. 2007, Nicotra, et al. 2009, Feldgarden and Yund 1992, Hoffman, Kafatos, Janeway 

and Ezekowitz 1999). In Hydractinia, asexually-formed colonies fuse somatic tissue or 

display a rejection response depending their degree of relatedness (Buss 1987, Buss 1990, 

Feldgarden and Yund 1992, Ivker 1972, Lakkis, Dellaporta and Buss 2008, Lange, 

Plickert and Muller 1989), and two genes control this fusion/rejection response (Cadavid, 
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Powell, Nicotra, Moreno and Buss 2004, Rosa, et al. 2010, Powell, et al. 2007, Nicotra, 

et al. 2009).  Although it is unknown if allorecognition operates in E. larynx, is it possible 

that it plays a role in determining whether polyps can fuse. 

 

Ectopleura stalks function as stolons 

An important characteristic of all hydrozoan colonies is the stolonal system, a series of 

tube-like structures that connect polyps. In Ectopleura colonies, polyps are connected by 

structures that are traditionally referred to as stalks. Following actinula settlement, the 

stalk develops at the most distal end of the polyp, but it is unclear if this structure is 

simply an extension of the polyp body column, or is instead a specialized structure 

functioning to interconnect polyps. 

 

To determine the distal boundary of polyps in E. larynx colonies, we characterized 

expression patterns of manacle, a paired-like homeobox gene that is a marker for foot 

development in Hydra (Figure 4A) (Bridge, Stover and Steele 2000).  Relative expression 

levels of manacle assayed by quantitative real-time PCR (Figure 4B) in adult polyps of E. 

larynx demonstrate that manacle is upregulated in neck tissue (immediately below the 

distal tentacles). In situ hybridization shows that manacle is expressed in a band of 

ectodermal tissue underneath the second whorl of tentacles, above the stalk (Figure 4C). 

These data are corroborated by qRT-PCR evidence that manacle is upregulated in 

developmental stages during which this structure develops (Figure 4B). Although 

expression of a single gene cannot confirm regions of homology, it does suggest the 

presence of a patterning mechanism in Ectopleura larynx that delineates the base of the 
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polyp from stalk tissue. Thus, despite their independent evolution, preliminary evidence 

suggests that Ectopleura colonies exhibit one of the hallmarks of colony structure found 

in other hydrozoan species - a stolonal system separate from the polyp that interconnects 

polyps through a shared gastrovascular cavity.  
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Figure 4. Relative spatial and temporal expression of manacle in Ectopleura larynx, 
normalized to the reference gene, ß-actin, using the comparative Ct (cycle threshold) 
method. (A) qRT-PCR of manacle in E. larynx adult tissue pools and in developing 
whole juveniles. Bars indicate standard error. (B) Spatial expression of manacle in adult 
E. larynx polyps. (top) Antisense probe to manacle. (bottom) Negative control. 
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Re-evolved coloniality is correlated with life history characters 

We coded and mapped life history characters on the phylogeny in order to determine if 

particular features are correlated with coloniality (Figure 2, S1). Although many 

hydrozoans display a pelagic sexual medusa stage, reduction of medusae to attached 

gonophores is a common feature in hydrozoan evolution (Cartwright and Nawrocki 

2010).  Within Aplanulata, medusae have been reduced to attached gonophores multiple 

times (Figure 2).  Another life cycle feature in Aplanulata is brooding.  Many species of 

Aplanulata brood their embryos and release them as actinulae. The perisarc, a chitinous 

skeleton over the polyp stalk, is found in a number of Aplanulata species. The perisarc 

covers stalks and provides support for their upright form. This is in contrast to many 

solitary species, which either lack perisarc or instead form a thin, membranous covering 

over the polyp body (Schuchert 2010, Petersen 1990).  

 

Our character mapping suggests that colony re-evolution in Ectopleura is associated with 

a combination of all three characters (Figure 2); thus, the possession of these characters is 

a requirement for coloniality in Ectopleura. Pair-wise character correlation analyses 

provide evidence for this. Coloniality was significantly correlated with brooding, the 

presence of an exposed, hard perisarc, and the simultaneous presence of all three 

characters (see Supplementary Material for description of statistical analyses). 

 

The combination of attached gonophores and brooding provides an opportunity for 

chimeric colonies to develop, as they ensure that the actinula is in proximity to the parent 

upon release.  Additional evidence is found in the closely related solitary species E. 
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dumorteri, which bears a medusa (Figure 2)  Its actinulae are unable to settle on the 

parent likely due to their dispersal away from the parent.  

 

Attached gonophores and a brooding habit, however, are not enough to allow for fusion 

of juvenile polyps to the parent.  There also needs to be a suitable substrate for the 

juvenile.  This suitable substrate is the exposed, hard perisarc of the parent. We sampled a 

number of other species in our analysis that have attached gonophores and brood, but 

lack an exposed hard perisarc.  In these other species, the perisarc may be thin and 

membranous (Corymorphidae), buried in an invertebrate host (Ralpharia gorgoniae and 

Zyzzyzus warreni), or very small (Candelabridae) (Petersen 1990).  

 

Although the combination of attached gonophores, brooding, and a hard, exposed 

perisarc are necessary for coloniality to evolve (with the exception of E. wrighti, see 

below), it does not appear sufficient, as Tubularia indivisa has all of these characters, but 

is not colonial. Tubularia indivisa polyps are often found in clusters, and can settle upon 

one another, but there is no evidence that they fuse. Further investigation into these 

characters may prove illuminating. 

 

From the recovered phylogenetic pattern, the simplest interpretation is that re-evolution 

of coloniality evolved in a step-wise fashion. Many of the early diverging lineages of 

Aplanulata can bud, but the buds detach, as exemplified in Hydra.  Species of the 

Corymorphidae/Tubulariidae clade do not bud, and thus we infer that the ability to bud 

asexually was lost following the divergence of the Hydra lineage (Figure 2, S1).  A small 
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colony of a few polyps re-evolved at the base of Ectopleura, as exhibited by Ectopleura 

wrighti [4,8], the sister taxon to the rest of Ectopleura (Figure 2, S1). All colonial 

Ectopleura species start from a single primary polyp that forms up to four other polyps 

through the growth of stolons from its aboral end, with polyps developing at the distal 

ends of these stolons. The number of polyps that develop in this manner appears to be 

restricted by the amount of stolonal tissue that can form at the base of the primary polyp.  

Unlike other colonial hydrozoans, these small colonies never bud additional stolons or 

polyps.  The extensively branched chimeric colonies consisting of hundreds of polyps 

evolved subsequently, in association with brooding, attached gonophores, and the 

presence of an exposed hard perisarc.  Because Ectopleura wrighti has a medusa and not 

the attached gonophores, it doesn’t develop the large chimeric colony.  

 

This novel mode of colony formation through sexual reproduction has never before been 

reported in Hydrozoa.  The evolution of coloniality has, however, been associated with 

life history traits in non-hydrozoans, such as symbiosis in corals (Barbeitos, Romano and 

Lasker 2010) and viviparity in ascidians (Pérez-Portela, Bishop, Davis and Turon 2008). 

Future work on Ectopleura larynx should help uncover the mechanisms involved in 

colony re-evolution and shed additional light on the complex evolutionary history of this 

ancient and diverse animal lineage.  

 

Experimental Procedures 

See Appendix for more detailed experimental procedures.  

DNA sequencing, phylogenetic reconstruction and character analysis  
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DNA amplification and sequencing was conducted as previously described (Collins, et al. 

2008, Collins, et al. 2006, Collins, Winkelman, Hadrys and Schierwater 2005, 

Cunningham and Buss 1993, Cartwright, et al. 2008), and phylogenetic analyses were 

conducted in the parallel version of RaxML 7.2.8 (Stamatakis 2006).  Global maximum 

likelihood character state reconstructions and correlation analyses were performed in 

Mesquite (Maddison and Maddison 2010) using an MK1 model following (Cartwright 

and Nawrocki 2010). Correlation analyses were performed in Mesquite using Pagel's 

Correlation Method (Maddison and Maddison 2010, Pagel 1994), following (Cartwright 

and Nawrocki 2010).  

 

Histology and manacle gene expression 

E. larynx was obtained from Marine Biological Laboratory (Woods Hole, MA). Fixation, 

sectioning and staining were carried out following standard protocols (Cielocha and 

Jensen 2011). 

 

A 280bp fragment of the paired-like gene manacle was identified from a library of E. 

larynx cDNA with 454 pyrosequencing, and submitted to Genbank (JN594057). This 

fragment was amplified, cloned, transformed into E. coli, and purified following standard 

protocols. In situ hybridization and qRT-PCR was carried out following standard 

protocols (Gajewski, Leitz, Schlöherr and Plickert 1996).  
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CHAPTER 4: Expression of Wnt pathway genes in polyp and medusa-like structures of 

Ectopleura larynx (Hydrozoa: Aplanulata) 
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ABSTRACT 

The canonical Wnt signaling pathway is highly conserved in its role in axial patterning 

throughout Metazoa. In hydrozoans (Phylum Cnidaria), Wnt signaling is implicated in oral-

aboral patterning of the planula, polyp and medusa life history stages. Unlike most hydrozoans, 

members within the hydrozoan clade Aplanulata, which includes the model organism Hydra, 

lack a planula larva and the polyp instead develops from a brooded embryo.  The Aplanulata 

species Ectopleura larynx broods its embryos within gonophores that represent a truncated 

medusa stage of the hydrozoan life cycle. Ectopleura larynx gonophores retain evolutionary 

remnants of medusa structures but remain attached to the polyps from which they bud. These 

gonophores differ between males and females in their degree of medusa truncation, making them 

an ideal system for examining different stages of truncated medusa development. Using next-

generation sequencing technologies, we isolated genes belonging to the canonical Wnt signaling 

pathway and examined their expression in Ectopleura larynx. Our data are consistent with the 

canonical Wnt signaling pathway being involved in axial patterning of polyp and the truncated 

medusa during Ectopleura larynx development. We report a shift in the order of Wnt5 and Wnt3 

expression, consistent with a role for Wnt5 in initiating new axes of the polyp prior to the 

expression of Wnt3. Our data are consistent with expression patterns in Hydra, and together 

suggest that early expression of Wnt5 prior to deployment of Wnt3 is unique to Aplanulata, and 

possibly related to the loss of a larva. Gene expression patterns in Ectopleura larynx truncated 

medusae are congruent with Wnt5 initiating new axes of the gonophore, and suggest that changes 

in the spatial expression of Wnt pathway genes are correlated with the development of different 

oral structures in male and female gonophores. Lastly, the absence of expression of components 

of the Wnt pathway, as well as presence of a Wnt pathway antagonist SFRP, in the developing 
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anterior end of the gonophore, suggest that downregulation of the pathway may be responsible 

for medusa reduction in Ectopleura larynx, and perhaps in the multiple instances of medusa 

reduction in hydrozoan evolution.  
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INTRODUCTION 

The canonical Wnt signaling pathway is conserved in evolution, playing a critical role in axial 

patterning throughout Metazoa, including members of the phylum Cnidaria (Croce and McClay 

2008). The role of this pathway in initiating and maintaining the oral end of the polyp has been 

characterized in several cnidarian species, including the anthozoan Nematostella vectensis 

(Kusserow, Pang, Sturm et al. 2005) and the hydrozoans, Hydra magnipapillata (Hobmayer, 

Rentzsch, Kuhn et al. 2000, Broun, Gee, Reinhardt et al. 2005, Guder, Pinho, Nacak et al. 2006), 

Clytia hemaespherica (Momose, Derelle and Houliston 2008), and Hydractinia echinata 

(Muller, Frank, Teo et al. 2007, Plickert, Jacoby, Frank et al. 2006, Duffy, Plickert, Kuenzel et 

al. 2010). Several recent studies additionally suggest a role for Wnt signaling in Clytia 

hemaespherica in patterning the oral end of the medusa, the free-swimming jellyfish stage of 

hydrozoans (Momose and Houliston 2007). Proteins involved in the Wnt signaling pathway, 

some of which have been characterized in cnidarians, include Wnt (e.g. Wnt3) ligands, 

transmembrane receptors of these ligands (Frizzled and LCF), a number of antagonists 

(including secreted frizzled related proteins, or SFRPs) and the downstream elements glycogen 

synthase kinase 3-beta (GSK3 ), -catenin, Tcf and others. Additional ligands, including Wnt5, 

are also implicated in this pathway (He et al. 1997) (Figure 1).   

