I. Adiabatic Invariants and Magnetospheric Models

.1 Preliminary Considerations

As long as it remains trapped within the earth’s magnetosphere. a
radiation-belt particle of mass m and charge g typically executes a
hierarchy of three distinct forms of quasi-periodic motion. The most
rapid of these is gyration about a field line at frequency ,/2n=
— g B/2nme, where B is the local magnetic-field intensity and ¢ is the
speed of light. The instantaneous center of the gyration orbit is known
as the particle's guiding center. An average over gyration reveals an
oscillation of the guiding center between magnetic mirror points, which
are located at a pair of well-defined positions along a path that very
nearly coincides with the original field line. This periodic bounce motion
between mirror points proceeds at a frequency Qz/2n~v/2xn8, where
v is the speed of the particle and S is the arc length of the entire
field line. Finally, an average over the bounce motion reveals an azimuthal
drift of the guiding-center trajectory. This drift motion generates a
shell encircling the earth; complete circuits of this shell are accomplished
at the drift frequency Q3/2n~ (0?27 Q,5%). where the angle brackets
denote an average over the entire particle orbit.

The time scales for gyration. bounce, and drift are respectively separ-
ated by a factor of order £=(v/€2,S). The limit <1 is required for
performing the averages mentioned above so as to separale the motion
into the three distinct components. This condition imposes the require-
ment that the gyroradius be much smaller everywhere than the length
of the guiding field line. Radiation-belt particles of interest here are
thus distinguished by the requirement |¢| < 1 from very energetic particles
such as galactic cosmic rays, which may have gyroradii as large as
the magnetosphere. This limitation on radiation-belt energies is not
a universally accepted convention, but it is conceptually useful to restrict
the radiation belts to particles whose kinematics fall within the hicrarchy
outlined above. Special methods of numerical analysis [17] beyond
the scope of the present treatment must generally be employed where
[¢]= 1. Such methods trace the details of each particle trajectory.

The limits on particle energy appropriate to the radiation belts
can be estimated by calculating ¢ for a special class of particles, viz.,
the class of particles magnetically confined to the equatorial plane
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of a dipole field. These particles can be thought of as “mirroring at
the equator”, or as bouncing with infinitesimal amplitude but finite
frequency. If a is the radius of the earth (in which the magnetic dipole
is assumed to be centered), the length of a field line that crosses the
equatorial plane at a distance of L earth radii from the center is given
(see Section 1.4) by

S=2La[1+1/2]/3)In2+ |/3)] = 2.7603 La. (1.01)
For a particle carrying the charge of Z protons, it follows that
ex BLYmc*276gBra)x fLAMC? 216 ZGeV), (1.02)

where i =v/c. cisthe speed of light, and Bo(~0.31 gauss) is the equatorial
magnetic-field intensity at the earth’s surface. The limit |¢|< 1 required
of radiation-belt particles is thercfore satisfied by kinetic energies up
to approximately 10/L?GeV for protons, alpha particles, and other
light ions, as well as relativistic electrons.

1.2 Action-Angle Variables

The three distinct periodicities associated with gyration, bounce, and
drift motion give rise to a hierarchy consisting of three pairs of action-
angle variables. The action variables J; (i= 1.2.3) are canonically defined
[7] by the path integrals

Ji=§ [p+(qg/0)A]-dl, (1.03)

where p is the particle momentum and A is the electromagnetic vector
potential. The first action integral J; corresponds to gyration about
a field line. The first term of (1.03) for i=1 is therefore equal
to 2ap?/m|Q,|. where p, is the component of p normal to B. This
follows from the fact that the orbit of gyration has a circumference
equal to 2mv /€|, where v, =p /m. The second term of (1.03) for
i=1 is equal to ¢g/c times the magnetic flux enclosed by the orbit
of gyration. The net result is that

Ji=nptc/Blg| (1.04)

il one observes the sign convention that €, is positive for electrons,
which gyrate in a positive (counterclockwise) sense about the field line.
Since the rest mass my is a constant of the motion, it is usual to
extract from (1.04) a quantity

M=pi1/2meB. (1.05)
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known as the first adiabatic invariant. This is not empty nomenclature,
for M is indeed an invariant of the motion if the fields (e. g.. magnetic,
clectric. gravitational) seen by the particle remain virtually constant
in time over the entire orbit of gyration. In practice this requires also
that such fields do not vary significantly on a spatial scale as small
as v1/|Q,]. Note that M/y is equal to the magnetic moment of the
particle. where y (=m/mo) is the usual relativistic factor.

The second action integral J. is evaluated along the bounce path.
which isessentially parallel to the guiding field line and therefore encloses
no magnetic flux. Convention does not distinguish between the second
action integral J> and the second adiabatic invariant

J=J2=§pds, (1.06)

where pj is the component of p parallel to B and s is a curvilinear
coordinate that measures distance along a field line from the equator.
The adiabatic invariance of J holds for a particle acted upon by forces
that remain virtually constant in time over the bounce period.

The third action integral J; is associated with the azimuthal drift
motion. The integral around the drift shell may be evaluated along
any closed curve that lies entirely on this surface and encircles the
earth. For this action integral the first term of (1.03) is of order &°
{and therefore negligible) compared to the second. It follows that

Ja=(g/c)P, (1.07)

where @, the magnetic flux enclosed by the drift shell. is known as
the third adiebatic invariant. The integral is independent of the path
within the limitations specified above because no field lines intersect
the drift shell in the limit |¢[ < |. The sign convention adopted in (1.07)
corresponds to that for €2y, since the drift of electrons is also counterclock-
wise. Thus, the signature of @ is positive for ¢>0 and negative for
¢<0. The third invariant is generally conserved for a particle acted
upon by forces that remain virtually constant in time over the complete
drift period. Figure 6 provides contour plots of the gyration, bounce,
and drift frequencies versus kinetic energy and L for protons and electrons
mirroring at the equator of a geomagnetic dipole field [see Section
1.4].

By their execution of all three types of adiabatic motion, particles
that belong to the radiation belts are distinguished [rom a variety
of other particles found within the magnetosphere. Thus, solar cosmic-ray
particles having energies appropriate to the radiation belts often enter
the geomagnetic tail and descend to the polar caps. Since the tail
does not support bounce motion, however, these particles must either
precipitate into the polar atmosphere or mirror magnetically and return
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Fig. 6. Contours of constant adiabatic gyration, bounce, and drift frequency
for equatorially mirroring particles in a dipole field. Adiabatic approximation
fails in upper right-hand corners (E~1GeV, L~8), since 2,~8Q2;~Q; implies
e}~ 1.

to interplanetary space. As they do not remain trapped within the
magnetosphere, these particles disappear from the polar caps as soon
as their immediate source (e g., a solar flare) is extinguished.

Particles that populate the quasi-trapping regions (see Introduction)
are similarly excluded from the radiation belts by their inability to
completea drift period. A quasi-trapping region supports bounce motion
and yields a well-defined second invariant, but it generates only partial
drift shells that intersect the magnetospheric surface either at the mag-
netopause or at the neutral sheet. Thus, particles whose mirror points
lie within a quasi-trapping region do not persist after withdrawal of
their source and (by this convention) do not belong to the radiation
belts.
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For those particles that do execute all three types of quasi-periodic
motion, the quantities J;/ 2 (i=1,2,3) constitute a complete set of canoni-
cal angular momenta. The angular coordinates to which the J;/2x are
conjugate can be identified as the phases ¢; that describe the progress
made by a particle toward the completion of a gyration. bounce period,
and drift period. Each phase ¢; is considered to advance at its own
characteristic rate ;, so as to achieve an increment of 27 upon comple-
tion of the period 27/Q; of the motion.

Conservation of the adiabatic imvariants M, J, and @ requires. in
effect, that 1, @2, and @3 be cyclic coordinates [7] of the dynamical
problem. Violation of the invariants occurs only in the presence of
forces that vary on a sufficiently short spatial or temporal scale that
particles having different phases respond differently. This. of course,
is the underlying reason for the validity of adiabatic theory as a kinemati-
cal foundation for the study of radiation-belt dynamics.

I.3 Liouville’'s Theorem

The kinematical state of a particle in three-dimensional motion can,
in general, be defined instantancously by specifying its three coordinates
of position and three components of canonical momentum. These six
quantitites locate a point in the six-dimensional continuum known
as phase space. As time evolves, the motion of the particle generates
a trajectory in phase space.

A system consisting of N distinct particles of a given species (e. g.,
protons) is described by a set of N distinct points in phase space.
When N is very large, it proves convenient to describe the distribution
of these points in phase space by means of a six-dimensional density
function f(m;,q::t) where the n; (i=1,2,3) are components of canonical
momentum, the g; are coordinates of position, and ¢ is the time. This
distribution function has the usual significance that fd'n d’q is the
number of particles instantaneously occupying the six-dimensional
volume *z d*q in canonical phase space.

