
I .
1.•
:.'

L E X W A R E M A N U ! L

computer Programs for Lexicography
De veloped at · the University of Ha waii

Second Edition,
PC (HS-DOS)

partial draft
versi on

Robert Hsu
Linguistics Department
University of 8awaii

H.onolulu, Hawaii 96822

._ .

I -

'•·

'- -

• " "" ••••• ··-- --•• ••• ••m•,.••• · -······-·-- -

This material is based upon work supported by
the National Science Foundation under Grant
No. BNS 792q700. Any opinions , findings, a nd
conclusions or recommendations expressed in
this publication are those of the authors and
do not necessarily reflect the views of the
National Science Foundation.

.... - ..

---·------····---- .. ·-····-

Chapter 1. ORIEHTlTION • .. • .. • . . - 1

1. 1 ORIENTATION TO THE SYSTEM • 1

1.1.1
1.1.2
1.1.3
1.1.4
1.1.s
1.1.6

Scope of the system • •
Usage • • • • • • • .. • • •
Environment of the programs • •
What the system does not do • •
History and status of the system
Acknowledgements • • • • • • • •

. .
. .

.

1
1
2
3
5

1.2 ORIENTATION TO THE MANUAL •
7

8

1 .. 2.1
1.2.2
1.2.3
1.2.4

Scope of the manual • • • • • • • • • • • • • • • • • • • 8
What the manual does not cover • • .. • • • • • • • • • • .. 9
History and status of the manual 14
What to read and hov to start • • • • • .. • • • • 1~

Chapter 2. GETTING STARTED .. • • • • • • • • • • • •••• 16

Chapter 3. THE usza•s VIEW OF THE SYSTEK • • 28

3.1 STRUCTURE OF THE SYSTEM • •• 28

3 .. 2 ORGANIZATION AND REPRESENTATION OF DICTIONARY ENTRIES •••• 31

3.2.1
3.2.2
3.2.3

Band format conventions
Band format conventions: Summary • • •
Hanging paragraph conventions .. • •

• • • • .. 31
• • • • • • • • • 39
• • • • • 40

3.3 GUIDE TO USING B!ND FORMAT • 41

3.3.1
3 • .3 .2
3.3.3
3.3.4
3 . 3. s
3 .. 3. 6
3.3.7
3.3.8

Pol icies about entries and headwords in the dictionary •• 41
·sand names. their str11cture and function 44
Uses of bands • • • • .. • • • • • • • • • • • • • • • 45
?he sequence of hands and its segmentation 49
Structure within bands • • • • • • • • .. • • • •••• 50
Uses of modes. • • • • •
Uses of subentries • • •
Some general principles

- . - - - - - . -
• 50
.. 52
. s~

3 .~ BIRDBATH CONTROL MODULES • 41 • • • • • • • . . . • .56

.BANDAID • • • 56

Contents

BANDFILT . • • • • • •
BANDINV (superseded by STATS) • •
BANDP.ACK . • • • • •
EDLIST (superseded by BANDA.ID) •
IWLIST'B • • • • • • •
LISTGEN • •
NULL RUN
ON.BANDS
ONBANDS2
O.NBANDSR • • • • • • • • •
S!QCHECK . • • • • • •
STATS • •

3.5 TOAST CONT.RO.L MODULES • • • • •

BANDCORD . • • • • • • •
BAN.DSORT • • • • • •
HANDS ORT . • • • • • • • •
INVERT . • •
INVERT2 ..
NULL RUN
REBANDLE .
SORT ENT
SORTSUB • •
XCHECK . • • • • • • •

3.6 SPECS PARAMETERS • • • • • • • •

3.7 GUIDE TO CHOOSING CONTROL MODULES AND PARAMETERS •

3.7.1 Making a working printout • • • • • • • •
3.7.2 Proofreading and checking .for errors and

inconsistencies
3.7 • .3 Extracting a subset of the file
3 .. 7.4 Alphabetizing the master£ile .
3.7.5 Making classified lists
3.7.6 Making indexes and other apparatus • • • • •

Chapter 4. BUNNING TBE PROGRAMS ON A PBBSONlL COMPUTER UNDER

4.1

DOS .. • • • • • • • • •

RUNNING BIRDBATH AND TOAST UNDER DOS • •
The simplest job •
SPECS file •
Limiting the amount of input •
Special control modules
Concatenating files for input
User supplied functions

Chapter S. TOPICS IN DICTIONARY PROCESSING •

Contents

• •
• • • •
•

•

• • •

. sa . 58
58

• . 59
• 59

60
61
61
62
62
63

• • 63

65

• 65
• 66

• 67
• 60

68
69
69
69
70
70

72

• • 81

81

• • • 82
Sij
85
86

• • 36

• • .. ea

• • • 89
• 89

90
90
90
91
91

93

. . ,

5.1 STORING THE DATA • 93

s.1.1
s.1.2
5.1.3

Punche d cards
Disk Datasets

. ••••••••• 93 • • • 93
Tape • • • • • ••••••••• 9q

5.2 PUNCTUATION lND TYPOGRlPHICAL CONSIDER!TIONS • • • 9.5

5.2.1 Introduction - • 95
5.2.2 Mechanical considerations • • . 95
5.2.3 Stylistic considerations • • . 97
5.2.4 References cited - • . - - 98

5.3 GUIDELINES FOR WRITING CORRECTIONS AND ADDITIONS ON
PRINTOUTS • • • • • .. • • • • .. • • • • • • • • 99

5.4 SORTING THE DICTIONARY •
5.5 GENERATING INDEXES AND FINDERLISTS • •

Chapter 6. l TECHNICAL DESCRIPTION OF TBB SYSTEK •

6.1 STRUCTURE OF THE SYSTEM . . - . - - .
6 .2 BUILT-IN FUNCTIONS AND OTHEH FACILITIES

6.2.1 PROGRAM SEGMENT 1
6.2.1.1 PBOGRA~ SEGMENT 1.1: INITIALIZATIONS and

INTERFACING • • • • • • • • • •
6.2.1.2 PROGRAM SEGMENT 1.2: HANDLE-MlKING AND

TRANSLITERATION UTILITIES .. • • • • • • •
6.2.1.3 PROGRAM SEGMENT 1.3: NON-BUILT-IN FUNCTIONS IN

OTHER SNOBOL4 IMPLEMENTATIONS • •
6.2.1.4 PROGRAM SEGMENT 1.4: SPECS

6.2.2 PROGRAM SEGMENT 2: GENERAL INPUT FUNCTIONS •••••
6.2 . 3 PROGRAM SEGMENT 3: GENER~L OUTPUT FUNCTIONS
6.2.4 PROGRAM SEGMENT 4: BAND PROCESSING FUNCTIONS ••••

6.2.4.1 PROGRAM SEGMENT 4.1: BAND PREDICATES
6.2.4.2 PROGRAM SEGMENT 4.2: KEEP-RELATED FUNCTIONS
6.2.4.3 PROGRAM SEGMENT 4.3: STATE-SETTING AND TESTING

FUNCTIONS • • • • • • • • • • • • • • • • • •
6.2.4.4 l?ROGRAM SEGMENT 4.LJ: PACKET-RELATED FUNCTIONS •••
6.2.4.5 PROGRA~ SEGMENT 4.5: MISCELLANEOUS FUNCTIONS

6.2.5 PROGRiM SEGMENT 5: SORT I/O FUNCTIONS ••• . . - . . .
6.3 WRITING NEW CONTROL MODULES
6 .4 INDEX OF VARIABLES AND FUNCTIONS •

c o ntents

100

102

103

103

106

106

106

108

110
110
110
112
116
117
118

119
119
119
120

122

126

6 .. 4.1
6.4.2

Variab les and functions in built-in program segments
Variables and functions in control modules

• •
6.5 INST ALLATION NOTES • • • • .. • . -

6 .5 .. 1
6 .. 5.2
6.5.3

INSTALLING ON AN IBM M.lINPRAME RUNNING OS •••••
INSTALLING OH A DEC-2060 RUNNING TOPS-20 • .. • • • •
INSTALLING ON A PDP11 or VAX RUNNING UNIX

• •

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS
APP ENDIX III .. COMPUTERIZED LEXICOGRAPHY AT UH . -

126
129

130

133
134
139

160

IND EX • 165

Contents

r •

ClillX.EB 1. OlUE.ti?A.?.1.0.tl

This chapter provides various types of background information on
the programs, but no essential information on using them. If you
want to be9in using the system immediately, begin with Chapter 2.
HoNever, you should read this chapter before getting too far along
in order to get an idea of what to expect and not to expect of the
programs.

The system provides 1) a general, flexible, and relatively
convenient set of conventions for encoding the potentially complex
structure of dictionary entries (see 3.2), and 2) programs for
processing data so encoded (see 3.4, 3.5). The most commonly used
programs are those for formatting and printing out a dictionary
(from tape or disk storage), and for generating a "finderlistn from
bilingual dictionaries. A finder1ist is an index of the entries in
a dictionary by .keywords and phrases contained in the defi.nitions
(see Appendix I). There are also programs to sort the entries by
tneir headwords according to any specified alphabetical scheme, to
re-order the information within each entry, and to sort headwords by
various ty~es of information in the en~ry. Since a static system of
programs cannot hope to meet the continually developing and special
needs of every user, the system is designed so that neM programs,
usually very short, can be written by a programmer relatively
quickly by calling on the basic fanctions provided in the system
(see Chapter 6 for a technical description).

A. linguist beginning to use this system typically already
possesses a substantial body of lexical data--e.g. in the form of
drafts of dictionary entries on file slips or other media. The
fi.rst step is to design some conventions for representing this data
within the overall "band" format (as described in Chapter 2 and
Sections 3.2 and 3.3 of Chapter 3), and then to cast some of the
data into this format. This initially need not even be done on the
computer. As the range of entries expands, the conventions normally
also require expansion and ad~ustment. Programs (particularly the
three mentioned at the end of Chapter 2) are run on the data as soon
as a small amount has been entered into the computer, and the
outputs of the runs Cin the fo.rm of other files or of hard-copy
printouts) are studied carefully with a view to understanding and
validating the structural relations that they exhibit. Insights
thus gained invaciably lead to further revisions in the conventions.

Second Edition, partial draft. Formatted February 2, 1990

1.1 ORIENTATION TO TH E SYSTEM 2

Programs are run periodically as more data is entered into the
maste rfile, the ootputs are studied, and fieldwork is often
interspersed with working on the computer. As a result of better
unde rstanding of both the data and the sys tem, a user may sometimes
decide to radically reorganize the already entered data. This is a
norma l mode of progress and, burdensome as the reorganization is, it
should not be regarded as a set-hack.

On no account should one wait until all of the available data is
entered be fore running any of the programs. Th.e usefulness of the
system lie s not so much in recording lexical data as in helping to
discover and explore the regularities--lexical, grammatical,
cultural, etc.--present in the data. Obviously, the earlier th.is
process of discovery is begun the better, since it affects the way
material is subsequently entered and often requires revision of
previously entered material. It is this feed-back that the user
gets from the interaction, both smooth and rough, between the data
and the system of recording and manipulating it that is the major
benefit of nsing the system. The user, of course, must be willing
to expex:iment.

To make changes in the dictionary the user edits the masterf ile,
not the files output by programs of the kind mentioned above.
However, some programs reorganize the entire dictionary, so that
their output actually becomes the nev maste~file. An example would
be a program that alphabetizes the file, or one that rearranges the
material within entries.

Since it is primarily an exploratory tool rather than a passive
receptacle 'for information, effective exploitation of the system
depe nds on the linguist•s being not only as thoroughly familiar with
the data as possible and actively interested in its structure, but
also the same person•s being intimately involved in the day-to-day
operation of the project: casting material into band format, editing
the data, designing and revising conventions, deciding what programs
and parameters to use, studying the outputs, etc. Otherwise, as
when the s e tasks are delegated to linguistically less knowledgeable
and possibly less intec-ested subordinates, the system is not very
useful.

Another significant characteristic of this system is the
ind e pe ndence of the data from the programs, which has the
consequence that data entered in the Rband" format may be processed
usefully by other programs. Since the format is extremely simple
and generic, it can be manipulated in useful ways by other general­
purpose text-processing systems, such as sufficiently flexible
editors and text database systems.

The programs are designed to be run in "batch mode" rather than
interactively. That is, after be~ng launched a program normally

Second Edition, partial draft. formatted February 2, 1990

1.1 ORIENTATION TO TBE SYSTEM 3

runs from beginnin9 to end without further intervention from the
user- Afterwards the user retrieves and examines the output . While
the programs provide no facilities for interaction , interactive
facilities elsewhere on the computer may be used to prepace the
data, launch the batch j ob, and examine the output.

The programs , furthermore, handle only " s equential" files. A
program typically processes an entire dictionary file, by reading it
in a single pass from beginning to end.

The dictionary programs are written in the SNOBOL4 programming
language, specifically the version known as SPITBOL. A SP.IT.DOL
compile r, as well as a general-purpose sort program, must he
available on a computer in order to run these programs. Some
ver sion of SP.ITBOL is available on most models of computers and at
most acade mic computing centers, and a sort otility is normally also
available .

The programs were originally developed on IBM mainframes under
the OS/360 operat ing system and its descendants, and have been
transpor ted to personal computers running the MS-DOS family of
operating systems . It is on these tvo systems that the programs
have the most users, and this is reflected by the existence of the
two separate versions of this manual, the IBH mainframe version and
the PC (KS-DOS) version. The mainfra~e ve r sion also gives details
for instal1ing the programs on a few non-IBM mainframes, on which
the progr ams have also been run. There is a possibility that the
programs will become available on the Macintosh in the future.

This system is by no means a complete toolkit for the
lexicographer. Furthermore, lexicography being a diverse and wide­
ranging collection of pursuits, some practitioners may find little
overlap between their needs and what these programs have to offer.

The system does not, for instance, provide a special editor for
lexical files . However, many po~erful editors are available on most
computers.

Noc will users £ind here the ability to instantly access any part
of the lexical file via index terms and o ther retrieval
specifications. Tne kind of retrieval that these programs provide
i s not instantaneous. If immediate on-line access is desired. a
better solution may be provided by text database and regular
database systems , although at a cost in certain kinds o·f
flexibility.

The system is also not oriented to publication by having built-in
facilities foe producing camera-ready copy for publication. This
lack is mitigated somewhat by the ease of development of special­
purpose proqrams within the system. It is thns reasonably

Second Edition, partial draft. Formatted February 2, 1990

1.1 ORIENTATION TO THE SYSTEM

straightforward to write a special program to convert a particular
l exical file into a format acceptable by a particular typesetting
syste~. This has in fact been done many times , £or different
dictionaries and for different typesetting systems, exhibiting a
flexibility that might even be unattainable with a built-in
facility.

The ma king of text concordances, one of the major tools o·f
lexicography, is beyond the original purpose of these programs,
which were designed to handle lexical files rather than text.
However, they could easily be turned to s uch a use.

4

The dictionaries that these programs handle are not in a suitable
form for use as the lexical component of a com·puterized grammar of a
language , or as a mechanical translation or information retrieval
system. The dictionary files are basically computer-sto['ed and
explicitly structured versions of the usual kind of human-oriented
bilingual or monolingual dictionaries, whether scholarly,
pedagogical, or general.

Nor are these programs particularly helpful for comparing several
dictionaries of a iangoage, for s~udying the structure of
definitions in a pa['ticular dictionary, or for othe~ lexicological
pursuits ..

The ga thering of statistics fcom the lexicon, and statistical
computations, form another area that these programs leave untouched.

The 'foll.owing short bibliography, which is neither complete no['
uniform in its coverage, is provided to point the user to other
systems that emphasize some of these other areas. For instance,
Venezky 1973 describes a system for retrieval of words and their
contexts fr om large corpora of text together with the editing and
construction of dictionary entries. The .Re vard and Olney items
illustrate computer-assisted lexicological studies. A complete
bibliography of computer-aided lexicography would run several
hundred items in length. Bailey (1974) is a draft of part of such a
bibliography; Kipfer (1982) is a more r ecent bibliography. It will
be noticed that almost all of the projects reported in the
litera ture deal with monolingual dictionaries of languages with a
literate tradition --- English of various e pochs, French, Russian,
etc., for which the primary logistics problem is the collection and
collation of millions of citations.

Bail e y Richard w. •computer-assist ed Lexicography'. Ame~
can Joil.lltl of COll.llillil.ional l.in..gui.s.t.ic~· iol· II,
No- l <lini1e Sx~:ing), 197q.

Bailey , Richard W. and Jay L. Robinson. 'Computers and
Dictiona['ies•, in Angus Cameron, Roberta Frank, and
John Leyerle, eds., ~om.pJl1e.ai and Qld ~n~li~b
con~Q~dan~s. Toronto 1970. 94-102.

Second Edition, partial dra.ft. Formatted February 2, 1990

1.1 ORIENTATION TO THE SYSTEM 5

Gellerstam, Martin, ed., .S..t.11.~ie~ in ~J!llHJ1!in:=Aig~,Sl .L~XkQlQg~.
Stockholm: A1mqvist & Wiksell International, 1998.

Goetschalckx, J., and L. Rolling, eds., ~~Xi~Qg~~Rh~ in ~h~
!ie~~~anic A~e- Hew York and Amsterdam: North Holland,
1982.

Josselson, Harry H. 'Lexicography and the Computer•, in
IQ HQllQ~ iQm4n ~~QRliQn: i§~~l~ QD th~ Q~~s§.iQB Qf
his Se:t.en.tie.J:..h .Bi~.thdilJ:• The Hague 1967. II.1046-59.

Kipfer, Barbara Ann, "Bibliography of computec applications in
lexicography", in JU.ct.ionai:ies, JlOJlDJ.al of .t.he
Dictiona~¥ ~oci~¥ of ttm=t.h Ame~ica- #4 (1982>,
pp.202-237.

McDavid, Raven Jr. and Audrey Duckert eds. 'Lexicography in
English'. <~a~t ~I= l.echnolo~i in Lexi~09~~h¥>
Annill~ of ~.he He~ YQl:k Akademi of S~ien~e, 121·211
(June 8, 1973).

01ney, John, Carter Revard. Pau1 Ziff. %OHa~d the
.~.ell.el.Ql!ltiUl.t af i;gm~Jlt.~tioMl Ai~ fQI: Qhtilning ~ fQ.t.mal
Semantic l2esc~i11.tio11 of .E.w.ili.s.b. Santa Monica: systems
Development corporation, report SP-2766/001/00. 1969.

Revard, Carter. •on the Computability of certain Monsters
in Noah's Ark•. ~R.!lt§:i;: ~n~li~ in .th~ .Hum~ni:ti~~ .a.n~
Me~hal. Beh~xio~. 2, 82-90 <1969).

Urdang, t. 'The systems design and devices used to process
the Random House Dictionary of the English Language.•
tgm~.t.er~ ~nd th~ llY.~Di~.e~. i, 31-33 (1966).

Ve.nezky, Richard L. •computational aids to dictionary
compilation•, in R. Frank and A. Cameron, eds. ! ~liln
fo~ ~he Dic.t.io.na4J Of Old !n~lish. Toronto 1973.

Woelck, Wolfgang. 'A Computerized Dictionary of Andean
La.ogDa~e~~. Lan~.a...ge Sciences a (Dec. 1969).

One might also scan the folloNing journals for relevant material:
Computers and the Humanities; Journal of the Association for
Computational Linguistics; Journal of the Association for Literary
and Linguistic Computing.

The system documented here began life as separate programs
written for the IBM syste~/360 in the late 1960•s. A long series of
accretions, and two or three major revisions and consolidations of
the entire system, have led to the present system, which continues
to undergo expansion and revision. The enti.re development has been

Second Edition, partial draft. Formatted February 2, 1990

........

1.1 ORIENTATION TO TSE SYSTEM 6

guided and motivated by the needs of actoal dictionary projects-­
several dozen p rojects on languages from a wide variety of families
(see Appendix III for a sketch of the background of these programs).
The basic data structure and program organization have, however,
changed little since the beqinning. More extensive changes nave
occurred in the areas of making the disparate programs more
internally consistent and of o ,rganizing the syste111 to be more easily
expandable. If any major changes to the s ystem are made in the
future they will be made in such a way as to preserve compatibility
with already existing dictionary files.

Since 1985, the programs have seen increasing use on personal
computers cunning the MS-DOS operating system. Minor additions to
the PC version of the system have been made, to address the needs
and possibilities presented by this environment. Apart from these,
howe ver , a policy has been followed of maintaining uniformity of the
system across different environments, e ven if it has meant
neglecting special capabilities of particular environments.

The his·tory and circumstances of the de velopment of the programs
have given the system some peculiar characte ristics. They were
originally designed and written not for use by lexicographers
themselves , but rather for the programmer's own convenience in
respo nding to r equests from the lexicographe rs. Thus, for instance,
programs that we re often needed were packaged into a form that was
easy for the author to use and adjust for different projects. These
programs thereby also became a little easier for the non-programmer
to use. Due to increasing demand, some of the proqrams were then
gr:adually r ,eleased .for non-programmers to use, and eventually, also
in response to demand, a single coherent piece of documentation was
written, which later became this manual. The system therefore
developed primarily for the programmer: to use when working in close
association with the lexicographer. Although there are now many
things a lexicographer alone can do with the pro9ra.ms, the original
orientation is still clearly evident in how one actually uses the
programs: for instance in the need to s upply "specs" statements in
the SNOBOL4 programming language for each run, in the poverty of
facilities for detecting and recovering from user-caused and other
errors, in the vnlnerability of the programs to the user's
alteration of internal variables, etc. It also appears in the
reliance on specially-written control modules and "user functions"
(and in the set of simple basic support functions for writing them)
to meet more specialized needs, rather than on a complex and
extensive set of pre-programmed facilities. In fact, the arsenal of
ready-made programs ("control modules") is extremely limited,
compared with what might be needed and could be written. The
emphasis instead has been on supplying the underpinnings for the
po·tential additions. In general, the distinction between "user" and
"programmer" is blurred. There ace clearly things which the user
alone can do and things which require a programmer, hut between the
two poles is a broad grey area in vhich a varying amount of
programming knowledge is required. Also, as was always true in the
past, some of the programs in the system--due to more frequent use

second Edition, partial draft. Formatted February 2, 1990

' ..

1.1 ORIENTATION TO THE SYSTE~

and tinkering--are more .. finished" than others. No 9reat e.ffort is
made to keep the manual in step with the programs a s these change
and expand. The aathor insists, however, on staying in close touch
with every project that uses these programs, beginning with the
initial evaluation of the pcogcams, in order to be apprised of
problems and new requirements as well as to ensure that the system
will be used in the most effective vay. That is another hold-over
from the early days of the programs.

l.l.~ A!:K!i.Oill..El2.G.E?21SlilS

7

The predecess ors of the current system have been developed over
many years (since 1966), and many people have made contributions.
Early versions of some of the programs were develope d by Ann Peters.
Almost all of the early users of the programs (see list in Appendix
III) contributed important ideas to the system.

Ea·rlier versions of parts of this manual were also written by
many people, amonq them (in chronological order), Byron Bender, Ann
Peters, Jim Tharp, June Netter. Joan Bomick wrote Appendix II of
the mainframe version, and Louise Pagotto wcote Se ctions 4.4 and 4.5
of the mainframe version. Elaine Good has made substantial
improvements to the style and readability of a previous edition of
the manual. The excellent presentation of the manoal and of the
indexes is the handiwork of Louise Pagotto using the Script text
formatting package on the IBM/370 and its successors.

Many of the dictionary projects (Appendix III) that occasioned
the development of these programs were funded by government
agencies, which have thus indirec tly contributed to the development
of the programs. Among these age ncies are the National Science
Foundation (NSF), the National Endowment for the Humanities (NEB),
and the Government of the Trust Territory of the Pacific Islands.
Direct support of the work has been provided by the Pacific and
Asian Linguistics Institute and, later, by the Social Science
Research Institute, both of the University of Hawaii- The Computing
Center of the University of Hawaii has contributed computer time. A
major revision and consolidation of the programs and of the
documentation we re the subject of a grant (BNS 7924700) from the
National Science Foundation. Ongoing developr11en·t incidental to
particular proje cts is often aided by grants to those projects,
principally fro m NSP and NEH.

Second Edition, pai:tial dra.ft. Formatted February l, 1990

This Second '.Edition of the manual comes in two versions, one for
the mainframe and the other for the PC environment. Look on the
title page to see which version this is. The differences are only
in Chapters q and 5, and Appendix II.

8

The principal concern of this manual is to describe the system of
lexicographical programs and its use. Ancillary, even though
essential, information which is not unique to these programs is only
sketchily treated, if at all. (See section 1.2.2 "What the Manual
Does Not cover".)

The size of the manual in no way reflects the size and complexity
of the system it describes. The system itself is quite primitive.
The ways in which it can be used however turn out to be not at all
obvious to many lingoists, and developing this topic and providing
some background have greatly expanded the book in many places.

Chapters 2 through 6 of this manua l are or9anizea as follows:

Chapter 2, GETTING STARTED, contains a sketch of the minimal
information needed to start entering some dictionary entries into
the computer and getting some output. This chapter is k.ept
relatively _independent of any par~icular computer, therefore where
necessary it refers to Chapter 4 where details of running the
programs on a particular computer system are covered.

Chapter 3 is an approximately complete description of the syste m.
Section 3.2 gives all the conventions used i.n representing
dictionary entries, and Sections 3.4 and 3.5 describe what the
available pro9rams, known as control modules, do. These two
sections are not always entirely up-to-date due to occasional
additions to the system. Sections 3.3 and 3 .. 7 attempt to bridge the
gap somewhat between this description of the system itself and its
application to lexicography.

To actually run a program you need to know the conve ntions for
using the system on a particular computer installation, which may
vary from one installation to another. Chapter 4 describes these
conventions, in the mainframe version of the manual, .for the
University of Hawaii Computing center, and in the PC version, for
the MS-DOS set-up. Sections 4.2 and 4.3 shoN some actual examples
of runs called "recipes".

Chapter 5 i s a collection of t opics oriented t o "tasks" that one
frequently needs to do but which require some combination of
procedures and programs and some skill in deciding among them.
These tasks are thus not easily described in any document that i s

Second Edition. partial draft. Formatted February 2, 1990

1.2 ORIENTATION TO THE MANUAL 9

tied strictly to the structure of the programs. The special "task­
oriented" chapter gives the freedom necessary to discuss these
matters coherently. Some of the tasks discussed are "generating
indexes and finderlists", "storing the data", "sorting the
dictionary", etc . This chapter will grow as neN tasks are written
up.

Chapter 6 gives a technical description of the system. Such a
description would be needed by the programmer interested in
expanding the capabilities of the syste~ to address nev needs and by
someone ~ishing to install the system on a computer .

Pinally there are several appendixes and a comprehensive index of
topics and parameters. Appendix I should logically be an integral
part of Chapter 3, being a complete description of two of the
programs, or control modules, INVERT and INVERT2. Due to its
inordinate length however, it has been relegated to an appendix. A
short summary occupies its place in Chapter 3 instead .

Since certain areas of knowledge or skill, though important or
essential to the effective use of the programs, do not relate
exclusively to the programs, they are not covered or are only
incidentally touched upon in this manual. The principal such areas
are the following:

a. Hechanics

This manual does not discuss using a terminal or pe rsonal
computer, submitting and retrieving jobs and other aspects of using
a computing center. However, some information pertaining to the use
of one computing center is contained in Appendix II of the mainframe
version. Some hints on effective ase of a PC are given in the
corresponding appendix in the PC version.

The single most important computer tool for anyone using this
s ystem of programs, and indeed for almost any computer user, is a
program called an editor. Whether on the mainframe or on a PC, it
is with the editor that the user prepares and edits the lexical
files, composes the snort wspecificationsa file for a run, examines
the output from a run, etc. Indeed, with a good and po~erful
editor, many of the functions of the programs themselves can be
performed. One of the skills the user will acquire is that of
deciding what functions to pel:'forin with the editor and what to
entrust to the programs. The decis ion is mostly a matter of
convenience. In any case, a user of these programs should also be
quite fluent in using an editor. This manual wil l not attempt to
summarize the capabilities of editors, let alone give details of
their use. Nor will we give any advice on the choice of editors,
except to state that for someone asing these programs, an editor is
preferable to a word processor.

Second Edition, partial draft. Formatted February 2, 1990

1.2 ORIENTATION TO THE MANUAL

b. Job Control Langaage (JCL) or other operatinq system command
lan911a9e

10

This is the language (with differing names on different
computers) or other system of co~mands for instructing the computer
to execute programs, to link them together, to look for or deposit
data in files, to display or print files, to manage space and other
compute r resources, etc. To execute any program the user mast
inte ract with the computer system through its command language. In
this manual, mention of JCL or other command language is restricted
principally to Chapter 4. No systematic exposition of this sub~ect
is unde rtaken, however. To understand the command langoaget to take
advantage of its flexibility, and most important, to be able to
diagnos e abnormal conditions (and in particular to be able to detect
whethe r an abnormal condition originated in the program or in the
operating environment), require information beyond the scope of this
manual. Appendix II, however, does give some rudimentary help in
this r e gard.

c. SNOBOL4/SPITBOL pro9ramain9

In almost all of these programs the user may specify certain
information by inserting statements written in the SPITBOL
progLamming language. In some cases large r blocks of statements,
amounting to small pcograms in themselves, may or must be inserted.
In the former case, the user need only folloM b.Y rote the form of
the statements as described in Chapters 3 and 4. To take advantage
of the latter kind of flexibility, a certain amonnt of knowledge and
skill in SNOBOL4 or SPITBOL programming is necessary, which this
manual makes no attempt to impart. The user acquainted with
programming, but not with SNOBOL4 wi11 be able to gain the required
information by consulting the SHOBOL~ manaal {Griswold et al.) and
the SPITBOL manual (Dewar) (both are necessary since SPITBOL is the
actual language used in these programs but the SPITBOL manual
assumes knowledge of SNOBOL4). A growing body of elementary texts
in SNOBOL4 is commercially available, but for the complete novice in
programming some sort of programming course is recommended.

The basic references are:

Griswold, R.E., J.F.Poage, and I.P.Polonsky. %he
SHQ~QL! f~Qg~~mmiDY ~~~.u_age. 2n~- ~il., Prentice­
Hall 1969.

Dewar, Robert B.K.. illl1l.Q~. Y~~llQ.ll _2.jl. I11inois
Institute of Technology. 1971.

The following are introductory texts:

Gaskins, Robert, and Laura Gould. Sl'l.QEOL~: A £.I.Q~~ammin~
Ullfl!ilSl.~ f2.I. .th.e 11.lU!Hlnili.e~- Mimeo. University of
California computer Center. Berkeley, 1973.

Griswold, R.E., and Madge Griswold. A SNO~Q~! £~im~~-

Second Edition, partial draft. Formatted February 2, 1990

1. 2 ORIENTATION TO THE HANUA.L

Prentice-Hall 1973.

Hockey, Susan. SliQD~ U~Q~~~mming fg~ !h~ D~m~nit.i~~·
Oxford University Press 1905

Nevsted, Peter R.
e~a~amminil·

~J!QDQ~!= ln lnt~Q~i.Qn !2
Rochel.le Park 1975.

The following are good for the more advanced programmer:

Gimpel, James F. .A.l.g.o~.i.thms in .Slf.O.llfil&i. John Wi.ley
and Sons 1976.

Griswold, R.E. St.Lin~ and Li~t E.coces.sin~ in
SUQ~QL!: le~hDi~De~ ~4 A~lis;.atiQDQ• Prentice­
Hall 1975.

Hanrer, w. D. the E~g~mmeL!.~ lDt~wln~ion to
~l!Q!iQ.L- American Elsevier 1976.

Tharp, .Alan L. 11112lis;ilions o~ Stli.tbol· North
Carolina State University 1977.

d. Practical •coaaon sense• about osing computers and running
pro9ra11s

11

This unwritten but essential body of lore may be acquired through
experience and by watching or consulting an experienced person in
practical s~tuations. The followinq are examples:

1. When setti.ng up a new run on the mainframe, execute one or
more trial runs on small samples of data, both for timing and for
testing the instructions in the job, before committing yourself to
the expense of a full "production" run. Similarly on a PC, first
ron a program on a small sample of the data, possibly on a special
test file of data, and examine the output to determine that the
results are indeed what was desired, before letting the p.roqram run
on the entire dictionary file. A simple vay to limit a run to a
small amount of data is to use the STOPAfTER parameter, available
for all control modules. Look among the early recipes in Chapter 4
to see how this is used.

2. On inspecting the output from a job, do not assume that the
job ran success.fully. Check several indicators to make sure that
the job ran as desired --- a cursory glance at the output file or
printout may not reveal that the run was abnormally or prematurely
terminated, or that, even thoGgh the job ran successfully, spurious
results were given because the original request was formulated
erroneously (see Sections 4.q and 4.5).

3. Keep good records of your mainframe rans and keep the
printouts from production runs in some systematic way for future
reference. On the PC, foll.ow some systematic method of naming and
keepinq track of your dictionary files, both input and output files.

Second Edition, partial draft. Formatted February 2, 1990

1.2 ORIENTATION TO THE MANUAL

Generally p.ractice good hoosekeepi.ng of your files, both for the
sake o.f manaqing space and for knowing what• s where ..

4. Keep track of your tapes and disks; always make back-up
copies of your important files and keep them in a different place
from the working copies. (This is known as off-site back-op.)

12

5. In trouble-shooting, or even when not apparently in an
abnormal situation, be on guard against taking signs at face-value ..
Appearances can be deceiving.

6. Be aware that it is always possible that there are still
obscure errors in the programs themselves, or in the documentation ..

Such prece~ts are not pecoliar to using these programs alone and so
are not specially treated in these manuals, though some of these
topics may eventually find their way into Chapter 5.

e. LexicOCJraphy

This is not a manual on lexicography. It does not give advice on
how to compile a dictionary, how to find words, how to write
definitions, how to design a pract:ical orthography or decide on an
alphabetical order, vhat information to include in an entr·y, the
role of illustrative sentences, how much cross-referencing to
include, how to structure an entry (see, however, Section 3.3), how
to get funding or make practical arrangements foe a field trip, etc.
These a.re major concerns for the lexicographer bat are not brought
on (though .sometimes they are exacerbated) by the use of a computer ..
Furthermore, there is almost no field of linguistics o~ anthropology
that does not impin<Je on lexicography. A bibliography of all
relevant materials woald be unmanageable. The following is a mixed
bag of references on lexicography, showing some of the variety
avai.lable rather than forming a representative bibliography.

Al-Kasimi, Ali M .. Lin~»istics and Bilin9Aal ~ictiwla£ies,
Leiden: E.J .. Bril1, 1977 ..

Bartholomew, Doris A. and Loaise c. Schoenhals,
~ilingY~l ~i~~ion~~i~§ fQ~ Indig~DQD§ LAD9Y4S-e§,
Dallas: Summer Institute of Linguistics, 1983.

Grimes, Joseph E. 'Methods for Semantic Inventories:
Huichol'. Technical Memo. Cornell University. 1982(?).

, BelaLion~ 4Dd Lin~es in the Lexicon. To appear.

Hartmann, R.R.K., ed. Lexicog~.ph:: 2l:inciples and
Practices. New York: Academic Press, 1.984 ..

Kiefer, Ferenc, ed .. , Stwlies in ~tax illld Semant.ics,
Dordrecht: Reide1, 1970.

Landau, Sidney r., llic~.ioDaLies: the A~~ a..nd C.t.aLt at

Second Edition, partial draft:. Formatted February 2, 1990

. ---···-··----·-- .. ------···.

1.2 ORIENTATION TO THE MANUAL

Mel•chuk, Igor, ~t ~1., ~i~1.i.2n~i•~ ~~2li~~tit et
com~illatoi£e du fi:.au.ca~ contempo,c.aiu.

13

Montreal: Presses oniversitaires de Montreal, 1984.

Hisra, B.G., ed., Lexico~~~hl ill l..ndia. Mysore:
Central Institute of Indian Languaqes, 1990.

Saporta, Sol, and Fred w. Householder, e ds. £~ohlems ill
Lexi~w;i~a~h~, Re port on a Conference on
Lexicography at Indiana University, 1960. Bloomington
1962 C~IJAL 28, No.2 pt.4). Revised 1967.

Sin9h, Ram Adhar, AD In~:c.odiu=~ion to Lexico~a~hJ·
Mysore: Central Institute of Indian Languages, 1382.

Sledd, James H., ed. Dict.io.na4ies and ~hat DicLiOlla.L~·
Chicago, 1962.

Wierzbicka, Anna, Lexico~~a~~ iUld Conc212tual A~.a.l~.si..s·
lnn Arbor: Karoma, 1985-

Zgusta, Ladislav. Hann.a.l o.L Le.xico.g~aphl· The Hague, 1971.

, ed. Ihe01:~ aDd 11..ethod in Le.x,ij:a~~.a.phJ= HesteJ:n and
Hon=~~~t~n fe.J:ll9es:~iY~· Columbia, south Carolina,
Hornbeam Press, 1980.

Courses in l e xicography are also beginning to be offered at some
universities, and a society of lexicography h.as recently been
founded: The Dictionary Society of North America, with its own
journal: Qi~1ion~~igs, ~he JQu~nal ot :the Dic~io.n~ Saci.et¥ of
.N~u:.t.h i!!U~~~ •

Another new lexicography journal is Inte~na.t.ianal Jcu~nai OL
Lexico~~~~h~, published by the Oxford University Press.

The Project on the Lexicon at ~IT regularly puts out reports.

f. Other areas of application of these pcograas

Although these programs were des igned specifically for
lexicographical work, they need not be limited to the p~ocessing of
lexicographical data. They can handle other kinds of highly
structured lists , such as bibliographies and directocies, as well.
Since such uses have not been exte nsively explored and since the
main purpose of t.he programs has so far been lexicographical, thi s
manual contains no systematic treatment of them.

Second Edition, partial draft. Formatted February 2, 1990

1.2 ORIENTATION TO TSE MANUAL 14

Portions of this manual have been pieced together from documents
written at different times by different people, and for slightly
different versions of programs. Although the present manual has
been edited for accuracy and consistency, some errors have do doubt
escaped correction. In any case, not all of the detailed
capabilities and limitations of the programs have been included.
Additions are often made to the existinq programs, and new programs
are occasionally incorporated into the system before they are
documented in the manual. Conversely, you.r copy of the programs may
antedate the version which your manual describes, so that the manual
may mention features not in your programs. Anyone so inclined may
examine the programs themselves (the source code) to glean further
information from the comments therein.

Beginning vith this second Edition, the manual will appear in two
versions, one for the mainframe and one for pc•s. Look on the title
page to see which version this is. They differ only in Chapters 4
and S, and Appendix II.

The manual is sporadically being expanded, especially as new
programs ("control modules") are made available. Minor revisions to
the manual will not warrant a change in the edition numbec. But
copies of the manual printed at different dates may differ in minor
llfays. The edition number and printing date appear at the bottom 0£
each page.

Comments and questions should be addressed to Robert Hsu,
Linguistics Department, University of Hawaii, Honolulu, BI 96822.

How to proceed initially depends on the stage of your inquiry
into these programs.

If you are trying to determine whether this system of programs
would be suitable for your needs without getting involved in the
details, there are several things you can do. Read Section 1.1,
HQrientation to the system" to get briefly oriented, and Appendix
III to get some idea of the lexicographical projects out of which
these programs grew. There is a separate "prospectus", available
from the author, which attempts to answer the initial questions one
is likely to have aboat these programs. You should definitely talk
to previous users of the programs. Some of them have written up
their experiences in internal reports or other documents that may be
available. The author will be glad to refer you to these users. In
fact, I generally insist on discussing with prospective users the
suitability of the programs for their needs before turning the
programs over to them. Finally, it is possible to get your feet wet

Second Edition, partial draft. Formatted P'ebrnary 2, 1990

......... -......... __ .. ____ _

1.2 ORI~NTATION TO THE MANUAL 1 5

in a useful vay without running any programs or e ve n getting neac a
computer: read Chapter 2, "Getting Started•, and try encoding some
of your dic~ionary entries, either on a typewriter or on a computery
in the format reguired by the programs. Sections 3.2 and 3.3 lead
you further into the structuring conventions. ~on should seek the
advice of an experienced user e s pe cially during this stage. If you
find the conventions useful and congenialy then there is a good
chance that you will also find the programs useful.

If you have decided to use the se programs, or at least to try
them out, they will need to be installed on the computer that you
will be using. Write to me for a copy of the programs, which are
available for a nominal fee, telling me what computer you wish to
run them on. Yo u will also need to purchase a copy of the Spitbol
compiler for the .Particular compute r, as well as, for: certain
computer systems , a sort utility. These details, as well as
procedures for ins·tallation, ca.n be worked out with me. In the case
of the PC ve rsion, the details ac e available in one or two
"RElDME"-type files on the distribution diskette. Chapter 6 of this
manual also gives s ome installation information.

If the programs have been installed and you want to make some
runs with them, you will need to prepare some data as well as set up
a run. Chapter 2, "Getting starte d•, provides some initial guidance
in preparing dic tionary entries in the required forma t. Sections
3.2 and 3.3 in Cha pter 3 give more extensive information. You may
use any editor to prepare the data. (If you use a word processor,
make very sure that the file is saved in plain ASCII formatt with
none of the formatting codes that the word processor normally
injects into a document file.) Sections 3.4 and 3.5 describe some
programs that are available, while Chapter 4 gives reci pes for some
common runs. To start with, try setting up and running the three
programs soggested at the end of Chapter 2: LISTGBN, BANDSORT, and
INVERT2. These t e nd also to be the most frequently used programs.

Second Ed~tion, partial draft. Formatted February 2, 1990

. """ .. ,,_ .. ·-- ·-·-·- ---"·-..... ·-·-··-·-----.. ·-- -

This chapter offers a simple way into the system, and re.fers you
to other relevant sections of the manua1 whe.re particular topics are
discussed at greater depth.

Let us assume that you have a collection, possibly preliminary,
of dictionary entries written out on notebook pages or on file slips
that you wish to enter into the computer for further processing.
This has in fact been the most common starting point for users of
·the system. Assuming the programs themselves have been installed
(see section 6.5), there are three classes of things to be done
before you can start running programs on this data:

1. purely administrative and mechanical matters, such as, in
the case of a mainframe, getting an account, finding a terminal or
other data entry device which you can use, learning how to submit
jobs to the computer and to retrieve the output, etc.; or in the
case of a PC, learning to use the operating system, an editor, and
how to manage and print files, etc.

2. decisions about the organization and representation o·f your
dictionary entries; and

3. the actual typing of the entries into computer storage.

We will not address the administrative and mechanical procedures
here since 'they vary from one institution or computer to another and
are not specific to these progra~s, although in Appendix II you vill
find some instructions and advice.

We will dispose of the third step next, and devote most of this
chapter to the second class of decisions since they deserve the most
detailed treatment at the start.

It does not matter how the data is entered into the computer.
The programs operate on a sequential file of lines (or "recocds"),
the most common form in which computer-readable data is stored.
Although in the past such files were entered via key-punch cards,
the current method of choice is directly through an interactive
qeditor" program on the computer. On every computer that can be
accessed from a keyboard there is an editor, often several.
Describing their use is beyond the scope of this manual.

The second class o.f decisions, concerninq how your dictionary
entt'ies are to be represented in a sequential file of lines isf
however, central to the use of the programs and vill be introduced
hei:-e.

You first need to identify some of the diffecent types of
information that are present in the entries. commoo types are

Second Edition, partial draft. Formatted Febcuary 2, 1990

" . ··- _._. ___ ,,,_., ____ , ---...... ,_

2. GETTING STARTED 17

headword (the word being defined), part of speech, definition,
synonyms, and illustrative expression. These types of infocmation
will be explicitly labelled, in the manner shown below, in the
computer repcesentation of your entries. When they are so marted
they are known as "bands", in the terminology of these programs. In
orde.r to mark them, yoa must choose a short mnemonic label for each
band, e.g., "hw" for headword, "psn for part of speech, "def" for
definition, etc.

You will then be able to start typing entries into the computer
in the format illustrated by the following entry:

r~~~~~~~~~~--~~~~~~~~

1. hw
tps
I def
L

aba
n
a smell or f.ragranc:e, pleasant or unpleasant

Figure 2.1

The essential features of this "band format" are as follows: 1)
Each band begins at the start of a new line (in Ncolumn 1", in data
processing jargon), beginning with the band name itself. 2) The
very first band of a dictionary entry is marked by a period {foll
stop) in front of the band name. 3) Following the band name, after
at least one space, comes the •body" of the band--the information
itself.

