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Abstract  

An outstanding question in evolutionary biology is how genetic programs (interaction 

between multiple genes or their products) that define novel phenotypes evolve. There are two 

major ways such genetic programs that define novel phenotypes can evolve. First, by a de novo 

assembly of previously non-interacting genes during the origin of the novel phenotype. 

Secondly, by co-option (re-deployment, re-recruitment) of existing programs from other 

functions towards defining the novel phenotype. 

Monosymmetry of flowers is a novel phenotype that has evolved at least 130 times from 

polysymmetric flowers during the diversification of flowering plants. Flower monosymmetry in 

the order Lamiales is defined by an interaction of CYCLOIDEA, RADIALIS, DIVARICATA, 

and DIVARICATA and RADIALIS interacting factors (CYC–RAD–DIV–DRIF). This 

interaction is best understood in the Lamiales species Antirrhinum majus. The evolutionary 

history of the CYC–RAD–DIV–DRIF genetic program that defines Lamiales flower 

monosymmetry is unclear. It is an open question whether this genetic program was assembled de 

novo near the base of Lamiales during the evolution of flower monosymmetry or it was co-opted 

from a different function.  

We find evidence that the CYC–RAD–DIV–DRIF genetic program, which is crucial for 

defining the novel phenotype of flower monosymmetry in Lamiales, was likely co-opted from a 

different function, possibly fruit and ovary development. We come to this conclusion through a 

comparative analysis between representative taxa from the Lamiales and its close relative the 

Solanales. This suggests that the evolution of flower monosymmetry in Lamiales may have been 

facilitated by the availability of the CYC–RAD–DIV–DRIF genetic program. This genetic 

program was likely co-opted in defining flower monosymmetry in Lamiales for the following 
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reasons. This program was ancestrally involved in regulating cell size: and this function makes it 

a likely candidate for defining a novel phenotype that has variously shaped petals and aborted 

stamens. Also, the CYC–RAD–DIV–DRIF genetic program functions by a competitive 

interaction between RAD and DIV proteins—the two competing proteins could easily be co-

opted in defining the two morphologically distinct regions of the monosymmetric flowers.  

Little is known about the regulators that affect the transcription of CYC in Lamiales. We 

find predictive, bioinformatics-based evidence for a Lamiales-specific transcriptional 

autoregulation of CYC, suggesting that the evolution of flower monosymmetry in this lineage 

was associated with an autoregulation-mediated sustained, stable, and high transcription of CYC. 

Our data elucidates the evolutionary origin of the CYC–RAD–DIV–DRIF genetic program that 

defines flower monosymmetry in Lamiales. This interaction was likely co-opted en bloc from 

fruit and ovary development, with additional lineage-specific changes in gene regulation leading 

to transcriptional autoregulation of CYC.  

Entangled in this question is the fact that ovaries and fruits of many species in the tribe 

Antirrhineae (order Lamiales), including Antirrhinum majus, are monosymmetric—with unequal 

dorsal and ventral locules. We determine the genetic and micromorphological basis of this 

phenotype and also estimate its evolutionary history. We identify at least five evolutionary 

transitions from polysymmetric to monosymmetric ovaries, and at least seven reversals to 

polysymmetry across the tribe. Ovary monosymmetry in Antirrhinum and its closest relatives is 

likely controlled non-cell autonomously by a CYC–RAD interaction. CYC upregulates RAD 

expression in dorsal petals and stamens in early stages of development, and RAD protein from 

these tissues migrates to the dorsal locule to increases cell proliferation in dorsal ovary wall, 

causing the ovary to be monosymmetric. 
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Introduction 

 

Novel phenotypes are a recurring feature across the tree of life. Interestingly, novel 

phenotypes do not evolve by utilizing new genes, but evolve by co-opting existing genes (for 

example, Bharathan et al., 2002; Busch and Zachgo, 2007; Citerne et al., 2013; Hay and Tsiantis, 

2010; Panganiban et al., 1997; Spitz et al., 2001, 2; Stern, 2013; Werner et al., 2010; Jiggins et 

al., 2017). However, genes do not usually function in isolation but interact with other genes or 

gene products to affect phenotype. Hence, it is likely that the genes co-opted towards defining 

novel phenotypes have been a part of genetic regulatory program or interaction in the ancestral 

species. Whether, during co-option of existing genes to novel phenotypes, these genes were co-

opted in isolation or along with the entire genetic program is an open question is biology. There 

have been few studies addressing this question, and mostly in animal systems (for example, Hay 

and Tsiantis, 2010; Jiggins et al., 2017; Panganiban et al., 1997). 

Monosymmetry of flowers is a novel phenotype that has evolved at least a 130 times 

from polysymmetric flowers during the diversification of flower plants (Reyes et al., 2016). All 

independently acquired monosymmetric flowers, at least the ones that have been tested at a 

molecular level, are defined by or have been shown to be associated with expression of CYC 

genes. Genetic basis of the flower monosymmetry is best understood in the order Lamiales that 

includes the species Antirrhinum majus (snapdragon). In Lamiales, flower monosymmetry is 

defined by a genetic program CYC–RAD–DIV–DRIF (Figure 1). Whether CYC was co-opted 

in isolation to this novel phenotype or whether the entire CYC–RAD–DIV–DRIF program was 

co-opted towards defining Lamiales flower monosymmetry is an open question. Interestingly, a 

RAD–DIV–DRIF program is known from Solanum lycopersicum (tomato, order Solanales), 
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where RAD suppresses cell expansion in fruit wall (Machemer et al., 2011). Solanales are close 

relatives of Lamiales (Stull et al., 2015), and tomato has putatively ancestrally polysymmetric 

flowers. This makes tomato an ideal outgroup to test the origin of the CYC–RAD–DIV–DRIF 

that defines flower monosymmetry in Lamiales. It is not known whether the RAD–DIV–DRIF 

interaction in tomato fruits involves CYC as well (like it does in snapdragon flower 

monosymmetry). Also, it is not known whether CYC–RAD–DIV–DRIF interaction or at least a 

RAD–DIV–DRIF interaction is present in Lamiales. The predictions under a hypothesis that a 

CYC–RAD–DIV–DRIF genetic program was present in fruits of the common ancestor of 

Lamiales and Solanales and was later co-opted en bloc towards defining flower monosymmetry 

in Lamiales are summarized in Figure 1.  

Figure 1. A model explaining the co-option of CYC, RAD, DIV, and DRIF genes in defining flower monosymmetry in 
Lamiales. Molecular interactions in red boxes are predictions under the hypothesis that a CYC–RAD–DIV–DRIF 
genetic program was present in fruits of the common ancestor of Lamiales and Solanales and was later co-opted en bloc 
towards defining flower monosymmetry in Lamiales. Molecular interactions in white background have been previously 
reported. Catharanthus roseus images by Arria Belli and SAplants (Wikimedia Commons). 
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Changes in gene regulation can be associated with the origin of novel phenotypes (for 

example, Espley et al., 2009; Tao et al., 2012). Very little is known about whether changes in 

regulation of CYC is associated with the evolution of flower monosymmetry in Lamiales. We 

expand and bioinformatically test the hypothesis (Yang et al., 2012) that the evolution of flower 

monosymmetry in Lamiales is associated with the origin of transcriptional autoregulation of 

CYC. Transcription factors that define novel and crucial phenotypes can often regulate their own 

transcription, and such autoregulation can be mediated by the presence of multiple 

autoregulatory sites in the cis-regulatory regions of these genes to which the protein products can 

bind (reviewed in Sengupta and Hileman, 2018). We bioinformatically test whether the origin of 

flower monosymmetry in Lamiales is likely associated with such an enrichment of predicted 

autoregulatory sites in the putative cis-regulatory regions of Lamiales CYC genes to which the 

CYC transcription factors may bind and regulate their own transcription. 

Embedded in the question whether a CYC–RAD–DIV–DRIF program us present in 

Antirrhinum fruits (Figure 1) is the fact the fruits of this species are monosymmetric. We 

estimate the dynamic phylogenetic history of this phenotype in the tribe Antirrhineae. We 

determine the genetic and micromorphological basis of this phenotype.  
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Chapter 1: Testing the hypothesis that a flower symmetry developmental module evolved 

via recruitment from an ancestral role in fruit development 

 

Summary 

The petal, stamen, and ovary whorls of Antirrhinum majus (snapdragon, order Lamiales) 

flowers are monosymmetric. Previous work demonstrated that the following gene products 

control petal and stamen whorl monosymmetry—CYCLOIDEA (CYC), DICHOTOMA (DICH), 

RADIALIS (RAD), DIVARICATA (DIV), and DIV and RAD Interacting Factor (DRIF) 1 & 2. 

However, a direct link between these genes and ovary symmetry has not been made. Through 

characterization of existing mutants, we show that petal/stamen whorl symmetry genes control 

monosymmetry of the snapdragon ovary. This likely occurs through non-cell autonomous RAD 

function that leads to a wider pericarp on the dorsal side of the ovary relative to the pericarp on 

the ventral side. This difference is mediated by promotion of cell proliferation in the dorsal 

pericarp at early stages of ovary differentiation. Evolutionary changes to non-cell autonomous 

RAD function may underlie the dynamic history of ovary symmetry in the tribe Antirrhineae, to 

which snapdragon belongs. We identify at least five evolutionary transitions from polysymmetric 

to monosymmetric ovaries, and at least seven reversals to polysymmetry across the tribe, all in 

the conserved context of petal and stamen whorl monosymmetry. In addition, we identified a 

novel peak in RAD expression late in A.majus ovary development. This late expression is 

independent of positive regulators of RAD in the petal and stamen whorls. We find this peak of 

RAD expression late in ovary development in an early and a late diverging member of the tribe 

Antirrhineae, suggesting that this pattern is conserved across the tribe. Interestingly, an ortholog 

of RAD in Solanum lycopersicum (tomatoes, order Solanales) similarly suppresses fruit wall cell 
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expansion. Integrating our results with previous findings in S. lycopersicum, we hypothesize that 

RAD function, and a RAD-DIV-DRIF interaction in ovary development, pre-dates recruitment 

of this module to a role in petal and stamen whorl monosymmetry. 

 

Introduction 

Antirrhinum majus (snapdragon; hereafter Antirrhinum) flowers are highly specialized 

for bee pollination, and this specialization includes flower monosymmetry (bilateral symmetry; 

zygomorphy; Figure 2, Figure 3). Each flower has three distinct morphological regions that 

define monosymmetry across all four flower whorls: first whorl sepals, second whorl petals, 

third whorl stamens and inner whorl carpels (ovary). These three distinct regions are the dorsal 

(top; adaxial), ventral (bottom; abaxial), and lateral sides of the flower (Figure 2, Figure 3).  

Monosymmetry of snapdragon flowers along the dorso-ventral axis is defined by a 

competitive interaction involving TCP (TEOSINTE BRANCHED1, CYCLOIDEA, and 

PROLIFERATING CELL FACTORS) and MYB (first described from an avian myeloblastosis 

virus) transcription factors. TCP and MYB proteins are found as large gene families in flowering 

plants (Martín-Trillo and Cubas, 2010; Yanhui et al., 2006) and play diverse roles beyond flower 

symmetry patterning, including aspects of vegetative and reproductive development (Ambawat 

et al., 2013; Martín-Trillo and Cubas, 2010; Parapunova et al., 2014).   

Figure 2. Major types of flower symmetry 
shown with hypothetical flowers. A. 
Polysymmetric (radially symmetric, 
actinomorphic) flower. B. Monosymmetric 
(bilaterally symmetric, zygomorphic) flower. 
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The dorsal side of Antirrhinum flowers consists of the dorsal sepal, dorsal halves of the 

lateral sepals, the dorsal petals, the dorsal halves of the lateral petals, and the dorsal sterile 

stamen (staminodium). The identity of dorsal organs in the petal and stamen whorls is defined by 

the combined action of two recently duplicated TCP paralogs, CYCLOIDEA (AmCYC) and 

DICHOTOMA (AmDICH) (Corley et al., 2005; Hileman and Baum, 2003; Luo et al., 1996, 

1999). These two transcription factors define dorsal flower morphology partly by activating the 

transcription of a downstream MYB gene, RADIALIS (AmRAD; Figure 3) (Corley et al., 2005). 

AmRAD protein competes with another MYB protein, DIVARICATA (AmDIV) that defines 

ventral petal and stamen whorl morphology. Through this negative interaction, AmRAD excludes 

the ventral flower identity specified by AmDIV from the dorsal side of the developing 

snapdragon flower (Figure 3). Specifically, AmRAD and AmDIV compete for interaction with 

two other MYB-family protein partners called DIV and RAD Interacting Factors 1 and 2 

(AmDRIF1 and AmDRIF2) (Almeida et al., 1997; Corley et al., 2005; Galego and Almeida, 

2002a; Raimundo et al., 2013)(Figure 3). AmDIV requires protein-protein interaction with 

AmDRIF1&2 to function as a transcription factor to regulate downstream targets (Figure 3) 

(Perez-Rodriguez et al., 2005; Raimundo et al., 2013). In the dorsal flower domain, AmRAD 

outcompetes AmDIV for interaction with AmDRIF1&2, AmDIV function (Raimundo et al., 

2013). Interestingly, AmRAD mutants also display an additional mutant phenotype in the lateral 

petals, though AmRAD mRNA is not detectable there (Corley et al., 2005). This suggests that 

Figure 3. Antirrhinum flower monosymmetry. A. 
Antirrhinum flower in face-view showing 
morphological differentiation along the dorso-
ventral axis (line JI-7 from John Innes Centre, UK). 
B. Regulatory mechanisms involved in 
Antirrhinum flower symmetry development. 
Positive regulation (arrows), and protein-protein 
interactions (dotted lines) are shown.  

Dorsal 

Ventral 

Lateral 
Lateral 

(A) (B) 
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AmRAD protein is involved in non-cell autonomous control of lateral petal identity, in which the 

small AmRAD protein migrates from the dorsal organs to the neighboring lateral petals (Corley 

et al., 2005).  

Evidence strongly supports the hypothesis that CYC, RAD, DIV, and DRIF genes and 

protein interactions are conserved in specifying monosymmetric flower development from a 

common ancestor early in the diversification of Lamiales (the order to which Antirrhinum 

belongs)(Citerne et al., 2000, 2000; Corley et al., 2005; Gao et al., 2008, 2008; Liu et al., 2013; 

Luo et al., 1996, 1999; Preston et al., 2011, 2014; Raimundo et al., 2013; Su et al., 2017; Yang et 

al., 2010, 2012; Zhong and Kellogg, 2015b, 2015a; Zhou et al., 2008). This is not surprising. 

Flower monosymmetry is homologous across Lamiales, derived from a monosymmetric ancestor 

early in Lamiales diversification although there have been multiple transitions back to 

polysymmetry in derived Lamiales lineages (Reeves and Olmstead, 2003; Reyes et al., 2016). 

Therefore, a complex set of regulatory interactions appears to have evolved early in Lamiales 

diversification to specify monosymmetry flower development.  

An outstanding question in the evolution of development is how genetic networks, 

similar to the CYC-dependent program controlling Antirrhinum flower symmetry, evolve to 

shape complex, derived phenotypes. Existing genes are often recruited (re-deployed; co-opted) 

to define new phenotypes (Stern, 2013; True and Carroll, 2002). Co-option of single genes in 

defining novel phenotypes has been tested in a diversity of organisms, including re-deployment 

of CYC orthologs for independent transitions to flower monosymmetry across flowering plants 

(Bharathan et al., 2002; Busch and Zachgo, 2007; Citerne et al., 2013; Spitz et al., 2001, 2; 

Stern, 2013; Werner et al., 2010). However, the question whether such genes are re-deployed in 

isolation or the entire corresponding networks are re-deployed collectively has received limited 
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attention, and mostly in animal systems (Bharathan et al., 2002; Brakefield et al., 1996; Sordino 

et al., 1995; True and Carroll, 2002). Whether the CYC-dependent program was assembled de 

novo at the base of Lamiales or was recruited to a role in flower monosymmetry as a pre-

assembled unit remains unknown. If the CYC-based network was recruited as a pre-assembled 

unit, this would constitute evidence that transitions to bilateral flower symmetry are facilitated 

by the presence of an ancestral genetic network that can be re-deployed en bloc to a novel role in 

flower development. 