In Hamiltonian mechanics the temporal evolution of f(m;,gi:t) 18
specified by Liouville’s theorem [7], which asserts that

3
dfdn=(@ flen+ Y, [w@fon)+a@f/2q)]=0  (1.08)

i=1
along any dynamical trajectory in phase space. In more picturesque

terms, the phase-space volume containing the system of N distinct
representative points moves incompressibly through phase space. The
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dynamical trajectory of an individual particle is governed by the equa-
tions _
mi=— ) HJ’:{C}(,H' [ ingﬂl

G B (1.09b)

where H (m;,¢;:r) is the Hamiltonian. Liouville’s theorem implies that
the content of an infinitesimal six-dimensional volume d*z d*q surround-
ing a particle’s location in phase space remains invariant as the particle
executes itsdynamical trajectory. This means that a unit Jacobian charac-
terizes the transformation of such an infinitesimal volume moving in
accordance with the laws of classical mechanics. Indeed, the execution
of a dynamical trajectory is describable by a sequence of infinitesimal
contact transformations [ 7]. Each of these infinitesimal transformations
has the properties that

ni—mitdmi=mi— (0 H/Oq)dt ([.10a)
gi—t¢i+dgi=qi+(CH/ém)dt (1.10b)
HoH+dH=H+(CH/chHdt (1.10€)

in accordance with (1.09).

Apart from its utility in specifying the adiabatically invariant action
integrals J;, the canonical momentum = is not a convenient physical
quantity in the study of radiation-belt dynamics. It is far more convenient
to deal with the locally observable particle momentum p alone than
in combination with (g/¢)A, since the electromagnetic vector potential
A is neither locally observable nor uniquely defined. Accordingly, it
becomes ad vantageous at this point to introduce the distribution function
f(p,r;t), which represents the density of particles in a six-dimensional
(but non-canonical) position-momentum space. The relation between
fp.r:t)and f (= q: 1) is readily obtained via the algebraic transformation

m=p+ig/c)A (L.11a)
q=r. (1.11b)

No loss of generality is suffered by suppesing that the coordinates
are Cartesian. In this case it is easy to verify that the transformation
defined by (1.11) has a unit Jacobian, from which it follows that
S(prit)=f{mq:0). The distribution function f(p,r:t), of course, has
the significance that fd”p d°r is the number of particles instantaneously
occupying the infinitesimal six-dimensional volume d°pd”r in position-
momentum space. Since f (p,r:f) is numerically equal to the phase-space
density f(m,q:r). it follows that f remains constant along a dynamical
trajectory in position-momentum space. This property is summarized
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by the equation (known as the Vlasov equation)
@fien) +p/m)-(fior)+F-(2f/d p)=0, (1.12)

where F=p is the force applied to a particle of momentum p located
at position r. The particle velocity v is equal to p/m, and the relativistic
mass m exceeds the rest mass mo by the factor

y=[1+(p/moc)*]'?, (1.13)

where ¢ is the speed of light.
The Vlasov equation is sometimes cast in the alternative form [18]
(cf/in+ Z p(é fler)+ Z {F,-;’m}{éu —{y; c‘j_,.-’cz}][f’f,’ﬁ v)=0. (1.14)
i i
where &;; is the Kronecker symbol (=1 for i=j and =0 for i+j).
This form can be derived from (1.12) by noting that

m(0 /0 piy= 38— (vivj/e?). (1.15)

As formulated here, the Vlasov equation takes account of the relativistic
kinematics of charged particles but does not include certain processes
{such as collisions) that are not easily described by a Hamiltonian.
Such processes are best added phenomenologically to the Vlasov descrip-
tion.

1.4 The Dipole Field

For purposes of analytical calculation it is often convenient to represent
the geomagnetic field as the field of a magnetic dipole centered within
a perfectly spherical earth. The dipole axis is assumed to be coincident
with the axis of rotation, and the spherical polar coordinates r, 0,
and ¢ are measured from the center of the earth, the north pole, and
the midnight meridian, respectively. The field intensity is given by

B= — Bo(2F cos 0+ fsint)(a/r)*, (1.16)
where a is the radius of the earth and Bo(~0.31 gauss) is the equatorial
(0=mr/2) magnitude of Bat r=a. A field line that intersects the equatorial
plane at a distance r=La from the origin generates a drift shell to

which is assigned the dimensionless parameter L. The differential equa-
tion of this field line is

dr/d=rB,/By=2rctnf], (1.17a)
from which 1t 1s deduced that
r=Lasin?0. (1.17b)
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The element of arc length along the field line is therefore
ds=La(l+3cos?0)!?sinfdo, (1.18)

and from this expression follows the value given by (1.01) for the total
length § of the field line.

[n the formal theory of adiabatic motion it is customary to introduce
the Euler potentials % and £ such that A=3Vf and (therefore)
B=VuzxVfi. The dipole field can be generated by assigning the Euler
potentials x= — Boa*/L and =, so that

A= —Bo@(a’/r*)sin0. (1.19)

These assignments are not unique, since they can be modified by a
gauge transformation without altering any physical consequences. The
chosen representations, however, have the special significance that
|#|= —2mzand @s=f, i e, the Euler potentials are immediately related
to the third invariant and drift phase, respectively. Euler potentials
are used clsewhere in describing the geomagnetic field [19], but are
omitted from further discussion in this volume.

The kinematical description of the radiation belts is simplified greatly
by the customary assumption that field lines are equipotential. Of course,
this assumption is not rigorously justified, but for particles of sufficiently
large energy the variations of time-independent electrostatic and grayvita-
tional potentials along a field line are unimportant .

The adiabatic motion of a charged particle influenced only by a
magnetostatic field of mirror geometry conserves both M, as given
by (1.03), and the kinetic energy E=mgc?(y—1). It follows from (1.13),
then, that p?(=p7 + pfj) remains constant, where pj is the component
of momentum parallel to B. This component of p vanishes at each
mirror point, where the guiding-center magnetic-field intensity is denoted
B,. Here the angle between p and B, known as the pitch angle, is
90°. The minimum angle between p and B attained during the bounce
period is known as the equatorial piteh angle, because this minimum
occurs at that point along the guiding field line at which B is a minimum;
in the dipole field this point lies on the equatorial plane.

The bounce motion of a particle’s guiding center along an equipoten-
tial field line has a period

27/Qa=(m/p)é[ 1 —(B/B,)] '?ds, (1.20)
*Gravity is totally negligible for particle energies = |l keV. Electrostatic-potential

variations along a field line in the radiation zone may amount to 10—100 volts,
and so are similarly negligible for particle energies = 1 keV [11].



18 [. Adiabatic Invariants and Magnetospheric Models

where the integral is evaluated along the guiding field line. Both p
and M are constants of the bounce motion, and the integral above
can be interpreted either as twice the spiral path length between mirror
points along the actual trajectory, or as the integral of the pitch-angle
secant along the guiding-center trajectory. The instantancous value of
s, in other words, is given by

pu/m=[(p/m)*> = (2meM B/m?)]* 2=(p/m)[1 —(B/B)]"' *. (1.21)

The maximum value of p; along the bounce path corresponds to the
minimum of B. Thus, if x is the cosine of the equatorial pitch angle
and B, is the equatorial guiding-center field magnitude, it follows that

x2=1 _IB«!’.BJN}: 1 _‘.]-"2~ (1.22)

where y is the sine of the equatorial pitch angle.
For the dipole field it follows from (1.16)and (1.17 b) that B.=ByL *
and that
B=(Bo/L*)(1+3cos*0)"*csct 0. (1.23)

The bounce period 27r/Q; is therefore representable as
2n/Q:=EmLa/p)T (v), (1.24a)

where
/2
sinf(1 +3cos” 6)' 2 d 0
ae | S % = 1.24b
™ J [1—)2csc®O(1 +3cos? 0)' 2] " "

B,

The colatitude 0, of the northern mirror point is given by the relation
y=(14+3cos2f,) " V*sin’0,,. (1.25)

At y=0theintegral for T (y)is easily evaluated. Theresult is T(0)=5/2 La,
where S (the length of the field line) is given by (1.01). At y=1(0,=m/2)
the integral can be evaluated by an appeal to the theory of small-ampli-
tude oscillations [7] about the equator. The equation of motion for
such a particle subjected to magnetostatic forces is

ms= — (M /)@ B/ds)= —(p*/2mB)(E? B/O5%)es, (1.26)

where the subscript ¢ denotes the equator (s=0). The magnetic moment
in general is equal to M/y, and this amounts to p*/2m B, for an equator-
ially mirroring particle. The equatorial value of ¢ B/ds* is given by

(0 B/0s?), =B, V(B-V B).=(3/La)’B.. (1.27)
so that ,=(p/m)(3/]2 La). It follows that T (1)=(r/6)) 2.
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For 0<y< |, exact evaluation of (1.24b) in terms of elementary
functions of y is impossible. A very good estimate, however, is provided
by the formula [20]

T)=TO)=4[TO)-T1)](y+r"3), (1.28a)

where
T0)=1+(12)/3)In2+]/3)~1.3802 (1.28b)
T(1)=(1/6))/2~0.7405 (1.28¢)
HTO)—T(1)] =0.3198 ; (1.28d)

at worst, this estimate deviates from the numerically computed function
T(y) by less than 1% (see Table 1).

