
I. Adiabatic Invariants and Magnetospheric Models 

1.1 Preliminary Considerations 

As long as it remains trapped within the earth's ~agnctosphcrc. a 
radiation-belt pa rticle of mass m and charge q typically executes a 
hierarchy of three distinct forms of quasi-periodic motion. The most 
rapid of these is gyrario11 about a fiel~ li~1e a~ frcq.uency fl1 (2rr = 
-q B/2 mnc, where R is the local magnet1~-f1eld mt~ns1ty a ~1d. c is the 
speed of light. T he instantaneous center of the gyration ?rb1t 1s known 
as the particle's g11idi11g ce11ter. An average over gyra tion reveals .an 
oscillation of the guiding center between magnetic mirror points, which 
arc located at a pair of well-defined positions along a path that very 
nearly coincides with the original fi eld line. This periodic bounce motion 
between mirror points proceeds at a frequency Q2/2n- P/2 rrS, wh~re 
v is the speed of the particle and S is the an.: length of the entire 
field line.finally, an a vcragc over the bounce motion re\ ea ls an azimuthal 
drift of the guiding-center trajectory. This drift motion gencra~es a 
shell encircling the earth: complete circuits of this shell are accomplished 
al the drift frequency Q3 /2rr- ( P2/2rr.Q,S2

) . where the angle bracket<> 
denote an average over the entire particle orbit. 

The time scales for gyration. bounce, and drift are respectively separ­
ated by a factor of order i:= ( r/Q1S). T he limit s l ~I ii> required .for 
performing the averages mentioned above so as to separate the mot~on 
into the three distinct components. This condition imposes the require­
ment that the gyrorad ius be much smaller everywhere than the Ieng.th 
of the guiding field line. Radiat ion-belt particles of interes~ here. arc 
thus d islinguished by the requirement Isl~ l from very energetic particles 
such as galactic cosmic rays, which may have gyrorad ii as large as 
the magnetosphere. This limitation on radiation-belt cm:rgics is n.ot 
a universally accepted convention, but it is conceptually usefu l to n:stnet 
the radiation belts to particles whose kinematics fall within the hierarchy 
outlined above. Special methods of numerical analysis L l 7] beyond 
the scope of the present treatment .must generally. be em.ployed where 
lt:I~ I. Such methods trace the clcta1ls of each particle trajectory. 

The limits on particle energy appropriate lo the radiation belts 
can be estimated by calculating e for a special class or particles, ri:., 
the class of particles magnetically confined to the equatorial plane 
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of a dipole field. These particle~ C'dn be though! of as .. mirroring at 
the equator". or as bouncing with infinitesimal amplitude but finite 
frequency. If a is the radius of the earth (in which the magnetic dipole 
is assumed to be centered}. the length of a field line that crosses the 
equatorial plane at a d istance of L earth radii from the center is given 
(see Section 1.4) by 

S= 2la[I + 1:21 J} ln(2+ J '31]-::::.2.7003La. ( 1.01) 

For a particle carrying the charge of Z protons, it follows that 

s:::: fJL 2(mc2/2.76q Hoa)::: (JL 2(mc2/216ZGeV), ( 1.02) 

where f3 = v/c, c is the speed of light, and Bo(:::: 0.3 I gauss) is t he equatorial 
magnetic-field intensity at the earth's surface. The limit Ir.I~ J required 
of radiat1on-belt particles is therefore satisfied by kinetic energies up 
to approximately 10/L2 GcV for protons, alpha part icles, and other 
light ions, as well as relativistic electrons. 

I.2 Action-Angle Variables 

The three distinct periodicities associated with gyration, bounce, a nd 
drift motion give rise to a hil:rarchy consisting of three pairs of action­
angle variables. The action variables J i (i = 1.23) arc canonically defi ned 
(7] by the path integrals 

J ;= f [p+ (q/clA}dl. (l.03) 

where p is the particle momentum and A is the electromagnetic vector 
potential. The first action integral J 1 corresponds to gyration about 
a field line. The first te1m of ( 1.03) for i = I is therefore equal 
to 2np:/mlQtl. where /JJ. is the component of p normal to B. This 
follows from the fact that the orbit of gyration has a circumference 
equal to 2nv /IQil, where l' J =p 1/m. The second term of (l.03 ) fo r 
i = I is equal to q/c times the magnet ic n ux enclosed by the orbit 
of gyration. Thc net resu lt is tha t 

J1 = 1tp!c/ Blql (J.04) 

if one observes the sign convention thal Q 1 is pos1t1ve for electrons, 
which gyrate in a positive (counterclockwise) sense about the fi eld line. 
Since the rest mass 1110 is a constant of the motion. it is usual to 
extract from ( l.04) a quantity 

M = pl/"211108. ( 1.05) 
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known as thefirsr adiaharic im•arianr. This is not empty nomenclature, 
for M is indeed an 111variant of the motion if the fickh k. y .. magnetic, 
electric, gravitational) seen by the particle remain virtually constant 
in time over the entire orbit of gyration. In practice this requires also 
that such fields do not vary signilicantly on a spatial scale as small 
as r .i/IQ1I· Nole that M;y b equal Lo the magnetic moment of the 
particle. where}' ( = m/mo) is the usual relativistic factor. 

The second action integral J 1 is evaluated along the bounce path, 
which is essentially parallel to the guiding field line and therefore cnclos~ 
no magnetic flux . Conve ntion does not distinguish between the second 
action integral J 2 and the second adiabatic i11raria11t 

( 1.06) 

where Pll is the component of p parallel to B and s is a curvilinear 
coordinate that measures distance along a field line from the equator. 
The adiabatic invariance of J holds for a particle acted upon by forces 
that remain virtually con:,lant in time over the bounce period. 

The third action integral J 3 is associated with the azimuthal drift 
motion. The integral around the drift shell may be evaluated along 
any closed curve that lies entirely on this surface and encircles the 
earth. For this action integral the first term of ( 1.03) is of order &

2 

(and therefore negJigible) compared to the second. It follows that 

J3=(q/c)<P, (1.07) 

where <P, the magnetic flux enclosed by the drift shell, is known as 
the third culiahalic i1111aria11/. The integral is independent of the path 
within the limitations spccilicd above because no field lines intersect 
the drift shell in the limit lol ~ I. The sign convention adopted in ( 1.07) 
corresponds to that for Q,, since the drift of electrons is also counterclock­
wise. Thus, the signature of <P is positive for q>O and negative for 
t/ <0. The third invariant is generally conserved for a particle acted 
upon by forces that remain virtually constant in time over the complete 
drift period. Figure 6 provides contour plots of the gyration, bounce, 
and drift frequencies versus kinetic energy and L for protons and electrons 
mirroring at the equator of a geomagnetic dipole field [see Section 
l.4]. 

By their execution of all three types of adiabatic motion, particles 
that belong to the radiation belts are distinguished from a variety 
of other particles found within the magnetosphere. Thus, ~olar cosmic-ray 
particles having energies appropriate to the radiation belts often enter 
the geomagnetic tail and descend to the polar caps. Since the tail 
does not support bounce motion, however. these particles must either 
precipitate into the polar atmosphere or mirror magnetically and return 
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Fig. 6. Contours of <.:Onstant adiabatic gyration, bounce, and drift frequency 
for equatorially mirroring particles in a dipole field. Adiabatic approximation 
fails in up11cr right-hand corners (£~ 1 OeV. L-l!). sin<.:c !21 -Q2 -Q3 implies 
lcl -1. 

to interplanetary space. As they do not remain trappt,"CI within t he 
magnetosphere, these particles disappear from the polar caps as soon 
as their immediate source (e. y .• a solar flare) i!> extinguished. 

Particles that populate the quasi-trapping regions (sec Introduction) 
are similarly excluded from the radiation belts by their inability to 
complete a drift period. A quasi-trapping region supports bounce morion 
and yields a well-defined second invariant. but it generates only partial 
drift shells that intcrsc,-ct t he magnetospheric surface either at the mag­
netopause or at the neutral sheet. Thus, particles whose mirror points 
lie within a quasi-trapping region do not persist after withdrawal o f 
their source and (by this convention) do not belong to the radiation 
belts. 
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For those particles that do execute all three types of quasi-periodic 
motion, the quantities J ;/2 re (i = l,2,3) constitute a complete set of canoni­
cal angular momenta. The angular coordinates to which the J;/2re are 
conjugate can be identified as the phases <p; tha t describe the progress 
made by a particle toward the completion of a gyration, bounce period, 
and drift period. Each phase q;1 is considered to advance at its own 
characteristic rate {Ji, so as to achieve an increment of 2 re upon comple­
tion of the period 2 re/Q; of the motion. 

Conservation of the adiabatic invariants M, J, and <P requires, in 
effect. that cp i, <p 2, and q;3 be cyclic coordinates [7] of the dynamical 
problem. Violation of the invariants occurs only in the presence of 
forces that vary on a sufficiently short spatial or temporal scale that 
particles having different phases respond differently. This, of course, 
is the underlying reason for the validity of adiabatic theory as a kinemati­
cal foundation for t he study of radiation-belt dynamics. 

1.3 Liouville's Theorem 

The kinematical state of a particle in three-dimensional motion can, 
in generaL be defined instanta neously by specifying its three coordinates 
of position and three components of canonical momentum. These six 
quantitites locate a point in the six-dimensional continuum known 
as phase space. As time evolves, the motion of the particle generates 
a trajectory in phase space. 

A system consisting of N distinct particles of a given species (e.g., 
protons) is described by a set of N distinct points in phase space. 
When N is very large, it proves convenient to describe the distribution 
of these points in phase space by means of a six-dimensional density 
function f(n1,q;:t) where then; (i= 1,2,3) are components of canonical 
moment~m, the q; are coordinates of position, and t is the time. This 
distribution function has the usual significance that .f d 3n cf.lq is the 
number of particles instantaneously occupying the six-dimensional 
volume cl3n d 3q in canonical phase space. 

