ANNUAL REPORT
 OF THE

 BOARD OF REGENTS

 BOARD OF REGENTS
 OF THE

 SMITHSONIAN INSTITUTION,

 SMITHSONIAN INSTITUTION,
 SHOW ING

THE OPERA'TIONS, EXPENDITURES, AND CONDI'TION OF THE INS'IITUTION

TO JULY, 1890.

WASHINGTON: GOVERNMENTPRINTINGOFEICE.
1891.

Fifty-rimst Congress, Shcond Session.

Concurrent resolution adoptcd by the House of Representatives March 2, 1891, and by the Senate Maroh 3, 1891.

Resolved by the House of Representatives (the Senate concurring), That thero bo printed of tho Reports of the Smithsonian Institution and of the National Museum for the jear ending 30th June, 1890, in two octavo volumos, 19,000 extra copies; of whioh 3,000 copies shall be for the use of the Senate, 6,000 copies for the use of the House of Representatives, 7,000 copies for the nse of the Smithsonian Institution, and 3,000 , copies for the use of the National Museum.

LETTER

FROM THE

SECRETARY OF THE SMITHSONIAN INSTITUTION, accompanying

T'he annual report of the Board of Regents of the Institution to the end of June, 1890.

> Smithsonian Ins'lilution, Washington, I. O., July $1, \mathbf{1 8 9 0}$.

To the Congress of the United States:

In accordance with section 5593 of the Revised Statutes of the United States, I have the honor, in behalf of the Board of Regents, to subinit to Congress the amnual report of the operations, expenditures, and condition of the Smithsonian Institution for the year ending June 30, 1890.

I have the honor to be, very respectfully, your obedient servant, S. P. Langley, Secretary of Smithsonian Institution.
Hon. Levi P. Morton,
President of the Senate.
Hon. Thomas B. Reed,
S'peaker of the IIouse of. Representatives.

ANNUAL REPORT OF THE SMITHSONIAN INSTITUTION TO THE BND OF JUNE, 1890.

SUBJEOTS.

1. Proceedings of the Board of Regents for the session of January, 1890.
2. Report of the Executive Committee, exhibiting the financial affairs of the Institution, including a statement of the Smithson fund, and receipts and expenditures for the year 1889-' 90.
3. Anmual report of the Secretary, giving an account of the operations and condition of the Institution for the year 1889-90, with statis-• tics of exchanges, etc.
4. General appendix, comprising a selection of miscellaneous memoirs of interest to collaborators and correspondents of the Institution, teachers, and others engaged in the promotion of knowledge.

CONTENTS.

Page.
Resolution of Congress to print oxtra copies of the Report II
Letter from the Sceretary, submitting the Anmual Report of tho Rogents to Oongress III
General subjects of tho Annual Report IV
Contents of the Report V
List of illustrations VIII
Membors cx officio of the Establishment IX
Regents of tho Smithsonian Institution X
Journal of the Prodredings of the Boabd of Ileglents XI
Stated meoting, January 8, 1890 XI
Report of the Executive Commi tee for the yoar ellding Juno 30, 1890 XVII
Condition of the fund July 1,1890 XVII
Receipts for the year XVII
Expenditures for the year xvinf
Sales and repayments XViII
Appropriations for international exchanges XIX
Detalls of expenditures of same XIX
Appropriations for North American Ethnology. XX
Detalls of expenditures of same $\mathbf{x x}$
Appropriatione for the National Museum XXI
Details of expenditures of same XXII
Appropriation tor the National Zoilogleal Park xxxi
Details of expendituros of samo xxxi
General simmary xxxi
Income avallable for ensuing year. XXXII
Agts and resolutions of Congress rolative to the Smithsonian Institution,
National Museum, etc., for 1890 $\mathbf{X X X V}$
REPORT OF TILE SECRETARX.
Tife Smitirsonian Institution 1
Tho "Establishment" 1
The Board of Regents. 2
Finances 2
Buildiugs 4
Resoarch 10
Explorations $1: 3$
Publications 14
Exchanges 16
Library 19
${ }^{\mathbf{H}}$ apb.
Thr Smitisonian Institution-Continued.
Miscellaneous 20
Statue of Professor Baird 20
Grants in aid of the physical sclences 20
Assignment of rooms for seientific work 21
Toner lecture fund 21
American Historical Assoriation 21
Bureail of Fine Arts 22
Capron collection of Jupanese works of art 23
The World's Fair Exposition, Chiongo, 1892 23
Stereotype plates 24
Correspondence 24
Representative relations 25
United States Narional Museum 26
Increase of the Museum collections 26
Catalogne of Museum entries 28
Coopperation of Departments of Government 28
Distribution of duplicate specimens 29
Museun publications 29
Assistance to students 30
Special researches 30
Museum Library 31
Musenm labels 31
Meetings and lecturce. 31
Visitors 31
Extension of hours for visiting Museum 31
Museum personnel 32
Expiorations 32
The department of living animals 33
National Zodlogical Paisk 34
Bureau of Etifology 42
Nmobology 43
APPENDIORS 47
Appendix 1. Report of tho Director of the Burean of Ethnology. 47
II. Report of tho Curator of Exehanges 65
III. Report of the Acting Manager of the National Zoïlogical Park 64
IV. Report of tho Librarian 75
V. Report on Publications for the year 79
VI. Report on Professor Morley's Researches 83
VII. Report on International Congress of Oriontalists $8 \overline{0}$
GENERAL APPENDIX.
Advertisement 95
The Squaring of the Circle, by Herman Schabert 97
Progress of Astronomy for 1889 - 90 , by William C. Winlock 121
Mathematical Theories of the Earth, ley Robert S. Woodivard 183
Physical Structure of the Earth, by Henry Honnessy 201
Glacial Geology, by James Geikio 221
History of the Niagara River, by G. K. Gilbert 231
The Mediterranean, Pliysical and Historical, by Sir R. L. Piayfair 259
Stanley and the Map of Africa 277
Page,
Antarctic Exploration, by G. S. Griffths 293
History of Goodetic Operations in Rnssia, by B. Witskowski and J. Ho ward Aore. 305
Quartz Eibers, by O. V. Boys 315
Konig's Researches on Musical Harmony, by Sylvanus P. Thonipson 335
The Chemical Problems of To-day, by Victor Mejer 361
The Photographio Image, by Raphuel Meldola 377
A Tropical Botanical Garden, by M. Treub 389
Temperature and Life, by Henry de. Varigny 407
Morphology of the Blood Corpuscles, by Charles Sedgwick Miñot 429
Weismann's Theory of Heredity, by Georgo J. Romanes 433
The Ascent of Man, loy Frank Baker 447
Antiguity of Man, by John Evans 467
Primitive Home of the Aryans, by A. H. Sayee 475
The Pre-historio Races of Itaiy, by Isaac Taylor. 489
The Age of Bronze in Egypt, by Oscar Montelius 499
Progress of Anthropology in 1890, by Otis T. Mason 527
A Primitive Urn Burial, by J. F. Snyder 609
Manners and Customs of the Mohaves, by George A. Allen 615
Criminal Anthropology, by Thomas Wilson 617
Color Vision and Color Blindiness, by R. Brudenoll Carter 687
Techuology and Civillaation, by F. Reuleaux 705
The Ramsden Dividing Eugine, by J. E. Watkins 721
Memoir of Ellas Loomis, by H. A. Newton 742
Memoir of William Kitohen Parker. 771
Index to the volume 775

LIST OF MLIUSTRATIONS.

Map showing location of the Na - tional Zoilogical Park 64
Map of the Natioual Zoöloglcal Park
Plissical Strusture of the Earth: Fig. 1 212
History of the Niagara River:
Plate I

23:2
Plate II 238
Plate III 210
Plate IV 243
Plate V 245
Plate VI 948
Plate VII 251
Plato YIII 253
Stanley and the Maj of Africa:Map 1278
Map 2 279
Quartz Fibers:
Flgs, 1, 2, 3 316
Fig. 1 317
Fig. 5 318
Figs. 6, 7 319
Fig. 8 320
Fig. 9 321
Physical Basis of Musical Ifarmony:
Figs. 1, 2 348
Figs. 3, 4 349
Fig. 6 351
kig. 6 353

The Age of Brouze in Egypt:
Plate I
516
Plato II........................... 618
Plate III......................... . 520
Plate IV 522
Plate V 524
Plate VI 626
Progress of Anthropology in 1890 :
Plates I, II
63.

Figs. 1, 2 547
Figs. 3, 4 548
Figy. 5, 6,7 549
Fig. $8 . .$. 550
Plates III, IV 550
Primitive Urn Burial:
Plates I, II
610
Tochnology and Civilization:
Figs. 1, 2
711
The Ramsden Dividing Engine:
Fig. 1 724
Plato I............................ 732
Plate II.... 733
Plate III............................ 730
Fig. 7 354

'THE SMITHSONIAN INSTITUTION.

MEMBERS EX OFFIOIO OF THE "ESTABLISHMENT."

(Jannary, 1890.)

BENJAMIN HARRISON, Preeident of the Uuited States.
LEEVI P. MORT'ON, Vice-President of tho Uniteil States.
MELVILLE W, FULLEIR, Chief-Justice of the United States.
JAMES G. BL,AINE, Secretary of Stato.
WILLIAM WINDOM, Secretary of the Treasury.
REDFIELI) PROCTOR, Secretary of War.
BENJIMIN F. TRAOY, Seoretary of tho Navy.
JOHN WANAMAKER, Postmaster-General,
W. H. II, MHLLER, Attorney-General.
CHARLES E. MITCHELLA, Commissioner of Patente.

REGENTS OF THE INSTITUTION.

(List given on the following page.)

OFFIOERS OF TIE INSTITUTION.

Samber, P. langhify, Nectetiry.
Director of the Instilution unl of the U. S. National Musem.
G. Brown Goode, Assistant Suoretary.

William J. Riees, Chief Clerk.

REGENTS OF THHE SMITHSONIAN INSTITUTION.

By the organizing act approved August 10, 1846 (Revised Statutes, Title Lxxirr, section 5580), "The business of the Institution shall be conducted at the city of Washington by a Board of Regents, named the Regents of the Smithsonian Institution, to be composed of the VicePresident, the Chief.Justice of the United States [and the Governor of the District of Columbia], three members of the Senate, and three members of the House of Representatives, together with six other persons, other than members of Congress, two of whom shall be resident in the city of Washington, and the other four shall be inhabitants of some State, but no two of the same State."

REGENTS FOR TIIE YEAR 1890.
The Vice-President of the United Stntes:
LEVI P, MORTON.
The Chief-Justice of tho United States:
MELVILLE W. FULILER, elected Chancollor, and President of the Board Jannary 9, 1889.
Uniled States Sonators: Term explies.
JUSTIN S. MORRILI, (appointed Fobrnary 21, 1883) Mar. 3, Lsil).
SHELI3Y M, CULLOM (appointerl Mareh 23, 188i, and Mar. 28, 14n9). Mar. 3, 1895,
RANDALL L. GIBSON (appointed Doc. 19, 1887, and Mar, 28, 1489). . Mar, 3, 1895,
Members of the Honse of Representatives:
JOSEPH WHEELER (appointed Jan, 5, 1888, and Jan. (6, 18!0) Joc. 23, 1891.
BENJAMIN BIJT'TERWORTH (appointed Jamary 6,1890).... ... Deo. 2:3, 1801.
HENRY CABOT IOODGE (nppointed Jannary 6, 1890) Dee. 23, 1891,
Citizens of a State:
IIFNRY COPPFE, of Pennsylvanin (first mppointed Jan, 19, 1874). .Deo. 26, 1891.
JAMES J3. ANGFII, of Michiginn (first appointed Jan, 19, 1857)..Jan, 19, 1893.
ANIDREW D. WIIITE, of New York (first appointed Fob, 15, 1888). . Fob, 15, 1894,
[Vacancy]
Citizens of Washington:
JAMES C. WELLING (first appointed May 13, 1884).................. May $22,1890$.
MONTGOMERY C. MEIGS (first appointed December 26, 1885) Dec. 26, 1891.

Executine Commiltee of the lBoard of Regents.

James C. Weling, Chairman. Heniy Copiér, Montgomery (i, Meige.

JOURNAL OF PROCEEDINGS OH THE BOARD OF REGBNTS OF THE SHI'THSONIAN INS'ITTUTION.

Wasilingion, January $8,1890$.
The stated annual meeting of the Board of Regents of the Smithsonian Institution was held this clay at 10.30 o'clock A. M.

Present: The Chaucellor, Chief Justice Melville W. Fuller; Hon. J. S. Morrill, Hon. S. M. Oullom, Hon. Joseif Wifeeler, Hon. IIenry Oabot Lodge, Gen. M. C. Meigs, Dr. Andiew D. White, Dr. J. B. Angell, Dr. Henry Coppee, Dr. J. O. Welling, and the Secretary, S. P. LiAngley.

An excuse for non attendance was read from the Hon. Benjamin BuITRERWORTH, and the Secretary stated that he had been informed, unofficially, that Senator R. L. Gibson was detained in New York by illness.

The following letter was read to the Board:
New Haven, Uonnedtiout, December 31, 1880.
I regret that I find it arlvisable, from considerations of health and prudence, to resign the position which I have hell for so many years as a member of the Board of Regents of the Smithsonian Institution. With the best wishes for the prosperity of the Institution and the as. surance of the highest personal regard for the members of the Board, I am,

Very truly yours,
NoAif Poriter.
'To S. P. Langley, Seoretary of the Smithsonian Institution.

On motion of Dr. Coppee, it was
Resolved, That the Board having received the resignation of Dr. Noah Porter as a Regent, accept it with an expression of their regret and with assurances of their high personal esteem.

The Journal of the Proceedings of the Board at the meeting of Jannary 9,1889 , was read and approven.

The secretary announced the apoointment (January 0,1890) by the honorable the Speaker of the Honse of Representatives of the following members of the House as Regents:

Mr. Benjamin Butiferworthe, of Ohio.
Mr. Heniry Oaból Lodge, of Massachusetts.
Mr. Joseph Wheeler, of Alabama.

Dr. Welling, in presenting the report of the Executive Committec for the fiscal year ending June 30, 1880, called the attention of the Board to the statement on page δ, under the head of International Exchanges (which sets forth that an amount has been expended in this department beyond the annmal appropriation made by Congress, entailing anmual loss upon the fund of the Smithsonian Institution) and to the recommendation that Oongress be requestẹd to make appropriations to reimburse the Smithsonian fund.

On motion it was-
Resolved, That the Regents instruct the Secretary to ask of Congress legislation for the repayment to the Institution of the amount advanced from the Smithsonian fund for governmental service in carrying on the exchanges.
The report of the committee was then approved.
On motion of Dr. Welling it was also-
Resolved, That the insome of the Institution for the fiscal year ending June 30, 1891, be appropriated for the service of the Institution, to be expended by the Secretaly, with the advice of the Executive Committee, upon the basis of the operations described in the last annual report of said committee, with full diseretion on the part of the Secretary as to items of expenditures properly falling under each of the heads embraced in the established conduct of the Institution.

The Secretary, in presenting his report for the year ending June 30, 1889, referred especially to the fact that the Smithsonian Institution is now, and has been for some time, paying out an increasingly large portion of its annual income in service that inures either directly or indirectly to the benefit of the Government, rather than to its legiti. mate anplication for the immediate "inerease and diffusion of knowl. edge;" and in this connection quoted the opinion of Professor Henry, expressed as long since as 1872, that the Government should then have paid the Institution $\$ 300,000$ for the use of the present building alone.

He did not ask for any immediate action, but invited the attention of the Regents to this condition of the relation of the Institution's affiairs to those of the Government, a general condition of which the loss of the rent of the building might be taken as a single example.

The late secretary had intended to provide an astro-physical observ. atory on a modest scale, the building for which would probably cost not over ten or filteen thousand dollars, and with the expeetation that if' this amount were contributed by private citizens and the building phaced on Government land, Congress would make an appropriation for purchasing the apparatus, and also a small annual appropriation necessary for maintenance. This amount having been pledged by responsible parties, the Secrelary had ordered some of the principal pieces of apparatus which would take a long time to construct. A number of valuable pieces had also been loaned to the Institution, and to supply provisional needs, a cover for all these in the form of a small temporary
erection has been put up south of this building. This will enable the apparatus to be used, but it is not the "observatory" in question, which, if Congress makes the necessary appropriation, will probably be erected at some future time in some suburban site under the Regents' control,

In this connection lie presented a copy of the will of the late Dr. Jerome H. Kidder, and letters from his executor, accompanied by a copy of an unsigned codicid. The Secretary stated that Dr. Kidder was a former officer of the U. S. Nays, who several years ago made a bequest of $\$ 10,000$ to the Smithsonian Institution to be employed for certain biological purposes. Dr. Kidder afterwards informed the Secretary that owing to changes in his domestic circumstances, he had reduced the amount to $\$ 5,000$ and elanged the propose of the bequest, which he was desirous to see applied to the astro-physical observatory in question. It appears however that though this was well known to Dr. Kidder's family and friends to be his deliberate purpose, he did not actually execnte this provision to his will, but having ordered a codicil to that effect to be drawn, was stricken with so sudden an illness that he was mable to sign it. (The Secretary read two letters from the executor stating, in sabstance, that the family would cheerfully pay the $\$ 10,000$, but that it earnestly desired to see this sum applied to the astro-physieal observatory, in which Ir. Kidder's whole interest was lately engaged.)

After the clauses of the will and the codicil had been read a discussion followed, from which it appeared to be the opinion of the Board that if the Regents accepted, in accordance with the wishes of the family and the excentors, the deliberate purpose of the testator in regard to the object of the bequest, they should be gunded by this purpose also in regard to the amount which they should receive.

Mr. Morrill then offered the following preamble and resolution, which was adopted:

Whereas the lato Jerome H. Kidder having, in a will drawn up some years before his death, bequeathed the simm of $\$ 10,000$ to the Smithsonian Institution for'purposes connected with the alvancement of seience, did in a codicil to said will, drawn under his direction during his last hours, but which his sudden death prevented him from exeen. ting, reduce the amount of his bequest to $\$ 5,000$, which ho desired should be applied toward the establishment of an astro-physical observatory : It is

Resolved, That the lixecutive Oommitteo of the Board of Regents be authorized to accept, as flnally and decisively indicative of the wishes of the testator the provisions of the codicil bequeathing $\$ 5,000$ for the purpose of an astro-physical observatory, and that they be authorized to decline to accept from his executors more than this sum; provided, however, that before doing so they can receive sufficient assurance that the Institution will be protected against any liability.

The Secretary exhibited recently prepared sketch plans for a new Museum building, and called the attention of the Regents to their recommendation to Dougress, in Jaupary, 1883, of the need of enlargement.

Since this resolution, the collections of the Musemm have enormously increased, so that before a new building could now be completed the material pressing for display would more than cover the entire area of such a building as the present one. It scems absolutely necessary that the new buiding shonld contain, beside a basement, at least two stories, it being indispensable to have, apart from the purposes of display, upper rooms for the preparation of the exhibits below.

The price of material has risen very greatly, so that, owing to these combined canses, the estimate of 1883 is not applicable to the wants of to day. The Secretary did not conceive that any supplementary action on the part of the Regents was now needed, but submitted these plans and estimates that theymight be advised of the probable very eonsider. able increase in the sim that it would now be necessary to ask of Congress.

The Ohief Justice, being obliged to leave here, resigned the chair to Senator Morrill.

The Secretary stated that in connection with this subject of the plans he would present a letter from Mr. Oluss, of the firm of Cluss \& Sohulze, architects, asking for "an equitable compensation" for professional services and expenses in former years, in connection with a proposed building for the Museum.

On motion of General Meigs, it was
Resolved, That Messrs. Oluss \& Schnize be informed that the ques. tion of compensation to them for plans for a new Museum buiding will bo considered when they shall present such a bill as can be submitted for Congressional action.

Tho Secretary recalted to the attention of the Regents a statement made at their last meeting, to the fact that bills had been brought before Oongress making an appropriation for the purpose of establishing a Zoological Park under a Board of Commissioners, of whom the Seeretary of the Smithsonian Institution was one, and directing this Com. mission, after purchasing and laying out the land and erecting the necessary buildings, to turn it over to the Regents. The bill as since actually passed, however, only instructed the Oommissioners to purchase the land; and, while declaring the Park to be for the advance. ment of science, gave no intimation of the intent of Congress mbont its ultimate disposal. This Oommission has nearly completed the purchase, and the time has now arrived when the Park may advantageously be placed under scientifla direction. He conld not, of course, antieipate what the final action of Oongress would be in the matter, but ho was anthorized to state that the Commission would feel satisfied if Congress should place the Park under the Regents' control. There is an increas. ing collection of animals already in the Regents' care, and an appropriation of $\$ 50,000$ has been asked for, to provide for its establishment in the newly acquired Park, which, within its large area, would also provide suitable retirement for the small physion observatory already
alluded to. He expressed the hope that a bill providing for both meas. ures would have the support of the legents in the Senate and in the House.

After listening to statements by the Secretary relative to the estimates for the ensting year, and also to the subject of the resirability of olvatining legislation relative to a statue of Professor Baird, the Regents considered tho subject of a more convenient time for their annual meeting in Jannary ; and on motion of Senator Onllom it was-

Resoled, That hereafter the time of the annan meeting of the Board of Regents shall be on the fonth Wednesday in January of each yenr.

Mr. Wheeler called the attention of the Board to the death of their late colleague, the Hon. S. S. Cox, and on his motion it was-

Resolved, That a committee be appointed, of which the Secretary shall be chairman, which shall be anthorized to prepmore resolntions on the services and character of the late S. S. Oox, and to make the same of record.

The chairman amonnced as the committee, tho Secretary, General Wheeler, Dr. Welling, Mr. Lotge.

The committee submitted the following report and resolntions, which were unanimonsly adopted:

To the Board of Regents:

Your committee report that the Hon, S. S. Cox was first apponfed a Regent of the Smithsonian Institution December 19, 1801, and that he filled that offec, except for intervals cansed hy pablie duties, to the time of his death.

While he was a regular attendant at all the meetings of the Board, he was ever ready to advance the interests of the lnstitution and of science, either as a Regent or as n momber, of Congress; and allough such men as Hamlin, Fessenden, Colfax, Ohase, Garfleld, Sherman, Gray, and Waite, in a list comprising lresidents, Vice-Presidents, Ohief Justices, and Senators of the United States wero his associates, there were $n o n 0$ whose service was longer or more gratefilly to be remembered, nor perhaps any to whom the Institntion owes more than to Mr. Oox.

