LEXW aRE MANUAL

Computer Programs for Lexicography
Developed at the University of Hawaii

Second Edition, partial draft
pC {1S-D0OS) version

Robert Hsu
Linguistics Department
University of dawaii
Honolulwp, Hawaii 968722

This material is based upon work supported by
the National Science Foundation under Grant
No. BNS 7928700. Any opinions, findings, and
conclusions or recommendations expressed in
this publication are those of the aunthors and
40 not necessarily reflect the views of the
National Science Poundation.

Chapter

1. ORIENTATION . . o v o o = = « = =

1.1 ORIENTATION TO THE SYSTEM « = o o o« - «

1741 Scope 0f the SYSEEM <« « a o = o « =
1. 1 .2 {}sage - L J L d - L J - - - - - - - - - -
1.1.3 Environment 0of the programs e« « = «
1.1.4 What the system dcoes not d0 « « « .
1.1.5 History and status of the system . .
12146 Acknowledgements « o« « o o = # 4 » =
1.2 ORIENTATION TC THE MANUAL .« o o « « « =«

e .
4 4 B

[S N W N
s a8 0
£ Wik =

Chapter

Chapter

Scope Of the mangal o« « o o ¢ o @
What the manual does not cover . .
Histotry and status of the manual .
What to read and how to start . .

L I N

2. GETTING STARTED =« « « 4 « + =« = =«

3. THE USER®'S VIEW OF THE SYSTEM . .

3.1 STRUCTURE OF THE SYSTEM =« o 2 = « » = =

3.2 ORGANIZATION AND REPRESENTATION OF DICTIONARY ENTRIES

3.2.1
3.2‘2
3.2.3

Band format conventions « « « « o«
Band format conventions: Summary .
Hanging paragraph conventions .« « »

3.3 GUIDE TO USING BAND FORMAT o o o o« o o =

Policies about entries and headwords

Uses Of Bands « « o« a « « « o« = =

(%2}

[I T B

-

| NN I D I]

& & 8 0 % @

. 8 8 & B B

in the dictiocnary
Band names, their structure and function .

The sequence of bands and its segmentation

Structure within bands . . .

Uses Of mOACSe o =« o =« 2 « a = = = =
Uses Of SubentriesS « « « o o = o » =«
Some general principleésS « « « « « o

3.4 BIRDBATH CONTROL MODULES + « ¢ = « = = =

BANDAID 2 o o o = = = s & a =

contents

-

-

-

-

L DO R T]

[T B]

& 8 & & A

@ R T e

14
14

16

28
28
31

31
35

40

3.5

Chapter 4.

4.1

Chapter 5.

RUNNING BIRDBATH

BANDFILT .

BANDINV {saperseded by STATS)

BANDPACK .

EDLIST (superseded

EPLISTE .
LISTGEN
NULLRUN
ONBANDS
ONBANDS2
ONBANDSR
SEQCHECK
STATS .

LI DR N I R I

TOAST CONTROL MODULES

BANDCORD
BAND3ORT
HANDSORT
INVERT .
INRVERT2
NULLRUN
REBANDLE
SORTENT
SORTS5UB
XCHECK .

[SO R B R B

SPECS PARAMETERS . .

-

[NI B B B T R

L B D R B]

-

E g

-»

- - - -

- - - -

- - » -

a4 % v B
LT T R B

-1 Making a working printout . .
«2 Proofreading and checking for errors

inconsistencies = «

Extracting a subset of the file
Alphabetizing the masterfile .
Making classified lists . - .
Making indexes and other apparatus

L DAY T B B

-

a 4 & & @

by BANDALD)

L RN B R B L] L DU BT T D]

-

[TR T B B)

LR B B T L]

LT B T =R

e & B 0 & 0 ¥ B 4 & B

¥ & & & ¥ & K & ¥ ® 3 B

L |

-

GUIDE 70 CHOOSING CONTROL MODULES AND PARAMETERS

-

a B & n & & ¥

" & 8 & W] L B R I R

* & o B 0

RUNNING THE PROGRAMS ON A PERSONAL COMPUTER

DOS o = o = &

-

- - - -

The simplest J0b « « »
SPECS file .

Limiting the amount of input

Special control modules

Concatenating files for input

User supplied functions

-

AND TOAST UNDEE DOS .

-

TOPICS IN DICTIONARY PROCESSING .

Contents

L I]

L

L]
L S RS R 2
LI |

" & 4 8 1 ¥
L}
" & 4 7 & &

LR B R |

¥ & v 2 B
1 % & b B
L B D T B

¢ & B &

& B & 4

L U N B B 4« 2 & 8 B8 3 F & B F 9

L I I I B

68

88
BS
90
S0
90
g1
91

93

-

3-1 STORING THE DATA o = o = o = % =« = = = *» 4 e e =

.1-1 ?UHChed Cards - - - - - - - - - - - - - L -
: .1.2 Disk Datasets L - - - - - - - - - - - - - -
-1.3

Tape -

i s (s

5.2 PUNCTUATION AND TYPOGRAPHICAL CONSIDERATIONS . .

5¢2«1 Introduction « « « « o = =
5.2.2 Mechanical considerations
5.2.3 Stylistic considerations .
5«.2.4 References cited « « « =« =

- -

L I I B]
LI T T |
*# F 4
[N T B
4. & & B
e & s 0
. & a @

5.3 GUIDELINES FOR WRITING CORRECTIONS AND ADDITIONS
pRINTOUTS - - - - - - - - -* - - - - - -

-

5.4 SORTING THE DICTIONARY w v o = = = 5 s =« o = =« =
5«3 GENERATING INDEXES AND FINDERLISTS 2« =« = o » o «

Chapter 6. A TECHNICAL DESCRIPTION QP THE SYSTEM . .
6.1 STRUCTURE OF THE SYSTEM o« o o « = » = = s o +
6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES . . «

§.2.7 PROGRAM SEGMENT 1T .+ v o ¢ = = s o o o = =

6.2.7.1 PROGRAM SEGMENT 1.1: INITIALIZATIONS and

INTERFPACING o« o 2 = = » = « = = =
5a2+.12 PROGRAM SEGMENT 1.2: HANDLE—MAKING AND
TRANSLEITERATION UTILITIES . - . «

-

6.2.1.3 PROGRAM SEGMENT 1.3: NON-BUILT-IN PUNCTIONS IN

OTHER SNOBOLUY4 IMPLEMENTATIONS . .
6.2.1-& pROGRAH SEGHENT 1.&: SPECS - - - - - - -

8«22 PROGRAM SEGMENT 2: GENERAL INPUT FUNCTIONS
6.2.3 PROGRAM SEGMENT 3: GENERAL OUTPUT FUNCTIONS . . .
6.2.4 PROGRAM SEGMENT 4: BAND PROCESSING FUNCTIONS . . .
6+.2.%.1 PROGRAM SEGHMENT 4.1: BAND PREDICATES + « <« « =
6.2.4.2 PROGRAM SEGMENT 4.2: KEEP-RELATED FUNCTIONS .
6.2.4.3 PROGRAM SEGMENT %.3: STATE-SETTING AND TESTING
FUNCTTONS =« 4 o 4 % o o 2 4 % » » o =

6.2.4.4 PROGRAM SEGHMENT 4.4: PACKET-RELATED FUNCTIONS
6.2.4.5 PROGRAM SEGMENT 4.5: MISCELLANSOUS PUNCTIONS .
6.2.5 PROGRAM SEGMENT 5: SORT XI/O PUNCTIONS . « « « =«

6.3 WRITING NEW CONTROL MODULES 4« o o = o o = = = =

6.4 INDEX OF VARIABLES AND FUNCTIONS o o = - ¢ o = o

Contents

L B T

[B S

93
93
93
g4
35
95
95
97
93
99
100

102

103
103
106
106

106
108

110
110
110
112
116
117
118

119
119
119
120
122

126

6.5

o h
.
v
¢ 2
L PO =

APPENDIX

Variables and functions in built-in program segments .
«+2 Variables and functious in control modules .

INSTALLING ON

I.

APPENDIX TIIX.

INDEX .

USING INVERT FOR MAKING PINDERLISES

COMPUTERIZED LEXTICOGRAPHY AT UH

-

INSTALLATION NOTES « « o o =« =« » «

AN IBM MAINFRAME RUNNING O0S
INSTALLING ON A DEC-2060 RUNNING TOPS-20
INSTALLING ON A PDP11 or VAX RUNNING UNIX

Contents

-

-

1256
129

130

133
134
138

142

160

165

CHAPTER 1. QORIENTATION

This chapter provides various types of background information on
the programs, but no essential information on using them. If you
Want to begin using the system immediately, begin with Chapter 2.
However, you should read this chapter before getting too far along
in order to get an idea of what to expect and not to expect of the
programs.

1.1 ORIENTATION IO IHE JYSIEN

1.1.1 SCORE QF THE SYSIEY

The system provides Y1) a general, flexible, and relatively
convenient set of conventions for encoding the potentially complex
structure of dictionary entries {see 3.2), and 2) programs for
processing data so encoded (see 3.4, 3.5). The most commonly used
programs are those for formatting and printing out a dictionary
(from tape or disk storage), and for generating a "finderlist®™ from
bilingual dicticonaries. A finderlist is an index of the entries in
a dicticnary by keywords and phrases contained in the definitions
(see Appendix I). There are also programs to sort the entries by
their headwords according to any specified alphabetical scheme, to
re-~prder the information within each entry, and to sort headwords by
various types of information in the entry. Since a static system of
programs cannot hope t0 meet the continually developing and special
needs of every aser, the system is designed so that new programs,
usually very short, can be written by a programmer relatively
quickly by calling on the basic functions provided in the systen
{see Chapter & for a technical description).

1-1.2 USAGE

A linguist beginning to ase this system typically already
possesses a substantial body of lexical data—-e.g. in the form of
drafts of dictionary entries on file slips or other media. The
first step is to design some conventions for representing this data
within the overall "band”™ format (as described in Chapter 2 and
Sections 3.2 and 3.3 of Chapter 3}, and then to cast some of the
data into this format. This initially need not even be done on the
computer. As the range of entries expands, the conventions normally
also require expansion and adjustment. Programs {particularly the
three mentioned at the end of Chapter 2) are run on the data as soon
as a small amount has been entered into the computer, and the
outputs of the runs (in the form of other files or of hard—-copy
printouts) are studied carefully with a view to anderstanding and
validating the structural relations that they exhibit. Insights
thus gained invariably lead to further revisions in the coaventions.

Second Edition, partial draft. Formatted February 2, 18950

1.1 ORIENTATION TO THE SYSTEM 2

Programs are run periodically as more data is entered into the
masterfile, the outputs are studied, and fieldwork is often
interspersed with working on the computer. As a result of better
understanding of both the data and the system, a user may sometimes
decide to radically reorganize the already entered data. This is a
normal mode of progress and, burdensome as the reorganizatiom 1s, it
should not be regarded as a set-back.

On no account should one wait until all of the available data is
entered before running any of the programs. The usefulness of the
system lies not so miach in recording lexical data as in helping to
discover and explore the regularities——lexical, grammatical,
cultural, etc.--present in the data. Obviously, the earlier this
process of discovery is begun the better, since it affects the way
material is subsequently entered and often requires revision of
previously entered material. It is this feed-back that the user
gets from the interaction, both smooth and rough, between the data
and the system of recording and manipulating it that is the major
benefit of using the system. The uwser, of course, mist be willing
to experiment.

To make changes in the dictionary the user edits the masterfile,
not the files output by programs of the kind mentioned above.
However, some programs reorganize the entire dictionary, so that
their output actually becomes the new masterfile. Amn example would
be a program that alphabetizes the file, or one that rearranges the
material within entries.

Since it is primarily an exploratory tool rather than a passive
receptacle for information, effective exploitation of the system
depends on the lingoist®s being not only as thoroughly familiar with
the data as possible and actively interested in its structure, but
also the same person's being intimately involved in the day-to—-day
operation of the project: casting material into band format, editing
the data, designing and revising conventions, deciding what programs
ani parameters to use, studying the outputs, etc. Otherwise, as
when these tasks are delegated to linquistically less knowledgeable
and possibly less interested sabordinates, the system is not very
useful.

Another significant characteristic of this system is the
independence of the data from the programs, which has the
consequence that data entered in the "band®” format may be processed
usefully by other programs. Since the format is extremely simple
and genetric, it can be manipulated in useful ways by other general-
purpose text-processing systems, such as sufficiently flexible
editors and text database systems.

1.1.3 ENVIRONMENT QF IBE RRQGRAMS

The programs are designed to be run in "bhatch mode" rather than
interactively. That is, after being launched a program normally

Second Bdition, wpartial draft. Formatted Febrrvary 2, 1930

1.7 ORIENTATION TO THE SYSTEM 3

runs from beginning to end without further intervention from the
user. Afterwards the user retrieves and examines the output. While
the programs provide no facilities for interaction, interactive
facilities elsewhere on the computer may bhe used to prepare the
data, launch the batch job, and examine the outpute.

The programs, furthermore, handle only "sequential®™ files. A
program typically processes an entire dictionary file, by reading it
in a single pass from beginning to end.

The dictionary programs are written in the SNOBOL4 programming
language, specifically the version known as SPITBOL. A& SPITBOL
compiler, as well as a general-purpose sort program, must be
available on a computer in order to run these programs. Some
version of SPITBOL is available on most models of computers and at
most academic computing ceanters, and a sort otility is normally also
available.

The programs were originally developed on IBM mainframes under
the 0S/360 operating system and its descendants, and have been
transported to personal computers running the MS5-DOS family of
operating systems. It is on these two systems that the programs
have the most users, and this is reflected by the existence of the
twWwo separate versions of this manual, the IBM mainframe version and
the PC (M5-DOS) version. The mainframe version also gives details
for installing the programs on a few non—-IBM mainframes, on which
the programs have also been run. There is a possibility that the
programs will become available on the Macintosh in the future.

1.1.4 WHAT IHE SYSTEM DQES NOT DO

This system is by no means a complete toolkit for the
lexicographer. Furthermore, lexicography being a diverse and wide-
ranging collection of pursuits, some practitioners may find little
overlap between their needs and what these programs have to offer.

The system does not, for instance, provide a special editor for
lexical files. However, many powerful editors are available on most
computers.

Nor will users find here the ability to instantly access any part
of the lexical file via index terms and other retrieval
specifications. The kind of retrieval that these programs provide
is not instantaneous. If immediate on-line access is desired, a
better solution may be provided by text database and regular
database systems, although at a cost in certain kinds of
flexibility.

The system is also not oriented to publication by having built-in
facilities for producing camera—-ready copy for publication. This
lack is mitigated somewhat by the ease of development of special-
purpose programs within the system. It is thus reasonably

Second Edition, partial draft. Formatted February 2, 7990

1.1 ORIENTATION TO THE SYSTEM 4

straightforward to write a special program to convert a particular
lexical file into a format acceptable by a particular typesetting
system. This has 1in fact been done many times, for different
dictionaries and for different typesetting systems, exhibitimg a
flexibility that might even be unattainable with a built-in
facility.

The making of text concordances, one of the major tools of
lexicography, is beyond the original purpose of these programs,
which were designed to handle lexical files rather than text.
However, they could easily be turned to such a use.

The dictionaries that these programs handle are not in a suitable
form for use as the lexical component of a computerized grammar of a
language, or as a mechanical translation or information retrieval
system. The dictionary files are basically computer—stored and
explicitly structured versions of the usual kind of human-oriented
bilingual or monolingual dictionaries, whether scholarly,
pedagogical, or general.

Nor are these programs particularly helpful for comparing several
dictionaries of a language, for studying the structare of
definitions in a particular dictionary, or for other lexicological
pursuits.

The gathering of statistics from the lexicon, and statistical
computations, form another area that these programs leave uantouched.

The following short bibliography, which is neither complete nor
uniform in its coverage, is provided to point the aser to other
systems that emphasize some of these cther areas. For instance,
venezky 1973 describes a system for retrieval of words and their
contexts from large corpora of text together with the editing and
construction of dictionary entries. The Revard and Olney items
illustrate computer-assisted lexicological studies. A complete
bibliography of computer-aided lexicography would run several
hundred items in length. Bailey (1974) is a draft of part of such a
bibliographys Kipfer (1982) is a more recent bhibliography. It will
be noticed that almost all of the projects reported in the
literature deal with monolingual dictionaries of langpages with a
literate tradition ——— English of various epochs, French, Russian,
etc., for which the primary logistics problem is the collection and
collation of millions of citations.

Bailey Richard W. *Computer-assisted Lexicography®. Ameri-
can Journal of Compaotational Linguistics. Yol. II,
No. 1 (Finite Stringl), 1974.

Bailey, Richard ¥W. and Jay L. Robinson. 'Computers and
Dictionaries*, in Angus Cameron, Roberta Frank, and
Jdohn Leyerle, eds., Computers and Qld English
concordances, Toronto 1970. 94-102.

Second Edition, partial draft. Formatted February 2, 1330

1.7 ORIENTATION TO THE SYSTEM 5

Gellerstam, Martin, ed., Studies in Computer—aided Lexicologye.
Stockholm: Almgvist £ Wiksell International, 1938.

Goetschalickx, J., and L. Rolling, eds., Lexicography in the
Electronic Age- New York and Amsterdam: North Hollanad,
1982.

Josselson, Harry H. ‘*Lexicography and the Computert, in

Io Honor Bomap Jakobson:® Essays op the Occasion of
his Se¥entieth Birthday. The Hague 1967. II.1046-59.

Kipfer, Barbara Aan, ™Bibliography of computer applications in
lexicography", in Dictignaries, Jdournal of the
Dictiopary Society of North America. #4 (1382),
pp.202-237.

McDavid, Raven Jr. and Audrey Duckert eds. 'Lexicography in
English®*. (Part ¥I: Technology iu Lexicagraphy)

Anpals of the Nex YOrk Academy of Sgience, ¥ol-211
{June 8, 1973).

Olney, John, Carter Revard, Paul Ziff. Toward the
Development of Compuiatiopal Aids for Obtaining a Forpmal
demaptic Description of English. Santa Monica: Systems
Development Corporation, report 5P-2766/061/00. 1968.

Revard, Carter. '0n the Computability of Certain Honsters

in Noah's Ark®. Computer Siydies ip the Humapities and
Yerbal Behavior, 2, 82-90 (1963).

Urdang, L. °*The systems design and devices used to process
the Random House Dictionary of the English Language.?

Computers and ithe Humanities, 1, 31-33 (1966).

Venezky, Richard L. ‘*Computatignal aids to dictionary
compilation?, in R. Frank and A. Cameron, eds. A Plan
for the Dictiopnary of 01d Epglish. Toronto 1973.

Hoelck, Wolfgang. "A Computerized Dictionary of Andean
lLanguaagest. Language Sciences 8 (Dec. 1969).

One might alsc scan the folliowing journals for relevant material:
Computers and the Humanities; Journal of the Association for

Computational Linguistics; Journal of the Association for Literary
and Linguistic Computing.

1.31.2 HISTORY AND SIAIUS OF THE SYSTEHN

The system documented here began life as separate programs
written for the IBM System/360 in the late 1960%s. A long series of
accretions, and two or three major revisions and consolidations of
the entire system, have led to the present system, which continuaes
to underqgo expansion and revision. The entire development has been

Second Edition, partial draft. PFormatted February 2, 1990

1.1 ORIENTATION TO THE SYSTEM 6

guided and motivated by the needs of actual dictionary projects—-
several dozen projects on languages from a wide variety of families
(see Appendix III for a sketch of the background of these programs).
The basic data structure and program organizatiom have, however,
changed little since the beginning. More extensive changes have
occurred in the areas of making the disparate programs more
internally consistent and of organizing the system to be more easily
expandable. If any major changes to the system are made in the
future they will be made in such a way as to preserve compatibility
with already existing dictionary files.

Since 1985, the programs have seen increasing use on personal
computers running the MS-DOS operating system. Minor additions to
the PC version of the system have been made, to address the needs
and possibilities presented by this environment. Apart from these,
however, a policy has been followed of maintaining uaniformity of the
system across different emnvironments, even if it has meant
neglecting special capabilities of particular environments.

The history and circumstances Of the development of the programs
have given the system some peculiar characteristics. They were
originally designed and written not for use by lexicographers
themselves, but vrather for the programmer's own convenience in
responding to regquests from the lexicographers. Thuas, for instance,
programs that were often nceded were packaged into a form that was
easy for the author to use and adjust for different projects. These
programs thereby alsc became a little easier for the non-programmer
to use. Due to increasing demand, some of the programs were then
gradually released for non-programmers to use, and eventasally, also
in response to demand, a single coherent piece of documentation was
written, which later became this manual. The system therefore
developed primarily for the programmer to use when working in close
association with the lexicographer. Although there are now many
things a lexicographer alone can do with the programs, the original
orientation is still clearly evident in how One actuwally uses the
programs: for instance in the need to supply "specs"™ statements in
the SNOBOLYH programming language for each run, in the poverty of
facilities for detecting and recovering from user-caused and other
errors, in the valnerability of the programs to the user’s
alteration Of intermnal variables, etc. It also appears in the
reliance on specially-written control modules and *user functions”
{(and in the set of simple basic support functions for writing them)
to meet more specialized needs, rather than on a complex and
extensive set of pre—programmed facilities. 1In fact, the arsenal of
ready-made programs {(™control mcdules™) is extremely limited,
compared with what might be needed and could be written. The
emphasis instead has been on supplying the underpinnings for the
potential additions. In general, the distinction between "user”™ and
“programmer™ is blurred. There are clearly things which the user
alone can 40 and things which require a programmer, but hetween the
two poles is a broad grey area in which a varying amount of
programming knowledge 1is required. Also, as was always true in the
past, some of the programs in the system——due to more frequent use

Second Edition, partial draft. Formatted Februvary 2, 13990

1.7 OQRIENTATION TO THE SYSTEM 7

and tinkering--are more "finished"™ than others. No great effort is
made to keep the manual in step with the programs as these change
and expand. The aathor insists, however, on staying in close touch
with every project that uses these programs, beginning with the
initial evaluation of the programs, in order to be apprised of
problems and new requirements as well as to ensure that the system
will be used in the most effective way. That is another hold-over
from the early days of the programs.

1.1.6 ACKNOWLEDGEMENIS

The predecessors of the current system have been developed over
many years (since 1966), and many people have made contributions.
Early versions of some of the programs were developed by Ann Peters.
Almost all of the early nsers of the programs (see list in Appendix
IIT) contribauted important ideas to the system.

Earlier versions of parts of this mannal were also written by
many people, among them (in chronological order), Byron Bender, inn
Peters, Jim Tharp, June Netter. Jocan Romick wrote Appendix II of
the mainframe version, and Louise Pagottc wrote Sections 4.4 and 4.5
of the mainframe version. Elaine Good has made substantial
improvements to the style and readability of a previous edition of
the manual. The excellent presentation of the mangal and of the
indexes is the handiwork of Louise Pagotto nsing the Script text
formatting package on the IBM/370 and its sSucCesSSOrS.

Many of the dictionary projects (Appendix III) that occasioned
the development of these programs were funded by goveranment
agencies, which have thus indirectly contributed to the development
of the programs. Among these agencies are the National Science
Foundation (NS5F), the National Endowment for the Humanities (NEH),
and the Government of the Trust Territory of the Pacific Islands.
Direct support of the work has been provided by the Pacific and
Asian Linguistics Institute and, later, by the Social Science
Research Iostitute, both of the University of Hawaii. The Computing
Center of the University of Hawaii has contributed computer time. A
major revision and consolidation of the programs and of the
documentation were the suabject of a grant (BNS 7924700) from the
National Science Foundation. Ongoing development incidental to
particular projects is often aided by grants to those projects,
principally from NSF and NEH.

Second EBdition, partial draft. Pormatted February 2, 1390

1.2 QRIENTATION IO THE MANUAL

1.2-1 SCORE QOF IHE MANUAL

This Second EBdition of the manunal comes in two versions, one for
the mainframe and the other for the PC environment. Look on the
title page to see which version this is. The differences are only
in Chapters 4 and 5, and Appendix II.

The principal concern of this manual is to describe the system of
lexicographical programs and its use. Ancillary, even though
essential, information which is not unique to these programs 1is only
sketchily treated, if at all. (See Section 1.2.2 "What the Manual
Does Not Cover®.)

The size of the manual in no way reflects the size and complexity
of the system it describes. The system itself is quite primitive.
The ways in which it can be used however turn out to be not at all
obvious to many linguists, and developing this topic and providing
some background have greatly expanded the book in many places.

Chapters 2 through & of this manunal are organized as follows:

Chapter 2, GETTING STARTED, contains a sketch of the minimal
information needed to start enterinyg some dictionary entries into
the computer and getting some output. This chapter is kept
relatively independent of any particular computer, therefore where
necessary it refers to Chapter 4 where details of ruaning the
programs on a particular computer system are covered.

Chapter 3 is an approximately complete description of the system.
Section 3.2 gives all the conventions used in representinag
dictionary entries, and Sections 3.8 and 3.5 describe what the
available programs, known as control modules, do. These two
sections are not always entirely up-to-date due to occasional
additions to the system. Sections 3.3 and 3.7 attempt to bridge the
gap somewhat between this description of the system itself and its
application to lexicography.

To actually run a program you need to know the conventions for
using the system on a particular computer installation, which may
vary from one installation to another. Chapter % describes these
conventions, in the mainframe version of the manual, for the
University of Hawaii Computing Center, and in the PC version, for
the M5-D0OS set-up. Sections %#.2 and 4.3 show some actual examples
of runs called "recipes®.

Chapter 5 is a collection of topics oriented to "tasks™ that one
frequently needs tc do but which require some combination of
procedures and programs and some skill in deciding among them.
These tasks are thus not easily described in any document that is

Second Edition, partial draft. Formatted February 2, 1590

1.2 ORIENTATION TO THE MANUAL 9

tied strictly to the structure of the programs. The special "task-
oriented® chapter gives the freedom necessary to discuss these
matters coherently. Some of the tasks discussed are “generating
indexes and finderlists®, ¥"storing the data®, "sorting the
dictionary”, etc. This chapter will grow as new tasks are written
up.

Chapter 6 gives a technical description of the system. Such a
description would be needed by the programmer interested imn
expanding the capabilities of the system to address new needs and by
someone wishing to install the system on a computer.

Pinally there are several appendixes and a comprehensive index of
topics and parameters. Appendix I should logically be an integral
part of Chapter 3, being a complete description of two of the
programs, or control modules, INVERT and INVERT2. Due to its
inordinate length however, it has been relegated to an appendix. A
short summary occupies its place in Chapter 3 instead.

1.2.2 HHAI IHE MANUAL DOES NOT COVER

Since certain areas of knowledge or skill, though important or
essential to the effective use of the programs, 40 not relate
exclusively to the programs, they are not covered or are only
incidentally touched upoa in this manual. The principal such areas
are the following:

a. Mechanics

This manual does not discuss using a terminal or personal
computer, submitting and retrieving jobs and other aspects of using
a computing center. However, some information pertaining to the use
of one computing center is contained in Appendix II of the mainframe
version. Some hints on effective use of a PC are given in the
corresponding appendix in the PC version.

The single most important computer tool for anyone using this
system of programs, and indeed for almost any computer user, is a
program called an editor. Whether on the mainframe or on a PC, it
is with the editor that the user prepares and edits the lexical
files, composes the short "specifications® file for a run, examines
the output from a run, etc. Indeed, with a good and powerful
editor, many of the functions of the programs themselves can be
performed. One of the skills the user will acguire is that of
deciding what functions to perform with the editor and what to
entrust to the programs. The decision is mostly a matter of
convenience. In any case, a user of these programs should also be
quite fluent in using an editor. This manual will not attempt to
summarize the capabilities of editors, let alone give details of
their use. Nor will we give any advice on the choice of editors,
except to state that for someone asing these programs, an editor is
preferable to a word processore.

Second Editiom, partial draft. Formatted Pebruwary 2, 1390

1.2 ORIENTATION TO THE MANURL 10

b. Job Control Language (JCL) or other operating system command
language

This is the lanquage {(with differing names on different
computers) or other system of commands for instructing the computer
to execute programs, to link them together, to look for or deposit
data in files, to display or print files, to manage space and other
computer resources, etc. To execute any program the user must
interact with the computer system through its command language- In
this manual, mention of JCL or other command language is restricted
principally to Chapter 4. No systematic exposition of this subject
is undertaken, however. To understand the command language, to take
advantage of its flexibility, and most important, to be able to
diagnose abnormal conditions {(and in particular to be able to detect
whether an abnormal comdition originated in the program or in the
operating environment), require information beyond the scope of this
manual. Appendix II, however, does give some rudimentary help in
this regard.

c. SNOBOL4/SPITBOL programming

In almost all of these programs the user may specify certain
information by inserting statements written in the SPITBOL
programming language. In some cases larger blocks of statements,
amounting to small programs in themselves, may or must be inserted.
In the former case, the user need only follow by rote the form of
the statements as described in Chapters 3 and 4. To take advantage
of the latter kind of flexibility, a certain amount of knowledge and
skill in SNOBOLY or SPITBOL programming is necessary, wWhich this
manual makes no attempt to impart. The user acquainted with
programming, but not with SNOBOL4H will be able to gain the required
information by consulting the SNOBOLY manual (Griswold et al.) and
the SPITBOL manual {(Dewar) (both are necessary since SPITBOL is the
actual languade used in these programs but the SPITBOL manual
assumes knowledge of SNOBOL&). A growing body of elementary texts
in SNOBOLY is commercially available, but for the complete novice in
programming some sort of programming course is recommended.

The basic references are:
Griswold, R.E., J.F.Poage, and I.P.Polonsky. Ihe

SNOBOLS Programmipnyg Language. 2nd. ed., Prentice-
Hall 1963.

Dewar, Robert B.K. SPITBOL. Version 2.0. Illinois
Institute of Technology. 1971.

The following are introdactory texts:

Gaskins, Robert, and Laura Gould. SNOBOL%: A Programming
Lapgyage for the Humanities. Mimeo. University of
California Computer Center. Berkeley, 1373.

Griswold, R.E., and Madge Griswold. A SNOBOLL Primer.

Second Edition, partial draft. Formatted Februwary 2, 1990

1.2 ORIENTATION TC THE MANUAL 11

Prentice—Hall 1973.

dockey, Susan. SNOBOL programming for the Humanities.
Oxford University Press 1985

Newsted, Peter R. SNOBQL&4: Ap Introductjion o
Programming. Rochelle Park 1375.

The following are good for the more advanced programmer:

Gimpel, James F. Algorithms ip SHOBOLY8. John Wiley
and Sons 1976.

Griswold, R.E. 3Siring and List Processing in

SHOBQLA: Techhigues apd Applications. Prentice-—
Hall 13875.

Maaurer, W. D. Ihe Programmer's Iniroduction io
SNOBQL. American Elsevier 1976.

Tharp, Alan L. Applications of Spithol. North
Carolina State University 1977.

d. Practical “common sense®™ about using computers and running
programs

This unwritten but essential body of lore may be acquired through
axperience and by watchimg or consulting an experienced person in
practical situations. The following are examples:

1. When setting up a new raun on the mainframe, execute one or
more trial runs on small samples of data, both for timing and for
testing the instructions in the job, before committing yourself to
the expense of a full "prodanction®™ ran. Similarly on a PC, first
ran a program on a small sample Oof the data, possibly on a special
test file of data, and examine the output to determine that the
resuits are indeed what was desired, before letting the program run
on the entire dictionary file. A simple way to limit a rum to a
small amount of data is to use the STOPAFTER parameter, available
for all control modulies. LOOk among the early recipes in Chapter &4
to see how this is used.

2. On inspecting the output from a job, do not assume that the
job ran successfully. Check several indicators to make sure that
the job ran as desired ——— a cursory glance at the output file or
printout may not reveal that the runp was abnormally or prematurely
terminated, or that, even though the job ran successfully, spurious
results were given because the original request was formulated
erroneously {(see Sections 4.4 and 4.5).

3. Keep good records of your mainframe runs and keep the
printouts from production runs in some systematic way for future
reference. On the PC, follow some systematic method of naming and
keeping track of your dictionary files, both input and output files.

Second Fdition, partial draft. Formatted February 2, 1590

1.2 ORIENTATION TO THE MAWURAL 12

Generally practice good housekeeping of your files, both for the
sake of managing space and for knowing what®s where.

4. Keep track of your tapes and disks; always make back-up
copies of your important files and keep them in a different place
from the working copies. (This is known as off-site back—up.)

5. In trouble-shooting, or even when not apparently in an
abnormal situation, be on guard against taking signs at face-value.
Appearances can be deceiving.

6. Be aware that it is always possible that there are still
obscure errors in the programs themselves, or in the documentation.

Such precepts are not peculiar to using these programs alone and so
are not speclally treated in these manuals, though some of these
topics may eventually find their way into Chapter 5.

€. Lexicography

This is not a manunal on lexicography. It does not give advice on
how to compile a dictionary, how to f£ind words, how to wWrite
definitions, how to design a practical orthography or decide on an
alphahetical order, what information to inclade in an entry, the
role of illustrative senteances, how mach cross—-referencing to
include, how to structure an entry (see, however, Section 3.3), how
to get funding or make practical arrangements for a field trip, etc.
These are major concerns for the lexicographer bat are not brought
orn (though sometimes they are exacerbated) by the use of a computer.
Furthermore, there is almost no field of linguistics or anthropology
that does not impinge on lexicography. A bibliography of all
relevant materials wouald be unmanageable. The following is a mixed
bag of references on lexicography, showing some of the variety
avalilable rather than forming a representative bibliography.

Al-Kasimi, Ali M. Lipguistics and Bilingunal Dictigparies,
Leiden: E.J.Briil, 13877.

Bartholomew, Doris i. and Louaise C. Schoenhals,
Bilingual Dictionaries for Ipdigenous lLanguages,
Dajlas: Summer Institute of Linguistics, 1983,

Grimes, Joseph E. *Methods for Semantic Inventories:

Huichocl'. Technical Memo. Cornell University. 1982(7).

—-—, Helations and Lipnkages 1o the Lexicon. To appear.

Hartmann, R.R.K., ed. Lexicograpbhy: Principles and
Practices.New York: Rcademic Press, 138%.

Kiefer, Perenc, ed., Studies in Syntax apnd Semaptics,
Dordrecht: Reidel, 1970.

Landam, Sidney I., Dictiopnaries: the Art aund Craftr of

Second Edition, partial draft. Formatted February 2, 1980

1.2 ORIENTATION TO THE MANUAL 13
Lexicography. New York: Scribmers, 1984.

Mel®*chuk, Igor, gt al., Rictionpaire explicatif et
caombipatoire du francais contenporalie.
Montreal: Presses aniversitaires de Montreal, 1984.

Misra, B.6., ed., Lexicography in India. Mysore:
Centrai Instituote of Indian Languages, 1980.

Saporta, Sol, and Fred W. Householder, eds. RProblems in
Lexicography, Report on a Conference on
Lexicography at Indiana University, 1960. Bloomington
1962 (=IJaL 28, No.2 pt.8). Revised 1967.

Singh, Ram Adhar, Ao Introduction £0 Lexicograghy-
Mysore: Central Institute of Indian Languwages, 1382.

Sledd, James H., ed. Dictioparies and That Dictiopary.
Chicago, 1962.

Wierzbicka, Anna, Lexicography and Conceptual Apalysis.
Anon Arbor: Karoma, 1985.

Zgusta, Ladislav. Maghal of lexicography. The Hagune, 1971.

-—, ed. Theory and Method in lLexicography: Hestern ang
Non-Western Perspectives. Columbia, Souath Carolina,
Hornbeam Press, 1980.

Courses in lexicography are also beginming to be coffered at some
universities, and a society of lexicography has recently been
founded: The Dictionary Society Of North America, with its own
journal: Dictionaries, the Jourpnal of the Dictionary Sgcieiy of
Norih Amecica-

Another new lexicography journal is Interugational Joarnal of
Lexicography, published by the Oxford University Press.

The Project on the Lexicon at MIT regularliy puts out reports.
f. Other areas of application of these programs

Although these programs were designed specifically for
lexicographical work, they need not be limited to the processing of
lexicographical data. They can handle other kinds of highly
structured lists, such as bibliographies and directories, as well.
Since such uses have not been extensively explored and since the
main purpose of the programs has so far been lexicographical, this
manval contains no systematic treatment of them.

Second Edition, partial draft. Formatted Pebruary 2, 1390

1.2 ORIENTATION TO THE MANUAL 14

1.2.3 HISIORY AND SIATUS OF THE MANUAL

Portions of this manual have been pieced together from documaents
written at different times by different people, and for slightly
different versions of programs. Although the present manual has
been edited for accuracy and consistency, some errors have do doubt
escaped correction. In any case, not all of the detailed
capabilities and limitations of the programs have been included.
Additions are often made to the existing programs, and new programs
are occasionally incorporated into the system before they are
documented in the manuval. Conversely, your copy of the programs may
antedate the version which your manual describes, so that the manual
may mention features not in your programs. Anyone soO inclined may
examine the programs themselves (the sownrce code) to glean further
information from the comments therein.

Beginning with this Second Edition, the manual will appear in two
versions, one for the mainframe and one for PC®*s. Look on the title
page to see which version this is. They differ only in Chapters &
and 5, and #ippendix IX.

The manual 1s sporadically being expanded, especially as new
programs {"control modules®) are made available. Minor revisions to
the manual will pot warrant a change in the edition number. But
copies of the manual printed at different dates may differ in minor
ways- The edition number and printing date appear at the bottom of
each page.

Comments and questions should be addressed to Robert Hsu,
Linguistics Department, University of Hawaii, Honolulu, HI 963822.

1.2.% WHAT TQ READ AND HOW I0 START

How to proceed initially depends on the stage of your inquiry
into these programs.

If you are trying to determine whether this system of programs
would be suitable for your needs without getting involved in the
details, there are several things you camn do. Read Section 1.1,
"Orientation to the System™ to get briefly oriented, and Appendix
ITI to get some idea of the lexicographical projects out of which
these programs grew. There is a sSeparate "prospectus™, available
from the aathor, which attempts to answer the initial guestions one
1s likely to have about these programs. You should definitely talk
to previous users of the programs. 3Some of them have written up
their experiences in internal reports or other documents that may be
available. The aunthor will be glad to refer you to these users. In
fact, I generally insist on discussing with prospective users the
suitability of the programs for their needs before turninrg the
programs over to them. Finally, it is possible to get yoor feet wet

Second Edition, partial draft. PFormatted February 2, 1990

1.2 ORIENTATION TO THE MANUAL 15

in a useful way without running any programs OrC even getting near a
computer: read Chapter 2, "Gettinyg Started®, and try encoding some
0of your dictionary entries, either on a typewriter or on a computer,
in the format required by the programs. Sections 3.2 and 3.3 lead
you further into the structuring conventions. You should seek the
advice of an experienced nser especially during this stage. If you
find the conventions useful and congenial, then there is a good
chance that you will also find the programs useful.

If you have decided to use these programs, oOor at least to try
them out, they will need to be installed on the computer that you
will be asing. Write to me for a copy of the programs, which are
avallable for a nominal fee, telling me what computer you wish to
run them on. You will alsc need to purchase a copy of the Spitbol
compiler for the particular compater, as well as, for certain
computer systems, a sort utility. These details, as well as
procedures for installation, can be worked out with me. In the case
of the PC version, the details are available in one or two
"README®-type files on the distribution diskette. Chapter § of this
manual alsoc gives some installation information.

If the programs have been installed and you want to make some
runs with them, you will need to prepare some data as well as set uap
a runs. Chapter 2, "Getting started™, provides some initial guidance
in preparing dictionary entries in the required format. Sections
3.2 and 3.3 in Chapter 3 give more extensive information. You may
use any editor to prepare the data. (If you use a word processor,
make very sure that the file 1s saved in plain ASCII format, with
none of the formatting codes that the word processor normally
injects into a document file.) Sections 3.4 and 3.5 describe some
programs that are available, while Chapter 4 gives recipes for some
common rans. To start with, try setting up and running the three
progrars suggested at the end of Chapter 2: LISTGEN, BANDSORT, and
INVERTZ. These tend also to be the most frequently used programs.

Second EBdition, partial draft. Formatted Februwary 2, 1990

CHAPTER 2. GEITING STARTED

This chapter offers a simple way into the system, and refers you
to other relevant sections of the manual where particular topics are
discussed at greater depth.

Let us assume that you have a collection, possibly preliminary,
of dictionary entries written out on notebook pages oOr oa file slips
that you wish to enter into the computer for further processing.
This has in fact been the most common starting point for users of
the system. Assuming the programs themselves have been installed
(see section 6.5), there are three classes of things to be done
before you can start ranning programs on this data:

1. purely administrative and mechanical matters, sach as, in
the case of a mainframe, getting an account, finding a terminal or
other data entry device which you can unse, learning how to submit
jobs to the computer and to retrieve the ostput, etc.: or in the
case of a PC, learning to use the operating system, an editor, and
how to manage and print files, etc.

2. decisions aboat the organization and representation of yoar
dictionary entriess and

3. the actual typing of the entries into computer storage.

He w1ll not address the administrative and mechanical procedures
here since they vary from one institution or computer to another and
are not specific to these programs, although in Appendix II you will
find some instructions and advice.

We will dispose of the third step next, and devote most of this
chapter to the second class of decisions since they deserve the most
detailed treatment at the start.

It does not matter how the data is entered into the computer.
The programs operate on a sequential file of lines (or "records®),
the most common form in which computer—readable data is stored.
Although in the past such files were entered via key-punch cards,
the current method of choice is directly through an interactive
"aditor™ program on the compater. On every computer that can be
accessed from a keyboard there is an editor, often several.
Describing their use is beyond the scope of this manual.

The second class of decisions, concerning how your dictionary
entries are to be represented in a sequential file of lines is,

hoWwever, central to the use of the programs and will be introduced
here.

You first need to identify some of the different types of
information that are present in the entries. Common types are

Second Edition, partial draft. Formatted Pebruary 2, 1990

2. GETTING STARTED 17

headword (the word being defined), part of speech, definition,
synonyms, and illustrative expression. These types of information
will be explicitly labelled, in the manner shown below, in the
computer representation of your entries. When they are so marked
they are known as "bands®™, in the terminology of these programs. In
order to mark them, yon must choose a short mnemonic label for each
band, @.g., "hw" for headword, "ps" for part of speech, "def® for
definition, etc.