 

The Canonical Wnt Pathway and Polyp Development 

The Wnt pathway has been implicated in patterning the oral end of the hydrozoan polyps 

Hydractinia echinata (Plickert et al. 2006, Duffy et al. 2010) and Clytia hemaespherica 

(Momose, Derelle & Houliston 2008) as they develop from an embryo into a planula larva, and 

then through metamorphosis into a primary polyp. In most species, polyps form following the 
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metamorphosis of a pelagic larva called a planula. The planula eventually settles with its anterior 

end touching the surface. The planula then undergoes metamorphosis, resulting in a primary 

polyp with an oral end where the posterior end of the planula once was.   

In Clytia hemaespherica Wnt3 is a maternally-coded secreted protein that directs oral 

specification in developing embryos, and remains active from early embryonic stages through 

planula formation, where it is expressed in the region of the embryo and planula that correspond 

to the future oral end of the polyp (Momose, Derelle & Houliston 2008).  
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Figure 1. Schematic of the canonical Wnt signaling pathway and some of its known 
components. Left: The canonical Wnt, Wnt3, binds to one of its receptors, frizzled, allowing the 
movement of -catenin into the nucleus, where it binds to Tcf and regulatory sequences, and 
activates downstream gene pathways. Right: Binding of Wnt3 by SFRP prevents the activation 
of Frizzled, leading to the degradation of -catenin and the inhibition of its downstream target 
genes. Wnt5 may also be involved in canonical wnt signaling, but its exact role in this pathway is 
unknown. 
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Expression is similar in Hydractinia echinata, where Wnt3 is a maternally-provided transcript 

expressed in regions of the polyp and planula that correspond to the future oral end of the polyp 

(Plickert et al. 2006). In adult stages, Wnt3 is expressed in the structure that supports the polyp’s 

mouth, called the hypostome (Plickert et al. 2006) and promotes the formation of oral structures 

in regenerating adult polyps (Duffy et al. 2010).  In summary, these studies implicate Wnt3 in 

polarizing the embryonic axis, maintaining the oral pole of the future polyp during 

metamorphosis, and initiating and maintaining the patterning of the oral region of polyps 

(Plickert et al. 2006, Momose, Derelle & Houliston 2008, Duffy et al. 2010).  

 

Unlike most hydrozoans, species in the clade Aplanulata, which includes the model organism 

Hydra, do not develop through a planula larva stage. Instead, members of this clade develop 

directly into a primary polyp, either while inside a gonophore (e.g. Ectopleura larynx) 

(Schuchert 2010, Nawrocki and Cartwright in press), or in a cyst (e.g. Hydra). Following 

encystment or brooding in a gonophore, a fully-formed juvenile polyp hatches or emerges 

respectively (Hyman 1940, Berrill 1952). One characteristic of this development is that the 

primary body axis appears to be specified late in ontogeny, subsequent to the formation of polyp 

tentacles (Figure 2) (Berrill 1952). The role of the Wnt pathway axis specification has been 

characterized in one Aplanulata species – the model organism Hydra vulgaris. In Hydra, Wnt3 is 

critical for the formation and maintenance of the oral axis during development (Hobmayer, 

Rentzsch, Kuhn et al. 2000, Lengfield et al. 2009), and a number of additional Wnt ligands are 

expressed in overlapping patterns in the head organizer (Philipp et al. 2009, Lengfield et al. 

2009). However, unlike in planula-bearing species, Wnt3 is not expressed in early embryonic 

stages (Frobius et al. 2003), and its expression appears only subsequent to the initiation of 
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asexual buds that eventually become new polyps (Lengfield et al. 2009). These data together 

suggest that Wnt3 does not play a role in the initial establishment of the oral/aboral axis of the 

Hydra polyp, but rather in the maintenance of the head organizer during tissue proliferation of 

the bud or polyp (Lengfield et al. 2009). This raises the question of what genes might be 

implicated in the initiation of polyp axis formation in Aplanulata hydrozoans. 

 

One candidate is a paralog of Wnt3, Wnt5. In the planula-bearing species Clytia hemaespherica 

and Hydractinia echinata this gene is deployed subsequent to Wnt3 and immediately prior the 

initiation of metamorphosis (Momose, Derelle and Houliston 2008, Stumpf et al. 2010). In 

contrast, in the Aplanulata species Hydra, Wnt5 expression appears prior to Wnt3 during asexual 

budding, suggesting that it may be involved in axis initiation (Philipp et al. 2009, Lengfield et al. 

2009). Additionally, in Hydra, the expression of Wnt5 overlaps with Tcf and -catenin, 

downstream elements of the canonical Wnt signaling pathway, suggesting Wnt5 may be involved 

in canonical Wnt signaling (Philipp et al. 2009).  This is supported by studies in Xenopus, which  

also suggest a role for Wnt5 in canonical Wnt signaling (He et al. 1997).  

 

The Canonical Wnt Pathway and Medusa Development 

Hydrozoans also display complex life cycles in which the polyp asexually buds jellyfish 

(medusae) on its body column. Depending on the species, this structure detaches and lives 

independently in the water column as a medusa and becomes sexually mature, or its development 

is arrested at an earlier stage and remains attached to the polyp throughout sexual maturity. 

Reduced structures that fail to develop completely into medusae are called gonophores. This 

reduction or loss of the pelagic medusa stage has occurred multiple times in hydrozoan evolution 
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(Cartwright & Nawrocki, 2010). Depending on the species, the truncated medusa, or gonophore, 

retains varying degrees of medusa characteristics. Gonophores, for example, may have tentacles, 

remnants of a mouth (called a spadix) and/or musculature. In some species, these structures are 

completely absent and the gonophore lacks any morphology reminiscent of a medusa. Studies 

examining the expression of Wnt pathway genes in hydrozoans suggest that genes in this 

pathway known to pattern polyp development also pattern the oral end of medusae and 

gonophores (Muller, Frank, Teo et al. 2007, Momose and Houliston 2007). For example, the 

Wnt receptors Frizzled1 and frizzled3 are expressed in oral structures of the medusa of the 

hydrozoan Clytia hemaespherica, with Frizzled1 most strongly expressed in the tentacle bulbs of 

the developing medusa, and frizzled3 expressed in the ring canal of the medusa, which is located 

at the bell margin, and in a band on the mouth (Momose and Houliston 2007). The expression 

patterns of Wnt3 and Wnt5 are not characterized in this developmental stage, and it is unknown if 

these two Wnt ligands initiate or maintain axes, as they are thought to do in polyp stages. In 

Hydractinia echinata, a species whose gonophores lack all medusae morphology, Wnt3 is 

expressed in a small subset of ectodermal cells at the most distal end of the gonophore (Muller, 

Frank, Teo et al. 2007), while other genes in the Wnt signaling pathway, including Frizzled, are 

absent (Duffy et al. 2010).
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Figure 2. Life cycle stages of the Aplanulata species Ectopleura larynx. (A-C) Polyps develop 
from an embryo into a primary polyp. A. Embryo. B. Early-stage actinula (juvenile polyp). C. 
Actinula. D. Actinula emerging from female Ectopleura larynx gonophore. (E-F) Sexually-
dimorphic gonophores of Ectopleura larynx displaying differing degrees of medusa reduction. E. 
Male gonophore displaying distal cap structure on the anterior/oral end of the structure. F. 
Female gonophore displaying tentacle bulbs on the anterior/oral end of the structure. c = distal 
cap; t = tentacle bulbs; * anterior/oral end of gonophore. 
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The Aplanulata species Ectopleura larynx, a close relative of the model organism Hydra, is a 

well-suited system for examining the role of the Wnt pathway in patterning hydrozoan lifecycle 

stages (Figure 2). Like many other members of Aplanulata, Ectopleura larynx polyps develop 

directly from an embryo and lack and planula larva stage (Figure 2A-C). As their development 

occurs within gonophores on the polyp body (Figure 2D), developing polyps are more accessible 

for in situ hybridization studies than species whose polyps develop inside cysts (e.g. Hydra). 

Ectopleura larynx produces a large number of gonophores per polyp, which are easily accessible 

for experimental study. Ectopleura larynx also displays sexual dimorphism in its truncated 

medusae (gonophores), with male gonophores developing fewer morphological hallmarks of 

medusae than female gonophores. Male gonophores develop a cap on the distal end of the 

gonophore (Figure 2E) whereas female gonophores are larger and develop tentacle remnants 

(Figure 2F). This sexual dimorphism as displayed by Ectopleura larynx provides an opportunity 

to examine the development of gonophores displaying different stages of medusa truncation 

within the same species. 

 

Here, we report the isolation and characterization of major elements of the canonical Wnt 

signaling pathway from Ectopleura larynx, including Wnt3,  a paralog of Wnt3, Wnt5, a putative 

Wnt receptor, Frizzled1,  and a putative Wnt pathway antagonist, SFRP (secreted frizzled related 

protein). We examine the expression of these genes in all developmental stages of Ectopleura 

larynx using in situ hybridization and/or qRT-PCR in order to address the question of whether 

the Wnt pathway patterns oral structures of the polyp and truncated medusa (gonophore) in this 

species that lacks a planula larva.  Our results are consistent with the Wnt signaling pathway 

patterning oral structures of the Ectopleura larynx polyp and gonophore. Our data suggest that 



97 

Wnt signaling plays a role in patterning diverse oral structures in all life cycle stages of 

hydrozoans, and that temporal shifts in Wnt gene deployment may be implicated in evolutionary 

transitions between larval and direct developers. Lastly, our data shed light on the genes possibly 

involved in the truncation of medusa development, and offer one possible explanation for the 

frequency with which medusae have been lost over the evolutionary history of Hydrozoa. 
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MATERIALS & METHODS 

  

Animal culturing and tissue preservation 

Male and female Ectopleura larynx colonies were obtained from Marine Biological Laboratory 

(Woods Hole, MA) or near Mount Desert Island Biological Laboratory (Salisbury Cove, ME), 

and were observed alive in the laboratory. Colonies were then maintained at 12ºC in 32ppt 

artificial sea water in the dark for four weeks in order to collect and preserve embryos, liberated 

actinulae and adult tissues for in situ hybridization. During lab maintenance, animals were fed 4x 

weekly with Artemia nauplii. For fixation, animals were relaxed with MgCl2, and tissues were 

fixed in 4% paraformaldehyde overnight and stored in 100% MeOH at -20ºC indefinitely prior to 

in situ hybridization. Preserved tissues were used for subsequent studies described in this paper. 