The regard in which his brother Rogents hold Mr. Oox's accuracy of characterization, and his instinetive recognition of all that is worthiest of honor in other men, may be inferred from the enlogies which he was requested by them to deliver, among which may be particularly mentioned the one at the commemoration in honor of Professor Henry in the Honse of Representatives; but though these only illustrate a very small part of his services as a Regent, your committee are led by their consideration to recall that his flist act upon your board was the prepara. tion and delivery of an address, at the request of the Regents, on their late colleague, Stephen A. Donglas, and that on this occasion he used words which your committee permit themselves to adopt, as being in their view singularly characteristic of Mr. Oox himself:
"It was not merely as one of its Regents that he showed himself the true and enlightened friend of objects kindred to those of this establishment. He ever advocated measures which served to advance knowledge and promote the progress of humanity. The encourage.
ment of the fine arts, the rewarding of discoverers and inventors, the organization of exploring expeditions, as well as the general diffusion of education were all objects of his special regard."

In view of these facts it is-
Resolved, That in the death of Hon. Samuel Sullivan Cox the Smithsonian Institntion has suffered the irreparable loss of a long. tried friend, the Board of Regents of a most valued associate and active member during fifteen jears of service, and the country of one of its most distinguished citizens.

Resolved, That the Board of Regents desire to express their deep sympathy with the bereaved family of the deceased, and direct that a copy of these resolutions be transmitted to the widow of their late associate.

On motion of Senator Cullom, the Board adjourned sine die.

REPORT OF THE EXECUTIVE COMMITTEE OF THE BOARD OF regents of the smithsonian institution.

(For the year onding 3(ith of June, 1890.)

Abstract

To the Board of Regents of the Smithsonian Institution : Your executive committee respectfully submits the following report in relation to the funds of the Institution, the appropriations by Oongress for the National Museun and other purposes, and the receipts and expenditures for the Institution, the Museum, ote, for the year ending 30th June, 1890 :

SMITHSONIAN INSTIPUTION.
Condition of the Jund July 1, 1890.
The amount of the bequest of James Smithson doposited in the Treasury of the United States, according to the act of Congress of August 10, 1846 , was $\$ 515,169$. To this was added by anthority of Oongress (act of February 8,1867) the residuary legacy of Smithson and savings from annual income and other sources, $\$ 134,831$. To this $\$ 1,000$ have been added by a bequest of James Hamilton, $\$ 5(0)$ by a bequest of Simeon Habel, and $\$ 51,500$ as the proceeds of the sale of Virginia bonds owned by the Institution, making in all, as the permanent Smithson fund in the United States Treasury, $\$ 703,000$.

Statement of the receipts and expenditures from July 1, 1889, to June 30, 1890.

IRECEIPTS.

[^0]Your committee also presents the following statements in regard to appropriations and expenditures for objects intrusted to the care of the Smithsonian Iustitution by Congress :

IITTERNATIONAL EXCHANGES.

Apropriation by Congress for the fiseal year onding Juno 30,1890 , "for
expenses of the system of intornational exchanges between the United
States and foreign conntries under tho direction of the Smithsonian
Institution, including silaries or eompensation of all nocessary om-
ploy6s" (Sundry civil act, Mareh $2,1889$. Public 154, p. 16)............ $\$ 15,000.00$
Expendltures from July 1, 1889, to June 30, 1800.
Salaries or compensation:
1 curator, 12 months, at $\$ 208.33 \ldots$. . $82,499.96$

1 clerk, 12 months, at $\$ 110 \ldots$.
1 clerk, 10 months, at $\$ 80$.................. 960.00
1 clerk, 12 months, at $\$ 75$. 900.00
1 clerk, 11 months, at $\$ 75$. 885, 00

1 copylst, 4 nonths, at $\$ 30$......................... 120.00
1 copyist, 8 months, at $\$ 35$.

1 copyist, 27 days, at $\$ 30$.
1 copyist, 1 month, at $\$ 30$......................... 30.00

1 paoker, 12 months, at $\$ 50 \ldots$.
1 laborer, 12 months, at $\$ 40 \ldots$.
1 laborer, 8 days, at $\$ 1.50 \ldots$.
1 laborer, $0 \frac{1}{2}$ deys, at $\$ 1.50 \ldots$.
1 laborer, 4 days, at $\$ 1,50 \ldots . .$. (i, 00
1 laborer, 34 days, at $\$ 1.50 \ldots$.
1 laborer, 3 flays, at $\$ 1.50 \ldots$.
1 agent (Germany), 12 monthe, at $\$ 83.33 \frac{1}{3}1,000.00$
1 agent (England), 12 monthe, at $\$ 41.66 \frac{2}{2}$.
Total salaries of compensation $\$ 13,138.49$
Goneral expenses:
Froight. 998.67
Packing boxes.. 443.41
Printing.. . 146.00
Postage 144.5%
Stationery and supplies.. 116.92
Total expenditure international exchanges 14,988, 01

NORTH AMERICAN EIIINOLOGY.
Appropriation loy Congress for the fiscal year onding Juno 30, 1890, "for tho purpose of contíniling othnological researchos anong tho Amoriean Indians under the direction of the Secrotary of tho Smithsonian Institution, including salaries or compensation of all. nocossary omploy $6 s$." (Sundry civilact, March 2, 1869. Pub. 154, p. 16.)

40,000. 00
Balance, July 1, 1889..13,491.22

The actual conduct of these in vestigations has been continued by the Secretary in the hands of Major J. W. Powell, Director of the Geological Survey.

Ethnology-Exponditures from July 1, 1889, to June 30, 1890.

Classification of expenditures (A).
(a) Salaries or compensation:

2 othnologists, nt $\$ 3,000$ per annum. $\$ 6,000$. $0 n$
1 ethnologist, per annum. ... 2,400.00
1 arohwologist, per annum. ... 2, 400.00
3 othnologists, at $\$ 1,800$ per annum $5,400.00$
1 assistant ethnologist, at $\$ 1,600$ per annum, 1 month...... 125.00
1 assistant archeologist, at, $\$ 1,500$ per annum, 3 months... $\quad 375,00$
1 assistant ethnologist, at $\$ 1,500$ por annum, 3 months.... 375.00
1 assistant othnologist, per annum............................. . . . 1, 400.00
1 assistant areheologist, at $\$ 1,400$ per aunum, 3 months... $\quad 350.00$
1 assistant etlinologist, per annum $1,200.00$

1 assistant ethmologist, at $\$ 1,200$ per annum, 9 months 900.00
1 assistant ethnologist, at $\$ 1,200$ per annum, 9 months 900.00
1 assistant ethnologist, at $\$ 1,000$ per anuum, 9 mouths 750.00
1 stenographer, per annum.. $1,000.00$
1 assistant ethnologist, at $\$ 900$ per aunum, 5 months 25 days.... ...
437.50

1 assistant ethnologist, at $\$ 720$ per annum, 6 months 6 days. $\quad 376.00$
1 ethnologio aid, at $\$ 900$ per annum, 5 months 25 days..... 437.50
1 ethnologlo ald, at $\$ 600$ por annum, 7 months 5 day's....... . 308.05
I copyist, por annum....... ... $\quad 000.00$
1 modeller, per anuum 720.00
1 modeller, at $\$ 660$ per annum, 6 months 6 days 340.65
1 inodeller, at $\$ 600$ per annum, 0 months...................... $\quad 450.00$
1 modeller, at $\$ 660$ per annum, 1 month....................... $\quad 55.00$

1 modeller, at $\$ 720$ per annum, 2 months.... 120.00
1 modeller, at $\$ 480$ per annmm, 3 months..................... 120.00
1 eopyist, per annum... 720.00
1 copyist, at $\$ 600$ per annum, 9 mouths.... $\quad 450.00$
2 olerks, at $\$ 600$ per annum. $1,200.00$
1 clork, per annum. 720.00
1 messenger, per annum.. 600.00
1 messenger, at $\$ 430$ per annum, 1 month 23 days 70.66
1 modellor, at $\$ 480$ per annum, 3 months 24 days.......... 150.97
1 interpreter, at $\$ 900$ per anumm, 3 months................... 225,00
Unclassified or speclal jobs or contracts..... 875.00

Total salaries or compensation
$\$ 33,831.17$
(b) Miscellaneous:

Travolling expenses... . . . 3, 958.34
Transpurtation of property . .. 336. 43
Fleld snpplies. 752. 84
Field supplies for distribution to Indians 131.36
Instraments .. 5.18
(b) Miseellaneous-Continued.
Laboratory material $\$ 51.28$
Books for library 756.12
Stationery and drawing material 330.45
Illustrations for report 637.08
Office furniture 392. 38
Office supplies and repairs 206.76
Telegrams 70
Specimens 18.00
\$7, 576.92
Total expenditure 41, 408. 09
Bonded railroad accounts settlod by United States Treasury 50.05
Total expenditure North American ethnology 41,458. 14
Balance, July 1, 1890, to meet outstanding liabilities $12,033.08$
Expenditures reclassified by subjeot-matters (B).
Sign langnage and pioture writing 4,440.81
Exploration of mounds, eastorn portion of United States. $6,258.33$
Researches in archmology, sonthwestern portion of United Statos 9, 028, 77
Researches, language of North American Indians $13,783.37$
Salaries, office of director 4,209. 64
Illustrations for report 673.46
Contingent expense 3,013. 71
41, 408. 69
Boinded railroad accounts settled by United States Treasury 50.05
Total expenditures 41,458. 14
SUMMARY.
July 1, 1889:
Balance on luand 13,491,22
Appropriation for North Amorican ethnology, 1890........ 40,000.0063, 401.22
Expenditures 41,458. 14
Balance on hand July 1, 1890 12,033. 08
Whioh balaince is deposited $a s$ follows:
To credit of disbursing agent 2,581. 38
In the United States Treasury 0,451. 70$12,0333.08$
NATIONAL MUSEUM.
PRESERVATION OF COLILECTIONS JULY 1, 1880, TO JUNE 30, 1800.
Appropriation by Congress for the flscal year ending Juno 30, 1890, "forthe preservation, exhibition, and inerease of the oollections from thesurveying and exploring expeditions of the Government, and from othersources, inoluding salarios or compensation of all necessary employ os"(Sundry civil act, Murcir 2, 1889. Public 154, p. 16).

, Expenditures from July 1, 1889, to June 30, 1890.

Salaries or compensation.*
Diroction:
1 Assistant Secretary Smithsonian Iustitution, in chargo U. S. Na- tional Museum, 12 months, at $\$ 333.33$ \$3,999.96
Scientifle staff:
1 curator, 12 months, at $\$ 200$ 2,400.00
1 ourator, 12 months, at $\$ 200$ 2,400,00
1 ourator, 12 months, at $\$ 200$ 2,400.00
1 curator, 12 months, at $\$ 175$ 2,100.00
1 ourator, 9 months, at $\$ 175$ 1,575, 00
1 curator, 3 months, at $\$ 175$ 625.00
1 curator, 12 months, at $\$ 150$ 1,800,00
1 curator, 8 months 11 days, at $\$ 150$ 1, 253, 23
1 ourator, 12 months, at $\$ 125$ 1,500.00
1 curatur 11 muñths, at $\$ 100$ 1,100.00
1 aoting ourator, 12 montbs, at $\$ 150$ 1,800.00
1 assistant onrator, 12 monthe, at $\$ 133.33$ $1,599.06$
1 assistant curator, 12 months, at $\$ 133.33$ 1, 599.96
1 assistant curator, 9 months, at $\$ 50, \$ 450 ; 3$ months, at $\$ 125, \$ 375$ 825.00
1 assistant ourator, 12 months, at $\$ 100$ 1, 200,00
1 assistant curator, 5 months, 19 days, at $\$ 100$ 561.29
1 agent, 12 months, at $\$ 100$ 1,200, 00
1 colleotor, 12 months, at $\$ 80$ 960.00
1 aid, 12 months, at $\$ 80$ 960.00
1 aid, 6 months 18 days, at $\$ 80$ 026. 45
1 aid, 12 months, at $\$ 75$ 900.00
1 aid, 4 months 23 days, at $\$ 75$ 355.65
1 ald, 12 months, at 65 780.00
1 aid, 11 months 16 days, at $\$ 60$ 690.97
1 aid, 8 months 10 days, at $\$ 55$ 457.74
31, 470. 25
Clerical staff:
1 ohief olerk, 12 months, at $\$ 175$ 2,100.00
1 corresponding olerk, 12 months, at $\$ 168.33$ 1,899.06
1 registrar, 12 months, at $\$ 158,33$ 1,890,96
1 disbursing olerk, 12 months, at $\$ 100$ 1,200.00
1 draftsman, 12 months, at $\$ 83.33$ 999, 96
1 assistant draftsman, 12 months, at $\$ 40$. 480.00
1 clerk, 4 months 20 days, at $\$ 125$ 580.65
1 clerk, 12 monthe, at $\$ 115$ 1,380,00
1 olerk, 12 months, at $\$ 115$ 1,380,00
1 clerk, 12 months, at $\$ 100$ 1,200,00
1 clerk, 12 months, at $\$ 100$ 1,200. 00
1 olerk, 12 months, at $\$ 90$ 1,080,00
1 clerk, 12 months, at $\$ 90$ 1,080.00
1 olerk, 11 months 22 days, at $\$ 83.33$ 969.86
1 clerk, 12 months, at $\$ 75$ 900.00
1 olerk, 12 months, at $\$ 70$ 840.00

[^1]Clerical staff-Continued.
1 clerk, 10 monthe 15 days, at $\$ 70$ \$733. 87
1 clerk, 6 months, at $\$ 55, \$ 330 ; 6$ months, at $\$ 60, \$ 360$ 690.00
1 olerk, 12 months, at $\$ 60$ 720.00
1 clerk, 3 months, at $\$ 45, \$ 135 ; 3$ months, 25 days, at $\$ 60$, $\$ 228.39$ 363. 39
1 olerk, 1 month 17 days, at $\$ 60$ 92.90
1 clerk, 12 monthe, at $\$ 55$ 660.00
1 olerk, 12 months, at $\$ 55$ 660.00
1 clerk, 2 months, at $\$ 55$ 110.00
1 olerk, 12 monthe, at $\$ 50$ 600.00
1 clerk, 12 months, at $\$ 50$ 600.00
1 olerk, 12 months, at $\$ 50$ 600.00
1 clerk, 9 months, at $\$ 50$ 450.00
1 olerk, 2 months, at $\$ 75, \$ 150 ; 8$ months, at $\$ 60, \$ 480 ; 2$ months, at \$55, \$110 740.00
1 stenographer, 3 months 13 days, at $\$ 100$ 364.29
1 typewriter, 12 months, at $\$ 50$ 600.00
1 copyist, 12 monthe, at $\$ 55$ 660.00
1 copyist, 12 months, at $\$ 50$ 600.00
1 copyist, 12 months, at $\$ 50$ 600.00
1 copyist, 12 months, at $\$ 50$ 600.00
1 copyist, 12 months, at $\$ 50$ 600.00
1 copyist, 4 monthe, at $\$ 46.66$ 186. 64
1 copyist, 12 months, at $\$ 45$ 540.00
1 copyist, 3 monthe 8 days, at $\$ 40$ 130. 67
1 copyist, 5 months 19 days, at $\$ 40$ 224, 52
1 copyist, 12 months, at $\$ 40$ 480.00
1 copyist 8 months 16 days, at $\$ 40$ 340.65
1 copyist 12 months, at $\$ 40$ 480.00
1 copyist, 7 months 16 days; at $\$ 40$ 301.33
1 copyist, 2 monthe 28 days, at $\$ 40, \$ 117.33$; 29 days, at $\$ 1.50, \$ 43.50$. 160.83
1 copyist, 12 months, at $\$ 35$ 420.00
1 copyist, 6 monthe 9 days, at $\$ 35$ 220.16
1 copyist, 11 monthe 10 days, at $\$ 35$ 396. 29
1 copyist, 7 months 13 days, at $\$ 30$ 223.00
1 copyist, 12 months, at $\$ 30$ 360.00
1 copyist, 5 months 16 days, at $\$ 25$ 137.90
34,830. 83
Preparators:
1 colorist, 12 months, at $\$ 110$ 1,320. 10
1 photographer, 12 months, at $\$ 158.33$ 1,899.96
1 taxidermist, 12 months, at $\$ 125$ 1,500.00
1 taxidermist, 3 months, at $\$ 115, \$ 345 ; 4$ months, at $\$ 40, \$ 160$; 5 months, at $\$ 15, \$ 75$ 580.00
1 taxidermist, 12 months, at $\$ 80$. 960.00
1 assistant taxidermist, 8 months, at $\$ 60$ 480.00
1 assistant taxidermist, 12 months, at $\$ 60$ 720.00
1 assistant taxidermist, 10 mouths, at $\$ 60$ 600.00
1 assistant taxidermist, 12 monthe, at $\$ 60$ 720.00
1 assistant taxidermist, 3 months 29 days, at $\$ 50$ 196.77
1 preparator, 12 months, at $\$ 100$ 1,200.00
1 preparator, 12 monthe, at $\$ 80$ 960.00
1 preparator, 12 nonths, at $\$ 75$ 900.00

XXIV

Preparators-Continued.
1 preparator, 12 months, at $\$ 60$ \$720.00
1 preparator, 2 months, at $\$ 120, \$ 240$; 2 monthe, at $\$ 105, \$ 210 ; 8$mouths, at $\$ 80, \$ 640$
1,000.00
1 preparator, 1791 days, at $\$ 4$ per diem 718.00
14,564. 73
Buildings and labor:
1 superintendent of buildings, 12 montlis, at $\$ 137.50$ 1,650.00
1 assistant superintendent of buililings, 12 months, at $\$ 90$ 1,080. 00
1 ratohman, 12 months, at $\$ 65$ 780.00
1 watchman, 12 months, at $\$ 60$ 720.00
1 watchman, 12 months, at $\$ 60$ 720.00
1 watohman, 12 months, at $\$ 50$ 600.00
1 watohman, 12 months, at $\$ 50$ 600.00
1 watchinan, 12 months, at $\$ 50$ ($\mathbf{6 0 0} 00$
1 watohman, 12 monthe, at $\$ 50$ 600.00
1 watohman, 12 moutbs, at $\$ 50$ 600.00
1 watohman, 12 months, at $\$ 50$ 600.00
1 watohmal, 12 months, at $\$ 50$ ($\mathbf{0 0 0} 00$
1 watohman, 10 monthe, at $\$ 50$ 500.00
1 watchman, 8 months 110 days, at $\$ 50$ 693.33
1 watohman, 1 month, at $\$ 40 ; 1$ month, at $\$ 45 ; 8$ monthe, at $\$ 50, \$ 400$; 19 days, at $\$ 50, \$ 30.65$ 515. 65
1 watohman, 10 months 19 days, at $\$ 50$ 530.65
1 watchman, 9 monthe 19 days, at $\$ 50$ 481.67
1 watohman, 12 months, at $\$ 45$. 540.00
1 watchman, 11 months 27 days, at $\$ 45$ 535. 50
1 watchman, 12 months, at $\$ 45$ 540.00
1 skilled laborer, 10 months, at $\$ 70$ 700.00
1 skilled laborer, 12 months, at $\$ 50$ 600. 00
1 skilled laborer, 4 months 25 days, at $\$ 50$ 244. 64
1 skilled laborer, 6 months, at $\$ 50$ 300.00
1 skillod laborer, 3 months 25 days, at $\$ 10$ 153. 33
1 skilled laborer, 54 days, at $\$ 2,50, \$ 135$: 154 days, at $\$ 2, \$ 308$ 443.00
1 skilled laborer, 77 days, at $\$ 1.50$ 115. 50
1 laborer, 6 months, at $\$ 45, \$ 270 ; 169$ days, at $\$ 1.50, \$ 25350$ 523.50
1 laborer, 10 months, at $\$ 45$ 450.00
1 laborer, 4 months, at $\$ 45$ 180.00
1 laborer, 0 months, at $\$ 10$ 360.00
1 laborer, 12 months, at $\$ 40$ 480.00
1 laborer, 9 months, at $\$ 40, \$ 060 ; 2$ lays, at $\$ 1.50, \$ 3$ 363.00
1 laboror, 12 months, at $\$ 40$ 480.00
1 laborer, 64 days, at $\$ 1.50$ 96.00
1 laborer, 11 months, at $\$ 40, \$ 440$; 19 days, at $\$ 47, \$ 29.11$; 35 days, at \$1.50, \$52.50 521.61
1 taborer, 312 days, at $\$ 1.50$ 468.00
1 laborer, 10 months, at $\$ 40, \$ 400 ; 36$ days, at $\$ 1.50, \$ 54$ 454.00
1 laborer, 12 months, at $\$ 40, \$ 480 ; 1$ day, at $\$ 1.71, \$ 1.71$ 481.71
1 laborer, $103 \frac{1}{8}$ days, $\$ 1.50$ 155. 25
1 laborer, 12 months, at $\$ 40, \$ 480 ; 3$ days, at $\$ 1.50, \$ 4.50$ 484. 50
1 laborer, 317 days, at $\$ 1.50$ 475. 50
1 laborer, 126t days, at $\$ 1.50$. 189. 75
1 lavorer, 12 months, $\$ 40$, at $\$ 480$; 1 day, at $\$ 1.60$ 481. 50
1 laborer, 100 days, at $\$ 1.50$ 150.00