Solanales are the sister order to Lamiales + Vahliaceae (Stull et al., 2015) and primarily 

develop polysymmetric flowers (Figure 1). Compelling data from studies in the Solanales model 

species, Solanum lycopersicum (tomato), suggest that a RAD-DIV-DRIF module plays a role in 

tomato fruit development by modulating cell size (Machemer et al., 2011). The RAD component, 

SlRADlike4 (or fruit SANT/MYB-like 1, FSM1), is an ortholog of AmRAD (Gao et al., 2017; 

Sengupta and Hileman, 2018). SlRADlike4 suppresses cell expansion in the developing tomato 

fruit walls (pericarp). The DIV component, SlDIVlike5 (or MYBI) is not an ortholog, but a 

paralog of AmDIV (Gao et al., 2017; Sengupta and Hileman, 2018). Similarly, the DRIF 

component, Fruit SANT/MYB Binding protein1 (FSB1) is also not an ortholog, but a paralog of 

AmDRIF1&2 (Raimundo et al., 2013).  The surprising similarity of this three-component 

regulatory interaction raises the possibility that the common ancestor of Lamiales and Solanales 

utilized a RAD-DIV-DRIF module to regulate ovary/fruit development and that this module was 

re-deployed en bloc to a role patterning flower monosymmetry during Lamiales diversification.  

In this study, we test whether expression of Antirrhinum flower symmetry genes are 

associated with later stages of ovary/fruit similar to tomato. In doing so, we identified a novel 

peak of symmetrical AmRAD expression late in Antirrhinum ovary development. This expression 
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overlaps with broad patterns of AmDIV/DIVlike and AmDRIF expression, but not AmCYC or 

AmDICH expression, providing support for the hypothesis that the RAD-DIV-DRIF module is 

conserved in ovary/fruit development.  

Entangled in this question is the fact that Antirrhinum ovaries are monosymmetric. 

Antirrhinum (and all species in the tribe Antirrhineae to which Antirrhinum belongs) develops 

bicarpellate ovaries and fruit with one dorsally positioned and one ventrally positioned locule. 

The morphology of the dorsal and ventral locules in Antirrhinum are unequal (Sutton, 1988). 

However, the role of flower symmetry genes in establishing ovary monosymmetry in 

Antirrhinum has not been explicitly tested. Therefore, we additionally determined whether 

elements of the CYC-dependent program are required for Antirrhinum ovary monosymmetry in 

addition to petal and stamen whorl monosymmetry. We found that dorsal flower identity gene 

products AmCYC and AmRAD are required for proper development of ovary monosymmetry. 

We place this finding into a broader context of dynamic ovary symmetry evolution in the tribe to 

which Antirrhinum belongs.  

 

Results 

AmCYC and AmRAD function in Antirrhinum ovary monosymmetry 

 Monosymmetry of the wildtype Antirrhinum ovary is clearly visible from early stages of 

flower development (Figure 5) through fruit ripening (Figure 4). The ventral locule at maturity 

is expanded near the base, its ventral surface makes an angle of 38.2 ± 4.2 degrees (at anthesis) 

and dehisces before the dorsal locule by two large pores that usually do not merge. On the other 

hand, the dorsal locule is not expanded near the base, making an angle of 84.6 ± 3.5 degrees (at 
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anthesis), overarches the apex of the ventral locule, and dehisces after the ventral locule by two    

small pores that merge late in fruit development. 

 

 

 

A 

B 

C 

D 

 

E 

WT                               Amrad 

Dorsal                        

F 

Figure 5. Antirrhinum (WT JI-7) reproductive tissues and comparison of WT to Amrad ovaries. A. Inflorescence. 
B. Flower bud, stage-11. C. Ovary and style, stage-13. D. Ovary and style, stage-14 (anthesis). E. Ovary seven days 
after anthesis. A-E scale bar: 5 mm. F. Wild type and Amrad ovaries, stage-14. Top panel, intact ovaries; bottom 
panel, longitudinal section. For each carpel, the dorsal locule is on the left. Scale bar: 2 mm. 

 

cycloidea 

radialis dichotoma 

D    

V 

D              V              

JI-7 background MAM 

wild type 

divaricata 
5 mm 

wild type 

Figure 4. Antirrhinum wild type and mutant fruits at dehiscence. D: dorsal, V: ventral. All fruit oriented as in 
J1-7 wild type. 
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C.
p < 0.001

WT

Amrad
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B
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C
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WT dorsal angle

Amrad ventral angle

Amrad dorsal angle

Angle (degrees)

width (cm)

Figure 6. Wild type and Amrad ovary morphology at anthesis. A. Dorsal and ventral locule angles (as 
in Fig. 10); letters at the tips of bars are groupings based on Tukey’s post-hoc comparisons; p < 0.001. 
B. Ovary width and C. ovary height; p-values are from T-test performed on bracketed tissues. 

Figure 7. Wild type and Amrad ovary micromorphology at anthesis. The ovary in transverse 
section is displayed in B; boxed areas are magnified in A and C. Orientation same as in WT. 
Scale bar, red: 0.1 mm, white 1 mm. 
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Antirrhinum ovaries and fruits in Amcyc and Amrad mutant backgrounds, but not in 

Amdich or Amdiv mutant backgrounds, have ventralized dorsal locules (Figure 4). Ventralization 

includes equalization of the angle at dorsal and ventral surfaces (Figure 6), loss of curvature at 

the apex of the dorsal locule, and development of two pores in the dorsal locule that do not 

merge (Figure 4). In the Amrad mutant background, additional pores occasionally appear in the 

lateral regions, with the total number of locules either remaining two, or becoming three, 

irrespective of the total number of pores.  

Ventralization is in part the result of changes to patterns of cell proliferation, specifically, 

in the pericarp (ovary wall) on the dorsal side. The dorsal pericarp in the wildtype ovaries at 

anthesis has more cells than the ventral pericarp, and hence it is wider (Figure 7, Figure 8). In 

Amrad mutants the dorsal pericarp is ventralized—it is narrower and has fewer cells than the 

wildtype (Figure 7, Figure 8). The width of the ventral pericarp remains unaffected in Amrad 

mutants (Figure 7, Figure 8), consistent with the hypothesized dorsal-specific cell-autonomous 

function of AmRAD in ovaries.  

 

 

 

Figure 8. Wild type and Amrad pericarp micromorphology at anthesis. Letters at the tips of bars are groupings 
based on Games-Howell’s or Tukey’s post-hoc comparisons.  A. Pericarp width (p = 0.000). B. Pericarp cell number 
(p = 0.000).  
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Figure 9a 
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Figure 9. Evolutionary history of ovary symmetry in the tribe Antirrhineae inferred by Mesquite employing a 
parsimony-based ancestral state reconstruction. Species studied in this work are in bold. The backbone Bayesian tree 
is from Ogutcen and Vamosi, 2016. 
 

 

Figure 9b 
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Dynamic evolution in ovary symmetry during Antirrhineae diversification 

The tribe Antirrhineae ancestrally had two, equivalent (one dorsal, one ventral) locules 

(Figure 9) and this feature is retained in the early diverging lineages Lafuentea rotundifolia and 

the sub-tribe Anarrhinum clade. Inequality or sub-equality of the locules (and corresponding fruit 

monosymmetry) has evolved at least five times, and has been lost at least seven times (the 

branch leading to the Gambelia clade has an equivocal state). Inequality or sub-equality of 

locules is ancestral to the Antirrhinum clade. 

This state of locule inequality/sub-equality represented in the Antirrhinum clade evolved 

either in the common ancestor of the Chaenorhinum + Antirrhinum + Linaria lineage, or earlier, 

including the common ancestor of these lineages plus the Gambelia lineage (ancestral state is 

equivocal in the Gambelia clade). This puts the age of locule inequality at ca. 22.9 mya (not 

including Gambelia clade) to ca. 24.4 mya (including Gambelia clade)(dates are from Ogutcen 

and Vamosi, 2016). Locule inequality/subequality was subsequently lost in the Linaria clade 

after the divergence of Linaria chalepensis.  

 

Expression of AmRAD, AmDIV/DIV-like1 and AmDRIF1&2 are consistent with a function 

in ovary development independent of dorso-ventral identity 

We used quantitative real-time PCR (qRT-PCR) to determine relative expression of 

Antirrhinum symmetry genes across stages of ovary development with the objective of assessing 

evidence for RAD-DIV-DRIF function during ovary/fruit development similar to that found in 

tomato (Machemer et al., 2011).  AmCYC, AmDICH, AmRAD, AmDIV, AmDRIF1, and 

AmDRIF2 are involved in defining flower monosymmetry in Antirrhinum. AmDIV-like1, a close 
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paralog of AmDIV, has not been implicated in the control of flower symmetry, but it is important 

for understanding the ancestral expression and function of its sister gene, AmDIV. 

We found that upstream regulators of dorsal flower identity, AmCYC and AmDICH 

(Figure 3), have relatively high expression in tissues with petals and stamens—inflorescences 

and entire flower buds (Figure 10). This is consistent with their singular role in establishing 

dorsal petal and stamen identity (Luo et al., 1996). We found AmCYC and AmDICH expression 

to be sparingly low to undetectable in isolated ovary tissue of any stage (Figure 10).   

We found that the dorsal flower identity gene, AmRAD (Figure 3), is expressed in tissues 

with petals and stamens—inflorescences and entire flower buds (Figure 10), consistent with its 

previously identified role in establishing dorsal petal and stamen identity (Corley et al., 2005). In 

addition, we found a striking pattern whereby AmRAD expression peaks in late stages of ovary 

development, stage-14 (anthesis) flowers. We sequenced the qRT-PCR amplicon from stage-14 

carpels and confirmed that the primers were amplifying the correct template. The late high 

expression of RAD is apparently conserved in the tribe Antirrhineae. The AmRAD orthologs in an 

early diverging member (Anarrhinum bellidifolium, AbRAD) and a late diverging member 

(Linaria vulgaris, LvRAD) have a peak of expression in ovaries at anthesis (Figure 11).  

Given the surprisingly high relative expression of AmRAD in isolated ovary tissue, we 

performed further qRT-PCR on sub-parts of the carpels from stage-14 flowers to determine 

possible localization of AmRAD transcripts. We found that expression of AmRAD is significantly 

higher in ovary walls than in the internal ovules+septa of the ovary, but that ovary expression of 

AmRAD is not asymmetric across the dorsal-ventral locules of the ovary (Figure 10). Therefore, 

AmRAD expression during later stages of ovary differentiation and maturation is independent of 

dorso-ventral positional information within the flower. Further, the late, high expression of 
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AmRAD in ovaries is independent of AmCYC. The expression of AmRAD is not significantly 

different between the stage-13 ovaries of wildtype and Amcyc background (Figure 12). This lack 

of significant difference is not due to low sensitivity of the testing methods—downregulation of 
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Figure 10. Relative expression of genes involved in petal and stamen symmetry development across reproductive 
wild type Antirrhinum tissues in the JI-7 background. Error bars are standard deviations of samples. ND: expression 
not determinable; p-values from T-tests performed on the bracketed tissues. 7 DAA, 7 days after anthesis; @A, at 
anthesis (stage-14); preA, pre-anthesis; entire ovary preA is from stage-13. 
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AmRAD in Amcyc inflorescence can be captured by qRT-PCR (Figure 12) even though AmRAD 

is expressed in inflorescence tissues at a much lower level than ovaries.  

 

 

AmDRIF1&2 and AmDIV function coordinate with AmRAD to restrict AmDIV activity to 

developing ventral petals and stamens (Raimundo et al., 2013). We found that along with 

AmRAD, AmDRIF1&2, AmDIV and AmDIV-like1 are expressed in anthesis stage ovaries at 

levels comparable to their expression in inflorescence and entire flower bud tissues (Figure 10). 

This supports the hypothesis that their gene products may interact with AmRAD during ovary 

differentiation and maturation.  

 

Conflicting evidence that putative AmDIV and AmDIV-like1 autoregulation is negatively 

affected by AmRAD 

Extensive biochemical analyses support the hypothesis that AmRAD suppresses AmDIV 

function through competitive interaction for binding to AmDRIF1 and AmDRIF2 (Raimundo et 

Figure 11. Expression of AmRAD orthologs in Anarrhinum bellidifolium (top) and Linaria 
vulgaris (bottom). DAA, days after anthesis; @A, at anthesis; preA, pre-anthesis. 
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al., 2013). There is evidence that AmDIV, AmCYC, and AmDICH affect the transcription of 

AmDIV (Galego and Almeida, 2002a). In stage-10 flowers, AmDIV mRNA is expressed in all 

petals but is concentrated in the inner epidermis of the ventral petal. However, in div-35 mutants 

(frameshift mutation), the accumulation in the inner epidermis of the ventral petal is removed 

and expression becomes uniform across the ventral petal (in addition to the expression in all 

other petals) (Galego and Almeida, 2002a). In Amcyc-Amdich double mutants, the accumulation 

in ventral petal spreads to all other petals—every petal has higher AmDIV mRNA levels in their 

inner epidermis (Galego and Almeida, 2002a). This suggests that the transcription of AmDIV is 

under the negative regulation of AmCYC and AmDICH. However, AmCYC and AmDICH are not 

known to be downregulators of transcription, and possibly regulate the transcription of AmDIV 

by disrupting its autoregulation. This disruption may be mediated by AmRAD or another factor. 

Testing for competitive inhibition of AmDIV or AmDIV-like1 by AmRAD during 

Antirrhinum ovary development is beyond the scope of this study. However, there are tentative 

data suggesting that that competitive inhibition of AmDIV or AmDIV-like1 by AmRAD may 

disrupt a putative AmDIV positive autoregulation. Specifically, AmDIV is known to bind to the 

conserved DNA sequence 5′-[AGC]GATA[AC][GC][GAC]-3′, and  within 3 kb upstream of the 

AmDIV transcriptional start site are two conserved DIV DNA binding motifs (Raimundo et al., 

2013; Sengupta and Hileman, 2018). The possibility that AmDIV expression is altered by the 

abundance of AmRAD protein allows us to indirectly test negative regulatory interactions by 

determining expression of AmDIV and AmDIV-like1 in wild type compared to Amrad 

backgrounds with the expectation that AmDIV and/or AmDIV-like1 expression should increase in 

the absence of functional AmRAD protein. 
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Similar to AmDIV, within 3 kb of the transcriptional start site of AmDIV-like1 we 

identified three consensus DIV DNA binding sites, 5′-[AGC]GATA[AC][GC][GAC]-3′ (Table 

1). The MYB DNA binding domain of AmDIV-like1 shares 100% amino acid identity with the 

corresponding region of AmDIV, suggesting similar capacity for interaction with DIV DNA 

binding sites. The MYB protein-protein interaction domain of AmDIV-like1 has 80% amino acid 

identity with the corresponding region of AmDIV, suggesting similar capacity for interactions 

with AmDRIF1&2. In addition, we demonstrated above that AmDIV-like1 expression is 

significantly higher in ovule/septum tissue of the ovary compared to ovary wall/style tissue, a 

pattern negatively correlated with AmRAD expression (Figure 10). These findings support the 

possibility that both AmDIV and AmDIV-like1 may function to auto and/or cross-regulate their 

own expression in a manner that can be detected in the Amrad mutant background.    

Figure 12. Quantitative RT-PCR expression of AmRAD, AmDIV and AmDIV-like1 in mutant Antirrhinum backgrounds 
compared to wild type. A. AmRAD expression the inflorescences in Amcyc and Amdich mutant backgrounds; Amdich is 
in the MAM background and Amcyc is in the JI-7 background, B. AmRAD expression the preanthesis ovaries in Amcyc 
and wildtype backgrounds. C. AmDIV expression in Amrad mutant background. D. AmDIV-like1 expression in Amrad 
mutant background. Error bars are standard deviations of samples. The p-values are from T-test performed on the 
bracketed tissues. 
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However, we find that neither AmDIV nor AmDIV-like1 expression is significantly 

upregulated in the Amrad mutant background compared to wild type (Figure 12). This is the 

case for both inflorescence tissues as well as ovary tissues where AmRAD is expressed at 

relatively high levels in wild type (Figure 12). In fact, AmDIV-like1 expression is significantly 

lower in inflorescences of Amrad mutants relative to wild type (Figure 12). To ensure that we 

are able to confidently detect regulatory interactions in mutant backgrounds we confirmed that 

AmRAD is significantly downregulated in the Amcyc background inflorescences (Figure 12). 

