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ABSTRACT

The Australian perennial wheat team has collected and assessed a wide range of global germplasm 

derived from wheat x perennial-relative crosses (Hayes et al. 2012 and unpublished). Some lines 

were able to perenniate in one or both field environments where they were grown and a few 
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were able to regrow through four seasons. Without exception the only wheat-derived lines that 

could perenniate contained seven or more pairs of chromosomes from the perennial parent. The 

donor perennial parents included Thinopyrum ponticum (2n = 70, decaploid), Th. intermedium 

(2n = 42, hexaploid) and Th. elongatum (2n = 14, diploid). This has led us to conclude that 

the best near-term prospect for a perennial wheat-like grain crop is a full or partial amphiploid, 

containing the full set of tetraploid (AABB) or hexaploid (AABBDD) wheat chromosomes plus 

one genome (XX) from the donor. When the perennial donor is a polyploidy, the extra genome is 

usually a synthetic genome, consisting of a mixture of chromosomes from the polyploid parental 

genomes. This creates a significant difficulty in that each time a primary partial amphiploid 

is produced, the synthetic genome may consist of a different mix of donor chromosomes, and 

therefore interbreeding of these primary partial amphiploids may result in poor fertility and 

loss of the perennial donor chromosomes. That, in turn, would be problematic in trying to 

establish a breeding program. Consequently we would advocate a breeding program based on a 

diploid perennial donor, such as Th. elongatum (EE). This is analogous to triticale breeding. The 

amphiploids produced could be AABBEE (analogous to hexaploid triticale, AABBRR) or AABBDDEE 

(analogous to octoploid triticale, AABBDDRR). We would further advocate a multinational effort 

to produce many primary amphiploids using locally adapted wheat parents and diverse accessions 

of Th. elongatum; the primary amphiploids would be shared among participating groups, and 

intercrossed to permit subsequent selection of robust, productive, locally adapted perennials. 

The analogy with triticale is instructive also in suggesting that many generations of selection 

may be required before full fertility, high yielding types can be recovered.

Keywords: amphiploidy, genomic changes, perennial wheat, rye, Thinopyrum, 

triticale

INTRODUCTION

This paper explores the question of the preferred breeding route to a successful wheat-like and 

wheat-derived perennial cereal. Other papers in the Workshop will explore related aspects such as 

the physiology and field performance of available perennial wheat germplasm and how perennial 

wheat might usefully fit into a mixed farming situation. Some of that information is assumed as 

a starting point for this consideration of the best genetic configuration for a perennial wheat 

and how to instigate a breeding program to move us from basic proof of principle to genotypes 

that can be successfully and usefully deployed into real farming systems. 
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LIKELIHOOD OF A PERENNIAL TRUE WHEAT

Our studies of the available germplasm have established the essential feasibility of the 

concept of a perennial wheat (Hayes et al. 2012 and unpublished). Lines were found that could 

regrow after grain harvest for up to four seasons; simulated grazing of several lines showed 

an ability to produce both valuable forage and grain; and in addition we could demonstrate 

their ability to accumulate much greater root biomass after the first season as an indicator of 

the environmental benefit that could accrue (Larkin et al. 2014). The grain quality of these 

lines even had potential for bread making, and we along with others have also demonstrated 

the disease resistances that had been contributed from the donors of perenniality (Cox et al. 

2002; 2005; Murphy et al. 2009; Hayes et al. 2012). Despite this promise, few of the lines 

were developed from adapted wheat species and their grain yields were generally low and 

declining in subsequent years. The available germplasm does not meet the standard required 

for robustness of the perennial habit or the consistency of grain yield from one season to 

the next. What we concluded for the Australian environment, Murphy et al.(2010), Cox et 

al.(2010) and Jaikumar et al.(2012) concluded for North America, namely that better adapted 

and more productive germplasm is required. For decades perennial wheat breeding attempts in 

the United States and the former USSR held some hope that it might be possible to introgress 

the controlling genes for the perennial habit into the wheat genomes through recombination 

or chromosomal translocation. Indeed Lammer et al. (2004) gave impetus to this hope when 

they showed some capacity to regrow in the wheat cv. Chinese Spring, carrying an extra pair 

of 4E chromosomes from Thinopyrum elongatum, a perennial Triticeae species. However, the 

ability of this chromosome addition line to regrow and set seed a second time was not as 

strong as the perennial amphiploid progenitor, which itself was not very robust. Perenniality 

appears to be a polygenic trait (Zhao et al. 2012), and it will not be readily conferred by simple 

introgression from a perennial to an annual species. Indeed the likely genetic complexity of the 

perennial habit suggests the possibility that it might be easier to transfer domestication traits 

to an existing perennial Triticeae species. These traits would include non-shattering heads, 

free-threshing grain, more determinate flowering and larger seed size. The genetic controls for 

some domestication traits are relatively simple (Faris et al. 2003; Sang et al. 2009; Gegas et al. 

