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Abstract 

Parthenogenesis is a reproductive mode that does not require males. Though theoretically 

advantageous, its rarity among metazoans suggests otherwise. Paradoxically, some 

unisexual species within the genus Aspidoscelis appear to be thriving by reproducing 

through obligate parthenogenesis. Formed via hybridization between different bisexual 

species, these lizards apparently reap the benefits of both hybrid vigor and higher 

reproductive potential. Previous studies have demonstrated the high degree of 

heterozygosity between generations, which contributes to the success of these lineages; a 

loss of heterozygosity would likely be accompanied by a decrease in fitness. How 

meiosis is modified in these animals is unknown. The predominant hypothesis suggests 

that endoreplication takes place prior to meiosis, resulting in a two-fold increase in DNA; 

however this has not been definitively shown. Further, the downstream modifications that 

result in a heterozygous gamete have merely been speculated upon.  

In the following thesis, meiosis within three parthenogenetic species is investigated. 

Quantification of DNA in germinal vesicles of the diploid parthenogen A. tesselata and 

the bisexual species A. gularis demonstrated that the parthenogen contains two-fold more 

DNA, despite equivalent somatic cell ploidy. Chiasmata were present on diplotene-stage 

chromosomes in both species, indicating that recombination is not bypassed. 

Additionally, synaptonemal complexes were found during pachytene in each species. 

Maintenance of heterozygosity is highly dependent on chromosome pairing in the 

parthenogen. Pairing between homologous chromosomes would result in a decrease; 

whereas pairing between identical (sister) chromosomes resulting from the additional 

DNA doubling event would preserve heterozygosity. Using homolog specific FISH 
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probes in the parthenogen A. neomexicana, sister chromosome pairing is revealed. Thus, 

sister chromosome pairing after an additional DNA doubling allows for maintenance of 

heterozygosity in Aspidoscelis parthenogens. Secondly, four self-sustaining lineages of a 

new tetraploid species were generated from the mating between the diploid bisexual 

species Aspidoscelis inornata and triploid parthenogen A. exsanguis. The identity of these 

hybrids was confirmed by genotyping analysis. Females retain the ability to reproduce 

parthenogenetically through the doubling mechanism described in diploid species. These 

tetraploids have demonstrated how ploidy elevation hypothetically occurs in natural 

parthenogens. The mechanisms described in this thesis may be utilized in other 

parthenogens. Recent findings and future directions based on this work are presented.  
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An Evolutionary Conundrum 

In the dry and arid southwestern regions of the U.S. and northern Mexico, throughout 

disturbed desert areas uninhabitable by many native animals, an evolutionary conundrum 

is taking place. Within some of these environments, lizards of the genus Aspidoscelis 

appear to be thriving – but not all individuals within Aspidoscelis are created equal. The 

parthenogenetic, or unisexual, species within the genus are primarily responsible for this 

inhabitation. And although sexual reproduction prevails among most multicellular 

organisms, there is an obvious discrepancy in the Aspidoscelis genus. 

Though uncommon, parthenogenesis occurs in a subset of organisms, and some 

such species adapt to harsh environments better than related bisexual counterparts. As 

one extreme example, the Bdelloid rotifers have apparently survived for millions of years 

without sex. How are rotifers and other Aspidoscelis parthenogens successful, and what 

sets them apart from other animals in which asexual reproduction has never been 

reported? Perhaps more importantly, why is parthenogenesis rare, even among reptiles? 

Unisexual Aspidoscelis species arose from interspecific hybridization between closely 

related sexual species, however, unlike other hybrids, these animals are capable of 

escaping sterility. How this is achieved is not well understood.  

 

Aspidoscelis  

A breakthrough in herpetology came from the Caucasus region of Eurasia in 1958, when 

Darevsky described the first known unisexual lizard species in the genus Lacerta 

(Darevsky, 1958). This fueled the search for other parthenogenetic species, and led to its 
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discovery in Aspidoscelis. The first publications reporting all-female Aspidoscelis 

lineages arrived in 1962, after initial observations noted an absence of males (Duellman 

and Zweifel, 1962; Maslin, 1962; Wright, 1993). The genus was originally grouped with 

South American Cnemidophorus species until mitochondrial data revealed significant 

variation that led to the separation of these two regions (Reeder et al., 2002a). Thereafter 

the genus has been referred to as Aspidoscelis. To date, the genus consists of at least 50 

recognized species, of which approximately one-third are unisexual.  

Aspidoscelis parthenogens were formed by hybridization between bisexual 

progenitors. In some cases, the parentage is assumed based on morphology, or confirmed 

by molecular techniques. Noted for harboring high levels of heterozygosity, the 

parthenogen contains several distinct alleles which can be used to identify parentals. 

Indeed, parentage has been affirmed for several lineages by genomic or allozyme 

analysis. Inherent to the hybridization event is the convergence of two distinct genomes 

and a high correlation with the phenomenon known as hybrid vigor. Similarly, 

Aspidoscelis parthenogens apparently benefit from the union of two (or in some cases, 

more) separate genomes. Unlike other hybrids, which commonly experience reduced 

fertility, successful Aspidoscelis lineages are fertile and maintain high levels of 

heterozygosity at tested loci (Neaves and Gerald, 1968a). Preservation of heterozygosity 

from generation to generation is taken to an extreme, as these parthenogenetic species 

reproduce in a clonal manner (Cuellar, 1976; Cuellar and Smart, 1977). This high 

conservation of heterozygosity appears to be linked with the meiotic aberration that 

allows this species to reproduce clonally.  
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Whiptails are among the most widely researched lizards, after only Sceloporus and 

Anolis. Studied not only for an unusual reproductive biology, their ubiquity in North 

America makes them amenable to the study of natural unisexual populations, including 

behavioral aspects, physiology, and population genetics, among other interests 

(Hernández-Gallegos et al., 2003; Hotchkin and Riveroll, 2005; O’Connor et al., 2011).  

 

Phylogeny 

The plasticity of speciation within Aspidoscelis has long been the bane of 

herpetologists who have attempted to classify it (Wright, 1993). Parthenogenetic 

combinations can become very complicated. The current phylogenetic consensus has 

divided the genus into five groups: A. cozumela, A. deppii, A. sexlineata, A. tesselata, and 

A. tigris. The latter three are the source of the majority of parthenogens (Reeder et al., 

2002a). As with most obligate parthenogenetic vertebrates, diploid Aspidoscelis 

parthenogens arose from hybridization between two different bisexual species, and 

triploid lineages arose via addition of a sperm genome from a bisexual male onto the 

diploid parthenogen oocyte (Cole, 1979; Lowe and Wright, 1966; Neaves, 1969a; Neaves 

and Gerald, 1968a). One of the most commonly studied parthenogens, A. tesselata, 

resulted from the mating between A. tigris marmorata and A. gularis septemvittata, (Fig. 

1). Both of these parental species are extant, which allows for comparative analyses 

between parthenogen and parentals, and can answer important evolutionary biology 

questions. On the contrary, triploid A. exsanguis, A. opatoe, A. uniparens, and A. velox 

arose from a theoretical intermediate which no longer exists, and although the bisexual 

species persist, the inability to sample the intermediate occludes several meaningful 
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experiments. For example, using populations of A. tesselata and A. tigris marmorata for 

mitochondrial DNA restriction analyses revealed less than 1% nucleotide divergence 

between these two groups as well as among individuals of the A. tesselata population,  

indicating that (a) A. tigris is the maternal parent of A. tesselata, and (b) the hybridization 

event that resulted in this population occurred relatively recently (Iii et al., 1989). These 

findings appear consistent across Aspidoscelis; the number of hybridization events that 

created most, if not all, existing parthenogenetic species is estimated to be greater than 

one, but still relatively few (Iii et al., 1989; Moritz et al., 1992; Moritz et al., 1989b).  

  Interestingly, while parthenogens have risen within the A. sexlineata group, no 

such phenomenon seems to occur in A. tigris, which apparently requires hybridization 

Fig. 1. Phylogeny of a subset of Aspidoscelis bisexual lizards (left) and resulting hybrids, i.e. 
unisexual species, (right). Adapted from (Reeder et al., 2002a).  
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with the A. sexlineata group for parthenogen formation. These A. tigris / A. sexlineata 

parthenogens comprise a separate group, A. tesselata, whereas unisexual lineages created 

within the A. sexlineata clade retain their group classification. In practice, each 

population of hybrids is considered a species, although this is not without debate; a 

suggestion to designate each hybridization event has been put forth, however it is not 

very practical and therefore is not widely used (Cole, 1990; Frost and Hillis, 1990).  

 

Ploidy 

Although bisexual species in the Aspidoscelis genus are strictly diploid, unisexual 

whiptails do not appear to be constrained to two genomes. Homolog pairing in the 

bisexual probably plays a role in this restriction, as odd-ploidy animals rarely reproduce 

sexually [see exception (Stock et al., 2012)], but presumably, the mechanism of meiosis 

in unisexuals circumvents the traditional pairing process. As illustrated in Fig. 2, triploid 

unisexual species abound in the genus: of the eleven documented unisexual species in 

Aspidoscelis, seven are triploid (Vrijenhoek et al., 1989). This suggests that perhaps 

triploids have an advantage over diploids, especially when considering that a diploid 

intermediate would have co-existed for some time with the triploid. Muller’s ratchet – an 

evolutionary hypothesis which suggests that unisexuals accrue detrimental alleles – may 

play role, as three genomes would increase gene redundancy. This might alleviate the 

effect of any mutations, thereby allowing a triploid species to outcompete a diploid. It is 

as yet unknown what other differences exist between a diploid and triploid. Is the 

mechanism of meiosis conserved in diploid and triploid unisexuals? Do other advantages 
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exist, such as increased physiological plasticity, which might favor a triploid genome in 

the harsh environments of the southwestern U.S.?   

Remarkably, ploidy does not culminate with three genomes; two female tetraploid 

Aspidoscelis have been found in nature; in one case, the animal appeared to be sterile, 

and in the other, fertility was apparent, but validation was unfortunately not possible 

(Hardy and Cole, 1998; Neaves, 1971). The viability of a tetraploid species is interesting 

in its own right; however, more confounding may be the absence of these species in a 

genus in which viability is clearly possible. The ratchet-supporting hypothesis that ‘more 

is better’ does not appear to apply at the tetraploid level in Aspidoscelis, and several more 

questions emerge: How are four sets of chromosomes disadvantageous? Are such animals 

fertile? Can meiosis continue with so much DNA that presumably necessitates pairing, 

etc., and other processes that are normally managed with only two sets? The evolutionary 

biology and history of these animals are fascinating, and answers to these questions will 

undoubtedly be enlightening.  

 

Geography 

 While Aspidoscelis parthenogens predominantly occupy the Southwest, bisexual 

species within the A. sexlineata group are ubiquitous throughout the U.S. and Mexico, 

distributed as far as the East Coast of the U.S. (see Fig. 2). A. tigris, on the other hand, is 

distributed primarily in the West, with extensions into Northern Oregon. The overlap 

between these two territories correlates with the prevalence of parthenogen inhabitation. 

There is an obvious lack of parthenogen A. sexlineata dispersal, despite its overall 

distribution and higher propensity to form viable inter-specific hybrids, e.g. A. exsanguis 
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and A. uniparens. This can probably be explained by two observations. First, species 

within the A. sexlineata clade lack considerable sympatry, decreasing the likelihood for 

interspecific interactions (Wright, 1993).  Secondly, successful asexual lineages appear to 

originate from a single or few hybridization events (Parker and Selander, 1976). 

Illustrating this is the observation of hybrids at the interface between bisexual species, the 

majority of which have been sterile (Dessauer et al., 2000; Taylor et al., 2001; Walker et 

al., 1990). Thus, hybridization appears to correlate with parthenogenesis, but it is not 

sufficient to create a fertile lineage.  

 

Meiosis 

Overview 

Fig. 2. Geographic distribution of two Aspidoscelis parthenogenetic species and their bisexual 
parental species. (a) Bisexual A. tigris.Bisexual A. sexlineata group: (b) A. inornata and (c) A. 
gularis. Parthenogenetic A. tesselata group: (d) A. neomexicana, hybrid of A. tigris and A. 
inornata (e) A. tesselata, hybrid of A. tigris and A. gularis Adapted from (Wright, 1993). 
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 A highly dimorphic mechanism used to generate gametes, meiosis is largely 

conserved within each sex and provides the mechanism by which sexual reproduction can 

occur (see Fig. 3). By halving the genome and creating 1C gametes, ploidy can be 

restored upon union of sperm and oocyte.   

At the onset of meiosis is an S-phase that, karyotypically, is indistinguishable from 

that of mitosis, but is actually unique in several aspects. First, the pre-meiotic S-phase is 

longer: by a factor of 3 in yeast, and in mammals not as drastic, but still significant (11.5 

hour compared to 10 hour in somatic cells) (Kofman-Alfaro and Chandley, 1970; 

Wartenberg et al., 1998). The reason for this increase is unknown, although in yeast it 

may be an artifact of nutrient starvation required for sporulation rather than a meiosis-

specific effect (Blitzblau et al., 2012). Second, the meiotic replication machinery has 

novel factors included, distinct from mitosis. CLB5 mutants were initially characterized 

for a mild mitotic S-phase defect and failure in meiotic progression, but later shown – 

along with another cyclin, CLB6 – to be essential for normal meiotic S-phase (Epstein 

and Cross, 1992; Stuart and Wittenberg, 1998).  

Homologous chromosomes resulting from S-phase subsequently undergo pairing, a 

process characterized by transient interactions between chromosomes, both homologous 

and nonhomologous. Clustering of telomeres to the centrosome (spindle pole body) of the 

nuclear periphery effectively reduces the search to two dimensions. Interestingly, 

homologous domains have been observed to remain associated longer than 

nonhomologous regions. The mechanism behind this double strand break-independent 

phenomenon has been elusive; however, recent findings in Schizosaccharomyces pombe 

indicate that cis-acting noncoding RNAs play an important role in this process (Ding et 

http://www.google.com/search?hl=en&sa=X&ei=nqYtULOiK8XYyAGM-4HwDw&ved=0CCQQBSgA&q=Schizosaccharomyces+imdb&spell=1
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al., 2012). Pairing initiates homolog interactions, but in most organisms, premature 

chromosome segregation is prevented by the production of double strand breaks (DSBs) 

followed by formation of the synaptonemal complex (SC). DSBs are universally created 

by the endonuclease SPO11; mutants for the highly conserved protein exhibit extensive 

amounts of aneuploidy. Visible by electron microscopy as a ladder-like structure, the 200 

nm wide SC is a proteinaceous lattice that aids in holding the homolog along its length, 

like a zipper. Early SC formation correlates with sites of recombination, and crossover 

sites are suspected to be associated with recombination nodules, SC-associated 

proteinaceous foci that measure approximately 100-nm in diameter.  However, the 

strongest indication of a recombination site is the chiasma, the resulting physical 

attachment after a reciprocal crossover which is visible by light microscopy in many 

organisms.  

Cell divisions are the final hallmarks in meiosis that will be introduced here. While 

the second division is essentially identical to that of mitosis, it is the first – a reductional 

division – which is unique to reproduction, by separating homologs rather than sister 

chromatids. Cohesion between chromatids is essential for reductional division, and is 

Fig. 3. The basic process of meiosis, depicted as in an oocyte. Premeiotic S-phase creates a 4C 
nucleus. Homologous chromosomes undergo recombination and after two cell divisions, four 
genetically distinct cells result, comprised of one oocyte and three polar bodies.  
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accomplished though the meiosis-specific cohesin Rec8. Rec8-/- cells undergo equational 

division and, interestingly, continue to complete the second division as well (Molnar et 

al., 1995; Watanabe and Nurse, 1999). Another factor involved in proper chromosome 

segregation is the orientation of the kinetochores, the proteinaceous structures that 

assemble on each chromosome and interact with microtubules to physically separate 

chromosomes (for reviews, see (Santaguida and Musacchio, 2009; Watanabe, 2012)). In 

mitosis, kinetochores are located at opposite ends of the centromere, and bi-orientation is 

favored (microtubules emanating from opposite poles), making segregation of chromatids 

favorable. In contrast, during meiosis I, sister chromatids are to remain associated. For a 

successful first division, chromatids should be mono-oriented instead, and the bivalent 

should be bi-oriented. Facilitating this is a unique fusion of the kinetochore structure 

within each chromatid pair, which favors their mono-orientation. Additionally, and 

perhaps more importantly, the tension created from bi-orientation of the bivalent favors 

its formation and stability.  

Meiosis is unusual in having two consecutive divisions without an intervening 

interphase. How is cell division number controlled? This is as yet unknown, although one 

hypothesis suggests that replication licensing is correlated with the presence of sister 

chromatid cohesion (Wilkins and Holliday, 2009). Because the first division separates 

homologous chromosomes, chromatids are left intact, thereby signaling progression into 

sister chromatid separation without a preceding S phase. Mechanisms that dictate division 

number may also prove to be significant to parthenogenesis. 

Given the high conservation of meiosis, one might assume that the processes therein 

are disrupted only in parthenogens and pathological conditions. Surprisingly, several 
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sexually-reproducing organisms successfully generate haploid gametes in spite of 

obvious meiotic aberrations. For example, while recombination is required in most 

organisms, all chromosomes in male Drosophila, as well as the fourth in females, waive 

this mechanism; rather, a DSB-independent process unites homologs to prevent 

chromosome nondisjunction (Harris et al., 2003). Another example, 

Schizosaccharomyces pombe, undergoes recombination but without the characteristic 

tripartite synaptonemal complex. Seemingly analogous structures known as linear 

elements can be visualized between homologs via electron microscopy, although these 

are probably not required for normal gamete formation (Bahler et al., 1993; Wells et al., 

2006).  