Our gene expression results suggest that neither AmDIV nor AmDIV-like1 are directly or 

indirectly positively regulated, or the regulatory interaction is of small effect and not detectable 

by our methods. Therefore, we are unable to use AmDIV/DIV-like1 expression as a test for 

AmRAD-AmDIV/DIV-like1 competitive interaction during Antirrhinum ovary development. 

Table 1. Predicted consensus DIV-binding sites upstream of AmDIV-like1 (5′ to 3′) 

Sequence DNA strand 
bp upstream of 
transcription start 

AGATAACG sense 1373–1366 
AGATAAGA anti-sense 283–276 
AGATAAGG anti-sense 1628–1621 

 

 

Discussion 

AmRAD may function non-cell autonomously to specify Antirrhinum ovary monosymmetry 

Loss-of-function mutations in Antirrhinum AmRAD and its positive regulator, AmCYC, 

not only transform dorsal petals and stamens to lateral identity (Luo et al., 1996; Corley et al., 

2005), but they radialize the central ovary (and subsequent fruit) by converting the dorsal locule 

to ventral identity. This is consistent with a recent finding in Misopates orontium, a close relative 

of Antirrhinum, in which loss of CYC function similarly results in ventralization of the dorsal 
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locule (Lönnig et al., 2018). However, this finding is difficult to reconcile with the observation 

that mRNA of neither AmCYC nor AmRAD is detectable in early stages of Antirrhinum ovary 

development (Corley et al., 2005). Early stages of ovary development are crucial for expression 

of genes that may affect symmetry because the inequality of the two locules is patterned early 

after the ovule primordium initiates. A clear function for AmCYC and AmRAD in establishing 

dorsal locule identity, but a lack of corresponding mRNA in the stages when patterning occurs, 

suggests that AmCYC functions non-cell autonomously via AmRAD protein for differentiation of 

the dorsal locule.  

Previous work points to non-cell autonomous function of AmRAD during petal whorl 

development. AmRAD transcripts are localized to the developing dorsal petal primordia at early 

stages of Antirrhinum flower development and are not detected in lateral petal primordia. Yet, in 

the Amrad mutant background the dorsal side of each lateral petal has altered development. This 

observation led Corley et al., (2005) to hypothesize that AmRAD is transcribed and translated in 

the dorsal floral organs followed by AmRAD protein moving into the lateral petals to non-cell 

autonomously affect morphology those organs. Our data suggest a similar pattern of AmRAD 

non-cell autonomous action. We hypothesize that AmCYC upregulates AmRAD transcription in 

the dorsal petals and stamens early in development and translated AmRAD protein migrates to 

the developing dorsal locule where it establishes dorsal identity and restricts ventral locule 

identity.  

We attempted to use potential autoregulation of AmDIV and/or AmDIV-like1 to test for 

competitive inhibition of AmDIV or AmDIV-like1 by AmRAD in developing ovaries, but our 

data suggest that neither of these transcription factors is actually under direct or indirect positive 
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autoregulation. Still, it is likely that AmRAD in the developing ovary functions by outcompeting 

AmDIV or AmDIV-like1, or another MYB transcription factor.  

A non-cell autonomous function of CYC in fruit symmetry seems to be consistent with 

the expansion of expression of AmCYC and AmDICH orthologs to lateral organs in Mohavea 

confertiflora (nested within the genus Antirrhinum). This expansion is correlated with 

dorsalization of lateral stamens (Hileman et al., 2003). Unlike Antirrhinum majus, the locules in 

Mohavea open by one pore each, (reviewed in Sutton, 1988), which is similar to the dorsal locule 

of Antirrhinum. The orthologs of AmCYC and AmDICH in Mohavea are not expressed in carpels 

(Hileman et al., 2003), but it is possible that along with the expansion of the autonomous 

function to the lateral organs, the non-cell autonomous function of Mohavea RAD expanded to 

include both the dorsal and ventral locule, resulting in dorsal-like identity of Mohavea ventral 

locules. 

AmDICH is likely not involved in defining fruit symmetry, as apparent from the wild 

type fruit symmetry in the Amdich background (Figure 4). This is in-line with our observation 

that AmRAD expression is not significantly downregulated in the Amdich mutant background and 

AmDICH is not detected in ovaries at any developmental stage (Figure 10). AmDIV may also not 

be involved in defining fruit symmetry, as apparent from the wild type morphology in the Amdiv 

background (Figure 4). However, it is possible that Amdiv has subtle effects on ventral locule 

morphology or that AmDIV function in ventral locule morphology can only be detected in an 

Amdiv,Amdiv-like1 double mutant background and no AmDIV-like1 mutant lines exist. Notably, 

both AmDIV and AmDIV-like1 are transcribed in early stages of carpel development (Galego and 

Almeida, 2002a). Therefore, it is possible that AmDIV-like1 by itself, or in co-operation with its 
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paralog AmDIV, interacts with AmRAD to establish Antirrhinum fruit monosymmetry along the 

dorso-ventral axis.  

 

A possible role for RAD during evolution of ovary symmetry across Antirrhineae  

Flowers in the tribe Antirrhineae have ancestrally monosymmetric petal and stamen 

whorls, but their ovaries (and fruits) ancestrally lacked monosymmetry with identical dorsal and 

ventral locules. However, monosymmetry in fruits has evolved at least five times, and has been 

lost at least seven times independently in the tribe (Figure 9). This result demonstrates that 

symmetry in fruits can experience evolutionary changes without affecting the symmetry in other 

floral whorls. For example, the majority of the genus Linaria has experienced a reversal from 

unequal to equal loculed condition (where the dorsal and ventral locules lose their morphological 

differences), but the corolla remains monosymmetric (the dorsal petals are distinct from the 

ventral ones).  

Our results point to a non-cell autonomous action of AmRAD in defining fruit 

monosymmetry in Antirrhinum. This non-autonomous function is likely shared with close 

relatives Misopates orontium and Mohavea confertiflora, as described above. One mechanism by 

which fruit symmetry may evolve without pleiotropic effects on conserved petal and stamen 

whorl monosymmetry is through changes in the non-cell autonomous action of RAD homologs. 

Under this scenario, the ancestral condition in the tribe was likely cell autonomous action of 

RAD with non-autonomous function evolving in the ancestor of Chaenorhinum + Antirrhinum + 

Linaria, and possibly independently in Maurandya, Gambelia and a few Linaria lineages. We 

hypothesize this was followed by reversal to the cell autonomous function of RAD in the 

ancestor of Linaria. Tests of our hypotheses concerning dynamic evolution of RAD cell 
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autonomous function await biochemical (protein antibody) assays for RAD across the 

Antirrhineae. 

 

Expression of AmRAD, AmDIV/DIV-like1, and AmDRIF1&2 are consistent with a function 

in ovary development independent of dorso-ventral identity 

We identified a novel peak in AmRAD expression late in ovary development. The absence 

of AmCYC mRNA late in ovary development, and the distribution of AmRAD transcripts across 

both dorsal and ventral locules, suggests that AmRAD is upregulated by a factor other that 

AmCYC in later stage ovaries. These results also indicate an important developmental function in 

later stages of ovary/fruit development, especially in the ovary wall where AmRAD expression is 

highest. This function is likely independent of fruit symmetry. We were not able to find any 

phenotype under the control of this late AmRAD expression in our survey of Antirrhinum ovary 

micromorphology in transverse sections. It is possible that AmRAD controls a phenotype that we 

did not test, possibly along the longitudinal plane. It is likely that this function involves AmRAD 

competitively excluding AmDIV/DIV-like1 from interacting with AmDRIF1/2. This hypothesis 

is based on the fact that high expression of AmRAD in ovaries coincides with expression of 

AmDIV/DIV-like1 and AmDRIF1&2 in those tissues, and the only known biochemical 

interactions known for AmRAD homologues involve homologs of AmDIV/DIV-like1 and 

AmDRIF1/2. 
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A conserved ancestral function of RAD–DIV–DRIF in fruits likely pre-dates Lamiales 

flower monosymmetry.  

In Lamiales, AmRAD is known to function in defining floral monosymmetry along the 

dorso-ventral axis, and monosymmetry evolved in Lamiales after its divergence from close 

relative, the Solanales. Tomatoes are a model species in the order Solanales. A RAD–DIV–DRIF 

like interaction has been reported from tomato fruits, where the RAD component suppresses cell 

expansion in the pericarp tissue. Pericarp, or the fruit wall, is the ovule wall after fertilization. 

We provide suggestive evidence that AmRAD has a function in late ovary/fruit development, and 

that this function involves AmDIV, AmDIV-like1, and AmDRIF1&2 in that expression of these 

gene overlaps with expression of AmRAD in later stages of ovary development. Hence, we 

hypothesize an ancestral function of RAD-like genes is in controlling micromorphology during 

ovary wall development. This conclusion is supported by the fact that a high expression of RAD 

in ovaries is conserved across Antirrhineae. This also suggests that the RAD–DIV–DRIF 

interaction, which is crucial in defining Lamiales flower symmetry, did not evolve during the 

origin of flower monosymmetry in Lamiales but was co-opted from a different function, likely 

fruit/carpel development, to define the dorso-ventral monosymmetry in Lamiales flowers. 

 

Methods 

Plant material 

We acquired Antirrhinum majus seeds from The John Innes Centre (JIC), Norwich, 

Norfolk, England, UK, and The Leibniz Institute of Plant Genetics and Crop Plant Research 

(IPK), Gatersleben, Germany. The seeds were imported under the permit number P37-16-01034 

granted to Lena Hileman (application number P587-160901-023) by United States Department 
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of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Riverdale, MD, 

USA. Seeds for mutant Amdich (MAM 95) and its corresponding wildtype (MAM 428) are from 

IPK. Only one Amdich line is available from IPK, and hence is likely the one described 

previously (Luo et al., 1999). The rest of the lines are from JIC and are as follows: wildtype JI-7, 

Amcyc JI-608 (Luo et al., 1996), Amcyc-Amdich JI-720, Amrad JI-654 (Corley et al., 2005), and 

Amdiv JI-13 (the original mutant div-35 described by Almeida et al., 1997, is lost, but has been 

reconstituted from crossing Gatersleben pal-car ; del mutant to JI stock 15 (pal-tub stabiliser); 

personal communication, Lucy Copsey, Research Assistant, JIC). We broadcast the seeds on 

sowing medium, lightly covered them with vermiculite, and germinated them under a short night 

(i.e., “long day”) condition at 20–26° C. We transferred the germinated seedlings to larger 

individual pots, maintained them in the same light and temperature regimen, treated them for 

arthropod pests and fertilized them with chemical fertilizer once a week.  

 

Tissue sampling 

We collected the following tissues for qRT-PCR analyses (Figure 5): pre- floral 

induction vegetative shoot (includes leaves, stem, and shoot apex), inflorescence (ca. 8.0 mm 

long, ca. 3.5 mm wide), stage-11 flower bud (flower bud ca. 4.0 mm in length, corolla equal in 

length to calyx, petal tips white in wildtype; Vincent and Coen, 2004), carpels from stage-13 

flower buds (flower bud ca. 1.0 cm in length; Vincent and Coen, 2004), carpels from stage-14 

(anthesis) flowers (corolla mouth open; anthers bright yellow, turgid, but yet to dehisce; Vincent 

and Coen, 2004), dorsal and ventral ovary locules from flowers at anthesis, carpel wall 

(consisting ovary wall and style) and the ovules (consisting ovules and the septum) from flowers 

at anthesis, and fruits (only the post-fertillization ovary) seven days after anthesis (DAA) that 



28 
 

were derived from flowers pollinated manually at anthesis. We did not test all tissues for all 

genes; if there was evidence suggesting that the expression in a tissue was likely to be absent or 

irrelevant, we did not test its expression by qRT-PCR. For example, given the sparingly small 

expression of AmCYC in carpels of anthesis-stage flowers, we did not test for AmCYC levels in 

dorsal versus ventral ovary locules. We did not test earlier developmental stages because gene 

expression has been determined in those stages by previous workers.  

 

Isolating RAD orthologs from Anarrhinum bellidifolium and Linaria vulgaris 

RAD orthologs were isolated by PCR (Bullseye Taq DNA polymerase, Midwest 

Scientific, St. Louis, MO, USA) using the degenerate primers RAD-70-F 

(GCATTGGCGGTTTACGAYMAAG) and  RAD-240-R (ACYRGTGGTCCTRTAGTTRGG) 

(Preston et al., 2011). The PCR products were cloned/sequenced in pGEM-T vector system 

(Promega Corporation, Madison, WI, USA). Putative RAD orthology was assessed using 

phylogenetics (data not shown).  

 

Quantitative RT-PCR assays 

We extracted Total RNA from three biological replicates of each tissue type using 

RNeasy plant minikit (Qiagen, Germantown, MD, USA) or TRI Reagent (Thermo Fisher 

Scientific, Waltham, MA, USA), followed by DNase treatment (TURBO DNase, Thermo Fisher 

Scientific), and cDNA synthesis (iScript cDNA Synthesis Kit, Bio-Rad, Hercules, CA, USA). 

We performed quantitative RT-PCR in a StepOnePlusTM Real-Time PCR System (Thermo 

Fisher Scientific) using Bullseye EvaGreen qPCR Mastermix (Midwest Scientific, St. Louis, 

MO, USA) for AmDRIF1 (GenBank ID JX966358.1), AmDRIF2 (GenBank ID JX966359.1), and 
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AmDIV-like1(GenBank ID), or SYBR Select Master Mix (Thermo Fisher Scientific) for AmCYC 

(GenBank ID Y16313.1), AmDICH (GenBank ID AF199465.1), AmRAD (GenBank ID 

AY954971) and AmDIV (GenBank ID AY077453.1). Expression of AbRAD and LvRAD was 

measured using PowerUp SYBR Green Master Mix (Thermo Fisher Scientific). We normalized 

expression of target genes against a constitutively expressed gene AmUBIQUITIN5 (AmUBQ5), 

or its homologs in Anarrhinum and Linaria. This gene has been reported to have little 

transcriptional variation across tissue types and developmental stages (Preston and Hileman, 

2010). The qRT-PCR primer pairs are as listed in Table 2; we determined PCR primer 

efficiencies using DART (Peirson et al., 2003). We analyzed expression employing ΔΔCt 

method using Microsoft Excel. For ΔΔCt calculation, we normalized expression against a single 

stage-11 flower bud biological replicate. We compared expression between pairs of tissues using 

two sample T-test assuming equal variances. 

Table 2. Antirrhineae qRT-PCR primers (5′ to 3′) 

 

For AmRAD qRT-PCR, we sequenced the qRT-PCR amplicon from stage-14 carpels 

confirm that the primers were amplifying the correct template. We isolated the amplicon by 

QIAquick Gel Extraction Kit (Qiagen), then polished it with Bullseye Taq DNA polymerase 

Gene Forward primer Reverse primer 
AmUBQ5 GCGCAAGAAGAAGACCTACAC  CTTCCTGAGCCTCTGCACTT 
AmCYC CATCCTCCCTTCACTCTCGC  TGAACAAAGCGGTGGACTCA 
AmDICH TGAGTGGAACCCCTCAGTTC  CCCAAACATTGAAGGGTGGT 
AmRAD GGACGAACACCGGAAGAAGT   GTTGCCCCGACCATAGCTTA 
AmDIV GGGGACTGGAGGAACATCTC  CGATGGAGTTTGGTTGTCGC 
AmDIV-like1 GATCACGGGTTTTGGCAGT   ATCGACCCTGCAGTCCAAC 
AmDRIF1 GCCTTGGATCAAATTTCGGC AGGAAGAATGGAGCTGGCAA 
AmDRIF2 AATGGTCATGGAGAGTGGGG  TATAGCTTGCTCCTCTGGGG 
AbRAD TTGGACCAACGTGGCGAG AGGGCACTTTACCACTCTCA 
LvRAD GCTAATGTGGCTAGGGCTGT GGCACTTTCCCGCTCTCAAT 
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(Midwest Scientific) to generate A-tails, ligated the polished fragments into pGEM-T vector 

(Promega Corporation, Madison, WI, USA) by TA-cloning, transformed the vector into 

electrocompetent E. coli DH5α (NEB, Ipswich, MA, USA), and finally plated the bacteria on 

blue-white selection plates with carbenicillin. We picked white colonies from the plates, grew 

them in liquid media with carbenicillin, and then we alkaline lysed them with QIAprep Spin 

Miniprep Kit (Qiagen) to isolate plasmid DNA. We sequenced plasmids from two colonies with 

Retrogen, San Diego, CA, USA, using M13 primers (forward 5′-

CGCCAGGGTTTTCCCAGTCACGAC-3′ and reverse 5′-

TCACACAGGAAACAGCTATGAC-3′).  