2010; Takahashi and Shimamoto, 2011; Peng et al. 2011). Others such as threshability may be 

multigenic (Peleg et al. 2011). 

PERENNIAL GRAIN BY DOMESTICATION

In Australia some herbaceous native legumes have been investigated as having potential as 

perennial grain crops through a process of domestication (Bell et al. 2012). Attempts have been 
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made to commercialize grasses such as Microlaena stipodies and Distichlis palmeri as perennial 

grain crops (O’Neill, 2007; Kasema et al. 2010; Pearlstein et al. 2012). However, this has met 

with limited success. For the Australian native rice-related perennial grass M. stipoides, the 

major missing traits included synchronous maturity and resistance to shattering (Davies et al. 

2005). The seeds are structurally similar to rice and some ecotypes have seeds almost as large 

as domesticated rice. Malory et al. (2011) characterized 18 genes from Microlaena which are 

homologues of rice genes known to be important in domestication. If successful, domestication 

of wild perennial grains will produce crops, which are only likely to have value for niche markets 

in the medium term. Lower flour yields and higher bran and fibre content per kernel are often 

an impediment to acceptance in standard milling markets for new domesticated grains (Bell et 

al. 2010). We will hear more from others at this meeting on the prospects for domesticating 

perennial species. 

The Land Institute is also making good progress in direct domestication of a number of 

perennial species including the wheat relative Thinopyrum intermedium (kernza) (DeHaan et al. 

2005; Van Tassel et al. 2010; Culman et al. 2013). What might be needed to advance success 

more rapidly down this domestication option is to utilize the expanding understanding of 

domestication genes in a more targeted way. Transgenic technology offers a powerful way to 

test the utility of specific genes in achieving domestication traits. Thereafter, if the course to 

commercial release is deemed too difficult for the transgenic plants, the same traits might be 

pursued through targeted mutations using technology such as TILLING or one of the emerging 

methods for site-directed genome modifications (Curtin et al. 2012). Genome editing technology 

employs sequence-specific nucleases to generate site-specific double-stranded Deoxyribonucleic 

Acid (DNA) breaks. Nuclease systems in development include: zinc finger nucleases; transcription 

activator-like effector nucleases (TALENs); and LAGLIDADG homing endonucleases (Curtin et 

al. 2012). The site-specific double strand DNA breaks are followed by informed and designed 

mutations, sequence insertions or replacements. Rapidly evolving genomic and molecular genetic 

technology may make rapid domestication of existing well-adapted perennials feasible, but not 

without substantial investment in the various species of interest to this Workshop and for the 

goal of a perennial grain crop.

PERENNIAL CEREAL GRAIN THROUGH HYBRIDISATION AND 
ALLOPOLYPLOID FORMATION

Hybridisation between annual grain crops and perennial relatives offers an avenue to combine 

the traits of perenniality and grain quality in a new crop species. We believe this would reduce 

the time of development, compared with domestication, and offer a product that might directly 

replace annual grains in the market place. There have been attempts to achieve this historically 
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in Russia and the United States (Tsitsin and Lubimova, 1959; Suneson et al. 1964). Experimental 

breeding lines of hybrid perennial cereals have shown higher mineral and protein content than 

annual cultivars (Murphy et al. 2009) and some have demonstrated useful flour, dough and 

baking properties (Hayes et al. 2012). Perennial grains will need to be profitable if they are to be 

adopted widely in agriculture (Bell et al. 2008; Reeling et al. 2012) and direct access to already 

established markets will be important for the acceptance of perennial grains.