 

Isolation of Wnt pathway genes from Ectopleura larynx 

In order to identify Wnt genes and other Wnt pathway components from Ectopleura larynx 

developmental stages, we constructed a number of cDNA libraries for Illumina sequencing. 

Illumina libraries were constructed for three different polyp developmental stages (embryos, 

early actinulae, late actinulae) using Illumina's TruSeq paired-end sample preparation protocol 

(Illumina, San Diego, CA), and sequenced 100bp paired-end reads on three lanes of an Illumina 

HiSeq 2000 (University of Kansas Genome Sequencing Facility, Kansas City, KS). Resulting 

sequences were trimmed using the python stript q-trim.py (M. Shcheglovitova, pers. comm). 

Data was then assembled using the software package Trinity (Grabherr, Haas, Yassour et al. 

2011) on Amazon’s EC2 on a 13-processor computer with 4 cores and 34.2 GB of RAM. A 

BLAST database was constructed from each resulting assembly. These assemblies were then 
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searched locally using tBLASTx to identify major elements of the Wnt signaling pathway, 

including Wnt3, Wnt5, Frizzled, TCF, -catenin, GSK3  and SFRP,. 

 

Sequence retrieval, alignment, model selection and phylogenetic analyses 

Following identification using BLAST searches, the putative Wnt pathway genes Wnt3, frizzled, 

and SFRP were used to search again against Ectopleura larynx transcriptome databases in order 

to isolate all potential orthologs and paralogs of these genes of interest. tBLASTx searches were 

conducted, and the top 30 hits were pulled from the assembled transcriptomes. Then, the original 

Wnt pathway gene sequences were used as input for tBLASTx searches against Genbank. The 

top 50 hits were downloaded. For Wnt genes, which are well-characterized and diverse in 

cnidarians, tBLASTx searches were limited to cnidarian genes only. For all other genes, 

tBLASTx searches were expanded to all of Metazoa. Duplicate sequences were removed, and 

protein alignments were generated for each gene in MUSCLE (Edgar 2004a, b). Alignments 

were then hand edited in SeaView v2.4 (Galtier, Gouy and Cautier 1996) to remove ambiguously 

aligned regions, or were run through the program Gblocks v0.91b (Castresana 2000). Final 

alignments were visualized in Mesquite v2.75 (Maddison and Maddison 2007) and Seaview v2.4 

(Galtier, Gouy and Cautier 1996). Final alignments were run through ProtTest v.3 (Darriba, 

Taboada, Doallo et al. 2011) to determine the best fit model of protein evolution for each gene 

given the alignment. We used the BIC (Schwarz 1978) to select the model of protein evolution 

for subsequent analyses.  

 

Phylogenetic analyses were conducted in the parallel version of RaxML v7.2.5 (Stamatakis 

2006) in order to make the best estimate of gene orthology given the protein alignment. For each 
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analysis, we assessed node support by generating and summarizing 1000 bootstrap replicates 

(Stamatakis 2006). Trees were visualized in FigTree v1.3.1 (Drummond and Rambaut 2007) and 

Mesquite v2.75 (Maddison and Maddison 2007). 

         

Quantitative Real-Time PCR (qRT-PCR) 

RNA was isolated from Ectopleura larynx using the following protocol: Developmental stages 

were dissected from reproductive structures and placed immediately on dry ice. Samples were 

then frozen at -80, macerated using a mortar and pestle, and incubated overnight at 4°C in 

TriReagent (Life Technologies, Grand Island, NY). Remaining tissue was spun down and re-

macerated until no visible tissue remained. BCP was added following manufacturer's protocol, 

and samples were shaken vigorously for 15-30 seconds to ensure even mixing. Tubes were 

incubated at room temperature for 15 minutes, and then spun down for 15 minutes. The top layer 

was removed and combined with isopropanol and incubated at room temperature for 20 minutes, 

and then overnight at -20°C. Samples were spun down and a visible pellet was washed twice 

with 75% EtOH. RNA was then treated with TurboDNAse (Life Technologies, Grand Island, 

NY) following manufacturer's protocol, and a sodium acetate back-precipitation (protocol 

available upon request) removed residual phenol. RNA integrity was confirmed by visualizing 

18s and 28s peaks using the Agilent 2100 Bioanalyzer and quantified using the RNA Quant-It 

assay for the Qbit Fluorometer (Life Technologies, Grand Island, NY). For each library 

construction, no less than 500ng of total RNA was used going into the cDNA library preparation. 

Final RNA was then treated with TurboDNAse (Life Technologies, Grand Island, NY) to ensure 

removal of genomic DNA.  
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RNA was reverse-transcribed with Superscript III Reverse Transcriptase (Life Technologies, 

Grand Island, NY). To ensure equal relative transcript abundances, reverse transcription was 

carried out on equal quantities of each tissue-derived RNA pool. qRT-PCR was conducted using 

a DNA Engine Opticon 2 real-time PCR machine (MJ Research, Ramsey, MN, USA) in the 

presence of SYBR Green I (Life Technologies, Grand Island, NY) and DyNAzyme II Hot Start 

DNA Polymerase (Thermo Scientific, Wilmington, DE), or by using a Step One Plus Real-Time 

PCR Thermal Cycler (Applied Biosystems, Carlsbad, CA). For all genes, expression in each 

tissue was evaluated in quadruplicate, and two independent experimental replicates were 

conducted. Three control genes ( -Actin, -Tubulin and 18S) were evaluated for invariability 

across all tissue pools (Table 1), and the single gene -Actin was selected as a control due to its 

invariability across tested tissue pools. Data analysis on qRT PCR data was conducted by 

calculating the relative expression ratios of each gene, including control gene, in each RNA pool. 

For each reaction, the amount of target gene cDNA expression was inferred relative to the level 

of the control gene using the comparative Ct method. In short, the mean expression levels of the 

genes of interest and control genes were calculated from multiple replicates, and the highest 

relative expression level per tissue pool per gene was set to one. Normalization factors were then 

calculated from control gene expression in each tissue pool, and used to rescale expression 

values of genes of interest. 
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Table 1. Primer Pairs for Quantitative Real-Time PCR (qRT-PCR) and in situ Hybridization  

Gene Forward Primer Reverse Primer 

qRT-PCR primers 

-Actin ATTGCTGACCGTATGCAGAA CCAAAATAGATCCTCCGATCC 

Frizzled1 GCCCTACAAGACCACGATGT AGATAGGCGATGCAAAGGAA 

SFRP ACCGACTACCGTCAAACCTG GAACGCTCTCCTTCTTGCAC 

Tcf GTGACGAAGACTCGTCCAAAG CGATCTGCGAAACTGCTACA 

-catenin GTTGGTGCCCTGCATATTCT ATGGCATCAGCACCTTCTTT 

GSK3B TAATCATGGGGGTTTCAGGA TCCGTGCTGTCAACAATCTT 

In situ probe primers 

-Actin AAGCTCTTCCCTCGAGAAATC CCAAAATAGATCCTCCGATCC 

Frizzled1 GGTGCGTTTCCATAACATCTG GGGTCCTTTCAATCCCTTTC 

SFRP ATCGATTGTTCCCCTCACCT TTGTTTTCAGCTCACTCACACA 

Wnt3 
ATAAATGCAGCCAGCCAATC CGCTGCGCCTAATCTTGTAG 

Wnt5 GAATTGCACTTTTCCCGAAC GCCGAATGAACCTTCGTCTA 

*All primers are given in the 5' to 3' orientation 
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Gene amplification, cloning, and probe generation 

Primers were designed for genes of interest, based on full-length sequences isolated from either 

454 or Illumina assembled transcriptomes (Table 1). PCR products were ligated directly into 

Invitrogen TOPO-4-PCR vectors (Life Technologies, Grand Island, NY) and then transformed 

into chemically-competent E. coli. Amplified clones were purified using a Qiagen Miniprep Kit 

(Qiagen, Valencia, CA). Sequence identity was confirmed using directional sequencing with 

standard T7 and T3 primers (ACGT, inc., Wheeling, IL). Sense and antisense RNA probes were 

generated for Wnt3, Wnt5, Frizzled1, and SFRP using Ambion's T7/T3 MAXIscript kits 

according to manufacturer's protocol, except that probe synthesis was carried out overnight (Life 

Technologies, Grand Island, NY). Probes were precipitated at -20C overnight using NaAc and 

100% EtOH. Probe concentration was determined with a Nanodrop spectrophotometer (Thermo 

Scientific, Wilmington, DE), and a standard dot-blot assay on a nitrocellulose membrane was 

conducted to assess the efficiency of DIG incorporation. 

 

in situ hybridization 

We carried out whole-mount in situ hybridization on embryos, actinulae, adult polyps and 

reproductive structures following (Nawrocki and Cartwright in press), except that all tissues 

were heat treated at 80ºC for 10 minutes following fixation to disrupt endogenous alkaline 

phosphatase activity, and anti-DIG-AP was added at a concentration of 1:5,000.  

 
RESULTS 
 
 
Ectopleura larynx Wnt gene family  
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tBLASTx searches of Ectopleura larynx transcriptome assemblies revealed multiple Wnt genes 

sharing affinity to six of the seven major Wnt families characterized in Hydrozoa: WNT5/11, 

WNT3, WNT9/10, WNT8/11, WNT7 and WNTX1. Phylogenetic analysis of a 447 amino-acid 

long alignment of 72 cnidarian Wnt sequences under a WAG +  model in RaxML  (Stamatakis 

2006) confirmed the orthology of these genes (Figure 3). In general, we recovered strong 

support for the placement of each of the Wnt genes with respect to other Wnt orthologs.  

 

Frizzled and SFRP gene orthology  

Given that the SFRP gene represents a truncated version of the frizzled gene, we included SFRP 

and frizzled in the same phylogenetic analysis.  We conducted a phylogenetic analysis on 

metazoan frizzled genes and include our sequence for putative SFRP, to better determine its 

orthology. tBLASTx searches of Ectopleura larynx transcriptome assemblies revealed multiple 

frizzled and frizzled-like genes sharing affinity to three of the four major frizzled families 

characterized in Hydrozoa: Frizzled1, frizzled5/8, and frizzled4/9/10. Phylogenetic analysis of a 

443 amino-acid long alignment of 35 metazoan frizzled sequences under a WAG +  model in 

RaxML (Stamatakis 2006) and including our SFRP sequence, confirmed the orthology of these 

genes (Figure 4), although we do not recover a strong placement for Frizzled1 or SFRP.  
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Figure 3. Phylogenetic hypothesis (midpoint-rooted) of relationships of Ectopleura larynx Wnt 
genes with those of other cnidarians. Analysis run in RaxML under a WAG +  model. 
Bootstrap (bs) support values generated with 1000 bs replicates in RaxML. BS values are 
reported if  70. Terminals of the tree are labeled as follows: "GenbankID species orthology". 
EL = Ectopleura larynx; NV = Nematostella vectensis; HM = Hydra magnipapillata; HV = 
Hydra vulgaris; CH = Clytia hemaespherica.  
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Figure 4. Phylogenetic hypothesis for relationships of Ectopleura larynx frizzled genes with 
frizzled genes of other metazoans. Analysis run in RaxML under a WAG +  model. Bootstrap 
(bs) support values generated with 1000 bs replicates in RaxML. BS values reported if  70. 
Terminals of the tree are labeled as follows: "GenbankID species orthology". EL = Ectopleura 
larynx; NV = Nematostella vectensis; HV = Hydra vulgaris; CH = Clytia hemaespherica. DM = 
Drosophila melanogaster; CE = Caenorhabditis elegans; MM = Mus musculus; AQ = 
Amphimedon queenslandica; ML = Mnemiopsis leidyi; HE = Hydractinia echinata; SD = 
Suberites domuncula 
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Wnt pathway genes are expressed in developing actinulae 