 

Consensus DIV-binding site predictions 

We downloaded three kilobases of non-coding sequence upstream of AmDIV-like1 

transcription start site from a published genome (Li et al., 2019, version3 available at 

http://bioinfo.sibs.ac.cn/Am). We defined the AmDIV-binding site as 5′-

[AGC]GATA[AC][GC][GAC]-3′ (Raimundo et al., 2013). We performed the alignments and 

predictions in Geneious 10.2.3 (Kearse et al., 2012). 

 

Macromophological analysis of Antirrhinum ovaries 

We photographed stage-14 (anthesis) 

ovaries from 23 wild type (JI-7) and 17 Amrad 

(JI-654) flowers. We took measurements using 

the software ImageJ2 (http://imagej.net/). We 

measured angle of ovary curvature as depicted in 

Dorsal angle 

Ventral angle 

Figure 13. Measuring 
angles at the dorsal and 
ventral faces of 
Antirrhinum ovary at 
anthesis. 
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Figure 13. We treated the proximal boundary of the ovary parallel to boundary of the nectary as 

the base for measuring angles. Ovary width was measured at the base and parallel to the necary; 

ovary height was measured along the septum from the base of the ovary to the ovary-style 

junction. The ovary surface is covered in trichomes, and we ensured that we measured the angle 

made by the surface of the ovary and not the tips of the trichomes. We performed statistical 

analyses Minitab 18. We first performed Levene’s test to test for equality of variances (not 

significantly different for any of the comparisons). For the angular measurements, we then 

performed classic one-way ANOVA, and Tukey’s post-hoc pairwise comparisons. We 

performed two sample T-tests assuming equal variances to compare ovary width and height 

between wild type and Amrad.  

 

Micromorphological analysis of Antirrhinum ovaries 

We fixed seven ovaries each from wildtype (JI-7) and Amrad (JI-654) from stage-14 

(anthesis) flowers in FAA (formaldehyde, acetic acid, and ethanol). We kept the dorsal sepal 

attached to the base of the carpel to provide information on dorso-ventral orientation. Fixed 

carpels were dehydrated through a series of ethanol dilutions, stained with eosine orange, cleared 

with citrisolv (Thermo Fisher Scientific), and embedded in paraplast plus (Thermo Fisher 

Scientific). The carpels were transversely sectioned at 10 µm thickness in a microtome (AJ 

Griner, Kansas City, MS) with blades from Feather Safety Razor Co. Ltd (Japan). We adhered 

the sections on probe plus sides (Thermo Fisher Scientific), removed paraplast plus with 

citrisolv, rehydrated the sections through dilutions of ethanol, ending in a final rehydration in 

PBS at pH 7. We stained the rehydrated sections with safranin, and mounted them in water glass 

solution (glycerin, 37% sodium silicate, in ratio 1:2).  
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We took measurements in the mid–upper, trachomatous region of the ovary and avoided 

including any nectary tissue in our analysis. We measured the following variables at the dorsal-

most and ventral-most regions of the sections: width of the pericarp along the radial axis of the 

ovary (including outer and inner epidermis) and the number of cells in the pericarp along the 

radial axis of the ovary (including outer and inner epidermis). We took measurements on a Leica 

DM500 B microscope at 10x objective lens calibrated using a stage micrometer. Statistical 

analysis was performed in Minitab version 18. We first tested homogeneity of variances with 

Levene’s test. For datasets with homogenous variances, we performed classic Fisher’s ANOVA 

followed by Tukey’s post-hoc pairwise comparison. When the assumption of equality of 

variances was violated; hence we performed Welch’s ANOVA followed by Games-Howell post-

hoc pairwise comparison.  

 

Phylogenetic history of tribe Antirrhineae fruit symmetry 

We used a previously published species-level Antirrhineae phylogeny as the backbone 

for inference of ovule/fruit symmetry evolution (Ogutcen and Vamosi, 2016). This tree includes 

157 species, representing close to half the species diversity of the tribe. We used Mesquite 3.40 

(Maddison and Maddison, 2018) to estimate the phylogenetic history of fruit symmetry (dorso-

ventral locule equality/inequality) using a parsimony based approach with categorical character 

states.  

We scored the species for the following states: equal locules, unequal (or sub-equal) 

locules, and ambiguous state (or data unavailable). We scored the species for these states 

primarily from a monograph of the tribe (Sutton, 1988) with additional information from the 

following sources: Angelonia pubescens (Barringer, 1981), Callitriche hermaphroditica  (images 
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in Watson and Dallwitz, 2018), Chelone obliqua (Ghebrehiwet et al., 2000), Digitalis purpurea 

(Juan, 2000; image in Lucid Central, Digitalis purpurea; image in The Plant List version 1.1, 

Digitalis purpurea), Globularia cordifolia (inferred from elliptical shape described in Bojnanský 

and Fargašová, 2007), Gratiola neglecta (Juan, 2000; inferred from shape described in The 

Jepson Herbarium, Gratiola neglecta), Hemiphragma heterophyllum (image in Flowers of India, 

Hemiphragma heterophyllum; image in University of British Columbia Botanical Garden, 

Hemiphragma heterophyllum), Plantago coronopus (image in Go Botany, Plantago coronopus; 

image number seite 690 in Sturm and Strum, 1796), Russelia equisetiformis (images in Ahmed et 

al., 2016), Sibthorpia europaea (image in delta-intkey, Sibthorpia europaea; Juan, 2000), 

Veronica persica (Juan, 2000), Lafuentea rotundifolia (image in Ivorra, 2014; image number 

TAB.CXVI in Willkomm, 1881), Lophospermum purpusii (image number Tab 8697 in Smith, 

1917), Lophospermum erubescens (Ixitixel, 2008; inferred from spherical or oblong shape 

described in Walters, 2000), Sairocarpus kingii (The Jepson Herbarium, Antirrhinum filipes), 

Sairocarpus cornutus (The Jepson Herbarium, Antirrhinum filipes), Neogaerrhinum filipes 

(CalPhotos, Antirrhinum filipes; The Jepson Herbarium, Antirrhinum filipes), and Sairocarpus 

watsonii (Consortium of Intermountain Herbaria Detailed Collection Record Information, 

Sairocarpus watsonii). 

When species name used in the backbone phylogeny (Ogutcen and Vamosi, 2016) did not 

match any name in the monograph (Sutton, 1988), we determined synonymy from IPNI 

(International Plant Names Index) and the Plant List (The Plant List version 1.1). The list of 

synonyms determined are as follows: Maurandya antirrhiniflora (Maurandella antirrhiniflora), 

Maurandya wislizeni (Epixiphium wislizeni), Neogaerrhinum strictum (Antirrhinum kelloggii), 

Sairocarpus costatus (Antirrhinum costatum), and Neogaerrhinum filipes (Antirrhinum filipes). 
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Chapter 2: Testing the hypothesis that a conserved CYC–RAD module was co-opted to 

flower monosymmetry in Lamiales 

Summary 

A CYC–RAD–DIV–DRIF interaction defines the novel phenotype of flower 

monosymmetry in Lamiales. Solanales are sister to Lamaiales + Vahliaceae. Tomato (Solanum 

lycopersicum) is a model species in the order Solanales and has a putatively ancestral state of 

flower polysymmetry. In tomato, a RAD–DIV–DRIF interaction has been reported in the fruits, 

suggesting that a RAD–DIV–DRIF interaction was co-opted to the novel phenotype of flower 

monosymmetry. However, whether CYC was a part of this ancestral interaction and was co-

opted with the rest of the program has been an open question. Here, we report a CYC–RAD 

regulatory interaction in tomato. Our data suggest that a CYC–RAD–DIV–DRIF interaction was 

likely present before the divergence of Solanales and Lamiales, and that the likely function of 

this genetic program was ovary/fruit development. The evolution of flower monosymmetry was 

likely facilitated by the co-option of the entire CYC–RAD–DIV–DRIF interaction.  

 

Introduction 

An outstanding question in evolutionary biology is how genetic interactions (programs, 

networks, pathways) that define novel phenotypes evolve. There are two ways genetic 

interactions that define novel phenotypes can evolve. First, by a de novo assembly during the 

origin of the novel phenotype, where previously non-interacting genes are assembled into a new 

interaction. Second, by co-option of an existing network to a new function of defining the novel 

phenotype.  
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Monosymmetry of flowers is a novel phenotype, and it has evolved at least 130  times 

during the diversification of flowering plants (Reyes et al., 2016), including in the order 

Lamiales. Monosymmetric flowers evolved at or near the base of the order Lamiales (Reeves and 

Olmstead, 2003; Reyes et al., 2016). In this order, a CYC–RAD–DIV–DRIF interaction defines 

flower monosymmetry (Almeida et al., 1997; Corley et al., 2005; Galego and Almeida, 2002a; 

Hileman and Baum, 2003; Luo et al., 1996, 1999; Raimundo et al., 2013). In the previous 

chapter, we provide evidence that the RAD–DIV–DRIF interaction, which is crucial in defining 

Lamiales flower symmetry, was likely co-opted from a different function. This function was 

likely in ovary/fruit development. However, whether CYC is a part of this interaction that pre-

dates the origin of monosymmetric flowers, is an open question. Crucial to testing this 

hypothesis is determining whether a CYC–RAD interaction is present in lineages sister to the 

Lamiales. 

The order Solanales is sister to Lamiales + Vahliaceae (Stull 

et al., 2015). Given the sister relationship with Lamiales + 

Vahliaceae, Solanales is an ideal outgroup for testing whether a 

CYC–RAD interaction is ancestral to Lamiales + Solanales. Tomato, 

or Solanum lycopersicum (syn. Lycopersicum esculentum), is a 

model species in the order Solanales, and has polysymmetric flowers (Figure 14). This state of 

polysymmetry is putatively ancestral, and not derived from an ancestor with flower 

monosymmetry.  

A RAD–DIV–DRIF interaction has been reported from tomato fruit development 

(Machemer et al., 2011).  The RAD component in this interaction is an ortholog of AmRAD 

(Gao et al., 2017; Sengupta and Hileman, 2018), but the DIV component (Gao et al., 2017; 

Figure 14. A tomato flower 
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Sengupta and Hileman, 2018) and the DRIF component (Raimundo et al., 2013) are paralogs of 

AmDIV and AmDRIF1/2, respectively. The RAD component in this interaction is called 

SlRADlike4 (or fruit SANT/MYB-like 1, SlFSM1). SlRADlike4 protein suppresses cell 

elongation in developing tomato fruit walls (Machemer et al., 2011). The DIV component is 

called SlDIVlike5 (or SlMYBI), and the DRIF component is called Solanum lycopersicum Fruit 

SANT/MYB Binding protein1 (SlFSB1).  The surprising similarity of this three-component 

interaction to that identified in the development of Antirrhinum flower monosymmetry raises the 

possibility that the ancestral role of RAD, DIV, and DRIF genes, prior to the divergence of 

Lamiales and Solanales, was likely in ovary/fruit development.  

However, it is yet untested whether CYC is a part of the RAD–DIV–DRIF interaction in 

tomato. Key to understanding this question is to test whether there is a CYC–RAD regulatory 

interaction in tomato. If CYC orthologs in tomatoes transcriptionally regulate RAD orthologs, it 

would suggest that the CYC–RAD–DIV–DRIF interaction that defines flower monosymmetry in 

Lamiales, did not evolve de novo during the origin of flower monosymmetry, but it was co-opted 

en bloc from a different function. 

We undertook virus-induced gene silencing to test for a CYC–RAD interaction in tomato, 

and find that a CYC–RAD interaction is present in tomatoes. This suggests that the CYC–RAD–

DIV–DRIF interaction, that defines flower monosymmetry in Lamiales, was co-opted from a 

different ancestral function, possibly ovary and fruit development. The evolution of 

monosymmetric flowers in Lamiales, was thus likely facilitated by co-option of an existing 

genetic interaction. This adds to the evidence that novel phenotypes can evolve by co-opting 

existing genetic interactions.  
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Results 

Expression of SlTCP7, SlTCP26, SlRADlike4, SlDIVlike5, and SlDIVlike6 suggests potential 

interaction 

We used quantitative real-time PCR to determine relative expression of the homologs of 

Antirrhinum flower symmetry genes in tomato (Table 3). We find that all of these genes, with 

the exception of SlRADlike1, are broadly expressed across tomato vegetative and reproductive 

tissues (Figure 15). Overlapping expression is an important criterion for genes to interact with 

each other.  Interestingly, the expression of these genes overlap in ovaries and fruits, and is often 

high in those tissues. This suggests that these genes have a key role in ovary and fruit 

development. This is consistent with the previously described interaction of SlRADlike4 and 

SlDIVlike5 in tomato fruits where these two proteins compete for SlFSB1 (Machemer et al., 

2011), which is a paralog of AmDRIF1&2 (Raimundo et al., 2013).  

 

Table 3. List of tomato genes tested with qPCR in this study and their homology to snapdragon flower symmetry 
genes 

Snapdragon gene Tomato ortholog Tomato paralog 
AmCYC, AmDICH SlTCP7, SlTCP26  
AmRAD SlRADlike1, SlRADlike4  
AmDIV, AmDIV-like1 SlDIVlike6 SlDIVlike5 

 

A CYC–RAD regulatory interaction is present in tomato 

There are two AmCYC orthologs in tomato—SlTCP7 and SlTCP26. There are two 

AmRAD orthologs in tomato—SlRADlike1 and SlRADlike4. We selected SlTCP26 and 

SlRADlike4 to test for a CYC–RAD interaction. We did not select SlTCP7 because its expression 

is low in whole stage-20 flowers relative to other tissues (Figure 15) and downregulation was 
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difficult to assess in VIGS experiments (data not shown). We selected SlRADlike4, because 

SlRADlike4 has an expression pattern similar to that of SlTCP26 (unlike SlRADlike1) (Figure 

15), making SlRADlike4 a potential candidate for transcriptional regulation by SlTCP26. Also, 

Figure 15. Relative expression of CYC, RAD and DIV orthologs and one DIV paralog in tomato across 
reproductive wildtype background. Error bars are standard deviations of samples. ND: expression not determinable; 
@A, at anthesis (stage-20); preA, pre-anthesis (stage-16).  
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SlRADlike4 has five predicted TCP-binding sites within the first 3000 kb upstream of its 

transcription start site, unlike SlRADlike1, which has none (Table 4). Our previous work has 

demonstrated that RAD genes that are known or predicted to be under the transcriptional control 

of CYC proteins are enriched in predicted TCP-binding sites in the first 3000 kb upstream of 

their transcription start sites (Sengupta and Hileman, 2018).  

Table 4. Predicted TCP-binding sites upstream of SlRADlike4 (5′ to 3′) 

Sequence DNA strand 
bp upstream of 
transcription start 

GGGCCC anti-sense 300–295 
GGGCCC sense 300–295 
GGTCCC sense 761–756 
GGACCC anti-sense 762–757 
GGACCC anti-sense 1136–1131 

 

We downregulated SlTCP26 expression in tomato by employing virus-induced gene 

silencing (VIGS) (Figure 16). There was a concomitant decline in SlRADlike4 expression in the 

same tissues (Figure 16). This provides strong evidence that SlRADlike4 is under the 

transcriptional control of SlTCP26. We predict this transcriptional control to be direct—SlTCP26 

likely binds to the predicted TCP-binding sites present upstream the transcription start site of 

SlRADlike4 (Table 4). This provides evidence of a CYC–RAD regulatory interaction in tomato.  

 

Figure 16. Downregulation of SlTCP26 and its effect on SlRADlike4. Error bars are standard deviations of 
samples. The p-values are from T-tests performed on the bracketed tissues.  



40 
 

 

Discussion 

SlTCP26 transcriptionally regulates SlRADlike4 in tomato 

Downregulating SlTCP26 by virus-induced gene silencing leads to a corresponding 

decrease in SlRADlike4 expression. This provides strong evidence for transcriptional control of 

SlRADlike4 by SlTCP26. However, our data do not provide evidence as to whether this 

interaction is direct (SlTCP26 protein binding to the 5′ cis-regulatory sequence of SlRADlike4) or 

indirect (downstream targets of SlTCP26 binding to the 5′ cis-regulatory sequence of 

SlRADlike4).  