Yon will then be able to start typing entries into the computer
in the format illustrated by the following entry:

hw aba
n

ps
def a smell or fragrance, pleasant or unpleasant

Pt iy, e e
by i . e

Figure 2.1

The essential features of this *"band format¥ are as follows: 1)
Each band begins at the start of a new line (in "columa 1%, in data
processing jargon), beginping with the band name itself. 2) The
very first band of a dictionary entry is marked by a period {full
stop) in front of the band name. 3) PFollowing the band name, after
at least one space, comes the "body” of the band——the information
itself.

In the example, the headword of the entry is "aba", the part of
speech is "n", and the definition is “a smell or fragrance...".

Additional dictionary entries simply follow on subseguent lines,
with the beginning of each new entry indicated only by the initial
period. Pigure 2.2 shows several entries entered in this formata.

#
{-hw aba
ips n

ldef a smell or fragrance, pleasant or unpleasant

{
|.hw abab

ips n
ldef the leaf of the betel plant
icf sirih

1

{.hw abah

ips n

ldef a gap or notch cut in a tree when felling it
i

Pigure 2.2
Blank lines may be introduced anywhere, as between entries, to

improve the readability, but have no formal significance. Blank
lines are simply ignored by the programs.

Second ERdition, partial draft. Formatted February 2, 1930

2. GETTING STARTED 18

Note that the second entry in this example has an additional
band, labeled "cf", a cross-reference band. Remember that the user
may invent band names at will and assign any desired use for the
bands. Past users of the programs have assigned bands for such
information as proanunciation, etymology, morphological analysis,
syanonyms, antonyms, conjugation class, usage level {(impolite, taboo,
etc.}, scientific name {of flora and fauna), various types of cross-
references, informant name, dialect information, variant fornms,
unpredictable paradigmatic forms, field notebook reference,
specialized meanings {when the word is used as a technical term in
some specialized field, e.g. sailing, basketry), semantic domain
(kin term, body part, fishing term, etc.), etc. (see Section 3.3.3
for of more possible types of information). Any type of information
different from that in existing bands in your file should be
accorded its own band. There is no restriction on the number of
different bands. Typically dictionaries have grown to use some 40
to 50 different bands, while the largest cones use over 300.

A band name must begin with a letter, anrd can contain any
typeable character except commas, semicolons, and blanks (a blank
signals the end of the band name). There is no restriction on the
length of band names. In general, short band names may be faster to
type but harder to remember.

The choice of band names is not irrevocable. You may change the
names of existing bands or add new bands whenever you wishe. You are
in fact encouraged to add a band whenever you discover a new type of
information, and to revise your system of bamnds for greater clarity
and consistency. Furthermore, you are emncouraged to discover new
types of information in your file, even though this may mean going
back and splitting up instances of an existing band. Note that a
detailed categorization of information is not dictated by the
computer, nor is it a prerequisite for using these programs.
However, the finer the categorization and structuring the more
enlightening and useful the file will be, both in itself and as an
object to explore.

Not every dictionary entry of course need have the full
complement of bands. If, for instance, an entry does not {yet) have
a definition, then the corresponding band can simply be left out of
that entry. Some lexicographers proceed by making a skeleton
wordlist first, containing only a headword band and a short
definiticon band in each entry. Working with an informant, they then
make several passes through the printout, eliciting information for
a particular band in each pass.

In the example in Pigure 2.2, the body of each band was guite
short. What if the body of a band is so long that it cannot fit on
one physical line of whatever display or storage device is heing
used? It must then be continued on the next line. However, if the
line continues in column 1 of the next line, the programs will
mistake 1t for the name of a band. (See Figure 2.3.)

Second RBdition, partial draft. Formatted February 2, 1990

2. GETTING STARTED 18

L]

ldef the wild vine, more commonly, the leaf of
[the betel plant

'l

| S

Pigure 2.3

In this example, there would be no way to tell that "the"™ on the
second line is not the name of a band. Instead, the conventicn for
a continuation line is to begin after two spaces {(i.e., in “column
3"): the first space signals a continuation line, and the second
space 1s the normal space between the last word of the previous line
and the first word of the continuation. There may be as many
continuation lines as needed for a given band. This method of
continuation is shown in Figure Z.04.

L
def the wild vine, more commmonly, the leaf of

|
] the betel plant used to wrap areca nut shavings
| and lime and chewed

bt s, a4

Figure 2.4

Do not hyphenate a word at the end of a line: the hyphen woald
become part of the word.

This representation of a band as one or more lines is cailed a
“hanging paragraph,® which is more completely described in Section

A paragraph may, of course, be no more than one line long: it
then does not have any continuation lines. Every band is a separate

paragraph. <Conversely, every paragraph in a dictionary file
represents a band.

One consequence of this method of representation is that the
point where a paragraph is broken across lines is not significant;
lines may be of any desired length. The above band may also be
represented as follows:

def the wild vine, more commonly, the
leaf of the betel plant used
to wrap areca nut shavings and
lime and chewed

PO e —
.y o p—

Figure 2.5

As far as the programs are concerned, Figures 2.4 and 2.5 above
represent the identical information.

It is possible to represent entries that are more complicated

than a simple list of bamds. Section 3.2 describes the conventions
for grouping bands within an entry and for making subentries. We

Second Edition, partial draft. PFormatted February 2, 1930

2. GETTING STARTED 20

will, however, not take up grouping and subentries in this
introductory chapter.

A dictionary file, then, is simply a seguential file of lines
such as those in the above examples. It is entered in this form and
edited in this form, i.e., as nothing more than a sequence of lines.
The programs will, however, understand the structure. They group
lines together into a paragraph, recognize anything that begins in
column 1 as a band labhel, look for the period to mark the start of a
newWw entry, etc. Before we discuss a few programs that caan be run on
such a file, we will bring up some additional decisions you may want
to make before entering the bulk of your material.

If the material in certain bands uses letters and other
characters not available on your terminal or other input device, you
may need to establish some conventions of orthographic equivalence
for those bands. For instance, a common practice is to indicate
stress by putting an apostrophe (also called a single quote) after
the vowel affected. Ancther is to use "?%" for the glottal stop.
Syllable breaks may be shown by a space. The following example of a
pronunciation band shows these symbols in uase:

fpr a ha'?
1

b o =l

Figure 2.6

Note that the apostrophe need not mean stress in all bands, but
only in those bands that you choose. Elsewhere it may be used to
mean other things. In general, you may establish your own
conventions, orthographic and otherwise, on a band by band basis.
This i1s known as the "band-by-band principle® (see Section 3.3.8).
Section 5.2 will contain some suggestions about how to handle
orthographic problems.

For all but the simplest bands you may want to establish
additional c¢onventions for punctnation, abbreviations, order of
material within the band, etc. Again, the conventions may be made
on a band by band basis. You do not need to and probably will not
be able to make all these decisions before you start. You may
postpone decisions that are not yet relevant. However, 1t will save
much confusion and editing later if every convention 1s written down
and easily accessible, say in a codebook, and if you make sure that
everyone involved with entering data and proofreading understands
and follows them. A codebook might be a looseleaf notebook with a
separate page (or pages if necessary) for each band, arranged
alphabetically by band name. The band name would appear prominently
at the top of a page, followed below by a short description of the
type of information that it represents. Elsewhere on the page would
be given all the conventions that apply within that band. Any
conventions external to the band would alsoc be noted, such as
whether the band is obligatory, whether a certain other band must
follow, etc. If certain conventions or sets of conventions occat

Second Bdition, partial draft. Formatted February 2, 19%0

2. GETTING STARTED 21

frequently, they may be given names, defined in a separate section

of the codebook, and referred to only by name on the band-convention
pages.

Certain conventions should be established early on. An example
of such a decision occurs when the lexicographer wishes to
anticipate the eventunal setting into type of the dictionary. It
will be a simple matter, when that time comes, to instract the
computer to set the body of certain bands in boldface, and other
bands in italics, etc. However, if, say the first part of a band is
to be set in italics and the rest in another font, then the point of
change must be explicitly marked in the body of the band. This
marking is more efficiently done when the material is first entered.
In a typical illustration band, for instance, the illustration
itself is often set in italics while the translation which follows
it is in roman, also called medium. While the italic shift does not
need to be marked because that will always coccur at the begianing of
the band, the point of shifting to medium {(scomewhere in the middie
of the band) does have to be marked. This is often done with the

vertical bar symbol, "I", as in the "il" {for illustration) band in
Figure 2.7.

l.hw aba'bd

|df the wild vine, more commonly, the leaf of the
| betel plant

fil abab dia agih {two bunches of betel leaves

Figure 2.7

Similarly, a shift to italics, as frequently encountered with
Latin binomials, is usually indicated by the percent sign, "%%", as
shown in Pigure 2.8.

df the wild vine, more commonly, the leaf of
the betel plant (Sp. %Piper betlel) used to wrap
areca nut shavings and lime and chewed

s
e s ity e

Figure 2.8

Note the shift back to medium before the closing parenthesis in
this example.

Although most users of these programs use "|® and "%" to indicate
shifting to medium and to italics for the anticipated typesetting of
their work, the convention is not dictated by this system of
programss you may use any other symbols for this purpose if, for
instance, you need ™|" or "%" to represent other information in the
band. ©Other conventions are discussed in Section 5.2.

There is another ccmmonly uwsed convention, one which is more
firmly entrenched. It is the use of the asterisk, "*", to mark, in

Second Bdition, partial draft. PFormatted Februwary 2, 1350

2+ GETTING STARTED 22

definition bands, words that are to be extracted by the "finderlist®
programe. This program constrycts an alphabetical index of such
words, called keywords, which indexes back to the headwords whose
entries contain those words. The definition band in Pigure 2.9
ilinstrates the use of the asterisk for marking keywords:

¥

l-hw abab

ldef the wild *vine, more commonly, the
| =*leaf of the *hetel plant used

| to wrap areca nut shavings and

| 1lime and chewed
L

PSR

Pigure 2.9

The finderlist generated from a dictiopary containing this entry
would have entries for "betel™, "leaf®, and "vine™, each containing
a reference to the headword "abab™. A complete description of these
and other conventions assumed by the finderlist program, including
possible overriding of the conventions, is contained in Appendix I.

Note that asterisks are used for this purpose only in defipition
bands. In other bands asterisks may be used for other purposes,
such as to mark reconstructed forms. This is another example of the
band~-by~band principle, whereby a convention need not be applicable
to all bands in a dictiopary but only to certain stated bands.

Again, it should be emphasized how important it is to write down
all band-specific conventions ia a codebook.

Using the few conventions discussed above, you might now have
some entries that look like this when entered into the compunter:

3econd Rdition, partial draft. Formatted Pebruary 2, 1990

2. GETTING STARTED 23

L

| . hw aba

lpr a ba*

laf a *smell or *fragrance, pleasant or unpleasant
lcf ban

|

l.hw aba"'

lpr a ba*?

jaf *at, *atop, *in, *on

| phr aba® mija, Jon the table

Iphr aba* geladak, {on the floor or deck
;phr aba* jelatong, lon the jetty

]-hw abab

lpr a ba'b

{af the wild *vine, more commcnly, the leaf of the
{ =*=betel plant (Sp. %Piper betlel) used to wrap

| areca nut shavings and lime and chewed

lcf sirih

{ncl agih

iphr abab dua agih, i{two bunches of betel leaves
{.hw abah

lpr a ba®h

{afg a gap Oor *notch cut in a tree when felling it
Jil Abah ia dalam, lhis notches are very deep.

[

b i ke e AN R SSA R AN AN A S AN U T s Al Sk mas e A s sty

Figure 2.10
The "ncl®" band name in Figure 2.10 stands for ‘'numeral classifier®.

If you are unfamiliar with the termirnal or other data entry
device you wWill be using, yon should first type up entries oa paper
in this format before sitting down at the terminal.

Once a file like this is in computer storage, what are some
useful programs that can be run on it? 1In this chapter we will
menticon the three most commonly used programrs.

The first is called LISTGEN, which prints the file ocut on paper
(or prepares another file ready for printing Or examination on the
screen) with some indentations and blank lines to show the stracture
of each entry more vividly than does the input format. The Listgen
format {1-format) is the usual form for working copy-—the printout
on which editing is done. Making allowance for the artificially
narrow space in the example box, the above long sample in Figure
2.10 would come out looking something like this (Pigure 2.11) in 1-
format:

Second Edition, partial draft. Pormatted February 2, 1990

2. GRETTING STARTED 24

L 1
117 <hw aba |
| pr a ba" |
| af a *smell or *fragrance, pleasant or |
i anpleasant {
i cf bau |
| l
12 .-.hw aba? 1
| pr a ba®'? {
f art *at, *atop, *in, *On {
| pht aba* mija, lon the table {
| phr aba® geladak, lon the floor or deck 1
: phr aba® jelatong, lon the jetty {
|
13 .hw abab |
| PT a ba'b {
| af the wild *vine, more commonly, the leaf ofl
| the *betel plant (Sp. %Piper betlel) used to |
| Wwrap areca nut shavings and lime and chewed |
} cf sirih |
| ncl agih]
| phr abab dva agih, {two bunches of betel |
| leaves !
1 |
14 .hw abah {
! pE a ba'h i
} af a gap or *notch cut in a tree when felling}
it
| il Abah ia dalam, lhis notches are very deep.|
i

Figure 2.11

Note that there i1s neither more nor less information in this, nor
is any information rearranged. It is merely in a more readable
format. Also note that the LISTGEN program numbers the dictionary
entries. The listgen output is of couarse a separate file; the
original file is left untouched, and continnes to be the master file
for editing. None of the programs alter the master file.

How exactly you run the LISTGEN program depends on your computing
system and on how the programs were set up to run there.
Instructions are given in Chapter 4. In particular, see the
"recipes" section, 4.2, for the simplest LISTGEN run.

Another commonly used program is called INVERT (or the similar
but more advanced INVERT2), which generates an alphabetized
“finderlist® using the asterisked words in the definition bands. If
run on the sample dictionary in Figure 2.710, INVERT would generate
an output that looks something like Figure 2.12. Note that every
starred word in a definition band appears in this alphabetical list
of English words, and that the entire definition appears as many
times as there were stars in it. The stars are dropped in the
finderlist, however.

Second Edition, partial draft. Formatted February 2, 13990

2. GETTING STARTED 25

L] | |
fat |
I at, atop, in, on:: aba’ |
i {
latop |
} at, atop, in, on:: aba? |
1 |
Ibetel |
| the wild vine, more commonly, the leaf of the |
i betel plant (Sp. %Piper betlel) used to wsrap t
| areca nat shavings apd lime and chewed:: abab |
1 1
]fragrance |
| a smell or fragrance, pleasant or unpleasant:: abal
| !
fin l
| at, atop, in, on:: aba® |
1 |
lnotch |
| a gap or notch cut in a tree when felling 1t:: |
i abah |
1 {
lon !
| at, atop, in, on:: aba?’ |
i |
Ismell |
i a smell or fragrance, pleasant or unpleasant:: abal
] {
lvine |
i the wild vine, more commcnly, the leaf of the {
1 betel plant (Sp. %Piper betlel) used to wrap I
1 areca nut shavings and lime and chewed:: abab {
1 4

Figure 2.12

A larger dictionary would have produced a more interesting
finderlist having typically many more entries under each keyword. To
ran this program you need to tell the program what bands to look for
asterisks in, in this case only the band "d4f®. To do this, you need
to place a statement into the program that looks like this:

BANDS = *DF*

See Section 4.3 for a recipe for running INVERT. Appendix I gives
instructions on specifving the bands in which the program is to look
for asterisks.

There are othexr symbols besides asterisks you can put in your
definition bands to gnide the program in picking out keywords and
the longer phrases in which they are embedded. These are described
in Appendix I, which is the complete document on using the INVERT
and INVERTZ programs.

Second Bdition, partial draft. PFormatted February 2, 1990

2. GETTING STARTED 26

The final program to be mentioned in this introduction is called
BANDSORT. It simply sorts all the bands in a dictionary file as if
they were separate items and not part of any entry. It does,
however, carry along the headword, placing it at the left of each
band, s0 that you can tell which entry each band came from. The
bandscrt from our sample file would look something like Figure 2.13:

1
[aba cf bau l
Jabab cf sirih i
| |
laba* af *at, *atop, *in, *on i
{aba ar a xsmell or *fragrance, pleasant or unpleasant]|
jabah af a gap or *notch cut in a tree when felling it |
labab df the wild *vine, more commonly, the leaf of thel
| *hetel piant (Sp. %Piper betlel) used to {
{ wrap areca nut shavings and lime and chewed |
| i
{aba -hw aba |
jaba? -hw aba* !
}abab - hw abab t
jabah - hw abah }
1 |
|abah 1l abah ia dalam, }his notches are very deep.- |
I |
{abab ncl agih {
1 1
laba® phr aba® geladak, lon the floor or deck |
laba® phr aba® jelatong, lon the jetty {
faba? phr aba®* mija, lon the table f
labab phr abab dua agih, ltwo bunches of betel leaves |
} |
laba pr a ba® |
laba’ PE a ba'? {
jfabab pr a ba'b }
{abah pr a ba'h !
[v |

Figure 2.13

In this output, all occurrences of the same band are groaped
together and subsorted on the body of the band itself. The headword
of the entry to which the band belongs appears at the far left.
Many lexicographers have felt that this is one of the most widely
useful printouts. It can be used to find all entries having the
same or similar information in a given band, e.g. all entries with
"n® in the "ps" band. It can also be informative to look at those
entries with bands which occur only rarely. The output of a
handsort is also useful as a proofreading aid, allowing one to scan
only one type of band at a time paying attention to only the
conventions relevant to that band.

There is a recipe for running the BANDSORT program in Section
4.3,

Second Edition, partial draft. Formatted February 2, 1990

2. GETTING STARTED 27

This chapter has deliberately been kept short. At this point you
may find it instructive to encode a few dictionary entries of your
Oown, pOssibly trying more than One way to translate your entries
into the band format. As you encounter practical problems 1n this
process, you may find the more detailed discussion in Sectioas
3.2-3.3 helpful. You should also seek the advice of someone
experienced with the system before you spend too much time entering
your materials, in order to catch potential problems and
misunderstandings.

After you have worked up one or two dozen representative entries
in this way, type them into a computer file observing the
conventions described above and in the next chapter. Then run a
LISTGEN, a BANDSORT, and an INVERT on the file, and examine the
output, again preferably seeking the advice of an experienced user.
This may result in modifications to your encoding scheme. Make the
changes, and add a few dozen more entries, and run the prograns
again.

By now you should have started your codebook.

Even after your conventions seem to have stabilized, continue to
run these programs periodically on your growing database and scan
the outputs. You may discover patterns in your material which yom
would want either to take advantage of in some way or to alter. Do
not wait until all your material is in before running a set of
programs. The usefulness of the programs lies in bringing ocut
patterns while the work is in progress, and not so much 1n producing
a “final" product. The three programs mentioned above are probably
the most useful for any dictionary. For an individual language
other programs may also prove to be heuristically useful.

Second Edition, partial draft. Formatted February 2, 13590

CHARIER 3. TIHE USER®S VIEW QF THE SYSTEM

This chapter gives a detailed description Of the system from the
user's point of view. (Chapter 6 gives a technical view for the
programmer.) The first section, 3.1, describes the overall
organization of the programs. Sections 3.2 and 3.3 set out the
conventions for representing lexical data in a computer file, while
sections 3.4 through 3.7 have to do with the actual programs and
their use.

3.1 SIBUCTURE OF IHE SYSTEN

The system consists of two general programs, BIRDBATH and TOAST.
BIRDBATH operates by reading through a dictionary file from
beginning to end, performing specified operations on the data read
ins (The file itself is never altered.) These operations may
involve formatting the data for printing, selecting entries on the
basis of certain criteria, copying certain types of information into
another file, etc. This program does not 40 any sorting, that is,
rearranging of the data. To sort or to do amything requiring
sorting the other program is used. That program, TOAST, starts by
also reading throongh a dictionary file, but in the process it
generates a file sunitable for sorting. It then sorts this file and
finally processes the re—-ordered file. (Again, the origimnal file is
left unchanged.)

Control Modunles

When you run BIRDBATE, you must tell it what type of operation
(such as the three mentioned above) you want it to do. This is done
by telling it to use a certain "control module" corresponding to the
desired type of operation. For instance, LISTGEN 1s the name of a
control module that formats the dictionary in the standard printout
format. The control modanle is actually a small piece of program
that is inserted into the main BIRDBATH program and that controls
what operation BIRDBATH does on a dictionary file. Similarly a
TOAST control module is a piece of program inserted into the TOAST
Programa.

There is a collection, or ™library", of control modules, each of
which does some particular type of thing when inserted into
BIRDBATH. There is a separate library of control modules for TOAST.
Whenever a new need is encountered that is not addressed by an
existing module, either an existing module can be generalized to
satisfy that need or a new module must be written. BIBDBATH and
TOAST were designed with the goal of making such modules easy for a
programmer to write. If the new module is a specialized one which
is likely never to be needed again, it can be simply thrown away
after it is used, but if it is of general interest it may be
incorporated into the standard library of modules and a description
of it would be added to this manual. You may also accumulate your

Second Edition, partial draft. Formatted February 2, 1890

3.1 STRUCTURE OF THE SYSTEM 258

own collection of modules. In Sections 3.4 and 3.5 you will find a
list of existing standard control modules for BIRDBATH and TOAST,
respectively, with a description of what they do and the options
available with each.

If you need to write your own control module, you have to know a
certain amount of SNOBOL4 programming and how BIRDBATH and TOAST
work. The latter is explained in Chapter 6.

SRECS

When ansing a control module, in addition to giving the module's
name you may need to give more specific information, the so-called
SPECS parameters, to specify in greater detail what the progranm
should do. For instance, for a control module that selects only
certain bands of a dictionary you need to specify the names of these
bands. The SPECS parameters relevant to each control module are
discussed with each module (see Sections 3.4, 3.5, 3.6).

The SPECS statements are regular statements in SNOBOLY4 or
SPITBOL, the programming language in which the entire program system
1s written. These statements become part of the program. When you
write such statements you should gse the example SPECS statements
(shown in variouns places in Chapters 3 and 4) as models, especially
with regard to the placement of spaces (blanks). Where spaces are
shown, be sure to leave at least one space (more than one if you
wish, but at least one): where ycn see no spaces, leave none. This
also applies to the beginning of the statement. Most statements, as
shown, begin with spaces (do not begin in column 1 or the very left
of the line). Those that do start in column 1 are shown starting at
the left margin in this manual.

USEBENS

Certain kinds of specific information of a more complex kind,
typically reguairing the description of procedures rather than the
specification of values, may be reguired by some control modules.
Such information is called "user functions™ and these are ususally
placed in a file designated USERFNS.

Job control or command language

Pinally, there is more general information not specific to
BIRDBATH or TOAST that ycun have to provide via Job Control Language
(JCL for short) or other command language understood by your
computer system, in order to tell it that you want to run BIRDBATH
or TOAST, what files to use, and other administrative details.

This language and associated rituals vary from computer to
computer, depending on how the programs were installed,
idiosyncracies of the computer system, etc. General instructions
therefore cannot be given here. Chapter 4 and Appendix II provide
some guidance for specific systems. Chapter 6 contains some notes
that may also be helpful.

Second Edition, partial draft. PFormatted Februvary 2, 1990

3.7 STRUCTURE OF THE SYSTEM

Before we describe the available contiol modules we need to
describe the form of the data that the programs operate on, i.e.
how a dictionary is represented in a computer file. Sections 3.2
and 3.3 will be devoted to that.

Second Rdition, partial draft. Pormatted February 2, 1990

3C

31
3.2 ORGANIZATION AND REPRESENTATION QF DICTIONARY ENTRIES

3.2-1 BAND FORMAT CONVERTIONS

Lexical information is represented in a computer dictionary file
with the conventions described in this section. Tach entry in the
dictionary consists of a sequence of "bands". A band usually
corresponds to one of the categories of information present in the
dictionary, such as part of speech, definition, synonyms, etymology,
cross—-reference, and even the headword itself. There is potentially
an unlimited number of categories one might be able to identify. It
is up to the user to decide what categories to label in a given
lexical file.

a. Bapd names

For each band the unser invents a short mnemonic name, typically
of two to four letters. The band name must begin with a letter and
can contain any typeable characters except blanks, commas, and
semicolons. Do not use upper and lower case to distinguish band
names. Capital and lower case band names are normally not
distinguished from each other by the programs. For instance, DF,
Df, dF, and 4f are all considered to be the same band name by most
of the programs. For clarity in text we tend to cite band mnames in
caps even though they may be in lower case in the Figures. (Of
course, capitals and lower case letters are considered distinct in
the rest of the band, tha *body® of the band.) The following might
be appropriate band names for the categories of information
mentioned in the last paragraph: PS, DFP, SYN, ETY, XR, HW.

Three band names have special meanings in certain contexts, and
it would be simplest to avoid them except for those purposes. They
are TITLE, FILE and LIST. Their uses are described in Section
3.3.3, Uses of Bandse.

bh. Body of bands

Fach band consists of a band name followed, after one or more
spaces, by the "body" of the band, which may contain any typeable
material. The body of the band represents the actual information
{the part of speech, etymology, etc.) in the band. The user may
wish to establish a particular format and other conventions to be
observed in each band. Some conventions have become customary, and
certain others are expected by some of the programs. The
conventions are discussed in the sections where they are applicable.
Thus, a band may look something like this:

T

ldf silence, stillness
1

Figure 3.1

Second Edition, partial draft. Pormatted February 2, 1590

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES 32

In this example, the band name is DPF, and the body of the band
consists of "silence, stillness¥.

There must be at least one blank separating the band name from
the body. For clarity we usually leave about three, and the
programs, when producing band-format output, insert a variabie
number in an attempt to line up the start of the body at a fixed
column. The actual nomber of blanks is not significant. In fact,
it is not possible for the first character of the body to be a
blank. Nor for the last.

The body of a band may be left empty. This might be done, for
instance, if the pertinent information is not yet known for a
particular entry and it is desired to explicitly signal this fact.
0f course the entire band, name and all, may be left out. There is
no way, however, to leave off the band name itself and enter only
the body of the band.

C- Entries

&n entry in the dictionrary is a sequence of bands that belong
together, typically because they all pertain to the same headword.
Normally the first band of the sequence wWould contain the headword.
The first band of an entry is formally distinguished hy having a
periocd (full stop) before the band mrame-~—with no intervening space.
The following group of bands would constitaote an entrys:

| |

{.hw fi:le:ma:

Ips NOM

{4t silence, stillness

fil ko te fizleimu: O te po lthe silence of night

e e i A st

Pigure 3.2

The headword is "fizle:mun:". (It is a common convention to use
“:" to indicate vowel length.) The part of speech is "“NOM", and the
definition is "silence, stillness™. Another common convention, cone
that maximizes the amount of information coded, is to not capitalize
the first word of a definition unless the word is a proper name or
otherwise normally capitalized. There is an illustration (IL) band
with a short phrase and its translation. (Another common
convention: in illustraticon bands the beginning of the translation
is marked by a "|" sign.)

The headword band need not, of course, be named HW. 1In fact,
even within the same dictionary the headword band can go by
different names if desired, for instance, to indicate what kind of
lexical unit it is: RT for root, SU¥ for suffix, CPD for compound,
etc.

Not all the bands unsed in a dictionary need be represented in
each entry. Of the dozens of different bands used, often only five

Second Edition, partial draft. Formatted February 2, 19390

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES 33

or six will appear in any given entry. The bands should appear in a
consistent order. However, ordering of bands i1s a wmatter of
preference, and is not enforced by any of the programs. There is a
control module that can be used to put them into a specified order.
A given band may be repeated within the same entry if multiple
instances of the same category of information are to be incladed. &
typical case is when there are several illustrations: then the IL
band (if that is the name of it) can occur more than once, with a
different body each time.

Entries simply follow one after the other in the file without a
break, the period before the first band of each entry being the only
thing to mark the start of a new entry.

d. Hanging paragrapks

Fach band is represented in a computer file as a "hanging
paragraph®". Roughly, this means that it begins at the very left of
a line, i.e., without any initial blanks, and if the band needs to
be continued onto subsequent lines those lines must normally start
with two blanks. The first of these blanks signals a continuation
line, and the second is the blank between the last word on the
previous line and the first one on the continuation line. If you
want to have two blanks between the last non-blank character on one
line and the first non—blank character on the continuation line,
then begin the continuation line with three blanks. The first blank
is, again, the continmation indicator, and the remaining two are
“real”™ blanks. Within the paragraph then, i.e. apart from line-end
blanks (which are ignored) and the single initial blank of
continuation lines, blanks are taken as significant data--part of
the contents of the paragraph, and one blank is different from two
blanks, and so forth. It is irrelevant where the paragraph 1is
broken across lines however. Thus, there is freedom to break
paragraphs according to the available width of the paper, screen,
storage device, etc., on which the paragraph is printed, displayed,
or stored. In Chapter 2 we displayed two representations of the
identical paragraph. See Figures 2.4 and 2.5.

The complete set of hanging paragraph conventions are given in
Section 3.2.3.

e. HModes

It is often necessary to distinguish separate groups of bands
within an entry. If, for instance, there is a definition and an
illustration for the noun use of a word, and a similar set of bands
for the verbal use, one would want to show that the first set of 3
bands (part of speech, definition, and illustration} belong
together, and similarly for the second set. This is done by putting
numerals in front of the band names. All bands having the same
numeral before the name belong together. Please note in Figure 3.3
how the nuamerals serve to make three groups of bands.

Second Edition, partial draft. Formatted Pebruary 2, 1390

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES 34

¥

l.hw fizle:ma:

l1ps NOM

j14f silence, stillness

1111 ko te fi:le:mu: O te po |the silence of the
| night

12ps Ve

124f be guiet

12il e fi:lezmu: te vahega fthe class is guiet
{3ps QUAL

{3il he po: fi:le:mu: fa silent night

1311 havali fizle:mu: lwalk silently (or guietly)
!3i1 fenua fizle:mu: |peaceful land

N iy S S A RN S A A it ity i, gl

Figure 3.3

Each group of bands with the same number before it belongs to the
same "mode"™, and the numerals are called mode prefixes. There are
no formal restrictions on the use of mode prefixes. Any constraints
are more a matter of whether you can put a reasonable interpretation
on a given use. It should also be pointed out that the
interpretation pot on the modes {groupings of bands) is not
prescribeds you may use modes (and submodes, see below) for whatever
purpose or meaning you wish. Formally, they are simply groups of
bands, no matter for what reason one may want to group them. 2 mode
is strictly a contiguous group of bands3 one cannot have mode 1
bands, for instance, separated by bands of mode 2.

It makes most sense to number all modes beginning with 1 and
increasing. However, frequently bands may be encountered at the
beginning of an entry that do not have any mode numbers} this
implies that these bands "helong™ to the whole entry and not to just
one group of bands within it. Typically these might be
pronunciation bands, or etymology, or alternate forms. There may
also be mode-less bands at the end of an entrys these might be
cross—reference Or synonym bhands.

If the mode numbers become greater than 9, one may start from 1
again. Do not go to double digits, i.e., 10, 11, etc., since two
digits indicate submodes, and three digits sub—-submodes, etc. (see
below)s. It is rare to need more than 9 modes, however.

£. Submodes

A more common need is for sub-modes (and sub-submodes, etc.),
i-e. fOor groups within groups.-. A second {and third etc.) digit is
used to gather groups of bands within a primary {secondary etc.)
group. Figure 3.4 shows saobmodes. Study the numbering system
carefully.

Second Bdition, partial draft. Formatted February 2, 1990

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES 35

]

l.hw fizleimu:

{1ps NOM

1114f silence, stillness

1111} ko te fitlefmu: 0 te po [the silence of the
| night

f12af peace

11211 ko te fizleimu: 0 te Atua lthe peace of God
{2ps VB

j214f be quiet

12111 e fi:zle:mu: te vahega lthe class is quiet
}224f be in peace

12211 e fi:le:mu: te lalolagi

|23af he gentle

12311 nae fitlesima: lele te puhi lthe cat was very
| gentle

13ps QUAL

1311 he po: fitle:mu: Ja silent night

£3i1 havali fi®*lezmu® |walk silently (or gquietly)
13i1 fenua fi:le:mu: |peaceful land

1

ke s g A S B i Gwb el A S el WM Ml gl e el e et el W

Figure 3.4
g. Formats

Althomgh this format, known as p—format (paragraph format}, is
rather difficult to read, it is easy to type in and to edit, and is
simple for storage and programming purposes.

However, one does not normally work from a printout such as the
above. One of the programs, called LISTGEN, produces a formatted
printout which is much easier to wOork with, containing indentations
and blank lines, and plenty of white space for writing in. The
example entry in Fiquore 3.4 would be formatted by LISTGEN as shown
in Pigure 3.5. Please compare the two figures. This format is
known as LISTGEN format or l-format.

Second Edition, partial draft. Formatted February 2, 1990

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES 36

’
T
%

fizleimu:
1ps NOM
114f silence, stilliness
11il ko te fitlesmu? O te po [the
silence of the night

12af peace
12i1 X0 te fizleimu: o0 te Atua |the
peace of God

2ps ¥B
214f be quiet
2131 e fizle:mu: te vahega lthe
class is quilet

22af be in peace
22it e fizlezmu* te lalolagi

234fF ke gentle
2341 nae firle:mu: lele te puhi [the
cat Was very gentle

S Y ey RS SEVY MM B Wb dne hb i R S e e S W S A S S . M A

3ps QUAL :
3i1 he po: fi:le:mn: la silent nightl|
3il havali fizle:smn: lwalk silently |
{or quietly) {
3il ftenua fi:letmu: |peaceful land

U S Gy e Simie Smmin el el WM A WY e e i e SN S dde e I N A S W N A S S S—

i
i
i |

Fiqure 3.5
h. Sub-entries

Another formal device available is that for indicating sub-
entries. A sub-entry is typically used for a derived word (a word
derived from the main entry headword). A sub-sabentry wouléd be for
a word derived from that derived word, etc. R sub-entry looks
exactly like a main entry (the type we have been assuming) and can
have all of the band and mode structure, except that its first band
begins with two periods (full stops) instead of one. A sub-subentry
begins with three periods, etc. There can be as many sub-entries as
desired. They are placed consecutively after the main entry to which
they are stbordinate. Sub-subentries subordinate to a given
subentry are placed after that suabentry. And so on. This can go on
to any depth--by adding more periods. When printed out by the
LISTGEN program, the entire sub-entry is indented a little further
than the main entry, and sub-subentries are indented a little more,
etc. Figqure 3.6 shows a main entry followed by three subentries, in
the input format. Figure 3.7 shows a LISTGEN of the same material.
Please compare them.

Second Edition, partial draft. Pormatted February 2, 1990

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES

l-hw ahu

11ps Na

| 1df heap, mound

124f sacred mound used in certain rites

21 Tohinga mauritanga O papa ma ki mua ki te
| ahm (M. 248).

13ps v.t.

i34f heap up

§3i1 Katahi kXa ahu raua i ta raua tuaaha

I (W. v, 75).

t4ps ae

laaf heaped up

fail H#e mea ahu nga onepu € nga ringaringa o te

] tohunga (M Ixxxiii).

le-hw
|ps
{d€
{11
| (M.
!--h“
I1ps
11af
1111
{1i1
| 2ps
|2df
|3af
13i1

ahunga

n.
heaping up
te ahunga oneone, te aponga ki punga ra

127Y.
whakaahu

Vvat.

heap up, lay in a heap

Whakaahna koe ki te ahi raraashe (M. 5).
Whakaahuntia he aruhe ki runga ahi.

Vels

swell zp

be displeased, dissatisfied

~ Katahi te tangata whakaahu ki aka kai.——Whaka |}
| ahu ana au i te pukapuka a Henare: ko taku whaka

M ik A e T s T e S T S WMAR MW Sk Pl deke S S Seb S M G Wi e S i o

| ahu tenei, te haere ia ki Wharekahika kati mai ai.l}

fo-hw ahuahu

{1ps v.t.

1114f heap up _

11111 He mea ahuahu nga puke hei taunga mo a ratoa
| toka.

{128f earth-up crops, etc.

{2ps n.

J24f the process of earthing up

12i1 I v mai a Paikea ki eneil motu ... i te wa i

| tupuketia ai te ahuahu (¥. 1ii, 35).

+

A g Ay i A et AR e e My

Second Bdition, partial draft. Formatted Febrvary 2,

Figqure 3.5

19430

37

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES

w
w

ahu

.
-
A

1ps =
1af heap, mound

2af sacred mound used in certain rites
2i1 Tohinga mauritanga o papa ma ki mua ki
te ahe (M. 248).

3ps v.ta

34f heap up

3il Katahi ka ahu raua i ta raua tuaaha
(W. v, 75).

4ps a.

4a3f heaped up

i} He mea ahu nga onepuo e nga ringaringa
o te tohunga (M lxxxiii).

«-=hit ahunga
Ps O
af heaping up
il te ahunga oneone, te aponga ki punga ra
(1. 127).

««hw whakaaha
1ps v.t.
1df heap up, lay in a heap
111 Whakaahua koe ki te ahi rarauvhe (M. 5).
111 Whakaahutia he arunhe ki runga ahi.

2ps vai.
2df swell up

3df be displeased, dissatisfied

3i1 Katahi te tangata whakaahu ki aku kai.

~-Whakaahu apna au i1 te pukapuka a Henare:
ko taku whakaahu tenei, te haere ia ki
Wharekahika kati mai ai.

«+«hw ahuahu
1ps Vet.
113f heap up
11il He mea ahuahu nga panke hei taunga mo
a ratou teka.

12df earth-up crops, etc.

2ps D.
24f the process of earthing up
211 I u mai a Paikea ki enei mote ... i te]

wa i tupuketia ai te ahuaha (W. iii, 35). |
F |

P sl S R A R e G S S S ‘“‘_-“*”—_-“‘-——-—-m_“*-—_“u“—ﬂ—-““‘#q
e mar S A G VA A i SV G e el My e e i Ve i A MMAS S A M W e e S e e S AN M S el M M T SELE A ESES e S SR et R el S e Sy

Figure 3.7

Second ¥dition, partial draft. Formatted February 2, 1990

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES 39
d-2-4 BAND FORMAT CONVENTIONS: SUMMARY

RBelow 15 a brief summary of the conventions for representing
entries.

1. Bach type of information (headword, part of speech,
definition, etc.)} starts on a separate line. This representation of
a type of information is called a BAND.

2. Fach type of information is labeled with a short BAND NAME
of your choice. The name must begin with a letter, and may contain
any characters except blanks, commas, and semicolons. Upper and
lower case have no distinguishing valae in band names.

3. Not every band used in a dictionary need be present in
every entrya.

4. A band may be empty —— band name only, no body.
5. A band may be repeated within an entry.

6. The information within a band is called the BODY of the
bhand. You may subdivide the body of a band into fields if desired,
according to any convention you choose.

7. The order of bands within entries should be, though need
not be, consistent from entry to eatry.

8. Bands within an entry may be grouped and subgrouped to any
depth. A set of consecutive bands belonging to the same group is
indicated by having the same numerical MODE PREFIXES before the band
names {no intervening spacel}. Top level, no prefix. Pirst level
1¢243, etc-3 second level 11,12,13,...,21,22,23, etc.$ third level
111, 112,113,---,121,122,123,...,271,212,213, etc.

9. The first band in an entry, usually the headword band, is
marked by a period before the band name, ©.g., «HW¥

10. The first band of a sub-entry is marked by two periods,
1.2+, =«HW, sub-subentries are macrked by three periods, etc.

1t. The hierarchy of subentries is indicated only by physical
order: e.g., a suob—subentry 1s considered subordinate to the closest
previous subentry. Subentries always follow the main entry to which
they are subordinate.

12. The prefix {(if any), the periods (if any), plus the band
name {no blanks in any of this) constitute the BAND LABRL. The band
label is separated from the becdy of the band by one or more blanks.
The exact number used is not significant, as long as there is at
least one.

Second ®¥dition, partial draft. Formatted February 2, 1990

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES 40

13. A& dictionary file consists only of a sequence of bands.
It is divided logically into “entries™ only by the fact that the
first band of each entry has a single period preceding the band
nameca.

14. There may be any number of entries in a dictionary filej
there may be any number of bands in each entry; and there may be any
number of different bands ansed in the dictionary.

15. EBach band, starting with the band label, is represented on
records (i.e. lines) in a file as a single “hanging paragraph® as
described below.

3.2.3 HANGING PARAGRARH CONVENTIIQNS

The following conventions are used for representing variable-
length units of text, swch as bands, on limited-length records,
e.9., punched cards, lines in disk files, or printed lines on paper.

t. The paragraph starts in column 1. It may not start with a
blank.

2. If a paragraph exceeds one record, continue in column 2 of
the next record (leaving column 1 blank). Any blanks at the end of
a record are ignored {("non-sigaificant blanks®™}. Column 2 of the
continuation record is considered to come right after the last non-
blank character on the preceding record.

3. As many continuation lines may be used as needed to
accommodate a paragraphe.

4. All blanks within a paragraph, i.e., all blanks other than
line-end blanks and the single initial blank of continuation lines,
are treated as significant blanksa

5. A fixed-length field may be reserved at the beginning of
each record for identification or other information. It will not be

processed by the programs. "Column 1" would then refer to the first
column to the right of this field.

Seconrnd Edition, partial draft. Formatted February 2, 1990

41
3.3 GUIDE TC USING BAND FORMAT

This section explores in greater detail the ways in which the
format conventions described above may be used in encoding
dictionary entries. We point ocut alternative ways of representing
certain structures, as well as some limitations of the formalism.
We also mention some lexicographical problems that encoding of a
dictionary naturally brings up, though since they are linguaistic
rtather than data structuring problems, no attempt is made to offer
solutions.

3.3.31 PQLICLES ABOUT ENTRIES AND HEADWORDS IN IHE DICTIIONARY

These are primarily lexicographic matters, bhut the fact that the
dictionary will be computer-processed could have something to do
with how youn decide to resolve them.