In Hamiltonian mechanics the temporal evolution of.f(n;,q;;r) is 
specified by Liouville's theorem [7], which asserts that 

3 

(df/dr) = (o.f/c t) + I [n;(of/crc;) +qJoI/cq;)]=O (1.08) 
i = I 

along any dynamical trajectory in phase space. Tn more picturesque 
terms, the phase-space volume containing the system of N distinct 
representative points moves incompressibly through phase space. The 
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dynamical trajectory of an individual particle is governed by the equa-
tions 

rr;= -a H/?Jq; 

q;=1i H/t'n;, 

( l.09a) 

( J.09 bJ 

where H (re;, q;:t) is the Hamiltonian. Liouville's theorem implies that 
the content of an infinitesimal six-dimensional volume d3n d3q surround­
ing a particle's location in phase space remains invariant as the particle 
executes its dynamical trajectory. T his mea ns that a unit Jacobian charac­
terizes the transformation of such an infinitesimal volume moving in 
accordance with the laws of classical mechanics. Indeed, the execution 
of a dynamical trajectory is describable by a sequence of infinitesimal 
contact transformations [7]. Each of these infinitesimal transformations 
has the properties that 

n;->n; +dre;= n; -(f) H/c1q;}d I 

q;-+q; +d q;= q;+ (c H/iJn;)dt 

H-.11 + dH = H + (r H/ot)d I 

in accordance with ( 1.09). 

( l.lOa) 

(1.lOb) 

(l.IOc) 

Apart from its utility in specifying the adiabatically invariant action 
integrals h the canonical momentwn n is not a convenient physical 
quantity in the study ofradiation-belt dynamics. It is far more convenient 
to deal with the locally observable particle momentum p alone than 
in combination with (q/ cJ A, since the e lectromagnetic vector potential 
A is neither locally observable nor uniquely defined. Accordingly, it 
becomes advantageous at this point to introduce the distribution function 

.f(p.r;i), which represents the density of particles in a six-dimensional 
(but non-canonical) position-momentum space. The relation between 
f (p, r ; I) and/ (n, q ; t) is readily obtained via the algebraic transformation 

n = p+ (q/c)A (I.I la) 

q = r. (1.11 b) 

No loss of generality is suffered by supposing that the coordinates 
are Cartesian. In this case it is easy to verify that the transformation 
defined by (1.11) has a unit Jacobian, from which it follows that 
f(p, r ;t)=/(n, q ;t). The distribution function f (p,r ;L}, of course, has 
the significance thatfd3p Pr is the number of particles instantaneously 
occupying the infinitesimal six-dimensional volume d 3 p ti3 r in position­
momentum space. Since/ (p,r;r) is numerically equal to the phase-space 
density f(n.q;t), it follows that f remains constant along a dynamical 
trajectory in position-momentum space. This property js summarized 
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by the equation (known as the Vlasov equation) 

(of/o r) + (p/m)· (of/ar)+ F · (of/o p)=O, ( 1.12) 

where F=p is the force applfod to a particle of momentum p located 
at posit ion r. The particle velocity " is equal to p/m, and the relativistic 
mass m exceeds the rest mass mo by the factor 

y= [l +(p/moc)2]1f2, (1.13) 

where c is the s peed of light. 
The Vlasov equation is sometimes cast in the alternative form [18] 

(of/fl l) + L V;(O .f/o r;) + L (F;/m)[c'l;j-(V; c/c2)](t'l f /ot) =0' (l.14) 
i ij 

where C>u is the K ronecker symbol (=l for i=j and = 0 for i :t=j). 
T his form can be derived from (1.12) by noting that 

( 1.15) 

As formulated here, the Vlasov equation takes account of the relativistic 
kinematics of charged particles but does not include certain processes 
(such as collisions) that are not easily described by a Hamiltonian. 
Such processes are best added phenomenologically to the Vlasov descrip­
tion. 

1.4 The Dipole Field 

For purposes of analytical calculation it is often convenient to represent 
the geomagnetic field as the field of a magnetic dipole centered within 
a perfectly spherical earth. The dipole axis is assumed to be coincident 
with the axis of rotation, and the spherical polar coordinates r, 0, 
and <p are measured from the center of the earth, the north pole, and 
the midnight meridian, respectively. T he field intensity is given by 

B= - Bo (2r cos fJ + iJ sin 8)(a/r)3
, (I. I 6) 

where a is t he radius of the earth a nd Bo( :::.:::0.31 gauss) is the equatorial 
(0= n/2) magnitude of Bat r= a. A field line that intersects the equatorial 
plane at a distance r= La from the origin generates a drift shell to 
which is assigned the dimensionless parameter L. The differential equa­
Lion of this field line is 

d r/d 0= r B,/Bn= 2rctn e, 
from which it is deduced that 

r= Lasin2 &. 

(l.17a) 

(1.17b) 
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The element of arc length a long the field line is therefore 

d s= La(l + 3cos2 0) 1 
'
2 sin()d 0, 
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( 1.18) 

and from this expression follows the value given by (1.0J) for the total 
length S of the field line. 

In the formal theory of adiabatic motion it is customary lo introduce 
the Euler potentia ls x and f3 such that A=tY.V/3 and (therefore) 
B= \7(): x V f3. T he dipole field can be generated by assigning the Euler 
potentials?:= - B0 a~/L and fJ=<p. so that 

(1.19) 

These assignments are not unique, since they can be modified by a 
gauge transformation without altering any physic.al consequences. T he 
~hosen representations, however, have the special significance that 
l<PI = -2 n:x and cp 3 = /J, i. e., the Euler potentials a re immediately related 
to the third invariant a nd drift phase, respectively. Euler potentials 
are used elsewhere in describing the geomagnetic field [19], but are 
om itted from further discussion in this volume. 

The kinematical description of the radiation belts is simplified greatly 
by the customary assumption that field lines are equipotentia l. Of course, 
this assumption is not rigorously justified, bul for particles of sufficiently 
large energy the variations of time-independent electrostatic and gra vita­
tional potentials a long a field line a re unimportant"-. 

The adiabatic motion of a cha rged part icle infl uenced only by a 
magnelosta tic field of mirror geometry conserves both M, as given 
by fl.OS), and the kinetic energy E=m0 c2{11- l). It follows from (1.13), 
then, t hat p2 {=pl+ pO) remains constant, where Pll is the component 
of momentum parallel to B. T his component of p vanishes at each 
mirror point, where the guiding-center magnetic-field intensity is denottxl 
8,,,. Here the angle between p and B. known as the pitch angle, is 
90''. T he minimum angle between p and B attained during the bounce 
period is known as the equatorial pill'h angle, because this minimum 
occurs at that point along the guidjng field line at which Bis a minimum; 
in the dipole field this point lies on the eq uatorial plane. 

T he bounce motion of a particle's guiding center along an eq uipoten­
tial field line has a period 

( 1.20) 

4Gravity is totally negligible for p.1rticle energies <: I keV. Electrostatic-potentiaJ 
variatioos along a field line in the radiation zone may amount to 10- JOO volts, 
and so arc similarly negligible for particle energies<: I keV [ 11]. 
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where the integral is evaluated along the guiding field line. Both p 
and M arc constants of the bounce motion. and the integral above 
can be inlcrprctc<l either as twice the spiral path length between mirror 
points along lhc acl ual trajectory. or as the integral of the pitch-angle 
secant along the guiding-center trajectory. T he instantancou~ value of 
s, in other words. is given b~ 

µ,!m=[lptm)2 - (2moMB11112l]1 2 =(p/m)[l - (8/B,,,,]' 2 . (1.21) 

The maximum value of p 1 along the bounce patb corresponds to the 
minimum of 8. Thus, if x is the cosine of tbe equatorial pitch angle 
and B,. is lhc oquatorial guiding-center field magnitude, it follows that 

x 1 = 1-(Be/B,,,)= l-y2 , ( 1.22) 

where r is the sine of the eq uatorial pitch angle. 
ror the dipole field it follows from(!. l 6)and (1.17b) that Be = Bol .t 

and that 
B = (Bo/L 3 )( 1+3 cos2 0) 1 

'
2 csc(J 0. 

The bounce period 2n/Q1 is therefore represeuta ble as 

2n/Q2 =(4mLa/p) T(y), 

where 

(1.23) 

( l.24a) 

( 1.14 b) 

The colatitude Om of the northern mirror point is given by the relation 

(1.25) 

At .r= O the integral for T {y) is easily evaluated. Theresult is T(O)= S/2La, 
where S (the length of the field line) is given by ( 1.0 I). At y= I (Om- n/2) 
the integral can be evaluated by an appeal to the theory of small-ampli­
tude oscillations [7] about the equator. The equation of motion for 
such a parlidc subjcctt.:d to magnelostatic forces is 

111.~·= - (Mjy)(? B/os)= -(p2/2m8e)(i12 B/i'Js 2)i-::., ( 1.26) 

where t he subscript I! denotes the equator (s=O). The magnetic moment 
in general is cq ual to /vJ /)>, and this amounts to p2 /2111 B,. for an IX! ua tor­
ially mirroring particle. The equatorial value of c2 B/c s2 is given by 

(t2 B;i'~ 2 ),,= B,.- V(B · V B)e= (3/ La)2 B .. . ( I.27) 

110 that 02=(p/m)(3/ l 2La). It follows that T(l)=(n!6Jl :2. 
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For O<y<l, exact evaluation of (l.24b) in terms of elementary 
funccions of y is impossible. A very good c~timatc, however, is provided 
by cbe formula [20] 

where 

T(r)~ T(O) - nr(O) T(l)](r-r1 2) . (l.28a) 

T(O)= 1 +(1 /2 V3)1n(2+ VJ)~ 1.3802 

T( 1) = (7t/6) Vl ~ 0. 7405 

~ [T(O)- T(1)] ~0.3198 ~ 

(1.28 b) 

(1.28 c) 

(1.28d) 

at worst. this estimate deviates from the numerically computed function 
T(y) by less than J % (see Table I). 