TCP proteins (similar to SlTCP26) are known or predicted to be transcription factors that 

bind to the consensus TCP-binding site 5′–GGNCCC-3′ (Costa et al., 2005; Kosugi and Ohashi, 

2002; Yang et al., 2012). RAD orthologs that are known or predicted to be under the direct 

transcriptional regulation by CYC orthologs are likely to be enriched in predicted TCP-binding 

sites in the first 3000 kb upstream their transcription start site (Sengupta and Hileman, 2018). 

SlRADlike4 has five such predicted TCP-binding sites within the first 3000 kb upstream of its 

transcription start site. Together, the data from bioinformatics analysis and gene silencing 

experiments suggest that SlTCP26 directly upregulates the transcription of SlRADlike4. 

 

CYC-RAD-DIV-DRIF interaction was co-opted to flower monosymmetry from other 

functions 

A CYC–RAD–DIV–DRIF interaction defines flower monosymmetry in Lamiales. A part 

of this interaction, RAD–DIV–DRIF interaction, is present in Solanales, and affects fruit 

development in tomato (Machemer et al., 2011). We provide evidence in Chapter 1 that the 
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RAD-DIV-DRIF interaction is conserved across Lamiales+Solanales ovary/fruit development. 

Here we report a CYC-RAD interaction in tomato, where SlTCP26 transcriptionally upregulates 

SlRADlike4 (Figure 16). This suggests that the entire CYC–RAD–DIV–DRIF interaction is 

likely ancestral to Lamiales+Solanales, and was co-opted en bloc to define the novel phenotype 

of flower monosymmetry in Lamiales. The likely ancestral function of this interaction was in 

ovary/fruit development.  

The DIV and DRIF components involved in Lamiales flower monosymmetry and 

Solanales fruit development are not orthologous (Gao et al., 2017; Raimundo et al., 2013; 

Sengupta and Hileman, 2018). We hypothesize that the DIV and DRIF genes involved in the 

ancestral CYC–RAD–DIV–DRIF interaction underwent lineage-specific replacements by other 

homologs. Both DIV and DRIF genes are a part of multigene families in plants, making other 

homologs readily available (Gao et al., 2017; Raimundo et al., 2013; Sengupta and Hileman, 

2018).  

Existing genes are often recruited to define novel phenotypes (Stern, 2013; True and 

Carroll, 2002); this process is called co-option (or re-deployment). Co-option of single genes in 

defining novel phenotypes has been reported from a wide variety of organisms, including the co-

option of CYC to define flower monosymmetry (Bharathan et al., 2002; Busch and Zachgo, 

2007; Citerne et al., 2003; Spitz et al., 2001; Stern, 2013; Werner et al., 2010). However, genes 

usually do not function in isolation, but they function as a part of a larger genetic program where 

they interact with other genes to affect a phenotype. An immediate question arises: whether co-

option involves single genes, or whether entire genetic programs are co-opted collectively. This 

question has received limited attention and mostly from work in animal systems (Bharathan et 

al., 2002; Brakefield et al., 1996; Sordino et al., 1995; True and Carroll, 2002). Our results add to 
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the evidence that evolution of novel phenotypes can be associated with or facilitated by the co-

option of entire genetic programs. 

 

Methods 

Plant material 

Tomato seeds of variety ‘micro-tom’ were used for this study. Seeds were broadcast on 

wet soil, covered with a transparent lid, and kept in short night conditions at 23–24° Celsius. We 

transferred the germinated seedlings to larger individual pots, maintained them in the same light 

and temperature regimen, treated them for arthropod pests and fertilized them with chemical 

fertilizer once a week.  

 

Tissue sampling 

We collected the following tissues for qRT-PCR analyses: seedlings (cotyledons fully 

expanded, first two true leaves are 0.5 cm long , green leaves (leaf 3 mm long, three leaflets 

visible, green, with no dark pigmentation on the underside), stage-16 sepals, stage-16 dorsal 

petals, stage-16 lateral petals, stage-16 ventral petals, stage-16 stamens, stage-16 carpels, stage-

20 carpels, stage-20 whole flowers, phase-II fruits, phase-III fruits, and red-ripe fruits. The 

flower stages (i.e., stage-16 and stage-20) were determined based on descriptions in a previous 

study (Brukhin et al., 2003). Stage-20 corresponds to flowers at anthesis (recently opened). 

Solanaceae flowers are slightly rotated relative to the main axis (Knapp, 2004), and, further, the 

carpels are oblique relative to the median plane of the flower (Craene, 2010; Murray, 1945), 

making the dorso-ventral axis difficult to identify. The dorso-ventral axis in flowers were 

determined based on previously published illustrations (Knapp, 2004). Tomatoes also have a 
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sympodial inflorescence architecture, making it challenging to determine the dorso-ventral axis 

in the second flower onwards. The dorso-ventral axes in such flowers were determined based on 

previously published illustrations (Hake, 2008). The fruit stages (i.e., phase-II, phase-III, and 

red-ripe) were determined from a previous study (Gillaspy et al., 1993). Phase-I ‘fruits’ (Gillaspy 

et al., 1993) correspond to the carpels of stage-20 flowers. 

 

Identifying orthologs 

The following genes were studied in this work: SlTCP7 (Solyc02g089830.1.1), SlTCP26 

(Solyc03g045030.1), SlRADlike1 (Solyc01g109670.2.1), SlRADlike4 (Solyc10g052470.1), 

SlDIVlike6 (Solyc06g076770.2.1), and SlDIVlike5 (Solyc05g055240.2.1). Orthology was 

identified from supplementary figures 1 and 2. The methods for estimating the phylogenetic 

history of these genes are described in chapter 3 (and in Sengupta and Hileman, 2018). 

 

Quantitative RT-PCR assays 

We sampled three biological replicates for each tissue type. We extracted Total RNA 

using RNeasy plant minikit (Qiagen, Germantown, MD, USA) or TRI Reagent (Thermo Fisher 

Scientific, Waltham, MA, USA), followed by DNase treatment (TURBO DNase, Thermo Fisher 

Scientific), and cDNA synthesis (iScript cDNA Synthesis Kit, Bio-Rad, Hercules, CA, USA). 

We performed qRT-PCR in a StepOnePlusTM Real-Time PCR System (Thermo Fisher 

Scientific) using Bullseye EvaGreen qPCR Mastermix (Midwest Scientific, St. Louis, MO, USA. 

We normalized expression of target genes against a constitutively expressed gene Elongation 

factor 1-alpha (EF1a). We analyzed expression employing ΔΔCt method. We determined the 
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efficiency of PCR using DART (Peirson et al., 2003). The primers used in qRT-PCR are as listed 

in Table 5.  

 

Table 5. Tomato qRT-PCR primers (5′ to 3′) 
 

  

 

 

  

 

 

Virus-induced gene silencing 

We used a pRTV1 and pTRV2 based system to downregulate SlTCP26 (Dinesh-Kumar et 

al., 2003; Liu et al., 2002; Padmanabhan and Dinesh-Kumar, 2009). This gene has two 

alternative transcripts (HM921069.1 and XM_010319513.2). We designed a construct that 

would silence both transcripts. We amplified a 416 bp fragment of the SlTCP26 transcript from 

cDNA using the primers 5′–TCTCTAGAAGGCCTCCATGGTGAAACTAGCCACAAATC–3′ 

and 5′–TCTTCGGGACATGCCCGGGCTTAGATTGAAGAAGATGACG–3′ and cloned it into 

pTRV2 using NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs. Ipswich, 

Massachusetts, USA). The underlined portions of the primers are overhangs that facilitate 

cloning into pTRV2. The fragment encompasses both coding and non-coding parts of the 

transcript. We used Agrobacterium tumefaciens GV3101 to introduce the pTRV1/2 into tomato 

seedlings (as described in Dinesh-Kumar et al., 2003). As a control, we infiltrated some plants 

with the empty pTRV2 vector (without the insert) along with the pTRV1. We sampled flowers at 

Gene Forward primer Reverse primer 

SlEF1a TACTGGTGGTTTTGAAGCTG AACTTCCTTCACGATTTCATCATA 

SlTCP7 GGAACCCTATTCTTCACTCCTC TTGAGTGACCATTTGCGGCT 

SlTCP26 TCTTGGTTTCACTGGCAACC TCTTCATGGGGAACGACCTT 

SlDIVlike5 AGACGAACCACCTGCAATCA TCGATCTTTAAGCTCCTGGATTCA 

SlDIVlike6 ACGGTCTCTCTTGTCTTGTGA ACAGGTTTCGGTTCGTTCCT 

SlFSM1 ATTTGCCTTGGAACCTGCCT GGACATGACGAGTACAAGAGCA 

SlRADlike1 GGTTCCAACAAAGCAATGAGGG GCTTCCTTCATATAGTACATCCATGA 
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anthesis (stage-20) to test for downregulation (using extraction and qRT-PCR methods discussed 

above). Six pTRV2-insert flowers and eight control flowers (from different plants) were used for 

testing downregulation of SlTCP26 and SlRADlike4. We compared the mean SlTCP26 

expression of these genes in the control and experimental sets by T-test.  
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Chapter 3: Novel traits, flower symmetry, and transcriptional autoregulation: new 

hypotheses from bioinformatic and experimental data 

Summary 

A common feature in developmental networks is the autoregulation of transcription 

factors which, in turn, positively or negatively regulate additional genes critical for 

developmental patterning. When a transcription factor regulates its own expression by binding to 

cis-regulatory sites in its gene, the regulation is direct transcriptional autoregulation (DTA). 

Indirect transcriptional autoregulation (ITA) involves regulation by proteins expressed 

downstream of the target transcription factor. We review evidence for a hypothesized role of 

DTA in the evolution and development of novel flowering plant phenotypes. We additionally 

provide new bioinformatic and experimental analyses that support a role for transcriptional 

autoregulation in the evolution of flower symmetry. We find that 5' upstream non-coding regions 

are significantly enriched for predicted autoregulatory sites in Lamiales CYCLOIDEA genes—an 

upstream regulator of flower monosymmetry. This suggests a possible correlation between 

autoregulation of CYCLOIDEA and the origin of monosymmetric flowers near the base of 

Lamiales, a pattern that may be correlated with independently derived monosymmetry across 

eudicot lineages. We find additional evidence for transcriptional autoregulation in the flower 

symmetry program, and report that Antirrhinum DRIF2 may undergo ITA. In light of existing 

data and new data presented here, we hypothesize how cis-acting autoregulatory sites originate, 

and find evidence that such sites (and DTA) can arise subsequent to the evolution of a novel 

phenotype. 
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Introduction 

A common feature in developmental networks is the autoregulation of transcription 

factors which, in turn, positively or negatively regulate additional genes critical for 

developmental patterning. A trans-acting protein is considered transcriptionally autoregulated 

when the protein itself, or downstream factors, modulate its expression. Transcriptional 

autoregulation can be either direct, or indirect. In direct transcriptional autoregulation (DTA), a 

protein binds to cis-regulatory sites in its gene and modulates expression. Indirect transcriptional 

autoregulation (ITA) involves regulation by proteins expressed downstream of the target 

transcription factor (Figure 17). Both DTA and ITA have the potential to enter run-away 

positive feedback processes. Expression of such genes is likely reduced or stabilized by 

additional regulatory factors. Transcription factor autoregulation is widespread. For example, at 

least 40% of transcription factors in Escherichia coli are autoregulated (Rosenfeld et al., 2002), 

and similar direct and indirect autoregulation has been reported across the tree of life—in 

viruses, prokaryotes, and eukaryotes (for example, Hochschild, 2002; Martı́nez-Antonio and 

Collado-Vides, 2003; Holloway et al., 2011; Tao et al., 2012; Gallo-Ebert et al., 2013; and 

reviewed in Bateman, 1998; Crews and Pearson, 2009), including those with complex 

development (for example, Cripps et al., 2004; Holloway et al., 2011; Ye et al., 2016).  DTA has 

been demonstrated in processes as diverse, and crucial as the origin of certain cancers 

(Pasqualucci et al., 2003), and the onset of flowering (Tao et al., 2012). 

The widespread occurrence of transcription factor autoregulation suggests a beneficial 

role in the function and evolution of genetic programs. Here we provide a review of evidence for 
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DTA in key flowering plant developmental programs. We provide new data supporting the 

hypothesis that DTA facilitated the evolution of flower monosymmetry in Lamiales. Together 

these data provide compelling evidence for the hypothesis that DTA plays a role in facilitating 

the evolution of novelty. 

 

Advantages of autoregulation 

Several models suggest that autoregulation, especially DTA, can maintain a steady level 

of expression independent of other factors. If so, genes that are more likely to be autoregulated 

should be those that experience fleeting regulatory signals, or are positioned upstream in genetic 

regulatory networks with crucial developmental functions (Crews and Pearson, 2009; Singh and 

Hespanha, 2009).  For example, several transcription factors involved in antibiotic resistance are 

reported to be autoregulated, resistance being a crucial phenotype (Hoot et al., 2010; Toth 

Hervay et al., 2011). Similarly, entering or exiting lytic and lysogenic stages is a key 

Figure 17. Schematic representation of direct and indirect transcriptional autoregulation involving two transcription 
factors. Gene A undergoes DTA and also regulates transcription of gene B. In turn, Gene A undergoes ITA when B 
regulates its transcription. 
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developmental decision in lambda bacteriophages, and this decision is partly controlled by the 

autoregulation of a transcription factor, CI (Hochschild, 2002). The prediction that transcription 

factors upstream in regulatory networks are more likely to undergo autoregulation has been 

tested in the model eukaryote yeast, Saccharomyces cerevisiae. In yeasts, where all possible 

transcription factor interactions have either been tested or predicted, master regulatory genes are 

significantly more likely to experience autoregulation than are other regulators (Odom et al., 

2006). Similarly, five out of six master regulatory genes in human hepatocytes bind to their own 

promoters, i.e., undergo DTA (Odom et al., 2006). 

How regulatory networks define stable phenotypes is an important question in evolution 

and development. Simulations of developmental network evolution suggest that autoregulated 

genes are more robust when faced with random mutations and environmental perturbation (Pinho 

et al., 2014).  The model that DTA stabilizes expression by reducing system noise has been 

tested in the gene hunchback in Drosophila melanogaster. Models where the HOX transcription 

factor Hunchback binds to the hunchback promoter (i.e., hunchback undergoes DTA) predict less 

promoter binding-unbinding noise, making the system more robust (Holloway et al., 2011). 

Experimental work in hunchback mutants whose protein cannot bind to DNA (hence, cannot 

undergo DTA) supports this prediction (Holloway et al., 2011).  

In addition to enhancing system robustness, autoregulation provides a mechanism for 

maintaining expression through key stages of development (reviewed below) that are potentially 

critical for patterning phenotype. However, the developmental role of DTA has only been tested 

by mutational studies in a handful of cases. To determine the role of transcription factor DTA, 

the direct binding between the protein product of a gene and that gene's cis-regulatory DNA can 

be either intensified or weakened through direct DNA manipulation. For example, addition or 
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deletion of cis-regulatory self-binding sites can be used to test for the specific developmental role 

of DTA within a given species (Espley et al., 2009; Tao et al., 2012; Gallo-Ebert et al., 2013). A 

complementary, but more difficult approach is to alter transcription factor peptide sequence by 

mutagenesis in order to modify affinity towards the self-binding sites, e.g., in the hunchback 

exampled discussed above (Holloway et al., 2011). In some model systems, it is possible to 

repress activity of a transcription factor by overexpressing a dominant chimeric version of the 

peptide with a repressor domain added to the carboxy-terminus. The chimeric protein can repress 

the function of the native transcription factor by competitive inhibition (for example, Hiratsu et 

al., 2003; Koyama et al., 2010). Recent advances in CRISPR/Cas9 gene-editing technologies 

(Ma et al., 2016, 9) will certainly facilitate exploration of DTA function, at least in model 

species. 

