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SUMMARY

Nuclear shape and size vary between species, during
development, and in many tissue pathologies, but
the causes and effects of these differences remain
poorly understood. During fertilization, sperm nuclei
undergo a dramatic conversion from a heavily com-
pacted form into decondensed, spherical pronuclei,
accompanied by rapid nucleation of microtubules
from centrosomes. Here we report that the assembly
of the spherical nucleus depends on a critical bal-
ance of microtubule dynamics, which is regulated
by the chromatin-binding protein Developmental
pluripotency-associated 2 (Dppa2). Whereas micro-
tubules normally promote sperm pronuclear expan-
sion, in Dppa2-depleted Xenopus egg extracts
excess microtubules cause pronuclear assembly de-
fects, leading to abnormal morphology and disorga-
nized DNA replication. Dppa2 inhibits microtubule
polymerization in vitro, and Dppa2 activity is needed
at a precise time and location during nascent
pronuclear formation. This demonstrates a strict
spatiotemporal requirement for local suppression
of microtubules during nuclear formation, fulfilled
by chromatin-bound microtubule regulators.

INTRODUCTION

Eukaryotic nuclei vary widely in size and shape between species

and during development (Brandt et al., 2006; Levy and Heald,

2010; Solovei et al., 2013), facilitating specific mechanical func-

tions and gene expression programs (Solovei et al., 2009; Wang

et al., 2009). Altered nuclear shape is also linked to many tissue

dystrophies and is a chief diagnostic feature of metastatic

cancer (Zink et al., 2004; Webster et al., 2009), but the regulation

of these changes and their functional implications are poorly

understood.

The nucleus is dismantled and reassembled over the course of

open mitosis, during which chromosomes are segregated by the
Deve
microtubule spindle. Both nuclear andmicrotubule dynamics are

regulated by intrinsic, cell-cycle-dependent signals from the

chromosomes themselves. During M phase, chromatin stimu-

lates microtubule polymerization for spindle assembly (Heald

et al., 1996). This is mediated first by generation of RanGTP by

chromosome-bound RCC1, which liberates microtubule assem-

bly factors from importins around chromatin (Gruss et al., 2001;

Nachury et al., 2001; Wiese et al., 2001; Kalab et al., 2002).

Second, Aurora B, the kinase subunit of the chromosomal pas-

senger complex (CPC), is activated on chromatin and inhibits

microtubule-destabilizing factors (Sampath et al., 2004; Gadea

and Ruderman, 2006; Kelly et al., 2007; Maresca et al., 2009;

Tseng et al., 2010). In interphase, DNA templates switch to

driving nuclear envelope assembly (Forbes et al., 1983; Newport,

1987). This process also relies on RCC1 and RanGTP hydrolysis

(Zhang and Clarke, 2000; Hetzer et al., 2000;Walther et al., 2003;

Harel et al., 2003). In contrast, the CPC inhibits nuclear formation

andmust be removed from chromatin upon entry into interphase

for nuclear assembly (Ramadan et al., 2007; Kelly et al.,

2010). The switch from chromatin-driven microtubule assembly

to nuclear formation has not been extensively studied.

Imaging studies have suggested that remnants of spindle micro-

tubules may physically impede nuclear membrane closure

(Haraguchi et al., 2008; Lu et al., 2011), but the spatial and

temporal coupling of these large-scale cellular rearrangements

remains unclear.

The events of nuclear formation are dramatically illustrated by

the changes that occur during normal spermatogenesis and sub-

sequent fertilization.Mature sperm are genetically inert and high-

ly compact, with bulk histones replaced by protamines, and

adopt distinct nuclear shapes, ranging from paddle shaped in

humans to hook shaped in rodents to crescent shaped in

Xenopus (Wright, 1999). Upon exposure to egg cytoplasm, these

modifications are reversed as sperm chromatin is decompacted

and protamines are exchanged for histones (Philpott et al.,

1991). This is followed by recruitment of nuclear envelope

proteins and a dramatic shape conversion into a spherical pro-

nucleus that expands with nuclear import (Wright, 1999).

Concomitant with pronuclear formation, sperm-associated

centrosomes nucleate long astral microtubules, which capture

both sperm and egg pronuclei and transport them over milli-

meter-scale distances to meet in preparation for the first zygotic
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mitosis (Wühr et al., 2009). Pronuclear assembly, migration, and

fusion are each essential for fertility, but fewmodulators of these

processes have been described.

Here we report that a poorly described chromatin-binding pro-

tein, Developmental pluripotency-associated 2 (Dppa2), couples

microtubule disassembly to nuclear formation and is critical for

nuclear function. Dppa2 is specifically required to inhibit local

microtubule polymerization around chromatin during early

nuclear formation. In the absence of Dppa2, excess microtu-

bules lead to distorted nuclear shape and slower, disorganized

DNA replication. The activity of Dppa2 opposes the CPC, and

normal nuclear morphology is rescued by CPC depletion or

depolymerizing microtubules. However, the complete abolition

of microtubules delays nuclear expansion, indicating that micro-

tubule dynamics are carefully balanced for proper nuclear forma-

tion. At later time points, nuclear assembly is no longer sensitive

to microtubule perturbations. Our study therefore reveals a

spatially and temporally restricted regulation of microtubule

dynamics, balanced by chromatin-associated factors to ensure

proper nuclear formation and function.