Table I. Functions or Rouncc Motion in Dipole Field 

0,,, _rt ·2 sin - • 1• Exacl T Approx T Exact Y Approx Y 

0 0.00000 0.00 1.380 uxo 2.760 2.7flJ 
I 0.00194 0.00 1.380 1.380 2. 7(fJ 2.758 
5 0.02165 O.QJ 1.376 1.373 2.741 2.730 

tO 0.06102 0.21 1.366 1.359 2.682 2.6633 
15 0.1114 0.71 1.350 1.341 2.587 2.565 
20 0.1701 1.66 1.327 J.:\ 16 2.457 2.434 
25 · 0.2352 J.17 1.29!< 1.287 2296 2.275 

JO " 0.3051 5J4 1.264 1.253 2.109 2.091 ,_ 
.:>) 0.3785 8.23 1.224 l.21J 1.901 1.886 
40 0.4539 11.89 1.179 1.169 1.678 1.666 
45 0.5303 16.33 1.129 1.121 1.446 1.437 
50 O.flJ62 21.56 1.076 1.069 Ult 1.205 
55 0.6804 27.58 1.020 1.014 0.9793 0.9761 
flJ 0.7515 34.38 0.963 0.959 0.7577 0.7562 

65 0.8178 41.97 0.906 0.905 0.5521 0.5517 
70 0.8773 50.32 0.854 0.85'.\ 0.3693 0.3692 
74 - 0.91l<6 57.54 ' 0.816 0.816 0.2438 0.2438 
73 · 0.9528 65.20 0.784 0.785 0. 1408 0.1408 
82 - 0.9785 73.23 0.760 0.761 0.06386 0.06387 
86 0.9945 li 1.54 . 0.745 0.746 0.01617 0.01617 
90 · l.0000 90.00 0.740 0.740 0.00000 0.00000 

The second invariant J, as given by ( 1.06). can be approximated 
by means of a formula dcrivabh:: from ( 1.28}. The invariant is given 
by 

J = 2plaY(y), ( 1.29a) 
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\\here 
~ 12 

Y(y)=1 f sin0(1 + 3cos2 0) 1
•
2 d0 

[t -y2 csc6 8(1+3 cos2 0) 112
] 

112 . ( 1.29 b) 

U,11 

The observat ion that 

(1.30) 

enables Y(rl to be estimated from (2.28). Since Y(l) - 0. it follows 
that 

I 

Y{J) = 2 y J u - 2 T(u)d u:=::::2(1 - y) T(O)+ [T(O) - T(l)](y In y+1y - 2 r'f2). 
).' (1.31) 

This estimate remains within 1 % of the numerically computed Y(}>) 
for all values of y between 0 and I (see Table I). Moreover, the exact 
analytical result that Y (0)= 2 T(O) is reproduced by ( l.J I). An expansion 
for x 2= l - .r2 ~I reproduces the hannonic-oscillator approximation, 
which implies chat 

J = f p 1d s = ~ (pi/111)d t ~ (p2 x 2 /2111)(2rr/ Q2) ( l.32a) 

or 

(l.32b) 

ln {1.32a) the time-averaged va lue of rn is equa l lo half the maximum 
value, since Pll is a harmonica lly varying quantity in the limit of vanishing 
bounce amplitude. This maximum value, attained al the equator. is 
p2 xi. 

As a further application of ( 1.28) it is possible to estimate the pitch­
angle dependence of the azim ut hal drift frequency Q3;2n. According 
to the sign convention introduced above, the drift phase cp3 is a temporally 
increasing qua ntity, so that cp3 = - (q/ l£/l)Q3, where Q3 =cp is the time 
derivative of the particle's azimuLhal coordinate (sec Sections l.1 and 
l.2). lt follows from l lt1111ilton-Jacobi theory [7] that 

(1.33) 

where H (=}'moc1 ) is the Hamiltonian. Eva luation of this expression 
is facilitated by noting that (l.13) implies d!l/dp = p/m. while (1.07) 
implies h = lql(2nDoa2; ,L). It follows from (l.05), (1.29). and (1.30) 
that 

(c11ny/f ln Lh1.J= - lJ4 T ( l.34a) 
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and 

(op/,~ L)M .J= lp/4L T)(Y-6T) :: [3 p/L T(y)J D(y), ( 1.34 b) 

where 

12D(y)=6T(y)- Y(v). (l.34c) 

Simple a lgebraic manipulations thus lead to the fo rmula 

Q3/2 n = (3 i' L/2 n)(p/m a)2 (m0 c/q 80 ) [ D(y)/T (y)] 

= -(3 L/2 n i')(/'2 
- l)(c/a)2 ("'o c/q 8 0) [ D(r)/ T{y)] (1 .35) 

for the azimuthal drift frequency. 
Since Y(l) =Oand Y(0)=2T(O), it follows at once that T(1)= 2D(l) 

and T(0)= 3D(O). F'or intermediate values of y, an accurate analytical 
approximation to D(y) is provided by ( 1.28) and ( 1.3 1 ). Explicitly stated, 
the result is 

12 D(.v).:::::4 T(O)- [J T(0) - 5 T(1)] y- [T(O) - T(1 )j(y Jn y+ y 112). (1.36) 

The estimate for D (r)/ T (J} provided by ( 1.28) a nd ( J.36) deviates at 

----
---- - - --

Fig. 7. Functio ns governing the pitch-angle dependence of bounce and drift frcqui;:n­
cies in a dipole field. 
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worst by less tha n 0.2 °1<1 from the numerically computed ratio D(y)/T(y). 
F igure 7 indicates graphically the dependence of T(y). Y(y), D(.1•). and 
D(1')/ T(y) upon y. The functions D()') and T(y) and their ratio all 
vary monotonically with .r in such a manner that, for a given particle 
species and energy, the bounce frequency and drift frequency are maximal 
for particles that mirror at the equator and progressively smaller for 
particles having mirror points at progressively higher (poleward) lati­
tudes. T his varia tion of boun<:c and drift frequency with equa torial 
pitch angle (sin- 1 y), however, is remarkably weak, as it amounts to 
less than a factor of two in each case. 

The equations of this section summarile the adiabatic mot ion of 
a particle trapped in the field of a magnetic dipole centered within 
the earth. The three invariants .W. J. and <I> arc conserved, and (since 
the field is symmetric in azimuth) the drift shell is generated by rotating 
the guiding fi eld line about the dipole axis. The gyrofrequency flt/2rr 
varies with the instantaneous position of the guiding center along the 
field line. The minimum magnitude of Q 1 is given by lqlBo/mcL3 and 
is attained at the equator. The maximum value is !qlB0 /mcL3y 2 and 
is attained at the mirror latitude. Since the drift shell is symmetrk 
about the dipole axis, the bounce frequency Q2/2n is independent of 
azimut h and given by QiJ2n= [p/4mLaT(l•)]. A further consequence 
of azimuth<ll symmetry is that the bounce-averaged a Limuthal coordinate 
<P advances eastward (in the <.:asc of a negatively charged pa rticle) or 
retreats westward (for a positive ion) at a constant rate equa l to the 
value of Q3 given by ( 1.35). The fu nctional forms of T(y), Y(y ), and 
D(y) noted above are, of course. valid only for the dipole field. 

l.5 The Distorted Field 

The centered-dipole field ill only a gross idealization of the tr ue geomag­
netic field. The idealized field has value as a standard of reference 
for the analysis of radiation-belt dynamics, however. and this value 
is enh:rnced by an a ppreciation of the extent to which the true field 
deviates from the ideal. 

The di polar component of the earth's field originates in the molten 
core. I l igher multipoles of the core field d iminish in intensity by compari­
son with the dipolar component and are relatively unimportant at 
geocentric distances of order one earth radius and beyond. Measurements 
made at the ea.rth's surface. however, suggest that the dipole axis is 
ti lted 11.4' relative to the rotation axis and d isplaced ...,,400 km from 
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the center of the earth 5. True magnetic anomalies (dev iation~ from 
a dipolar field) can origina te either from higher multiroles of the core 
field or from concentration~ of f'crromagne1i<: material in the earth's 
crust. In addition. currents can he inducl'.d in the earth and in the 
i~nospherc hy virtue of the earth\ rotation and by externally produi.:l.x:I 
disturbances (sec belmv) of the geomagnetic field. These mduccd rnm:nh 
can be very complicated in structure; fortunately. they nrc not known 
to have a domina nt influence on the radiation hdts. 

The prindpal distortions of the ea rth's 01111•r magnctosphcrc arc 
caused by currents on the magnetopause, on the neutral sheet. and 
within the magnetosphere itself. The current laya that constitutes the 
magnetopause serves to confine the geomagnetic field within. Thus. 
the magnetopmrsc is a boundary beyond which the earth ·s fidd docs 
not extend. The neutral sheet, which separates the oppositely oricnt1..xJ 
ll ux Lubes lhal constitute the geomagnetic tail, <:il rrics currents 1 ht1t 
lend generally to weaken the nightsidc field i ntcn~ily. Together. the 
magnetopause and neutral sheet form the magnctospheric surface. 

The final source of field distortion important for the radiation belts 
is the ring rn1Te111 carried by the hot c.:omponent of the magnetosphcne 
plasma. The d ircction of gradient-curvature drift in the earth·., field 
is westwa rd for protons and eastward for electroni>. and indeed the 
net ring curn:nl nows 1i•estwal'd. The result isa generally nut ward displace­
ment of fi eld lines. i.e .. a decreased magnetic-field int ensity at the c<-trt]f<; 
surface and elsewhere interior to the ri ng-current 1onc. but an enhanced 
field strength at exterior point!>. With particle gyration taken into account. 
the spatial distribution of electric-current de11Sur is found to have a 
more subtle structure than con~idcration of gr~1dicnt-curvature drift 
alone would suggest. For reasons discussed below, the local current 
density actua lly is directed eastward at the inner edge of the ring-current 
belt, but the net current ca rried by a spatially bountied hot pla,ma 
does flow westward. in accordance with the un"ophi..,ticatcd expectation. 

fl is generally considered imprn<:l ieal to modd all the aforementioned 
c.urrent syste!ns simultaneously and selr-consisrently. In studying radia­
tion-belt dynami<::;. by theoretical means. however, it is usual!~· sufficit·nt 
to rerngn_ilc lha~ scJr-consistent magnetic-field models exist i11 principle. 
Thus. 1L 1s pos:-.1blc to imar1i11e the computation of a particle's three 

'The 400-1..m <.faplaccmcnl caU):CS the apogee of :lll inner-zone partick drift 
~hell lo be loc:ncd over tbe western Pacific Ocean. Comcr~dy. rx·rum: is au:uncd 
O\er rbe south Atlantic. Since the field intensit)' al a ui~cn 2coccntric <1!11111e/1 

o~er the. south Atlantk i~ substanlially :-ma lier than at 01i1er gc~grnphic locatit>ns. 
Lhrs region where drift shells at1;1in p1.:rigcc i:, often calh:d the So11rl1 ,·J/la111ii 
··a110111aly''. 
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adiabatic invariants and three phases with the understanding that these 
invariants and phases identify an equivalent "particle·' trapped in the 
centercd-<lipolc reference field. In particular, t~is m~ntal e~erci~e assigns 
to the particle a unique. significant. and adiabatically invariant shell 

parameter [ 5] 
( 1.37) 

i.e .. Lhc shell parameter of the adiabatically c4uivalcnt "particle" in 
the dipole field. 