 

Review of DTA in flowering plant developmental evolution    

Once an initial signal for activation of gene expression has been received, a transcription 

factor capable of DTA can contribute to swift developmental decisions. A clear example comes 

from work on the developmental transition to flowering (Figure 18). Flowering time is a key 

life-history transition in plant development, intimately tied to environmental cues and aging in 

order to ensure reproductive success (reviewed in Ó’Maoiléidigh et al., 2014). In Arabidopsis 

thaliana, the transition from vegetative to reproductive development is regulated in part by a 

MADS-box transcription factor, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 

(SOC1). SOC1 undergoes DTA through the binding of SOC1 protein to four cis-regulatory 

CArG-box self-binding sites close to the SOC1 transcription start site (Tao et al., 2012). The 

flowering transition is significantly delayed in the insertional mutant soc1-2 which carries a loss-
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of-function mutation in the coding sequence of SOC1. The delayed flowering phenotype is 

largely rescued when soc1-2 lines are transformed with a wild type SOC1 allele (including the 

wild type promoter). This mutant-rescue system with known self-binding sites in the SOC1 

promoter creates an elegant system for testing the specific role of SOC1 DTA in establishing 

tight control of the flowering time phenotype. In heterozygous rescue lines where the self-

binding sites in the transgenic allele have been mutated by substituting nucleotides at the first 

two and last two positions of the CArG-box binding site, flowering is delayed (Tao et al., 2012).  

 

Figure 18. DTA in novel plant phenotypes. (A) Disrupting DTA by removal of cis-acting autoregulatory sites 
in Arabidopsis SOC1 delays onset of flowering. (B) The number of autoregulatory sites in apple MYB10 cis-
regulatory sequence is correlated with fruit flesh color. 
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This suggests that the DTA of SOC1 has a key role in transition to flowering. Tao et al. 

(2012) provide further evidence of SOC1 autoregulation using an estradiol-inducible expression 

system. Estradiol-induction allows tight control over transgenic protein entering the nucleus and 

functioning as a transcription factor. Within two hours of estradiol-induction of transgenic 

SOC1, expression of endogenous SOC1 tripled in comparison to a control. This rapid increase in 

SOC1 expression after releasing transgenic SOC1 protein to the nucleus suggests SOC1 plays a 

direct role in its own upregulation. Together, these SOC1 experiments in Arabidopsis provide 

clear evidence that once induced, a transcription factor undergoing DTA can rapidly increase its 

expression level to swiftly respond to a signal and affect developmental outcomes. 

Sustained, stable, and high expression is likely key to defining complex phenotypes. 

Other than increasing the expression level at a certain point during development (as described in 

SOC1 above), DTA would provide selective advantage if it could sustain the expression for an 

extended time through consecutive developmental events. A way to test this would be to 

determine how expression changes when homologous autoregulatory and non-autoregulatory 

sites between a pair of recently diverged paralogs are swapped. Arabidopsis APETALA1 

(AtAP1) and CAULIFLOWER (AtCAL) are two recently duplicated paralogs (Wang et al., 2012) 

and this system was employed by Ye et al. (2016) to test the role of DTA for sustaining 

expression in developmental patterning. AtAP1 defines sepal development, and Ye et al. (2016) 

found that strong expression of AtAP1 is initiated in floral meristems, and that the expression 

continues to near-mature flower stages (stage-12). AtAP1 also undergoes DTA wherein it binds 

to a CArG-box located in its cis-regulatory region and activates AtAP1 transcription. On the other 

hand, AtCAL does not undergo DTA, is expressed at a low level in early stage flowers, with the 

expression vanishing soon after stage-4 (Ye et al., 2016). In an elegant system, Ye et al. (2016) 
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generated β-glucuronidase (GUS) reporter-constructs driven by AtAP1 and AtCAL promoter 

regions. When the CArG-box in the GUS reporter construct with the AtAP1 promoter was 

replaced with the homologous non-autoregulatory nucleotides from the AtCAL promoter, two 

changes occurred. First, the overall expression level of GUS dropped, and second, the expression 

duration was shortened, approximating that of AtCAL in wild type plants. On the contrary, when 

GUS was placed under the control of an AtCAL promoter whose non-autoregulatory nucleotides 

had been replaced with the homologous CArG-box from the AtAP1 promoter, GUS expression 

level increased and extended to near-mature stage flowers. This suggests that DTA of AtAP1 not 

only has a role in maintaining high expression levels compared to the non-autoregulated paralog, 

but has a critical role in sustaining the expression for an extended period. This study did not 

directly test the role of AtAP1 DTA, its loss or acquisition, in defining phenotype. However, 

direct evidence for acquisition or loss of DTA on the evolution of a novel phenotype comes from 

domesticated apples.  

Malus domestica (domesticated apple) provides compelling evidence for the importance 

of DTA on phenotypic outcomes (Figure 18). The color of fruit flesh in many domesticated 

apple varieties ranges from white to red. Variation in fruit color is regulated by the transcription 

factor MYB10, which upregulates anthocyanin expression, especially cyanidin-3-galactoside 

(Espley et al., 2007, 2009, 2013).  Anthocyanin-regulating MYBs have been reported from a 

wide variety of angiosperm species (reviewed in Lin-Wang et al., 2010), including Malus 

(Espley et al., 2009), Prunus (Starkevič et al., 2015), Myrica (Niu et al., 2010), Arabidopsis 

(Gonzalez et al., 2008), and Ipomoea (Mano et al., 2007). Malus domestica has two alleles of 

MYB10 that are identical in their coding sequences but differ in their promoter sequences. Allele 

R1 promoter contains one MBY10 autoregulatory binding site, whereas allele R6 promoter 
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contains six repeats of the autoregulatory site (Espley et al., 2009). The white-fleshed domestic 

apple varieties are homozygous for the one-repeat R1 allele, whereas the red-fleshed varieties are 

R1/R6 heterozygotes or R6/R6 homozygotes, which leads to increased anthocyanin production 

via DTA (Espley et al., 2009). It is not clear which allele is ancestral in domesticated apples. Of 

the four Malus species that contributed to the domesticated apple genome (Cornille et al., 2014), 

M. sieversii can be either R6/R6 (Espley et al., 2009; Lin-Wang et al., 2010, 3) or R1/R6 (Espley 

et al., 2009; Nocker et al., 2012), and M. baccata is R1/R1 (Nocker et al., 2012). Of the other 

species in the genus Malus tested for MYB10 promoter sequence, all but one have the R1/R1 

genotype (Nocker et al., 2012).  

Though it is not clear whether R1/R1 (white flesh) or R6/R6 (red flesh) is ancestral in the 

genus Malus, it is clear from studies in domesticated apple that changes to fruit flesh color are 

regulated by addition or loss of autoregulatory sites in the MYB10 promoter. The evidence from 

flesh coloration in apples suggests an interesting possibility. Self-activating loops of DTA can 

serve as easy modules for evolving elevated or reduced gene expression levels. Such 

evolutionary shifts in gene expression have potentially adaptive developmental consequences 

accompanied by minimal pleiotropy. Genes, including transcription factors, are often regulated 

by trans-activators that bind to the cis-acting elements in the regulatory region of the target gene. 

Theoretically, these target genes can be upregulated in three ways: adding more cis-regulatory 

sites recognized by either the existing or novel trans-activators, upregulating the expression of 

the existing trans-activators, or acquiring new (or additional) self-binding sites in the promoter 

region. Addition of cis-regulatory sites recognized by trans-activators can be ineffective if the 

expression level of the trans-activator is limiting. Additionally, increasing the expression level of 

the trans-activator can have pleiotropic consequences. However, acquiring new (or additional) 
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cis-regulatory self-binding sites can lead to increased expression of the target gene while 

bypassing the limitations associated with trans-activation. Similarly, reduced expression levels 

can evolve with minimal pleiotropic consequences through the loss of existing autoregulatory 

sites. 

The evidence from SOC1, AtAP1, and MYB10 provide insight into why genes involved 

in defining novel phenotypes are likely to undergo DTA. Autoregulatory loops can serve as a 

quick developmental switch that can rapidly respond to an inbound signal, they can provide high 

expression levels, and extend that expression through consecutive developmental events. Lastly, 

DTA can act as a module that can be used to evolve increased or decreased expression with 

minimal pleiotropic effect, allowing the evolution of novel phenotypes that require such 

directional changes in protein levels. Quick evolutionary shifts in developmental function of 

paralogs and divergent alleles can therefore occur through gain or loss of DTA, most likely 

through gain or amplification of self-binding sites in cis-regulatory sequences of focal genes.  

 

Evidence for DTA in flower symmetry evolution 

An emerging system for studying the role of DTA in both development and evolution is 

flower symmetry. DTA has been implicated in the control of monosymmetry (bilateral 

symmetry; zygomorphy) (Yang et al., 2012), and may represent a critical step for the evolution 

of this floral novelty. Monosymmetric flowers are considered a key innovation defining flower 

form in many species-rich flowering plant lineages including Lamiales, asterids, legumes, and 

orchids (Sargent, 2004; Vamosi and Vamosi, 2010). Therefore, assessing the role of DTA in the 

development of flower monosymmetry may provide critical insights into patterns of gene 

network modification that facilitate novel trait evolution. Below, we review the genetic control 
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of monosymmetry in Lamiales alongside the evidence for DTA. We test for previously 

unreported regulatory interactions in the Antirrhinum majus flower symmetry program, as well 

as the potential for DTA in a major radiation of taxa with primarily monosymmetric flowers, the 

Lamiales. Lastly, we comment on possible wide-spread DTA in repeated origins of 

monosymmetry across flowering plants.  

Flowering plants are ancestrally polysymmetric (radially symmetric; actinomorphic; 

Figure 2) (Sauquet et al., 2017). Evolutionary shifts away from polysymmetry include 

asymmetry (no axis of flower symmetry) and disymmetry (two non-equivalent axes of flower 

symmetry), but monosymmetry (a single axis of flower mirror-image symmetry; Figure 2) is by 

far the most common form of non-radial symmetry in flowering plants. Monosymmetric flowers 

have evolved at least 130 times independently during flowering plant diversification (Reyes et 

al., 2016). The role of floral symmetry in pollination was recognized as early as 1793 by 

Sprengel in his monumental German work Das entdeckte Geheimniss der Natur im Bau und in 

der Befruchtung der Blumen (reviewed in the following: Endress, 1999; Fenster et al., 2004, 

2009; Neal et al., 1998). Monosymmetric flowers are often associated with specialized 

pollination by animals (Kampny, 1995; reviewed in Neal et al., 1998), rarely in wind pollinated 

species (rarely in wind pollinated species, as shown by Yuan et al., 2009), and transitions to 

monosymmetry are strongly associated with increased speciation rates (O’Meara et al., 2016; 

Sargent, 2004).  

The genetics of monosymmetry is best understood in the model species A. majus 

(snapdragon, Lamiales). The flowers of A. majus have two distinct morphological regions—the 

dorsal (top; adaxial) side, and the ventral (bottom; abaxial) side (Figure 19). Monosymmetry of 

A. majus flowers along the dorso-ventral axis is defined by a competitive interaction involving 
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TCP and MYB transcription factors. TCP (TEOSINTE BRANCHED1, CYCLOIDEA, and 

PROLIFERATING CELL FACTORS) and MYB (first described from avian myeloblastosis 

virus) proteins are found as large gene families in flowering plants (Yanhui et al., 2006; Martín-

Trillo and Cubas, 2010) and play diverse roles in aspects of vegetative and reproductive 

developmental patterning (Ambawat et al., 2013; Martín-Trillo and Cubas, 2010; Parapunova et 

al., 2014).  The dorsal side of A. majus flowers is defined by the combined action of two recently 

duplicated TCP paralogs, CYCLOIDEA (AmCYC) and DICHOTOMA (AmDICH) (Corley et al., 

2005; Hileman and Baum, 2003; Luo et al., 1996, 1999). These two transcription factors define 

dorsal flower morphology partly by activating the transcription of a downstream MYB protein, 

RADIALIS (AmRAD; Figure 19) (Corley et al., 2005). AmRAD post-translationally negatively 

regulates another MYB protein, DIVARICATA (AmDIV), which defines ventral flower 

morphology. Through this negative interaction, AmRAD excludes the ventral flower identity 

specified by AmDIV from the dorsal side of the developing A. majus flower (Figure 19). 

Specifically, AmRAD and AmDIV compete for interaction with two MYB-family protein 

partners called DIV and RAD Interacting Factors 1 and 2 (AmDRIF1 and AmDRIF2) (Almeida et 

al., 1997; Corley et al., 2005; Galego and Almeida, 2002b; Raimundo et al., 2013). AmDIV 

requires protein-protein interaction with AmDRIF1 or 2 to function as a transcription factor and 

upregulate its own transcription, as well as to regulate downstream targets (Figure 19) (Perez-

Rodriguez et al., 2005; Raimundo et al., 2013). In the dorsal flower domain, AmRAD 

outcompetes AmDIV for interaction with AmDRIF1/2, preventing accumulation of AmDIV 

protein (Raimundo et al., 2013).  
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Because flower monosymmetry has evolved multiple times, a considerable amount of 

effort has gone into testing whether elements of the A. majus symmetry program function to 

specify dorso-ventral differentiation in other flowering plant lineages. Interestingly, all 

monosymmetric species tested at a molecular level so far show evidence that a TCP-based 

regulatory network is likely involved in differentiation along the dorso-ventral flower axis. These 

studies span eudicot and monocot lineages and primarily, but not exclusively, show a pattern of 

dorsal-specific floral expression of TCP homologs (for example, Bartlett and Specht, 2011; 

Busch and Zachgo, 2007; Chapman et al., 2012; Citerne et al., 2003, 2010; Damerval et al., 

2013; Howarth et al., 2011; Preston and Hileman, 2012; Wang et al., 2008; Yuan et al., 2009) 

(and reviewed in Hileman, 2014). In core eudicots, there are three lineages of CYCLOIDEA 

(CYC)-like TCP genes resulting from two rounds of duplication near the origin of core eudicots: 

the CYC1-, CYC2-, and CYC3-lineages (Citerne et al., 2013; Howarth and Donoghue, 2006). 

AmCYC and AmDICH belong to the CYC2-lineage, and in an interesting pattern, all TCP genes 

implicated in floral monosymmetry in core eudicots belong to the same CYC2-lineage (Citerne et 

al., 2010; and reviewed in Hileman, 2014). How these orthologous genes were recruited 

Figure 19. Regulatory mechanisms involved in A. majus flower symmetry. Previously reported transcriptional 
regulation (red arrows), transcriptional regulation predicted in this study (blue arrows), and previously reported 
protein-protein interactions (dotted lines) are shown. 
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convergently during the multiple evolutionary origins of floral monosymmetry, from an as yet 

unclear function in species with ancestral polysymmetry, remains an open question. 

Detailed developmental studies in A. majus have provided key insights into the regulatory 

interactions that shape flower monosymmetry, and A. majus as a model represents a species-rich 

lineage of flowering plants, Lamiales. Monosymmetry evolved early in Lamiales diversification 

(Reyes et al., 2016; Zhong and Kellogg, 2015b), and developmental genetic studies in additional 

Lamiales species provide further insight into the regulatory network that shapes bilateral flower 

symmetry across the entire lineage. Notably, detailed expression and functional studies of CYC, 

RAD and DIV orthologs in Gesneriaceae, a sister lineage to the bulk of Lamiales species 

diversity, have contributed to a fuller understanding of regulatory interactions that shape 

Lamiales flower monosymmetry (Citerne et al., 2000; Gao et al., 2008; Liu et al., 2014; Smith et 

al., 2004; Yang et al., 2010, 2012; Zhou et al., 2008, 2). From studies in A. majus 

(Plantaginaceae) and Primulina heterotricha (syn. Chirita heterotricha; Gesneriaceae), there is 

strong evidence that at least two components of the flower symmetry network undergo DTA–

DIV and CYC (Figure 19).  

As mentioned above, AmDIV forms heterodimers with AmDRIF1 and 2 to specify 

ventral flower identity in A. majus (Raimundo et al., 2013). AmDIV-AmDRIF dimers bind to a 

consensus sequence that includes the conserved I-box motif, 5′-GATAAG-3′ located 2596 bp 

upstream of the AmDIV transcription start site (Raimundo et al., 2013), providing compelling 

evidence that AmDIV is involved in an autoregulatory loop. Autoregulation of DIV orthologs has 

not been tested outside of A. majus. In P. heterotricha, peloric (radialized) forms due to flower 

ventralization have reduced expression levels of CYC orthologs, PhCYC1C and PhCYC1D (Yang 

et al., 2012), presenting strong evidence that these two genes define dorsal identity of 
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monosymmetric P. heterotricha  flowers. Experimental evidence suggests that PhCYC1 and 

PhCYC2 undergo DTA; PhCYC1 and PhCYC2 proteins bind to the consensus TCP-binding 

sequence 5′-GGNCCC-3′ in the putative promoter regions of both PhCYC1 and PhCYC2 (Yang 

et al., 2010, 2012). Autoregulation of CYC orthologs has not been tested outside of P. 

heterotricha. 