The rest of this paper focuses on wide hybridisation to combine perenniality with already 

domesticated wheat. Our experience thus far consistently indicates that reasonable rates of 

post-harvest regrowth (PHR) are only observed when many chromosomes are added to wheat 

from the perennial donor species (Hayes et al. 2012 and unpublished). The germplasm examined 

was derived from wide crosses between wheat and perennial species such as Th. intermedium, 

Th. elongatum, and Th. ponticum. Figure 1 is a plot of many of the hybrid derivatives, partial 

amphiploids and amphiploids that we have examined in the field, showing the relationship 

between chromosome counts and ability to regrow after the first grain harvest. This figure is 

based on a similar figure in Hayes et al. (2012), but with some new lines and field data added. 

Some lines were able to perenniate in one or both field environments where they were grown 

and a few were able to regrow through four seasons (Table 1). The wheat-derived lines that 

were capable of perennial regrowth contained seven or more pairs of chromosomes from the 

perennial parent. In the case of the wheat x Th. elongatum derivatives, the exception seems 

to be CPI147232, which has 42 chromosomes but is likely to have substituted the E genome 

for one of the wheat genomes, just as in the durum wheat x Th. elongatum amphiploid (Figure 

1A). The situation is even clearer for wheat x Th. intermedium, wheat x Th. ponticum and 

wheat x unknown Agropyron sp. derivatives, where only 56 chromosomes lines show significant 

perenniality (Figure 1B). Individual Triticeae genomes have seven pairs of chromosomes, and 

therefore, the chromosome constitutions of stable allopolyploids, both naturally occurring 

and synthetic amphiploids, stabilise at multiples of 14. Many fertile and stable wheat derived 

amphiploids have been formed at the octoploid level (2n = 56; Mujeeb-Kazi and Hettel, 1995; 

Jauhar, 1995; Sepsi et al. 2008), and it seems this is a benchmark of stability as well as a 

general requirement for retaining perenniality. Figure 1 also illustrates that although the wheat 

hybrid derivatives do not regrow with the same consistency as perennial benchmarks such as Th. 

intermedium or S. montanum, some do well.
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TABLE 1. SUCCESSIVE GRAIN YIELDS OF HYBRID WHEAT DERIVATIVES FROM WHEAT X TH. ELONGATUM OR WHEAT 

X TH. INTERMEDIUM, AND THE PERENNIAL GRASS TH. PONTICUM, GROWN IN AUSTRALIA

The weights are means of three replicate 1 m rows. Decline in yield, of the hybrids, over time was due to plant 
mortality within populations.

GRAIN wt (g) 2008 GRAIN wt (g) 2009 GRAIN wt (g) 2010 GRAIN wt (g) 2011

CPI 147235a 73.5 25.9 0.0 0.0

CPI 147236a 81.7 45.9 11.2 0.0

CPI 147236b 65.9 8.9 0.0 0.0

CPI 147251b 70.9 9.4 0.5 0.4

CPI 147257b 7.8 12.6 4.7 0.7

CPI 147258a 4.7 0.3 0.3 0.0

CPI 147286a 36.3 0.4 0.0 0.0

Th. ponticum 0.0 9.4 207.7 268.8

lsd 45.7

FIGURE 1. CHROMOSOME COUNTS (2) AND POST-HARVEST REGROWTH (PHR) SCORE IN THE FIELD FOR A RANGE 

OF CONTROL PERENNIAL SPECIES AND WHEAT HYBRID DERIVATIVES

The bars show the range where variable chromosome counts were observed. Some of the data plotted are from 
Hayes et al. (2012).
A. shows mainly wheat x Th. elongatum derivatives. 

B. shows mainly wheat x Th. intermedium derivatives.
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Perennial amphiploids or partial amphipoids have been produced between wheat and 

Th. ponticum (2n = 70, decaploid) (Berezhnoi, 1987; Zhang et al. 1996; Chen et al. 1998), 

Leymus arenarius (2n = 56, octoploid) (Anamthawat-Jonsson, 1995), Th. intermedium (2n = 

42, hexaploid) (Tsitsin and Lubimova, 1959; Cauderon, 1966; Sun, 1981; Jones et al. 1999; Cox 

et al. 2002) and Th. elongatum (2n = 14, diploid) (Jenkins and Mochizuki, 1957; Rommel and 