REPORT OF THE EXECU'IIVE COMMITTEE

XXV
Bulldinge and labor-Continued.1 laborer, 329 days, at $\$ 1.50$\$493.50
1 laborer, 315 days, at $\$ 1,00$ 472. 30
1 laborer, $317 \frac{1}{2}$ days, at $\$ 1.50$ 476.00
1 laborer, 161 days, at $\$ 1.50$ 241,50
1 laborer, 254 days, at $\$ 1.50$ 381.00
1 laborer, 51 days, at $\$ 1.75$ 89.25
1 laborer, 12 months, at $\$ 40, \$ 480$; 1 day, at $\$ 1.50$ 481.50
1 attendant, 12 months less 1 day, at $\$ 40$ 478. 71
1 attendant 11 months, at $\$ 40, \$ 440 ; 1$ month, at $\$ 35$ 475. 00
1 cleaner, 12 months, at $\$ 30$ 360.00
1 eloaner, 155 days, at $\$ 1$ 155. 00
1 cleaner, 270 days, at $\$ 1$ 270.00
1 cleaner, 12 monthe, ati $\$ 30$ 360.00
1 cloaner, 12 months, at $\$ 30$ 360.00
1 messenger, 12 months, at $\$ 45$ 540.00
1 messenger, 12 monthy, at $\$ 45$ 540.00
1 messenger, 3 wonths, at $\$ 35$ 105.00
1 messeuger, 12 months, at $\$ 25$ 300. 00
1 messenger, 12 months, at, $\$ 25$ 300.00
1 messenger, 9 months, at $\$ 25$ 225. 00
1 messenger, 11 months 23 days, at $\$ 25$ 293.55
1 messenger, 2 months 2^{\prime} days, at $\$ 20$ 59. 33
1 messenger, 8 months 4 days, at $\$ 20$ 162. 58
1 messenger, 12 montins, at $\$ 20$ 240.00
1 messenger, 311 dajs, $\$ 1,2 \%$ 388.75
Soientifio staff :
1 speciallst, 26 days, at $\$ 150$ per month $\$ 125.81$
1 expert, 25 days, at $\$ 4$ per diom 100, 00
1 aid, 1 month, 25 days, at $\$ 55$ per month 99. 35
1 aid, 14 days, at $\$ 50$ per month 23.33
Clerical staff:
1 clerk, 1 month, at $\$ 45$ per month 45. 00
1 typowriter, 17 days, at $\$(00$ por month 34,00
1 typewriter, 30 days, at 835 per month 34.14
1 copyist, 1 month, at $\$ 80$ 60.00
1 copyist, 1 month 23 days, at $\$ 45$ 79.50
1 copyist, 1 month, àt $\$ 40$ 40.00
1 copyist, 26 days, at $\$ 45$ 41.78
348.49
1 tazidermist, \% months, at $\$ 50$ per month 100.00
1 preparator, 24 daya, at $\$ 40$ per month 32.08
1 preparato!; 8 days, at $\$ 3.20$ per diem 25. 60
Buildinge and labor:
1 watchman, 1 month 15 days, at $\$ 50$ per month 74. 19
1 skilled laborer, 2 months, at $\$ 45$ per month 90.00
1 laborer, 13 daye, at $\$ 1.50$ per diems 19.50
1 laborer, 21 day日, at $\$ 1.50$ per dlem 31. 50
XXVI REPORT OF THE EXECU'IIVE COMMITTEE.
Tomporary help-Continued.Buildings and labor-Continned.
1 laborer, 6 days, at $\$ 1.50$ per diem $\$ 0.00$
1 laborer, 5 days, at $\$ 1.50$ per diem 7.50
1 laborerer, 25 days, at $\$ 1.50$ per diem 37.50
1 laborer, 10 days, at $\$ 1$ per diem 10.00
1 cleaner, 38 days, at $\$ 1$ per diem 38.00
SUMMARX
Salaries, preservation of collections:
Direction 3,990, 96
Scientific staff 31, 470.25
Clerical staff 34, 836. 83
Preparators 14, 564, 73
Bnildings and labor 30, 985. 76
Temporary help 1, 157. 78
special or contraot work $1,363.68$
Total salaries or compensation $118,378.94$
Miscellaneons:
Supplies 4, 952.67
Stationery 2,307. 60
Specimens 5, 141. 48
Books and periodicals. 1,307. 61
Travel 1,646. 42
Freight and oartage 2,416.92Total expenditure to June 30, 1890, preservation of colloctions$136,151.69$
3848.31
Balance Jnly 1, 1890
45
Disallowance on a bill for travelling expenses
3,848.76
Balance July 1, 1890, to meet outstanding liabilities $-=$
FURNITURE AND FIXTURES, JULY 1, 1889, TO JUNE $30,1800$.
Appropriation by Congress for the fiscal year ending June 30, 1890, "forcases, furniture, fixtures, and appliances required for the exhibitionand safe-keeping of the collections of the National Museum, includingsalaries or compensation of all necessary employes" (Sundry oivil act,March 2, 1889. Public 154, p. 16)$30,000,00$Expenditures from July 1, 1889, to June 30, 1890.
Salaries or compensation :
1 engineer of property, 12 months, at $\$ 150$ $1,800,00$
1 olerk, 12 months, at $\$ 75$ $\$ 100.00$
1 clerk, 3 months, at $\$ 50$ 150.00
1 copyist, 12 months, at $\$ 55$ 660.00
1 carpenter, foreman, 12 months, at $\$ 91$ 1,092. 00
1 osbinet-maker, 313 days, at $\$ 3$ 930. 00
1 carpenter, 1241 days, at $\$ 3$ 373, 50
1 carpenter; 00 days, at $\$ 3$ 270. 00
1 carpenter, 286 days, at $\$ 3$ 858.00
1 carpenter, 52 days, at $\$ 3$ 16\%,00
REPORT OF THE EXEOUTIVE COMMITTEE.
Salaries or compensation-Continued.
1 carpenter, $192 \frac{1}{\frac{1}{2}}$ days, at $\$ 3$ $\$ 577.50$
1 carpenter, 150 days, at $\$ 3$ 450,00
earpenter, 311 days at $\$ 3$ 933,00
1 carpenter, $99 \frac{1}{2}$ days, at $\$ 3$ 298.50
1 carponter, 47 days, at $\$ 3$ 141,00
1 carpenter, 13 days, at $\$ 3$ 30,00
1 earpenter, $37 \frac{1}{2}$ days, at $\$ 3$ 112.50
1 oarpenter, 3 days, at $\$ 3$ 9,00
1 painter, 12 months, at $\$ 65$ 780.00
1 painter, 248 days, at $\$ 2$ 490.00
1 skilled laborer, 54 days, at $\$ 1.50, \$ 81 ; 208$ days,at $\$ 1.75, \$ 364$ 445. 00
1 skilled laborer, 12 monthe, at $\$ 50$ 600.00
1 skilled laborer, 6 months, at $\$ 50$ 300.00
1 skilled laborer, 4 months and 30 days, at $\$ 50, \$ 248.39 ; 3$ days, at $\$ 1.50, \$ 3$ 251. 39
1 skilled laborer, 295 dass, at $\$ 2$ 590.00
1 skilled laborer, 309 days, at $\$ 2$ (318. 00
1 skilled laborer, 104 days, at $\$ 2$ S208. 00
1 skilled laborer, 10 months, at $\$ 45$ 450. 00
1 laborer, 8 months, at $\$ 45, \$ 360 ; 6$ days, at $\$ 1.50,89$ 369. 00
1 laborer, 1 month 8 days, at $\$ 40$ i0. 32
1 laborer, 3 months, at $\$ 40, \$ 120 ; 1$ day, $\Omega \mathrm{at} \$ 1.50, \$ 1.50$ 1121. 50
1 laborer, 230 days, at $\$ 1.50$ 345.00
1 luborer, 6 months, at $\$ 40, \$ 240$; 2 days, at $\$ 1.50, \$ 3$ © 43.00
1 laborer, 1 month, at $\$ 40$ 40. 00
1 laborer, 3 monthe, at $\$ 40$ 120. 00
1 laborer, 1 month, at $\$ 30$ 30. 00
1 oleaner, 3 months, at $\$ 30$ 90.00

	15, 906. 21
Contraot repairing olevator	20.00

Materials, oto. :
Exhibition cases $\$ 4,366.77$
Designe nnd drawings for eases 67.00
Drawers, trays, looxea 031.48
Frames, stands, miscellaneons wood work 158.84
Glass 1, 875.38
Hardware and interior fittings for cases 1, 291.07
Tools 107.37
Cloths, cotton, eto 85.97
Glass jars, ote 395.45
Lumber $1,276.88$
Paints, oils, brushes 681.68
Office furniture 605.10
Ohairs (for halls) 61.00
Tin, laad 00.98
Briok, plaster 08.00
Rabber goods 40. 87
Iron braokets 130.00
XXVIII REPORT OF THE EXEOUTIVE COMMITTEE.
Materials, ote.-Continned.
Apparatils $\$ 605.50$
Travelling expenses 31.95
Total expenditure, July 1, 1889, to Juno 30, 1890, furniture aull fixtures 28,80\%.69
Balance, July 1, 1890, to meet ontstanding liabilities 1, 192.41
heating, lighting, elec'irto, and telephonic service from joly 1, 188e, to JUNE 30, 1800.
Appropriation by Cougress for the fiscal year chding June 30, 1890, "for expenses of heating, lighting, and electrioul and tolephonic service for the Natioual Musoum" (Sundry oivil act, Maroh 2, 1889. Public 154, p. 16)Expenditures from July 1, 1889, to June 30, 1890.
Salaries or compensation :
1 engineor, 8 months 23 days, at $\$ 120$ $\$ 1,049.03$
1 fireman, 10 months 58 days, at $\$ 50$ 595.06
1 fireman; 7 months 112 days, at $\$ 50$ 636.87
1 freman, 12 days, at $\$ 47.50$ por month 18.39
1 fireman, 12 months, at $\$ 50$ 600.00
1 fireman, 12 months, at $\$ 00$ 600.00
1 fireinau, 11 months 28 duys, at $\$ 50$ 596.67
1 fireman, 12 days, at $\$ 50$ per month 19. 35
1 fireman, 2 months, at $\$ 40$ 80.00
1 telephone clerk, 3 months, at $\$ 35, \$ 105$; 54 days, at $\$ 1.75$, $\$ 94.50$ 109. 50
1 telephone olerk, 12 months, at $\$ 60$ 720. 00
1 inspector, job 100,00
Total expenditures for salaries $5,114.47$
General expensen:
Coal and wood \$2, 058. 26
Gas. 1,113.82
Tolephones (601. 05
Electrio work 154.40
Eleotrical supplios 110.09
Rental of call-loxes 100.00
Heating repairs 269.25
Heating supplies 147.86
Travel 3. 25
Total expenditures, July 1, 1888, to June 30, 1890, heating, light-ling, eto9,672. 85
Balance, July 1, 1890, to meet outstanding liabilities 2,327 . 15
JPOSTAGE, JULY 1, 1880, TO JUNE $30,1800$.
Appropriation by Congress for the fiseal year onding June 30, 1890, "forpostage stamps and foreign postal cards for the National Musenm"(Sundry oivil aot, Maroh 2, 1889. Public 154, p. 16).$1,000.00$

Expenditure from July 1, 1889, to July 30, 1890.

Bulletins Nos. 34, 35, 36, 37.	\$3,235, 94
Proceedings, vols. XI, XII, XIII	3, 137.94
Extras from Museum Reports	744.43
Ciroulars	44.40
Labels for specimons	2,197.01
Letter heads, momorandum pals, and envelopes	318.74
Blanks, time books, ordor books, ete	832. 54
Catalogne cards. .	121. 56
Congressional Records	48.00

Total expenditure July 1, 1889, to Juno 30, 1890, printing, Musaum $10,680.61$
Balance July 1, 1890.... .. 64.65

OTHER MUSEUM APPIROPRIATIONS.
PRESERVATION OF COLLECTIONS, 1887-'88.
Balance July 1, 1889, as por last roport... 42,69
Expendltures from July 1, 1889, to June 30, 1890.
Books... 83.46
Travel....... ... 37. 65
Services.. . 21

Balance.. . . 1.37
FURNITURE AND FIXTOILES, 1887..'88.
Balance July 1, 1889, as per last report.. 21.96
IIEATING, LYGIITING, ETO., 1887-'88.
Balance July 1, 1889, ns per last report.... ... 3,70
The above balances, $\$ 1.37, \$ 21.96, \$ 3.70$, were carried under the action of Rovised Statutes, section 3090 , by the Treasury Department, to the credit of the surplus fund June $30,1890$.
XXX REPORT OF THE EXECUTIVE COMMITTEE.
PILESERVATION, 1888-89.
Balanee July 1, 1889, as per last report $\$ 4,198.34$
Expenditures fram July 1, 1889, to June 30, 1890.
Salarios or compensation $\$ 154.99$
Gupplies 1,032. 82
Stationery 58.49
Specimens 2,017.19
Books 489.43
Travel 65.64
Frelght 364.60
Total exponditure 4, 183. 16
Balance 15. 18
FUINNITURE ANI) HIXTURES, 1888-'89.
Balance July 1, 1889, as per last report 2, 823. 22
Expenditures from July 1, 1889, 10 June 30, 1890.
Exhibition cases \$525. 74
Drawings 65, 00
Drawers, traye, boxes 650. 20
Frames, stands, woodwork 36. 10
Hardware and tools 569. 47
Cloth 09.11
Glase jars 62.60
Lumber 186.84
Paicits 4.25
Office furniture 42.98
Metal work 431.68
Slate, brick, plaster 148.50
Travel D. 45
Camera 25.00Balance deposited in the U. S. Treasury, May 31, 189040
HEATING, LIGHTING, ETO., 1888-'89,
Balance July 1, 1889 1, 089,33
Expendilures from July 1, 1889, to Tune 30, 1890.
Gas $\$ 77.26$
Telephoues 200,00
Electric work 578.00
Rental of call boxes 10.00
Heating repairs 220. 08

NATIONAI, ZOÖLOGICAL PARK.

Appropriation.by Congress "for the organization, improvement, and maintenance of the National Zoölogical Park."

Beit enaoled by the Senate and House of Representalives of the United States of America in Congrese assembled, Thint the one-half of the following sums named respeotively is hereby appropriated out of ally money in the Treasury not otherwise appropriated, and Yie other half ont of the revenues of the Distriot of Colimbia, for the organtzation, improvement, and maiutenance of the National Zoulogioal Park, to be expended under the direction of the Regents of the Smithsonian Institution, and to bo drawn on their requisition and disbursed by the disbursing officer of said Institution:

For the shelter of animals..
for the cistody of auimals. .
for the cinstody of animals...
$\$ 15,000.00$

For repairs to the Iolt mansion to make the same sultable for ocoupanoy, and for office furniture.

9,000. 00

For the oreation of artiflcial ponds and other provisions for aquatio animals

2,000.00

For water smpply, sewerage, and drainage
$2,000.00$
For roads, walks, and bridges..
For miscellaneous stipplies, materials, and sundry inoidental expenses
For ourrent expenses, including the maintenance of collections, food
7,000.00 supplies, salaries of all necessary employes, and the acquisition and transportation of specimens
$37,000.00$
Sec. 2. That the National Zoölogioal Park is hereby placed under the direction of the Regents of the Smithsonian Institution, who are authorized to transfer to it any living specimens, whether of animals or plants, now or hereafter in thoir charge; to accept gifts for the park, at their discretion, in the name of the United Stales; to make exohinges of specimens, and fo administer the sail Zoölogioal Park for the advancement of soience and the instruetion and recreation of the people.

SEC. 3. That the Leads of Executive Departments of the Government are hereby anthorized and directed to oause to be rendored all necessary and practionl ald to the said Regents in the acquisition of colleotions for the Zoölogical Park.

Approved April 30, 1890.
$92,000,00$
Expenditures from April 30, 1890, to June 30, 1890.
Shelter barns, cages, oto $\$ 4383$
Miscellaneons supplies 15767
Current expenses 71710
Total expenditures National Zoölogical Park 918. 50
Balanco July 1, 1890 91, 081.50
RECAPITULATION,
The total amount of the funds administered by the Institution dur- ing the year ending June 30, 1890, appears, from the foregoing state- ments and the account books, to have been as follows:
From balance of last year, July 1, 1889 \$11,757.47
From interest on Smithsonian fund for the year 42, 180.00
From sales of publioations 416.01
From repayments for freights, eto 3, 489.150
From special gifts for astrophysical research 10,000.00
Total 67,842.08

Appropriations committed by Congress to the care of the Institution.

International exchanges:	
From balance of last year, July 1, 1880.......	\$21.80
Appropriation for 1889-90.	15, 000.00
Total.	\$15,021.80
North Anerican ethnology :	
From balance of last year, July 1, 1889.	\$13, 491. 22
Appropriation for 1889-90.	$40,000.00$
Total	53.191.22
Preservation of collections:	
From balance of 1887-'88, July 1, 1889.......	\$42. 69
From halance of 1888-'89, July 1, 1889.......	4, 198.34
From appropriation for 1889-90............	140,000.00
Total.	144, 241, 03
Furniture and fixtures:	
From balance of 1887-88, July 1, 1889........	\$18.71
From balanot of 1888-3 39 , July 1, 1889.......	2,823. 22
From appropriation for 1889-90........	30,000,00
Tota	32,841.93
Heatiug, lighting, eto.:	
From balance of 1857-'88, July 1, 1839.......	83.70
From balance of 1888-89, July 1, 1830.......	1,089. 33
From appropriation for 1889-90............	12,000.00
Total	13,093.03
Postage:	
From appropriation for 1889-90	1,000.00
Printing :	
From appropriation for 1889-90	10,745. 16
National Zoölogieal Park:	
From appropriation of April 30, 1890)	. 92,000.00

The committee has examined the vouchers for payments made from the Smithsonian income during the year ending June 30, 1800, all of which bear the approval of the Secretary of the Institution, or, in his absence, of the Assistant Secretary as acting Secretaryं, and a certificate that the materials and services charged were applied to the purposes of the Institution,

The committee has also examined the accounts of the "International Exchanges," and of the "National Museum," and of the "National Zoölogical Park," and fiuds that the balances above given correspond with the certificates of the disbursing clerk of the Smithsonian Institution, whose appointment as such disbursing officer was accepted and his bonds approved by the Secretary of the Treasury.

The quarterly accounts current, the vouchers, and journals have been examined and found correct.

The abostracts of expenditures and balance sheets under the appropriation for "North American Ethuology" have been exhibited to us; the
vouchers for the expenditures, after approval by the Director of the Burean of Ethnology, are paid by the disbursing clerk of said Bureau, and, after approval by the Secretary of the Smithsonian Institution, are transmitted to the accounting officers of the Treasury Department for settlement. The disbursing officer of the Bureau is accepted as such, and his bonds approved by the Seeretary of the Treasury. The balance available to meet outstanding liabilities on July 1, 1890, as reported by the disburing clerk of the Burcau, is $\$ 12,033.08$.

Statoment of regular income from the Smithsonian Fund to be available for use in the year ending June 30, 1890.

Respectfully submitted
James O. Welling, Henry Ooppee, M. O. Meige, Exeoutive Committee.
Washington, D. O., November, 1890. H. Mis. 129-III

AOTS AND RESOLUTIONS OF CONGRESS RELATIVE TO THE SMI'HSONIAN INSTITU'TION, NATIONAL MUSEUM, ETC.

(In continuation from previous reports.)

[Fifty-first Congress, first session, 1889-90.]
Chap. 156.-AN ACT to provide for celebrating the four hundredth anniversary of the discovery of Anerica by Christopher Columbus by holding an international exhibition of arts, industries, manufactures, and the product of the soil, mine, and sea in the city of Chicago, in the State of Illinois.

Whereas, It is fit and appropriate that the four hundredth anniversary of the discovery of America be commemorated by au exhibition of the resources of the United States of America, their development, and of the progress of civilization of the New World; and
Whereas, Such an exhibition should be of a national and interna. tional character, so that not only the people of our Union and this continent, but those of all nations as well, can participate, and should therefore have the sanction of the Congress of the Uuited States; Therefore,

Be it enaoted by the Senate and House of Representatives of the United States of America in Oongress assembled, That an exhibition of arts, industries, manufactures, and the products of the soil, mine, and sea shall be inaugurated in the year eighteen hundred and ninety-two, in the city of Ulicago, in the State of Illinois, as hereinatter provided.

SEC. 2. That a commission, to consist of two commissioners from each State and Territory of the United States and from the District of Oolumbia and eight commissioners at large; is hereby constituted to be designated as the World's Oolumbian Oommission.

Sed. 3. That said commissioners, two from each State and Territory, shall be appointed within thirty days from the passage of this act by the President of the United States, on the nomination of the governors of the States and Territories, respectively, and by the President eight commissioners at large and two from the District of Oolumbia; and in the same manner and within the same time there shall be appointed two alternate commissioners from each State and Territory of the United States and the District of Columbia and eight alternate commissioners at large, who shall assume and perform the duties of such commissioner or commissioners as may be unable to attend the meetings of the said commission ; and in such nominations and appointments each of the two leading political parties shall be equally represented. Vacancies in the commission nominated by the governors of the several States and Territories, respectively, and also vacanoies in the commission at large and from the District of Columbia may be filled in the same manner and under the same conditions as provided herein for their original appointment.

Sed. 4. That the Secretary of State of the United States shall, im. mediately after the passage of this act, notify the governors of the several States and Territories, respectively, thereof apd request such nominations to be made. The commissioners so appointed shall be called together by the Secretary of State of the United States in the city of Ohicago, by notice to the commissioners, as soou as convenient after the appointment of said commissioners, and within thirty days thereafter. The asid commissioners, at said frst meeting, shall organize by the elcction of such officers and the appointment of such committees as they may deem expedient, and for this purpose the commissioners present at said meeting shall constitute a quoram.

Sed. 5. That said commission be empowered in its discretion to accept for the purposes of the World's Columbian Exposition such site as may be selected and oftered and such plans and specifications of buildings to be erected for such purpose at the expense of and tendered by the corporation organized under the laws of the State of Illinois, known as "The World's Exposition of eighteen hundred and ninetytwo:" Provided, That said site so tendered, and the buildings proposed to be erected thereon shall be deemed by said commission adequate to the purposes of said exposition : And provided, That said commission shall be satisfied that the said corporation has an actual bona fide and valid subscription to its canital stock which will secure the payment of at least five millions of dollars, of which not less than five hundred thousand dollars shall have been paid in, and that the further sum of five million dollars, making in all ten million dollars, will be provided by said corporation in ample time for its needful use during the prosecution of the work for the complete preparation for said exposition.

SED. 6. That the said commission shall allot space for exhibitors, prepare a classification of exhibits, determine the plan and scope of the exposition, and shall appoint all judges and examiners for the exposition, award all preminms, if any, and generally have charge of all intercourse with the exhibitors and the representatives of foreign nations. And said commission is authorized and required to appoint a board of lady managers of such number and to perform such duties as may be prescribed by said commission. Said board may appoint one or more members of all committees authorized to award prizes for exhibits, which may be produced in whole or in part by female labor.

Sed. 7. That after the plans for said exposition shall be prepared by said corporation and approved by said commission, the rules and regulations of said corporation governing rates for entrance and admission fees, or otherwise affecting the rights, privileges, or interests of the exhibitors or of the public, shall be fixed or established by said corporation, subject, however, to such modification, if any, as may be imposed by a majority of said commissioners.

SEG. 8. That the President is hereby empowered and directed to hold a naval reviow in Now York Harbor, in April, gighteen hundred and ninety-three, and to extend to foreign nations an invitation to send ships of war to join the United States Navy in rendezvous at Hamp: ton Roads and proceed thence to said review.