 

Routes to a 2C gamete 

An additional DNA doubling within a cell is conceptually very easy: two rounds of 

replication, a failed cytokinesis, or reentry into G1 are among a few possibilities. 

However in reality, a cell with exactly twice the DNA content is rare. Cells are attuned to 

the DNA content required; perhaps more importantly, the effects of polyploidy could be 

disastrous for a species in the long-term (Fujiwara et al., 2005). Paradoxically, polyploid 

cells exist naturally, and may even be necessary for normal physiological function. For 

example, the Drosophila germline generates oocyte-nourishing polyploid cells by 

utilizing endoreplication, a special cell cycle in which multiple rounds of DNA 

replication occur. Germ cells in this organism divide within a cyst from a single 

progenitor, after which only one of the resulting 16 cells differentiates into the oocyte. 

The remaining cells differentiate into nurse cells and endoreplicate 10-12 times to 
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generate >1000C nuclei (Dej and Spradling, 1999). This mechanism is not restricted to 

invertebrates. It is used during embryonic development in mammalian trophoblasts and in 

the red blood cell precursors, megakaryocytes [see (Edgar and Orr-Weaver, 2001) for 

endoreplication review].  

As it pertains to Aspidoscelis, how can 2C gametes consistently be generated? The 

following hypothetical scenario, using endoreplication as a mechanism, is based on the 

fact that each (diploid) parthenogenetic species is a hybrid of two different sexual 

species. Consequently, the parthenogen essentially contains two different genomes, and 

the resulting genetic diversity likely extends to meiotic proteins (Neaves, 1969a; Neaves 

and Gerald, 1968a). Let us assume that the temporal expression of meiosis-specific 

cyclins varies between sexually-reproducing Aspidoscelis species such that cyclins are 

expressed in different parts of premeiotic S phase. The parthenogenetic species, by nature 

of their formation, would have inherited both expression patterns, and would express both 

cyclins, each at a different time of premeiotic S phase. Such a minor variation may be 

sufficient to initiate and complete two rounds of DNA replication. However, one 

inconsistency with this hypothesis is that hybridization between bisexual parental species 

would be sufficient for establishing parthenogenesis, and this is not observed. Mating 

experiments between known parental species have yielded infertile hybrids (Cole et al., 

2010). Therefore, it would strongly suggest that a mutation is required in addition to the 

hybridization event (Fig 4). Another problem with the endoreplication hypothesis, which 

essentially requires reentry into G1, is that it conflicts with the idea put forth by Wilkins 

and Holliday to explain the existence of two meiotic divisions (Wilkins and Holliday, 

2009).  
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Other mechanisms could account for a 2C gamete. Failed cytokinesis, through a 

variety of mechanisms, could occur at any of the oogonial or meiotic divisions and result 

in twice the DNA content. A contractile ring that is incorrectly positioned or poorly 

constructed, can yield unevenly distributed chromosomes or cause complete failure of 

furrow ingression (Lacroix and Maddox, 2012). A return to the cell cycle from meiosis 

can potentially explain a 2C gamete – and there is precedence for this phenomenon. 

Saccharomyces cerevisiae cells that have initiated meiosis can return to vegetative 

growth if supplied with nutrient-rich media (Sherman and Roman, 1963; Simchen et al., 

1972). Thus, there are numerous cytological and genetic alternations in meiosis that can 

theoretically generate a parthenogen. Uncovering the biologically relevant mechanism(s) 

will be the challenge. 

 

Fig. 4. Hypothetical explanation of endoreplication 
in Aspidoscelis. A mutation in one parental species 
results in temporally misregulated S-phase, 
resulting in two rounds of DNA replication. Note 
that the sexual species would become 
parthenogenetic as well in this scenario. See text 
for details.  



24 
 

Meiosis in most hybrids 

The textbook example of hybridity – the mule – with all its inherent strengths, is 

also subject to a fate common in hybrids: loss of fertility (Taylor and Short, 1973; 

Wodsedalek, 1916). Across species, the underlying cause is the same: divergence 

between two parental genomes; however, mechanisms responsible for sterility or 

infertility vary considerably, and the performers involved may be DNA, RNA, or protein. 

Research in the past few decades has vastly expanded on basic hypotheses first proposed 

in the early twentieth century.  

Although it may seem reasonable to assume that genetic divergence directly 

abrogates chromosome pairing, in reality, this explains only a few known cases of hybrid 

incompatibility (Coyne and Orr, 1998). Chromosome pairing deficiencies affect both 

sexes, and thus cannot explain the high incidence of incompatibility in the heterogametic 

sex (Haldane’s rule). A more applicable hypothesis, suggested in the 1930s and 1940s, 

would later become known as the Dobzhansky-Muller model (discussed in (Coyne and 

Orr, 1998)). According to this model, multiple loci – which are compensatory within each 

parental species – yield irreconcilable combinations in the hybrids. These antagonisms 

may manifest as loss of function (Mihola O Fau - Trachtulec et al.) or gain of function 

(Bayes and Malik, 2009; Long et al., 2008). The first known hybrid incompatibility gene 

among vertebrates is PRDM9, a H3K4 trimethylase required for recombination in mice 

and humans (Baudat et al., 2010; Parvanov et al., 2010). Mutations in this DNA-binding 

protein result in sterility, and the nature of hybrid incompatibility stems from the 

variability in the zinc finger domain.   
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Parthenogenesis 

Superficially, parthenogenesis appears to be advantageous: each individual within a 

species is capable of reproduction, which circumvents a significant disadvantage dealt to 

sexually-reproducing species: males (Maynard Smith, 1971). Bisexual species require 

energy for mate searching and mating, and a male’s inability to generate offspring 

decreases the fecundity of the species. Because each individual within a parthenogenetic 

species is capable of reproduction, the population can expand more quickly. 

Theoretically, a parthenogenetic population would increase by a factor of two in each 

generation, exponentially outnumbering a bisexual species, assuming all other factors are 

equal (Fig. 5). Unisexuals also have an apparent advantage in that favorable genotypes 

remain intact over time. Bisexual species, on the other hand, are affected by the 

recombinational load that may potentially break up advantageous combinations. 

However, in reality, sexual eukaryotes overwhelmingly outnumber parthenogens. 

Additionally, parthenogens (as well as hermaphrodites) rarely comprise more than a 

collection of species and are typically present at the terminal nodes of phylogenetic trees, 

suggesting that these species are evolutionarily lackluster and result in dead-ends. 

Therefore, sexuality must harbor one or more advantages that compensate for deceased 

fecundity and recombinational load.  

 

Hypotheses for the predominance of sexual reproduction 

The focus will be on concepts and predominant theories within the field. For a 

comprehensive summary of theories, see (Chao and Tran, 1997; de Visser and Elena, 

2007; Muller, 1932). 
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Fisher-Muller hypothesis 

Unlike parthenogenesis, sexual reproduction is a way in which genetic information 

from individuals within a species can be combined, thereby accelerating the formation of 

favorable genotypes. In a parthenogenetic species, such favorable combinations would 

need to arise independently within the same lineage and would thus require more time 

(Fig. 6a). Fisher and Muller independently proposed that sexual reproduction could be 

favored over asexual reproduction due to a faster combination of favorable alleles 

(Fisher, 1930; Muller, 1932).   

 

 

Fig. 5. The two-fold cost of sex. Theoretical population expansion in unisexual and bisexual 
species, assuming four offspring per female individual and neutral contribution from the male.  
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Muller’s ratchet 

Extrapolating from the Fisher-Muller hypothesis is Muller’s ratchet. Because most 

unisexual species reproduce as genetic copies of themselves, they are essentially locked 

into their genotype. Inheritable genetic variability predominately arises from spontaneous 

germline mutations. While most mutations would likely be neutral and not affect the 

fitness of the animal, those of a deleterious nature would inevitably arise over time (Fig. 

6b). A unisexual species would have no means by which to purge such a mutation, 

creating an irreversible “click” in the ratchet. Eventually, the ratchet would reach a point 

in which the fitness of the animal was severely decreased, thereby lowering its fitness as 

a species. Hemiclonal frogs of the species Rana esculenta provide support for this model. 

These sexually-reproducing amphibians are hybrids (genotype RL) produced from two 

bisexual species (genotypes RR and LL). Offspring inherit the R genome clonally – 

without net genetic recombination – and the other genome sexually, yielding a RL’ 

genotype. Crosses between RL’ offspring within a population to produce RR animals 

typically leads to embryo lethality; however, crosses between RL offspring of a different 

parental origin (that produce RR’ individuals with genetically distinct R genomes) result 

in healthy tadpoles (Vorburger, 2001). This suggests that deleterious alleles may have 

accumulated in the R genome since the hybridization event that formed R. esculenta. 

 

Red Queen hypothesis 

 One of the strongest hypotheses to describe the advantages of sexual reproduction, 

in large part due to recent studies, is the Red Queen. The name is derived from an event 

in Lewis Carroll’s Through the Looking Glass in which the protagonist, Alice, tries to 
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race away from the Red Queen, but instead finds that, for all her efforts, she has merely 

remained in the same spot. Such an analogy has been used in evolutionary biology: 

species expend large amounts of effort simply to remain competitive with the 

surrounding co-evolving species (van Valen, 1973, 1974). Parasites in particular are used 

to illustrate this phenomenon, as they typically infect common host genotypes, giving 

selective advantage to rare varieties (Dybdahl and Lively, 1998; Neiman and Koskella, 

2009). Therefore, unisexual species, due to their genetic invariance, would be at a 

disadvantage compared to their bisexual, and inherently diverse, counterparts (Fig. 6c).  

 Several studies have demonstrated the correlation between parasitism and 

reproductive mode of the host species. In the New Zealand freshwater snail, 

Potamopyrgus antipodarum, sexual varieties co-inhabit the shallow regions of lakes with 

parasitic Microphallus sp, whereas asexual forms are predominately found in deeper, 

Microphallus-sparse regions (Jokela and Lively, 1995; King et al., 2009). Vertebrates 

show similar trends. Wild-caught geckos of the species Heteronotia binoei display higher 

rates of mite infestations compared to a closely related sexual species (Moritz et al., 

1991). In an analysis of 619 lizards, 51% of parthenogenetic individuals contained mites 

compared to 2% of the bisexual species with a mean infestation of 21.64 and 0.59 per 

individual, respectively. Higher mite infestations were verified by Shine’s group 

(Kearney and Shine, 2004). To directly test the cause-effect relationship between genetic 

variability and co-evolution with parasites, Curtis Lively’s team grew strains of C. 

elegans with S. marcescens, a bacterium that produces a potentially lethal infection in the 

worm. C. elegans is capable of either self-fertilization or outcrossing, and particularly 

useful selfing-restricted mutants have been generated. To simulate co-evolution and 
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select for the most harmful parasites, bacteria were harvested from dead worms and 

recultured with survivors. In the absence of the parasite, wildtype populations of C. 

elegans outcrossed at a rate of 20%; however in its presence, outcrossing escalated to 

more than 70% over a period of 30 generations. Further, obligately selfing strains of C. 

Fig. 6. Hypotheses for prevalence of sex. (a) 
Fisher-Muller suggests that advantageous 
alleles (ABC) will marry more quickly in 
bisexual species. (b) In Muller’s ratchet, 
slightly deleterious alleles (Aa) accumulate 
until lethal (aa), but unlike some bisexual 
species, unisexuals cannot purge the 
intermediates. (c) Parasites adapt to the 
unisexual alleles A and B, but the genetic 
variation in bisexuals increases their 
resistance in the Red Queen hypothesis. 

(a) (b) 

(c) 
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elegans died out within 20 generations (Morran et al., 2011). Taken together, these 

studies suggest that outcrossing is essential in order to compete with parasitic species.   

Notably, the long-lived Bdelloid rotifers have recently been found to escape fungal 

parasites with an unusual ability to desiccate and blow away (Wilson and Sherman, 

2010). This may partly explain how this species is able to overcome the Red Queen 

effect. However, Meselson and colleagues have shown that despite the presence of this 

defense mechanism, large amounts of horizontal gene transfer have occurred in rotifers, 

including a gene of bacterial origin which is capable of expression in the rotifer genome 

(Gladyshev et al., 2008).    

  

Unisexuality across species  

From microscopic invertebrates such as the rotifer to the largest lizard in the world, 

the Komodo dragon (Varanus komodoensis), observations of parthenogenesis have been 

found in a wide range of animals. The variation of meiosis across species rivals the 

variation of the organisms themselves. At the most extreme, meiosis is essentially 

abolished as suspected in rotifers, and oocytes are produced via a mitosis-like mechanism 

(HSU, 1956). Despite extensive studies, meiotic genes have yet to be found, suggesting 

that parthenogenetic rotifers have survived without meiosis to such an extent that these 

genes have diverged. However, in general, most organisms have retained key aspects of 

meiosis, which include, but are not limited to, the expression of meiotic genes, pairing of 

homologous chromosomes, and a reductional division that separates homologs. 
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Additionally, ploidy restoration to equate that of a somatic cell is essential for successful 

parthenogenesis. 

 

Polar body fusion  

Many known examples of asexual reproduction apparently occur via fusion of the 

haploid oocyte and a polar body. Interestingly, the genotype of the parthenogenetic 

oocyte will differ drastically depending on the type of fusion in meiosis. High levels of 

heterozygosity are retained from central fusion, merging of the oocyte with a polar body 

from the first division (Fig. 7). Based on microsatellite analyses, this mechanism appears 

to occur in, among others, the queen fire ant Wasmannia auropunctata, the cape 

honeybee Apis mellifera capensis, and some strains of Drosophila (Baudry et al., 2004; 

Fuyama, 1986; Rey et al., 2011). On the other hand, terminal fusion – that between the 

oocyte with its polar body from the second division – will result in high levels of 

homozygosity (Fig. 7). The snake Epicrates maurus and the termite Reticulitermes 

virginicus have been observed to undergo such fusion, and this mechanism may be 

responsible for facultative parthenogenesis in the Komodo dragon and the Hammerhead 

shark (Booth et al., 2011; Vargo et al., 2012; Watts et al., 2006).  

It is important to note the apparently high incidence of fusion in ovaries of the 

aforementioned animals. One critical question is whether fusion is exclusive to 

parthenogens or a general occurrence during oogenesis. There are exceptions to the 

fusion rule, such as the Bdelloid rotifers. And while genetic analysis can merely suggest 

that polar body fusion has occurred, only cytological investigation can distinguish one 
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mechanism among others. In the cyclical parthenogen Daphnia pulex, for example, it had 

been postulated that diploid oocytes formed by apomixis, the mitotic-like division 

characteristic of the rotifers. However, Hiruta and colleagues demonstrated that meiosis I 

proceeds normally until the first division when anaphase aborts and chromosomes 

reunite, a process termed abortive meiosis (Hiruta et al., 2010). Possibly, abortive meiosis 

is more common than previously thought, as it could account for the high levels of 

heterozygosity observed in cases of presumed central fusion. Further cytological analysis 

in those animals can positively distinguish between central fusion and abortive meiosis. 

Likewise, terminal fusion may actually result from an abortive second division. Although 

one can argue that such a distinction is unnecessary as long as the genetic outcome is 

known, an understanding of the cellular and molecular mechanisms is crucial in order to 

explain the rarity of parthenogenesis.  

 

Premeiotic doubling 

Premeiotic doubling of DNA solves the problem of ploidy loss: cells begin with 

twice as much DNA as a sexually-reproducing species and end with twice as much 

(diploid). This mechanism also appears common among hybrids; chromosomes that 

would not normally pair due to sequence dissimilarities instead match up identical 

chromosomes that resulted from the doubling. Meiosis then apparently proceeds in a 

quasi-normal manner, and after two divisions, the resulting daughter cells are genetically 

identical to each other and to the mother cell. The grasshopper Warramaba virgo,the 

brown alga Ectocarpus, Poeciliopsis, and several species of amphibians and reptiles,  
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Fig. 7. Theoretical mechanisms of parthenogenesis. A mitotic-like division is presumed to 
take place in Bdelloid rotifers, resulting in maintenance of heterozygosity. It would manifest 
cytologically by absence of homolog pairing and generation of one or two polar bodies. 
Endoreplication is characterized by an additional chromosome doubling prior to meiosis. 
The nature of chromosome pairing would dictate the resulting genetic outcome. Polar body 
fusion may occur with the first or second polar body and, as in endoreplication, would 
generate different degrees of heterozygosity depending on the exact nature of the fusion.  

 

 

 

including Aspidoscelis, are among the organisms in which premeiotic doubling is 

suspected due to the observed DNA content elevation during meiotic prophase (Bothwell 

et al., 2010; Cuellar, 1971; White et al., 1963). Prior to our research, premeiotic doubling, 

and downstream events such as chromosome pairing, had yet to be definitively 

demonstrated. DNA elevation has been better characterized in the planarian; in some 

species, the entire germline is elevated by two-fold (Benazzi, 1963). 
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Obligate and facultative parthenogenesis 

In a Nebraska zoo in 2001, a single newborn hammerhead shark changed the way 

scientists view reproduction. No males of the same species were housed in the enclosure. 

It was later confirmed that the pup was produced parthenogenetically by one of three 

females housed in the aquarium, making it the first confirmed example of 

parthenogenesis in a shark (Chapman et al., 2007). The combination of a controlled 

environment (the zoo) and an increased interest in microsatellite analysis has allowed 

researchers to positively identify cases of sporadic parthenogenesis in recent years. 

Incidents such as this one demonstrate the reproductive plasticity of animals once thought 

to be strictly sexual. And it is highly likely that other examples will be revealed in the 

coming years.  