These initial insights from A. majus and P. heterotricha lead to a set of important 

evolutionary questions. Is autoregulation of CYC orthologs conserved across Lamiales? And has 

a pattern of autoregulation repeatedly evolved in CYC2-lineage orthologs from lineages with 

independently derived monosymmetric flowers? This second question is especially compelling 

given that CYC2-lineage ortholog expression is expected to persist from early through later 

stages of flower development in order to specify asymmetric morphological differentiation along 

the dorso-ventral floral axis in lineages with flower monosymmetry.  

 

Results 

Predicted TCP- and DIV-binding sites in A. majus are consistent with known and 

hypothesized transcriptional regulation 

In A. majus, we found consensus TCP-binding sites in four of the six genes known to be 

involved in A. majus flower symmetry (Figure 19,  

Table 6). AmCYC and AmDICH had eight and four predicted TCP-binding sites in their upstream 

non-coding sequences, respectively, and likely regulate their own and each other’s expression. 

Notably, AmCYC DTA has been hypothesized previously (Costa et al., 2005), and the presence 

of predicted autoregulatory sites in AmCYC and AmDICH is consistent with the putative auto and 

cross-regulation of P. heterotricha  PhCYC1C and PhCYC1D (Yang et al., 2012). AmRAD, 
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known to be positively regulated by AmCYC and AmDICH (Corley et al., 2005; Costa et al., 

2005), had two predicted consensus TCP-binding sites in its upstream non-coding sequence. 

AmDIV and AmDRIF2 did not have predicted TCP-binding sites in their upstream non-coding 

sequences, consistent with evidence that they are unlikely to be under direct transcriptional 

regulation by AmCYC, AmDICH, or any other more distantly related TCP transcription factors.  

 
Table 6. Predicted consensus TCP-binding sites in the upstream non-coding sequences of A. majus flower symmetry 
genes. Bases in bold indicate conservation in the consensus binding site. AmDIV and AmDRIF2 lack consensus 
TCP-binding sites in their upstream non-coding sequences. Costa et al., 2005 reported TCP-binding sites for 
AmRAD and suggested the presence of autoregulatory sites in the non-coding sequence upstream of AmCYC. 
 

Gene Sequence DNA strand bp upstream of transcription start 
AmCYC GGGCCC sense 2454-2457 

GGGCCC sense 544-549 
GGGCCC anti-sense 544-549 
GGGCCC anti-sense 2452-2457 
GGCCCC sense 2451-2456 
GGCCCC sense 2292-2297 
GGCCCC sense 543-548 
GGCCCC anti-sense 2453-2458 

AmDICH GGGCCC sense 1170-1175 
GGGCCC anti-sense 1170-1175 
GGCCCC sense 965-970 
GGCCCC anti-sense 1171-1176 

AmRAD 
Costa et al., 2005 

GGCCCC sense 1521-1526 
GGCCCC sense 1489-1494 

AmDRIF1 GGTCCC anti-sense 2394-2399 
 

Consensus TCP-binding sites (plus 100 bp flanking sequence from either side) initially 

identified in the upstream non-coding sequences of AmCYC and AmDICH were used to search 

for similar sites elsewhere in the A.majus genome. These searches resulted in only self-hits to 

AmCYC and AmDICH upstream non-coding sequences or cross-paralog matches between 

AmCYC and AmDICH. This result suggests that these sites evolved de novo and not through 
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translocation of existing sites from elsewhere in the genome. Similarly, our search for consensus 

TCP-binding sites from M. lewisii CYC2-lineage genes in the M. lewisii genome resulted in only 

self-hits. 

We identified two consensus DIV-binding sites in the AmDIV upstream non-coding 

sequence (Table 7), one of which was previously implicated by Raimundo et al. (2013) in 

AmDIV DTA. AmCYC, AmRAD, AmDRIF1 and AmDRIF2, but not AmDICH, also had predicted 

DIV-binding sites in their upstream non-coding sequences (Table 7). It is unlikely that the 

predicted DIV-binding sites in the upstream non-coding sequences of AmCYC or AmRAD 

function for AmDIV binding. This is because AmDIV function is impaired in the presence of 

AmRAD proteins through competitive inhibition.  

 
Table 7. Predicted consensus DIV-binding sites in the upstream non-coding sequences of A. majus flower symmetry 
genes. Bases in bold indicate conservation in the consensus binding site. AmDICH lacks consensus DIV-binding 
sites in upstream non-coding sequences. One of two consensus DIV-binding sites in AmDIV was reported by 
Raimundo et al. (2013) 
 

Gene Sequence DNA strand bp upstream of transcription start 
AmCYC AGATAAGG anti-sense 329-336 
AmRAD AGATAACA anti-sense 798-805 

GGATAACG anti-sense 1051-1058 
CGATAAGA anti-sense 2843-2850 

AmDIV 
Raimundo et al., 2013 AGATAAGG sense 2595-2602 

CGATACCC sense 1557-1564 
AmDRIF1 GGATACGG sense 711-718 

AGATAAGG sense 242-249 
AGATAAGC anti-sense 505-512 

AmDRIF2 AGATAACC anti-sense 1892-1899 
 

Expression analyses suggest additional autoregulation of DIV in A. majus  

Given the presence of predicted DIV-binding sites in AmDRIF1 and AmDRIF2 upstream 

non-coding sequences (Table 7), we tested whether AmDRIF1 and/or AmDRIF2 expression is 
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significantly altered in the A. majus div mutant background compared to wild type. We found 

that AmDRIF1, despite having multiple DIV consensus binding sites in its upstream region, was 

not under either direct or indirect regulation by AmDIV (p=0.453; Figure 20). AmDRIF1 may be 

regulated by a non-DIV MYB transcription factor(s) that binds to the consensus DIV-binding 

motif. On the other hand, we found significantly lower levels of AmDRIF2 expression in div 

mutant flower buds compared to wild type (p=0.031; Figure 20). This suggests that AmDRIF2 is 

either directly or indirectly positively regulated by AmDIV. In turn, AmDIV is positively 

regulated by AmDRIF2-AmDIV heterodimers (Raimundo et al., 2013). Therefore, AmDIV 

appears to experience both direct and indirect transcriptional autoregulation through interaction 

of AmDIV cis-regulatory sequences with AmDRIF2-AmDIV heterodimers. 

 

 

Putative TCP-binding sites are enriched in upstream non-coding sequences of Lamiales 

CYC2-lineage genes  

While no CYC2-lineage gene outside P. heterotricha  has been experimentally tested for 

DTA, it is possible to infer the potential for DTA by screening for the consensus TCP-binding 

site, 5′-GGNCCC-3′ (Gao et al., 2015; Kosugi and Ohashi, 2002; Yang et al., 2012), in putative 

cis-regulatory regions of Lamiales CYC2-lineage genes. Given that flower monosymmetry is 

Figure 20. Relative expression of AmDRIF1 (A) and AmDRIF2 (B) in wild type and divaricata mutant lines. The 
expression level of AmDRIF2 is significantly lower in the div background suggesting that AmDIV positively 
regulates AmDRIF2 transcription. The values are mean ± standard deviation 
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homologous in P. heterotricha  and A. majus, evolving early in the diversification of Lamiales 

(Reyes et al., 2016; Zhong and Kellogg, 2015b), a straight-forward hypothesis is that CYC2-

lineage DTA evolved early in Lamiales and has been retained in Lamiales lineages with 

monosymmetric flowers. Under this hypothesis, Lamiales with flower monosymmetry will retain 

consensus TCP-binding site(s) in putative CYC2-lineage cis-regulatory sequences. The 

availability of multiple Lamiales genomes (Supplementary Table 1) allowed us to begin testing 

the hypothesis that autoregulation is potentially conserved across Lamiales CYC orthologs. 

We identified orthologs of AmCYC/AmDICH (CYC2-lineage genes) from genome-

sequenced Lamiales plus representative core eudicots (Supplementary Table 1, Supplementary 

Fig. 1). We identified orthologs of AmRAD and AmDIV from genome-sequenced Lamiales plus 

representative orthologs from sister lineages to Lamiales, Gentianales and Solanales 

(Supplementary Table 2, Supplementary Fig. 2). As with P. heterotricha and A. majus, recent 

duplication events lead to paralog complexity for CYC2-lineage genes (Supplementary Figure 1). 

We found that at least one CYC2-lineage gene from each core eudicot species had consensus 

TCP-binding sites(s) in the upstream non-coding sequence (Supplementary Tables 3 and 4), with 

two exceptions. The only CYC2-lineage genes in Vitis vinifera (Vitales), CYCLOIDEA-like 2a, 

and Gossypium raimondii (Malvales), TCP1, had no consensus TCP-binding sites in their 

upstream non-coding sequences.  

We found consensus TCP-binding sites in the upstream non-coding sequences of CYC2-

lineage genes in a wide variety of core eudicots with flowers with mono-, poly-, and 

dissymmetry (Supplementary Tables 3 and 4). However, prima facia, the CYC2-lineage 

orthologs from Lamiales appeared to be enriched for consensus TCP-binding sites. We tested for 

enrichment of consensus TCP-binding sites in the non-coding sequences upstream of Lamiales 
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CYC2-lineage genes. Additionally, we tested the upstream non-coding sequences of non-

Lamiales core-eudicot CYC2-lineage genes, and Lamiales RAD and DIV orthologs for 

enrichment in consensus TCP-binding sites. We predict that RAD orthologs may show 

enrichment of the consensus TCP-binding site due to conserved regulation of RAD by CYC-like 

transcription factors across Lamiales, but that Lamiales DIV orthologs are not likely to be 

enriched for the consensus TCP-binding site given that there is no previous data indicating 

regulation of DIV orthologs by CYC-like transcription factors or other TCP proteins. 

Table 8. Results from Analysis of Motif Enrichment (AME) tests for consensus TCP-binding sites in the upstream 
non-coding sequences of symmetry gene orthologs.  
 

Test sequences  
(putative cis-regulatory regions) 

Control sequences p-value 
Genes 
surveyed 

Species 
surveyed 

Lamiales DIV orthologs Shuffled test sequences 0.517 15 9 

Lamiales RAD orthologs Shuffled test sequences 0.0406 33 9 

Lamiales CYC2 orthologs Shuffled test sequences 0.0169 20 9 

Non-Lamiales core eudicot CYC2 orthologs Shuffled test sequences 0.352 39 17 

 

As expected, we found that the upstream non-coding sequences of Lamiales DIV 

orthologs were not significantly enriched for the consensus TCP-binding sites (p=0.517; Table 

8), and that the upstream non-coding sequences of Lamiales RAD orthologs were significantly 

enriched for the consensus TCP-binding site (p=0.0406; Table 8). This result is consistent with 

CYC-like transcription factors acting as regulators of RAD, but not DIV across Lamiales. 

Strikingly, we found that the upstream non-coding sequences of CYC2-lineage genes in Lamiales 

were significantly enriched in consensus TCP-binding sites (p=0.0169; Table 8) in-line with the 

hypothesis that CYC autoregulation evolved early in Lamiales, coincident with the evolution of 

monosymmetric flower, and has been maintained during Lamiales diversification. Notably, this 

pattern of enrichment appears specific to Lamiales. We tested for similar enrichment of the 
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consensus TCP-binding site in non-Lamiales core eudicot CYC2-lineage orthologs and found no 

evidence for a similar pattern of binding site enrichment (p=0.352; Table 8).  

 

Discussion 

Binding site enrichment supports the hypothesis that DTA of CYC is associated with the 

origin of flower monosymmetry in Lamiales 

Positive regulation of RAD by CYC2-lineage genes for specifying flower monosymmetry 

is conserved across much of Lamiales (Corley et al., 2005; Su et al., 2017; Zhou et al., 2008). 

That we find significant enrichment of consensus TCP-binding sites in Lamiales RAD upstream 

non-coding sequences is in-line with conservation of this CYC-RAD regulatory module. 

Strikingly, our data demonstrate that Lamiales CYC2-lineage genes are also significantly 

enriched for consensus TCP-binding sites in upstream non-coding sequences. This supports the 

hypothesis that the origin of Lamiales flower monosymmetry coincides with the evolution of 

CYC2-lineage DTA. Further empirical studies in emerging Lamiales models (for example, Liu et 

al., 2014; Su et al., 2017, 2) will allow this hypothesis to be tested, as well as the alternative, that 

CYC2-lineage genes undergo transcriptional regulation by other TCP family proteins. As 

additional eudicot genomes become available, tests for TCP-binding site enrichment can be 

carried out in other lineages with bilaterally symmetrical flowers for which a role of CYC2-

lineage genes has been implicated, for example, Fabaceae (Wang et al., 2008; Xu et al., 2013) 

and Malpighiaceae (Zhang et al., 2010). 
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Evaluating the pan-eudicot model for monosymmetry involving DTA of CYC2-lineage 

genes 

A model hypothesizing the role of DTA for the parallel origin of monosymmetric flowers 

across eudicots was put forward by Yang et al. (2012; Fig 6) based on two primary lines of 

evidence. First, the observed differences in duration of flower specific expression of CYC2-

lineage genes between species with monosymmetric vs. non-monosymmetric flowers. Second, 

the reported absence of consensus TCP-binding sites in the upstream non-coding sequences of 

CYC2-lineage genes from non-monosymmetric flowers. Specifically, Arabidopsis thaliana, 

Brassica rapa, Vitis vinifera, and Solanum lycopersicum do not have monosymmetric flowers 

and were reported to lack consensus TCP-binding sites in their CYC2-lineage genes compared to 

Glycine max, Medicago trunculata, Mimulus guttatus, Primulina heterotricha, Oryza sativa, and 

Zea mays (representing three independent origins of monosymmetry) that have consensus TCP-

binding sites (Yang et al., 2012).  

This model relies heavily on observations from Arabidopsis flowers where the expression 

of the sole CYC2-lineage gene (AtTCP1) is transiently dorsal-specific and the flowers are non-

monosymmetric (Cubas et al., 2001). It is clear that AtTCP1 does not play a critical role in floral 

organ differentiation in Arabidopsis, given no floral-specific DTA or other means by which 

expression can persist to later stages of flower differentiation. However, the pattern in 

Arabidopsis may not be universal for non-monosymmetric flowers. Closely related 

monosymmetric and non-monosymmetric  Brassicaceae flowers do not exhibit a consistent 

pattern of early dorsal-specific expression (Busch et al., 2012).  Evidence from Brassicaceae 

suggests that Arabidopsis-like dorsal-restricted expression early in flower development is not a 

pre-requisite for the evolution of flower monosymmetry via DTA. Beyond Brassicaceae, there 
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are examples of ancestrally non-monosymmetric flowers in core-eudicots where expression of 

CYC2-lineage genes is not localized spatially and/or restricted to an early developmental stage. 

These examples include Bergia texana (Elatinaceae) (Zhang et al., 2010), Viburnum plicatum 

(Adoxaceae) (Howarth et al., 2011), and Solanum lycoperscicum (Solanaceae, ancestral state 

ambiguous) (Parapunova et al., 2014), as well as an early-diverging eudicot, Eschscholzia 

californica (Papaveraceae) (Kölsch and Gleissberg, 2006).  

Yang et al. (2012) reported a correlation between flower monosymmetry vs. non-

monosymmetry and the presence vs. absence of consensus TCP-binding sites in corresponding 

upstream non-coding sequences of CYC2-lineage genes. This contributed to the model for the 

origin of flower monosymmetry facilitated by the evolution of CYC2-lineage DTA. In our 

expanded sampling we find that consensus TCP-binding sites are present in the upstream non-

coding sequences of many CYC2-lineage genes across eudicots irrespective of flower symmetry. 