(Note that by "entry"™ we mean the entire body of material
associated with a given headword. By contrast, in some of the
lexicographical literature, and in the front matter of some
dictionaries, "article"™ is used in place of our "entry", while
Yentry" or Yentry word"™ refers to only the headword.)

The first question concerns the kind(s) of lexical unit: What
units 1s this a dictionary of? That is, are the main headwords to
be roots, stems, words, or other kinds of units, or all of these?
What kinds of derivatives and compounds will be included as
headwords, with their own main entries or subentries? Will (some)
idiomatic or frozepn expressions get their own main entries, or will
some of them be relegated to sabentries, or even to bands within an
entry? In the case of languages with highly prodactive word
derivation, and of polysynthetic languages, which of the many long
morphological constructions will be chosen as headwords?

Closely related is the question of how to treat derivatives and
cempounds, and, in general, "families" of related items. Are
derivatives—~—i.e., words derived from roots or other words-—to be
given their owan main entries or will they be listed as subentries
under their parent forms? In the case of compounds, under which of
the compeonents of a compound will the compound be filed? Idioms and
other frozern expressions may be filed as subentries or in special
bands reserved for these expressions. Derivatives may be easier for
the user to find if they are given their own main entries and filed
alphabetically among other main entries. Bat it may be more logical
and linquistically more productive to file them as subentries under
their respective roots.

Having the entries in compater storage in a structured form,
however, mitigates such conflicts somewhat, by allowing you to enter
and maintain the file in one form—-say the most linguistically
logical form——and to re-grganize it by program into different forms
suitable for other purposes.

Second Edition, partial draft. Formatted February 2, 1990

3.3 GUIDE TO USING BAND FORMAT 42

Entries are generally kxeyed to forms, whether root, stem, or
word, rather than to meaning or other property. (There do exist
semantically organized dictionaries, but uander each semantic heading
the entries are still filed by form.) Hence the general principle,
"one form one entrys different form different entry"™. Deviations
from this principle are caused by homonymy and wvariant forms.
Homonymy may give rise to "one form different entries”™, that is, the
headwords of several entries may be identical. Separate entries may
be established hecause the several meanings of the same form are
radically different or hecause more than one etymon is represented.
Some dictionaries adhere strictly to a “one form one entry®™ policy,
and do not accord homonyms separate entries, but most d0 attempt to
distinguish homonyms and place them in distinct entries. In this
case, typically a superscript numeral or other distinguishing tag is
attached to the several otherwise identical headwords. In entering
homonyms into the computer, a similar device may be used: the form
may be followed by a dollar sign *$*, followed by a number. Thus,
formally, the *®"one form one entry®™ principle still holds, siance the
$1, $2, etc. are formally part of the headwords, and distinguish
them from each other, e-g.,

«hw bow# 1

«hw bow$2

—

« hw bow$3

When preparing for publication, the $1 etc. can be converted to an
inferior or superior numeral.

The situation of “different forms one entry™ arises when there
are variant forms—-for dialectal or other reasons, which all share
the same defipnitions and other information——they in fact share the
same entry. One Of the forms should nevertheless be chosen as the
headword of the entry, and the others should be listed in one or
more “variants®™ bands.

Cross-reference entries are short entries used only to refer the
reader to a "full" entry where more complete information is given.
The cross—-rCeferelce entry may be for a variant, a dialect form,
irregunlar or suppletive form, derived form, etc., which is not
itself accorded a complete entry but is menticoned in the full entry
for another form. The cross-reference entry is placed in its proper
alphabetical position in order that the reader can find it. It
consists minimally of the headword itself and a cross—reference band
containing the headword of the entry the reader should look up, but
may also contain a short gloss and other brief information. If
planned for properly, it need not be entered separately into the
computer file, but may be constructed by program from spacified
pieces {e.g. bands) in the full entry. Thus, from an entry
containing

Second Edition, partial draft. Formatted February 2, 1330

3.3 GUIDE TO USING BAND FORMAT 43

«hw adi
var edi

where the VAR band contains a variant form, a program can construct
a cross-reference entry

«hw edi
see adi

which consists of a headword band and a SEE band. Of course, any
additional bands may be copied into the generated entry from the
original entry. The amount of information to be duplicated in a
cross—~reference entry is the subject of policy decisions by the
lexicographer. This cross-reference entry, along with all the
others so generated, can bhe added to the dictionary, alphabetized in
their correct places.

Subentries can be another possible source of generated cross—
reference entries. From the subentry for mabea, under the main

entry bea,

«hi bea

———

«=pl mabea

a cross-reference entry may be generated for pabea, and alphabetized
in its proper place, that directs the reader to look for the full
subentry under bhea:

-plg mabea
plof bea

Again, additional bands may be duplicated in the cross~reference
entry, if desired.

Note that the band names in the above examples have been chosen
more or less arbitrarily, for the (hypothetical) user®s convenience:
they have no special meaning for any of the existing programs.

Another question of policy touching on headwords and entries is
what representation of a form to use for the headwords. If a
morpheme never occurs uninflected, which inflection should be used
for citing it as a headword? E.ge., verbs in latin are given in
their infinitive, in Sanskrit in a third person form, etc. Should
the headword be given, instead, as a bound form, with a hyphen
indicating an obligatory inflection? In Bantu languages, should the
headword be given with or without the concord prefix? Iin addition
tc such morphological choices, there are also phonological choices.
Should the form be given in phonetic, in phonemic, or in
morphophonemic transcription? Perhaps an orthography which is none
of the above is preferable? Yet another dimension of choice is

Second Edition, partial draft. Formatted February 2, 1990

3.3 GUIDE TO UGSING BAND FORMAT Lq

presented by dialect variation. Which dialect will be taken as the
"standard", whose forms are giveun the fell entries, while the "non-
standard" forms will be given short cross-reference eniries or will
only be mentioned in the fgll entries?

The format conventions cannot, 0of course, help you answer these
questions of policy, bat they can, if used properly, provide some
flexibility for conversion to a different organization if one set of
policies is found to be unsatisfactory.

3-3.2 BAND NAMES, THEIR STRUCTURE AND PUNCTION

Band names may consist of any letters and numbers and special
characters except for blanks, commas, and semicolons. They must
begin with a letter. They may be in caps or in lower case, but the
programs generally 4o not distinguish between upper and lower case
band names. That is, they consider *DEF' and *'def® to be the same
band name. User—-written control modules may, however, take into
account the difference. One may take advantage of this situation by
using upper—case band names for one kind of bands (e.g., bands
containing material in the target language) and lower case bhand
names for other bands {(e.g., bands containing English).

Three band names, TITLE, FILE, and LIST, have special uses,
described in Section 3.3.3, Uses of bands.

One may build internal structure into bard names, as in ENG-DF
for an English definition band and PE-DF for a Freanch definition
band. However, again, none of the existing programs tecognize
structure within band names. That 15, no existing coantrol module
couid pull out all bands with names containing -DF, say. If sach a
feature were desired however, one could easily write a function to
40 sS0.

Band names usually can be coasidered to represent relationships.
A band name gives the relationship between the information in the
band and the headword of the antry. For instance, the band name PS
claims that the informaticn in the body of the band is the "part of
speech® of the headword, or the band name BSK is an abbreviation for
the relationship "technical meaning {(0f the headword) in basket-
weaving technology®. ©Of course, since not all entries wiil have a
BSK band, the band name 1tself carries information about the
headword, namely that the headword is used with a specialized
meaning in basket—weaving. Another common way of handling this
situation uses mode numbers {(see example in 3.3.6, below).

If a band name represents a relationship with the headword, then
what relationship does the headword band name represent? The name
0f the headword band is often simpy HW, carrying little, if any,
information, since the period preceding it already marks this band
as the first band of the entry and hence the headword. The AW in
fact does not represent a relation, but only marks {(redundantly) the

Second Bdition, partial draft. Formatted February 2, 1990

3.3 GUIDE TO USING BAND PORMAT 45

body of the band as the headword of the entry. Since this is
redundant, one may assign some other, more useful, band names to the
headword band. For instance, it may be used to label the dialect of
the headword, to give the morpheclogical status of the headword
{(stem, prefix, full form, etc.), to give the source of the entire
entry, etc. Thus instead of AW for every headword, one would have
different band names for the different dialects, or morphological
types, or sources, of the headwords. Another use of the headword
band name world be to label the type of transcription in which the
headword is given: phonemic, orthographic, morphophonemic, etc., as
suggested in 3.3.3.

3.3.3 USES QF BANRS

Three bands, TITLE, PILE, and LIST have special meanings when
encountered in certain situations. TITLE, when used as a main
headword band, i.e., preceded by a single period, causes the LISTGEN
control module and every control module that produces a listgen-
format (l-format) output to issne a command to go to the top of the
next page and to use the body of the band as the running top title
from then on. .TITLE bands could be manually inserted at specific
points in a file to create breaks in the LISTGEN printout. This
band is inserted automatically at certain points by the TOAST
control module SORTENT, g.v. As a non—main~headword band, TITLE has
no special significance for any program.

The FILE band, when occurring as a main headword band, i.e.,
preceded by a single period, is recognized by two special SPITBOL
programs on the PC, called SPLIT and SPLITQ, which are technically
not part of the system since they are neither BIRDBATH or TOAST
control modules and have nothing particular to do with dictionary
files. SPLIT copies sections of a file into other files specified
by the body of the .FILE band. All records following the .FILE
band, up to the next .FILE band (or until the end of the file), are
copied into the file whose name appears as the body of that band.
This program is useful for splitting up a long file at specified
points into several smaller ones. The SPLITQ program does the same,
except it prompts for the changing of a floppy disk for each ontput
file. When not occurring as a main headword band, FILE® has no
particular significance except as described in the next paragraph.

On the PC, the LIST band can be used in conjunction with FILE
bands to form a "™list file" which lists the names of other files to
be processed in sequence as if they formed a single file. The form
of the list file i1s a single entry with the headword band .LIST
followed by FILE bands each containing the name of a file. (This
use of the PILE band is different from, and does not conflict with,
its use as a headword band as described in the previous paragraph.)
For example:

Second Fdition, vpartial draft. Pormatted February 2, 1930

3.3 GUIDE TO USING BAND PORMAT 46

-« LIST Koryak file list
FILE KORA.LEX
FILE KORB.LEX
FILE KORC.LEX
etc.

When a BIRDBATH or TOAST run gets such a file as input, rather than
processing it as a normal lexical file it processes the files named
in it instead (having first checked that it can fipnd them all).
Other details of the list file format are these: the .LIST band
must be the first band in the list file, and tha body of the band
can contain anything; bands other than FILE may be interspersed
among the PILE bands. They will be ignored, and thus could be used
for comments. The occurrence of LIST bands in the lexical files
themselves have no effect. The list file facility is not available
in the mainframe version.

Apart from these three special bands, bands are normally used to
hold various kinds of information about the headword. This
subsection contains a catalog of some of the possible kinds of
information. Some items in this catalog however do not fit this
description. A band can, for instance, be used to segment an entry,
or to force a paragraph break for typesetting purposes. Such uses
are nevertheless included. HNo claim is made about the vniversality,
completeness, mutsal exclasivity, etc., of this list. Some of the
categories may well overlap, and some may not be sufficiently
differentiated. Also, not all categories will be of equal relevance
to all languwages. For discussions of some of these kinds of lexical
information please consult the references given in Section 1.2.2e.

We first dispose of two ®pseundo-categories™ of lexical
information. The first is “headword*, often assigned to a HW band.
Since the headword must be written ian some sort of transcription
{phonemic, orthographic, etc.), the pname of that representation
would be a more informative band name than fiW. The last paragraph
of 3.3.2 mentions other possiblities. For convenience and out of
habit, however, we will continue to ase HW in examples.

Another common "pseudo—category” of information is Ycross—
reference™. Often, such a band would be established and given a
band name such as CF but be put to use for a wide variety of types
of cross-reference. In one instance the cross-referenced item may
be a dialectal variant of the given headword, in another it may be
the root under which a fuller description of the given headword may
be found as a subentry, in yet another it may be a semantically
related word which the reader is encouraged to compare, or it may be
a suppletively related form, etc., etc. Since a cross—reference is
not randomly established but is based on some relationship {such as
those just listed) to the given headword, a good use of the band
format would be to explicitly indicate each such relationshipg by
means of a distinct band name rather than to conflate them all under
a general name such as CF.

Second Bdition, vpartial draft. Formatted Pebruary 2, 1390

3.3 GUIDE TO USING BAND FORMAT 47

Furthermore, a pair of mutnal cross-references which are
logically not symmetrical should have different band names. PFor
instance, the example in Section 3.3.1,

«hw adi
var edi
i {(full entry)
«hw adi
sae adi (cross—reference entry)

should not read

« v adi
var edi
—— {full entry)
« hu edi
var adl (cross—-reference entry)

The first entry refers to edi and the second to adi for different
reasons.

Here follows a skeletal listing of some types of lexical
information that it sould be appropriate to assign to different
bands. They are grouped informally under linguistic and other
rubrics.

ORTHOGRAPHIC: spelling form of headwords orthographic variants
("judgment® and "judgement¥); regional variants ("color" and
“colour™)s orthographic combining forms (e.g. in English, the
combining form shows whether the last consonant is doubled before
-ed and —-ingl.

PHONOLOGICAL: phonetic shapes phonemic shapes phonological
variants; phonological characteristics {onomatopoeia, ideophone,
expressive, etc.); phonological comments.

MOBRPHOPHONEMIC: morphophonemic, underlying, or base forms
morphophonemic characteristics (saondhi forms, liaison, etc.):
morphophonemnic commentsa.

EXISTENTIAL status: "unattested” or "inferred form", hapax
legomenon, nonce word, Or rare.

MORPEOLOGICALS morpheological status {prefix, suffix, bound
root, etc.); root of the word; morphological analysis {(if form is
morphologically complex); morphological form-class (e.g.
conjugation class, gender, concord class, etc.); gaps in the
paradigm; alternate forms occupying the same slot in the word's
paradigm; allomorphs {("principal parts®, ablant forms, irregular
paradigmatic forms, suppletive forms, etc.): derivatives by
productive processes which are listed with no farther comment {(e.g.
English un-, —-ness, Austronesian causatives, etc.)i comments on
morphology.

Second Rdition, partial draft. Formatted February 2, 19390

3.3 GUIDE TO USING BAND FOBRMAT 48

SYNTACTIC: syntactic function class (e.g., part of speech);
case—~frame or valence formulas syntactic (or semantic) features
(animate/inanimate, mass/count, special types of verbs, e.g., of
belief, etc.)? restrictions on privileges of occurrence; government
of, e.g., prepositions; comments on syntactic function (especially
for function words, for which inclading a "definition®™ band would be
inappropriate).

COLLOCATIONAL: characteristic agents, instruments, verbs,
manners, etc. (lightning strikes, tide ebbs): common collocations;
idioms and idiomatic constructions using the word in a prominent
position, with explanationss; proverbs and sayings containing the
WOLd.

DISCOURSE: comments on any special discourse properties or
function of the word.

LEXICAL: synonyms; antonyms; oOther members of a closed lexical
system to which the word belongs (e.g. growth stages of cocoaut or
fish)i classifiers and counters; lexical "functions" or "relations®
{see the Grimes and Mel?’chuk references in Section 1.1.2e); easily
confused forms {phonolcgically similar forms: “caution! do not
confuse withee."™).

SEMANTIC: translational equivalent; description (where
translation not available or sufficient); explanation of usage
(especially for function words); placename; definition in same
language {("monolingual®™ definition); definition in a lingua franca
of the area; definition in another major language commonly used in
the areas simplified definition for school editions literal
morpheme~by-morpheme meaning, if form is complex; semantic field and
subfield: scientific designation (Latin name) of flora or faunaj
ethnosemantic analysis or features relevant to selectional
constraintss semantic features; specialized meaning in some
technical field ("subject labels"), e.g., military, arts,
navigation; semantic relationship (specialization, metonymy, etc.)
with another sense of the word; comments.

BACKGROUND information: culturalj historicals "encyclopedic®.

ILLUSTRATIONS: phrase or sentence with translations and commentss;
reference to place in a text for anm illustration, which is not
quoted at lengtha.

SOCIOLINGUISTIC ("statas labels™): marked speech level {formal,
royal, literary, Biblical, rituonal lanquage, slang, vulgar, obscene,
baby-talk, non-standard, substandard, etc.); regional and social-
class restrictions; historical: obsolete, archaic; comments.

HISTORICAL and COMPARATIVE: etymologys cognates and related forms
in other langnages; reconstructed form in parent language; dialect
variants; eqaoivalent {in meaning) forms in other dialects;
information about borrowing: source language, source word, meaning

Second Bdition, partial draft. Formatted February 2, 1890

3.3 GUIDE TO USING BAND FORMAT 49

of source word; historical development of meaaing and usages’
neologismy comments.

REFERENCES: to reference grammar, texts, or other works
containing information relevant to the word.

ENTRY SEGMENTATION: Special bands may be designated to
explicitly mark the beginning and/or end of a particunlar section of
an entry. For instance a soction of bands giving cognates in other
languages might be delimited with the bands "cog" and ™endcog”, Or a
section of bands giving a paradigm, such as stem sets for an
Athabaskan verb, may be delimited with the bands "sets™ and
"endsets™. The delimiter bands themselves may be left empty.

TYPOGRAPHICAL: When preparing a dictionary for publication, one
may want to specify that certain very long entries should be broken
up, for a better typographical appearance, by starting a new
paragraph at chosen points in the entries. These points can be
marked by inserting a special band invented for this purpose. Also,
a space for a picture may be reserved by inserting a special bangd
which gives the dimensions of the space to be left blank. The
program that prepares the publication copy can be designed to look
out for these bands and to act accordingiy.

HOUSEKEEPING: source {informant name, manuscript, radio
transcript, etc.); field notebook page numbers person who entered
the information into the computer filei: date entered and date the
entry was last edited: assessment of reliability of the information
in the entry; queries, points requiring farther investigation; notes
and queries for other workers on the project; other "private” notes.

2-3.4 THE SEQUENCE OF BANDS AND IIS SEGMENTATION

It is caostomary to put bands in a consistent order. That is,
once a particular order of bands is established, it is normally
Observed in every entry {except that groups of bands may be repeated
if you used mode prefixes). However, coansistency is not reguired
and none of the programs check for it, so the order of bands may be
altered in some entries if that serves SOome pPGrpose.

As mentioned under Entry Segmentation in Section 3.3.3, if there
is a subsequence of bands that forms an independent sectiomn, a pair
of special bands can be designated to explicitly mark the section's
beginaing and end. While none of the existing control modules
recognize this convention (they would not treat these bands in any
special way)}, a specilally written control module could easily be
made to recognize them. This method of segmentation should not be
used for repeated, or repeatablie, groups of bands, for which the
mode notaticon is available (see 3.3.6).

Second ¥dition, partial draft. Formatted February 2, 1990

3.3 GUIDE TO USING BAND FORMAT 50
3-3.3 SIRUCTURE WITHIN BANDS

Within the body of bands you may establish further regular
structure. Although no existing control module {(except INVERT and
INVERTZ) looks at internal structure within bands, user—-written
control modules or user-written instructions in BANDAID-type control
modules may. Typical band~internal structure consists of variable-~
length fields separated by delimiter symbols. For instance, in
illustration bands there are typically two fields, the illustration
sentence itself and the traaslation. In the examples of such bands
in Chapter 2 and Section 3.2, the fields were separated by the
vertical bar *|" symbol. Sometimes two translations are given, in
two target languages, €.g. Spanish and English, in which case there
would be three fields. The same symbol may be used again to
separate fieids two and three. Another example of band-internal
fields is a loan band, in which three pieces of information may be
given: the source language, the source word, and a brief gloss of
the source ward. Often there is no need to introduce any special
field-delimiting symbols. That would be the case where the normal
punctuation is sufficient to unambiguously delimit the fields.

3.3.6 USE3 OF MODES.

The basic nse of modes is to group together twWo Or more
occurrences of bands that belong together in some logical way. All
the bands in a contiguous block which carry the same mode prefix are
considered to belong together. A typical use of a mode in an entry
is to group together all the bamds relating to the headword as used
in a particular part of speech, separating them from bands
pertaining to other parts of speech. Figure 3.2 showed an entrcy
with three groups 0of bands segregated according to three parts of
spaech: ™NOM™, ™UB™, and "QUAL™. Bands can also be segregated
according to other properties, e.g9., sense, dialect, technical
field, source of information, classifier selection, etc., etc.

ps v
13f to soak
1il -== f{illustgation sentence}

2tech bsk
24f to ret (of reeds) in flowing water
2il ses (another illustration)

In this example of part of an entry, the PS5 band has no mode prefix,
and "belongs"™ to the entire entry. The first DF and IL bands belong
together, as 4o the following TECH, DF, and IL bands. The latter
group of bands pertain to the use of the word in the context of
basketry. Presumably the information in the first group is not thus
restricted. Another way to treat the restrictive label {bsk) would
be to use it as the band name of the definition band instead of
putting it in a TECH band:

2bsk to ret {0of reeds) in flowing water
2il eee f{(illustration}

Second Edition, partial draft. Formatted Pebruary 2, 1590

3.3 GUIDE TO USING BAND FORMAT 51

This is the kind of trepresentation mentioned in 3.3.2.

Another use of modes is to separate out the fields of a band into
separate bands, when the fields threaten to become too complicated,
or for some other special reason. These bands would have the same
mode prefix, to show that they belong together. Illustrations may
be treated in this way, with the illustration itself in One band and
the translation in another. In fact, it must be done in this way,
rather than with a single band, 1f the words in the tramslation will
be starred for the ourpose of finderlist generation (see Appendix I,
paragraph r). For example, instead of having two illustration bands
like this:

il garur sara saktway // I *think I"11 go tomorrow / Estoy
*pensando ir ma$nana

il janiw sasawsi // They *said no / *Dijo jue no

which may cause undesirable results in the finderlist (INVERT)
output, they should be broken into three bands each:

11l garor sara saktway

1tre I *think I*11 go tomorrow
1trs Estoy *pensando ir ma¥nana
2il janiw sasawsi

2tre They *said no

2trs *Dijo gue no

and the TOAST control module INVERTZ2 (see in Section 3.5) should be
used to generate the finderlist.

A final use of modes is to set off an "internal"™ subentry.
Recall that upon finishing a subentry (an entry starting with a two-—
dot headword band) you cannot return to the main entry—--you can only
start a sub-suobentry, another suabentry, or another main entry. That
is, you must finish the main entry before going down into a
subentry. But occasionally one may wish to insert a "run—-on*® or
"internal® subentry within a main entry, continuing with the main
entry after the end of the subentry. The effect 0of this can be
accomplished by omitting the dots that signal the beginning of a
subentry, and grouping the bands of the "subentry" together by
assigning them a mode number. The following example showWws an
internal subentry for the expression ahu-whenya embedded not only
within a main entry but within a mode (mode 1) of the main entry:

Second EBdition, partial draft. Formatted Febrwary 2, 1590

3.3 GUIDE TO USING BAND FORMAT 32

~hw ahu
ps vt
1af tend, foster, fashion
1il Na Tuparimaewaewa, nana i ahu mai, ka kiia he tangata.
111 Ka ahuria o iwi matariki e te rau e pae.
11expr aha-whenua
11df cultivate the soil
1111 kuva marara nga tangatae..e.
24f treat with
2il
etc.

Not all bands in an entry need to belong to some mode, of course.
R pronunciation band, an etymology band, a comparative/historical
band, a "private” notes band, say, might not have any mode prefix on
them, and would typically be placed some at the beginning of the
entry (after the headword band) and some at the end. Normally there
would not be any reason to intersperse "top level" bands amorg bands
with mode prefixes, although if such a need should arise, the format
does allow ite

If bands within a mode need to be further sub—-grouped, then
submodes can be used—-by prefixing two digits to the band names, as
in Figare 3.4. Sub—submodes to any depth are possible, by prefixing
more digits.

If more than 9 modes are encountered, do not continue with 10,
11, etc., since two digits denote a suobmode. Instead, start with 1
again. The programs dc not check that the digits are increasing,
but only detect when they change, from one band to the next, in
order to find the groups of bandsa.

Note that the repetition of a single band does not need to be
accompanied by mode numbers. For instance, 1f there are several
illustration bands, they need not be labeled 1il, 2il, 3il, etc.
since this would simply be labeling “groups" of one band each. &
sequence of simple band labels, 11, il, il,..., would be sufficient.
Mode numbers 4o not have the purpose, primarily, of numbering bands
or groups of bands; they serve primarily to segregate groups of
bands.

Finally, it might be noted that this system of grouping bands
with numbers is not ideal, and is under certain {(not common}
circumstances actually rather cumbersome. It is, however, easy to
remember and does have some advantages from the point of view of
programming.

d.3.7 USES OF SUBENTRIES
Subentries (whose headword band label begins with two, or more,

dots) are typically used for derived words. The subentry is
considered t0 be attachad to the main entry, and not an independent

Second Rdition, partial draft. Formatted February 2, 1990

3.3 GUIDE TO USING BAND FORMAT 33

entry. However, all of the usual apparatus of bands and modes is
available for subentries. In particular, mode numbering in the main
entry does not carry over into the subentry: it begins over again in
each subentry. There may be any number of subentries following a
main entry. The subentries may be placed in any order desired; the
format does not require that any particular principle of ordering be
followed. They are carried along with the parent entry in exactly
the order in which they were entered, unless the file is processed
by a subentry-sorting control module.

Fach two—dot subentry may be followed immediately by one or more
snb-subentries (with three dots), before the following subentry is
bequn. Sub-subentries are typically used for words derived from the
headword of the immediately preceding, parent, subentry. The tree

of subentries and sub-subentries, etc., may extend to any desired
depth.

We will however, continue to use the term "sobentry® to refer to
subentries and sub-sabentries etc. of whatever depth.

The notation allows levels to be skipped, ©.g. going directly
from a 2-dot subentry to a &—dot subentry. A plausible
interpretation of such skipping is hard to discover however, so
normally there is no reason for doing this.

Compounding, as opposed to processes involving only derivational
morphemes, creates words which can logically be placed under more
than one main entry, since more than one lexical morpheme or word
enter into the compound. The decision as to which main entry to
place the compound under is a lexicographical decision, but it
should be rememberedé that, whatever the decision, an appropriate
program (control module) can make a copy of the subentry, or of a
portion of it, and insert it under each of the other relevant main
entries.

Subentries are also often used for idioms or other expressions
that require more extensive treatment than is convenient to place
within a single band. For instance, dialect information, syntactic
peculiarities, and illastrations could be recorded in the subentry
for the expression. A disadvantage is the property of the subentry
notation that prevents you from returning to the parent entry.

It may be desired to place some material at the very end of a tree
of subentries, that is, just before going on to the next main entry.
For instance, one may want to pnt a discussion of synonyms at this
position. Or One may want to place the illustrative sentences for
all the headwords—-main as well as subentry headwords-—-after all of
the subentries. Since it is not possible to return to the main
entry at this point, one has the choice of placing such end matter
in bands in the last subentry, or of opening a new subentry {(which
would reyguire a vacuous or "dummy™ headword band) solely for holding
the end matter. The latter choice seems neater. This subentry
would be a subentry in form only, since it does not have any derived

Second Bdition, partial draft. Formatted February 2, 1539¢

3.3 GUIDE TO USING BAND FORMAT 54

word, or any word, as its headword. Its bands would contain the
discussion of synonyms, illustration sentences, or whatever,
considered to be part of the main entry. 1In the following schematic
entry, the last "“subentry®” contains all the illustration sentences
for the main headword as well as for the subentry headwords:

hw kirel

- ——

«shw kekirel

—

eehw el kirel aees

salls {dummy subentry headword band)

il {illustrative sentences
il for kirel as well as
11l for kekirel and el kirel aeea)

3.3-8 SOME GENEBAL RRINCIRLES

The "band—-by—-band principle®™. Conventions need not alWays apply
to all bands; they may be established on a band-by-band basis: a
given convention can be restricted to certain band types. For
instance, the asterisk, ¥, may be used in DF and SEM bands, say, to
mark keywords for finderlist purposes, while the same symbol may be
used in a historical band, HIST, to mark reconstructed proto—formse.
A capital "B"™ may be used in a phonetics band to represent an
imploded b, but have ne such meaning anywhere else. In short, each
band may be assigned its own set of conventions.

A VERY IMPORTANT COROLLARY of this prainciple is that yon should
maintain a written record of these band-by—-band conventions, and
make sure that everyone on the project understands and follows them.
&4 certain amount of consistency—checking can be done by program, and
the BANDSORT control module Jenerates an output which helps the user
detect inconsistencies (see 3.7). Obviously it is best to be
consistent to start with. It is advisable to keep a loose-leaf
notebook, a "codebook®, in which each band is assigned a separate
sheet on which are recorded the conventions for that band.

Seqregate different types of information into separate bands, to
the extent that that is comfortable. The discussion of “"pseudo
categories” at the beginning of 3.3.3 provides some examples of this
exercise. First-time users of the format tend to underdifferentiate
their bands. However, information that is logically differentiated
is easier to work with and potentially more useful, often in
unforseen ways. It may take some experimentation to settle on a
system of bands that is at the same time usefully differentiated and
manageable in size. Typical dictionaries processed in the past have
used from 20 to 50 bands. You may, of course, add a new band
whenever one is needed; the programs are indifferent to what, and
how many, bands you have.

Second Edition, partial draft. Formatted February 2, 1530

3.3 GUIDE TO USING BAND FORMAT

(%3]
Ln

Try to keep each band simple. If the structure of information
within a band threatens to become too complicated, try to simplify
or see i1if some of the structure can be shifted out intc more than
one band or a mode groap or a subentry.

Include more information rather than less. A subtle example of
this is not to automatically capitalize the first letter of
definitions. Only capitalize it if the first word is a proper name.
In this way more information is captured. An effect of this is that
keywords and phrases pulled into the finderlist will nct appear to
be randomly capitalized. For publication purposes it is always
possible to automatically capitalize the beginnings of all
definitions. Another example is to anticipate font changing when
the dictionary is photocomposed, by inserting unpredictable font
shift codes in the body of the bands, @.g., s0 that Latin names
embedded in definitions or other bands will be printed in italics.
It 1s easier to put these shift symbols in at the start than to edit
them in later.

on the other hand, avoid encoding redundant information. If a
band will alWays begin in say, italics, then it is not necessary to
place an italics shift symbol at the beginning of the bamd. Or if
all occurrences of a certain band are thought of as being enclosed
within parentheses, then it is not necessary to actually type the
parentheses, since that is a predictable feature for this band.
They can be added easily by a program when the file is prepared for
publication.

In choosing among several schemes of organizing a dictionary
using the band format conventions, keep in mind that the particalar
scheme chosen need not be the only form that the dictionary will be
able to take. If the scheme is properly desiqgned, it should always
be possible to re-organize the dictionary automatically into any of
the other schemes contemplated. Attention should therefore be paid
to choosing a scheme that preserves the most information, and that
represents it in the most natural and least redundant way- These
are fortunately often mutually supporting criteria. Such a schenme
tends to be also the easiest one to start from to generate the other
organizations.

Second Edition, partial draft. Formatted ¥ebruwary 2, 1590

56
3.4 PBIRDBATH CONTEQL MODULES

Control modules (see Section 3.3} are the programs that actually
operate on the data. This section describes those used with
BIRDBATH, which does not do any sorting. Section 3.5 describes
those used with TOAST, which does sort. These sections decribe only
what the modules do and not how you use them. Since their usage can
vary somewhat from installatiocon to installation, this information,

in the form of “recipes", is segregated in another chapter, Chapter
“-

As suggested in Chapter 1, this set of control modules is
extremely limited. They might be viewed as a sampling of what could
be written. If you do not find a control module in this or the next
section that meets a particular need, it may be possible to wWrite a
new cne or to modify an existing one. Also, the set of control
nodules gradually changes. New ones are added, and existing ones
removed or absorbed into new ones. This manual may not always
accurately reflect the status of the actual programs that you have.

The description of each module includes descriptions or mentions
of the SPECS parameters (see Section 3.7) relevant to the module.
Certain common parameters, in particular the families of Input, p-
format, and i-format parameters, are not described repetitively, but
are only mentioned where relevant. Descriptions of these families,
and descriptions or references for all the other parameters as well,
are to be found in Section 3.6.

Most of these control modules read an input data file and produce
an output data file. The input file mest be in p-format {see
3.2.1g) for a control module to be able to read it. The output data
file may or may not be in p-format, depending on the control module
and on the setting of the PFORMAT parameter. If the description of
the control modanle states that this parameter is available for
setting, then the module will, with PPORMAT set to 1 {or any non-—
nuzll valuve), produce a p—format output file. Otherwise its ocutput
is in some other format. Only p-format files can be used as input
to the programs.

All control modules also produce a log file or primntout,
chronicling significant stages in the run and giviang error messages
from the program. In the mainframe version, the ran leog is normally
a printout: on the PC it normally goes into a file named MESSAGRE.
The log should be checked after every run. Some control modules,
such as STATS, also place their regular results in the log.

a. BANDAID

This module produces an edited output file from an input
dictionary file. The editing i1s done by *BANDAID-type' instructions
suppiied by the user in the SPECS file. These instructions are
statements in SNOBOLY or Spitbol. They specify what is to be done

Second Edition, partial draft. Formatted Pebruary 2, 1990

3.4 BIRDBATH CONTROL MODULES 57

to each band, on a band-by-band basis, and must follow certain
conventions, illustrated in the example in Fig. 3.6. All the bands
for which BANDAID instructions are given muost be mentioned in a
BANDS = *...' statement. The statement{s) for each band must begin
with a label coasisting of the band name {(in caps regardless of
whether the band name in the data is in caps or lower case) followed
by a period. Each BANDAID instruction should lead to a RETURN or to
SKIP. If it goes to RETURN, the band is output; if to SKIP, the
band is not cutput. Bands not mentioned in the BANDS parameter, and
which presumably have no corresponding BANDAID instractions, are
simply written out without change, unless the NOWRITE parameter 1is
set to a non-null value, in which case they are not output. Control
must skip around the BANDAID instructions (see the go-to :{EGSPECS)
in the example below). The BANDAID instructions may use any of the
public wvariables and built-in functions (except the input
functions}. The public variables pertaining to the current band
are HLEV {"headword level™, containing the zero or one or more
periods on the current band label), MODE (the mode prefixes, if any,
on the current band label), BAND (the current band name), and BODY
(the body of the current band). The output is normally in LISTGEN
format (l1-format), and ail the parameters relevant to LISTGEN are
available {see LISTGEN control module). (Thus, this BANDAID control
module supersedes the old EDLIST control module). The output can
alternatively be placed in p-format, for further computer
processing. To do this, set the parameter PFORMAT to a non-null
value. HNote that previcusly this was the default for BANDAID; now
it is not. (P-format and 1-format are described in 3.2.17g.)

The SPECS file for a BANDAID run might look something like the
followings

T L]
| PFORMAT = 1 i
i BANDS = "HW,PR,ETYM,DF* :(BOSPECS) |
{H%. BODY *3* ANY(*12308567890*) = : { RETURN)]
1PR. i
| ETYM. : (SKIP) i
| DF. BODY R = :5(DF.) |
|DF.1 BODY = REPLACE(BODY,"~",' *) :{RETURN) !
| EOSPECS]
i ¥ 3

Figure 3.6

In Figure 3.6, the statements specify that the output is to be in p-
format. The bands for which there are statements below are given in
the BANDS parameter {(HW, PR, ETYM, DF). Note the skip around the
BANDAID instructions. The BANDAID statements specify that
1) In HBW bands, '$* and the following digit will be
deleted.
2) PR and ETYM bands are not to be ocutput.
3) In DP bands, asterisks will be deleted and *-°
will be replaced by a space.

Second EBdition, partial draft. PFormatted Pebruary 2, 19530

3.4 DBIRDBATH CONTROL MODULES 58

The only required SPECS parameter needed for a BANDAID run is
BANDS (followed, of course, by the BANDAID instructions), and even
that is not necessary if the only purpose of the run is to listgen
the entire file (but then LISTGEN would normally be used for that).
Other possible parameters are NOWRITE, PFORMAT, the Input
parameters, and the p—format or l-format parameters, depending on
whether PFORMAT is set or not.

b. BANDFILT

This control module "filters®™ the bands of an entry according to
several criteria. PFirst, the headword band is always passed. Next,
the first band on a "priority list™ of bands that is foaend in an
entry is passed. This list is given by means of the S5PECS parameter
BANDPRIORITY, in the same format as BANDS. Finally, any bands
specified by means of the system of four mutually exclusive SPECS
parameters, BANDS, NOTBANDS, ALLBANDS, and NOBANDS, are passed, as
follows:

BANDS 5 Yeuat pass the bands in the list

KROTBANDS = ‘*...t pass all bands not in this list

NOBANDS = 1 pass no bands

ALLBANPS = 1 pass all bands {the absence of all four

parameters has the same effect)

Every entry and subentry has something, at least the headword band,
output by BANDFILT..

The usual Input parameters, and PFORMAT and either the p—format
or the 1-format parameters, are available. Output is normally in
LISTGEN format {(l1-format). If PFORMAT is set to a non—null value,
the output will be in p-format. (P-format arnd l-format are
described in 3.2.1g.)}

C. BANDINV

This module has been superseded by the STATS control module, g.v.

d. BANDPACK

This module ®packs® all the bands in an entry or subentry into a
single paragraph and outputs the paragraph. It normally packs only
the bodies of the bands, not the band labeis. Exactly what is
packed for each band, however, can be controled by BANDAID-type
statements in the SPECS file {see BANDAID control module, abovel,
operating on the BODY variable, which holds the body of the current
band. Bands may be skipped (not packed) by going to SKIP instead of
RETURN, just as in BANDAID. Bands not mentioned in the BANDS =
f..+" statement will be ignored. However, if the BANDS parameter is
not assigned anything, all bands will be packed. The oatput

Second Bdition, partial draft. Formatted FPebruary 2, 1950

3.4 BIRDBATH CONTROL MODULES 59

normally is in LISTGEN format (l-format), with one paragraph per
entry (considered the "headword” band). Since the band label for
this "band® will be superflnous, it should be suppressed with a
SPECS statement, SUPBANDLABEL = 1 . Also a statement SUPHEADING = 1
should be given. Ontput may be put in p-format by setting PFORMAT
to a4 non-nuil value.

In summary, the SPECS parameters available for BANDPACK are
BAND5, PFORMAT, the Input parameters, and the p-format or l-format
parameters, depending on whether PFORMAT is set or not. In
addition, for 1-format output, the l1-format parameters SUPBANDLABEL
and SUPHEADING should be set. NoO parameters are reqaired. ({(P-
format and l-format are described in 3.2.1g.)

2. BDLIST
This has been superseded by the new BANDAID contrel module, g.v.

A Al L e A e b e e

f. EDLISTH

EDLISTB is not available im the PC version, where the more
versatile control module ONBANDSE shonld be used.

This module ocutputs only main headwords plus any specified bands
that satisfy a given pattern. If none of the specified bands occurs
in an entry, or if the given pattern does not occar in one of the
specified bands in an entry, then nothing is output for that entry.
The bands must be specified in the SPECS file with a statement such
as the following:

BANDS = *df,il,pr,etym*

If a pattern is not specified, all the specified bands will be
output. If one is specified, only those specified bands that also
satisfy the pattern will be output. The pattern must be assigned,
in a SPECS5 statement, to the variable PATTERN . Some examples of
possible patterns are:

1. empty bands:
PATTERN = POS(0) RPOS(0)

2. bands containing either the string *cat®' or the string *dog':
PATTERN = *cat®] *dog?

3. bands consisting ONLY of the string *cat® or the string *dogt:
PATTERN = POS(0) {('cat® | *dog*) RPOS(0)

4. bands in which there is a *%* not followed anywhere in the sanme
band by a *}*, *&%, or *%':

PATTERN = *%* ARBNO(NOTANY(*1£%*)) RPOS{0)
5. dfeng bands which contain *dog® and 4ffr bands which contaia *chien*:

Second Edition, partial araft. Pormatted February 2, 1990

3.4 BIRDBATH CONTROL MODULES 50
PATTERN = *IFBANDS(*dfeng') *dog' | *=IFBANDS(*dffr"') fchien’

The outpat is normally in LISTGEN format (l-format). If p-format is
desired in order to produce a file that can be further processed,
then set the parameter PFORMAT to a non—null value in the SPECS
file. {(P—-format and l-format are described in 3.2.7g9.)

In summary, the SPECS parameters available for EDLISTSB are BANDS,
PATTERN, PFORMAT, the Input parameters, and the p-format or l-format
parameters, depending on whether PFORMAT is set or not. At least
BANDS should be specified, otherwise no putput would be generated.

g. LISTGEN

This module ocutputs a dictionary file in the so-called *LISTGEN
format* (l-format), which includes indentations and line skips to
make a dictionary in band format more readable {see, e.g., Fig.
2-11). (P—-format and l-format are described im 3.2.1g.) The SPECS
parameters mostly concern the amount of indentation in varioas
situations and other such formatting matters. If no SPECS
statements are given, certain default values are assumed. SPRCS
statements may be used 10 override these values. In the following
list of LISTGEN parameters, the default values are given on the
right of the egquals sign following the parameter name. The default
value for TITLE is a blank line. Another feature which the LISTGEN
control module provides 1s printing the line numbers with each
paragraph, if the input file contains line numbers. This feature
can be suppressed by setting SNUM to a non-nell value by means of a
SPECS statement.

LMARGIN = 0 Character position of the left hand margin.
RMARGIN = 132 Character position of the right hand margin
(on mainframe version).
= 79 {on PC version).
TITLE = to provide a title to be printed om each page,

sapply a title in a statement:
TITLE = %osas’

(This can be overridden by the occurrence of TITLE bands in the file itself:
see 3.3.2.)

LINESPERPAGE = 60 Lines per page. Set this to 80 when using
T1-inch paper at 38 lines per inch. Por 11-inch
paper at & lines per inch {(the normal case),

68 lines is fine.

HEADHANG = 10 Number of characters that headword bands overhang
the other bands in an entry or suabentry.