RESULTS

The Xenopus Chromatin-Binding Protein Dppa2 Is
Required for Nuclear Assembly and Replication
Cell-free extracts of Xenopus laevis cytoplasm provide a

biochemically accessible system for investigating nuclear

assembly and microtubule dynamics (Newport, 1987; Philpott

et al., 1991; Murray, 1991). Like most vertebrates, Xenopus

eggs are naturally arrested atmeiotic metaphase II, and released

into interphase upon sperm entry by an intracellular calcium

wave. This is mimicked by adding demembranated sperm

together with calcium to metaphase-arrested egg extracts,

which recapitulates the dramatic conversion of crescent-shaped

sperm nuclei into spherical pronuclei and subsequent nuclear

expansion (Figure S1A available online).

We initially identified Dppa2 as a regulator of this process from

aproteomics screen for chromatin-binding proteins (Figure S1B).

Dppa2 (also known as XDppa2/4) is the Xenopus homolog of

mammalian pluripotency-associated Dppa2 and Dppa4 (also

known as ECAT15-2 and ECAT15-1), and is indispensable for

Xenopus embryogenesis (Maldonado-Saldivia et al., 2007;

Siegel et al., 2009). To investigate the molecular function of

Dppa2, we raised polyclonal antibodies against recombinant

Dppa2 protein (Figure S1C). These antibodies recognized a

single major protein in Xenopus egg extracts (Figures S1D

and S1E).

Dppa2 localized uniformly to chromatin in both interphase and

metaphase (Figure 1A). We used anti-Dppa2 antibodies to im-

munodeplete Dppa2 from Xenopus egg extracts (Figure 1B).

When sperm nuclei were added to mock-depleted control ex-

tracts and released into interphase, they assembled spherical

nuclei within 30 min and then continued to expand. In contrast,

in Dppa2-depleted extracts (DDppa2), sperm formed abnormal,

stretched structures that expanded slowly (Figure 1C). We quan-

tified these defects in nuclear size and shape as reductions in

nuclear cross-sectional area and roundness (Figure 1D; round-

ness is defined as the ratio of minor to major axes of a best-fit

ellipse). This phenotype was specific to Dppa2 depletion,
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because it was rescued by adding back recombinant Dppa2 pro-

tein to DDppa2 extracts (Figures 1C–1E).

This apparent failure of nuclear assembly was accompanied

by reduced incorporation of nuclear lamin and nuclear pore com-

plexes (Figures 2A and 2B) and slower DNA replication (Figures

2C–2E). Strikingly, we observed uneven DNA synthesis in

DDppa2 extracts, with regions of DNA failing to incorporate

nucleotides (Figure 2D) despite bulk nuclear import not being

affected (see Figure 5A). Replication origins are normally

uniformly spaced in Xenopus embryos (Blow et al., 2001), sug-

gesting that a nuclear organization defect in DDppa2 extracts

led to uneven origin firing.

These replication defects were not caused by delayed cell-

cycle exit from metaphase, because both histone H1 kinase

activity (Figure 2F) and M phase-specific phosphorylation of his-

tone H3 at threonine 3 (H3T3ph) were downregulated with

normal timing (Figure S2A). Sperm remodeling, which involves

replacement of sperm protamines with histones upon exposure

to egg cytoplasm, was not impaired, as histone H2B was loaded

equally in control and DDppa2 extracts (Figures S2B and S2C).

Similarly, chromosomal loading of RCC1 and the CPC, both reg-

ulators of nuclear formation in Xenopus egg extracts (Zhang and

Clarke, 2000; Hetzer et al., 2000; Ramadan et al., 2007), was also

not affected by Dppa2 depletion (Figure S2D). The nuclear

morphology defects observed in DDppa2 extracts were not a

consequence of impaired DNA replication, because inhibiting

replication using recombinant nondegradable geminin (McGarry

and Kirschner, 1998) or aphidicolin did not lead to comparable

nuclear defects (Figures S2E and S2F).

Dppa2 Is a Direct Inhibitor of Microtubule Assembly
During fertilization, microtubule asters are rapidly nucleated from

sperm centrosomes, which eventually capture both sperm and

egg pronuclei and transport them to the center of the egg for

zygotic fusion (Wühr et al., 2009). However, as the egg is simulta-

neously released frommeioticmetaphase into interphase, micro-

tubules become less dynamic due to decreased Cdk1 activity

(Verde et al., 1990, 1992; Belmont et al., 1990; Niethammer

et al., 2007). We observed this transition in microtubule behavior

after adding sperm to egg extracts together with calcium. Micro-

tubuleswere rapidlynucleated fromspermcentrosomes,peaking

within 15 min but then diminishing by 20 min (Figure 3A, top). At

later time points, interphase microtubules were longer but less

dense, to the extent that they were not visible under our usual

fixation conditions (compare Figure 3A with Figure S3A).

During this time, Dppa2 was localized exclusively to chromatin

(Figures S3B and S3C) just as in metaphase (Figure 1A). How-

ever, in DDppa2 extracts, we observed greater microtubule

growth during the initial nucleation phase (Figures 3A and 3B),

suggesting that Dppa2 inhibits microtubule assembly. In support

of this idea, addition of recombinant Dppa2 fused to maltose-

binding protein (MBP-Dppa2; Figure S3D) to metaphase

extracts inhibited spindle assembly in a dose-dependent

manner (Figure 3C). We estimated the concentration of endoge-

nous Dppa2 to be around 400 nM, and addition of 4 mM MBP-

Dppa2 or more essentially abolished spindle assembly (Figures

3C and 3D). This activity was more potent than that of Op18/

stathmin, an established inhibitor of microtubule assembly,

which requires greater than 15 mM for comparable inhibition of
nc.