Sed. 9. That said commission shall provide for the dedication of the buildings of the World's Oolumbian Exposition in said city of Ohicngo on the twelfth day of October, eighteen hundred and ninety:two, with appropriate ceremonies, and said exposition shall be open to visitors not later than the first day of May, eighteen huudred and ninety-three,
and shall be closed at such time as the commission may determine, but not later than the thirtieth day of October thereafter.

Sec. 10. That whenever the President of the United States shall be notifled by the commission that provision has been made for grounds and buildings for the uses herein provided for and there has also been filed with him by the said coryoration, known as "The World's Exposition of eighteen hundred and ninety-two," satisfactory proof that a sum not less than ten million dollars to be usel and expended for the purposes of the exposition herein anthorized, has in fact been raised or provided for by subscription or other legally binding means, shall be authorized, through the Department of State, to make proclamation of the same, setting forth the time at which the exposition will open and close, and the place at which it will he held; and he shall communicate to the diplomatic representatives of foreign nations copies of the same, together with such regulations as may be adopted by the commission, for pablication in their respective countries, and he sliall, in belialf of the Government and people, invite foreign nations to take part in the said exposition and appoint representatives thereto.

SEO. 11. That all articles which shall be imported from foreign countries for the sole parpose of exhibition at said exposition, upon which there shall be a tariff or castoms duty, shall be almitted free of payment of duty, customs fees, or charges ander such regulations as the Secretary of the Treasury shall prescribe; but it shall be lawful at any time during the exhibition to sell for delivers at the close of the exposition any goods or property imported for and actually on exhibition in the exposition buildings or on its grounds, subject to such regulations for the security of the revenie and for the collection of the import duties as the Secretary of the Treasury shall prescribe: Provided, That all such articles when sold or withdrawn for consumption in the United States shall be subject to the duty, if any, imposed upon such articles by the revenue laws in force at the date of importation, and all penalties prescribed by law shall be applied and enforced against such articles, and against the persons who may be guilty of any illegal sale or withdrawal.

Sed. 12. That the sum of twenty thousand dollars, or as mach thereof as may be necessary, be, and the same is hereby, appropriated, out of any moneys in the Treasury not otherwise appropriated, for the remainder of the present fiscal year and for the fiscal year ending June thirtieth, eighteeu hundred and ninety ono, to be expended under the direction of the Secretary of the Treasury for purposes connected with the admission of foreign goods to said exhibition.

SEO. 13. That it shall be the duty of the commission to make report from time to time, to the President of the United States of the progress of the work, and, in a final report, present a full exhibit of the results of the exposition.

Seo. 14. That the commission hereby authorized shall exist no longer than until the first day of January, eighteen hundred and ninety-eight.

Sec. 15. That the United States shall not in any manner, nor under any ciroumstances, bo iiable for any of the acts, doings, proceedings or representations of the said corporation organized under the laws of the State of Illinois, its officers, agents, servants, or employes, or any of them, or for the service, saliaries, labor, or wages of said officers, agents, servants, or employes, or any of them, or for any subscriptions to the capital stook, or for any cartificates of stock, bonds, mortigages, or obligations of any kind issued by said corporation or for any dobte,
liabilities, or expenses of any kind whatever attending such corporation or accruing by reason of the same.

Sec. 16. That there shall be exhibitor at said exposition by the Government of the United States, from its Executive Departments the Smithsonian Iustitution, the United States Fish Oommission, and the National Museum, such articles and materials as illustrate the function and administrative faculty of the Government in time of peace and its resources as a war power, tending to demonstrate the natare of our institutions and their alaptation to the wants of the people; and to secure a complete and harinonious arrangement of such a Government exhibit, a board shall be created to be charged with the selection, prep. aration, arrangement, safe-keeping, and exhibition of such articles and materials as the heads of the several Departments and the directors of the Smithsonian Institutiou and the National Museum may respectively decide shall be embraced in said Government exhibit. The President may also designate additional articles for exhibition. Such bosrd shall be composed of one person to be named by the head of each Executive Department, and one by the directors of the Smithsonian Institution and the National Museum, and one by the Fish Oommission, such selections to be approved by the President of the United States. The President sball name the chairman of said board, and the board itself shall select such other officers as it may deem necessary.

That the Secretary of the Treasury is hereby authorized and directed to place on exhibition, upon such grounds as shall be allotted for the purpose, one of the life saving stations authorized to be constracted on the coast of the United States by existing law, and to cause the aame to be fully equipped with all apparatus, furniture, and appliances now in use in all life-saving stations in the United States, said building and apparatus to be removed at the close of the exhibition and re-erected at the place now anthorized by law.

SEC. 17. That the Secretary of the Treasury shall cause a suitable building or buildings to be erected on the site selected for the World's Oolumbian Exposition for the Government exhibits, as provided in this act, and he is hereby authorized and directed to contract therefor, in the same manner and under the same regulations as for other public buildings of the United States; but the contracts for said building or buildings shall not exceed the stum of four hundred thousand dollars, and for the remainder of the fiscal year and for the year ending June thirtiefh, eighteen hundred and ninety-one, there is hereby appropriated for said building or buildings, out of any money in the Treasury not'otherwise appropriated, the sam of one hundred thousand dollars. The Secretary of the Treasury shall cause the said building or buildings to be constructed as far as possible, of irou, steel, and glass, or of such other material as may be taken out and sold to tha best advantage; and he is authorized and required to dispose of such building or buildings, or the material composing the sime, at the close of the exposition, giving preference to the city of Ohicago, or to the said World's Exposition of eighteen hundred and ninety-two to purchase the same at an appraised value to be ascertained in such manner as he may deterinine.

SEO, 18. That for the purpose of paying the expenses of transportation, care, and custody of exhibits by the Government and the maintenance of the building or buildings hereinbefore provided for and the safe return of articles belonging to the said Government exhibit, aud for the expenses of the commission created by this act, and other contingent expenses, to be approved by the Sccretary of the Treasury, upon itemized accounts and vouchers, there is hereby appropriated for the
remainder of this fiscal year and for the fiscal year ending June thirtieth, eighteen hundred and ninety-one, out of any money in the Treasury not otherwise appropriated, the sum of two handred thonsand dollars, or so much thereof as may be necessary: Provided, That the United States shall not be liable, on eccount of the erection of baildings, ex. penses of the commission or any of its officers or employees, or on account of any expenses iucident to or growing out of said exposition for a sum exceeding in the aggregate one million five handred thousand dollars.

SEC. 19. That the cominissioners and alternate commissioners appointed under this act shall not be entitled to any compensation for their services out of the Treasury of the United States, except their actual expenses for transportation and the sum of six dollars per day for subsistence for each day they are necessarily absent from their homes on the business of said commission. The officers of said commission shall receive such compensation as may be fixed by said coinmission, subject to the approval of the Secretary of the Treasnry, which shall be paid out of the sums appropriated by Congress in aid of such exposition.

Sed. 20. That nothing in this act shall be so construed as to create any liability of the Uuited States, direct or indirect, for any debt or obligation incurred, nor for any clain for aid or pecuniary assistance from Oongress or the Treasury of the United States in support or liquidation of any debts or obligations created by said commission in excess of appropriations made by Congress therefor.

SEO. 21. That nothing in this act shall be so construed as to override or interfere with the laws of any State, and all contracts made in any State for the purposes of the exhibition shall be subject to the laws thereof.

SEd. 22. That no member of said commission, whether an officer or otherwise, shall be personally liable for any debt or obligation which may be created or incurred by the said commission.

Approved, April 25, 1890.
Chap. 173.-AN ACT for the organization, improvement, and maintenanoe of the National Zoological Park,

Be it enaoted by the Senate and House of Representatives of the Unitod States of America in Oongress assembled, That the one-half of the following sums named, respectively, is hereby appropriated, out of any money in the Treasury not otherwise appropriated, and the other half out of the revenues of the District of Columbia, for the organization, improvement, and maintenance of the National Zoological Park, to be expended under the direction of the Regents of the Smithsonian Institution, and to be drawn on their requisition and disbursed by the disbursing officer for said Iustitution:

For the shelter of animals, ffteen thousand dollars.
For sholter barns, cages, fences, and inclosures, and other provisions for the custody of animals, nine thousand dollars.

For repairs to the Holt mansion, to make the same suitable for occupancy, and for office furniture, two thousand dollars.

For the creation of artificial ponds and other provisions for aquatio animals, two thonsand dollars.

For water supply, sewerage, and drainage, seven thousand dollars.
For roads, walks, and bridges, fifteen thousand dollars.
For miscollaneous supplies, materials, and sundry incidental expenses not otherwise provided for, five thousand dollars.

For current expenses, including the maintenance of collections, food supplies, salaries of all necessary employees, and the acquisition and trausportation of specimens, thirty geven thousand dollars.

Sxo. 2. That the National Zoological Park is hereby placed under the directions of the Regents of the Smithsonian Institution, who are authorized to transfer to it any living specimens, whether of animals or plants, now or hereafter in their charge, to accept gifts for the park at their discretion, in the name of the United States, to make exchanges of specimens, and to administer the said Zoological Park for the adrancement of science and the instruction and recreation of the people.

Sro. 3. That the heads of executive departnents of the Government are hereby authorized and directed to cause to be rendered all necessary and practicable aid to the said regents in the acquisition of collections for the Zoological Park.

Approved, April 30, 1890.

GMITHSONIAN INSTITUTION.

Intarnational exohanges: For expenses of the system of international exchanges between the United States and foreign countries, nader the direction of the Smithsonian Institution, inoluding salaries or compensation of all necessary employees, seventeen thousand dollars.

North Amerioan ethnology: For continuing ethnological researches among the Amerioan Indians, under the direction of the Smithsonian Institution, including salaries or compensation of all necessary employees, forty thousand dollars.

Repairs, Smithsonian Building: For fireproofing the so.called chapel of the west wing of the Smithsonian Building, and for repairing the roof of the main building and the ceiling and plastering of the main Hall of the building, twenty-five thousand dollars, said work to be done under the supervision of the Architect of the Oapitol, with the approval of the Regents of the Smithsonian Institution, and no portion of the appropriation to be used for sky-lights in the roof nor for well-hole in the floor of the main building.

UNDER THE GEORETARY OF THE SMIIHSONIAN INSTITUTION AS DIREOTOR OF THE NATIONAL MUSEUM.

Heaming and lighting: For expense of heating, lighting, electrical, telegraphic, and telephonic service for the National Museum, twelve thousand dollars.

Preservation of dolxeditons of the National Museum: For continuing the preservation, exhibition, and inorease of the collections from the surveying and exploring expeditions of the government; and from other sources, including salaries or compensation of all neces. sarp employees, one hundred and forty thousand doliars.

Furniture and fixtures of the National Museum: For cases, furniture, fixtures, and appliances required for the exhibition and safe-keeping of the collections of the National Museum, including salaries or compensation of all necessary employees, twenty-flve thousand dollars.

Postage for the National Museum : For postage stamps and foreign postal cards for the National Museum, flve hundred dollars.

Printing for the National Museum: For the Smithsonian In. atitution, for printing labels and blanks for the use of the National

Museum and for the "Bulletins" and anuual voluines of the " Proceedings" of the National Museum, ten thousand dollars.

Exohanges of the Geologidal Survey: For the purchase of necessary books for the library, and the payment for the transmission of public documents through the Smithsonian exchange, five thousand dollars.
(Sundry civil appropriation act, approved August 30, 1890.)
Misolellaneous: To re-imburse the Smithsonian Institution for expenses incurred in the exchange of the publications of the Fish Oommission for those of foreign countries, being for the service of the fiscal year, eighteen hundred and eighty-nine, two hundred and fifteen dollars and twenty cents.

To enable the Secretary of the Smithsonian Institution to purchase from Frederick S. Perkins, of Wisconsin, his collection of prehistoric copper implements, seven thousand dollars.

Preservation of collections, National Musenm: To supply a deficiency in the appropriation for preservation of collections, National Museum, for the fiscal year eighteen hundred and eighty-seven, eleven dollars and forty five cents.

Olaims allowed by the First Oomptroller, Treasury Department:
For international exchanges; Smithsonian Institution, one dollar and five cents.
(Deficiency appropriation act, approved Sẹptember 30, 1890.)
APPOINTMEN' OF REGENTS OF THE SMITHSONIAN INSTITUTION.
No. 23.-Joint resolution to fill vacancies in the Board of Regents of the Smithsonian Institution:

Resolved by the Senate and House of Representatires of the United States, eto.- That the vacancies in the Board of Regents of the Smithsouian Institution, of the class other than members of Oongress, shall be filled by the appointment of Oharles Devens, of Massachusetts, in the place of Noah Porter, of Oonnecticut, resigned ; and by the reappointment of James U. Welling, of Washingtou Oity, whose term of office has ex. pired.

Approved May 22, 1890.

REPORT OF S. P. LANGLEY,
SRCRETARY OF THE SMITHSONIAN INSTITUTION, FOR THE YEAR BNDINO JUNE $30,1890$.

To the Board of Regents of the Smithsonian Institution:

Gentlemen : I have the honor to submit herewith the report for the jear ending June 30, 1890, of the operations of the Smithsonian Institution, and of the work placed by Oongress under its charge in the Na: tional Museum, the Bureau of Ethnology, the International Exchanges, and the National Zoological Park.

The Natioual Zoological Park has been formally placed under the care of the Board of Regents during this year,* although its establishment has been under censideration for some time and the preliminary steps connected therewith have been referred to in previous reports.

THE SMITHSONIAN INSTITUTION.

'IHE ES'IABLISHMENT.

By the organizing act of Cougress of August 10, 1846, stc. 1, \dagger it was provided that "The President, and Vice.President of the United States, the Secretary of State, the Secretary of the Treasury, the Secretary of War, the Secretary of the Navy, the Postinaster-General, the AttorneyGeneral, the Ohief.Justice, and the Commissioner of the Patent Office of the United States, and the Mayor of the city of Washington, during the time for which they shall hold their respective offices, and such other persons as they may elect honorary members, bo, and they are hereby constituted an 'establishment' by the name of the 'Smithsonian Institution," etc. In the Revised Statutes "the Governor of tho District of Columbia" was substituted for the Mayor of the city of Washington, the latter office having become extinct.

Two members having been added to the cabinet of the President since the passage of the act, namely, the Secretary of the Interior, and more recontly the Secretary of Agriculture, there appears no good rea. son why these should not be included in the list of officers of the establishment. This would obviously be consonant with the original intention of the framers of the act, though excluded by the phraseology netually employed. It may be worthy of consideration of the Board of Regents whether it would not be for the interests of the Institution to ask of Congress a re-construction of the section referred to, whereby

[^2]the President, Vice-President, Secretaries of the several Executive Departments, and the Ohief. Justice of the United States shall consti. tute the Establishment.

THE BOARD OF REGENTS.

The stated annual meeting of the Board was held on January 8, 1890, at which the resignation of Dr. Noah Porter, presented on account of failing health, was accepted in the following resolution:

Resolved, That the Board having received the resiguation of Dr. Noah Porter as a Regent accept it with an expression of their regret, and with assurances of their high personal esteem.

At the same meeting, the appointment by the honorable the Speaker of the House of Representatives on January 6, 1890, of the following members of the Honse as Regents was annouuced : the Hon. Benjamin Butterworth, of Ohio, the Hon. Henry Oabot Lodge, of Massachusetts, the Hon. Joseph Wheeler, of Alabama.

The death of the Hon. Samuel S. Cox, for many years a Regent of the Institution, and its earnest friend and supporter, was referred to in my last annual report. By a resolustion of the Board of Regents a committee was appointed, of which the Secretary was made chairman, to prepare suitable resolutions on his services and character, and these formal resolutions, with a brief biographical sketch, are given in full in the "necrology" appended.

The institution is indebted to Mrs. Cox for a portrait of her husband, to be placed with the collection of portraits of past Regents.

By joint resolution of Oongress, approved by the President May 22, 1890, Dr. James O. Welling, whose term as a Regent had expired, was re-elected; and by the same resolution Judge Charles Devens, of Massachusetts, was appointed a member of the Board to succeed Dr. Porter.

I regret to say that Judge Devens has written to mo to state that there is a provision in the constitution of Massachusetts in reference to judges of its supreme court, which it has been suggested would prevent any one of them from holding such a position. No action had been taken in the matter at the time of this report.

FINANOES.

The permanent funds of the institution remain as at the time of my last report, namely :

Doposits from savings of income, eto., 1867 108, 620, 37
Bequest of James Hemilton, 1874.... ... 1, 000.00
Bequest of Simeon Habel, 1880 . 500.00
Deposit from proceeds of sale of bonds, 1881....................................... 51,500.00
Total permanent Smithsonian fund in the Treasury of the United States, bearing interest at 6 per cont. per anam.

703, 000. 00

It seems to me desirable in this connection to direct attention to ine exceptional adrantages offered in the organization of the Smithsovian Institution for the administration of funds intended for the advancement of science and the increase of knowledge throughout the world. The goverining board of the Institution is composed of the highest officers of the United States Government, associated with some of the most distinguished men of learning in the country. The United States Government is itself pledged to the security of the funds of the Institution, guaranteeing an interest of six per cent. annually,

It is safe to say that no institution of learning is better known throughout the world, and I am inpressed with the bolief that were it also more widely known that the United States, in accepting the gift of Smithson, has signitied a willingness to become thecustodian of further bequests for the increase and diffiusion of knowledge, its permanent endowment would be constantly increased.

The principal facts in relation to Smithson's bequest have been stated in brief in my previous reports and elsewhere at considerable length, and need not be repeated here.

At the beginning of the fiscal year the balance on hand of the income was $\$ 11,757.47$. Interest on the invested find, amounting to $\$ 42,180$, has been received from the Treasurer of the United States, $\$ J, 000$ have been received from the estate of the late Dr. Jerome H. Kidder, and a like amount from Dr. Alexander Graham Bell for the prosection of special researches in physics, to which allusion is elsewhere made, and $\$ 3,905.51$ have been received from miscellaneons sources, making the total receipts $\$ 07,842.98$.

The total expenditures have been $\$ 37,650.33$, leaving an unexpended balance on June 30,1890 , of $\$ 30,192.65$, or, deducting the donations for special researches noted above, amounting to $\$ 10,000$, the balance available for general expenses on July 1, 1890, was $\$ 20,192.65$. This sum, which is somewhat larger than ustal, is in part held against certain anticipated grants in aid of scientific investigation and the cost of their publication by tho Institution.

The Institution has been charged by Congress with the disbursement during the year of the following special appropriations:

For international oxchanges	\$15,000
For ethnological researches	40,000
For National Museum:	
Presorvation of collections	140,000
Furniture and fixtures	30,000
Hoating end lighting	12,000
Postage	1,000
Printing	10,000
For National Zoological Park	92,000

The vouchers for the disbursement of these appropriations, with the exception of those for "ethnological researches," have been examined by the Executive Oommittee, and the various items of expenditure, in-
cluding those of the Burcau of Etlinology, are set forth in a letter addressed to the Speaker of the House of Representatives in accordance with a provision of the sundry civil act of October 2,1888 , while the expenditures from the Smithisonian fund, having likewise been examined and approved by the executive committee, are given in their report.

The estimates for the tiscal year ending June 30, 1891, forwarded to the Secretary of the Treasury under date of October 1,1889 , were as follows:

International exchanges.	
North American ethoology	$50,000.00$
National Museum:	
Preservation of colleotions	175, 000,00
Heating and lighting.	15,000.00
Furuiture and fixtures	30,000.00
Living animals, in connection	$50,000.00$
Printing and binding	18,500,00
Postage	500.00

BUILDINGS.

I regret that I am unable to report any immediate prospect of reliof from the over-crowded condition of the Museum building. The Regents nearly cight years ago, (at their meeting of January 17, 1883, recommended to Congress the erection of a new Muscum building, and the previous steps taken in pursuance of their instruction have already been laid before the Board. Since 1883, the collections of the Museum have enormously increased, so that before a new building can now be completed, the material pressing for display or even for storage, will demand a considerable part of a building as large as the present one.

Sketch-plans for a building that would meet the wants of the Museum for the immediate future were laid before the Board at their meeting in January, 1890. These plans contemplated a building of two stories and a basement, it being indispensable to have rooms for the preparation and study of material apart from the rooms used purely for the purposes of exhibition.

A bill appropriating $\$ 500,000$ for a building was reported by Senator Morrill on February 19, 1890, from the Senate Committee on Public Buildings and Gronnds, and passed the Senate on the 5th of April, 1890. It was referred in the House to its Committee on Public Buildings and Grounds, from which it has not as yet been reported. The following letter in relation to the subject transmitted to the Hon. Leland Stanford, chairman of the Senate Committee on Public Buildings and Grounds, sets forth at some length the urgent need for further accommodation:

[Senate Mis. Doo. No. 116, Fifty-firet Cougress, first session.]

LETTER OF THE SECRETARY OF THE BMITHSONIAN INSTITUTION IN RELATION TO A BUILDING FOK THE ACCOMMODATION OF THE NATIONAL MUSEUM.

> Smithsonian Institution, United States National Museum, Washington, January 21, 1890.

SIR : I seud you herewith a set of sketch-plans intended to show, in a general way, the extent and character of a building such as would seem to be niecessary for the accommodation of the Museum collections in the present and immediate future, and respectfully request for them your attention, and a recommendation to Oongress of the necessary means for such a building.

These plans and sketches are provisional, but although not presented in detail, they represent the results of studies, extending over many years, of the plans of the best modern museum buildings in Europe and America, nearly all of which have been inspected by officers of the Smithsonian Institution.

The proposed building covers the same area as that finished in 1881. It is intended to consist of two stories and a basement, except in the ceutral portion, which consists of one lofty hall open from the main floor to the roof, the height of which will be 90 feet, galleries being placed on the level of the second floor in other parts of the building. Itsinterior arrangements are, as you will see, different from those in the actual Museun, all the changes having been planned in the light of the experience of nine years' occupation of the present building. It will afford between two and three times as much available space for exhibition and storage under the same area of roof. The fifteen exhibition halls are completely isolated from each other, and may readily besubdivided, when necessary, into smaller rooms. The lighting will bo as good as in the old building, and the ventilation perhaps still better. The sanitary arrangements have been carefully considered.