In the example, the headword of the entry is "aba", the part of
speech is ".n", and the definition is .. a smell or fragrance.··"·

Additional dictionary entries simply follow on subsequent lines,
with the beginning of each nev entry indicated only by the initial
period. Figure 2.2 shows several entries entered in this format.

,.--
f. h w
lps
I def
I
J .hw
fps
I def
tcf
I
t .hw
fps
tdef

aba
n
a smell or fragrance 9 pleasant or unp1easant

abab
.n
the leaf of the bete1 plant
sirih

a bah
n
a gap or notch cut in a tree when fellin<J it

L--·~~~~·~~~~~~~~~~~~~~~~~-~~~~~~_J

Figure 2.2

Blank lines may he introdaced anywhere, as between entries, to
improve the readability, but have no formal significance. Blank
lines are simply ignored by the programs.

Second Edition, partial draft. Formatted February 2, 1990

2. GETTING STARTED 18

Note that the second entry in this example has an additional
band, labeled "cf", a cross-reference band. Remember that the user
may invent band names at will and assign any desired use for the
bands. Past users of the programs have assigned bands for such
information as pronunciation, etymology, morphological analysis,
synonyms, antonyms, con~ugation class, usage level (impolite, taboo,
etc.), scientific name (of flora and fauna), various types of cross­
references, informant name, dialect information, variant forms,
unpredictable paradigmatic forms, field notebook reference,
specialized meanings <when the word is used as a t echnical term in
some specialized field, e.g. sailing, basketry), semantic domain
(kin term, body part, fishing term, etc.), etc. (see Section 3.3.3
for of more poss ible types of information). Any type of information
dif ferent from that in existing bands in your file should be
accorded its own band. There is no restriction on the number of
different bands. Typically dictionaries have grown to use some 40
to 50 different bands, while the largest ones use over 300.

A band name must begin vith a letter, and can contai n any
typeable character except commas, semicolons, and blanks Ca b lank
signals the end of the band name). There is no r estriction on the
length of band names. In general. short band names may be faster to
type but harder to remember.

The choice of band names is not irrevocable. Yon may change the
names of existing bands or add ne w bands whenever you wish. You are
in fact encouraged to add a band whenever yo~ discover a new type of
information, and to revise your system of bands for greater clarity
and consistency. Furthermore, you are encouraged to discover ne~
types of information in your file. even though this may mean going
back and splitting up instances of an existing band. Note that a
detailed categorization of information is not dictated by the
compGter, nor i s it a prerequisite for using these programs.
However, the finer the categoriza~ion and structuring the more
enlightening and usefu1 the file will be, both in itself and as an
object to explore.

Not every dictionary entry of course need have the full
complement of bands. If, for instance, an entry does not (yet) have
a definition, then the corresponding band can simply be left out of
that entry. Some lexicographers proceed by making a skeleton
word1ist first, containing only a headword band and a short
definition band in each entry. Working with an informant, they then
make several passes through the printout, eliciting information for
a particular band in each pass.

In the example in tigure 2.2, the body of each band was quite
short. What if the .body of a band is so long that it cannot fit on
one physical line of whatever display or storage device is being
used? It must the n be continued o n the next line. However, if the
line continues in column 1 of the next line, the programs will
mistake it for the name of a band. (See Figure 2.3 .)

Second Edition, partial dcaft. Formatted February 2, 1990

2. GETTING STARTED 19

r- ,
Ide£ the wild vine, more commonly, the leaf of I
lthe betel plant 1
•

Figure 2.3

In this example, there would be no way to tell that "the" on the
second line is not the name of a band. Instead, the convention for
a continuation line is to be9in after two spaces (i.e., in "column
3"): the first space signals a continuation line, and the second
space is the normal space between the last word of the previous line
and the first word of the continuation. There may be as many
continuation lines as needed for a given band. This method of
continuation is shown in Figure 2.4.

)def the wild vine, more commmonly, the leaf of
I the betel plant used to wrap areca nut shavings
I and lime and chewed
~----

Figure 2.4

Do not hyphenate a word at the end of a line; the hyphen would
become part of the word.

This representation of a band as one or more lines is called a
.. hanging paragraph," which is more completely described in Section
3.2.

A paragraph may, of course, be no more than one line long: it
then does not have any continuation lines. Every band is a separate
paragraph. Conversely, every paragraph in a dictionary file
represents a band.

One consequence of this method of representation is that the
point where a paragraph is broken across lines is not significant;
lines may be of any desired length. The above band may also be
represented as follows:

r--
ldef the wild vine, more commonly, the
I leaf of the betel plant. used
I to vraF aceca nut shavings and
I lime and chewed
'-- -----

Figure 2.5

As far as the programs are concerned, Figures 2.q and 2.5 above
represent the identical information.

It is possible to represent entries that are more complicated
than a simple list of bands. Section 3.2 describes the conventions
for groapinq bands within an entry and foe making subentries. We

Se cond Edition, partial draft. Formatted February 2, 1990

2. GETTING STARTED

will, however, not take up grouping and subentries in this
introductory chapter.

20

A dictionary file, then, is simply a sequential file of lines
such as those in the above examples. It is entered in thLs form and
edited in this form, i.e., as nothing more than a sequence of lines.
The programs will, however, understand the structure. They group
lines together into a paragraph, recognize anything that begins in
column 1 as a band label, look for the period to mark the start of a
new entry, etc. Before we discuss a few programs that can be run on
such a file, we will being up some add~tional decisions you may want
to make before entering the bulk of your material.

If the material in certain bands uses letters and other
characters not available on your terminal or other input device, you
may need to establish some conventions of orthographic equivalence
tor those hands. For instance, a common practice is to indicate
stress by putting an apostrophe (also called a single quote) after
the vowel affected. Another is to use "?" for the glottal stop.
Syllable breaks may be shown by a space. The following example of a
pronunciation band shows these symbols in use:

r·----
fpr a ba•?
L ~~~~~~~~-

Figure 2.6

Note that the apostrophe need not mean stress in all bands, but
only in those bands that you choose. Elsewhere it may be used to
mean other ~hings. In general, you may establish your own
conventions, orthographic and otherwise~ on a band by band basis.
This is known as the 'band-by-band principle• (see Section 3.3.8).
Section S.2 will contain some suggestions about how to handle
orthographic problems.

For all but the simplest bands you may want to establish
additional conventions for punctuation, abbreviations, order o.f
material within the band, etc. Again, the conventions may be made
on a band by band basis. You do not need to and probably vill not
be able to make all these decisions before you start. You may
postpone decisions that are not yet relevant. However, it will sav e
much confusion and editing later if every convention is ~ritten down
and easily accessible, say in a codebook, and if you make sure that
everyone involved vith entering data and proofreading understands
and follows them. A codebook might be a looseleaf notebook with a
separate page (or pages if necessary) for each band, arranged
alphabetically by band name. The band name would appear prominently
at the top of a page, followed below by a short description of the
type of information that it represents. Elsewhere on the page would
be given al1 the conventions that apply within that band. Any
conventions external to the band vould also be noted, such as
whether the band is obliqatory, vhether a certain other band must
follow, etc. If certain conventions or sets of conventions occnr

Second Edition, partial dra.ft. Formatted February 2., 1990

2. GETTING STARTED 21

frequently, they may be given names, defined in a separate section
of the codebook, and referred to only by name on the band-convention
pages.

certain conventions should be established early on. An example
of such a decision occurs when the lexicographer wishes to
anticipate the eventual setting into type of the dictionary. It
will be a simple matter, when t 'hat time comes, to instruct the
computer to set the body of certain bands in boldface, and other
bands in italics, etc. However, if, say the first part of a band is
to be set in italics and the rest in another font, then the point of
change must be explicitly marked in the body of the band. This
marking is more efficiently done when the material is first entered.
In a typical illastration band• for instance, the illustration
itself is often set in ita1ics while the translation which follows
it is in roman, also called mediu~. While the italic shift does not
need to be marke d because that vill always occur at the beginning of
the hand, the point of shifting to medium (so~ewhere in the middle
of the band) does have to be marked . This is often done with the
vertical bar synabol, "I", as in the "il" (for illustration) band in
Figure 2.7.

,-
J.hw aba'b
ldf the wild
I betel p~ant
lil abab »dia
'--·---

I
vine, more commonly, the leaf of the I

I
agih ltwo bunches of betel leaves I

Figure 2.7

Similarly, a shift to italics, as frequently encountered with
Latin binomials, is usually indicated by the percent sign, "I", as
shown in Figure 2.8.

r---
ldf the wild vine, more commonly, the leaf of I
I the betel plant (Sp. 3Piper betlef) used to wrap I
I areca nut shavings and 1ime and chewed I
L----- J

Figare 2.8

Note the shift back to medium before the closing parenthesis in
this example.

Although most users of these programs use "I" and "%" to indicate
shifting to medium and to italics for the anticipated typesetting of
their work, the convention is not dictated by this system of
programs; you may use any other symbols for this purpose if, for
instance, you need •J" or "3n to represent other information in the
band. Other conventions are discussed in Section 5.2.

There is another cot11monly used convention, one which is more
firmly entrenched. It is the use of the asterisk, •••, to mar~, in

second Edition, partial draft. Formatted February 2, 1990

.. _, ... , .. ___ ,, ______ ,, _________ ,_,_ ·-·

2. GETTING STARTED 22

de.finition bands, words that are to be extracted by the ttfinderlist"
program. fhis program constructs an alphabetical index of such
words, called keywords, which indexes back to the headwords whose
entries contain those words. The definition band in Figure 2.9
illustrates the use of the asterisk for marking keywords:

,.-----------·~--~~----~-----~~--------~----~-------,
t .hw abab
f def the wild *vine, more commonly, the
I •leaf of the *betel plant used
I to wrap areca nut shavings and
I lime and chewed
.L

Figure 2.9

I
I
t
I
I _,,

The finderlist generated fI:'om a dictionary containing this entry
would have entI:'ies for "betel", "leaf", and "vine", each conta~ning
a reference to the headword "abab". A complete description of these
and other conventions assumed by the finderlist program., includ.ing
possible overriding of the conven~ions, is contained in Appendix I.

Note that asterisks are used for this purpose only in definition
bands. In other bands asterisks may be used for other purposes,
such as to mack reconstructed forms. This is another example of the
band-by-band principle, whereby a convention need not be applicable
to all bands in a dictionary but only to certain stated bands.

Again, it should be emphasized how important it is to write down
all band-sp_ecific conventions in a codebook.

Using the few conventions discussed above, you might now have
some entries that look like this when entered into the computer:

Second Edition, partial draft. Formatted Yebraa£y 2, 1990

.. --·"'

" "

/

r
I .hw
lpr
ldf
lcf
I
1. hw
I pr
ldf
lphr
tphr
lphr
t

2. GETTING STARTED

aba
a ba •
a •smell or *fragrance , pleasant or
bau

a ba•?
•at, *atop, •in, •on
aba' mija, Ion the table
aba• geladak, I on the floor or
aba ' jelatong, Ion the jetty

deck

1- hw abab
lpr a ba•b

• I
unpleasant I

I
I
I
1
1
I
I
I
I
I
I

ldf the vild •vine, more commonly, the leaf of
I *betel plant (Sp. 3Piper betlef) osed to wrap
1 areca ·nut shavings and .lime and chewed

the I
I
I

lcf sirih
Incl agih
lphr abab
I

a bah
a ba'h

dua agih, ltwo bunches of betel leaves

f. hw
lpr
ldf
lil

a gap or •notch cut in a tree when felling it
Abah ia dalam, Ibis notches are very deep. .___

Figure 2.10

I
I
I
I
I
I
I
I

23

The flncl" band name in Figure 2.10 stands for •numeral classifier•.

If you are unfamiliar with the terminal or other data entry
device you will be using, yon should first type up entries on paper
in this format before sittin9 down at the terminal.

Once a file like this is in computer storage, what are some
useful programs that can be run o n it? In this chapter we will
mention the three most commonly used programs.

The first is called LISTGEN, vhich prints the file out on paper
Coe prepares another file ready for printing or examination on the
scx:een) with some indentations and blank lines to show the structure
of each entry mo.re · vividly than does the input format. The Listgen
forma t (l-format) is the usual form for workinq copy--the printout
on which editing is done. Making allowance for the artificially
narrow space in the example box, the above long sample in Figure
2.10 would come o ut looking something like this (Figure 2.11> in 1-
forma t:

Second Edition, partial draft. Formatted February 2, 1990

2. GEtTING STARTED 24

r ---,
11 .hw
I
I
I
I
I
12 .hv
I
I

aha

aha'

a ba' pr
df a *smell

on pleasant
or •fragrance, pleasant or

cf bau

pr
df
phr
phr
phr

a ba•?
•at, *atop, *in, •on
aba• mija, Ion · the table
aba' geladak, ton the floor or
aba' jelatong, Ion the jetty

dee.le

I
I
t
I
t
I
I
I
I
I
I
I
I

3 .hw abab I

ll .hv
1
I
I
I

pr a ba•b I
df the wild *vine , more commonly, the leaf ofl

the •betel plant (Sp. %Piper betlel> used to I
wrap areca nut shavings and lime and chewed I

cf sirih I
ncl agih I
phr abab dua agih, ltwo bunches of betel I

leaves I

a bah
pr
df

it
il

I
I

a ba•h l
a gap or •notch cut in a tree when fellingl

I

I.-----
Abah ia dalam, lhis notches are very deep.I

.J

Figure 2.11

Note that there is neither more nor l ess in.formation in this, nor
is any information rearranged. It is merely in a more readable
format. Also note that the LISTGEN program numbers the dictionary
entries. The listgen output is of coorse a separate file; the
original fi le is left untouched, and continues to be the master file
for editing. None of the programs alter the master file.

Row exac tly you run the LISTGEN program depends on your computing
syst em and on hoM the programs were set up to run there.
Instructions are given in Chapter 4. In particular, see the
"recipes" section, 4.2, for the simplest LISTGEN run.

Another commonly used program is called INVERT Coe the similar
but more ad vanced INVERT2), which generates an alphabetized
"finderlist• asing the asterisked words in the definition bands. If
ran on the sample dictionary in Figure 2.10, INVERT would generate
an output that looks something like Figure 2.12. Note that every
starred word in a de£inition band appears in this alphabetical list
of English ~ords, and that the entire definition appears as many
times as there were stars in it~ The stars are dropped in the
finderlist, however.

Second Edition, partial draft. Formatted February 2. 1990

r­
lat
1

atop

betel

fragrance

2. GETTING STARTED

at, atop, in, on:: aba'

at, atop, in, on:: aba'

the wild vine, ~ore com~only, the leaf of the
betel plant (Sp. ~Piper betlel> used to wrap
areca not shavings and lime and chewed:: abab

25

t
I
I
I
I
I
I
I
t
I
I
I

lin

' I
I notch
I
I

a smell or fragrance, pleasant or unpleasant::

at, atop, in, on:: aba'

a gap or notch cut in a tree when felling it::
abah.

abal
I
I
I
I
I
I
I

I
Ion
I
I

at, atop, in, on:: aba'
' I
I
I

' I smell
I a smell or fragrance, pleasant or unpleasant:: abal
I
I vine
I ,
1
I

the wild vine, more commonly, the leaf of the
betel plant (Sp. ~Piper hetlel) used to wrap
areca nut shavings and lime and chewed:: abab

1
I
I
I
I

'--- __.
Figure 2.12

A larger dictionary would have produced a more interesting
f inderlist having typically many more entries under each keyword. To
ron this program you need to tell the program vhat bands to look for
asterisks in 7 in th.is case only the band "dfn. To do this, you need
to place a statement into the program that looks like this:

.BANDS = •Dr•

See Section 4.3 for a recipe for running INVERT. Appendix I gives
instructions on specifying the bands in which the program is to look
foi:: asterisks.

There are other symbols besides asterisks you can put in your
definition bands to qaide the program in picking out keywords and
the longer phrases in which they are embedded. These are described
in Appendix r. which is the complete document on using the INVERT
and INVERT2 ·prograJUS.

Second Edition, partial draft. Formatted February 2, 1990

. ----· .. ·-·------·-

2. GETTING STARTED 26

The .final program to be mentioned in this intI:'oduction is called
BANDSOBT. It simply sorts all the bands in a dictionary file as if
they were separate items and not part of any entry. It does,
however, carry along the headword. placing it at the left of each
bana, so that you can tell which entry each band came from. The
bandsort from ou:c sample file would look something like Figure 2 .. 13:

~

aba
abab

Cf
cf

bau
siri.h

I
I
I

aba'
aba
abah
abab

df
df
df
df

•at, •atop. •in, ~on I
a •smell or *fragrance, pleasant or unpleasantl
a gap or •notch cut in a tree when felling it I
the wild *vine, more commonly, the leaf of thel

*betel plant (Sp. IPiper betlel> used to I
wrap areca nut shavings and lime and chewed I

aba .hw
aba' .hw
ab ab .hw
a bah .hw

abah il

abab ncJ.

aha' ·phr
aba' phr
aba' phr

a'ba
aba•
abab
a bah

A bah

agih

aba•

ia da1am, lhis notches are very deep.

geladak, Ion the floor or
jelatong, Ion the jetty
mija, Ion the table

deck

I
I
1
I
I
I
I
I
I
I
I
I
f

abab phr

aba•
aba•
abab dua agih, ltwo bunches of betel leaves I

aba
aba'
abab
a bah

pr
pr
pr
pr

a ba•
a ba'?
a ba'b
a ba'h

Figure 2.13

In this output, all occurrences of the same band are grooped
together and subsorted on the body of the band itself. The headword
of the entry to which the band belongs appears at the far left.
Many lexicographers have felt that this is one of the most widely
useful printouts. It can be used to find all entries having the
same or similar information in a given band, e.g. all entries with
"n" in the "ps" band. It can also be informative to look at those
entries vith bands which occur only rarely. The output of a
bandsort is also useful as a proofreading aid, allowing one to scan
only one type of band at a time payin9 attention to only the
conventions relevant to that band.

There is a recipe for canning the BANDSORT program in section
4.3.

Second Edition, pa.rtial <li:aft. Formatted February 2, 1990

I
I
I
I
I

2. GETTING STARTED 27

This chapter has deliberately been kept short. At this point you
may find it instructive to encode a fev dictionary entries of your
own, poss ibly trying more than one way to translate your entries
into the band format. As you encounter practical problems in this
process, you may find the more detailed discassion in Sections
3.2-3.3 helpful. You should also seek the advice of someone
experienced with the system before .rou spend too much time entering
your ~aterials, in order to catch potential problems and
misunderstandings.

After you have worked op one or two dozen representative entries
in this way, type them into a computer ~ile observing the
conventions described above and in the next chapter. Then run a
LISTGEH, a BANDSORT, and an INVERT on the file, and examine the
output, again preferably seeking the advice of an experienced user.
This may r esult in modifications to your encoding scheme. Make the
changes, and add a few dozen more entries, and run the programs
again.

By now you should have started your codebook.

Even after your conventions seem to have stabilized, continue to
run t hese programs periodically on your graving database and scan
the oatpats. ~ou may discover patterns i n your material which you
would want e ither to take advantage of in some way or to alter. Do
not wait until all your material is in before r~nning a set of
programs. The usefulness of the programs lies in bringing out
patterns while the work is in progress, and not so much in producing
a "final• prodact. The three programs mentioned above are probably
the most oseful for any dictionary. For an individual languaqe
other programs may also prove to be he uris t i cally useful.

Second Edition, partial draft. Formattea February 2, 1990

....... - ____ ---

This chapter gives a detailed description of the system from the
nser• s point of view. (Chapter 6 gives a t echnical view for the
programmer.) The first section, 3.1, describes the overall
organization of the programs. Sections 3.2 and 3.3 set out the
conventions for representing lexical data in a computer file, while
sections 3.4 through 3.7 have to do vith the actual programs and
thei.r use .

The s ystem consists of two general programs, BIRDBATH and TOAST.
BIRDBATH operates ~y reading through a dict ionary tile from
beginning to end, performing specified operations on the data read
in. (The file itself is never altered.) These operations may
invo.lve formatting the data fm: printing, selecting entries on the
basis of certain criteria, copying certain types of information into
another file, etc.. This program does not do any sorting, that is,
r earranging of the data- To sort or to do anything requiring
sorting the other program is used . That program, TOAST, starts by
also reading through a dictionary file, but i n the process it
generates a file suitable for sorting. It the n sorts this file and
finally processes the re-ordered file . <Again, the original file is
l eft unchange d.)

When you run BIRDBATH, you must tell it what type of operation
(suc h as the three mentioned above) you want it to do. This is done
by t ellin g it to use a certain "control module" corresponding to the
desir ed. type of operation. For instance, LIS'l'GE.N is the name of a
control module that formats the dictionary in the standard printout
format . The control modole is actually a s mall piece of program
that is i nserted into the main BIRDBATH program and that controls
wha t operation BIRDBATH does on a dictionary file. Similarly a
TOAST control module is a piece of program inserted ~nto the TO~ST
program.

There is a collection. or "library", of control modules, each of
which does some particular type of thing when inserted into
BIRDBATH. The r e is a separate library of control modules for TOAST.
Whenever a new need is encoantered that is not addressed by an
existing module, either an existing module can be generalized t o
s atisfy that need or a nev module must be writte n. BIRDBATH and
TOAST ve r e designed with the goal of making such modul es easy for a
programmer t o write. If the new module is a specialized one which
is l ikely never to be needed again, it can be simply thrown away
after it is used, but if it is of genera.l i nte r est it may be
incorporated into the standard 1ibrary of modules and a description
of it would be added to this manual. You may also accumulate your

Second Edition, partial draft. ~ormatted February 2, 1990

·-------· .. ·------·---

3.1 STRUCTURE OF THE SYSTEM 29

own collection of modules. In Sectio.ns 3.4 and 3.5 you will find a
list of existing standard control modules for BIRDBATH and TOAST,
respectively, with a description of what they do and the options
available with each.

r ·f you need to write your own control module, you have to know a
certain amount of SNOBOL4 programming and hov BIRDBATH and TOAST
work. The latter is explained in Chapter 6.

When asing a control module. in addition to giv~ng the module•s
name you may need to give more specific information, the so-called
SPECS parameters, to specify in greater detail what the program
should do. For instance, for a control module that selects only
certain bands of a dictionary you need to specify the names of these
bands. The SPECS parameters relevant to ~ach control module are
discusse d vith each module (see Sections 3.4, 3.5, 3.6).

The SPECS statements are regular statements in SNOBOL4 or
SPITBOL, the programming language in vhich the entire program system
is written. These statements become part of the program. When yon
write such statements you should ose the example SPECS statements
(shown in varioas places in Chapters 3 and 4) as models, especially
with regard to the placement of spaces (blanks). Where spaces are
shown, be sure to leave at least one space (more than one if you
wish, but at least one); where you see no spaces, leave none. This
also applies to the beginning of the statement. Most statements, as
shown, begin with spaces (do not begin in column 1 or the very left
of the line). Those that do start in column 1 are sho~n starting at
the left margin in this manual.

Certain kinds of specific information of a more comp1ex kind,
typically requirin9 the description of procedures rather than the
specification of values, may be required by some control modules.
Such information is called "user functions " and these are usually
placed in a file designated USERFNS.

Pinally, there is more general information not specific to
BIRDBATH or TOAST that you have to provide via Job Control Language
CJCL for short) or other command 1anguage understood by your
computer system, in order to tell it that you want to run BIRDBATH
or TOASt, what files to use, and other administrative details.

This language and associated r1tuals vary from computer to
compute r, depending on how the programs were installed,
idiosyncracies of the computer system, etc. General instructions
therefo~e cannot be given here. Chapter 4 and Appendix II provide
some guidance for specific systems. Chapter 6 contains some notes
that may also be helpful.

Sec ond Edition, partial draft. Formatted February 2, 1990

................ ·--·------~-----· ..

3.1 STRUCTURE OF THE SYSTEM

Before we describe the availab1e control modules we need to
describe the form of the data that the programs operate on, i.e.
how a dictionary is represented in a compoter file . Sections 3.2
and 3.3 will be d e voted to that.

Second Edition, partial draft. Formatted February 2, 1990

30

'''""""'' ------------

31

Lexical information is represented in a computer dictionary file
~ith the conventions described in this section. Each entry in the
dictionai=y consists of a sequence of "bands". l band usually
corresponds to one of the categories of information present in the
dictionary, such as part of speech, definition, synonyms, etymology,
cross-reference, and even the headword itself. There is potentially
an unlimi ted number of categories one might be able to identify. It
is up to the user to decide what categories to label in a 9iven
.lexical file.

il• .Band na.m~

For each band the user invents a short mne monic name, typically
of two to four letters. The band name must begin vith a letter and
can contain any typeable characters except blanks, commas, and
semicolons. Do not use upper and lowe~ case to distinguish band
names. Capital and lover case band names a r e normally not
distinguished from each other by the progi=ams. For instance, DP,
Df, dP', and d'f are all considered to be the same band name by most
of the programs. For clarity in text we tend to cite band names in
caps even though they may be in lower case in the Figures. (Of
course, capitals and lower case letters are considered distinct in
the res t of the band, the •body" of the band.) The following might
be appropriate band names for the categories of information
mentioned in the last paragraph: PS, DF, SYN, ETY, XR, ew.

Three band names have special meanings in certain contexts, and
it would be simplest to avoid them except. for those purposes. They
are TITLE, FILE and LIST. Their uses are described in Section
3.3.3, Uses of Bands.

b. llod~ of lurnds

Eacn band consists of a band name followed, a.f ter one or more
spaces, by the "body" of the band, which may co.ntain any typeable
material. The body of the band represents the actual information
(the part of speech, etymo.logy, etc.) in the band. The user may
wish to establish a particular format and other conventions to be
observed in each band. Some conventions have become customary, and
certain others are expected by some of the proqrams. The
conventions are discussed in the sections vhere they are applicable.
Thus, a band may look something like this:

r
ldf silence, stillness I

.J

Figure 3.1

Second Edition, partial draft. Formatte d Tebcuary 2, 1990

3. 2 ORGANIZATION & REPRESENTATION OF .ENT'RI.ES 32

In this example, the band name is DF, and the body of the band
consists of "silence, stillness•.

There must be at least one blank separating the band name from
the body. For clarity we usually l e ave about three , and the
programs, when ~roducing band-format ontput, insert a variable
number in an attempt to line up the start of the body at a fixed
column. The actual namber of blanks is not significant. In fact,
it is not possibie for the first character of the body to be a
blank. Kor for the last.

The body of a band may be left empty. This might be done, for
instance, if the pertinent information is not yet known for a
particular entry and i~ is desired to explicitly signal this fact.
Of course the entire band, name and all, may be l e ft out. There is
no way, hoKever, to leave off the band name itself and enter only
the body of the ba nd.

An entry in the dictionacy is a sequence of bands that belong
together, typically because they all pertain to the same headword.
Normally the f irst band of the sequence would contain the headword.
The first band of an entry is formally distinguishe d hy having a
pei:iod (full stop) before the band name-with no intervening space.
The following group of bands would constitute an entry:

r----
1.hv f i :le:mu: I
lps . NOf"I I
ldf s ilence, stillness t
lil ko te fi:le:mu: o t e po I the silence of night I
~~~~~---~~~-~~~~-~~~--~~---~~~~~ 

Figure 3.2 

The headword is "fi:}e:mu:". (It is a common convention to use 
":" to indicate vowel length.) The part of speech i s "NOH", and the 
definition is "silence, stillness". Another common convention, one 
that maximizes the amount of infor~ation coded, is to not capitalize 
the first Mord of a definition nn1e ss the word is a proper name or 
otherwise normally capitalized. There is an illus tration (IL) band 
with a short phrase and its translation. (Another common 
convention: in illustration bands the beginning of the translation 
is marked by a •Jn sign.) 

The headword band need not, of coarse, be named HW. In fact, 
even within the same dictionary the heaawora band can 90 by 
different names if desired, for instance, to indicate what kind of 
lexical unit it is: RT for root, SUF for suffix, CPD for compound, 
e tc. 

Not all the bands used in a dictionary need be represented in 
each entry. Of the dozens of different bands used, often only five 

Second Edition, partial draft. Formatted February 2. 1990 



........ ·-----··----

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES 33 

or six will appear in any given entry. The bands should appear in a 
consistent order. However, ordering of bands is a matter of 
preference, and is not enforced by any of the programs. There is a 
control module that can be used to put them into a specified order. 
A given band may be repeated withi.n the sa.Jne e ntry if multiple 
instances of the same category of information are to be included. A 
typical case is when there are several illnstrations: then the IL 
band (if that is the name of it) can occur more than once, with a 
different body each time. 

Entries simply follow one after the other in the file without a 
break, the period before the first band of each entry being the only 
thing to ma.rk t.he start of a new entry. 

Each band is represented in a computer file as a "hanging 
paragraph". Roughly. this means that it begins at the very left of 
a line. i.e., without any initial blanks, and if the band needs to 
be continued onto subsequent lines those lines must normally start 
with two blanks. The first of these blanks signals a continuation 
line, and the second is the blank between the last word on the 
previous line and the first one on the continuation line. If you 
want to have tvo blanks between tbe last non-blank character on one 
line and the first non-blank character on the continuation line, 
then begin the continuation line with three blanks. The first blank 
is, again, the continuation indicator, and the remaining two are 
"real" blanks. Wi·thin the paragraph then, i.e. apart from line-end 
blanks (which are ignored) and the single initial blank of 
continuation lines, blanks are taken as significant data--part of 
the contents of the paragraph, and one blank is different from two 
blanks, and so forth. It is irrelevant where the paragraph ~s 
broken across lines however. Thus, there is freedom to break 
paragraphs according to the available width of the paper, screen, 
storage device, etc., on which the paragraph is printed, displayed, 
or stored. In Chapter 2 we displayed two representations of the 
identical paragraph. See Figures 2.4 and 2.s. 

The complete set of hanging paragraph conventions are given .in 
Section 3 • .2.3. 

It is often necessary to distingnish separate gronps of bands 
within an entry. If, for instance, there is a definition and an 
illustration for the noun use of a word, and a similar set of bands 
for the verbal use, one would want to show that the first set of 3 
bands (part of speech, definition, and illustration) belong 
together, and similarly for the second set. This is done by putting 
numerals in front of the band names. A11 bands having the same 
numeral before the name belong together. Please note i .n Figure 3. 3 
how the numerals serve to make three groups of hands. 

Second Edition, partial draft. Formatte d February 2, 1990 



·-··-· .. ·-· ... -·----~------

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES 

r-- ~ 

l.hw fi:le:ma: I 
I 1 ps NOM I 
11df silence, stillness I 
l1il ko te .fi:le:mu: o te po lthe silence of the I 
I night I 
l2ps VB J 
12df be quiet I 
l2il e fi:le:mu: te vahega lthe class is quiet I 
l3ps QUAL I 
l3il he po: fi:le:mu: la silent night I 
13il havali fi:le:mu: lwalk silently (or quietly) I 
l3il fenua fi:le:mu: lpeaceful land I 

Figure 3.3 

34 

Each group of bands with the same number before it belongs to the 
same "mode", and the numerals are called . mode prefixes. There are 
no formal restrictions on the use of mode pre fixes. Any constraints 
are more a matter of whether you can put a r e asonable interpretation 
on a given use. It should also be pointed out that the 
int erpretation pnt on the modes <groupings of bands) is not 
prescribed; you may use modes <and submodes, see below) for whatever 
purpose or meaning you wish. Formally, they are simply groups of 
bands, no matter for what reason one may want to group them. A mode 
is strictly a con·tiguous group of bands; one cannot have mode 1 
bands, f or instance, separated by bands of ~ode 2. 

It make s most sense to nu~ber all modes beginning vith 1 and 
increasing.' However, frequently bands may be encountered at the 
beginning of an entry that do not have any mode numbers: this 
implies that these bands nbelong" to the whole entry and not to just 
one group of bands within it. Typically these might be 
pronunciati on bands, or etymology. or alternate forms. There may 
also be mode-less bands at the end of an e ntry; these might be 
cross- r e ference or synonym bands. 

If the mode numbers become greater than 9, one may start £rom 1 
again. Do not go to double digits, i.e., 10, 11, etc., since two 
digits indicate submodes, and three digits s ub-submodes, etc. (see 
below). It is rare to need more than 9 modes, however. 

A more common need is for sub-modes (ana sub-submodes, etc.), 
i.e. for groups within groups. A second (and third etc.) digit is 
used to gather groups of bands within a primary (secondary etc.) 
gro up. Figure 3.4 shows snbmodes. Study the numbering system 
carefully. 

second Edition, partial draft. Formatted February 2, 1990 



3.2 ORGAKIZATION & REPRESENTATION OF ~NTRIES 

r--~~~~~~--~~~~-~----------~--~------~-----. 

t.hw .fi:le:mu: 
I 1ps NOH 
l11df silence, stillness ' I 
l11il ko te fi:le:mu: o te po lthe silence of the 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I night 
t 12df peace 
12il ko te fi:le:mu: o te Atua lthe peace of God 
2ps VB 
21df be quiet 
21il e fi:le:mu: te vahega lthe class is quiet 
22df be in peace 
22il e fi:le:mu: te la1olagi 
23df be gentle 

1 
I 

23il nae fi:le:ma: lele te puhi lthe cat was very I 
I 
I 
I 

gentle 
3ps QUAL 
3il he po: fi:le:mu: la silent night 
3il havali fi:le=mu: lvalk silently (or quietly) I 

I 3il fenua fi:le:mu: lpeacefui land 
·-------" 

Figure 3.4 

~· ?or.ma.1.s 

35 

Although this format, known as p-format (paragraph format), is 
rather difficult to read, it is easy to type in and to edit, and is 
simple .for storage and proqramming purposes. 

However,- one does not norma.lly work from a printout such as the 
above. One of the programs, called LISTGBN, prodnces a formatted 
printout which is much easier to work with, containing indentations 
and blank lines, and plenty of white space for writing in. The 
example entry in Fiqare 3.4 would be formatted by LISTGEN as shown 
in Figure 3.5. Please compare the two figures. This format is 
known as L.ISTGEN ·format or 1-format. 

Second Edition, partia1 draft. Formatted February 2, 1990 



........ " ..... ·-·-·--------··---

I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 

.hw 

3.2 ORGANIZATION & REPRESENTATION OF £NTRIES 

fi:le:mu: 
1ps HOM 

11df silence, stillness 
11il to te fi:le:mu: o te po lthe 

silence of the niqht 

1'2df peace 
12il ko te fi:le:mu: o te Atua lthe 

peace of God 

2ps VB 
21df be quiet 
21i1 e fi:le:mu: 

class is quiet 

be in peace 

te vahega lthe 

22df 
22il e fi:le:mu: te lalolagi 

23df be gentle 

-. 
I 
I 
I 
I 
I 
I 

' I 
I 
I 
I 
I 
I 
I 
I 
t 
I 
I 
I 
I 

23il nae fi:1e:mu: 1ele te puhi 
cat was very gentle 

I the I 
I 
I 

3ps QUAL I 
3il 
3il 

(or 
3il 

he po: fi:le:mu: la silent niqhtl 
havali fi:le:mn: lvalk silently I 
quiet1y) I 
fenua fi:le:mu: lpeaceful land I 

I 
L-·-----

Fi9ure 3.5 

36 

Another formal device available is that for indicating sub­
entries. A sub-entry is typically used .for a derived word Ca word 
derived from the main entry headword). A sub-subentry would be for 
a word derived from that derived word, etc. A sub-entry looks 
exactly like a main entry (the type we have been assuming) and can 
have all of the band and mode structure, except that its first band 
begins with two periods (full stops) instead of one. A sub-subentry 
begins with three periods, etc. There can be as many sub-entries as 
desired. They are placed consecutively after the main entry to which 
they are subordinate. Sob-subentries subordinate to a given 
subentry are placed after that subentry. And so on. This can go on 
to any depth--by adding more periods. When printed out by the 
LISTGEN program, the entire sub-entry is indented a little further 
than the main entry, and sub-subentries are indented a little more, 
etc. Fiqure 3 .. 6 shows a main entry followed by three subentries, in 
the input format. Figure 3.7 shows a LISTGEN of the same material. 
Please compare them. 

second Edition, partial draft. Formatted Feb.['uary 2. 1990 



............................... --·-----~-------

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES 

-----., 
I .hw ahu 
I 1ps n. 
l1df heap, mound 
12d£ sacred mound used in certain rites 
l2il Tohinga mauritanga o papa ma ki mua ki te 
I ahu (M. 248). 
l3ps v.t. 
l3df heap up 
l3il Katahi ka ahu raua i ta raua tuaaho 
I (W. v, 75). 
14ps a. 
l4df heaped up 
l4il He mea ahu nga onepu e nga ringaringa o te 
I tohunga {M lxxxiii). 
J •• hw ahunga 
lps n. 
ldf heaping up 
lil te ahunga oneone, te aponga ki punga ra 
I {!1. 127). 
1 •• hv whakaahu 
l1ps v .. t. 
l1df heap up, lay in a heap 
l1il Whakaahua koe ki te ahi rarauhe (M. 5). 
l1il Whakaahutia he aruhe ki runga ahi. 
12ps v • .i. 
l2df swell up 
lldf be displeased, dissatisfied 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
f 

f Jil Katahi te tangata vhakaahu ki aka 
I ah'u ana au i te pukapuka a Henare: ko 
I ahu tenei, te haere ia ki Wharekahika 
1 •• hv ahuahu 

kai.-Whaka I 
tako whaka I 
kati mai ai.t 

f 1ps v.t. 
l11df heap up 

I 
I 

l11il He mea ahuahu nga puke hei taunga mo a ratou 
I teka. 

f 
I 
I 

l12df earth-up crops, etc. 
l2ps n. 
l2df the process of earthing up 
l2il I o mai a Paikea ki enei motu 
I tupuketia ai te ahuahu (W. iii, 35). 
t. 

Figure 3.6 

I 
I 
I 

i te wa i I 
I 

Second Edition, partial draft. Formatted FebruaI:'y 2, 1990 

31 



... 
I. hw 

' I I 
I 
I 
I 
I 
I 
I 
I 

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES 38 

aha 
~~~~~~--~~--. 

1ps n.
1df heap, mound

2df sacred moond used in certain rites
2il Tohinga mauritanga o papa ma ki mua ~i

te ahu (M. 248).

3ps
3df
3il

(W.

v.t.
heap up
Katahi ka ahu raua i ta raua tuaabu
v, 75).

4ps a.
4df heaped up
4il He mea ahu nga onepo e nga rin9aringa

o te tohunga (M lxxxiii) •

I
I

'

•• hw ahunga
ps n.
df heaping up
il te ahunga oneone, te aponga ki punga ra

(l1. 127).
I

•• hw whakaahu I
1ps v.t. I
1df heap up, lay in a heap I
1il Whakaahua koe kite ahi rarauhe (M. 5).1
1il Whakaahutia he aruhe ki runga ahi. I

I
2ps v.i. t
2df swell ap I

I
3df be displeased, dissatisfied I
3il Katah~ te tangata whakaahu ki aku kai. I
--Whakaahu ana au i te pukapuka a Henare: I

ko taku whakaahu tenei, te haere ia ki I
Wharekahika kati ma i ai. I

I
•• hw ahuahu I

1ps v.t. I
11df heap up I
11il He mea ahuahu nga pnke bei taunga mol

a ratoa teka. I
I

12df earth-up crops, etc. I
I

2ps n. J
2df the process of earthing up I
2il I u mai a Paikea ki enei motu ••• i teJ

~a i tupnketia ai te ahuahu Cw. iii, 35). I
L~--~-----~~-

____ __,

Figare 3.7

Second Edition, partial draft. Formatted February 2, 1990

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES

Below is a brief summary of the conventions for representing
entries.

39

1. Each type of information (headword, part of speech,
definition, etc.) starts on a separate line. This representation of
a type of information is called a BAND.

2. Each type of information is labeled with a short BAND NAME
of your choice. The name must beqin with a letter, and may contain
any characters except blanks, commas, and semicolons. Upper and
lower case have no distinguishing valne in band names.

3. Not every band used in a dictionary need be !>resent in
every entry.

4. l band may be empty -- band name only, no body.

5. A band may be repeated within an entry.

6. The information within a band is called the BODY of the
band. You may subdivide the body of a band into fields if desired,
according to any convention you choose.

7. The order of bands within entries should be, though need
not be, consistent from entry to entry.

a. Bands within an entry may be gcouped and subgrouped to any
depth. A set of consecutive bands belonging to the same group is
indicated by having the same numerical MODE PREFIXES before the hand
names (no intervening space). Top level, no prefix. First level
1,2,3, etc.; second level 11,12,13, ••• ,21,22,23, etc.; third level
111,112,113, ••• ,121,122,123, ••• ,211,212,213, etc.

9. The first band in an entry, usually the headword band, is
marked by a period before the band name, e.g., .aw

10. The first band of a sub-entry is marked by two periods,
i.e., •• HW, sub-subentries are marked by three periods, etc.

11. The hierarchy of subentries is indicated only by physical
order: e.g., a sub-subentry is considered subordinate to the closest
previous subentry. Subentries always follow the main entry to which
they are subordinate.

12. The prefix (if any), the periods (if any), plus the band
name Cno blanks in any of this) constitute the BlND LABEL. The band
label is separated from the body of the band by one or more blanks.
The exact number used is not significant, as long as there is at
I.east one.

Second Edition, partial draft. Formatted February 2, 1990

----·-·· ,,,,_,_,,_,,, .. _,,_,, __ _

3.2 ORGANIZATION & REPRESENTATION OF ENTRIES

13. A dictionary file consists only of a sequence of bands.
It is divided. logically into .. entries" only by the fact that the
first band of each entry has a sinqle period preceding the band
name.

40

14. There may be any number of entries in a dictionary file;
there may be any number of bands ~n each entry; and there may be any
number of different bands nsed in the dictionary.

15. Each bdnd, startinq with the band label, is represented on
records (i.e. lines) in a file as a single "hanging paragraph" as
described below.

The fo11oving conventions are ased for representing variable­
lenqth units of text, such as bands, on limited-length records,
e.g., punched cards, line.s in disk files, or printed lines on paper.

1. The paragraph starts in column 1. It may not start with a
blank.

2. If a paragraph exceeds one record, continue in column 2 of
the next record (leavinq column 1 blank). Any blanks at the end of
a record ace ignored (nnon-siqnificant blanks•). Column 2 of the
continuation record is considered to come right after the last non­
blank character on the preceding record.

3. ls many continuation lines may be used as needed to
accommodate a paragraph.

4. All blanks within a paragraph, i.e., all blanks other than
line-end blanks and the single initial blank of continuation li.nes,
are treated as significant blanks.

5. A fixed-length field may be reserved at the beginning of
each record for identification or other information. It will not be
processed by the programs. "Column 1" would then refer to the first
column to the right of this field.

Second Edition, partial draft. Formatted February 2, 1990

This section explores in greater detail the ways in which the
format conventions described above may be used in encoding
dictionary entries. We point out alternative ways of representing
certain structures, as well as soine limitations of the formalism.
We also mention some lexicographical problems that encoding of a
dictionary naturally brings up, though since they are linguistic
rather than data structuring prob1ems, no attempt is made to offer
sol.utions.

41

These are primarily lexicographic matters, but the fact that the
dictionary wil.l be computer-processed could have something to do
with how you decide to resolve them.

(Note that by .. entry" we mean the entire body of material
associated with a given headword. By contrast, in some of the
lexicoqraphical literature, and in the front matter of some
dictionaries, "article" is used in place of our "entry", while
.,entry" oc "entry word" refers to only the headword.)

The first question concerns the kind(s) of lexical unit: What
units is this a dictionary of? That is, are the main headwords to
be roots, stems, words, or other kinds of units, or all of these?
What kinds of derivatives and compounds will be included as
headwords, ~ith their own main entries or subentries? Will (some)
idiomatic or frozen expressions get their own main entries, o·r will
some of them be relegated to snbentries, or even to bands within an
entry? In the case of languages with highly productive word
derivation, and of polysynthetic languages, which.of the many long
morphological constructions vill be chosen as headwords?