Figure 1. The Chromosome-Binding Protein Dppa2 Is Essential for Sperm Pronuclear Assembly in Xenopus Egg Extracts

(A) Chromosomal localization of Dppa2 protein in interphase and metaphase visualized by immunofluorescence. Right: linescan of fluorescence intensity across

the metaphase spindle axis.

(B) Dppa2 protein levels in mock-depleted (control), Dppa2-depleted (DDppa2), and Dppa2-depleted extracts reconstituted with recombinant Dppa2 protein

(DDppa2 + Dppa2) were analyzed by western blotting.

(C) Demembranated sperm nuclei were added to metaphase extracts together with calcium to release into interphase and initiate pronuclear assembly. Samples

were fixed and stained with Hoechst 33342.

(D) Quantification of nuclear cross-sectional area and roundness from (C). Roundness is defined as the ratio ofminor tomajor axes of a best-fit ellipse. Data shown

are mean and standard error from >30 nuclei per sample in a single representative experiment.

(E) Scoring of abnormal nuclear morphology from three independent experiments as performed in (C). Nuclei were fixed at 60 min after calcium addition. Bars

indicate mean and standard error from 200 nuclei scored per sample per experiment.

Scale bars represent 10 mm. See also Figure S1.
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spindle formation (Houghtaling et al., 2009). Both untagged re-

combinant Dppa2 andGST-tagged Dppa2 proteins also showed

the same inhibition of spindle assembly as MBP-Dppa2 (Figures

S3E and S3F; data not shown).

The RanGTP and CPC microtubule assembly pathways are

restricted to chromatin in order to prevent ectopic spindle forma-

tion in the absence of chromosomes (Kalab et al., 2002; Caudron

et al., 2005; Athale et al., 2008; Kelly et al., 2007; Tseng et al.,

2010). We asked therefore whether the activity of Dppa2 is simi-

larly limited to chromatin-dependent microtubule assembly.

Microtubule polymerization can be stimulated without chromatin

by adding dimethyl sulfoxide (DMSO) to Xenopus egg extracts or

purified tubulin (Budde et al., 2006). We found that recombinant

Dppa2 inhibited DMSO-induced microtubule polymerization

both in egg extracts (Figure 3E; see also Figure 6D) and from

purified bovine tubulin in vitro (Figure 3F) in a dose-dependent
Deve
manner. Higher concentrations of recombinant Dppa2 were

required to suppress polymerization of purified tubulin

compared to tubulin in Xenopus egg extracts (Figures 3C–3E),

which may reflect the more dynamic behavior of microtubules

in extracts compared to purified systems (Kinoshita et al.,

2001), and/or the contribution of additional cofactors or modifi-

cations to Dppa2 in egg extracts.

Dppa2 Functionally Opposes the CPC
Our data indicated that Dppa2 promotes pronuclear formation

whereas it inhibits microtubule assembly. These activities

contrast with the known functions of the CPC, which promotes

spindle assembly but inhibits nuclear formation in Xenopus egg

extracts (Sampath et al., 2004; Ramadan et al., 2007). We

discovered that the CPC functionally opposes Dppa2, because

the increase in microtubule assembly observed in DDppa2
lopmental Cell 27, 47–59, October 14, 2013 ª2013 Elsevier Inc. 49



Figure 2. Dppa2 Depletion Compromises Nuclear Envelope Integrity and Leads to Disorganized DNA Replication
(A) Visualization of lamin B3 and nuclear pore complexes (mAb414) by immunofluorescence.

(B) Quantification of integrated fluorescence intensity from (A). Bars representmean and standard error from>30 nuclei per sample and are representative of three

independent experiments.

(C) DNA replication assayed by total incorporation of [a-33P]dCTP at the indicated time points. Data shown are mean and standard error from three independent

experiments.

(D) DNA replication visualized by incorporation of Cy3-dUTP.

(E) Quantification of integrated fluorescence intensity from (D). Bars represent mean and standard error from>30 nuclei per sample and are representative of three

independent experiments.

(F) Histone H1 kinase assay was performed at 0 and 20 min after calcium addition.

Scale bars represent 10 mm. See also Figure S2.
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extracts was reduced to control levels following codepletion of

the CPC (Figures 4A–4C). Depletion of the CPC also rescued

the nuclear roundness defect of Dppa2 depletion, although it

did not restore nuclear size (Figures 4D and 4E). However,

Dppa2 is not simply an upstream repressor of the CPC, because

excess Dppa2 did not affect CPC localization or Aurora B sub-

strate phosphorylation (Figures S4A and S4B), nor centromeric

localization of MCAK (Figure S4C), which is CPC dependent

(Lan et al., 2004). Furthermore, Dppa2 was still able to inhibit

microtubule assembly in the absence of the CPC (Figure S4D).

Thus, Dppa2 suppresses microtubules independently of the

CPC, but does so to an equal and opposite extent as CPC-

induced microtubule assembly.