The necessity for a basoment is especially great. In this, place has been provided for many stornge rooms and workshops. The existence of a basement will promote the comfort and health of visitors and omployés, and by increasing the dryness of the air in the exhibition halls, will secure the better preservation of the collections. These proposed changes in the internal arrangements will not interfere with conformity with the other points of the present Museum buiking in the essential features of exterior proportion. The total capacity of this present building in available floor space is about 100,000 square feet; that of the new building somewhat exceeds 200,000 . Tho present Museum building contains about 80,000 feet of floor space available for exhibition. That proposed will contain about 103,300 square feet for exhibition. The space devoted to offices and laboratories would not be much more, but the area available for exhibition halls, storage rooms, and workshops far greater. Tho appropriation for the construction of the present building was $\$ 250,000$. This sum was supplemented by several special appropriations: $\$ 25,000$ for steam-heating apparatas $; \mathbf{\$ 2 6 , 0 0 0}$ for marble floors; $\$ 12,500$ for water and gas fixtures and electrical apparatus, and $\$ 1,900$ for special sewer connections, so that the total cost was $\$ 315,400$. The structure was probably completed for a smaller sum of money than any other similar one of equal capacity in the world, at an expense ralative to capacity which the present prices of material make it certain can not be repeated.

The estimates of cost on this building vary greatly with regard to
details of construction on which I do not here enter, further than to say that the whole should be absolutely fire-proof throughout, and in view of the further great variatlon of the cost of building materials within the past two years, I am not prepared to state the sum which would be necessary for its completion. It is certain, however, that $\$ 500,000$, if not sufficient to complete it, would be all that would be required to be expended during the present year, and I would respectfully represent the desirability of an appropriation of this amount for the purpose in question.

Your attention is directed to certain facts in regard to the character of the materials for the accommodation of which this building is desired. The collections of the Smithsonian Institution and of the Government are especially rich in collections of natural history, which may be grouped in three general classes: The zoological collections; the botanical collections, and the geological collections, including not ouly all the geological and mineralogical material, but the greater portion of that belonging to paleontology, the study of fossil animals and plants forming an essential part of modern geological work.

Besides the natural history collections, there are equally important anthropological collections which illustrate the history of mankind at all periods and in every land, and which serve to explain the development of all human arts and industries. In everything that relates to the primitive inhabitants of North America, Eskimo as well as Indian, these collections, are by far the richest in the world, and with the necessary amount of exhibition space, the material on hand will be arranged in a manner which will produce the most impressive and magnificent effect, the educational importance of which can not be over-estimated. Again, there are collections of considerable extent which illustrate the processes and products of the various arts and industries, as well as what are termed the historical collections, which are of especial interest to a very large number of the visitors of the Museum on account of the associations of the objects exhibited with the personal history of representative men, or with important events in the history of America.

The collections illustrating the arts and the art indust ries are relatively small, and although in themselves of great interest and value, not to be compared in importance with those in natural history and ethnology.

In a letter addressed on June 7, 1888, to the Hon. Justin S. Morrill, and which will be found in a report of June 12 of the same year from the Senate Committeo on Public Buiklings and Grounds, I made a statoment of the rapidity of the recent growth of the Museam, mentioning that in the flve years from 1882 to 1887 the number of suecimens in the collection had multiplied no less than sixteon times, and endeavored to give an idea, though, perhaps, an inadequate one, of the extent to which the pressure for want of space was felt. The evil has grown rapidly worse, and as I have had occasion to mention, it has been felt in tha last year in a partial arrest of the growth of the collections, which emphasizes the demand for more room. The present Museum buiding is not laige enough even for the natural history collections alone, a number of which are without any exhibition space whatever. The proposed building will afford accommodations for the ethnological and technological material already on hand, and for a large part of the natural history material also.

The collections are still inoreasing, and the number of specimens, as estimated, is now not far from 3,000,000. The appended table (A) shows the annual increase since 1882. The increase during the last year was
comparatively small. This may be accounted for by the fact that our exhibition halls and storage rooms being filled to their utmost capacity, it has seemed necessary to cease in a large degree the customary etforts for the increase of the Museum.

Unless more space is soon provided, the development of the Government collections will of necessity be almost completely arrested.

So long as there was room for storage, collections not immediately required could be received and packed away for future use. This can not longer be done.

The Armory Building, since 1877 assigned to the Museum for storage and workshops, is now entirely occupied by the U.S. Fish Commission, with the exception of four rooms, and hy some of the Museum taxidermists, who are now working in very contracted space, and whom it is impossible to accommodate elsewbere.

Increased space in the exhibition halls is needed, the educational value of the collections being seriously diminished by the present crowded system of installation. Still more necessary, however, is room for storage, for re-arranging the great reserve collections, for eliminating duplicate material for distribution to college and school museums, and for the use of the taxidermists and preparators engaged in preparing oljeects for exhibition. Space is also required for the proper handling of the costly outfit of the Museum cases and appliances for installation, of which there is always a considerable amount temporarily out of use or in process of construction.

The appended table (B) shows the amount of floor space now assigned to the various collections and the amount required for the proper display of material already in hand, making a reasonable allowance for the expansion during the three years which would probably pass before a new building oould be completed and mrovided with necessary cases.

The appended table (0) shows the number of feet of floor space (the average height being 10 feet) required for laboratorios, workshops, and for the several departments. This is in addition to storage space under the cases in the exhibition halls, and ä considerable portion may be in cellars and attics.

In summarizing what has just been said, it, may be stated in general terms that the amount of space alroady required for exhibition purposes alone, being (table B) 207, 500 feet as against 100,675 now oceupied, and this being exclusive of the (table O) 108,000 square feet needed for other objects, the aceumulations have now reached such a point of congestion that the actual space needs to be doubled, oven independently of future increase; and I beg to repeat that, unless more space is provided, the development of the Govermment collection, which is already partly arested, will be almost completely stopped.

Your obedient servant.

> S. P. LINGLEX, Seorotary.

Hon. Lieriand Silanfort,
Ohairman Committee on Public Buildings and Grounds, United States SSenate.

I'able A.-Amulal inorease in the colleotions.

Nante of department.	1482.	1883.	1884.	1885-'86.	1886-'87.	1887-'88.	1888-'89.
Zoology:							
Mammals	4,660	4,020	B, 694	7,451	7,811	8,058	8,275
Blada	44,354	47,240	50, 850	65,945	64, 087	66,484	67, 974
Birils' egg		40,072	44,103	148,173	50, 055	50, 173
Reptlles and batraohians.			28,405	25, 344	27, 542	27, 684	$2 \mathrm{H}, 405$
Flahes	50,000	65, 000	08, 0001	76, 000	100000	101, 3? 0	107,360
Mollusks	${ }^{2} 33,375$		400,000	3400,000	428,000	455,000	488,000
Marino invertebrates (other thau mollasks)..	211,781	${ }^{1} 14.826$	4200,000	${ }^{4350,000}$	4450,000	515, 000	615,300
Insects	1,000		${ }^{6} 161,000$	5010, 000	${ }^{4} 585,000$	685, 000	603,000
Comparativeanatomy ...	3, 805	3,742	7,214	10,210	411,022	11, 858	11,753
Llving animals..........						220	191
Botany:							
Recont plan				30,000	432,000	88, 000	38,480
Puloontology:							
Invertebrate:							
Paleozolo		20,000	73,000	80, 482	84,401	84,649	91,126
Merozolo.			100,000	69,742	70,775	70,925	71, 236
Cenozolo (ineluded will molluska) \qquad							
Plants		4,624	${ }^{6} 7,291$	${ }^{6} 7,429$	8,462	10,000	10,178
Geology:							
Minerale		14,650	26,810	18,401	18,601	21,806	27,690
Lithology	${ }^{7} 9,075$	12,500	18,000	20,647	${ }^{8} 21,500$	22,500	27,000
Metallurgy		30,000	40,006	48,000	849,000	61, 112	52,076
ANTHROYOLOOY.							
Prehiatorlo arohwology	36,512	40,491	46,262	65, 314	101, 659	108, 031	116,472
Fthnology			206, 000	${ }^{4} 600,000$	603, 704	608, 404	606, 324
Amerlcan aborlginal potlery.			12,000	25,000	426, 022	27, 122	28, 222
Oriontal antiquilies..........							850
ARTE AND INDUBTHES.							
Materla medica		4,000	4,442	4,850	5, 610	6,702	6, 012
Foods.		${ }^{1} 1,244$	1,680	${ }^{8} 822$	${ }^{10} 877$	${ }^{1} 877$	911
I'extilos			2,000	3,004	3,144	113,144	3,222
dilshories			5,000	${ }^{8} 0,870$	10,078	110,078	110,078
Animal producto.............			1,000	2,702	2,822	${ }^{11} 2,822$	2,048
Naval archiltootico			800				100
Hastorieal relles				1,002			
Coins, medals, pajoer money; oto. \qquad				1,055	¢ 13,034	14,010	114,010
Musicai fmatruments				400	117	427	6.127
Motom pottory; porcelain, and bromzer \qquad			2,278	2,238	3,011	${ }^{11} 3,011$
Paints and dyes				77	100	${ }^{11} 100$	100
"'Lho Catlin Callery"........				500	500	800	11500
Phyaical пpparatus.........	250	251	11251	11251
Oils and ghma......				${ }^{8} 107$	108	${ }^{11} 108$	213
Ohemical prodnots...........				${ }^{8} 069$	061	11001	088
'Jotal	193,302	203, 143	1,472, 600	2, 420, 944	2,000, 335	2,803, 459	2,803,804

12235 mo nesta.

- Uatalogue ontrien.

8 Indudhig conozolo fusalls.

- Eatlimatid.
- Profussor Riley' collootion nambers 150,000
spisolmens.
6 Explualvo of Prof. Ward'a oolleotlun.

IIn rigorve serthe.

- i)uplioster not Jucluiled.

9 Inoluding painta, yignouita, and oila.
10 Foods only.
"No entrios of materfal recoivad during the year have been made on catalogue.
N. B, - No estimate of factease of colicotion taken la 1885.
'Table B.-Exhibition space:

Department.	Floor space now ocoupled.	Anount roquired.	Department.	Floor spaconow ocoupled	Amount required.
natubat higtony cohlec. tione.			natural hibtoiy collec. tions-continued.		
Zoology:	Sq. feet.	Sq. feet.	Paleontology-contivued.	Sq. feel.	Sq. feet.
Mamıals...............	0,600	12, 000	Vertebrate	1,500	10,000
Birds.	0,000	14,000	Minoralogy and geology .	12,000	17,009
Reptlies and batraohians.	1,000	3,000	anthholological colnec.		
Fishes and fisheries.....	7,600	14,000	TIONS.		
Mollusks	3,500	5,000			
Marlne invertobrates (other than mollusks).	3,000	5,500	Prohlatorio aroheology General ethnology	10,000 10,400	10,000 40,000
Insecta	1,600	4,000	Arts and industrles.	22,000	40,000
Comparative anatomy ...	4,500	10,000	History....	3,000	5, 000
Botany I			Lecture hall	4,575	6, 800
Systemitlo and economio (Including forestry)...	1,000	1,000	'Totals	100,675	207, 600
Palountology:					
Invertebrate (inolualug					
Paleozolc, Mesozoleand					
Cenozole)	2,500	7,500			

'I'able C.-Storage, workshops, offlces, laborutories, eto.

1)opartment.		Department.	Square feot.
natural history.		Natumat, metoly-contimued.	
Zool gy:		Geology :	
Manmals .	3,000	Mineralogy nud geology (motudhg	
13trila	4, 000	workhhops).	4,000
Roptiles and batriohians	2,500	Anthropology :	
Wishes.	6,000	Prohlstorlo archuelogy	2,000
Mollitsk	4,000	Genornl othulogy	6,000
Martuo invertobrates (othor than mollusks)	4,000	Arts and fulusitas (baveral divis. Iong) \qquad	15,000
Insouts	2,400	J'axidormata, oatuologlats, molclera,	
Comparativomatoiny.....	3,000	proparntora........................	10,000
Botany:		Muehanles.	6,000
Iforbardam.	4,000	Genoral storngo rooms, fur casos not in	
Pateontologr:		use, dupliontos, mulahorat elmatorfal,	
Invortobrato:			16,000
Paleozolo	4,000	'Total	108,000
Mosozolo.	4,000		
Cenozolo.	4,000		
Ilants (fossil).	2,000		
Vertulurate	1,000		

In compliance with the requirements of the sundry civil bill approved Mareh 2, 1889, all examination was made of the National Museum by the Architect of the Oapitol for the purpose of estimating the cost of constructing a basement story under that building. The only portion
of such a basement suitable for workshops and storage would be a cellar running around the outer walls of the building and extending inwards 30 feet, so that the rooms thus obtained might have light and uir. Provision was also made to floor with tiles all the rooms under which these basements come. The total expense it is thought would be $\$ 57,675$, but by reason of the peculiar construction of the present building the Architect has expressed the opinion that the work estimated for would be one of unusual difficulty, and that a site for a storehouse and workshops required might be purehased in the neighborhood of the Museum and a tire-proof building erected thereon for a less sum.

The improvement of the Smithsonian building proper has been the subject of careful cousideration, more especially the fire-proofing of the west wing, the urgent need of which has already been brought to the attention of the Regents. A bill was introduced in the Senate on January 15, 1890, by Senator Morrill, providing for an appropriation of $\$ 45,000$ for fire-proofing the roof of the main hall and that of the socalled chapel in the west wing of the Smithsouian building, patting in a sky-light and well hole for lighting the east wing, and making certain changes which would add greatly to the space arailable for offce rooms in that part of the building, as well as adding to the facility with which the large amount of exchange publications could be handled. This work was to be done under the direction of the A rehitect of the Capitol with the approval of the Regents. The bill passed the Senate on Feb. ruary 10, 1890, and was favorably reported on in the House March 3, 1800. The matter rested here at the close of the year.

The temporary wooden building for the protection of instruments for astro-physical investigation, which was referred to as contemplated in my last report, was begun on November 30, 1889, and was completed about the 1st of March, 1890. This building is of the most inexpensive charaeter, and is simply intended to protect the instruments temporarily, though it is also arranged so that certain proliminary work can bo done here. Its position however immediately south of the main Sinithsonian building, is not well suited to reflued physical investigations on account of its proximity to city streets and its lack of sechusion. Tho needs of this department are reforred to more at length mader the following head of research.

RESEAROII.

I take pleasure in reporting that the Institution has been able to do rather more for the encouragement of original research than it has done for several years past.

Referring to my two previous reports in regard to the project of Professor Baird for securing an astro-physical observatory and laboratory, X am able to say that this object has assumed defnite shape in the construction of the temporary shed, which has just been mentioned. In this shed there have been built, as the most expensive part of the
structure, a number of brick piers required for the firm support of the delicate apparatus employed.
In comnection with the constraction of this building, I desire to express my thanks to Ool. O. H. Ernst, U.S. Army, in oharge of public buildings and grounds, for the supervision rendered by his offlice of the work of excavating, ete., for the necessary sewer and water connections.
The principal instrument consists of a siderostat constructed by Sir Howard Grubb, of Dublin, Ireland, for the Smithsonian Institution, to meet my special vequirements. This arrived in March, 1890 , and has been mounted and put approximately into position for use. Another important and novel instrument, a spectro-bolometer, was made under my directions to meet new and unusual demands, and has also been received and put in place. A third piece of apparatus, a special galvanometer, also designed for the particular class of work in view, has been received; and the only considerable instrument now required to complete the outfit is a resistance box, which has been ordered and is expected from Loudon before the end of the calendar year.
The siderostat is probably the largest and most powerful instrument of its kind ever constructed. The spectro-bolometer is the largest instrument of its kind, and with this improved apparatus it is hoped that interesting investigations begun several years ago, will be continued.
Supplementary to these principal instruments is the Thaw collection of physical apparatus loaned by the executors of the late. Will. iam Thaw, of Pittsburgh, and there are a fow pieces of apparatus, the personal property of the Secretary, so that at the close of the year it might be said that the Institution was in possession of the muleus of a modern astrophysical laboratory. With this apparatus temporarily mounted, researches have already begun, and one of a scientific and economic character upon "The Oheapest Form of tight" has been the subject of a communication to the National Academy of Sciences. This work is mentioned as indicating my intention to give greater place to one of the chief objeets of the Institution, the direct addition to knowledge by origimal researeh,-which, at least as regards the physical seiences, has received comparatively little attention since the time of Profensor Henry.
The prospects of renewed contributions to physieal science by the Institution in the fleld of origimal researel are happily now better than for many yours past. The late Dr. Jerome H. Kidder, formerly an offlcer of the U. S. Navy, and later attached to the U. S. Fish Oommission and to the Smithsonian Institation, had bequeathed to the Institation, in a will made several years ago, the sum of $\$ 10,000$ to be employed for biologieal researchen. Dr. Kidder, having become especially interested in the proposed astro-physioal observatory, had the intention of transferring this bequest, or at least a portion of it, to such an end, and he even ordered that a codicil giving $\$ 5,000$ to the Institution for an astrophysical observatory should be added to his will, but he was stricken
with so sudden an illness that he was unable to sign it. In view of these circumstances and after careful deliberation upon the matter, the Regents denided to accept as finally and decisively indiontive of the wishes of the testator the provisions of this codicil bequeathing $\$ 5,000$ for the purpose of an astro-physical observatory, and this sum was therefore paid by Dr. Kidder's executor to the Institution.

A further sum of $\$ 5,000$ was likewise generously presented by Dr, Alexander Graham Bell to the writer individually for the prosecution of the researches in astro-physies, to which he has devoted much of his life, but it has seemed proper to him, under the circumstances, that this sum should be placed to the eredit of the Smithsonian Institution upou the same footing as the Kidder bequest, and with the consent of the donor it has been so transferred. I am therefore desirous of here expressing my own personal as well as my official obligation to Dr. Bell for this gift for the increase of knowledge.

The initial step for the establishment of an astro-physical observatory under the National Government thus having been taken by private individuals, it is boped that Congress will see fit to place it upon a frm footing and to make a small annual provision for its maintenance. And it seems proper to mention that the field of research to which such a department of the Institution would be devoted has been considered of sufficient importance by the legislators of leading foreign nations to justify the erection of costly special observatories and to provide for their maintenance with a staff of astronomers and physicists of wide reputation.

The class of work here specially referred to does not ordinarily involve the use of the telescope, and is quite distinct from that carried on at any observatory in this country. It would in no way conflict with the work of the present U. S. Naval Observatory, being in a field of work that the latter has nover entered.

Briefly stated, the work for whieh the older Government observatories at Greonwich, Pais, Berlin, and Washington were founded, and in which they are for the most part now engaged, is the determination of relative positions of heavenly bodies and of our own place with reference to them. Within tho past twonty years, all these Govermments but our own have established astro physical observatories, as they are called, that are engagod in the study of the constitution of the heavenly bodies as distinguished from their positions; in determining, for example, not so much the position of the sun in the aky as the relation that it boars to the earth and to our own daily wants; how it effects terrestrial climate; and how it may best bo studied for the purposes of the meteorologist, and so on ; and it is an observatory of the later kind that the donors just mentioned appear to have had prominently in view, and which it is proposed to conduct (though on an extremely modest scale) under the auspices of the Iustitution.

In connection with this renewed revival in the line of physical re.
searoh, I may state that steps have been taken to give effect to certain resolutions expressed at a meeting of the American Association for the Advancement of Science several years ago, in regard to the establishment of standard screw threads and staudard diameters of tubing for astronomical and physical apparatus. The introduction of such standards in mechanical work of all kinds has proved itself of such great value that its usefulness need not be dwelt upon. As a preliminary step looking to the establishment of this desired uniformity on the part of scientifio men, Ω conference has been had with the Superintendent of the Coast Survey, and it is proposed to invite the co operation of other Government bureaus, and to give effect to their conclusions by ordering and establishing, on behalf of the Institution; recognized standards for the use of scientific instrument makers in all parts of the world.

I have here referred to researches in physical science alone, the work of the Institution and of individual members of its staff and others in natural history being given at some length under the head of the Museum.

EXPLORATIONE.

The work of exploration by the Institution has been carried on through the Bureau of Ethnology and the National Museum, and to the Reports of these departments reference should be made for cetails.

In my report for last year, mention was made of a trip to Africa by Mr. Talcott Williams, and of the interesting results that had been secured by him. A valuable collection of specimens that he obtained is still unpacked and a complete description of them can not be given until they have been thoroughly examined.

He was fortunate enough to secure five sheets of an extremeiy rare Berber manuscript, made probably in the thirteenth century ; a botanioal collection of about three hundred plants, of which all except four or five are phenagamous fossils from a hitherto unexplored region; a valuable collection of ethnographie material from Moroceo; villager costumes of men and women, representing both the Berber and mountain villages, and a collection of pottery made with the special design of including all the wares in ordinary use between Tetuan and Teg. Articles illustrating light, flro, and the industry of comb-making and numorous household utensils wero also secured.

It may safely be asserted that this collection, taken as a whole, is one of the most interesting of the kind that the Musenm has ever received, and the thanks of the Smithsonian Institution are due Mr. Willians for the manner in which he has accomplished his mission.

Mr. W. W. Rockhill, whose explorations in Thibet were also roferred to in my last report, has spent a large part of the yoar in Washington, ongaged in yreparing an account of his remarkable travels, and he has loaned to tho Museum, in addition to his large and almost unique collectiou of Thibetan material, a most valuable lot of cloisonnes, bronzes, and carved lacquers collected during his residence in Pekin.

I may also mention here collections of unusual interest and value, made by Dr. W. A. Abbott, in the region of Mount Kilemanjaro, and of those by Mr. William Harvey Brown, of the National Museum, while attached to the United States Eclipse Expedition to the west coast of Africa, uuder the auspices of the Navy Department. Grateful acknowledgments are due Dr. W. H. Rush, U. S. Navy; Mr. J. P. Iddings, U. S. Geological Survey; Mr. E. M. Aaron, of the American Entomological Society ; Mr. O. R. Oroutt, of San Diego, Oal., from whom specimens secured in their travels have been received or are expected. Mr. Henry W. Elliott, who is now visiting the Seal Islands of Alaska on United States Government business, is expected to secure for the Musenu specimeus of fur-seal, fishes, and other zoological material.

In the Bureau of Ethnology I would refer to the mound explorations that have been conducted under the immediate superintendence of Prof. Oyrus Thomas, by Mr. H. L. Reynolds, Mr. J. D. Middleton, and Mr. James Mooney; and to the general field work, chiefly anong the Indian tribes, of Mr. W.H. Holmes, Dr. W.J. Hottiman, Mr. Victor Mindeleff, Mr. James Mooney, Mr. Jeremiah Ourtin, Mr. J. W. B. Hewitt, and Mrs. T. E. Steveuson,

PUBLIOATIONS.