During development, Ectopleura larynx embryos begin as a flattened disc shape. The first set of 

tentacles, the aboral tentacles, form along the margin of the disc and grow outward (Figure 2) 

(Berrill 1952). After tentacles are well formed, their elongation appears to stop and the body axis 

then begins to develop and elongate. Subsequently, a mouth and oral tentacles form (Figure 2) 

(Berrill 1952). To examine if Wnt pathway genes play a role in tissue evagination and new axis 

formation in Ectopleura larynx, we investigated the temporal and spatial expression of Wnt3, 

Frizzled1, SFRP, and Wnt5 in developing Ectopleura larynx actinulae using qRT-PCR and in 

situ hybridization. We do not detect the expression of Frizzled1, SFRP, or Wnt3 in embryos with 

in situ hybridization, although qRT-PCR data indicate that low levels of SFRP are present in this 

developmental stage (Figure 5). Wnt5 is present in embryos in the endoderm of evaginating 

tentacles, and continues to be expressed in the most distal endoderm of the tentacles as they 

elongate (Figure 6A-B). Subsequent to tentacle formation, the zone of expression of Wnt5 shifts 

from the endoderm of the tentacles to the hypostome, where it is expressed in a small zone at the 

most oral tip of the polyp during hypostome evagination and polyp elongation (Figure 6C). 

qRT-PCR data demonstrate that the downstream Wnt pathway genes -catenin and GSK3  are 

abundant in embryos and increase during development (Figure 5). In contrast, Tcf transcripts are 

low in early developmental stages, but up-regulated in late actinula development (Figure 5).  
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Figure 5. Expression of Wnt pathway genes in developing Ectopleura larynx polyps. (A) 
Expression of Frizzled1 and SFRP. Frizzled1 and SFRP are both upregulated during polyp 
development. (B) Expression of the downstream genes GSK3 , Tcf and -catenin during polyp 
development. GSK3  and -catenin are down-regulated during polyp development, while Tcf is 
upregulated during polyp development. All calculations are normalized to -actin using the 
comparative Ct method. 
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Figure 6. Wnt5 expression during early polyp development shifts from the evaginating tentacle 
tips (A, B) to the oral end of the polyp (hypostome) (C). (A) View from top of late-stage embryo 
expressing Wnt5 in the distal endoderm of evaginating tentacles. (B) Side view of mid-stage 
actinula displaying Wnt5 expression in endoderm of the most distal tips of tentacles during 
tentacle elongation. (C) Wnt5 expression in the oral endoderm of the polyp during hypostome 
evagination and polyp elongation. Wnt3 expression is absent in early stages of polyp 
development but turns on in later stages (see Figure 7).  
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Canonical Wnt pathway genes are differentially expressed along the body axis of actinulae 

(juvenile polyps) and adult polyps 

We examined the spatial expression of Wnt pathway genes in late-stage actinulae (juvenile 

polyps) and in adult polyps. In contrast to earlier stages of development where only Wnt5 was 

expressed (Figure 6), all of the major Wnt pathway genes that we examined – Wnt3, Frizzled1 

and SFRP as well as Wnt5 – are expressed in the late-stage actinula (Figure 7).  

 

By the late stage of actinula development, Wnt5 has shifted from the tentacles to the endoderm of 

the hypostome (region of the polyp containing the mouth), where it is expressed in a small subset 

of cells at the oral tip (Figure 7A). This expression zone remains as the polyp grows and 

elongates. Wnt3, which is absent in early developmental stages, is also expressed in late actinulae 

in the oral region of the polyp, and its expression overlaps with that of Wnt5, except that its 

expression domain is much broader, and appears to be both endodermal and ectodermal (Figure 

7B). In late actinulae, Wnt3 is also expressed in a small number of cells at the distal ends of the 

tentacles (Figure 7C).  Frizzled1 is expressed in a ring of endodermal cells at the base of the 

aboral tentacles of actinulae (Figure 7D) and does not overlap in expression with Wnt 3 or 

Wnt5. SFRP is expressed in the endoderm of the foot, and also in a ring of endodermal cells 

underneath the aboral tentacles, similar to Frizzled1 expression (Figure 7E). qRT-PCR data 

show that Frizzled1 may be slightly upregulated in the mid-body of adult polyps (but not 

significant; Figure 8A), and that SFRP is upregulated in the hypostome and mid-body of adult 

polyps (Figure 8A).  We also find evidence for differential expression of the downstream Wnt 

pathway components -catenin, Tcf and GSK3  in the adult polyp. GSK3  expression is highest 

in the hypostome of adult polyps, while -catenin is upregulated in the oral end of the polyp 
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(hypostome and mid-body) (Figure 8B). Tcf expression is ubiquitous, with the lowest expression 

in the neck (Figure 8B). 
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Figure 7. Wnt pathway genes are differentially expressed along the body of Ectopleura larynx 
actinulae.  (A) Wnt5 is expressed in a small subset of endodermal cells in the hypostome. Side 
view of whole actinula.  (B) Wnt3 is expressed in the ectoderm and endoderm of the hypostome 
of late-stage actinulae. Side view of whole actinula. (C) Wnt3 is expressed in clusters of 
ectodermal cells in the tips of the aboral tentacles of actinula. (D) Frizzled1 is expressed at the 
base of the aboral tentacles of the actinula. Side view of whole polyp. (E) SFRP is expressed in a 
ring of cells below the base of the aboral tentacles and in the endoderm of the aboral end of the 
polyp. Side view of whole actinula. (F) Sense control (for Frizzled1).  
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Figure 8. Wnt pathway genes are differentially expressed along the polyp body axis of adult 
Ectopleura larynx polyps. (A) Expression of Frizzled1 and SFRP. Frizzled1 is upregulated in the 
mid body of adult polyps (but not significant). SFRP is upregulated in the hypostome and mid 
body of adult polyps. (B) Expression GSK3 , Tcf and -catenin in adult polyp tissues. GSK3  
and -catenin are upregulated in the anterior portion of the polyp (hypostome and mid body), 
while Tcf is ubiquitous in the adult polyp, with lowest expression in the neck. All calculations are 
normalized to  -actin using the comparative Ct method. 
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Wnt pathway genes are expressed in oral structures of male and female gonophores 

Sexually-mature male gonophores lack tentacles but have an enlarged cap on their most oral end 

(Figure 2E). Spatial expression data suggests that major components of the Wnt signaling 

pathway, as well as Wnt5, are expressed in the oral end the developed male gonophore (Figure 

9A-D, L). Wnt3 is absent from early-stage male gonophores but is expressed in a small subset of 

ectodermal cells at the most distal end of the gonophore and in the center of the cap as the 

gonophore matures (Figure 9A). Wnt5 is expressed early in gonophore development (prior to 

Wnt3) in a small subset of endodermal cells (Figure 9L). Expression later shifts to the ectoderm, 

and then expands to an additional domain represented by a ring of ectodermal cells along the 

edge of the cap (Figure 9D). Frizzled1 expression in male gonophores overlaps with that of 

Wnt3 and Wnt5, and is confined to a larger circle of ectodermal cells at the most oral end of the 

gonophores (Figure 9B). This expression zone is always localized to the central region of the 

distal cap. Thus, in the center of the most oral end of male gonophores, Wnt3, Wnt5 and 

Frizzled1 expression domains overlap. In contrast, SFRP is expressed in a ring of cells denoting 

the proximal edge of the zone of expression of Frizzled1, in proximity to Wnt5 expression 

(Figure 9C). SFRP has an additional expression domain in the tip of the spadix of the male 

gonophore (Figure 9C). 

 

Mature female gonophores display between 3 and 5 tentacles in a cluster at the most oral end of 

the gonophore (Figure 2F). We found that Wnt pathway genes are also expressed in these oral 

structures of the female gonophore (Figure E-H, L). Similar to in male gonophores, Wnt3 

appears to be absent in early-stage female gonophores (not shown). In contrast, Wnt5 expression 

begins early (prior to Wnt3) in a small subset of endodermal cells at the most oral end of the 
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gonophore, similar to male gonophore development (Figure 9L). Subsequently, Frizzled1 and 

Wnt5 become localized to endodermal circles denoting the regions that become the base of the 

tentacles before they develop (not shown). Subsequently, Wnt3, Wnt5 and Frizzled1 are co-

expressed in the endoderm of tentacles of female gonophores as these structures develop. 

Eventually, expression shifts entirely to the endoderm of fully-developed tentacles (Figure 9E-

F, H). Wnt5 has an additional expression domain in a circle of cells at the oral end of the 

gonophore between the tentacles (Figure 9F), and Frizzled1 has an additional expression domain 

in the ectoderm at the tip of the spadix (Figure 9F). In contrast, SFRP is expressed in a small cap 

at the most distal tip of the gonophore, centered between the tentacles (Figure 9G). This cap of 

SFRP expression appears early in female gonophore development as a broad expression domain, 

but over time is sharpened to a small subset of cells (Figure 9G).  Figure 10 provides a 

summary of the expression of these four genes in mature male and female gonophores. 
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Figure 9. Wnt3, Frizzled1, SFRP and Wnt5 are expressed in oral structures of Ectopleura larynx 
gonophores. A-D: Expression in male gonophores. (A) Wnt3 is expressed in a small region in the 
oral tip of developing male gonophores. (B) Frizzled1 is expressed in a subset of ectodermal 
cells at the most oral end of the male gonophore (oral end is offset in this figure). (C) SFRP is 
expressed in a ring at the distal end of the male gonophore. (D) Wnt5 is expressed in a subset of 
ectodermal cells at the most oral end of the male gonophore, and in a ring of cells at the oral end 
of the male gonophore (oral view). E-H: Expression in female gonophores. (E) Wnt3 is expressed 
in the endoderm of developing tentacles. Frizzled1 is expressed in the endoderm of developing 
tentacles, and in the ectoderm of the spadix. (G) SFRP1 is expressed in a subset of ectodermal 
cells at the most oral end of the female gonophore. (H) Wnt5 is expressed in the endoderm of 
developing tentacles, and in a ring of cells at the most oral end of the gonophore (oral view). (I) 
Wnt3 negative control. (J) Frizzled1 sense control. (K) SFRP sense control. (L) Early-stage male 
gonophore showing Wnt5 expression in the oral end of the developing gonophore. Expression of 
Wnt5 in early stage male and female gonophores is identical. sp = spadix; t = tentacle buds; yg = 
young gonophore. 
 