Nuclear Formation Requires Timely Microtubule
Disassembly by Dppa2
Because CPC depletion rescued both the presence of additional

microtubules and abnormal nuclear morphology in DDppa2 ex-
50 Developmental Cell 27, 47–59, October 14, 2013 ª2013 Elsevier I
tracts (Figure 4), we reasoned that excess microtubules in

DDppa2 extracts might have perturbed concomitant nuclear

formation. We therefore asked whether this nuclear morphology

defect could be reversed by ectopically depolymerizing microtu-

bules. Indeed, in the presence of 16 mM nocodazole, sperm

assembled into spherical nuclei in DDppa2 extracts with no

measurable shape defect, demonstrating that nuclear distortion

in the absence of Dppa2 depends on microtubules (Figures 5A

and 5B). Conversely, stabilizing excess microtubules by treat-

ment with 10 mM taxol mimicked the effect of Dppa2 depletion,

leading to nuclear size and shape defects in control extracts

that were comparable to DDppa2 extracts (Figures 5A and 5B).

However, we noted that treatment with 16 mM nocodazole

resulted in decreased nuclear size in control extracts (Figures

5A and 5B). Abolishing microtubules using colcemid or with a

triple-alanine mutant and active form of Op18 (Op18AAA; Budde

et al., 2001) had the same effect (Figure S5A). This delay in

nuclear expansion following microtubule depolymerization was
nc.



Figure 3. Dppa2 Inhibits Microtubule Assembly around Chromatin and In Vitro

(A) Dppa2 inhibits sperm aster microtubule assembly. Demembranated sperm nuclei were added together with calcium to metaphase extracts supplemented

with rhodamine-labeled tubulin (red). Samples were fixed and stained with Hoechst 33342 (blue).

(B) Quantification of tubulin fluorescence intensity from (A). Data shown indicate mean and standard error from >30 asters per sample and are representative of

three independent experiments.

(C) Dppa2 inhibits spindle assembly in a dose-dependent manner. Metaphase spindles were assembled in extracts supplemented with MBP-Dppa2 fusion

proteins and rhodamine-labeled tubulin.

(D) Quantification of spindle length from (C). Data shown are mean and standard deviation from 30 spindles per sample.

(E) Chromatin-independent microtubule assembly in Xenopus egg extracts. Recombinant GST-Dppa2 protein was added to metaphase extracts together with

0.5% DMSO. Polymerized microtubules were recovered by pelleting and analyzed by Coomassie staining.

(F) Dppa2 inhibits microtubule polymerization in vitro. MBP-Dppa2 was added to purified bovine tubulin together with 0.5% DMSO. Polymerized microtubules

were recovered by pelleting and analyzed by Coomassie staining.

Scale bars represent 10 mm. See also Figure S3.
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not due to activation of the spindle assembly checkpoint (SAC),

because much higher concentrations of sperm are typically

required to activate the SAC (Minshull et al., 1994), and we

confirmed that microtubule depolymerization did not delay

dephosphorylation of M phase-specific H3T3ph in our assays

(Figure S5B). Similarly, both nocodazole and taxol treatment

led to decreased nuclear size even in DCPC extracts (Fig-

ure S5C), where the SAC is inactivated (Vigneron et al., 2004).
Deve
We titrated down the dosage of nocodazole and found similar

effects until we reached 0.4 mM, which no longer fully eliminated

microtubules but largely did not affect nuclear expansion (Fig-

ure 5C). Unlike higher doses, this low concentration was able

to rescue both nuclear expansion and roundness in DDppa2

extracts (Figures 5C and 5D). The same concentration also

restored normal DNA replication in DDppa2 extracts (Figure 5E).

Thus, we conclude that the precise balance of microtubule
lopmental Cell 27, 47–59, October 14, 2013 ª2013 Elsevier Inc. 51



Figure 4. CPC Depletion Rescues DDppa2 Phenotypes

(A) CPCwas depleted from extracts using anti-INCENP antibodies (Sampath et al., 2004) and depletion efficiency was assessed by western blotting. The asterisk

indicates nonspecific reactivity.

(B) Sperm nuclei were added together with calcium to metaphase extracts containing rhodamine-labeled tubulin (red). Sperm-associated asters were fixed after

15 min and stained with Hoechst 33342 (blue).

(legend continued on next page)
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dynamics is critical to nuclear assembly, and even slight

deviations toward excessive or insufficient microtubule polymer-

ization can prevent formation of normal, spherical nuclei.

We reasoned that suppression of microtubule assembly by

Dppa2 might be particularly important for maintaining this

balance during the early, rapid, and highly dynamic phase of

aster growth that we observed at the metaphase-interphase

transition (Figure 3A). Indeed, we found that nocodazole could

no longer bypass the requirement for Dppa2 in maintaining

nuclear shape if treatment was delayed until 30 min (Figure 5F).

Similarly, inducing ectopic microtubules with taxol at 30 min did

not significantly perturb subsequent pronuclear assembly (Fig-

ure S5D). Taken together, these data suggest that Dppa2 activity

is required during an early time window when microtubule

structures undergo dynamic rearrangements and impinge on

nuclear assembly, after which nuclei are committed to normal

or abnormal expansion and morphology irrespective of microtu-

bule status.

Nuclear Assembly Requires Local Inhibition of
Microtubules by Chromatin-Bound Dppa2
The exclusive localization of Dppa2 on chromatin rather than

microtubules (Figures 1A and S3B) suggested that the spatial

distribution of Dppa2 activity might be important for its function.

To test this hypothesis, we carried out domain deletionmutagen-

esis on Dppa2. Dppa2 contains a conserved SAF-A/B, Acinus,

and PIAS (SAP) DNA-binding domain (Figure 6A; Siegel et al.,

2009). Deletion of the SAP domain (MBP-Dppa2DSAP) abrogated

binding to chromatin, but this mutant inhibited spindle assembly

equally effectively as full-length Dppa2 (MBP-Dppa2FL). In

contrast, deletion of the C-terminal 86 amino acids (MBP-

Dppa2DC) retained chromatin binding but no longer inhibited

spindle assembly (Figures 6B and 6C).