Table 1. Functions of Bounce Motion in Dipole Field

gy PR sin~ty Exact T Approx T Exuct ¥ Approx Y
07 0.00000 0.00- 1.380 1380 2.760 2.760

17 000194 000" 1380 1.380 2.760 2758

X 0.02165 0.03 1.376 1.373 2.741 2730
10 0.06102 0.21 1.366 1.359 2.682 2.6633
15 01114 0.71 1.350 1.341 2.587 2.565
207 0.1701 1.66 1.327 1316 2457 2434
25 (.2352 3.17 1.298 1.287 2.296 2275
30° 03051 5.34 1.264 1.253 2,109 2091
357 03785 8.23 1.224 1.213 1.901 1.886
40 04539 11.89 1179 1.169 1.678 1.666
45 0.3303 1633 1.129 1.121 1.446 1437
S 0.6062 21.56 1.076 1.069 1.211 1.205
55 0.6804 27.58 1.020 1014 0.9793 0.9761
60 0.7515 34.38 0.963 0.959 0.7577 (0.7562
63 0.8178 41.97 0.906 0.905 0.5521 0.5517
70 0.8773 50.32 0.854 (L8553 0.3693 0.3692
74 09186 3754 D16 (0.816 0.2438 0.2438
78 0.9528 65.20 0,784 0.785 0.1408 0.1408
82° 09785 73.23 0.760 (1.761 006386 0.06387
86 (.9945 81.54°  (.745 0.746 001617 0.01617
90" 10000 90.00 0.740 0.740 0.00000 0.00000

The second invariant J, as given by (1.06), can be approximated
by means of a formula derivable from (1.28). The invariant is given
by

J=2pLa¥(y), (1.29a)
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where
w2
sinO(1+3cos?0)"2d0
Y(y)=2 5 1.29b
b J. [1=12ese®B(1+3cos M)'2] 17 ‘ ]

hy

The observation that
7 b
d (l) - i (1.30)

dy\ v/ ¥

enables Y(y) to be estimated from (2.28). Since Y(1)=0, it follows
that
1
Y()=2p [u* Twdu=2(1—y) TO+[TO) - T(1)](yInp+2y -2y,
¥ (1.31)
This estimate remains within 1% of the numerically computed Y (v)
for all values of y between 0 and 1 (see Table 1). Morcover, the exact
analytical result that Y (0)=2T7'(0) is reproduced by (1.31). An expansion

for x2=1—y2<1 reproduces the harmonic-oscillator approximation,
which implies that

J=§pds=4§(pl/mdr=(p*x*2m)(2n/Q,) (1.32a)
or

Y ()= T()x>=(x/6)]/2x>~0.7405(1 — ). (1.32b)

In (1.32a) the time-averaged value of pf is equal to half the maximum
value, since p) is a harmonically varying quantity in the limit of vanishing
hE:u;wc amplitude. This maximum value, attained at the equator, is
pexs.

As a further application of (1.28) it is possible to estimate the pitch-
angle dependence of the azimuthal drift frequency £23/2n. According
to the sign convention introduced above. thedrift phase @ is a temporally
increasing quantity, so that ¢s= —(g/|q)Q2;. where Q3= is the time
derivative of the particle’s azimuthal coordinate (sce Sections L1 and
1.2). It follows from Hamilton-Jacobi theory | 7] that

Qy=—2nqg/lghtc H/AJ 3 .s {1.33)

where H (=ymqc?) is the Hamiltonian. Evaluation of this expression
is facilitated by noting that (1.13) implies d H/dp=p/m. while (1.07)
implies J3=|gl(2nBoa’/cL). It follows from (1.0S), (1.29), and (1.30)
that

(Iny/enl)y,=—YA4T (1.34a)
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and
(@p/2 L= (pALT)(Y—6T)=—[3p/LT(]D(y). (1.34h)
where
12D(y)=6T (y)— Y(y). (1.34¢)
Simple algebraic manipulations thus lead to the formula
Q:2n=—(37yL2n)p/ma)(myc/q Bo)[D(y)/ T(v)]
= =G L27y)G* —1)(c/al(mgc/q B)[DOYT()]  (1.35)

for the azimuthal drift frequency.

Since Y (1)=0and Y (0)=2T(0), it follows at once that T(1)=2D(1)
and T(0)=3D(0). For intermediate values of y, an accurate analytical
approximation to D(y) is provided by (1.28) and (1.31). Explicitly stated,
the result is

R2D(y)>4TO)=[3T0)-5T(1)]y—[TO)— T(D)](rlnv+y'3). (1.36)
The estimate for D(y)/T (y) provided by (1.28) and (1.36) deviates at

2T
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l

0 1) | |
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¥

I'-‘_ig. 7.Functions governing the pitch-angle dependence of bounce and drift frequen-
cies in a dipole field.
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[
b

worst by less than 0.2 % from the numerically computed ratio D(y)/T (y).
Figure 7 indicates graphically the dependence of T'(y). Y (¥). D(y). and
D(v)/T(v) upon y. The functions D(y) and T(y) and their ratio all
vary monotonically with v in such a manner that, for a given particle
species and energy, the bounce frequency and drift frequency are maximal
for particles that mirror at the equator and progressively smaller for
particles having mirror points at progressively higher (poleward) lati-
tudes. This variation of bounce and drift frequency with equatorial
pitch angle (sin™'y), however, is remarkably weak, as it amounts to
less than a factor of two in each case.

The equations of this section summarize the adiabatic motion of
a particle trapped in the field of a magnetic dipole centered within
the earth. The three invariants M, J. and @ are conserved, and (since
the field is symmetric in azimuth) the drift shell is generated by rotating
the guiding field line about the dipole axis. The gyrofrequency £4/2n
varies with the instantancous position of the guiding center along the
ficld line. The minimum magnitude of Q, is given by |g| By/mcl? and
is attained at the equator. The maximum value is || Bg/mecL?y? and
is attained at the mirror latitude. Since the drift shell is symmetric
about the dipole axis, the bounce frequency Q,/2n is independent of
azimuth and given by Q;2n=[p/4mLaT(y)]. A further consequence
of azimuthal symmetry is that the bounce-averaged azimuthal coordinate
¢ advances eastward (in the case of a negatively charged particle) or
retreats westward (for a positive ion) at a constant rate equal to the
value of Q5 given by (1.35). The functional forms of T(y), Y(y) and
D(y) noted above are, of course, valid only for the dipole field.

.5 The Distorted Field

The centered-dipole field is only a gross idealization of the true geomag-
netic field. The idealized field has value as a standard of reference
for the analysis of radiation-belt dynamics, however. and this value
is enhanced by an appreciation of the extent to which the true field
deviates from the ideal.

The dipolar component of the earth’s field originates in the molten
core, Higher multipoles of the core field diminish in intensity by compari-
son with the dipolar component and are relatively unimportant at
geocentricdistances of order one carth radius and beyond. Measurements
made at the earth’s surface, however, suggest that the dipole axis is
tilted 11.4° relative to the rotation axis and displaced ~400 km from
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the center of the earth® True magnetic anomalies (deviations from
a dipolar field) can originate cither from higher multipoles of the core
field or from concentrations of ferromagnetic material in the earth’s
crust. In addition, currents can be induced in the earth and in the
tonosphere by virtue of the earth’s rotation and by externally produced
disturbances (see below) of the geomagnetic field, These induced currents
can be very complicated in structure; fortunately, they are not known
to have a dominant influence on the radiation belts.

The principal distortions of the earth’s ourer magnetosphere are
caused by currents on the magnetopause, on the neutral sheet, and
within the magnetosphere itself. The current layer that constitutes the
magnetopause serves to confine the geomagnetic field within. Thus.
the magnetopause is a boundary beyond which the earth’s ficld does
not extend. The neutral sheet, which separates the oppositely oriented
Mux tubes that constitute the geomagnetic tail, carries currents that
tend generally to weaken the nightside field intensity. Together, the
magnetopause and neutral sheet form the magnetospheric surface.