 
 

 



117 

 
 
Figure 10. Schematic summarizing the expression of Wnt3, Wnt5, Frizzled1 and SFRP in male 
and female gonophores of Ectopleura larynx. Tissues co-expressing Wnt3, Wnt5 and Frizzled 
correspond to regions of the gonophore undergoing active tissue expansion. Green indicates 
overlapping expression of Wnt5 and SFRP. Hatched indicates overlapping expression of Wnt5, 
Wnt3 and Frizzled1. sp = spadix. 
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DISCUSSION 
 
Wnt5 expression correlates with axis initiation while Wnt3 expression correlates with axis 

maintenance during development of Ectopleura larynx polyps 

In all cnidarians in which is has been characterized, the canonical Wnt gene, Wnt3, is expressed 

in the most oral end of the polyp at some point during polyp ontogeny (Broun, Gee, Reinhardt et 

al. 2005, Guder, Pinho, Nacak et al. 2006, Hobmayer, Rentzsch, Kuhn et al. 2000, Muller, 

Frank, Teo et al. 2007, Plickert, Jacoby, Frank et al. 2006, Duffy, Plickert, Kuenzel et al. 2010, 

Momose, Derelle and Houliston 2008). In Hydractinia echinata, Clytia hemaespherica, and 

Nematostella vectensis, species that develop through a larva, Wnt3 expression patterns implicate 

it in polarizing the embryo early in development, maintaining the future oral end of the polyp 

during metamorphosis (except in Nematostella vectensis, which does not undergo 

metamorphosis), and maintaining the patterning of the mouth of the polyp (Duffy et al. 2010, 

Plickert et al. 2006, Momose et al. 2007, Lee et al. 2006).  However, in the direct-developing 

species Hydra, Wnt3 is not turned on until later in embryonic (Frobius et al. 2003) or bud 

(Philipp, Aufschnaiter, Özbek et al. 2009) development. Our expression data is consistent with 

data from Hydra, suggesting that Wnt3 may not be involved in initiating axes during 

development in Ectopleura larynx. Instead, in Ectopleura larynx, Wnt3 is expressed after 

tentacle formation and after the hypostome has already formed (Figures 6-7), congruent with a 

role in maintaining already-established axes.  

 

In contrast, our data demonstrating early Wnt5 expression during Ectopleura larynx embryonic 

development are consistent with a role for Wnt5 in initiating the polyp axis. Both our data (here) 

and data from Hydra show that Wnt5 is expressed early in polyp development from embryos 
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(Ectopleura) or buds (Hydra) (Philipp, Aufschnaiter, Özbek et al. 2009). Our data show that 

during embryonic development of polyps, Wnt5 is first expressed in the distal axes of developing 

tentacles of the developing embryo, and subsequently is expressed in the oral axis of the 

developing polyp. In Hydra buds, the primary body axis forms prior to tentacle formation. In the 

case of Hydra buds, Wnt5 is expressed first in the most distal portion of outpocketing of tissue 

that becomes a bud, and secondly shifts expression to developing tentacles (Philipp, 

Aufschnaiter, Özbek et al. 2009). Ectopleura larynx polyps form tentacles along their periphery 

prior to the formation of the oral/aboral axis, whereas in Hydra, asexually developing polyps 

form the polyp oral axis prior to tentacle formation. In both cases however, Wnt5 is expressed at 

the time of initiation of the development of the tentacles and the polyp oral axis.  

 

Because Wnt3 maintains polarity of the animal during both planula formation and 

metamorphosis in Hydractinia and Clytia development, the observed shift in the relative  order 

of deployment of Wnt3 and Wnt5 between these species and Hydra and Ectopleura larynx, which 

lack a planula larva stage, raises the question of whether these changes in the order of expression 

of Wnt genes are associated with lack of a planula larva or rather with a lack of metamorphosis. 

In a distant relative of hydrozoans, the direct-developing anthozoan Nematostella vectensis, 

which forms a planula but does not undergo metamorphosis, the canonical Wnt pathway is well 

characterized. The canonical Wnt3 gene is turned on early in development in the gastrula stage 

(localized to the future oral end of the polyp), while Wnt5 expression turns on later (Lee et al. 

2006), consistent with the order of expression in Hydractinia And Clytia. These data together 

suggest that the switch in the timing and order of deployment of Wnt5 and Wnt3 is unique to 

Aplanulata taxa and likely associated with the loss of a planula larva.  
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Frizzled1 and SFRP expression during embryonic development are consistent with late 

deployment of Wnt3 and canonical Wnt signaling 

In Hydra, the Wnt3 receptor Frizzled1 is expressed throughout early embryonic development 

(Frobius et al. 2003). In Ectopleura larynx, we found evidence for low-level upregulation of 

Frizzled1 in late polyp development, but overall it appears to be present in relatively low levels 

throughout embryonic development. SFRP expression is similarly low in early developmental 

stages of Ectopleura larynx, but is strongly upregulated in late development, coinciding with the 

deployment of Wnt3 in the hypostome of late-stage actinulae. These data are in contrast with 

expression in Clytia hemaespherica, where Frizzled1 is a maternally-localized transcript present 

in high levels in the earliest stages of development, and localized to the future oral end of the 

polyp during planula development and metamorphosis (Momose and Houliston 2007). This 

difference in expression is likely attributable to differences in development, where Wnt3 

signaling is not present until very late stages of Hydra and Ectopleura larynx embryonic 

development, whereas in Clytia hemaespherica, Wnt3 signaling is vital early in development for 

establishing the oral/aboral axis of the future polyp.  

 

We find high levels of -catenin in early embryonic development, consistent with reports that -

catenin is a maternal transcript provided by nurse cells (Alexandrova, Schade, Bottger et al. 

2005) or directly by the oocyte (Duffy, Plickert, Kuenzel et al. 2010) (Figure 5).  However, late 

deployment of Wnt3, coupled with a lack of Tcf in early stages of embryonic development 

(Figure 5) suggest that canonical Wnt signaling is inactive in early stages of Ectopleura larynx 

development. This is in contrast to Hydractinia where there is evidence that Tcf is provided as a 
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maternal transcript (Plickert, Jacoby and Frank et al. 2006). We do find relatively early 

expression of Wnt5, which has been suggested to act in the canonical Wnt pathway (He et al 

1997). However, lack of expression of other Wnt pathway elements in early developmental 

stages of Ectopleura larynx make it unlikely that Wnt5 is acting in the canonical Wnt pathway in 

polyp development. While -catenin is present early in the embryo, this gene is known to be 

additionally involved in other roles in cnidarians that do not involve the canonical Wnt pathway 

(Wikramanayake 2003, Momose & Schmid 2006).  

 

Additional Wnt ligands and receptors may interact in late developmental stages of the 

polyp 

 In later developmental stages of the Ectopleura larynx polyp, Frizzled1 and SFRP are expressed 

in the endoderm at the base of the aboral polyp tentacles, thus their expression does not overlap 

with that of Wnt3 or Wnt5 expression patterns in the hypostome. These data suggest that during 

late polyp development, Frizzled1 and SFRP may not interact with either of these two Wnt 

genes. These data are congruent with expression in Hydra demonstrating that Frizzled1 is 

expressed in the endoderm of the body of the adult polyp (Minobe, Fei, Yan et al. 1999), and that 

it thus does not have overlapping expression with Wnt3 or Wnt5 (Philipp et al. 2009, Lengfield et 

al. 2009). 

 

Our transcriptome analyses revealed four additional Wnt ligands and two additional Frizzled 

genes not characterized here, and it is possible that one or more of these other ligands and 

receptors are interacting with genes characterized here in the polyp stage. SFRP expression is not 

characterized in other hydrozoans, but we suspect that this gene also interacts with one or more 
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Wnt ligands and inhibits Wnt pathway signaling at the base of Ectopleura larynx tentacles. 

However, it should be noted that it is also possible that Wnt proteins, which can travel, are acting 

in different tissues than their transcripts are present in (Christian 2000). Future studies 

characterizing the expression of both mRNA and protein patterns will shed further light on the 

this pathway in polyp development.  

 

Downstream Wnt pathway elements in Ectopleura larynx also warrant future attention. In Hydra, 

-catenin is upregulated in the oral end of Hydra polyps and is localized to nuclei (Broun, Gee, 

Reinhardt et al. 2005, Hobmayer, Rentzsch, Kuhn et al. 2000). qRT-PCR data demonstrates 

expression of -catenin in Ectopleura larynx adult polyps in the anterior end of the polyp 

(hypostome and mid body), although we do not determine exact cellular localization through in 

situ hybridization (Figure 8B). Additionally, in Hydra, Tcf is expressed in the anterior portion of 

the polyp, with the strongest expression in the hypostome (Hobmayer et al. 2000). We report Tcf 

expression highest in the anterior portion of the polyp (the hypostome and mid body) of adult 

Ectopleura larynx polyps, while it is lowest in the aboral end of the polyp. We also find high 

expression in the stalk of Ectopleura larynx polyps, which was unexpected, but may be related to 

the regenerative capacity of Ectopleura stolons (Tardent 1963). We saw highest expression of 

GSK3  in the oral end of adult Ectopleura larynx polyps (Figure 7), in contrast to data from 

Hydra, demonstrating uniform distribution throughout the endoderm of the polyp (Hobmayer et 

al. 2000). Because the exact cellular localization of downstream elements in the Wnt signaling 

pathway is more important than their spatial localization in the polyp (Broun et al. 2005), future 

studies in Ectopleura larynx are needed to determine the cellular localization of these genes and 

their proteins. 
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Wnt5 expression is correlated with early axis formation of Ectopleura larynx gonophores 

Our data demonstrate that Wnt pathway gene expression is consistent with patterning the oral 

end of truncated medusae structures during their early development. Wnt3 is absent from early-

stage male and female gonophores but is turned on in late stage gonophores. In contrast, Wnt5 is 

expressed early in the most distal tip of both male and female gonophores, prior to Wnt3 (Figure 

9).  Later, this expression of Wnt5 shifts in female and male gonophores to the endoderm of 

evaginating tentacles (female gonophores) or to an additional domain falling along the edge of 

the developing cap (male gonophores) as it grows outward (Figure 10). These data are consistent 

with Wnt5 playing a role in initiating new gonophore axes during development, similar to what is 

found in the polyp stage of Ectopleura larynx. 

 

SFRP, which possibly prevents Wnt3 from binding to Frizzled1, is expressed in the earliest stage 

of gonophore development at the tip of developing gonophores. Here, it may be inhibiting Wnt3 

signaling until the body axis has been established, at which point its expression becomes 

localized to a small zone at the oral end of female gonophores, or a ring at the end of male 

gonophores (Figure 9C, G). The proximity of SFRP expression to Wnt5 in early stage 

gonophores, suggests that they are interacting in some way. However, Wnt5 expression appears 

to be endodermal in early gonophore development while SFRP expression is ectodermal.  While 

Wnt pathway inhibitors are not characterized in other hydrozoans, these data indicate that they 

may play a role in the formation of the primary body axis of the polyp and gonophore/medusa by 

delimiting regions of Wnt signaling in these developmental stages. 
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Wnt3, Wnt5, Frizzled1 and SFRP expression is associated with the development of oral 

structures of male and female gonophores 

Ectopleura larynx is sexually dimorphic, wherein female gonophores possess tentacle buds and 

male gonophores instead have a cap on the most oral end of the gonophore. This cap represents 

tentacle tissue that has evaginated but not completely formed separate tentacles (Berrill 1952). 

Our study reveals that the co-expression of the ligands Wnt3 and Wnt5 with the receptor 

Frizzled1 is directly correlated with formation of these oral structures on the most distal end of 

male and female gonophores. In female gonophores, co-expression of Wnt3, Wnt5 and SFRP is 

found in the endoderm of growing tentacles (Figure 10), while in males these three genes are co-

expressed in the endoderm of the distal cap on the end of the gonophore (Figure 10). The co-

expression of the Wnt ligands Wnt3 and Wnt5 with the Wnt receptor Frizzled1 in oral structures 

that are actively undergoing growth suggests that the interaction of these genes is possibly 

important for tissue proliferation in these structures. Co-expression of Wnt3 and Frizzled1 have 

not been previously reported in medusae or gonophores of hydrozoans. However, there is a 

report of co-expression of these genes in the hypostome (most oral end) of the polyp of 

Hydractinia echinata following metamorphosis (Müller et al. 2007), consistent with these genes 

interacting and activating the canonical Wnt signaling pathway in this region of the polyp. 