We observed the same dependencies in the absence of

chromatin both in egg extracts and in vitro. When microtubule

assembly was stimulated in egg extracts without chromatin by

adding DMSO, MBP-Dppa2FL and MBP-Dppa2DSAP, but not

MBP-Dppa2DC, inhibited this assembly in a dose-dependent

manner (Figure 6D). Similarly, MBP-Dppa2 also inhibited poly-

merization of purified bovine tubulin in a manner dependent on

its C terminus (Figure 6E).

Although DNA binding was dispensable for inhibition of micro-

tubule assembly by Dppa2 (Figure 6), we determined that it was

critical for nuclear formation. Adding back endogenous levels of

MBP-Dppa2DSAP, which inhibited microtubule polymerization

but did not localize to chromosomes, could not recover the

nuclear assembly defects of Dppa2 depletion, nor could MBP-

Dppa2DC, which bound chromosomes but did not inhibit

microtubule polymerization (Figures 7A and 7B). This observa-

tion is consistent with the hypothesis that both chromatin binding

and inhibition of microtubule assembly must be coupled to
(C) Quantification of tubulin intensity from (B). Bars indicate mean and standard er

experiments.

(D) Sperm nuclei were added together with calcium to metaphase extracts supp

33342.

(E) Quantification of nuclear area and roundness from (D). Bars indicate mean and

independent experiments.

Scale bars represent 10 mm. See also Figure S4.
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support nuclear formation. Taken together, we conclude that

normal nuclear assembly requires temporally and spatially

restricted microtubule assembly, mediated by Dppa2 localized

on chromatin (Figure 7C).

DISCUSSION

In this study, we identified Dppa2 as a regulator of microtubule

dynamics that inhibited microtubule polymerization in vitro,

whose activity was required for nuclear assembly and organized

DNA replication. Dppa2 regulated microtubules during an early

time window, when we found nuclear formation to be uniquely

sensitive to alteredmicrotubule dynamics. Stabilization ofmicro-

tubules by Dppa2 depletion or taxol treatment during this

window may cause defects by physically obstructing nuclear

envelope closure (Haraguchi et al., 2008; Lu et al., 2011). How-

ever, this cannot fully explain the nuclear morphology defect

that we observed, because abolishing microtubules at a later

time point, thereby removing such obstacles, was insufficient

to restore normal nuclear shape (Figure 5C). It is possible that,

instead, these nuclei were irreversibly damaged by microtu-

bule-dependent shear stress, given the reduced lamin assembly

and weakening of the nuclear envelope in DDppa2 extracts (Fig-

ure 2A). During entry into mitosis, microtubules and cytoplasmic

dynein bind and tear the nuclear envelope to facilitate nuclear

envelope breakdown (Beaudouin et al., 2002; Salina et al.,

2002), and excess microtubules at mitotic exit may allow similar

forces to disrupt the partially assembled nuclear envelope. Once

nuclear envelope assembly is complete, the nuclear lamina

structure may acquire enough strength to resist microtubule-

dependent forces.

Meanwhile, although completely abolishing microtubules with

nocodazole did not interfere with the shape conversion of sperm

into spherical nuclei, nuclear expansion was delayed (Figures 5A

and 5B). This may be explained by microtubules helping to

deliver membrane vesicles and nuclear pore complexes to the

nascent nucleus (Waterman-Storer et al., 1995; Ewald et al.,

2001), underscoring both positive and negative roles of microtu-

bules and hence a need for tight regulation of microtubule

dynamics during nuclear assembly.

Dppa2DSAP, which maintained the capacity to inhibit microtu-

bule assembly but did not localize to chromatin, failed to support

proper pronuclear assembly (Figure 7), suggesting that Dppa2 is

needed to suppress microtubules in the immediate vicinity of

nascent nuclei. The spatial restriction of Dppa2 activity to chro-

mosomes may prevent perturbation of global microtubule

dynamics, which could otherwise compromise nuclear expan-

sion and nuclear positioning. This suppression of microtubules

by a chromosomal factor contrasts with the known regulators

of the RanGTP and CPC pathways, which stabilize microtubules

around chromatin (Gruss et al., 2001; Nachury et al., 2001;Wiese
ror of >30 asters from each sample and are representative of three independent

lemented with GST-GFP-NLS. Nuclei were fixed and visualized with Hoechst

standard error of >30 nuclei from each sample and are representative of three
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Figure 5. Pronuclear Formation Requires Timely Microtubule Disassembly and Is Compromised by Persistent Microtubules

(A) The nuclear shape defect in DDppa2 extracts is reversed by nocodazole treatment and mimicked by taxol treatment. Demembranated sperm nuclei were

added to metaphase extracts together with calcium and 16 mM nocodazole or 10 mM taxol, as well as rhodamine-labeled tubulin (red) and GST-GFP-NLS to

monitor nuclear import. Samples were fixed and stained with Hoechst 33342 (blue).

(legend continued on next page)
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Figure 6. Dppa2 Requires Its C Terminus

but Not DNA Binding to Inhibit Microtubule

Assembly

(A) Schematic of Dppa2 deletion constructs used.

(B) Inhibition of spindle assembly requires the

Dppa2 C terminus but not DNA binding. Meta-

phase spindles were assembled in extracts

supplemented with 2 mM MBP-Dppa2 fusion

proteins. MBP-Dppa2 localization was visualized

by immunofluorescence using an anti-MBP

antibody. The scale bar represents 10 mm.