' The final source of field distortion important for the radiation belts
1s the ring current carried by the hot component of the magnetospheric
Plasma. The direction of gradient-curvature drift in the carth’s ficld
is westward for protons and eastward for electrons, and indeed the
net ring current flows westward. The result isa generally outward displace-
ment of field lines. i. ¢., a decreased magnetic-field intensity at the earth’s
surface and elsewhere interior to the ring-current zone, but an enhanced
field strength at exterior points. With particle gyration taken into account,
the spatial distribution of clectric-current density is found to have a
more subtle structure than consideration of gradient-curvature drift
alone would suggest. For reasons discussed below. the local current
density actually is directed eastward at the inner edge of the ring-current
belt, but the net current carried by a spatially bounded hot plasma
does I‘IImv westward, in accordance with the unsophisticated expectation,

It1s generally considered impractical to model all the aforementioned
current systems simultaneously and self-consistently. In studying radia-
tion-belt c_lynamim by theoretical means, however, it is usually sufficient
to recognize that self-consistent magnetic-field models exist in principle.
Thus, it is possible to imagine the computation of « particle’s three

*The 400-km displacement causes the apogee of an inner-zone particle drift
shell to be locuted over the western Pacific Ocean. Conversely, perigee 1s attaimed
over the south Atlantic. Since the field intensity at a giwr'l geocentric altirude
over the south Atlantic is substantially smaller than at other geographic locations,
.tlhls r::g;q_n where drift shells attain perigee is often called the Sourh Atlantic
oy
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adiabatic invariants and three phases with the understanding that these
invariants and phases identify an equivalent “particle” trapped in the
centered-dipole reference field. In particular, this mental exercise assigns
to the particle a unique, significant, and adiabatically invariant shell
parameter [ 5]

L=2na?Bo|®| . (1.37)

i.e.. the shell parameter of the adiabatically equivalent “particle” in
the dipole field.

The Mcllwain Parameter. [n most cases it is, in fact. necessary to carry
out some form of adiabatic transformation of observational data so
asto establish a requisite degree of order. In practice, quiet-time observa-
tions of the inner radiation zone (L <3) need be corrected only for
anomalies of the permanent geomagnetic field (including displacement
of the point dipole). Since this ficld is constant over the lifetime of
a typical satellite experiment. it is customary t0 circumvent computation
of the invariant shell parameter given by (1.37). It is found that observa-
tional data from the inner zone can be ordered adequately by specifying
the mirror ficld B, and the second invariant J for particles of known
energy. It is customary to derive from these quantities a non-invariant
shell parametet Ly, defined as the dipole shell parameter of a “particle”
having the same By, J. and energy. To facilitate the calculation of
L,. it is usual to introduce the quantity I=J/2p. In a dipole field
it is found that

y2(I* By/a® Bo)=y*R=[Y(»)]* (1.38)

where 2= By/L*B,,. The shell parameter L, is thus defined by the
relation L2 = Bo/y* B, where p is the solution of (1.38). The value of
[ is computed within the framework of an empirical model of the
permanent geomagnetic field . and the value of R(=I* B,/a® By) is there-
by determined [21].

Since the function Y (v) given by (1.29) cannot be expressed in closed
form by elementary functions, an exact algebraic solution of (1.38) for
y is impossible to obtain. Moreover. the analytical approximation to
Y (y) given by (1.31) does not render (1.38) algebraically tractable as
an equation to be solved for y. A numerical solution is possible, of

The parameter L,, originally defined by Mellwain | 21] is computed by assign-
ing B,—=0.311653 gauss. However, it would be more reasonable to compute L
using the best available ficld model and the corresponding value of By for the
epoch in question [22].
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course, but for most purposes the empirically deduced relationship

[22]

B, L,/By=1+(18/x%)" 2 R"* +0.465380 R** +[Y(0)] 3R
141350474 R'2 40465380 R?3 + 0047546 R (1.39)

is enlire]}"adu{uale for defining L, in terms of I and B,. Indeed,
the error in using (1.39) to specify L, amounts to less than 0.01 %,
as compared with the value of L, obtained via the exact dipole function
given by (1.29b). The coordinates B, and L,, generally called (B, L)
coordinates, are known to order inner-zone particle data satisfactorily
during magnetically quiet periods, in spite of certain conceptual difficul-
ties: e.g., the fact that (even in an azimuthally symmetric field) particles
having the same @ can be assigned different values of L,. The utility
9( (B, L) space for describing the inner zone during quiet periods resides
in the fact that such conceptual discrepancies are of insignificant magni-
tude there. For example, the variation of L, (as computed from a
s‘:tandurd 512-term multipole expansion of the permanent geomagnetic
field) among mrliclcs whose mirror points lie along a given field line
amounts consistently to less than 1% [21].

The Ring Current. During magnetically disturbed periods it is necessary
to take adiabatic account of ring-current effects in both the inner (L <3)
a‘nd outer (L2 3) radiation zones. As a very crude upproximatinﬁ, the
ring current may be compared to a solenoid located beyond L= 3.
Tl?ls approximation suggests a roughly uniform field perturbation
oriented parallel to the dipole axis and extending throughout the inner
zone . '_I‘his perturbing field often attains a maénitudeyzm'ﬂ during
magnetic storms and is closely associated with the equatorial émn1ag-
netic index Dy, which is supposed to measure the azimuthally symmetric
component of the axial field perturbation induced by the storm [23].
The signature of Dy (as obtained from low-latitude magnetograms)
:s_us_ua_llly_ negative because the perturbing field points southward, thereby
diminishing the ficld intensity at the earth’s surface, where the equatorial
dipolar component points generally northward. (On exceptional occa-
sions, whpn the ring current 1s weak, a positive Dy, can result from
compression of the magnetosphere by the solar wind.)

’ Durmg‘u magnetic storm the ring current tends to coexist spatially
witha portion of the outer zone, and so it would be a poor approximation
to extend the uniform perturbing field beyond L=3. Indeed, within

y ;["I_r::lpporul chut_lgcs_ in t!}c uniform axial field induce (via surface currents)
n effective magnetic dipole in the earth, which is essentially a perfect conductor
on the time scale of a geomagnetic storm,
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the belt of ring-current protons and electrons, diamagnetic effects can
accentuate the field depression beyond that seen at the earth’s surface
(r=u). On the outer fringes of the ring-current belt, the field depression
is greatly reduced. At sufficiently large distances the ring current would
resemble a magnetic dipole (of finite extent) aligned with the carth’s
dipole. The result is therefore an augmentation of the carth’s field
at such distances. Since self-constistent models of the ring current and
its magnetic field [ 24] require considerable computation, it is customary
to employ semi-empirical models to account for the associated adiabatic
effects upon radiation-belt particles.

Fig. 8 Schematic representation of the gyration and azimuthal drift (solid curve)
of an equatorially mirroring proton, with associated current patterns (dashed
curves).

Figure $illustrates thedrift-phase averaged current pattern associated
with the gyration and gradient drift of an equatorially mirroring proton.
The current pattern in this case has a width of two gyrorudly‘ The
inner portion of this pattern carries an eastward current, while the
outer portion carries a somewhat larger westward current. The net
flux of electrical current across each meridional half-plane is westward,
as provided by the gradient drift. Formulation of a ring-current model
consists of superimposing the contributions of all protons and elcc}rons
in the hot plasma, whose behavior is governed by the self-consistent
field.
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In a plasma having pressure P in the direction normal to B, the
magnetization current (caused by particle gyration) has a density J,,=
— ¢V x (P B/B?). Under nonrelativistic conditions, gradient drift pro-
duces a current density J,=¢(P_/B*)B x VB. and curvature drift yields a
current density J,=c¢(P)/B?)B x (¢B/ds). where P is the component of
plasma pressure parallel to B. The magnetization current can be written
in the expanded form

Ju=—clP/B*)VxB+(¢/B}Bx VP —2J, (1.40a)
and the gradient-drift current can be expressed as
J,=c(P/BA)[Bx(ZB/és)—(VxB).]. (1.40b)

In differential geometry the normal vector ¢B/ds has a magnitude equal
to the local curvature of the field line and points toward the center
of curvature, Under the static conditions considered here, the total
current density J satisfies the relation ¢VxB=4dnJ=4n(J,+J,+J,)
and is given [25] by

J=(c/BBX VP +(c/87)(8—B.)Bx ((B/és), (1.41)

where f=8n P /B? and i, =8z P /B* The beta parameters relate
the pressures exerted by the hot plasma to that exerted by the magnetic
field. Observations of the earth’s ring current indicate that £ and
p_ both attain magnitudes of order unity in the region of space most
densely populated by protons in the energy range 10— 50keV [15].
This region lies in the vicinity of L=23 during large magnetic storms
and near L="7 during geomagnetically quiet times®.

The initial term of (1.41) points in the eastward (+ @) direction
in the inner portion of the ring-current zone. but in the westward
(— @) direction in the outer portion. Since Bx VP, is weighted by
1/B in (1.41), the westward contribution predominates if the hot plasma
is spatially bounded".

Simplified models of the ring-current field [26] can be constructed
empirically, by allowing the field perturbation to have a fixed spatial
profile whose amplitude is directly proportional to Dy,. Such a model
is illustrated in Fig. 9, where AB is the equatorial B-field perturbation
caused by the ring current. As noted above, this total field perturbation

“High-beta conditions also charucterize the vicinity of the dayside neutral
points and the mightside neutral sheet. Elsewhere in the magnetosphere it is
found that both /i, and §, are rather small in comparison with unity.