Parthenogenetic species can be subdivided based on their dependence to 

parthenogenesis, and range from full dependence (obligate) to seasonal (seasonally 

facultative) to sporadic incidences (facultative). In general, obligate parthenogens retain 

heterozygosity from generation to generation, whereas facultative organisms, both 

seasonal and sporadic, appear to lose heterozygosity. Therefore, it is quite likely that the 

molecular and cellular mechanisms between facultative and obligate parthenogens are 

distinct.  

It is known from facultative parthenogens that some bisexual species can transition 

to parthenogenesis, but can obligate parthenogens transition to sexuality?  In the case of 

animals that undergo premeiotic doubling, fertilization from a closely related bisexual 

species can occur, but this is followed by ploidy elevation from the sperm DNA, i.e. a 

triploid produced from a diploid mother. Therefore, depending on semantics, sexual 
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reproduction can occur; but true sexual reproduction, in which oocyte DNA content is 

halved, has yet to be found. Generally, an indicator of cryptic sex within a 

parthenogenetic population is the presence of fertile males. However, this can be 

misleading, as demonstrated in the Darwinulid ostracods, a controversial ancient asexual 

clade comprised predominantly of females, but in recent years found to contain a few 

conspicuous males. While initially exposed as a “sex scandal,” it has since been 

confirmed that males can arise from mutations in the sex determination pathway (Schon 

et al., 2009). It is currently unknown whether these males are capable of passing on their 

genes. Schultz noted the correlation between interspecific hybridization, polyploidy, and 

sexuality: if a parthenogenetic male could produce unreduced sperm and fertilize an 

unreduced oocyte, the resulting tetraploid could be capable of normal pairing and sexual 

reproduction could theoretically be restored (Schultz, 1969). This appears to be the case 

in the minnow Leuciscus alburnoides, in which males are fertile and produce diploid 

sperm (Alves et al., 2001). Thus, even if parthenogenetic species are evolutionary short-

lived, they may play an important role in the evolution of sexual species. 

 

Sperm dependence in unisexual lineages 

Many unisexual species, predominantly fish and amphibians, require sperm for egg 

activation. Some, including Ambystoma and Poeciliopsis, may even incorporate paternal 

chromosomes or the entire genome while preserving the maternal complement, utilizing 

mechanisms known as kleptogenesis and hybridogenesis, respectively. On the other hand,  

sperm-independence is prevalent among invertebrate unisexuals as none of the putative 

ancient lineages (rotifers and ostracods) require fertilization (Schurko et al., 2009). The 
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only exception among vertebrates is Squamata (lizards and snakes), which apparently 

undergoes de novo centrosome synthesis and oocyte activation (Neaves and Baumann, 

2011a). Although poorly understood among vertebrates, insights have been made in the 

arthropods Drosophila and Bacillus. De novo formation of functional centrosomes occurs 

in the majority of oocytes within a strain of Drosophila mercatorum and may explain the 

parthenogenetic development observed in 5% of oocytes (Kramer and Templeton, 2001; 

Riparbelli and Callaini, 2003). And in the stick insect Bacillus, oocytes bypass the 

requirement for centrioles during spindle formation, thus assembling components 

exclusively from maternal origin (Marescalchi et al., 2002). Therefore, a similar 

mechanism may exist among vertebrates.  

Sperm dependence adds to the confusion regarding speciation in unisexual lineages 

as it necessitates a close relationship with a related sexual species that acts as a sperm 

donor (Schlupp, 2005). Because fertilization proteins such as the zona pellucida evolve 

rapidly (Swanson and Vacquier, 2002), the unisexual and bisexual species are linked, 

constraining the unisexuals in regards to habitat, behavior, etc. In some examples, the 

unisexual species can be fertilized by another bisexual species, thereby allowing 

expansion of their habitat (Choleva et al., 2008). Because squamates are the only known 

vertebrates that display sperm-independent parthenogenesis, they arguably constitute 

independent lineages and can comprise a species, whereas the sperm-dependence of other 

vertebrates occludes this possibility (Cole, 1990; Frost and Hillis, 1990). However, some 

ichthyologists maintain that requirements for sperm activation, especially in gynogens 

(which do not incorporate paternal DNA), are overshadowed by other species-defining 

characteristics, such as morphological, ecological, and genetic novelty (Schlupp, 2005).  
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Correlation with interspecific hybridization and polyploidy 

The correlation between interspecific hybridization and obligate parthenogenesis is 

striking, especially among vertebrates (Neaves and Baumann, 2011a; Vrijenhoek et al., 

1989). Of approximately 80 known taxa of obligate vertebrate parthenogens, only two – 

both lizard species – have been apparently generated via nonhybrid mechanisms (Sinclair 

et al., 2010). Obligate parthenogenesis appears to be a means by which hybrids 

circumvent sterility caused by improper chromosome pairing of homologs. By doubling 

DNA and allowing identical chromosomes to pair, or dividing through a mitotic-like 

process, oocytes bypass homolog pairing. Importantly, however, hybridization is not 

sufficient to create parthenogenetic lineages, as sterile hybrids have been found within 

asexual-rich genera (Hardy and Cole, 1998; Neaves, 1971). Likewise, hybrids generated 

under laboratory conditions using presumed parental species have also been sterile, with 

few exceptions (Cole et al., 2010; Mavarez et al., 2006; Schultz, 1973a). Then why are so 

many parthenogens of hybrid origin? The answer may lie in the highly heterozygous 

makeup inherent to interspecific hybrids. As exemplified by the horse-donkey cross, 

mules are superior to their parental species in both strength and endurance. This process, 

termed heterosis, or more commonly ‘hybrid vigor’, is observed across the animal and 

plant kingdoms (Baack and Rieseberg, 2007; Chen, 2010). Estimates indicate that 

hybridization has occurred in approximately 10% of animals and 25% of plants, 

suggesting that it is a significant driving force in speciation (Mallet, 2005, 2007a).   

Experiments to test heterosis in lab-synthesized hybrids have yielded conflicting 

results. In the hemiclonal frog, Rana esculenta, F1 hybrids generated in the laboratory 

exhibited higher survival rates leading up to metamorphosis, faster development rates, 
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and shorter times to metamorphosis than either parental species (Hotz et al., 1999). This 

was higher than natural lineages, indicating that the hybridization event itself may have 

initial advantages. On the other hand, Poeciliopsis hybrids exhibited a higher percentage 

of deformities compared to naturally-formed counterparts, suggesting that the strongest 

hybrids persist to generate robust lineages (Wetherington et al., 1987a). And in 

Heteronotia, parthenogenetic species displayed equal or inferior attributes compared with 

sexual counterparts in regards to burst speed and parasitic load (Kearney and Shine, 

2004). However, they also displayed greater average head width and greater mass at 

hatching. Likewise, natural populations of Poeciliopsis exhibit greater heat tolerance than 

their sexual counterparts (Bulger and Schultz, 1982). Taken together, this suggests that 

phenotypic advantages may be selected for in the hybrids, which allow them to establish 

their own ecological niche.   

Like hybrids, polyploids comprise a large fraction of parthenogens. Approximately 

two-thirds of vertebrate parthenogens are polyploid (Vrijenhoek et al., 1989). For some 

hybrids, with numerous examples in plants, polyploidy allows for successful homolog 

pairing and a persistence of sexual reproduction. In these examples, autopolyploidy 

(ploidy elevation within one species) may coincide with hybridization. For others, 

including many vertebrates, a frequently observed phenomenon is allopolyploidy 

(different parental genomes comprise the extra ploidy levels); in fact, some 

parthenogenetic diploids are outnumbered by their triploid relatives. The advantages for 

polyploidy in these species is unknown, but elevated DNA content may result in greater 

phenotypic variability needed for niche establishment. Alternatively, the extra genome, 

which is highly redundant, may lighten the load on Muller’s ratchet.  
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Mitosis vs. Meiosis  

Parthenogens reproduce either through a mitotic mechanism (often referred to as 

apomixis) or through a modification of the meiotic program (see Table 1). Among 

vertebrates, there are no known examples of mitotically produced gametes, and all known 

vertebrates have retained the basic meiotic program in some way. This may be a 

reflection of a specie’s longevity. Organisms such as rotifers and Darwinulid ostracods, 

which are thought to reproduce mitotically, are regarded as ancient lineages, existing for 

approximately 35 and 70 million years, respectively (Judson and Normark, 1996). In 

these animals, evidence for meiotic genes is sparse, indicating that these genes may have 

devolved after years of disuse. However, the meiotic characteristics that influence 

reproduction in these ancient lineages remain unknown.     

The extent to which ancient asexuals retain properties of oogenesis may have 

important implications in aging. Angelika Amon’s group recently reported a correlation 

between meiosis and replicative life span in yeast, demonstrating that mitotically-

dividing strains yielded lower survival rates compared to those that underwent 

sporulation (Unal et al., 2011). Presumably, cellular damage is repaired during this 

process. The group also showed that expressing the meiosis-specific transcription factor 

ndt80, life span could be restored in aged cells without the process of meiosis. The 

significance of this mechanism in higher organisms is unknown. Do ancient asexuals 

retain any aspects of oogenesis that reset the replicative lifespan of their offspring? Is 

there another mechanism by which they achieve this rejuvenation? Because rotifers 

undergo egg formation, we know that at least some oogenesis processes must be retained.   
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By looking at the extent to which meiotic genes have diverged, we may gain insights into 

the advantages of key meiotic genes, independent of gamete formation.  

 

The vertebrate ovary 

The body is highly resourceful, and several organs can be equated to a highly efficient 

factory, producing high volumes of their specialty – blood, filtered urine, or sperm, for 

example. On the other hand, the vertebrate ovary can be likened to a nursery. Relatively 

inefficient, but with high quality control, the ovary houses very few oocytes that will be 

used in fertilization. The amount of energy invested into each useful cell is relatively high 

compared to other organs. Indeed, there is a high rate of follicular atresia in the ovary 

such that women, upon reaching puberty, contain only a portion of the oocytes with 

which they began. The vertebrate ovary consists of two basic types of cells: (1) germ 

cells that will rise to become oocytes, and (2) somatic cells that either provide support to 

the organ or nourishment to the germ cells. Most oocytes arrest in the primordial state 

and reside in the ovary cortex in the diplotene stage of meiosis. Through an unknown 

mechanism, some oocytes selectively grow larger than neighboring germ cells. These 

large diplotene-stage oocytes resume the cell cycle after a hormonal response from 

luteinizing hormone and undergo germinal vesicle breakdown before arresting again prior 

to fertilization (for review, see (Zhang, 2012)).  

Molecular analysis in the vertebrate ovary is best described in mouse, and to a 

lesser extent in chicken. In higher vertebrates, oogonia divide mitotically until meiosis is 

initiated via a wave-like mechanism involving retinoic acid, which acts as a morphogen 
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(Bowles et al., 2006; Bullejos and Koopman, 2004). The speed with which meiosis is 

initiated may be facilitated by cytoplasmic bridges between oogonia. These connections 

are created by incomplete cell divisions and intimately bind groups of oogonia descended 

from a single progenitor. Just prior to meiosis-specific gene expression, DNA replication 

takes place: at approximately 12.5 dpc in mouse (Lima-De-Faria and Borum, 1962) and 

embryonic day 14.5 in chicken (Callebaut, 1967). A widely favored – and highly 

controversial – hypothesis is that all oogonia within mammals initiate meiosis well prior 

to sexual maturity. Suggesting that infertility is nonreversible in women, this topic has 

important health implications. Several years ago, neo-oogenesis, the reprogramming of 

somatic cells into oocytes, had been claimed in adult mammals (Johnson et al., 2005; 

Johnson et al., 2004); however, it has since been refuted (Eggan et al., 2006).  

 

Oogenesis in reptiles and other lower vertebrates 

Physiologically similar to the higher vertebrates, oogenesis in lower vertebrates 

varies in several aspects. Perhaps of most importance is that lower vertebrates continually 

engage a subset of oogonia to enter meiosis, beyond birth and into adulthood 

(Andreuccetti et al., 1990; Nakamura et al., 2010). This process takes place in the cortex 

of the germinal bed, an oocyte reserve attached to the dorsal side of the ovary. As a result 

of germ cell differentiation, germinal beds are absent in adult chickens and mammals. On 

the other hand, ovaries among lower vertebrates evoke only a fraction of oogonia to 

initiate meiosis at any given time, leaving a population of mitotic germ cells in the adult 

(Andreuccetti et al., 1990; Arronet, 1973; Guraya, 1989). One known exception is the 
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tuatara, Sphenodon punctatus, whose oogonial population appears to completely 

commence meiosis prior to hatching. 

And just as differences exist between the two groups of vertebrates, some 

characteristics vary greatly even among amphibians, fish and reptiles. Follicle number 

and follicle size are two such examples. In many lizard species, a single ovulated egg is 

common, whereas Xenopus laevis produces hundreds of follicles. Egg size ranges from 

0.5 mm in the diminutive Southeast Asian cyprinid fish, Paedocypris, to 30 cm in the 

enormous whale shark, Rhincodon typus (Compagno, 1984; Kottelat et al., 2006). The 

follicle size prior to vitellogenesis also differs, and has practical applications in 

experimental biology. Larger oocytes are found in egg-laying animals, allowing for easier 

Fig. 8. Cortex of mammal ovary. A small number of oocytes progress through meiosis. 
Several primary and secondary follicles can be seen in this section. Note the large 
number of primordial oocytes on the periphery of the tissue (Hill, 2011). 
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visualization of nuclei and chromosomes. Thus, some lower vertebrates are more 

amenable to chromosome dynamics studies.  

 Important similarities exist among most vertebrates, including the round shape of 

the nuclei and the clear cytoplasm of young oocytes. In fact, many of the mechanisms 

within the oocyte are conserved. The histology of the primary, secondary and tertiary 

follicles is strikingly similar between animals. And as in higher vertebrates, intercellular 

bridges between oogonia have been found in lizards, suggesting that reptilian oogonia 

undergo synchronous development as well (Filosa and Taddei, 1976). It should also be 

noted that meiosis initiates during embryogenesis in many lower vertebrates, as is the 

case in mouse and chick (Guraya, 1989).   

As it pertains to parthenogenetic vertebrates, what modifications might be expected 

in oogenesis? Unless a mitotic-like mechanism occurs, which would involve a single cell 

division, ploidy must increase during oogenesis. At what stage might this occur? One 

hypothesis suggests that cells double at the onset of meiosis; however, there is no 

precedence for this. On the contrary, one study of parthenogenetic loaches suggests that 

the ploidy increase may occur long before meiosis. In the study, the research group took 

advantage of sex-reversal capabilities in loaches and generated males from unisexual 

female lineages. The advantage is that males produce greater numbers of germ cells, 

making cells easily amenable to ploidy analysis. Interestingly, they found that a subset of 

spermatogonia contain enlarged nuclei, consistent with the hypothesis that ploidy 

increases long before meiosis (Yoshikawa et al., 2009). Ploidy increase prior to meiosis is 

not exclusive to fish. Surprisingly, it is not even exclusive to unisexual species. In some 

sexually-reproducing snakes, mitotically-replicating oogonia undergo an additional DNA 
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doubling to produce 8C cells and subsequently divide twice to restore the diploid state 

(Becak et al., 2003). This illustrates the fluctuation in oogonial mitosis and suggests that 

if meiosis is modified by an additional doubling event, it may occur well prior to meiosis 

in Aspidoscelis and other unisexual lineages. 

 

Oryzias hybrids 

Comparing Aspidoscelis with other hybrids may prove informative not only to the 

reproductive biology of lizards, but also of vertebrates in general. Unfortunately, many 

hybrids are not viable, occluding studies with model organisms such as Danio. However, 

in the genus Oryzias (common name ricefishes), approximately 30 species exist, and 

many combinations readily form viable offspring (Iwai et al., 2011). Particularly useful is 

the cross between O. latipes and O. curvinotus, which develops normally, but undergoes 

an aberrant meiosis. Both sexes are affected, but in vastly different ways. Male 

spermatogenesis lacks cell divisions. The majority of sperm-like cells are enlarged, 

display little movement, and contain 4C DNA content (Shimizu et al., 1997). 

In the female hybrids, on the other hand, most oocytes do not proceed through 

meiosis. Instead, these cells arrest during zygotene, the pairing stage in meiosis. 

Interestingly, it appears that a small number of oocytes are able to successfully complete 

meiosis and generate diploid eggs (Iwai et al., 2011). The authors suggest endomitosis as 

the mechanism responsible for ploidy elevation, however the exact pathway remains to 

be found (Shimizu et al., 2000). The study also suggests that oogenesis contains more 

checkpoints to prevent progression of oocytes with unpaired chromosomes compared 

with spermatogenesis. It is as yet unknown whether such ploidy elevation is exclusive to 
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hybrids or a common occurrence among Oryzias. These phenomena may have 

widespread implications in other vertebrate hybrids.  

 

Unsuccessful Aspidoscelis hybrids 

While many robust parthenogenetic lineages exist in Aspidoscelis, it is the analysis 

of unsuccessful crosses that may provide mechanistic clues into parthenogenesis. 

Although molecular tools are not as readily available in Aspidoscelis as in Oryzias, 

histological analyses have contributed significant observations. For example, gross 

examination of the sterile tetraploid hybrid A. sonorae / A. tigris revealed small ovaries, 

empty or fluid-filled follicles, and an overall disorganization of the germinal bed (Hardy 

and Cole, 1998). Additionally, the follicles displayed an obvious lack of vascularization. 