(C) Quantification of the spindle length in (B). Bars

represent mean and standard error from 30

spindles and are representative of three indepen-

dent experiments.

(D) Chromatin-independent microtubule assembly

in Xenopus egg extracts. MBP-Dppa2 proteins

were added to metaphase extracts together

with 0.5% DMSO. Polymerized microtubules

were recovered by pelleting and analyzed by

Coomassie staining.

(E) Polymerization of purified tubulin in vitro. Puri-

fied bovine tubulin was treated with MBP-Dppa2

proteins and 0.5% DMSO, and polymerized mi-

crotubules were analyzed by Coomassie staining.
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et al., 2001; Sampath et al., 2004; Gadea and Ruderman, 2006;

Maresca et al., 2009). At the exit from M phase, the CPC is inac-

tivated by two mechanisms. First, the CPC is recruited to mitotic

chromatin by H3T3ph, and thismark is rapidly dephosphorylated

upon entering interphase (Wang et al., 2010; Kelly et al., 2010;

Yamagishi et al., 2010). Second, CPC subunits are ubiquitylated

and removed from chromatin by the Cdc48/p97 ATPase

(Ramadan et al., 2007; Dobrynin et al., 2011). We demonstrate

that these inactivation mechanisms alone are not sufficient to

support nuclear formation; Dppa2 is required for additional sup-

pression of microtubules, because Dppa2 depletion caused

excess microtubules in a CPC-dependent manner (Figure 4A).

Conversely, CPC depletion rescued nuclear morphology but

not the nuclear size defect observed in DDppa2 extracts,

indicating that Dppa2 must play additional roles in nuclear

formation beyond simply opposing the CPC.

Dppa2 is highly expressed in Xenopus eggs and the early em-

bryo until the midblastula transition, and antisense morpholino-

mediated knockdown of Dppa2 leads to defective gastrulation
(B) Quantification of nuclear size and shape from (A). Data from nocodazole- and taxol-treated samples are

samples. Each point represents mean and standard error from >30 nuclei and is representative of three ind

(C) Low-dose nocodazole does not eliminate microtubules and rescues both nuclear expansion and morpho

extracts treated with the indicated doses of nocodazole. Asters were visualized at 12 min after calcium a

Hoechst 33342 (blue). Nuclei were visualized at 60 min after calcium addition using Hoechst 33342.

(D) Quantification of nuclear size and shape at 60 min from (C). Each bar represents mean and standard err

(E) Low-dose nocodazole rescues DNA replication in DDppa2 extracts. DNA replication was visualized usin

fluorescence intensity. Each bar represents mean and standard error from >30 nuclei.

(F) Delayed nocodazole treatment no longer bypasses the requirement for Dppa2. Nuclear assembly w

nocodazole was added at the indicated time points. Nuclei were fixed and stained at 60 min after calcium ad

>30 nuclei per sample.

Scale bars represent 10 mm. See also Figure S5.
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(Siegel et al., 2009). This suggests that

Dppa2 may be specifically required for

early embryonic events, including fertil-
ization and the embryo’s first mitotic divisions. Our experiments

recapitulate the events of fertilization, when sperm chromatin is

decompacted and assembled into a spherical pronucleus. In

the absence of Dppa2, we observed nuclearmorphology defects

and disorganized replication, and decreased pronuclear size is

known to result in fertilization failure (Meyerzon et al., 2009).

This underscores the importance of nuclear formation

processes, especially because infertility remains a poorly under-

stood phenomenon. Dppa2 may also assist in accelerating

nuclear formation during the rapid, 30 min cell-division cycles

of early cleavage-stage embryos. In particular, early embryos

of Xenopus and zebrafish assemble nuclear envelopes around

individual anaphase chromosomes, forming micronuclei known

as karyomeres, in order to initiate DNA synthesis prior to com-

pletion of mitosis (Lemaitre et al., 1998; Schoft et al., 2003).

This may place additional demands on the nuclear assembly

machinery, necessitating specialized mitotic mechanisms.

Our study unveils a specific window of time during the forma-

tion of nascent nuclei when dynamic microtubules can leave
shown on separate axes together with untreated

ependent experiments.

logy in DDppa2 extracts. Nuclei were assembled in

ddition using rhodamine-labeled tubulin (red) and

or from >30 nuclei.

g Cy3-dUTP and quantified as integrated nuclear

as initiated in control and DDppa2 extracts, and

dition. Bars indicate mean and standard error from

, October 14, 2013 ª2013 Elsevier Inc. 55



Figure 7. Pronuclear Assembly Requires Localized Microtubule

Disassembly by Chromatin-Bound Dppa2
(A) Both DNA-binding and microtubule-inhibitory domains of Dppa2 are

indispensable for pronuclear formation. Nuclear assembly was initiated in

control andDDppa2 extracts reconstitutedwithMBP-Dppa2 fusion proteins to

endogenous levels (400 nM). Nuclei were fixed at 60 min after release into

interphase and stained with Hoechst 33342. The scale bar represents 10 mm.

(B) Quantification of nuclei from (A). Bars indicate mean and standard error

from >30 nuclei per sample and are representative of three independent

experiments.