“Similarly, the inner edge of the plasma sheet can carry an eastward current,
even though the predominant flow of current on the neutral sheet is westward,
i accordance with the expectation based on gradient drift.
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includes the earth-induction field B; which can be simulated by placing
a point dipole at the geocenter. The ratio of B; to the field of the
earth's permanent dipole is very small. i.e., approximately the ratio
of Dy to onegauss. The form of 4 B beyond L~ 3 is not really independent
of Dg. as the model implies. In fact, the diamagnetic field depression
resides at <4 only when [Dg|Z 1007, The region of maximum hot-
plasma energy density is observed to be correlated with Dy in such
a manner that beta attains a value of order unity there [15]. Thus,
the diamagnetic depression moves outward in L with decreasing |D|.
However, the ring current exerts a negligible influence on the radiation
belts when Dy, is smaller than ~307 in absolute value. The model
summarized by Fig. 9 is therefore adequate in the sense that an accurate
profile of 4B/Dy is needed only for the rather large values of |Dgl
to which Fig. 9 applies.

-AB/ D,

0 2 4 6
L
Fig. 9. Semi-empirical relationship between equatorial ring-current field 4B and
magnetic index D,, [26]. including effects of currents induced on the surface
of a perfectly conducting carth (solid curve): with such earth-induction field sub-
tracted out (dashed curve),
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The Mead Field. In addition to ring-current effects, the earth’s magnetic
field is permanently distorted by virtue of currents that flow on the
magnetopause and neutral sheet. Various models are available for de-
scribing the effects of these currents in a quantitative manner [27,
28]. The permanent compression of the magnetosphere caused directly
by the solar wind can best be evaluated by expanding a scalar potential
function V. (r, 0. @) in spherical harmonics and deriving from this poten-
tial the magnetic field B=—V ¥, The coefficients introduced in the
spherical-harmonic expansion are then evaluated by requiring pressure
balance at the resulting magnetopause. This procedure is greatly simpli-
fied by supposing that the carth’s dipole is normal to the direction
of the undeflected solar wind. The use of a scalar potential ¥, (r, 0, @)
implies the neglect of plasma-pressure effects (e. g., currents) within the
magnetosphere. Pressure balance at the magnetopause therefore requires
that B*=8nr p,u’(1—cosiy) at each point on this boundary, where p,
is the mass density of solar-wind material, u is the velocity of the
undeflected solar wind, and ¥, is the angle of deflection caused by
encounter with the magnetopause. This formulation ignores the inter-
planetary magnetic field, whose energy density is smaller than that
of the flowing plasma by a factor ~ 100.

A simplified picture of solar-wind deflection by the magnetopause
postulates specular reflection of the plasma. In this case the angle W,
1s twice the local angle of attack of the incident solar wind. The resulting
coefficients gi" in the expansion

Voulr. 0, @)= — By(a*/r*)cos 0 +(a/b*) ¥ (r/b) G"B" (cost) cosme . (1.42)
=1
which exhibits north-south and dawn-dusk symmetry by virtue of the
assumed orthogonality of u to the dipole axis, define the Mead field
[28]. The symbol Pj'(cosf) denotes an associated Legendre polynomial
with Schmidt normalization ', as is conventional for gecomagnetic appli-
cations. The computed values of g7"/B, are given in Table 2, and b
is the equatorial “stand-off™ distance from the point dipole to the magne-
topause in the noon meridian. From the indicated coefficients it follows

that .
" b=1068 Bijdnpu)oa, (143)

so that b~ 10a under typical solar-wind conditions.

""The functions B™(x) are defined by the equations

2”’ Hl’! 12 “ —___(2]”"" dl‘ v m
(14 m)! 2N dx!tm

B™(x) =[ |[.\'3 - Il'[. m=0

H"'(xl=,}]” ;:, [(x*—1)], m=0.



A0 [. Adiabatic Invariants and Magnetospheric Models

Table 2. Expansion Coefficients for Mcead Field

fm gi'/Ba Lan qi'/By
1,0 08100 50 0.0184
2.1 0.4063 5.2 —0.0348
3.0 —0.0233 34 —(.0032
32 —0.0752 6.1 —0.0042
4.1 0.0775 63 0.0061
43 0.0052 6.5 0.0013

For illustrative purposes the potential given by (1.42) can be simplified
further by neglecting those coefficients g that have [> 2. The simplified
potenttal can then be written [28] in the form

Vo 0, p)=—Byla*/r*)cos0—[ By z— By z(x/h) |(a/b)*.  (1.44)
where x=rsintl cos ¢. z=r cos 0, Byx0.31 gauss, By = — g} ~0.25 gauss,
and B>=| 3§1~0.2] gauss. Very often the simplificd ficld derived from
(1.44) can be utilized fruitfully in analytical calculations related to adia-
batic motion and particle diffusion. In polar coordinates this simplified
ficld has the form

B, = —2 Byla/r)* cosf+ B, (a/h)* cos )

2 Byta/b) (r/a)costsin 0 cos @ (1.454a)

B,= — By(a/r)*sint) — B, (a/h)* sin ()
+ By la/by (r/a)2sin? 0 —1)cos ¢ (1.45h)
B, = By(a/b) (r/a)coslising , (1.45¢)

where r 1s the geocentric distance. ! is the colatitude measured from
the northern pole, and ¢ is the cast longitude measured from the midnight
meridian. Figure [0 illustrates field-line traces for this model and the
dipole field in the plane for which sinp=0. For this purpose field
lines are identified by the label L, defined as the limit of (r/asin®0)
as (/ approaches zero, This definition is motivated by (1.17b).

The simphfied Mcad field given by (1.45) can be considered a special
case of the general analytic representation [29]

Biir.thg:in)="3 BAl.m n:t)(r/a) cosOsin'Ocosmp  (1.46a)

Inn

Bylr. 0. 1)=Y By(l.m. n: 0)r/a) sin' 6 cos mep (146b)

L

B (r.0.p:t)= Z B, (I, m. n; t)(i-/a)" cos 6 sin' 0 sin mo (146¢)

Imn

_
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Fig. 10. Schematie representation of meridional ficld lines in (a) the 13-term
and (b) the 3-term magnetospheres (solid curves). Corresponding dipole field
lines (dashed curves) are shown for A=65, 707, 75, 80, 85, and 90, but
omitted for A=60 , where A=sec™ "(Li?). The symbol X marks the location
of the nightside neutral line that automatically appears in the 3-term model.

of a magnetic field having symmetry with respect to the equatorial
plane and the noon-midnight meridional plane. The completeness of
(1.46) as the expansion of an analytic function having these symmetries
1s quite evident. The radial variable r enters in the form of a Taylor-
Laurent series. Functions of the colatitude ¢ that are even with respect
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to 00=m/2 can surely be written as a power series in sin 0. As for functions
that are odd with respect to f=mn/2, the factor cos0 need enter only
to the first power, since even powers of cos @) can be written as polynomials
in sinf). Finally, a Fourier series in sinmg or cosme will suffice to
express an analytic function that is odd or even with respect to the
midnight meridian (p=0).

Since (1.46) is considerably more general than a spherical-harmonic
expansion of ¥,(r,f.¢:t), it can be used even in the presence of ring
currents and other distributed sources. All that is required for this
extension is that care be taken to satisfy the relation ¢VxB
=4xJ +(0E/At), where E is the electric field and J is the current
density. In addition to this requirement, of course, the magnetic ficld
must be made to satisfy V-B=0 under all conditions. This general
requirement leads to the constraining equation

(n+2)B. (=1, mn; ) +(I+ 1) By(Lm, ni t) +m B, (L, myn:t)=0. (147)
which indeed is satisfied by the coefficients

B,(0.0, —3)=2B,(1,0, —3)= —2B, (1.48a)
B,(0.0,0)= — By(1,0.0)= B, (a/b)’ (1.48b)
B.(1,1,1)=2B,(0,1,1)= —By(2,1, 1)

=—2B,(0.1,1)= —2B,(a/b)* (1.48¢)
B,=1.24B,=148 B, =0.31 gauss (1.484d)

appropriate to the simplified Mead model given by (1.45). As noted
above, the simplified field s especially useful for carrying out analytical
calculations appropriate to a model magnetosphere. In some cases how-
ever, the simplified model is not accurate enough to organize observa-
tional data obtained beyvond L=~ 5, ie. to recast such data in terms
of a standard magnetosphere by means of the required adiabatic transfor-
mations.

The Mead-Williams Field. The usual shortcoming of (1.45) in the descrip-
tion of observational data is the neglect of the necutral-sheet currents
associated with the geomagnetic tail. In principle, these currents fit
into the framework of (1.46) so long as they are distributed in space
rather than confined to an idealized sheet of vanishing thickness. In
other words, so long as J is everywhere finite in magnitude, there
are no singularities in B that (1.46) fails to handle. In practice, however.
it is customary to represent the neutral sheet in the idealized manner.
This means that the Mead field (typically as derived from Table 2)
is augmented by the field of a current-carrying sheet located on the
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nightside equator. Various representations are possible. The popular
Mead-Williams field [30] represents the current sheet as a strip of
finite width (x = x, to x =x, subscripts denoting the near and far bound-
aries) extending from y=— to y=+= (see Fig. 3). The current
is assumed to be distributed uniformly between x=x, and x=x, and
flows from y= + x (east) to y=—ac (west). Near the current sheet
itself, the resulting tail field B, has a magnitude

Bi=2n/c)(x;—xa) "1, (1.49)

where I is the total current carried. This field points sunward (—X)
in the northern hemisphere and antisunward (+xX) in the southern
hemisphere. As a result, nightside polar field lines (i. e., those emanating
from the earth at polar latitudes) are greatly extended in the equatorial
region.