With regard to the character of the works issued by the Institution during the past year, little is to be added to the general statements made in my last report. In each of the three classes of Smithsonian publications, to wit, I, The Oontributions to Knowledge; II, The Miscellaneous Collections; and III, The Annual Reports, about the same amount of produstiveness has been maintained.

Smithsonian Oontributions to Knowledgc.-An original memoir by Prof. Alpheus Hyatt on the "Genesis of the Axietidæ," illustrated with numerous plates, has been published during the year, and this has permitted the completion of the long-delayed twenty-sixth volume of the quarto series. Two other memoirs, relating to the solar corona, have been pub. lished in the saine quarto form, but will not probably be included in the volumes of the "Contributions."

Smithsonian Miscellaneous Colleotions,-While the numbor of separate titles under this class has beon considerable, many of thom are the separate issues of articles contributed at the expense of the Institution to the Annual Reports. It is in contemplation to devote a larger space in the "Oollections" than of late to publications connected with the physical sciences; in which direction may be mentioned as one of the more important issuos of the year, an "Index to the Literature of Ther. modynamics," by Mr. Alfred Thekerman. The demand for copies of the oxhansted fourth edition of Guyot's Moteorological and Physical Tables, published in 1884, has been deemed sufficient to warrant the revision of the work and the issine of a new edition, which has been for several years under consideration. After olitaining the views of prominent me.
teorologists the work was placed iu the hands of Prof. William Libbey, jr., of Princeton, New Jersey, with the expectation that the new editiou will be ready for the printer during the coming year.

Among the publications of this series mention may be made of the tenth "Toner Lecture," by Dr. Harrison Allen, on "A Ulinical Study of the Skull."

A revised catalogue and index of all the Smithsonian publications to the middle of 1880 , occupying 383 pages, prepared by Mr. William J. Rhees, the chief clerk, has also been published.

No completed volume of the Miscellaveous Oollections has been issued within the year.
Smithsonian Annual Reports.-The annual report of the Regeuts to Oongress for the year ending June 30, 1887, in two parts or volumes, has beon received from the Public Printer and has been widely distributed. The aunual report for the succeeding year, 1888, although printed, has not yet been received; but is daily expected.

A detailed account of the several publications of the Smithsonian Institution for the year, under each class, will be given in the Appendix.

Other publications.-The publications of the National Musenm comprise the "Proceedings of the National Museum" and the "Bulletins of the National Museum," and are maintained by an appropriation annually maile by Oongress. As stated in my last report, "It has been deoided to hereafter omit these publications from the series" of Miscellaneous Collections issued by the Institution.* Of the publications of the Bureau of Dthnology the sixth annual report has bean issued dur. ing the year.

The edition of Swan's paper on "The Indians of Oape Flattery" having become axhausted, a new edition of 250 copies has been printed.

I'he Annnal Report of the American Historical Association, which by tho act of incorporation the Secretary of the Institution is directed to communicatis to Oongress, has been printed as Senate Miscellaneous Docuninent No. 170.

In Ootober, 1880, final arrangements were made with Prof. Edward D. Oope, whereby it is expected that his important work upon "Reptilia," undertaken soveral years ago at the request of the Secretary, will be ready for the printer by the ond of December, 1890.

Except in the case of the Anmaal Reports, the publientions of the Institution are generally issued with satisfactory promptness. The Annual Reports, which have been for some years so seriously bohindhand as to materially affect the value of the reviews upon scientifis progress, are, it is hoped, to be brought up to date during the coming year.

To aroid any possible delay on accomat of laok of legislation, the attention of the chairman of the Committee on Printing of the IUnited States Senato has been called to the desirability of having the bill pro-

[^3]viding for the printing of the Aunual Reports so worded as to allow for the printing of future reports without special legislation each year, at the some time increasing the number of copies to 19,000 . An act of Congress in the following terms would probably accomplish all that is desired:

That there be printed of the Reports of the Smithsonian Institution and of the National Museum, for the years ending June thirty, eighteen hundred and eighty-eight, and June thirty, eighteen hundred and eighty-nine, and anuually thereafter, in two octavo volumes for each' year, nineteen thousand extra coples, of which three thousand shall be for the use of the Senate, six thousand for the House of Representatives, and ten thousand for the Snithsonian Institution.

THE SMITHSONIAN INTERNATIONAL EXOHANGE SERVIOE.

At a meeting of the Board of Regents of the Smithsonian Institution on January 3, 1890, it was-

Resolved, That the Regents instruct the Seoretary to ask of Oongress legislation for the repayment to the Institution of the amount advanced from the Smithsonian fund for Governmental service in carryiug on. the exchanges.

In connection-with this resolution the following outline of the history of the exchanges is important :

Under the act of Oongress accepting a donation from James Smith. son "for the increase and difficion of knowedge amoug men," aud giving effect to this trust by the foundation of the Smithsonian Institution, the Board of Regents in 1851 established a system of international exchanges of the transactions of learied societies and like works; but, in addition to such publications, it voluntarily transported between 1851 and 1867 somewhat over 20,000 packages of publications of the bureans of the National Govermment at an estimated cost to the private funds of the Institution of about 98,000 . This, however, was understood to be a voluntary service, and no request for its re imburse. ment has been made or is contemplated.

Oongress, however, in 1807, by its act of March 2, imposed upon the Institution the duty of exchanging fifty eopies of all doommonts printed by order of either House of Oongress, or by the United States Government bureaus, for similar works published in foroign countries, and especially by foreign Governments.

The Institution possessed special facilities and expsrience for such work, the propriety of its undertaking which, in the interests of the Government', is ovident; but it was hardly to have been anticipated that the Government should direct this purely administrative service and make no appropriation for its support. Such, however, was the case, and with the exception of a small (presently to be noted) sum, returned by some bureaus, it was almost entirely maintained during the next thirteen years, or until the Hirst appropriation to the Institu. tion for exchanges in 1881, at the expense of the private fund of James Smithson.

From January 1, 1868, to Juue 30, 1886, 292,483 packages containing these official Government publications, having little to do with the object to which Congress devoted the Institution's private funds were transported by the Exchange Bureau at a pro rata cost of $\$ 92,943,36$ of which $\$ 29,706.85$ accrued between 1881 , when the tirst specifle appropriation was made, and 1886. Of this $\$ 92,943.36 \$ 19,302.35$ was returned from various Departments and bureaus, leaving a balance of. $\$ 73,641.01$ expended in carrying exclusively Governmental publications.

What has preceded refers to the transportation of official documents, and not to that of transactions of learned societies and othor like works; but it is now necessary to mention that in 1878 the honorable the Secretary of State designated the Smithsontan Institution as the special agent for the United States Government for carrying out the provisions of an international convention at Paris, which made the respective Governments assume the cost, not only of the transportation of official documents, but of scientific and literary publications, between the states interested, and it would seem that Congress itself adopted this view of its responsibility, for from July 1, 1881, to June 30, 1888, while the Oongressional and bureaucratic exchange represented a pro rata cost of $\$ 29,706.85$ and the scientifle publications $\$ 39,034.90$, Oongress ap. propriated directly $\$ 35,500$, somewhat more than the cost of the Government exchange, but leaving a balance of $\$ 3,534,90$ for scientific and literary exchanges uppaid. This latter sum, $\$ 3,534,90$, added to the $\$ 73,641.01$ montioned above, makes a total of $\$ 77,175.91$, for which, in equity, repayment might be requested,

In 1880, on the 15th of March, plenipotentiaries of the Uuited States and various other nationalities signed a convention more formal than that at Paris, by which the respective Govermments definitely assumed the exchange of official documents and soientitic and literary publications between the states interested.

Adopting, then, the year 1886, rather than the carlier dato, 1881 (though, as mentioned in the report, equity would seom to allow thes Institution the entre sum expended in exchanges, at least since its oflicial recognition by Congress in 1881 as tho Govormment oxchange agont), it appears upon deducting the amonnt approprinted by Onngress, $\$ 35,500$, from the balance shown in the preceding paragraph, $\$ 73,641.01$, that we have $838,141.01$ as the amonnt due the private find of James Smithson from 1868 to 1886.

Oonsidering separately the period from July 1, 1886, to June 30, 1880, we find that the amont expended in these years under the direction of the Smithsonian Lnstitntion on account of international exchanges was \$47,126.56; of this sum $\$ 37,000$ was paid by Oongressional appropria. tions, $83,091.75$ were paid by Government departments and othors, and the balance, $\$ 7,034.81$, by the Smithsonian Institution.

To recapitulate briefly it appears, thon, that the following sums have 'H. Mis. 129-2
been expended from the Smithsonian funds for the support of the inter. national exchange system in the interests and by the authority of the Natioual Government, namely, $\$ 38,141.01$ in excess of appropriations advanceil from January 1, 1868, to June 30,1886 , for the exchange of official Goverument documents, and $\$ 7,034,81$ in excess of approprjations from July 1,1886 , to June 30,1889 , advanced for the purpose of carrying out a convention entered into by the United States, or au aggregate of $\$ 45,175.82$.

A memorandum setting forth the above facts and requesting that steps be taken to procure the return to the Smithsonian fund by Oongress of the sum last mentioned $(\$ 45,175.82)$ was transmitted on the 20th of May, 1890, to the Hon. Benjamin Butterworth, of the Board of Regents; to be laid by the latter before Congress in due form.

The exchange work has shown the usual inorease, no less than 82,572 packages having been handled during the year, or 6,606 more than during the year immediately preceding. The number of societies and individuals for whioh exchange accounts are kept is now 16,002 .

The actual cost of the exchanges for the fiscal year, taking in account bills rendered and moneys received up to September 21, 1890, for services rendered between July 1, 1889, and June 30, 1890, was $\$ 17,401.23$. Of this sim $\$ 15,000$ were appropriated directly by Oongress, $\$ 1,086.14$ were repaid by several Government bureaus to which appropriations had been made for the purpose, $\$ 28.10$ was received from State institutions and other sources, leaving a defleiency of $\$ 386.69$, which was paid from the smithsonian fund.

In my report for last year I had the honor to submit detailed estimates showing the necessity of larger appropriations by Oongress if the Exchange Bureau is to be placed upon a satisfactory footing.

The chief increase in ontlay would be to sccure a more prompt eervice and to increase the number of exchanges that are received for the ki bray of Oongress, in return for the Govermment exchanges sent abroad. It is probable that the number of the latter wonld be largely increased if special efforts wore made to that ond.

An improvement in the promptness of transmission to Europe has taken placo within the last fow years, but packages aro still unduly delayed by reason of the fact that we aro not able to pay for rapid trans. mission. The exchange boxes go by slow freight and we are in most instances dependent upon the courtesy of the steam-ship companies for free freight. The greater number of the publications now transmitted are for the benefit of the Government and it seems unjust to continue to make use of such privileges originally granted in the interests of of science. The entire sum asked for was $\$ 27,500$.

Our exchange relations with foreign Governments have undergone no material change on account of the treaty at Brussels proclaimed January 15,1889 , to which allusion has been made in previous reports.

Iu order to carry out in good faith, as far as our own country is con.
cerned, the convention relating to the immediate exchange of parliamentary journals, a communication was directed to the honorable the Secretary of State under date of December 12, 1889, stating the necessity of procuring from Oongress an appropriation of about $\$ 2,001$ to meet the expenses of transmitting abroad coples of the Oongressional Record and other published documents pertaining to the daily routine of Oongress; and a joint resolution introduced at the instance of the lionorable the Secretary of State was promptly passed by the Senate, appropriating the sum named, $\$ 2,000$. I regret, however, that at the close of the fliseal year no action had been taken in the matter by the House of Representatives, and in consequence no attempt has been made to give effect to the treaty.
Tables showing in detail the transactions of the year will be found in the report of the curator of exchanges appended hereto.

The progress of work on the new exchange list is mentioned under the head of the library.

LIBRARY.

The accessions to the library have been recorded and cared for as during the last fiscal year.

The following statement shows the number of books, maps, and charts received from July 1, 1889, to June 30, 1890 :

	Octave. or amaller.	$\begin{aligned} & \text { Quarto } \\ & \text { or } \\ & \text { largor. } \end{aligned}$	Total.
Volumes	1,230	627	1,703
Parta of volumos	6,202	8, 260	13,458
Pampliets......	3,770	651	4,330
Maps		036
Total			20,187

Of theso accessions, 8,605 (namely, 785 volumes, 6,900 parts of volumes, and 1,010 pamphlets) were rotained for use at the National Museum library, and 1,005 medical dissertations were deposited in the library of the Surgeon-General, U. S. Army; the remainder were promptly sont to the Library of Congross on the Monday following their receipt.

The reading room is now almost flled with periodicals. There are ut present displayed the enrent volumes of 468 journals. The construction of shelves above the cases in the reading room has rondered it practicable to withdraw from the Smithsonian deposit in the Library of Congress the complece series of the large quarto 'Transactions or Memoirs of most of the great European academies; the Librarian of Oongress kindly giving every facility for this transfer.*-

[^4]In my last report, I referred to the commencement of the work of increasing the library by exchanges. This work has now been carried on for a year with fairly promising results.

The labor of assigning the different journals recommended as desira. ble to the four classes mentioned in my last report-namely, (1) journals which receive no Smithsonian publications, and which are not to be found in the library of the Institution; (2) journals which receive Smithsonian publications, but which make either no return or an inadequate return for these; (3) journals which regularly exchange with the Iustitution, but of which the files in the library are for any reason defective; (4) jourvals which regularly exchange with the Institution, and of which the library possesses a complete file-occupied the time until January 18, 1890. The writing of letters asking for exchange or calling attention to deficiencies was then commenced systematically.

Up to the close of the fiscal year, 1,601 such letters had been written. In response to these letters, 201 new exchanges were received and 360 defective series were completed, either wholly or as far as the missing parts were still in print.

A list of the new exchanges is presented in the Appendix (Report of the Librarian) where will also be found a list of the most important accessions outside of the regular serials.

The work of re-organization of the library under the regulations which I had prepared upon my appointment as Assistant Secretary, and described at some length in my report for the years 1887-'88, has been efficiently carried out by the librarian, Mr. Murdoch. I may also mention that a plan is under consideration for the further extension of the usefulness of the library, by establishing as a part of it a collection of books on general literature for the use of the employés of the Institution and its dependencies, although in its present location its growth is impeded for lack of room, owing to the pressing demands of the Government business in the Exchange Bureau.

MISORLLANEOUS.

Statue of Professor Buird.-I desire to call the attention of the Regents to the fact that the bill introduced in the Senate and passed by that body on February 10, 1888, making an appropriation for the erection of a bronze statue in recoguition of the distinguished services to the country of the late Professor Baird, has failed to reach final action by Oongress. I earnestly hope that steps will be taken to secure for this measure the attention it merits, and I continue to give it my per. sonal care.

Grants in aid of the physical sciences.-In accordance with an early established precedent, though one of late in disuse, some small grants,

[^5]from the Smithonian fund, commensurate rather with the abilities of the Iustitution than with its wishes, have been made this year to aid in physical science in addition to the aid so largely given to bioloigeal and ethnological sclence through the Museum, Bureau of Ethnology, and Zoological Park.

The sabscription of twenty copies of the Astronomical Journal, which are distributed abroad as exchanges of the Institution, has been continued.

To the Lick Observatory, through its director, Professor Holden, a small grant has been made for the purchase of photographic plates and apparatus to be used in securing photographs of the moon, and especially of certain regions on a large scaie, the results of the work being available for publication by the Institution.

Aid has also been promised Prof. Albert A. Michelson, of Olark University, Worcester, Mass., in his important investigations for the determination of a standard of length that shall depend upon the length of a wave of light.

A small grant has been made to Mr. F. A. Seely, of the United States Patent Office, for the purshase of certain objects of archsological interest, during the course of a contemplated journey in Spain.

Assignment of rooms for scientific work.-A. room in the basement, which is specially suited for delicate physical measurements, on account of its freedom from tremor, has been continued at the disposal of the U. S. Coast and Geodetic Survey for pendulum experiments, and two office rooms have also been assigned to the temporary use of the Zoological Park Oommission. The Regents' room, in the south tower, was grauted for a meeting of the American members of the committee on the. "International Standards for Iron and Steel" on February 19, 1800.

Facilities for study in the Museum have been accorded to a number of students, as stated in deseribing the Museum work, and under special conditions instruction has been given in taxidermy and photography. The lecture hall in the Museum has been used by authority of the Executive Committee for the meetings of the National Academy and other scientific organizations and for the Saturday lecture courses.

Toner leoture fund.-This fund, which hasmestimated value of about 83,000 , is in the care of a board of trustees, of which the secretary of the Smithsonian Institution is ex offoio chairman. No lecture has been delivered this year under the auspiees of this fund. The lecture delivered by Dr. Harrison Allen, on May 29, 1889, on the "Olinical Study of the Skull," has been printed.

Amerioan Historical Association.-A bill to incorporates the American Historical Association, which provided that the Association should report annually to the Secretary of the Smithsonian Institution and that the Secretary should communicate to Oongress the whole of such reports, or such portion thereof as he might see fit, finally became a law on January $4,1889$.

In December, 1889, the annual meeting of the Association took place in Washington, the morning session being held in the lecture hall of the National Museum and the evening session in the Columbian Univerity. The proceedings of this meeting are printed in the annual report of the association, which, in accordance with the provisions cited above, was submitted to me on January 14, 1890, and on June 18 was communicated to Oongress and ordered to be printed as Senate Miscellaneous Document No. 170. This report included, in addition to the proceedings of the annual meeting, a number of historical papers of a high order.
The provision by which the Regents are authorized to permit the deposit of the collections, manuscripts, books, pamphlets, and other historical material of the Association, has been met as well as our present accommodations will admit, and in making an estimate for repairs to the Smithsonian buildings arrangements were made for a suitable and safe place in which such valuable records might be stored.

Bureau of fine arts.-The desirability of having in connectiou with the Government a suitable depository of works of art has presented itself so forcibly to Members of Oongress, ayd without suggestion on the part of the Regents, that a bill was introduced in the Senate by the How. Wilkinson Call, on December 4, 1889, providing for the establishment of a bureau of fine arts in the Smithsouian Institution. This was referred to the Committee on the Library, but has not been reported.

The wording of the bill is as follows:
Be it enaoted by the Senate and House of Representatives of the United States of America in Oongress assembled, That there be, and is hereby, created in the Smithsonian Institution a bureau called the Bureau of the Fine Arts, the management of which is entrusted to the Secretary of the Smithsonian Institution.

Sco. 2. That the purpose and duties of this bureau shall be to aid in the development of the fine arts in the several States and Territories of the United States, by the re-production, tor the use of art schools and academies, of casts of statuary and other objects used in giving instruc. tion in art; by preparing and distributing plans for the construction of buildings and the adaptation of rooms suitable for use as art sehools, with printed plans for the organization of various grades of art academies and classes; by causing to be held aunually in Washington, District of Columbia, a public exhibition of works of art, open to all desiring to exhibit, in which the fairest possible opportunity for exposition shall be atforded all contributors; and by the publioation of an annual register containing an account of new discoveries, inventions and methods of instruction useful to students of art, together with a report of the progress of the fine arts in the United States.

Sed. 3. That the re-productions and publications of the bureau shall be distributed among institutions of art, under such regulations as the Secretary of the Smithsonian Institution may establish.

Sec. 4. That the Secretary of the Smithsonian Institution shall provide suitable quarters for the holding of the annual art exhibition.

Sed. 5. That for the purpose of carrying on the operations of this burean there be and is hereby appropriated, for the fiscal year begin-
ning July 1st, eighteen hundred and eighty- , the sum of dollars, to be paid by the Secretary of the Treasury out of any moneys in the Treasury not otherwise appropriated, and expended under the direction of the Secretary of the Smithsonian Institution.

Oapron colleotion of Japanese voorks of art.-A bill appropriating $\$ 14,675$, introduced by the Hon. Daniel W. Voorhees on December 4, 1889, was referred to the Oommittee on the Library, was reported favor. ably, and passed the Senate on March 29, 1890. It was also, on May 19, 1890, reported favorably by the House Comnittee, but was not reached on the calendar at the close of the year.

The World:s Columbian Exposition, Ohicago, 1892.-The act of Oon. gress approved April 25, 1890, which provides for celebrating the four hundredth anniversary of the discovery of America by Ohristopher Columbus, by holding an international exhibition of arts, industries, manufactures, and the product of the soil, mine, and sea in the city of Ohicago, states in section 16 :

That there shall be exhibited at said exposition by the Government of the United States, from its Executive Departments, the Smithsonian Institution, the United States Fish Oommission, and the National Museum, such articles and materials as illustrate the function and administrative faculty of the Government in time of peace and its resources as a war power, tending to demonstrate the nature of our institutions and their adaptation to the wants of the people; and to secure a complete aud barmonious arrangement of such a tiovernment ex. hibit, a board shall be created to be charged with the selection, preparation, arrangement, safe-keeping, and exhibition of such articles and materials as the heads of the severul Departments and the direc: tors of the Smithsonian Institution and National Museum may respectively decide shall be embraced in said Government exdibit. The Pres. ident may also designate additional articles for exhibition. Such board shall be composed of one person to be named by the lead of each Executive Department, and one by the directors of the Smithsonian Institution and National Museum, and one by the Fish Commission, such selection to be approved by the President of the United States. The President shall name the chairman of said board, and the board itself shall select such other officers as it may deem necessary.

Under the authority convejed by this act I have designated as the represeutative upon this board of the Smithsonian Institution and National Museum, the assistant secretary of the Institution, Dr. G. Brown Goode, who has already devoted considerable time to the subject of the proposed exposition in addition to his other oflicial duties.

In connection with this requirement that an exhibit shall be made by the Natlonal Museum, I beg leave to recur to the fact that it has been the experience in connection with previous expositions on a smaller scale, that the routine work of the Institution is serionsly interfered with by thus throwing upon its regular employes the great burden in. volved in the preparation, packing, and displaying of Muspum material without adequate assistance by an increased appropriation during this time of unusual effort. The impairment of specimens by frequent trausportation should also be borne in mind, and in jastice to our per-
manent exhibits provisiou should be made for repairing any damage incurred.

Stereotype plates.-All the stéreotype plates belonging to the Institution are now stored in the basement of the building, and some progress has been made in examining, re-arranging, and where the boxes have become worn out, in re-packing plates. Owing to the limited amount of time that can be devoted to this work, however, it will be some months before they can be put in a thoroughly satisfactory condition for ready reference.
A request from Messrs. Lea \& Shepard, of Boston, for the use of plates from Professor Hyatt's "Genesis of the Arietidæ" has been cheerfully complied with.