Closely related is the question of how to treat derivatives ana
compounds, and, in general, "families .. o.f related items. Are
derivatives--i.e., words derived from roots or other words--to be
given their own main entries or will they be listed as subentries
under their parent forms'? In the case of compounds, under which of
the components of a compound vill the compoond be filed? Idioms and
other frozen expressions may be f~led as sabentries or in special
bands reserved for these expressions. Derivatives may be easier for
the user to find if they are given their own main entries and liled
alphabetically among other main entries. Bat it may be more logical
and linguistically more productive to file them as suhentries under
their respective roots.

Having the entries in computer storage in a structured form,
however, mitigates such conflicts somevhat. by alloving you to enter
and maintain the file in one form--say the most linguistically
.logical form--and to re-organize it by program into different forms
suitable for other purposes.

Second Edition, partial draft. Formatted February 2, 1990

·-·~ --- ~·--- ----· - ------- ···-- . ···~---· .-------·--·--.. ----·· ---·-· ··--··-·-----·----.... ----·~--·-·-··"''"·-· ::: ... ::= =·-·-=· :::: ... :-::. -=======~--~·. -· ·-

3.3 GUIDE TO USING BAND FORMAT 42

Entries are generally keyed to fai:ms, whether root, stem, or
word, rather than to meanin9 or other property. (There do exist
semantically organized dictionaries, but under each semantic heading
the entries are still filed by form.) Hence the general principle,
"one form one entry; different form different entry". Deviations
from this principle are caused by homonymy and variant forms •
.Homonymy may g.ive rise to Hone form different entries", that is, the
headwords of several entries may be identical. Separate entries may
be established because the several meanings of the same form are
radically different or because more than one etymon is represented.
Some dictionaries adhere strictly to a "one form one entry" policy,
and do not accord homonyms separate entries, but most do attempt to
distinguish homonyms and p1ace them in distinct entries. In this
case, typically a superscript numeral or other distinguishing tag is
attached to the several otherwise identical headwords. In entering
homonyms int:o the computer, a similar device may be used: the form
may be followed by a dollar sign •$•, followed by a number. Thus,
formally, the "one form one entry" principle still holds, since the
$1, $2, etc. are formally part of the headwords, and distinguish
them from each other, e.g.,

.hw bow$1

.hw bow.!2

.hM bow$3

When preparing for publication, the $1 etc. can be converted to an
inferior or superior numera1.

The situation of "different forms one entry" arises when there
are variant forms--for dialectal or other reasons, which all share
the same definitions and other information--they in fact share the
same entry. one of the .forms should nevertheless be chosen as the
headvo.rd of the entry, and the others should be listed in one or
more "variantsn bands.

Cross-reference entries are short entries used only to refer the
reader to a "full" entry where more comp1ete information is given.
The cross-reference entry may be for a variant, a dialect form,
irregular or suppletive form. derived form, etc., which is not
itself acco.rded a complete ent.ry but is mentioned in the full entry
for another form. The cross-reference entry is placed in its proper
alphabetical position in order that the reader can find ~t. It
consists mi.nimally of the headword itself and a cross-reference band
containing the headword of the entry the reader should look up, but
may also contain a short gloss and other brief information. If
planned for properly, .it need not be entered separately into the
compute.r file, but may be constructed by program. from specified
pieces (e.g. bands) in the full entry. Thus, from an entry
containing

Second Edition, partial draft. Formatted February 2, "1990

.hw adi
var edi

3.3 GUIDE TO USING BlND FORHAT 43

where the VAR band contains a variant form, a program can construct
a cross-reference entry

• hw edi
see adi

which consists of a headword band and a SEE band. Of course, any
additional bands may be copied into the generated entry fcom the
original entcy. The amount of information to be duplicated in a
cross-reference entry is the subject of policy decisio.ns by the
lexicographer. This cross-reference entry, along with all the
others so generated, can be added to the dictionary, alphabetized in
their correct places.

Subentries can be another possible source of generated cross­
reference entries. From the subentry for m~~~4, under the main
entry he.a,

.hw bea

•• pl mabea

a cross-reference entry may be generated for ma.he.a, and alphabeti-zed
in its proper place, that directs the reader to look for the full
subentry under ~ea:

.plq
pl of

mabea
bea

Again, additional bands may be duplicated in the cross-reference
entry, if desired.

Note that the band names in the above examples have bee.n chosen
more or less arbitrarily, for the (hypothetical) user•s convenience:
they have no special meaning for any of the existing prograMs.

Another question of policy touching on headwords and entries is
what representation of a form to use for the headwords. If a
morpheme never occurs uninf lected• which inflection should be used
for citing it as a headword? E.g., verbs in Latin are given in
their infinitive, in Sanskrit in a third person form, etc.. Should
the headword be given, instead, as a bound form, with a hyphen
indicating an obligatory inflection? In Bantu languages, should the
headword be given with or without the concord prefix? In addition
to such morphological choices, there are also phonological choices.
Should the form be given in phonetic, in phonemic, or in
morphophonemic transcription? Perhaps an orthography vhich is none
of the above is preferable? Yet another dimension of choice is

Second Edition, partial draft. Formatted February 2, 1990

3.3 GUIDE TO USING BAND FORMAT 44

presented by dialect variation. Which dialect will be taken as the
"standard", whose forms are given the fall entries, while the "non­
standard" forms will be given short cross-re£erence entries or will
only be mentioned in the full entries?

The format conventions cannot, of course, help you answer these
questions of policy, bat they can, if used properly, provide some
flexibility for conversion to a d~fferent orqanization if one set of
policies is found to be unsatisfactory.

Band names may consist of any letters and numbers and special
characters except for blanks, commas, and semicolons. Tney must
begin with a letter. They may be in caps or in lower case, but ·the
programs generally do not distinguish between upper and lower case
band names. That is, they consider 'DEF' and 'def' to be the same
band name. User-written control modules may, however, take into
account the difference. One may take advantage of this situation by
using upper-case band names for one kind of bands (e.g., bands
containing material in the target language) and lower case hand
names for other bands (e.g., bands containing Eng1isn).

Three band names, TITLE, FILE, and LIST, have special uses,
described in Section 3.3 .. 3, Uses of bands.

one may build inte.rnal structu.re into band names, as in ENl'.;-DF
for an Enql,ish de.finition band and FR-DF for a French definition
band. However, again, none of the existing programs recognize
st.ructure within band names. That is, no existing control module
could pull out all bands with names containing -DF, say. If such a
feature were desired however, one could easily vrite a function to
do so.

Band names usually can be considered to represent relationships.
A band name gives the relationship between the information in the
band and the headword of the entry. .For instance, the band name PS
claims that the information in the body of the band is the "part of
speech• of the headword, or the band name BSK is an abbreviation for
the relationship "technical meaning Cof the headword) in basket­
weaving technology". Of course, since .not all entries will have a
BSK band, the band name itself carries information about the
headword, namely that the headword is used with a specialized
meaning in basket-weaving. Another common way of handling this
situation uses mode numbers (see example in 3.3.6, below).

If a band name represents a relationship with the heaaword, then
what relationship does the headword band name represent? The name
of the headword band is o.ften siinpy aw, ca.crying 1ittle, if any,
information, since the period preceding it already marks this band
as the first band of the entry and hence the headword. The RW in
fact does not represent a relation, but only marks (redundantly) the

Second Edition, partial draft. 'Formatted Yebroary 2, 1990

'·

3.3 GUIDE TO USING BAND FORMAT 45

body of the band as the headword of the entJ:"y. Since this is
redundant, one may assign some other, more useful, band names to the
headword band. For instance, it may be used to label the dialect of
the headword, to give the morpho1ogical status of the headword
(stem, prefix, full form, etc.), to 9ive the source of the entire
entry, etc. Thus instead 0£ HW for every headword, one would have
different band names for the different dialects, or morphological
types, or sources, of the headwords. Another ase of the headword
band name voo1d be to label the type of transcription in which the
headword is 9iven: phonemic, orthographic, morphophonemic, etc., as
suggested in 3.3.3.

J.J.J USES Of BAHllS

Three bands, TITLE, FILE, and .LIST have special meaninqs when
encountered in certain situations. TITLE, whe n used as a main
headword band, i.e., preceded by a single period, causes the ·1rsTGEN
control module and every control module that produces a list9en­
format Cl-format) output to issue a command to go to the top of the
next page and to use the body of the band as the running top title
.from then on. .TITLE bands could be manually inserted at specific
points in a file to create breaks in the LISTGEN printout. This
band is inserted automatically at certain points by the TOAST
control ~odule SORTENT, q.v. As a non-main-headword band, TITLE has
no special significance for any program.

The FILE band, when occurring as a main headword band, i.e.,
preceded by a single period, is recognized by tvo special SPITBOL
programs on the PC, called SPLIT and SPLITQ, which are technically
not part of the system since they are neither BIRDBATH or TOAST ·
control modules and have nothing particular to do with dictionary
files. SPLIT copies sections of a file into other files specified
by the body of the .FILE band. A11 records following the .FILE
band, up to the next .FILE band (or until the end of the file), are
copied into the tile whose name appears as the body of tha~ band.
Thi s program is useful for splitting ap a long file at specified
points into several smaller ones. The SPLITQ program does the same,
except it prompts for the changing of a floppy disk for each output
file. When not occurring as a main headword band, FILE has no
particular significance except as described i n the next paragraph.

On the PC, the LIST band can be used in conjunction with FILE
bands to form a "list file" which lists the names of other files to
be processed in seqllence as if they formed a si.nqle file. The form
of the list file is a single entry with the headword band .LIST
followed by FILR bands each containing the name of a file. (This
ase of the PILE band is different from, and does not conflict with,
its use as a headvord band as described in the previous paragraph.)
For example:

Second Edition, partial dra.ft. Formatted .February 2, 1990

.LIST
FILE
FILE
YIL.E

3.3 GUIDE TO USING BAND FORMAT

etc.

Koryak file list
KORA.LEX
KORB.LEX
KO.RC.I.EX

When a BIRDBATH or TOAST run gets such a file as input, rather than
processing it as a normal lexical file it processes the files named
in it instead (having first checked that it can find them all).
Other details of the list file format are these: the .LIST band
must be the first band in the list file, and the body of the band
can contain anything; bands other than FILE may be interspersed
among the .FILE bands. They will be ignored. and thus could be used
for comments. The occurrence of LIST bands in the lexical files
themselves have no effect. The list file facility is not available
in the mainframe version.

l\part from these three special bands, bands are normally used to
hold various Kinds of information about the headwocd. This
subsection contains a catalog of some of the possible kinds of
information. Some items in this catalog however do not fit this
description. A band can, for instance, be ased to segment an entry,
or to force a paragraph break foe typesetting purposes. Such uses
are nevertheless included. No claim is made about the nniversality,
completeness, mutual exclusivity. etc., of this list. Some of the
categories may well overlap, and some may not be sufficiently
differentiated. Also, not all categories will be of equal relevance
to all languages. For discussions of some of these kinds of lexical
informatio~ please consult the references given in Section 1.2.2e.

We first dispose of two "pseudo-categories" of lexical
information. The first is "headKord"• often assigned to a HW band.
Since the headword must be written in some sort of transcription
(phonemic, orthographic, etc.), the name of that representation
would be a more informative band name than RW. The last paragraph
of 3.3.2 mentions other possiblities. Yor convenience and out of
habit. however, we will continue to use HW in examples.

Another common "pseudo-category" of information is "cross-
ref erence". Often, such a band would be established and given a
band name such as CF but be put to use for a wide variety of types
of cross-reference. In one instance the cross-referenced item may
be a dialectal variant of the given headword, in another it may be
the root under which a fuller description of the given headwo~d may
be found as a subentry, in yet another it may be a semantically
related word which the reader is encouraged to compare, or it may be
a suppletively related fo£m, etc •• etc. Since a cross-reference is
not randomly established bnt is based on some relationship (such as
those jost listed) to the given headword, a good use of the band
format would be to explicitly indicate each such relationship by
means of a distinct band name rather than to conflate them all undec
a general name such as CF.

Second Edition. partial draft. Formatted February 2, 1990

----. ··-···--·--·

3.3 GUIDE TO USING BAND FORMAT

Furthermore, a pair of mutual cross-references which are
logically not symmetrical should have different band names. For
instance, the example in Section 3.3.1,

should not

.hw adi
var edi

.hw edi
see adi

read

.hw adi
var eni

.hw edi
var adi

(full entry)

{cross-reference entry)

(full entry)

(cross-reference entry)

The first entry refers to ~.di and the second to ~sli for different
reasons.

Here follows a skeletal listing of some types of lexical
inf ormatioo that it would be appropriate to assign to different
bands. They are grouped informally under linguistic and o~her
rubrics.

ORTHOGRAPHIC: spelling form of headword; orthographic variants
("jadqment" and "judgement"); regional variants ("color" and
"colour"); orthographic combining forms (e.g. in English, the
combining f'orm shows whether the 1ast consonant is doubled before
-ed and -ing).

PHONOLOGICAL: phonetic shape; phonemic shape; phonoloqical
variants; phonological characte£istics (onomatopoeia, ideophone,
expressive, etc.); phonological comments.

MORPHOPHONEMIC: morphophonemic, under1ying, or base form;
morphophonemic characteristics (sandhi forms, liaison, etc.);
morphophonemic comments.

~XISTENTIAL status: "unattested" or "inferred form", hapax
.legomenon, nonce word, or rare.

47

MO'RPROLOGIC.AL: morphological status (prefix, suffix, bound
root, etc.); root of the word; morphological analysis (if form is
morpbolo9ically complex); morphological form-class (e.q.
conjuqation class, gender, concord class, etc.); qaps in the
paradigm; alternate forms occupying the same slot in the word's
paradiqm; allomorphs ("principal parts", ablaat forms, irregular
paradigmatic forms, suppletive forms, etc.); derivatives by
productive processes which are listed with no further comment (e.g.
English on-, -ness, Austronesian causatives, etc.); com~ents on
morpho.logy.

Second Edition, partial draft. Formatted February 2, 1990

3.3 GUIDE TO USING BAND FORMAT 48

SYNTACTIC: syntactic function class (e .g., part o f speech);
case-frame or valence formula; syntactic (or semantic) features
(animate /inanimate, mass/count, special types of verbs, e.g., of
belief, etc.); restrictions on privileges of occurrence; government
of, e .9., prepositions; comments on syntactic function (especially
fol: function words, for which including a "definition" band would be
inappropriate).

COLLOCATIONAL: characteristic agents , instruments, verbs,
manne r s , etc. (lightning §t~K~§, ~i~~ ebbs); common collocations;
idioms and idiomatic constructions using the word in a prominent
position, with explanations; proverbs and sayings containing the
word.

DISCOURSE: comments on any special discourse properties or
function of the word.

LEXICAL: synonyms; antonyms; other members of a closed lexical
system to which the word belongs (e.g. growth stages of coconut or
fish); c lassifiers and counters; lexical "functions" or "relations"
Csee the Grimes and Mel'chnk references in Section 1.1.2e); easily
confused forms (phonologically similar forms: ucaution! do not
confuse with ••• ").

SEMANTIC: translational equiYalent; description (where
translation not available or sofficient); explanation of usage
(especially for function words); placenamei definition in same
language ("monolingualu definition); definition in a 1ingua franca
of the area; definition in another major language commonly used in
the area; simplified definition for school e dition; literal
morpheme-by-morpheme meaning, if form is complex; semantic field and
subfield; scientific designation (Latin name) of f1ora or fauna;
ethnosemantic analysis o.r features relevant to selectional
constraints; semantic features; specialized meaning in some
technical field ("subject labels"), e.g., military, arts,
navigation; semantic relationship (specialization, metonymy, etc.)
with another sense of the word; comments.

BACKGROUND information: cultural; historical; "encyclopedic".

ILLUSTRATIONS: phrase or sentence with translations and comments;
reference to place in a text fo.r an illustration, which is not
quoted at length.

SOCIOLINGUISTIC ("status labels"): marked speech level (£ormal,
royal, literary, Biblical, ritual language, slang, vulgar, obscene,
baby-talk, non-standard, substandard, etc.); regional and social­
class restrictions; historical: obsolete, archaic; comments.

HISTORICAL and COMPARATIVE: etymology; cognates and related forms
in other languages; reconstructed form in pare nt language; dialect
variants ; eqaivalent (in meaning) forms in other dialects;
information about borrowing: source language , source word, meaning

Second Edition., partial draft. For11at·ted Pebraary 2, 1990

3.3 GUIDE TO USING BAND FORMAT

of source word; historical development of meaninq and usage;
neologism; comments.

REFERENCES: to reference grammar, texts, or other works
containing information relevant to the word.

ENTRY SEGMENTATION: Special bands may be designated to
explicitly mark the beginning and/or end of a particular section of
an entry. For instance a section of bands giving cognates in other
languages might be delimited with the bands ncog" and "endcog", or a
section of bands giving a paradigm, such as stem sets for an
Athabaskan verb, may be delimited with the bands "sets" and
"endsets". The delimiter bands themse.lves may be left empty.

TYPOGRAPHICA.t: When preparing a dictionary for publication, one
may want to specify tt\at certain very long entries should be b.roken
up, for a better typographical appearance, by starting a new
paragraph at chosen points in the entries. These points can be
marked by inserting a special bancl invented for this purpose. Also,
a space for a picture may be reserved by inserting a special band
which gives the dimensions of the space to be left blank. The
program that prepares the publication copy can be designed to look
out for these bands and to act accordingly.

HOUSEKEEPING: source (informant name, manuscript, radio
transcript, etc.); field notebook page number; person Kho entered
the information into the computer file; date entered and date the
entry was last edited; assessment of reliability of the information
in the entry; queries, points requiring further investigation; notes
and queriei for other vorkers on the pro~ect; other "private" notes.

It is customary to put bands in a consistent order. That is,
a.nee a particular order of bands i.s established, it is no.rmally
observed in every entry (except that groups of bands may be repeated
if you used mode prefixes). However, consistency is not cequired
and none of the programs check for it, so the order of bands may be
altered in some entries if that serves some parpose.

As mentioned under Entry Segmentation in Section 3.3.3, if there
is a subsequence of bands that forms an independent section, a pair
of special bands can be designated to explicitly mark the section•s
beqinning and end. While none of the existing control modules
recognize this convention (they woald not treat these bands in any
special way), a specially written control module could easily be
made to cecognize them. This method of segmentation should not be
used for repeated, or repeatable, groups of hands, for which the
mode notation is available (see 3.3.6).

Second Edition, partial draft. Formatted February 2, 1990

3.3 GUID~ TO USING BAND FORMAT so

Within the body of bands you may establish further regular
structure. Although no existing control module (except INVERT and
INVERT2) looks at internal structure within bands, user-written
control modules or user-written instructions in BANDAID-type control
modules may. Typical band-internal structure consists of variable­
length fields separated by delimiter symbols. For instance, in
illustration bands there are typically two fields, the illostration
sentence itself and the translation. In the examples of such bands
in Chapter 2 and section 3.2, the fields were separated by the
vertical bar •1• symbol. Sometimes two translations are given, in
two target languages, e.g. Spanish and English, in which case there
would be three fields. The same symbol may be used again to
separate fields two and thcee. Another example of band-internal
fields is a loan band, in which three pieces of information may be
given: the source language, the source word, and a brief gloss of
the source word. Of ten there is no need to introduce any special
field-delimiting symbols. That would be the case where the normal
punctuation is suf£icient to unambiguously delimit the fields.

The basic ase of modes is to group together two or more
occurrences of bands that belong together in some logical way. All
the bands in a contiquous block which carry the same mode pre.fix ace
considered to belong together. A typical use of a mode in an entry
is to gronp together all the bands relating to the headword as used
in a particular part of speech, separating them from bands
pertaininq to other parts of speech. Figure 3.3 showed an entry
with three groups of bands se9re9ated according to three parts of
speech: "NOM", "VB", and "QUA!.". Bands can also be segregated
according to other properties, e.g., sense, dialect, technical
field, source of information, classifier selection, etc., etc.

ps
1df
lil
2tech
2df
2il

v
to soak

(illustration sentence)
bsk

to ret (of reeds) in flowing water
••• (another illustration)

In this example of part of an entry, the PS band has no mode prefix,
and "belongs" to the entire entry. The first D¥ and IL bands belong
together., as do the following ·rECH, DF, and IL bands. The lattei:
group of bands pertain to the use of the word in the context of
basketry. Presumably the information in the first group is not thus
restricted. Another way to treat the restrictive label (bsk) would
be to use it as the band name of the definition band instead of
putting it in a TECH band:

2bsk
2il

to .ret (of reeds) in flowing water
(illastration)

Second Edition, partial draft. Formatted Pebraary 2, 1990

3.3 GUIDE TO USING BAND PORMAT 51

This is the k~nd of cepresentation mentioned in 3.3.2.

Another use of modes is to separate out the fields of a band into
separate bands, when the fields threaten to become too complicated,
or for some other special reason- These bands would have the same
mode prefix, to sho~ that they belong together. Illustrations may
be treated in this vay, with the illustratioo itself in one band and
the translation in another. In fact, it ~ust be done in this way,
rather than with a single band, if the words in the translation will
be starred for the purpose of finderlist generation (see Appendix I,
paragraph c). Por example, instead of having two illustration bands
like this:

il qarur sara saktway // I *think 1•11 go tomorrow I Estoy
*pensando ir ma$nana

il janiw sasawsi // They •said no I *Dijo gne no

which may cause undesirable resalts in the findeclist (INVERT)
output, they should be broken into three bands each:

1il
1tre
1trs
2il
2tre
2trs

qarur sara saktway
I •think I'll go tomorrow
Estoy *pensando ir ma$naoa
janiw sasawsi
They •said no
*Dijo que no

and the TOAST control module INVERT2 (see in Section 3.5) should be
used to generate the finderlist.

A final use of modes is to set off an "internal" subentry.
two­
o.nly
That

Recall that upon finishing a subentry Can entry starting with a
dot headword band) you cannot return to the main e ntry--you can
start a sub-sube ntry, another subentry, or another main entry.
is, you must finish the main entry before going down into a
subentry. But occasionally one may wish to insert a "run-on" o~
"internal" subentry lti!:.hin a main entry. continuing with th.e main
entry after the end of the subentry. The effect of this can be
accomplished by omitting the dots that signal the beginning of a
subentry, and 9rouping the bands of the "subentry" together by
assigninq them a mode number. The following example shows an
internal subentry for the expression .a..h.u=¥.he11ii.a embedded not only
vithin a main e ntry but within a 111ode (mode 1) of the main entry:

Second Edition, partial draft. Formatted Februa ry 2, 1990

.bw ahu
ps vt

3.3 GUIDE TO USING BAND FORM!T 52

1d f tend, foster, fashion
1il Na Tuparimaevaeva, nana i ahu mai, ka kiia he tangata.
1il Ka ahuria o ivi matariki e t e rau e pae.
11expr ahn-whenua
11df cultivate the soil
11il kua marara nga tangata •••
2df treat with
2il

e tc.

No t all bands in an entry need to belong to some mode, of course.
A pronunciation band, an etymology band, a comparative/historical
band, a " private" notes band, say. might not have any mode prefix on
them, and would typically be placed some at the beginning of the
entry (afte r the headword band) and some at the end. Normally there
would not be any reason to intersperse 8 top level" bands among bands
with mode prefixes, although if such a need should arise, the format
does allow it.

If bands within a mode need to be further sub-grouped, then
submodes can be used--by prefixing two digits to the band names, as
in .Figare 3.4. Sub-submodes to any depth are possible, by prefixing
more digits.

I f more than 9 modes are encountered, do not continue with 10,
11, etc., since two digits denote a sabmoae. Instead. start with 1
again. The programs do not check that the digits are increasing,
bat only detect when they change, from one band to the next, in
order to find the groups of bands.

Note that the repetition of a single band does not need to be
accompanied by mode numbers. For instance, if there are several
illustration bands, they need not be labe led 1il, 2il, 3il, etc.
since this would simply be labeling 11 groups" of one band each. A
sequence of simple band labels, il, il, il, ••• , would be sufficient.
Mode numbers do not have the purpose, primarily, of numbering bands
or groups of bands; they serve primarily to segregate groups of
bands.

Finally, it might be noted that this system of grouping bands
with numbecs is not ideal, and is under certain (not common)
circumstances actually rather cumbersome. It is, ho~ever, easy to
remember and does have some advantages from the point of view of
programming.

Subentries (whose headword band label begins with tvo, or more,
dots) are typically used for derived words . The subentry is
considered to be attached to the main entry, and not an independent

Second Edition, partial draft. Yormatted February 2, 1990

..... -.. -... ·-··---·---· - _, __ ..

3.3 GUIDE TO USING BAND PORMAT .33

entry. However, all of the usual apparatus of bands and modes is
ava ilable for subentries. In particular, mod~ numbering in the main
entry does not carry over into the subentry; it begins over again in
each subentry. There may be any number of subentries following a
main entry. The subentries may be placed in any order desired; the
format does not require that any particular principle of ordering be
followed. They are carried along with the parent entry in exactly
the order in which they were entered, unless the file is processed
by a subentry-sorting control module.

Each two-dot subentry may be followed immediately by one or more
sub-subentries Cwith three dots), before the following subentry is
begun. Sub-subentries are typically used for words derived from the
headword of the immediately prece~ing, parent, subentry. The tree
of subentries and sub-subentries, etc., may extend to any desired
depth.

We will however, continue to use the term "snbentry" to refer to
subentries and sub-snbentries etc. of whatever depth.

The notation allows levels to be skipped, e.g. going directly
from a 2-dot subentry to a 4-dot subentry. A plausible
interpretation of such skipping is hard to discover however, so
normally there is no reason for doing this.

Compounding, as opposed to processes involving only derivational
morphemes, creates words which can l ogically be placed under more
than one main entry, since more than one l e xica1 morpheme or word
enter into the compound. The decision as to which main entry to
place the compound under is a lexicographical decision, but it
should be remembered that, whatever the decision, an appropriate
program (control module) can make a copy of the subentry, or of a
portion of it, and insert it under each of the other relevant main
entries.

Subentries are also often used for idioms or other expressions
that t:equire more extensive treatment than is convenient to place
within a single band. For instance, dialect information, syntactic
peculiarities, and illustrations could be recorded in the subentry
for the expression. A disadvantage is the property of the subentry
notation that prevents you from returning to the parent entry.

It may be desired to place some material at the very end of a tree
of subent~ies , that is, just before going on to the next main entry.
For instance, one may want to put a discussion of synonyms at this
position. Or one may want to place the illustrative sentences for
all the headwords--main as well as subentry headvords--after all of
the s ubentries. Since it is not possible to return to the main
entry at this point, one has the choice of placing such end matter
in bands in the last subentry, or of opening a new subentry (which
would require a vacuous or "dummy" headword band) solely for holding
the e nd matter. The latter choice seems neater. This subentry
would be a subentry in form only, since it does not have any derived

Second Edition, partial draft. Formatted February 2, 1990

3.3 GUIDB TO USING BAND FORMAT 54

word, or any word, as its headword. Its bands would contain the
discussion of synonyllls, illustration sentences, or vhatever,
considered to be part of the main entry. In the fol lowing schematic
entry, the last "subentry" contains all the illustration sentences
for t he main headword as well as for the subentry headwords:

.hw kirel

•• hw kekirel

•• hN

•• ils
il
il
il

el kiI:"el a •••

(dummy subentry headword band)
(illustrative sentences
for kirel as well as
for kekirel and el kirel a •••)

The "band-by-band principlen. Conventions need not always apply
to all bands; they may be established on a band-by-band basis: a
given convention can be restricted to certain band types. For
instance, the asterisk, *, may be used in DF and SEM bands, say, to
mark keywords for finderlist purposes, while the same symbol may be
used in a historical band, HIST, to mark reconstructed proto-forms.
A capital "B" may be used in a phonetics band to represent an
imploded b, but have no such mean~ng anywhere e lse . In short, each
band may be, assigned its own set of conventions.

A VERY IMPORTANT COROLLARY of this principle is that you should
maintain a written record of these band-by-band conventions, and
make sure that everyone on the project understands and follows them.
A certain amount of consistency-checking can be done by program, and
the BANDSORT control module generates an output which helps the user
detect inconsistencies (see 3.7). Obviously it is best to be
consistent to start with. It is advisable to keep a loose-leaf
notebook, a "codebook", in which each band is assigned a separate
sheet on which are recorded the conventions for that band.

Segreg~te different types of information into separate bands, to
the extent that that is comfortable. The discussion of "pseudo
categories" at the beginning of 3.3.3 provides some examples of this
exercise. First-time users of the format tend to underdifferentiate
their bands. However, information that is logically differentiated
is easier to wot"lt with and potentially more use~ul, often in
unf orseen ways. It may take some experimentation to settle on a
s ystem of bands that is at the same time usefully differentiated and
manageable in size. Typical dictionaries processed in the past have
used from 20 to SO bands. You may, of course, add a ne~ band
whenever one is needed; the programs are indifferent to what, and
now many, bands you have.

Second Edition, partial drat t. Formatted February 2, 1990

3.3 GUID~ TO USING BAND FORMAT

TLy to keep each band simple. If the stLucture of infocmation
within a band threatens to become too compli cated, try to simplify
or see if so~e of the structure can be shifted out into more than
one band or a mode qroup or a subentry.

55

Include more information rather than less. A snbtle example of
this is not to autoraatically capitalize the first lette~ of
definitions. Only capitalize it if the first word is a proper name.
In this way more information is captured. An effect of this is that
keywords and phrases pulled into the finderlist will not appear to
be randomly capitalized. For publication purposes it is always
possible to automatically capitalize the beginnings of all
definitions. Another example is to anticipate font changing when
the dictionary is photocomposed, by inserting unpcedictable font
shift codes in the body of the bands, e.9., so that Latin names
embedded in definitions or other bands will be printed in italics.
It is easier to put these shift symbols in at the start than to edit
them in later.

on the other hand, avoid encod£ng redundant information. If a
band will alw.a.JS begin in say, italics, then it is not necessary to
place an italics shift symbol at the beginning of the band. Or if
all occucrences of a certain band are thought of as being enclosed
within parentheses, then it is not necessary to actually type the
parentheses, since that is a predictable feature for this band.
They can be added easily by a program whe n the file is prepared for
publication.

In choosing among several schemes of organizing a dictionary
using ·the band format conventions. keep in mind that the particular
scheme chosen need not be the only form that the dictionary vill be
able to take. If the scheme is properly designed, it should always
be possible to re-organize the dictionary automatically into any of
the other schemes contemplated. Attention should therefore be paid
to choosing a scheme that preserves the most information, and that
represents it in the most natural and least redundant way. These
are fortunately often mutually supporting criteria. Such a scheme
tends to be also the easiest one to start from to generate the other
organizations.

Second Edition, partial draft. Formattea February 2, 1990

. -·· ·- ,,, __ ·--· ---·---·-..... - -~----... --·~·-· _., ----·-······"'". ,, ___ ·--·--·--·~· ""'"=,................,,..,,.,...,, .. ··, ... -... -. -. '

56

Control modules (see Section 3.1) are the programs that actually
operate on the data. This section describes those used with
BIRDBATH, which does not do any sorting. Section 3.5 desc.cibes
those used with TOAST, which does sort. These sections decribe only
what the modules do and not how you use them. Since their usage can
vary somewhat from installation to installation, this information,
in the form of Mrecipestt, is segregated in another chapter. Chapter
4 ..

As suggested in Chapter 1, this set of control modules is
extremely limited. They might be viewed as a sampling of what could
be written. If you do not find a control module in this or the next
section that meets a particular need, it may be possible to write a
new one or to PIOdify an existing one. Also, the set of control
modules gradually changes. New ones are added, and existing ones
removed or absorbed into new ones. This manual may not always
accurately reflect the status of the actual programs that you have.

The description of each module includes descriptions or mentions
of the SPECS parameters (see Section 3.1) relevant to the module.
Certain common parameters, in particular the families of Input, p­
format, and 1-format parameters, are not described repetitively, bat
are only mentioned where relevant. Descriptions of these .families,
a.nd descriptions or references for all the other parameters as well,
are to be found in section 3.6.

Most of ~hese control modules read an input data file and produce
an output data file. The input file most be in p-format {see
3.2.1g) for a control module to be able to read it. The output data
file may or may not be in p-format, depending on the control module
and on the setting of the PFORMAT parameter. If the description of
the control module states that this parameter is available for
setting, then the modnle will, with PPORM.AT set to 1 (or any non­
nul1 value), produce a p-format output file- Otherwise its output
is in some other format. Only p-format files can be used as input
to the programs.

All control modules also produce a log file or printout.
chronicling significant stages.in the run and giving error messages
from the program. In the mainframe version, the run log is normally
a printout: on the PC it normally goes into a file named MESSAGE.
The log should be checked after every run. Some control modules,
such as STATS, also place their regular results in the log.

a. BANDA.ID

This module produces an edited output file from an input
dictionary file. The editing is done by •BANDAID-type• instructions
supplied by the user in the SPECS file. These instructions are
statements in SNO.BOL4 or Spitbol. They specify what is to be done

Second Edition, partial draft. Formatted February 2, 1990

,,,,_ ,, __ ,,_ -------~-·---

3.q BIRDBATH CONTROL MODULES 57

to each band, on a band-by-band basis, and must follow certain
conventions, illustrated in the example in Fig. 3.6. All the bands
for which BA.NDAID instructions are given must be mentioned in a
BANDS = • ... • statement. The statement(s) for each band must beqin
with a label consisting of the band name (in caps regardless of
whether the band name in the data is in caps or lover case) followed
by a period. Each BANDAID instruction should lead to a RETURN or to
SKIP. If it goes to RETURN, the band is output; if to SKIP, the
band is not output. Bands not mentioned in the BlNDS parameter, and
which presumably have no corresponding BANDAID instructions, are
simply written out without change, unless the NOWRITE parameter is
set to a non-null value, in which case they are not output. Control
must skip around the BlNDlID instructions (see the go-to :(EOSPECS)
in the example below). The BANDAID instructions may use any of the
public variables and built-in functions (except the .input
functions). The public variables pertaining to the current band
are HtEV ("headword level•, containing the zero or one or more
periods on the c urrent band. labe.l), HOD.E (the mode prefixes, if any,
on the current band label), BAND Cthe current band name), and BODY
(the body of the current band). The output is normally in LISTGEN
format (1-format), and all the parameters relevant to LISTGEN are
available <see LISTGEN control module). (Thus, this BANDAID control
module supersedes the old EDLIST control module). The output can
alternatively be placed in p-format, for further computer
processing. To do this, set the parameter PFORMAT to a non-null
value. Note that previously this was the default for BlNDAID; now
it is not. (P-format and 1-format are described in 3.2.1g.)

The SPECS file for a BAMDAID run might look something like the
following: '

r
I PF01H1AT : 1
J BANDS = 'HW,PB,ETYM,DF•
IHW. BODY 1 $• ANY('123Q56789Q•) =
I PR.
I ETYM.
IDF. BODY ••• =
IDF.1 BODY : REPLACE(BOOY, 1 ~ 1 ,• ')

IEOSPECS

: (.EOSP ECS)
:(RETURN)