  

The expression of the putative Wnt pathway antagonist SFRP is counter to that of the expression 

pattern of Wnt3 and Frizzled in both female and male gonophores (Figure 10), and suggests a 

role for this gene in delimiting regions of Wnt signaling in the oral end of the gonophore. If 

SFRP competes with Frizzled1 to bind Wnt3 and prevent Frizzled1 activation, our data would be 

consistent with a role for SFRP in delimiting the morphogenetic gradient of Wnt3 signaling. 
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While SFRPs have not been characterized in cnidarians, our data are consistent with data in other 

metazoan taxa suggesting that SFRP delimits morphogenetic gradients of Wnt signaling (Jones 

and Jomary 2002, Kawano & Kypta 2003). 

 

Our data are consistent with reports of expression of Wnt pathway genes in the oral structures of 

Clytia hemaespherica medusae (Momose et al. 2007) and in the oral end of completely truncated 

Hydractinia echinata gonophores (Duffy et al. 2010). The expression patterns in Ectopleura 

larynx, a hydrozoan species displaying different degrees of medusa reduction, suggests that even 

though free-living medusae have been lost, the canonical Wnt pathway is being expressed in 

structures that are remnants of medusae, which were retained in evolution from medusae-bearing 

ancestors 

 
 
 

A possible role for the canonical Wnt pathway in medusa truncation 
 
The spadix is the region of the gonophore that corresponds to the stomach and mouth in fully-

formed medusa. In gonophores, this structure fails to develop completely. The absence of Wnt3 

and Frizzled1 co-expression in the spadix of male and female Ectopleura larynx gonophores 

suggests that the Wnt pathway is being downregulated in this structure. Frizzled1 is expressed 

without a Wnt ligand counterpart in the oral end of the spadix in female gonophores. 

Furthermore, in male gonophores, SFRP is expressed in the tip of the spadix suggesting that this 

antagonist is active in spadix tissues. The lack of Wnt3 and Frizzled1 co-expression in the spadix 

could explain why the spadix fails to develop completely into a mouth in gonophores. These data 

together suggest that the Wnt pathway is involved in the truncation medusa development in 

Ectopleura larynx.  
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Our data are consistent with previous studies examining the expression of Wnt pathway elements 

in medusae (Clytia hemaespherica) or gonophores (Hydractinia echinata). Data in Clytia 

hemaespherica show that Frizzled1 is expressed on the manubrium of the medusa (Wnt3 

expression has not been characterized in this species ) (Momose and Houliston 2007). In 

Hydractinia echinata, whose gonophores that lack all elements of medusa morphology, Wnt3 is 

expressed in the most oral tip of gonophores in a small subset of ectodermal cells, but  other Wnt 

pathway elements such as frizzled are not co-expressed in these structures (Plickert, Jacoby, 

Frank et al. 2006). The lack of frizzled expression in Hydractinina echinata gonophores and 

apparent downregulation of the Wnt signaling pathway could account for lack of development of 

any oral structures such as tentacles or a distal cap, as we find in Ectopleura larynx.  
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CONCLUSION 

 
Evolutionary modifications of life cycles stages is a prominent feature in the history of 

Hydrozoa.  Information about the developmental processes dictating these modifications can 

provide insight in to the complex patterns of life cycle evolution in Hydrozoa.  Our data 

presented here implicate canonical Wnt signaling in the development of the embryo, polyp, and 

truncated medusae of Ectopleura larynx. We provide evidence that temporal changes in the 

deployment of Wnt ligands during development may be implicated in a shift from indirect 

(planula) to direct (no planula) development in Aplanulata hydrozoans. We also suggest that 

changes in the spatial expression of Wnt pathway components are directly correlated with the 

differing levels of oral structure development. The absence of co-expression of Wnt3 and 

Frizzled1 in the developing stomach (spadix) of truncated medusae suggests that downregulation 

of Wnt pathway elements could be involved in truncation of medusa development. The 

differences in the expression of Wnt pathway elements in the two types of gonophores that 

display different degrees of medusae reduction, in conjunction with the downregulation of some 

of these genes, suggests that the Wnt pathway may play a role in the multiple instances of 

medusa reduction that have occurred in the evolution of Hydrozoa (Cartwright & Nawrocki, 

2010). The prevalence of Wnt pathway involvement in the development of all life history stages 

in hydrozoans makes future studies of this pathway important for illuminating the evolution and 

development of this diverse animal lineage. 
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I. APPENDIX TO CHAPTER 1: Proposal for revised diagnosis of the family Corynidae and 
some of its genera. 
 
Family Corynidae Johnston. 1836 

SYNONYMS:  Sarsiadae Forbes, 1848; Syncorynidae Allman, 1872; Codonidae Haecke, 1879; 
Polyorchidae A. Agassiz, 1862.  
 

DIAGNOSIS: The least inclusive clade comprising the species Coryne pusilla Gaertner, 
1774;  Stauridiosarsia producta (Wright, 1858); and Sarsia tubulosa (M. Sars, 1835). 

 
REMARKS: The clade includes at least the genera Coryne, Codonium, Dipurena, Sarsia, 

Stauridiosarsia, Scrippsia, and Polyorchis as has been shown by the present 
investigation. 
 
Schuchert (2001) additionally also included some or all of the following genera in this 
family: Bicorona Millard, 1966; Dicyclocoryne Annandale, 1915; Cladosarsia 
Bouillon, 1978a; and Nannocoryne Bouillon & Grohmann, 1994. We were unable to 
procure DNA samples of their respective type species and there is no clear 
morphological synapomorphy available that would tie them unambiguously to 
Corynidae. Therefore, the status of these genera remains unclear and must await further 
molecular phylogenetic studies. For the diagnoses of these genera see Schuchert (2001) 
or Bouillon et al. (2006).  
No member of the genus Spirocodon Haeckel, 1880 (currently in family Polyorchidae) 
could be included in the present study and it is unknown whether the genus also falls 
within the newly redefined Corynidae clade. 
Species of the family Halimedusidae Arai & Brinckmann-Voss, 1980 show some 
similarities to the Polyorchidae and might therefore map within the redefined 
Corynidae. If so, then also the genera Halimedusa Bigelow, 1916; Tiaricodon Browne, 
1902; and Urashimea Kishinouye, 1910 are potentially genera of the Corynidae. For 
the diagnoses of these genera see Bouillon et al. (2006).  
 

 
Coryne Gaertner, 1774 
TYPE SPECIES: Coryne pusillaGaertner, 1774 
DIAGNOSIS: The least inclusive clade comprising the species Coryne pusilla Gaertner, 1774; 

C. pintneri Schneider, 1898; and C. eximia Allman, 1859. 
REMARKS: Most, but not all, species of this clade have axillar gonophores. Coryne should 

also be used as the default genus for those species for which not enough molecular or 
morphological data is available to link them confidently to one of the redefined genera. 

  
Codonium Haeckel, 1879  
TYPE SPECIES: Codonium  codonoforum Haeckel, 1879, is herewith selected as type species 

of the genus. Codonium codonoforum is a subjective synonym of Sarsia prolifera Forbes, 
1884 (Mayer 1910; Schuchert 2001). 
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DIAGNOSIS: Monotypic, comprises Codonium prolifera (Forbes, 1884). REMARKS: The 
apomorphic trait of medusa-budding from the tentacle bulbs justifies the creation of a 
monotypic genus. 
 
Dipurena McCrady, 1859 
TYPE SPECIES: Dipurena strangulata McCrady, 1859 
DIAGNOSIS: The least inclusive clade comprising the species Dipurena strangulata McCrady, 

1859; D. simulans Bouillon, 1965; and D. halterata (Forbes, 1846). 
 
Sarsia Lesson, 1843  
TYPE SPECIES: Oceania tubulosa M. Sars, 1835. 
DIAGNOSIS: The least inclusive clade comprising the species Sarsia tubulosa (M. Sars, 1835); 

S. lovenii (M. Sars, 1846); and S. apicula (Murbach & Shearer, 1902). 
 
Stauridiosarsia Mayer, 1910 
TYPE SPECIES: Stauridia producta Wright, 1858 
DIAGNOSIS: The least inclusive clade comprising the species Stauridiosarsia producta 

(Wright, 1858); St. ophiogaster Haeckel, 1879; and St. gemmifera (Forbes, 1848). 
 
Scrippsia Torrey, 1909  
TYPE SPECIES: Scrippsia pacifica Torrey, 1909.  
DIAGNOSIS: Monotypic, see diagnosis in Bouillon et al. (2006). 
 
Polyorchis A. Agassiz, 1862 
TYPE SPECIES: Melicertum penicillatum Eschscholtz, 1829 

 
DIAGNOSIS: See diagnosis in Bouillon et al. (2006). 
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II. APPENDIX TO CHAPTER 2: Supplementary single-gene phylogenetic analyses 
 

 

Figure S1. Phylogenetic relationships of Aplanulata based on nuclear cytochrome oxidase 1 

(CO1) and analyzed under a GTR +  model in RaxML and partitioned by codon position. Node 

values indicate bootstrap support from 1000 replicates. Where not indicated, support < 70. 
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Figure S2. Phylogenetic relationships of Aplanulata based on mitochondrial 16S and analyzed 

under a GTR +  model in RaxML. Node values indicate bootstrap support from 1000 replicates. 

Where not indicated, support < 70. 
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Figure S3. Phylogenetic relationships of Aplanulata based on the small ribosomal subunit (18S) 

and analyzed under a GTR +  model in RaxML. Node values indicate bootstrap support from 

1000 replicates. Where not indicated, support < 70. 
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Figure S4. Phylogenetic hypothesis of relationships of Aplanulata based on the 28S large 

ribosomal subunit and analyzed under a GTR +  model in RaxML. Node values indicate 

bootstrap support from 1000 replicates. Where not indicated, support < 70. 
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III. APPENDIX TO CHAPTER 3: Supplementary experimental procedures and results. 
 
 
1. Supplementary Experimental Procedures 

Phylogenetic analyses 

Phylogenetic analyses incorporating RNA secondary structure were conducted on all markers 

separately and on a concatenated matrix in the parallel version of RaxML 7.2.8 (Stamatakis 

2006). For 18s and 28s, secondary structure models generated from large datasets of cnidarians 

were used (M.S. Barbeitos, pers. comm.). Phase masks from these models were generated using 

the perl script DCSE2jRNA.pl (M.S. Barbeitos, pers. comm.). Additionally, for 18S and 28S, a 

large cnidarian alignment was modified according to cnidarian RNA secondary structure using 

the script ReNAtonb.pl (M.S. Barbeitos, pers. comm.). A subset of taxa was taken for this 

analysis from larger alignments. For 16S, due to its rapid rate of evolution, no generalized 

cnidarian model has been developed. Instead, an RNA secondary structure model was generated 

from an existing Hydra oligactis model (Kayal and Lavrov 2008). This model was hand edited 

after being compared to an alignment for a number of Hydra species. Next, a phase mask was 

generated from this model using DCSE2jRNA.pl. This phase mask was used in the program 

RNASalsa (Stocsits, Letsch, Hertel et al. 2009), along with a file of 16S data of taxa for this 

study, to make a generalized RNA secondary structure model and corresponding alignment for 

16S analyses. 