The :\1cllwain Paramet~r. In most cases it is. in fact. necessary to carry 
out some form of adiabatic transformation of obserrati0twl data so 
as to establish a requisite degree of order. In practice, quiet-time observa­
tions of the inner radiation zone (L:$3) need be corrected only for 
anomalies of the permanent geomagnetic field (including displacement 
of the point dipole). Since this field is constant over the lifetime. of 
a typical satellite experiment. it is ~ustomary to cir~umvent computation 
of the imariant shell parameter given by ( 1.37). lt 1s found that ob~erva­
tional data from the inner zone can be ordered adequately by spec1fymg 
the mirror field Bm and the second invariant J for particles of known 
energy. It is customary lo derive from these 4uantitics a n?n-inva~ian.~ 
shell parameter L,,,, defined as the dipole shell parameter of a "pa_rucle 
having the same B,... J, and energy. To faci litate the calc~1lat1on. of 
Lm. it is u!>ual to introduce the quantity J : J /2r. In a dipole field 
it is found that 

r 2 (/3 8,,.,ia3 Bol= y2 R = [Y (r)] 3 
. . 

( 1.38) 

where 1•
2=BoJL3 8

111
• The shell parameter L,,, is thus defined by the 

rdatio1~ /,;:,= B0/)' 2 B
111

• where y is the solution of ( 1.38). The value of 
1 is computed within the framework of an empirical model of the 
permarn.:nl geomagnetic field 1'. and the value of R ( = 13 Bm/aJ Bo) is there-
by determined (21]. . 

Since the function Y (J') given by ( l.29) cannot be expressed m closed 
form by elementary functions, an exact algebra i ~ solution o~ ( 1.~8) for 
y is impossible to obtain. Moreover, the analytical approxunat1on to 
·Y(.r) given by {l.31) docs not render (1.38) algcbra.icall?' tract~blc as 
an equation to be solved for J" A numerical solullon 1s possible, of 

~he parameter L •• originally defined by Mc:lh~ain f:?I] is computed by assign· 
ing Bo 0.3 l 1653 gauss. t lowcvcr. it \"ould bt: more reasonable to compute L .. 
u~1ng the best available field model and the corresponding value of Bo for th~ 
epoch in question [22]. 
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course, but for most purposcs the empirically deduced relationship 
[22] 

Bml,~/Do~ I +(18/n") 1
'2 R 111 1-0.465380R23 -(r(Ol]- 3 R 

::: 1+t.350474H 1 3 +0.465380 R 2 3 -r0.047546 R (1.39) 

is entirely adequate for defining L,,, in terms of I and Bn,. Indeed, 
the error in using ( 1.39) to specify L,,, amounts lo less than 0.01 %, 
as compared with the value of L,,. ohtained via the exact dipole function 
given by (l.29b). The coordinates Bm and L,.., generally called (B, L) 
coordinates. arc known to order inner-zone particle data satisfactorily 
during magnetically quiet periods. in spite of certain conceptual difficul­
ties;<'· y .• the fact that (cvt:n in an azimuthally symmetric field) particles 
having th~ ~amc <P can be assigned dilTerent values of L,,.. The utility 
of (8. L) space for describing the inner zone during quiet periods resides 
in the fact that such conceptual discrepancies are of insignificant magni­
tude there. For example. the variation of Lm (as computed from a 
standard 512-term multipole expansion of the permanent geomagnetic 
field) among part icles whose mirror points ue along a given field line 
amounts consistently to less than 1 '~o [21]. 

The Ring Current. During magnetically disturbed periods it is necessary 
to take adiabatic account of ring-current effects in both the inner (L:53) 
and outer (l<'.;3) radiation zones. As a very crude approximation, the 
ring current may be compared to a solenoid located beyond L ~ 3. 
This approximation suggests a roughly uniform field perturbation 
orien!ed parallel to the dipole axis and extending throughout the inner 
zone '. This perturbing field often attains a magnitude <:: '.!00 1• during 
magnetic storms and is closely a!>sociatcd with the equatorial geomag­
netic index Dsr, which is suppos1.:d to measure lhe azimuthally symmetric 
component of the axial fi eld perturbation induced by the storm [23]. 
The signature of D., (as obtainLxl from low-latitude magnetograms) 
is usually negative because the perturbing field points c;outhward. thereby 
d~minishing the field intensity at the earth's surface, where the equatorial 
d1polar component points generally northward. (On exceptional occa­
sions, when the ring current is weak, a positive D" can result from 
compression of the magnetosphere by the solar wind.) 

During a magnetic storm the ring current tends to coexist spatially 
with a portion oftheouterzonc.and so it would be a poor approximation 
to extend the uniform perturbing field beyond L::::3. Indeed, within 

;Temporal changes in the uniform ax ial field induce tviu surface currents) 
an elJectiw magnctil: dipole in the earth, which is essentially a perfect conductor 
on the time scale of a geomagnetic l>lorm. · 
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the belt of ring-current protons and electrons, diamagnetic effects can 
accentuate the field depression beyond that seen at the earth ·s surface 
(r=a). On the outer fringes of the ring-current belt, the field depression 
is greatly reduced. At sufficiently large distances the ring current woul? 
resemble a magnetic dipole (of finite extent) aligned with the earths 
di pole. The result is therefore an augmentation of the earth ·s licld 
at such distances. Since self-constistent models of the ring current and 
its magnetic field [24] require considerable computation. it is cust?ma~y 
to employ semi-empirical models to account for the associated ad1abat1c 
effects upon radiation-bell particles. 
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Fig. 8. Schematic representation of the gyration a~1d azimuthal drift (solid curve) 
of an cquaLorially mirroring proton, with associated current patterns (da:-;hed 
cur\'es). 

Figure 8 illustnites thedrift-phasea veraged current pattern associated 
with the gyration and gradient drift of an equatorially mirroring ~:oton. 
The current pattern in this case has a width of two gyroradu. The 
inner portion of this pattern carries an eastward current. while the 
outer portion carries a somewhat larger westward current The net 
Dux of electrical current across each meridional half-plane is westward, 
as provided by the gradient drift. Formulation of a ring-current model 
consists of superimposing the contributions of all protons and elcc.trons 
in the hot plasma, whose behavior is governed by the self-consistent 
field. 
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In a plasm<l lwving pressure P .i in the direction normal to B, the 
nwgneti:::ation cw-rem (caused by particle gyn1tion) has a density J111 = 
-cV x (P .iB/8 2 ). Under nonrelativistic conditions. gradient drift pro­
duces a current density Ju= c(P _/B2)B x VB. and curvature drift yields a 
currem density ,J,.=c(P11/B

2)B x (oB/os). where P11 is the component of 
plasma pressure parallel to B. T he magnetization current can be written 
in the expanded form 

J 111 = - c(P J./B2 )V x B+(c/ B2)B x \7 P J. -2J(I 

and the gradient-drift current can be expressed as 

Ju= c(P l. IB 2)[B x (cBRs)-(\7 x Bh]. 

(l.40a) 

(l.40b) 

In differen1ial geometry the normal vector DB/l's has a magnitude equal 
to the local curvature of the field line and points toward the center 
of curvature. Under the static conditions considered here, the total 
current density J satisfies the relation c\7 x B=4nJ =4n(J,., + .ly+ J ,.) 
and is given [25] by 

J =(c/B)B x V' P _ +(c/ 8n)({J11 -/h)B x (cfi/cs). ( 1.41) 

where /-J11 =8n P11 /B2 and fJ .t=8n P. /B2
• The beta parameters relate 

the pressures exerted by the hot plasma to that exerted by the magnetic 
fidd. Observations of the earth's ring current indicate that /311 and 
f1 _ both attain magnitudes of order unity in the region of space most 
densely populated by protons in the energy range I0- 50 keV [LS]. 
This region lies in the vicinity of L=3 during large magnetic storms 
and near L= 7 during geomagnetically quiet times8. 

The initial term of ( 1.4 l) points in the eastward ( + f/J} direction 
in the inner portion of the ring-current zone. but in the westward 
(- <PJ direction in the outer portion. Since Bx'\/ P J. is weighted by 
l/ B in ( 1.4 1 ). the westward contribution predominates if the hot plasma 
is spatially bounded CJ. 

Simplified models of the ring-current field [26] can be constructed 
empirically, by allowing the f"ield perturbation to have a fixed spatial 
profile whoi>e ampl itude is directly proportional lo D 5,. Such a model 
is illustrated in Fig. 9, where LI B is !he equawrial B-field perturbalion 
caused by the ring current. As noted above, this total lield perturbation 

,qHigb-betu conditions abo charnckrize the vicinity of Lhe dayside neutral 
points and the. nightside neutral sheet. Elsewhere in the magnetosphere it is 
found thaL b1Hh /i11 and fi .c arc ntLher small in compari:.on with unity. 

~sim ilarly, the inner edge of the plusma sheet <.:an c:<irry an eastward current, 
even though the pn.:dominant flow of current on the neutral sheet is wes.1ward. 
in accordance with the expectat ion based on gradient drift. 
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includes the earth-induction field Bi which can be simulated by placing 
a point dipole at the geocenter. The ratio or 8, to the field of the 
earth's permanent d ipole is very small. i.e., approximately the ratio 
of D . ., to one gauss. T he form of LIB beyond L- J is not really independent 
of Ds,, as t he model implies. In fact. the diamagnetk fi eld depression 
resides at L$4 only when ID.wl< IOO y. T he region of maximum hot­
plasma energy density is ob~erved to be correlated with D,r in such 
a manner t hat beta attains a value of order umty there [ 15]. Thus. 
the diamagnetic depression moves outward in L with decreasing IDsrl· 
Howt:"er, the ring current exerts a negligible influence on the radiation 
belts when D"' is smaller than -30)' in absolute 'value. The model 
summarized by Fig. 9 i!-1 then.fore adequate in the sense that an accurate 
profile of L1 BID,, is needed only for the rather large values of ID.511 
to which Fig. 9 applies. 