Surprisingly, the mesonephric tubules were similar in size to the paternal, rather than 

maternal, species. Indeed, male features may be common to female hybrids; an apparent 

female formed from an Aspidoscelis inornata arizonae and A. tigris marmorata exhibited 

male-like features, including a mesonephros that had epididymal morphology (Cole et al., 

2010). This phenotype was especially perplexing because A. inornata and A. tigris are the 

parental species of the successful parthenogenetic lineage A. neomexicana, although the 

maternal and paternal species were reversed in this cross (Fig. 1). Even more confusing 

was the A. tigris / A. tesselata cross, which showed no propensity toward maleness but 

likewise yielded empty follicles (Taylor et al., 2001). These observations support the 

notion that parthenogenetic lineage establishment is rare. Also, the ease with which 

hybrids can be generated is more successful than in Oryzias where certain crosses exhibit 

severe aneuploidy defects in embryogenesis (Sakai et al., 2007).  
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Why study parthenogenesis? And why use lizards? 

The first question can be divided into two components: (1) Why does sexual reproduction 

predominate? and (2) What prevents parthenogenetic species from spontaneously arising? 

The first question is one that perplexed Darwin himself, and it stands as one of the most 

outstanding in evolutionary biology (Charlesworth, 2006). Meiosis, and essentially sexual 

reproduction, is intimately correlated with the earliest known eukaryotes, and no known 

examples have arisen without it. Thus, sex is a defining attribute of eukaryotes. To fully 

analyze its importance we must turn to those animals in which sex has been lost. As with 

many scientific problems, it is advantageous to study an organism that has taken the 

research topic to an extreme. In this case, the Bdelloid rotifers and Darwinulid ostracods, 

which have seemingly reproduced without sex for millions of years, are ideal organisms 

for study. By learning how these species have survived, and even thrived, we can 

understand why the majority of species cannot.  

The second question, concerning the ease of parthenogenetic transition, is one best 

suited for the developmental biologist. Obviously, barriers limit the prevalence of asexual 

reproduction; otherwise parthenogenetic individuals would continually arise. Imprinting 

and sperm-dependent fertilization are among the explanations for absence of spontaneous 

asexuality in vertebrates. However, even among reptiles, which do not appear to have 

such fertilization requirements, the prevalence of asexuality is extremely low. To address 

this topic, the ideal organism of study would be a clade in which numerous 

parthenogenetic lineages have arisen relatively recently. While several parthenogens fall 

in this category, parthenogenetic whiptail lizards are excellent study animals because they 

will yield information regarding vertebrate oogenesis. Additionally, closely related 



48 
 

bisexual species, i.e. the parental species, can be utilized in control experiments. Thus, in 

our studies, we will gain unique insights into reptilian reproduction, parthenogenesis, and 

vertebrate oogenesis.  

 

Conclusion 

For many species, parthenogenesis appears to be a short-lived fate. Many obstacles, 

including an inability to purge deleterious mutations and parasitic susceptibility, 

apparently contribute to their demise. Exceptional parthenogens have been found – 

namely the Bdelloid rotifers and Darwinulid ostracods – which appear to have persisted 

for millions of years without sex. As it clearly harbors disadvantages, mechanisms such 

as imprinting and paternal centrosome inheritance provide measures to ensure inheritance 

of the paternal genome. However, even within genera that do not possess these barriers, 

the prevalence of parthenogenesis is still quite low. To find other preventative measures 

that may be in place, we must study organisms in which parthenogenesis has recently, 

and relatively frequently, arisen.   

Aspidoscelis is an ideal organism for these studies. Within the genus, 

parthenogenetic species – formed from the hybridization between different bisexual 

species – exist alongside their parent species, many of which are known. As a vertebrate, 

knowledge of oogenesis can be related to higher vertebrates, including mammals. Also, 

parthenogenesis in these reptiles is sperm-independent, allowing for feasibility of 

husbandry. Lastly, the large, clear germinal vesicles within these animals serve as an 

excellent resource for the study of chromosome dynamics in meiosis.  
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Meiosis is a conserved process within each sex that halves chromosome number 

and upon fertilization, ploidy is restored. Despite the apparent conservation, several 

organisms reproduce sexually with obvious aberrations, demonstrating a moderate 

amount of plasticity to the mechanism. In unisexual lineages, meiosis must be modified 

such that 2C gametes are produced. Possible ways in which this could theoretically be 

achieved include a mitotic-like division, two rounds of DNA replication, and an aborted 

cell division. In most parthenogens, the cellular mechanisms have yet to be fully 

understood. 

Many hybrids are sterile, illustrating the disruption created by the union of distinct 

genomes, not only in the germline, but also in somatic cells. For parthenogens in which 

reproduction has been studied, reproduction appears to manifest as a modification of the 

normal meiotic program, proceeding in a quasi-normal manner. However, the number of 

organisms for which it is well studied is few. 

In the following chapters, two studies in Aspidoscelis will be presented. Chapter 2 

describes the cellular mechanism responsible for parthenogenesis in A. tesselata and A. 

neomexicana and the consequences of the meiotic modification. Chapter 3 investigates 

meiosis in a new, fertile, tetraploid hybrid generated in the laboratory from a cross 

between a triploid parthenogenetic mother and a male from a bisexual species. Chapter 4 

places these studies in context within the field and provides future prospects for the study 

of parthenogenesis. 
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Chapter 2: Sister chromosome 

pairing maintains heterozygosity in 
parthenogenetic lizards 
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Summary 

Although bisexual reproduction has proven to be highly successful, parthenogenetic all-

female populations occur frequently in certain taxa including the whiptail lizards of the 

genus Aspidoscelis.  Allozyme analysis revealed a high degree of fixed heterozygosity in 

these parthenogenetic species (Neaves, 1969b; Neaves and Gerald, 1968b) supporting the 

view that they originated from hybridization events between related sexual species. It has 

remained unclear how the meiotic program is altered to produce diploid eggs while 

maintaining heterozygosity. Here we show that meiosis commences with twice the 

number of chromosomes in parthenogenetic versus sexual species, a mechanism that 

provides the basis for generating gametes with unreduced chromosome content without 

fundamental deviation from the classic meiotic program. Our observation of 

synaptonemal complexes and chiasmata demonstrate that a typical meiotic program 

occurs and that heterozygosity is not maintained by bypassing recombination.  Instead, 

fluorescent in situ hybridization probes that distinguish between homologs reveal that 

bivalents form between sister chromosomes, the genetically identical products of the first 

of two premeiotic replication cycles. Sister chromosome pairing provides a mechanism 

for the maintenance of heterozygosity, which is critical for offsetting the reduced fitness 

associated with the lack of genetic diversity in parthenogenetic species.  
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Introduction 

True parthenogenesis, characterized by the complete absence of male contributions, has 

been described for various species of reptiles including whiptail lizards, geckos, blind 

snakes and rock lizards (Vrijenhoek et al., 1989). Whiptail lizards of the genus 

Aspidoscelis, formerly part of the genus Cnemidophorus (Reeder et al., 2002b), are 

mostly native to the Southwestern United States and Mexico, and about one-third of the 

more than 50 species reproduce by obligate parthenogenesis. 

Morphological, karyotypic and biochemical studies provided strong evidence for 

hybrid origins of all parthenogenetic Aspidoscelis species examined (Dessauer and Cole, 

1986; Lowe and Wright, 1966; Neaves, 1969b). While hybridization between individuals 

from distinct species can explain the initially high degree of heterozygosity across the 

genome, allozyme analysis demonstrated surprising persistence of heterozygosity over 

many generations in several parthenogenetic lineages of Aspidoscelis, including A. 

tesselata and A. neomexicana (Dessauer and Cole, 1986).  The observation that 

individuals within a parthenogenetic species can exchange skin grafts (Cordes and 

Walker, 2003, 2006; Cuellar and Smart, 1977; Maslin, 1967) and biochemical studies on 

several lab-reared lineages (Dessauer and Cole, 1986) further supported genetic 

uniformity.   

The mechanism that underlies clonal reproduction and fixed heterozygosity has been 

the topic of much speculation. Most variations of the meiotic program that would produce 

diploid oocytes by skipping a division or by fusion of a haploid oocyte with a polar body 

cannot account for fixed heterozygosity unless recombination between homologs is 

suppressed. Based on the exclusion of alternative models and the observation of large 
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numbers of chromosomes in two oocytes from A. uniparens (Cuellar, 1971), premeiotic 

endoreplication of chromosomes was proposed as the most likely mechanism to produce 

mature oocytes that carry the complete complement of somatic chromosomes and 

maintain heterozygosity (Neaves, 1971). To test this hypothesis we set out to quantify the 

DNA content in oocytes of the diploid parthenogenetic species A. tesselata and the 

sexually reproducing control A. gularis. Extant A. gularis and A. tigris are closely related 

to the individuals that hybridized to generate the founding specimen of A. tesselata 

(Dessauer and Cole, 1989; Neaves, 1969b; Neaves and Gerald, 1968b; Parker and 

Selander, 1976).  

 

Results 

Chromosomal doubling occurs in oocytes from parthenogenetic A. tesselata 

We isolated germinal vesicles (GVs), the oocyte nuclei, and visualized 4',6-

diamidino-2-phenylindole (DAPI) stained chromosomes by two-photon microscopy.  

Bivalents were readily observed in GVs from A. gularis and A. tesselata, and their 

morphology was consistent with the diplotene stage of prophase I (Fig. 1a, b).   Visual 

inspection of three dimensional reconstructions of seven gularis and five tesselata GVs 

revealed a larger number of bivalents in tesselata GVs compared to gularis. Ambiguities 

in identifying the boundaries of individual chromosomes prevented accurate counting of 

bivalents at this stage. Instead, we quantified the volume occupied by chromosomes in 

each GV as an indirect measure of DNA content (Fig. 2c; Table 1). Unlike measurements 

of fluorescence intensity, this approach is robust against changes in  
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Figure 1. Oocytes from parthenogenetic A. tesselata contain twice the amount of 
chromosomal DNA compared to sexual A. gularis.  (a) DAPI-stained chromosomes in 
germinal vesicles (GVs) from A. gularis. 3D projections of four GVs are shown, details on 
size and quantifications are available as Table 1. Scale bars correspond to 10 µm. (b) GVs 
from A. tesselata. (c) Quantification of chromosome volumes. (d) Quantification of DNA 
content in somatic cells by flow cytometry. Fluorescence intensities from biological 
triplicates of ~50,000 cells were averaged and normalized against samples from A. gularis 
which was set at 100 to facilitate comparison.  



55 
 

staining efficiency or laser intensity fluctuations. A. tesselata chromosomes occupied 

2.24 +/-0.18 fold the volume of the averaged A. gularis samples. While indicative of a 

two-fold increase in the DNA content of the prophase oocyte in the parthenogenetic 

Figure 2. Visualization of highly condensed bivalents from A. tesselata GVs in late 
prophase of meiosis I. DAPI-stained samples were imaged by two-photon microscopy 
using a Carl Zeiss long working-distance C-Apochromat 40x N.A. 1.1 objective. (a) 
Stereo 3D projection of the chromosomes from a late prophase GV (265 µm diameter). 
Scale bar corresponds to 5 µm. (b) Iso-surface rendering of the chromosomes shown in 
(a) using the software package IMARIS 6.3 (Bitplane). An animation of the rendered 
chromosomes is available as download as Suppl. Fig. 1d. In this sample 35 bivalents 
were readily identifiable as isolated objects. (c) One object corresponding to three 
bivalents in close proximity and four objects corresponding to two bivalents each 
brought the total number of bivalents to 46, consistent with the number expected if 
premeiotic endoreplication had occurred. A minimum of 40 clearly discernable 
bivalents were counted in two additional A. tesselata GVs of similar size. Physical 
proximity between some bivalents prohibited definitive identification of all 46 
bivalents in these samples.  
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species, differences in genome size could also account for the increased chromosome 

volume.  

Although somatic cells from A. gularis and A. tesselata both harbor 46 chromosomes 

(Wright and Lowe, 1967), a direct comparison of genome sizes was needed to inform our 

analysis. Taking advantage of the fact that reptilian erythrocytes are nucleated, we 

subjected blood samples to flow cytometry analysis and found that the nuclear DNA 

content in somatic cells differed by less than 1% between the two species (Fig. 1d). For 

comparison, samples from sexual diploid A. tigris and parthenogenetic triploid A. 

exsanguis* were also analyzed, with the latter showing an approximately 50% increase in 

DNA content as expected (Fig. 1d). Independent confirmation for a doubling in 

chromosome number was obtained by examining GVs in late prophase. At this stage 

chromosomes are highly condensed and consistent with a doubling in chromosome 

number, and we were able to distinguish 46 bivalents in A. tesselata GVs (Fig. 2).  

 

Maintenance of recombination 

Entering meiosis with an 8n chromosome complement would allow parthenogenetic 

animals to utilize the two normal meiotic divisions to generate diploid gametes. However, 

the long-term maintenance of heterozygosity across the genome is only ensured if cross-

overs between homologs are suppressed. Two-photon imaging of diplotene chromosomes 

from A. tesselata and another parthenogenetic species, A. neomexicana, revealed no 

differences compared to sexual controls besides the increased DNA content. Notably, 

                                                           
* A. exsanguis is the product of two consecutive hybridization events involving the sexual 
species A. inornata, A. burti and A. gularis13. 
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bivalents appeared to be connected by chiasmata in all samples, indicating that crossing-

over is not abandoned (Fig. 3a, b).  

 

Figure 3. Visualization of chiasmata and synaptonemal complexes in parthenogenetic 
A. tesselata and sexual A. tigris. Projection of bivalents from A. tigris (a) and A. tesselata  
(b) GVs in diplotene. Scale bars correspond to 10 µm. (c) EM image of A. tesselata GV in 
pachytene. Several sections of synaptonemal complexes are visible. Scale bar 
corresponds to 2 µm. Close-ups for two areas are shown in (d) and (e). A close-up of a SC 
from A. tigris is shown in (f). Scale bars correspond to 200 nm.  
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To further examine chromosome pairing, thin sections of ovaries from A. tesselata, 

A. tigris, and A. neomexicana were examined by electron microscopy. Synaptonemal 

complexes (SCs), characterized by well-defined lateral and central elements, were 

observed in all species examined providing further support that a typical meiotic program 

is underway (Fig. 3c to f, Fig. 4). Based on the presence of SCs in pachytene and 

chiasmata in diplotene, we surmise that meiotic chromosome pairing and recombination 

are not bypassed in parthenogenetic Aspidoscelis species.  

 

Possible scenarios for chromosome pairing 

 
The premeiotic doubling of chromosomes allows for bivalent formation to occur 

either between homologs as in normal meiosis or between sister chromosomes (Fig. 5). 

Figure 4. Synaptonemal 
complexes visualized by 
electron microscopic 
examination of thin 
sections from A. 
neomexicana oocytes. 
Scale bars correspond to 
200 nm in (a) and (b) and 
to 100 nm in (c) and (d). 
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To distinguish between these possibilities we sought to identify probes that selectively 

recognize one particular chromosome in a pair of homologs. We discovered that 26 of the 

46 A. tigris chromosomes, including all 22 macrochromosomes and 4 

microchromosomes, harbor large tracks of internal telomeric repeats in addition to the 

signal at chromosome ends (Fig. 6a).  In contrast, staining metaphases of A. inornata 

chromosomes with a telomeric protein-nucleic acid probe only revealed signal at the 

chromosome termini (Fig. 6b). Consistent with its hybrid origin from these two sexual 

species(Lowe and Wright, 1966; Neaves, 1969b; Neaves and Gerald, 1968b), A. 

neomexicana chromosomes contained large internal repeats on 13 chromosomes, 

allowing us to unambiguously identify 13 chromosomes inherited from A. tigris in the 

original F1 hybrid (Fig. 6c). In the context of a bivalent, hybridization signals on both 

sides indicates sister chromosome pairing, whereas hybridization on only one side 

supports homolog pairing. 

 

Figure 5. Meiosis in sexual and parthenogenetic Aspidoscelis species. In normal meiosis a 
single round of DNA replication is followed by two consecutive divisions that result in a 
haploid gamete and three polar bodies. Homologs are shown in red and blue. 
Recombination generates chimaeric chromosomes. Premeiotic doubling of 
chromosomes allows for pairing of homologous or sister chromosomes. Homolog pairing 
and recombination result in some loss of heterozygosity in the mature oocyte. 
Recombination between pairs of sister chromosomes maintains heterozygosity at all 
loci.  
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Pairing occurs between sister chromosomes rather than homologs 

 
 

To preserve the three-dimensional arrangements of chromosomes in GVs and to 

provide better spatial resolution than commonly obtained in chromosome spreads, we 

adapted the FISH procedure to perform hybridization on intact GVs. At each site where 

chromosome internal hybridization was detected, a signal was observed on both sides of 

the bivalent (Fig. 6d, e). It is important to note that sister chromatids resulting from the 

most recent round of replication appear as one cytologically, as they are closely 

associated with each other along their length during this stage of meiosis.  The exclusive 
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Figure 6. Internal telomeric repeats distinguish homologs in A. neomexicana and 
demonstrate sister chromosome pairing. (a) Fluorescence in situ hybridization with a 
CCCTAA(3) peptide nucleic acid probe (red) identifies chromosome termini as well as large 
internal telomere repeat regions on metaphase spreads of A. tigris chromosomes prepared 
from fibroblast cultures. DAPI stained chromosomes are shown in blue. (b) Internal 
telomeric repeats are absent from A. inornata chromosomes, whereas chromosome termini 
signals are readily detected. (c) Chromosomes inherited from A. tigris but not from A. 
inornata are identified by internal telomeric repeats in A. neomexicana. (d) Projection of a 
subset of images from an A. neomexicana GV visualized by confocal microscopy. DAPI-
stained chromosomes are shown in white and the telomeric probe in red. (e) Close-up of 
four representative areas visualizing paired fluorescence signals. The differences in 
resolution stem from differences in projection angles. 

presence of paired hybridization signals therefore strongly suggests that bivalents are 

composed of sister chromosomes, not homologs. Based on this experiment, we concluded 
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that for the 13 chromosomes for which the telomeric hybridization probe distinguishes 

sisters and homologs in A. neomexicana, sister chromosome pairing is the rule. 