Jenkins, 1959; Cai et al. 2001; Murphy et al. 2007; Mujeeb-Kazi et al. 2008). Taken together, this 

experience suggests that the best near-term prospect for a perennial wheat-like grain crop is a 

full or partial amphiploid, containing the full set of tetraploid (AABB) or hexaploid (AABBDD) 

wheat chromosomes plus one genome equivalent (XX) from the donor. If the perennial donor is 

a polyploidy, the extra genome in the allopolyploid (partial amphiploid) is usually a synthetic 

genome. In this context, “synthetic genome” means one consisting of a mixture of chromosomes 

from the multiple perennial parent genomes, but where each of the seven homologous chromosome 

groups are represented in the synthetic genome. If each of the homologous groups are not 

represented the synthetic genome is unstable. So, while a partial amphiploid with a synthetic 

genome may be stable, a significant difficulty results for any ongoing breeding program. Each 

time a primary partial amphiploid is produced, the synthetic genome may consist of a different 

mix of donor chromosomes (Jones et al. 1999; Han et al. 2004; Liu et al. 2005), and therefore 

interbreeding of primary partial amphiploids often will result in a loss of the donor chromosomes, 

genetic instability and consequent likely loss of the perennial trait. Banks et al. (1993) amply 

demonstrated this problem through experiments in which a set of independent primary wheat-

Th. intermedium partial amphiploids (2n = 56) were inter-crossed. We would argue that the 

ability to inter-breed from independent primary amphiploids is essential to enable a practical 

rate of breeding progress with hybrid perennial wheats. Robust perennials might be achievable 

with partial amphiploids using a polyploidy perennial donor; some of the best performing lines 

in our experiments have derived from polyploid donors such as wheat x Th. ponticum (10x) 

derivatives or wheat x Th. intermedium (6x) (Figure1B). However, substantial progress will be 

made best, if ongoing breeding programs can be established through developing genetically 

diverse primary amphiploids, inter-crossing them to generate large scale genetic segregation on 

which to impose heavy selection.

Consequently, although perennial allopolyploid Triticeae might make good donors for primary 

partial amphiploids, we believe the best prospects for a productive breeding program in the 

medium term should focus on a diploid perennial donor such as Th. elongatum (Host) D. R. 

Dewey (EE, 2n = 2x = 14, synonyms Lophopyrum elongatum, Elytrigia elongata, Elymus elongatus, 

Agropyron elongatum). The Washington State University (WSU) program used this donor species 

introduced as the Chinese Spring wheat x Th. elongatum amphiploid they called AgCs (Jenkins, 

1957; Cai et al. 2001). It is helpful to consider the analogy with the breeding of the human-made 

cereal triticale. If a tetraploid wheat is used, the amphiploid would be AABBEE (analogous to 

hexaploid triticale, AABBRR); if a hexaploid wheat is used, the amphiploid would be AABBDDEE 
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(analogous to octoploid triticale, AABBDDRR). Lelley (2006) gives a useful summary of the 

history and breeding of triticale. The first fertile triticale, an octoploid, was produced by 

Rimpau in 1888. It was only in the 1930s, that induced chromosome doubling techniques using 

colchicine enabled routine production of fertile primary triticales. Research switched to hexaploid 

triticales in the 1950s, and progress was made by extracting secondary hexaploids from crosses 

between hexaploid and octoploid triticales. The International Maize and Wheat Improvement 

Center (CIMMYT) achieved another step forward by producing hexaploid cv. Armadillo carrying a 

2D (2R) chromosomal substitution, though subsequent developments have shown that the full 

potential of triticale is best served with a full rye genome and without substitutions. Decades 

of breeding and selection have been required to produce high yielding triticale cultivars. There 

is evidence that during this time genomic sequence modifications were important (Ma and 

Gustafson, 2008; Tang et al. 2008; Ozkan and Feldman, 2009; Feldman and Levy, 2012). The 

observed changes were mainly losses of Amplified fragment length polymorphism (AFLP) and 

Restriction fragment length polymorphism (RFLP) bands, predominantly from the rye genome and 

largely involving repetitive DNA sequences. A positive relationship was found between increased 

chromosome bivalent pairing in meiosis, improved fertility and elimination of low-copy non-

coding DNA sequences (Ozkan and Feldman, 2009). These chromosomal rearrangements may 

have facilitated the wheat and rye genomes coordinating the timing of their division processes 

during meiotic division. Both genetic and epigenetic changes have been demonstrated to occur 

in newly synthesized allotetraploid wheat lines with diverse genome compositions (Qi et al. 