-I 

0 2 4 

Fig. 9. Scmi-cmpiric.:al rdation~bip between equatorial ring-current field JB and 
magnetic index D,. [26). mcludmg effects of cum.:nt~ 111<lm:c<l on the: surface 
of a perfectly conducting earth (solid cune): with ~uc.:h <arth-mduction field suh­
tracted out (dashed curve). 
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The Mead Field. [n addition to ring-current effects. the earth-s magnetic 
field is permanently distorted by virtue of cu rrents that flow on the 
magneto pause and neutral sheet. Various models are available for de­
scribing the effects of these currents in a quantitative ma nner [27. 
28]. The permanent compression of the magnetosphere caused directly 
by the solar wind can best be evaluated by expanding a scalar potential 
function Vm(r. 0. q>) in spherical harmonics and deriving from this poten­
tial the magnetic fi eld B= - V V,,.. The coefficients introduced in the 
spherical-harmonic expansion are then evaluated by requir ing pressure 
balance at the resulting magnetopause. This proced ure is greatly simpli­
fied by supposing that the earth's dipole is normal to the direction 
of the undcflcded ~o lar wind. The use of a sca lar potential Vm(r. 0, q>) 
implies the neglect of plasma-pressure effects (i'. y., currents) within the 
magnetosphere. Pressure balance at the magneto pause therefore requires 
that B2 =8npsir2 (1 - cost/f .. ) at each point on this boundary, where"" 
is the mass density of solar-wind material. u is the velocity of the 
undeflected solar wind, and tf!, is the angle of deflection caused by 
encou nter with the magnetopausc. Th is formulation ignores the inter­
planetary magnetic field , whose energy density is smaller than t hat 
of the flowing pla!>ma by a factor ~ 100. 

A simplified picture of solar-wind deflection by the magnetopausc 
postulates specular reflection of t he plasma. In this case the angle t/!. 
is twice the local angle of attack of the incident solar wind. The resulting 
coefficients YI" in Lhl! l!xpansion 

-r 

V,,,(r, 0, <p) = - B0 (u 3/r2
) cos f) +(a3/b2

) L (r/ /Jfjj/" P,"'(cos 0) cosm <p, (1.42) 
I I 

which exhibits north-south and daw n-dusk symmetry by vir tue of the 
assumed orthogonality of u Lo the dipole ax is. <lelinc the Mead field 
(18]. T he symbol P/"(col:if-J) denotes an associated Legendre polynomial 
with Schmidt normalization 10, as is conventional for geomagnetic a ppli­
cations. The computed values of g("/Bo are given in Table 2, and b 
is the equatorial "stand-off' distance from the point dipole to the magne­
to pa use in the noon meridian. From the indicated coefficients it follows 
that 

( 1.43) 

so t hat b:::::: JO a under typical solar-wind conditions. 

1 "The functions P,"' (x) an: <lefmed by the equal ions 

P.'" -[.:!(/ 111)!]1 ;2(1-x2)m'2 di."' .2 I 
, (x)- {/ + 11 --Y-11 d ,. ,,. LI-~ - 1)]. 

Ill . -· x 
m>O 

°"' 1 cl'[ 2 '] r1 (x)=,,
1
, 

/ 
.t (x - 1), m=O. - . ( ,\ 
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Table:? I xpan~ion Coeflic1cnts for Mead Field 

/.111 1ii"1Bu l,111 11;"/Bo 

1.0 0.hlOO 5.0 0.0184 
2. 1 0.4065 5,2 - 0.0'.l48 
3.0 -0.0233 5.4 -o.oo.n 
:u - 0.0752 6.1 - 0.0042 
4.1 0.0775 6) 0 0061 
4.3 0.0052 6,5 0.00 u 

-----

For illusrrau\c purpo'>c-; the potential given by ( 1.42) can be simplified 
further by ncgk<.:ting those coeffidcnts gt that have I> 2. The simplified 
potential can tl1cn be written [28] in the form 

l'.,, (1'. 0. tp) -= - o\)(11"\1r 2) cos 0- [ B 1.: - 82 .:( ~fh) I (a/b )3. ( 1.44) 

whc-re -.:= r ::.in II CO'\ <J>.: r col> A, B().::::0.31 gauss, R 1 = - gl ~0.25 gauss, 
and B::= I 3g1~0.21 gau~s. Very often the simplified field derived from 
( 1.44) can btt utilized fru11fully m analytical cakulations related to adia­
batic motton and parttck d11Tu~ion. In polar coordinah:l> this simplified 
field ha::. the form 

B, - 2 Bv(a1 r) 1 co~H+B 1 (a, 11) 3 1.:os (} 

2 /),(11/h)~(r/a)cosVsinOcostp 

Bu = B0 (u/r)3 sin 0- 8 1 ta;/1)~sin1J 

+ 132 (a · bl~ (r/a)l2 siu2 0- I) cos 1p 

IJ,,= J.J~(u //i)4 (r •a)cosllsin cp. 

( 1.45 a) 

(1.45 b) 

( 1.45 c) 

where r is the gt:uccntric d istance. 0 is the colatitude measured from 
the northern pole, and tp is the cast longitude measured from the midnight 
meridian. Figun: 10 11lustrat1:s field-line traces for tlus model a nd the 
dipole field in the plane for \\hicb sin <p=O. For this purpose field 
ltnt:s arc identifil-'<I by the label LJ. defined as the limit of (r/a sin 2 0) 
"" fl approach..:s zero. I his definition is motivated by ( l.17 b). 

The simplified Mead field given by (1.45) ca n be considered a special 
ca..,..: of the gt.:m:ral analytic representation [29] 

B,!r. 0. 1p; t) = L 8,(1, 111, 11: 1)(r/a)"cosO~in'Ocos111cp (1.46a) 

'""' 
B,,(r. 0. !fl: f)- L 80(1, 111. 11: l)(r,'al" sin'(} cos 111<p (1.46 b) 

,,,,,, 

B,,(r, II. 1p; ,,.,.... L B<P(l. m.11: t)tr!a)ncos(Jsin10sinmtp (l.46c) 
Im" 
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Fig. IO. Schcmauc rcprcscntatton of mcnd1onal field lines in (a) the 13-term 
nnd fb) the 3-ll'mi mugnelo~pheres (solid curve)), Corresponding dipole field 
lines (dashed curve~) are shown for A = 65 , 70 , 75 , XO , XS . and 90 , but 
omitced for A= 60 , where A::sec- 1{LJ'2). T he symbol X marks the location 
of the nightsidc neutral line that automatically appears in the 3-term model. 

of a magnetic field having symmetry with respect to the equatorial 
plane and che noon-midnight meridional plane. The completeness of 
( 1.46) as the expansion of an analytic function having these symmetries 
is quite evident. The radia l variable r ent er~ in the form of a Taylor ­
Laurem series. Functions of the colatitude 0 that a t e C\'Cn with respect 
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to 0 = rr/2 can surely be written as a power series in sin 0. As for functions 
that are odd with respect to fl=n/2, the factor cosO need enter only 
to the first power, since even powers of cosO can be written as polynomials 
in sinO. Finally, a Fourier series in sinmcp or cosmcp will suffice to 
express an analytic function that is odd or even with respect to the 
midnight meridian lqJ=0). 

Since ( 1.46) is considerably more general than a spherical-harmonic 
expansion of V,"(r,0.1p;l), it can be used even in the presence of ring 
currents and other distributed sources. All that is required for this 
extension is that care be taken to satisfy the relation cV x B 
=4nJ -t (oE/er), where E i~ the electric field and J is the current 
density. In addition to this requirement, of course. the magnetic field 
must be made to satisfy V · 8 = 0 under all conditions. This general 
requirement leads to the constraining equation 

(n+2) fJ,(/- 1, 111, 11; t)+(f + 1) 80(1, m, 11 ; l) + m B,P(/, m, 11 ; t)=O, (1.47) 

which indeed is satisfied by the coefficients 

B,(0. 0, - 3)= 2 B~ (1. 0, -3)= - 2 8 0 

8,(0, 0, 0) = - 88 ( t, 0, 0) = B 1 (a/W 

8,(1, 1, 1) =280(0.1, 1)= - B11(2. l, 1) 
= -'2.B"'(O. 1, 1)= -2 R2 (a/b).J,. 

B0 = J.24B 1 =1.48B2 = 0.31 gauss 

( 1.48 a) 

( 1.48 b) 

(l.48c} 

( 1.48 d) 

appropriaLe to the simplified Mead model given by (1.45). As noted 
above, the simplified fi eld is especially useful for carrying out analytical 
calculations appropriate to a model magnetosphere. In some c-ases how­
ever, the simplified model is not accurate enough to organize observa­
tional data obtained beyond L~s. i. e., to recast such data in terms 
ofa standard magnetosphere by means of the required adiabatic transfor­
mations. 