SUSENTINDENT = 3 Number of characters of indentation for each

Second Edition, partial draft. Pormatted Februwary 2, 199¢

3.4 BIRDBATH CONTROL MODULES 61
level of subentry.

SUBMODEINDENT = 2 VNumber of characters of indentation for each
level down of modese.

In summary, the SPECS parameters available for this module are
SNUM, the Input parameters, and the l-format parameters, most of
which are described above (a few more obscure ones are listed under
"l-format parameters” in 3.6). NO parameters are required.

e e . s e e

h. NULLRUN

NULLRUN is not available in the PC version. This control modanle
produces a "null run™. It does not read any data. It can bhe used
to exercise the initializations {(see Section 6.2.7.1) or to generate
a compilation listing of the bumilt-in functions. NO SPECS
parameters are relevant.

v ——— — s

i. ONBANDS

ONBANDS is not available in the PC version, and 1s being phased
out in the mainframe version. The more versatile ONBANDR should be
used.

This module outputs those entries {(entire entries) that contain
specified bands. That is, if an entry contains one of these bands,
then the entire entry is output. The names of these bands are
specified in a list, assigned to the SPECS parameter ONBANDS, €.g.:

ONBANDS = *df,cf,phr,il,ps®

Furthermore, if a SNOBOLSH pattern is assigned to the parameter ONPAT
the succesful matching of the pattern in the bodies of the specified
bands becomes an additional criterion for selection. That 1is, an
entry must have one of the specified bands, and the pattern mast
match in the body of the band, before the entry is selected.

The output is normally in LISTGEN format (1-format), for
printing. If the output is to be stored in p—format, for further
processing, set PFORMAT to any non—-null valuwe, e.g. PFORMAT = 1 .

In summary, the SPECS parameters available are ONBANDS, ONPAT,
PFORMAT, the Input parameters, and the p-format or 1i-format
parameters, depending on whether PFORMAT is set or not. At least
ONBANDS 1s required, otherwise no oatput would be generated. (P-
format and l-format are described in 3.2.1g.)

Second Edition, partial draft. Formatted February 2, 1990

3.4 BIRDBATH CONTROL MODULES 42

J. ONBANDSZ

* ONBANDS2.5PT RETRIEVES ENTIRE NEST OF ENTRIES IF ANY BAWD
IR IT * SATISPIES ONBANDS AND ONPAT. SPECS PARAMETERS AVAILABLE:
PFORMAT, * AND THE LISTGEN PARAMETERS LIKE RMARGIN. NOT AVATLABLE
ARE * THE BAND SELECTION PARAMETERS LIKE BANDS, NOTBANDS, ETC.
This control module retrieves an entire nest of entries {(main entry
and all its sub~ and sub—sub- etc. entpies) if a specified band, or
specified bands, occur anywhere in it and if a specified pattern is
satisfied in the body of the specified band(s). The criteria for
retrieving an entry are the same as for ONBANDSR, described below,
but the scope of how much o0f an entry is retrieved is different.
Whereas ONBANDSE retrieves only the headword bands from entries
dominating a target subentry (one that satisfies the search
conditions), this control module retrieves the entire nest of
entries (main entry and all subentries) that contains the target
subentry. Furthermore, every single band is retrieved: there is no
Wway to select the bands. The retrieved entries are placed in the
ountput file, in either 1-format or—--if PPORMAT is set to a non—null
value——in p—format.

k. ONBANDSR

This control module, like ONBANDS, selects entries on the basis
of whether or not a given band, or any of a list of bands, is found
in an entry, and on whether a given pattern, when such a pattern is
given, is satisfied in the body of the band. The bands to be
inspected are given by means of the SPECS parameter ONBANDS, and the
pattern, if any, is given by means of the parameter ONPAT, just as
With the ONBANDS control module.

If the parameter REJECT 1is set to a non-null value, then the
conditions for selection and rejection of entries are reversed from
the above description.

The bands to be output with a selected entry are: the headword
band, the band(s} satisfying the ONBANDS and ONPAT conditions
{enless REJECT is set), and any other bands specified by one of the
four mutuoally exclusive parameters

BANDS T Yeaea! the bands specified in this list

NOTBANDS = ‘'..."? all bards except those in this list

NOBANDS = 1 no other bands

ALLBANDS = 1 all bands {(not specifying any of these four

parameters will have this effect too)

Fach subentry will alsc be treated in the above way. In addition,
if a sobentry or main entry is not itself selected but ope of the
subentries which it dominates is, then the dominating entry or
subentry will be represented in the output, bat only by its headword
band. In this way, there will always be a proper path to a selected

Second Fdition, @partial draft. Formatted February 2, 1390

3.4 BIRDBATH CONTROL MODULES 63

subentry, Wwhether or not its dcominating entry or subentry is
selected.

While ONBAND3S and ONPAT represent independent comnditions, that
is, the pattern ONPAT can be satisfied in any of the bands given in
ONBANDS, it can also be arranged that one pattern be applicable in
certain bands while another pattern be applicable in certain other
bands. This can be done simply by concatenating a call to
*TPBANDS(bands) (see Section 6.2.4.1}) to the beginning of the
appropriate pattern and building an alternation of these patterns:

ONBANDS = *A,B,C,D*
ONPAT = *IFPBANDS{'A") PA | *IFBANDS(*B,C®) PBC } *IFBANDS('D') PD

These SPECS statements say: 1) the bands to be inspected are A, B8,
C, and D3 2) look in Ak hands for the pattern PA, look in B and C
bands for the pattern PBC, and look in D bands for the pattern PD.
If any of these patterns is found, select the entry.

In addition to the above SPECS parameters, the Input parameters
and the output parameters, viz, PFORMAT and p-format or l-format,
are available. Normally output is in LISTGEN format (l-format). If
PFORMAT is set to a non—null value, it is in p—format.

1. SEQCHECK

This contropl module checks through a file for correct
alphabetical order of the headwords. Whenever it finds a pair of
consecutive entries in which the second headword is not strictly
alphabetically greater than the first, it copies the two headword
bands into the output file, where they may be inspected. Correct
alphabetical order is defined by a handle function supplied by the
user in the same way as for the TOAST control module HANDSORT. It
would normally be placed in the "aserfas™ file, and the name of the
function would be specified in the SPECS file with a statement like

HANDLENAME = *®*XKORHAND®

If no handle function is supplied, a default alphabetical scheme is
assumed. See the description of HANDSORT in the next section for a
little more information about writing handle functioans.

m. STATS

This module reads through a file and prinpts out varioas
statistics in the BIRDBATH BUN LOG: the number of times each band
occurs, the namber of different bands, the number of paragqraphs
(number of band occourrences), the pamber of main entries, total
number of entries (including sub— and sub-sub- etc. entries), total
number of characters in the file. In the PC version, the bands
(with their freguencies of occurrence) are listed in alphabetical

Second Edition, partial draft. Formatted ¥ebruary 2, 1950

3.4 BIRDBATH CONTROL MODULES 64

order (actualy, computer collating sequence order)s; in the IBM
mainframe version they are not. A BANDS = '...' Oor NOTBANDS = *...°

statement may be given in the SPECS file to restrict the first two

statistics. The other statistics are compiled always for the entire
file.

The SPECS parameters available are BANDS or NOTBANDS {(mutually
exclusive), and the Input parameters. None are reguired.

Second Edition, partial draft. Yormatted Februmary 2, 1590

3-2 TOAST CONIRQOL MODULES

TOAST control modules perform operations that require sorting or
re—ordering of material in the dictionary file. Fach module
consists of two "phases™, one being executed before sorting and one
after. In general, separate SPECS statements are required for each
phase.

The description of each module includes descriptions or mentions
of the SPECS parameters {sece Section 3.1) relevart to the module.
In the mainframe version, SPBCS parameters for TOAST modules are
separated intc phase-1 parameters and phase-2 parameters, but in the
PC version both sets are normally put in the same SPECS file.
Certain common parameters, in particslar the families of Input, p-
format, and l-format parameters, are not described repetitively, but
are only mentioned where relevant. Descriptions of those families,
and descriptions or references for all the other parameters as well,
are to be foupnd in Section 3.56.

As with the BIRDBATH control modules, most TOAST coatrol modules
read an input data file, which must be in p—-format, and produce an
outpat data file which may or may not be in p~format. If the
description of the control modale states that the PFORMAT parameter
is available for setting, then the module will, with PFORMAT set o
1 {(or any non-null value), produce a p—format ountpat file.
Otherwise its output is 1n some other format. Only p—format files,
0f course, can be further processed by BIRDBATH or TOAST control
modules.

All TOAST control modules prodace two log files or printouts,
chronicling significant stages during the execution of the two
phases, and giving error messages from the execation. ERach log is
labellied as a BIRDBATH RUN LOG, since each phase is considered a
BIRDBATH run. In the mainframe version, the run logs are normally
part of the whole printout from the run; on the PC they normally go
into two files, MESSAGE and MESSAGE2. The logs should be checked
after every run.

There are recipes in Chapter 4 illustrating the usage of TDAST
control modules.

#+ DANDCORD

This control module constructs a simple center—format (also known
as a Key-Word-In-Context) concordance of specified bands, ian the
general format of a bandsort (see BANDSORT control module). Pigure
2.13 showed the format of a bandsort. The band coacordance format
differs from this in that each band body appears once for each word
in it, centered on the word. All the pccarrences of all the
specified bands are sorted by the centered words. Each body is
truncated, as necessary, at the left and right edges of the
available space. The boundaries of the "word™ are spaces.

Second Edition, partial draft. Formatted Pebruary 2, 193¢

3.5 TOAST CONTROL MODULES 66

Currently it is not possible to specify cther delimiter characters.
The default widths of the concordance fields (and their names) are
35 for the headword field (BWPIELD) and 12 for the left side of the
centered concordance field (LFIELD). Ten spaces are reserved for
the mode numbers and band name, and the left and right margins are
determined by LMARGIN (default 0) and BMARGIN (default 132 on the
mainframe, 79 on PC). The bands to be comrncorded are specified with
the BANDS or NOTBANDS parameter. All these parameters are Phase-1
parameters.

b. BANDSORT

A bandsort is an alphabetical listing of bands from a dictionary
file. The baunds are in alphabetical order by band name, and within
each group of bands with the same name the bands are in alphabetical
order by the body. The output of this program is in neither p-—
format nor 1l-format. (See Pig. 2.13 for am example of a bandsort
output.)

In the phase-1 SPECS file, a list of bands that are to be printed
or that are to be ignored may be given, by using the BANDS or
NOTBANDS parameter, respectively, €.g.

BANDS = *il,phr,ps,df*
or
NOTBANDS = "il,phr,ps,df"*

If no such statement is given then all bands are taken. The HWFIELD
parameter specifies how wide a field is reserved for the headword in
the BANDSCORT output {(see, again, Fig. 2.713)}. This field is at the
left of the printout. Any headwords longer than this will be
truncated on the printout. The default is 35. (In Figure 2.13 the
field is only abont 9 characters wide, in order to fit within the
figure box.) KEEPSEQ is another parameter available in phase-1 of
BANDSORT. Normally, all occurrences of each band are sorted into
order by their band bodies, as shown in Fig. 2.13. However, if
KEEPSEQ is set to a non—null value, they will be kept in their
original relative order. In addition to these parameters, the Input
parameters (g.v. in Section 3.6) are available. No SPECS statements
are obligatory in phase—1.

In the phase~2 SPECS file may be specified how many blank lines
are to be skipped when a new group of bands (with a new name)
begins. The parameter is SEPARATION. The default is 1. If some
nnmber is given that is larger than the number of lines on a page,
€.g. SEPARATION = 70, then every new block of bands will start on a
new page. OFFSET is the amount of indentation given to a
continuation line in the bandsort output. It is normally set at 50,
in order to clear the headword field and band label field. If
HWFIELD is reset in phase—-1, then it may well be desireable to reset

Second Edition, partial draft. Pormatted Pebruary 2, 1930

3.5 TOAST CONTROL MODULES 57

OFFSET. All the page—formatting parameters {(g.v. under *'l-format
parameters® in Section 3.6) are also available, i.e., all the i-
format parameters except HEADHANG, SUBENTINDENT, SUBMODEINDENT, and
SUPBANDLABEL. No SPECS statements are, however, obligatory in
phase-2.

C. HANDSORT

This module alphabetizes a file by headword, i.e. the body of the
first band of each eantry. Sub-entries are not disturbed-—they are
left in their relative order beneath theilr respective main entries.
The sorting is not based directly on the form of the headword and
the computer collating sequence; rather, it is based on another
form, called the handle, generated from the headword by a function
which may be supplied by the user. In the absence of a supplied
function a default handle function is used, which causes the upper
and lower case distinctions to be ignored. It also ignores non—
alphabetic characters. If a more sophisticated alphabetization
scheme is desired, a special fuanction must be supplied, and placed
in the phase-1 USERFNS. (See Section #.1, j3.) It may be called
*HANDLE', must take one argument—the string for which a handle is
to be made, and must return the resulting handle as value- This
must, of course, be written by a programmer. If it is not called
*HANDLE", a statement saying what it is must be placed in the
phase-1 SPECS file, e.g-

HAKRDLENAME = *YPOTHAND?®

As usual with most control modules, the Inpat parameters {(g.v. 1in
Section 3.6) are also available here, in phase—1. No SPZECS
statements are, however, obligatory for a HAKDSORT run.

The output of this program is the sorted dictionary, by default
in LISTGEN format (l-format), in which case the l-format parameters
(gq.v. in Section 3.6) are applicable in phase-2. Presumably,
however, one would want to save the sorted dictionary in a file for
further computer processing or for editing. That means having it
written out to a file in p-format. In that case one would set
PFORMAT to a non-null value in the phase-2 SPECS file, and the p-
format parameters (see 3.6) would be applicable. A phase—2
parameter TRACEHANDLE may be set to a non-nyll value, during check-
cut of a new handle function, to cause a list of the sort records
with their handles to be printed out. Another phase~2 parameter,
SUPDUPTRACE, if set t0o a non—-anull value, suppresses a listing of
"duplicate handles®”——headwords which have identical handles and
which presumably one would want to be alerted to. For these words
the alphabetical ordering, as specified by the given handle
function, is ambiguous, or "underspecified™. This listing is given
in the BIRDBATH RUN LOG of phase—~2. In summary, in phase—-2 of
HANDSORT, the SPECS parameters available are PFORMAT, TRACEHANDLE,
SUPDUPTRACE, and the p~format or l-—-format parameters, depending on
whether PFORMAT is set Or not.

Second Edition, partial draft. Formatted February 2, 13990

3.5 TOAST CONTROL MODULES 53

d. INVERT

This module is not distribnted with the PC versioni the more
versatile INVEET2 shoald be used.

This module generates a finderlist, the elementary
characteristics of which have been described in Chapter 2. Due to
the complexity and number of conventions pertaining to this control
module, the details have been relegated to an appendix (Appendix I)
in order to anclatter this chapter. Only the most basic SPECS
parameters are mentioned here.

In the phase-1 SPECS file, the band(s) in which the program is to
look for asterisks (which mark keywords) must be stated. This is
done by a BANDS = '...' statement, e.g.

BANDS = ‘*def,sem?®

Such a statement in the phase-1 SPECS file is reguired for runninag
INVERT, since otherwise the program would not know what bands to
look for asterisks in. All the other parameters are optional. A
large number of them are provided for controlling the delimitation
of keywords and of the phrases that they are embedded in. A
detailed account of them is given in Appendix I. In addition, the
Inpat parameters (g.v. in Section 3.6) may be specified in the
phase-1 SPECS file.

In the phase—2 SPECS file, no parameters are reguired. Output is
in band format, with two bands, KW and PH . Output is normally in
LISTGEN format (l-format) for printing oat, but may be put in p-
format by setting the parameter PFORMAT to a nonr-null value. In 1-
format, since a finderlist has only two bands, and the KW band is
always the first band in an entry, the control module sappresses
printing of the band labels. If, however, band labels are desired
in the printout, set the parameter PEINTBANDLABELS to a acn—-null
value in the phase-2 SPECS file. 1In sammary, the parameters
avallable to be modified in the phase-2 SPECS file are PFORMAT, and
the p~format or i-format (and PRINTBANDLABELS) parameters (see
Section 3.6), depending on whether PFORMAT is set Or not.

2. INVERTZ

This is a more general version of INVERT {(see above) which 1.
constructs, for keywords within subentries, a reference to the main
headword as well as one to the subheadword: and 2. lcoks for
keywords {starred words) in "translation™ bands associated with
“example® bands in the same mode. The example bands are treated as
subheadwords. Detalils are presented in Appendix I, paragraph r.
This control module may eventually supersede INVERT if its
performance on the subset of INVERT tasks proves comparable to that
of INVERT itself.

Second Edition, partial draft. Formatted February 2, 1990

3.5 TOAST CONTROL MODULES 69

The phase-1 SPECS parameters are the same as for INVERT, except
that two more "BANDS"™ type parameters are available, one, XBANDS,
for specifying the name(s}) of example band(s), the other, TBANDS,
for specifying the name(s}) of translation band(s).

The phase-2 SPECS parameters are the same as for INVERT.

——— e e e

f. NULLRUN
This module is not available in the PC version.

This module produces a "null run®™®. It does not read any data.
It can be used to exercise the initializations (see Secticn 6.2.1.1)
or to generate a compilation listing of the built—in functioms in
BIRDBATR and TOAST. No SPECS parameters are relevant.

g. REBANDLE

This module re-orders the bands in each entry according to a
given order. The new order is given in terms of a list of band
names in a file BANDLIST in phase-1 of the rum. In that file there
maost be one bandname per line, with nothing else. REBANDLE does not
take bands out of their modes: the grouping function of mode
numbers is respected.

In the phase-1 SPECS file no parameters are available except the
Input parameters {g.v. in Section 3.6). In the phase-2 SPECS file
are available PPORMAT, and the p-format or l-format parameters
depending on whether PFORMAT is set or not. Output is normally in
LISTGEN format (l-format), but may be put into p—-format by setting
PFORMAT.

he. SORTENT

This module sorts the eantries in a file, much as HANDSORT does,
except instead of sorting by the headword band as HANDSORT does, it
can sort based on anything in the entry. As with HANDSORT, the user
must provide a handle function to phase~1 to generate the sort
handle for the entries. The name of the handle function must also
be given in the phase—1 SPECS file as a parameter HANDLENAME.

Unlike the handle faaction supplied to HANDSORT however, this handle
function takes no argument, but bases the handle on other
information. This information is put aside by another user—supplied
function, which must be called BANDPROC(). This function is
executed by the control module each time a band is read. The
function may test for the band and do whatever else it needs, and 1t
puts aside information, say by using the SET function (SSET function
in the PC version) {(see 6.2.4.3). The handle function is called at
the end of the entry, and can make use of any information put aside
by BANDPROC during the reading in of the entry. The entry is sorted

Second Edition, partial draft. Formatted February 2, 1990

3.5 TOAST CONTROL MODULES 70

according to the handle so generated. The handle function may
specify that the entry be skipped, and the BANDPROC function may
specify that a given band be ignored. See the control modale itself
for further comments. ¥For phase-2, the p—format parameters are
relevant i1f PFORMAT is set; otherwise the l-format parameters are
relevant.

i« SORTSUB

This control module alphabetizes the two—dot subentries under
each main entry. The sebentries are not taken oat of the nest, but
are re—arranged {(if necessary) into alphabetical order, still under
the same main entry. The sub—sub— and deeper entries under a
subentry are by default not reordered, but kXept as a unit with the
subentry. If it is desired to reorder all deeper subentries as
well, then the parameter SUBSUB should be set to a non—null value.
This is a phase—-1 SPECS parameter. Note that the hierarchical
relationship in a nest of entries is never altered, only the
sequence at each level may be changed. As with HANDSORT, a handle
function must be supplied. Follow the conventions described under
HANDSORT, above, for writing the function. The name of the function
must also be given as a phase-1 parameter HANDLENAME. As for
phase-2 SPECS parameters, the p-format parameters are relevant if
PFORMAT is set; otherwise the l—-format parameters are relevant.

j. XCHECK

This control module checks cross—-references to find references
that do not occur as main headwords in the file. Cross-references
may be in any form in the file, but the user must supply a faunction
XREF(), of no arguments, that looks in the current band and returns
a list of (zero or more} cross-reference words separated by commas
(and optionaly spaces). The bands in which the function is to look
must be given in terms of a list of bandnames in the parameter
BANDS. The BANDS = '"...? statement must be given in the phase-1
SPECS, and the XREF() fanction must be given in either the phase-1
SPECS or the phase—~1 USERFNS file. A hapdle function may be
provided in the USERFNS file, as for the HANDSORT control module,
q.V., for alphabetizing of the ocutput. Thus HANDLENAME is available
as a phase-1 SPECS parameter. In addition, the Input parameters
(g.v.in Section 3.6) are available in the phase-1 SPECS.

The cutput is a list of entries consisting of two bands: headword
band and a c¢ross—reference band containing one cross-reference word.
The bands are labeled with the same names as their bands of origin
in the input file. These entries represent anresolved cross-
references, i.e., cross—-reference words which do not occur as
headwords in the input file, along with the main headwords under
which they occurred. These entries are in alphabetical order by the
cross—-reference words, not by headword. If the output is saved in a
file in p-format, it can later be sorted into order by the headword

Second Edition, partial draft. Pormatted February 2, 1990

3.5 TOAST CONTROL MODULES 71

using the HANDSORT control modamle. Thus in the phase—-2 SPECS file,
the parameters available are P¥ORMAT, and the p—format or l-format
parameters (qg.v. in Section 3.6), depending on whether PFORMAT is
set or not. If PFORMAT is not set, the output is in LISTGEN format
(1-format), and the l-format parameters are relevant.

Second Bdition, partial draft. Formatted Pebruary 2, 199¢

72
3-8 SPECS RARAMEIERS

This section contains an alphabetical list of the parameters that
can be overridden in the SPECS file when running BIRDBATH or TOAST
with existing control modules. With each parameter is given its
type (string, number, flag, or pattern}), its purpose, and its
default value. In each case of a TOAST parameter it is noted
whether it is a phase-1 or a phase-2 parameter. This is relevant
for the IBM mainframe version bat not for the PC, where both types
of parameters are given in the same SPECS file. What function uses
the parameter 1is also mentioned for the information of programmers.

If a parameter is to be overridden with a statement in the SPECS
file, the form of the statement must be consistent with the type of
the parameter. If the parameter is a string, the value must be
enclosed in single or double quotes, e.g.

BARDS = YHW,DF,CF®
If it is a number, it must be a simple integer without guotes:
LMARGIN = 10

If it is a flag, for all practical purposes any number will do:
PFORMAT = 1

If it is a pattern, it must conform to SNOBOLY pattern syntax:
ONPAT = *cpd.' | ‘*redup.® | f*tb.?

In all cases there must be spaces on both sides of the eguals sign.

ALLBANDS a flag used by certain conrtrol modules that select bands
in addition to certain fixed bands such as the headword band.
If set to a non—null valune, it capses all bands to be selected.
It is mutually exclusive with NOBANDS, BANDS, and NOTBANDS.
It 1s used by the fancticon IFBANDQ(). ALLBANDS is relevant to
the control meodules BANDFILT and ONBANDSR.

BANDPRIQRITY a string of band names separated by commas, with no
spaces, and not necessarily terminated with a comma. It
gives a list of bands in priority order for selection for
output by the control module BANDFILT.

BANDS a string of band names separated by commas, with no spaces,
and not necessarily terminated with a comma. Tells the
control module which bands to process. {(In the case of
INVERT, tells it which bands to look for asterisks in.?

Default is null. If left null, the meaning depends on the
control module, e.g. for BDANDSORT it means select all bands
(unless NOTBANDS is noo—-null), for BANDAID it means do nothing.

Second BEdition, partial draft. Formatted February 2, 1990

3.6 SPECS PARAMETERS

ENDEF a string used by the INVERT and INVERT2 control modules
in phase—1. See Appendix I, paragraph c.

FORCENKEY a string ased by the INVERT and INVERTZ coatrol
modules in phase—-1. See Appendix I, paragraph d.

HANDLENAME In using TOAST control modules that sort on forms,
or BIRDBATH modules that check alphabetical order, the user
may supply a fanction to produce a "handle® for each form
to be sorted. The default name for the function is *HANDLE’®,
but may in fact be any legitimate SNOBOLY function name.

If it is not "HANDLE', the user must specify what it is
through a SPECS statement e.g

HANDLENAME = *PRANDLE®

This parameter is relevant to all TOAST control modules
except REBANDLE, and to the BIRDBATH control module SEQCHECK.
This parameter is given in the phase-1 SPECS file.

HANDLEBNAME Some TOAST control modules, e-.g-, INVERT, use a
second handle function {(see HANDLENAME, above) whose default
name is "HANDLEB'. If the user chooses to supply a function

with another name, that name must be specified in a phase—1
SPECS statement, e€.g.

HANDLEBNAME = YENGHAND®

In INVERT, this fanction is for sorting the keywords of the
definition (see Appendix I, paragraph q.).

This parameter is relevant for the control modules INVERT
and INVERT2, those that allow user-written handle functions
to override the HANDLEB(X) default handle function. This
parameter is given in the phase-1 SPRECS file.

HEADHANG the number of character positions of hanging indent
the headword bands will be printed with, in l-format printed

73

output. It is ased by the LISTGEN() function. Default is 10.

This is one of the '"l-format parameters®, gq.v. elsewhere in
this sectione.

HOOK a4 string used by the INVERT and INVERTZ2 control modules
in phase-1. See Appendix I, paragraph g.

HRFIELD in BANDCORD and BANDSORT output, the width of the
headword field (left hand column of the output). Any
headword longer than this 1s truncated. Default is 35.
It is given in the phase-1 SPECS file.

IDLEN the length of the fixed serial—-number field (e.g. TS0
line number) on impat records. Used in the pattern R.INPAT,
geve It is normally determined automatically by the first

Second Edition, partial draft. Formatted Februwary 2, 1930

3.6 SPECS PARAMETERS 74

call to READ(), but may be overridden. It is not usually
relevant on the pC.

This is one of the *Input parameters®, g.v. elsewhere in this
section.

Input parameters These are IDLEN, PARAPAT, R.INPAT, STOPAFTER,
and STOPPAT. Only STOPAPTER needs normally to be used.
They are relevant to all the control modules except NULLRUN.
In TOAST control modules they are relevaat only to phase-1.

KEEPANGLE a flag used by the INVERT and INVERTZ contctol
modules in phase-1. See Appendix I, paragraph k.

KEEPBANDLABEL 0ld name for PRINTBANDLABELS, a flag used by the
INVERT and INVERTZ control modnles in phase-2. See Appendix I,
paragraph pa.

KEREPSEQ a flag used by the BANDSOBT control module to determine
whether instances of the same band are to be subsorted by
their body or are to be kept in the original input sequence.
To obtain the latter, set this parameter to a nop—null
valae. The defaunlt wvalue is aull, giving the former result.
it is nsed in phase-1 of BANDSORT.

KEYMARK 2 string used by the INVERT and INVERTZ control modules
in phase-1. See Appendix I, paragraph f.

LFIELD in BANDCORD output, this is the width of the left context
field in the center-format concordance of the band bodies.
It is defaulted to 2. It is a phase-1 parameter.

i-format parameters These are HEADHANG, SUBENTINDENT,
SUBMODEBINDENT, and SUPBANDLABEL, plus the page-formatting
parameters NOPAGE, LINESPERPAGE, LMARGIN, PAGECOUNT,
RMARGIN, SUPHEADING, SUPPINSP, and TITLE. They are all
relevant to control modules that can produce l-format
ontput with more than one band per entry. In TOAST control
modueles they are relevant to phase-2. The page—formatting
parameters alone are relevant alsc to non-l-format printed
outpat, suach as BANDSOHT output.

LINESIZE the maximum length of lines for hanging paragraph
ountput in p—format. Used by the WRITEBAND function. Defaunlt
is 70.

This is one of the *p-format parameters', g.v. elsewhere in
this section.

LINESPERPAGE the maximum number of lines that shopild be printed
on a page of page-formatted output {(e.g. l-format or BANDSORT
output). Used by the PRINTL fanction. Default is 60.

This is a "page—formatting parameter*. See under *l-format

Second Bdition, partial draft. Formatted Pebruary 2, 1390

3.6 SPECS PARAMETERS 75
paramcters? elsewhere in this section.
LISTGEN format parameters see *l-format parameters®.

LMARGIN position of left margin in print-formatted output. Used
by the PRINTL function. Defaalt is Q.

This is a "page—-formatting parameter®. Se¢e under 'il-format
parameters® elsewhere in this section.

NOBANDS a flag used by certain control modules that select bands
in addition to certain fixed bands such as the headword band.
If set t0o a non-null wvalue, it causes no additional bands to be
selected. It is mutually exclasive with ALLBANDS, BANDS, and
NOTBANDS. It is used by the function IFBANDQ(J). NOBANDS is
relevant to the control modules BANDFILT and ONBANDSH.

NOPAGE When this flag is set to a non—null namber, it causes
page—-skipping to be sappressed, along with printing of titles
and page numbers. It is available in the PC wversion, not on the
mainframe. It is useful if an ountput file is not to be printed
but will only be examined on the screen. It is used by the
PRINTL fanction. It renders the parameters LINESPERPAGE, TITLE,
and SUPHEADING irrelevant.

This is a *page—formatting parameter®. See under °*l-format
parameters' elsewhere in this section.

NONUM In p—format output a T50-style line number (8 digits,
increasing by 10's) is normally generated and attached to the
front of every record written out. If this flag is set to a
non—-null value, nc such number is attached. Used by the
function NUMFIELD which is called by the function WRITE.
Default in the mainframe version is ngli: the number field is
generated. In the PC version the opposite is true.

This is a "p-~format parameter®, g.v. elsewhere in this section.

NOTBANDS a string consisting of bandnames separated by commas,
with no spaces, and not necessarily terminated by comma.
Some control modules allow you t0 use this parameter instead
of the parameter BANDS (g.¥.), to specify what bands are NOT
to be processed rather than what bands ARE to be processed.
These control modules are BANDFILT, LISTGEN, ONBANDS,
ONBANDSH, BANDSORY, and XCHECK. In TOAST control modules,
(BANDSORT and XCHECK), this parameter is relevant to phase-1i.

NOWRITE In the BANDAID control module, any band that is not
mentioned in the BANDS parameter is normally written oat. To
prevent the unmentioned bands from being written out, set this
parameter to a non-null value.

QFFSET in any ouatputting of hanging paragraphs (see 3.2, d), this
is the number of blanks to be prefixed to continnation lines.

Second ®Bdition, partial draft. Pormatted Pebruary 2, 1930

3.5 SPECS PARAMETERS 76

The default is 1, and should not normally be changed because
programs that read the data in again assume this. However,
for BANDSORT output the default is 50, causing continuation
lines to be indented out of the way of the headword field,
which is normally 35 character positions wide (see HWFPIELD
parameter).

This parameter should not normally be reset, except possibly
in phase-2 of BANDSORT. In addition to BANDSORT, it is

used by all control modunles that produce p-format or l-format
output.

ONBANDS a list of band names separated by commas, as in the
parameter BAND3, used by the ONBANDS and ONBANDSR control
modules to determine whether a given entry is to be selected.
It is selected if the entry contains a bamrd in this list
and if the pattern ONPAT matches in the body of the band. If
the list is nall, nothing is selected. The default is null.
However, the parameter REJECY, g.v., in ONBANDSR, when set
to a non—null value reverses the selection criteria.

ONPAT a patteru used by the OKBANDS and ONBANDSR control modules.
See ONBANDS parameter, above. Defanlt is null, which matches
in all cases.

QPTP a string used by the INVERT and INVERT2 control modules
in phase-1. See Appendix I, paragraph m.

page—formatting parameters see "l-format parameters?t.

PAGECOUNT the current page namber. The default initially is 0.
To start printing with another namber, set this parameter

egual to one less than that number. Used hy the PRINTL function.

This is a *page—formatting parameter®. See under *i-format
parameters? elsewhere in this section.

PARAPAT the pattern used to parse each paragraph read in into
its components according to band-format conventions: theadword
level (the dots, if any), mode numbers (if any), band name
{obligatory), and body (if any). Used by the READ function in
BIRDBATH and in phase—1 of TOAST, but not the READ function of
TOAST phase—2. It does not need to be overridden unless the
r1opat does not follow standard band-format conventions. The
defaalt valae may be examined in Program Segment 2.2.

This is one of the ?'Input parameters®, g.v. elsewhere in this
section. It should never need to be overridden.

PATTERN a pattern used by the EDLISTE control module to determine
whether a given band is to be selected for writing out. It is
selected if the pattern matches in the body of the band.
Default is null, which matches in all cases.

Second Edition, partial draft. PFormatted February 2, 1990

3.6 SPECS PARAMETERS 77

PFORMAT a flag that determines, in those control modules that

allow this choice, whether output is to be in p-format or
1-format. The former is suitable for output to a file that is to
be further processed by these programs; the latter is for printed
output. When not set {the default situation), the output is

in l—-format; when set to a non-null value the output is in
p-format. This parameter is used by the function LISTORWRITE

to determine whether to call LISTGEN (for 1l-format) or to call
WRITEBAND (for p-format).

In TOAST control modules it is used in phase—Z.

p-format parameters They are LINESIZE, NONUM, OFFSET, SUPPINSP.

PHAS

PRIN

R.IN

REJE

RMAR

SEPR

SNUM

They are relevant to control modules that can produce p-format
output. In TOAST coatrol modules they are used in phase-2.

E In TOAST runs, this number is normally automatically set
at the beginning of a phase to either 1 or 2 depending on
whether phase-1 or phase-2 is being executed. It normally
would not have to be overridden.

TBANDLABELS A flag used by the INVERT and INVERT2 control
modules in phase-2. 5See Appendix I, paragraph p.
The 0ld name for this parameter was KEEPBANDLABEL.

PAT the pattern used to separate the line number, if any,

of each input record from the rest of the record. The default
is TAB{IDLEN) . PG.ID2 REM . PG.BUF2

It 1s used by the fanction READPG.

It is one of the 'Input parameters®, q.v. elsewhere in this
section, but it should never need to be overridden.

CT a flag used by the ONBANDSR control module. It reverses
the sense of the selection c¢riteria specified by ONBANDS

and ONPAT. That is, if ONBANDS and ONPAT are both satisfied,
the band is rejected instead of accepted.

GIN position of tight margin in print-formatted output.
Used by the PRINTL fuaction. On the mainframe version the
defaunlt is 132, which is the maximum width of wide printoat
paper. On the PC version it is 79.

This is omne of the 'page—-formatting parameters'. See under
*1-format parameters? elsewhere in this section.

RATION in BANDSORT output, this is the number of blank lines
to be inserted when the band name changes. The default is 1.
If it is set to a anumber greater than LINESPERPAGE, e.g. 30,
then every different band will begin on a new page. It is
used in phase-2 of BANDSORT.

Some control modules that print paragraphs from a file,
€.g. the LISTGEN control module, normally print the line

Second Edition, partial draft. PFormatted Februwary 2, 1390

3.6 SPECS PARAMETERS 78

number field, if any, from the records of the input file.
To suppress these numbers, set this parameter to a non-null
value. The default is null. Used by the function SERFLD.

This parameter is currently relevant only to the LISTGEN
control module, and then oniy when the inpuot file has a line
number field.

STOPAFTER a namber used to limit the amount of input read by the
READ faunction. After thils many paragraphs the READ function
will look for a paragraph satisfying the pattern STOPPAT, and
stop before that paragraph, behaving as if the end of the file
had been reached. If this parameter is null, no limit is
imposed. The default is null.

This is one of the *Input parameters®, g.v. elsewhere in this
section.

STOPPAT the pattern used in conjunction with the STOPAFTIER
parameter {(above). Default is PO5(0) *." NOTANY(*.*)
which matches the first band of an entry.

SUBENTINDENT in l-format output, the number of character
positions that each level of subentries is further indented
from the level above. Used by the LISTGEN function. Default
is 3.

This is one of the *'l-format parameters?, g.v. elsewhere in
this section.

SUBMODEINDENT in l-format coutput, the number of character
positions that each mode level is further indented from the
higher level. Used by the LISTGEN function. Default is 2.

This is one of the '"l-format parameters®, {.v. elsewhere in
this section.

SUBSUB This phase-1 flag, when set to a non—nuall value, is used
"to inform the TOAST control module SORTSUB that sub-subentries
and deeper entries are all to be re—-ordered. Otherwise
SORTSUB will only re—order subentries. 3See SORTSUB in 3.5 for
details.

SUPBANDLABEL in 1-format output, this flag determines whether the
band label is to bhe printed or suppressed. It is suppressed
if this parameter 1is set to a non—null value. Defauslt is
null. Used by the LISTGEN function. {However, for INVERT
and INVERTZ output, see description of the parameter
PRINTBANDLABELS.)

This is one of the '1-format parameters®, g.v. elsewhere in
this section.

SUPDUPTRACE a flag which, if set to a non—null valne in phase—2

Second PBdition, partial draft. Pormatted February 2, 13990

3.6 SPECS PARAMETERS 79

of a HANDSORT run, suppresses tracing of duplicate handles.
The defaunlt is null, which causes instances of daplicate
handles to be printed in the messages file ("BIRDBATH RUN
LoG") of phase-2 of the run.

SUPHEADING in print-formatted (e.g. l1-format or BANDSORT)
output, this flag determines whether a running head,
is to be printed or not. It would appear in the right
hand corner under the page namber. It is not printed
if this parameter is set t0o a non—null value. Default
is null (running head is printed). Used by the PBINTL
function.

This is one of the *page-formatting parameters'. See under
*1-format parameters® elsewhere in this section.

SUPPINSP in outputting of hanging paragraphs, whether p-format
or l-format or any other formats, this flag determines whether
spaces in the text that happen to fall at the beginning of
continunation lines in the output paragraph are to be
discarded or not. They are discarded if this parameter is
set to a non-null value. Default is null. Used by the BREAXP
function.

This is in both the families of 'p-format parameters® and
*l1-format parameters®, g.v. elsewhere in this section.
However, it should never need to be overridden.

TBANDS a string of one or more bandnames separated by commas,
with no spaces, and not necessarily terminated by comma,
used by the INVERT2 control modele in phase-1. See Appendix I,
paragraph r.

TITLE in pript-formatted output, this is a string that is printed
at the top center of each page. Used by the PRINTL function.
Default is the null string. It is reset when a .TITLE band is
encountered in the data being formatted (see 3.3.3).

This is one of the *'page—~formatting parameters'. See under
*l1-format parameters® elsewhere in this section.

TRACEHANDLE a flag which, if set to a non—null value in phase-2
of TOAST runs, causes a trace of the sort handles to be listed
in sorted order in the messages file (the "BIRDBATH RUN LOG%)
of phase-2. ©No regular ocutput is generated. This is oanly for
checking out handle functions. A typical ose is to test a
handle function by HANDSORTiIng a file consisting only of
test headwords (perhaps constructed especially for the
purpose) and nothing else (no other bands). With
TRACEHAANDLE set, nc oatput is generated except the
sorted list of headwords with their handles, which
can be easily inspected for correctness cof order and for
the reason for any incorrect orderinge.

Second Bdition, partial draft. Pormatted Pebruary 2, 1590

3.6 5SPECS PARAMETERS 80

TRUSSEL a flag used by the INVERT and INVERT2 control modules
in phase-2. See Appendix I, paragraph p.

XBANDS a string of one or more bandnames separated by commas,
with no spaces, and not necessarily terminated by comma,
used by the INVERT2 control module in phase-1. See Appendix I,
paragraph r.

XENKEY a string used by the INVERT and INVERT2 control modules.
See Appendix I, paragraph d.

Second Edition, partial draft. Pormatted February 2, 1930

81
4.7 GUIDE IQ CHOOSING CONTROL MODULES AND PABAMETIERS

The headings in this section describe a few commonly needed
operations such as making a working printout, or extracting a subset
of the file, and each is followed by some advice about which control
module(s) can help you meet these needs. Not all needs are
anticipated, by any means. Although some advice and examples are
given regarding the use of several control modules, the reader
should not rely on this section, but rather on sections 3.4 and 3.5,
for a more complete description of the capabilities 0f each of the
control modules.

3.7.1 MAKING A WOBKING ERINIQUI

A printout of the masterfile is asefnl for proofreading and
checking, for jotting corrections and additions on, for sending to
colleagues, for taking back to the field, etc. The file itself can
be printed out as—is, of course, and no control module is needed, or
available, to do this. &Any printing command or utility program
available on the computer may be used. However, being in ¥p-format®™
such a printout is not very readable in that it does not clearly
show the structure within an entry. The l-format output produnced by
the LISTGEN control module is designed to do this. In the PC
environment LISTGEN is normally used to produce an l-format file
rather than a printout directly. Then the system print command can
be used to print out that file.

LISTGEN can be used, of course, to produce l-format output from
any p—-format file, not only a masterfile. For instance, in those
cases where it 1s necessary to request p-format output from a
BIRDBATH or TOAST run because the output is to be further processed
(used as input), an l-format version of the p-format output may be
made with LISTGEN.

With LISTGEN, you should normally provide some informative title
to be printed at the top of each page, using the SPECS parameter
TITLE. The title should be short but give enough distinctive
information about the file being printed, along with the date, sO
that you will be able to tell at a glance, possibly weeks or months
later, what this printoust was abont. &n untitled printout can
gquickly become meaningless. The right margin parameter RMARGIN is
pre-set on the IBM mainframe version and on the PC version t0 agree
Wwith the typical paper widths used in the two enviroaments: 132 on
the mainframe and 79 on the PC. The left margin parameter LMARGIN
is 0 in both cases. You may override these defaults with SPECS
statements. Other parameters control the different indentations in
the printout (see description of LISTGEN in 3.4), and at some point
you may wish to experiment with overriding them. 1In the PC version
there is another parameter, NOPAGE, a flag which allows you to
suppress pagination and the accompanying periodic interrtuption of
the printout with title lines and page numbers. You might want to

Second Bdition, partial draft. Pormatted February 2, 1990

3.7 GUIDE TO CHOOSING CONTROL MODULES AND PARAMETERS 82

do this if the "printout"™ is actually not destined for printing out,
but only for browsing on the screen.