:(SKIP)
:S(D.F.)
:(RETURN)

~~~~~~-~-~~--~~-~--~~~~~-~~. 

Figure 3.6 

In Figure 3.6, the statements specify that the output is to be in p­
format. ~he bands for which there are statements below are given in 
the BANDS parameter (HW, PR, ETYM, DF). Note the skip around the 
BAND.ltI> instr:uctions. The BAND.AID statements specify that 

1) In HW bands, '$' and the following digit vill be 
del.eted. 

2) PR and ETYM bands are not to be output. 
3) In DF bands, asterisks will be deleted and ·~· 

will be replaced by a space. 

Second Edition, partial draft. Formatted February 2, 1990 



3.4 BIRDBlTH CONTROL MODULES SS 

The only required SPECS parameter needed for a BANDAID run is 
BANDS (followed, of course, by the BANDAID instructions), and even 
that is not necessary if the only purpose of the ru.n is to listgen 
the entire file (but then LISTGEN would normally be used £or that). 
Other possible parameters are NOWRITE, PFORMAT, the "Input 
parameters, and the p-format or 1.-forma.t parameters, depending on 
vhether PFORMAT is set or not. 

b. BANDP'ILT 

This control module "filters" the bands of an entry according to 
severa1 criteria. First, the headword band is always passed. Next, 
the first band on a 11priority list" of bands that is foand in an 
entry is passed. This list is given by means of the SPECS parameter 
BANDPRIORITY, in the same format as BANDS. Finally, any bands 
specified by means of the system of fou.r mutually excl11sive SPECS 
parameters, BANDS, NOTBlNDS, ALLBANDS, and NOBANDS, are passed, as 
follows: 

BANDS = • • pass the bands in the list 
NOT BANDS = • ... • pass all bands not in this list 
NO BANDS = 1 pass no bands 
ALLBANDS = 1 pass all bands {the absence of all tour 

parametei:::s has the same effect) 

Every entry and subentry has somethi.ng, at least tl\e headword band, 
output by BANDFILT. 

The asual Input parameters, and PFORMAT and either the p-format 
or the 1-format parameters, are available. Output is normally in 
L.ISTGEN format Cl-format}. If PFOBMAT is set to a non-null value, 
the output will be in p-format. (P-format and 1-format are 
described in 3.2.1g.) 

c. BANDINV 

This module has been superseded by the STATS control module, q.v. 

d. BANDPACK 

This module •pacts" all the bands in an entry or subentry into a 
single paragraph and outputs the paragraph. It normally packs only 
the bodies of the bands, not the band labels. Exactly what is 
packed for each band, however, can be controled by BANDAID-type 
statements in the SPECS file (see BANDAIO control ~odule, above), 
operating on the BODY variable, which ho.lds the body o.f the curi:::ent 
band. Bands may he skipped (not packed) by going to SKIP instead of 
RETURN, just as in BANDAID. Bands not mentioned in the BANDS = 
' ••• • statement will be igno.red. However, if the BANDS parameter is 
not assigned anything, all bands will be packed. The output 

Second Edition, partial draft. Formatted February 2, 1990 



3.4 BIRDBATH CONTROL MOI>UL.ES 59 

normally is in LISTGBN format Cl-format), with one paragraph per 
entry (considered the "headword" band). Since the band label for 
this •band" will be superflnoas, it should be suppressed with a 
SPECS statement, SUPBANDLABEL = 1 • Also a statement SUPHEADING = 1 
should be given. Ootpat may be put in p-format by setting PFORMAT 
to a non-noll value. 

In summary, the SPECS parameters available for BANDPACK are 
BANDS, PFORMAT, the Input parameters, and the p-format or 1-format 
parameters, depending on whether PFORHAT is set or not. In 
addition, for I-format output, the l-format parameters SUPBANDLABEL 
and SUPHEAOING shonld be set. No parameters are required. (P­
format and 1-format are described in 3.2.1g.) 

e. EDLIST 

This has been soperseded by the new BANDAID control module, q.v. 

f. EDLIST.8 

EDLISTB is not available in the PC version, where the more 
versatile control module ONBANDSR should be used. 

This module outputs only main headwords plus any specified bands 
that satisfy a qiven pattern. If none of the specified bands occurs 
in an entry, or if the given pattern does not occur in one of the 
specified bands in an entry, then nothing is output for that entry. 
The hands most be specified in the SPECS file vith a stateme.nt such 
as the following: 

BANDS = •df,il,pr,etym• 

If a pat:te.rn is not specified, al.l the specified hands vill be 
output. If one is specified, onl.y those specified bands that a.lso 
satisfy the pattern will be output. The pattern must be assigned, 
in a SPECS statement, to the variable PATTERN • Some examples of 
possible patterns are: 

1. empty bands: 
PATTERN = POSCO) RPOS(O) 

2. bands containing either the string 'cat• 0£ the string •dog•: 
PATTERN = 'cat' I 'doq• 

3. hands consisting OHLY of the strinq 'cat• or the string 'dog•: 
PATTERN= POS(O) (•cat• ' •doer> RPOS(O) 

4. bands in which there is a •3• not followed anywhere in the same 
band by a •1•, •&•, or •3•: 

PATTERN= ·~· !RBNO(NOTANY(•J&%•)) RPOS(O) 

5. dfeng bands which contain 'dog• and dffr bands which contain •chien•: 

Second l:dition, partial draft. Formatted February 2, 1990 



·-----····-------· .. ----- __ .. 

3.4 BIRDBATH CONTROL MODULES 60 

PATTERN= *IFBANDS(•dfeng•) •dog• *IfBANDS('dffr') •chien• 

The outpot is normally in LISTGEN format (1-format). If p-format is 
desired in order to prodnce a fi1e that can be further processed, 
then set the parameter PFORMAT to a non-null value in the SPECS 
file- (P-format and I-format are described in 3.2.19.) 

In summary, the SP'ECS parameters available fm: EDLIST.B are BANDS, 
PATT.ERN, !?FORMAT. the Input parameters. and the p-format or !-format 
parameters, depending on whether PFORMAT is set or not. At least 
BANDS should be specified, otherwise no output would be generated. 

g. LISTGEN 

This module outputs a dictionary file in the so-called 'LISTGEN 
format• Cl-format), which includes inde.ntations and line skips to 
make a dictionary in band format m.ore readable (see, e.g., Fiq. 
2.11). <P-format and 1-format ace described in 3.2.1g.) The SPECS 
parameters mostly concern the amount of indentation in various 
situations and other such formatting matters. If no SPECS 
statements are given, certain default values are assumed. SPECS 
statements may be used to override these values. In the following 
1ist of LISTGEN parameters, the default values are given on the 
right of the equals sign following the parameter name. The default 
value fo.r TITLE is a blank line. Another feature which the LISTGEN 
control module p.rovides is printing the line m1mbers with each 
paragraph, if the input. .file conta.ins line numbers. This feature 
can be supp.ressed by set ting SNUM to a non-null value by means of a 
SPECS statement. 

LMARGIN = 0 Character position of the left hand margin. 

RMARGIN = 132 Character position of the right hand margin 
Con mainframe version). 

TITLE = 
= 79 <on PC version). 

to provide a title to be printe~ on each page, 
supply a title in a statement: 

TITLE :::: • •••• • 

(This can be overridden by the occurrence of TITLE bands in the file itself: 
see 3.3.2.) 

LINESPERPAGE = 60 Lines per page. Set this to 80 when using 
11-inch paper at 8 lines per inch. Por 11-inch 
paper at 6 lines per inch (the normal case), 
60 lines is fine. 

H.EADH.A.NG :::: 10 Number of characters that headword bands overhang 
the other bands in an ent.ry or subentry. 

SUBENTINDENT = 3 Number of characters of indentation for each 

Second Edition, partial draft. Formatted February 2, 1990 



............... -------... - .. --·-·-·--·""" . 

3.4 BIRDBATH CONTROL MODULES 61 

level of subentry. 

SUBMODEINDENT = 2 Number of characters of indentation for each 
level down of modes. 

In s ummary, the SPECS parameters available for this module are 
SNUM, the Input parameters, and the !-format parameters, most of 
which are described above Ca few more obscure ones are listed under 
"I-format parameters" in 3.6). No parameters are required. 

h. NULLIWN 

NULLRUN is not available in the PC version. This control module 
produces a "null run". It does not read any data. It can be used 
to exe rcise the initializations (see sectio·n 6.2.1.1) or to generate 
a compilation listing of the built-in functions. No SPECS 
parameters are relevant. 

i .. ONBANDS 

ON.BANDS is not available in the PC version, and is being phased 
out in the mainframe version. The more versatile ONB AHDR should be 
used .. 

This module outputs those entries (entire entries ) that contain 
specifi ed bands. That is, if an entry contains one of these bands, 
then the entire entry is output. The names of these bands are 
specified in a list, assigned to th.e S.PECS parameter ON.BANDS, e.g.: 

ONBANDS = 1 df,cf,phr,il,ps• 

Furthermore, if a SNOBOt4 pattern is assigned to the parameter ONPAT 
the succesf ul matching of the pattern in the bodies of the specified 
bands becomes an additional criterion fo.r selection.. That is, an 
entry must have one of the specified bands, and the pattern mast 
match in the body of the band, before the entry is selected .. 

The output is normally in LISTGEN format Cl- format), for 
printing. If the output is to be stored in p-format, for further 
processing, set PFORMAT to any non-null value , e.g. PFORMAT = 1 • 

In s ommary, the SPECS parameters available are ONBANDS, ONPAT, 
PFORMAT, the Input parameters, and the p-format or 1-format 
parameters, depending on whether PFORMAT is set or not. At least 
ONBANDS is required, otherwise no output woold be generated. (P­
format and I-format are described in 3 .. 2 .. 1g.) 

Second Edition, partial draft. Formatted February 2, 1990 



3.4 BIRDBATH CONTROL MODULES 62 

j. ONBANDS2 

* ONBANDS2.SPT RETRIEVES ENTI.R! .NEST OF ENTRIES IF ANY BAND 
IN IT * SATISFIES ONBANDS AND ONPAT. SPECS PARAMETERS AVAILABLE: 
PFORMAT, * AND THE LISTGEN PARAMETERS LIKE RffARGIN. NOT AVAILABLE 
ARE * THE BAND SELECTION PARAMETERS LIKE BlNDS, NOTBAHDS, ETC. 
This control mod11le retrieves an entire nest o.f entries (main ent.ry 
and all its sub- and sub-sab- etc. entcies) if a specified band, or 
specified bands, occur anywhere in it and if a specified pattern is 
satisfied in the body of the specified band(s). The criteria for 
l:'etrievinq an e.ntry are the same as for ONBANDSR, described below, 
but the scope of how much of an entry is retrieved is different. 
Whereas ONBANDSR retrieves only the headword bands from entries 
dominatinq a target sobentry (one that satisfies the search 
conditions), this control modaie retrieves the entire nest of 
entries (main entry and all subentries) that contains the target 
subentry.. Furthermore, every single band is retrieved: there is no 
way to select the bands. The retrieved entries are placed in the 
output file, in either I-format or--if PFORHAT is set to a non-null 
value--in p-·format. 

k. ONB.lNDS.R 

This control module, like ONBANDS, selects entries on the basis 
of whetheI:' or not a given band, or a.ny of a l.ist of bandst is found 
in an entry, and on whether a qiven pattern, when such a pattern is 
given, is satisfied in the body of the band. The bands to be 
inspected a're given by means of the SPECS parameter O.NBANDS, and the 
pattern, if any, is given by means o.f the parameter ONPAT, just as 
with the O.NBANDS control module. 

If the parameter REJECT is set to a non-null val.ue, then the 
conditions £or selection and rejection of entries are reversed from 
the above description. 

The bands to be output vith a selected entry are: the headword 
band, the band(s) satisfyinq the ONBANDS a.nd ONPAT conditions 
{unless REJECT is set), and any other bands specified by one of the 
four mutually exc1usive parameters 

BANDS = • ... • the ba.nds specified in this list 
NOTBANDS = • ... • all bands except those in this list 
NOB.Urns = 1 no other bands 
ALL BANDS = 1 all bands (not specifying any of these 

parameters will have this effect too) 
four 

Each subentry will also be treated in the above way. In addition, 
if a subentry or main entry is not itself selected but one of the 
subentries which it dominates is, then the dominating entry or 
subentry will be represented in the output, bot only by its headword 
band. In this way. there will always be a proper path to a selected 

Second Edition, partial draft. Formatted FebI:'uary 2, 1990 



... "" " ............................................. ·----·· ... " ... - .. . 

3.4 BIRDBATH CONTROL MODULES 

subentry, whether or not its dominating entry or subentry is 
selected. 

63 

While ONBlNDS and ONPlT represent iwle~enden~ conditions, that 
is, the pattern ONPAT can be satisfied in any of the bands 9iven in 
ONBANDS, it can also be arranged that one pattern be applicable in 
certain bands while another pattern be applicable in certain other 
bands. This can be done simp1y by concatenating a call to 
*IFBANDS(bands) (see Section 6.2.4.1) to the beginning of the 
appropriate pattern and building an alternation of these patterns: 

ONBANDS = 'A,B 1 C,D' 
ONPAT = *IFB&NDS('A') PA I *IFBANDS('B,C') PBC I *IFBANDS('D') PD 

These SPECS statements say: 1) the bands to be inspected are A, a, 
c, and D; 2) look in A bands for the pattern PA, look in B and c 
bands for the pattern PBC, and look in D bands for the pattern PD. 
If any of these patterns is found, select the entry. 

In addition 
and the output 
are available. 
P!"ORMAT is set 

1. SEQCHECK 

to the above SPECS parameters, the Input parameters 
parameters, viz, PFORMAT and p-format or 1-format, 

Normally output is in LISTGEN format Cl-format). If 
to a non-null value, it is in p-format. 

This control module checks through a file for correct 
alphabetical order of the headwords. Whenever it finds a pair of 
consecutive entries in which the second headword is not strictly 
alphabetically greater than the £irst, it copies the two headword 
bands into the output fi.le, vhere they may be inspected. Correct 
alphabetical. order is defined by a handle function supplied by t:he 
user in the same way as for the TOAST control module HANDSORT. It 
would normally be placed in the "userfns*' file, and the name of the 
function would be specified in the SPECS file with a statement like 

HANDLENAME = •KORHAND• 

If no handle function is supplied, a default alphabetical scheme is 
assumed. See the description of BANDSORT in the next section for a 
little more information about writing handle functions. 

m. STA.TS 

This module reads through a file and prints out various 
statistics in the BIRDBATH RON LOG: the number of times each band 
occurs, the number of dif·ferent bands, the number of paragraphs 
(number of band occurrences), the nuaber of main entries, total 
number of entries (including sub- and sob-sub- etc. entries), total 
number of characters in the file. In the PC version, the bands 
C with their frequencies of occurrence) are listed in al phabe·tical 

Second Edition, par-tial draft. .Formatted February 2, 1990 



-----·-··-----···· 

3.4 BIRDBATH CONTROL MODULES 64 

order (actualy, computer collating sequence order); in the IBM 
mainframe version they are not. A BANDS = '•·•' or NOTBANDS: '•••' 
statement may be given in the SPECS file to restrict the first two 
statistics. The other statistics are co~piled always for the entire 
file. 

The SPECS parameters available are BANDS or NOTBANDS Cmotually 
exclusive) , and the Input parameters. None are required-

Second Edition, partial draft. Formatte d February 2, 1990 



............. _,, __ ,,,_,. _______ ...... , __ _ 

65 

TOAST control modules perform operations that. require sorting or 
C"e-orderinq of materia.l in the dictionary file. Each module 
consists of two "phasesft, one being executed before sorting and one 
after. In general, separate SPECS statements are required for each 
phase. 

T.he description of each module includes descriptions or mentions 
of the SPECS parameters (see Section 3.1) relevant t.o the module. 
In the mainframe version, SPECS parameters for TOlST modules are 
separated into phase-1 para111.et.ers and phase-2 parameters, but in the 
PC versio.n both sets are normally put in the same SPECS file. 
Certain common parameters, in pacticular the families of Input, p­
fo·rmat, and 1-format parameters, are not described repetitively, but 
are only mentioned where relevant. Descriptions of those families, 
and descriptions or references for all the other parameters as well, 
are to be found in Section 3.6. 

As with the BIRDBATH control modules, most TOAST control modules 
read an input data file, wh~ch must be in p-£ormat, and produce an 
output data file which may or may not be in p-format. If the 
description of the control module states that the PFORMA.T parameter 
is available for setting, then the modu.le will, with PFORMAT set to 
1 (oc any non-null Yalue), produce a p-format output file. 
Otherwise its OQtput is in some other format. Only p-format files, 
of coo.rse, can be further processed by BIRDBATH or TOAST control 
modules. 

All TOAST control modules produce two log files or printouts, 
chronicling significant. stages during the execution of the two 
phases, and giving error messages from the execotion. Each log is 
labelled as a BIRDBATB RUN LOG, since each phase is considered a 
BIRDBATH run. In the mainframe version, the run logs are normally 
part of the whole printout from the run; on the PC they normally go 
into two files, MESSA.GE and MESSAG.E2. The logs should be checked 
after every run. 

There are recipes in Chapter 4 illustrating the usage of TOAST 
control modules. 

a. SANDCORD 

This control module constructs a simple center-format (also known 
as a Key-Word-In-Context) concordance of specified bands, in the 
general format of a bandsort (see BANnSORT control module). Figure 
2.13 shoNed the format of a bandsort. The band concordance format 
differs from this in that each band body appears once for each word 
in it, centered on the word. All the occurrences of all the 
specified bands are sorted by the centered words. Each body is 
truncated, as necessary, at the le.ft and right edqes of the 
available space. The boundaries of the •word" are spaces. 

Second Edition, partial dra.ft. Formatted February 2, 1990 



3.5 TOAST CONTROL MODULES 66 

Currently it is not possible to specify other de.limite r: characters .. 
The default widths of the concordance fields (and their names) are 
35 for the headword field (UWPIELD) and 12 for: the left side of the 
centered concordance field (LFIELD). Ten spaces are reserved for 
·the mode numbers and band name, and the left and right margins are 
determined by LMARGIN (default 0) and RMARGIN (default 132 on the 
mainframe, 79 on PC).. The bands to he concorded are specified vith 
the BlHDS or NOTBANDS parameter. All these parameters are Phase-1 
paraaeters. 

b. BANDSORT 

A bandsort is an alphabetical listing of bands from a dictionary 
file. The ba.nds are in alphabetical order by band name, and Mi thin 
each group of bands with the same name the bands are in alphabetical 
order by the body. The output of this program is in neither p­
format nor 1-format. (See Pig. 2.13 for an example of a bandsort 
output.) 

In the phase-1 SPECS file, a list of bands that are to be printed 
or that are to be ignored may be 9iven, by using the BANDS or 
NOTBANDS pa~ameter , respectively, e.g. 

BANDS = •il,phr,ps,df' 

or 

NOTBANDS = 'il,phr,ps,df' 

If no such statement is given then all bands ace taken. The HWFIELD 
parameter specifies how wide a field is reserved for the headword in 
the BANDSOR~ output (see, again, Pig. 2.13). This field is at the 
left of the printout. Any headvo~ds longer than this will be 
truncated on the printout. The default is 35. (In Figure 2.13 the 
f ield is only about 9 characters wide, in order to fi t ~ithin the 
figure box.) KEEPSEQ is another parameter avai.lable i .n phase-1 of 
BANDSOBT. Normally, all occurrences of each band are sorted into 
order by their band bodies, as shown in Fig. 2.13. However, if 
KEEPSEQ is set to a non-null value, they will be kept in their 
original relative order. In addition to these parameters, the Input 
parameters (g.v. in Section 3.6) are available. No SPECS statements 
are obligatory in phase-1. 

In the phase-2 SPECS file may be specified how many blank lines 
are to be skipped when a new group of bands (with a new name) 
begins. The parameter is SEPARATION. The default is 1. If some 
number is given that is larger than the number of lines on a page, 
e.g. SEPlRlTION = 70, then every new block of bands will start on a 
new page. Of'FSET is the amount of indentation qiven to a 
continuation line in the bandsort output. It is normally set at SO, 
in order to clear the headword field and band label field. If 
H~FIELD is reset in phase-1, then it may well be desireable to reset 

Second Edition, partial draft. Formatted February 2, 1990 



3.5 TOAST CONTROL MODULES 67 

OFFSET. All the page-formatting parameters (q.v. under 'I-format 
pacameters• in section 3.6) are also available, i.e., all the 1-
format parameters except HEADHANG, SUBENTINDENT, SUBMODEINDENT, and 
SUPBANDLABEL. No SPECS statements are, however, obligatory in 
phase-2. 

c. HlNDSORT 

This module alph.abetizes a file by headword, i.e. the body of the 
first band of each entry. Sub-entries are not disturbed--they are 
left in their relative order beneath the.ir respective main entries. 
The sorting is not based directly on the form of the headword and 
the computer collating sequence; rather, it is based on another 
form, called the handle, generated from the headword by a function 
which may be supplied by the user. In the absence of a supplied 
function a default handle function is used, which causes the upper 
and lower case distinctions ·to be ignored. It also ignores non­
alphabetic characters. If a more sophisticated alphabetization 
scheme is desired, a special function must be supplied, and placed 
in the phase-1 USERFNS. (See Section 4.1, j.) It may be called 
•HANDLE', mast take one ar9ument--the string for which a handle is 
to be made, and must return the resulting handle as value. This 
must, of course, be written by a programmer. If it is not called 
'HANDLE', a statement saying what it is must be placed in the 
phase-1 SPECS file, e.g. 

HANDLENAME = 1 POTHAND' 

As usual with most control modules, the Input parameters Cq.v. in 
Section 3.6) are also available here, in phase-1. No SPECS 
statements are, however, obligatory for a HANDSORT run. 

The output of this program is the sorted dictionary, .by default 
in LISTG.EN' format Cl-format), in which case the 1-format parameters 
(q.v. in Section 3.6) are applicable in phase-2. Presumably, 
however, one would want to save the sorted dictionary in a file for 
£urther computer processing or for editing •. That means having it 
written out to a file in p-format. In that case one would set 
PFORMAT to a non-nul.l value in the phase-2 SPECS file, and the p­
forma t parameters (see 3.6) would be applicable. A phase-2 
parameter TRACEUA.NDLE may be set to a non-null value, during check­
out of a new handle function, to cause a list of the sort records 
with their handles to be printed out. Another phase-2 parameter. 
SUPDUPTRAC.E, if set to a non-null value, suppresses a listing of 
0 duplicate handles"--headwords which have identical handles and 
which presumably one vould want to be alerted to. For these words 
the alphabetical orderinq, as specified by the given handle 
funct.ion, is ambiguous, or 1111nderspecified•. This listing is given 
in the BIRDBATH RUN LOG of phase-2. In summary, in phase-2 of 
HANDSORT, the SPECS parameters available are Pl'ORMAT, TRACEHANDLE, 
SUPDUPTRACE, and the p-format or 1-format parameters, depending on 
whether PYORM~T .is set or not. 

Second Edition, partial draft. Formatted February 2, 1990 



3.5 TOAST CONTROL MODULES 

d. INVERT 

This module is not distributed with the PC version; the more 
versatile INVERT2 shoold be used. 

68 

This module generates a finder1ist, the elementary 
characteristics of which have been described in Chapter 2. Due to 
the complexity and number of conventions pertaining to this control 
module, the details have been rel.egated to an appendix (Appendix I) 
in order to nnclutter this chapter. Only the most basic SPECS 
parameters are mentioned here. 

In the phase-1 SPECS file, the band(s) in which the program is to 
look for asterisks (which mark keywords) must be stated. This is 
done by a BANDS = '···' statement. e.g. 

BANDS = 'def,sem• 

Such a statement in the phase-1 SPECS file is required for runnin9 
INVERT, since otherwise the program would not know what bands to 
look for asterisks in. All the other parameters are optional. A 
large number of them are provided for controlling the delimitation 
of keywords and of the phrases that they are embedded in. A 
detailed account of them is given in Appendix I. In addition, the 
Input parameters (q.v. in Section 3.6) may be specified in the 
phase-1 SPECS file. 

In the phase-2 SPECS file, no parameters are required. output is 
in band format, with tvo bands, .KW and PB • Output is normally in 
LISTGEN format Cl-format) for printing out, but may be put in p­
format by setting the parameter PPORMAT to a no.n-null value. In 1-
format, since a finderlist has only two bands, and the KW band is 
always the first band in an entry. the control module suppresses 
printing of the band labels. If, however, band labels are desired 
in the printout, set the parameter PR.INTBANDLABELS to a non-null 
value in the phase-2 SPECS file. In summary, the parameters 
available to be modified in the phase-2 SPECS file are PFORMAT, and 
the p-format or 1-format (and PRINTBANDLABELS) parameters (see 
Section 3.6), depending on whether P.PORMAT is set or not. 

This is a more general version of INVERT (see above) which 1. 
constructs. for keywords vithin subentries, a reference to the main 
headword as well as one to the subheadword: and 2. looks for 
keywords (starred words) in "translation" bands associated with 
Mexample" bands in the same mode. The example bands are treated as 
subheadwords. Details are presented in Appendix I, paragraph r. 
This control module may eventually supersede INVERT if its 
performance on the subset of INVERT tasks proves comparable to that 
of INVERT itself. 

Second Edition, partial draft. Formatted Februai:y 2, 1990 



3.5 TOAST CONTROL MODULES 

The phase-1 SPECS parameters aLe the same as for INVtRT, except 
that two more "BANDS" type parameters are available, one, XBANDS, 
for specifying the name(s) of example band(s), the other, TBANDS, 
for spe cifying the name(s) of translation band(s). 

The phase-2 SPECS parameters are the same as for INVERT. 

f. NlJLLRUN 

This module is not available in the PC version. 

This modale produces a .. null i::un". .It does not read any data. 

69 

It can be used to exercise the in1tializations (see Section 6.2.1.1> 
or to generate a compilation listing of the built-in functions in 
BIRDBATH and TOAST. No SPECS parameters are relevant. 

g. REBANDLE 

This module re-orders the bands in each entry according to a 
given order. The new order is given in terms of a list of band 
names in a file BANDLIST in phase-1 of the run. In that file there 
must be one bandname per line, vith nothing else. REBANDLE does not 
take bands out of their modes: the grouping function of mode 
numbers is respected. 

In t.he phase-1 SPECS file no parameters are available except the 
Input parameters (q.v. in Section 3.6). In the phase-2 SPECS file 
are available PFORM!T, and the p-format or 1-format parameters 
depending on whether PFORMAT is set or not. Output is normally in 
LISTGEN format Cl-format), but may be put into p-format by setting 
PFORMAT. 

h. SORTENT 

This module sorts the entries in a file. much as HANDSORT does, 
except instead of sorting by the headword band as HANDSORT does, it 
can sort based on anything in the entry. As with HANDSORT, the user 
must provide a handle function to phase-1 to generate the sort 
handle for the entries. The name of the handle function must also 
be given in the phase-1 SPECS file as a parameter HANDLEN!ME. 
Unlike the handle function supplied to HANDSOR7 however, this handle 
function takes no argument, but bases the handle on other 
information. This information is put aside by another user-supplied 
function, which must be called BANDPROC(). This function is 
executed by the control module each time a band is read. The 
function may test for the band and do whatever else it needs, and it 
puts aside information. say by using the SET function (SSET function 
in the PC version) (see 6.2.4.3). The handle function is called at 
the end of the entcy, and can make use of any information put aside 
by BANDPROC during the reading in of the entry. The entry is sorted 

Second Edition, partial draft. Formatted .Feb.ruary 2, 1990 



3.5 TOAST CONTROL MODULES 70 

according . to the handle so generated. The handle function may 
specify that the entry be skipped, and the BANDPBOC function may 
specify that a given band be ignore d. See the control modole itself 
for further comments. For phase-2, the p-format parameters are 
relevant if PYORMAT is set; otherwise the 1-format parameters are 
relevant .. 

i. SORTSUB 

This control module alphabetizes the two-dot subentries under 
each main entry. The sabentries are not taken out of the nest, but 
are re-arranged (if necessary) into alphabetical order, still under 
the same main entry. The sub-sub- and deeper entries under a 
subentry are by default not reordered, but kept as a unit with the 
subentry. If it is desired to reorder all deeper subentries as 
we ll, then the parameter SUBSU.B should be set to a non-null value. 
This is a phase-1 SPECS parameter. Note that the hie rarchical 
relationship in a nest of entries is never altered, only the 
sequence at each level may be changed. As with BANDSORT, a handle 
function must be supplied. Follow the conventions described under 
HANDSORT, above, for writing the function. The naMe of the function 
must also be given as a phase-1 parameter HANDLENAME.. ~s for 
phase-2 SPECS parameterst the p-format parameters are relevant if 
PFORMAT is set; otherwise the 1-format parameters ace relevant. 

j. XCH.ECK 

This control module checks cross-references to find refet'ences 
that do not occur as main hea<lwo.rds in the .file. Cross-references 
may be in any form in the file, bat the user must supply a function 
XREFC), of no arguments, that looks in the current band and returns 
a list of (zero or more) cross-reference words separated by commas 
<and optionaly spaces). The bands in which the f anction is to look 
must be given in terms of a list of bandnames in the parameter 
a.ANDS. The BANDS = • ••• • statement must be given in the phase-1 
SPECS, and the XREF() function must be given in either the phase-1 
SPECS or the phase- 1 USERPNS file. A handle function may be 
provided in the USERFNS file, as for the HANDSORT control module, 
q.v., for alphabetizing of the output. Thus HANDLENAHE is available 
as a phase-1 SP!CS parameter.. In additiont the Input parameters 
(q.v.in Section 3.6) are available in the phase-1 SPECS. 

The output i s a list of entries consisting of two bands: headword 
band and a cross-reference band containinCJ one cross-reference word. 
The bands are labeled with the sa111e naJRes as their bands of origin 
in the input file. These entries represent unresolved cross­
referencest i. e ., cross-reference words which do not occur as 
headwords in the input file, along vith the main headwords under 
which they occurred. These entries are in alphabetical order by the 
c ros s-reference words, not by headword. I£ the output is saved in a 
f ile in p-format, it can late r be sorted into order by the headword 

Second .Edit.ion, partial draft. l"ormatted February 2, 1990 



3.5 TOAST CONTROL MODULES 71 

using the H.ANDSORT control module. Thus in the phase-2 SPECS file, 
the para meters available ace PFORMAT, and the p-format or 1-format 
parameters (q.v. in Section 3.6), depending on whether PFORMAT is 
set or not. If PFORKAT is not set, the output is in LISTGEN format 
Cl-format), and the 1-format parameters are relevant. 

Second Edition, partial draft. Formatted February 2, 1990 



............................ ---·-------

72 

This section contains an alphabetical list of the parameters that 
can be overridden in the SPECS file when running BIRDBATH or TOAST 
Mith existing control modules. With each parameter is given its 
type (string, number, flag, or pattern), its purpose, and its 
default value. In each case of a TOAST parameter it is noted 
whether it is a phase-1 or a phase-2 parameter. This is relevant 
for the IBM mainframe version but: not for the PC, where both types 
of parameters are given in the same SPECS file. What function uses 
the parameter is al.so mentioned .for the information of pro9rammers. 

If a parameter is to be overridden with a statement in the S.P.ECS 
file, the form of the statement lllUSt be consistent with the type o.f 
the parameter. If the parameter is a string, the value must be 
enclosed in single or double quotes, e.g. 

BANDS 'RW,DF,CP' 

If it is a nnmber, it must be a s.imp.le inte9er without quotes: 

LMARGIN = 10 

If it is a .fl.ag, for all practical purposes any number wi 11 do: 

PFORMAT = 1 

If it is a pattern, it must conform to SNOBOL4 pattern syntax: 

ONPAT = 'cpd.' •redup.• 'tb.• 

In all cases ·there mast be spaces o.n both sides of the equals sign. 

ALLBANDS a flag used by certain control modules that select bands 
in addition to certain fixed bands such as the headword band. 
If set to a non-null value, it causes all bands to be selected. 
It is mutually exclusive with NOBANDS, BANDS, and NOTBANDS. 
It is used by the function IFBANDQ(). ALL.BANDS is relevant to 
the control modules BANDFILT and ONBANDSR. 

BANDPRIO.IHTY a string of band names separated by commas, 'Ni th no 
spaces, and not necessarily t.erminated with a comma. It 
gives a list of bands in priority order for selection fo.r 
output by the control module BANDFILT. 

BlNOS a string of band names separated by commas, with no spaces, 
and not necessarily terminated with a comma. Tells the 
control module which bands to process. <in the case of 
INVERT, tells it which bands to look for asterisks in.) 
Default is null.. rf 1eft null, the meaning depends on the 
control module, e.g. for BANDSORT it means select all bands 
(unless NOTBl.NDS is non-null.), for BANDAID it means do nothing. 

Second Edition, partial draft. Formatted February 2, 1990 



3.6 SPECS PlRAMETERS 

ENDEF a string used by the INVERT and INVERT2 control modules 
in phase-1. See Appendix I, paragr aph c. 

PORCEN~EY a string osed by the INVERT and INVERT2 control 
modules in phase-1. See Appendix I, paragraph d. 

FIANDL.K.NlP'.IE In using TOAST control aodules that sort on forms, 
or BIRD.BATH modules that check alphabetical order, the user 
may s upply a function to produce a "handle" for each form 
to be sorted. The default name for the £ unction is 'HANDLE', 
but may in fact be any legitimate SN080L4 function name. 
If it is not 'HANDLE', the user must specify what it is 
throu9h a SPECS statement e.g 

HlNDLENAME = 'FRANDLE' 

This parameter is relevant to all TOAST control modules 
except REBANDLE, and to the BIRDBATH control module SEQCBECK. 
This pacameter is given in the phase-1 SPECS file. 

HANDLEBNAME Some TOAST control modules, e.g., INVERT, use a 
second handle function (see BANDLENAKE, above) whose default 
name is •ff!NDLEB'. If the user chooses to supply a function 
with another name, that name mast be specified in a phase-1 
SPECS statement, e.g. 

R.lNDLEBN.lHE = 'ENG HAND' 

In INVERT, this function is for sorting the keywords of the 
definftion (see Appendix I, paragraph q.). 

This parameter is relevant for the control modules INVERT 
and INVERT2, those that allow aser-written handle functions 
to override the RANDLEB(X) default handie function. This 
parameter is given in the phase-1 SPECS file. 

HEAI>BANG the number of character positions of hanging indent 

73 

the hea dword bands will be printed with, in 1-format printed 
output. It is used by the LrSTGEN(} function. Default is 10. 

This is one of the 1 1-format parameters•, q.v. elsewhere in 
this section. 

HOOK a string used by the INVERT and INVERT2 control modules 
in phase-1. See Appendix I, paragraph g. 

HWPIBLD in BANDCORD and B!NDSORT output, the width of the 
headword fie1d Cleft hand column of the output). Any 
headword longer than this is tcuncated. Default is 35. 
I t is given in the phase-1 SPECS file. 

IDLEN the lenqth of the fixed serial-nomher field (e.g. TSO 
line number) on input records. Used in the pattern R.INPAT, 
q.v. It is normally determined automatically by the first 

Second Edition, partial draft. Formatted February 2, 1990 



·---·-.·--·-·---------.. 

3.6 SPECS PARAMETERS 74 

call to READ(), but may be overridden. It is not usually 
re1evant on the PC. 

This is one of the 'Input parameters•, q.v. elsewhere in this 
section. 

Input parameters These are IDLEM, PARAPA~, R.INPAT, STOPAFTER, 
and STOPPAT. Only STOPAFTER needs normally to be used. 
They are relevant to all the control modules except NULLRUN. 
In TOAST control modules they are relevant only to phase-1. 

KEEPANGLE a flag osed by the INVERT and INYERT2 control 
modules in phase-1. See Appendi.x I, paragraph k. 

KEEPBAHDLJlBEL old name for PRINTBANDLABELS, a flag used by the 
INVERT and INVERT2 control modules in phase-2. See Appendix I, 
paragcaph P• 

KEEPSEQ a flag used by the BANDSOR'?' control module to determine 
whether instances of the same band are to be sabsorted by 
their body or are to be kept in the original input sequence. 
To obtain the latter, set this paramete.r to a non-null 
value. The defanlt value is null, qiving the former result. 
It is used in phase-1 of BANDSOBT. 

KEYKARK a string used by the INVERT and INVERT2 control modules 
in phase-1. See Appendix I, paragraph f. 

LFIELD in BANDCORD output, this is the width of the left context 
field 'in the center-format concordance of the band bodies. 
It is defaulted to 12. It is a phase-1 parameter. 

1-format parameters These are HEADHANG, SUBENTINDENT, 
SUBHODEINDENT, and SUPBANDLABEL, plus the page-formatting 
parameters NOPlGB, LINESPERPAGE, LMARGIN. PAGECOUNT, 
RMlRGIN, SUPHEADING, SUPPINSP, and TITLE. They are all 
relevant to control modules that can produce !-format 
output with more than one band per entcy. In TOAST control 
modules they are relevant to phase-2. The page-forma·tting 
parameters alone are relevant also to non-1-for:mat printed 
output, such as BANDSORT output. 

LINESIZE the maximum length of lines for hanging paragraph 
outpa·t in p-format. Used by the WRITEBAND function. Default 
is 70. 

This is one of the •p-format parameters•, q.v. elsewhere in 
this section. 

LINESPERPAGE the maximum number of lines that should be printed 
on a page of page-formatted output (e.g. I-format or B.A.NDSOfiT 
output). Used by the PRINTL function. Default is 60. 

This is a •page-formatting parameter•. see under 'l-format 

second Edition, partial draft.. Formatted February 2, 1990 



3.6 SPECS PARAMETERS 75 

parameters' elsewhere in this section. 

LISTG.EN format pa.rameters see •1-format parameters•. 

LMARGIN position of left marg~n in print-formatted output. Used 
by the PRINTL function. De.fault is O. 

This is a •page-formatting parameter•. See under 'l-format 
parameters• elsewhere in this section. 

NOBANDS a flag used by certain control modules that select bands 
in addition to certain fixed bands such as the headwo~d band. 
If set to a non-null value, it causes no additional bands to be 
selected. It is mutually exclusive with ALLBANDS, BlNt>S, and 
NOTBA.NDS. It is used by the function !PBANDQ(). NO'BANDS is 
relevant to the control modules BANDYILT and ONBANDSR. 

NOPlGE When this flag is set to a non-null number, it causes 
page-skipping to be suppressed, along with printing of titles 
and page numbers. It is available in the PC version, not on the 
mainframe- It is useful if an output file is not to be printed 
but will only be examined on the screen. It is used by the 
PRINTL function. It renders the parameters LINESPERPAGE, TITLE, 
and SUPHEADING irrelevant. 

This is a •page-formatting parameter•. See under '1-format 
parameters• elsewhere in this section. 

NO.MUM In p-format output a TSO-style line number (9 digits 9 
increa'sinq by 10•s) is norma1ly generated and attached to the 
front of every record written out. If this flag is set to a 
non-.null value, no such number is attached. Used by the 
function NUMFIELD which is called by the function WRITE. 
Default in the mainframe version is no.ll: the number field is 
generated. In the PC version the opposite is true. 

This is a •p-format parameter•, q.v. elsewhere in this section. 

NOTBANDS a string consistin9 of bandnames separated by commas, 
with no spaces, and not necessarily terminated by comma. 
some control modules allow you to use this pa.rameter instead 
of the parameter BANDS (q.v.), to specify what bands are NOT 
to be processed rather than what bands ARE to be processed. 
These control modules are BANDFILT, LISTGEN, ONBANDS, 
ONBANDSR, BANDSORT, and XCBECK. In TOAS'l' control modules, 
(BANDSORT and XCEIECK), this parameter is .relevant to phase-1. 

NOWRITE In the BAND!ID control module, any band that is not 
mentioned in the BANDS parameter is normally written out. 
prevent the unmentioned bands from being written out, set 
parameter to a non-null value. 

To 
this 

OFFSET in any outputting of hanging paraqraphs (see 3.2, d), this 
is the number of blanks to be pre.fixed to continuation lines. 

Second Edition. partial draft. Formatted February 2, 1990 



3.6 SPECS PARAMETERS 

The default is 1, and should not normally be changed because 
programs that read the data in again assume this. However. 
for .BANDSORT output the default is 50, causing continuation 
lines to be indented out of the way o.f the headword fie.id, 
which is normally 35 char4cter positions wide (see BWFI.ELD 
parameter). 

This parameter should not normally be reset, except possibly 
in phase-2 of BANDSORT. In addition to BANDSORT, it is 
used by all control modules that produce p-format or 1-format 
output. 

ONBANDS a list of band names separated by commas, as in the 
parameter BANDS, used by the ONBlNDS and ONBANDSR control 
modules to determine whether a qiven entry is to be selected. 
It is selected if the entry contains a band in this list 
and if the pattern ONPAT matches in the body of the band. If 
the list is null, nothing is selected. The default is null. 
However, the parameter REJECT, q.v., in ONBANDSR, when set 
to a non-null value reverses the se.lection criteria. 

76 

ONPAT a pattern used by the ONBANDS and ONB!NDSR control modules. 
See ONBANDS parameter, above. Default is null, which matches 
in all cases. 

OPTP a string used by the INVERT and INVERT2 control modules 
in phase-1. See Appendix I, paragraph m. 

page-.format,ting parameters see 'l-format parameters•. 

PA.GECOUNT the current page nQmber. The default initially is O. 
To start printing with another number, set this parameter 
equal to one less than that number.. Used by the PRIHTL function. 

This is a •page-formatting parameter•. See under •1-format 
parameters' elsewhere in this section. 

PARAPAT the pattern used to parse each paragraph read in into 
its components according to band-format conventions: headword 
level (the dots, if any>, mode numbers (if any), band name 
(obli9atory), and body (if any). Used by the READ function in 
BIRDBATH and in phase-1 Of TOAST, but not the READ function of 
TOAST phase-2. It does not need to be overridden unless the 
input does not follow standard band-format conventions. The 
default value may be examined in Program Segment 2.2. 

this is one of the •rnput parameters•, q.v. elsewhere in this 
section. It shou1d never need to be overridden. 

PATTERN a pattern used by the EDLISTB control module to determine 
whether a given band is to be selected for writing out. It is 
selected if the pattern matches in the body of the band. 
Default is nu11, which matches in all cases. 

Second Edition, partial draft. Formatted February 2, 1990 



3.6 SPECS PARAMETERS 77 

PFORHAT a flag that aetermines. in those control modules that 
allow this choice, whether oatput is to be in p-format or 
1-format. The former is suitable for output to a file that is to 
be further processed by these programs; the latter is for printed 
output. When not set (the default situation), the output is 
in 1-format; vhen set to a non-nuli value the output is in 
p-forrnat. This parameter is used by the function L!STORWRITE 
to determine whethe.r to call LISTGEN <for 1-format > or to call 
WRITEBAND (for p-format). 

In TOAST control modules it is used in phase-2. 

p-format parameters They are LINESIZE, NONUM, OFFSET, SOPPINSP. 
They a.r::e relevant to control modules that can produce p-format 
output. In TOAST control modules they are used in phase-2. 

PHASE In TOAST runs, this number is normally automatically set 
at the beginning of a phase to either 1 or 2 depending on 
whether phase-1 or phase-2 is being executed. It normally 
would not have to be overridden. 

PRINTBANDLABELS A flag used by the INVERT and INVERT2 control 
modules in phase-2. See Appendix I, paragraph p. 
The old name for this parameter was KEEPBANDLABEL. 

R.INPlT the pattern used to separate the line nombe~, 
of each input record from the rest of the record. 
is TAB(IDLEN) • PG.ID2 RE~ • PG.BUF2 
It is used by the function READPG. 

' . 

if any, 
The default 

It is one of the 'Input parameters•, q.v. elsewhere ~n this 
section, but it should never need to be overridden. 

REJECT 
the 
and 
the 

a flag used by the ONBANDSR control module. It reverses 
sense of the selection ct:iteria specified by ONBANDS 
ONPAT. That is, if ONBlNDS and ONPAT are both satisfied, 
band is rejected instead of accepted. 

RMARGIN position of right margin in print-formatted output. 
Used by the PRINTL £unction. On the mainframe version the 
default is 132, which is the maximum width of wide printout 
paper. On the PC version it is 79. 

This is one of the 'page-formatting parameters•. See under 
'1-format parameters' elsewhere in this section. 

SEPARATION in BlNDSOB! output, this is the number of blank lines 
to he inserted when the band name changes. The default is 1. 
If it is set to a number greater than LIHESPERPlGE, e.g. 80, 
then every different band will begin on a nev page. It is 
used in phase-2 of BANDSORT. 

SNUM Some control modules that print paragraphs from a file, 
e.g. the LISTGEH control module, normally print the line 

Second Edition, partial draft. Formatted February 2~ 1990 



3.6 SPECS PARAMETERS 

number field, if any, from the records of the input file. 
To suppress these numbers, set this parameter to a non-null 
value. The default is null. Used by the function SERFLD. 

This parameter is currently relevant only to the LISTGEN 
control module, and then only when the input file has a line 
number field. 

78 

STOPAFTER a number used to limit the amount of input read by the 
READ function. After this many paragraphs the BEAD function 
will look for a paragraph satisfyinq the pattern STOPPAT, and 
stop before that paragraph, behaving as if the end of the file 
had been reached. If this parameter is null, no 1imit is 
imposed. The default is null. 

This is one o.f the •Input parameters', q. v. elsewhere in this 
section. 

STOPPAT the pattern used in conjunction with the STOPAYTER 
pa.rameter (aboye). Default is POSCO) •.• NOTANY('.') 
vhich matches the first band of a.n entry. 

SUBENTINDENT in 1-format output, the number of character 
positions that each level of subentries is further indented 
from the level above. Used by the LISTGEN function. Default 
is 3. 

This is one of the 'l-format parameters•, q.v. elsewhere in 
this s,ection. 

SU.BMODEINDENT in 1-format outpnt, the number of character 
positions that each mode 1evel is further indented from the 
higher level. Used by the LISTGEN function. Default is 2. 

This is one of the '1-format parameters•, q.v. elsewhere in 
this section. 

SUBSUB This phase-1 flag, when set to a non-null value, is used 
·to inform the TOlST control. module SORTSUB that sub-snbentries 
and deeper entries are all to be re-ordered. Otherwise 
SORTSUB will only re-order subentries. See SORTSUB in 3.5 for 
detail.s. 

SUPBANDLABEL in 1-format output, this flag determines whether the 