2010). Some of the changes seemed to be required, which they called directed, while others 

were highly variable, which they called stochastic. Feldman and Levy (2012) prefer the word 

revolutionary to describe rapid changes required in new allopolyploids. The changes observed 

included non-random loss of non-coding, low- and high-copy sequences, resulting in a DNA loss 

of 2-10 percent compared with the sum of the parental DNA contents. In the case of triticale, 

the loss was about 9 percent in octoploid triticale and 28-30 percent in hexaploid triticale, 

compared with the wheat and rye parental DNA. Intergenomic invasion by sequences such as 

transposons, and reduction in repeats of Ribosomal ribonucleic acid (rRNA) genes are also noted 

as revolutionary genetic changes occurring rapidly after allopolyploidisation. Epigenetic (DNA 

methylation) changes were also observed. More recently Hu et al. (2012) looked specifically 

at newly formed wheat x Th. elongatum amphiploids using genome specific molecular markers 

and found chromosome rearrangements and sequence duplications occurring. Interestingly, the 

whole genome shot-gun sequencing of wheat has revealed the apparent dynamism of hexaploid 

wheat genomes, in which there has been significant loss of members of multigene families during 

polyploidization and domestication (Brenchley et al. 2012).

Most of the wheat x Th. elongatum amphiploids we have examined have been from WSU 

and are octoploid (2n = 56, presumably AABBDDEE). However, one of the perennial WSU 

lines, CPI147232, is hexaploid (2n = 42). Its genomic composition needs to be confirmed. 
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Another hexaploid amphiploid is derived from cv. Stewart (T. turgidum) x Th. elongatum line 

(AABBEE) (Jenkins and Mochizuki, 1957). This hexaploid is too tall but should be crossable to 

CPI147232, provided the latter is also AABBEE, in which case the progeny should segregate to 

form populations at the hexaploid level useful for selections. Almouslem and Amleh (1999) also 

report a durum wheat x Th. elongatum hybrid. The greater genomic proportion of the perennial 

genome to annual genomes may confer a more dominant perennial habit; however this remains 

to be tested. 

More recently we have obtained new wheat x Th. elongatum amphiploids at the octoploid level 

from CIMMYT, in particular two lines using wheat cv. Goshawk (Mujeeb-Kazi et al. 2008). These 

had good semi-dwarf stature, strong straw and reasonable PHR in the greenhouse. However, 

fertility was reduced and the heads were very susceptible to shattering (Larkin, unpublished). 

Shattering was not a problem with the perennial wheat Th. elongatum amphiploids from WSU. 

Crosses between the two types have been successful. And hopefully will allow the recovery of 

progeny with non-shattering heads, but with semi-dwarf stature and improved fertility. Th. 

elongatum accessions are available from dry and hot locations such as Israel, North Africa and 

Mediterranean France. Although this diploid species is not endemic in Australia, some accessions 

may exhibit the type of summer survival and persistent perenniality required. These should be 

exploited to make new primary amphiploids with adapted annual wheats.

Th. elongatum is not the only perennial diploid that might serve as the donor of the perennial 

habit to wheat. It is noteworthy that most species of the Triticeae are perennial (Barkworth et al. 

2009) with about ten basic genome types represented, including Australopyrum retrofractum (W), 

Agropyron cristatum (P), Thinopyrum bessarabicum (Eb), Dasypyrum villosum (V), Psathyrostachys 

hushanica (Ns), Pseudoroegneria spicata (St); and wheat can be hybridised to some of these 

species. So there should be many other possibilities for generating perennial amphiploids. The 

diploid Australopyrum species (2n = 2x = 14, WW) might appear to be an attractive donor of 

perenniality in an Australian context. However, there are no reports of hybrids with wheat. 

Furthermore, Australopyrum species lack the broader adaptation to various climatic regions of 

southern Australia associated with the other native perennial Triticeae species, Elymus scaber. 