(C) Dppa2 is required during nascent pronuclear formation to inhibit local

microtubule assembly on chromosomes. Excess microtubules compromise

nuclear shape, whereas completely abolishing microtubules impairs nuclear

expansion.
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critical impacts on the size and shape of the nucleus. Organized

DNA replication depends on proper regulation of these

processes. To this end, chromatin-bound Dppa2 mediates local

microtubule disassembly in a temporally restricted manner.
56 Developmental Cell 27, 47–59, October 14, 2013 ª2013 Elsevier I
Further studies should examine nuclear formation and address

howmicrotubule and nuclear dynamics are spatially and tempo-

rally coupled in other systems, because altered nuclear structure

is linked to many diseases (Webster et al., 2009; Zink et al.,

2004), and accumulated defects in nuclear reassembly may

contribute to age-related loss of nuclear integrity (Haithcock

et al., 2005).
EXPERIMENTAL PROCEDURES

Xenopus Egg Extracts and Identification of Dppa2

Cytostatic factor (CSF)-arrested X. laevis egg extracts were prepared

as previously described (Murray, 1991). DNA beads without DNA ends

were prepared as previously described (Heald et al., 1996; Postow

et al., 2008). Chromatin was assembled on DNA beads in metaphase

and interphase egg extracts, and chromatin-bound proteins were

analyzed by mass spectrometry. The protocol for work with X. laevis was

approved by The Rockefeller University Institutional Animal Care and

Use Committee. See the Supplemental Experimental Procedures for further

details.

Recombinant Proteins and Anti-Dppa2 Antibodies

GST-tagged Dppa2 was expressed in Escherichia coli from pGEX-6p-1 and

purified using glutathione sepharose 4b resin (GE Healthcare). The GST tag

was removed using Prescission protease (GE Healthcare). Untagged protein

was used to immunize rabbits for polyclonal antibody production (Covance).

MBP-tagged Dppa2 was expressed in E. coli and purified using amylose resin

(New England BioLabs). See the Supplemental Experimental Procedures for

further details.

Immunodepletion

Egg extracts containing 100 mg/ml cycloheximide were immunodepleted by

incubation at 4�C with antibodies prebound to magnetic protein A beads

(Invitrogen; see Supplemental Experimental Procedures). To deplete 100 ml

extract, 100 ml beads were coupled to 10 mg rabbit IgG or polyclonal

anti-Dppa2 antibodies, and two rounds of depletion were performed using

50 ml beads and 1 hr incubation per round. To deplete the CPC from 100 ml

extract, two rounds of 100 ml beads per round were used.

Western Blots

Immunoblots were blocked with 4% nonfat dry milk in PBS for 1 hr at room

temperature. Primary antibodies were diluted in Odyssey Blocking Buffer

(LI-COR) as follows: 5 mg/ml anti-Dppa2; 1:1,000 anti-H3 (Abcam; ab1791);

5 mg/ml anti-INCENP (Sampath et al., 2004); 1 mg/ml anti-RCC1 (gift of

Rebecca Heald); and 3 mg/ml anti-Xkid (Funabiki and Murray, 2000). IRDye

800CW and 680LT secondary antibodies were used at 50 ng/ml and detected

on an Odyssey infrared imaging system (LI-COR).

Nuclear and Spindle Assembly

Demembranated sperm were added to metaphase extracts at 500/ml together

with 0.3mMCaCl2 to induce release into interphase and nuclear assembly. For

subsequent spindle assembly, three volumes of additional metaphase

extracts were added after 1 hr 30 min and incubated at 20�C for 1 hr to cycle

back intometaphase. Chromosomes were visualized by squashing 1 ml extract

with 3 ml fixative (5 mM HEPES, 100 mM NaCl, 50% glycerol, 10% formalde-

hyde, 1 mg/ml Hoechst 33342 [pH 7.7]) under an 183 18 mm square coverslip.

Nuclear import was visualized by supplementing extracts with 1 mM GST-

tagged GFP fused to a nuclear localization sequence (GST-GFP-NLS; gift of

Cristina Ghenoiu) and expressed and purified from E. coli using pMD49 (gift

of Satoru Mochida andMary Dasso). Spindles were visualized by supplement-

ing extracts with 0.2 mM bovine tubulin labeled with rhodamine succinimidyl

ester (Invitrogen; C-1309). Nocodazole (Sigma; M1404) was used at

0.4–16 mM, taxol (Sigma; T7402) at 10 mM, and colcemid (Fisher;

A430033M001) at 13 mM. GST-Op18AAA (gift of Jessica Rosenberg; Budde

et al., 2001) was used at 4 mM.
nc.
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Sperm Centrosome Aster Assembly

Sperm were added together with calcium to metaphase extracts containing

0.2 mM rhodamine-labeled tubulin and incubated at 20�C. Samples were with-

drawn and fixed at regular time points.

Immunofluorescence Microscopy

Nuclei and spindles were processed for immunofluorescence as described

(Funabiki and Murray, 2000). Briefly, 10 ml extract samples were fixed in 2%

formaldehyde and spun down onto glass coverslips. Primary antibodies

were diluted in AbDil (10 mM Tris, 150 mM NaCl, 2% BSA, 0.1% Triton

X-100 [pH 7.4]) as follows: 6 mg/ml anti-Dasra A (Sampath et al., 2004);

0.2 mg/ml anti-Dppa2; 2 mg/ml anti-GFP (Roche; 11814460001); 1 mg/ml

anti-H3S10ph (mAb 7G1G7; gift of Hiroshi Kimura); 1:200 anti-lamin B3

(gift of Dale K. Shumaker); 0.2 mg/ml mAb414 (Covance; MMS-120P);

0.2 mg/ml anti-MCAK (gift of Ryoma Ohi); 1 mg/ml anti-MBP (New England

BioLabs; E8032); and 1:1,000 anti-a-tubulin (Sigma; T9026). Alexa Fluor

488- and Cy3-conjugated secondary antibodies (Jackson ImmunoResearch)

were used at 1.5 mg/ml; DNA was stained with 1 mg/ml Hoechst 33342 (Sigma;

B2261).