band label is to be printed or suppressed. It is suppressed 
if this parameter is set to a non-null valoe. Default is 
null. Used by the LISTGEN function. (However, for I.NV.ERT 
and INVERT2 output, see description of the parameter 
PRINTBAHDLABELS.) 

This is one of the 'I-format parameters•, q.v. elsewhere in 
this section. 

SUPDUPTRACE a flag which, if set to a non-null value in phase-2 

Second Edition, partial draf~. Formatted February 2 9 1990 



3.6 SPECS PARAMETERS 

of a HANDSORT run, suppresses tracing of duplicate handles. 
The default · is null, which causes ins tances of duplicate 
handles to be printed in the messages file ("BIRDBATR RUN 
LOG") of phase-2 of the run. 

SUPHEADING in print-formatted (e.g. l-£ormat or BANDSORT) 
output, this flag determines whether a ranning head, 
is to be printed or not. It would appear in the right 
hand corner under the page namber. It is not printed 
if this parameter is set to a non-null value. Default 
is null (running head is printed). Used by the PBINTL 
function. 

This is one of the •page-formatting parameters•. See under 
'1-format parameters' elsewhere in this section. 

SUPPINSP in outputting of hanging paragraphs, whether p-format 

79 

or 1-format or any other formats, this flag determines whether 
spaces in the text that happen to fall at the beginning of 
continuation lines in the output paragraph are to be 
discarded or not. They are discarded i f this parameter is 
set to a non-null value. Default is null. Used by the BRElKP 
function. 

This is in both the families of 'p-format parameters• and 
•!-format parameters•, q.v. elsewhe r e in this section. 
However, it should never need t:o be over.ridden. 

TBANDS a string of one or more bandnames separated by commas, 
with n'o spaces, and not necessarily terntinated by comma, 
used by the INVERT2 control module in phase-1. See Appendix I, 
paragraph r. 

TITLE in print-formatted output, this is a string that is printed 
at the top center of each page. Used by the PRINTL function. 
Default is the null string. It is reset when a .TITLE band is 
encountered in the data being formatted (see 3.3.3). 

This is one of the •page-formatting parameters•. See under 
'1-format parameters• elsewhere in this section. 

TRlCEHANDLE a flag which, if set to a non-null value in phase-2 
of TOAST rans, caQses a trace of the sort handles to be listed 
in sorted order in the messages file (the nBIRDB!TR RUN tOG•) 
of phase-2. No regular output is generated. This is only for 
checking out handle functions. A typical use is to test a 
handle function by BANDSORTing a file consisting only of 
t est headwords (perhaps constructed especially for the 
purpose) and nothing else (no othe r bands). With 
TRACEBANDLE set, no output is generated e xcept the 
sorted list of headwords with their handles, which 
can be easily inspected for correctness of order and for 
the reason for any incorrect ordering. 

Second Edition, partial draft. Formatted February 2, 1990 



3.6 SPECS PARA~ETERS 

TRUSSEL a flag used by the INVERT and INVERT2 control modules 
in phase- 2. see Appendix I, paragraph p. 

XBANDS a string of one or aore bandnames separated by commas , 
with no spaces, and not necessarily terminated by comma, 

80 

used by the INVERT2 control module in phase-1. See lppendix I, 
paragraph r. 

XEN~EY a string used by the INVERT and INVERT2 control modules. 
see Appendix I, paragcaph d. 

Second Edition, partial draft. Formatted February 2, 1990 



81 

~be headings in this section describe a few commonly needed 
operations such as making a working printout, or extracting a subset 
of the file, and each is fo.llowed by some advice abou·t vhich control 
module(s) can help you meet these needs. Not all needs are 
anticipated, by any means. Althongh some advice and examples are 
given regarding the use of severai control modu1es, the reader 
should not rely on this section, but rather on sections 3.4 and 3.5, 
for a more complete description of the capabilities of each of the 
control modules. 

J.1.1 HAK.IllG A WOB!Il':lil EBIB?QUI 

A printout of the master file is useful for p.roofreading and 
checking, for jotting corrections and additions on, for sending to 
colleagues, for taking back to the field, etc. The file itself can 
be prin·ted out as-is, of course, and no control modn1e is needed, or 
available, to do this. Any printing command or utility program 
available on the computer may be used. However, being in "p-format" 
such a printout is not very readable in that it does not clearly 
show the structure within an entry. The 1-format output produced by 
the LISTGEN control module is designed to do this. In the PC 
environment LISTGEN is normally used to produce an I-format £ile 
rather than a printout directly. Then the system print command can 
be used to print out that file. 

LISTGEN ~an be used, of course, to produce 1-format output from 
~D~ p-format file, not only a masterfile. For instance, in those 
cases where it is necessary to request p-format output from a 
BIRDBATH or TOAST run because the output is to be further processed 
(used as input), an 1-format version of the p-format output may be 
made with LISTGZN. 

With LISTGEN, you should normally provide some informative title 
to be printed at the top of each page, using the SPECS parameter 
TITLE. The title should be short bnt give enough distinctive 
information about the file being printed, along with the date, so 
that you will be able to tell at a glance, possibly weeks or months 
later, what this printout was about. An untitled printout can 
quickly become meaningless. The right margin parameter RMARGIN is 
pre-set on the IBM mainframe version and on the PC version to agree 
with the typical paper widths used in the tvo environments: 132 on 
the mainframe and 79 on the PC. The left margin parameter LMARGIN 
is 0 in both cases. You may override these defaults with S~!CS 
statements. Other parameters control the di-fferent indentations .in 
the printout (see description of LISTGEN in 3.4), and at some point 
you may wish to experiment vith overriding them. In the PC version 
there is another parameter, NOPAGE, a flag which allows you to 
suppress pag~nation and the accompanying periodic interruption of 
the printout with title lines and page nambers. You might want to 

Second Edition, pa.rtial draft. Formatted February 2, 1990 



3.7 GUIDE TO CHOOSING CONTROL MODULES AND PARAMETERS 82 

do this if the "printout" is actually not destined for printing out, 
but only for browsing on the screen. 

This category covers a great ran~e of actual activities. For 
straight proof reading against, say, the field notebook from which 
the data were entered into the file, the Listgen output described 
above is the usual tool. 

Remember that any corrections and editorial changes suggested by 
perusing these outputs must be made back in the masterfile and not 
in the ootpot files. If the bandsort file were edited, for 
i·nstance, the edits cannot automatically be posted back into the 
master·file. 

For proofinq and checking that is not tied directly to a source, 
but done by scanning a. printout or a file, any format that serves to 
focus the reader's attention on some limited aspect of the data can 
be very e.ffective. A simple example of such a format is a selective 
.Listgen, one that shows only a small number of different bands--say 
only the headword and definition bands, or only the headword and 
illustration bands. Such a printout, or file, can be made ~ith the 
LISTG.EN control module, with the bands to be selected being 
specified through the BANDS parameter. If the desired bands do not 
occur in all entries, then the control module ONBANDSR may be more 
appropriate because it does not select every headword as LISTGEN 
does. For 'oNBANDSR, the criterion bands are specified through the 
parameter ONBANDS. 

Any rearrangement that tends to bring together similar features 
in the data is useful in making errors and inconsistencies easier to 
spot. The output of the .BANDSORT control module illustrates this. 
This output brings together all i.nstances of a given band and 
exhibits them in sorted order by the body of the band. While 
perusing such an output one can focus on the contents and 
conventions of a single band at a time, undistracted by other 
intervening bands. The bodies being in sorted order also produces 
some peculiar effects advantageous to the checking process. To make 
a bandsort of certain bands, specify what bands with the SPECS 
parameter BANDS, or exclude certain bands by using NOTBANDS. If 
neither is mentioned then a. complete bandsort is made. 

The band concordance, produced by the BlNDCORD control module, 
has similar effects, althouqh that output tends to be moce 
voluminous, especially for bands that typically have long bodies. A 
band concordance would be more useful for bands that typically 
contain long strings of text (as in an illustration band) rather 
than single words or abbreviations (such as a part-of-speech band), 
in which case it would reduce to a bandsort. It would also probably 
be more useful if it is made of a single band or of a set of closely 
related bands (in the sense of containinq similar types of 

Second Edition, partial draft. Formatted February 2, 1990 



3.7 GUIDE TO CHOOSING CONTROL MODULES AND PARAMETERS 83 

information) than if several heterogeneous bands were mixed 
together. Specify what band(s) to concord with the HANDS parameter. 

The finderlist, produced by INVERT or INVERT2, usually brings out 
inconsistencies in wording, as well as typos and misspellings, in 
definition bands. Use the BANDS parameter to specify iihat bands to 
make the finderlist from. 

Beyond this passive scanning of transformed fi1es, it is possib.le 
to actively go after known types of errors or inconsistencies 
directly in the masterfile, with the help of various control 
modules. ONBANOSR, for instance, can be used to extract all entries 
that contain a given band with a certain pattern in .it. The pattecn 
is specified in ONPAT and the band is specified in the ONBANDS 
parameter (more than one band may be specified). You need, however, 
to know a little about patterns. If, for instance, only certain 
symbols Caiuptkh&#:) are allowed in a pronunciation band PR, then it 
would be possibly to ferret out all entries whose PR band contained 
any other characters by using these SPECS settings: 

ONBANDS .: "PR' 
ONPAT = NOTANY('aiuptkh&#:') 

Another example: To find all entries that do not contain certain 
bands, set ONB.ANDS to those bands, and set REJECT, e.g.: 

ONBANDS = 'df,gl,des' 
R.EJECT = 1 

Note that you cannot select exclusively for bands that fail to 
contain a given pattern by setting ONB.UIDS, ONPAT, and REJ.ECT, as in 

ONBANDS = •df ,gl• 
OHPAT = •*• 
REJECi' = 1 

If we label three classes of entries: 
A. entries with df or gl bands which contain * 
a. entries with df or gl bands which contain no * 
c. entries with no df or 91 bands 
The above specs voold select both B and c. Currently there is no 
simple setting of parameters that would select B alone. 

Another type of checking that can be done is to search for 
misalphabetized entries in a masterfile, say after entries ha~e been 
inserted by editing. This is done with the BlRDBATB module 
SEQCHECK, in conjunction with a specially written function called a 
handle which describes the alphabetical order. SEQCBECK notes all 
pairs of headwords that are not ~n strictly ascending alphabetical 
order according to this handle, but does not put them into the right 
order. More often than not, this exercise reveals not only items 
that are truly oat of order, but also details in the alphabetical 

Second Edition, partial draft. Formatted Februacy 2, 1990 



--------------- -·- -------·- - ·---- .... ..... --·----

3.7 GUIDE TO CHOOSING CONTROL MODULES AND PARAMETERS 

order that have not been addressed. These details would not have 
been brought out if the file had simply been alphabetized without 
the benefit of a checking run. To use SEQCHECK requires some 
programming, and an understanding of handle-making in relation to 
alphabetical order, in order to construct the handle fnnction. 
SEQCHECK requires one SPECS parame t e r, HANDLENAHE, giving the name 
of the handle function. The function itself is placed in the 
USERFNS file. 

A final example is checking for "unresolved cross-references". 

84 

When a form is referred to but doe s not occur as a main headword i.n 
the file, then the referenced fo.rm is •unresolved"--it is pointing 
to nothing, leading the reader on a £ruitless chase. The TOAST 
control module XCHECK locates these unresolved references. To ase 
XCHECK, the SPECS parameter BlNDS must be supplied, naming the 
band(s) which contain cross-reference forms. In addition, a user­
vritten function XREF() must be supplied to extract the forms from 
these bands. The XCHECK control modole itself should be examined 
for further comments on programming for it. 

One often needs to ext.ract material from the file for special 
purposes: entries of ethnobotanical interest, astronomical terms, 
loan words, slang words, comparative data, etc. etc. If the 
material has been properly structured into bands, the extraction 
specificati..ons can usually be stated simply in terms of bands. 

The simplest case is to retrieve all entries that contain a 
specified ba.nd. ONBANDS2 can he used, and the band is specified 
with the BANDS parameter. More than one band can be listed in the 
BANDS paraMeter, in which case entries containing any of the bands 
will be selected . one can further specify that the body of the band 
should satisfy a given pattern, given as ONPAT, before the entry 
should be selected. For instance , assuming an appropriate band 
structure, these tvo SPECS statements might cause all English 
loanwords to be retrieved: 

ONBANDS = 'LOAN' 
ONPAT = •Eng• 

With ONBANDS2 the entire entry and all its subentries are retrieved, 
which may be more ~nformation than is desired. ONBANDSR, on the 
other hand, provides facilities for finer toning of the what 
material is to be retrieved. 

ONBANDSR has avilable, in addition to these two parameters, 
another set of parameters that determines vhat bands are retrieved. 
If no other para~eters are specified, then all bands are retrieved 
(except for dominating entries and subentries which do not 
themselves satisfy the search criteria--and they are represtened 

Second Edition. partial di:aft. Formatted February 2, 1990 



3.7 GUIDE TO CHOOSING CONTROL MODULES AND PARAMETERS 85 

only by their headword bands). If NOBANDS is set to 1, then no 
othec bands besides the headword band and the ONBANDS bands are 
retrieved. If the BANDS paramete.r is specified, then the bands 
given by the BlNDS parameter are retrieved in addition. Thus is 
would be possible, for instance, to retrieve for ethnobotanical 
purposes only those bands of botanical interest. 

If the subset conditions can be stated only in terms of bands, 
and not their contents, then the BIRDBATH control module BANDFILT 
might be appropriate. Although it provides a complicated set of 
parameters for specifying what bands are to be retrieved, the 
simplest parameter to use, BANDS, can be useful alone. Simply set 
sums equal to the bands to be retcievea. The program will retrieve 
all headwords, plus any occur.rences of the spec.ified bands in every 
entry. 

The output from all these programs are normally in 1-format. If 
it is necessary to run further p.rograms on the output, as when a 
finderlist is to be generated from the ethnobotanical subfile, then 
the output must be in p-format. This is ensured by setting PFORMAT 
= 1. 

Note that none of the operations described above do any re­
ordering of material in the masterfile. The masterfile is normally 
maintained ,in alphabetical order by headword, so that a listgen of 
it will be in alphabetical order, and entries can be easily found 
(or determined to be absent) for editinq purposes in the file or in 
the printout. However, it may get out of alphabetical order for any 
o.f a number of reasons: entries may have been inserted in the vc:ong 
place, a batch of new entries may have been entered at the end of 
the file, the forms of certain headwords may have been edited and 
changed, or it may have been decided to change the rules of 
alphabetical order. llso, two oc more files from different sources 
may need to be combined into a single alphabetized sequence. 

Alphabetizing a masterfile is done vith the TOAST control module 
HANDSORT. The "HANDH part of this name reflects the fact that a 
"handle" function needs to be written to describe the alphabetical 
OC'der, and the user provides this in the USER.FNS file. Since the 
sorted file vi11 normally become the new masterfile, it shouid 
normally be in p-format, so that it can be fuc:ther processed (l­
format is primarily for human consumption and cannot be further 
processed). To cause the output to be in p-format, set l?FORHA'r = 1 
in the phase-2 SPECS file of the HANDSORT run. HANDSORT output can 
he in 1-format if it is not to be used for further processing, Sllch 
as a HANDSORT on the output of the XCHECK module. 

Second Edition, partial draft. Formatted February 2, 1990 



3.7 GUIDE TO CHOOSING CONTROL MODULES AND PARAMETERS 86 

Entries can be classi.fied accordinq to the information in a g.iven 
band, such as a part-of-speech band or a semantic field band. A 
classification by part-of-speech, for instance, would place into 
separate groups all nouns, all verbs, etc. A semantic field 
classification would group together all kinship terms, all words for 
geographic features, and so forth. A bandsort provides a crude 
classified list of this kind. A bandsort of the part-of-speech 
band, for instance, since it is sorted by the body of the band, 
groaps together all nouns, then a11 verbs, etc. The headwords 
appear at the left. Note that a headword will not appear in the 
bandsort if the relevant band does not occur in the entry for that 
headword. For a bandsort of just certain bands, use the phase-1 
SPECS paramet.er BANDS to specify the bands. 

The bandsort format is not designed speci·fically for this 
purpose--it serves many different uses. It happens to be useful as 
a classified list, but for this purpose the format is not the most 
elegant. For one thing, the bodies of the bands appear to be 
repetitive ana redundant. (l"or a different kind of band. say 
definition bands, no two of vhich are identical, this will not be 
the case.) Another limitation is that only the headwords are given, 
and there is no way to display more of the entry. By contrast, the 
TOAST control module SORTENT gives a classified file of entries 
rather than a list of only headwords. It can also c.lassify by any 
arbitrary material in the entry, not just the contents of a given 
band. However, to use it requires writing two functions to be 
inse.rted vi'a the "user functions" file. The comments in the control 
module itself should be consulted for the requirements for writing 
these functions. 

The bandsort, again, provides a crude kind of index to the 
headwords by the contents of given bands, in that all the 
occurrences of a given band are grouped together. sorted by the body 
of the band, with the headwords appearing at the left. 

The finderlist, generated by the TOAST control module INV.ERT or 
INVERT2, also provides an index to headwords, but sorted by keywords 
occurring in certain bands, usual1y the definition band(s). 
Keywords are words flaqged by the user with (normally) an asterisk. 
Although of ten considered as somethinq approximating a reverse 
dictionary (e.g. Enqlish-to-target language), it is in fact little 
more than an index of keywords in the definitions. It is, however, 
a tvo-level index. The index at the back of this book is an example 
of a two-level index. (In fact there are a fev three-level index 
entries.) There is an entry something like this for the term 
"bands", shoving the second level by indentation: 

Second Edition, partial draft. Formatted February 2, 1990 



3.7 GUIDE TO CHOOSING CONTROL MODULES AND PARAMETERS 07 

bands, 23, 26 
headword, 24 
sequence of, 
variety of, 

In an analogous way, a finderlist might have an entry foe "basket" 
that looks something like this: 

basket:: oruikl, sualo 
basket used for cooked food:: orekill 
fishing basket:: chelais, cheleuocho 
small woven basket:: tet 

In the finderlist the first-level entries (e.g. "basket", in this 
example) are called .. keywords", and the subordinate entries 
{"fishing basket", etc.) "phrasesN. These stroctures are identified 
in the definition bands by the program by means of special marks and 
ordinary punctuation symbols, as explained in Appendix r. The only 
SPECS parameter required is the BANDS parameter, specifying which 
band( s ) to look for keywords in. Other paramete.rs inform the 
program if you have used d.i~fe['ent characters from the normal ones 
for delimiting keyword and phrase. 

The words after the double colon are, of course, headwords in the 
dictionary file. In the case of the headword of a subentry, 
conceivably it would be difficult for a user to find the subeRtry, 
since it would be attached to some main entry. In a finderlist made 
by INVERT2 howe ver, the main entry headword is provided along with 
each s ube ntFY headword, in the format: 

subheadword < mainheadword 
Thus, in the example above, if orekill had been a subentry ander 
oruikl then the second line of the example wonld read: 

basket used for cooked food:: orekill < oruitl 
INVERT2 can index not only to subentries but also to example phrases 
and sentences, if these are organized into bands in a certain way. 
Please see paragraph r of Appendix I for details. 

second Edition, partial draft. Formatted .Febx:uary 2, 1990 



Assuming that yon are familiar with the mechanics of using the 
DOS operating system, you will need to know how to set ap and 
execute BIRDBATH and TOAST runs in DOS. 

This section shows conventions you must 'follow and the various 
options you have in setting up a BIRDBATH or TOAST run on a DOS 
machine. It includes a few instructions on general DOS conventions, 
but otherwise assumes that you are somewhat familiar with DOS and 
the running of batch jobs under DOS. 

Recall that a BIRDBATH run uses a BIRD.BATH control module, and a 
TOAST run uses a TOAST control module. Do not try to use a BIRDBATH 
control module in a TOAST run or vice-versa. The description of 
control modules in Chapter 3 shows which control modules ace 
BIRDBATH and which are TOAST. 

Your copy of LEXWARE for: the PC may include one or more batch 
files for executing a BIRDBATH or TOAST run. In addition, users may 
themselves construct batch files vhich better suit t.heir own 
convenience, and share them with each other. Although none of these 
batch files are ~e'}Jl~ for sett.ing up and running BIRDDlTR or 
TOAST (you may type a series o.f DOS commands yourself if you wish), 
they do make the task mo.re convenient by demanding less typing. 
They are not part Of the system Of programs (as described, for 
instance, in Chapter 3 or 6) and may be altered by the user with no 
effect on the system itself. 

When one of these batch files is called• the commands in the file 
assemble and execute the ran. Some of the batch .files are more 
sophisticated than others, and can check for the presence of needed 
files and other facilities, but are more complicated to use. 

This chapter will describe the use of two particular batch files 
for executing a BI.RI>BATB run: .BIRDBATH.BAT and .8IRDBAT2.BAT, and two 
batch files for executing a TOAST run: TOAST.BAT and TOAST2.BAT. 
The first of each pair takes 4 arguments after the name of the 
command, e.g. 

BIRDBATH LISTGEN ARAWAK.LEX lRAWAK.LST LIST.SPC 

while the second normal1y takes 3 arguments, e.g. 

BIRDBAT2 LISTGEN ARlWAK.LEX ARAWAK.LST 

In eacn case, the first argument is the name of the control module, 
in this case LISTGEM. Tlte second and third ar9uments are the input 
and output files, respectively. 

Second Edition, partial draft. Formatted February 2, 1990 



4.1 RUNNING BIRDBATH AT UNDER DOS 

The last argument of the BIRDBATH command is the name of the 
SPECS file to be used. 

89 

BIRDBAT2 does not have this argument. 
a SPECS file having the same name as the 
extension .SPC. Thus in the above case, 
will be asea. 

Instead, BIRDBAT2 assumes 
control module but with the 
the SPECS file LISTGEN.SPC 

TOAST and TOAST2 behave correspondingly. 

~11 the commands assume that the programs are in a directory 
c:\LEXWARE. This can, of course, be changed by changing all 
references to c:\LEXWARE within the batch files. The second command 
of each pair, namely BIRDBAT2 and TOAST2 permit the user to refer to 
another directory without chan9ing anything within the batch files. 
Instead, an environment vaciable LEXPATH is set to the new directory 
by using the SET command in DOS, e.g. 

SET LEXPATR=D:\LEXWARE 

or 
SET LEXPATH=C:\LEXWARE2 

Thus a new version of the programs can be kept in a separate 
directory and used without removing the old version. 

a. THE SIM~LEST LISTGEN HON 

A LISTGEN run illustrates the simplest BIRDBATH run. It vould be 
called exactly as in the examples given already: 

,.---
' BIRDBATH LISTGEN TEST.LEX TEST.LST 
I 
I or 
I 
I BIRDBAT2 LISTGEN TEST.LEX TEST.LST 
L----

Figure 4.1.1 

The name of the control module in this run is LISTGEN, and the 
name of the dictionary file being processed is TEST.LEX. The output 
is to go into the file TEST.LS?. Of course, you should use the 
names of the files appropriate to your mm purposes. No SPECS file 
has been speci.fied in either case. If you use BIRDSA'rH, this will 
cause no SPECS file to be used. If you use BIRDB~T2, this vill 
cause a file LISTGEN.SPC to be used as a SPECS file i£ it exists in 
the current directory; otherwise no SPECS file will be used. 

If the ran is successful, the file in Listgen format will be 
saved in TEST.LST, where it may be examined, and from which it may 
be printed using, for instance, the PRINT command in DOS. 

Second Edition, partial draft. Formatted February 2, 1990 



q.1 RUNNING BIRDBATH AT UNDER DOS 90 

b. SPECS file 

The above run will generate a very basic Listgen file. One of 
the simplest ways to embelish it is to provide a title to be printed 
at the top of each page when this file is printed out. This can be 
done by using a SPECS file, and putting in it a statement that 
assigns a string to the variable TITLE: 

TITLE = •LISTGEN of TEST.LEX' 

Note that there must be spaces (at least one space) at the left of 
the statement, and on either side of the = sign. 

lnother Listgen variable that can be assigned in the SPECS file 
is NOPAGE. Set NOPlGE equal to some non-null value (any value-­
often 1 is used.) to suppress pagination of the output. If the 
output file is to be perused on the screen only and not to be 
printed, this option is useful because it will produce a file that 
is not interrnpted by page breaks and titles. The statement would 
be as follows: 

NOPAGE = 1 

Other SPECS parameters relevant to LISTGEN, and to any other 
control module that produces 1-format output, are described in 
Sec·tio.n 3.4 undel:' LISTGEN. 

c. LIMITING TBE A.MOUNT OP INPUT 

l particular SPECS parameter that is available for all runs is 
called STOPAFTER. This parameter may be set to some positive 
integer, as with this SPECS statement: 

STOPAFTER = 600 

The program will then stop processing the input file after reading 
this many paragraphs. It will read to the end of the dictionary · 
entry. It will not stop in the middle of an entry. The program 
actually looks for a pattern, STOPPAT, in the following parag.r:aphs, 
and STOPPAT is initialized to match the first band of a main entry 
(POS(O) •.• NOTANY(•.•)). STOPPAT may be overridden in the SPECS 
file. (See Section 6.2.2 £or further discussion of STOPAFTER and 
STOPPAT.) This parameter is useful for making limited tria.l runs. 

d. SPECIAL CONTROL MODULES 

If you are not using a control module from the library but are 
using one of your own, it should be placed in the directory in which 
the batch file is called, and you should use IlIRDBAT2 or TOAST2. It 

Second Edition, partial draft. Formatted 'February 2, 1990 



q.1 RUNNING BIRDBATH AT UNDER DOS 91 

can be executed exactly as a regular control module, e.g. (if 
PEEL.SPT is the special control module), 

BIRDBAT2 PEEL X.LEX X.OUT 

A SPECS file (in this case PEEL.SPC) will be used. Actually, 
BIRDBAT2 and TOAST2 will look for the control module first in the 
current directory and then in the Lexware directory. However, it 
is recommended to keep the Lexware directory f ree of special-purpose 
control modules and other files. To call special control modules 
with the older batch files BIRDBATH and TOAST, however, the control 
modules m~1 be in the Lexware directocy. 

To wi:-i te your own control modu1e you would of course have to 'know 
something about how BIRDalTH works and the facilities that it makes 
available (see Section 6.3). 

e. CONCATRNATING FILES FOR INPUT 

If the dictionary file is contained in several physical files, 
they may be processed as a single file without concatenating them 
into a single physical file. Instead, a file containing the names 
of the individual files is constructed in band format, with special 
bananames, and that file is used as input. (See Section 3.3.3, Uses 
of bands.) Thus if a "master file'', say ARlWAK.MAS, as shown in 
Figure ~.1.2, is ased as input, e.g. in the co~mand 

BIRDBAT2 LISTGEN ARAWAK.MAS ARAWAK.LST 

.-
I -LIST 
I FILE 
I P'IL'E 
I FIL.E 

Arawak file list 
ARA.LEX 
ARB.LEX 
ARC.LEX 

Figure 4.1.2, the file ARAWAK.MAS 

then the three files ARA.LEX, ARB.LEX, and ARC.LEX will be treated 
as a single file and used for the actual input. 

f. USER SUPPLIED FUNCTIONS 

If you need to supply special-purpose functions, say a handle­
making function, they may be placed i ·n a file, and the command 
BIRI>BAT2 or 'l'OAS1'2 must be used- The nall\e o-f this file must be 
given a s the fourth argument to the command, e.g. PAQHAND.SPT 
contains user-supplied functions in these commands: 

BIRDBAT2 SEQCHECK PAQ.LEX PAQ.CHK PAQRAND.SPT 

TOAST2 HANDSORT PAQ.LEX PAQ.SRT PAQHAND.SPT 

Second Edition, partial draft. Formatte d February 2, 1990 

1 

I 
I 
I 
I 

.J 



4.1 RUNNING BIRDBATH AT UNDER DOS 

The old BIRDBATH and TOAST batch files do not provide this 
capabi.li ty. 

Second Edition , pa~tial draft. Formatted Fe bruary 2, 1990 

92 



This chapter contains essays on various questions of strategy 
that frequently arise in processing dictionaries but which are not 
celated directly or exclusively to any single program or control 
module discussed in the preceding chapter. 

The usual media for storing data for computer processing are 
punched cards, disk, and tape. 

Although punched cards continue to serve a useful function in 
running jobs at some computing centers, e.g. for submitting JOB 
control cards, they have been supel:'seded as a medi11m for sto.ring 
large amounts of data. Computer-oriented lexicoqraphers have moved 
to tapes and disk £iles for a number of reasons. They are more 
flexib1e in terms of the choice of orthographic symbols available, 
and they are less cumbersome. Furthermore, disk files are easier to 
edit. Also, the cost of cards has risen dramatically in recent 
years. Since cards are not generally used as a means of storing 
data, they will not be discussed in any farther detail in this 
manual. 

Currently, most data is stored in disk files for computer 
manipulation. Compared with cards and tape, disk storage is more 
flexible and convenient for both people and computers. It is also 
faster for a computer to access. It is, however, the most expensive 
of the three media. lt most computer installations, disk files are 
subject to various restrictions on usage. The restrictions 
generally have to do with the amount of data that can be stored and 
the length of time a file can be stored. For instance, each user 
may be allotted a qaota of disk space for all his/her files. Size 
of files may be limited by practical, economic, or hardware 
considerations. Also, fil.es that have not been used for a certain 
length of time may be subject to automatic "archiving" (removal to a 
cheape.c stora9e medium, namely tape), rendering them not 
instantaneously retrievable. Restrictions such as these are 
designed to encourage users to make more economical use of a 
relatively expensive resource. A.t most. installations, such 
restrictions do not present a deterrent to disk usage. 

Some of the restrictions on disk usage at one installation are 
discussed in Appendix II, Section 9. 

Second Edition, partial draft. formatted Feb~ua~y 2 9 1990 



5.1 STORING THE DATA 

Tapes are the cheapest of the three media for storing large 
quantities of data, such as those encountered in dictionary work, 
and are for practical purposes not subject to the restrictions that 
affect dis~ storage. Because the computer operators must mount and 
dismount tapes, however, most installations favor disk jobs over 
tape jobs- They may charge for mounting tapes, charge more .for 
reading/writing of tapes, give tape jobs lower priority, or restrict 
the type of tape jobs to, say, the copying of f iles between tape and 
disk. Ne ve rtheless, tapes are useful, indee d necessary, for storage 
of inactive files, for archival and back-up storage, and for 
exchange of data between different installations. 

Details of using tape at the University 0£ Hawaii are discussed 
in Appe ndix II, section a. Using tape in a BIRDBATH run is 
discussed in Section 4.1. 

Second Edition, partial d~aft. Formatted February 2, 1990 



If you decide to compile, or are compiling, a dictionary by 
means of a computer, you may or may not wish to pay attention to 
details that would ultimately affect the appearance of the 
dictionary as a typeset book. 

95 

on one hand, you may merely wish to utilize the computer to 
record large amounts of data, then sort, retrieve, and print out 
portions of that information in some rough form. In this case, you 
may not, in fact, intend to publish your data or dictionary at this 
point (or at all). If you are using the computer for data 
processing and retrieval purposes only, you may not wish to be 
encumbered with all of the detai.ls given in th.is section. 

On the other hand, if you intend to have your dictionary 
published, you will want to have the material fully polished and 
encoded w.ith the proper typesetting marks for sending to the 
printer. Since the dictionary is typeset directly from a computer 
medium, you will sooner or later have to pay attention to the minute 
details of punctuation, typography and style. Row much attention 
you devote to these matterst and when, will depend on your own 
inclination, schedule, and how yon spread your different tasks over 
the available time. 

Some of yoar attention will be paid to matters of style, such as 
where to as·e italics, what to capitalize, what to put in 
parentheses, etc. These are main1y your own decisions. 
Neve rtheless , this section includes a small subsection, S.2.3, 
listing the most commonly occurring questions. Once yon have 
decided on these matters, you will need ways to indicate change of 
font, etc., at particular places in your material- The bulk of this 
sectio·n, Section 5. 2 .. 2, presents conventions that have been 
developed during the processing of a number of dictionaries in band 
organization. These conventions will make it possible, or in some 
cases merely easier, for the user to indicate typographical 
functions. 

When we speak of conventions, we mean either rules to follow, or 
processes that the computer (or, more properly, the system of 
programs) performs on your data. Sometimes the word "conventionsff 
is used in both senses, as the senses are c losely interrelated. 

1. Punctuation 

Unless otherwise indicated below, use punctuation marks as you 
would normally. one optional, non-ordinary convention that you may 

Second Edition, partial draft. Formatted February 2 9 1990 



~--··---·-··-·-- ·-···········-· ·-----·----·------·--·-.. --.. ··--· ···-·· .. ··-·-··--·--··-- ··--· ··----·-··---.. -- ---------·--··-····· ... ·--··-·-·- ··-- .. ... . . . , ...... . 

5.2 PUNCTUl~ION & TYPOGRAPHICAL CONSIDERATIONS 96 

wish to adopt is the following: you may consistently omit final 
punctuation in all occurrences of a given band. In the final copy, 
you can specify that the program is to append that particular 
punctuation to each occurrence of the band. This specification can 
be made on a band-by-band basis. Any regular, predictable, 
punctuation may be omitted from a band and inserted by a later 
program. 

Another task you may wish to relegate to a program concerns 
placing round or square brackets around all the material in a 
specified band, relieving you of typing in this redundant material. 

2. Capitalization 

Normal capitalization practice can be followed, with a few 
exceptions. Headwords should not be capitalized unless they are 
propel:' names. Capitalizing all headwords indiscriminately "loses" 
this information. The beginning of definitions should not be 
capitalized unless the first word is a proper name. If desired, the 
first letter can be capitalized by a program later. 

3. Typeface 

You may specify what typeface you want material to be set in for 
publication by prefixing the material with the appropriate face­
sbif t codes. The shift .t:'emains in effect until the end of the band 
or until it is countermanded by another intervening face-shift. For 
each band, a default type face may be specified, wttich will be the 
type face .f.or that band when no instructions to the contrary are 
given. This default face vi11 also apply if the band does not start 
with an expl.ici t shift code. For most bands, th.is convention saves 
the troub1e of putting in any shift code at all. 

Five symbols are normally reserved for signalling changes in 
type.face in the eventual computer typesetting, though you may choose 
other symbols if you need these for representing other things. They 
are: the pel:'cent sign, 3, the vertical bar, I, the dollar sign, $, 
the ampersand, &, and the •at• sign, a. Their specific functions 
are described below. 

These five symbols will not appear in the final copy. During the 
process of typesetting, the symbols will be deleted and the spaces 
they occupy closed up. Be aware of possible consequences of this 
when you are inserting these symbols. Fm: example, if a word is to 
have a subscript on it, do not leave a space between the wo.rd and 
the dollar sign, $ 1 that introduces the subscript: word$2 • 

The symbols listed below are the normal shift codes: 

Second Edition, partial araft. Formatted February 2, 1990 



5.2 PUNCTUATION t TYPOGRAPHICAL CONSIDERATIONS 

shift to italics 
shift to roman (medium) face 
shift to subscript (or superscript) 
(applies to next character only) 
shift to boldface 
shift to small caps 

97 

An alternative use of the ~-siqn (or any other symbol) is as an 
•escape• character which can be used to create, with a specified 
following character, any other sh.ift the user may desire and that 
the printing-house can provide. Using a double shift symbol is also 
a way of defining the shift codes when the normal code symbols are 
needed for oi:thographic purposes. For example, if & is needed as a 
text character, one might use ~& as the boldface shift. 

The preceding has been a descri·ption of mechanical conventions 
for indicating typographical functions which you may need but which 
cannot be directly represented on most common computer-processable 
media. This section suqgests, among other things, some o.f the vays 
in which you may wish to use these typographical functions in a 
dictionary, i.e., when to use what face, where to leave spaces, etc. 
The computer is, of course, indifferent to whether you follow these 
suggestions. The conventions only have to do with the typographical 
appearance of your dictionary. You should al.so consult published 
dictionaries, other dictionaries now being processed in the computer 
and their authors, your publisher, lexicographical manuals (e.g., 
Zgusta 1971), and general style manuals (e.g., Univ. of Chicago 
1949) before deciding on yoar own style. (See section s.2.~, 
References Cited.) 

1. Subscripts on headwords. 

If you have homophones (different words spelled in the same way), 
you may wish to disambiguate them orthoqraphically in citations in 
your dictionary by using numerica1 subscripts (or supersci:ipts). 
One consequence of not disambiguating homophones is that in the 
finderlist, the references to words that belong to homophonous sets 
will not be specific. A disadvantage to using subscripts is that, 
once you label a word with a subscript, you may feel it necessat'y to 
so label all other citations of the same word in a.ny ci:oss­
references (not in running text). The references may be in synonym 
bands or "see also" lists within the entries. Currently, there is 
no mechanica.l aid to help you in finding all such occnrrences of 
citations in the dictionary. 

Second Edition, partial draft. Fo~matted February 2, 1990 



. . . .• .... . . ........................ . ... .......... ~ .. _ .. ...... ..... ·· ··~ .... _ .... ···-··--...... ,_ .... , ___ .,_, .... ._ ... - ............... -·--···. -· ·--··· .. -· ., .... ·-----· .. ·····-···-·· .. - -...... -- .... , .. ,_. ___ ,_ - ....... .:.:. ~:::·:...= :: ,_.:,. ... . 

5.2 PUNCTU!TION & TYPOGRAPHICAL CONSIDERATIONS 98 

2. Latin abbre viations 

These should not be italicized (except for "sic") and there 
s hould be no space within the abbre viations. Note : e.g., i.e., q.v. 

3. Punctuation marks 

The typeface of punctuation marks should be the same as that of 
the immediately preceding word unless the mark is the c l osing one of 
a pair of marks ( parentheses, quotations). In this case the closing 
mark should agree in face with the opening one of the pair. 

In most type f onts, quotation marks (both single and double) come 
in two varieties: opening and closing. On computer i nput and output 
(printout) font s , there is no distinction. As on most typewriters, 
opening and closing quotes are symme trical (" or •). When quotation 
marks are always used in pairs within a band, the programs that 
prepare the tape for the typeset t e r can easily di s tinguish intended 
opening from c l osing occurrences. Therefore, programs can be written 
to convert them t o codes that would cause the a ppropriate left or 
right quotation mark to be typeset. A difficulty occurs when either 
quote mark ( 0 or •) is used for other purposes, in which case they 
are not paired . This may occur in oz:thographies where " is used for 
rounding, or • for glottal stop or as an apostrophe. A number of 
ways can be found around the prob1em, but they will not be d.iscussed 
here. Probably the easiest solution is to reques t that all 
quotation marks be set as symmetrical marks. Thi s solntion may 
require going to anot her font for those particular characters. 

, 

4. Faces for categories of information 

Headwords are usually set in boldface type. Cita tions of words 
within an entry, such as "see x, Y, and zn are also normally in 
boldface. 

Grammatical codes , base forms, e tc., may be printed in small 
caps. 

Occurrences of source-language words in ru nning English text 
should be in italics , as should Latin scientific names (such as 
Linnaean binomial s ). Generally, in English definitions, which are 
in Roma.n face, a ny non-English words s hould be in i t a lie type. 

University of Chicago Press. 1949. A H~B~l Qt ~!~l~: 
containia~ ±~120~~a~h~al and o~he~ ~llles fo~ a.ll.tho~s, 
~~inte~s, and ~~l!li~e~~ ce~Ollllllilll~d b¥ the Uni~e~it¥ Qf 
~hi~ilgQ f.t.~.§i· Chicago: Oniversity of Chicago Press. 

Zgusta, Ladislav. 1971. ~Dllil.l of LexU:~i:a~u- The Hague: 
Mouton. 

Second Editio n, partial draft. Formatted Yebruacy 2, 1990 



5.3 GUIDELINES FOR WRITING COBRECTIONS 99 

This section gives a number of guidelines for writing changes 
and additions on printouts of dictionaries. If someone besides the 
author will be entering the corrections into the compoter, they need 
to be clearly marked on the printout. 

1. Use a colored pencil or soft lead pencil. 

2. Indicate reordering by means of arrows. 

3. Text to be altered should not be obliterated. Mark through 
such material with a pencil and write the desired change nearby. 

4. Text to be de1eted should be circled (not obliterated), 
with a delete mack attached. Ma~e clear whether surrounding blank 
spaces are also to be deleted. Spaces occupied by material to be 
deleted will be closed up unless the specific instruction is given 
that spaces be inserted. 

S. Small amounts of text to be inserted may be written into 
the text directly. Use carets or arrows to indicate the precise 
point of insertion. 

6. Larger blocks of text to be inserted may he written into 
the right margin or where there is safficient blank space. Indicate 
explicitly by means of arrows ~here in the text sach material is to 
be inserted. If necessary, continue on e xtra sheets, which should 
be attache~ to the page where the insertion is to be made. 

7. Periods, commas, and other inconspicuous charactecs to be 
inserted should be emphasized by means of a small arrow, or as 
described in (8) below. 

8. If the average number of changes and insertions to be made 
is less than one per page, a pro.minent mark should be made in the 
extreme right margin, level vith each change o~ insertion to be 
made. 

Second Edition, partial draft. Formatted .February 2, 1990 



5.4 SORTING TBE DICTIONARY 100 

You may want to re-order the entries in a dictionary for a 
number of reasons. In one or more edits, you may have inserted 
entries in the wrong alphabetical position, or you may have added a 
batch of new entries at the end of the dictionary. You may want to 
sort together two or more dictionaries of the same language. 
Another reason for reordering is that you may have changed the 
spelling system and respelled al1 the headwords so that they are no 
longer in alphabetical order. Finally, you may want the oraer of 
entries to conform to a new set of ordering conventions. For any of 
these or other reasons you ma.Y wish to have the entries re­
alphabeti?.:ed. 

Re-ordering is normally done by osinq TOAST with the iUl.NDSORT 
control module to generate a re-alphabetized new master file. In 
usinq HANDSORT, the crucial info.rmation the user has to supply is 
what the desired alphabetical order is. If this information is not 
given, the program will assume a standard order (roughly that nsed 
in English dictionaries) in which hyphens and capitalizations are 
ignored. If you wish to specify a non-standard order, the 
information must be supplied in the form of a small prog.ram. 'l'his 
program is a function Nritten in SPITBOL and inserted in the main 
program as Segment 6, USERFNS. This function should systematically 
generate from each headword a new pseudo-headword, called a 
"handle", which will be used in the actual sorting operation. 
Handles are thus headwords which are respelled in such a way that 
when they are sorted by the computer•s standard alphabetical 
("collatinqq) order. the oriqinal headwords fall into the desired 
non-standar'd order. 

If the handle function generates identical handles for two of 
the words in the dictionary the program vill automatically preserve 
the original relative order of the words and print a message citing 
those two words. Identical handles could occur either because the 
two words are spelled identically to begin with or because the 
handle function obliterates the distinction between them. The 
messages allow you to determine easily which reason is the correct 
one in each case. If an underspecified handl.e is the cause, you may 
wish to refine it so that on a future sort the desired order wil1 be 
obtained. You may want to deliberately underspecify the handle )ust 
so that the program will show you the conflicting words. Many 
errors can be located in this way. How this can happen will become 
apparent below. 

If the handle function is at all complicated, it should be 
tested with some hand picked or constructed crucial example words 
before the entire dictionary is sorted. This testing can be done by 
making a set of entries vith only headword bands containing the 