Oorrespondence,-I have given much attention to the improvement of the methods of handling the correrpondence of the Institution, which is constantly growing and has already assumed very considerable proportions. A simple but effective means of recording letters, showing at a glance, what letters remain unanswered each week, has been introduced, and as a result few letters remain long without reply.

It should be borne in mind, however, that the character of the correspondence, except such as relates to business routine, is quite different from that of Government bureaus. Oonstant inquiries are made from all parts of the country for information on almost every couceivable topic, and requests for statistics and for information on the most varying scientific subjects. It is intenderl that all of these inquiries should receive acknowledgment, and, wherever possible, that the information desired should be sent, though in many cases it requires an amount of time and labor on the part of curators and other officers of the Institution wholly out of proportion to the merits of the case.

As properly coming under the head of "diffusion of knowledge," it does not seem proper to ueglect such inquiries, and it is intended to give encouragement and advice wherever possible to all interested in the ob. jects of the Institution.
The course taken by an incoming letter is now as follows: The mail is opened each morning in the chief clerk's office, and all letters addressed to the secretary or the Institution, with the exception of those on printed forms, purcly routine matters, and applications for Museum publications, are placed on the secnetary's desk at 10 o'clock, together with letiers for signature. Having been acted upon, the date stamp of the secretary's office is affixed to each communication and the letter is then returned to the chief clerk's office. Should the secretary have written in his own hand the name of any employe or officer of the Institution upon a letter, such action means that the letter is to be referred to the person named, who is expected to prepare a reply thereto for the secretary's signature.

The one excention to this rule is when the secretary refers a letter to the assistant secretary, who exercises his diseretion as to whether the
letter should be answered at all or not, and if so, whether he or the secretary should sign the reply.

In case no comment has been made by the secretury, the disposition of the letters is left to the chief clerk, who assigns them to the officers or clerks having in charge the matter treated of. The letters are then sent to the registry clerk, who affixes the registry number and records the letter in a book suicably ruled with the following columns:

1. Registry number of letter.
2. Name of writer.
3. Address.
4. When written.
5. When received.
6. To whom referred.
7. By whom referred.
8. When referred.
9. Date of anstrer, or indication no anower required.
10: Synopsis of contents.

A special form is sent with letters referred to the Museum, by means of which an accurate record of the disposition of the letter may be kept, and a similar form is used for letters referred to employes of the Smith. sonian Institution proper.

The object of this system is, as above stated, to insure that each let. ter requiring an answer shall receive it with all attainable promptuess, or that a record shall be made of the fact that no answer is required, and, as a rule, it is belfeved that letiers are now being answered on the day after receipt, except in the case of the somewhat numerous class referred to, upon which the report of an expert is first necessary. In the latter case, a limit of six days has been fixed upon from the date of receipt in which to answer ordinary routine letters. A report is rendered each week the letters that are then unanswered. This system, while entailing some additional labor, appears to be fully justifled by the results.

Representative relations.-In response to an invitation from Dr. Henry Schliemann, forwarded through the Department of State, to designate a representative of the Smithsonian Institution to participate in an International Oonference, held on the ruins of ancient Troy during the latter part of March, 1890, Dr. Oharles Waldstein, director of the American School of Classical Studies at Athens, was requested to act as representative of the Institution, and he has most kindly complied with this request, transmitting an interesting report of the proceedings of the Oonference.

Prof. H. Oarrington Bolton courteuusly represented the Institution at the installation of Dr. Low as president of Colnmbia Uollege, New York, on February 3, 1890.

Prof. Otis T. Mason was appointed as the representative of the Institution upon a joint board composed of delegates from different bureaus of the Government interested in the subject to consider and decide questions of geographical orthography and nomenclature. This board met for organization at the office of the Superintendent of the U. S. Ooast and Geodetic Survey on the 18 th of March, and its work is one
that has already proved to be of great value to the Government and to others interested in geographical matters.
I take occasion to express to the Director of the Mint, the Hon. E. O. Leech, my acknowledgments for his kindness in having prepared an intaglio head of the late Professor Henry for certain official correrpond-ence,-an excellent work of art.

U. S. NATIONAL MUSEUM.

The operations of the National Museum are fully described in the separate Report of the Assistant Secretars, in which are included (1) the report of the Assistant Secretary in charge of the Museum ; (2) the reports of the curators of the scientific departments of the Museum; (3) special papers based upon aud illustrative of collections in the Museum; (4) bibliography of the publications of the Museum and of papers published by Museum officers and other collaborators; (5) a list of the accessions to the Museum during the year.

Increase of the Museum colleotions.-A small number of specimens were purchased during the year. The necessity of expending a considerable sum of money in the purchase of new material becomes every year more apparent. The donations of friends of the Museum are to a large extent miscellaneous in character, and they frequently duplicate, rather than enlarge and complete, the various series of objects already in the collections. The Museum has now reached a point where the complete presentation of subjects by means of full suites of specimens is of the lighest importance, and this can be accomplished only by purchase.
The increase in the number of accessions during the year has been less than in the preceding year by nearly 200 numbers. This is not sarprising, since no special efforts have been made to secure new material, excepting in certain directions, in which the completion of special series of objects was desired, in view of the crowded condition of both the storage and exhibition space. This matter has repeatedly been referred to in the more recent reports of the Institution and of the Museum, and efforts have been made to obtain an appropriation from Oongress for the construction of a new Museum building. The Senate has acied favorably in regard to the matter, but its aetion has not received the support of the House of Representatives.
The contributions during the year, although less in number than in the previous year, are, taken as a whole, equal in importance. Especialy is this true in the case of material acquired from foreign countries, and of collections received through the assistance of the Departments and Bureaus of the Government.
The extent and eharacter of the accessions during the year and each year since 1881 is shown in the appended table. The total number of spedimens receiver during the year covered by this report is estimated at 81,992 .

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Name of department. \& 1882. \& 1883. \& 1884. \& ${ }^{1} 1885-186$. \& 1880-'87. \& 1887-'88. \& 1888-'89. \& 21880-'0n.

\hline Arta and induatries: \& \& \& \& \& \& \& \&

\hline Maleria medloa \& \& 4,000 \& 4,442 \& 4,850 \& B, 616 \& B, 762 \& 5,942 \& ${ }^{25}, 915$

\hline Foods \& \& 1,244 \& 1,680 \& 822 \& 877 \& 877 \& - 911 \& 1,111

\hline Toxtles \& \& \& 2,000 \& 3,083 \& 8,144 \& 3, 144 \& 3,222 \& 8,288

\hline Fiskerios \& \& \& 5,000 \& 9,870 \& 10,078 \& 10,078 \& 10,078 \& 10,080

\hline Andmal produc \& \& \& 1,000 \& 2,792 \& 2,822 \& 2, 822 \& 2,948 \& 2, 949

\hline Graphlo arts.......... \& \& \& \& \& \& \& \& ${ }^{4} 800$

\hline Transportation and en. gineering \qquad \& \& \& \& \& \& \& \& ${ }^{1} 1,250$

\hline Naval architeoture \& \& \& 600 \& \& \& \& 600 \& ${ }^{6} 600$

\hline mistorical relles \& \& \& \& 1,002 \& \& \& \&

\hline Coling, medals, paper mones, ete. \qquad \& \& \& \& 1,005 \& 13, 634 \& 14,640 \& 14,990 \& 20,890

\hline Masical fnstiuments \& \& \& \& 400 \& 417 \& 427 \& 427 \& 447

\hline Modern pottery, porcelain, and bromzes.. \& \leqslant \& \& \& 2,278 \& 2,238 \& 3, 011 \& 3,011 \& 3,132

\hline Paints and dyes \& \& \& \& 77 \& 100 \& 100 \& 100 \& 197

\hline "The Catlin Gallery \& \& \& \& 600 \& 600 \& 500 \& 500 \& (6)

\hline Physical apparat \& \& \& \& 250 \& 251 \& 251 \& 251 \& 263

\hline Olls and gums \& \& \& \& 197 \& 198 \& 198 \& - 213 \&

\hline Chemical product \& \& \& \& 659 \& 661 \& 661 \& 688 \&

\hline Domestlo animal \& \& \& \& \& \& \& \& 66

\hline Ethnology \& \& \& 200,000 \& 500,000 \& 503, 764 \& 605, 464 \& 508, 324 \& 608, 830

\hline American aboriginal pot. tery. \qquad \& \& \& 12,000 \& 25,000 \& 26,022 \& 27,122 \& 28, 222 \& 29, 289

\hline Oriental antiquities. \& \& \& \& \& \& \& 850 \& 3,485

\hline 1 rehlatorio anthropology .. \& 35, 512 \& 40,191 \& 45, 252 \& 65, 314 \& 101, 659 \& 108, 631 \& 116,472 \& 123, 677

\hline Mammala (akine and alcoholles) \qquad \& 4,660 \& 4, 920 \& 6; 694 \& 7,461 \& 7, 811 \& 8, 058 \& 8, 275 \& 8,836

\hline Birds \& 44, 354 \& 47,246 \& 50,350 \& 55, 045 \& 54, 987 \& 50,484 \& 57, 974 \& 80, 219

\hline Birda' eggs and neats \& \& \& 40,072 \& 44, 163 \& 48, 173 \& 60, 055 \& 60, 173 \& 61, 241

\hline Ileptiles and batraohlans \& \& \& 23, 495 \& 25,344 \& 27, 542 \& 27,664 \& 28, 405 \& 29,050

\hline Flahes \& 50,000 \& 65, 000 \& 68, 000 \& 75, 000 \& 100,000 \& 101, 350 \& 107, 350 \& 122, 675

\hline Vertebrate fossils \& \& \& \& \& \& \& \& 7512

\hline Molluaks \& 83, 375 \& \& 160,000 \& 400,000 \& 425, 000 \& 455,000 \& 408,000 \& 471, 100

\hline Inseots \& 1,000 \& \& 151, 000 \& 500,000 \& 685, 000 \& 605, 000 \& 603,000 \& 618, 000

\hline Marlue Invertebrates \& 11,781 \& 14,825 \& 200, 000 \& 350,000 \& 450,000 \& 515, 000 \& 615, 300 \& 620, 000

\hline Ommparative anatomy: Oateology........... \& 3,635 \& \& \& \& \& \& \&

\hline Osteology.............. \& 3,530

70 \& $$
103
$$ \& 1,214

3,000 \& $\} 10,210$ \& 11, 022 \& 11,558 \& 11,783 \& 12,328

\hline Paleozoto forsils. \& \& 20,000 \& 73,000 \& 80,482 \& 84,401 \& 84,849 \& 01, 128 \& 92, 355

\hline Mesozolo forsils \& \& \& 100,000 \& 60,742 \& 70,775 \& 70, 825 \& 71, 230 \& 71,305

\hline
\end{tabular}

${ }^{1}$ No consur of cullection taken,
${ }^{2}$ The aotual fucrease in the colleolloun duriug the year 1889 -'00 ia much greater than appeara from a comparison of tho totals for 1889 and for 1800 . This is explatued by the apparent absence of any inoroase in the Departments of Ilthology and Motallirgy, the total for 1890 m both of these dopert monts combined showing a deorease of 40,314 apecimons, owing to the rejeotlon of worthless material.
${ }^{3}$ Allhough about two hundred speolmbis havo been recoived durling the year, tho total number of apeolmens in the collootion is now leas than that ostlmated for 1889 , owing to the rojootlon of worthless matorial.
${ }^{4}$ The colleotion now contalus between 3,000 and 4,000 speolmens.
${ }^{5}$ No estimate of inerease made in 1800.
${ }^{6}$ Inoluded in the historloal collootion.
${ }^{7}$ Only a small portion of the colleotion represented by this number was recelved durlag the year 1882-90.

Name of department.	1882.	1883.	1384.	1885-86.	1886-'87.	1887-'88.	1888-'89.	1889-'00.
Cenozoto forsils.............	(Tnoluded with mollusks.)							
Foosil plants:		4,624	7,291	7,429	8,462	10,000	10, 178	10,607
Recont plants				30,000	32, 000	38,000	38,459	39,654
Minorala.		14,550	16, 610	18,401	18, 601	21,806	27,690	37, 101
Lithology and physical geology \qquad	-9,075	12,500	18, 000	20,647	21, 600	22, 500	27,000	
Metallurgy and economito geology		30,000	40,000	48,000	49,000	51, 412	52, 076	$\}^{2} 32,782$
Living suhurls.						, 220	3491	
Total	193, 362	263, 143	1,472,600	2,420,94t	2,666,335	2,803,459	2,884,244	2, 895, 104

[^6]Catalogue entries.-The number of entries made in the catalogue of the several departments oi the Museum during the year is 28,293.

The number of boxes and packages recorded by the registrar as having been received daring the year, and entered upon the transportation record of the Smithsonian Institution, is 52,079. Of this number 827 contained specimens for the Mnseum. Although the total number of packages recelved is more than three times as great as that for last year, the number of packages containing specimens for the Museum is only a little more than one-third of the number received during 1889.

Oo-operation of the Departments of Government.-The friendly interest displayed in the work of the National Museum by officers of the Departments of the Government has been continued, In no previous year has the Museum had occasion to acknowledge more gratefully the cour. teous assistance randered by the Secretaries of the Departments and the chiefs of many of the Bureaus.

Through the medium of the Department of State, several United States ministers and consuls have brought their influenco to bear in obtaining for the Museum representations of the fauna and flora of the regions in which they are residing.

The Secretary of the Treasury has extended the usual courtesies in connection with the free entry of specinens. Special facilities have been afforded in connection with the visit of Mr. Henry W. Wlliott to the Seal Islands of Alaska, which, it is hoped, will result in the addition of several specimens of fur-seal, fishes, and other natural-history objects to the collections. The Coast and Geodetic Survey, the Revenue Marine Division, the Life-Saving Service, and the Light-House Board have assisted collectors for the Museum in special ways.

Several offleers of the U. S. Army have made valuable contributions. The Quartermaster's Department has extended important assistance in connection with the transportation of bulky material for the Museum.

From officers of the U. S. Navy many collections have been received froוn foreign countries, including the West Indies, Liberia, the Samoan Islands, and Mexico.

Through the courtesy of the Secretary of the Interior, the Museum has received a very valuable collection of ethuological specimens from the Indians of the Tulalip Reservation, Washington. The material transmitted to the Museum by the U. S. Geological Survey is large in extent and quite equal in importance to the collections received from that source in previous years.

From the Divisions of Animal Industry, Entomology, Botany, For. estry, and Ornithology and Maminalogy, in the Department of Agriculture, numerous contributions have been received.

Distribution of Duplicate Speoimens.-Oollections of ethnological, zoologioal, botanical, and geological speoimens, contained in two hundred and one packages, have been distributed during the year to about one hundred and twenty educational establishments at home and abroail. A large nuinber of duplicate sets of minerals and marine invertebrates were included in these distributions.

Numorous applications for duplicate specimens, chiefly minerals, still remain unfilled. It is hoped that during the next fiscal year it will be possible to send out bird-skins and rocks also.

Museum Publications.-This department of the Museum work has been unusually active during the year.

The Museum Reports for 1886 and 1887 have been published. Each of these volumes contains several papers based upon collections in the Museum by Museum officers and other collaborators.

Volume XI of the l'roceedings of the National Museum, for 1888, has been issued. This contains xi +703 pages, 60 plates, and 122 text figures. It includes eighty-flve papers by forty-three authors, nineteen of whom are officers of the Museum. The papers composing Volume XII of Proceedings of the National Musenm, for 1889, are twenty-nine in number (Nos. 761-789) ; and were all published as separates during the year, although the bound volume has not yet been issund. Oommencing with this volume the system of issuing sixteen pages at a time-forming a signature-as soon as sufficient manuscript had accumulated, has been discontinued. Fach paper is now printed separately, in advance of the bound volume, and is immediately distributed to specialists.

Five numbers of the Bulletin have been published (Nos. 34-38, inolu. sive). Bulletin 34 relates to "The Batrashia of North America," by Prof. E. D. Oope. Bulletin 35 contains a "Bibliographical Oatalogue of the Described Transformations of North American Lepidoptera," by

Mr. Henry Edwards. Bulletin 38 is entitled "Oontributions to the Natural History of the Oetaceans, A Review of the Family Delphinidae," by Mr. Frederick W. True. Bulletin 38 has the title: "Oontribution towasd a Monograph of the Insects of the Lepidopterous family Noctaidas of Temperate North America," and is a revision of the species of the genus Agrotis. This Bulletin, by Mr. John B. Smith, of Kutgers Oollege, New Jersey, was not actually published until after the close of the tiscal year, although it was put in type during the year covered by this report. The manuscript for other Bulletins relating to deep-sea fishes, by Drs. G. Brown Goode and Tarleton E. Bean, and to a descrip. tion of the metallurgical collection in the Museum, by Mr. Fred P. Dewey, has been transmitted to the Government Printing Office.

A large number of papers upon scientific subjects have been pubJished by officers of the Museum and other specialists. They are referred to in the bibliography of Museum publications, constituting Section IV of the separate report of the Assistant Secretary.

Assistance to students.-The usual facilities have been granted to students in the various branches of natural history, and several collections have been lent to specialists for comparison and study. Dr. R. W. Shufeldt, U. S. Army, requested permission to study bird-skeletons. Mr. Bashford Dean, of the Oollege of the Oity of New York, received fishes for study; a collection of bats from the British Museum was furnished to Dr. Harrison Allen, of Philadelphia, for comparison and study; a part of the Musenm collection of Coleoptera was sent for a similar purpose to Oapt. T. L. Oasey, of New York Oity. Several persons have received instruction in taxidermy and photography.

Special researohes.-Several of the carators in the Museum are preparing for publication in the Museum Report for 1800 papers which are the result of special investigation and research. Among these may be mentioned a hand book of the geological collections, by Mr. George P. Merrill; a descriptive paper relating to the collection of humming-birds in the Museum, by Mr. Robert Ridgway; papers relating to Japanese religion and Japanese burials, by Mr. Romyn Hitchcock. Other gen. tlemen, not officially connected with the Museum, have also prepared papers for publication in the same volume.

The Museum Report each year contains a number of descriptive papers of the kind alluded to, and the interest which they have excited among all classes of people has been very great. During this year sev. eral hundred copies of papers of this character, printed in the more recently published reports of the Musenm, have been distributed free of cost. Among these may be especially noted the "Hand-Book and Oatalogue of the Building and Ornamental Stones in the National Museum," by Mr. George P. Merrill,* and the paper entitled "The Extermination of the American Bison," by Mr. William T. Hornaday." \dagger

[^7]Museum library.-The number of publications added to the Library during the year is 12,437 , of which 1,479 are volumes of more than 100 pages, 2,250 pamphlets, 8,672 parts of regular serials, and 36 oharts. With the exception of the charts these numbers are more than double the receipts of lasi year. The most notable gift was a nearly complete set of Kiener's "Iconographie des Ooquilles Vivantes," illustrated with very beautifully colored plates. This was presented by the Wagner Free Institute of Sisience, in Philadelphia.

Museum labels.-During the year 3,920 forms of labels have been printed (twenty-four sopies of each form) for use in connection with labeling the collectious of ethnology, geology, mammals, comparative auatomy, porcelains, oriental antiquities, graphic arts, foods, textiles, and materia medica.

Meetings and leotures.-The use of the Lecture Hall has been granted for lectures and meetings of scientific societies, as The Association of American Agricultural Colleges and Experiment Stations, Novenber 12-15, 1889, inclusive; the American Historical Association, December 28-31; the American Institute of Mining Engineers, February 18, 1890; Memorial Meeting of the Academy of Sciences, Maroh 27; the Geological Society of America, April 17; the National Academy of Sciences, A pril. 15-18, inclusive; Meeting of the Oommittee on Arrangements of the Geological Oongress, April 18; The National Geographic Society, May 2.

The course of Saturday lectures, ten in number, beginning February 1 , and ending April 3, was delivered under the direction of the joint committee of the scientific societies of Washington. A course of four lectures relating to the authropological exhibits at the Paris Exposition in 1889 was given in May by Mr. Thomas Wilson, curator of archeology. A lecture, under the auspices of the National Geographic Society, was delivered on April 11 by Ensign J. B. Bernadou on the subject of "Oorea and the Ooreans."

Visitors.-The number of visitors to the Museum building during the year ending June 30,1890 , was 274,324 . The number of visitors to the Smithsonian building during the same period was 120,804 . These fig. ures are considerably less than during 1889, when, on account of the inauguration of President Harrison, immense numbers of people visited the Museum. On March δ, it may be remembered, more than 56,000 people visited the Museun and Smithsonian buildings. The total number of visitors since 1881 to the Museum building is $2,111,949$, and to the Smithsouian building, 970,012 .

Hatension of hours for visiting the Museum.--On December 20 a bill was introduced in the House of Representatives by the Hon. W. H. Orain, having for its object the opening of the Smithsonian and Museum buildings during extra hours. Mr. Crain also introduced a bill later in
the session to provide an electric plant for lighting the buildinge. Neither of these bills has been reported from the committees to which they were referred.

Museum personnel.-Mr. George P. Merrill has been appointed Ourator of the Department of Geology, which combines we functions of the previously existing departments of Lithology and Physical Geology, and of Metallurgy. This change in the arlministration of these departments was made upon the resignation of Mr. Fred P. Dewey, who for séveral years had been in charge of the metallurgical collections.

Mr. Willian O. Winlock, of the Smithsonian Institution, was appointed Honorary Ourator of the Section of Physical Apparatus in the National Museum.

Mr. William T. Horuaday, perhaps the first taxidermist in the country, throngh his extensive knowledge of the habits and natural attitudes of animals, in a very wide range of travel as a field naturalist, has elevated the standard of his art by the fidelity of his groupings and his skill in the representation of life-like aspects in the plastic form. He had rendered valuable service to the National Museum as its chief taxidermist, and subsequently as Honorary Ourator of the Department of Living Animals, which led to his appointment as Acting Superintendent of the National Zoological Park. From this position he resigned on the 15 th of June last.

Dr. Frank Baker was, in June, appointed Honorary Ourator of the Department of Comparative Anatomy in the Museum, though as it has been found necessary to assign Dr. Baker to temporary duty as Acting Manager of the National Zoological Park, Mr. F. W. True continues to fill the position of acting curator of that department.
-A detailed statement relating to the work of the administrative offi. cers of the Musenm will be found in the volume containing the report of the Assistint Secretary.