Yet, in an interesting pattern, all species with independently derived monosymmetric flowers that 

we investigated (Fabales, Lamiales, Brassicales, Asterales) have at least one CYC2-lineage 

ortholog with a consensus TCP-binding sequence in the upstream non-coding sequences 

(Supplementary Table 3 and 4). On the other hand, many species with non-monosymmetric 

flowers also have at least one CYC2-lineage ortholog with a consensus TCP-binding sequence in 

their upstream non-coding sequences (Supplementary Table 3 and 4). Notably, we find that the 

sole CYC2-lineage gene in Arabidopsis (AtTCP1), and a second CYC2-lineage gene in tomato 

that was not included in Yang et al. (2012), Solanum lycopersicum TCP26 (Solyc03g045030.1), 

have consensus TCP-binding sites in their upstream non-coding sequences (Supplementary Table 

4).  
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AtTCP1 binds to all combinations of the consensus sequence 5′-GGNCCC-3′ in vitro, and 

flanking regions have limited significance in this interaction (Gao et al., 2015). In vivo, AtTCP1 

can directly bind to the two TCP-binding sites located in the regulatory region of the a 

downstream gene DWARF4 (Gao et al., 2015). This suggests that the Arabidopsis TCP1 

transcription factor can likely bind to the predicted TCP-binding site in its own upstream non-

coding sequence, and hence possibly undergoes DTA. AtTCP1 is expressed and is functional 

across the shoot organs throughout development, from seedlings to inflorescences (Koyama et 

al., 2010). This persistent expression is consistent with it having a predicted autoregulatory site. 

Expression surveys employing in situ mRNA hybridization (Cubas et al., 2001) and AtTCP1 

promoter fused to a β-glucuronidase (GUS) construct (Koyama et al., 2010) did not detect 

AtTCP1 expression in later stages of flower development. It is interesting that the expression of a 

gene that is widely expressed in and controls development of many different organs is 

specifically downregulated in flowers. It is possible that AtTCP1 is negatively regulated during 

late stages of Arabidopsis flower development, or continues to be expressed in flowers but a 

level that can only be detected by more sensitive methods, like quantitative rt-PCR.  

Predicted CYC2-lineage autoregulatory sites are strongly associated with monosymmetry 

supporting the potential importance for DTA in establishing high and continuous asymmetric 

expression through later stages of flower organ differentiation (Figure 21). However, this pattern 

is not exclusive: CYC2-lineage orthologs from many species lacking monosymmetry also have 

predicted TCP-binding sites. This may be autoregulation for alternative developmental pathways, 

or regulation of CYC2-lineage genes by upstream TCP activators. At this point, experimental 

tests of TCP gene autoregulation are too sparse to draw solid conclusions regarding the role of 

DTA in independent origins of flower monosymmetry across core eudicots. 
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Origin and evolution of autoregulatory sites in DTA 

Any cis-regulatory site can evolve by two primary processes, de novo by mutation and/or 

recombination in ancestral non-regulatory sequences, or by duplication of existing regulatory 

sites from a different location in the genome. Both have been reported in the origin of cis-

regulatory sites involved in DTA. For example, the CArG-box sites involved in Arabidopsis AP1 

autoregulation discussed earlier evolved by substitutions in the ancestral sequence that likely had 

a weak affinity for AP1 (Ye et al., 2016). Once evolved, these sites can undergo duplications, as 

reported in the apple MYB10 gene that controls fruit flesh color (Espley et al., 2009; Nocker et 

al., 2012). 

How did the predicted autoregulatory sites in CYC2-lineage genes originate? We did not 

detect consensus TCP-binding sites with accompanying flanking sequences elsewhere in the A. 

Figure 21. A previously proposed model explaining flower symmetry in P. heterotricha and Arabidopsis.  (A) 
CYC2-lineage genes are expressed in early stage flower primordia of both Arabidopsis (dorsal part) and P. 
heterotricha (apical part). (B) Expression in P. heterotricha continues by DTA to later stages crucial for defining 
flower monosymmetry, this is not the case in Arabidopsis. (C) At anthesis, P. heterotricha is monosymmetric, 
Arabidopsis is not. 
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majus or M. lewisii genomes. This suggests that these predicted autoregulatory sites evolved in 

situ and are not a result of duplication from a different part of the genome, i.e., similar to the 

origin of the autoregulatory sites in Arabidopsis AP1 (Ye et al., 2016). However, multiple 

consensus TCP-binding sites are present within single A. majus and M. lewisii CYC2-lineage 

genes. To further test whether these multiple TCP-binding sites within a single putative 

regulatory region evolved by local, intra-genic duplication, as in the case of MYB10 promoter in 

apples (Espley et al., 2009; Nocker et al., 2012), we aligned all A. majus and M. lewisii 

consensus TCP-binding sites, along with 100 bp flanking on either side, from within single 

upstream non-coding regions. We found no evidence that any of the predicted TCP-binding sites 

are derived from tandem duplication within CYC regulatory regions, again suggesting that 

multiple binding sites evolved de novo. 

 

Chicken or egg: novel function or DTA first? 

We have discussed potential roles of DTA in development, but how does DTA itself 

evolve? Autoregulation is common among genes positioned upstream in genetic regulatory 

networks with crucial developmental functions (discussed in Crews and Pearson, 2009; Hoot et 

al., 2010; specifically tested in yeasts and hepatocytes by Odom et al., 2006; Pasqualucci et al., 

2003; Tao et al., 2012; Toth Hervay et al., 2011). This observed pattern leads to an interesting 

chicken or egg conundrum. Which evolves first in genes recruited to new developmental 

functions: the novel function, or the autoregulation? Two scenarios can explain the observed 

pattern that crucial genes are often autoregulated. 1) DTA evolves first, and such genes are 

recruited for new functions that require extended stable expression. Or, 2) New function evolves 
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first, and such genes, under selective pressure to provide extended stable expression, evolve 

DTA. 

Evidence supporting scenario 2 is found in the Arabidopsis AtAP1 example. This A-class 

floral homeotic gene in Brassicaceae underwent a duplication that generated the paralogs AP1 

and CAL gene lineages (Wang et al., 2012). AtAP1 defines sepals in Arabidopsis thaliana, but 

this function has not been reported elsewhere, and is likely an innovation in the genus 

Arabidopsis (Huijser et al., 1992; Litt, 2007; Lowman and Purugganan, 1999; Ruokolainen et al., 

2010; Shepard and Purugganan, 2002). Except for the AP1 paralog in Arabidopsis species, no 

Brassicaceae AP1/CAL gene tested to date undergoes DTA (Ye et al., 2016). And, as described 

above, DTA is an integral component of AtAP1 A-class function in flower development. Further, 

while the AP1 orthologs of two Arabidopsis species have CArG-box in their cis-regulatory 

region that allows them to undergo DTA, other Brassicaceae species have CArG-box-like 

sequences with mismatches in the homologous gene region. In one such homolog, Capsella 

rubella AP1, the binding affinity of the mismatched CArG-box-like sequence was tested and can 

only weakly bind to AP1 protein. Hence, Capsella rubella AP1 is likely not autoregulated (Ye et 

al., 2016). This suggests that the autoregulation of Arabidopsis AP1 evolved either after or 

during, but not before, its recruitment to A-class function. 

A major unanswered question that will clarify the origin of DTA in Arabidopsis AP1 is 

whether its orthologs have similar functions in other Brassicaceae species. It is challenging to 

identify the ancestral state of autoregulation for any gene primarily for two reasons: there has 

been little functional work outside the model species, and predictive surveys are limited because 

genomes sequencing has been biased towards lineages with those model species. As plant 

sciences expands away from models systems (Poaceae, Brassicaceae, and Solanaceae), a wider 
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phylogenetic sampling will facilitate reconstruction of ancestral molecular interactions.  

 

Conclusions 

The origins and evolution of autoregulation will likely remain elusive until extensive 

experimental evidence emerges from multiple plant (and animal) lineages that inform ancestral 

and derived roles for autoregulation in development. It is, however, not surprising that a large 

number of transcription factors involved in defining crucial or novel phenotypes undergo direct 

transcriptional autoregulation, as this form of regulation is expected to both enhance and stabilize 

gene expression patterns critical for developmental patterning. We find evidence for enrichment 

of self-binding sites in Lamiales CYC2-lineages genes. This enrichment may reflect evolution of 

a novel pattern of direct transcriptional autoregulation early in Lamiales diversification, 

coincident with the origin of a key morphological innovation, floral monosymmetry. It is likely 

that the putative autoregulatory binding sites associated with Lamiales CYC2-lineages genes 

evolved via de novo mutations. Whether direct transcriptional autoregulation is conserved across 

Lamiales awaits further experimental evidence, as does the hypothesis that independent origins 

of flower monosymmetry may be associated with the evolution of positive transcriptional 

autoregulation. 

 

 

 

Methods 
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Homolog predictions and phylogenetic analyses  

AmCYC, AmDICH, AmRAD, and AmDIV orthologs were identified from published 

sources and online databases by tBLASTx (Altschul et al., 1990). The gene names/identifiers 

and sources are listed in Supplementary Tables 1 and 2. Gene identifiers are also included with 

terminal genes on the phylogenies (Supplementary Figs. 1 and 2). A subset of included genes 

were available as full-length coding sequences from public databases. A subset of included genes 

were available as partial coding sequences from public databases. For partial coding sequences 

from species with available genome data, we predicted the full-length coding sequences either 

manually by aligning to previously reported homologs, or by prediction with AUGUSTUS 

((either the web portal or the option in Geneious; Kearse et al., 2012; Stanke et al., 2004). A 

subset of included genes were identified by BLAST (Altschul et al., 1990) from annotated 

genomes. We predicted the coding sequences either manually or with AUGUSTUS when our 

BLAST searches hit a region in a genome where no or partial genes were predicted. For Mimulus 

lewisii DIV and RAD homologs, we first BLAST searched the available transcriptome and 

subsequently mapped the hits to the genome. Two sets of sequences used here were not publicly 

available, the genes from Ipomoea lacunosa whose genome sequence was generously shared by 

Dr. Mark Rausher (Duke University), and Mimulus guttatus RADlike1, which was shared by Dr. 

Jinshun Zhong (University of Vermont; (the sequence has been used in the following work: 

Zhong et al., 2017).  

We translationally aligned the coding sequences (omitting the stop codon) of CYC-like 

genes using MAFFT v7.388 (Katoh et al., 2002) in Geneious 10.2.3 (Kearse et al., 2012) with 

the following parameters: algorithm–auto, scoring matrix–BLOSUM62, gap opening penalty–

1.1, offset value–0.124. The entire alignment was used for downstream phylogenetic analyses. 
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The CYC-like gene tree was estimated using a Bayesian approach (Metropolis-coupled Markov 

chain Monte Carlo) in MrBayes 3.2.6 (Ronquist et al., 2012) with uninformative priors for 10 

million generations on the online CIPRES portal at https://www.phylo.org (Miller et al., 2010). 

The core-eudicot CYC-like tree was rooted with Rananculales CYC-like genes in FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). 

DIV- and RAD-like genes were translationally aligned using an approach similar to CYC-

like genes except for the following: gap opening penalty–1.53, and offset value–0.123. We 

removed the columns with 70% or more gaps from the alignment, and from the subsequent file 

used only the conserved first MYBI domain and nucleotides immediately 3′ to this domain. DIV- 

and RAD-like gene trees were estimated using the same approach as for CYC-like genes. 

Resulting DIV- and RAD-like trees were mid-point rooted in FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). For all sequences included in our phylogenetic 

analyses, nexus format nucleotide alignment along with the Bayesian parameter block, and the 

unaligned coding sequences in fasta format available from the Dryad Digital Repository: 

https://doi.org/10.5061/dryad.tv54037.  

 

Consensus TCP and DIV-binding site predictions 

We downloaded up to 3 kb non-coding sequence upstream of the transcription start sites 

of target Lamiales CYC, RAD and DIV homologs from corresponding genomes. We downloaded 

up to 3 kb non-coding sequence upstream of the transcription start sites of representative core 

eudicot CYC homologs from corresponding genomes. All genomic sources are listed in 

Supplementary Table 1. Within these sequences, we searched for the consensus TCP-binding site 

5′-GGNCCC-3′ (Costa et al., 2005; Gao et al., 2015; Kosugi and Ohashi, 2002; Yang et al., 
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2012) on both strands using Geneious 10.2.3 (Kearse et al., 2012). In A. majus only, we searched 

for the consensus DIV-binding site, 5′-[AGC]GATA[AC][GC][GAC]-3′ (Raimundo et al., 2013) 

in 3 kb upstream non-coding sequences of the six genes known to be involved in A. majus flower 

symmetry (Figure 19) using Geneious 10.2.3 (Kearse et al., 2012). To determine whether the 

consensus TCP-binding sites found in the A. majus and M. lewisii upstream CYC homolog 

sequences were derived from other genomic locations, we used the predicted TCP-binding sites, 

plus 100 bp on either side, as BLAST queries against the available genomes in Geneious 10.2.3 

(Kearse et al., 2012).  

 

Analysis of Motif Enrichment 

We tested for consensus TCP-binding site enrichment using Analysis of Motif Enrichment 

(AME, http://meme-suite.org/tools/ame, McLeay and Bailey, 2010). AME can identify known or 

user-provided motifs that are relatively enriched in a given set of sequences compared with 

shuffled versions of those sequences or with user-provided control sequences. AME does not 

discriminate among motifs based on their locations within the sequences. The following options 

were selected: sequence scoring method—average odds score, motif enrichment test—rank sum 

test, and background model—uniform model. We defined the consensus TCP-binding site as 5′-

GGNCCC-3′ (Costa et al., 2005; Gao et al., 2015; Kosugi and Ohashi, 2002; Yang et al., 2012), 

and query sequences as 3 kb upstream of transcription start sites of focal genes, and used 

shuffled sequences as the control. The upstream non-coding sequences are available in fasta 

format from the Dryad Digital Repository: https://doi.org/10.5061/dryad.tv54037.  
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Quantitative reverse-transcriptase PCR (rt-PCR) 

Antirrhinum majus wild type (genotype JI 7) and divaricata mutants (genotype JI 13) 

were acquired from John Innes Centre, UK, under USDA permit number P37-16-01034. Five 

flower buds of the same developmental stage (stage 11, flower bud ca. 4.0 mm in length, corolla 

equal in length to calyx, petal tips white in wild type; Vincent and Coen, 2004) were sampled 

from each genotype. RNA was extracted using RNeasy plant minikit (Qiagen, Germantown, 

MD, USA), followed by DNase treatment (TURBO™ DNase, ThermoFisher Scientific, 

Waltham, MA, USA), and cDNA synthesis (iScript cDNA Synthesis Kit, Bio-Rad, Hercules, 

CA, USA). Quantitative rt-PCR was performed on a StepOnePlus™ Real-Time PCR System 

(ThermoFisher Scientific) using SYBR™ Select Master Mix (ThermoFisher Scientific). 

Quantitative rt-PCR was carried out for three technical replicates for each of five biological 

replicates per genotype. Expression was normalized against UBIQUITIN5. This gene has been 

reported to have little transcriptional variation across tissue types and developmental stages 

(Preston and Hileman, 2010). Expression was analysed by the ΔΔCt method. Significant 

differences in relative expression between genotypes were determined using two sample t-test 

assuming equal variances in Minitab. The quantitative rt-PCR primers were as follows: 

AmDRIF1_RT_F4: GCCTTGGATCAAATTTCGGC; AmDRIF1_RT_R4: 

AGGAAGAATGGAGCTGGCAA; AmDRIF2_RT_F1a: AATGGTCATGGAGAGTGGGG;  

AmDRIF2_RT_R1:TATAGCTTGCTCCTCTGGGG; AmUBQ5_qPCR_F1: 

GCGCAAGAAGAAGACCTACAC; AmUBQ5_qPCR_R1: CTTCCTGAGCCTCTGCACTT. 

Efficiency of PCR was determined using DART (Peirson et al., 2003). 
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Supplementary files 

Supplementary tables 

Supplementary Table 1. Names and sources of CYC homologs used in this study. 

Supplementary Table 2. Names and sources of DIV and RAD homologs used in this study. 

Supplementary Table 3. Predicted TCP-binding sites in the upstream non-coding sequences of 

non-Lamiales core eudicot CYC2-lineage genes.  

Supplementary Table 4. Predicted TCP-binding sites in the upstream non-coding sequences of 

Lamiales CYC2-lineage, RAD- and DIV-orthologs.  

 

Supplementary figures 

Supplementary Fig. 1. Bayesian majority-rule consensus tree of CYC-like genes in eudicots. 

Bayesian posterior probabilities at nodes. 

Supplementary Fig. 2. Bayesian majority-rule consensus tree of DIV- and RAD-like genes in 

Lamiales, Solanales, and Gentianales. Bayesian posterior probabilities at nodes. 
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