3.2.2 PBOQFREADING AND CHECKING FPOR EEROQORBS AND INCONSISTENCIES

This category covers a great range of actunal activities. For
straight proofreading against, say, the field notebook from which
the data were entered imto the file, the Listgen output described
above is the usual tool.

Remember that any cortections and editorial changes suggested by
perusing these outputs must be made back in the masterfile and not
in the oatpat files. If the bandsort file were edited, for
instance, the edits cannot automatically be posted back into the
masterfile.

For proofing and checking that is not tied directly to a source,
but done by scanning a printout or a file, any format that serves to
focus the reader?s attention on some limited aspect of the data can
be very effective. A simple example of such a format is a selective
Listgen, one that shows only a small number of different bands--say
only the headword and definition bands, or only the headword and
illastration bands. Such a printont, or file, can be made with the
LYSTGEN control module, with the bands to be selected being
specified through the BANDS parameter. If the desired bands do not
occur in all entries, then the control module ONBANDSR may be more
appropriate because it does not select every headword as LISTGEN
does. Por ONBANDSR, the criterion bands are specified through the
parameter ONBANDS.

Any rearrangement that tends to bring together similar featares
in the data is aseful in making errors and inconsistencies easier to
spot. The output of the BANDSORT control module illustrates this.
This output brings together all instances of a given band and
exhibits them in sorted order by the body of the hand. While
perusing sach an output one can focas on the contents and
conventions of a single band at a time, unndistracted by other
intervening bands. The bodies being in sorted order also produces
some peculiar effects advantageouas to the checking process. To make
a bandsort of certain bands, specify what bands with the SPECS
parameter BANDS, or exclude certain bands by using NOTBANDS. If
neither is mentioned then a complete bandsort is made.

The band concordance, produced by the BANDCORD control module,
has similar effects, although that output tends to be more
voluminocus, especially for bands that typically have long bodies. A
band concordance would be more useful for bands that typically
contain lomng strings of text {as in an illustration band) rather
than single words or abbreviations {such as a part-of—speech band},
in which case it would redace to a bandsort. It would also probably
be more useful if it is made of a single band or of a set of closely
related bands (in the sense of containing similar types of

Second Edition, partial draft. Formatted February 2, 1330

3.7 GUIDE TO CHOOSING CONTROL MODULES AND PARAMETERS 83

information) than if several heterogenecus bands were mixed
together. Specify what band(s) to concord with the BANDS parameter.

The finderlist, produced by INVERT or INVERT2, usually brings out
inconsistencies in wording, as well as typos and misspellings, in
definition bands. Use the BANDS parameter to specify what bands to
make the finderlist from.

Beyond this passive scanning of transformed files, it is possible
to actively g0 after known types of errors or inconsistencies
directly in the masterfile, with the help of various coatrol
modules. ONBANDSR, for instance, can be used to extract all entries
that contain a given band with a certain pattern in it. The pattern
is specified in ONPAT and the band is specified in the ONBANDS
parameter {more than one band may be specified). You need, however,
to know a little about patterns. 1f, for instance, only certain
symbols (aiuptkh&#:) are allowed ip a pronunciation band PR, then it
would be possibly to ferret out all entries whose PR band contained
any other characters hy using these SPECS settings:

ONBANDS
DNPAT

‘PR!
NOTANY{(*aiaptkh&#:*)

Another example: To find all entries that do not contain certain
bands, set ONBANDS to those bands, and set REJECT, ©.G.3

ONBANDS
REJECT

LR]

*df,gl,des"
1

Note that yon cannot select exclusively for bands that fail to
contain a given pattern by setting ONBANDS, ONPAT, and REBJECT, as in

ONBANDS = *3f,gl®*
ONPAT = txe
REJECT = 1

If we label three classes of entries:

4. entries with 4f or gl bands which contain #*

B. entries with 4f or gl bands which contain no *

C. entries with no 4f or gl bands

The above specs would select both B and €. Currently there is no
simple setting of parameters that would select B alone.

Another type of checking that can be done is to search for
misalphabetized entries in a masterfile, say after entries have been
inserted by editing. This is done with the BIRDBATH modale
SEQCHECK, in conjunction with a specially written function called a
handle which describes the alphabetical order. SEQCHECK notes all
pairs of headwords that are nmot in strictly ascending alphabetical
order according to this handlie, but does not put them into the right
order. Mote often than not, this exercise reveals not only items
that are truly oust of order, but also details in the alphabetical

Second ®Bdition, partial draft. Pormatted February 2, 1990

3.7 GUIDE TO CHOOSING CONTROL MODULES AND PARAMETERS 34

order that have not been addressed. These details would not have
been brought out if the file had simply been alphabetized without
the benefit of a checking run. To use SEQCHECK requires some
programming, and an understanding of handle—making in relation to
alphabetical order, in order to construct the handle frenction.
SEQCHECK requires one SPECS parameter, HANDLENAME, giving the name
of the handle function. The function itself is placed in the
USERFNS file.

R final example is checking for "unresolved cross-references™.
When a form is referred to but does not occur as a main headword in
the file, then the referenced form is ®unresolved"—-it is pointing
to nothing, leading the reader on a fruitless chase. The TOAST
control modnle XCHECK locates these unresolved references. To use
XCHECK, the SPECS parameter BANDS must be supplied, naming the
band{s) which contain cross—reference forms. In addition, a user-
written function XREF() must be supplied to extract the forms from
these bands. The XCHECK control modale itself should be examined
for further comments on programming for it.

3.7.3 EXIRACTING A SUBSET OF IHE EILE

One often needs to extract material from the file for special
purposes: entries of ethnobotanical interest, astronomical terms,
loan words, slang words, comparative data, etc. etc. If the
material has been properly structured into bands, the extraction
specifications can usually be stated simply in tecrms of bands.

The simplest case is to retrieve all entries that contain a
specified band. ONBANDS2 can be used, and the band is specified
with the BANDS parameter. More than one band can be listed in the
BANDS parameter, in which case entries containing any of the bands
will be selected. One can further specify that the body of the band
shopld satisfy a given pattermn, given as ONPAT, before the entry
should be selected. For instance, assuming an appropriate band
structure, these two SPECS statements might cause all English
loanwords to be retrieved:

GONBANDS
ONPAT

*LOAN?
L Eng'

Wi

With ONBANDSZ the entire entry and all its subentries are retrieved,
which may be more information than is desired. ONBANDSR, om the
other hand, provides facilities for finer tuning of the what
material is to be retrieved.

ONBANDSR has avilable, in addition to these twOo parameters,
another set of parameters that determines what bands are retrieved.
If no other parameters are specified, then all bands are retrieved
(except for dominating entries and subentries which do not
themselves satisfy the search criteria-—and they are represtened

Second Edition, opartial draft. Formatted February 2, 1990

3.7 GYIDE TO CHOOSING CONTROL MODULES AND PARAMETEES 85

only by their headword bands). If NOBANDS is set to 1, then no

other bands besides the headword band and the ONBANDS bands are

retrieved. If the BANDS parameter is specified, then the bands

given by the BANDS parameter are retrieved in addition. Thus is
would be possible, for instance, to retrieve for ethnobotanical

purposes only those bands of botanical interest.

If the subset conditions can be stated only in terms of bands,
and not their contents, then the BIRDBATH control module BANDFILY
might be appropriate. Although it provides a complicated set of
parameters for specifying what bands are to be retrieved, the
simplest parameter to use, BANDS, can be useful alone. Simply set
BANDS egqual to the bands to be retrieved. The program will retrieve
all headwords, plus any occurrences of the specified bands in every
entry.

The ocuatput from all these programs are normally in 1l-format. If
it 1s necessary to run further programs on the output, as when a
finderlist is to be generated from the ethnobotanical subfile, then
the output must be in p-format. This is ensured by setting PFORMAT
= 1-

d-1.% ALPHABEIIZING THE MASTERFILE

Note that none of the operations described above do any re-
ordering of material in the masterfile. The masterfile is normally
maintained in alphabetical order by headword, so that a listgen of
it will be in alphabetical order, and entries can be easily found
(or determined to be absent) for editing purposes in the file or in
the printout. However, it may get out of alphabetical order for any
of a number of reasons: entries may have been inserted in the wrong
place, a batch of new entries may have been entered at the end of
the file, the forms of certain headwords may have been edited and
changed, or it may have been decided to change the rules of
alphabetical order. Also, two or more files from different sources
may need to be combined into a single alphabetized sequence.

hlphabetizing a masterfile is done with the TOAST control module
HANDSORT. The "HAND* part of this name reflects the fact that a
"handle® function needs to be written to describe the alphabetical
ordecr, and the user provides this in the USERPNS file. Since the
sorted file will normally bhecome the new masterfile, it shouid
normally be in p~format, so that it can be further processed (1-
format is primarily for human coansumption and caanrot be further
processed}. To cause the oatput to be in p-format, set PFORMAT = 1
1n the phase-2 SPECS file of the HANDSORT run. HANDSORT coutput can
be in l-format if 1t is not to he used for farther processing, such
as a HANDSORT on the output of the XCHECK module.

Second Edition, partial draft. Formatted FPebruary 2, 1830

3.7 GUIDE TO CHOOSING CONTROL MODULES AND PARAMETERS 8%

3.7.5 MAKING CLASSIFIED LISIS

Entries can be classified according to the information in a given
band, such as a part—-of-speech band or a semantic field band. A
classification by part—of-speech, for instance, would place into
separate gropups all nouans, all verbs, etc. B semantic field
classification would grounp together all kinship terms, all words for
geographic features, and so forth. A bandsort provides a crude
classified list of this kind. A bandsort of the part—-of-speech
band, for instance, since it is sorted by the body of the band,
groups together all nouns, then all verbs, etc. The headwords
appear at the left. Note that a headword will not appear in the
bandsort 1f the relevant band does not occur in the entry for that
headword. For a bandsort of just certain bands, use the phase~1
SPECS parameter BANDS to specify the bands.

The bandsort format i1s not designed specifically for this
purpose-—it serves many different uses. Tt happens to be useful as
a classified list, but for this porpose the format is not the most
elegant. For one thing, the bodies of the bands appear to be
repetitive and redundant. (For a different kind of bhand, say
definition bands, no two of which are identical, this will not be
the case.) Another limitation is that only the headwords are given,
and there is no way to display more of the entry. By contrast, the
TOAST control module SORTENT gives a classified file of eatries
rather than a list of only headwords. It can also classify by any
arbitrary material in the entry, not 3just the contents of a given
band. However, to use it requires writing two functions to be
inserted via the ™aser functions®™ file. The comments in the control
module itself should be consulted for the requirements for writing
these functions.

3.7.8 MAEKING INDEXES AND QTHER APPARAIYS

The bandsort, again, provides a crude kind of index to the
headwords by the contents of given bands, in that all the
occurrences of a given band are grouped together, sorted by the body
of the band, with the headwords appearing at the left.

The finderlist, generated by the TOAST control module INVERT or
INVERTZ, also provides an index to headwords, but sorted by keywords
pccurring in certain bands, usually the definition band(s).

Keywords are words flagged by the user with (normally) an asterisk.
Although often considered as something approximating a reverse
dictionary (e.g. English-to-target language), it is in fact little
more than an index of keywords in the definitions. It is, however,
a two-level index. The index at the back of this book is an example
of a two—-level index. {In fact there are a few three-level index
entries.) There is an entry something like this for the term
*bands", showing the second level by indentation:

Second Edition, partial draft. Formatted Februwary 2, 1930

3.7 GUIDE TO CHOOSING CONTROL MODULES AND PARAMETERS g7

bands, 23, 26
headword, 24
sequence of, 24, 31
variety of, 13, 37

In an analogous way, a finderlist might have an entry for ®"basket®
that looks something like this:

basket:z: oruikl, sualo
basket used for cooked food:: orekill
fishing basket:: chelais, cheleuocho
small Wwoven basket:: tet

In the finderlist the first-level entries (e.g. "basket™, in this
example) are calied "keywords"®, and the subordinate entries
{("fishing basket™, etc.) "phrases™. These struectures are identified
in the definition bands by the program by means Of special marks and
ordinary punctuation symbols, as explained in Appendix I. The only
SPECS parameter reguired is the BANDS parameter, specifying which
band(s) to look for keywords in. Other parameters inform the
program if you have used different characters from the normal ones
for delimiting keyword and phrase.

The words after the double colon are, of course, headwords in the
dictionary file. In the case of the headword of a subentry,
conceivably it would be difficult for a user to find the subentry,
since it would be attached to some main entry. In a finderlist made
by INVERT2 however, the main entry headword is provided along with
each subentry headword, in the format:

subheadword < mainheadword
Thus, in the example above, if orekill had been a subentry ander
oruikl then the second line of the example would read:

basket used for cooked food:: orekill < oruikl
INVERT2 can index not only to subentries but also to example phrases
and sentences, if these are organized into bands in a certain way.
Please see paragraph r of Appendix I for details.

Second Fdition, partial draft. Formatted February 2, 1590

CHARTER 4. RUNNING THE PRQGRAMS ON A PERSONAL COMPUTER UNDER DOS

Assuming that yon are familiar with the mechanics of wsing the
DOS operating system, you will need to know how to set up and
execute BIRDBATH® and TOAST runs 1o DQOS.

4.1 RUNNING BIRDBATH AND IQAST UNDER DOS

This section shows conventions youn must follow and the various
options you have in setting up a BIRDBATH or TOAST rua on a DOS
machine. It inclandes a few instructions on general DO5S conventions,
but otherwise assames that you are somewhat familiar with DOS and
the running of batch jobs under DOS.

flecall that a BIRDBATH rum uses a BIRDBATH control module, and a
TOAST run uses a TOAST control module. Do not try to use a BIRDBATH
control modale in a TOAST run or vice-versa. The description of
control modnles in Chapter 3 shows which control modules are
BIRDBATH and which are TOAST.

Your copy of LEXWARE for the PC may include one or more batch
files for executing a BIRDBATH or TOAST rum. In addition, users may
themselves construct batch files which better suit their owuwn
convenience, and share them with each other. Although none of thase
batch files are reguired for setting up and running BIRDBATH or
TOAST (you may type a series of DOS commands yourself if you wish),
they do make the task more convenient by demanding less typing.

They are not part of the system of programs {(as described, for
instance, in Chapter 3 or 6) and may be altered by the user with no
effect on the system itself.

When one Of these batch files is called, the commands in the file
assemble and execute the run. Some of the batch files are more
sophisticated than others, and can check for the presence of needed
files and other facilities, but are more complicated to use.

This chapter will describe the nse of two particular batch files
for executing a BIRDBATH run: BIRDBATH.BAT and BIRDBATZ.BAT, and two
batch files for executing a TOAST run: TOAST.BAT and TOASTZ.BAT.

The first of each pair takes § arguments after the name of the

command, Sag.
BIRDBATH LISTGEN ARAWAK.LEX ARAWAK.LST LIST.SPC
while the second normally takes 3 argquments, c.g.
BIRDBAT2 LISTGEN ARAWAK.ILEX ARAWAK.LST
In each case, the first argument 1s the name of the control module,

in this case LISTGEN. The second and third arguments are the input
and output filées, respectively.

Second Edition, partial draft. Formatted Februmary 2, 1990

4.1 PRUNNING BIEDBATH AT UNDER DOS 39

The last argument of the BIRDBATH command is the name of the
SPECS file to be used.

BIRDBATZ does not have this argument. Instead, BIRDBAT2 assumes
a SPECS file having the same name as the control module but with the
extension -SPC. Thus in the above case, the SPECS file LISTGEN.SPC
will be used.

TGAST and TOASTZ behave correspondingly.

211 the commands assume that the programs are in a directory
C:\LEXWARE. This can, of course, be changed by changing all
references to CI\LEXWARE within the batch files. The second command
of each pair, namely BIRDBATZ and TOASTZ2 permit the user to refer to
another directory without changing anything Wwithin the batch files.
Instead, an environment variable LEXPATH is set to the new directory
by using the SET command in D05, €.g.

SET LEXPATH=D:\LEXWARE

or
SET LEXPATH=C:\LEXWARE2

Thus a new version of the programs can be kept in a separate
directory and used withont removing the old version.

a. THE SIMPLEST LISTGEN RON

A4 LISTGEN run illustrates the simplest BIBRDBATH rum. It would be
called exactly as in the examples given already:

BIRDBATH LISTGEN TEST.LEX TEST.LST
or

BIRDBATZ LISTGEN TEST.LEX TEST.L3T

Figure 4.1.1

The name of the control module in this run is LISTGEN, and the
name of the dictionary file being processed is TEST.LEX. The output
is to go into the file TEST.LS5T. Of course, you should use the
names of the files appropriate to your own purposes. No SPECS file
has been specified in either case. If you use BIRDBATH, this will
cause no SPECS file to be used. If you use BIRDBATZ, this will
cause a file LISTGEN.SPC to be used as a SPECS file if it exists in
the current directory; otherwise no SPECS file will be used.

If the ron is successful, the file in Listgen format will bhe
saved in TEST.LST, where it may be examined, and from which it may
be printed using, for instance, the PRINT command in DOS.

Second Edition, partial draft. Formatted Pebruary 2, 19390

$.1 RUNNING BIRDBATH AT UNDER DOS 20

bh. SPECS file

The above run will generate a very bhasic Listgen file. One of
the simplest ways to embelish it is to provide a title to be printed
at the top of each page when this file is printed out. This can be
done by using a SPECS file, and putting in it a statement that
assigns a string to the variable TITLE:

TITLE = *LISTGEN of TEST.LEX®

Note that there must be spaces (at least one space) at the left of
the statement, and on either side of the = sign.

Another Listgen variable that can be assigned in the SPECS file
is NOPAGE. Set NOPAGE equal to some non—null value (any value--
often 1 is used.) to suppress pagination of the output. If the
output file 1is to be perused on the screen only and not to be
printed, this option is useful because it will produce a file that
15 not interrupted by page breaks and titles. The statement would
be as follows:

NOPAGE = 1
Other SPECS parameters relevant to LISTGEN, and to any other

control module that produces l—-format output, are described in
Section 3.4 under LISTGEN.

Co LIMITING THE AMOUNT OF INPUTYT

A particular SPECS parameter that is available for all runs is
called STOPAFTER. This parameter may be set to some positive
integer, as with this SPECS statement:

STOPAFTER = 600

The program will then stop processing the input file after reading
this many paragraphs. It will read to the end of the dictionary
entry. It will not stop in the middle of an entry. The program
actually looks for a pattern, STOPPAT, in the following paragraphs,
and STOPPAT is initialized to match the first band of a main entry
{P0S(0) *.* NOTANY{("."}). STOPPAT may be overridden in the SPECS
file. {(See Section 6.2.2 for further discussiocn of STOPAFPTER and
STOPPAT.) <This parameter is useful for making limited trial runs.

d. SPECTAL CONTROL MODULES

If you are a0t using a control module from the library but are
using one Of your own, it should be placed in the directory in which
the batch file is called, and you should use BIRDBATZ or TOASTIZI. It

Second Edition, partial draft. Formatted Pebruary 2, 139%0

4.1 RUNNING BIRDBATH AT UNDER DOS 51

can be executed exactly as a regular control module, e.g. {if
PEEL.SPT is the special control module),

BIRDBAT2 PEEL X.LEX X.0UT

A SPECS file (in this case PEEL.SPC) will be used. Actualiy,
BIRDBAT2 and TOASTZ will look for the control mocdule first in the
current directory and then in the Lexware directory. However, it
is recommended tc keep the Lexware directory free of special-purpose
control modules and other files. To call special control amodules
with the older batch files BIRDBATH and TOAST, however, the control
modules pust be in the Lexware directory.

To write your own control modale yot would of course have to know
something about how BIRDBATH works and the facilities that it makes
available (see Section 6.3).

e. CONCATENATING FILES FOR INPUT

If the dictionary file is contained in several physical files,
they may be processed as a single file without concatenating them
into a single physical file. Instead, a file containing the names
of the individnal files is constructed in band format, with special
bandnames, and that file is used as input. (See Section 3.3.3, Uses
of bands.) Thus if a "master file", say ARAWAK.MAS, as shown in
Figure 4%.1.2, is used as input, e.g. in the command

BIRDBAT2 LISTGEN ARAWAK.MAS ARAWAK.LST

{ -LIST Arawak file list
| FILE ARA.LEX

| PILE ARB.LEX

| PILE ARC.LEX

i

Pigure #4.%1.2, the file ARAWAK.MAS

then the three files ARA.LEX, ARB.LEX, and ARC.LEX will bhe treated
as a single file and used for the actual input.

f. USER SUPPLIED FUNCTIONS

If you need to supply special—-purpose functions, say a handle-
making function, they may be placed in a file, and the command
BIRDBAT2 or TOASTZ2 must be used- The name of this file must be
given as the fourth argument to the command, e.g9. PAQHAND.SPT
contains user—supplied functions in these commands:

BIRDBAT2 SEQCHECK PAQ.LEX PAQ.CHK PAQHAND.SPT

TOAST2 HANDSORT PAQ.LEX PAQ.SRT PAQHAND.SPT

Second Edition, partial draft. Pormatted February 2, 1990

e s meme ma

4.1 RUNNING BIRDBATH AT UNDER DOS

The old BIRDBATH and TOAST batch files do not provide this
capability.

Second Edition, partial draft. Formatted Februwary 2, 1990

92

CHAPTER 5. IORICS IN DICTIONARY PROCESSING

This chapter contains essays On various gquestions of strategy
that frequently arise in processing dictionaries it which are not
related directly or exclusively to any single program or control
module discussed in the preceding chapter.

2-1 STQORING THE DATA

The usual media for storing data for computer processing are
punched cards, disk, and tape.

3.1.1 PUNCHED CARDS

Although punched cards continue to serve a useful function in
running jobs at some computing centers, €.g. for sabmitting JOB
control cards, they have been superseded as a medium for storing
liarge amounts of data. Computer—-oriented lexicographers have moved
to tapes and disk files for a number of reasons. They are more
flexible in terms of the choice of orthographic symbols available,
and they are less cumbersome. Farthermore, disk files are easier to
edit. Also, the cost 0f cards has risen dramatically in recent
years. Since cards are not generally used as a means of storing
data, they will! not be discussed in any fuorther detail in this
manual.

2.1.2 DISK DAIASEIS

Currently, most data is stored in disk files for computer
manipulation. Compared with cards and tape, disk storage is more
flexaible and convenient for both people and computers. It is alseo
faster for a computer to access.-. It is, however, the most expensive
of the three media. At most computer installations, disk files are
subject to various restrictions om usage. The restrictions
generally have to 20 with the amount of data that can be stored and
the length of time a file can be stored. For instance, each user
may be allotted a quota of disk space for all his/her files. Size
of files may be limited by practical, econcmic, or hardware
considerations. Alsc, files that have not been used for a certain
length of time may be subject to automatic "archiving® {removal to a
cheaper storage medium, namely tape), rendering them not
instantaneonsly retrievable. Restrictions such as these are
desiguned to encourage users to make more economical use of a
relatively expensive resource. At most installations, such
restrictions do not present a deterrent to disk usage.

Some of the restrictions on disk uasage at one installation are
discussed in Appendix IX, Section 9.

Second Edition, partial draft. Formatted February 2, 1990

5.1 STORING THE DATR 54
2-1.2 TARE

Tapes are the cheapest of the three media for storing large
guantities of data, such as those encountered in dictiocnary work,
and are for practical purposes not subject to the restrictions that
affect disk storage. Because the computer operators must mount and
dismount tapes, however, most installations favor disk johs over
tape jobs. They may charge for mounnting tapes, charge more for
reading/writing of tapes, give tape jobs lower priority, Or restrict
the type of tape jobs to, say, the copying of files between tape and
disk. ©Nevertheless, tapes are useful, indeed necessary, for storage
of inactive files, for archival and back-up storage, and for
exchange of data between different installations.

Details of using tape at the University of Hawaii are discussed

in Appendix II, Section 8. Using tape in a BIRDBATH run is
discussed in Section 8.1.

Second Edition, partial draft. Pormatted Fehruary 2, 1390

3
3.2 PRUNCTUATION AND IXPOGRAPHICAL CONSIDERATIONS

2-4-1 INTRODUCTION

If you decide to compile, or are compiling, a dictionary by
means of a computer, you may Or may not wish to pay attention to
details that would ulitimately affect the appearance of the
dictionary as a typeset book.

On one hand, you may merely wish to utilize the computer to
record large amounts of data, then sort, retrieve, and print out
portions of that information in some rough form. In this case, you
may not, in fact, intend to publish your data or dictionary at this
point (or at all). If you are using the computer for data
processing and retrieval purposes only, you may not wish to be
encumbered with all of the details given in this section.

On the other hand, if you intend to have your dictiomary
published, you will want to have the material fully polished and
encoded with the proper typesetting marks for sending to the
printer. Since the dictionary is typeset directly from a companter
medium, you will sooner or later have to pay attention to the minute
details of punctuation, typography and style. Row much atteantion
you devote to these matters, and when, will depend on your own
inclination, schedule, and how you spread your different tasks over
the available time.

Some of your attention will be paid to matters of style, such as
where to use italics, what to capitalize, what to put in
parentheses, etc. These are mainly your own decisions.
Nevertheless, this section includes a small subsection, 5.2.3,
listing the most commonly occurring questions. Once you have
decided on these matters, you will need ways to indicate change of
font, etc., at particular places in yonr material. The bulk of this
section, Section 5.2.2, presents conventions that have been
developed during the processing of a number of dictionparies in band
organization. These conventions will make it possible, or in some
cases merely easier, for the oser to indicate typographical
functions.

When we speak of conventions, we mean either rules to follow, or
processes that the computer (or, more properly, the system of

programs) performs on yoar data. Sometimes the word "conventions®
is used in both senses, as the senses are closely interrelated.

3-2-.2 MECHANICAL CONSIDERATIONS

1. Punctuation

Unless otherwise indicated below, use punctuation marks as you
would normally. One optional, non-ordinary convention that you may

Second Edition, partial draft. Formatted February 2, 1990

5.2 PUNCTUATION & TYPOGRAPHICAL CONSIDERATIONS 96

wish to adopt is the following: you may consistently omit final
punctuation in all occurrences of a given band. In the final copy,
you can specify that the program is to append that particular
punctuation to each occurrence of the band. This specification can
be made on a band—-by-band basis. Any regular, predictable,
punctuation may be omitted from a band and inserted by a later
programs.

Another task you may wish to relegate to a program coRcerns
placing round or square brackets around all the material in a
specified band, relieving you of typing in this redundant material.

2. Capitalization

Normal capitalization practice can be followed, with a few
exceptions. Headwords should not be capitalized unless they are
proper names. Capitalizing all headwords indiscriminately "loses™
this information. The beginning of definitions should not be
capitalized unless the first word is a proper name. If desired, the
first letter can be capitalized by a program latecr.

3. Typeface

You may specify what typeface you want material to be set in for
publication by prefixing the material with the appropriate face-
shift codes. The shift rTemains in effect until the end of the bhand
or until it is countermanded by another intervening face-shift. Por
cach band, a default type face may he specified, which will be the
type face for that band when no instructions to the contrary are
given. This default face will also apply if the band does not start
with an explicit shift code. For most bands, this convention saves
the trouble of putting in any shift code at all.

Five symbols are normally reserved for signalling changes in
typeface in the eventual computer typesetting, though yon may choose
other symbols if you need these for representing other things. They
are: the percent sign, %, the vertical bar, |, the dollar sign, §,
the ampersand, £, and the *'at® sign, 3. Their specific functions
are described below.

These five symbols will not appear in the final copy. During the
process of typesetting, the symbols will be deleted and the spaces
they occupy closed up. Be aware Of possible conseguences of this
when yow are inserting these symbols. For example, if a word is to
have a subscript on it, do not leave a space hetween the word and
the dollar sign, $, that introduces the subscript: word$2 .

The symbols listed below are the normal shift codes:

Second Edition, partial draft. PFormatted February 2, 1990

5.2 PUNCTUATION £ TYPOGRAPHICAL CONSIDERATIONS 37

Symbol Shift Function
% shift to italics
| shift to roman (mediuam) face
$ shift to subscript (or superscript)

(appiies to next character only)
& shift to boldface
3 shift to small caps

An alternative use of the a-sign (or any other symbol) is as an
‘escape' character which can be ased to create, with a specified
following character, any other shift the user may desire and that
the printing-house can provide. Using a double shift symbol is alsao
a Way of defining the shift codes when the normal code symbols are
needed for orthographic purposes. For example, if & is needed as a
text character, one might use 28 as the boldface shift.

2.2.3 SIYLISTIC CONSIDERATIONS

The preceding has been a description of mechanical conventions
for indicating typographical functions which you may need but which
cannot he directly represented on most common computer—processable
media. This section suggests, among other things, some 0f the ways
in which you may wish to use these typographical functions in a
dictionary, i.e., when to use what face, where to leave spaces, 2tc.
The computer is, of course, indifferent to whether vou follow these
snggestions. The conventions only have to do with the typographical
appearance of your dictionary. You shonld also consalt published
dictionaries, other dictionaries now being processed in the compater
and their aunthors, your publisher, lexicographical manuals (e.g.,
Zgusta 137171), and general style manuwals {e.g., Univ. of Chicago
1349) before deciding on your own style. (See Section 5.2.%,
References Cited.)

1. Subscripts on headwords.

If you have homophones {different words spelled in the same way),
you may wWish to disambiguate them orthographically in citations in
your dictionary by using numerical subscripts {(or superscripts).

One consequence of not disambiguating homophones is that in the
finderlist, the references to words that belong to homophonous scts
will not be specific. A disadvantage to using subscripts is that,
once you label a word with a subscript, you may feel it necessary to
s0 label all other citations of the same word in any cross-
references {(not in ronning text). The references may be in synonym
bands or "see alsoY lists wWwithin the entries. Currently, there is
no mechanical aid to help you in finding all such occurrences of
citations in the dictionary.

Seccond Edition, partial draft. Pormatted Febraary 2, 13990

5.2 PUNCTUATION £ TYPOGRAPHICAL CONSIDERATIONS 38
2. Latin abbreviations

These should not be italicized {(except for "sic") and there
should be no space within the abbreviations. NOte® @agey 1s€ey QeVe

3. Punctuation marks

The typeface of punctuation marks should be the same as that of
the immediately preceding word unless the mark is the closing one of
a pair of marks (parentheses, quotations). 1In this case the closing
mark should agree in face with the opening one of the paire.

In most type fonts, quotation marks (both single and double) come
in two varieties: opening and closing. On computer input and output
(printout) fonts, there is no distinction. As On mOst typewriters,
opening and closing quotes are symmetrical (* or *). When guotation
marks are always used in pairs within a band, the programs that
prepare the tape for the typesetter can easily distinguish intended
opening from closing occurrences. Therefore, programs can be written
to convert them to codes that would cause the appropriate left or
right guotation mark to be typeset. A difficulty occurs when either
quote mark (” or '} is used for other parposes, in which case they
are not paired. This may occur in orthographies where " is used for
rounding, or * for glottal stop or as an apostrophe. A number of
ways can be found around the problem, but they will not be discussed
here. Probably the easiest solution is te request that all
quotation marks be set as symmetrical marks. This solation may
require going to another font for those particular characters.

4. Faces for categories of information

Headwords are usnally set in boldface type. Citations of words
within an entry, such as "™see X, Y, and Z" are alsc normally in
boldface.

Grammatical codes, base forms, etc., may be printed in small
caps.

Occurrences of source-language words in running English text
should be in italics, as should Latin scientific names (such as

Linnaean binomials). Generally, in Engliish definitions, which are
in Roman face, any non—-English words should be in italic type.

2+.2+4% REFERENCES CIIED

University of Chicago Press. 1349. 3 Mapngal Qf style:
containiog typographical and other rules for anthors,
printers, apd publisbets recommended by the Upiversity of
Chicago Press. Chicago: Oniversity of Chicago Press.

Zgusta, Ladislav. 1971. Mapmal of Lexicagraphy. The Hague:
Mouton.

Second Bdition, partial draft. Formatted February 2, 1590

5.3 GUIDELINES FOR WRITING CORRECTIONS 39

2.3 GUIDELINES POR HWRITING CQORRECTIONS AND ADDRITIONS QN PRINTQUTS

This section gives a number of guidelines for writing changes
and additions on printouts of dictionaries. If someone besides the
anthor will be entering the corrections into the computer, they need
to be clearly marked on the printout.

1. Use a colored pencil or soft lead pencil.
2. Indicate reordering by means of arrows.

3. Text to be altered should not be obliterated. HMark through
such material with a pencil and write the desired change nearby.

4. Text to be deleted should be circled (not obliterated),
with a delete mark attached. Make clear whether surrosnding blank
spaces are also to be deleted. Spaces occupied by material to be
deleted will be closed up unless the specific instruction is given
that spaces be inserted.

5. Small amounts of text to be inserted may be Wwritten into
the text directly. Use carets or arrows to indicate the precise
peoint of insertion.

6. Larger blocks of text to be inserted may be written into
the right margin or where there is sufficient blank space. Indicate
explicitly by means of arrows where in the text such material is to
be inserted. If necessary, continue on extra sheets, which should
be attached to the page where the insertion is to be made.

7. Periods, commas, and other inconspicuous characters to be
inserted should be emphasized by means of a small arrow, or as
described in (8) below.

8. IYf the average number of changes and insertions to be made
is less than one per page, a prominent mark should be made in the
extreme right margin, level with each change or insertion to be
made.

Second PRdition, partial draft. Formatted February 2, 1930

5.4 SORTING THE DICTIONARY 100
2-% SORIING THE DICIIONARY

You may want to re—order the entries in a dictionary for a
number of reasons. In one or more edits, you may have linserted
entries in the wrong alphabetical position, or you may have added a
batch of new entries at the end of the dicticonary. You may want to
sort together two or more dictionaries of the same language.
Another reason for reordering is that you may have changed the
spelling system and respelled all the headwords so that they are no
longer in alphabetical order. Finally, you may want the order of
entries to conform to a new set of ordering conventions. For any of
these or other reasons you may wish to have the entries re-
alphabetized.

Re—ordering is normally done by using TOAST with the HANDSORT
control module to generate a re—alphabetized new master file. In
using HANDSORT, the crucial information the user has to supply is
what the desired alphabetical order is. If this information is not
given, the program will assume a standard order {roaghly that used
in English dictionaries) imn which hyphens and capitalizations are
ignored. If you wish t0 specify a non-standard order, the
information must be supplied in the form of a small program. This
program is a function written ip SPITBOL and inserted in the main
program as Segment 6, USERFNS. This function should systematically
generate from each headword a new pseudo—headword, called a
"handle", which will be used in the actual sorting cperation.
Handles are thus headwords which are respelled in suach a way that
when they are sorted by the computer's standard alphabetical
("collating™) order, the original headwords fall into the desired
non-standard ordert.

If the handle fanction generates identical handles for two of
the words in the dictionary the program will automatically preserve
the original relative order of the words and print a message citing
those two words. Identical handles could occur either because the
two words are spelled identically to begin with or becamse the
handle function obliterates the distinction between them. The
messages allow you to determine easily which reason is the correct
one in each case. If an underspecified handle is the cause, you may
wish to refine it s0 that on a future sort the desired corder will be
cbtained. Yoo may want to deliberately underspecify the handle just
so that the program will show you the conflicting words. Many
errors can be located in this way- How this can happen will beconme
apparent bhelow.

If the handle fanction is at all complicated, it should be
tested with some hand picked or constructed crucial example words
before the entire dictionary is sorted. This testing can be done by
making a set of entries with only headword bands containing the
chosen examples. If you see anything wrong with the order of the
sorted output, you can adjust the handle functicon and run the test
againe

Second Bditicn, partial draft. Formatted February 2, 1830

5.4 SORTING THE DICTIONARY 101

The HANDSORT control module sorts entries only according to the
first band in each entry, the band normally used for the headword of
the entry.

All subentries and sub—-snbentries, etc., under a given entry
are carried along with their main entry in the sorting with no
change of relative order among them.

An additional feature which will be put into the HANDSORT
control module allows the seguence 0f the input dictionary file to
be checked before sorting. Furthermore, sorting may be suppressed
entirely, s0 that the run is made only for the purpose of sequence
checking the dictionary. With the sequence check feature, the
program will print out any pair of consecutive words in the input
file that are not in increasing alphabetical order, that is, whose
handles are not strictly increasing. Such a check can give an
indication of whether a file needs sorting. It can also provide
help in refining a proposed handle—making function when the input
file is already largely in correct alphabetical order.

To refine a proposed handle, it is most instractive to start with
a deliberately underspecified handle and to choose the direction inm
which to constrain it further by examining the words printed out in
the sequence check messages. If aone begins with a highly constrained
and complicated handle, the effects on the order in the rarer cases
¥i1ll not be evident. A detailed examination of the entire list of
sorted entries to find the rare occurrences would have to be made.
Some effects of a complicated handle may be hard to anticipate, and
may turn out to be unacceptable. With an underspecified handle, on
the other hand, the program can help show in which directions the
handle needs to be constrained with reference to the set of words in
the given dictionary.

Second Edition, partial draft. Formatted February 2, 1930

5.5 GENERATING INDEXES & FINDERLISTS 102
2.2 GEMERAIING INREXES ANR EINDERLISTS

Special conventions have been developed so that an index can be
mechanically generated from specially marked *keywords' in certain
bands {(See Appendix I ®Finderlist Conventions.®) These bands could
be the requiar definition and grammatical bands, for instance. With
appropriate wording and use of ordinary or special punctuation in
these bands, the index generated from the keywords can be useful as
a finderlist in the target language (E¥nglish for our purposes), even
though it would not be a full-fledqged dictionary of English words.
The purpose 0f these conventions is to minimize the work necessary
to compile the finderlist.

Not all of the functions necessary for making a finderlist can
be performed by the computer automatically, however. Sometimes,
even with these coanventions, it would take a very annatural wording
of a definition in the dictionary to produce a natural sounding
entry in the finderlist. For such situations, you may create and
use a special band, which does not appear in the final published
dictionary, in which yon may construct phrases solely for the
purpase of being copied into the finderlist. The "public™ bands
are then unencumbered by the necessity of being readable in two
contexts simultanecusly. These special "extract® bands would be
subject to the same conventions as the public bands. The finderlist
program can extract keywords from any nomber of specified bands.

Finally, if in a few cases even the above method fails to vielad
appropriately phrased finderlist entries, you can resort to editing
of the finderlist.

The finderlist program need not be used to generate only
findeylists. Another common use is to generate a classified index
of terms for semantic domains, such as 'house parts*®, °kinship
terms®, 'gecgraphical terms', etc. What is needed is to do this is
a special band {(call it a semantics band) for each entry, containing
the phrase *'house parts®', etc. marked with the same conventions.

The finderlist program is then told to extract from this band
instead of the definition band.

Ancther kind of index, simpler in form tham a finderlist, can be
obtained from the BANDSORT program. {(S5ee Chapter 2 for a simple
example.} No special marking within baands is necessary. The
program takes all the bands and sorts them by band name and body,
giving a simple index to the headwords based on band name and body.

More specialized indexes can be made by means of specially
written control modules for TCAST.

Second Edition, partial draft. Pormatted Pebruary 2, 1390

CHARTER €. B2 IECHNICAL DESCRIPTION OF IHE SYSTEY

This chapter is an overview and description, for the
programmer, Of the BIRDBATH and TOAST systems of programs. 3Such
information is necessary if you are either maintaining the programs
or first installing the systems on a computer. Some of this
information is necessary if you need to write new control medules or
complicated SPECS statements.

It is assumed in this chapter that you have read Chapters 3 and
4 of this manual and that you are familiar with SNOBOL4 and SPITBOL.

.1 SIRUCTURE QF IHE SYSTEM

BIRDBATH is a collection of program files written in the
SNOBOL4 programming language. A program would normally be run using
one of the fast compilers, sach as SPITBOL, SITBOL, or Macro
SPITBOL. However, running a program under the much slower original
interpretive Macro Implementation of SNOBOLS is by no means
precluded. Compilation is extremely fast, accounting for a
negligible proportion of the cost of any but the shortest rans.
Also, calling of pre—compiled functions is either not possiblie or
awkward and implementation— and environment-dependent. For of these
reasons each run starts by compiling the entire program. Modularity
and flexibility are achieved by organizing the program as a seguence
of source files (called a "sandwich™) in which certain slots can be
filled by interchangeable modules. All operating systems apparently
have convenient ways of concatenating source files at compilation
time. Therefore, the sandwich organization is easily implementable
on all systems that have some SNOBOLY4 compiler. The source program
files can thus be maintained independently of the implementation and
operating environment. Only the method of concatenating the source
files needs to be tailored for each operating system. Farther ways
in which the programs have been shielded from differences in the
compilers will be mentioned at the appropriate places.

The BIRDBATH "“sandwich"™ consists of several ™layers", each
filled by a fixed or variable file of source language (SNOBOL#)
statements. FEach layer consists of one or more "segments"™ each of
which consists of statements and functions oriented to particular
purposes. The largest portion of the program system is devoted to
I/0, as will be seen. Layers are separate physical files, while the
“segments®” are more or less logical divisions.

Second Edition, partial draft. PFormatted February £, 1990

5.1 STRUCTURE OF THE SYSTEM 104

Layer segment
1. INIT 1«1 Initializations
1.2 Functions needed for Macro-SNOBGCLL
implementations
2. SPECS * 1.3 User—supplied parameter-assignment statements

3. CORE 2. General input functions
3. General outpuat functions

4. Band processing fanctions, divided among

various segments

(4. SORTIO 5. Functions for managing I/0 for sorting, for
TOAST)

5. USERFNS * 6. Any special-purpose user-supplied functions

6. CONTROL =* Te The control module

Ignoring Layer 4 for now, Layers 1-6 make up the source language
program file for a BIRDBATH run. Layers 1-5 contain initializations
and functions, while Layer & (Segment 7) contains the executive
control structure that calls on various previously defined
functions. It is the control module of Layer 6 that causes anything
to happen; all the previocus segments only set up parameters, tables,
functions, etc. The layers marked with asterisks (*) are supplied
by the user for a particular ran. The other layers are fixed as far
as the user is concerned. The control module is supplied by the
user either by choosing from among an existing library of modules or
by writing one or having one written.

How these five or six physically separate source files are
actually brought together into one program depends on how this
system is installed on a particular computer system.