_ With the aid of a system of synchronous satellites (r=6.64,
¢=2m/day) it becomes possible to compile a magnetospheric “weather
report” providing both b (the stand-off distance) and B, (the tail field)
as functions of time. The method is to compare the observed magne-
tometer readings at various longitudes with those predicted by assuming
various combinations of the two model parameters. The determination
of b and B, is made most confidently by comparing equatorial values
of B at ¢=0 (midnight) and ¢=n (noon). The model parameters are
then defined by locating B, (¢=0) and B, (p=m) in Fig. 11, which is
a contour plot of b and B; [31]. In case multiple-satellite coverage
is not available at the synchronous orbit, it may be necessary to utilize
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Y

=0,

Beleg

250

Fig. 11, Equutuﬂal magnitudes of B at noon (p=rn) and midnight (p=0) in
synchronous orbit (r=6.6a) computed [ 31] for selected values of the Mead-Wil-
liams parameters hj/a and B, [30], with x,/a=10.6—0.06(B,/17) and x/a=200.
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readings of a single magnetometer taken at twelve-hour intervals for
the purpose outlined above. This procedure is acceptable as long as
magnetospheric conditions do not change significantly during the twelve-
hour interval between midnight and noon [31]. Using the report of
the day-to-day variation of h and B, obtained by this method, it is
possible to recast particle data obtained beyond L =3 in terms of a
standard magnetosphere, e. g., the dipole field. In this case cach particle
in the distorted ficld is to be identified with an equivalent “particle”
having the same three adiabatic invariants and phases (but probably
a different pitch angle and energy) in the dipole field. For L<5 it
is usually unnecessary to make such a transformation, as the effects
of currents on the magnetopause and neutral sheet are small in magnitude
there, when compared with the magnitude of the dipole field (see Section
1.4).

There exists some doubt that the subsolar point (r,0,@)=(b,x/2,7)
on the magnetopause should be treated as a point of specular reflection
{as in the Mead model) rather than a point of hydrodynamic stagnation
[10]. The truth presumably lies somewhere between these two limits.
If p, is the density of mass flowing at the solar-wind velocity u. pressure
balance at the subsolar point is expressed by the relation p,u*=B*/4n
for specular reflection and by p,u* = B?/8x for hydrodynamic stagnation.
The superficial consequence of the uncertainty involved here 1s a possible
error ~ 12% in specifying b by means of (1.43): a deeper consideration
of the hydrodynamic model would require a difficult recomputation
of the coeflicients 7' that appear in Table 2. Existing problems in
the field of radiation-belt dynamics, however, appear to transcend such
subtleties in modeling the magnetosphere.

Similarly. a more realistic model of the tail field might take into
account the fact that the relevant current loops close over the cylindrical
surface of the magnetosphere rather than at infinity. By thus restricting
the current sheet to a lateral dimension <45, it is possible to extend
X to infinity, or at least to realistically large distances (2 50h) without
catastrophe to the dayside magnetosphere. An additional element of
reality would be introduced by taking account of the tilt that exists
between the eurth’s dipole and the solar wind. Since the dipole axis
is inclined 11.4" to the rotation axis, which in turn 1s inclined 22.5
to the ecliptic plane. the tilt of the dipole away from normal solar-wind
incidence can amount to as much as 34", depending on time of day
and scason of year. In recent years considerable progress has been
made toward constructing models that account for the influence of
tilt on the shape of the magnetopause, the character of the distorted
field. and the position of the neutral sheet. As with the questions raised
in the paragraph above. it appears that these considerations are quite
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important in defining the overall structure of the magnetosphere (includ-
ing. for example, the description of diurnal and scasonal variations
characteristic of ground-based magnetometer readings), but that these
complicating effects are not of crucial importance to the radiation belts
per se. In other words, the existing state of knowledge concerning the
carth’s trapped-radiation environment does not justify the additional
labor inherent in more realistically describing the containing magnetic
field for radiation-belt studies. Accordingly. the field models employed
in subsequent analyses will be kept as simple as possible.

1.6 Magnetospheric Electric Fields

Large-scale electric fields in the magnetosphere originate primarily from
temporal variations of the magnetic ficld, from the rotation of the
carth, and from plasma instabilities of the neutral sheet. Electric ficlds
induced by temporal variations of B are not derivable from an electro-
static (scalar) potential V., because ¢V x E= —¢B/d1. Those resulting
from the earth’s rotation and from neutral-sheet instabilities can be
derived from scalar potentials, The electrostatic field caused by the
rotation of a magnetic dipole about its axis, taken as an idealized
geophysical situation, is given by

E=—(1/0)iR, xr)xB
=B, (8, a/e)2 0cos ) —Fsin O)(a/r)? sin ) (1.50)

where £y is the angular velocity of the earth. This field can be derived
from the potential

Volr.0.0)= — BoQoa’/c Ly, (1.51a)
where

L,= !‘er% (r/a sin 0), (1.51h)

The limit indicated in (1.51 b) must be evaluated along the magnetic
field line. The field-line label L proves to be useful in other applications
inwhich internal geomagnetic multipoles are neglected, ¢. g.. those involv-
ing the Mead field, hence the need for a precise definition. A dipole
field line, of course, identically satisfies the relation r= Lya sin* (.

The so-called convection electric field E, required to maintain the
tail (neutral-sheet) current in the presence of intrinsic plasma turbulence
is customarily represented via the potential

Vor.0.p)=E.al.ising (1.52)
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in the region where B is dipolar. This expression reduces to V.(r.n/2,¢)
=FE,y in the equatorial plane, where the idealized ficld attains the
spatially uniform (in two dimensions) magnitude E.. directed from dawn
to dusk (—¥). This field drives a sunward (—X) convection of plasma
in the forward portion of the magnetosphere, where B=2z in the equatorial
plane. The plasma flow follows from the standard relation

va=(¢/B*)E x B. (1.33)

In the magnetotail, however, the general direction of B is either —X
(northern hemisphere; z>0) or +x (southern hemisphere: z<0). The
result is a plasma flow velocity

va= —Z(cE./B)z/|z|) (1.54)

directed into the neutral sheet.

A picturesque interpretation of (1.54) is that the field lines themselves
flow into the neutral sheet at a speed ¢E./B,. there experiencing a
mutual annihilation that liberates energy at a rate of 2(Bi/8n)(c E./B:)
per unit area since B?/8n is the density of field energy. Similarly, it
is possible to view sunward convection of plasma as a “snapping back”
of field lines that have been dragged downstream by a viscous interaction
with the solar wind. Indeed. there exists such a viscous interaction
at the magnetopause, but it acts fundamentally upon the plasma rather
than upon the field [ 12]. Plasma and field-line motion can be identified
in terms of (1.53) by requiring also that E=—(1/c)v,x B [see (1.50)].
There exists, then, a choice between postulating field-line motion at
velocity v accompanied by plasma motion at the same velocity (line
tying) on the one hand, and the convection of plasma at velocity v4
across a stationary B field on the other.

Particularly in the steady state, for which ¢ B/ t=0, the dual concepts
of field-line motion and line tying can be very confusing when taken
as a foundation for quantitative analysis. The description based on
physically measurable quantities such as E and B is never less adequate
than the more colorful description, and usually yields more readily
to quantification.

The electrostatic fieldsderived from (1.51) and (1.52) have the property
that E-B=0, where B is given by (1.16). The property E-B=0 seems
to be essential for the identification of field-line motion with cold-plasma
motion [32]. Accordingly, it has become conventional to postulate
the condition E-B=0 as a means of mapping magnetospheric electric
ficlds. The usual rationale for this postulate is that the magnetosphere
contains cold plasma of sufficient density to short out any appreciable
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field-aligned component of E [11]'". Applicability of the condition
E-B=0 anywhere beyond the plasmasphere is a matter of some contro-
versy, although (as noted) this procedure is the conventional one for
mapping magnetospheric electric fields [33].

It 1s inappropriate to employ (1.51) and (1.52) where the magnetic
field differs significantly from that of a dipole. One prescription for
obtaining E in the distorted ficld involves an expansion analogous
to (1.46). This prescription defines an iterative procedure [34] whereby
the condition E-B=0 is imposed order by order in r/b. beginning with
(1.50).