The Mead-Williams Field. The usual shortcoming of ( 1.45) in the descrip­
tion of observational data is the neglect of the neutral-sheet currents 
associated with the geomagnetic tail. In principle, these currents fit 
into the framework of ( 1.46) so long as they are distributed in space 
rather than confined to an idealized sheet of vanishing thickness. ln 
other words, so long as J is everywhere finite in magnitude, there 
are no singularities in B that ( 1.46} fai ls to handle. In practice. however. 
it is customary to represent the neutral sheet in the idealized manner. 
This mea ns that the Mead field (typically as derived from Table 2) 
is augmented by the field of a current-carrying sheet located on the 
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nightsidc equator. Various rcprc~cntations arc possible. T he popular 
Mead-Williams lidd [30] represents the current sheet as a strip of 
finite width Ix - x,, to x =x1 , subscripts denoting the near and far bound­
aries) extending from y= - <XJ to )'=+cc (see Fig. 3). The current 
is assumed to be distributed uniformly between x=x,, and x=x1 and 
flows from y= + -:;:, (east) to y= -oo (west~ Near the current sheet 
itself, the resulting tail field B, has a magnitude 

B, = (2 n/c)(x.r-x,r 1 T, ( 1.49) 

where I is the total current carried. This field points sunward (- x) 
in the northern hemisphere and a ntisunward ( ..,- x) in the southern 
hemisphere. As a result, nightside polar field lines U. e .. those emanating 
from the earth at polar latitudes) arc greatly extended in the equatorial 
region. 
. With the aid of a system of synchronous satellites (r=6.6a, 

<p= 2 n/day) it becomes possible to compile a magnctospheric "weather 
report" providing both b (the stand-off distance) and B, (the tail field) 
as functions of time. The method is to compru:e the observed magne­
tometer readings at various longitudes with those predicted by assuming 
various combinat ions of the two model parameters. The determination 
of h and B, is made most confidently by comparing (Xfuatorial values 
of Bat q> = O (midnight) and <p = n (noon). The model parameters arc 
then defined by locating Be (q> = O) and B. {<p = rr) in Fig. 11, which is 
a contour plot of b and B, [31]. In case multiple-satellite coverage 
is not available at the synchronous orbit. it may be necessary to utilize 
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34 I. J\dialxnic lnvananr~ and Ma&'lletosphcric Model~ 

readings o r a single magnetometer taken at lwdve-hour intervals for 
the purpose outlined above. This procedure is acceptable as long as 
magnetosphcric conditions do not change significantly during the twehc­
hour imerval between midnight and noon [31]. Using the report of 
the day-to-day variation of I? anJ B, obtainl.'d by this method, it is 
possible to recast particle data obtained beyond L ~ 3 in terms of a 
standard magnetosphere. e.g .. the dipole fidd. In this case each particle 
in the distorted field is to be identified with an equivalent '"particle .. 
having the sarnc three adiabatic invariants and phases (but probably 
a different pitch angle and energy) in the dipole field. For L::£,5 it 
is usually unnecesS<Jry to make such a tram.formation. as the effects 
of eurrentson the magnetopauscaml neu tral sheet aresmall 111 magnitude 
then:. when compared with the magnitude of th1.: dipole field (~cc Section 
1.4). 

There exists some doubt that the subsolar point (r,0,<p)=(h,rr./2,rr) 
on the magnetopausc should be treated as a point of specular reOection 
(as in the Mead model) rather than a point of hydrodynamic stagnation 
[ 10]. T he truth pr~umably lie. somewhere between these two limits. 
If p, is the density llf mass flowing at the solar-w111d velocity u. pressure 
ba lance at the subsolar point is expressed by lhe relation p,,ui=B2/4TC 
for specular reflection and by 11 .. 11 1 = 8 2 /8TC for hydrodynamic stagnation. 
The superficial consequence of the uncertainty involved here 1!. a possible 
error~ 12 % in specifyrng b b} means of (l.43): a deeper consideration 
of the hydrodynamic model would require a difficult rccomputation 
of the coefficients (JI" that appear in Table 2. Existing problems in 
the field of radia tion-belt dynamics, however, appear to transcend such 
su btleties in modeling the magnetosphere. 

Similarly. a more realistic modd of the tail field might take into 
account the fact chat the relevant current loops dose over the cylindrical 
surface of the magnetosphere rathc.!r than al infinity. By thus restricting 
the current shec.!t to a lateral dimension ;S4 h. it is possible to extend x,. lo infinity. or at least to realistically large distances(:<:: 50'7) without 
catastrophe to the dayside magnetosphere. An additional clement or 
reality would be introduced by takrng account of the tilt that exists 
between the earth's dipole and the solar wind. Since the dipole axis 
is inclined l J.4 ' to the rotation axis, which in turn is inclined 22.5 ' 
Lu the ecliptic plane. the tilt or thi; dipole away from normal solar-wind 
incidcn<..-c can amount to as much as 34 , d e[11!nding on time of day 
and ~cason of year. In recent years con!iidcrable progrc!)!> has been 
made toward constructing models that account for the influence of 
ti lt on the shape of the magnetopause. the character of the distorlL'<.i 
field. and the position of the neutral sheet. As with the questions raised 
in the paragraph above. it appears that these considerations are quite 
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important in defining the <Werall structure of the magnetosphere (includ­
ing. for example. the description of diurnal and sca~ona l variations 
characteristic of ground-based magnetometer reading<.), but that these 
complicating effects are not of crucial importance to the radiation belts 
per se. In other words. the existing state of knowledge concerning the 
earth's trapped-radiation environment does not justify the additional 
labor inhaent in more realist ically describing the containing magnetic 
field for radictt ion-bclt st udies. Accordingly. the field models employed 
in subsequent analyses will be kept as simple as possible. 

1.6 Magnetospheric Electric Fields 

Large-scale electric field s in the magnclo~phere originate primarily from 
temporal variations or the magnetic field. from the rotation of the 
earth. and from plasma instabilities of the neutra l sheet. Electric fields 
indoced by tempora l variations of B are not derivable from an electro­
static (scalar).potentia l ~ ; .. because c\7x E=-c1Bfi1r. Those result ing 
from the earth's rotation and from neutral-sheet instabilities can be 
derived from scalar potentia ls. The electrostatic fi eld caused by the 
rotation of a magnetic d ipole about its axis, taken as an idea lized 
gcophy<;1cal situation, is given by 

E = -(1 1c)(Q0 x r ) x B 
= B0 (Q0 u/c)(2 Ocos 0 - f sin O)(a/r)2 sin() t 1.50) 

where f2o is lhc angular velocity of the earth. This fickl am be derived 
from the potential 

where 

L11 = lim (r/a sin 2 0). 
ll- 0 

( 1.51 a) 

(1.51 b) 

The limit indicated in (1.51 b) must be evaluated along the magnetic 
field line. The field-line label La proves to be useful in other applications 
in which internal geomagnetic multi poles are neglected,<!. g .. those involv­
ing the Me<td fi eld, hence the need for a precise definit ion. A dipole 
field line. of course. identically satisfies the relation ,. = LJa sin 2 n. 

The so-called convection electric field E, required to maintain the 
tail (neutral-sheet) current in the presence of intrinsic plasma turbulence 
i.s customarily represented via the pot en I ial 

I~. (r. 0. cp)= £, /1 L,1 sin <p ( 1.52) 
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in Lhe region where B is dipolar. This expression reduces to V.,(r,n/2,(p) 
= E .. y in the equatorial plane, where the id ealized field attains the 
spatially uniform (in two dimensions) magnitude Ee, directed from dawn 
to dusk (-y). This fi eld drives a sunward (-x) convect ion of plasma 
in the forward portion of the magnetosphere, where B= z in the equatorial 
plane. The plasma flow follows from the standard relation 

(1.53) 

ln the magnetotrul, however, the genera] direction of B is either -x 
(northern hemisphere; z > 0) or + x (southern hemisphere; z < 0). The 
resull is a plasma now velocity 

( 1.54) 

directed into the neutral sheet. 
A picturesque interpretation of (l.54) is that the field lines themselves 

flow into the neutral sheet al a speed c Eel B,, there experiencing a 
mutual annihilation that liberates energy at a rate of 2(Bf(8n)(c Ec/B1) 

per unit <:1rea since B?/8rr is the density of field energy. Similarly, it 
is possible to view sunward convection of plasma as a "snapping back., 
offield lines that have been dragged downstream by a viscous interaction 
with the solar wind. lndeed, there exists such a viscous interaction 
at the magnctopause, but it acts fundamentally upon the plasma rather 
than upon thejield [ 12). Plasma and field-line motion can be identified 
in terms of (1.53) by requiring also that E= -(l /c)v0 xB [see (1.50)]. 
There exists, then, a choice between postulating field-line motion at 
velocity Vd accompanied by plasma motion at the same velocity (line 
tying) on the one hand, and the convection of plasma at velocity vd 
across a stationary B field on the other. 

Particularly in the steady state, for which iJ B/o t=O, the dual concepts 
of field-line motion and line tying can be very confusing when taken 
as a foundation for quantitative analysis. The d escription based on 
physically measurable quantities such as E and Bis never less adequate 
than the more colorful description, and usually yields more readily 
lo quantification. 

The electrostaticfieldsderived from ( 1.51) and ( 1.52) have the property 
that E·B=O, where Bis given by (1.16). The property E·B=O seems 
to be essential for the identification of field -line motion with cold-plasma 
motion [32]. Accordingly, it has become conventional to postulate 
the condition E· B=O as a means of mapping magnetospheric electric 
fields. The usual rationale for this postulate is that the magnetosphere 
contains cold plasma of sufficient density to short out any appreciable 
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field-aligned component of E [11] 11. Applicability of the condition 
E·B=O anywhere beyond the plasmasphere is a matter of some contro­
versy, although (as noted) this procedure is the conventional one for 
mapping magneto?pheric electric fields [33]. 

It is inappropriate to employ (1.51) and (l.52) where the magnetic 
field differs significantly from that of a dipole. One prescription for 
obtaining E in the distorted field involves <:1n expansion analogous 
to ( 1.46). This prescription defines an itera6ve procedure [34] whereby 
the condition E· B=O is imposed order by order in r/b, beginning with 
(1.50). 

Operating within the framework of the dipole field, it is not dilTicult 
to establish the existence of both closed and open equipotential surfaces 
of the superimposed convection and corotation electric fields. The total 
electrostatic potential of this idealized steady-state magnetosphere has 
the form 

,,~ (r, 6, <p) =Er L,,a sin cp- Bo (Qo a2 fc LJ), 

and so equipotential (constant-Ve) surfaces are specified by 

(t.55) 

Ld =('l Ee a sin cp) - 1 
{ V,, ± [V,,2 +(4 E. B0 Q0 a

3 /c) sin cp ] 1 i 2 } . (1.56) 

Examples are illustrated in Fig. 12: the singular equipotential surface 
that separates the closed and open cold-plasma drift shells is that for 
which V.,= -2(EcBoQoa3/c) 112

• This shell, which satisfies the equation 

Ld=(BoQoufcEc)112[(1 +sin<p)112
- l] csc<p , (1.57) 

is closely associated with a virtual discontinuity in the magnetospheric 
cold-plasma density. The underlying reason for this plasmapa11se is that 
ionospheric plasma originating at low and middle latitudes rema ins 
trapped within closed equjpotential surfaces. whjle that originating at 
sufficiently high latitudes proceeds to escape from the magnetosphere. 