A BIRDBATH program consists of Segments 1-7, without Segment 5.
{(Seqment 6 is optional.) It involves no sorting. A TOAST run, on
the other hand, consists of two BIRDBATH programs {(each containing
Segment 5) with a sort in between (Segment 6 is again optional):

TOAST Run: phase 1 BIRDBATH (including SEGMENT 5)
SORT

phase 2 BIEDBATH (includiug SEGMENT 5)

A TOAST run uses the standard sort program on whatever computer
system the programs are being run on. The first phase generates
records to be sorted, the SORT sorts them, the second phase reads
the sorted records and formats them as necessary for output.
Segment 5 of the BIRDBATH program, SORTIO, manages both the output
formating of the sort records before sorting and the reading in and
deformating of the sorted records after sorting. 1In order to
simplify program maintenance, the system was designed so that the
source programs for both phases are physically identical. The
possible exceptions are the user-supplied SPECS and USERFNS5 layers.
The same CORE functions are available in both phases, and the same

Second Fdition, partial draft. Formatted February 2, 1590

6.1 STRUCTURE OF THE SYSTEM 105

SORTIO and the same control module appear in both phases of a given
TOAST run. Of course, a different part of the control module is
actually executed depending on which phase the program finds itself
in. & small function in SCRTIO called DETPHASE() determines which
phase it is in.

Remember that how the three steps of a TOAST run are assembled
and how the intercommunication between adjacent steps is
accomplished are specific to a particular installation.

The next section, 6.2, describes the functions and other
facilities provided in the fixed portions of the BIRDBATH program,
segment by segment. The section after that, 6.3, gives some hints
on how to write new contrel modules.

Second Edition, partial draft. Pormatted Februoary 2, 193890

106

£.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES

Please obtain and refer to a program listing while reading this
section. Comments in the program will generally not be repeated
here. A program listing may be obtained from any BIRDBATH or TOAST
tun. In particular, a *null rua® may be used to get such a listing.
A null run of TOAST will result in a listing that includes Segment
5- A null run is one that uses the control module NULLRUN.

£.4-1 PROGRAM SEGHMENT 1

$.2.1.1 PROGRAM SEGMENT 1.1: INITIALIZATIONS and INTERPACING
Certain SNOBOL4 keywords are first set by the programs:
ESTLIMIT = 1000G000

Allows processing of large files without being aborted by the
statement counter. Note that, under MACRO SPITBOL on the PpP-11
family of computers, there is a limit of 32K on integers.

EFULLSCAN = 1

Allows greater efficiency of pattern matching under SPITBOL.
However, QUICKSCAN mode is faster in MACRO SNOBOL4. It is believed
that no built—-in patterns in these programs depend on FULLSCAN to
operate properly.

EouMp = 2

Produces a complete dump of natural wvariables and tables and arrvays
at termination.

The next statements set np variables for use in the upper and
lower case translation functions. These functions, DESHIFT(X) and
UPSHIFT(X), return respectively the lower—case and upper-case
translation of their argumentS. The unary operators */' and *'#' are
0P5¥Ned by the program to DESHIFT and UPSHIFT respectively, to allow
easy application of these functions.

Next come INPUT and QUTPUT associations, and the lowest level
output functions. Outputing throunghout the system is generally done
only through calls to the first four of the following functions:

WRITE(L) meant for writing ont a single line, with
optionally a prefixed TSO—-style line number
generated by NUMFIELD() (see below).

PRINT(L) writes out a singlie line, with a blank prefixed,

for those printing systems that recognize this as
a carriage—control character for single-space.

Second Fdition, partial draft. PFormatted February 2, 1590

6.2 BUILT-IN PUNCTICNS AND OTHER FACILITIES 107

PRINTPAGE(L) writes out a single line, with a ®*1* prefixed, for
those printing systems that recognize this as a
carriage-control character for skipping a pagea

MSG{SRC,TEXT) Writes out a "source" and a message text to the
MESSAGE file, the BIRDBATH Run Log.

NOMFIELD() This function generates an 8-digit TS0-style line
number. Each time 1t is called it retarns the
next number, with an increment of 10. This is used
only by WRITE(L). It may be suppressed by setting
NONUM = 1 in the SPECS file.

STOP(} {known also as TERMINATE()} in an older versiona.)
The calling of this function by the control module
is the normal way to terminate the program. It
pPrints out termination messages and transfers to
END. Also, when it detects that it is in the first
phase of a TOAST ran, it writes ont the sort control
record. It then also sets &CODE to 1, which in the
JCL procedure set up on the IBM 370 at the UHCC
signals that the following step, the sort, can
proceed. These interfacing details may have to
be changed, ot may not be relevant, for other
installations.

a. Notes on input/output

Because of the variability in the I/0 interface among different
SNOBOLY4 and SPITBOL implementations and the consequent likelihood
that the low-level I/0 operations will have to be adjusted for
different instaliations, an effort has heen made to confine such
operations to a limited number of locations in the program. SEGMENT
1.1 is the main place where output happens. SEGMENT 2 is the only
place where input happens, through the READ{() function. In
addition, in SEGMENT 5 (S0RTIO) is a small function,
WRITESORTCNTL{), which writes the sort control statement to a file
SORTCNTL (in the IBM 360 SORT format).

b. Another note on 1I/0.

The program deals with only one input file and one output file
for data. Another ountput file, MESSAGE, is for the run log. For
sort jobs there is the very short, one-record SORTCNTL file. These
are the only files the built-in facilities use. The user may, of
course, program for additional files.

Second Edition, partial draft. Pormatted Februwary 2, 19%0

6.2 BUILT~IN FUNCTIONS AND OTHER FACILITIES 148

£.2.1.2 PROGRAM SEGMENT 1.2: HANDLE-MAXKING AND TRANSLITERATION
UIILITIES

These are four functions which can be handy ip writing handle-~
making and transliteration functions. They are placed here so that
the user may call them as early in the program as the SPECS file.
These functions are useful for those components of handle—making and
transiiteration which require simple context-free substring—to-
substring mapping. The functions allow the easy construction of
tables of these mappings and then the actual mapping of strings
using these tables. They are used as follows.

The function OPENTABLE{'name®,size) must be called first. It
sets up a mapping table with the given name, and Yopens™ it {(makes
it available) for filling. The fmuction works in conjunction with
the next function, FILLTABLE, g.v. Note that the name of the table
must be given in gquotes in the function call, 2.7
OPENTRBLE(*LUSHMAP*,50) . Note also that the name must not conflict
Wwith any other identifier in the entire program, in particular with
the name of the function that uses these utilities. The second
argument may be left out: it is an estimate of the size of the
table.

When a table is open, mappings, in the form of pairs of argument
and value, can be put into it by calls to the function
FILLTABLE(arg,val). The otherwise unused binary operator # has been
OPSYNed to FILLTABLE so that calls to FILLTABLE may be simply
expressed as

arqg # val

Thus, loading a table consists in a call to OPENTABLE followed by a
series o0f binary # expressions, €ag.

OPENTABLE(*5KT*)
'kt # *01°

*kh # *Q2°
‘gt # 103"
‘gh' # lou'

-
-

The order of input to the table is not relevant, except that should
there be a duplicate argument, the value of the latter overrides.
Valunes, of course, need not be unique. Values must not, however, be
the nurl]l string. In fact, removing an entry from a table means to
replace its value by the null string:

Iy. # LS |

Second Edition, partial draft. Formatted February 2, 19940

6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 109

Also, arguments cannot be the null string. This statement would
iead to a loop, and such a statement is not checked for by the
programs

“e # .x’

Any number of such tables can be set up, but only one table can
be open at a time. When a call to OPENTABLE is made, whatever table
is currently open is closed and the new one opened. A table can he
re—~opened simply by calling OPENTABLE again with the name of that
table (the table is not deleted; it is re-opened so that entries can
be added to it). Calls to # load entries to (or change entries in)
whatever table is open at the time of the call.

After a table is made, 1t can be used in two mapping functions,
HANDLEMAP(s,'name') and TRANSMAP(s,'name'), where "name® must be
the name of a table previouasly established by the above functions.
The name must be in guotes, ¢.g. HANDLEMAP(WORD,*LUSHMAP'). The
first argument is the string to be mapped by the table. The value
of the function is the resalt of the substring-by-substring mapping.
Both functions operate in the same way, the only difference being in
what they 4o with substriangs not found as arguments in the table.

Both functions scan the string to be mapped from left to right,
and at each position fird the longest substring starting at that
point for which there is a non—null argument in the table (whose
name is given as the second argument of the function calll). After
replacing that substring with the corresponding value from the
table, scanning resumes after the end of the replacement. If no
argument can be found for a subtring of any length at a given
position, then the character at that position is either skipped
(ignored) ox taken as its own mapping, depending on which function
is being used. HANDLEMAP skips the character at that position and
continues scanning after that position. TRANSMAP, on the other
hand, retains that character and continues scanning after that
position. This difference is motivated by the common need, in
making handles, for segments to be "ignored", while in
transliterations mappings frequently are sparsely specified and
unmentioned segments are assumed to be anchanged and retained.
However, both functions collect one copy of each different orphan
character encountered while mapping with a given table, and strings
them into a special string whose name is composed of "UNRECSEG.®
concatenated with the name of the table, e.g., UNRECSEG.LUSHMAP .
The contents of this string may be examined by the programmer in the
Dump of Natural Variables.

Second EBdition, partial draft. Pormatted Pebruary 2, 1920

6.2 BUILT-IN FUNCTIONS AND OTHER FPACILITIES 110

£.2-.1.3 DPRQGRAY SEGMENT 1.3: NON-BUILT-IN FUNCTIONS IN QTHEE
SNOBOLY IMPLEMENTATIONS

SPITBOL and related implementations provide a number of useful
functions beyond the ones available in SNOBOL4, and these functions
have been used freely in the programs. To run the programs under an
implementation that does not have these fanctions therefore, the
code for the functions must be provided. This segment provides the
code for the additional functions used in these programs {(and a few
more). Normally, control skips around these function definitions so
that they are not activated. ToO activate them, "cOmment ouvt® or
delete the go—-to s(ENDI1.2) found at the beginning of the segmen t.
Certain additional functions, sach as SETEXIT, which cannot be
defined in the source language, have been avoided altogether.

£-2.1-4 DPROGRAM SEGMENTI 1.4: SRECS

The SPECS segment contains whatever SNCBOLS statements the user
may supply. It becomes an integral part of the program at run time.
The user should therefore observe SNOBOL4 syntax rules. These
statements are generally for overriding default values of program
parameters. What parameters are relevant will depend on the
particular control module being used. Also, Section 3.6 contains a
master list of the parameters relevant to the built-in functions and
to the varioas con trol modules.

6.2.2 PROGRAM SEGMENT 2: GENERAL INPUT FUNCIIONS

Actual reading from the input data file is done only in the
READPG function. The input association, to the variable INFILE,
was done in SEGMENT 1.1 of the program. READPG is the general-
purpose hanging paragraph reading function. This function reads in
a single hanging paragraph of text (concatepating the paragraph's
records, if more than one, into a single string, PG.TEXT) and puts
the ig field, if any, of the first record of the paragraph into
PG.ID. It does not care that the paragraph represents a band of a
dictionaxry entry.

READ() on the other hand, is the band-reading function, and it
does try to interpret the paragraph as a band. It calls READPG() to
do the actual reading, then parses the resulting string PG.TEXT into
the fields of a band and puts them into the four following
variables, which are then available for other functions and the
control module to look at, use, Or alter:

HLEV “headword level", the dots, or no dots (null string),
before the band name or mode numbers.

MODE the mode numbers, or lack of them (null string).

BAND the band name, which is obligatory, being the first noan-

blank string in the paragraph after any dots and

Second Rdition, partial draft. Formatted February 2, 1590

6.2 BUILT-IN FUNCTIONS AND OTHER PACILITIES 111
numbers.

BODY the body of the band, the rest of the paragraph after the
band name.

In addition, READ() puts the PG.ID into the variable ID. The
parsing is done by the global pattern PARAPAT, g.v., which may be
overriden by the user in the SPECS file.

Actually, READ(} does more than update these five registers. By
calling on the fanction STEPREGISTERS(), it also keeps these five
fields of the previons paragraph and those of the following
paragraph in variables whose names are these names followed by P
(for previous) or .N (for next), ©.9., ID.P, HLEV.P, MODE.P, ID.N,
HLEV.N, etc. These registers are also available for inspection by
other functons. Note that if a function, or the control moduale,
alters the value of, say, BODY, then it is that altered value and
not the original one that becomes the BODY.P when a pew paragraph is
read and parsed.

When READ() detects that there is no next paragraph, i.e. end-of-
file has been reached, it sets the globai flag EOFFLAG to 1. When
called again, READ{)} will FRETURN. This flaqg can also be explicitly
tested by a call to the predicate IFENDFILE().

READ() is affected by two global parameters which may be set by
the user in the SPECS file, STOPAFTER and STOPPAT. STOPAFTER is
normally null, and has no effect. However, i1f it is an integer,
READ() will, after reading that many bands, behave as if it has hit
end-of-file. Actually it will not necessarily stop right after that
many bands, but proceed until {(buot not including) the next band that
satisfies the pattern STOPPAT, g.v., which is defaulted to POS{(0)
. NOTANY(®.*), i.e., the next main entry. This pattern may be
overridden by the user in the SPECS file.

The function SKIPPG{(N,PAT) may be used to skip up to the first
paragraph that satisfies the pattern PAT after the Nth paragraph
counting from the beginning of the file.

Among the other global variables that these functions use, these
two may be of more general use: PG.RECCOUNT is a count of the
records read by READPG(), and PG.COUNT is a count of the paragraphs
read by READPG().

Second Edition, partial draft. Formatted February 2, 1390

6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 112
In summary, the functions in this program segment are:

READPG(N,PAT)
SKIPPG{N,PAT)
READ{)
STEPREGISTERS()
IFENDFILE{()

Of these functions only READ() and IFENDFILE() need be used by
the control —module writer, and possibly SKIPPG{N,PAT}. Global
parameters of general interest are:

PARAPAT
STOPPAT
STOPAFTER

£.24.3 PRROGRAM SEGMENT 3: GENERAL QUTRUT FUNCTIONS

The output fanctions are discussed in a discursive rather than a

compartmental manner in order to better show how they fit together.
They are:

SERFPLD{(}
COUNTFLD()

LISTORWRITE{(P,IDFLD)

LISTGEN(P,IDFLD)

WRITRBAND(P)

WRITEP{P,WIDTH)

PRINTP(P, DENT,OFFSET,WIDTH,SKIP,FOOT1,FP00T,HEAD,IDFLD)
BREARP(P,L)

PRINTL(L, INDENT,SKIP,FOOT,HEAD, IDFLD)
CPAD{LINE,N)

These ountput functions have to do with ontput formating. They
are not concerned with actual outputing itself, shich is always done
through calls to the WRITE() or PRINT{() functions in SEGMENT 1 of
the program. There are two kinds of formating. One is merely
breaking up a band considered as a paragraph, according to hanging
paragraph conventions and writing the resulting lines out. This may
be done with an attached serial number field (e.g., for TS0 EDIT
files on the IBM 360) -- this format is called p—format (p for
paragraph})}. The p-format i1s typically used only for storing
dictionaries on disk or tape files for processing or on—line
editing. This format can be read in again by the program, but is
not particularly readable for the human reader.

The other kind of formating is the more complicated LISTGEN
formating {(1~format) used for hard copy primtouts of dictionaries.
The LISTGEN formating not only breaks up paragraphs into lines but
also inserts indents, blank lines, page skips, title and page

Second Rdition, partial draft. Formatted Pebruvary 2, 1990

6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 113

number, entry number, paragraph pumber, etc. FEach paraqraph in this
format still corresponds to a paragraph in the p—format. This
format is meant to be more readable by the human reader, but there
is no provision for the programs to read this format. The LISTGEN
format is only a printing format; material in this format is not
read in again.

BREAKP

The basic process common to both formating modes is the breaking
up of paragraphs into lines of no longer than a given length in the
so-called “hanging paragraph® format. The breaking up is done by
calls to the fanction BREAKP(P,L}), where P is the paragraph to be
broken apd L is the maximum length. When yon need to break up a
paragraphk, call this fuonction with that paragraph as the first
argument and the length as the second. It will return the first
line broken off P. <Call it again with a null first argament to get
the next piece. Continune this until it fails, signifying there is
nothing left of the original P. Note that this function uses an
"own" variable, BREAKPOWN, to keep the remains of the paragraph fronm
one call to the next. BREARRPOWN is a global variable. (In SNOBOLA
there are only global and local variables, nothing ip between.)
Since it is global, you can work on only one paragraph at a time.

WRITEP

A simple example of using the BREAKP function is the
WRITEP(P,WIDTH) function. It is short enough to reproduce here:

WRITEP WRITE(BREAKP(P,WIDTH)) :P(RETURN)
WRITEP1 WRITE(® * BREAKP(,WIDTH — 1)) :S{WRITEP1)F(RETURN)

The first call to BREAKP presents it with the paragraph, P, to be
broken, and the resulting first piece, if any, is passed to the
WRITE function to be written out, possibly with a serial namber
attached. (See WRITE(L) in program SEGMENT 1, in Section 6.2.1%1.1 of
this chapter). In subseqaent calls (in the looap formed by the second
statement) BREAKP is presented with a null first argument, meaning
additional pieces from the same paragraph will be returned. But the
maximum length of these pieces will be one shorter than that of the
first piece, dne tc the decremented value of the second argument.
This is to allow the initial blank (which sigunals continnation lines
in the "hanging paragraph” conventions) to be attached without
overstepping the maximum allowed width {(the WIDTH argument of
WRITEP} of the lines.

WRITEBAKD

WRITEP is called by WRITEBAND(P), the function which writes oput a
band in p~format. The line width which it passes to WRITEP(P,WIDTH)
is the value of the global variable LINESIZE, which has a default
value of 70. This may, of course, be overridden by the user in the
SPECS file. 3Seventy 1s a reasonable maximum width for lines in disk

Second Rdition, pacrtial draft. Pormatted February 2, 19980

6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 114

files that are to be edited at a terminal, most screens being able
to display 80 characters across, some of which may be taken up by a
line number. The band which WRITEBAND writes is its argument, if
the latter is nonp-null. In this case, the argument consists of the
entire band (including band label) as a single string. Howaver, if
the argument is null, the fanction assembles the band from the
current values of the four variables HLEV, MODE, BAND, and BODRY, and
writes it out.

LISTGEN

Another function which calls BREARP(P,WIDTH) is LISTGEN(P,IDFLD),
which is the function that prints out a band with indentations and
other formating, in the so—called l-format. (Note that there is
also a control module called LISTGEN.) 1In contrast to the other
output functions discussed so far, LISTGEN does print formatting.
It is, however, analogous to WRITEBAND in that it takes a band,
which 1s either its P argument or, if that is null, the current band
assembled from the values of HLEV, MODE, BAND, and BODY, and outpats
it. LISTGEN however, is much more complicated, since it has to
recognize entry levels (main vs. sub—-entries, etc.), mode levels,
boundaries between entries and modes, etc. in order to insert
indentations and line skips 1n the output. Because they affect the
maximum line length of the paragraphs, the indentations are passed
down ultimately to BREARKP. By consulting the flag, SUPBANDLABEL,
LISTGEN also determines whether the band label (that is, the HLEV,
MODE, and BAND fields) is to be printed. It also updates the page
heading (but does not print it-—that®s PRINTL's job) whenever a
headword, a ome—-dot, band comes along. LISTGEN's second argament,
IDFLD, is taken as an id field attached to the band. LISTGEN does
not care what it consists of, but the calling program should make it
of consistent length from one call to the next of LISTGEN. The
general idea of LISTGEN is that it does only those decisions that
are oriented to band-formating. LISTGEN calls PRINTP to do further
print-oriented things. See the control module LISTGEN for an
example of how the fanction LISTGEN can be ased.

PRINTP

PRINTP takes a paragraph, its first arqument, and breaks it up
using BREAKP into lines, then prints the lines by calling PRINTL.
It manages, generally, the horizontal positioning of the paragraph.
The full list of arquments is shown here:
PRINTP(P,DENT,OFPFSET,WIDTH, SKIP,PO0T1,FO0T,HEAD,IDFLD). IDFLD is
the 1d field to be printed at the left of the first line of the
paragraph, but not of subsequent lines. What the other arguments
mean is shown in the laycut chart in the program listing.

PRINTL
PRINTL{L,INDENT,SKIP,FOOT,HEAD,IDFLD) prints the IDFLD and line

L, with INDENT spaces separating them, after skipping SKIP blank
lines. The IDFLD is rtight up to the left margin, determined by the

Second Edition, partial draft. Formatted Febrmary 2z, 19%0

6.2 BUILT-IN PUNCTIONS AND OTHER FACILITIES 115

global variable LMARGIN. The main job of this function is to keep
track of the current vertical position on the page, through the
variable LINESLEFT, and to skip a page at the appropriate place.

The function keeps track of the page count and prints it as well as
the current running head {the argument HEAD), right justified, and
title (the global variable TITLE), centered. The lines per page is
the global variable LINESPERPAGE, defaulted to 60, the heading can
be suppressed by setting SUPHEADING to a non-null value. The actual
writing out is, of course, done by calling the outpat functiomns
PRINT and PRINTPAGE of SEGMENT 1.1.

CPAD

The function CPAD(LINE,N) returns its first argument centered,
padded with blanks on both sides to a total length of N. It is used
by PRINTL for printing page titles.

LISTORWRITE

In control modules that produce band-format output, it is
sometimes convenient to not build in the decision to output the
bands in p~format (for storage) or l-format (for listing)}, but to
make this depend on a flag that can be easily set by the user ian the
SPECS file. Such control modules can call LISTORWRITE(P,IDFLD)
instead of WRITEBAND or LISTGEN directly. LISTORWRITE will then
call one or the other of these depending on the flag PFORMAT. This
switch is defaulted to mull, which means that LISTGEN, giving 1-—-
format output, is the default. If the user wants p-format, set
PFORMAT to a non-null value in the SPECS file. (This opticn is not
currently available in all the control modules.)

SERFLD, COUNTFLD

The functions SERFLD{) and COUNTFLD() are not called by any
functions within this SEGMENT, but are used by control modules suach
as LISTGEN (not the function LISTGEN but the control module of the
same name), to generate various numbers to put in the id field in
LISTGENed output. SERFLD{) gets the current serial number field
from the input file if there is any and if the flag SNUM is null.
COUNTFLD() keeps count of the headword bands by looking in HLEV and
returns the current count if the current band is a main headword
band. (The way thesc operate and interface with the rest of the
functions is not very flexible or logical and needs to be re—
designed.)

Second Edition, partial draft. PFormatted February 2z, 1990

6.2 BUILT-IN FUNCTIONS AND OTHER PACILITIES 116

SUMMARY OF RELATIONS AMONG THE OUTPUT FUNCTIONS

functions typically LISTORWRITE
called from
control modules H |
WRITEBAND LISTGEN SFERFLD COUNTFLD
l 1
WRITEP PRINTP

|
|
t !

fanctions that
usually aren't

i
{
i
called from i BREAKP PRINTL
control modules i]
§ | |
i 1 CPAD
| 1
—————— —— i - !
l b
low-level output | | |
functions from WRITE PRINT PRINTPAGE

SEGMENT 1.1

S ——————— ettt |

PR ———————— e e el i

6.2.4% PROGRAM SEGMENT %4: BAND PROCESSING FUNCTIIONS

These functions d0 the actval testing and processing of
dictionary materials. Generally they act on one band at a time,
that is, they assume there is a “carrent™ band, the band which has
been read in by READP() and parsed into the registers HLEV, BAND,
MODE, and BODY. They also have access to the "“previous™ and ™next"
bands in the registers HLEV.P etc. and HLEV.N etc. respectively (see
Section 6.2.2).

The following is a classified list of the functions.

BAND Predicates
IFBANDS{BANDS)
IFLITBANDS{BANDS)
IFBANDOQC()
IPENTRY()
IFPENDENT()
IFMAIN()
IFENDNEST()
IFENDFILE()
IFSUB()
IFNEWNODE()
IFMATCH(PAT)

Second Bdition, partial) draft. Pormatted February 2, 1990

6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 117

KEEP-related fanctions
CLEARKEEPR()

KEEPBAND()
REREAD()
IFENDREEP()
RECONTROL()
REVIEW()
SAVEPOINTER(INCH)
RESETPOINTER()
HEREADREGS()
WRITEREER()

STATE-setting and testing functions
SET(STATENAME,STATEVAL)
ONSET(STATENAME)
IP{STATENAME,STATEVAL)
STATE(STATENAME)

PACKET-related functions
CLEARPACKET()
PACE{(STUFF)
LISTPACKET{ ENT)

Miscellaneons functions
BANDATD(BANDLIST)

SKIP()

£.2-4.1 PROGRAM SEGMENT 4.1: BAND PREDICATES

The first group of functions, in SEGMENT 4.1, are predicates
which test for various ™positions® in an entry. They succeed if the
carrent band is at sovch a position and fail otherwise. Most of
them are extremely simple tests that can be replaced by single calls
to built—in predicates that look at the varicus registers like HLEY
etc. However, in writing a control module, it might be more
mpemonic to use these functions instead. Predicates, and only
predicates, have names beginning with *IF*'. Another convention that
has 50 far been followed is that predicates cause no side effects
and return no valuse. Other functions may cause side effects and
return values but de not fail, so that predicates vs. non—
predicates form two disjoint classes of functions wWith respect to
these properties. {(Currently the READ{) faunction wviolates this
convention in that it can fail. It will be corrected.)

IFENTRY{) checks if the current band is the beginning of an entry
{either main or sub), IFMAIN() checks 1if the current band begins a
main entry, IFSUB() checks if the current band begins a subentry of
any level, IFENDENT{) checks if the corrent band is the last band of
an entry (of whatever level), and IFENDREST{()} checks if the current
band is the last band in a "nest® of entries, i.e€. that the next
band, if any, is a main entry band. TIFENDFILE(} checks if the end

Second Edition, partial draft. Formatted February 2, 13%0

o

6.2 BUILT-IN FUNCTIONS AND OTHEER FACILITIES 118

of the input file has been reached. IFNEWMODE() checks if the mode
of the current band 1s different from that of the previous band.

IFBANDS(BANDS) checks if the current band is one of the bands
given in the argument list BANDS in the form, *as;b,c,4%. It is
indifferent as to apper or lower case, that is, the band pames in
the dictionary can be in upper or lower case and they also can in
this argument list. However, IFLITBANDS{BANDS) is case—sensitive,
that is, it will consider "a® and A" as two different band names.

IFBANDQ() also is a test for bands, but it takes no arguments.
Instead, it uses the global variables BANDS and NOTBANDS {(which are
strings of bandnames), and ALLBANDS and NOBANDS (which are flags).
It succeeds or fails as follows: Ef NOBANDS is set {is non—-null)
when it is first called, it will fail and always thereafter fail, no
matter what the current band is; otherwise if ALLBANDS 1s set when
it is first called, it will suacceed and always thereafter succeed)
otherwise if BANDS is non—-null when it is first called, it will
always use the bandnames carrently in BANDS, succeeding if the
current band is among them and failing otherwises: otherwise 1if
NOTBANDS is non—pull when it is first called, it will always ase the
bandnames currently in NOTBANDS, succeeding if the current band is
in that list apd failing otherwises otherwise, i.-e., if all four
variables are nulil when IPBANDQ{) 1is first called, then it will
succeed and always thereafter succeed. IFBANDQ(), like
IFBANDS{BANDS}), is not sensitive to upper/lower case in bandnames.

IFMATCH(PAT) simply does a pattern match on the cuarrent BODY
using the argument PAT, and succeeds and fails according to the
success or failure of the match.

6.2.%.2 PROGRAM SEGHENT 4.2: KEER-RELATED BUNCTIONS

Since READ() reads in only one band at a time, the amount of a
dictionary that can be examined at any time is limited.
Specifically, it is limited to the current band, the band before the
current band and the band after. A surprising amount of usefnl
things can bhe done under this myopic restriction, especially by
setting and testing flags (SEGMENT 4.3). In fact, most control
modules do not look beyond this range. This is bercause many
decisions about what to do with a band can be made without looking
beyond this neighborhood or only by looking back, not forward, 1in
the entry. Looking back can be accomplished by setting flags when
certain conditions come along, in case this information will be
needed later in the entry. When, later in the entry, these flags
are tested, this constitutes "looking back™, even though the bands
or conditions that caused those flags to be set are ne longer arcgund
to be looked at. When "looking forward®” in an entry is required to
decide what to do with a given band, a control module has to READ()
ahead and hence must have a place tO store the intervening bands.

Second Edition, partial draft. Formatted February 2, 1590

6«2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 119

A storage facility for such occasions is provided in the array
KEEP and associated functions. The function CLEARKEEP() clears it.
The function KEEPBAND() adds the current band to it. The function
WRITERKEEP{) writes out the entire KEEP using the function WRITEBAND.
The function RBVIEBW(), which can be called in the control module,
re-reads the KEEP, band by band, calling the function RECONTROL{),
which has the entry label REVIEMW, for each band. Therefore, there
should be in the control module a statement labeled REVIEW
containing instructions for what to do for each re-read band. The
instructions should end by transferring to RETURN. If it transfers
to PRETURN, the re-reading of KEEP is aborted. The fanctions
REREAD() and IFENDKEEP() support the REVIEW function and need not be
called explicitly from the control module. The pair of functions
SAVEPOINTER{) and RESETPOINTER() saves the current KEEP position
used by KEEPBAND, and resets the current KEEP position to the saved
value, respectively. The control module ONBANDS is an example of
using the KEEP facility. (As this is a rather awkward facility to
use, a better way is being socaght.)

£.2.4.3 PBOGRAM SEGMENT 8.3: STATE-SETTING AND TESTING EUNCIIONS

A "state™ is simply an entry in a special table, STATETABLE, and
can be assigned any vailue. It may be used like an ordinary
variable, except that there are special functions to manipulate
states conveniently. To set state ™A™ to a value "X", call
SET(*A',*X*). If the second argument is null, a vajue of 1 is used.
in this way a state can be used as a flag. To mnset a state, i.e.
to reset it to nmll, call UNSET(*A'). To test if it is non—-null,
call the predicate IF('At). To test if it has the valme *X*', call
IF{*A",*X*). The value to which it is set can be gotten as the
value of the function STATE('A*), which is equivalent to
STATETABLECYAT>,

§-2-%.4 PROGRAM SEGMENT 4.%: PACKET-RELATED PUNCTIONS

PACKET is a special variable which can be manipulated with
certain functions. CLERRPACKET() clears it. PACEK(X) concatenates
its arqument to it. LISTPACKET{) calls LISTGEN on the PACKET.

6.2.48.3 DPROGRAM SEGMENT H.5: MISCELLANEQUS FUNCIIONS

When BANDAID{(BANDLIST) is called, it checks to see if the current
band mame (in the variable BAND) is in the argqument list. If it is
not in the list, the function simply returns. If present, it
transfers control to a user statement with a label consisting of the
band name, in upper case, followed by a single periocd. The user
must, therefore, provide such statements, most likely in the SPECS
file. The statement must eventdally transfer either to RETURN or to
S5KIP. An alternative to transferring to SEIP is to call the
function SKIP{) and then transferring to RETURN.

Second Edition, partial draft. Formatted Februvary 2, 1980

6.2 BUILT-IX FUNCTIONS AND OTHER FACTILITIES 120

6.2.2 PRBOGRAM SEGMENT 35: SQORI I/Q FUNCIIONS

Segment 5 of the program does not occur in a simple BIRDBATH run,
one which does not involve sorting. It is added to the normal
BIRDBATH segments to construct a TOAST phase 1 or phase 2 programa.
It contains functions which write sort records in a standard format
and functions which read the sorted records back in and check for
"control field breaks®. The functions are:

phase—detection function
DETPHASE()

Functions for Phase 1
WRITESORT(REC,H1,H2,H3,H4,45,46,R7,H3,H9,H810,H11,H12,H13,H14)
WRITESORTCNTL()

HANDLE(HANDLE)
HANDLEB(HANDLEB)

Functions for Phase 2
READ()N
STEPFIELDS{)N
IFBREAK{N)
IPENDBRK{N)

The function which writes out sort records is
WRITESORT{(REC,H1,H2,..), where REC is a record to be sorted, and H1,
H2, etc. are "handles", or sort fields to be used, in the order
given, for sorting the record. These handles are considered
separate from the data record, because in almost all cases of
sorting, the desired sort seguence is not directly related ta any
part of the data record but can only be stated in terms of fields
generated from the data record (or from other material) by means of
a non-trivial function. For convenience two simple such functions
are provided in this seqment: HANDLE(X) and HANDLES(X). The actual
number, NHANDLES, of distinct handles, H1, HZ, etc. that wili be
given as arguments whenever WRITESORT is called in the control
module should be specified ipn a statement in the control module,
@.g. NHANDLES = 4. This number is defamited to 18, but should be
overridden for efficiency reasons if im fact a smaller number is
used {as will normally be the case).

The significance of giving WRITESORT a number of separate
handles, rather than stringing them together into one handle (which
is also possible), is that WRITESORT will keep them separate by
inserting a special character, SEP2, between them. Then, when the
sorted file is read in, these fields can be recognized by the READ()
function. Changes in their contents ("control field breaks®") can be
used to trigger output formating or other processes according to
what was the highest level (41, H2, etc.) in the hierarchy of fields
the change occurred in. The detection of the beginning or end of a
group of records with the same handle of a given level is very much
like testing for the beginning or end of an entry when the input
file is a band-format file rather than a sort output file. Here the

Second Edition, partial draft. Formatted February 2, 1390

5.2 DBUILT-IN FUNCTIONS AND OTHER FACILITIES 121

detection 1s done with the functions IFBREAR(N) and IFENDBRK{N),
where N is the level (1 for highest) of the handle beinqg tested.
IFBREAK{N) succeeds if and only if the current record has any level-
N and higher handles that are different from the corresponding ones
of the previous record. IFENDBEK(N) succeeds if and only if the
current record has any handles of level-N and higher that are
different from the corresponding ones of the next record. The
logical seguence in which to test for these conditions without
missing any is IPBREAK with increasing ¥ followed by IFENDBRX with
decreasing N, as in the following schema of a phase 2 control loop:

PHASEZ2 IFENDFILE() STOP()
READB(}
IFBREAK() -oa
TFBREAK(2) .en
IFBREAK(3) .o w
IFENDBRK{(3) ...
IFENDRRK{(2) ...
IFENDBRK{1) ... :{PHASEZ)

N¥ote that the function READ()} is used also in phase 2, but 1t is a
slightly different function from the phase 1 function of the sane
name. The details need not concern the writer of control modules.
The main point to remember is that it leaves the data record in the
variable REC. This should be the same string that was given as the
first argument to WRITESORT, in phase 1, to write out for sorting.
(STEPPIEBLDS() is a function used by the Phase 2 READ(); it need not
concern the user.)

Both phase 1 and phase 2 functions are in this siangle segment,
SEGMENT 5. This is solely for ease of maintenance aad
documentation. The program listing makes a little more sense when
seen as a whole or as two halves of a whole rather than separately.
Which set of functions is to be activated (DEFINEd) is determined
after a call, during initialization of SEGMENT 5, to the function
DETPHASE(). This function takes a peek at the first record of the
input file (and then rewinds it) to see if this should be a phase 1
or 2, and returns this number. During initialization, this number
is assigned to the variable PHASE, which can also later be checked
by the control mcdule to decide which phase's control loop it should
enter.

Second Zdition, partial draft. Formatted Pebruary 2, 1930

6.3 WRITING NEW CONTROL MQDULES

The control modale, SEGMENT 7, in any BIRDBATH cun is the
"executive™, or ¥Ydriver®, that directs things to happen. All the
previous segments merely set up functions, parameters, etc., that
may be used by the control module. These functions perform rather
low-level, general operations and tests, which are closely tied to
the physical representation of the dictionary entries. More
specialized functions can be included at the froant of the control
module needing them or can be incladed in SEGMENT 6, the "User
Fanctions", if they are of somewhat more general applicability.
Even though the set of available low-level functions is the same
from run to run, the runs can be guite different because of the
different control modules.

A typical control module is a loop which calls the READ()
function to read in a band and parse it into its different fields,
diLEv, MODE, BAND, and BODY. Then it might do some tests such as
IFMAIN() or IFBANDS(some band names) or IFENDENT(), and perform some
actions such as PACK{something), or set some flags, Or execute some
pattern match and replacement on the BODY. Then there might be a
call to some ocutput function such as LISTGEN or WRITEBAND. The loop
is controlled by the test IFENDFILE() followed by STOP(), most
conveniently placed right at the beginning of the loop. (There need
not be an explicit transfer to END because there is such a traansfer
within the function STOP{).) However, the control mcdule, being the
very last segment of the program, must end with the standard SNOBOLY4
END statement. A very simple such loop might look like the
following:

LooP IFENDFILE() STOoP()

READ()

IFBANDS(*hw,df*) LISTGEN() : (LOQP)
END

Since the control module operates in the same environment as all the
lower level functions, and since SNOBCLYS also has few controls and
devices for isolating program contexts, there is the danger, in this
kind of program organization, of unknowingly using the same
variables or labels already built in. Such collisions are 1ot as
seriouns with labels as with variables since duplicate labels are
detected and flagged by the compiler and an error message 1is printed
in the compilation listiag.

Unknowing use of built-in BIRDBATH variables is more serioaus,
however, since the system has no way of telling that yom are not
really referring to the same variable. The way to avoid duplicate
variables is to not use ordinary variables when writing coatrol
modules but to use the ™state-setting functions™ (SEGMENT 4.3),
which essentially give access to a separate variable space through
the functions SET, UNSET, STATE, and YF. This variable space is
merely a TABLE, called STATETABLE. It may be accessed with the
usual table reference, e.g., STATETABLE<X>, but calling the

Second Edition, partial draft. Formatted February 2, 1390

6.3 WRITING NEW CONTROL MODULES 123

functions is often simpler and does not reqguire a separate
statement, and can result in a saving of statements and of go-to's.
This variable space is reserved strictly for the user, and is not
used by the system of built-in functions. (The current exception is
the table argument *SKIP*, which is used by the built—~in function
BANDAID(). This will be corrected in the fature.)

There are some built-in variables that the user (the writer of
control modunles) may legitimately need to access, for example, in
order to 4o a pattern match on the BODY of a bamd. A preliminary
list of these is given later in this section. It will be filled out
with a description of what they are. & preliminary list of built-in
labels 1s also given. A complete index of global variables and
functions 1s now available in Section 6.4. It should be used in
conjunction with a program listing.

A TOAST control module contains two parts, a phase—1 and a
phase—2. At the beginning of the module there must be a test of the
global variable PHASE, to see if the module is being executed in
phase—-1 or phase—2 of the TOAST run, with a transfer to the
appropriate portion of the control module. In addition, there
should be, before this transfer, an assignment to the variable
NHANDLES. This should be the number of sort handles the
WRITESORT(REC,H1,H2,...) function will be callied with in phase-1. 1
statement shonid alsc be placed here, for use by phase-1, that
allows the user to supply a handle function having any name, not
necessarily *HBANDLE'. ©Note that *HANDLE® is in quotes; BANDLENAME
is not.

Otherwise, each of the two portions of the control module can
look quite like a BIRDBATH control module. Figure 6.1 shows a
typical schema of a TOAST control module.

NHANDLES = 2
DIFFER(HANDLENAME) OPSYN{*HANDLE®',HANDLENAME)
EQ{PHASE, 1) :F(L0O0P2)
LOOPT IFPENDFILE() STOPR{)}
READ()

WRITESORT(REC,H1,H2) : {LooP1)

LOOP2 IFENDFILE() STOP()
READ{)

WRITEBAND() :(LOOP2)
END

Fol N e ey M SN meuh ey NS s S weld vl e Aeml ki sy e

I e e R T o R N

Pigure 6.1

Second Edition, partial draft. Formatted PFebruary 2, 1990

6.3 HWRITING NEW CONTROL MODULES 124

Note that the READ(} function is called also in phase-2. This is
however a different function from that defined for phase-1. It does
not read bands but rather reads the sort records originally written
out by WRITESORT and since sorted. Of course, it also does not
parse the records into the band fields such as HLEV and MODE but
rather into handle fields. Changes in these handle fields from one
record to the next can be detected by calls to the predicates
IFBREAR(N) and IFENDBRK(N) The first one checks for a control break
of order N. 1A control break of order N occurs whenever the Nth
handle of the current record, or any handle to the left (N-1, HN-2,
etc.), i1s different from the corresponding handle of the previous
record. (This implies-that whenever a control break of order N
occurs, a control break of order N+1 also occurs.) IFENDBRYX(N)
checks if the next record would cause a control break of order N, or
if there is no next reccrd (end of file). Phase 2 loops are driven
by these control breaks rather than by the logical breaks in a
dictionary file. #ore comments may be found in PROGEAM SEGMENT 5,
SORT I/0 FUNCTIONS, and in Section 6.2.5 of the manuwal. Listings of
the existing TOAST control modales should also be studied.

The comments about writing BIRDBATH control modules alsoc apply
here. The two loops of the TOAST control module, however, operate
in entirely different environments since they are separated in time
by the sort step and since the phase-1 programr is terminated before
the sort is performed. The only way the two phases communicate with
each other is throagh the sort file.

The following list contains only BIRDBATH labels and nanmes,
baut no SNOBOL# or SPITBOL built—-in labels and names. Also, this
list gives cnly those labels and names that are 6 characters or
shorter. Section 6.4 gives a complete list of built-in variables
and functions.

Labels

CPAD
IF
IF5UB
PACK
PRINT
PRINT1 through PRINT#
PRINTL
READPG
REREAD
SET
SKIP
SKIPPG
STATE
UNSET
WRITE

Second Edition, partial draft. Pormatted Februpary 2, 1390

BAND,
BINDEX
BODY,
EOF
HANG1
HLEY, HLEV.N,
Ip, ID.N,
IDLEN

INFILE

LC

Lp2

MAXLEN

MODE, MODE.N,
QUTFILE

PG.1ID, PG.ID1,
PRINTER

TITLE

ye

BAND. N,

BODY.N,

BEAND.P

BODY.P

HLEV.P
ID.P

MODE.P

PG.ID2

Second EBdition,

WRITING NEW CONTROL MODULES

Yariables

partial draft.