Operating within the framework of the dipole field, it is not difficult
to establish the existence of both closed and open equipotential surfaces
of the superimposed convection and corotation electric fields. The total
electrostatic potential of this idealized steady-state magnetosphere has
the form

V.(r.0,¢)=E,Lsa singp— Bo(Qpa’/cLy), (1.53)
and so equipotential (constant-},) surfaces are specified by
Ly=QE, asing) " {V, £ [V} +@E B, Qya*/c)sing] 2} . (1.56)

Examples are illustrated in Fig. 12; the singular equipotential surface
that separates the closed and open cold-plasma drift shells is that for
which V.= —2(E,BoQoa?/c)!'% This shell, which satisfies the equation

Li=(BoQoa/c E)'?[(1 +singp) 2 —1] csco. (1.57)

is closely associated with a virtual discontinuity in the magnetospheric
cold-plasma density. The underlying reason for this plasmapause is that
ionospheric plasma originating at low and middle latitudes remains
trapped within closed equipotential surfaces. while that originating at
sufficiently high latitudes proceeds to escape from the magnetosphere.

Thedimensionless parameter (By Qoa/c E.)' ? appearing in (1.57) mea-
sures (in earth radii) the nominal radius of the plasmasphere. More
precisely, this parameter identifies the equatorial geocentric distance
to the plasmapause at the dusk meridian (o= —mn/2). which in this
idealized model corresponds to the “bulge” region, i e., the region of
maximum geocentric radius. A plasmasphere diameter of six earth radii
in the noon-midnight meridian corresponds to a radius of six earth
radii at dusk in this model, and leads to the estimate that E,~4pV/cm

“Beyond the radiation belts, e g.. in the auroral zone, violations of this
rule are quite common. The auroral zone appears o be associated with the
earthward portion of the plasma sheel.
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e

Fig. 12. Eleetrostatic equipotential contours in the equatorial plane of the idealized
geomagnelic dipole. computed for [, =0.526 V/km (contours are unlabeled for
F.<—40kV and omitted for 1< —T70kV).

under typical conditions. In reality, the plasmasphere exhibits a some-
what less pronounced azimuthal asymmetry, and the “bulge™ appears
roughly midway through the evening quadrant (¢~ —7/4). This means
that (1.52) somewhat oversimplifies the actual convection electric field.
Moreover, the size of the plasmasphere [see (1.57)] is found empirically
to vary with magnetic activity (e.g.. with the geomagnetic index K,)
in a manner compatible with the statistical relationship [35]

E.x5.65(mec?fq,a)u/c), (1.58)

where m, is the mass of an electron. g, is the charge of a proton,
and u is the solar-wind speed. This formula vields E.~6uV/cm for
u=400km/scc. A statistical correlation between £ and u is intuitively
appealing in that sunward convection of plasma is supposed to balance
(on average) the outward flow characteristic of a viscous boundary
layer at the magnetopause [ 12].

The steady component of the magnetospheric electric field imposes
a final restriction on radiation-belt particle energies. Convention requires
that gradient-curvature driflts dominate adiabatic E x B drifts, at least
to the point of guaranteeing existence of the third invariant: ie., a
closed drift shell (see Introduction). Preferably, the particle energy should
be large enough that the drift shell deviates msignificantly from that
caleulated in the absence of magnetospheric electric ficlds. This condition
imposes the requirement that E/L > |q| E.a~4keV (see above)and demar-
cates the outer radiation belt from the ring-current belt. with which
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itis Spaziall)_x coincident. Within the plasmasphere, however, it is necessary
lo operate in a frame rotating with the earth unless F 7. =yl ByQua’/c
~100keV [see (1.51)]. Particles not satisfying this criterion should
probably be excluded from consideration, since the usual radiation-belt
rpethogls and scaling laws (e. g.. Fig. 6) do not apply without this modifica-
tion. I'-"zgurc I3 summarizes the parametric demarcations that distinguish
radiation-belt particles from the other inhabitants of the carth’s magne-
tr;sphcrc, based on the various considerations outlined in the present
chapter.
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Fig. 13. Spatial und spectral classification of charged particles in the magnetosphere.

L7 Flux Mapping and Shell Tracing

As_a general rule. the particle flux J,(E:r) per unit energy E per unit
solid angle Q2 at local pitch angle « is related to the distribution function

Fpipoir) of (1.12) by the formula

JAER)dEdQ=((p wpLinp/m)pidp d Q, (1.59)

where m=7pmy is the relativistic mass and mq is the rest mass. The
S P w2 2

total energy m =E+mgc? is related to the scalar momentum p by

the equation .

(E4+moc®VP=p et +mict=pic®+pl 2L miet, (1.60)
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where pj = pcoszand p, = psina. From (1.60) it follows that mdE= p dp,
and so (1.59) becomes
JE:r)=p*f(pipLir). (1.61)

This equation is specialized to the case of locally mirroring particles
by requiring p;=0 (x=mn/2), so that

J i (E;r)=2moMBf (0,p . :r). (1.62)

Since Liouville’s theorem (Section 1.3) assures that f (py.pL;r) remains
constant along a dynamical trajectory in phase space, conservation
of the first adiabatic invariant means that J /B at constant M remains
fixed along the trajectory of a representative particle’s mirror point
in either hemisphere.

In an azimuthally symmetric magnetosphere, the tracing of drift
shells would be very simple. Each shell could be generated by rotating
a field line about the axis of symmetry. Particles mirroring at different
latitudes along a given field line would proceed to generate coincident
drift shells in the course of adiabatic motion, and the equatorial pitch
angle of each particle would remain unchanged with azimuthal drift.

In the earth’s magnetosphere, this azimuthal degeneracy is broken
not only by the day-night asymmetry of the B ficld, as represented
by (1.45), but also (to a lesser extent for radiation-belt particles) by
the dawn-dusk asymmetry of the convection electric field, as represented
by (1.52). As a consequence, the drift shells generated by the adiabatic
motion of particles identical in species and energy, sharing a common
ficld line at some longitude, generally do not coincide at other longitudes
if the particles have different pitch angles at the equator of the common
field line. This adiabatic phenomenon is known as shell splitting [ S].
The extent to which drift shells are split by the azimuthgl asymmetries
can be judged by independently tracing the shells that correspond to
distinct equatorial pitch angles sin™ 'y on the common field line. It
is instructive to consider the two dominant asymmetries separately.

Electric Shell Splitting. When the electrostatic potential given above
by (1.55) is superimposed on the magnetic-dipole field (1.16), the tracing
of drift shells is accomplished by employing conservation of J=2L,a-
pY(y), M=p?2mgB,.and J*&mya*M=B,,Lj Y*, where B,,=By/L}y*.
The conserved energy W= E+¢gV.(r) is given by

2moc MB+mict=(moc? + W—q Vo). (1.63)

From these identities follow the differential relationships
(1/B)d B, /d @)= —(2/L,)d Ly/d @)— 2/ Y)d y/d @) Y'(y). (1.64a)
2/ v/d@)= —(3/L)(d Ly/d)—(1/B)dB,/dp). (1.64b)
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and
M2 M(d B, /dp)= (1.64¢)

~g(myc? + W —q V) [tev, e L), (dLyde)+(cV./dp), ]

Taken together, equations (1.64) and (1.30) vield the drift-shell equations

dLjde=L; T(yNmyc* +W—g VI3 (W —gq V)2mye® + W—q ¥,)D(y)
— T(Wimg e + W—gV)g@v,e Ly, "qoV.d @), (1.65a)

dy/de=—(v/dL)[Y(y)T(¥)](d Ly/d ). (1.65b)

T'hus, evolution of the drift trajectory Ly(p) clearly depends upon y,
and S0 the nonvanishing of (0 V,/0 )y, = E.a Ly cos ¢ leads to the splittirig
of drift shells. In the limit of very weak shell splitting (|q V.| < W). the
lowest-order approximation -

Li(@)=Ly(0) {1 +[(myc? + W)/2m, * + W)
X(GEaLy3W)[T(y)/D(y)]sing! (1.66)

ﬁ}llows from (1.65). The ratio T/D is a monotonically decreasing function
of y.