Some attention has been given to producing a perennial triticale derived from perennial rye, 

Secale montanum, instead of cereal rye to combine with wheat. Schlegel (1980) produced F1 

hybrids and amphiploids from wheat x S. montanum crosses; the amphiploids at meiosis had an 

average of 26.55 bivalents compared with 27.30 in an established octoploid triticale, suggesting 

a reasonable genetic stability early in the breeding cycle. There was a correlation between the 

amount of telomeric rye heterochromatin and the frequency of univalents in meiosis, suggesting 

the heterochromatin difference between the wheat and rye chromosomes was an impediment 

to full fertility. Delayed DNA replication at the heterochromatic telomeres may be a problem 

for coordinating the timing of wheat and rye chromosome division processes during meiotic 

division. The reduced amount of telomeric heterochromatin in S. montanum relative to S. cereale 
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is postulated to explain why wheat S. montanum amphiploids were more regular in pairing than 

primary wheat S. cereale amphiploids (Thomas and Kaltsikes, 1974; Schlegel, 1980). Established 

fully fertile triticales have lost much of the telomeric heterochromatin on the rye chromosomes. 

This is another example of a genetic change required to enable newly formed allopolyploids to 

be fully fertile.

There has been some success in breeding perennial rye itself as a grain crop through 

intercrossing S.cereale and S. montanum and the release of tetraploid cvs. Permontra and 

Sopertra, diploid cv. Benmonta in Germany (Reimann-Philipp, 1995), and diploid cvs. Perenne 

and Kriszta in Hungary (Kotvics et al. 2001; Füle et al. 2005; Sipos and Halasz, 2007). In 

Canada, cv ACE-1 was developed by selection from German germplasm (Acharya et al. 2004). 

Initial attempts had difficulties with fertility and retention of perenniality. Success came only 

after decades of selection. In Australia, a perennial rye cv. Black Mountain was bred from a S. 

cereale x S. montanum cross with two backcrosses to the perennial parent; selection for this 

release was based mainly on perenniality and forage yield, rather than grain yield. Following 

cell culture and six generations of selection for fertility, non-shattering heads and grain yield, 

a higher grain yield perennial selection was recovered called Family 10 (Oram, 1996; personal 

communication, 2010).

CONCLUSIONS

With the increasing power and reach of genomic analyses, greater genetic insight will come 

eventually into the genes controlling the perennial habit. Transcriptomic comparisons between 

annual and perennial Brachypodium species, being arguably the closest model species to wheat, 

might prove particularly informative. Other potentially informative comparisons include annual 

and perennial rice (Oryza rufipogon) (Zhao et al. 2012), Sorghum bicolor and S. halepense, 

Hordeum vulgare and H. bulbosum, Panicum miliaceum and P. turgidum. Eventually such studies 

could lead to the ability to engineer perenniality into wheat through transgenics or genome 

editing. In the meantime we would contend that the best near term prospect of a productive 

breeding program for a perennial wheat-derived cereal will involve the following steps:

1. The generation of many primary amphiploids between wheat and a perennial diploid such as 

Th. elongatum. Importantly, this should involve a diversity of Th. elongatum accessions and 

a diversity of annual wheat cultivars adapted to various target zones globally.

2. Intercrossing primary amphiploids and advancing segregating populations with selection.

3. Early generation selection at F2 to F4 would emphasise traits such as semi-dwarf plant 

height, non-shattering heads, stable amphiploid chromosome count, large seed size, good 

self-fertility, and regrowth in pots.

4. Later generation selections would emphasise traits such as maturity, robust post-harvest 

growth, grain yield, forage yield, stability of grain yield across seasons, and disease resistance.
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In addition to a number of rounds of such breeding and trait selection cycles, progress might 

be further accelerated through specific attention and selection for the revolutionary genetic 

changes so frequently observed in newly forming allopolyploids (Feldman and Levy, 2012), 

that signal the accommodation between genomes and the rise in fertility and stability. While 

triticale took over 40 years to begin to deliver on its potential, the time required to deliver a 

successful perennial wheat might be greatly compressed through a coordinated international 

effort and application of our greater understanding of the genomic changes required before a 

newly formed allopolyploid becomes stable and productive. International cooperation could 

be encouraged through the formation of a community-of-practice with mutually agreed open-

source style terms of engagement. We already have the beginnings of such a community. High 

priority should be given to collecting diverse accessions of diploid Th. elongatum, crossing 

to wheat and forming amphiploids, sharing diverse primary amphiploids, intercrossing to 

form secondary amphiploids, and coordinated multi-environment testing of derived secondary 

amphiploid populations.
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