chosen examples. If you see anything wrong with the order of the 
sorted output, you can adjust the handle function and run the test 
again. 

Second Edition, partial draft. Formatted February 2, 1990 



5.4 SORTING THE DICT.ION.ARY 101 

The HANDSORT control module sorts ent~ies only according to the 
first band in each entry, the band normally used for the headword of 
the entry. 

All suhentries and sub-subentries, etc., under a given entry 
are carried alonq with their main entry in the sorting with no 
change of reiative order among them. 

An additional feature which will be put into the HANDSORT 
control module allows the sequence of the input dictionary file to 
be checked before sorting. Furthermore, sorting may be suppressed 
entirely, so that the run is made only for the purpose of seq11ence 
checking the dictionary. With the sequence check feature, the 
program will print out any pair of consecutive words in the input 
file that are not in increasing alphabetical order, that is, whose 
handles are not strictly increasing. Such a check can give an 
indication of whether a file needs sorting. It can also provide 
help in refining a proposed handle-making function when the input 
file is already largely in correct alphabetical order. 

To refine a proposed handle, it is most instructive to start with 
a deliberately underspecified handle and to choose the direction in 
which to constrain it farther by examining the words printed out in 
the sequence check messages. If one begins with a highly co.nstrained 
and complicated handle, the effects on the order in the rarer cases 
will not be evident. A detailed examination of the entire list of 
sorted entries to find the rare occurrences would have to be made. 
Some effects of a complicated handle may be hard to anticipate, and 
may turn oo_t to be unacceptable. With an underspecified handle, on 
the other hand, the program can help show in which directions the 
handle needs to be constrained vith reference to the set of words in 
the given dictionary. 

Second Edition, partial draft. Formatted February 2, 1990 



5.5 GENERATING INDEXES & FINDERLISTS 102 

Special conventions have been developed so that an index can be 
mechanically generated from specially marked •keywords' in certain 
bands (See Appendix I HFinderlist Conventions.M) These bands could 
be the reqular definition and grammatical bands, for instance. With 
appropriate wording and use of ordinary or special punctuation in 
these bands, the index generated from the keywords can be useful as 
a finderlist in the target language (English for our purposes), even 
though it would not be a full-fledged dictionary of English words. 
The purpose of these conventions is to minimize the work necessary 
to compile the finderlist. 

Not all of the functions necessary fo.r makinq a finderlist can 
be performed by the computer automatically, however. Sometimes, 
even with these conventions, it would take a very unnatural wording 
of a definition in the dictionary to pcoduce a natural sounding 
entry in the finderl.ist. For such situations, you may create and 
use a special band, llfhich does not appear in the final p11blished 
dictionary, in vhich you may construct phrases solely for the 
pnrpose of being copied into the finderlist. The "public" bands 
are then unencumbered by the necessity of being readable in two 
contexts simultaneously. These special "extract" bands would be 
subject to the same conventions as the public bands. The finderlist 
proqram can extract keywords from any number of specified bands. 

Finally, if in a few cases even the above method fails to yield 
appropriately phrased finderlist entries, you can resort to editing 
of the finderlist. 

The f inderlist proqram need not be used to generate only 
finderlists. Another common use is to qe.nerate a classified index 
of terms for semantic domains, such as 'house parts•, 'kinship 
terms•, •geographical terms•, etc. What is needed is to do this is 
a special band (call it a semantics band) for each entry, containing 
the phrase 'house parts•, etc. marked with the same conventions. 
The finderlist program is then to1d to extract from this band 
instead of the definition band. 

Another kind of index, simpler in form than a finderl.ist, can be 
obtained from the BANDSORT program. (See Chapter 2 far a simple 
example.) No special marking within ba.nds is necessary. The 
program takes all the bands and sorts them by band name and body, 
giving a simple index to the headwords based on band name and body. 

More specialized indexes can be made by means of specially 
written control modules for TOAST. 

Second Edition, partial draft. Formatted Februa.ry 2, 1990 



This chapter is an overview and description, for the 
progra~mer, of the BIRDBATH and TOAST s ystems of programs. Such 
information is necessary it you are either maintaining the programs 
or first installing the systems on a computer. Some of this 
information is necessary if you need to write new control modules or 
complicated SPECS statements. 

It is assumed in this chapter that you have read Chapters 3 and 
4 of this manual and that you are familiar with SNOBOL4 and SPITBOL. 

BIRDBATH is a collection of program files written in the 
SNOBOL4 programming language. A program woold normally be run using 
one of the fast compilers, soch as SPITBOL, SITBOL, or Macro 
SPITBOL. However, running a program under the much slower original 
interpretive Macro Implementation of SNOBOL~ is by no means 
precluded. Compilation is extremely fast, accounting for a 
negligible proportion of the cost of any but the shortest runs. 
Also, calling of pre-compiled functions is either not possible or 
awkward and implementation- and environment-dependent. For of these 
reasons each run starts by compiling the e ntire program. Modularity 
and flexibility are achieved by organizing the program as a sequence 
of source files (called a "sandwich") in which certain slots can be 
filled by interchangeable modules. All operating systems apparently 
have convenient ways of concatenatin9 source files at compilation 
time. Therefore, the sandwich organization is easily implementable 
on all systems that have some SNOBOL4 co~piler. The source program 
tiles can thus be maintained independently of the implementation and 
operating environment. Only the method of concatenating the source 
files needs to be tailored for each operating system. Fnrther ways 
in which the programs have been shielded from differences in the 
compilers will be mentioned at the appropriate places. 

The BIR DBATH "sandwich" consists of several n1ayers11 , each 
filled by a fixed or variable file of source language CSNOBOL4) 
statements . Each layer consists of one or more "segments" each of 
which consists of statements and functions oriented to particular 
purposes. The largest portion of the program system is devoted to 
I/O, as vill be seen. Layers are separate physical files, while the 
"segments" are more or less logical divisions. 

Secona Edition, partial draft. Formatted February 2, 19.90 



1. 

2. 
3. 

(~. 

s. 
6. 

!NIT 

SPECS 
CORE 

SORT IO 

US.ERFNS 
CONTROL 

* 

* 
* 

6.1 STRUCTURE OF THE SYSTE~ 104 

1.1 
1.2 

1.3 
2. 
3. 
4. 

5. 

6. 
1. 

S~men.t. 

Initializations 
Functions needed for Hacro-SNOBOL4 

implementations 
User-supplied parameter-assignment statements 
General inpat functions 
General output functions 
Band processing functions, divided among 

various segments 
Functions for managing I/O for sorting, for 

TOAST) 
Any special-purpose user-supplied functions 
The contt"ol. module 

Ignoring Layer 4 for now, Layers 1-6 make up the source langnage 
program file for a BIRDBATH run. Layers 1-5 contain initializations 
and functions, while Layer 6 (Segment 7) contains the executive 
control structure that calls on various previously defined 
functions. It is the control module of Layer 6 that causes anything 
to happen; all the previous segments only set up parameters, tables, 
functions, etc- The layers marked with asterisks (*) are supplied 
by the user for a particular ran. The other layers are fixed as far 
as the user is concerned. The control module is supplied by the 
user either by choosing from among an existing library of modules or 
by writing one or having one written. 

Row these five or six physically separate source files are 
actually brought together into one program depends on how this 
system is installed on a particular computer system. 

A BIRDBATH program consists of segments 1-7, without Segment s .. 
(Segme nt 6 is optional.) It involves no sorting. A TOAST run, on 
the other hand, consists of two BIRDBATH programs <each containing 
Segment 5) with a sort in between (Segment 6 is again optional): 

TOAST Run: phase 1 BINDBATH (including SEGMENT 5) 
SORT 
phase 2 BIRDBATH (including SEGMENT 5) 

A TOAST ran uses the standard sort progcam on whatever computer 
system the programs are being run on. The first phase generates 
records to be sorted, the SORT sorts them, the second phase reads 
the sorted records and formats them as necessary for output. 
Segment 5 of the BIRDBltH proqra~. SORTIO, manages both the output 
formating of the sort records before sorting and the reading in and 
deformating of the sorted records after sorting. In order to 
simplify program maintenance, the system was designed so that the 
source programs for both phases are physically identical. The 
possible e xceptions are the user-supplied SPECS and USERFNS layers. 
The same CORE functions are available in both phases, and the same 

Second Edition, partial draft. Forma tted February 2, 1990 



6.1 STRUCTURE OF THE SYSTEM 105 

SORTIO and the same control module appear in both phases of a given 
TOAST run. Of course, a different part of the control module is 
actually executed depending on which phase the program finds itself 
in. l smal l function in SOR~IO called DETPHASE() determines which 
phase it is in. 

Remember that how the three steps of a TOAST run are assembled 
and how the intercommunication between adjacent steps is 
accomplished are specific to a particular installation. 

The next section, 6.2, describes the functions and other 
facilities provided in the fixed portions of the BIRDBATH program, 
segment by segment. The section after that, 6.3, gives some hints 
on how to write new control modules. 

Second Edition, partial draft. Formatted Fehraary 2, 1990 



'---• 

106 

Please obtain and refer to a program listing while reading this 
section. Comments in the program will generally not be .repeated 
here. A program listing may be obtained from any BIRDBATH or TOAST 
run. In particular, a •null run• may be used to get sach a listing. 
A null ru.n o.f TOAST will resu.lt in a listing that i.ncludes Segment 
:;,. A null run is one that uses the control module NULLRUN. 

Certain SNOBOL4 keywords are first set by the program: 

&STLIMIT = 10000000 

Allovs processing of lar9e files without being aborted by the 
statement counter. Note that, under MACRO SPI'rBOL on the PDP-11 
family of computers, there is a li.mit of 32K on integers. 

&FULLSCAN = 1 

Allows greater efficiency of pattern matching under SPITBOL. 
However, QUICKSCAN mode is faster in MACRO SMOBOL4. It is believed 
that .no built-in patterns in these programs depend on FULLSCAN to 
operate properly. 

&.DUMP = 2 

Produces a complete dump of natural variables and tables and arrays 
at te·rminatio.n. 

The next statements set up variables .for use in the upper and 
lower case tl:a·nslation functions. These functions, DESBIFT(X) and 
UPSBIFT(X), i:eturn .respectively the lower-case and upper-case 
translation of their arguments. The unary operators •/• and ••• are 
OPSYNed by the program to DESRIFT and UPSHIFT respectively, to allow 
easy application of these functions. 

Next come INPUT and OUTPUT associations, and the loNest level 
output functions. Outputing throughout the system is generally done 
only through calls to the first four of the following functions: 

W.RITE(L) 

PRINT(L) 

meant for writing out a single line, with 
optionally a prefixed TSO-style l.ine nulllber 
generated by NUMFIELD() (see below). 

writes oot a single line, with a blank prefixed, 
for those printing systems that recognize this as 
a carriage-control character for single-space. 

Second Edition, partial draft. Formatted February 2, 1990 



6.2 BUILT-IN FUNCTIONS AND OTHEB FACILITIES 107 

PRINTPAGE(L) 

MSG(SRC,TEXT) 

NUMFIELD() 

STOP() 

writes out a single line, with a •1• prefixed, for 
those printing systems that recognize this as a 
carriage-control character for skipping a paqe. 

writes out a "source" and a message text to the 
MESSAGE file, the BIRDBATH Run Loq. 

This function generates an 9-digit TSO-style line 
number. Each time it is called it returns the 
next number, with an inccement of 10. This is used 
only by WRITE(L). It may be suppressed by setting 
NONUM ; 1 in the SPECS file. 

(known also as TERMINATE() in an older version.) 
The calling of this function by the control module 
is the normal way to terminate the program. It 
prints out termination messages and transfers to 
END. Also, when it detects that it is in the first 
phase of a TOAST run, it writes out the sort control 
recora. It then also sets &CODE to 1, which in the 
JCL procedure set up on the I.BM 370 at the UHCC 
signals that the folloving step, the sort, can 
proceed. These interfacing details may have to 
be changed, or may not be relevant, for other 
installations. 

a. Notes on input/output 

Because pf the variability in the I/O interface among different 
SNOBOL4 and SPITBOL implementations and the consequent likelihood 
that the low-level I/O operations Mill have to be adjusted for 
different installations, an effort has been made to confine such 
operations to a limited number of locations in the program. SEGMENT 
1.1 is the main place where output happens. SEGM!NT 2 is the only 
place where input happens, through the READ() function. In 
addition, in SEGMENT 5 (SORTIO) is a small function, 
WRITESORTCNTLC), which writes the sort control statement to a file 
SORTCNTL (in the IBM 360 SORT format). 

b. Another note on I/O. 

The program deals with only one input file and one output file 
for data. Another output file, MESSAGE, is for the run log. Yor 
soct jobs there is the very short, one-record SOBTCNTL file. These 
are the only files the built-in facilities use. The user may, of 
course, program for additional fi1es. 

Second Edition, partial draft. Formatted February 2, 1990 



6.2 BUILT-IN .FUNCTIONS AND OTB.ER FACILITTES 

~.2.1.2 fRQGBAH S~GHE..ti~ 1.2: BA~l2LE=.tlAKIH.G ABD %BADS1II.EBA?inH 
.!ll'..IL.I?.IE.S 

108 

These are four functions which can be handy in writing handle­
making and transliteration functions. They are placed here so that 
the user may call them as early in the program as the SPECS file. 
These functions are useful for those components of handle-making and 
transliteration which require simple context-free substr.ing-to­
sobstring mapping. The fanctions allov the easy construction of 
tables of these mappings and then the actual mapping of strings 
using these tables. They are used as follows. 

The function OPENTABLE('name•,sizeJ must be called first. It 
sets up a mapping table with the qiven name, and "opens" it (makes 
it available) for filling. The function works in conjunction with 
the next function, FILLTABLE, g.v. Note that the name of the table 
must be given in qnotes in the function call, e.g. 
OPENTABLE(•LUSBMlP 1 ,50) • Note a1so that the name must not conflict 
11ith any other identifier in the entire proqram 1 in particular with 
the name of the function that uses these 'lltilities. The second 
argument may be left out; it is an estimate of the size of the 
table. 

When a table is open, mappings. in the form of pairs of argument 
and value, can be put into it by calls to the function 
FILLTABLB(arg,val). The otherwise unused binary operator # has been 
OPSYNed to FILLTABLE so that calls to FILLTABLE may be simply 
expressed a,s 

arg ft. val 

Thus, loading a table consists in a call to OPENTABLE followed by a 
series of binary # expressions, e.q. 

OPENTABLE('SKT') 
'k' # •01• 
'kh• # •02• 
•g• # •03• 
'gh• # •or.-

• 

The orde.r of input to the table is not relevant, except that should 
there be a duplicate argument, the value of the latter overrides. 
Values, of course, need not be unique. Valaes must not, however, be 
the null string. In tact, removing an entry from a table means to 
replace its value by the null string: 

•y• # tt 

Second Edition, partial draft. Formatted .February 2, 1990 



6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 

Also, arguments cannot be the null string. This statement would 
lead to a loop, and such a statement is not checked for by the 
program: 

109 

Any number of such tables can be set up, bot only one table can 
be ope n at a time. When a call to OPENTABLE is made, whatever table 
is currently open is closed and the new one opened. A table can be 
re-ope ned simply by calling OPENTABLE again with the name of that 
table (the table is not deleted; it is r e -opened so that entries can 
be adde d to it). Calls to # load entries to (or change entries in) 
whateve r table is open at the time of the call. 

Afte r a table is made, it can be used in two mapping functions, 
HANDLEMAP(s,•name•) and TRANSMAP{s,•name •), where •name• must be 
the name of a table previously establishe d by the above functions. 
The name must be in quotes, e.g. HANDLEMAPCWORD, 1 LUSHMAP'). The 
first argument is the string to be mappe d by the table. The value 
of the function is tne result of the substring-by-substring mapping. 
Both functions operate in the same way, the only difference being in 
what they do with substrings not found a s arguments in the table. 

Bo th f unctions scan the string to be mapped from left to right, 
and at each position find the longest subs tring starting at that 
point for which there is a non-null arguMe nt in the table (whose 
name is given as the second argument of the function call). After 
rep1acing that substring with the corresponding value from the 
table , scanning resumes after the end of the replacement. If no 
argume nt can be found for a subtring of any length at a given 
position, then the character at that position is either skipped 
Ciqnored) or taken as its own mapping, depending on which function 
is being used. HANDLEMAP skips the chara cter at that position and 
continues scanning after that position. TRANSMAP, on the other 
hand, retai ns that character and continues scanning after that 
position. This difference is motivated by the common need, in 
making handles, for segments to be "ignored", while in 
transliteEations mappings frequently are sparsely specified and 
unmentioned segments are assumed to be unchanged and retained. 
However, both functions collect one copy of each different orphan 
character encountered while mappin9 with a given table, and strings 
them into a special string whose name is composed of 'UNRECSEG.• 
concatenated with the name of the table, e .g., UNRECS~G.LUSHMAP. 
The c ontents of this string may be examine d by the programmer in the 
Dump of Na tural Variables. 

Se cond Edition, partial draft. Formatted February 2. 1990 



6.2 BUILT-IN YUNCTIONS AND OTHER FACILITIES 11 0 

~-2-1-J fRQ~BA~ SBGH.Eli? 1-J: N.Qli=llll1.l..t=I~ Illlit~lQNS IN U.t.litE 
~~QBO~~ I~f1~HM~~IIQN~ 

SPITBOL and related implementations provide a number of useful 
functions beyond the ones available in SNOBOLq, and these functions 
have been used free ly in tbe programs. To run the prog rams under an 
implementation that does not have these functions therefore, the 
code for the func-tions must he provided. This seg ment provides the 
code for the additional functions used in these programs (and a few 
more). Normally, control skips around these function definitions so 
that they are not activated- To activate them, ~comment outa or 
delete the go-·t o : <END 1. 2) found at the beginning of the seg men t. 
Certain additional functions, soch as SETEXIT, which cannot be 
defined in the sonrce language, have been avoided altogether. 

The SPECS segment contains whate ver SNOBOL4 statements the user 
may supply. It becomes an integral part of the program at ran time . 
The user should therefore observe SNOBOL4 syntax rules. These 
statements are generally for overriding defaGlt valaes of program 
parameters. What parameters a:re relevant will. depend on the 
particular control module being used . Also, Section 3.6 contains a 
master list of the parameters relevant to the built-in functions and 
to the various con trol modules. 

Actual reading from the input data file is done only in the 
READPG function. The input association, to the variable INYILE, 
was done in SEGM.ENT 1.1 of the program. READPG i s the general­
purpose hanging paragraph reading function. This f unction reads in 
a sing1e hanging paragraph of t ext (concatenating the paragraph 1 s 
records, if more than one, into a single string, PG.TEXT) and puts 
the id field, if any, of the first record of the paragra ph into 
PG. ID. It does n o t care that the paragraph rep resen·ts a band of a 
dictionary entry. 

HEAD() on the o ther hand, is the band-reading function, and it 
does try to i nte rpret the paragraph a s a band. It calls READPG() t o 
do the actual r eading, then parses the resulting s tring PG.TEXT into 
the fields of a band and puts them into the four following 
variables, which are then availab1e for other functions and the 
control module to look at, use, or alter: 

BLEV 

MODE 

BAND 

• headword level", the dots, or no dots (nall string ), 
before the band n ame or mode numbers . 

the mode numbe r s , or lack of them (null string). 

the band name, which is obligatory, being the first non­
blank string in the paragraph after any dots and 

Second Edition, partial draft~ Formatted February 2, 1990 



6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 111 

numbers. 

BODY the body of the band, the rest of the paragraph after the 
band name. 

In addition, RRAD() puts the PG.ID into the variable ID- The 
parsing i s done by the global pattern PARlPAT, q.v., which may be 
overriden by the user in the SPECS file. 

Actually, READ() does more than update the se five registers. By 
calling on the function STEPREGISTERS(), it also keeps these five 
fields of the previous paragraph and those of the following 
paragraph in variables whose names are these names followed by .P 
(for previous) or .N (for next), e.g., ID.P, RLEV.P, MODE.P, ID.N, 
HLEV.N, e tc. These registers are also availab1e for inspection by 
other functons. Note that if a function, or the control module, 
alte r s the value of, say, BODY, then it is that altered value and 
not the original one that becomes the BODY.P when a new paragraph is 
read and parsed .. 

When READ() detects that there is no next paragraph, i .. e. end-of­
file has been reached, it sets the global Tlag ~OfFLAG to 1. When 
called again, READ() will FRETURN- This flag can also be explicitly 
tested by a call to the predicate IPENDFILB(). 

READ() is affected by two global parameters which may be set by 
the user in the SPECS file, STOPAFTER and STOPPAT. STOPAFTER is 
normally null, and has no effect. However, if it is an integer, 
READ() will', after reading that 11any bands, behave as if it has hit 
end-of-file. Actually it will not necessarily stop right after that 
many bands, but proceed until (but not including) the next band that 
satisfie s the pattern STOPPAT, q.v., which is defaulted to POS(O) 
•.• NOTANY(•.•>. i.e., the next main entry. This pattern may be 
overridde n by the user in the SPECS file. 

The funct~on SKIPPG(N,PAT) may be used to skip up to the ficst 
para graph that satisfies the pattern PAT a fter the Nth paragraph 
counting from the beginning of the file. 

Among the other global variables that these functions use, these 
two may be of more general use: PG.RECCOUNT i s a count of the 
records read by READPG(), and PG.COUNT is a count of the paragraphs 
read by READPG(). 

Secona Edition, partial draft. Formatte d February 2, 1990 



6.2 BUILT-IN FUNCTIONS AND OTHEB FACILITIES 

In summary, the functions in this proqram segment are: 

READPG(N.PAT) 
SKIPPG(N,PAT) 
READ() 
STEPREGISTERS() 
IFENDFIL.E() 

Of these functions only READO and IFENDFILEO need be used by 
the control -module writer, and possibly SKIPPG(N,l?AT). Global 
parameters of 9e.neral interest are: 

PARAPAT 
STOPP AT 
STOPlFTER 

112 

The output functions are discussed in a discursive rather than a 
compartmental manner in order to better show how they fit together. 
They are: 

SERFLD{) 
COUNTFLD() 

LISTORWRITE(P,IDFLD) 
LISTGEN(P,IDl!'LD) 
WRITF!BAND(P) 
WRITEP(P,WIDTH) 
PRINTP(P,DENT,OFFSET,WIDTH,SKIP,.FOOT1,.FOOTtH.EAD,IDFLD) 
BR.EAKP(P,L) 

PRINTL(L 9 INDENT,SKIP,FOOTtHEAD,IDFLD) 
CPAD(LINE,N) 

These ontput functions have to do with output formating. They 
are not concerned with actual outputing itself, iihich is always done 
through calls to the WRITE() or PRINT() functions in SEGMENT 1 of 
the proqram. There a~e two kinds of formating. One is merely 
breaking up a ba.nd considered as a paragraph, according to hanging 
paragraph conventions and writinq the resulting lines out. This may 
be done with an attached serial nnmber field (e.g., for TSO EDIT 
files on the IBM 360) -- this format is called p-format (p for 
paragraph). The p-format is typically used only for storing 
dictionaries on disk or tape files for processing or on-line 
eaiting. This format can be read in again by the program, but is 
not particularly readable for the human reader. 

The other kind of formating is the more complicated LISTGEN 
formating (1-format) used for hard copy printouts of dictionaries. 
The LISTGEN formating not onl.y brealrn up paragraphs into lines but 
also inserts indents, blank lines, page skips, title and page 

Second Edition, partial draft:. Formatted Febl:'uary 2, 1990 



6.2 BUILT-IN FUNCTIONS AND OTHER FlCILITIES 113 

number, entry number, paragraph number, etc. Each paragraph in this 
format still corresponds to a paragraph in the p-format. This 
format is meant to be more readable by the human reader, but there 
is no provision for the programs to read t.his format. The LISTGEN 
format is only a printing format; material in this format is not 
read in again. 

BREAKP 

The basic process common to both formating modes is the breaking 
up of paragraphs into lines of no longer than a given length in the 
so-called .. hanging paraqraph" format. The breaking up .is done by 
calls to the function .BREAKP(P,L), where P is the paragraph to be 
broken and L is the maximum length. When you need to break up a 
paragraph, call this function ~ith that paragraph as the first 
argument and the length as the second. It will return the first 
line broken off P. Call it again vith a null first argoment to get 
the next piece. Continue this until it fails, signifying there is 
nothing left of the original P. Note that this function uses an 
"own" variable, .BREAKPOWN, to keep the remains of the paraqraph from 
one call to the next. BREAKPOWN is a global variab1e. (In SMOBOL4 
there are only global and local variables, nothing in between.) 
Since it is global. yon can work on only one paragraph at a time. 

WRITEP 

A simple example of using the BREA KP ·function is the 
WRITEP(P,WIDTH) function. It is short enough to reproduce here: 

WRITEP WR,ITE(BBEAKP(P, WIDTH)) 
WRITEP1 WRITE(' ' BREAKP(,WIDTH - 1)) 

:!'(RETURN) 
:S(WRITEP1)F(RETURN) 

The first call to BREAKP presents it with the paragraph, P, to be 
broken, and the resulting first piece, if any, is passed to the 
WRITE function to be written out, possibly with a serial number 
attached. (See WRITECL) in program SEGMENT 1, in Section 6.2.1.1 of 
this chapter). In subsequent calls (in the loop formed by the second 
statement) BREAKP is presented with a null first argument, meaning 
ad.di tional pieces from the same paragraph wi.11 be returned. But the 
maximum length of these pieces vi11 be one shorter than that of the 
first piece, due to the decremented value of the second argument. 
This is to allow the initial blank (which signals continuation lines 
in the "hanqing paragraph" conventions) to be attached without 
overstepping the maximum allowed width (the WIDTH argument of 
WRITEP) of the lines. 

WRI~ESA.ND 

WRITEP is called by WRITEBAND(P), the function ~hich writes out a 
band in p-fo.rmat. The l.ine width which it passes to WRITEP(P,WIDTH) 
is the value of the global variab1e LINESIZE, which has a default 
value of 70. This may, of course. be overridden by the user in the 
SP.ECS file. seventy is a reasonable maximum width for lines in disk 

second .Editio.n, partial draft. .Formatted Febcoary 2, 1990 



6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 114 

files that are to be edited at a terminal, most screens being able 
to display 80 characters across, some of which may be taken up by a 
line number. The band which WRITEBAND writes is its argument, if 
the latter is non-null. In this case, the argument consists of the 
entire band Cincludinq band label) as a single string. However, if 
the argument is nuil, the £unction assembles the band from the 
current values of the four variables HLEV, MODE, BAND, and BODY, and 
writes it out • 

. LISTGEN 

Another function which calls BREAKP(P,WIDTH) is LISTGEN(P,IDFLD), 
which is the function that prints out a band with indentations and 
other formating, in the so-called l-format. (Note that there is 
also a control module called LISTGEN.) In contrast to the other 
output functions discussed so far, LISTGEN does print formatting. 
It is, however, analogous to WRITBBAND in that it takes a band, 
which is either its l) argument or, if that is null, the current band 
assembled from the values 0£ HLEV, MODE, BAND, and BODY, and outputs 
it. LISTGEN however, is much more complicated, since it has to 
recognize entry levels (main vs- sub-entries, etc.), mode levels, 
boundaries be·tween entries and modes, etc. in order: to insert 
indentations and line skips in tne output. Because they affect the 
maximu~ line length of the paragraphs, the ~ndentations are passed 
down ultimately to BREAKP. By consulting the flag, SUPBANDLABEL, 
LISTGEN also determines whether the band label (that is, the ·aLEV, 
MODE, and BAND fields) is to be printed. It also updates the page 
heading (but does not print it--that•s PRINTL's job) whenever a 
headword, a one-dot, band comes along. LISTGEN's second argument, 
IDFLD, is t 'aken as an id field attached to the band. LISTGEN does 
not care what it consists of, but the calling proqram should make it 
of consistent length from one call to the next of LISTGEN. The 
general idea of LISTGEN is that it does only those decisions that 
ar::e oriented to band-formatin9. LISTGEN calls PRINTP to do further 
print-o~iented thin9s. See the control module LISTGEN for an 
example of how the fanction LISTGEN can be osed. 

PRINTP 

PRINTP takes a paragraph, its first argument, and breaks it up 
using BREAKP into lines, then prints the lines by calling PRINTL. 
It manages, generally, the ho~izontal positioning of the paragraph. 
The full list of arguments is shown here: 
PRINTP(P,DENT,OFFSET,WIDTH,SKIP,fOOT1,FOOT,READ,IDFLD). IDFLD is 
the id field to be printed at the left of the first line of the 
paragraph, but not of subsequent lines. What the other arguments 
mean is shown in the layout chart in the program listing. 

PR INTL 

PRINTL(L,INDENT,SKIP,POOT,BEAD.IDFLD) prints the IDFLD and line 
L, with INDENT spaces separating them, after skippi.ng SKIP blank 
lines. The IDFLD is right up to the left margin, determined by the 

Second Edition, partial draft. Formatted February 2, 1990 



................. -... -..... ---

6.2 BUILT-IN f'UNCTIONS AND OTH'ER FACILITIES 115 

qlobal variable LM.lRGIN. The main job of this function is to keep 
track of the current vertical position on the page, through the 
variable LINESL~FT, and to skip a page at the appropriate place. 
The function keeps track of the page count and prints it as Mell as 
the current running head (the argument HEAD), right justified, and 
title (the global variable TITLE), centered. The lines per page is 
the global variab1e LIMESPERPAGE, defaulted to 60, the heading can 
be suppressed by setting SUPHEADING to a non-null value. The actual 
writing out is, of course, done by calling the output functions 
PRINT and PRINTPAGE of SEGMENT 1.1. 

CP.AD 

The function CPAD(LINE,N) returns its first argument centered, 
padded with blanks on both sides to a total length of N. It is used 
by PRINTL for printing page titles. 

LISTORWRITE 

In control modules that produce band-format output, it is 
sometimes convenient to not build in the decision to output the 
bands in p-format (for storage) or 1-format (for listing), but to 
make this depend on a flag that can be eas ily set by the user in the 
SPECS file. Such control modules can call LISTORWRITE(P,IDFLD) 
instead of WRITEBAND or LISTGEN directly. LISTORWRITE will then 
call one or the other of these depending on the flag PFORMAT. This 
switch is defaulted to nul1, which means tnat LISTGEN, giving 1-
format output, is the default. If the use r wants p-format, set 
PFORMAT to a non-null value in the SP.ECS file. (This option is not 
currently available in all tne control module s.) 

SE.R1'LD, COUNTFLD 

The functions SERFLD() and COUNTFLD() are not called by any 
functions within this SEGMENT, but are used by control modules such 
as LISTGEN (not the function LISTGEN but the control module of the 
same name), to generate various numbers to put in the id field in 
LISTG ENed output. SERfLD() gets the current serial number field 
from the input file if there is any and if the flag SNUM is null· 
COUNTFLD() keeps count of the headword bands by looking in HLEV and 
returns the current count if the current band is a main headword 
band. (The way these operate and interface with the rest of the 
functions is not very flexible or logical and needs to he re­
designed.) 

Second Edition, partial draft. Formatte d February 2, 1990 



'---~'"-····-- . -·-· ....... . . ,, -· .. ,.. ... ---.. ----·- -------·-·----- ··-·-···-·- ·-- - - ..... ... -.. ----- .. ·-- ...... -·-·-·-·· . --·---·--... .._ .. _. ____ ,,, .. .. . ,._ .... .. -. ...... _ 

6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 116 

SUMMARY OF RELATIONS AKONG THE OUTPUT FUNCTIONS 

functions typically 
calle d f rom 
control modules 

LISTORWRITE I 

------~'-----~-- I I I I 
WRIT.EBAND LISTG'EN SF.RF'LD COUNT.FLO I 

I I I 
WRITEP PRINTP I 

I I I 
-------------------------1------------------1--------------------------1 

functions tha~ •----------- --- ----' I 
usually aren•t I I I I 
called from I BREAKP PBINTL f 
control modules I •~--------- I 

I I I I 
I 1 CPAD I 

I J I I 
1-- -----------------------1-------------- ----1--------------------------1 
I I --'------ I 
I low-leve l out put I I I I 
1 functions from WRITE PRINT PRINTPAGE I 
I SEGMRNt 1-1 I 
L ~ 

These functions do the actual testing and processing of 
dictionary materials. Generally they act on one hand at a time, 
that is, they assume there is a "current" band, the band which has 
been r e ad in by READ() and parsed into the registers BLEV, BAND, 
MODE, and BODY. They also have access to the "previous" and "next" 
bands in the registers ffLEV.P etc. and HLEV.N etc. respectively (see 
Section 6 .. 2.2). 

The follo11.ing is a classified list of the functions. 

IFBANDS(.BANDS) 
IFLITBANDS(BANDS) 
IFBANDQ() 
IF'ENTRY"() 
l:FEND'ENT() 
IFt1AIN() 
IFENDNEST() 
IFE.NDF'ILE() 
IFSU.B() 
IFN'EWMODE() 
IFMATCH ( P .A.T) 

BAND Predicates 

second Edition, partial draft. Formatted FebLnary 2, 1990 



6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 

CLEARK.EEP() 
KEEPBAND() 
RE.READ() 
IFEN.DKEEP() 
RECON'l'ROL() 
REVIEW() 
SAVEPOINTER(INCR) 
RESETPOINTER() 
NEREADREGS() 
WR!TEKEEP() 

KEEP-related functions 

STATE-setting and testing functions 
SET(STATENAME,STATEVAL) 
UNSET(STATENAME) 
IF(STATENAME,STlTEVAL) 
STJ.TE(STA.TENAME) 

CLEARPACKET() 
PACK( STUFF) 
LISTPACKET(.ENT) 

BANDlID(BANDLIST) 
SKIP() 

PACKET-related functions 

Miscellaneous functions 

117 

The .fi.rst group of functions, in SEGMENT 4.1, are predicates 
which test for various "positio.ns" in an entry. They succeed if the 
current band is at such a position and fail otherwise. Most of 
them are extremely simple tests that can be replaced by sing1e calls 
to built-in predicates that look at the various registers like HLEV 
etc. However, in writing a control module, it might be more 
mnemonic to use these functions ~nstead. Predicates, and only 
predicates, have names beginning with 'IF'. Another convention that 
has so far been followed is that predicates cause no side effects 
and return no value. Other functions may cause side effects and 
return values but do not fail, so that predicates vs. non­
predicates form two disjoint classes of functions with respect to 
these properties. (Currently the READ() function violates this 
convention in that it can fail. It will be corrected.) 

IFEN?RY() checks if the current band is the beginning of an entry 
(either main or sub), IFM1lIN() checks if the current band begins a 
main entry, IFSUB() checks if the current band begins a subentry of 
any level, IFENDENT() checks if the corrent band is the last band of 
an entry (of whatever level), and IFENDNEST() checks if the current 
band is the last band in a "nest" of entries, i.e. that the next 
band, if any, is a main entry band. IFENDFILE() checks if the end 

Second .Edition, partial draft. Formatted P'ebraary 2, 1990 



6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 118 

of the input .file has been reached. IFNEWMOD'E() checks if the mode 
of the current band is different from that of the previous band. 

IFBANDS(BANDS) checks if the current band is one of the bands 
given in the argument list BANDS in the form, •a,b,c,d•. It is 
indifferent as to upper or lower case, that is, the band names in 
the dictionary can be in upper or lower case and they also can in 
this argument list. However, IFLITBANDS(BANDS) is case-sensitive, 
that is, it will consider •a• and 'A' as two different band names. 

IFBANDQ() also is a test .for bands, but it takes no arguments. 
Instead, it uses the global variables BANDS and NOTBANDS (which are 
strings of bandnames), and ALLBANDS and NOB&NDS (which ace flags). 
It succeeds or .fails as .follows: If NOBANDS is set (is non-null) 
when it is first called. it will fail and always thereafter fail, no 
matter vhat the current band is; otherwise if ALLBANDS is set when 
it is first cal.led., it will succeed and always thereafter succeed; 
otherwise if BANDS is non-null when it is first called, it will 
always use the bandnames currently in BANDS, succeeding if the 
current band is among them and failing otherwise; otherwise if 
NOTBAN.DS is non-null when it is first called, it will always use the 
bandnames currently in NOTBlNDS, succeeding if the current band is 
in that list and failing otherwise; otherwise, i.e., if all four 
variables are null when IFBANDQ() is first called, then it will 
succeed and always thereafter succeed. IFBANDQ(), like 
IFBANDS(BANDS), is not sensitive to upper/lo~er case in bandnames. 

IFMATCR(,PAT) simply does a pattern match on the cur.rent .BODY 
using the argument PAT, and succeeds and fails according to the 
success or failure of the match. 

Since READ() reads in only one band at a time, the amount of a 
dictionary that can be examined at any time is limited. 
Specifically, it is limited to the current band, the band before the 
current band and the band after. A surprising amount of useful 
things can be done under this myopic restriction, especially by 
settinq and testing flags (SEGMENT 4.3). In fact, most control 
modules do not look beyond this range. This is because many 
decisions about what to do with a band can be made without looking 
beyond this nei<Jhborhood or only by looking back, not fo.rward, in 
the entry. Looking back can be accomplished by setting flags when 
certain conditions come along, in case this information vill be 
needed later in the entry. When, later in the entry, these flags 
are tested, this constitutes "looking back", even thouqh the bands 
or conditions that caused those f1ags to be set are no longer around 
to be looked at. When "looking forward" in an entry is required to 
decide what to do with a given band, a control module has to READ() 
ahead and hence must have a place to store the intervening bands. 

Second Edition, partial draft:. Formatted February 2., 1990 



. " . " .............. _, " ........... --.. -·--·---·---

6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 119 

A storage facility for such occasions is provided in the array 
KEEP and associated functions. 1'he function CLEARKEEP() clea.rs it. 
The function KEEPBAND() adds the current band to it. The function 
WBITEKEEP() writes out the entire KEEP using the function WRITEBAND. 
The function REVIEW(), which can be called in the control module, 
re-reads the KEEP, band by band, calling the function RECO.NTROL(), 
which has the entry label REVIEW, for each hand. Therefore, there 
should be in the control module a statement: labeled R.EVIEW 
containing inst:ructions for what to do for each re-read band. The 
instructions should end by transferring to RETURN. If it transfers 
to FRETURN, the re-reading of KEEP is aborted. The functions 
REREAD() and IFENDKEEP() support the REVIEW function and need not be 
called explicitly from the control module. The pair of functions 
SAVEPOINT.ER{) and RESETPOINTER() saves the current .KEEP position 
used by KEEPBAND, and resets the current KEEP position to the saved 
value, respectively. The control module ONBANDS is an example of 
using the KEEP facility. (As this is a rather awkward facility to 
use, a better way is beinq sought.) 

A "state" is simply an entry in a special table, STATETABLE, and 
can be assigned any value. It may be used like an ordinary 
variable, except that there are special functions to manipulate 
states conveniently. To set state "A" to a val.ue "X .. , call 
SET('A 1 ,•x•). If the second argument is null, a value of 1 is used. 
In this way a state can be used as a flag. To unset a state, i.e. 
to reset it to null, ca11 UNSET(•A•). To test if it is non-null, 
call the predicate IF('A'). To test if it has the vala.e •x•, call 
IF(•A•,•x•). The value to vhich it is set can be gotten as the 
value of the function STATR('A'), which is equivalent to 
STATETA.BLE<'A'>. 

PACKET is a special variable which can be manipulated with 
certai.n fu.nctions. CLEARPICKET() clears it. PACK(X) concatenates 
its argument to it. LISTPACKET() calls LISTG'EN on the PACKET. 

When BANDAID(BANDLIST) is called, it checks to see if the cur~ent 
band name (in the variable BAND) is in the argument list. If it is 
not in the list,. the function simply reta.rns. If present, it 
transfers control to a user statement with a label consistinq of the 
band name, in upper case, followed by a sinqle period. The user 
must, therefore, provide such statements, most likely in the SPECS 
file. The statement must eventually transfer either to RETURN or to 
SKIP. An alternative to transferring to SKIP is to ca11 the 
function SKIP() and then transferring to RETURN. 

Second Edition, partial draft. Formatted February 2, 1990 



.. . ............... ........ ......... . .... ... . ....... --~-

6.2 BUILT-IN FUNCTIONS AND OTHER FACILITIES 120 

Segment 5 of the pro9ram does not occur in a simple BIRDBATH .cun, 
one which does not involve sorting. It is added to the normal 
BIRDBATH segments to construct a TO~ST phase 1 or phase 2 program. 
It contains fnnctions Khich write sort records in a standard format 
and functions which read the sorte d records back in a nd check for 
"control field bre aks•. The runctions are: 

phase-detection function 
D.ETPHASE() 

Functions for Phase 1 
WRITESORTCREC,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,tt1Q) 
WRITESORTCNTL() 
HANDI.E(HANDLE) 
HANDLE.B(HANDLEB) 

READ()N 
STEPFIELDS{)N 
IFBREAK(N) 
IFENDBRK(N) 

Functions for Phase 2 

The function which writes out sort records is 
WRITESORT(REC,H1,H2, •• ), where REC is a record to be sorted, and H1, 
H2, etc. are "ha ndles", or sort f~e1ds to be used, in the order 
given, for sorting the record. These handles are considered 
separate from the data record, bec ause in almost all cases of 
sorting, the des ired sort sequence is not directly related to any 
part of the data record but can only be stated in terms of fields 
generated from the data record (or from other material) by means of 
a non-trivial £unction. Por convenience two simple such functions 
are provided in this segment: HANDLE(X) and HANDLES(X). The actual 
number, NHANDLES, of distinct handles, H1, H2, etc. that will be 
given as argume nts whenever WRITESORT is call.ad in the control 
module should be specified in a statement in the control module, 
e.g. NHANDLES = 4. This nGmber is defaulted to 1~, but should be 
o verridden for e fficiency reasons if in fact a smaller number is 
used (as will normally be the case ). 

The siqnif icance of giving WHITESORT a number of separate 
handles, ra·ther than stringing the m together into one handle (vhich 
is also possible ), is that WRIT'ESORT will keep the m separate by 
inserting a special character, SEP2, he~veen them. Then, when the 
sorted file is r e ad in, these fields can be reco9nized by the READ() 
function. Changes in their contents ("control fie ld breaks") can be 
nsed to trigger out.Put formating or other processe s according to 
what was the highest level <a1, H2, etc.) in the hierarchy of field s 
the change occurred in. The detec tion of the beginning or end of a 
group of records with the same handle of a given level is very much 
like testing for the beginning or e nd of an entry ~hen the input 
file is a band-format file rather than a sort output file. Here the 

Second Edition, partial draft. Formatted February 2, 1990 



6.2 BUILT-IN fUNCTIONS AND OTHER FACILITIES 121 

detection is done with the functions IFBREA.K(N) and IF.ENDBRKOO, 
where N is the level (1 for highest) of the handle being tested. 
IFBREAK(N) succeeds if and only if the cttn:ent record has any level­
N and higher handles that are different from the corresponding ones 
of the 12.t:elliOllQ record. IFENDBRK(N) succeeds if and on.ly if the 
current record has any handles of level-N and higher that are 
di.fferent from the correspo.nding ones of the nan record. The 
logical sequence in which to test for these conditions without 
missing any is IFBREAK with increasing N followed by IFENDBRK vith 
decreasing N, as in the following schema of a phase 2 control loop: 

PHAS:E2 IFENDFILE() STOP() 
READ() 
IFBREAK(1) ... 

IfBREAK(2) ••• 
IFBREAK(.3) ••• .....•... 
IFENDBRK('3) ••• 

IFENDBRIC(2) ..... 
IFENDBRK(1) -.... : ( PHASE2) 

Note that the function READ(} is used also in phase 2, but it is a 
slightly different function from the phase 1 function of the same 
name. The details need not concern the writer of control modules. 
The main point to remember is that it leaves the data record in the 
variable REC. This should be the same string that was given as the 
fi~st argument to WRITESORT, in phase 1, to write out for sortinq. 
(STEPFIELDS() is a function used by the Phase 2 READ(); it need not 
concern the user.) 

Both phase 1 and phase 2 functions are in this single segment, 
SEGMENT 5. This is solely for ease of maintenance and 
documentation. The program listing makes a little more sense when 
seen as a whole or as two halves of a whole rather than separately. 
Which set of functions is to be activated (DEPINEd) is determined 
after a call, during initialization of SEGMENT 5, to the function 
DETPHASE(). This function takes a peek at the first record of the 
input file (and then rewinds it) to see if this should be a phase 1 
or 2, and returns this number. During initialization, this number 
is assigned to the variable PRASEs which can also later be checked 
by the control module to decide which phase's control loop it should 
enter. 

Second Zdition, partial draft. Formatted February 2, 1990 



122 

The control module, SEGMENT 7, in any BIRDBATH run is the 
"executive ", or "driver", that directs things to happen. All the 
previous segments merely set up functions, parameters, etc., that 