Quantification of Microscope Images

Nuclei and spindles were identified from images by global thresholding in the

DNA or tubulin channels, respectively. Nuclear cross-sectional area and

roundness were measured using ImageJ (NIH). Spindle length was defined

as the Feret diameter (the longest distance between two points on the perim-

eter) of thresholded spindles.

Sperm Replication

Nuclei were assembled in extracts supplemented with 1 kBq/ml [a-33P]dCTP

(PerkinElmer) or 10 mM Cy3-dUTP (GE Healthcare). To quantify incorporation

of radiolabeled nucleotides, 15 ml extract samples were taken at various

time points and added to 200 ml stop buffer (20 mM Tris, 20 mM EDTA,

0.5% SDS [pH 8]) containing 50 mg/ml RNase A and incubated at 37�C for

15 min. A further 200 ml stop buffer containing 1 mg/ml proteinase K was

then added, and the reaction was incubated at 37�C for 1 hr. Samples were

then extracted twice with 400 ml phenol-chloroform and once with 400 ml chlo-

roform. DNAwas precipitated by addition of 40 ml 3 M sodium acetate and 1ml

ethanol and incubation at 4�C for 15 min, and pelleted by centrifugation at

16,000 3 g for 30 min at 4�C. DNA was then resuspended in 15 ml TE buffer

(10 mM Tris, 1 mM EDTA [pH 8]) containing 50 mg/ml RNase A. Ten microliters

of each sample was loaded on an agarose gel, which was dried and exposed

to a PhosphorImager screen (Fujifilm). To quantify incorporation of Cy3-dUTP,

nuclei were spun down for immunofluorescence as described above. Replica-

tion was inhibited by addition of 8 mM recombinant nondegradable geminin

(gift of Christian Zierhut; McGarry and Kirschner, 1998) or 40 mM aphidicolin

(Fisher; BP615).

Histone H1 Kinase Assay

One-microliter samples of metaphase and interphase Xenopus egg extracts

were snap-frozen in liquid nitrogen and stored at �80�C. Samples were then

thawed by being brought up to 10 ml in kinase buffer (15 mM MgCl2, 20 mM

EGTA, 80 mM b-glycerophosphate, 0.1% Igepal CA-630, 1 mM DTT, 50 mM

ATP, 10 mg/ml leupeptin, 10 mg/ml pepstatin, 10 mg/ml chymostatin,

125 mg/ml histone H1, 60 mCi/ml [g-32P]ATP). The reaction mixture was

incubated at 30�C for 10 min and stopped by addition of 30 ml SDS sample

buffer. We analyzed 10 ml on a 15% polyacrylamide gel, dried and exposed

to a PhosphorImager screen.

DMSO-Induced Microtubule Assembly in Egg Extracts

DMSO-induced microtubule assembly in CSF extracts was performed as

described (Budde et al., 2006). Briefly, 5% DMSO was added to 20 ml meta-

phase egg extracts and incubated at 20�C for 30 min. The extract was diluted

in 0.4 ml BRB80 (80 mM PIPES, 1 mMMgCl2, 1 mMEGTA [pH 6.9]), 30% glyc-

erol, 1% Triton X-100, and layered over 0.8 ml BRB80, 40% glycerol in micro-

centrifuge tubes. Microtubules were pelleted by centrifugation at 16,000 3 g

for 15 min at room temperature. The supernatant was removed and the

cushion interface was washed with 2 3 0.4 ml ddH2O. The cushion was

then removed and the pellet was resuspended in 40 ml SDS sample buffer.
Deve
DMSO-Induced Assembly of Purified Tubulin

For in vitro microtubule assembly, MBP or MBP-Dppa2 proteins were added

to 20 mM bovine tubulin in a 10 ml volume of BRB80, 1 mM DTT, 1 mM GTP

on ice. Five percent DMSO was then added and the mixture was warmed to

37�C for 30 min. The mixture was layered over 0.5 ml warm BRB80, 40% glyc-

erol and pelleted at 90,000 rpm (14.5 k factor) in a TLA120.1 rotor (Beckman)

for 5min at 37�C. The supernatant was removed and the cushion interface was

washed with 2 3 0.2 ml ddH2O. The cushion was removed and the pellet was

resuspended in 30 ml SDS sample buffer.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at http://dx.doi.org/
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J., and Joffe, B. (2009). Nuclear architecture of rod photoreceptor cells adapts

to vision in mammalian evolution. Cell 137, 356–368.

Solovei, I., Wang, A.S., Thanisch, K., Schmidt, C.S., Krebs, S., Zwerger, M.,

Cohen, T.V., Devys, D., Foisner, R., Peichl, L., et al. (2013). LBR and lamin

A/C sequentially tether peripheral heterochromatin and inversely regulate

differentiation. Cell 152, 584–598.

Tseng, B.S., Tan, L., Kapoor, T.M., and Funabiki, H. (2010). Dual detection of

chromosomes and microtubules by the chromosomal passenger complex

drives spindle assembly. Dev. Cell 18, 903–912.
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