The dimensionless parameter (B0 Q 0 a/c Ec)1 ' 2 appearing in (l.57) mea­
sures (in earth radii) the nominal radius of the plasmasphere. More 
precisely, this parameter identifies the equatorial geocentric distance 
to the plasmapause at the dusk meridian (<p= -n/2), which in this 
idealized model corresponds to the "bulge" region, i.e., the region of 
maximum geocentric radius. A plasmasphere diameter of six earth radii 
in the noon-midnight meridian corresponds to a radius of six earth 
radii at dusk in this model, and leads to the estimate that Ec~4 µY/cm 

11 Beyond the radiation belts, c. g., in the auroral zone, violations of this 
rule are quite common. The auroral zone appt:ar~ to be. associated with the 
earthward portion of the plasma sheet. 
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-- --- ------ ... _____ - {~-----

Fig. 12. Hcctrostatic equipotential l'Ontours in the equatorial plane of the idealized 
geomagnetic dipole, computed for I .. = 0.526 V 'km (conlotir~ are unlabeled for 
1;.< - 40kVand oml1l1.'Cl for I'~< 70kV). 

under typical conditions. fn reality, the plasmasphere exhibits a some­
what less pronounced azimuthal al>ymmctry. and the "bulge·· appears 
roughly midway through the evening quadrant (<p-- - n.'4). This means 
that ( 1.52) somewhat oversimplifies the actual convection electric field. 
Moreover, the size of the plasmasphere [sec ( 1.57)] is found empirically 
to vary with magnetic activity (e.g .. with the geomagnetic index Kp) 
in a manner compatible with the statistical relationship [35] 

( 1.58) 

where 111.., is the mass of an dcctron. 'Ir• is the charge of a proton. 
and 11 i-; the solar-wind speed. This formu la yields £<:;:;; 6 ~tV lcm for 
u=400 km/sec. A statistical correlation between £,and u is intuitively 
appealing in that sunward convection of plasma is supposed to balance 
(on average) the outward flow characteristic of a viscous boundary 
layer at the magnetopause [ 12]. 

The steady component of the magnetospheric electrk: lield imposes 
a final restriction on radiation-belt particle energies. Convent ion requires 
that gradient-curvature drifts dominate adiabatic Ex B drifts, al lt:ast 
lo the point of guaranteeing cxbtencc of the third invariant: i.e., a 
closed drift shell (see lntroduction). Preferably. the particle energy should 
be forge enough that the drift shell deviates insignificantly from that 
calcula led in the absence of magnetospheric electric liclcls. This condition 
imposes the requirement that E/L't> lqlE,a-4keV (sec:above)and demar­
cates the outer radiation belt from the rmg-current bell with which 
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it isspatiall~ coincident. Wit~in the plasmasphere, however. it is ncccs~ary 
to operate tn a frame rotatmg with the cmth unless EL ~ kII BnQ0 a2 'c 
~ 100 kcV [see ( l.51 )]. Particles not satisfying thi.;; criterion should 
probably be excluded from consideration, since the usual radiation-belt 
~etb~sand scaling law<; (e.g .. Fig. 6)do not apply without this rnod1fica­
t10~. F,1gurc 13 su~marizes the parametric demarcations that distinguish 
radiat1011-bclt part1dcs from the other inhabitants of the earth's magne­
tosphere, ba!>cd on the various considerations outlined in the prc~cnt 
chapter. 
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Fig. 13.Spatial and spectral classification of charged particles in the magm::losoh..:r..:. 

1.7 Flux Mapping and Shell Tracing 

As.a general rule. the particle flux J,(E:r) Jil:r unit energy [ p~r unit 
sohd angle Q at local pitch angle i:J. is rdatcd to the distribution function r (p11.p J_: r) of ( 1.12) by lhe formula 

J 2(£:r) d Ed fl=f(p ,pL;r )(p '111)J11tip d Q, ( L 59) 

where m=')lmo is the relativistic mass and 1110 is the rest mass. The 
total energy mc2 =E+ m()c2 is related to the scalar momentum 11 bv 
the equation -

11 60) 
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where µ11 = pcos:x and p = p sin:x. From ( 1.60) it follows that /11 dE= p dp, 
and so ( 1.59) becomes 

( 1.61) 

This equation is ~peciali1ed to the case of locally mirroring particles 
by requiring P11=0 (:x = n,'2), so that 

J L(E; r)= 21110MB((O.p.._ :r). ( 1.62) 

Since Liouvillc·s theorem (Section 1.3) assures that /(r11.f7.t; r) remains 
constant along a dynamical trajectory in phase space, conservation 
of the fast adiabatic invariant means that J _/8 at constant M remains 
fi xed along the trajectory of a representative particle's mirror point 
in either hemisphere. 

In an azimuthally symmetric: magnetosphere. the tracing of drift 
shell s woukl be very simple. Each shell could be generated by rotating 
a field line about the axis of symmetry. Particles mirroring at different 
latitudes along a given fi eld line would proceed to generate coincident 
drift shells in the course of adiabatic motion, and the equatorial pitch 
angle of each particle would remain unchanged with azimutha l drift. 

In the earth's magnetosphere, this azimuthal degeneracy is broken 
not only by the day-night asymmetry of the B field. as represented 
by ( 1.45), but also (to a lesser extent for radiation-belt particles) by 
thedawn-<lusJ.. asymmetry of the convection electric field , as represented 
by ( 1.52). As a consequence. the drifl shells generated by the adiabatic 
motio n of particles identical in species and energy. sharing a common 
field line at some longitude, generally do not coincide at other longitudes 
if the particles have different pitch angles at the equator of the common 
field line. This adiabatic phenomenon is known as shell splittiny [5]. 
The ex tent to which drift shells arc split by the alimuth~I asymmetries 
can be judged by independently tracing the shells that correspond to 
distinct equatorial pitch angles sin - 1 y on the common field line. It 
i-; instructive to consider the two domi mmt asymmetries separately. 

Electric Shell Splitting. When the electrostatic potential given above 
by ( 1.55) is superimposed on the magnetic-dipole field (1.16), the tracing 
of drift shel ls is accomplished by employing conservation of J=2Lda· 
p Y(y), M = 11

2/2tn 0 8,,., and J2/8m0 a2 M = B,,,LJ Y2
, where 8.,,=80/LJy2

. 

The conserved energy W= E + q V.,(r) is given by 

21110 e2 MB,,.+1113 c4 = (mo c 2 + W-q 1~.)2. ( 1.63) 

From these identities follow the differential relationships 

(I / Bm)(d 8111/d <pl = -(2/ L,1 )(ti Ld/d <p)-(2/ Y){d 1"/d <p) Y'(y), ( 1.64 a) 

(2/_r)(d y/d cp) = -(3/ Ld)(d Ld/d <p)-( 1/ B,,,)(d Bn/ tl <P). ( 1.64 b) 
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and 

m0 c2 M(d B,.,/dcp)= (l.64c) 

- q(m0 c
1 + W q ~~) [WI~.,'( LJ)'i> (d Ltf!d <p ) +(C T~.i<'q;L]. 

Taken together. equations ( 1.64) <rnd ( l.30) yield the drift-shell equations 

d Ld/d cp = Ld 1'(y)(m0 c
1 + W-t1~~.)[3(W-q1~)(2 m

0
c 2 + W - q J<,W(y) 

- T(y)(m0c
2 f- W -qV,.) q(c l~/t' Ld)9] 1q(t!V,/tcp)Ld ( 1.65a) 

( 1.65 b) 

Thus, evolution of the drift trajectory LJ(<p) clea rly depends upon v, 
ands? the nonvanishing of (cl l~/11 <p)1,,= C,.a Ld cos cp leads to the spLitti~g 
of dnft shel ls. In the limit of very weak shell splitti ng (jq V..I~ W). the 
lowest-order approximation 

L,i(cp)::::: Ld(O) ~ 1 + [(1110 c2 + W)/(21110 c
2 + W)] 

x(qE,aLd13 H) (T(y),D(y)]smcp} (1.66) 

follows from ( 1.65). Tht.: ratio TiD is a monotonically decre<1sing function 
of y. 

Magnetic Shell Splitting. For sufficiently small absolute values of the 
expansion parameter lJ E,u Ld/ W, the shell splitting predicted by ( 1.66) 
is negligible compared with that caused by a21muthal asymmetry of 
the nwq1u11 ic field. To evaluate this latter effect, it is proper to neglect 
l ·~ (r) and calculate the energy-independent drift shells imposed by ( f .45). 
In this case the ex pansion parameter t; 2 ~(82/80)(L11a/h)4 ~ J character­
izes the U7imutha l <1symmctry. With the ncglecl of V..(r ), the variables 
p and B,,, become constants of the mot ion in a s tatic B field. It is 
necessary, however, to gcm:rali£c from the dipole functions T(y) and 
Y(y) so tha t 27t/fl2 and J e<rn be written 

2 n; Q2 =4 Ld a(m; p) 'i°(1·; Ld. <p) 

J =2 Ldap Y(y; Ld. cp). 

( 1.67 a) 

(1.67b) 

1he derivation lea~in~ to (I.30) equally well relates Y(y; L,i.<pl to 
T(y:_Ld,cp). Gcncrn liza_l1on of (I.28) ~o the non-dipolar B fi eld (1.45) 
reqwres at least that T(O:L11,q>) and T (I ;L,1,q>) be calculated to lowest 
order in E: 1 =(B1 / Bo)(L,,o/h) 3 and s2=(Bi/Bo)(Lt1a/b)4. The results are 
given by 
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T(O; Ld. <p)= 1 + (/ if2)+ f:I (15 1 C) - 16 1; ) 

- 1:2(147 112 - 205110 + 54 l 8)cosq> 

1~( 1; Ld. <P) = (n:/6)1/2[1 + 1: I - (25 C2/14) c:os </> J . 
(1.68 a) 

(l.68b) 

where 

(1.68c) 

and rollow from a tracing of fi eld lines that deviate from the dipole 
solution r=L4asin2 0. To lowest order in &1 and <:2. the dii-.torted field 
lines sa tisfy the equations 

dlnr!df1= 8,/ 8 0 =?.ctn O 3t.1 sin~Oco:.-0 

-I 2c2 (3sin 1 0- 1)sin6 0cos 0coscp 

r = Lda sin2 0(1-(1; 1/2)sin6 0 
-(?.r.2 /21)(7sin2 0-3)sin - Ocos<p]. 