 

For each analysis, the phase mask representing the RNA secondary structure was used in 

addition to the final alignment. Analyses under GTR +  + RNA16, RNA16A, or RNA16B 

model was run for each marker and for the concatenated dataset (three analyses per matrix), 

following model designation from the program PHASE. An AIC test was used to determine the 
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best model (16, 16A or 16B) per gene and for the concatenated analysis (Akaike 1987). 1000 

bootstrap replicates were generated for each run. Trees were visualized in Mesquite and FigTree 

(Drummond and Rambaut 2007, Maddison and Maddison 2007).  

 

Character correlation tests 

Character correlation analyses on a reduced phylogeny containing only Aplanulata species were 

performed in Mesquite using Pagel's Correlation Method (Maddison and Maddison 2007, Pagel 

1994), which tests for the independent evolution of two binary characters. 1,000 Monte Carlo 

simulations were conducted in order to calculate a p value (see Pagel 1994 for a complete 

description of the method). A cutoff of 0.05 was used to determine statistical significance. p 

values < 0.05 indicate that a dependent model of evolution over an independent model of 

evolution is strongly favored. 

 

We recoded multistate characters as binary for each pairwise comparison between coloniality 

and brooding, attached gonophores, and exposed, hard perisarc. Because character state 

uncertaintly is not allowed for this test, we coded uncertain character states by conducting an 

equal weights parsimony ancestral character state reconstruction in Mesquite. 

 

In Situ Hybridization Methods 

Sense and antisense RNA probes were generated by amplifying the cloned manacle insert using 

Ambion's T7/T3 MAXIscript kits and according to manufacturer's instructions. Polyps were 

fixed overnight at 4°C in 4% paraformaldehyde (PFA). Following fixation, polyps were taken 

through 3, 10-minute washes in PBST. Polyps were incubated at 90°C for 10 minutes in PBST, 
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and post-fixed for 20 minutes at RT in 4% PFA in PBST. A 20mg/mL proteinase-k wash was 

conducted for 20 minutes to permeate tissues. 

 

Tissues were blocked for 10 minutes in Roche blocking reagent at room temperature with 

rocking. Pre-hybridization was conducted by first transitioning polyps from blocking buffer into 

hybridization buffer (10 minute wash at room temperature), and then incubating in pre-warmed 

hybridization buffer for 2 hours at 50°C. Probe was heated at 80°C for 10 minutes, and added to 

tissues at 0.04 ng/uL. Tissues were hybridized overnight at 50°C. 

 

Post-hybridization washes were conducted as following: One wash at 55°C for 10 minutes in 

hybridization buffer. One wash at 50°C for 15 minutes in 50%-SSC, 2x-SSC, 0.1% Tween. One 

wash at 50°C for 15 minutes in 2x-SSC, 0.1% Tween. Two washes at 50°C for 15 minutes in 

0.2x-SSC, 0.1% Tween. One 5 minute wash at RT in PBST. Tissues were blocked in 1% BSA in 

fresh PBST for one hour at RT, followed by a one hour incubation in pre-absorbed anti-DIG-AP. 

Incubation was conducted overnight at 4°C a concentration of 1:10,000. Final washing was 

conducted as follows: four, 20 minute washes with PBST at room temperature, followed by 

three, 5-minute washes in AP-buffer. Colorimetric reaction was attained by NBT/BCIP staining 

for 15 minutes - 72 hours. Polyps were mounted in 90% glycerol.  

 

Quantitative Real-Time PCR (qRT-PCR)  

RNA was isolated using TriReagent (Invitrogen) following standard protocols, and then DNAse 

digested. RNA was quantified and reverse-transcribed using Superscript III RT (Invitrogen), 

using equal quantities for each tissue-derived pool. qRT-PCR was conducted using a DNA 
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Engine Opticon 2 real-time PCR machine (MJ Research, Ramsey, MN, USA), SYBR Green I 

(Invitrogen) and DyNAzyme II Hot Start DNA Polymerase (Finnzymes). Multiple control genes 

were evaluated, and Beta Actin was selected as a control for normalization based on its 

invariability across tissue pools. For all genes, expression in each tissue was evaluated in 

quadruplicate, and two independent experimental replicates were conducted. Data analysis on 

qRT PCR data was conducted by calculating the relative expression ratios of each gene, 

including control gene, in each tissue. For each reaction, target gene expression was inferred 

relative to control gene levels.  

 

Morphological Character Coding 

Characters were coded from relevant literature as well as lab observation. Four characters 

suspected to be related to colony development were coded as binary: hard, exposed perisarc 

(present/absent); coloniality (present/absent); brooding (present/absent); attached gonophore 

(present/absent). See figure S1.  
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Figure S1. Morphological characters, phylogenetic relationships, and colony evolution of 
Aplanulata (A) Aplanulata polyp types. Left to right: solitary Corymorpha pendula; colonial 
Ectopleura larynx. (B) Reproductive structure types of Aplanulata. Top: free-swimming medusa 
of Ectopleura dumortieri. Bottom: Reduced reproductive structures attached to Zyzzyzus warreni 
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polyp. (C) Perisarc. Top: epithelial structure of the body column of Hydra vulgaris, 
demonstrating naked ectoderm; Bottom: epithelial structure of Ectopleura larynx stalk, 
illustrating perisarc. (D) Phylogram showing phylogenetic hypothesis based on ML analysis of 
16S + 18S + 28S sequences in RaxML under a GTR +  + i + RNA16 model. All bootstrap 
support values indicated at nodes and calculated from 1000 replicates. (E) Evidence suggests that 
the re-evolution of coloniality occurred in a step-wise fashion. Following the loss of coloniality, 
some solitary species could still form detached buds. Subsequently, asexual budding was 
completely lost. 4-polyp colonies that form by aboral tissue growth (not budding) evolved at the 
base of the genus Ectopleura. The ability to form large colonies through parent-offspring fusion 
subsequently allowed the diversification of large colonial species in the genus Ectopleura. Hydra 
vulgaris and Ectopleura larynx illustrations modified from [9]. Corymorpha pendula modified 
from [10,11]. Ectopleura larynx colony illustration modified from [12]. E. dumortieri and Z. 
warreni photographs with permission of A.E. Migotto and C. Campos. ect = ectoderm; end = 
endoderm; per = perisarc. This figure is associated with Figure 2 in the main text. 
 
 

Character 1 - Polyp organization. 0 = solitary, 1 = colonial, ? = unknown. We defined 

coloniality as connected polyps that share epithelial tissue and a gastrovascular cavity. Species 

within Aplanulata are solitary (Fig. S1A), form small colonies (comprised of up to four polyps) 

or form dense, bush-like colonies (many hundreds of polyps) (Fig. S1A). We coded this 

character as binary, with species who form dense, permanent colonies of many to a hundred 

polyps coded as colonial, as well as sparse colonies of only a few polyps (e.g. Ectopleura 

wrighti) coded as colonial. Hybocodon chilensis is described in the literature as forming small 

colonies, but its polyps are connected by their skeletons only and do not form true integrated 

colonies (Galea 2006); thus, this species was coded as solitary. Solitary species of Aplanulata 

that form buds that always detach (e.g. Hydra spp. and others) or never form buds at all (e.g. 

Corymorpha and others) were both coded as the same character state. Trachymedusae and 

Limnomedusae outgroups were coded as solitary, as the species sampled either form small 

polyps (Olindias), or produce an 'actinula' (Aglaura), which we interpret as a primary polyp. For 

binary coding for character correlation analyses, species were coded as reported above, except 



155 

that unknown character states were inferred from a least squared change parsimony analysis in 

Mesquite (Maddison and Maddison 2007). 

Character 2 - Absence/presence of a free-living, pelagic reproductive structure. 0 = pelagic 

gonophore; 1 = attached gonophore, ? = unknown, n/a = no gonophore. The sexual, pelagic 

medusa stage is found in some members of Tubulariidae and Corymorphidae.  The rest of the 

sampled species produce their gametes in attached gonophores, or, in the case of Hydridae that 

lack gonophores altogether, produce their gametes within the epidermis (Fig. S1B).  Species 

were scored as possessing a free-living, pelagic medusa if their reproductive structure detaches 

and feeds in the water column. Reduced reproductive structures called medusoids were only 

coded as medusae if they detach from the polyp and are known to feed. All other reproductive 

structures were coded as 'fixed gonophore.' Hydra do not make a gonophore (gametes produced 

in the epithelia of the polyp body column), so members of this genus were coded 'n/a.' For binary 

coding for character correlation analyses, species were coded as above, except that Hydra spp. 

were coded as 'fixed gonophore.' Unknown character states were inferred from a least squared 

change parsimony analysis in Mesquite (1). 

Character 3 - Absence/presence of brooding behavior. 0 = brooding absent, 1 = brooding 

present, ? = unknown. All major clades of Aplanulata, with the exception of Hydridae, have 

members that brood (Fig. 2). Brooding structures develop on the body of the polyp and either 

remain attached throughout the development of the juvenile, or are released as swimming 

medusae (free-living jellyfishes). In Aplanulata, young develop directly in these structures and 

bypass a larval stage. In contrast, indirect-developing hydrozoans spawn eggs or sperm directly 

from the attached or pelagic gonophore. For this character, species that brood developing young 

in gonophores or medusae were coded as 'brooding present,' and all others were coded as 
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'brooding absent.' For binary coding for character correlation analyses, species were coded as 

reported above, except that unknown character states were inferred from a least squared change 

parsimony analysis in Mesquite (Maddison and Maddison 2007). 

Character 4 - Presence of hard, exposed perisarc covering the ectoderm of the polyp or stolonal 

system. 0  = hard, exposed perisarc absent, 1 = hard, exposed perisarc present, ? = unknown. 

Exposed, hard perisarc is present in all members of Tubulariidae, except Zyzzyus warreni and 

Ralpharia gorgoniae (Fig. 2). A typical hydrozoan perisarc is composed of a layer of acellular 

material (usually chitin) that is smooth and rigid and covers the ectoderm of the polyp body or 

stolonal system (Fig. S1C). The perisarc may cover a small portion of the polyp or may cover the 

entire length of the stolonal system (e.g. in Ectopleura polyps). Such a skeleton provides support 

for an upright growth form. Members of Hydra and the species Hataia parva completely lack a 

persarc. Species of the genera Corymorpha, Euphysa, Branchiocerianthus and Zyzzyzus have a 

thin, gelatinous or membranous covering over the polyp. Because these coverings are thin and do 

not function as support for an upright structure, we do not consider them a true perisarc; we 

coded these species as 'hard, exposed perisarc absent.' Species that possess a hard perisarc that is 

not exposed, due to ecological factors such as substrate use (Ralpharia gorgoniae, Zyzzyzus 

warreni) or small size (Candelabridae), were coded as 'hard, exposed perisarc absent.' All other 

Aplanulata taxa were coded as 'hard, exposed perisarc present.' For binary coding for character 

correlation analyses, coding was as reported above, except that unknown character states were 

inferred from a least squared change parsimony analysis in Mesquite (Maddison and Maddison 

2007). 
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II. Supplemental Results 

Supplementary Table 1 (S1). Specimens, Genbank IDs and Character Coding. Genbank IDs for 

new sequences generated for this study are bolded. Coding is indicated for specimens included in 

combined analysis only. 