may be use d by the control module. These functions perform rather 
low-.level, general operations and tes·ts, which. are closely tied to 
the physical representation of the dictionary entries. More 
specialized functions can be included at the front of the control 
module needing them or can be included in SEGMENT 6, the "User 
Functions•, if they are of somewhat more general applicability. 
Even though the .set of available lov-level functions is the same 
from run to run, the runs can be guite different because of the 
different control modules. 

A typical control module is a loop which calls the READ() 
function to read in a band and parse it into its aifferent fields, 
ffLEV, MODE, BAND, and BODY. Then it might do some tests such as 
IFMAIN() or IFBANDS(some band names) or IF:ENDENT(), and perform some 
actions snch as PACK(something), or set some flags, or execute some 
pattern match and replacement on the BODY. Then there might be a 
call to some output function such as LISTGEN or WRITEBAND. The loop 
is controlled by the test IYENDYILEC) followed by STOP(), most 
conveniently placed right at the beginning o.f the loop. (There need 
not be an explicit transfer to END because ·there is such a transfer 
within the function STOP().) However, the control module, being the 
very last segment of the program, must end Nith the standard SNOBOL4 
•END' statement. A very simple such loop might look like the 
following: 

LOOP 

END 

IFENDYILE() STOP() 
READ() 
IFBANDS('hw,df') LISTGEN() : (.LOOP) 

Since the control module operates in the same environment as all the 
lower level functions, and since SNOBOL4 also has feK controls and 
devices for isolating program contexts, there is the danger, in this 
kind of program organization, of unknowingly using the same 
variables or labels already built in. Such collisions are not as 
serious ~ith labels as with variables since duplicate labels are 
detected and flagged by the compiler and an error message is printed 
in the compilation listing. 

Unknowing use of built-in BIRDBATB variables is more serious, 
howe ve r, since the system has no vay of telling that yon are not 
ceally referring to the same variable. The way to avoid duplicate 
variables is to not use ordinary variables when writing control 
modules but to nse the nstate-setting functions" (SEGMENT 4.3), 
which essentially give access to a separate variable space through 
the functions SET, UNSET, STATE, and IF. This variable space is 
merely a TABLE, called STATETABLE. It may be accessed with the 
usual table reference, e.g., STATETABLE<X>, but calling the 

Second ·Edition, partial draft. formatted February 2, 1990 



6.3 WRITING NEW CONTROL MODULES 123 

functions is often simpler and does not require a separate 
statement, and can result in a saving of statements and of go-to•s. 
This variable space is reserved strictly for the user, and is not 
used by the system of built-in functions. (The current exception is 
the table argument 'SKIP', which is used by the built-in function 
BAND.AID(). This will be corrected in the future.) 

There are some built-in variables that the user (the writer of 
control modules) may legitimately need to access, for example, in 
order to do a pattern match on the BODY of a band. A preliminary 
list of these is given later in this section. It will be filled out 
with a description of what they are. A preliminary list o.f built-in 
labels is also given. A comp1ete index of global variables and 
functions is now available in Section 6.4. It should be osed in 
conjunction with a program 1isting. 

A TOAST control module contains two parts, a phase-1 and a 
phase-2. At the beginning of the module there must be a test of the 
global variable PHASE, to see if the module is being executed in 
:phase-1 or phase-2 of the TOAST r11n, with a transfer to the 
appropriate portion of the contro1 module. In addition, there 
should be, before this transfer, an assignment to the variable 
NHANDLES. This should be the number of sort handles the 
WRITESORT(REC,B1,H2, ••• ) function wil.l be called with in phase-1. A 
statement should also be placed here, for use by phase-1, that 
allows the use.r to supply a handle function having any name, not 
necessarily 9 HANDLE'. Note that •HANDLE' is in quotes; BANDLENAME 
is not. 

Otherwise, each of the two portions of the control module can 
look quite like a BIRDBATH control module. Figure 6.1 shows a 
typical schema of a TOAST control module. 

r---·~--~-~~------·~----~·------------·--------~--------~---~---------. 
I 
I 

' I LOOP1 
I 

' I I 
I 
I 
I LOOP2 
1 
I 
I 
I 
I 
I END 

NHANDLES = 2 
DIFFER(HANDLENAME) OPSYN('HANDLB',HANDLENAME) 
EQ(PHASE,1) :F(LOOP2) 
IFENDFILE() STOP() 
READ() 

• 
WRITESORT(REC,H1,H2) :(LOOP1) 

IFENDFII.E() 
READO 

STOP() 

WRITEBAND() : (.LOOP2) 

Figure 6.1 

Second. !dition, partial draft. Formatted Feb.ruary 2, 1990 

I 
I 
I 
I 
I 
I 

' I 
I 
I 
I 
I 
I 
I 
I 
I 
t ____ .. 



6.3 WRITING NEW CONTROL MODULES 

Note that the READ() function is called also in phase-2. This is 
however a dirferent function from that defined for phase-1. It does 
not read bands but rather reads the sort records originally Mritten 
out by WRITESORT and since sorted. Of course, it also does not 
parse the records into the band fields such as HLEV and MOD~ but 
rather into handle fields. Changes in these handle fields from one 
record to the next can be detected by calls to the predicates 
IFBRE~K(N) and IFENDBRK(N) The first one checks for a control break 
of order N. A control break of order N occurs whenever the Nth 
handle of the current record, or any handle to the left (M-1, N-2 7 

etc.), is different from tbe corresponding handle of the previous 
record. (This implies·that whenever a control bceak of order N 
occurs, a control break of order N+1 also occurs.) IFENDBRK(~) 
checks if the next .Lecord vould cause a control break of order N, or 
if there is no next record (end of file). Phase 2 loops are dciven 
by these control breaks rather than by the logical breaks in a 
dictionary fi1e. More comments may be found in PROGRAM SEGMENT 5, 
SORT I/O .FUNCTIONS, and in Section 6. 2. 5 of the manual. Listings of 
the existing TOAST control modules should also be studied. 

The comments about writing BIRDBATH control modu1es also apply 
here. The two loops 0£ the TOAST control module, however, operate 
in entirely different environments since they are separated in time 
by the sort step and since the phase-1 program is terminated before 
the sort is performed. The only vay the two phases communicate with 
each other is through the sort file. 

The following list contains only BIRDBATH labels and names, 
but no SNOBOL4 or SPITBOL built-in labels and names. Also, this 
list gives only those labels and names that are 6 characters or 
shorter.. Section 6.4 gives a complete list of ba.ilt-in variables 
and functions. 

CPAD 
IF 
IF SUB 
PACK 
PRINT 
PRINT1 
PRINTL 
.R EAD'PG 
R.EREAD 
SET 
SKIP 
SKIP PG 
STATE 
UNSET 
WRIT.E 

th.rongh PRINT4 

Labels 

·. 

Second Edition, partial dC'aft. Formatted Febraary 2, 1990 



6.3 WRITING NEW CONTROL MODULES 

BAND, BAND.N, BAND.P 
BIND EX 
BODY, BODY.N, BODY.P 
EOF 
HANG1 
tfLEV, 
ID, 
ID LEN 
IN.FILE 
LC 
LP2 
MAXI.EN 

HLEV.N, HL.EV.P 
ID.N, IO.P 

MODE, MODE.N, MODE.P 
OUT FILE 
PG.ID, PG.ID1, PG.ID2 
PRINTER 
TITLE 
UC 

VaI:"iables 

Second Edition, partial draft. Formatted February 2, 1990 

125 



126 

Below is an index of global variables, functions, and operators 
in the built-in segments (SEGMENTS 1 through 5) and in the existing 
contcol modules. This list may not be up-to-date. 

I <unary operator) 
# (unary operator) 
# (binary operator) 
ALL-LC 
ALL-UC 
BAN.D 
BAND.N 
BAND .. P 
BANDAID(BlNDLIST) 
BANDKEEP 
BIND.EX 
BODY 
BODY.N 
BODY.P 
BREAKP('P,L) 
.BREAKPOWN 
CLEARKEEP() 
CLElRPACKET() 
COUNTFLl){) 
CPAD(LINE,N) 
CURR.ENXHEAD 
DESHifT(X) 
DETPHASE() 
ENDKEEPFLAG 
ENTRYINDENT 
EOF 
FILLTABLE(ARG,VAL) 
HANDFIELD 
HANDFIELD.N 
HAND.FIELD.P 
HANDLE( BANDLE.) 
HANDLEB(BANDL'EB) 
HANDLEMlP(S,'name•) 
H!NDLEPAT 
HEADRANG 
HLEV 
HLEV.N 
HLEV.P 
HWCOUNT 
ID 
ID.N 
ID.P 
IDLE.N 
IF(STATENAME,STATEVAL) 

S'EG. 1.1 
SEG. 1.1 
SEG. 1.2 
SEG. 1.1 
SEG. 1.1 
SEG. 2. 2 
SEG. 2. 2 
SEG. 2. 2 
SEG. 4. 5 
S.EG. 4. 2 
SEG. 4.2 
SEG. 2. 2 
SEG. 2.2 
SEG. 2.2 
SEG. 3 
SEG. 3 
SEG. 4.2 
S.EG. 4.4 
SEG. 3 
S.EG. 3 
S:EG. 3 
SEG. 1.1 
SEG. 5 
S!'!G. 4.2 
S.EG. 3 
SEG. 2.1 
SEG. 1.2 
SEG. 5 
SEG. 5 
S.RG. 5 
SEG. 5 
S.EG. 5 
S.EG. 1.2 
s·EG. 5 
S'EG. 3 
SEG. 2.2 
SEG. 2.2 
SEG. 2. 2 
SEG. 3 
S'EG. 2 .. 2 
SEG. 2. 2 
SEG. 2. 2 
SEG. 2.1 
SEG. 4.3 

Second Edi ti on, partial d.raf·t. Fo.rmatted Februa.cy .2, 19 90 



""'" ...................... - ............. -...... _ -· .... ________ _ 

6.Q INDEX: OF VARIABLES .AND FUNCTIONS 127 

IFBANDQ() SEG. q.1 
IFBANDS.N(BlNDS ) SEG. 4-1 
IF'BANDS.P ( .BANDS) SEG. 4.1 
IFBA.NDS(BANDS) SEG. 4.1 
IF BRE AK ( N) SEG. 5 
IFENDBRK(N) S"EG. 5 
IFENDE.NT( ) SEG. 4 .. 1 
IFENDFILE() SEG. 2.2 
I .FENDK"E:EP() SEG. 4 .. 2 
IFE.NDlf"EST() SEG. 4. , 
IFENTRY() SEG. (J .1 
IFLITBANDS(BANDS) SEG. 4 .. 1 
IFMAIN() SEG. 4.1 
IFMATCR(PA.T) SEG. It. 1 
IFNEWMODE() SEG. 4.1 
IPSUB() SEG. 4.1 
IN FILE SEG. 1 .. 1 
K.EEPBAND() SEG. 4.2 
LC S.EG. 1 .. 1 
LINESIZ! .SEG .. 3 
LIN.ES L EFT SEG. 3 
LINESPERPAGE SEG. 3 
LISTGEN( P,IDFLD) SEG .. 3 
LISTORWRITE (P,IDPLD) SEG. 3 
LISTPACKET(E'NT) SEG. 4 .. 4 
LfiARGIN SEG. 3 
MAXSORTl.EN SEG. 5 
MESS AG E SEG. 1 .. 1 
MESS PAGE S.EG. 1 .. 1 
MINSORTL .EN SEG. 5 
MODE SEG. 2.2 
MOD.E. N SEG. 2.2 
MODE .. P SEG. 2.2 
MSG(SRC,TEXT,MAXWID) S.EG. 1.1 
NHANDL.ES SEG .. 5 
.NONUM SEG. 1 .. 1 
NUMYIELD() SEG. 1.1 
OPENTABLE(•name•,srZE) SEG. 1.2 
OUTFI LE SEG. 1.1 
OUTNUMX SEG. 1.1 
Pl\.CK(STUFF) SEG. 4.Q 
PACKET SEG. 4.4 
PAGECOUNT SEG. 3 
PAR.A.PAT S'EG. 2.2, SRG. 3 
PG.BUY1 SEG. 2.1 
PG . BUF2 SEG . 2 . 1, SEG. 5 
PG.COUNT SEG. 2.1 
PG.ID1 S.EG .. 2 .. 1 
PG.ID2 SEG .. 2.1, SEG. .5 
PG.RECCOUNT SEG. 2.1 
PG . TEXT SEG. 2.1 
PHASE S .EG. 5 
PREVMODE SEG. 3 
PRINT(L) SEG. 1.1 

Second Edition , partial draft. For m.a·t ted Febcuary 2, 1990 



----·------ ---·-- -----·-----.. ----.. 

6.q INDE X: OF VARIABLES AND FUNCTIONS 128 

PRI~TL(L,INDENT,SKIP , SEG. 3 
FOOT, HE~!\.D , IDFLD ) 

PRINTP ( P , DENT, OFFSET , SEG . 3 
WIOTH , SKIP , FOOT1, FOOT , 
HEAD , IDPL.D ) 

PRINTPAGE (L) SEG . 1 . 1 
R. INPAT SEG . 2.1, S'EG . 5 
READ () · S EG . 2 . 2 
REA'DPG ( N, PAT ) SEG . 2.1 
REC SEG. 5 
Rf:C . N SEG. 5 
REC . P S.EG. 5 
RECONTROL ( } SEG. 4.2 
REC SEQ S.EG. 5 
REREAD () SEG. 4.2 
REREADREGS ( ) SEG. 4.2 
RES ETPOINT'ER () SEG. q. 2 
R.EVIEW( ) S.EG. 4. 2 
RMARGIN SEG . 3 
SAVEDK.EEPPOINTER S EG . 4. 2 
SAVEPOI NTER(INCR ) SBG . 4.2 
S'EP 1 SEG. s 
SEP2 SEG . 5 
SElH'LD() SEG. 3 
SET(STATENAME , STATEVAL) S.EG. 4. 3 
SKIP SEG . 4. 5 
SK I P() SBG . 4. 5 
SKIPPG{N , PAT ) SEG. 2 . 1 
SNCJM SEG. 3 
SORTCNTL SEG. s 
SORTCOUNT SEG. 5 
STATE(STATENAME ) SEG. ,. • 3 
ST AT.ET ABLE S.EG. 4.3 
STEPFIELDS() SEG. 5 
STEPREGISTERS() SEG. 2.2 
STOP( ) SEG. 1.1 
STOPAFTER SEG • 2.2 
STOPP.AT SEG. .2. 2 
SUBENTINDENT SEG. .3 
SUBMODEINDENT S.EG. 3 
SUPBANDLABEL SEG. 3 
SUPffEADING SEG. 3 
TI TLE SBG. 3 
TRACERANDLE SEG . s 
TRANSHAP(S ,' name•) SEG . 1. 2 
UC SEG . 1. 1 
UNSF.T(STATENAME ) SEG. 4 . 3 
UPS HIFT ( X) SEG. 1. 1 
WRITE ( L) SEG . 1 . 1 
WRITEBAND ( P ) SEG. 3 
WRITE KEEP () SEG. ij . 2 
WRITE P{P,WIDT!l) SEG. 3 
WRITESORT(R EC, H1, •• , HN) SEG. s 
WRIT.ESORTCNTL() S.EG. 5 

s eco n d Edition, partial draft. Forma tted February 2, 1990 



JJANDARRA~ 
BANDLIST 
BrtNDN~.M.E 

BANDTABt·e 
.BEF 
DEF 
.DEF PAT 
EN DEF 
E.NKEY 
EXTRACT() 
PORCENKEY 
HOOK 
IiOOICPAT 
ff~ 

HWBAND 
HWCOUNT 
HWFIELD 
KEEPANGLE 
KEEPST AR 
KEY 
KEYMARK 
K1 
K2 
MA.XSO.RTLEN 
MI.NSOR':rtE.N 
N 
NDEFS 
NEXT'HWBAND 
NHAN'DLES 

OFFSET 
OPTP 
PABA 
fl EST 
SEPAR~TION 
STOPDEF 
SUPB.ANDLA'B.EL 
XENKEY 

6.4 INDEX OF VARIABLES AND FUNCTIONS 

BAN DI.NV 
REB!NDLE 
REB!NDL'E 
.BAND INV• REBANDL.E 
INVERT 
INVERT 
INVP:RT 
INVERT 
INVERT 
INVERT 
.INVERT 
INVERT 
INVERT 
HiVERT 
HANDS ORT 
HAND SORT 
BAND SORT 
INVERT 
INVERT 
INVEHT 
I .NVERT 
INVERT 
INVERT 
INVERT 
INVERT 
BANDINV, REBANDLE 
INVERT 
HAND SORT 
BANDSOfiT, HANDSORT, 
INVERT, REBANDLF. 
BANDSORT 
INVERT 
HANDSORT 
INVERT 
BANDSORT 
INVERT 
INVE.RT 
INVERT 

Second Edition, partial draft. Formatted Yebruary 2, 1990 

129 



130 

For transportation to other installations, the programs are put 
on an IBM (EBCDIC-cod~d) 9-track unlabeled tape, 1600bpi unless 
otherwise noted. There are some 22 program files, depending on how 
many control modules have been included. The files are mostly quite 
short, on the order of 100 records; a few have just a handful of 
records; one or two have several hundred. They are all fixed-length 
aO-character card-image records with no sequence numbers. Blocksize 
is 4000 unless otherwise noted. They consist of source-language 
(SNOBOL4 and Spitbol) programs, as described below. 

In addition, there may also be a lon9 text file on the tape 
consisting of this manual, formatted by the SCRIPT text formatter, 
complete with carriage-control codes and ready for listing on a line 
prin·ter. Format is variable-length records, b.locked: 
RECFM=VB,LRECL=137,BLKSIZR=4000. There are some 230 blocks. 

Please read Section 6.1 of this manual before trying to 
understand the followinq. Files 2, 3, and 4 correspond to program 
"layers" 1, 3, and 4 as described in Section 6.1. At the UniveI:"sity 
of Hawaii (UH), they are stoced in files called BIRDBATH.INIT.DATA, 
BIRDBATH.BUILTIN.NEW.OATA, and TOAST.SORTIO.DATA, cespective1y, as 
shown in the catalogued procedures (files 21, 22). 

File 1 is a very short file consisting mostly of -COPY control 
cacds, which in Spitbol cause the other source files to be co·pied 
in. It, along with the Job Control Lanqua9e statements (JCL), is 
the means, on the IBM 370 installation, by which the different 
"layers~ o( the program sandwich are assembled for each rQn. At UH 
it is stored in a file called BIRDBATH.ROOT.DATA. This file does 
not contain any prog.ram• and may be dispensed with if some other 
means of assembling the program layers is used. 

Files 5 through 13, unless otherwise noted, contain control 
modules for BIRDBATH, as listed below. At UH they are stored in 
members of a partitioned dataset, as BIRDBATH.CONTROL.DATA(BINDAID)t 
BIRDBATH.CONTROL.DATA(BANDFILT), etc. 

Files 1~ through 20, unless otherwise noted, contain control 
modules for TOAST, as listed below. At UB they are stored in 
members o·f another partitioned dataset, as 
TOAST.CONTROL.DATl(BANDSORT), TOlST.CONTROL.DATA(HANDSORT), etc. 

Files 21 and 22, unless otherwise noted, are copies of the two 
catalogued procedures, BIRDBATH and TOAST, as installed on the 
IBM/3081 {running HVS) at UH- They may provide some guidance in 
installing these programs on a similar computing system. 

Installing the programs means not only copying the program files 
from tape onto a particular computing system but also setting up 
procedures so that BIRDBATH and TOAST runs could be launched by the 
user with a minimum of i~celevant ritual- For the simplest runs the 

Second Edition, partial draft. Formatted February 2, 1990 



6.5 INSTALLATION NOTES 131 

user should have to specify, apart from accounting information, 
little more than the control module, the SPECS fi1e or the SPECS 
statements themselves, . the input f ile, and the o utput file if any. 
The basic requirements for assembling the program components for a 
BIRDBATH o r a TOAST run are set out in s ection 6.1. A different 
operating system would require dif ferent metboas of assembling a run 
than those s hown in Piles 21 and 22. 

File 23, unless otherwise noted, is the formatted manual, with 
control codes , ready foe printing on a line printer with upper-and­
lower case print train. It is formatte d foe 8 112" x 11° paper. On 
an IBM system it may be printed with the IBM utility program 
IEBPTPCH, us ing JCL similar to the following: 

I/ EXEC PGM=IEBPTPCH 
//SYSPRINT DD SYSOUT=A 
/ISYSUT1 DD UNIT=TAPE,VOL=SER=LIN115,DISP=OLD,LAREL=(23,NL), 
II DSN=LIN115,DCB=(RECFM=VB,LRECL=137,BLKSIZE=4000,DEN•3) 
/ISYSUT2 DD SYSOUT=(A,,260) 
l/ SYSIN OD • 

PRINT P.REFORM=A 
II 

(The "26 0 " on the SYSUT2 DD statetRent is a local forms code, .for TN 
train and S 1/2 x 11 unlined paper.) 

The following are the files on tape LIN11 5 at the time this is 
~ritten. If a different tape with a slightly dif ferent inventory of 
files i s supplie d, a similar list will accompany that tape, and any 
deviations from the above descriptions will be no t ed. 

.file 
number 

1 

2 
3 
4 

description 
(all except the last file have fixed length (80) records, 
bloc.k:ed 4000) 

"root" of program, with -COPY stateme nts to assemble 
progcam 

I NIT layer of program (initi a lization s ) 
CO-RE layei; of program (built-in functions etc.) 
SORTIO 1ayer (for TOAST ~uns only) 

Control modules for BIRDBATH runs : 

5 !JA NDA ID 
6 BAN DE'ILT 
7 BA.ND PACK 
S EDL.IST.B 
9 LISTGEN 
10 NULLRUN 
11 ONBANDS 
1 2 ONBANDSH 
13 STATS 

Second Edition, partial draft. Formatted Febcuary 2, 1990 



6.S INSTALLATION NOTES 132 

Control modules for TOAST rans: 

14 BANDSORT 
15 HANDSORT 
16 INVERT 
17 INVE.RT2 
18 NULL RUN 
19 REBANDLE 
20 XCHECK 

Copies of catalogued procedures: 

21 BIRDBATH 
22 TOAST 

LEXWARE Manual (variable blocked: lrecl=137,blksize=4000): 

.23 Formatted text file. 

Second Edition, partial draft.. Formatted February 2, 1990 



6.5 INSTALLATION NOTES 133 

These notes assume that the 360 or 370 Spitbol compiler is being 
used. 

copy the first 4 files on the tape into the following datasets, 
with an appropriate account prefix: 

BIRDBATH.ROOT.DATA, 
BIRDBATH.INIT.DATA• 
BIRDBATH.BUILTIN.NEW.DATA, 
TOAST.SORTIO.DATA 

Copy the BIRDBATH control modules (files S-13 in above list, or 
COI."responding fi.les if the tape you rece ived is different) into 
members of a partitioned dataset, BIRDBATH.CONTROL.DATA. 

Copy the TOAST control modules (files 1Q-20, mutatis mutandis), 
into members of a partitioned dataset, TOAST.CONTROL.DATA. 

co~y the two catalogued procedures from the tape into datasets 
for editing. In these procedures change the account prefix 
'T119920' on all the dataset references to the account prefix where 
you ace storing the above program segments . Check disk volume 
references and disk BLKSIZE pacametecs and adjust for compatibility 
with your installation. Adjust method of referencing forms code and 
COPIES code in //MPlPER DD and //MDUHP DD statements. Check through 
for remain(ng incompatibilitie, and adjast for your installation. 

Test e ach procedure as an in-stream proce dure (you have to add a 
II PEND statement) first with ~nullruns": 

II EXEC BIRDBATB,CONTROL=NULLRUN 

and 

II EXEC TOAST,CONTROL=NULLRUN 

to see if source programs are in place (should result in compilation 
listings and •normal termination .. message s). Then test using test 
data and one of the recipes from Section 4.2 and one from Section 
4.3. 

Second Edition, partial draft. Formatte d February 2, 1990 



6.5 INS~ALLATION NOTES 

These notes assnl!le that the SITBOL compiler, called by the 
co~mand ITBOL, is available. 

134 

Ignoring the first file on the tape, copy files 2, 3 and 4 into 
corresponding DEC-20 disk files under your account, giving them 
names as follows: 

2 
3 
4 

INIT.SNO 
CORE.SNO 
SORTIO.SNO 

Copy the BIRDBATH and TOAST control modules from the sabseqnent 
tape files into correspondinq disk files. See the list of the tape 
files given near the begining of 6.5. Since SITBOL expects file 
names to be no longer than 6 characters, not counting the extension 
(this is a DEC-10 and TOPS-10, not a TOPS-20, convention, bot SITBOL 
was written for the 10), some abbreviating of the control module 
names wil.1 be necessary: 

BIRDB~TH CONTROL MODULES 

tape file 
number 

5 
6 
7 
8 
9 

10 
11 
12 
13 

DEC-20 disk 
file name 

.BNDAID. SNO 
BDFILT.SNO 
Bl>PlCK.SNO 
EDLSTB.SNO 
I.STGEN.SNO 
NULRUN.SNO 
ONBNDS.SNO 
ONBNDR.SNO 
STATS.SNO 

TOAST CONTROL MODULES 

14 BDSORT.SNO 
15 HDSORT.SNO 
16 TNVBRT.SNO 
17 INVRT2.SNO 
18 NULRUN.SNO 
19 REBNDL.SNO 
20 XCHECK.SNO 

Check for any character-set incompatibilities in the source 
files. Toward the end of the INIT file, find program SEGMENT 1.3. 
It contains some comments about special characters that may need to 
be changed to conform with the host computer. Refer to the SITDO.L 
manual, section 1.4.2, P£09ram. 

Second Edition, partial draft. .Formatted February 2, 1990 



6.5 INSTALLATION NOTES 135 

Modify the INPUT and OUTPUT associations. Near the beginning of 
the INIT file, in program SEGMENT 1: INITIALIZATIONS, locate two 
statements beginning with INFUT(•INFILE 1 ,•INFILE•). Replace them 
with these two statements: 

INPUT(•INFILE•,•INFILE:•) 
OUTPUT(•ttESSAGE','MSG.LST',' 1 ) 

OUTPUT(•OUTFILE•) 
OOTPUT('MESSPAGE','MSG.LST','1') 

Adjust certain statements in the SORTIO.SNO program module: 

1. In the DETPHASE function (this is the first label in the 
module, change the R"EWINO function call to HEWIND('INFILE:•), i.e., 
add the colon. 

2. In the PHASE1INIT function Ca couple of labels further 
down) increase MAXSORTLEN from 255 to some large number like 100000. 

3. After the label WRITESORT5 (about 50 lines further down} 
replace the long call to the WRITE function (that takes up two 
lines) with these three statements: 

SOHTREC = HANDLE LPAD(RECSEQ,6,•0•) SEP2 LPAD(SUBQ,2,•0•) 
+ SEP1 REC1 

SORTRECSIZE = GT(SIZE(SOBTREC),SOBTRECSIZE) SIZE(SORTREC) 
WRITE(SORTREC) 

(Those are zero•s in the quotes.) 

4. r'n the WRITESORTCNTL function (some 15 lines further down) 
change the OUTPUT association statement and the next statement to: 

OUTPUT('SORTCNTL•,•SRTCTL.TMP') 
SORTCNTL = 'SORT/RECORD-SIZE:• SORTRECSIZE '/KEY:1,' 

+ KINSORTLEN ' SORTIN.TKP SORTOU.TMP' 

To run a BIRDBATH run, first put into a fi1e called SPECS.SNO any 
desired SPECS statements, then construct and submit the following 
batch job. In this job you need to supply the name(s) of your input 
file(s), of the output file, and of the control module. 

efine infile: <input data file stream> 
itbol 
•<output fiJ.e .name>.dat,tty:,tty:=init,specs,core,<control module> 
f(noerror) oto end 
*<c.i..rcumf l.ex>c 
3err:: 
end:: 
rint ms9.lst/file:fortran 
3fin:: 

If <output file name>.dat is to be listed (not all contro.l 
moaules generate listable output files), examine it first if 
desired, then print it. 

Second Edition, partial draft. Formatted February 2, 1990 



6.5 INSTALLATION NOTES 136 

Explanation: 

In the first statement, <input data file stream> shoul.d be one or 
more data fi1e (dictionary file) names, separated by commas if more 
than o.ne. 

The line after the itbol command gives the SITBOL compiler the 
names of output and input files in the format it expects. To the 
left of the equals sign are three standard output files: the first 
is for the program-generated output, the second is for the 
compilation listing, the third is for SITBO.L error messages. We 
here send the last two to TTY:, which for a batch job is 
automatically listed (printed on hacdcopy). After the egials sign 
is the input file stream to the compiler. The extension .SNO is 
assumed by the compiler if no extension is given (hence all program 
modules were named with that extension). 

The f(noerror) command operates together with the %err:: and 
end:: labels to insure that the last command is executed whether or 
not SITBOL terminates with a.n error. 

The <circumflex> (or "up-arrow") symbol followed by "c" exits 
from the compiler. 

The last command, rint msg.lst/file:fortran, sends the message 
file generated by the BIRDBATH program (the "BIRDBATH RUN LOG") to 
the printer. The lst:fortran causes the listinq to respect 
carriage-control codes. Being a .lst file, it is deleted after 
printing. , 

To run a TOAST run, first put into a file called SPECS.SNO any 
desired SPECS statements, then construct and submit the following 
batch job, in which, again, you need to specify the name(s) of your 
input file(s), the name of the output file, and the name of the 
control modn1e. The blank lines are inserted only for clarity; they 
are not part of the job. 

Second Edition, partial draft. Formatted February 2, 1990 



6.5 INSTALLATION NOTES 

efine infile: <input data file stream> 
itbol 
•sortin.tmp,tty:,tty:=init,specs,core,sortio,<cmodale> 
*<circumflex>c 

ename msg.lst msg1.lst 
ort 
•take srtctl.tmp 
*<circumf lex.>c 
*delete sortin.tmp 
xpunge 

efine infile: sortou.tmp 
itbol 

137 

*<output file name>.dat,tty:,tty:=init,specs,core,sortio,<cmodule> 
f(noerror) oto end 
•<circumf lex>c 
%err:: 
end:: 

rint msg1.lst,msg.lst/file:fortran 
elete srtct1.tmp,srtctl.log,sortou.tmp 
3fin:: 

After the job has run, examine <output file name>.dat and print 
it if appropriate. 

Some explanation: 
, 

l TOAST run consists of two BIRDBATH runs with a sort sandwiched 
in betNeen, with some passing of files from one step to the next. 
The first BIRDBATH program passes the file SORTIN.TMP to the sort. 
It also makes the short file SRTCTL.THP, consisting of the sort 
control statement., to be given to the sort by the •take command. 
After the sort, the sortin.tmp file is deleted and expunged to free 
up some disk space. The SRTCTL.~MP file instructs the sort to use 
SORTIN.THP as the input file and SORTOU.TMP as the ontpnt file. The 
latter file is then defined as the input file to the second BIRDBATH 
program, which otherwise looks like a regular BIRDBATH run. Since 
both BIRDBATH programs write their Logs to MSG.LST, this file is 
renamed after the first program so as not to be overwritten by the 
second, then both are printed at the end. .Finally, some temporary 
files are deleted. One o.f these, SRTCLT. LOG, is made by the sort 
program, but a copy of it is also sent by the sort program to TT¥:, 
so it does not have to be explicitly printea. 

These are of course not the only possible ways to set up BIRDBATH 
and TOAST runs. There are other ways to associate fi1es, 
concatenate them, and pass them from one program to another. 
However the ubmit command does not have the capability of passing 
parameters into the batch f i1e being submitted. Nor is there a 
facility corresponding to MIC on the DEC-10, which allows macro 
commands with arguments. Therefore each time the batch file is to 

second Edition, partial draft. Formatted February 2, 1990 



6.5 INSTALLATION NOT ES 138 

be s ubmi tted, while it may not have t o be typed in from scratch, it 
may still be necessary to first edit into it the names of input 
ril es, c ontrol module, and output fil e . 

Second Edition, partial draft. Formatte d February 2, 1990 



6.5 INSTALLATION NOTES 139 

These notes assume that the Macro Spitbol compiler, called by the 
command spitbol, is available. 

Copy tape £i1es 2, 3, 4 into corresponding files in a 
subdirectory lex/ as follows: 

:2 
3 
4 

lex/init 
lex/core 
lex/sortio 

copy the BIRDBATH control modu1es into corresponding files in a 
subdirectory lexb/: 

5 
6 
7 

etc. 

lexb/bandaid 
lexb/handfilt 
lexb/bandpack 

Copy the TOAST control modoles into files in a subdirectory 
lext/: 

14 
15 

etc. 

lext/bandsort 
lext/handsort 

1. In the first file, lex/init, find SEGMENT 1.3. There are 
some comments about characters that may have been converted during 
the copying. If, for instance, the vertical bar described in the 
comment shows up as an exclamation mark next to it, it wil.l have to 
be converted back to vertical bar throughout all the files. The 
same for any other strayed chacacter. The "not" sign might have 
been converted to a circumflex or "up arrow". Change it back to the 
"not" sign, or the tilde if the "not" sign is not avaiable. 

2. In lex/init, find the statement be9inning with &STLIMIT, and 
replace it with 

&STLIMIT = -1 

Also insert two statements: 
&.MAXLNGTH = 4000 
NONUM = 1 

Also in that file remove the input and output association 
statements, two lines that begin with INPUT{'INFILE','INFILE'). 

.find the statement labeled PHI NT PAGE, and replace it with two 
statements: 
.l?RINTPAG.E EJECT(6) 

OUTFI.LE = L : (RETURN) 

Second Edition, partial draft. Formatted February 2, 1990 



6.5 INSTALLATION NOTES 

In the last statement of the STOP function a few lines further 
dONn (just before the END1.1 label), detach the :(END) and insert 
the statement 

ENDFILE(6) ENDFILE(7) :(END) 

3. In the file lex/core, insert these statements at the 
beginning: 

* I/O associations for UNIX: 
MESSFILE = IDENT(MESSFILE) •runlog• 
IN = IDENT(IN) 'tempin• 
OUT = IDENT(OUT) •tempoat' 
INPUT('INFILE',5,IN) OUTPUT('OUTFILE',6.0UT) 
OUTPUT('M~SSAGE',7,MESSFILE) 

140 

This allows the files to be overcidden in the SPECS file if 
necesary. Note that these default filenames, e.g. runlog, tempin, 
may have to be w.ritten as full pathnames, e.g. /ab/poto/runlog, 
/ab/poto/tempin, etc. The interpreter sometimes finds a simple 
unqualified name as "inappropriate". 

IJ. In the file lex/core, in SEGMENT q, .remove the statement 
DEFI'NE('RECONTROL ••• •). This function is used only by the control 
module ONBANDS. Use ONBANDSR instead of ONBAMDS. 

s. In the fi1e lex/sortio find the statement REWIND{'INFILE') 
and change it to REWIND('5'), and in the statement labeled 
WRITESORTCOpTROLs delete the OUTPUT association, i.e., evecything 
but the label. 

6. Make two shell scripts, birdbath and toast: 

# This is birdbath script, for calling BI~DBATH control modules. 
# To use., 
# 1. edit name(s) of dictionary file(s) into first cat 
# statement below. E.g., if files are dicta and dictb, the 
# statement would read: 
#cat dicta dictb > tempin 
# 2. Select control module to be used and edit its name into 
# the second cat statement. E.g., if using LISTGEN, the 
# statement would read: 
#cat lex/init specs lex/core lexb/listgen > tempsrc 
# 3. Edit a file called specs, placing in it any SPECS 
# statements required by the run. 
# 4. Execute this script, assuming it is stored in a file 
# callea birdbath• by giving the command 
#csh birdbath. 
# 5. J\f ter the run the output should be in the file tempout. 
# If it is meant for printing out, send it to the line printer with 
# the command 
#lpr tempout 
# If it is in p-format, and thos destined for editing or for input 
# to other programs, it should be saved to another file, e.q. with 

Second Edition, partial draft. Formatted February 2, 1990 



6.5 INSTALLATION NOTES 

# the comma n d 
#mv t empout dicta1. 
# 6. This script normally prints out the program listing and 
# r11n log for diagnostic purposes 9 and deletes all the temporary 
# files except tempout. 
ft. 
cat <input file(s)> > tempin 
cat l e x/init specs lex/core lexa/<control module> > tempsrc 
spitbol -a < tempsrc > spitmon 
cat spitmon runlog I lpr 
rm tempin 
rm tempsrc 
rm r unlo9 
rm s pitmon 
# end of birdbath script 

# This is toast script, for calling TOAST control modules. Set 
# it up like the birdbath script (see coNments in that file). 
·~ E .g., if running a BANDSORT on dicta and dictb9 the first two 
# c ommands belo~ would look like this : 
#cat dicta dictb > tempin 

141 

#cat lex/init specs lex/core lex/sortio l e xt/bandsort > tempsrc 
#After editing this script, assuming it is stored in a file •toast•, 
# execute it by g iving the command 
#csh toast 
# The outputs will be as described in the comments in the birdbath 
# script • 
.# 
cat <inpui file(s)> > tempin 
cat l e x/ini t specs lex/core lex/sortio lext/<control module> > tempsrc 
spitbol -a < tempsrc > spitmon 
mv runlog runlog1 
sort < t e mpout > tempin 
spitbol -c -x < tempsrc >> spitmon 
cat s pitmon rnnlog1 rnnlog I lpr 
rm tempin 
rm t e mps .re 
cm runlog1 
cm runlog 
rm spitmon 
# end of toast script 

1. To e x ecute a birdbath or toas t run, follow the instructions 
in the corresponding script. 

8 . This i s only an elementary way to set up the programs for 
running. More conven ient ways can be devised in which the scripts 
would not have to be edited but would instead have parameters passed 
to them whe n they are called. 

Second Edition, partial draft. Formatted February 2, 1990 



This TOAST control module generates a finderlist from a 
dictionary file. It is called INVERT since the resulting finderlist 
is in a sense an inversion of the original dictionary. l second 
control module, INV~RT2, is an extension of INVERT with additional 
facilities described in paragraph r, toward the end of this 
appendix. Summaries of these control modules are qiven in Section 
3.5 (Chapter 3, Section 5), paragraphs c and d. 

This appendix gives in detail the conventions you can use in 
writing dictionary entries from vhich a £inderlist is to be 
generated by INVERT. It also describes how to tell the control 
module what conventions you are using. It assumes .familiarity with 
the elementary notions of band format dictionaries (see, e.g., 
Chapter 2) and vith the general conventions for settin9 up a TOAST 
job (see Sections 3.1, 4.1). Section 5.4 iene~~iD9 ln~xe~ ~ng 
liude~lists, gives an overview of making and using finderlists. 

Basically, INVERT takes selected 
asterisks) from the definition bands 
entries in the finderlist with them. 
entries in Figure I.1., for example, 
finderlist entries in Figure r.2. 

r-----
I. hw dipwdipv 
t 
I df •grass; •weeds 
I 
J. hw mo 
I 
I df •grass; *mulch 
l 
I .hw kajaa 
I 
j df •omen 
L-- ----

Figure 

r 
I grass:: dipwdipw, mo. 
I 
I mulch:: mo. 
I 
I omen:: ka)au. 
I 
I weeds:: dipwdipw. 

----
Fiqure 

Second Edition, partial draft. 

keywords (vords marked with 
of the dictionary and makes 

From the three dictionary 
the program would generate 

, 
I 
I 
I 
I 
I 
I 

' I I 
I 
I 
.J 

I.1 

--. 
I 
I 
I 
I 
I 
I 
I _ .. 

1.2 

Pormatted February 2, 1990 



'-- · 

'--· 

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 143 

In readin9 this appendix it will be helpful to distinguish three 
classes of information being presented here: 1) how yon should 
enter the definition bands in the dictionary; 2) what you need to 
tell INVERT through SPECS statements (placed in the SPECS file) 
about the conve ntions you are osing, and 3) what the program does. 

Thus, the example in Figures I.1 and I.2 illustrates the 
following: 1) You have entered definitions in a band labeled df. 
You have marked e ach keyword with an immediately preceding asterisk 
and have separated multiple keywords within a band with a semicolon. 
The end of the definition band need not be closed vith a semicolon. 
Note that not every entry need have a definition band, nor does 
every definition band need to have a starred word. 2) To run the 
program you need to tell the program in what band(s) to look fo'[" the 
starred keywords . For instance, if the band is df (as in the 
example) use the following statement in the SPECS file, 

BANDS = •Df' 

Note that in the SPECS statement, band names may be given in either 
upper or lower case--the case need not agree with that in the 
dictionary file. If the program is to look in both DF and SEM 
ban~s, specify both bands: 

BANDS = 'DF,SEH• 

In this way, you may specify any number of different bands to be 
searched foe keywords. 3) The program will extract, or copy, each 
starred keyword (excluding the star) from the specified bands, 
together with the corresponding headword of the entry or subentry 
from the headword band, whatever that band may be named--the one or 
more dots preceding the band name labels the band as a headword 
band. It will then make op entries for the finderlist, associating 
e ach keyword with the corresponding headword. It Kill arrange the 
keywords in alphabetical order, a nd print the corresponding 
headwords to the right of each keyword, after a doable colon. If 
there are two or more headwords associated with the same keyword. a s 
for "grass" in the example, they are collapsed into one keyword 
entry, and are given in alphabetical order separated by commas. If 
a dictionary entry has more than one occn.rrence of the specified 
band(s) (at whatever mode levels), the program will look in all of 
them for starred words. Note that for starred words in a subentcy 
the program associates them with the headword of the subentry, not 
with the headword of the main entry under which the subentry 
appears. INVERT2, however, does bring along a reference to the main 
headword (see paragraph r, below). 

Second Edition, partial draft. Formatted February 2, 1990 



APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 144 

Definitions are rarely single words like "grass" or "mulch", 
but are more often longer phrases . The program will extract an 
entire phrase from a definition and place it in the finderlist if 
there are one or ~ore starred keywords in the phrase. The phrase 
will appear in the finderlist under each of the keywords. From the 
dictionary entry in Figure I.3., for example, the program would 
generate the finder1ist entries in Figure I.4. 

,. 
I .hw pas 
I 
I df 
'--

,--·---
I fit 
I 

to *fit *tight 

I to fit tight:: pas 
I 
I tight 
I 
I to fit tight:: pas 
L--------

_______ .. 
. figure I.3 

FiguI:"e I.4 

.. 
I 

' I 
I 
1 
I 
I ___ .. 

Note that the program deletes the asterisks from the phrases in the 
finderlist ~s vell as from the keywords before printing out the 
finderlist. Of course, they remain in the dictionary. 

In addition to the entry for ffpas" (Figure I.3) in the 
dictionary, let us add the entries in Figure I.5. 

r-
I. hw deng 
I 
I df 
I 
I .hw jakon 
I 
I df 
L-----

•tight 

to •fit poorly 

Yigure I:.5 

I 
1 
) 
I 
I 
I 
I _____ .. 

The f inderlist entries generated £rom the augmented set of 
dictionary entries would appeac as in Figure I.6 below: 

Second Edition, partial draft. Formatted February 2, 1990 



, ___ ........... -·-·-... ~ ........... ····---------·--·--····--········ .•.... ··-·· ... ~··---·-·---- .. -·· .. ·- ... ··-·····-·· ..... ·····-·-· ................. , -······ 

APPENDIX I. USING INV~RT FOR HAKING FINDERLISTS 145 

.-------- -, 
I fit I 
I I 
I to fit poorly:: jakon. I 
I I 
I to fit tight:: pas. I 
I f 
I tight:: denq I 
I I 
I to fit tight:: pas. I 
t._ .I 

Figure I.6 

Note that the phrases under each keyword in the finderlist are 
arranged alphabetically ("to fit poorly" coming before "to fit 
tight"). 

If you want to have two or more separate phrases in the 
definition, that is, you want to prevent the entire definition from 
being extracted as a single phrase by the program, separate the 
phrases with semicolons. Let us suppose we have the dictionary 
entry in Figure I.7. 

.------
1. h w pas 
I 

·-----, 
I 

I df, to *fit *tight; to *cling 
I 
I 
I I 

L__ 
·~-----~---·~~-~--~-----------.I 

Figure I.7 

The finder list p.rogram would generate the entries in Figure r. d below. 

r 
I cling 
J 
I 
I 
I fit 
I 
I 
I 
I tight 
I 
I 
&. 

to clin9:: pas. 

to fit tight:: pas. 

I 
I 
t 
I 
I 
I 

' I 
I 
I 

to fit tight:: pas. I 
.~~~--~----~---~~~~~~i 

Figure 1.a 

The program would not generate the entries in Fi9oce I.9 below. 

Second Edition. partial draft. Formatted February 2, 1990 



· ... _. 

... 
I cling 
I 
I 
I 
I fit 
I 
f 
I 
I tight 
I 
I 

APPENDIX r. usrNG INVERT FOR MAKING FINDERLISTS 

to fit tight; to cling:: pas. 

to fit tight; to cling:: pas. 

to fit tight; to cling:: pas. 

' ' I 
I 
I 
1 
I 
I 
1 
I 
I 
I 

'-~~~~~--~~~-

Figure I .. 9 

The re need not be a semicolon at the end of the band. The end of 
the hand is auto~atical1y taken as the end of a phrase. 

146 

The semicolon (as well as the end of the band) is the normal 
signa1 for terminating phrases . If yon want the control module to 
recognize some other character(s) as phrase terminator(s), you may 
tell it by inse~ting in the SPECS file a specification sta tement of 
the form: 

"ENDEF = •):;• 
This example spgcification statement tells the ~roqram to recoguize 
right parenthesis and colon, as well as semicolon, as phrase 
terminators~ Note that only single characters (such as these three 
characters), and not combinations of two or more characte rs, can be 
specified as phrase terminators. 

We have been t alking about "keywords as simply "words" that are 
preceded by asterisks. We now have to be more precise about how the 
end of a ke yword ~s recognized by the program. As far as the 
program is concerned, a keyword is terminated on the right by the 
end of the phrase or by one of the following characters, whichever 
comes first: 

blank, right parenthesis, colon, question mark, 
excla~ation mark, comma, and right angle bracket. 

Note that the period is not in this set. To illustrate the effect 
of keyword-terminating characters, ass ume we have the fol1owing 
definitions: 

kind of *fish: •ray-fish <•manta); 

*when?, •where? 

From these, the pro9ram would extract the following keywords: 

Second Edition, partial draft. formatted February 2, 1990 



'--

APP'ENDIX I. USING INVERT FOR MllKING F'INDERLISTS 147 

fish 

manta 

ra,Y-f ish 

when 

where 

Note that the question marks are no·t considered part of the keywords 
"when" and "where ". 

These keyword-terminating characters, in addition to the end of 
the phrase, seem to be what WOQld normally terminate a "word" in the 
usual sense of the word. You may, however, tel1 tne program to 
recognize a different set of characters as keyword terminators by 
putting in the SPECS file a specification statement of the following 
form: 

XENXEY = •, ?!' 

In addition to these keyword terminators (whether specified by 
the program or by the user), another set of characters, normally 
consisting only of the vertical bar, I, is avai1able for forcing the 
termination of a keyword before the normal end of the word. If, foc­
instance, the word "gratefully" appears in a definition but you wish 
only "grateful" to be extracted as the keyword, you would enter the 
word as 

•gratefullly 

into the definition. Then the pr:oqram would extract only "grateful" 
as the keyword, and extract agratefully", including the longer 
phrase, if any, in which it is embedded, as the phrase. A character 
Mhich forces the termination of keywords is especially useful £or 
excluding suffixes. 

If you wish the program to recognize some other set of characters 
for forcing the termination of keywords, you may specify them in a 
specification statement of the following form: 

FORCENKEY = ·~J• 

~t this point it is convenient to introduce some of the overall 
motivation .for these finderlist extraction conventions. These 
conventions have been developed over several years by lexicographers 
and programmers as a compromise between sometimes conflicting 
requirements. On the one hand, it would be desirable to be able to 
generate a finderlist mechanically from definitions in a dictionary 
without any special editorial intervention. On the other hand, 

Second Edition, partial dcaft. Formatted February 2, 1990 



'·-

' ···· 

APPENDI X I. USING INVERT FOR MAKING FINDERLISTS 148 

since the choice of material from the definit.ions for compiling the 
finderlist cannot be left entirely up to the computer program, some 
editorial work on the part of the lexicographers has inevitably had 
to be allowed, subject however to the following limitations: 1) 
The amount of additional material (special marks, etc.) to be 
introduced into the definition beyond what woold normally have been 
present should be kept to a minimum, and readability of the copy 
should be minimally degraded by the added material. 2) No 
extensive re-wording of the definition should be r e quired. 3) The 
•doctored• text (with the additional special marks, etc.) should be 
readily restorable to its "normal" form by a prepublication editing 
program. 4) Finally, it should not be too expensive for the 
finderlist generating program to process these conventions. (In 
practice this last has been the l e ast heeded requirement.) 

Thus, for instance, we ha~e taken as much advantage as possible 
of the natural punctuation in def initions in delimiting keywords and 
phrases. In so~e cases the natural punctuation is not suff icent, 
such as when the user wishes to terminate a keyword before the 
normal end of a word. In this particular case, the choice of "I" a s 
the special symbol to force termination of a keyword is motivated 
both by the unobtrusive and mnemonic shape of the character and by 
the fact that it need not be "laundered out" at all by the 
prepublication e diting program, since it is the symbol for shifting 
into roman face, the normal face for definitions. The symbol itself 
will be suppressed by the photocomposition process. 

Therefore, it is desirable to keep in mind that the way text 
appears in t he working printout is not the vay it ~ill look in a 
publication' version and to keep in mind exactly vhat the differences 
are. So far, in addition to tbe disappearance of the "I•, t he ~ain 
difference is that the asterisks will be suppressed in the 
publication vers ion. We will have occasion to mention other 
differences as f urther conventions are introduced. 

You may use other symbols to mark keywords if you need the 
aster:isJc for anothe.r purpose in definitions bands. You must tell 
the control module what symbol yon are nsinq by inc lndinq Cin the 
SPECS file) a statement such as one of the following: 

KEYMARK = •%• 

KEY.HARK = '* 

~he latter statement tells the program that keywords are marked by 
••• or •. One use of having two different keyword markers is to 
mark different kinds of keywords, say one kind for an abridged 
finderlist, the other set consisting of the additional words that 
should appear in a full f inderlist. To run the abridged finderlist 
one would specify only the first keyword mar~er; to run the full 
finderlist one would specify both markers. 

Second Edition, partial draft. Formatted February 2, 1990 



APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 149 

To simplify the prose in the following discussion, however, 
we will continue to assume that the following statement is true: 

You may vish the p£ogram to extract certain sequences of two 
or more words as single keywords, as "sea urchinM in the definition 

a \ind of large sea urchin 

If you use the symbol -. (hook) (which appears as a tilde on some 
keyboards) instead o.f the space between the two words, e.g. 

a kind of large *sea-archin 

the tvo words vill be extracted as a single keyword as in Figure 
r.10 below. 

r 
"" lsea urchin 

I 
I 
I 

I a kind of large sea urchin:: ••• 1 
L ·~~~~~~~~~--~~--~~~~~~~~---~ 

Figure I.10 

The program replaces the hooks by blanks in the finderlist. They 
remain 11nto,uched in the dictionary itself but they can also be 
replaced there by blanks before publication. 

If you wish to use a different character to "hook" words 
together, override the HOOK parameter, e.g. 

HOOK = •.::• 
Do not override it with the noll string, that is, do not specify 

BOOK = 

If you want the program to generate separate keyword entries 
for two words that are spelled identically, e.9., •bow« (part of 
boat) and "bow" (the vecb), you may attach different subscripts to 
the keywords in the definitions, using $ signs, in the same vay that 
neadwords in the dictionary are disambiquated. You should, of 
course, not leaye a space between the word and the subscript -­
either place the $ riqht after the end of the word or use a .... 
(hook): how$2 or bo~~$2. For example, note the entries in Fiqure 
1.11. 

Second 'Edition, partial draft. Formatted Febr:uary 2, 1990 



............ 

-· 

'--· 

r--
1.hw 
I 
I 
I 
I .hv 
I 
t 

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 150 

jimw 

df part of *bow of canoe 

ruk 

df to •bow 

, 
I 
I 

' I 
I 
I 
I 

L--------- ·~~--~-~--~~---' 
Figure I.11 

The entries in Figure I.11 would produce a single keyword in the 
finderlist as shown in Figure 1.12 below. 

r---------
lbow 
I 
I 
I 
f .___ 

I 

part of bow of canoe:: jimw 
I 
I 
t 

to bow:: I rpk I 
--~---~·---~J 

Figure I.12 

The situation can be very disconcerting when there are many 
headwords, answering to the different senses of the one homoqraphous 
keyword, interleavea with each other (since the phrases are arranged 
by alphabetical order under a keyword) under the one keyword. 
Subscripts on keywords can be used to correct the situation, as in 
figure I .13 , below. 

r- ~ 

I. nv jimw J 
I I 
I df part of *bov~$1 of canoe I 
I I 
1. hw ruk I 
I I 
I df to *bow->$2 1 

Figure I.13 

These entries would produce two separate keywords in the 
finderlist as in Figure I.14 below. 

r·---
lbow 
J 
I 
I 
I bow 
1 
I 
~ 

part of bow of canoe: : jimw 

to bow:: ruk. 

-, 
I 
I 
I 
I 
I 
I 
I 