Magne!ic Shell Splitting. For sufficiently small absolute values of the
expansion parameter g E.a Ly/W, the shell splitting predicted by (1.66)
is negligible compared with that caused by azimuthal asymmetry of
the magnetic field. To evaluate this latter effect, it is propc} to neglect
Ve(r)and calculate the energy-independent drift shells imposed by (1.45).
In this case the expansion parameter &;=(By/Bo)(Lsa/b)* < | character-
1zes the azimuthal asymmetry. With the neglect of ¥.{r), the variables
p and B,, become constants of the motion in a static B field. It is
necessary, however, to generalize from the dipole functions T(y) and
Yi(y) so that 27/Q, and J can be written

27/ =4 Lya(mip) T(v; L. ¢) (1.67a)
J=2L,ap¥Y(y; L, ). (1.67b)

j[‘he derivation lcading to (1.30) equally well relates Y(y:Lso) to
!{_r:_L.,.uJ}. Gcncra]im_tiun of (1.28) to the non-dipolar B field (1.45)
requires at least that T(0: Ly, ¢) and T(1;L, ) be calculated to lowest
order in &y =(By/Bo)(Lsa/b)* and e:=(By/Bo)(Lsa/b)*. The results are
given by
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T(O; Ly, @) =1+(1,/2)+ &,(151,—161)
—4,(1471,,—2051,,+5415)cos (1.68a)

T(: Ly, @) =(x/6)]/2[1 +&, — (25 ,/14) cos 0] , (1.68b)
where
i | o natd, (1.68¢)
* (1+3cos*0)!/2

0
and follow from a tracing of field lines that deviate from the dip_tole
solution r=Lyasin*(. To lowest order in &; and &, the distorted field
lines satisly the equations

dinr/df=B,/B,=2ctnf)—3¢,sin’Ocos
+2,(38in° 0 —1)sin® O coslcos ¢ (1.694)

r=Lyasin®0[1—(s,/2)sin® ) |
+(2£,/21)(7sin? 0 —3)sin” fcos @] . (1.69b)

The functional value of T(0;Ls) is defined by the requ_irement t_hat
LaaT(0:Ls@) be equal to half the arc length of the entire field line,

L.,

LiaT(O; Ly, @)= | [P +(dr/d0)7 +rsin® 0d o/d0yT2d8. (1.70)
V]

Since (d@/d)?* is of higher order than first in &, this contribution
to the arc length is neglected in obtaining (1.684) directly from I_I.§9)
and (1.70), Numerical values of I, are listed in Table 3, together with
the specilic combinations needed in (1.684). )
Thederivation of (1.68 b) follows that of (1.28¢). The h_:g_rmomc bounce
approximation requires that (0°B/0s?) defined as B-V(B-VB), be eval-

Tahle 3. Selected Integrals I,

I, =0.760346 1-=0.406500 11:=0.315466
13— 0.630306 15=0.385465 I,5=0.305646
1,=0.553737 1o=0.3675%) 11 =0.296713
1.—0.501251 110—=0.352080 1,,=0.288537
15=0462142 I1,=0,338446 1,-=0.281016
1s=0431423 112=0.326330 1,4=0.274066

I(1/2)1,=1.380173
151a—161,=—0.988542 .
|4?l|3—205-{1n f'sdlﬁ"" _3-3‘”8—’4
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uated on the magnetic-equatorial surface, i. e, on the surface for which
¢ B/és=0and ¢ B/0s>>0, For B given by (1.45)and r <0.85 this surface
coincides with the plane O=mn/2. A general expression for 82B/ds? at
(=n/2, applicable whenever B is derivable from a scalar potential and
has north-south symmetry about this plane, is
Br* (0% B/os*)=2r(@B/0r) +3BIE B/C r)+ B?

+2(6 B/3 0)* + B,(¢2 B2 07) . (1.71)

In particular. if B is given by (1.45), the result is

Br?(¢* Bj0s*)=9 B> ~9 B, (a/b)’[3B—2 B, (a/b)*]
+2 B3 (a/h)°(r/b)* (1 +15 cos® ) (1.72)
+ B, (a/b)* (r/b)[39 B—48 B, (a/b) ] cos o

at U=mn/2. Taken to lowest order &; and &2, this result combines with
(1.69b) to yield

B V@B R =G/La) 11— +(25 6,14 c0sp]. (1.73)

Since Q3 =(p*/2m?* B)(¢* B/és*)according to (1.26), it follows from (1.67 a)
and (1.73) that T'(1: Ly ) is correctly specified by (1.68b).

_ It is consistent with (1.30) to express the functions f‘{,r:_Ld, ) and
Y(y:Lag) in the form

;F‘{,\': LJ.' (P]: T{U: Ld‘ qﬂ]+{:l '1'201[-1.'4_81'1,3 GZ'{_'.'JL'['JE o
—(1/2[T(0: Ly 0)— T(1; Ly 0)](y + ')

)}(1'; Lip)=2+ylny— 2‘]‘1"‘!) f_[(); Ly q)
—QRy+ylny—2p"T(1; L,, @) (1.74b)
=26, vG, (1) =26, ¥ Gs(y)cos o,

(1.742)

where Gi(1)=Gi(1)=G>(1)=G3(1)=0. Fxcept for these four end-point
constraints dictated by (1.68). the functions G;(y) and Ga(y) remain
1o be specified (see below).

The drift-shell equation for constant pand B, (=B_/v?) is obtained
by invoking the constancy of J [given by (1.67b)]; it follows that

dLjdp=—[(CB/C @) (Y-2T)+2B,(@Y/C )] (1.75)
+[2B/L) Y+2B,(@ ¥/0 L), +(@B,/0 L) (¥—2T)].

where B, is the field intensity at #=nr/2. From (1.45b) and (1.69b)
it follows that

Be=(Bo/LH[ 1 +(561/2)— (15£2/7) cosp]. (1.76)
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If (1.75) is then evaluated to lowest order in the field asymmetry, the
result 1s

dLyjd@=—[L12B, D(y)][2(Bo/L)E Y/2 @)y,
+ (15 By/Dla/by* (Y =2 T) Lysin ] (1.77a)
dL,/do~ —(B,/21 By) Lila/b)* (1/12D)[45(Y =2 T)
+4(1471,, 2051, +541 )2+ viny—2y"%)  (1.77b)
+42yG,(y)—=T5T(MRy+yIny—2y"3)]sing.

where (1.34¢) defines 12D (y)=6T (y)— Y (v). The use of_[ 1.77 b) is made
convenient by the development of an analytical approximation for

QM=45Y(1)—-0T(M+42yG,(») —75T(MR2y+yiny—2y"3)
+4(1471,,—2051 5+ 54 1)(2+yInp=2p'?), (1.782)

which must satisfy the conditions

Q(1)=—90 T (1)~ —66.6432441 (1.78b)
Q(0)=8(1471,,— 2051 ,+54 I~ —27.1266694  (1.78¢)
Q()=(15/2)[9 T(0)—41 T(1)] = —134.5360732.  (1.78d)

Exact numerical evaluations [ 19, 36] of T'(v), Y (y). and the shell-splitting
function Q/12D yield the functional values Q (v) given in Table 4. Plotted
on a graph (not shown here), these functional values indicate that Qiy)
varies only weakly with y for y <04, but quite strongly for yz0.7.
and that Q(y) is almost a monotonic function. The empirical representa-
tion [66]

Q=00 +[2Q(1)=20(0)—(1/4)Q'(1)]»*
+[OO) QD)+ (1/HQ'(1)] * (1.79)
x> —27.12667—45.39913 v* 4 5.88256 ®

provides numerical accuracy well within 1% over the entire range
of y (see Table 4) in addition to satisfying the end-point (y=0 and
y= 1)requirementsexactly. It is therefore proper to use (1.79) in combina-
tion with (1.28), (1.31). and (1.36) in the tracing of magnetospheric
drift shells. No approximation for Gi(y) is needed for this purpose,
and so none has been developed.

Integration of (1.77 b) with respect to ¢ leads directly to a Iow_csl-urdcr
expression for tracing drift shells whose pitch-angle degeneracy is broken

."Ji..s
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Table 4. Exact and Approximate Values of Qy)

O i Exact Q Approx. Q A40/0
0 0.000000 —27.127 ~27.127 0.0000
20 0.028947 —27.085 - 27.127 +0.0015
30 0.093098 —27.090 —-27.130 +0.0015
40° 0.206042 —27.118 —27.208 +0.0033
50 0.367471 —27.777 —27.953 +0.0063
55 0.462962 —29.051 —29.200 +0.0051
60 0.564719 —31.645 —31.683 +0.0012
65 0.668717 —36.026 - 35970 -0.0016
70- 0.769660 —42.509 —42333 —0.0041
15 (.860593 —50.378 —50.289 —0.0018
80 0.934656 —358.313 58.347 +0.0006
85~ 0.983074 —64.323 —064.398 +0.0012
50 1OOOBON — 66,643 — 66,643 0.0000

by theday-night asymmetry of B. Two limiting cases of notable simplicity
are recovered from (1.77b). For y=1 the drift trajectory is a path
of constant B on the equatorial surface. For y=0 the drift shell follows
field lines of equal arc length.

Numerical evaluation of (1.72) for the reasonable values h=10g
and Bo=1.24B;=148B,=0.31gauss reveals that the right-hand side
becomes negative on the day side (cos@ <0) for #=8a. This behavior
signals a bifurcation of the equatorial (minimum-B) surface as one
approaches the magnetopause. In other words, dayside field lines for
which L, is sufficiently large (2 10) satisfy ¢ B/?s=0 and 02B/0s>>0
at points symmetrically displaced in magnetic latitude from the equatorial
plane of symmetry [5]. An “equatorially mirroring” particle (one with
infinitesimal bounce amplitude) selects either the northern or southern
branch of the equatorial (minimum-B) surface. depending upon the
instantancous value of its bounce phase @ as the particle traverses
the singular contour on which ¢ B/@s?=0 in the plane of symmetry
(0=m/2). Lowest-order expansions such as (1.68) apply only to drift
shells on which each field line has a single minimum-B point.