( 1.69 a) 

(1.69 b) 

The runctional value or T (O; L d,<()) is defined by the requirement that 
Lt111T(OJ,0,<p) be equal to half the arc length of the entire field line, 
i.e., 

Lda T(O; Ld. <p)= Y [r2 + (d r/d 0)2 + r 2 sin2 (}(d <p/cl 0) 2
] 

112 d 0. ( l.iO) 
0 

Since (d q>/d 0)2 is of higher order than first in e2, this contribution 
to the arc length is neglected in obtain ing (J.68a) directly from (1.69) 
and ( 1.70) . .Numerical values of / ,, are li~tcd in Table 3, together with 
the specilic combina lions needed in (1.68a). 

The derivation of( 1.68 bJ follows that of (I .28c). The ha rmonic bou nce 
approximation requires that (0 2 B/t's2

) defined as B· V'(B· V 8), be eval-

Table 3. Selected In tegrals/,, 

l 1 =0.76tH46 
I~ = 0.630306 
I , =0.553737 
1 .. 0.501251 
/ ;. = 0.462142 
l.,=0.43 142.~ 

I;= 0.406500 
Is= 0.385465 
{9=0367590 

I tQ = 0.352080 
/1 1=0JJ8446 
I 1 2 = 0.326330 

I t(l i2)/ 1 = 1.380173 
15 /q-16/ , = - 0.9885-U 

l47 / 12 -205/11d 54/s = -3.390834 

J, J=0 . .315466 
1, .. = 0.305646 
I i ~ = 0.296713 
J , ,,=0.288537 
1 l - = 0. 28 l () 16 
/ l\1 = 0.274066 
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uatcd on the magnetic-equatorial surface, i.e., on the surface for which 
,~B/i1s=0 aud {12 B /(is2 > 0. For 8 given by ( 1.45) and r ~0.Hb this surface 
coincides v .. ith the plane O=n/2. A general exprcl>sion for ?1 8/c.\ 2 at 
O=n/2, applicable whenever B is derivable from a scala r potential and 
has north-south symmetry about this plane, is 

B r2
(i12 Bji".,2 )= 2 r2(( B!i' 1')2 + 3 B(( B!t r)+ B2 

T2(cB/crp)2 +B11(f2 B0,icO}J. (1.71) 

In particular. if B is given by ( 1.45), the result is 

B r
2 

(("
2 8/c1 

\
2

) =9 8 2 - 9 8 1 (a/b)3 [3 8 -2 B
1 
(a lh)3 ] 

+2B~(a/b)"(r/h)2 (1+15cos 2 cp) (1.72) 

+ 82 (a/b)3 (r/b)[39 B-48 8 1 (a/b)·'] cos<p 

at IJ= n:/2. Taken ro lowest order e, and Ci, this n:sull combirn.:s with 
( 1.69 b) to yield 

B 
112

11
1 

fJ /( ~ 2 ) 1 '2 =(3/ Lda)[1 -i; 1 +(25r.2 /14)cO!><fJ]. (1.73) 

Since Ql = (p.!./21!12 /:J)(o 2 B/os2)according to ( 1.26), it follows from ( 1.67 a) 
and (l.73) that T(I :la.<P) is correctly specified by (l.68b). 
_ It is consistent with (1.30) to express the functions ft\':lt1.<P) and 
Y(y:L,1.<p) in the form · 

T (y: Ld, <f))= 1""(0; L11 • <p)+c 1 y
2 c;; (,1')+<:2 J•2 G~(y)cos <P 

- (1/2l[f!O: Ld. <p) - T(I; L,,. <P)](J + _r 112J (L?4 a) 

Y(r; Ld. <P)=(2+ r lny - 2y 111l l(O: Ld, <p ) 

-(2.r+.rlny- 2y 1 2
) 'l (I: L,,, <p) ( 1.74 b) 

where ~1(l)~ G ;( l) = G2(l)= G j( l)= O. Except for these four end-point 
constraints dictated by ( 1.68}. the funct ions Gi(y) and G2 CrJ rcmaii1 
to be specified (see below). 

The drift-shell equation for constant p and B
111 

( = B,./1• 1) is obtained 
by invoking the constancy of J [given by ( 1.67 b)]; ft follows that 

d Ld.1d <P = - [(t BJ t cp)1,.4 (Y - 2 f) + 2 B,.(i' },C <p)1 .. .J ( 1.75) 

..,... [2( a.,; LdJ ); + 2 H,(i." Yfi'• L")(/I +w B)c Ld)"'i 9- 2 fJJ. 
~here 8., is the field inkn~ity at fi=n/ 2. From (l.45b) and ( l.69b) 
1t fo llows t lrnt 

8.,=(Bo/l,tl[ I +(5r.i/2) - (l5r.2/7)coscp]. ( 1.76) 
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If (1.75) is then evaluated to lowest order 111 the fi eld asymmetry. the 
result is 

d Ldld q> = -[ L;,1 12 80 D(_r)] (2(B0 L~)((Y 1i"1 cp)Ld 
+ ( 15 Bil7Ha; b)4

( Y -2 n Ld sin <p J (1.77 a) 

d Ld/d <p-::::: - (82/ 21 8 0 ) L~(a/b)4 (1/ 12 DJr 45( Y-2 T) 

+4(147l 12 -205/ 10 +54JM)(2+rln1·-'2.r 1i.!) (1.77b) 

+42 y G1 (1 )- 75 T( l)(l_r+_rlnJ - 2y1 2)]s1n<p. 

where ( l.34t:) defines 12DL1·)=6T(y)-Y(y). The use of ( l.77 b) is made 
c.;onvenient by the development of a n analytica l approximation for 

Q(y) ::= 45 Y(y) - 90 T(.rl +42y G2(r) - 75 T(1)(2 y + .r In .r-2_r1 2
) 

+4( 147 112-205 / 10 + 54 18)(2+ y in y-2/ 1i). (l.78a) 

which must satisfy the conditions 

Q ('I )= - 90 '/ (1)~ -66.6432441 

Q(O}= 8(147 I 11 - 205 I 10 + 54 /M) ~ - 27.1266694 

Q'( I )=(15/2)[9 T(0) - 41 T (I l] ~ -134.5360732 . 

( l.78b) 

( 1.78 c) 

( l.78d) 

Exact numerica l evaluations [ 19. 36] of T (_\'), Y (y). and the shell-splill ing 
function QI I 2D yield the functional values Q (y) given in Table 4. Plotted 
on a graph (not sho"" n here), these fu nctional values indicate thal Q()·) 
varies o nly weakly wilh .r for y ~0.4, but quite slrongly for y<:0.7, 
and that Q(v) is al111ost a monotonic fu nction. The empiri~a l representa­
tion [66] 

Q(y) ~ Q(O) + [2Q( I )-2 Q(O)-( I /4) Q' (l)] y 4 

+ [Q(O)- Q( I)+ (1 / 4) Q' (1)] y 8 ( 1.79) 

~ - '27 .12667 - 45.399 13 y 4 + 5.88256 y8 

provides numerical accuracy well within I % over the entire rnnge 
of y (see Table 4) in addition to satisfying lhe l!nd-point (y=O and 
.r= I) requirements exactly. It is therefore proper to use (I. 79) in combma­
tion with ( 1.28), { l.31 ), and ( 1.36) in the tracing of magnetospheric 
d rift shells. No a pproximation for Gi (y} is needed for this purpose, 
and so nonl! has been developed. 

Inll.:grntion of ( 1.77 b) with respect to cp lead -. directly to a lowest-order 
expression for tracing drift shells whose pitch-angle degeneracy is broken 
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Table 4. Exact and Approximate Values of Qty) 

o ... \' Exact Q Approx. Q L1Q,'Q 

0 0.000000 - 27 127 -27.127 0.0000 
20 0.028947 - 17.085 :n.1:::1 + 0.0015 
30 0.093098 -27.090 - 27.130 +O.tXH5 
40 ' 0.206042 - 27.118 -27.208 +0.0033 

50 0.367471 - 27.777 -27.953 + 0.0063 
55 0.462962 -29.051 - 29.200 .J.. 0.0051 
60 0.564719 - 31.645 -3 l.6li3 -0.0012 
65 0.668717 -36.026 -35.970 - 0.0016 

70 ° 0.7696W - 42.509 -42.333 - 0.()(141 
75 0.860893 - 50.378 - 50.289 -0.0018 
80 0.934656 -58.313 - 58.3-17 +0.0006 
85 0.983074 -64.323 -64.398 +0.0012 

90 1.000000 - 66.643 - 66.643 0.0000 

by the day-night asymmetry of 8. Two limiting cases of notable simplicity 
are recovered from (l.77b). For y= I the drift trajectory is a path 
of constant Bon lhc equatoria l l.urface. For r = O the drift shell follows 
field lines of equal arc lenglh. · 

Numerical evaluation of ( 1.72) for the reasonable \'alues 11 = I Ou 
and Bo= 1.2481 = l.48B.i= 0.3 I gauss reveals that lhc right-hand side 
becomes negative on the day side (cos<p<O) for r<. 8<1. T his behavior 
signals a bifurcation of the equatorial (minimum-B) surface as one 
a pproachcs the magneto pause. 1 n other words, dayside field lines for 
which L,, is sufficiently large ( <: 10) satisfy ,, 8/<1.~ = () and (1 2 B/i' s2 > () 
at points symmetrically displaced in magnetic la titude from the equatorial 
plane of symmetry [5]. An '"equatorially mirroring'' particle (one with 
infinitesimal bounce amplitude) selects either the northern or l>O ulhern 
?ranch of the equatorial (minimum-B) surface. depending upon the 
instantaneous value of its bounce phase <P 2 as the particle traverses 
the singular contour on which t 2 B/t~s 2 =0 in the plane of symmetry 
(0= nj 2). Lowest-order expansions such a~ ( 1.68) a pply only to drift 
shells on which each licld line has a single minimum-8 point. 