Screening of several tri-, tetra-, and hexanucleotide repeat probes identified 

(CCAAGG)n as an additional marker for at least nine chromosomes in A. neomexicana 

that are of A. tigris origin (Fig. 7a to c). When hybridized to diplotene chromosomes in 

acrylamide-embedded GVs, only paired signals were observed (Fig. 7d and e). In 

summary, two independent probes enabled us to distinguish sister chromosomes from 

homologs, and for over 20 bivalents examined, pairing occurred exclusively between 

sister chromosomes. 

 

Discussion 

Entering meiosis with twice the usual number of chromosomes allows parthenogenetic 

species to produce oocytes carrying the complete somatic chromosome complement 

while preserving the established meiotic program. There are two principal pathways by 

which a diploid species’ premeiotic oocytes may acquire eight rather than four sets of 

chromosomes. One is the process in which chromosome duplication occurs without 

cytokinesis; this has been termed endomitosis or endoreplication (Edgar and Orr-Weaver, 

2001). Alternatively, 8n germ cells may arise by fusion of two cells either before or after 

the final premeiotic doubling of chromosomes. There is ample precedent for either mode 

of genome amplification in plants and animals, but the regulatory mechanisms are largely 

unclear. 

 In sexual species, homologous chromosomes form bivalents, and meiotic 
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Fig. 7. Assessment of pairing partners using a fluorescent (CCAAGG)2CC hybridization 
probe on an A. neomexicana GV. (a) A (CCAAGG)2CC locked nucleic acid probe (red) does 
not hybridize strongly to  A. inornata chromosomes. (b) 18 chromosomes from A. tigris are 
labeled by the same probe. (c) Chromosomes inherited from A. tigris but not from A. 
inornata are identified by the fluorescent probe in A. neomexicana.  The inheritance of one 
set of chromosomes from A. tigris and the other from A. inornata leads to the expectation 
of nine foci in A. neomexicana cells. In reality ten brightly stained loci were observed. The 
tenth signal could be the result of homolog pairing and cross-over resulting in 
homozygozity at that locus. Alternatively, a different chromosome may have acquired the 
repeat region either before or after the hybridization event that gave rise to A. 
neomexicana.  (d) Projection of a subset of images from an A. neomexicana GV visualized 
by confocal microscopy. DAPI-stained chromosomes are shown in white and the CCAAGG 
probe in red. (e) Close-up of four representative areas visualizing paired fluorescence 
signals.  
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recombination promotes genetic diversity while ensuring orderly segregation of 

chromosomes during the first meiotic division. The same mechanism would result in loss 

of heterozygosity in parthenogenetic species, whereas formation of bivalents from 

genetically identical sister chromosomes preserves heterozygosity. Interestingly, this 

same variation of the meiotic program appears to enable parthenogenetic reproduction in 

widely diverged species. Premeiotic doubling of chromosomes has been documented in 

triploid Ambystomid salamanders (Macgregor and Uzzell, 1964) as well as a 

parthenogenetic grasshopper (Warramaba virgo) (White et al., 1963). In both cases, sister 

chromosome pairing was suggested based on bivalent morphology. Although the lack of 

molecular markers in these studies precludes definitive conclusions, the striking parallels 

with whiptail lizards strongly indicate that a conserved mechanism enables 

parthenogenetic reproduction in diverse groups of animals. It seems likely that a 

relatively simple deviation from the established program of oogenesis is sufficient to 

permit parthenogenesis. However, loss of heterozygosity, paternal inheritance of 

centrosomes, and a requirement for fertilization in triggering completion of female 

meiosis are seemingly unconnected obstacles to parthenogenetic reproduction. A better 

understanding of the changes that permit a small but diverse group of animals to 

reproduce without males is clearly needed and may well shed light on the overwhelming 

success of sexuality. 
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Materials and methods 

Animals 

Laboratory colonies of A. tigris, A. inornata, A. neomexicana, A. exsanguis and A. 

tesselata, were established from animals collected in Socorro, Sierra and Otero Counties, 

New Mexico under a permit from the New Mexico Department of Game and Fish (permit 

# 3199 and 3395).  A. gularis were collected in Dickens County, Texas. Animals were 

propagated in our Reptile and Aquatics Facility under conditions similar to a previously 

published description of captive lizard husbandry (Townsend, 1979), details to be 

published elsewhere. 

 

GV isolation and quantification of chromosome volume 

Ovaries from adult and sub-adult lizards were placed in PBS and GVs were isolated 

using jeweler’s forceps. GVs were transferred with a pipet to glass-bottom dishes 

(MatTek) containing 40 ng/ml 4',6-diamidino-2-phenylindole (DAPI) in PBS, and 
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allowed to incubate at 4 °C overnight. The following day the GVs were imaged using a 

LSM 510 META (Carl Zeiss Jena GmbH, Germany) system in two-photon excitation 

mode (Denk et al., 1990) equipped with a C-Apochromat 40x, N.A. 1.2 water immersion 

lens (Carl Zeiss Jena GmbH, Germany) optimized for ultraviolet and infrared 

transmission. Two-photon excitation at 735 nm was used to avoid out-of-focus bleaching 

and all fluorescence emission below 650 nm was collected. Images were cropped in 

Adobe Photoshop to digitally remove the nuclear envelope.  

To obtain an unbiased measurement of chromosome volumes, we used the 

nonparametric and unsupervised, automatic threshold selection developed by Otsu (Otsu, 

1979). In this method the gray-level histogram of an image suffices to find a gray level 

threshold, which yields the optimal separation of the chromosomes from the background 

without other a priori input. The Otsu method treats the normalized histogram as a 

probability distribution of possible pixel values. Pixels are dichotomized into two classes 

C0 and C1 (background and objects, in our case chromosomes) by a threshold at level k. 

C0 denotes the class of pixels with values [0, …, k], and C1 denotes the class of pixels 

with values [k+1, …, L], 0 being the smallest and L the largest pixel value in the image. 

The goal is to determine the threshold value k corresponding to the best class separation. 

Otsu showed, that k can be found by maximizing the between-class variance ( )kB
2σ  for 

all k between 0 and L. ( )kB
2σ  is defined as: 

( ) ( ) ( )2
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2
00

2 )()()()( GGB mkmkPmkmkPk −+−=σ  

)(1,0 kP is the probability that a pixel k is assigned to class C0 or C1, respectively.  
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)(1,0 km  represents the mean intensity of all the pixels assigned to class C0 or C1 

(Gonzalez and Woods, 2008).  

mG is the average intensity of the whole image. 

 

To calculate the threshold we used the implementation of Otsu’s method by 

Christopher Mei, Anthony Joshua, and Tony Collins as plug-in for the open-source image 

processing package ImageJ (Rasband, 1997-2009). The volume was determined with the 

commercial 3D image processing software IMARIS 6.3 (Bitplane AG, Switzerland). This 

software bases its volume calculation on an iso-surface rendered at an intensity value k, 

using the threshold determined as described above.  This protocol ensures an objective, 

reproducible, and unbiased comparison of chromosome volumes measured for 

independent samples. 

 

Embryonic fibroblast cell culture 

Cell cultures were modified from (Moore et al., 1997). Briefly, Aspidoscelis eggs 

were incubated at 29 °C for 30-40 days, sterilized in 90% ethanol, 120 mM potassium 

iodide and 39 mM iodine and opened under sterile conditions in a laminar flow hood. 

Embryos were immediately decapitated and cut into 1 cm or smaller pieces, rinsed with 

cold PBS and incubated with trypsin-EDTA solution (T4049, Sigma) on a stir plate for 5 

min at room temperature. The supernatant was discarded and replaced with fresh 

PBS/trypsin, and incubation was continued for 15 min. The supernatant was decanted 
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through sterile cheesecloth into a 50-ml Falcon tube containing 2 ml ice-cold M199 cell 

culture media (Sigma) supplemented with 20% fetal bovine serum, 50 µg/ml gentamycin 

(Sigma), 1X glutamax (Invitrogen), 1X MEM non-essential amino acids (Invitrogen), 1X 

MEM vitamin solution (Invitrogen), 56 U/ml nystatin (Sigma), 100 U/ml penicillin and 

100 µg/ml streptomycin (Sigma). Cell suspensions were kept on ice while the remaining 

tissue was trypsin treated for another 15 min and the supernatants were combined. Cells 

were then pelleted, washed in M199 media plus supplements and finally resuspended in 

2-6 ml M199 media plus supplements and seeded in 6-well dishes (Falcon, cat.# 353046). 

Cells were cultured at 30 °C, 5% O2 and 2% CO2, and split once they had reached 85-

100% confluency.  

 

Fluorescent in situ hybridization (FISH) 

Embryonic fibroblasts were treated with 0.5 µg/ml Karyomax colcemid (Invitrogen) 

at 50-70% confluency and incubated for 3 hr at 30 °C, 5% O2 and 2% CO2. The cells 

were harvested by trypsin treatment and subjected to hypotonic swelling in 0.075 M KCl 

at 37 °C for 10 min. The cells were then pelleted, washed twice and finally resuspended 

in methanol / acetic acid fixative (3:1). Coverslips were cleaned with a 1:1 ethanol: ethyl 

ether solution and cells were dropped onto the coverslips and immediately washed 

liberally with fixative. Cover slips were then incubated on a heat block at 75 °C for 1 

min.  FISH was performed on dried coverslips as previously described (Sarthy et al., 

2009) using either an AlexaFluor 543-labeled peptide-nucleic acid probe comprised of 

5’-(CCCTAA)3-3’or an AlexaFluor 488-labeled locked-nucleic acid (LNA) probe 

comprised of 5’-(CCAAGG)2CC -3’. Washes were modified for the LNA probe as 
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follows: three 2 min washes in 2X SSC, 0.05% Tween 20 at 37 °C, two 6 min washes 

with 0.1X SSC at 55 °C, three 2 min washes with 2X SSC, 0.05% Tween 20 at room 

temperature, followed by two 2 min washes with PBS. Samples were imaged on a 

fluorescence microscope with a 100X, 1.4 NA Plan-APOCHROMAT objective and 

images were analyzed with AxioVision software (Carl Zeiss Jena GmbH).  

Ovaries were isolated from A. neomexicana and placed in Buffer A (15 mM PIPES, 

pH 6.8, 20 mM NaCl, 60 mM KCl, 0.5 mM EGTA, 2 mM EDTA, 0.5 mM spermidine, 1 

mM DTT). GVs were then embedded in an acrylamide mixture consisting of Buffer A, 

5% acrylamide, 1 mM DTT, 15 mM sodium sulfite, and 11.5 mM sodium persulfate. 

Embedding chambers consisted of 22 x 55 coverslips that had been siliconed to stainless 

steel washers. After the GV was added to the washer, half of a 22 x 22 coverslip was 

dropped onto the washer to seal the top and promote polymerization of the acrylamide. 

After 30 to 60 min, the coverslip was carefully lifted and the gel was washed 4 times for 

20 min with Buffer A on a shaking platform. Prehybridization was carried out in 50% 

deionized formamide, 2X SSC for 80 min with three changes of the prehybridization 

solution. Hybridization mixtures were as described for somatic cells and samples were 

incubated in a sealed chamber to minimize evaporation. Slides/washers were placed on a 

PCR machine with the following program: non-heated lid, 1 hr at room temp, 30 min at 

40 °C, 6 min at 94 °C, and overnight at 37 °C. The following day, samples were washed 

four times in PBS with 0.1% Tween 20, and three times in PBS and stained with DAPI 

(40 ng/ml) for at least 1 hr at room temperature. Samples were imaged on an inverted 

confocal microscope with a C-apochromat 40x/1.20 W objective (Carl Zeiss Jena 

GmbH). The Alexa Fluor 543-labeled peptide-nucleic acid probe [5’-(CCCTAA)3-3’] 
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was excited at 561 nm and fluorescence emission was collected above 575 nm. The 

Alexa Fluor 488-labeled locked-nucleic acid probe [5’-(CCAAGG)2CC-3’] was excited 

at 488 nm and fluorescence emission from 505-550 nm was collected. DAPI stained 

chromosomes were visualized by excitation at 405 nm excitation and collection of 

fluorescence emission between 420 nm and 480 nm. To avoid emission cross-talk we 

switched the excitation between the different laser lines and collected data in the 

appropriate detection channel only (multi-tracking). 

 

Transmission electron microscopy 

Ovaries were isolated from A. tigris and A. neomexicana in PBS then transferred to a 

tube containing 70% hexane, 0.75% paraformaldehyde (Electron Microscopy Sciences), 

and 0.125% Nonidet (US Biological) in PBS. The tube was gently inverted 10 times then 

placed in a 20 °C waterbath for 2.5 hr, gently inverting the tube five times every 20 min. 

The ovaries were washed three times with 0.2% Tween 20 in PBS and three times with 

PBS (20 min each), followed by overnight fixation in 2.5% glutaraldehyde (Electron 

Microscopy Sciences) in PBS at 4 °C. Fixed tissues were washed three times in PBS and 

water, then post-fixed in aqueous 1% OsO4, 1% K3Fe(CN)6 for 10 min at room 

temperature.  Following 3 PBS washes, the tissue was dehydrated through a graded series 

of 30-100% ethanol, 100% propylene oxide then infiltrated in 1:1 mixture of propylene 

oxide:Polybed 812 epoxy resin (Polysciences, Warrington, PA) for 1 hr.  After two to 

three changes of 100% resin over 24 hr, tissues were embedded in molds, cured at 37 oC 

overnight, followed by additional hardening at 65 oC for two more days. Ultrathin (60 
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nm) sections were collected on copper grids, stained with 2% uranyl acetate in 50% 

methanol for 10 min, followed by 1% lead citrate for 7 min.  Sections were photographed 

using a FEI transmission electron microscope at 80 kV.   
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Summary 

Speciation in animals commonly involves an extrinsic barrier to genetic exchange 

followed by the accumulation of sufficient genetic variation to impede subsequent 

productive interbreeding.  All-female species of whiptail lizards, which originated by 

interspecific hybridization between sexual progenitors, are an exception to this rule.  Here 

the arising species instantaneously acquires a novel genotype combining distinctive 

alleles from two different species, and reproduction by parthenogenesis (virgin birth) 

constitutes an effective intrinsic barrier to genetic exchange (Cole, 1985).  Fertilization of 

diploid parthenogenetic females by males of sexual species has produced several triploid 

species, but these instantaneous speciation events have neither been observed in nature 

nor have they been reconstituted in the laboratory.  Here we report the generation of four 

self-sustaining clonal lineages of a new tetraploid species resulting from the 

superimposition of haploid sperm from Aspidoscelis inornata onto triploid oocytes from 

a parthenogenetic A. exsanguis.  Molecular and cytological analysis confirmed the 

genetic identity of the hybrids and revealed that the females retain the capability of 

parthenogenetic reproduction characteristic of their triploid mothers.  The tetraploid 

females have established self-perpetuating clonal lineages which are now in the third 

postformational generation.  Our results describe the first reproductively independent 

vertebrate species to be generated in a laboratory and validate that ploidy increase can 

drive instantaneous speciation in reptiles when favorable combinations of parental 

genomes are assembled.  We anticipate that these animals will be a critical tool in 

understanding the mechanisms underlying hybrid incompatibility and speciation in 

parthenogenetic vertebrates.  
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Introduction 

New species ordinarily arise over many generations through the gradual accumulation of 

incremental differences that eventually result in self-sustaining populations 

phenotypically distinctive and reproductively isolated from their progenitors (Coyne and 

Orr, 2004; Mayr, 1963). With few exceptions (e.g. (White et al., 1977)), interspecific 

hybridization has been viewed as detrimental to the process of speciation in animals 

rather than a driving force for it.  However, the recent application of molecular tools in 

Heliconius butterflies (Mavarez et al., 2006), tephritid fruit flies (Schwarz et al., 2005) 

and several other taxa has led to the realization that hybrid speciation may be more 

common in animals than previously thought (Mallet, 2007b).  At the extreme of instant 

speciation, hybridization combined with parthenogenesis has given rise to almost all 

unisexual lizards (Neaves and Baumann, 2011b).  The incidence of such speciation 

events varies widely among families and is unusually high in Caucasian rock lizards 

(genus Darevskia) and North American whiptail lizards (Aspidoscelis, (Kearney et al., 

2009)).  For example, of the 12 Aspidoscelis species found in New Mexico, seven are 

parthenogenetic and five of these are triploid (Degenhardt et al., 1996; Reeder et al., 

2002b).     