Formatted February Z,

1390

125

126
£.% INDEX OF VARIABLES AND FUNCIIONS
Below is an index of global variables, functions, and operators

in the built-in segments (SEGMENTS 1 through 5) and in the existing
control modules. This list may not be up-to-date.

$-%.1 VARIABLES AND FUNCTIONS IN BUJLT-IN PROGRAM SEGHENTS

/ (unary operator) SEG. 1.1
(unary operator) SEG. 1.1
(binary operator) SEG. 1.2
ALL-LC SEG. 1.1
ALL~UC 5EG. 1.1
BAND SFG. 2.2
BAND.N SEG. 2.2
BAND.P SEG. 2.2
BANDAID(BANDLIST) SEG. 4.5
BANDKREP SEG. 4.2
BINDEX SEG. &.2
BODY SEG-. 2.2
BODY.N SEG. 2.2
BODY.P 58G. 2.2
BREAKP{(P,L) SEG. 3
BEREAKPOWN SEG. 3
CLEARKEEP() SEG. 8.2
CLEARPACKET() SEG. 4.51
COUNTPLD() SEG. 3
CPAD(LINE,N) SEG. 3
CURRENTHEAD SEG. 3
DESHIFT(X) . SEG. 1.1
DETPHASE() SEG. 5
ENDKEEPFLAG 5%G. #.2
ENTRYINDENT 58G. 3
EOF S5EG. 2.1
FILLTABLE(ARG,VAL) SEG. %.2
HANDFIELD 5FG. 5
HANDFIELD.N SEG. 5
HANDFIELD.P 586. 5
HANDLE(HANDLE) SEG. 5
HANDLEB{(HANDLEB) SEG. 5
HANDLEMAP(S, "name"*) SEG. 1.2
dANDLEPAT 358G. 5
HEADHANG SEG. 3
HLEV SEG. 2.2
HLEV.N SBEG. 2.2
dLEV.P SEG. 2.2
HWCOUNT SEG. 3
ID 58G. 2.2
ID.N SEG. 2.2
ID.P SEG. 2.2
IDLEN SEG. 2.1
IF(STATENAME,STATEVAL) S5EG. 8.3

Second Edition, partial draft. Formatted February 2, 1830

£.4 INDEX QF

IFBANDQ{()
IFBANDS.N{BANDS)
IFBANDS.P{3ANDS)
IFBANDS{BANDS)
IFBREAK(N)
IFENDBRK(N)
IFENDENT()
IFENDFILE()
IPENDKEER()
IFPENDNEST()
IFENTRY()
IFLITYBANDS(BANDS)
IFMAINC)
IFMATCH{PAT)
IFNEWMODE()
IPSUB()

INFILE
KEEPBAND()

Lc

LINESIZE
LINESLEPT
LINESPERPAGE
LISTGEN(P,IDFLD)
LISTORWRITE(P, IDFLD)
LISTPACKET(ENT)
LMARGIN
MAXSORTLEN
MESSAGE

MESSPAGE
MINSORTLEN ~
MODE

MODER.N

MODE.P

MSG(SRC, TEXT,MAXWID)
NHANDLES

NONUM

NUMPIELDC)
OPENTABLE(*name® ,S5IZE)
OUTFILE

OUTNUMX
PACK(STUEF)
PACKET

PAGECOUNT
PARAPAT

PG.BUF1

PG.BUF2

PG.COUNT

PG.ID1

PG.ID2
PG.RECCOUNT

PG. TEXT

PHASE

PREVMODE
PRINT(L)

SEG.
SEGa
SEG.
SEG.
SEG.
SEG.
SEG.
SEG.
SEBG.
S5EG.
5BG.
5FCG.
3E8G.
SEG.
SEG.
SEG.
S5EG.
SEG.
SEG.
SEG.
SEG.
SEG.
SEG.
SES.
53EG.
5EG.
SEG.
SEG.
3EG.
SEG.
S5EG.
SEG.
SEG.
SBEG.
SEG.
SEG.
S5EG.
SEG.
SEG.
S5EG.
SEG.
SEG.
SEG.
SEG.
SEG.
5EG.
S5EG.
SEG.
SEG.
SEG.
SEG.
SEGa
5EG.
SEG.

Second Edition, partial

VARIABLES AND FUNCTIONS 127

L R L R T)
50 NP =

]

(]
VN 5 TRV SR N T S S S N) N Y

B8 O & B8

.
&

o

' . "o
PR S SN

& 5 & x & 8% 8

5BG. 3

LI I |

-
W
td
Q
.
U

SEG.

-
n

ad ed h o ol D B PPN o g P N P g Y
-

B WUURNAMNNBMN WA S d b ad b DN NGAaTWRWWWWWLADFSaEREEFLEREFODREAOUE & EE

.
ok

draft. Formatted Februwary 2, 1990

6.4 IRDEX OF VARIABLES AND FUNCTIONS 128

PRINTL(L, INDENT,SKIP, SEG. 3
FOOT,HEAD,IDFLD)

PRINTP(P,DENT,OFFSET, SEG. 3
“IDTH,SKIP,F00T1,FOOT,

HEAD,IDFLD) :
PRINTPAGE(L) SEG. 1.1
R.INPAT 5BEG. 2.1, SEG. 5
READ() - SEG. 2.2
READPG(N, PAT) SRG. 2.1
REC S5EG. 5
REC.N SEG. 3
REC.P SEG. &
RECONTROL() SEG. .2
RECSEQ SEG. 5
REREAD() SEG. 8.2
RERBADREGS() S5EG. 4.2
RESETPOINTER() SEG. 4.2
REVIEW() 52G. 4.2
RMARGIN SEG. 3
SAVEDKEFPPOINTER SEG. B.2
SAVEPOINTER(INCR) SBG. 4.2
SEP1 SEG. 5
SEP2 58G. 5
SERFLD() SEG. 3
SET(STATENAME,STATEVAL) SEG. 4.3
SKIP SEG. 4.5
SKIP() S5EG. 4.5
SKIPPG(N,PAT) SEG. 2.1
SNUM % SEG. 3
SORTCNTL 58G. 5
SORTCOUNT SEG. S
STATE(STATENAME) 5BG. 4.3
STATETABLE SPRG. 4.3
STEPFIELDS() SEG. S
STEPREGISTERS() S5FG. 2.2
STOP() 5E8G. 1.1
STOPAFTER SEG. 2.2
STOPPAT SEG. 2.2
SUBENTLNDENT S5EG. 3
SUBMODETINDENT 58G. 3
SUPBANDLABEL SEG. 3
SUPHEADING 5EG. 3
TITLE S8G. 3
TRACEHANDLE SEG. 5
TRANSMAP(S, *name") SEG. 1.2
uc 52G. 1.1
UNSET(STATENANME) SBG. 8.3
UPSHIFT(X) SEG. 1.1
WRITE(L) SEG. 1.1
WRITEBAND(P) SBG. 3
WRITEREEP() 5EG. 4.2
WRITEP(P,WIDTH) SEG. 3
WRITESORT(REC,H1,..,HN)} SEG. 5
WRITESORTCNTL() 5EG. 5

Second Edition, ©partial draft. PFormatted Pebruary 2, 1999

5.4

INDEX OF VARIABLES AND FUNCTIONS

§.4.2 VARIAELES AND FUNCIIONS IN CONTROL MODULES

BANDARRAY
BANDLIST
BANDNAME
BANDTABLE
BEF

DEF

DEFPAT
ENDEF
ENKEY
EXTRACT()
FORCENKEY
HOOK
HOOKPAT

Y

HWBAND
HWCOUNT
HWFIELD
KBEEPANGLE
KEEPSTAR
KEY
KEYMARK

K1

K2
MAXSORTLEN
MINSORTLEN
N

NDEFS
NEXTHWBAND
NHANDLES

OFFSET

QPTP

PARA

REST
SEPARATION
STOPDEF
SUPBANDLABEL
XENKEY

Second Edition,

BANDINV
REBANDLE
REBANDLTE

BANDINV, REBANDLE

INVERT
IRVERT
INVERT

INVERT

INVERT
INVERT
INVERT
INVERT
INVERT
INVERT
HANDSORT
HANDSORT
BANDSORT
INVERT
INVERT
INVERT
INVERT
INVERT
INVERT
INVERT
INVERT
BANDINY,
INVERT
HANDSORT

BANDSORT, HANDSORT,
REEBANDLE

INVERT,
BANDSORT
INVERT
HANDSORT
INVERT
BANDSORT
INVERT
INVERT
INVERT

REBANDLE

partial draft.

Formatted February 2,

1990

130
£.3 INSTALLATION NOIES

For transportation to other installations, the programs are put
on an IB¥ (EBCDIC-coded} 9-track unlabeled tape, 1600bpi unless
otherwise noted. There are some 22 program files, depending on how
many control modules have been included. The files are mostly guite
short, on the order of 100 records; a fow have just a handful of
records; one or two have several hundred. They are all fixed-length
d0-character card—image records with no sequence numbers. Blocksize
is 5000 unless otherwise noted. They cousist of source-language
(SNOBOLY and Spitbel) programs, as described below.

In addition, there may also be a long text file on the tape
consisting of this manual, formatted by the SCRIPT text formatter,
complete with carriage—-contrel codes and ready for listing on a line
printer. Format is variable—-length records, blocked:
RECFM=VB,LRECL=137,BLESIZR=4000. There are some 230 blocks.

Please read Section 6.1 of this manual before trying to
utnderstand the following. Files 2, 3, and B correspond to program
"layers™ 1, 3, and & as described in Section 6.1. At the University
of Hawaii (UH), they are stored in files called BIRDBATH.INIT.DATA,
BIRDBATH.BUILTIN.NEW.DATA, and TOAST.SORTIQ.DATA, respectively, as
shown in the cataloqued procedures (files 21, 22).

File 1 1s a very short file consisting mostly of —-COPY control
cards, which in Spitbol cause the other source files to be copied
in. TIt, alonqg with the Job Contropl Language statements (JCL), is
the means, on the IBM 370 installation, by which the different
"layers® of the program sandwich are assembled for each run. At UH
it is stored in a file called BIRDBEATH.ROOT.DATA. This file does
not contain any program, and may be dispensed with if some other
means 0f assembling the program layers is uased.

Files 5 through 13, nnless otherwise noted, contain control
modules for BIRDBATH, as listed below. At UH they are stored in
members of a partitioned dataset, as BIRDBATH.CONTROL.DATA{BANDAID),
BIRDBATH.CONTROL.DATA{BANDFILT), etc.

Files 14 through 20, aunless otherwise noted, contain control
modales for TOAST, as listed below. At UH they are stored in
members of another partitioned dataset, as
TOAST.CONTROL.DATA(BANDSORT), TOAST.CONTROL.DATA(HANDSORT), etc.

Files 21 and 22, unless otherwise noted, are copies of the two
catalogned procedures, BIRDBATH and TOAST, as installed on the
I84/3081 {running MVY3) at UH. They may provide some guidance in
installing these programs on a simllar computing system.

Installing the programs means not only copying the program files
from tape onto a particunlar computing system but aiso setting up
procedures so that BIRDBATH and TOAST runs could be launched by the
user with a minimum of irrelevant ritual. For the simplest runs the

Second Edition, partial draft. Formatted PFebruary 2, 1590

6.5 INSTALLATION NOTES 131

user should have to specify, apart from accounting information,
little more than the control module, the SPECS file or the SPECS
statements themselves, the input file, and the output file if any.
The basic reguirements for assembling the program components for a
BIRDBATH or a TOAST run are set out in Section 6.1. A different
operating system wounld reguire different methods of assembling a run
than those shown in PFiles 21 and 22.

Pile 23, unless ptherwise noted, is the formatted manual, with
control codes, ready for printing on a line printer with upper—and-
lower case print train. It is formatted for 8 1/2" x 11" paper. On
an IBM system it may be printed with the IBM utility program
IEBPTPCH, using JCL similar to the following:

// EXEC PGM=IEBPTPCH

//SYSPRINT DD SYSOUT=A

//SYSuT1 DD UNXIT=TAPE,VOL=SER=LIN115,DISP=0LD,LABREL=(23,NL),
// DSN=LIN115,DCB=(RECFM=VB,LRECL=137,BLKSIZE=4000,DEN=3)
//SYSUT2 DD S5YS0UT=(i,,260)

//SYSIN DD *

PRINT PREFORM=2A
/7

{(The "260" on the SYSUT2 DD statement is a local forms code, for TN
train and 8 1/2 x 11 unlined paper.)

The following are the files on tape LIN115 at the time this is
written. If a different tape with a slightly different inveatory of
files is supplied, a similar list willl accompany that tape, and any
deviations from the above descriptions will be noted.

file description
number {all except the last file have fixed length (80) records,
blocked 4000)

1 "root® of program, with -COPY statements to assemble
program
2 INI? layer of program (initializations)
32 CORE layer of program (built—in functions etc.)
4 SORTIO layer {(for TOAST runs only)
Control modules for BIRDBATH runs:
5 BANDAID
6 BANDFILT
7 BANDPACK
3 EDLISTB
9 LISTGEN
10 NULLRUN
11 ONBANDS
12 ONBANDSR
13 STATS

Second Bdition, partial draft. Formatted February 2, 1590

14
15
16
17
18
19

20

21
22

23

6.5 INSTALLATION NOTES
Control modules for TOAST runs:

BANDSORT
HANDSORT
INVEET
INVERT2
NULLRUN
REBANDLE
XCHECK

Copies of catalogued procedures:

BIRDBATH
TOAST

LEXWARE Manual ({(variable blocked: lrecl=137,blksize=4000):

Formatted text file.

Second Edition, partial draft. Formatted Februwary 2,

1990

132

6.5 INSTALLATION NOTES 133

£.3.1 INSTALLING ON AN IBM MAINFRAME RUNNING OS

These notes assume that the 360 or 370 Spitbol compiler is being
nseda.

Copy the first 4 files on the tape into the following datasets,
with an appropriate account prefix:

BIRDBATH.ROOT.DATA,
BIRDBATH.INIT.DATA,
BYRDBATH.BUILTIN.NEW.DATA,
TOAST.SORTIO.DATA

Copy the BIRDBATH control modules (files 5-13 in above list, or
corresponding files if the tape you received is different) into
members of a partitioned dataset, BIRDBATH.CONTROL.DATA.

Copy the TOAST control modules (files 14-20, mutatis mutandis),
into members of a partitioned dataset, TOAST.CONTROL.DATA.

Copy the two catalogued procedures from the tape into datasets
for editing. In these procedures change the account prefix
T119920 on all the dataset references to the account prefix where
you are storing the above program segments. Check disk volume
references and disk BLKSIZE parameters and adjust for compatibility
with your installation. Adjust method of referencing forms code and
COPIES code in //MPAPER DD and //MDUMP DD statements. Check through
for remaining incompatibilitie, and adjust for your installation.

Test each procedure as an in-stream procedure (you have to add a
// PEND statement) first with "nullruns”:

7/ EXEC BIRDBATH,CONTROL=NULLRUN
and
// EXEC TOAST,CONTROL=NULLRUN
to see if source programs are in place (should result in compilation
listings and "™normal termination" messages). Then test using test

data and one of the recipes from Section 4.2 and one from Section
4.3.

Second Edition, partial draft. Pormatted February 2, 1990

6.3 INSTALLATION NOTES 134

§-5.2 INSTALLING ON A DEC-2060 RUNNING TORS-20

These notes assame that the SITBOL compiler, called by the
command ITBOL, is available.

Ignoring the first file on the tape, copy files 2, 3 and 4 into
corresponding DEC-20 disk files under your account, giving them
names as follows:

2 INIT.SNO
3 CORE.SNO
4 SORTIOC.SNO

Copy the BIRDBATH and TOAST control modules from the subseguent
tape files into corresponding disk files. See the list of the tape
files given near the begining of 6.5. Since SITBOL expects file
names to be no longer than 6 characters, not counting the extension
(this is a DEC-10 and TOP5-10, not a TOPS-20, convention, but SITROL
Was written for the 1), some abbreviating of the control module
names Will be necessary:

BIRDBATH CONTROL MODULES

tape file DEC-20 adisk

number file name
5 BNDAID.SNG
6 BDFILT.SNO
7 BDPACK.SNO
8 EDLSTRB.SNO
9 LSTGEN.SNO
10 NULRUN.SNO
11 ONBNDS. SNO
12 QONBNDR. SNO
13 STATS.SNO

TOAST CONTECL MODULES

14 BDSORT.SNO
15 HDSORT.SNO
16 TNYERT.SNO
17 INVRT2.SNO
13 NULRUN.SRO
19 REBNDL.SNO
20 XCHECK.SND

Check for any character—-set incompatibilities in the source
files. Toward the end of the INIT file, find program SEGMENT 1.3.
It contains some comments about special characters that may need to
be changed to conform with the host computer. Refer to the SITAQL
manual, section 1.5.2, Program.

Second Edition, partial draft. Formatted February 2, 1990

6.5 INSTALLATION NOTES 135

Modify the INPUT and OUTPUT associations. Near the beginning of
the INIT file, in program SEGMENT 1: INITIALIZATIONS, locata twWO
statements beginning with INPUT(*INFILE®*,*INFILE®'). Replace them
with these two statements:

INPUT(*INFILE® ,*INFILER:"} OUTPUT{*QUTFILE")
OUTPUT(*MESSAGE®,"*MSG.LST*,* *) OUTPUTZ(*MESSPAGE®,*MS5G.LST",*1")

Adjust certain statements in the SORTIQ.SNO program module:

1. In the DETPHASE function {(this is the first label in the
module, change the REWIND function call to BEWIND{'INFILE:z"), i.e.,
add the colon.

2. In the PHASEVINIT fanction {a couple of labels further
down) increase MAXSORTLEN from 255 to some large number like 100000.

3. After the label WRITESORTY (about 350 lines further down)
replace the long call to the WRITE fanction (that takes up two
lines) with these three statements:

SORTREC = BANDLE LPAD(RECSEQ,6,"0") SEP2 LPAD(S5UB¢,2,°0')
+ SEPT REC1

SO0RTRECSIZE = GT(SIZE{SORTREC}),SORTRECSIZE) SIZE(SQRTREC)

WRITE{SCORTREC)

(Those are zero®s in the guotes.)

4. In the WRITESCRTCNTL function {(some 15 lines further down)
change the OUTPUT association statement and the next statement to:

QUTPUT(*SORTCNTL®,*SRTCTL.TMP*)
SORTCNTL = *SORT/RECORD-SIZE:* SORTRECSIZE */KEY:1,*
+ MINSORTLEN * SORTIN.TMP SORTOU.THMP®

To run a BIRDBATH run, first put into a file called SPECS.SNO any
desired SPECS statements, then construct and submit the following
batch jobs. In this job you need to supply the name(s) of your input
file(s), of the output file, and of the control module.

efine infile: <input data file stream>

itbol

*<output file name>.dat,ttys,ttyz=init,specs,core,<control module>
fi{noerror} oto end

*<circamflex>c

Zerr::

end=2:

rint msqg.lst/file:fortran

%fin::

If <output file namer.dat is to be listed {(not all control
modules generate listable output files), examine it first if
desired, then print it.

Second Edition, partial draft. Formatted February 2, 1930

6.3 INSTALLATION NOTES 136

Explanation:

In the first statement, <inpuat data file stream> should be one or
more data file {(dictionary file) mames, separated by commas if more
than one.

The line after the itbol command gives the SITBOL compiler the
names of output and input files in the format it expects. To the
left of the equals sign are three standard output files: the first
is for the program—-generated outpat, the second is for the
compilation listing, the third is for SITBOL error messages. FHe
here send the last two to TTY:, which for a batch job is
automatically listed (printed on hardcopyl). After the egials sign
is the input file stream to the compiler. The extemnsion .SNO is
assumed by the compiler if no extension is given {(hence all program
modules were named Wwith that extension).

The f{noerror) command operates together with the Ferr:: and
end:: labels to insure that the last command is executed whether or
not SITBOL terminates with an error.

The <circumflex> (or "up-arrow”™) symbol followed by "c" exits
from the compiler.

The last command, rint msg.lstffile:fortran, sends the message
file generated by the BIRDBATH program (the ®BIRDBATH RUN LOG™) to
the printer. The lst:i:fortran causes the listing to respect
carriage—control codes. Being a .ist file, it is deleted after
printing.

To run a TOAST rum, first put into a file called SPECS5.S5NO any
desired SPECS statements, then construct and submit the €following
batch job, in whichk, again, you need to specify the name{s) of your
input file(s), the name of the output file, and the name of the
control module. The blank lines are inserted only for clarity; they
are not part of the job.

Second Rdition, partial draft. Pormatted Pebruary 2, 1990

6.5 INSTALLATION NOTES 137

efine infile: <input data file stream>

ithol
*sortin.tmp,ttys,ttyi=init,specs,core,sortio,<cmodule>
#Lcircumflex>c

ename mnsg.lst msgl.lst
ort

¥*take srtctl.tmp
*<circamflex>c

*delete sortin.tmp
xpunge

efine infile: sortoua.tmp

itbol

*<output file name>.dat,tty:,tty:=init,specs,core,sortio,<cmodule>
fincerror) oto end

*{circumflex>c

%err::

end:s

rint msgl.lst,msg.lstffilezfortran
elete srtctl.tmp,srictl.log,s0rtou.tmp
%Zfins:

After the job has run, examine <ontput file name>.dat and priut
it if appropriate.

Some explanation:

A TOAST run consists of two BIRDBATH rurs with a sort sandwiched
in between, with some passing of files from one step to the next.
The first BIRDBATH program passes the file SORTIN.TMP to the sort.
It alsoc makes the short file SRTCTL.TMP, consisting of the sort
control statement, to be given to the sort by the *take command.
After the sort, the sortin.tmp file is deleted and expunged to free
up some disk space. The SRTCTL.TMP file instructs the sort to use
SORTIN.TMP as the input file and SORTOQU.TMP as the ountpat file. The
latter file is then defined as the input file to the second BIRDBATH
program, which otherwise looks like a regular BIRDBATHE run. Since
both BIRDBATH programs write their Logs to M5G.LS5T, this file is
renamad after the first program so as not to be overwritten by the
second, then both are printed at the end. Finally, some temporary
files are deleted. One of these, SRTICLT.LOG, is made by the sort
program, but a copy of it is also sent by the sort program to TTY:,
so it does not have to be explicitly printed.

These are 0f course not the only possible ways to set up BIBRDBATH
and TOAST runs. There are other ways to associate files,
concatenate them, and pass them f£rom one program to another.

However the ubmit command does not have the capability of passing
parameters into the batch file being submitted. Nor 1is there a
facility corresponding to MIC on the DEC-10, which allows macro
commands with arguments. Therefore each time the batch file is to

Second Fdition, partial draft. Formatted Pebruary 2, 1990

6.5 INSTALLATION NQTES 138
be submitted, while it may not have to be typed in from scratch, it

may still be necessary to first edit into it the names of input
files, control module, and output file.

Second Fdition, partial draft. Pormatted February 2, 19950

6.5 INSTALLATION NOTES 133

£.2-3 INSTALLING ON 2 RDPI1 OR VAX BUNNING UNIX

These notes assume that the Macro Spitbol compiler, called by the
command spitbhol, is available.

Copy tape files 2, 3, 4 into corresponding files in a
subdirectory lex/ as follows:

lex/init
lex/core
lex/sortio

£ W kD

Copy the BIRDBATH control modules into corresponding files in a
subdirectory lexb/:

5 lexb/bandaid

6 lexb/bandfilt

7 lexb/bandpack
etca.

Copy the TOAST control modoles into files in a subdirectory
lext/:

14 lext/bandsort
15 lext/handsort
eﬁc.

1. 1In the first file, lexfinit, find SEGMENT 1.3. There are
some comments about characters that may have been converted during
the copying. If, for instance, the vertical bar described in the
comment shows @p as an exclamation mark next to it, it will have to
be converted back to vertical bar throughoat all the files. The
same for any other strayed character- The "aot™ sign might have
been converted to a circumflex or "up arrow". Change it back to the
"not" sign, or the tilde if the "pot™ sign is not avaiable.

2. XIn lex/init, find the statement beginning with &STLIMIT, and
replace it with :
ESTLIMIT = -1

Also insert two statements:
EMAXLRGTH = 4009
NONUM = 1

Also in that file remove the input and output association
statements, two lines that begin with INPUT('INFILE®',*INFILE®).

Find the statement labeled PRINTPAGE, and replace it with two
statements:
PRINTPAGE EJECT(6)
OUTFILE = L :{RETURN)

S5econd Edition, partial draft. Formatted February 2, 1990

6.3 INSTALLATION NOTES 140

In the last statement of the STOP function a few lines further
down {(just before the END{1.71 label), detach the :(END} and insert
the statement

ENDPILE(S) ENDFILE(T) : (END)

3. 1In the file lex/core, insert these statements at the
beginning?

* 1/0 associations for UNIX:
MESSFILE = IDENT(MESSFILE) *runlog®

IN = IDENT(IN) *tempin?
oUT = IDENT(OUT) *tempout?®
INPUT(*INFILE",5,IN) QUYPUT(*QUTFILE®,6,0UT)

QUTPUT(*MESSAGE*,7,MESSFILE)

This allows the files to be overridden in the SPECS file if
necesary. Note that these defanlt filenames, e.g. runlog, tempin,
may have to be written as full pathnames, e.g. /ab/poto/runlog,
/ab/poto/tempin, etc. The interpreter sometimes finds a simple
snqualified pame as "“inappropriate®.

3. In the file lex/core, in SEGHENT 4, remove the statement
DEFINE{*RECONTROL...*). This function is used only by the control
module ONBANDS. Use ONBANDSR instead of ONBANDS.

5. In the file lex/sortio find the statement REWIND(*INFILE®*)
and change it to REWIND(®*5'), and in the statement labeled
WRITESORTCONTRCL, delete the OUTPUT association, i.e., everything
bat the label.

6. Make two shell scripts, birdbath and toast:

This is birdbath script, for calling BIRDBATH control modales.
To use,
1. edit name({s) of dictionary file{s) into first cat
statement below. E.g., if files are dicta and dictb, the
statement would read:
#cat dicta dictbh > tempin
2~ Select control module to be used and edit its name into
the second cat statement. EBe.g., if using LISTGEN, the
statement would read:
#cat lexf/init specs lex/core lexb/listgen > tempsrc

3}#:

3. Bdit a file called specs, placing in it any SPECS
statements reguired by the run.
4. Execute this script, assuming it is stored in a file

called birdbath, by giving the command

#csh bhirdbath

5. After the run the output should be in the file tempout.

If it is meant for printing out, send it to the line printer with
the command

#lpr tempout

If it is in p-format, and thus destined for editing or for input
to other programs, it should be saved to another file, e.g. with

Second Edition, partial draft. Pormatted February 2, 1990

6.5 INSTALLATION NOTES 141

the command

#mv tempout dictal.

6. This script normally prints ocut the program listing and
run log for diagnostic purposes, and deletes all the temporary
files except tempout.

#

cat <input file(s}> > tempin

cat lex/init specs lex/core lexa/<control module> > tempsrc
spitbol -a < tempsrc > spitmon

cat spitmon runlog | lpr

rm tempin

cm tempsrc

rm ranlog

rm spitmon

end of birdbath script

This is toast script, for calling TOAST control modules. Set

it up like the birdbath script (see comments in that file).

B.g., if running a BANDSORT on dicta and dictb, the first two

commands below would look like this:

#cat dicta dictb > tempin

#cat lex/init specs lex/core lex/sortio lext/bandsort > tempsrc

After editing this script, assuming it is stored in a file *'toast*,
execute it by giving the command

#csh toast

The outputs will be as described in the comments in the birdbath
script.

-

cat <inpput file(s)> > tempin

cat lex/init specs lex/core lex/sortio lext/<control module> > tempsic
spitbol -a <« tempsrc > spitmon

mv runlog runlogl

sort < tempout > tempinp

spitbhol -c -x <« tempsrc >> spitmon

cat spitmon runlogt runlog } lpr

rm tempin

rm tempscc

rm runlog?

rm runlog

rm spitmon

end of toast script

7. To execute a birdbath or toast run, follow the instructions
in the corresponding script.

8. This is only an elementary way to set up the programs for
running. More convenient ways can be devised in which the scripts
would not have to be edited baut would instead have parameters passed
to them when they are called.

Second Bdition, partial draft. Pormatted Februwary 2, 1990

APPENDIX 1. U3ING INVERI FOR MAKING FINDERLISTS

This TOAST control module generates a finderlist from a
dictionary file. It is called INVERT since the resulting finderlist
is in a sense an ipversion of the original dictionary. A second
control module, INVERT2, is an extension of INVERT with additional
facilities described in paragraph r, toward the end of this
appendix. Summaries of these control modules are given in Section
3.5 {Chapter 3, Section 5), paragraphs c and 4.

This appendix gives in detail the conventions you can use in
writing dicticnary entries from which a finderlist is to be
generated by INVERT. It also describes how to tell the control
module what conventions you are using. It assumes familiarity with
the elementary notions of band format dictionaries (see, €.0.,
Chapter 2) and with the general conventions for setting up a TOAST
job (see Sections 3.1, #.1). Section 5.4 Geperating Indexes and
Finderlists, gives an overview of making and using finderlists.

a- Keywords

Basically, INVERT takes selected keywords (words marked with
asterisks) from the definition hands of the dictionary and makes
entries in the finderlist with them. From the three dictionary
entries in Pigure I.1., for example, the program would generate
finderlist entries in Figure I.2.

]
=
4

dipwdipw

at ®xgrasss *wWeeds

]
=3
E o

no

af *grassy *mulch

’
=g
=

kajau

af xomen

S e A ek i S AN Sk el WS e gl
b s e el e ol L PO A i S A

Figure I.1

¥
Jgrassszz: dipwdipw, mo.
|

|{mulch:=z Mo .

| _

lomenz: kajau.

1

| weeds: dipwdipw.
E

Y e el e et amm s o

Fiqgure T.2

Second Edition, partial draft. Pormatted February 2, 1990

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 143

In reading this appendix it will be helpful to distinguish three
classes of information being presented here: 1) how yon should
enter the definition bands in the dictionary: 2) what you need to
tell INVERT through SPECS statements (placed in the SPECS file)
about the conventions you are using, and 3) what the program does.

Thus, the example in Figures I.1 and I.2 illustrates the
following: 1) You have entered definitions in a band labeled df.
You have marked each keyword with an immediately preceding asterisk
and have separated multiple keywords within 2 band with a semicolona
The end of the definition band need not be closed with a semicolon.
Note that not every entry need have a definition band, nor does
every definition band need to have a starred word. 2) To run the
program you need to tell the program in what band(s) to look for the
starred keywords. Por iastance, if the band is df (as in the
example) use the following statement in the SPECS file,

BANDS = *DF*

Note that in the SPECS statement, band names may be given in either
upper or lower case——the case need not agree with that in the
dictionary file. If the program is to look in both DF and SEM
bands, specify both bhands:

BANDS = *DF,SEN*

In this way, you may specify any number of different bands to be
searched for keywords. 3) The program will! extract, or copy, each
starred keyword (excluding the star) from the specified bands,
together with the corresponding headword of the entry or subentry
from the headword band, whatever that band may be named—-the one or
more dots preceding the band name labels the band as a headword
band. It will then make uvp entries for the finderlist, associating
each keyword with the corresponding headword. It will arrange the
keywords in alphabetical order, and print the corresponding
headwords to the right of each keyword, after a double colon. If
there are two or more headwords associated w#with the same keyword, as
for "grass™ in the example, they are collapsed into one keyword
entry, and are given in alphabetical order separated by commas. If
a dictionary entry has more than one occurrence 0Of the specified
band{s) (at whatever mode levels), the program will look im all of
them for starred words. Note that for starred words in a subentry
the program associates them with the headword of the subentry, not
with the headword of the main entry under which the subentry
appears. INVERT2, however, does bring along a reference to the main
headword {(see paragraph r, below).

Second Edition, partial draft. Formatted February 2, 1530

APPENDIX I. USING INVERT FOR MAKING PINDERLISTS 144
b. Phrases

Definitions are rarely single words like "grass™ or "mulch",
but are more often longer phrases. The program will extract an
entire phrase from a definition and place it in the finderlist if
there are one or more starred keywords in the phrase. The phrase
will appear in the finderlist under each of the keywords. From the
dictionary entry in Figure I.3., for example, the program would
generate the finderlist entries in Figure I.4.

«hw pas

P ——
e - —

df to *fit *tight

Figure I.3

N
b
r+

to fit tight:=: pas

tight

M . S o — ——

to fit tight:: pas

TR ———

FPigure I.4

Note that the program deletes the asterisks from the phrases in the
finderlist as well as from the keywords before printing out the
finderlist. Of course, they remain in the dictionarye.

In addition to the entry for "pas" (Pigure I.3) in the
dictionpary, let us add the entries in Figure I.5.

+hw deng
af *tight
~hw Jakon

|
i
|
|
|
|
| af to *fit poorly

b ey —— e a—]

Figure 1.5

The finderlist entries generated from the augmented set of
dictionary entries would appear as in Figure I.6 below:

Second Edition, partial draft. Formatted February 2, 1990

APPENDIX F. USING INVERT FOR MARKING FINDERLISTS 145

]
[
ﬁ

to fit poorly:: 3jakon.
to fit tight:: pas.

tight:: deng

i e e ammm vies rem v S e e v

to fit tight:is pas.

bt gy i iy i v wve — — an W

Figure I.6

Note that the phrases under each keyword in the finderlist are
arranged aiphabetically ("toc fit poorly® coming before "to fit
tight").

<. Termigationg_the phrase

If you want to have two or more separate phrases in the
definition, that is, you want to prevent the entire definition from
being extracted as a single phrase by the program, separate the
phrases with semicolons. Let us suppose we have the dictionary
entry in Figure I.7.

«hw pas

d4f to *fit *tight; ¢0 *cling

o e e v)
N

Pigqure I.7

The finderlist program would generate the entries in Figure I.d below.

to fit tight:: pas.

] L]
fcling {
} |
l to cling:: pas. !
| |
Ifit |
| 1
1 to fit tight:: pas. {
| |
ftight {
i i
i i
LN i

Figure I.8

The program would not generate the entries in Figare I.9 below.

5econd Edition, partial draft. Formatted February 2, 1960

APPENDIX Y. USING INVERT FOR MAKING PINDERLISTS 146

to fit tight} to cling:: pas.

T 3
lciing 1
| |
| to fit tight} to cling3: pas. |
I {
1£it |
1 |
| to fit tight{ to cling2: pas. |
| |
{tight I
H |
i i
i ']

Figure I.9

There need not be a semicolon at the end of the band. The end of
the band is automatically taken as the end of a phrase.

The semicolon (as well as the end of the band) is the normal
signal for terminating phrases. If you want the control module to
recognize some other character{s) as phrase terminator(s), you may
tell it by inserting in the SPECS file a specification statement of
the form:

ENDEF = *)z3°*

This example specification statement tells the program to recoguize
right parenthesis and colon, as well as semicolon, as phrase
terminators. Note that only single characters (such as these three
characters), and not combinations of two or more characters, can be
specified as phrase terminators.

d. Termipating the keyword

We have been talking about keywords as simply "words" that are
preceded by asterisks. We now have to be more precise about how the
end of a keyword is recognized by the program. As far as the
praogram 1s concerned, a keyword is terminated on the right by the
end of the phrase or by one of the following characters, whichever
comes first:

blank, right parenthesis, colon, question mark,
exclamation mack, comma, and right angle bracket.

Note that the pericd is not in this set. To illustrate the effect
of keyword-terminating characters, assume we have the following
definitions:

kind of *fish: ¥ray-fish (*manta);

*when?, *where?

From these, the program would extract the following keywords:

Second Edition, partial draft. Pormatted Pebrmary 2, 1930

APPENDIX I. ©USING INVERT FOR MAKING PINDERLISTS 147
fish
manta
ray-fish
when
where

Note that the guestion marks are not considered part of the keywords
“"when” and "where®.

These keyword-terminating characters, in addition to the end of
the phrase, seem to be what would normally terminate a "word® in the
usual sense of the word. You may, however, tell the program to
recogrnize a different set of characters as keyword terminators by

putting in the SPECS file a specification statement of the following
form:

XENKEY = *, 21¢

In addition to these keyword terminators (whether specified by
the program or by the user), another set of characters, normally
consisting only of the vertical bar, {, is available for forcing the
termination of a keyword hefore the normal end of the word. If, for
instance, the word “gratefully" appears in a definition but you wWish
only "grateful" to be extracted as the keyword, you would enter the
word as

#gratefullly

into the definition. Then the program would extract only *grateful™
as the keyword, and extract "gratefully"™, including the longer
phrase, 1f any, in which it is embedded, as the phrase. A character
which forces the termination of keywords is especially useful for
excluding suffixes.

If you wish the program to recognizZe some other set of characters
for forcing the termination of keywords, you may specify them in a
specification statement of the following form:

FORCENKEBY = *%|]°*

€. Working ¢oOpy vs._publication_copy

At this point it is convenient to introduce some of the overall
motivation for these finderlist extraction conventions. These
conventions have been developed over several years by lexicographers
and programmers as a compromise between sometimes conflicting
requirements. On the one hand, i1t would be desirable to be able to
generate a finderlist mechanically from definiftions in a dictionary
without any special editorial intervention. On the other hand,

Second EBdition, partial draft. Formatted Yebrumary 2, 1390

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 148

since the choice of material from the definitions for compiling the
finderlist cannot be left entirely up to the computer program, some
editorial work on the part of the lexicographers has inevitably had
to be allowed, subject however to the following limitations: 1)
The amount of additional material (special marks, etc.) to be
introduced into the definition beyond what would normally have been
present should be kept to a minimum, and readability of the copy
should be minimally degraded by the added material. 2) ¥No
extensive re-wording of the definition should be required. 3) The
*doctored® text (with the additional special marks, etc.) should be
readily restorable to its "normal"™ form by a prepublication editing
program. &) Finally, it should not be toco expensive for the
finderlist generating program to process these conventions. {(In
practice this last has been the least heeded requirement.)

Thus, for instance, we have taken as much advantage as possible
of the natural punctuation in definitionms in delimiting keywords and
phrases. In some cases the natural punctuation is not sufficent,
such as when the user wishes to terminate a keyword before the
normal end of a word. Ian this particular case, the choice of "|" as
the special symbol to force termination of a keyword is motivated
both by the unobtrusive and mnemonic shape of the character and by
the fact that it need not be "laundered oat®™ at all by the
prepublication editing program, since it is the symbol for shifting
into roman face, the normal face for definitioas. The symbol itself
will be suppressed by the photocomposition processS.

Therefore, it is desirable to keep in mind that the way text
appears in the working printout is not the way it will look in a
publication version and to keep in mind exactly what the differences
are. So far, in addition to the disappearance of the "|", the main
difference is that the asterisks will be sauppressed in the
publication version. We will have occasion t0o mention other
differences as further conventions are introduced.

£+ Usipg_other. symbols to mazk keywords

You may use other symbols to mark keywords if you need the
asterisk for another purpose in definitions bands. You must tell
the control module what symbol you are asiag by including {in the
SPECS file) a statement such as one of the following:

i

KEYMARK A

It

KEYMARK ¥

The latter statement tells the program that keywords are marked by
*** or *. One use of having two different kxeyword markers is to
mark different kinds of keywords, say one kind for an abridged
finderlist, the other set consisting of the additional words that
should appear in a fuoll finderlist. To run the abridged finderlist
one would specify only the first keyword marker3 to run the full
finderlist one would specify both markers.

Second Edition, ©partial draft. Formatted February 2, 13990

L

v

APPENDIYX T. USING INVERT FOR MAKING PINDERLISTS 149

To simplify the prose in the folilowing discussion, however,
we will continue to assume that the following statement is trues

KEYMARE = *%v
g+ Extepdipg a_keyword

You may wish the program to extract certain sequences of two
or more words as single keywords, as "sea uarchin® in the definition

a kind of large sea urchin

If you use the symbol - (hook) (which appears as a tilde on some
keyboards) instead of the space between the two words, e.q.

a kind of large *sea-urchin - v

the two words will be extracted as a single keyword as in Figure
I.710 below.

sea urchin

a kind of large sea archini: ...

M e e et
v e s AW

Figure I.10

The program replaces the hooks by blanks in the finderlist. They
remain untoached in the dictionary itself but they can also he
replaced there by blanks before publication.

If yon wish to ause a different character to "hook™ words
together, override the BOOK parameter, €.ga

HOOK = t=e
Do not override it with the null string, that is, 40 not specify

HOOK =

he Disambiguating keywords

If you want the program to generate separate keyword entries
for two words that are spelled identically, e.g9., "bow" (part of
boat) and "bow" (the verdb), you may attach different subscripts to
the keywords in the definitions, using $ signs, in the same way that
headwords in the dictionary are disambiguated. You should, of
course, oot leave a space between the word and the subscript —-—
either place the # right after the end of the word or use a =
(hook): bow32 or bow-$2. For example, note the entries in Pigure
I.11.

Second Edition, partial draft. Formatted February 2, 1990

APPENDIX Y. USING INVERT FPOR MAKING FINDERLISTS 150

~hw Jimw
df part of #*bow of canoe
«hw ruk

R e el e el

df to *how

Figure I.11

The entries in Figure I.11 would produce a single keyword in the
finderlist as shown in Figure I.12 below.

bow

part of bow of canoe:: jimw

Ty l.

to bow:: ek |

e ita Ve A . e i
I s . - —

Figure I.12

The situation can be very disconcerting when there are many
headwords, answering to the different senses of the one homographous
keyword, interleaved with each other (since the phrases are arranged
by alphabetical order under a keyword) under the one keyword.
Sabscripts on keywords can be used to correct the sitmation, as in
figure I.13 below.

l-hw Jimw
df part of *bow-$1 of canoce

«hw ruk

df to *bow-$2

b cnds Samie gy iy s S e vl

Figure 1.13

These entries would produce two separate keywords in the
finderlist as in Figure I.14 below.

o
o]
%

part of bow of canoe:: Jiaw

[ik WM ik, e W Riah
[~a
o
=

R . LT L

to bow:: ruka.