Higher Level  Family  Species  28s 18s  16s  Char 1 Char 2 Char 3 Char 4 
Voucher or Published 
Reference Sequence 

Aplanulata  Candelabridae  
Candelabrum 
austrogeorgiae -  -  FN424120  - - - - Cantero et al. (2010)  

Aplanulata  Candelabridae  Candelabrum cocksii  EU879928  EU876556  AY512520  0 1 1 1 MHNGINVE29591  

Aplanulata  Candelabridae  Candelabrum sp.  EU879929  EU876557  EU876530  0 1 ? 1 - 

Aplanulata  Corymorphidae  
Branchiocerianthus 
imperator JN594035 JN594046 - 0 ? ? 0 - 

Aplanulata  Corymorphidae  
Corymorpha 
bigelowi  EU272563  EU876564  EU448099  0 0 0 0 KUNHM2829  

Aplanulata  Corymorphidae  
Corymorpha 
glacialis  JN594036 JN594047 FN687549  0 1 1 0 MHNGINVE67050  

Aplanulata  Corymorphidae  
Corymorpha 
groenlandica  JN594037 JN594048 FN687551  0 1 1 0 MHNGINVE67051  

Aplanulata  Corymorphidae  
Corymorpha 
groenlandica  -  -  FN687550  - - - - MHNGINVE63302  

Aplanulata  Corymorphidae  
Corymorpha 
intermedia  EU879930  AY920759  FN687910 ? 0 0 ? 

Collins et al. (2006),  
Schuchert (2010) 

Aplanulata  Corymorphidae  Corymorpha nutans  EU879931  EU876558  FN687546  0 0 0 0 MHNGINVE48745  

Aplanulata  Corymorphidae  Corymorpha nutans  -  -  FN687549  - - - - MHNGINVE67050  

Aplanulata  Corymorphidae  Corymorpha nutans  -  -  FN687548  - - - - Schuchert (2010)  

Aplanulata  Corymorphidae  Corymorpha nutans  -  -  FN687547  - - - - Schuchert (2010) 

Aplanulata  Corymorphidae  Corymorpha pendula  EU879936  EU876565  EU876538  0 1 0 0 KUNHMDIZ2962  

Aplanulata  Corymorphidae  Corymorpha sarsii  JN594038 JN594049 -  0 1 0 0 - 

Aplanulata  Corymorphidae  Corymorpha sp.  -  -  FN424121  - - - - Cantero et al. (2010)  

Aplanulata  Corymorphidae  Euphysa aurata  EU879934  EU876562  EU876536  0 0 0 0 MHNGINVE48753  

Aplanulata  Corymorphidae  Euphysa aurata  -  -  FN687552  - - - - Schuchert (2010)  

Aplanulata  Corymorphidae  Euphysa japonica  -  EU301605  -  - - - - 
Lindsay, D.J. et al. 
(2008)  

Aplanulata  Corymorphidae  Euphysa tentaculata  EU879935  EU876563  EU876537  ? 0 0 ? 
Cartwright & 
Nawrocki (2010)  

Aplanulata  Corymorphidae  Hataia parva  JN594034 JN594045 JN594033 0 1 1 0 UF5407  

Aplanulata  Hydridae  Hydra canadensis  JN594039 JN594050 GU722797  0 n/a 0 0 Martinez et al. (2010)  

Aplanulata  Hydridae  Hydra circumcincta  EU879939  EU876568  GU722764  0 n/a 0 0 

Cartwright & 
Nawrocki (2010) , 
Martinez et al. (2010) 

Aplanulata  Hydridae  Hydra hymanae  JN594040 JN594051 GU722760  0 n/a 0 0 Martinez et al. (2010)  

Aplanulata  Hydridae  Hydra oligactis  JN594041 JN594052 GU722781  0 n/a 0 0 Martinez et al. (2010)  

Aplanulata  Hydridae  Hydra oxycnida  -  -  GU722789  - - - - Martinez et al. (2010)  

Aplanulata  Hydridae  Hydra utahensis  JN594042 JN594053 GU722774  0 n/a 0 0 Martinez et al. (2010)  

Aplanulata  Hydridae  Hydra viridissima EU879940 EU876569  GU722756  0 n/a 0 0 Martinez et al. (2010)  

Aplanulata  Hydridae  Hydra vulgaris  JN594043 JN594054 GU722817  0 n/a 0 0 Martinez et al. (2010) 

Aplanulata  Tubulariidae  Ectopleura crocea  EU879932  EU876559  EU876533  1 1 1 1 MHNGINVE34010  

Aplanulata  Tubulariidae  Ectopleura crocea  EU883554  EU883548  EU883543  1 1 1 1 
Cartwright & 
Nawrocki (2010)  

Aplanulata  Tubulariidae  Ectopleura dumorteri  -  -  FN687542  - - - - Schuchert (2010)  

Aplanulata  Tubulariidae  
Ectopleura 
dumortieri  EU272561  EU876560  EU305474  0 0 0 1 

Pers. Voucher: Alberto 
Lindner, AL525  

Aplanulata  Tubulariidae  
Ectopleura 
dumortieri  EU879933  EU876561  EU876534  0 0 0 1 

Cartwright & 
Nawrocki (2010)  

Aplanulata  Tubulariidae  
Ectopleura 
dumortieri  -  -  FN687543  - - - - Schuchert (2010)  

Aplanulata  Tubulariidae  Ectopleura larynx  EU879943  EU876572  EU876545  1 1 1 1 KUNHMDIZ2963  

Aplanulata  Tubulariidae  Ectopleura larynx  EU883549  AY920760  AY787877  1 1 1 1 MHNGINVE29389  

Aplanulata  Tubulariidae  Ectopleura larynx  -  -  FN687535  - - - - MHNGINVE54563  
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Aplanulata  Tubulariidae  Ectopleura larynx  -  -  FN687536  - - - - MHNGINVE62576  

Aplanulata  Tubulariidae  Ectopleura marina  EU883553  EU883547  EU883542  1 1 1 1 
Cartwright & 
Nawrocki (2010)  

Aplanulata  Tubulariidae  Ectopleura wrighti  JN594044 JN594055 FN687541  1 0 0 1 MHNGINVE27331  

Aplanulata  Tubulariidae  Hybocodon chilensis  EU879937  EU876566  EU876539  0 0 0 1 MHNGINVE36023  

Aplanulata  Tubulariidae  Hybocodon prolifer  EU879938  EU876567  EU876540  0 0 0 1 
Cartwright & 
Nawrocki (2010)  

Aplanulata  Tubulariidae  Ralpharia gorgoniae  EU272590  EU272633  EU305482  0 1 1 1 KUNHM2778  

Aplanulata  Tubulariidae  Ralpharia sp.  -  JN594056 -  - - - -  

Aplanulata  Tubulariidae  Tubularia indivisa  EU879942  EU876571  EU876544  0 1 1 1 
Cartwright & 
Nawrocki (2010)  

Aplanulata  Tubulariidae  Tubularia indivisa  -  -  FN687532  - - - - Schuchert (2010)  

Aplanulata  Tubulariidae  Tubularia indivisa  -  -  FN687530  - - - - MHNGINVE60972  

Aplanulata  Tubulariidae  Tubularia sp.  -  -  FN424153  - - - - Cantero et al. (2010)  

Aplanulata  Tubulariidae  Zyzzyzus warreni  EU272599  EU272640  EU305489  0 1 1 0 KUNHM2777  

Capitata  Corynidae  
Stauridiosarsia 
ophiogaster  EU272560  EU272615  EU305473  1 0 0 0 KUNHM2803  

Capitata  Solanderiidae  Solandaria secunda  EU305533  EU305502  EU305484  1 1 0 1 KUNHM2611  

Filifera I  Proboscidactylidae 
Proboscidactyla 
flavicirrata  EU305527  EU305500  EU305480  1 0 0 0 USNM1074994  

Filifera I  Ptilocodiidae  
Hydrichthella 
epigorgia  EU272569  EU272622  EU305478  1 1 0 0 KUNHM2665  

Filifera II  Eudendriidae  
Eudendrium 
californicum  EU305513  EU305492  EU305475  1 1 0 1 KUNHM2850  

Filifera II  Eudendriidae  
Eudendrium 
glomeratum  FJ550440  FJ550583  AM991301  1 1 0 1 MHNGINVE49717  

Filifera III  Hydractiniidae  Clavactinia gallensis  EU272553  EU272610  EU448101  1 1 0 0 MHNGINVE33470  

Filifera III  Stylasteridae  
Lepidopora 
microstylus  EU272572  EU272644  EU645329  1 1 0 0 USNM1027724  

Filifera IV  Bougainvillisae  Garveia grisea  EU272588  EU272632  AM183131  1 1 0 1 MHNGINVE34436  

Filifera IV  Pandeidae  Hydrichthys boycei  EU272570  EU305496  EU448102  1 0 0 0 MHNGINVE37417  

Leptothecata  Campanulariidae Obelia bidentata  FJ550446  AY789754 AY789815 1 0 0 1 MHNGINVE37294  

Leptothecata  Sertulariidae  
Sertularella 
mediterranea  FJ550403  FJ550546  FJ550479  1 1 0 1 MHNGINVE32948  

Limnomedusae Olindiasidae  Olindias phosphorica  EU247808  AY920753  AY512509  0 0 0 0 MHNGINVE29811  

Siphonophorae Clausophyidae  Clausophyes ovata  EU305508  AY937336  AY935294  1 1 0 0 YPM35349  

Siphonophorae Forskaliidae  Forskalia edwardsi  EU305516  AY937354  AY935312  1 1 0 0 YPM35036  

Trachymedusae Rhopalonematidae  Aglaura hemistoma  EU247803  EU247818  EU293984  0 0 0 0 MHNGINVE31745 

 



159 

Supplementary Table 2 (S2). RNA model selection data for phylogenetic analyses. 

Marker RNA Model 
# Free 
Parameters 

-ln(L) Score AIC AIC  

16 134 8715.32 8849.32 25.14 

16A* 19 8805.18 8824.18 n/a 

16s 

16B 15 8913.16 8928.16 103.98 
16* 134 4590.53 4724.53 n/a 

16A 19 4745.56 4764.56 40.03 

18s - LSU 

16B 15 5075.34 5090.34 325.78 
16* 134 13889.71 14023.71 n/a 

16A 19 14339.69 14358.69 334.98 

28s - SSU 

16B 15 15271.17 15286.17 1262.46 
16* 134 28032.51 28166.51 n/a 
16A 19 32705.57 32724.57 4558.46 

16s + 18s + 
28s 

16B 15 34093.72 34108.72 5942.21 
AIC  = The difference between the lowest AIC value and that of the tested model.  
* indicates best-fitting model based on AIC score. 
 

Character Correlation Analyses 

Coloniality was correlated with brooding (p = 0.02; 1,000 simulations) and with the presence of 

an exposed, hard perisarc (p = 0.0; 1,000 simulations). Coloniality was also correlated with the 

simultaneous presence of all three characters (p = 0.0; 1,000 simulations). 
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Figure S2. Cladogram showing phylogenetic hypothesis based on ML analysis of mitochondrial 
16s rRNA sequences in RaxML under model GTR +  + i + RNA16A. All bootstrap support 
values indicated at nodes and calculated from 1000 replicates. 
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Figure S3. Cladogram showing phylogenetic hypothesis based on ML analysis of mitochondrial 
18s rRNA sequences in RaxML under model GTR +  + i + RNA16. All bootstrap support 
values indicated at nodes and calculated from 1000 replicates. 
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Figure S4. Cladogram showing phylogenetic hypothesis based on ML analysis of 28s rRNA 
(LSU) sequences in RaxML under model GTR +  + i + RNA16. All bootstrap support values 
indicated at nodes and calculated from 1000 replicates.  
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