Karyotypic and molecular evidence revealed that diploid parthenogenetic species 

arose from hybridization events between sexual progenitors (Dessauer and Cole, 1986; 

Lowe and Wright, 1966; Neaves and Gerald, 1968b, 1969).  Subsequent hybridization 

between diploid parthenogenetic females and males of sympatric sexual species produced 

triploid unisexuals. How the unisexual mode of reproduction is induced in diploid 

hybrids and maintained in triploids remains unknown. Several lines of evidence suggest 
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that productive hybridization events are exceedingly rare. Firstly, histocompatibility 

studies support that single hybridization events have given rise to each of several 

parthenogenetic species (Cordes and Walker, 2003; Cuellar, 1976, 1977; Maslin, 1967; 

Taylor et al., 2003). Secondly, de novo hybridization events between sexual species have 

only been reported for  closely related species or subspecies where they result in 

offspring that reproduce sexually (Dessauer et al., 2000).  In contrast, quite a few first 

generation hybrids between parthenogenetic Aspidoscelis species and males of sexual 

species have been observed in field studies over the past 40 years.  When hybridization 

occurs between a diploid parthenogenetic female and a sexual male, the hybrid offspring 

are triploid (e.g. (Cuellar and McKinney, 1976)) whereas hybridization events involving 

triploid parthenogenetic females produces tetraploid hybrids (Cole, 1979; Lowe et al., 

1970; Neaves, 1971; Walker et al., 1990). Notably, in no case has successful reproduction 

of a hybrid been documented; and with one exception (Neaves, 1971) the animals were 

clearly infertile where examined (e.g. (Hardy and Cole, 1998)). In addition, a 29-year 

study aimed at creating a hybrid species in the laboratory involving 74 males and 156 

females of nine species produced five confirmed hybrids which were all sterile (Cole et 

al., 2010).   In summary, these findings indicate that in most cases ploidy elevation 

coincides with a loss of the ability to reproduce parthenogenetically in the offspring. 

 

Results 

Generation of tetraploid hybrids 

To gain more insight into the relationship between hybridization and infertility, we 

paired males of the diploid sexual species A. inornata with females of the triploid 
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Figure 1. Morphology of parental species and tetraploid hybrid animals.  (A) Dorsal view of 
A. inornata (left), A. exsanguis (right), and the A. exsanguis/A. inornata hybrid (center).  The 
scale bar corresponds to 10 mm. (B) Individuals representing the first (H1, left), second (H2, 
middle) and third (H3, right) hybrid generation of the tetraploid species. The H1 and H2 
individuals are adults photographed on day 1168 and 645 post hatching, respectively. The H3 
individual is shown at an age of 44 days and displays the color and pattern typical for 
juveniles.  
 

parthenogenetic species A. exsanguis.  This choice was inspired by the description of an 

apparent hybrid between A. inornata and A. exsanguis that was captured in August 1967. 

While in captivity this animal laid two fully-yolked eggs, but desiccation made it 

impossible to determine if the eggs could have produced viable offspring (Neaves, 1971).  

In our present study, the A. inornata male was observed mating with A. exsanguis 

females on several occasions.  Three clutches totaling six eggs were recovered from the 

enclosure and incubated at 28 degree Celsius.  Hatching occurred after 63 to 67 days and 

the six offspring appeared morphologically similar to A. exsanguis with the exception of 
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subtle blue pigmentation visible especially on the tail and indicative of a hybrid origin 

(Fig. 1).  

The ploidy of the animals was determined by quantifying the DNA content in 

nucleated erythrocytes by flow cytometry.  Blood samples from A. inornata and A. 

exsanguis served as diploid and triploid controls, respectively.  The analysis revealed a 

4C DNA content in somatic cells of the hybrid lizards (Fig. 2A).  Tetraploidy was further 

confirmed by karyotyping cultured fibroblasts isolated from the heart of a hybrid female 

that died at 20 months of age. The somatic cell karyotype comprised 90-92 chromosomes 
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(Fig. 2B), consistent with a combination of the haploid (n=23) chromosome complement 

of an A. inornata sperm with the unreduced triploid (3n ≈ 69) chromosome complement 

of parthenogenetic A. exsanguis (Fig. 3). 

Microsatellite analysis 

We next developed a panel of microsatellite markers to examine the parentage and 

genetic fingerprint of each hybrid lizard.  Microsatellite analysis for nine highly 

polymorphic loci consistently reflected the parentage of the six animals and identified the 

parent individuals (Fig. 2C).  The A. exsanguis mother had three different alleles at each 

of the  MS1, 7, 8 and 10-13 loci but only two at loci MS14 and 15, the latter presumably 

reflecting the presence of the same allele on two of the three homeologous chromosomes. 

The male A. inornata was heterozygous at each of the 9 loci, but at locus MS10 one of 

the two alleles was the same as one of the three alleles in A. exsanguis.  All alleles 

present at the 9 loci in A. exsanguis were detected in the 6 hybrid offspring, a finding 

consistent with the mother ovulating eggs carrying the unreduced somatic chromosome 

complement as previously observed in other Aspidoscelis species (Cuellar, 1971; Lutes et 

Figure 2: DNA and chromosome analysis. (A) Determination of DNA content of whole blood 
nuclei by propidium-iodide PI staining followed by FACS analysis. A comparison between 
diploid A. inornata (red), triploid A. exsanguis (green) and a putative hybrid (blue) indicates 
a tetraploid DNA content for the hybrid. (B) The karyotype of the A. exsanguis/A. inornata 
hybrid was determined from metaphase chromosomes of cultured cells. Each row shows a 
haploid chromosome set, with chromosomes arranged by decreasing size. The centric 
fission of one of the three large chromosomes is indicated with an arrow. (C) Microsatellite 
analysis at 9 loci in the A. exsanguis and A. inornata parents and the six hybrid progeny. The 
tree depicts the relationships between the 8 animals.  Unique alleles of A. exsanguis and A. 
inornata are highlighted in red and blue, respectively. In some experiments an additional 
peak at 261 was observed for MS15, but was not reproducible in repeat runs and is 
considered a technical artifact. 
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al., 2010).  Importantly, all six hybrids had received A. inornata alleles from the 

fertilizing sperm.  Two of the animals had enlarged femoral pores and more intense blue 

pigmentation characteristic of A. inornata males.  Based on these criteria as well as the 

presence of hemipenal bulges at the base of the tail we surmise that these two individuals 

are males, whereas the other four hybrids are females.   

 

Preservation of meiotic mechanism 

At 20 months of age, one of the hybrid females died of unknown cause.  A large 

egg was removed from the oviduct during necropsy (Fig. 4A) and incubated 

unsuccessfully.  However, unlike previous hybrids examined by others, the ovaries of this 

lizard appeared normal and contained numerous developing follicles (Fig. 4B).  Germinal 

vesicles (GVs) were isolated, stained with 4’, 6-diamidino-2-phenylindole (DAPI), and 

examined by confocal microscopy to compare the chromosome content with GVs from 

diploid sexual and parthenogenetic species.   

Figure 3: Karyotypes of A. inornata and A. 
exsanguis. The karyotype of the A. 
exsanguis (a) and A. inornata (b) were 
determined from metaphase chromosomes 
of cultured cells. Each row shows a haploid 
chromosome set, with chromosomes 
arranged by decreasing size. A. exsanguis 
collected at Alamogordo, NM in 2003-2005 
show centric fission of one of the three 
large metacentric chromosomes in the 
triploid karyotype (indicated with an 
arrow). This chromosomal change from the 
ancestral karyotype  has previously been 
reported for A. exsanguis from Hidalgo 
county. 
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In diploid parthenogenetic Aspidoscelis species, meiosis proceeds with twice the 

number of chromosomes found in sexual species so that diploid oocytes are produced 

following the two meiotic divisions (Lutes et al., 2010).  If sexual reproduction occurred 

in the tetraploid hybrids, the premeiotic nuclei would contain twice the amount of DNA 

found in prophase I of meiosis in a sexually reproducing diploid species or the same 

amount as in a GV from a diploid parthenogenetic species (Fig. 4C).  In contrast, if the 

tetraploid hybrids were capable of parthenogenetic reproduction, their GVs should 

Figure 4: Ovaries and 
mechanism of oogenesis. 
(A) A large yolked and 
shelled egg was found in 
the body cavity of a 
deceased tetraploid hybrid. 
(B) One of two fully 
developed ovaries from 
the same lizard shown in 
(A). Scale bar corresponds 
to approximately 0.5 mm. 
(C) Three-dimensional 
projections of DAPI-stained 
germinal vesicles (GV) in 
prophase I of meiosis from 
a diploid parthenogenetic 
A. tesselata. Scale bar is 20 
µm. (D) GVs from the 
tetraploid hybrid. 
 



81 
 

contain twice the amount of DNA found in GVs of A. tesselata, an outcome that is 

consistent with our experimental findings (Fig. 4D).  These observations indicate that the 

deceased tetraploid hybrid had been capable of producing eggs with a tetraploid 

chromosome content by employing the same mechanism previously characterized for 

diploid parthenogenetic species in this genus (Lutes et al., 2010). Indeed, genotyping later 

revealed that the deceased lizard had previously laid an egg from which a viable offspring 

had emerged.   

 

Establishment of four tetraploid lineages 

Between April 2009 and October 2010 twenty-five offspring were produced in 

aggregate by the four tetraploid females.  The microsatellite analysis was first extended to 

these second generation (H2) animals and later to 22 third generation (H3) animals that 

hatched between April and December 2010.  With one exception (see below), all alleles 

present at the nine loci were identical between the first generation hybrids (H1) and their 

respective daughters and granddaughters, providing evidence for four independent 

parthenogenetic lineages.  The example shown in Figure 5 includes one H1 hybrid, two 

of its daughters and four granddaughters. The single exception to clonal inheritance 

occurred at the MS14 locus where the H3 animal 9706 deviates from its siblings and 

progenitors by the appearance of a new allele 302 not otherwise found in the lineage.  

This allele appears to be the result of a repeat expansion confined to a single individual.   

It should be noted that the two H2 animals represented in figure 5 were produced by 

the H1 female while she was housed with two H1 males (4920 and 5134), which are 

distinguishable at two and four loci from the H1 female, respectively (Fig 2C). 
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Nevertheless, only maternal alleles were detected in the daughters providing further 

evidence for unisexual reproduction.  The other members of the H2 generation thus far 

were daughters of H1 females housed separately from males, and microsatellite analysis 

revealed each to be genetically identical to its mother.  Together with the increased DNA  

content in meiotic prophase and the fact that all H2 and H3 animals are female, the 

genotyping results therefore strongly support a parthenogenetic mode of reproduction.   

 

Discussion 

The breeding experiment described here has produced over 50 tetraploid animals 

representing three generations with more forthcoming as eggs hatch and additional eggs 

are laid.  The maintenance of reproductive competence following ploidy elevation was 

highly unexpected as other Aspidoscelis hybrids (both field-collected and laboratory-

Figure 5: Maintenance of 
heterozygosity over three 
generations. Microsatellite 
analysis at 9 loci for a first 
generation hybrid (H1), two of its 
daughters (H2) and 4 
granddaughters (H3).  Alleles 
originally inherited from A. 
inornata are highlighted in blue, 
those from A. exsanguis in red. A 
single novel allele of MS14 is 
highlighted in pink. 
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generated) have failed to reproduce.  It has even been suggested that the decline of 

parthenogenetic A. dixoni in Antelope Pass, New Mexico is a result of fertilization of 

already diploid dixoni eggs by sexual A. tigris males resulting in sterile triploid hybrids 

(Cole et al., 2007). We have now described the first case where ploidy elevation in a 

reptile has not resulted in embryonic lethality or infertility, providing the proof of 

principle for how triploid parthenogenetic species are likely to have arisen in nature.  

While evidence from field and laboratory studies (Cole et al., 2010; Taylor et al., 

2005)  indicates that speciation by ploidy elevation is exceedingly rare in reptiles, 

unisexual lineages of some fish and amphibians are polyclonal and in a few cases are 

readily reconstituted.  For example, laboratory hybridization of Poeciliopsis monacha 

females and P. lucida males reconstituted a hybridogenetic species of fish, Poeciliopsis 

monacha-lucida, found in northwestern Mexico (Schultz, 1973b; Wetherington et al., 

1987b). Similarly, the hemiclonal frog Rana esculenta was recreated in the laboratory by 

crossing the two parental species Rana ridibunda and R. lessonae (Hotz et al., 1985; Hotz 

et al., 1999). Inherent to the hemiclonal mechanism of hybridogenetic reproduction, eggs 

only contain one of the parental genomes and diploidy must be restored via fertilization 

by sperm from sympatric males each generation.  Even in clonally reproducing (i.e. 

gynogenetic) unisexual salamanders and fish where the sperm genome is not incorporated 

into the offspring, sperm from a related species is required to trigger embryogenesis in 

eggs carrying the full somatic chromosome complement (Bogart et al., 2007; Lamatsch 

and Stöck, 2009) This absolute requirement for males from related sexual species is 

shared by all unisexual anamniotes and prevents establishment of reproductively 

independent unisexual species in these taxa.  
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The four lineages described here constitute the first example of a laboratory-

generated vertebrate species that can reproduce independently of its progenitors.  In 

addition it is the first tetraploid species of lizard.  The absence of gene flow both within 

and between unisexual taxa has fueled debate about the taxonomic treatment of 

parthenogenetic animals (Cole, 1985; Frost and Wright, 1988; Walker, 1986).  Although 

the lack of interbreeding prevents application of the biological species concept, 

parthenogenetic lizards exist as phenotypically and genetically discrete, self-reproducing 

entities, and they have been recognized as valid taxonomic units with the same status as 

sexually reproducing species (Reeder et al., 2002b).  

The origin of the first reproducing line of tetraploid whiptail lizards in the 

laboratory raises the question whether this new species could survive in nature in 

Figure 6: Competition over food item between A. exsanguis and tetraploid hybrid. (a) A. 
exsanguis (marked with yellow tape) on bottom right has captured T. molitor  (b) Tetraploid 
hybrid (marked with pink tape) bites end of food item and (c) pulls it out of the mouth of the A. 
exsanguis. (d) Tetraploid hybrid consumes the food item. 
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competition with other Aspidoscelis species.  Or is it comparable to domestic species that 

depend on husbandry under captive conditions to persist?  It is premature to speculate on 

answers, but tetraploids of all three generations in the laboratory pursue and capture live 

crickets as effectively as their progenitors and exhibit no obvious competitive 

disadvantage when housed with individuals of sexual or parthenogenetic Aspidoscelis 

species.  In experiments where a single food item (larvae of the darkling beetle Tenebrio 

molitor) was offered to a group comprised of four A. exsanguis and four tetraploids, the 

item was consumed as frequently by a tetraploid as by an A. exsanguis.  On several 

occasions, we observed a tetraploid removing the food item from the mouth of an A. 

exsanguis (Fig. 6).  

The laboratory synthesis of a new tetraploid Aspidoscelis species, coupled with the 

collection of a tetraploid hybrid between A. inornata and A. exsanguis in Alamogordo 

more than 40 years ago (Neaves, 1971), raises the question of why a tetraploid species 

derived from hybridization between these two species has not yet been found in nature.  

The apparent health and vigor of the tetraploids and their parthenogenetically produced 

offspring in captivity does not ensure their ability to succeed in nature, but it does suggest 

that sporadic mating of A. inornata with A. exsanguis could result in self-sustaining 

tetraploid lineages in locations where both species are sympatric.  The new tetraploid 

species synthesized in captivity may be the prototype of a species that might eventually 

emerge in the deserts of the southwestern US or northern Mexico.  Perhaps its existence 

in the laboratory, together with recognition of the subtle phenotypic differences that 

distinguish it from its triploid progenitor, will stimulate a productive search for its 

counterpart in nature. 
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Materials and Methods 

Animals 

Laboratory colonies of A. exsanguis, A. inornata, A. tesselata, and A. exsanguis x A. 

inornata hybrids were established from animals collected in Socorro, Sierra and Otero 

Counties, New Mexico, under a permit from the New Mexico Department of Game and 

Fish (permit numbers 3199 and 3395). Animals were propagated and maintained in the 

Reptile and Aquatics Facility under conditions similar to a previously published 

description of captive lizard husbandry (Townsend, 1979) and in compliance with 

protocols approved by the Institutional Animal Care and Use Committee of the Stowers 

Institute for Medical Research. 

  

Flow Cytometry 

Blood was isolated from tail-clips in acid citrate dextrose anticoagulant (45 mM 

sodium citrate, 22.8 mM citric acid, 81.5 mM dextrose). Cells were centrifuged at 500 g 

and resuspended in citrate buffer, pH 7.6 (0.25 M sucrose, S-0389 Sigma, 38.6 mM 

trisodium citrate, C-8532, Sigma and 5% DMSO) then pelleted again at 500 g.  After 

decanting the supernatant, the cells were resuspended in citrate buffer at a density of 2.5 

x 106/ml. 100 µl of cell suspension was transferred into a 15 ml conical tube and 

incubated with 900 µl 30 mg/L trypsin, pH 7.6 (T-0134, Sigma), diluted in buffer S (3.4 

mM trisodium citrate, 0.1% Triton X-100, T-6878, 1.5 mM spermine, S-1141 Sigma and 

0.38 mM Tris-HCl, T-7149 Sigma) for 10 min with gentle rotation, followed by the 

addition of 750 µl trypsin inhibitor solution (0.5 mg/ml trypsin inhibitor, T9003 Sigma, 

0.1 mg/ml RNase A, R-5500 Sigma prepared in buffer S) for an additional 10 min with 
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gentle rotation. An additional 750 µl of propidium iodide solution (propidium iodide 0.42 

mg/ml P-4170 Sigma, 3.33 mM spermine in buffer S) was added and incubated with 

gentle agitation for 10 minutes while protected from light. Events were collected with an 

Influx instrument (BD Biosciences) by excitation at 488nm and collection at 610nm with 

a threshold set to exclude small debris. No gates were used.  

  

Cell Culture  

Primary cell lines were established from embryos (A. exsanguis and A. inornata) or 

heart tissue (tetraploid hybrid) using a procedure modified from(Moore et al., 1997). 