Figure I.14

Second Edition, partial draft. Formatted February 2, 199%0

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 131

Note that since the sabscripts do not appear in the finderlist,
one member 0f a set of homographs need not be labeled with a
subscript in the dictionary, if the others are. For instance, the
-$2 may equally well have been left out in the above example. The
progranm would still have been able to keep the two "bow™'s separate.

These subscripts canr, again, be antomatically laundered out of
the dictionary before publication.

1. Interpally starced keywgords

If you wish a keyword to begin withiam a typographical word,
you may put the asterisk at the desired starting place within the
word. For instance, if you wish the keyword "grateful®™ to be
extracted from the word "ungrateful”, you would place the asterisk
within the word:

un¥*grateful

If this were the entire definition, the program would generate a
finderlist entry like this:

gratefal

angrateful:i: ...

e
A s g g

Figure I.15
This, incidentally, illustrates the fact that when an asterisk is

laundered out (either in the finderlist or in the dictionary) it is
actrally deleted, not replaced by a blank — otherwise the word in
Figure I.13 would become "un grateful®™. The other side of this
convention is that you should be carefaul to leave a space before an
asterisk when it is preceded by a separate word. Yom should, for
instance, write the following in a definition:

to *hit
and not this:

to*hit

A word may have more than one asterisk if you want more than one
keyword to be extracted it. For instance, from the following word:

*yn¥grateful

the program would generate keyword entries for both "ungratefol" and
*gratefal”.

Second Rdition, partial draft. PFormatted February 2, 1990

APPENDIX T. USING INVERT FOR MAKING FINDERLISTS 152

Finally, the forced keyword termination character(s) (see
paragraph 4) may, of course, be used with internally starred words,
to delimit a keyword that is entirely internal to a typographical
¥ord as in the foilowing example:

un*gratefulily

However, if there is more than one asterisk in a word, the | serves
to terminate only the first keyword. It is ®ased up®"™ by the first
asterisk so that the keyword signalled by the second asterisk will
not terminate at the . Thus *uon*gratefullly causes the keywords
"ungrateful™ and "gratefully™ to be generated. If the second
keyword is to be terminated in the same place, then two termination
characters must be put there. Thus, the definition below would
cause "ungratefal”™ and "grateful® to be genecrated.

*un*gratefollily
J- "Inyisible" Keywords
If, with all these devices, it is still not possible to
isolate the desired keyword in a given phrase because the regquired
sequence of letters does not appear in the phrase, you may place the
desired keyword within angle brackets anywhere within the phrase:

<ktooth> baby teeth

The definition above wounld cause the phrase “baby teeth®™ to appear
under the keyword "tooth":

tooth

P v e

baby teeth:i: ...

R

Figare I.16

Note that angle brackets may contain only keywords, not phrases.
There may be any number of starred keywords within the brackets, and
keyword-termination within the brackets follows the same conventions
as for keywords outside brackets. The difference is that angle
brackets with their contents are normally laundered out of the
phrase in the finderlist. Hence anything more than keywords in
brackets wonld serve no parpose. Brackets can, of course, also be
laundered out of the definition in the dictionary itself before
pubiication.

k. Suppression of laypdering

We have noted that many of the special symbols that you
introdace into the definitions to cause the desired keywords and
phrases to be extracted are automatically "laundered out” {(deleted
or replaced by blanks) in the finderlist by the program. For some

Second Edition, partial draft. Formatted February 2, 19%0

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 153
purposes, you may wish to see the symbols retained in the
finderlist. Following are two specification statements that you can
place in the SPECS file to instruct the control module to preserve
certain symbols: To keep all the asterisks, specify:

KEEPSTAR = 1
To keep all the angle brackets, specify:

KEEPANGLE = 1
l. Capitalization of keywords and phrases

In the finderlist, a capitalized keyword is treated as distinct

from, and is alphabetized after, the corresponding uncapitalized
keyword. Thus, from the two definitions below, the program would
produce separate keyword entries, as shown in Figure I.17:

*star chart

the North *Star

.
{ star

star chartis ...
Star

the North Star:: ...

b i M

Figure I.17

There are pairs of words, such as "China™ and "china®, for which
such a separation may be desirable, but for pairs such as ™Star™ and
"star™, where listing under the single keyword "star™ might be
desired, one would have to resort to the angle bracket convention in
the definition:

<*gtar> the North Star

Phrases, under the same keyword, that differ only by an initial
capital vs. lower—case letter will also be treated separately in the
finderliist entry. Thus, it is recommended that you not begin
definition bands antomatically with a capital letter, otherwise two
occurrences of the same phrase that happen to differ oaly ia that
one occurs at the beginning of the band and the other medially would
be treated as different phrases in the finderlist, e.g.

fish
kind of fish:: ...

¥ind of fish:z: ...

P——-ﬂ_.ﬁq
e o oy waay wana s

Second Edition, partial draft. Pormatted Februwary 2, 1590

APPENDIX I. US3ING INVERT FOR MARING FINDERLISTS 154

If, for publication purposes the definitions in the dictionary
should be capitalized, then the capitalization can easily be
performed by a preprocessing program in preparing a publication
version. 0Of course, normally capitalized words should be entered
capitalized regardless of position in the band.

m. Phrases_and normal punctuation

The INVERT control module, unless instructed otherwise by a
specification statement, recognizes the semicolon as the end of a
phrase to be extracted. As a general rule, the use of this symbol
to terminate phrases to be extracted seems to cause the least
dislocation to the normal panctuation of the definition. We
specifically have avoided using the period as a phrase delimiter
bhecause it is so often used in abbreviations. The user may, as
described in paragraph ¢, specify other characters as phrase
terminators.

In individual definitions, the user may force the termination of
a phrase, for extraction purposes, at a particular punctuation mark
by placing a phrase terminator {the semicolon, unless otherwise
specified) either before or after that mark. Dictionary definitions
containing such a phrase might lock like these:

*how many?; how much?

to ¥*hits, to *beat
The phrases extracted from the definitions above would be

how many?

to hit

to beat
Note that the gquestion mark is part of the first phrase. The comma
is not part of the second phrase. Even thoagh the comma should be
part of the third phrase, because it comes after the semicolon that
terminates the previous phrase it has been laundered out by the
program. A particular set of characters, when occurring at the
beginning of a phrase, as this comma does, are aautomatically deleted
by the finderlist program. The set is given belou:
71

" -
g a-?

You may respecify this set with a specification statement in the
SPEC5 file as shown below:

OPTP = *.21°¢

In preparing the dictionary for publication, compound punctuation

such as ?37 and 3, can be redaced to their normal form by a

Second Edition, partial draft. Formatted February 2, 1990

APPENDIX I. USING INVERT FOR MAKING PINDERLISTS 155

preprocessing program. The two dictionary definitions in the
example above would look like this after such processings:

how many? how much?

to hit, to beat

- Keywords and face shifts

When you mark an italicized word as a keyword you have the
choice of placing the asterisk before or after the italic shift
character, %. If you place it before, as in *{land ho! the keyword
extracted will include the font shift. 1If placed after, as in
%*land ho!, the keyword will not carry the italic shift character in
the finderlist, even though the phrase will, as in the example
below:

land

%land ho

-
- - . -

[e s e
R .

Pigore I.18

g- Deletrion_of anitial_keyword

This feature has not been implemented in the current version
of INVERT.

This feature, called PHRASEDIT, if activated by the user through

a specification statement, would delete in each phrase in the
finderlist a phrase—initial keyword that is immediately followed by
a colon and space. This would be useful if the dictionary contains
many definitions in the style shown in the following examples:

*fish-species: *sergeant—-major

xfish-species: large *skipjack

*fish-species: *yellow-spotted—*trigger—fish

With the PHRASEDIT feature inactive, the program would generate from
the above definitions the following finderlist enptries under fish
¥species®:

Second Edition, partial draft. PFormatted Pebruary 2, 1990

APPENDIX Y. USING INVERT FOR MAKING FINDERLISTS 156

fish species
fish species: large skiplack:z ...

fish species: sergeant MAajors: ...

R R

fish species: yellow—-spotted trigger fish:i:z ...

e s ey vam ey e vy e

Figaure .19

Such redundancy would be suppressed by activating the PHEASEDIT
feature, resulting in the following entry:

fish species
large skipjack:: ...

sergeant major:: ...

b e Wik et e Sl A s
B ook el i A e il P

yellow—-spotted trigger fisht: ...

Figure I.20
The specification statement to activate the feature is as follows:

PHRASEDIT = 1

This feature is not available in the current version of INVERT and
of INVERT?2.

g- Format of the finderlist listing

The finderlist is itself in band-format. It is a dictionary
with two bands, KW (for keyword) and PH {(for phrase). Since it is
in band-format, it can be printed out in l1-format by the LISTGEN
control module. A typical entry ian l-format, complete with band
labels, might iook like this:

51 kW afraid:: loamw, majpwehk, mijik

L]

|

{

I 52 ph afraid {(of physical harm):: kajanjan.
|

} 53 ph afraid of ghosts:z: lehngin.

|

| 54 ph afraid, worried:: per.

i

e i el v i

Figure I.21

Second Edition, partial draft. Formatted February 2, 1990

APPENDIX Y. USING INVERT FOR MAKING FINDERLISTS 157

Each entry has a KW band, and zerc or more PH bands, depending on
how many different phrases contain the given keyword. There are no
modes or subentries. In all the previous examples in this Appendix,
the band labels have been suppressed: this is one of the aoptions
available with l-format printouts, and it is the normal one taken
with 1-format odtput from INVERT, since with only two different
bands, one always indented and the other always at the left margin,
showing their names would be superfluous.

In general, the full range of format options available to 1-
format listings are available for finderlists. HowWwever, since there
are no modes or subentries, the options boil down to those in the
following list. (Of course, if you are not geperating a listiag but
only a p~format file, not even these are relevant.) The default
value is shown with each parameter. 3ince these specification
statements pertain to Phagse 2 of the INVERT control module, they
must be placed in the phase—-2 SPECS file, not in the phase—1 SPECS
file.

LMARGIN = 0 width, in number of spaces, of left margin

NONUM = adds a serial number field. HNote that each
band normally is numbered, as in Figure I.21.

To suppress this field, set the parameter
to 1= NONUM = 1 .

PRINTBANDLABELS = The old name for this parameter was
KEEPBANDLABEL, which still works, but wili be
superseded by PRINTBANDLABELS. The value 1is
normally nnll, causing bandlabels in the
finderlist not to be printed. Set it to a
non—null value, €.g., PRINTBANDLABELS = 1
to cauvse the bandlabels to appear.

RMARGIN = 132 the right margin

LINESPERPAGE = 60 the maximum number of lines
(including blank lines) per page.
For 11—-inch deep paper printed at 8 lines
per inch, use LINESPERPAGE = 30¢ .

HEADHANG = 10 the number of spaces the keyword band
overhangs the following bands in an entry.

Pinally, you may provide a title to be printed at the top of each
page of the finderlist if you are reguesting a listing. This is
provided in a statement:

TITLE = °*SAMPLE FINDERLIST®
The Trussel Peature causes the position of the phrase and
headword to be interchanged, i.e., the headword now appears to the
left of the phrase, and phrases are in order by headword. This
feature is activated by the specification statement:

Second Edition, partial draft. Pormatted February 2, 1990

APPENDIX I. USING INVERT FOR MAKING FINDEHLISTS 158

TRUSSFEL = 1

which must appear in both the phase—1 SPECS file and the phase-2
SPECS file. With this feature turned on, the example in Pig. I.6
would appear as in Fig. I.22:

fit
jakon:: to fit poorly
pas:: to fit tight

tight:: deng

e S S . BN M e i e o

pas:: to fit tight

B s e s mm s el sk e e)

Figure I.22

g. Alphabetical ordering of keywords

Keywords are normally alphabetized with the usual English
alphabetization conventions, which ignore the distinction between
upper and lower case, and ignore spaces, hyphens, and other anon-
alphabetic symbols. The program does this by using a "handle®
function, cailed *HANDLEE® built into the TODAST system, which
generates from each word a new form called a "handle®" by converting
all lower case letters to caps and dropping all mon—alphabetic
symbols. If a different handle 1s desired, a different fanction
must be written and placed in the phase-1 USERFNS file for the job
{see, @.9., rocipe in Section #.3, Pig. #4.3.6.) The user may define
this function as *HANDLES8'. Alternatively, a different name may be
used, say 'ENGHAND', but then a statement alerting the program to
the different name must be placed in the phase—1 SPECS file, of the
form,

HANDLEBNAME = "ENGHAND®

For alphabetizing the source language forms in finderlist
entries, e.g. the three forms loamw, majpwehk, miidik in Fig. I.21, a
different built-in handle function is normally used, called
*AANDLE". This function does the same things as the bailt—in
HANDLEB function. The user may, again, supply, in the phase—1
USERFNS file, a handie function more appropriate for the language,
and call it either "HANDLE" or something else, £.g., "MOKHANDLE®.

If the name is not "HANDLE', then a statement must be placed in the
phase—1 SPECS file to alert the program to the uznexpected name, e.9g.

HANDLENAME = *MOKHANDLE"

Second Edition, partial draft. Formatted February 2, 1990

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 159

L- Subentries and trapnslation bands

When keywords appear in the definitions of subentries, INVERT
brings the headword of the subentry into the finderlist, not the
headword of the dominating main entry. That is, the finderlist does
not show the reader where, i.e., under what main headword, to locate
the subentry. INVERT2, an expanded version of INVERT, does bring
along both the main headword anmd the subheadword. Furthermore,
stars may be placed in "translation” bands for illustration bands.
Details follow.

1. If a definition is in a subentry, not only the headword of the
subentry is copied intc the finderlist entry, but also the main
headword. If the definition is in a sub-sub or lower entry, then
the corresponding sub-sub {etc.) headword is copied, but not the
intermediate level headwords.

2. Bands containing examples or illustrative expressions can be
treated as sub-headwords for purposes of generating a finderlist if
each such band is paired with a translation band with the same mode:

-hu headword, main Or sub-.
df definition of headword
1ex example
1so possible intervenping band{(s)
1tr translation of *example

In the above example, the tr band can be treated as the definition
band corresponding to the "subheadword™ in the ex band. HNote that
these two bands have to be in the same mode, that the ex band has to
precede the tr band, and that there may be intervening bands {(which
must be in the same mode). The example bands must be specified in a
phase-1 SPECS statement assigning a list of their names to XBANDS ,
and the translation bands must be specified with a statement
assigning their names to TBANDS, e.g.

XBANDS
TBANDS

EX, EXP
sTR*

ot

In the dictionary file it is better to use different band names for
a band giving a definition for the headword and a band giving the
translation for an example or expression, although the program will
assume, if they have the same name, that such a band having the same
mode as an XBAND is a translation band rather than a defimition
band.

If the band name of the subheadword band or of the example
band is to be brought along into the finderlist entry, then put

INCLBANDNEME = 1

in the phase~1 SPECS file.

Second EBdition, partial draft. Pormatted February 2, 1990

APPENDIX IIl. CONMPUTIERIZED LEXICQGRAPHY AT UH

COMPUTER~AIDED COMPILATION OF NATURAL-LANGUAGYE DICTIONARIES
AT THE UNIVERSITY OF HAWAII:
A SKETCH
May, 1983

1. Introduction

This is a minor update of a memo of the same title that first
appeared in Janaary, 1975. It is included here in order to give a
little background on the environment in which the programs were
developed.

2. The Dictionaries

Sirnce 1365, dictionaries for some 40 languages of the Pacific
basin have been computer—processed here, and one Or two new ones are
begun each year. At this writing about twenty have been published or
are in press and several are nearing completion. A number of
lexicons that are no more than computerized wordlists are not
included in this count. A list of the dictionaries appears at the
end of this appendix. The first dictionary to have been processed
by computer here Was the HMaranao Dictionary by Howard McKaughan.

About half of the languages concerned are languages of
Micronesia. The rest are languages of the Philippines and of other
areas in the Western Pacific basin, with the exception of several
Amerindian languages of the Pacific Northwest.

The dictionaries are bilingual, with English being the langnage
used in the body of the entries. FEach of the dictionaries is the
first extensive one compiled so far for the particular language.
Each language has had little or no previocus written materials. The
dictionaries are usually intended for a heterogeneons audience
consisting of vernacular speakers learning ¥nglish as a second
language, English-speakers learning the vernacular langwage, and
other linguists.

Those that have been completed or are nearing completion
typically contain five or six thousand entries, with some having as
many as ten to twelve thousand. Rach entry typically includes,
besides English definitions, such information as the part-of-speech
and other grammatical information, derivational privileges, loan
source where appropriate, dialect and other variant forms,
scientific identification of flora and fauma, and example sentences
with translations. Some of the dictionaries further include synonyms
and antonyms, morphological analysis of the words where appropriate,
idioms, derived and inflected forms where these are not readily
predictable, reconstructions in proto—-languages, phonemic
transcription if the headword is given in some non-phonemic
orthography, etc.

Second Edition, partial draft. Formatted February 2, 1990

APPENDIX IYYI. COMPUTERIZED LEXICOGRAPHY AT UH 161

Typically each dictionary has been developed by one linguist, who
often has also prodsced {or is concurrently producing) a grammar Of
the langnage in c¢ollaboration with one or more vernacular speakers.
In the case of the Micronesian languages, work on standardization of
the orthographies has also been concurrently undertaken. Data for
each dictionary has been gathered both in the field and from
informants brought to Hawaii. In several cases the linguists
themselves have been based at other universities, at least for part
of the duration of their projects. So far all the data entry and
computer processing has been done here. The bhulk of project and
computer fanding has come from extramural grants from varioos
agencies. HWe have also received a substantial amount of in-house
support, especially for computer time for systems development and
for dicticomary projects not yet externally funded.

Some of the aathors had been compiling their dictionaries for
years (in some cases up to twenty years) before turning to the
compater for further expansion and refinement. Others started to
use the computer from the beginning of compilation.

3. Practical Operation

After an initial batch of entries {which may be anything from a
bare wordlist with minimal definitions to several shoeboxfuls of
slips gathered over many years) has been keypunched or entered into
the computer and printed out, the typical sequence of events in
further processing has been as follows. The linguist would work over
his printout with an informant, checking and expanding the
information in entries and adding new entries. He would write
corrections and additions directly on the printout, which wWould
later be used to revise the computer file. (In the early days, the
linguist revised throuogh keypunched edit instructions.) A new
printont of the revised file wonld then be produeced-. This is the
basic cycle, to which other operations, such as producing other
printouts and running programmed revisions to the file, are
fregquently adjecined. 3ome of these other types of operations are
described below. During each cycle the linguist may choose to
concentrate on a limited namber of tasks, such as refining the
definitions, eliciting derived forms, adding example sentences,
checking the transcriptions, etc. 1A cycle would last anywhere from
a few weeks to a year or more. Typically a dictionary ready for
publication would have been through more than ten of these cycles,
with the last four or five devoted primarily to matters of accuracy
and consistency rather than to the addition of new material.

4. Advantages of Computer Processing

The demands pat on the compater by the lexicographers here have
been consistently of the data-processing and data—organization
variety. The functions made possible by computerization that are
most fregoently in demand are: 1) editing of the dictionary file and
sorting in of new entries, 2) generating finderlists, and 3)
printing of duplicate copies for sending to workers in the field.

Second Edition, partial draft. Formatted Februnary 2, 1990

APPENDIX ITI. COMPUTERIZED LEXICOGRAPUY AT UH 162

Some of the other functions we frequently perform are the following:
4) retrieval of specified subsets of entries (e.g., botanical
terms), 5) producing phoneme concordances of headwords, 6)
generating derived forms and cross~reference entries, 7) checking
for consistency, 8) sorting by different alphabetization schemes, 9)
systematic conversion of orthography throughout a dictiomary, and
10) automatic insertion of typesetting control symbols for
computerized photocomposition. Most of the dictionaries published or
about to be published have been or will be typeset by computer—
controled photocomposing systems.

In the case of the Northwest Amerindian langnages, we have made a
continuous effort to find devices that would display data using the
phonetic symbols to which linguists working with those languages are
accustomed. When the time-sharing system first became available we
were able to use a Selectric terminal (the IBM 2741) to enter, edit,
and type out the dictionary materials. The terminal was eguipped
with a Selectric type element that had been designed specially for
this family of languages. Due to the heavy reliance on phonetic
symbols and diacritics in the transcription of these languages, we
would not have undertakern computer processing of these dictionaries
if we had had only the limited fonts of keypunch and standard print
trains. Later we acguired some phonetic symbols for the primt train
on the high—-speed line printer at the computing center for large
volume print-outs. More recently we have acquired microcomputers
(made by Terak) which allow the anser to design characters for
display on the screen, and also a Sanders Media 12/7 dot matrix
printer equipped with special character fonts.

The aspect of computer processing of dictionaries in which there
has been most constant demand is the automatic generation of
finderlists. A finderlist is an index of selected words occurring
in the definitions, each generally accompanied by some portion {(a
phrase) of the definition. A large number of conventions have grown
up in connection with punctuation and other special marks to be used
in the definitions for specifying what words and phrases are to be
copied into the finderlist. The purpose of this sytem is to enable a
usable finderlist to be automatically gemerated from material
already in the definitions, with a minimum of additional
intervention from the author. Rpart from providing a further tool
for elicitation and ultimately a useful adjunct to the published
dictionary, a finderlist turns out to be valuable in bringing out
incoasistencies and errors of phrasing, spelliing, and punctunation,
etc., in the dictionary.

Another tool that we have found to be extremely useful for a wide
variety of purposes (from checking for errors and inconsistency to
indexing on categories of information in the dictionary entries) is
simply a closely spaced alphabetical listing of the conteats of
specified fields, accompanied by the relevant headwords.

Besides programs we have, of course, had to develop suitable data
formats. In this area also, user demands have been the principal

Second EBdition, partial draft. Formatted Pebruwary 2, 1990

APPENDIX III. COMPUTERIZED LEXICOGRAPHY AT UH 163

guide. Our current data format reflects a rather general conception
of the structure of dictionary entries. It allows a lexicographer
to assign his own names to the fields in his entries, allows fields
of unlimited length, and allows repetition of fields and arbitrary
nesting of fields. A facility for subentries and sub-subentries to
any depth (for derived words, etc.) provides another dimension of
nesting. This format so far has been most welcome as a mold to help
the lexicographer organize his information. The printing program
displays this organization clearly in the format of the printcut.

5. Machinery

The hardware that has been available to us has coasisted (except
1n the very early days) of machines of the IBM s5/360 and 370 family.
A2 time-sharing system, TS50, has in additicon been available on these
machines since about 1970. However, due to limitations of disk
space and other hardware parameters, we did not rely heavily on TSO
for on-line editing and other work until quite recently. While the
editing of dictionary files is now largely done on-line, the
dictionary programs themselves are still run in batch mode, which is
more economical. Currently some dictionary editing is done on
microcomputers. The files are ther transmitted to the mainframe for
batch processing.

Programs were originally written in Fortran and later in PL/1.
When 3Spitbol, the fast-running implementation of SKEOBOLY, became
available on the 360, we gradnally switched over to that language.
Spitbol has allowed us to experiment with, and implement, features
easily (almost casually) that we would not have considered writing
in PL/1 or Fortran. All our current programs are written in Spitbol
and are linked together for convenient use by generocus amounts of
JCL, profiting especially from certain JCL-oriented features of
Spitbol. In addition, the efficient Sort/Merge program available
under 05 has beer a mainstay of our operations.

A recent grant from the National Science Foundation has permitted
us to consolidate and make more uniform the programs that have grown
up over the years. Better documentation is also being written. The
goal is to make the programs more easily used and expanded, and more
easily transportable to other installations.

Second Fdition, partial draft. Formatted February 2, 1930

APPENDTYX IIJY. COMPUTERIZED LEXICOGRAPHY AT UH 164

Below is a list of the langquages for which dictionaries have been
processed by these programs or their predecessors. The aunthors, and
publishers (for those dictionaries that have already been
published), are also given. %“UPH" stands for University Press of
Hawaiia.

Banoni (Piet Lincoln)

Bontoc (Lawrence Reid) Australian National University 1976

Chamorro (Donald Topping)} UPE 1975

Colville (Tony Mattina)

Itawis {(Jim Tharp) ®RAFlex 19756

Kagayen (Carol Harmon)

Kapingamarangi {Michael Lieber) UPH 1974

Kiribati BGilberteseB (3teve Trussel)

Klallam (Claudine Poggi)

Kmer (Philip Jenner)

Kusaiean (Kee-Dong Lee) UPH 1976

Maori (Bruce Biggs) (English—Maori:) Auckland University Press 1981

Maranao (Howard McKaughan) UPH 1967

Marshallese (Byron Bender) UPH 1576

Mokilese (Shelly Harrison) UPR 1977

Mortlockese (Martin Combs)

Nakanai (Ward Goodenough)

Nukuworo (Vern Carroll) UPR 1973

Palavan (Lewis Josephs) UPH 13976

Pingilapese (Elaine Good)

Ponapean (Ken Rehyg) UPH 1979

Pulo Annian ({(Sachiko Oda)

Puluwat (Sam Elbert) Australian National University 1872

Rennellese (Sam Elbert) (English—-Rennellese) Naticnal
Museum of Deamark 19281

Rhade (Jim Tharp) Rustralian National University 1980

Rotuman (Joel Fagan)

Saipan Carolinian (Rick Jackson)

Sora (David Stampe)

Sre {(Niall Olsen)

Spokane (Barry Carlson)

Takuae {(Irwin Howard)

Tahitian (Jack Ward)

Thompson (Laurence Thompson)

Tillamook (Laurence and Terry Thompson)

Trukese (Ward Goodenough) American Philosophical Society 1380

Tuvalunan BEllice IslandsB {Nicholas Besnier, Steve Trussel)
Peace Corp 1981

Woleaian (Ho—-Min Sohn) UPH 1976

Yapese (John Jensen} UPH 1877

Second Edition, partial draft. PFormatted ¥ebruary 2, 1990

INDEX

ECODE, 107
£pyMP, 106
&STLIMIT, 106
acknowledgements, 7
Al-Kasimi, Ali M., 12
ALLBANDS, 72, 118
alphabetical order, 12
alphabetization, 1, 67, 100,
162
angle brackets, 152-153
Apple, see Macintosh
asterisks, 21-22, 25,
142, 153, 155

68,

Bailey, Richard W., 4
band, 31
format of, 39
headword, 32
BAND {(variable), 57, 110,
114, 116, 119, 122
band body, 17-18, 139, 57
band label, 39
band name, 17-18,
57, 110, 118
band~by—-band principle,
22, 54
BANDALD (control module), 56
BBNDLID(?ANDLIST), 119, 123
BANDAID-type instractions,
56, 58
BANDCORD {control module), 65
BANDFILT (contreol module), 58
BANBINVY (control modulel}, 58
BANDLIST (file), 69
BANDPACK (control module}, 58
BANDPRIORITY, 58, 72
bands, 29
{variable), 118
continuation of,
definition of, 16
grouping of, 33-3%
groups of, 1%
headword, 32
in a bandsort, 26
order of, 33
re—-ordering of, &9
repeated, 33
resecved, 31,
seguence of, 39
variety of, 18, 45
BANDS {variable), 357, 58, 66,
72, 75, 143
BANDSORT (control modaled},

31, 39, 44,
20,

33

45

Second Editicn, partial draft.

165

26, 56, 102
Bartholomew, Doris k., 12
batch mode, 2, 163
bibliography, &
computers in lexicography,
§
lexicography, 12
SNOBOL4 and SPITBOL,
style manvals, 938
bilingual! dicticnaries, 3
BIRDBATH, 28, 55, 88
BIRDBATH RUN LOG, 56
bedy, see band body
BODY {(variable), 57,
114, 116, 118,
BREAK(P,L), 113
BREAKPOWN, 113
built-in fanctions, 61, 69

16

m,
122-123

cards, 93
carriage—control character,
106-107
character fonts,
CLEARKEEP()}, 119

CLEARPACKET(), 119
CNTL, see control {(CNTL)
datasets
codebook, 20, 27, 58
collating sequence, 67, 100
collision of variables, 122
collocations, 48
command language,
compilation, 103
compilation listing, 61, 69
compouand, 41, 33
computerized grammar, #
concordance, 4
concordances,
contexts, b
continsation
of band, 18, 33
contrel field breaks,
124
cantrol module, 28, 56, 65,
108, 122
special, %0
control modules
choosing, 81
for BIRDBATH,
for TOAST, 65
special, 122
COUNTFLD(), 115
CPAD{LIKE,N}, 115
cross~reference,

162

10, 29

162

120,

56

18, 42, 45

Formatted February 2, 1930

INDEX

cross—reference entry, $2-43
cross—references, uwnresolved,
70

database programs, 3
DEC-20, 134

definition band, 16, 182-343

derived sord, 36, #1, 52

DESHIFT(X}, 106

DETPRASE(), 121

Dewar, Hobert 8. K., 10

dictionary entries, 1, 16,
32, 3%, 160, 163

dictionary entry, 31, 41

dictionary file, 3

dictionary projects, 7,
160-161

discourse, 48

disk datasets, §3

distribution tape,

pos, 819

b0OS operating systemn,

Duckert, Audrey, 5

130
8a

editing, 4, 161, 163

editor, 3, 35, 16

EDLIST {control module), 58

EDLISTB {control module}, 355

end matter, 53

END statement,

ENDEF, 72, 148

entry, 117, see dictionary
entries

EOFFLAG, 111

errors, 11

EXEC parameters, see
parameters, on EXEC
statement

122

face shifts, 21, 155
file, see also masterfile
list, 45
FILE band, 45
FILETABLE(arg,val),
filtering bands, 538
finderlist, 1, 22,
102, 161-162
flags, 118
fonts, see typeface,
character fonts
FORCENKEY, 73, 147
format
for dictionary entries,
163

108

28, 69,

Second Edition, partial draft.

166

hanging paragraph, 33

1-format, 35

LISTGEN, 35, 60

of bands, 31, 39

of finderlist, 68

of printout, 35, 163

p—format, 35
formating, 112
FULLSCAN, 106
funding, 7, 161

Gaskins, Robert, 10
Gellerstam, Martin, #%
Gimpel, James F., 11
Goetschalckx, J., 5
Gould, Laura, 10
Grimes, Joseph E.,
Griswold, Madge, 10
Griswold, Ralph E.,

12
10-11

HANDLE, 67
handle function, 67,
HANDLB(X)Y, 73, 120,
HRANDLEB(X)}, 73, 120,
AANDLEBNAME, 73, 158
BANDLEMAP(s, "name’),
HANDLENAME, 73, 158
handles, 67, 100, 108, 120
HANPSORT {(control module),
67, 100
kanging paragraph, 19, 33,
40, 110, 112-113
Hartmann, Re.R.K., 12
HEAD, 115
HEADHANG, 60, 73, 157
headword, 16, 3i1-32, 39, 41,
44, b, 57, 67, 143
headword band, 32
historical/comparative, 48
HLEV, 57, 110, 114, 116, 122
Hockey, Susan, 11
homonym, &2
HOOK, 73, 14§
Householder,
housekeeping,
AWFIELD, 66,
hyphen, 18

100, 158
158

158
109

Fred W., 13
49

73

IBM mainframes, 2
IBM 370, 143

Ip, 111

id £ield, 110
idiom, #1, 48, 53
IDLEN, 73

Formatted February 2, 1990

INDEX

IF(STATE,VALUE), 113
IFBANDS(BANDS), 118, 122
IFBREAK(N), 120, 124
IFENDBRK(N), 121, 124
IFENDENT(), 122
IFENDFILE(), 111, 117, 122
IFENDKEEP(), 119
IFENDNEST(), 117
IFENTRY(), 117
IFLITBANDS(BANDS),
IFMAINC), 117, 122
IFMATCH{PAT), 118
IPNEWMODE(), 118
IFSUB(), 117
illustration band, 51-52
illustrations, 49
illus;rative expressions, 17,
159
INCLBANDNAME, 159
inconsistencies, 162
INDENT, 114
indentation, 60
index, 102, 162
info;mation retrieval system,
initializations, 61, 69,
Input parameters 1in SPECS
file, 74
input/output, 103, 107
installation, 1390
interactive facilities, 3
INVERT (control module), 2§,
68
INVERT2 (control module), 24,
51, 68
italic shift,
italics, 21,

118

106

155
98

JCcL, 10, 29, 163

Job Control Language, see JCL

JOB parameters, see also
parameters, on JOB card

Josselson, Harry Ha, 3

KEEP, 119
KEEPANGLE, 7%, 153
KEEPBAND(), 119
KEEPBANDLABEL, 74,
KEEPSEQ, 66, 748
KEEPSTAR, 153
KEYMARK, 74,
keywords, 68,
155
homonymous,

157

148
102,

142-143,
149

Second Edition, partial draft.

167

invisible, 132
multi-word, 143
truncated, 147,
word-internal,
Kiefer, Perenc, 12
Kipfer, Barbara Ann, 5

152
151

i1-format, 23, 35, 57, 64,
112, 114-115, 157
l-format parameters, 74
Landau, Sidney I., 12
lexicography, 3, 12
computerized, 160
Journals, 13
lexicology, 4
LFYELD, 74
line number
TS0, 75
LINESIZE, 7&,
LINESLEFT, 115
LINESPERPAGE, &0, 74,
157
LIST band, 45
list file, 45
LISTGEN, 119
LISTGEN {control module), 23,
28, 35, 60, 89
LISTGEN format, see l1-format
LISTGEN format parameters, 75
LISTGEN(P, IDFLD)}, 118
LISTORWRITE(P,IDFLD},
LISTPACKET(), 119
LMARGIN, 60, 75,
log file, 56, 65

M3

115,

115

114, 157

Macintosh, 3
Macro

Spitbol, 139
Macro SPITBOL,
margins, 60
masterfile, 2, 82
Maurer, W. D., 11
McDavid, Raven Jr., 5
mechanical translation,
medium face, 21, 98
Mel*chuk, Igor, 13
MESSAGE file, 65
microcomputers, 162-163
Misra, B.G., 13
mode, 33-34, 39, 50, 57, 61,

110, 114, 116, 122

mode prefix, 34, 3%, 50, 57
monolingual dictionaries, &
morphology, 47

103

Pormatted February 2, 1950

INDEX

morphophonemics, 47

MS~-DOS, 3

MSG{SRC, TEXT), 107

National Endowment for the
Humanities, 7

National Science Foundation,
7, 163

Newsted, Peter R.,

NHANDLES, 120, 123

NOBANDS, 75, 118

NONUM, 75, 107, 157

NOPAGE, 75

NOTBANDS, 66, 75, 118

NOWRITE, 57, 75

11

null run, 106

NULLRUN {(control module}, 61,
59

NUMFIELD(), 106-107

OPPSET, 66, 75
Olney, John, 5
ONBANDS
(parameter), 62
OHBAgDS {controi mcdule), 61,
6
ONBANDS (parameter}, 51, 76
ONBANDSR (control module),
62, 76
ONBANDSZ (control module), 62
ONPAT, 61-62, 76
OPENTABLE(*name?,sizel,
opTP, 76, 154
order of bands, 43
orientation, 1, 8
orthography, 12,
161-162
05/360, 3

108

20, 47,

p—format, 35, 60,
112-113, 115
p—format parameters, 77
PACK(X), 119, 122
PACKET, 119
page~formatting parameters,
67, 74, 76
PAGECOUNT, 76
paragraph, see hanging
paragraph
parameters
for LISTGEN,
SPECS, 2§, 72
overriding,
STOPAFTER,

67,

60

110
50

Second Edition, partial draft.

168

PARAPAT, 76, 111
part of speech,
PATTERN, 59, 76
PC, see personal computer
PDP11, 139
period, 154
personal computer, 3
PFORMAT, 60, 67, 76,
P6.COUNT, 111
PG.ID, 110
PG.RECCOUNT,
PG.TEXT, 110
PHASE, 77, 121, 123
phases of TOAST run, 65, 72,
104, 107, 120-121, 123
phonetic symbols, 162
phonology, 47
phrase, 25, 144-145, 154
PHRASEDIT, 155
predicates, 117
PRINT(L), 106
PRINTBANDLABELS, 68, 77, 157
PRINTL(...), 114
PRINTP(...), 114
PRINTPAGE(L), 107
program segments,
publishing, 3
punctuation marks,
154

16

113

M1

103, 106

35, 98,

QUICKSCAN, 106

R« INPAT, 77

READ(), 107, 110, 120-122,
124

READPG(), 110

REBANDLE {(control module),

REC, 121

RECONTROL(), 119

references, see bibliography

REJECT, 77

REREAD{(), 119

RESETPOINTER(), 119

retrieval, 3-4¢, 162

Revard, Carter, 5

REVIEW(), 119

RMARGIN, 60, 77, 157

Robinson, Jay L., &

Rolling, L., 5

roman face, 21

run log, 56, &5,

69

197

Sanders printer, 162
sandwich, 103

Formatted Februwary 2, 19990

INDEX

Saporta, Sol, 13
SAVEPOINTER(), 11%
Schoenhals, Louise C., 12
script, 140
segmentation of entry, 49
segments, see program
segments
semantics, 43
semantics band, 102
semicolon, 154
SEPARATION, 65, 77
SEQCHECK {controi mcdule), 63
sequential files, 3, 18, 20
SERFLD{}, 115
SET(STATE,VALUE), 119
SETEXIT, 110
shell
script, 140
Singh, Ram Adhar, 13
SITBOL, 103, 134
SRIP, 114, 123
SKIP(), 119
SKIPPG(N,PAT), 111
skipping paragraphs, 111
Siedd, James H., 13
SNOBCLY4 programming, 29
SNOBOLY programming langnage,
3, 10, 29, 103, 110, 163
SNUM, 77, 115
sociolinguistics, 48
sort
records, 120
sort control statement, 107
sort fields, 120
sort step, 104
S50RTCNTL file, 107
SORTENT (control module), 69
sorting, 1, 28, 65, 87, 100,
162
SORTSUB {control module), 70
SPECS, 29, 119
SPECS file, 90, 110
SPECS parameters, see
parameters, SPECS
choosing, 81
sgitaoL, 3, 19, 23, 103, 110,
1613
SPLIT (external program), 85
SPLITQ (external program), 45
state, 119, 122
STATE({STATE), 119
STATETABLE, 119, 122
statistics, 4
STATS {control module}, B3

Second Edition, partial draft.

169

STEPFIELDS(), 121
STEPREGISTERS(), 111
stop(), 107, 122
STOPAFTER, 78, 90, 111
STOPPAT, 78, 350, 111
storage media, 353
sub-entry, 19, 36, 39, 43,
52, 61, 117, 163
internal, 51
sub-modes, 32, 52
SUBENTINDENT, 50, 78
SUBMODEINDENT, 61, 78
subscripts, 749
SUBsSUB, 78
SUPBANDLABEL, 59, 78, 114
SUPDUPTRACE, 78
SUPHEADING, 58, 79, 115
SUPPINSP, 79
synonyms, 17

syntax, 47

tape, 94, 130, see also SETUP
tasks, 8

TBANDS, 69, 79, 159

- Terak, 162

terminal, 9, 23, 162

Tharp, Alan L., 11

time-sharing system, 163

timing, 11

PITLE, 60, 79, 115

TITLE band, 45

TOAST, 28, 65, 88

TOAST RUN LOG, 65

TOPS—-20, 134

TRACEHANDLE, 67, 79

translation band, 51, 159

transliteration, 1048

TEANSMAP(s,"name"*}, 109

TRUSSEL, 79, 158

TS0, 163

TSCG line number, 106-107, 112

typeface, 96, 98

types of information, 160

typesetting, &, 21, 162

typographical functions, 21,
95

typography, 49

University of Hawaii, 160
UNIX, 139

CNSET{(STATE), 119
upper/lovwer case, 106, 118
UPSHIFT{X), 1086

Urdang, L., §

Formatted February 2, 1990

INDEX

user functions, 122
USERFNS, 29, 67

variant form, H2-43

VAX, 139

Venezky, Richard L., 5
versions of manual, 3, 3, 14

Wierzbicka, Anna, 13
Hoelck, Wolftgang, >
word processor, 9
WRITE{(L), 106
HWRITEBAND(P?), 113

Sgcond Edition, partial draft.

170

HRITEKEEP{), 113

WRITEP(P,WIDTH), 113

WRITESORT(REC,H1,H2,..), 120,
123

WRITESORTCNTL()}, 107

XBANDS, 63, 8¢, 159

XCHECK (control module), 790
XENKRY, 380, 147

XREF(), 70

Zgusta, Ladislav, 13
Ziff, Panl, 5

Formatted Pebruary 2, 153¢

END
END
END
END
END
END
ENP
EN
END—
END
END
END

JoB
JOB
JOB
JOB
JOB
JOB
JOB
JOB
JOB
JOB
JOB
JOB

7130
7130
7130
7130
7130
7130
7130
7130
7130
7130
7130
7130

ACCT
ACCTY
ACCT
ACCT
ACCT
ACCT
ACCT
ACCT
ACCT
ACCT
ACCT
ACCT

1992
1992
1952
1992
1992
1992
1992
1992
1992
1992
1992
1992

T119320s
T119920S
T1195820s
T1199205
T119920s
T¥19320s
T119920s
T119920s
T1199205
T119920s
T1199205
T11992¢0s

9.58.54AM
3.548.54aM
9.54.542M
9.58.54AM
9.54.542aM
S.58.54AH
3.54.54AHM
S.54.54AaM
9.54.54aM
9.54.54AM
9.54.54aM
9.54.54M

02FEBY90
02FEBI0
02FEBI0
02FEBI0
02FEB9I0
02FEBI0
02FPEB20
02FEB90C
02FEBSQ
02FEBI90
02FEB30
02FEBSO

PRT1
PRT1
PRTY
PRT1
PRT1
PRT1
PRT1
PRTY
PRTA1
PRT1
PRTT
PRT1

T=TN
T=TN
T=TN
T=TN

=TN
T=TN
T=TN
T=TN
T=TH
T=TN
T=TN
T=TN

aoaanaoaononnnn

PG
PG
PG
PG
PG
PG
PG
PG
o
PG
PG
PG