~~~--~~~--~~J 

FiiJure I.14

Second Edition, partial draft . Formatted February 2, 1990

I __ ,._, __ ,.. ... _.....,.,_.. ..• ,... ··-··---·-----·----,.------·-......... -....-------·· ·~-- ·--.. ---·••••---·-·-··--.--------.-----...... ~ ... --.-· ··••-· -------··-

lPPRNDIX I. USING INVERT FOR MAKING FINDERLISTS 151

Note that since the subscripts do not appear in the finder.list,
one member of a set of homographs need not be labeled with a
subscript in the dictionary, if the others are. For instance, the
~$2 may equally well have been left out in the above example. The
program would still have been able to keep the two "bow"'s separate.

These subscripts can, again, be automatically laundered out of
the dictionary before publication.

If you wish a keyword to begin within a typographical word,
you may put the asterisk at the desired starting place within the
word. For i.nstance, if you wish the keyword nqrateful" to be
extracted from the word "ungrateful", you wo11l.d place the asterisk
within the word:

un*grateful

If this were the entire definition, the program would generate a
finderlist entry like this:

' l9ratefal
I
I un9rateful::
L.-------

.Figure I.15

This, incidenta1ly, illustrates the fact that 'fhen an asterisk is
laundered out (either in the finderlist or in the dictionary) it is
actually deleted, not replaced by a blank -- otherwise the vord in
Figure I.15 NOuld become "un grateful". The other side of this
convention is that you should be careful to leave a space before an
asterisk when it is preceded by a separate word. You should, for
instance, write the following in a definition:

to *hit

and not this:

to•hit

A word may have more than one asterisk if you want more than one
keyword to be extracted it. Por instance, from the following WOLd:

•un*9rateful

the program would generate keyword entries for both "ungrateful" and
0 grateful".

Second Edition, partial draft. Formatted Yebcuary 2, 1990

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 152

Finally, the forced keyword termination character(s) (see
paragraph d) may, of course, be used with internally starred words,
to delimit a keyword that is entirely internal to a typographical
word as in the following example:

un•gratefullly

However, if there is more than one as1:eris.k in a word, the I serves
to terminate only the first keyword. It is "used up" by the first
asterisk so that the keyword si9nalled by the second asterisk. will
not terminate at the I. Thus •an*gratefullly causes the keywords
.. ungratefu.l" and Rgra tefully" to he generated. If the second
keyword is to be terminated in the same place, then two termination
characters must be put there. Thus, the definition below would
cause "ungrateful• and "grateful- to be 9enerated.

•un*gratefulllly

l· ".I113l.isihle"-keltliQ~ds

If, with all ·these devices, it is still not possible to
isolate the desired keyword in a given phrase because the required
sequence of 1etters does not appear in the phrase, you may place the
desired keyword within angle brac~ets anywhere within the phrase:

<•tooth> baby teeth

The definition above would cause the phrase "baby teeth•• to appear
under the ~eyword "tooth":

r
I tooth
I
I
L

baby teeth::

Figure I.16

Note that angle brackets may contain only keywords, not phrases.
There may be any nomber of starred keywords within the brackets, and
key~ord-termination within the brackets follows the same conventions
as for keywords outside b.ra.ckets. The difference is that angle
brackets with their contents are normally laundered out of the
phrase in the finderlist. Hence anything more than keywords in
brackets would serve no purpose. Brackets can, of course, also be
laundered out of the definition in the dictionary itself before
publication.

We have noted that many of the special symbols that you
introduce into the definitions to cause the desired keyvords and
phrases to be extracted are automatically "laundered out" (deleted
or .rep.laced by blanks) in the finderlist by the program. For some

Second Edition, partial draft. Formatted .February 2, 1990

'--·

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 153

purposes, you may wish to see the symbols retained in the
finderli s t. Following are two specification · statements that you can
place in the SPECS file to instruct the control module to preserve
certain symbols: To keep all the asterisks, specify:

KE:EPSTAR = 1

To ke ep all the angle brackets, specify:

KEEPANGLE = 1

In the finderlist, a capitalized keyword is treated as distinct
from, and is alphabetized after, the corresponding uncapitalized
key~ord. Thus, from the two definitions belov, the program would
produc e separate keyword entries, as shoMn in Figure I.17:

' I star
I
J Star
I
L

•star chart

the North *Stac

star chart:: ...
the North Star:: ...

.J

Figure I.17

There are pairs of words, such as "China• ana "china", for which
such a s e paration may be desirable, but for pairs such as •star" and
"star", where listing under the single ke yword "star" might be
desired , one would have to resort to the angle bracket convention in
the d e finition:

<•star> the North Star

Phras es, under the same keyword, tbat di f fer only by an initial
capital vs . lower-case letter will also be treated separately in the
finderlist entry. Thus, it is recommended that you not begin
definition bands automatically with a capital letter, otherwise two
occurrenc es of the same phrase that happen to differ only in that
one o ccurs at the beginning of the band and the other medially would
be treate d as different phrases in the finde rlist, e.g •

.... ...,
I fi s h I
I I
I kind of fish:: I
I I
I Kind of fish:: I
'-J

Second Edition, partial draft. Formatte d February 2, 1990

1.--.............. ··--· ... ---------· . -··· --···-· --···-- ··--------- - ·--- .. ·-- .. -- . --··-·-- --···. ·- ·-. ·--·-. ··- ·-· ··-- .. ·- .. .

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS

If. for publication purposes the definitions in the dictionary
should be capitalized, then the capitalization can easily be
performed by a preprocessing program in preparing a publication
version. Of course, normally capitalized words should be entered
capitalized regardless of posit.ion in the band.

154

The INVEeT control module, unless instructed otherwise by a
specification statement, recognizes the semicolon as the end of a
phrase to be extracted. As a general rule, the use of this symbol
to terminate phrases to be extracted seems to cause the least
dislocation to the normal punctuation of the definition. We
spec~fically ha¥e avoided using the period as a phrase delimiter
becau.se it is so often used in abbreviations. The user may, as
described in paragraph c, specify other characters as phrase
terminators.

In individual definitions, the user may force the termination of
a phrase, for extraction purposes, at a particular punctuation mark
by placing a phrase terminator (the semicolon, unless otherwise
specified) either before or after that mart. Dictionary definitions
containing such a phrase might look like these:

*how many?; how much?

to *h1t;, to *heat

The phrases, extracted from the definitions above would be

how many?

to hit

to beat

Note that the question mark is part of the first phrase. The comma
is not part of the second phrase. Even thou~h the comma should be
part of the third phrase, becanse it comes after the semicolon that
terminates the previous phrase it has been laundered out by the
program. A. particular set of characters, when occurring at the
beg~nning of a phrase, as this comma does. are automatically deleted
by the finderlist program. The set is given below:

,.;:?!

Yo11 may res·pecify this set with a specification statement in the
SPECS file as shown below:

OPTP = • ?t• ...
In preparing the dictionary for publication, compound punctuation

such as ?; and ;, ca.n be reduced t.o their normal form by a

Second Edition, partial draft. Formatted February 2, 1990

-----··-·········-- ··---- ------·- ------------·------

'--··

'--·

'-·

APPENDIX I. USING INVERT FOR HAKING FINDERLISTS

prepLocessing progra m. The two dictionary definitions in the
example above vould look like this after sllch processing:

hov ma ny? how much?

to hit, to beat

155

When you mark an italicized wo rd as a keyword yon have the
choice of placing the asterisk before or after the italic shift
characte r, 3. If you place it before, as in •%land ho! the keyword
extracted will include the font shift. If placed after , as in
3*land ho!, the key~ord will not carry the italic shift character in
the finderlist, even though the phrase will, as in the example
below:

r
I land
I
I
'---

·~-~---------------~----~

%land ho!::

I
t
t

-~---~--~--·~----~
Figure I.18

This feature has not been illlplemented in the curre nt version
of I .NVERT.

This fea ture, called PBRASEDIT, if activated by the user through
a specification statement, would delete in each phrase in the
finderlist a phrase-initial keyword that is immediately followed by
a colon and space. This would be useful if the dictionary contains
many definitions in the style shown in the follo~ing e xamples:

*fish-species: • sergeant-ma jor

*fis h-species: large *skip)ack

•fish-species: *yellow-spotted-*trigger-fish

With the PRRASEDIT feature inact ive, the program would generate f rom
the a bove definitions the following finderli s t entries under fi sh
"spec i es":

Second Edition, partial draft. Formatted February 2, 1990

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 156

r~-~--~--~-~--~~~-

) fish species
a
I fish species: large skipjack::
I
I fish species: sergeant major::
I
t fish species: yellow-spotted trigger fish:: ••• 1

Figure I.19

Such redundancy would be suppressed by activating the PBRASEDIT
feature, resulting in the followin~ entry:

r
)fish species
I
I large skipjack::
I
I sergeant major::
I
I yellow-spotted trigger fish::
'-----

Fiqllre 1.20

--------,

' I
I
I
I
I
I

The specification statement to activate the feature is as follows:

PBR.ASEDIT = 1

This feature is not available in the current version of INVERT and
of INVERT'2.

The finderlist is itself in band-format. It is a dict~onary
with two bands, KW (for keyword) and PB (for phrase). Since it is
in band-format, it can be p.rinted out in 1-format by the LISTGEN
control module. A typical entry in 1-format, complete with band
labels, might look like this:

r
I 51 .kw afraid:: loamv, majpwehk., mijik
f
I 52 ph afraid
I

(of physical harm):: ka)anja.n.

I 53 ph afraid of ghosts:: lehngin.
I
I 54 ph afraid, worried:: per.

--,
I
I
I
I
I
I
I

·--------.J
.Figure I.21

Second Edition, partial d.raft. Formatted February 2, 1990

'--·

-···-"' ·-··----------

APPENDIX I. USING INVERT FOR HAKING FINDERLISTS 157

Each e ntry has a KW band, and zero or more PH bands , depending on
how many different phrases conta in the given keyword. There are no
modes o r subentries. In all the previous examples in this Appendix,
the band labels have been suppressed; this is one of the options
available Nith 1-format printouts, and it is the normal one take n
with 1-format otitput from INVERT, since v ith only two different
bands, one always indented and the other always at the left margin,
showing their names would be superfluous.

In general, the f ull range of format opt ions availabl e to 1-
forma t listings are available for finderlists. However, since there
are no modes or subentries, the options boil down to those in the
followin g list. (Of course, i f you are not generating a listing but
only a p-format file, not even these are r elevant.) The default
value is shown with each parameter. Since these specification
statements pertain to Phase 2 of the INVERT control module, they
must be placed in ·the phase-2 SPECS file, not in the phase-1 SPECS
file.

LMAHGIN = 0 width, in number of spaces , of left margin

NONUH = adds a serial number field. Note that each
band normally is numbered , as in Figure r.21.
To suppress this fie ld, set the parameter
t o 1: NONU~ = 1 •

PRINtBANDLABELS = The old name for this parameter was
KEEPBANDLABEL, which still works, but will be
s uperseded by PRINTBANDLABELS. The value is
normally nqll, causing bandlabels in the
finderli s t not to be printed. Set i t to a
non-null value , e.9., PRINTB~NDL~BELS = 1
to cause the bandlabels to appear.

RMA BGIN = 132 the right margin

LINESPERPAGE = 60 the maximum number of lines

HElDHANG = 10

(i ncluding blank lines) per page.
For 11-inch deep paper printed at 8 lines
per inch, use LINESPEBPAGE = 80 •

the number of spaces the keyword band
overhangs the following bands in an e ntry.

Finally, you may provide a title to be printed at the top of each
page of the finderlist if yo u are r equesting a listing . This is
provided in a statement:

TITLE = 'SAMPLE FINDRRLIST'

The Trussel Feature causes the position of the phrase and
head word to be inte rchanged, i. e. , the headword now appears to the
left of the phrase, and phrases a re in order by headword. This
feature is activated by the specificatio n s t a tement:

Second Edition, partial draft. Formatted February 2, 1990

,_,, --....... ,. ____ _ -. .. - .. ~-···-··-·----· .. ·---· ... ~ ... --.--···-·······•..........------···- ... -···--·-·· .. ·-· ... ---·---"··--···. ···--·-----------

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 158

TRUSSEL .: 1

which must appear in both the phase-1 SPECS file and the phase-2
SPECS file. Wi~h this feature turned on, the example in Fig. I.6
would appear as in Fig. r.22:

~

I fit
I
I jakon:: to fit poorly
I
I pas:: to fit tight
I
ltight:: deng
I
I pas:: to fit tight

------1
I
I
1
I
I
I
I
I
I

Figure r.22

Keywords are normally alphabetized with the usual English
alphabetization conventions, which ignore the distinction between
upper and lower case, and ignore spaces, hyphens, and other non-
a lphabetie symbols. The p.rogra.m does this by asin'1 a .. handle ..
function, ca1led •HANDLEB' built i.nto the TOAST system, which
generates from each word a new form called a "handle" by converting
all lower case letters to caps and dropping all non-alphabetic
symbols. If a different handle is desired, a different function
must be written and placed in the phase-1 US.ERFNS file for the job
(see, e.g., recipe in Section 4.3, Fig. 4.3.6.) The user may define
this function as 'HANDLEa•. Alternatively, a different name may be
used, say 'ENGBAND', but then a statement alerting the program to
the different name mllst be placed in the phase-1 SPECS file, of the
form,

HANDLEBNAME = 'ENGHAND'

For al.phabetizing the source language forms in f inderlist
entries, e.g. the three forms loamw, majpwehk, mijik in Fig. 1.21, a
dif fe.rent built-in handle function is normally nsed, called
'HANDLE'. This function does the same things as the built-in
HANDLEB function. The user may, again, supply, in the phase-1
USERFNS file, a handle function more appropriate for the language,
and call it either 'HANDLE' or something else, e.9., 'MOKHANDLE•.
If the name is not 'HANDLE', then a statement must be placed in the
phase-1 SPECS file to alert the program to the unexpected naine, e.g.

HANDLEN~ME = 'MOKHANDLE'

Second Edition, partial draft. Formatted February 2, 1990

APPENDIX I. USING INVERT FOR MAKING FINDERLISTS 159

When keywords appear in the definitions of subentries, INVERT
brings the headword of the subentry into the finderlist, not the
headword of the dominating main entry. That is, the finderlist does
not show the reader where, i.e., under what main headword, to locate
the s ubentry. INVERT2, an expanded version of INVERT, does bring
along both the main headword and the subheadword. Furthermore,
stars may be placed in "translation" bands for illustration bands.
Details follow.

1. If a definition is in a subentry, not only the headword of the
subentry is copied into the finderlist entry, but also the main
headword. If the definition is in a sub-sub or loMec entry, then
the correspondinq snb-sub (etc.) headword is copied, but not the
intermediate level headwords.

2. Bands containing examples or illustrative expressions can be
treated as sub-headwords for purposes of generating a finderlist if
each s uch hand is paired with a translation band with the same mode:

.hw headword, main or sub-.
df def ini ti on o·f head word

1ex example
1so possib1e intervening band(s)
1tr translation of *exampie

In the above example, the tr band can be treated as the definition
band corresponding to the "subheadwordn in the ex band. Note that
these two bands have to be in the same mode, that the ex band has to
precede the tr band, and that there may be intervening bands (which
must be in the same mode). The example bands must be specified in a
phase-1 SPECS statement assigning a list of their names to XBANDS ,
and the translation bands mast be specified with a statement
assigning their names to TBANDS, e.g.

XBANDS = •EX,EXP•
TBANDS = •TR'

In the dictionary file it is better to use different band names for
a band giving a definition for the headword and a band giving the
transla tion for an exa~ple or expression, althonqh the program will
assume, if they have the same name, that such a band having the same
mode as an XB!ND is a translation band rathec than a definition
band.

If the band name of the subheadvord band or of the example
band i s to be brought along into the finderlist entry, then put

INCLBANDNAMR = 1

in the phase-1 SPECS file.

Second .Edition, partial dcaf t. Formatted February 2, 19 90

'-··

COMPUTER-AIDED COMPILATION OF NATURAL-LANGUAGE DICTIONARIES
AT THE UNIVERSITY OF HAWAII:

1. Introduction

A SKETCH
May, 1983

This is a minor update of a memo of the same title that first
appeared in Jannary. 1975. It is included here in order to give a
little background on the environment in which the programs were
developed.

2. The Dictionaries

Since 1965, dictionaries for some 40 languages of the Pacific
basin have been computer-processed here, and one or two nev ones are
begun each year. At this writing about twenty have been published or
are in press and several are nearing completion. A number of
lexicons that are no more than computerized wordlists are not
included in this count. A list of the dictionaries appears at the
end of this appendix. The first d i ctionary to have been processed
by computer here was the Maranao Dictionary .by Howard McKaughan.

About half of the languages concerned are languages of
Mici:onesia. The rest are languages of the Philip·pines and of other
areas in the Western Pacific basin, with the exception of several
Amerindian languages of the Pacific Horthwest.

The dictionaries are bilingual, with English being the language
used in the body of the entries. Each of the dictionaries is the
first extensive one compiled so far for the particular language.
Each language has had little or no previous written materials. The
dictionaries ace usually intended for a heterogeneous audience
consisting of vernacular speakers learning English as a second
language, English- speakers learning the vernacular language, and
other linguists.

Those that have been completed or are nearing completion
typically contain five or six thousand entries, with some having as
many as ten to tvelve thousand. Each entry typically includes,
besides English d e finitions, such information as the part-of-speech
and other grammatical information, derivational privileges, loan
source where appropriate, dialect and other variant forms,
scientific identification of flora and fauna, and example sentences
with translations. Some of the dictionaries further include synonyms
and antonyms, morphological analysis of the words where appropriate,
idioms, derived and inflected forms where these ace not readily
predictable. reconstructions in proto-languages, phonemic
transcription if the headword is given in some non-phonemic
orthography, etc.

Second Edition, partial draft. Foimatted February 2, 1990

APPENDIX III. COMPUTERIZED LEXICOGRAPHY AT ua 161

Typically each dictionary has been developed by one linguist, who
often has also produced (or .is concurrently producing) a grammar of
the language in collaboration with one or more vernacular speakers.
In the case of the Micrones.ia.n langQages, work on standardization of
the orthographies has also been concurrently undertaken. Data for
each dictionary has been gathered both in the field and from
informants brought to Hawaii. In several cases the linguists
themselves have been based at other universities, at least for part
of the duration of their projects. so far all. the data entry and
computer processing has been done here. The bulk of project and
computer funding has come from extramural grants fro111 various
agencies. We have also received a substantial amount of in-house
support, especially for computer time fo.r systems development and
for dictionary pro~ects not yet externally funded.

Some of the authors had been compiling their dictionaries for
years (in some cases up to twenty years) before turning to the
computer for further expansion and refinement. Others started to
use the computer from the beginning of compilation.

3. Practical Operation

After an initial batch of ent.ries (which may be anything from a
bare wordlist with minima1 definitions to several shoeboxfnls of
slips gathered over many years) has been keypunched or entered into
the computer and printed out, the typical sequence of events in
further processing has been as follows. The linguist woold work over
his printout with an informant, checking and expanding the
information in entries and adding new entries. He would write
corrections and additions directly on the printout, which would
later be used to revise the computer file. (In the early days, the
linguist revised through keypunched edit instructions.) A new
printout of the revised file would then be produced. This is the
basic cycle, to which other operations, such as producing other
printouts and running programmed revisions to the file, are
frequently adjoined. Some o.f these other types of operations ace
described below. During each cycle the linguist may choose to
concentrate on a limited number of tasks, such as refining the
definitions, elicitinq derived forms, adding example sentences,
checking the transcriptions, etc. A cycle "ould last anywhere from
a few weeks to a yea.r or more. Typically a dictionary ready for
publication vou1d have been throa9h more than ten of these cycles,
with the last four or five devoted primarily to matters of accuracy
and consistency rather than to the addition of new material.

4. Advantages of computer Processing

The demands put on the computer by the 1exicographers here have
been consistently of the data-processing and data-organization
variety. The functions made possible by computerization that are
most frequently in demand are: 1) editing of the dictionary file and
soL"ting in of new entries, 2) generating finderlists, and 3)
printing of duplicate copies for sending to workers in the field.

Second Edition, partial d~aft. Formatted February 2, 1990

~PPENDIX III. COMPUTERI~ED LEXICOGRAPHY AT UH 162

Some of the other functions ve frequently perform are the following:
4) retrieval of specified subsets of entries (e.g., botanical
terms), 5) producing phoneme concordances of headwords, 6)
generating derived forms and cross-reference entries , 7) checking
foe consistency, 8) sorting by different alphabetization schemes, 9)
systematic conversion of orthography throughout a dictionary, and
10> automatic insertion of typesetting control symbols for
computerized photocomposition. Most of the dictionaries published or
about to be published have been or will be typeset by computer­
controled photocomposing systems.

In the case of the Northwest Amerindian langnaqes, we have made a
continuous effort to find devices that would display data usin9 the
phonetic symbols to which linguists working with those languages are
accustomed. When the time-sharing system first became available we
were able to use a Selectric terminal (the IBK 2741) to enter, edit,
and type ont the dictionary materials. The terminal was equipped
with a Selectric type element that had been designed specially for
this family of languages. Due to the heavy reliance on phonetic
s ymbols and diacritics in the transcription of these languages, ~e
would not have undertaken computer processing of these dictionaries
if we had had only the limited fonts of keypunch and standard print
trains. Later we acquired some phonetic symbols for the print train
on the high-speed line printer at the computing center for large
volume print-outs. More recently we have acquired microcomputers
(made by Terak) which allow the user to desiqn characters for
display on the screen, and also a Sanders Media 12/7 dot matrix
printer equipped with special character fonts.

The aspect of computer processing of dictionaries in which there
has been most constant demand is the automatic generation of
f inderlists. A finderlist is an index of selected words occurring
in the definitions, each generally accompanied by some portion (a
phrase) of the definition. A large number of conventions have grown
up in connection with punctuation and other special marks to be used
in the definitions for specifying what vords and phrases are to be
copied into the finderlist. The purpose of this sytem is to enable a
usable finderlist to be automatically generated frOM material
already in the definitions, with a minimum of additio nal
intervention from the author. Apart from providing a further tool
for elicitation and ultimately a useful adjunct to the published
dictionary, a finderlist turns out to be valuable in bringing out
inconsistencies and errors o.f phrasing, spelling, and _punctuation,
etc., in the dictionary.

Another tool that we have found to be extremely osef ul foe a wide
variety of purposes (from checking for errors and inconsistency to
indexing on categories of information in the dictionary entries) is
simply a closely spaced alphabetical listing of the c ontents of
specified fields, accompanied by the relevant headwords.

Besides pro9cams we have, of course, had to deve lop suitable data
formats. In this area also, user demands have been the principal

Second Edition, partial draft. Formatted February 2, 1990

APPENDIX III. COMPUTERIZED LEXICOGRAPHY AT UH 163

guide. Our current data format reflects a rather general conception
of the structore of dictionary entries. It allows a lexicographer
to assi9n his own names to the fields in his entries, allows fields
of un.limited len9th, and allows repetition of fields and arbitr:ary
nesting of fields. A facility for subentries and sub-subentries to
any depth (for derived words, etc.) provides another dimension of
nesting. This format so far has been most welcome as a mold to help
the lexicographer organize his information. The printinq program
displays this organization clearly in the format of the printout.

5. Machinery

The hardvare that has been available to us has consisted (except
in the very early days) of machines of the IBM S/360 and 370 family.
A time-sharing system, TSO, has in addition been available on these
machines since about 1970. However, due to limitations of disk
space and other hardware parameters, we did not rely heavil.y on TSO
for on-line editing and other work until quite recently. While the
editing of dictiona~y files is now largely done on-line, the
dictionary programs themselves are still run in batch mode, which is
more economical. Currently some d~ctionary editing is done on
microcomputers. The files are then transmitted to the mainframe for
batch processing.

Programs were originally written in Fortran and later in PL/1.
When Spitbol, the fast-running implementation of SNOBOL4, became
avai1able on the 360, we gradually switched over to that languaqe.
Spitbol has allowed us to experiment with, and implement, features
easily (almost casually) that we would not have considered Nriting
in PL/l or ~ortran. All our current programs are written in Spitbol
and are linked together for convenient use by generous amounts of
JCL, profiting especially from certain JCL-oriented features of
Spitbol. In addition, the efficient Sort/Merge program available
under OS has been a mainstay of our operations.

!l recent grant from the National Science Foundation has permitted
us to consolidate and make more uniform the programs that have grown
up over the years. Better documentation is also being written. The
goal is to make the programs more easily used and expanded, and more
easily transportable to other installations.

Second .Edition, partial draft. Formatted February 2, 1990

, ___ _

APPENDIX III. COMPUTERIZED LEXICOGRAPHY AT UH 164

Be low is a list of the languages for which dictionaries have been
processed by these programs or their predecessors. The authors, and
publishers (for those dictionaries that have already been
published), are also given. "UPH" stands for University Press of
Hawaii.

Banoni (Piet Lincoln)
Bontoc (Lawrence Reid) Australian National University 1976
Chamorro (Donald Topping) UPH 1975
Colville (Tony nattina)
Itawis (Jim Tharp) HRAFlex 1976
Kagayen (Carol Harmon)
Kapingamarangi (Michael Lieber) UPH 197~
Kiribati AGilberteseB (Steve Trussel)
Klallam (Claudine Poqgi)
Kmer (.Philip Jenner)
Kusaiean (Kee-Dong Lee> UPH 1976
Maori (Bruce Biggs) (English-Maori:) Auckland University Press 1981
Mar anao (Howard HcKaaghan) UPH 1967
Marshal1ese (Byron Bender) UPR 1976
Mokilese (Shelly Harrison) UPB 1977
Mortloc kese (Martin Combs)
Nakana i (Ward Goodenough)
Nukuoro (Vern ca~roll) UPH 1973
Palauan (Lewis Josephs) UPH 1976
Pingilapese (Elaine Good)
Ponapean (~en Rehg) UPH 1979
Pulo Anniaa (Sachiko Oda)
Puluwat (Sam Elbert) Australian National University 1972
Rennellese (Sam Elbert) (English-Rennellese) National

Museum of Denmark 1981
Rhade (Jim Tharp) Australian National University 1980
Rotuman (Joel Fagan)
Saipan Carolinian (Rick Jackson)
Sora (David Stampe)
Sre (Niall Olsen)
Spokane (Barry Carlson)
Takuu (Irwin Boward)
Tahitian (Jack Ward)
Thompso n (Laurence Thompson)
Tillamook (Laurence and Terry Thompson)
Trukese (Ward Goodenough) American Philosophical Society 1980
Tuvaluan AEllice IslandsB (Nicholas Besnier, Steve Trussel)

Peace corp 1981
Woleaian (Ho-Min Sohn) UPR 1976
Yapese (John Jensen) UPH 1977

Second Edition, partial draft. Formatte d February 2, 1990

.'--

.__ ..

&CODE, 107
&DUMP, 106
&STLIMIT, 106

acknowledgements, 7
Al-Kasimi, Ali M., 12
~LLBANDS, 72, 118
alphabetical order, 12
alphabetization, 1, 67, 100,

162
angle brackets, 152-153
Apple, see Macintosh
asterisks, 21-22, 25, 68,

142, 153, 155

Bailey, Rich~rd w., 4
band, 31

format of, 39
headword, 32

BAND (variable), 57, 110,
114, 116, 119, 122

hand body, 17-18, 39, 57
band label, 39
band name, 17-18, 31, 39, q~,

57, 110, 119
band-by-band principle, 20,

22, 54
BANDAID (contcol module), 56
BANDAID(BANDLIST), 119, 123
BANDAID-~ype instructions,

56, 58
BANDCORD (control module), 65
BANDFILT (control module), 58
BANDINV (control modole), 58
BANDLIST (file), 69
BANDPACK <control module), 58
BANDPRIORITY, 58, 72
bands, 29

(variable), 118
continuation of, 33
definition of, 16
grouping of, 33-34
9roaps of, 19
headwocd, 32
in a bandsort, 26
order of, 33
re-ordering of, 69
repeated, 33
reserved, 31, "S
sequence of, 39
variety of, 18, 45

BANDS (variable), 57, 59, 66,
72, 75, 143

BANDSORT (control module),

INDEX

26, 66, 102
Bartholomew, Doris A., 12
batch mode, 2, 163
bibliography, ~

165

comp11ters in lexicography,
4

lexicography, 12
SNOBOL4 and SPITDOL, 10
style manuals, 98

bilingual dictionaries, 4
BIRDBATH, 28, 56, ea
BIRDBATH RUN LOG, 56
body, see band body
BODY (variable), 57, 111,

114, 116, 118, 122-123
8REAK(P,L), 113
BREAKPOWN, 113
built-in functions, 61, 69

cards, 93
carriage-control character,

106-107
character fonts, 162
CLEARKEEP(), 119
CLEARPlCKET(), 119
CNTL, see control {CNTL)

datasets
codebook, 20, 27, Sq
collating sequence, 67, 100
collision of variables, 122
collocations, 48
command language, 10, 29
compilation, 103
compilation listing, 61, 69
compo11nd, 41, 53
computerized grammar, q
concordance, 4
concordances, 162
contexts, 4
continuation

o.f band, 18, 33
control field breaks, 120,

124
control module, 28, 56, 65,

104, 122
special, 90

control moaules
choosing, 81
for BIRDBATH, 56
for TOAST, 65
special, 122

COUNT.FLDO, 115
CPAD(LINE,N), 115
cross-reference, 19, 42, 46

Second Edition, partial draft. Formatted February 2, 1990

· _

c1:oss-reference entry, 42-"3
cross-references, unresolved,

70

database pro9rams, 3
DEC-20, 134
definition band, 16, 142-143
derived word, 36, 41, 52
DESHIF'l'(X), 106
DE~PRASE(), 121
Dewar, Robert B. K., 10
dictionary entries, 1, 16,

32, 39, 160, 163
dictionary entry, 31, ~1
dictionary file, 3
dictionary projects, 7,

160-161
discourse, 48
disk datasets, 93
distribution tape, 130
DOS, 813
DOS operating system, 88
Duckert, Audrey, 5

editing, 4, 161, 163
editor, 3, 9, 16
EDLIST (control module), 59
EDLISTB {control module), 59
end matt,er, 53
END statement, 122
ENDEF, 72, 146
entry, 117, see dictionary

entl:'ies
EOP'FLAG, 111
errors, 11
EXEC parameters, see

parameters, on EXEC
statement

face shifts, 21, 155
file, see also masterfile

list, 45
FILE band, 45
FILLTABLE(arg,val), 109
filtering bands, sa
finderlist, 1, 22, 2Q, 69,

102, 161-162
flags, 118
fonts, see typeface,

character fonts
FORCENKEY, 73, 147
format

for dictionary entries,
163

INDEX

hanging paragraph, 33
1-fot:"mat, 35
LISTGEN, 35, 60
of bands, 31, 39
of finderlist, 68
of printout, 35, 163
p-.format., 35

'formating, 112
FULLSCAN, 106
funding, 7, 161

Gaskins, Robert, 10
Gellerstam, Martin, 4
Gimpel, James F., 11
Goetschalckx, J., 5
Gould, Laura, 10
Grimes, Joseph E., 12
Griswold, Madqe, 10
Griswold, Ralph E., 10-11

HANDLE, 67

166

h.andle function, 67, 100, 159
HANDLE(X), 73, 120, 158
RANDLEB(X), 73, 120, 158
HANDLEBNlME, 73, 158
HANDLEMAP(s,'name•), 109
HANDLENAME, 73, 158
handles, 67, 100, 108, 120
HANDSORT (control module),

61, 100
hanging paraqraph, 19, 33,

40, 110, 112-113
Hartmann, R.R.K., 12
R.EAD, 115
READHANG, 60, 73, 157
headword, 16, 31-32, 39, 41,

44, 46, 57, 67, 143
headword band, 32
historical/comparative, 48
llLEV, 57, 110, 11~, 116, 122
Rockey, Susan, 11
homonym, 42
HOOK, 73, 149
Householder, Fred w., 13
housekeeping, lf9
R'WYIELD, 66, 73
hyphen, 19

IBPI mainframes, 3
IBM 370, 163
ID, 111
id field, 110
idiom, ij1, 48, 53
IDLEN, 73

Second Edition, partial draft. Formatted February 2, 1990

, __

IF(STATE,VlLUE), 119
IPBANDS(BANDS), 118, 122
IFBREAK(H), 120, 124
IFENOBRIC(N), 121, 124
IFEND'ENT(), 122
IFENDFILE(), 111, 117, 122
IFENDKEEP(), 119
IFENDNEST(), 117
IFENTR'i(), 117
IFLITBANDS(BANDS), 118
IFHAIN(), 117, 122
IFMATCB(PAT), 118
IFNEWHODE(), 118
IFSUB(), 117
illustcation band, 51-52
i1lnstrations, 4B
illus trative expressions, 17,

159
INCLRANDNAME, 159
inconsistencies, 162
INDENT, 11.fJ
indentation, 60
index, 102, 162
info~mation retrieval system,

4
initializations, 61 1 69, 106
Input parameters in SPECS

file, 74
inpnt/output, 103, 107
installa.tion, 130
interactive facilities, 3
INVERT (control ~odule), 24,

66
INVERT2 (control module), 21f,

51, 68
italic shift, 155
italics, 21, 98

JCL, 10, 29, 163
Job Control Language, see JCL
JOB parameters, see also

parameters, on JOB card
Josselson, Harry H., 5

KEEP, 119
KEEPANGLE, 74, 153
KEEPBAND(), 119
KEEPBANDLABEL, 74, 157
KE'EPSEQ, 66, 714
.KEEPSTAR, 153
KEY.MARK, 7~, 148
keywords, 68, 102, 142-143,

155
homonymous, 149

INDEX

invisible, 152
multi-word, 149
truncated, 1Q7, 152
word-internal, 151

Kiefer, Perenc, 12
Kipfer, Barbara Ann, 5

1-format, 23, 35, 57, 60,
112, 114-115, 157

1-format parameters, 74
Landa u, Sidney I., 12
lexicography, 3, 12

computerized, 160
journals, 13

lex.icology, 4
Ll'!ELD, 74
line number

TSO, 75
LINESIZE, 7~, 113
l.IN.ESLEFT, 115
LINESPERPAGE, 60, 74, 115,

157
LIST ba.nd, 45
list fi.le, 45
LISTGEN, 119

167

LISTGEN (control module), 23,
2.a, 35, 60, e9

LISTGEN format, see 1-format
LISTGEH format parameters, 75
LISTGEN(P,IDFLD), 114
LISTORWRITECP,IDFLD), 115
LISTPACKET(), 119
LMARGIN, 60, 75, 114, 157
log file, 56, 65

Macintosh, 3
Mac·ro

Spi·tbol, 139
Macro SPITBOL, 103
margins, 60
masterfile, 2, 82
Maurer, w. o., 11
HcDavid, Raven Jr., 5
mechanical t.ranslation, ~
medium face, 21, 98
Hei•chuk, Igor, 13
MESSAGE file, 65
microcomputers, 162-163
Misra, B.G., 13
mode, 33-34, 39, 50, 57, 61,

110, 114, 116, 122
mode prefix, 3U, 39, SO, 57
monolingual dictio.naries, 4
11101:phology, 47

Second Edition, partial draft. formatt e d February 2, 1990 ·

1

, __
morphophonemics, 47
MS-DOS , 3
MSG(SRC,TEXT), 107

National Endowment for the
Humanities, 7

National Science foundation,
7' 163

Newsted , Peter R., 11
NHANDLES, 120, 123
NOBANDS, 75, 118
NONUH, 75, 107, 157
NOPAGE, 75
NOTBANDS, 66, 75, 118
NOWR.I'.l''E, 57, 75
null run, 106
NULLRUN (control module), 61,

69
NUMFIELD(), 106-107

OFFSET, 66, 75
Olney, John, 5
ONBANDS

(parameter>, 62
ONBANDS (control module), 61,

76
ONBANDS (parameter), 61, 76
ONB ANDSR (control module),

62, 76
ONBANDSi (control module), 62
O'NPAT, 61-62, 76
OPENTABLE('name',size), 108
OPTP, 76, 154
order of bands, 49
orientation, 1, 8
orthography, 12, 20, 47,

161-162
OS/360, 3

p-format, 35, 60, 67,
112-11 3 • 11 5

p-format parameters, 77
PACK(X) 1 119, 122
PACKET, 119
page-formatting parameters,

67, 74, 76
PAGECOUNT, 76
paragraph, see hanging

paragraph
parameters

fOC' LISTG!N, 60
SP'ECS, 29, 72

overt'iding, 110
STOPAFTER, 90

INDEX

PARAPAT, 76, 111
part of speech, 16
PATTERN, 59 , 76
PC, see personal computer
PDP11, 139
period, 154
personal computer, 3
PFORMAT, 60, 67, 76, 115
PG.COUNT, 111
PG. ID, 110
PG .RECCOUNT, 111
PG. T11!XT, 110
PHASE, 77, 121, 123

168

phases of TOAST run, 65, 72,
104, 107' 120-121, 123

phonetic symbols, 162
phonology, 47
phrase, 25, 144-145, 154
'PHRASEDIT, 155
predicatest 117
PRUIT(L), 106
PRINTBANDLABELS 1 68, 77, 157
PRINTL(•••), 114
PRINTP(•••), 114
PRINTPAGR(L), 107
program segaents, 103, 106
publishing, 3
punctuation marks, 95, 98,

154

QUICKSCAN, 106

R.'INP&T, 77
READ(), 107, 110, 120-122,

12ri
RElDPG(), 110
REBANDLE (control module), 69
.REC, 121
RECONTROI.(), 119
references, see bibliography
REJECT, 77
RE.READ() , 119
RESETPOINTER(), 119
r etri eval, 3-4, 162
Re vard, Carter, 5
REVI.E'W () , 119
RMlRGIN, 60, 77, 157
Robinson, Jay L., 4
Rol.ling, L., 5
roman face, 21
run log, 56., 65, 107

Sanders printer, 162
sand wich, 103

second Edition, partial dcart. Formatted February 2, 1990

Saporta, Sol, 1J
SAVEPOINTEH(), 119
Schoenhals, Louise c., 12
script, 140
segmentation of entry, 49
segments, see program

segments
semantics, ~8
semantics band, 1u2
semicolon, 154
SEPARATION, 66 1 77
SEQCHECK (control module), 63
sequential files, 3, 16, 20
SERFLD(), 115
SET(STATE,VALUE), 119
SETEXIT, 110
shell

script, 140
Singh, Ram Adhar, 13
SITBOL, 103, 134
SKIP, 114 1 123
SKIP(), 119
SKIPPG(N,PAT), 111
skipping paragraphs, 111
Sledd, James H., 13
SNOBOL4 programming, 29
SNOBOL4 programming language,

3, 10, 29, 103, 110, 163
SNUM, 77, 115
sociolinguistics, 48
sort

records, 120
sort control statement, 107
sort fields, 120
sort step, 104
SORTCNTL file, 107
SORTENT (control module>, 69
sorting, 1, 28, 65, 67, 100,

162
SORTSUB (control module), 70
SPECS, 29, 119
SPECS file, 90, 110
SPECS parameters, see

parameters, SPECS
choosing, 81

SPITBOL, 3. 10, 29, 103, 110,
16]

SPLIT (external program), 45
SPLITQ (external proqcam), 45
state, 119, 122
STATE(ST~TE), 119
STATETABLE, 119, 122
statistics, 4
STATS (control modu1e), 63

INDEX 169

STEPFIELDS(), 121
STEPREGISTERS(), 111
STOP(), 107, 122
STOPAFTER, 79, 90, 111
STOPPAT, 70, 90, 111
storage media, 93
sub-entry, 19, 36, 39, 43,

52, 61, 117, 163
internal, 51

sub-modes, 32, 52
SUBENTINDENT, 60, 78
SUBMODEINDENT, 61, 78
subscripts, 149
SUBSUB, 78
SUPBANDLlBEL, 59, 78, 114
SUPDUPTRACE, 78
SUPHEADING, 59, 79, 115
SUP.PIHSP, 79
synonyms, 17
syntax, 47

tape, 94, 130, see also SETUP
tasks, 8
TBlNDS, 69 1 79, 159

. Terak, 162
tecminal, 9, 23, 162
Tharp, Alan L., 11
time-sharing system, 163
timing, 11
TITLE, 60, 79, 115
TI.TLE band, 45
TOAST, 28, 65, 88
TOAST RUN LOG, 65
TOPS-20, 134
TRACEHANDLE, 67, 79
translation band, 51, 159
transliteration, 108
TRANSMAP(s,•name•), 109
TRUSSEL, 79, 158
TSO, 163
TSO line number, 106-107, 112
typeface, 96, 98
types of information, 160
typesetting, 4, 21, 162
typographica1 fonctions, 21,

96
typography, 49

University of Hawaii, 160
UNIX, 139
UNSET(STATE), 119
upper/lower case, 106, 118
ITPSRIFT(X), 106
Urdang, L., 5

Second Edition, partial d~aft. Formatted February 2, 1990

~ _ ; ... _."

...__ .

....._.

user functions, 122
US ERFNS, 29, 67

variant form, 42-43
VAX, 139
Venezky, Richard L., 5
versions of manual, 3, 8, 14

Wierzbicka, Anna, 13
Woelck, Wolfgang, 5
word processor, 9
WRITE(L), 106
WRITEBAMD(P), 113

INDEX 170

WRITEKEEP(), 119
WRITEP(P,WIDTH), 113
WRITESORT(REC,H1,H2, ••), 120,

123
WRITESORTCNTL(), 107

XBANDS, 69, ao, 159
XCRECK (control module), 70
XENKEY, ao, 147
XREF(), 70

Zgusta, Ladislav, 13
Ziff, Paul, 5

second Edition, partial draft. Formatted February 2, 1990

'---·

'END JOB 7130 ACCT 1992 T119920S 9.S4.54AM 02.f'EB90 PRT1 =A T=TM c 160 PG
END JOB 7130 ACCT 1992 T119920S 9. 54. S.4Al1 02P!B90 PR1'1 =A T=TN c 180 PG
ENO JOB 7130 ACCT 1992 T119920S 9.5Q.54lM 02fl!B90 PRT1 = .A T=TN c 180 PG
.END JOB 7130 ACCT 1992 T119920S 9.5~.54AM 02FEB90 PRT1 =A T=TN c 180 PG
.END JOB 7130 ACCT 1992 T119920S 9.54.54AH 02FEB90 PRT1 =A T=TN c 180 PG
END JOB 7130 ACCT 1992 T119920S 9.S!J.54Af1 02FBB90 PRT1 :A T=TN c 180 PG
ENT' JOB 71.30 ACCT 1992 T119920S 9.54.54AM 02FBB90 PRT 1 =A T=TN c 180 PG
EN JOB 7130 ACCT 1992 T119920S 9.5~.S!UM 02FEB90 PRT1 =A T=TN c 180 PG
ENb--· JOB 7130 ACCT 1992 T1199205 9.54. 54AM 02FEB90 PRT1 =A T=TN c 180 PG
END JOB 7130 ACCT 1992 T119920S 9.54.54AH 02.fEB90 PR'X 1 =A T=TN c 180 PG
END JOB 7130 ACCT 1992 T119920S 9.54 • . 54AM 02.FEB90 .PRT 1 =A T=TN c 190 PG
END JO.B 7130 ACCT 1992 T119920S 9. 54. 54 A.H 02FEB90 PRT1 = j\ T=TN c 180 PG