Briefly, A. exsanguis and A. inornata eggs were incubated at 29 °C for 30–40 days, 

sterilized in an ethanol-iodine mixture (90% ethanol, 120 mM potassium iodide and 39 

mM iodine), and embryos were removed under sterile conditions and immediately 

decapitated. Minced embryos or, in the case of the hybrid animal, heart tissue was rinsed 

with cold phosphate-buffered saline and agitated for 15 min at room temperature in the 

presence of trypsin-EDTA solution (T4049, Sigma). The suspension was passed through 

sterile cheesecloth for A. inornata and A. exsanguis samples into a 50 ml Falcon tube 

containing 2 ml ice-cold M199 cell culture medium (Sigma) supplemented with 20% 

fetal bovine serum, 50 µg/ml gentamycin (Sigma), glutamax (Invitrogen), MEM non-

essential amino acids (Invitrogen), MEM vitamin solution (Invitrogen), 56 U/ml nystatin 

(Sigma), 100 U/ml penicillin and 100 µg/ml streptomycin (Sigma). For the A. exsanguis x 

A. inornata hybrid sample larger tissue fragments were manually removed using forceps 

prior to the addition of 2 ml ice-cold M199 cell culture medium plus supplements as 

above. The filtered cell suspensions were kept on ice and the remaining tissue was 
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trypsinized for another 15 min. Larger tissue fragments were again removed and the cell 

suspensions were combined and centrifuged to pellet cells, then washed in M199 media 

plus supplements and finally resuspended in 2 to 6 ml M199 media plus supplements. 

Cells were seeded in 6-well dishes (Falcon, 353046) and cultured at 30 °C, 5% O2 and 

2% CO2. When cells exceeded 85% confluency, the cultures were passaged at a 1 in 3 

dilution.  

  

Karyotyping 

At 50-70% confluency, cultured cells were treated with 0.5 µg/ml Karyomax 

colcemid (Invitrogen) and incubated for 3 h at 30 °C, 5% O2 and 2% CO2. The cells were 

harvested by trypsinization and subjected to hypotonic swelling in 0.075 M KCl at 37 °C 

for 10 min. The cells were then pelleted, washed twice in PBS and resuspended in 

methanol:acetic acid fixative (3:1). Coverslips were cleaned with a 1:1 ethanol:ethyl ether 

solution, air-dried and stored in water at 4 °C. Cells were dropped onto the coverslips and 

immediately washed with 1-3 ml fixative. Coverslips were then incubated on a heat block 

at 75 °C for 1 min. Coverslips were further processed by RNase treatment (0.5 mg/ml in 

PBS) for 30 min at 37 °C, washed twice briefly in PBS, then fixed for 2 min in 4% 

formaldehyde (Sigma F8775) in PBS. After rinsing briefly in PBS three times, the 

coverslips were incubated with 1 mg/ml Pepsin (Sigma P6887, 3,200-4,500 units/mg) for 

10 min at 37 °C, rinsed twice in PBS, and fixed again in 4% formaldehyde. Following 

three washes in PBS, the samples were dehydrated in an ethanol series (70%, 90%, 

100%) and air-dried.  Giemsa staining was performed by mixing giemsa (VWR, 15204-

144) and phosphate buffer, pH 6.8 (VWR, 34171-002) in a 1:12 ratio, then filtering the 
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mix through a 0.2 micron filter with an attached 18 gauge needle onto coverslips. The 

samples were incubated for 10-15 minutes, rinsed in water and air-dried in a dust-free 

environment prior to mounting. Samples were imaged on an Axiovert microscope 

equipped with an Axiocam HRm camera using a 100×, 1.3 NA Fluar objective. Images 

were analyzed with AxioVision software and karyotypes were assembled in Adobe 

Photoshop. 

  

Microsatellite Analysis 

Microsatellites MS1, MS7, MS8 were isolated from a genomic library prepared 

from A. tesselata liver tissue.  Genomic gDNA was isolated using QIAGEN Genomic-

tips and the library was constructed using the Lambda FIX II library construction kit 

(Stratagene). Briefly, BAMH1-digested gDNA was ligated into the Lambda FIX II vector 

and packaged according to the Gigapack III manual (Stratagene). Plaque lifts were 

performed and membranes were hybridized with a 32P-labelled CA(10) probe. Positive 

plaques were isolated and phage DNA was purified using the Wizard Lambda Prep DNA 

Purification System (Promega) and sequenced by primer walking to identify 

microsatellites and flanking sequences. Microsatellites MS12 to 15 were isolated from 

genomic DNA libraries enriched for tetranucleotide repeats that were generated by 

Genetic Identification Services using genomic DNA isolated from liver of A. exsanguis. 

MS10 primers were modified from (Rowe, 2002) to amplify the Cvanμ7 microsatellite in 

Aspidoscelis species and MS11 (Ai5062) was as described (Crawford et al., 2008). For 

each primer set one primer was 6-carboxyfluorescein-labeled at the 5’ end. Primer 

sequences are listed in Table 1. 
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One millimeter lizard tail-clips were placed in 300 µl of a solution consisting of 50 

mM Tris pH 8.8, 1 mM EDTA, 0.5% Tween-20, and 100 µg/ml proteinase K. Samples 

were incubated for 12-18 hrs at 55°C then placed in a 95°C heat block for 10 min 

followed by direct storage at -80°C until use. One microliter of each sample was used as 

template and PCR was performed with Biolase DNA polymerase (Bioline) or Taq DNA 

polymerase (New England Biolabs). PCR products were detected by capillary 

electrophoresis on a 3730 DNA Analyzer and analyzed with GeneMapper Version 4.0. 

Size ranges used to bin each allele are listed in Table 2. 

 

 Confocal Microscopy  

Germinal vesicles were isolated using jeweler’s forceps, incubated with 40 ng/ml 

4',6-diamidino-2-phenylindole (DAPI) and imaged using a LSM 510 META (Carl Zeiss 

Jena) system equipped with a C-Apochromat 40×, NA 1.2 water immersion lens. A 405 

nm laser was used to excite the fluorescent dye and signal was collected using a long- 
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pass 420 nm filter. Images were cropped in Photoshop to digitally remove the nuclear 

envelope. Noise was removed by smoothing in Imaris with a 3x3x3 median filter. 

 

Table 2. Size ranges determined for each allele as determined by Genemapper. 
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Summary 

Through meiotic modifications that yield diploid gametes, some species within 

Aspidoscelis are able to overcome the sterility that is common to hybrids. In this work, 

we have identified cellular mechanisms, and their consequences, in these animals. First 

we determined that chromosomal content doubles (8C) in diploid parthenogenetic 

Aspidoscelis oocytes. This appears to be specific, as erythrocytes - a proxy for somatic 

cells - are 2C. Oocytes were identified in diplotene stage by the presence of bivalents 

which exhibited chiasmata. Next, we differentiated between homolog pairing and sister 

chromosome pairing by identifying homolog specific microsatellites that were suitable 

for FISH. These sequences were inherited from the maternal species, A. tigris. Bivalents 

with FISH signal were shown to be exclusively comprised of maternally inherited 

chromosomes; thus chromosome pairing occurs between sister chromosomes. To gain an 

understanding into the conservation of this meiotic mechanism and its relation to the 

prevalence of polyploid Aspidoscelis species, we generated tetraploid hybrids by crossing 

parthenogenetic triploid A. exsanguis and bisexual A. inornata. Unlike other reported 

tetraploid Aspidoscelis, these hybrids are fertile and reproduce through the chromosomal 

doubling mechanism described in Aspidoscelis diploids.  

 

A. exsanguis/A. inornata hybrids 

Absence of tetraploids in nature 

Previous tetraploids have been documented as sterile or infertile. On the other 

hand, the A. exsanguis/A. inornata crosses are quite robust, with an ability to effectively 
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compete with diploid and triploid relatives in regards to both food competition and viable 

offspring. Chromosome pairing is not a problem with these animals. With 16C DNA 

content in meiosis, reproduction appears as efficient as in diploids, either unisexual or 

bisexual. Why then might tetraploid species be absent in nature? Lack of tetraploids may 

stem from incompatible interactions involving the A. tigris genome; these hybrids do not 

readily produce higher ploidy animals, the exception being A. neotesselata which 

contains one genome from A. tigris and two from the A. sexlineata group (A. gularis and 

A. sexlineata viridis, Fig. 1, Chapter 1). In contrast, the A. exsanguis/A. inornata cross is 

comprised of genomes exclusively from the A. sexlineata group, suggesting that these 

may be more amenable to chromosome doubling. Further we speculate that the meiotic 

mechanism may be dosage dependent, because as our lab has observed, fertile tetraploid 

lineages form more easily than triploid counterparts. Alternatively, tetraploids may be 

unable to form a unique environmental niche, rendering them inept to compete with A. 

exsanguis. Because the fourth genome is largely redundant with two of its predecessors, 

it may not add genetic variation to the animal, serving only an energy sink. Performing 

gene expression analyses may yield insights into the differences between a triploid and 

closely related tetraploid. Although we saw no disability in prey capture with the 

tetraploids, these animals may harbor unknown detriments that result in their demise. 

Testing this in a natural setting would eliminate many potential artifacts from gene 

expression studies. By monitoring competition between these two species in an enclosed 

area in their natural environment, one can extrapolate how the two would fare in nature. 

To test the idea of the Red Queen, for example, one could compare mite loads because, as 

previously discussed, unisexual species exhibit higher rates compared with bisexuals.  
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According to several evolutionary hypotheses, tetraploids should have an 

advantage over triploids. The Fisher-Muller hypothesis predicts a higher probability of 

favorable allele combinations with a ploidy increase. According to Muller’s ratchet, the 

increase in gene redundancy will reduce the ‘click’ of the ratchet. And the increased 

genetic variability should reduce the parasitic susceptibility described in the Red Queen 

hypothesis. However, the variation in a polyploid does not appear to be simply additive, 

as ‘genomic shock’ – the variance in gene expression between parent and hybrid – 

appears to play a role in hybrid survival (McClintock, 1984). In Arabidopsis, most of 

these differences result from selective repression of a parental allele, possibly as a 

consequence of nucleolar dominance (Wang et al., 2006). Hence, although a tetraploid 

may contain 33% more DNA than its predecessor, it may not be expressed as such. If a 

fourth chromosomal complement is present, but largely silenced, then it would not serve 

as an advantage in regards to any of the evolutionary hypotheses.  

 

Genetic variation  

Surprisingly, a microsatellite change was observed between the second and third 

generation A. exsanguis/ A. inornata, between mother 8092 and offspring 9706. Single 

generation variation has also been observed in parthenogenetic rock lizards of the genus 

Darevskia, in both the germline and somatic cells (Malysheva et al., 2007). This variation 

was detected using genomic fingerprinting methods; in comparison, by using our 

microsatellite tools we are able to measure genetic changes at single nucleotide 

resolution. As our tetraploid colony approaches its sixth generation, it would be 

informative to measure additional variation between present and forthcoming 
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generations. To gain insight into genetic stability of the tetraploid genome, it would be 

fruitful to compare variability between diploid, triploid, and tetraploid populations. 

Because microsatellite variation positively correlates with that of the genome in 

mammals (albeit at a difference variance) an observed increase in variation between 

tetraploids may indicate larger genome-wide fluctuations (Driscoll et al., 2002; Väli et 

al., 2008). Changes in the genome would undermine the idea that these animals reproduce 

clonally.  

 

Genetic differences between Aspidoscelis species 

We demonstrated sister chromosome pairing by finding large microsatellite arrays in the 

A. tigris karyotype that were absent in that of A. inornata. This unexpected discrepancy 

predicts a larger diversity than first expected from superficial gene comparison (Lutes 

and Baumann). Ironically, genome sequencing would not have uncovered the breadth of 

diversity, as large repetitive regions are often unable to be sequenced to completion. It 

would be interesting to determine the extent of these differences. Of the three bisexual 

species we examined as well as one additional (Meyne et al., 1990), A. inornata appears 

to be the exception rather than the rule in Aspidoscelis. Internal telomeric repeats are 

common in both bisexual and parthenogenetic whiptails. How would such repeats arise 

and what are their functions, if any? As exemplified by chromosomal reduction in the 

evolution of great apes to humans, an internal telomere repeat may be a remnant of an 

ancestral chromosome fusion (IJdo et al., 1991). One hypothesis suggests that 

chromosome break healing may be mediated by the enzyme telomerase (Azzalin et al., 

2001). However, these mechanisms would create insertions of short length and are 
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therefore unlikely to explain the karyotype of Aspidoscelis lizards. Additionally, these 

mechanisms do not provide an explanation for the prevalence of the other, non-telomeric, 

array we observed. Alternatively, the formation of large internal sites may be mediated 

through the insertion of a double-stranded repeat sequence into a chromosome break. 

Over time, it would be lengthened through faulty DNA replication (Lin and Yan, 2008). 

In addition to the formation of internal repeats, their function remains a mystery as well. 

As observed in dozens of organisms ranging from plants to mammals, such large arrays 

are observed near centromeres (Meyne et al., 1990), suggesting that they may play a 

related role (Tek and Jiang, 2004). Whether microsatellite regions serve a function at 

centromeres or are merely a consequence of nonlethal insertions remains to be known. 

Nevertheless, these repeats may consequently serve as a species barrier by preventing 

normal chromosome pairing and reproduction in hybrids.  

 

Chromosome pairing between sisters 

A significant finding in our report of parthenogen meiosis was the observation of pairing 

between sister chromosomes, the genetically identical products of the chromosome 

doubling event. Pairing between identical chromosomes ensures that heterozygosity is 

maintained. We found that sisters not only pair, but they also undergo recombination and 

genetic exchange, as revealed by chiasmata on each of the bivalents. This implies that the 

sister chromosome is indistinguishable from, and treated as, the homolog. With effort 

expended to eliminate incorrect interactions and ensure homolog pairing, how are sister 

chromosomes able to pair in Aspidoscelis? Looking at similar situations may provide 

answers. For example, hexaploid wheat, an allopolyploid originating from three 
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progenitor species, contains a true set of homologs as well as three sets of genetically 

similar homeologs, which seemingly predisposes it to pairing difficulties (Yousafzai et 

al., 2010). However, despite this apparent obstacle, homolog pairing is robust and triploid 

gametes are reliably attained. The Ph1 locus, present on chromosome 5 of one of the 

homeologs, plays a significant role in strict homolog pairing. A Cdk2-like gene, Ph1 

appears to interfere with the normal progression through meiosis through a dominant 

negative mechanism (Griffiths et al., 2006; Knight et al., 2010). In wild type cells, 

incorrect interactions can be remedied prior to zygotene completion whereas Ph1 deletion 

mutants demonstrate mild chromosome pairing defects, resulting in infertility after 

several generations (Yousafzai et al., 2010). Therefore, potentially detrimental 

interactions probably occur between homeologs, but with sufficient time, homologous 

interactions are enforced. As wheat does not appear to have a zygotene checkpoint, the 

Ph1 locus apparently affords them with sufficient time to correct homeologous 

interactions. Aspidoscelis, as with other vertebrates, appears to have a pairing checkpoint 

that would prevent progression into meiosis without proper pairing. 

 Mechanistically, it may not seem surprising that sister chromatids are differentiated 

from sister chromosomes. Homolog-specific recombination increases during meiosis; a 

reverse occurs in mitosis, in which intersister recombination is favored (Jackson and 

Fink, 1985; Kadyk and Hartwell, 1992). Elucidation of the involved factors and pathways 

is ongoing and has predominantly been demonstrated in Saccharomyces cerevisiae (for 

review see (Pradillo and Santos, 2011)). It is known that meiosis-specific genes, such as 

Dmc1, Hop1, and Red1 as well as the mitotic factors Rad51 and Rad 54 are involved in 

interhomolog bias (Carballo et al., 2008; Schwacha and Kleckner, 1997). Although many 
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mediating proteins have been found, the mechanism regulating interhomolog preference 

is still debatable. One hypothesis suggests that intersister cohesion attenuated by the axial 

components Red1/Mek1 plays a role (Kim et al., 2010). Another favored hypothesis 

suggests that DMC1 filaments are directed towards the homolog by RAD51 filaments 

(Sheridan and Bishop, 2006; Sheridan et al., 2008). Quite likely, there are multiple 

mechanisms utilized; and it appears that they are also relevant in sister chromosome 

pairing.   

 The recent breakthrough from the Hiraoka lab regarding non-coding RNA as a 

mediator in initial chromosome recognition suggests a widespread mechanism by which 

organisms initiate sequence-specific pairing (Ding et al., 2012). The same mechanism 

may be utilized in Aspidoscelis, and the huge microsatellite arrays present in the A. tigris 

genome may contribute. Whether or not these microsatellite regions are transcribed is yet 

to be determined, however transcription of such a vast region may have the potential to 

positively influence sister chromosome pairing. Observing the frequency of pairing in 

these microsatellite regions and their transcription will help shed light on pairing 

mechanisms among vertebrates. Possibly, these seemingly innocuous regions play a 

crucial role in homolog recognition and hybrid incompatibility.  

 

Chromosome doubling 

Effects and Consequences 

Subsequent to finding that chromosome doubling provides the basic mechanism by 

which parthenogenetic lizards arise, we have investigated earlier events in oogenesis to 
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determine the cellular mechanism responsible. It seems reasonable that such a doubling 

would coincide with premeiotic S-phase and the onset of meiosis; however, studies from 

Oryzias hybrids have indicated that ploidy increase may occur earlier and may be 

inefficient (see Chapter 1). And although not fertile, either sexually or 

parthenogenetically, the reproductive biology of Oryzias may be applicable to other 

vertebrates. Indeed, we have found a similar mechanism in Aspidoscelis parthenogens 

(Fig. 1). The majority of oocytes have a DNA content of 4C or less and are present in 

zygotene, presumably due to a pairing disability. Therefore, it is likely that doubling 

occurs in the mitotic germ cells and that the polyploid cells progress through meiosis. 

Additionally, it is likely that a population of polyploid germ cells exists. 

What would be the consequences of such polyploid germ cells? Prevalent in certain 

cell types, such as trophoblasts and megakaryocytes, polyploid cells are generally 

inhibited in most tissues. The unstable nature of polyploidy seems to predispose a cell to 

tumorigenesis in p53 compromised tissue (Fujiwara et al., 2005). The resulting cancer 

appears to be influenced in part by induced aneuploidy caused by supernumerary 

centrosomes. Support for this stems from the fact that cancers frequently contain 

aneuploid karyotypes (Storchova and Kuffer, 2008). In Aspidoscelis parthenogens, there 

have been no reported propensities towards tumor formation, indicating that either 

tetraploid cells are stable, or that checkpoint mechanisms prevent cell proliferation 

outside of meiosis. Because centrosome degradation occurs during meiosis (Manandhar 

et al., 2005), polyploidy may be stable only at this stage. In contrast, mitotically dividing 

cells would encounter difficulties in division, triggering checkpoint activation and 

apoptosis. Alternatively, polyploid cells may have few regulations, as has been suggested 
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for various human cell lines (Uetake and Sluder, 2004). Thus, identification of 

mitotically-dividing polyploid oogonia and their properties, such as abundance, stability, 

and centrosome number, will undoubtedly contribute to our understanding of checkpoints 

in the oogenesis of lower vertebrates.   

The effects of polyploid cells may not be restricted to carcinogenesis. Gene 

Fig. 1. Analysis of ploidy and 
meiotic stage in Aspidoscelis. (A) 
Ploidy analysis of the A. 
neomexicana germinal bed. The 
majority of oocytes are 4C or 
less. (B) Meiosis stage analysis of 
germinal beds in A. tigris and A. 
neomexicana. All identified cells 
in A. tigris, 2 months of age or 
older, were in diplotene. In 
contrast, the majority of cells 
were found in zygotene in the 
parthenogen, regardless of age.  

a 

b 
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expression may also be affected, and could have profound downstream effects in meiosis, 

such as in ribosomal DNA amplification, piRNA formation, and the regulation of oocyte-

specific genes (Brown and Dawid, 1968; Khurana and Theurkauf, 2010; Zheng and 

Dean, 2007). However, if oogenesis is indeed disrupted from a ploidy increase in 

Aspidoscelis, it is certainly not detectable upon superficial comparison between unisexual 

and bisexual species; the fecundity of unisexual species rivals that of bisexual 

counterparts.  

 

DNA damage response and checkpoints in Aspidoscelis germline 

While the consequences of polyploid cells may be intriguing, perhaps more 

interesting is how polyploid cells persist in Aspidoscelis parthenogens. As noted 

previously, polyploidy is tolerated in few tissues, with liver as one exception. Substantial 

progress has been made in understanding how these relics are able to survive. For 

example, tetraploid hepatocytes grown in culture do not activate the p53-mediated 

damage response, and divide with extra centrosomes that polarize in pairs (Guidotti et al., 

2003). Functionally, tetraploid liver cells may have evolved to generate stress-induced 

adaptation from the resulting aneuploidy (Duncan et al., 2012). The relationship between 

stress and polyploidy is unclear, although there is certainly a correlation. Diseased 

cardiomyocytes, for example, contain higher numbers of polyploid cells (Lazzerini 

Denchi et al., 2006). Very little is known about DNA damage checkpoints in lizards, 

therefore we can merely speculate about the biology in Aspidoscelis. Perhaps 

parthenogens possess a compromised checkpoint in the ovary, allowing polyploid cells to 
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escape apoptosis. Alternatively, as with cardiomyocytes, the large number of failing 

oocytes may serve as a stressor which promotes dysfunction of dividing oogonia.  

 What checkpoint might be comprised in Aspidoscelis? Although p53 is critical for 

DNA damage response in tissues, including testes, whether or not it plays a significant 

role in oogonial apoptosis is still unclear. Irradiated ovaries from mouse p53 knockout 

mice undergo apoptosis normally, suggesting that the ubiquitous oncogene is not required 

for germ cell death (Guerquin et al., 2009). In mouse oocytes, p63 – a related family 

member of p53 – has been shown to be essential for the germline, albeit probably not in 

oogonia (Guerquin et al., 2009; Livera et al., 2008; Suh et al.). In contrast to mammals, 

p53 may indeed perform its important task in the germ cells of lower vertebrates. 

Zebrafish mutants of fancl, a DNA repair gene that results in massive germ cell death, are 

partially rescued by a p53 deletion (Rodriguez-Mari et al., 2010). Further studies are 

needed to ascertain the checkpoints required in the ovaries of lower and higher 

vertebrates. Nonetheless, a tissue-specific apoptosis factor may explain the concurrent 

prevalence of polyploid germ cells and negligible tumor formation in Aspidoscelis.  

 Alternatively, mutations in downstream targets of p53 can also yield an increase in 

cell survival. And the plethora of p53 downstream targets increases the options for tissue 

specificity (Slee et al., 2004; Wang et al., 2007). For example, the variable DNA damage 

responses downstream of the apoptosis regulator have been observed in intestinal cells 

(Fei et al., 2002). Dominant negative versions of many of these factors could explain the 

dosage-dependent phenotype observed in the tetraploids (discussed next under “cellular 

and genetic mechanisms”).    
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Fig. 2. Germinal bed in the parthenogenetic 
species, Aspidoscelis tesselata. Some oogonia 
and oocytes are binucleated (arrow) in both 
unisexual and bisexual Aspidoscelis. H&E 
stained section.  

 Another source of tetraploidy-inducing chromosome instability has been recently 

uncovered and involves telomere dysfunction. Resulting from shortened or unprotected 

chromosome ends, this type of chromosome instability was reported in liver and human 

cell lines (Davoli and de Lange, 2012; Lazzerini Denchi et al., 2006). Given the 

conservation of telomeres and their associated proteins, this detrimental mechanism may 

occur in other organisms. As we reported, in addition to containing true telomeres 

(located at the ends of chromosomes), huge telomeric sequences are also present 

internally in Aspidoscelis, with lengths on the order of megabases. How these loci affect 

normal function at terminal loci is unknown. Speculatively, if these internal sites interact 

with telomeric proteins, they may dilute protective factors from the ends of the 

chromosomes, thereby creating unprotected and dysfunctional telomeres.  

 

Cellular and genetic mechanisms  

We can look to other polyploid cells to gain insight into the cellular mechanism 
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responsible in the Aspidoscelis germline. Binucleated cells, for example, are 

intermediates observed in liver, an organ in which cells frequently undergo failed 

cytokinesis or cell fusion. Subsequently, nuclear contents merge after nuclear envelope 

breakdown of the following mitosis. There is precedence for similar mechanisms in the 

ovary, as well. Failed cytokinesis was demonstrated in spontaneously immortalized 

ovarian epithelial cells in mouse. These were shown to generate near tetraploid daughter 

cells with carcinogenic properties (Lv et al., 2012). In Aspidoscelis, we have observed 

binucleated oogonia in the parthenogen ovary, suggesting a mechanism involving 

cytokinetic failure or cell fusion (Fig. 2). Interestingly, these cells are present in the 

bisexual species as well, implying that chromosomal doubling may not be restricted to 

parthenogenetic Aspidoscelis. More surprising is the observation of binucleated oocytes 

in the American alligator, Alligator mississippiensis, demonstrating a possible 

widespread phenomenon in reptilian oogonia (Moore et al., 2010). The biological 

significance of these cells remains to be found. They may simply be the result of rare 

cytokinetic errors that rapidly initiate cell death; or perhaps, they are the result of 

something more meaningful.  

 Oogonia and spermatids in both vertebrates and invertebrates inherently exhibit 

cytokinetic abnormalities, as demonstrated by the intercellular bridges which connect 

these cells. Arising from incomplete abscission of the midbody, a defect in this process 

could potentially yield oogonia-specific chromosome doubling. In somatic cells, 

tetraploidy can arise from deletion of midbody components (Carlton and Martin-Serrano, 

2007; Singh and Westermark, 2011). In recent years, substantial progress has been made 

in understanding these enormous junctions in germ cells. TEX14, a germline specific 
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protein, was found to localize to intercellular bridges in testes and is essential for 

successful spermatogenesis (Greenbaum et al., 2006). It interacts with the ubiquitous 

abscission protein CEP55, preventing complete separation of germ cells. TEX14 also 

appears to be required for oogonial bridges and localizes to discrete foci within these 

regions. In contrast to males, female knockout mice are fertile, albeit with fewer ovarian 

follicles (Greenbaum et al., 2009). Normal abscission, as well as oogonial bridges, can be 

restored by overexpression of TEX14. In Aspidoscelis, abnormalities could arise in a 

variety of ways during this process. For example, a loss of abscission - and tetraploidy - 

could result from a gain-of-function mutation in TEX14 that mislocalized along the 

cleavage furrow.  

 An alternative hypothesis elaborates on the DNA damage response. Given the 

numerous zygotene-stage oocytes in the parthenogens, it is quite likely that these 4C 

oocytes are suspended in the telomere clustering stage for extended periods of time. 

Because double strand breaks are indicative of DNA damage, possibly there is a resulting 

chromosome instability that allows a small percentage of oocytes to increase in ploidy.  

How can we interpret these possible mechanisms at the genetic level? Fortunately, 

in the herpetological field, several genetic analyses have been performed by crossing 

unisexual and bisexual species in the laboratory. While no fertile (i.e. parthenogenetic) 

diploids and triploids have been generated, reproductive tetraploids appear to form easily 

(at least within the A. sexlineata group), suggestive of a dosage dependent mechanism. 

Therefore, a gain-of-function defect as described for TEX14 seems unlikely as it would 

be dominant and yield fertile triploids. A dominant negative mutant, on the other hand, 

could explain this inheritance pattern. Consider a hypothetical scenario in which two 
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forms of a protein exist, WT and dominant negative (DN). To be fertile (i.e. 

parthenogenetic), a diploid would need a genotype of DN/WT (or the less likely double 

mutant), a triploid would necessitate DN/DN/WT (or DN/DN/DN), and a tetraploid could 

minimally be DN/DN/WT/WT. This would explain the ease with which tetraploids, and 

not triploids, are formed in the laboratory. A fertile tetraploid could contain two wildtype 

alleles provided that the other two were DN. Conflicting with this hypothesis is the 

discovery of the sterile tetraploid between A. sonorae and A. tigris; how can this be 

explained? One possibility is that genome expression levels differ in this hybrid 

compared with those in the A. sexlineata clade, thereby unbalancing the expression of the 

four alleles. Alternatively, the inclusion of the tigris genome may independently interfere 

with reproduction. It is difficult to draw conclusions based on one instance. In our 

experience with A. sexlineata species, tetraploids are created relatively easily. It is 

interesting that the doubling mechanism in Oryzias appears so robust, as diploid hybrids 

capable of diploid egg formation are generated readily in the laboratory. Perhaps this is 

the consequence of a physiological leniency, such as a checkpoint abnormality, in the 

Medaka ovary.    

The dominant negative scenario could be applied to a checkpoint protein; in fact, 

dominant negative versions of p53 have been detected in cancers (Sun et al., 1993). Thus, 

a dominant negative mechanism appears plausible and could potentially explain a variety 

of possible mechanisms, including a cytokinesis mutant. Using the aforementioned 

example, a dominant negative version of CEP55 could occlude cytokinesis and yield 

binucleated cells. Certainly, more analysis at the cell and molecular level will be required 

to uncover the true mechanism.  
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Future prospects 

Once considered an obscure field of study, recent advancements – such as microscope 

technology and sequencing - have led to mechanistic insights into parthenogenesis. Now, 

with the accessibility of genome sequencing and RNA sequencing, the field appears to be 

at the onset of major discoveries, both in regards to the importance of sex as well as 

cellular and genetic mechanisms that enforce its persistence.  

 The extent to which genetic variability exists between parthenogen individuals has 

been cursorily studied using microsatellite analysis and fingerprinting. Although modest 

genetic variation among parthenogens has been demonstrated, how this relates to the 

remainder of the genome is unknown. Measuring changes throughout the genome can be 

performed relatively easily by whole genome sequencing methods and would serve as an 

accurate gauge of diversity. Additionally, the correlation between certain hybrid 

genotypes with parthenogenetic persistence can also be investigated to determine if 

particular traits benefit parthenogens. Further, the role of genomic shock in the formation 

of unisexual lineages within vertebrates is unknown. RNA expression analyses between 

parental and parthenogens would help elucidate the adaptability of these animals. 

Comparisons between sterile tetraploid hybrids (such as A. sonorae/ A. tigris) and their 

fertile relatives (A. exsanguis/ A. inornata) may reveal expression changes that affect 

reproduction.   

 Forthcoming prospects include descriptions of cellular mechanisms in various 

parthenogens. In Aspidoscelis, it will be interesting to determine how sister chromosomes 

pair and the dynamics involved in this process. Whether homologs initially try to pair is 

unknown. It may be that homologous interactions initiate but are disrupted and corrected 
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prior to diplotene. Additionally, the role of the homolog-specific microsatellite repeats is 

unknown; they may aid in pairing of sister chromosomes. The pairing of these loci can be 

determined from in situ hybridizations in various stages of zygotene. To further analyze 

the persistence of polyploid cells, studies into the DNA damage response and centrosome 

dynamics will be undertaken. Candidate genes can be sequenced and compared with 

bisexual species and sterile hybrids. Any positive candidates can be targeted for 

disruption or rescue, using RNAi or transfection, respectively. The conservation of this 

mechanism can be analyzed in other reptiles and lower vertebrates such as Oryzias. In 

regards to cellular mechanisms in the field as a whole, organisms presumed to reproduce 

mitotically will need to be clarified to determine to what extent they utilize meiotic 

proteins and how this influences their use of cryptic sex (Schurko and Logsdon, 2008).  

In regards to vertebrate parthenogenesis, it will be important to uncover the variety 

of organisms which reproduce through facultative parthenogenesis. Because accounts are 

sparse and typically originate from controlled environments such as zoological parks, it is 

likely that the majority of facultative parthenogens remain to be discovered. By gaining 

information about the molecular mechanism and the genetic predispositions of such 

organisms, we may be able to predict an organism’s reproductive plasticity without the 

confines of a zoo. The characteristics of facultative parthenogens, such as viability and 

fertility, can uncover the biological significance of this reproductive mode.  
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Significance 

Meiosis is an intricate process that is essential for the propagation of most eukaryotes. 

One of the most critical events occurs at its inception – faithful duplication of DNA 

during pre-meiotic S-phase. How this process is regulated without ploidy elevation 

remains unknown. Most studies utilize unicellular organisms S. cerevisiae and S. pombe, 

and although these have been instrumental in furthering our understanding of premeiotic 

replication, it is unclear how insights gained from yeast relate to higher organisms. 

Aspidoscelis may hold key information that links unicellular organisms and mammals. 

Although many organisms are not tolerant of genome duplications in the oocyte (Sun et 

al., 2008), such elevation appears to be relatively common in whiptail lizards, suggesting 

that these animals have less stringent cell cycle regulation. This relaxed stringency may 

allow us to study processes that otherwise cannot be observed in vertebrates without 

additional genetic manipulation. Finally, discovery of the mechanism that causes 

chromosome doubling will be a novel finding that will serve as an entry point for future 

studies to parthenogenesis.  

The genomic loci responsible for speciation are largely unknown; however, it is 

likely that numerous and complex genetic changes explain the evolution between most 

extant species. In contrast, a single generation is sufficient to create distinct species in 

Aspidoscelis through the deregulation of oogenesis in parthenogens. Therefore, these 

studies will help elucidate the factors responsible for speciation in Aspidoscelis and other 

parthenogenetic animals.  
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Allopolyploidy – ploidy elevation in an interspecies hybrid 

Asexual – an organism that does not reproduce by sexual reproduction 

Autopolyploidy – ploidy elevation within one species 

Bisexual – consisting of two sexes  

Endoreduplication (endoreplication or endomitosis) – ploidy elevation without 

intervening cytokinesis 

Facultative parthenogenesis – reproductive mode in which the organism typically 

reproduces by sexual reproduction, but sporadically or seasonally reproduces by 

asexual means 

Fisher-Muller hypothesis – evolutionary hypothesis that attempts to explain the 

prevalence of sex. Sex allows for the merging of favorable genotypes from 

different individuals, whereas parthenogenesis would require the same mutations 

within a single lineage over a longer period of time 

Genomic shock – first proposed by Barbara McClintock, it is the initial change in gene 

regulation that accompanies hybrid formation 

Gynogenic – organism that requires sperm for egg activation, but does not incorporate 

paternal genetic material into the zygote 

Muller’s ratchet – evolutionary hypothesis that suggests that parthenogenetic species are 

unable to purge deleterious alleles, thus contributing to their demise in the long-

term 
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Obligate parthenogenesis – reproductive mode in which the organism reproduces 

exclusively through parthenogenesis 

Parthenogen – parthenogenetic organism  

Parthenogenetic – organism that does not require sperm to reproduce. Gynogens, which 

require sperm for egg activation, but do not include paternal DNA, are sometimes 

included in this category 

Polar body fusion – modification to meiosis in which the polar body (from either the first 

or second division) fuses with the oocyte to restore ploidy 

Recombinational load – hypothesis that recombination may break up favorable 

genotypes 

Recombination nodule – proteinaceous structure that is often indicative of a crossover, 

especially those categorized as late nodules; visible by electron microscopy 

Red Queen – evolutionary hypothesis that suggests that co-evolution with parasites 

favors sexual reproduction, as sex produces novel genotypes that reduce parasitic 

affliction  

Synaptonemal complex – proteinaceous structure that facilitates crossover formation 

during meiosis in most eukaryotes 

Unisexual – consisting of one sex, usually female 
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