Explorations.-In connection with the arpedition sent by the United States Government to the West Oonst of Africa to take observations of the edipse of the sun, the National Musemm obtained the privilege of sending a naturalist for the purpose of making collections of ethnological and zoological objects. Mr. William Harvey Brown, of the National Musenm, was detailed to accompany the expedition. Larly in June, 1890, the first collections were received as the result of his explorations. They included mammals, fishos, insects, plants, roptiles, birds, shells; rocks, and ethnological objects. Additional collections will doubtless soon be received; and will be referred to in the next report. As an oatcome of Mr. Brown's exploration work, collections have been received from Rev. G. H. R. Fisk, Mr. J. H. Brady, Mr. P. MacOwan, director of the Botanical Garden at Oape Town, Mr. Frye, of Oape Town, and others. The thanks of the Smithsonian Institution are especially
due to several of the officers and sailors of the U. S. S. Pensacola for assistance rendered Mr. Browū in his work.

Dr. W. H. Ruah, U. S. Nary, has kindly offered to collect marine invertebrates during his expedition to the Azores, Madeira, and the English Ohanuel.

Mr. J. P. Iddings, of the U. S. Geological Survey, has expressed his willingness to bear in mind the requests of the Museum during his expedition to the volcanic regions of Europe.

Mr. E. M. Aaron, of the American Entomological Society, has kindly offered to be of service to the Museum in collecting entomological material during his visit to Jamaica.

Mr. O. R. Orcutt, of San Diego, California, has announced his intention to visit the Colorado desert and the Gulf of Oalifornia, and to allow the Museun to share the results of his expedition.

Mr. Heury W. Elliott, formerly of the Alaska Commercial Company, is visitiug the Seal Islands of Alaska on business connected with the United States Government, and hopes to be able to secure for the Museum some tine specimens of walrus, fur-seal, fishes, and other zoolog. ical material.

Department of living animals.-Upon the passage of the bill placing the National Zoological Park under the care of the Board of Regents, the department of living animals of the Museum was merged in the now park and the necessary transfers were made from the Museum rolls. For convenience, therefore, the report in regard to the principal accessions to this department have been included in the report of the acting manager of the Park.

The animals are retained for the present in their sheds in the Smithsonian Grounds for the reason that during the fitting up of the Park they can there be cared for at a much less expense; for instance, two watchmen are now required instead of twenty that would probably be needed at the Park, where each group of animals will be placed in a center from which to grow, a plan that involves the necessity at first of spreading the collection over a considerable area.

The interest in this small collection has constantly increased, and has been manifested by numerous offers of valuable gifts, most of which it has been impossible, through lack of space and immediate accommodations, to accept.

$$
\text { H. His. } 129-3
$$

NATHONAL, ZOULOGIOAL PARK.

In the early part of this eentury a nataralist traveling in Siberia stood by the mutilated body of a mammoth still undecayed, which the melting of the frozen gravel had revealed, and to the skeleton of which large portions of flesh, skin, and hair still clung. The remains were exeavated and transported many hundred miles across the frozen waste, and at last reached the Imperial Museum at St. Petersburg, where, through all these years, the mounted skeleton has justly beon regarded as the greatest treasure of that magniflcent collection.

Scientific memoirs, popular books, theological works, poems-in short, a whole literature-has come into existence with this discovery as its text. No other event in all the history of such subjects has excited a greater or more permanent interest outside of purely scien. tific circles; for the resurrection of this relic of a geologio time in a condition analogous to that in which the bodies of contemporaneous animals are daily seen brings home to the mind of the least curious observer the reality of a long extinct race with a vividness which no fossils or petrifactions of the ordinary sort ean possibly equal.
Now, I am assured by most competent naturalists that few, if any, of those not particularly devoted to the study of American animals realize that changes have already occurred or are on the point of taking place in our own characteristic fauna compared with which the disappearance from it of the mammoth wasinsignificant. That animal was common to all northern lands in its day. The practical domestication of the elephant gives to every one the opportunity of observing a gigantic creature closely allied to the mammoth, and from which he may gain an approximately correct idea of it. Jiat no such example is at handinthe case of the bison, the proug-horn antelope, the elk, the Rocky Mountain goat, and many more of our vanishing races.
The student of even the most modern text-books learns that the characteristio larger animals of the United States are those just mentioned, with the monse, the grizaly bear, the beaver, and if we include marine forms and aretic American animals we may add the northern fur-soal, the Pacific walrus, the Oalifornian sea-olephant, the manateo, and still other's.

With one or two exceptions out of this long list, men now living ean romember when each of these animals was reasonably aboudant within its natural territory. it is within the bounds of moderation to aflrm uhat unless Congress places some check on the present rate of destruction there are men now living who will see the time when the animals enumerated will be practically extinct, or exterminated within the lim. its of the United States. Already the census of some of them can be expressed in three figures.

Whe fate of the bison, or American buffalo, is typical of them all. "Whether we consider this noble animal," says Audubon, "as an ob-
ject of the chase or as an article of food for man, it is deoidedly the most imporuint of all our American contemporary quadrupeds."

At the middle of the last century this animal pastured in Pennsylva. uia and Virginia, and evon at the close of the century ranged over the whole Mississippi Valley and further west wherever pasturage was to ke found. At the present time a few hundred survivors represent the millions of the last century, and we should not have even these few hundred within our territory had it not been for the wise action of Oongress in providing for them a safe home in the Yellowstone Park.

Now, for several reasons it has been comparatively easy to trace the decline of the buffalo population. The size of the animal, its preference for open country, the sportsman's interest in it, and its relations to the food supply of the Western Indians, all led to the observation and record of changes; and accordingly I have made special mention of this animal in representing the advantages of a national zoological park where it might be preserved; but this is by no means the only characteristic creature now threatened with speedy extinction.

The moose is known to be at the present time a rare animal in the United States, but is in less immediate dauger than some others. The elk is vigorously hunted and is no longer easily obtained, even in its most favored haunts. The grizaly bear is believed to be rapidly ap. proaching extinction outside of the Yellowstone Park; where, owing to the assiduous care of those in charge, both it and the olk are still preserved. The mountain sheep and goat, which inhabit less accessible regions, are becoming more and more rare, while the beaver has retreated from a vast former area to such sechuded haunts that it may possibly survive longer than the other species which I have just enumorated, and which aro but a portion of those in imminent danger of extinction.

Among the marine forms the manatee still exists, but, although not exterminated, it is in immediate danger of becomimg so, like the Oalifornian sea-olophant, it gigantic creature, of on of greater buik than the elephant, which has suffered the fate of complete extinction within a few past years; at least it is uncertain whether a single individual actually survives. The Pacific walrus, upon which a large native population has always in great part dopended for food and hides, is rapidly following the sea elophant, and so on with other species.

This appalling destruction is not contued to mammals. Disregard ing the biids of song and phumage, to which the fashions of the milli. ner have brought disaster, nearly all the larger and more chavactoristio Amorican birds lave suffered in the same way ad their four-footed contemporuries. The fate of the great Auk is frmiliar to all naturalists; but it is not so well known that the great Oalifornian vilture and sev. eral si the beantiful sea-fowl of our consts have met the same fate, and that the wild pigeon, whose astonishing flocks were dwelt upon by Andubon and othors in such romarkable descriptions and which wore long
the wonder of Americaik traveleri, with the less known, but maguificent ivory-billed woodpeeker, and the pretty Oarolina parrakeet, lave all become, if not extinct, among the rarest of birds.
Apart from the commercial value of its skins, the tax upon which has paid for the cost of our vast Alaskan territory, the singular habits and teeming millious of the northern fur-seal have excited general interest even among those who are not interested in natural history. In 1849 these animals abounded from Lower California to the lonely Alaskan Isles, and it has been supposed that the precautions taken by the Goverument for their protection on the breeding.grounds of the Pribilov Islands would preserve permanently the still considerable remuant which existed after the purchase of Alaska and the destruction of the southern rookeries. But it is becoming too evident that the greed of the hunters and the devastation camsed by the general adop. tion of the method of pursving them in the open sea, destroying indiscriminately mothers and offspring, is going to bring these hopes to naught.
For most of these animals, tharefore, it may be regarded as certain that, unless some small remnant ie preserved in a semi.domesticated ${ }^{\prime}$ state, a few sears will briug utter extinction. The American of the next generation, when questioncl about the animals once sharacteristio of his country, will then be forced to confess that with the exception of a few insignificant creatures, ranking as vermin, this broad continent possesses none of those species which once covered it, since the present generation will have completed the destruction of them all.
The Yellowstone Park is doing excellent work under the present management, and too much can not bo said in praise of the action which has given it to the country. It is, however, also desirable and necessary that, if these vanishing forms are to be preserved, there should be some zoological preserve or garden nearer the Oapital, where representatives of all these races, not only of tho land, but of the water also, may be preserved under the care of those permanently interested in their protection, in the charge, that is, of men who not only have special professional knowledge of their habits and needs, but who may be considered as having an unselfish interest in looking to their preservation, and who may act as scientific advisers, whenever such advico is deemed desirable by Oongress or by the heads of Dopartments.
Is it realized that nearly all the prineipal animals indigenous to the United States are either substantially extinct or in danger of becoming so and is it sufficiently realized that, once extinct, no expenditne of treasure can restore what can even to day be preserved by prompt action of a very simple and deflnite kind 9

It is such consilerations as these that have induced me to ask the earnest attention of the Regents, of Oongress, and of the country to the immediate necessity for action. The trast is unquestionably for the advaucement of science as well as for the instruction and recreation of
the people, and thus becomes a fitting object for the care of the Smithsonian Institution.
In my Report for last year the preliminary steps for the establishment of a Zoological Park in the District of Oolumbia were detailed. The District of Oolumbia bill, which received the approval of the President on Murch 2, 1880, contained an appropriation of $\$ 200,000$ for the purchase of the land and established a Commission, composed of the Secretary of the Interior, the President of the Board of Oommissioners of the District of Uolumbia, and the Secretary of the Smithsonian Institution, for the purpose of selecting and acquiring a suitable site upon Rock Oreek.
The utmost care was exercised to keep within the limits of this appro. priation, and the Commission is even able to turu into the Treasury a small balance upou the completion of its work. To accomplish this, however, it was necessary to leave out a strip of land of about 8 acres on the east side of the oreek, which it seemed to the Oommission very desirable to secure, and I venture to express the hope that Oongress will see fit to make special provision for the purchase of the property at an early day.
From a commercial point of view the enterprise has already proved a most successful one, the laud having risen in value since its condemmation from 200 to 300 per cent.
At the begiuning of the fiscal year the ground had yet to be acquired. A careful cousideration of the property in the neighborhood of Rook Oreak, deseribed in the act of March 2, 1880, had been made and an area of 106.48 acres solected.* The difleulty of establishing the boundaries of certain tracts described in the older deeds cansed a long delay, but the suryey was finally completed on the 21st of November, 1889.

[^8]Land for the Nalional Zoological Park.

Ownor,	Acrea.	Amount madl.	Mow ohialn
Mibs A. E,J. Evams.	Q1: 050	\$91,860. 00	13y agroomont.
II. D. Walbrilge	18.450	14,480.00	Do.
Woolloy Park Syndicato	7.153	$0,876.00$	Do.
Menry C, Molt	13.360	40,000,00	1)0.
Mra. M. Canoy	1.140	3,000.00	10.
Mra. I. I, Dumn at al	. 392	170.70	1)0.
Iraifleun Ord	24.670	10,830.18	3y conilommation.
J. P. Klinglo	0. 180	$0,270.00$	Do.
Union lenovolont Assoolation.	1. 700	3,000,00	1)0.
W, W. Ifnydeu 070	1,807.00	$1) \mathrm{n}$.
MoPhorson \& Yjiloy	. 318	1,372.00	Do.
Simes Korvand.	1.000	233.10	Di.
United Staton (part Quarry xond).	. 840		Do.
Thotal	180. 180	100, 004, 34	

A map of the park, showing the location and quantity of each lot, was fled in the public records of the District of Columbia. On examination of the list it will be seen that for 131.14 acres an agreement was effected with the owners as to the sum to be paid. For 34.40 ares no such agreement could be made, and the Oommission therefore took the course prescribed by the act of March 2, 1889, for this contingency, and petitioned the Supreme Court of the District to assess the value of the land. This was done by three appraisers appointed by the Court, and the finding of the appraisers was approved by the President of the United States. At the close of the year title deeds had already passed for the greater portion of the property.
The site thus selected is, it is believed, admirably suited for the purpose for which it is designed. Situated at a convenient distance from the city in a region of remarkable natural beauty, it has a surface of great variety, offering unusual advantages of varied exposure for animals requiring different treatment. While some portions still retain the original forest, others are cleared or covered by a dense second growth of pine, excellent for cover and producing conditions similar to those of the natural haunts of many of the animals it is proposed to preserve. An abundant supply of water is furnished to the lower portions by Rock Oreek, a small peronnial stream that during freshets swells to considorable size, and at intervals of years, to rare but destructive floods. A. number of amall runlets or "branches" fall into the creek giving an effective drainage to all parts of the park. The systom of water way's has for the most part been cut by erosion, so that the hill-sides and valleys usually present smooth, round ed slopes, practicable for roads and walks; yet this is agreeably varied at several places by an outcropping of the underlying rook, giving a somowhat bolder chavacter.

In the Appendix will be found a map showing the situation of the Zoologieal Park with reference to the city of Washington, and follow. ing it a second map giving, on a somowhat larger scale, the ontline of the park and its prineipal topographieal features.

Faving obtained the site it became necessary to procure means for the organization and maintenance of the park. The Oommission accordingly, under dato of Jamuary 16,1890 , addressed a letter to Oongress, concluding with tho following words:

Bofore the expiration of the present fiscal year the Zoological Park Oommission will havo completed tho duties with which it was charged by the act of Congress which called it into existence, and the title to the lands it has purchased will be vested in the United States. Pending the completion of the condemnation proceedings now in progress, and the submission of a final report, it is extremely desirable that Oongress ahowld onact further legishation in legard to the park. The Com. mission has no authority to put up fences and lay ont roads or grounds, or to erect buildings, nor is it even cortain that it has the right to accept donations. Tho park is declared by Oongress to be "for the advancement of science and the instruction and recreation of the people." In the construction of ponds and lakes, and the erection of inclosures
and buildings for the purposes of zoological seience, a stage will soon.be reached where soinntiflo direction seems obviously desirable; and it is respectfully represented to Oongress that any menns for laying out and improving the grounds can be most advantageonsly used in view of the purpose of Uongress as to the ultimate disposition of the park now when the foundations of its future usefulness are being laid. If the very considerable collection of living animals now in the einstody of the smithsonian Institution is to form the nucleus of the zoologieal park collection its transfer ahould be efteoted by legislative enactment and suitable measures taken for its maintenance. The (Oommission is of the opinion that the collection reforred to should, with the consent of the Regents of the Institution, be transferred to the Zoological Park as soon as possible after the Government takes full possession of the site.

> Join W. NoBLE,
> Seoretary of the Interior, J. W. Douglas, Prest. Boord Oom. Dis, Dol., S. P. LANGLEX, Seoretury Similhoonian Institution, Commissioners for the estavishment of a Zological Park in the Distriot of Oolumbia.

After thorough consideration the following act was passed placing the park under the direction of the IRegents of the Smithsonian Institution, and transferring to it the collection formerly under the charge of the United States National Museum :
AN ACT for the organization, improvement, and maintenance of the National Zoolog. ionl Park:
13e it enaoted by the Sonate and House of Representatives of the United States of America in Congress assembled, That the one-half of the following sums named, respectively, is heroby appropriated out of any money in the Treasury not otherwise appropriated, and the other half ont of the revenues of the District of Columbia, for the organization, improvement, and maintenance of the National Zoological Park, to bo expended under the direction of the Regents of the Smithsonian Insti: tution, and to be drawn on their requisition and disbursed by the disbursing offleor for said Institution:

For the shelter of animals, fifteen thousand dollars.
For sholtor bame, cages, fences, and inclosures, and other provisions for the enstody of animals, nine thousand dollars.

For repairs to the Holt mansion, to mako the same suitable for ocenpancy, and for offee furnitme, two thousand dollars.

For the creation of artifleial ponds and other provisions for aquatie animals, two thotsand dollars.

For water supply, sewerage, and drainage, seven thousand dollars.
For roads, walks, and bridges, fifteen thonsind dollars.
For miscollaneons supplies, materials, and studry incidental expenses not otherwise provided for, five thonsand dollars.

For current expenses, including the maintenance of collections, food supplies, salaries of all necessary employees, and the nequisition and transportation of specimens, thirty-seven thousand dollars.

SEc. 2. That the National Zoological Park is heroly placed under the directions of the Regents of the Smithsonian Institution, who are anthorized to transfer to it any living speoimen, whether of animals or plants, now or hereafter in their charge, to accept gifts for the park at their
discretion, in the name of the United States, to make exchanges of enecimens, and to administer the said Zoological Park for the advancement of science and the instruction and recrention of the people.

Seo. 3. That the heads of Executive Dopartments of the Government are hereby authorized and directed to cause to be rendered all necessary and practicable aid to the said Regents in the nequisition of collections for the Zoological Park.

Approved, April 30, 1800.
As it seemed desirable to have at once expert advice on the subject of laying out and improving the park, Mr. Frederick Law Olmsted, a distinguished landscape gardener, was requested to make a preliminary inspection of the ground and to express an opinion as to what, under the conditions imposed by the primary objects of the law, would be the best general disposition to make of it. It soon became evident that a further survey was necessary in order to fix the boundaries of the maximum rise to be expecied from Rock Oreek. This stream, ordinarily sman, drains a water-shed having ain aren of some 83 square miles, with a slope so considerable that after copious rains the water rapidly rises far beyond its usual limits and becomes destructive to any buildings or other fixtures situated along its course; A remarkable inundation of this character occurred in June, 1889, the extent of which was noted at several points along the creek. It would be evidently impracticable to place any buildings of importance within the area sub. ject to these heavy floods, and the suitable locations and plans for the bridges to be constructed could not be propared until their height and span were determined with reference to tho maximmm rise of water. The survey of the creak was not completed at the close of the year, but it has sinco been finished as showa in the map previonsly roferrod to.

Having once secured the picturesque features of the land from obliteration by the rapid encronchment of the city, it has been the policy to proceed slowly with improvements and to ntilize the natural advantages of the location, interfering as little as possible with its original aspects. Dven with theso conomical principles the cost of converting the tract to the usey of a park is fas boyond what would ordinarily be imagined, for it shonld be remem ')ered that the cost of improving Oentral Park, Now York, has already been not less than $\$ 14,000$ per acre, and that of Prospect Park, Brooklyn $\$ 0,000$ per acro, while that of the large Franklin Park, Boston, is estimated at 82,900 per acro.

In following this poliey and keeping within the limits of the appropriations, no immediate provision has been made for the considorable expense involved in opening at once to the public the entire area of 106 acres. The complete establishment of the park in a manner beftting its national character will be a work of considerable time, and for the present it has been deemed advisablo to set aside nearly 40 acres, solected on account of accessibility aad moderate elevation, as woll as onaccount of ita being adapted to the purposes of the park without great expense, while a further tract of some 15 acres will he so arranged that
it can be opened to the publie, though it may not liave a strictly parklike cultivation. There will thus be free to the public, it is hoped by next year, between 50 and 60 acres, an area larger than that of the Zoological Gardens in the Regents Park of London, or the Jardin des Plantes of Paris.

A distinct area of some 10 or 15 acres will be reserved in another portion of the park for administrative and other purposes requiring seclusion, and will coutain a lodge for the resident superiutendent, offices, stable, infirmary for animals, and a proposed laboratory.

It should be remembered that a most important feature of this undertaking is that it is not ouly a place for publio resort and amusement, but it is also intended to furnish secluded places for the breeding and restoration of the various animals indigenous to this country.

At London and Paris the zoological gardens are chiefly for the amusement of the people by the exhibition of curious and foreign animals, and for the benefit of the naturalist; our paramount interest is to preserve the indigenons animals, and then to provide, in the words of the act, for the instruction and amusement of the people.

Though anticipating the report for tho coming year it does not seem out of place in the present connection to allude to the fact that the Secretary, in his private capacity, has bern appointed by the Presidentone of the commissioners of the more extensivo national park upon Rock Oreek, contiguous to the Zoological Park, a charge which he has accepted with some reluctance on account of the pressure of present ompial duties, but with a feeling that by renson of tho necessary intimate connection between the two national parks the publio interesta will bo subserved by this action.

I can not elose the report 'n relation to this new midertaking of the Institution without referenee to the loss we have sustained in the death of Senator Beck, who, though not upon the Board of Regents, took a lively interest in the Institution, and a special interest in establishing and placing under its care the proservation of the natural seonery in the neigliborhood of the Oapital.

I Xegret, also, to report that near the close of the year, the Institution was reluctantly obliged to aecopt the resignation of Mr. W. 'I. Hormaday, curator of living animals in the National Mnseum, who, having been as. signed to the duty of superintemdent of the park under the Commission, it was hoped would be able to accept the position of sipporintendent of the park upon its transfer to the Board of Regents. Mis efforts assisted the Oommission greatly in the solection of the land, and did much to insure the success of the measure bofore Oongress.

Dr. Irrank Baker honorary curator of the Department of Comparative Anatomy in the Musenm, was appointed on Juno 1, 1890, acting manager of tho Zoological Park.

BURFAU OF ETHNOLOGY.

Ethnologic researches among the North American Indians were continued by the Smithsonian Institution, in compliance with acts of Oongress, during tlie year $1889-90$, under the direction of Maj. J. W. Powell, Director of the U. S. Geological Survey:

The work of the Bureau of Ethnology during the year has proceeded along accustomed lines. Investigations in relation to the Sign Language and Pictography of the American Indian, preliminary reports of which subjects have appeared in annual reports of the Bureau, have been discontinued and the final results of this study will soon appear. Investigations of the Mounds of the eastern United States have also been practically brought to an end and the final discussion of the subject will speedily be published.

The archæologic researches which have been inaugurated in the vicinity of Washington have already been fruitful of results of more than local interrest. Excavations into the quarry sites and workshops of the district have shown that the olass of archmologic objects from this vicinity, which have hitherto been assumed to be palwolithic and to represent the rude implements of primitive man, are in fact nothing but the "rejects" of much more rccent times; and that however far back in point of time some of them may date, they are not separable from the rejects of the historic Indian.

As usual, considerable attention has been paid to the collection of linguistic material, both becanse it is thought that languages form the only safo basis for classifying peoples, and becanse no matorial relating to our Indians is vanishing with such rapidity. The latter roason has also impelled the collection of Indian mythology. Myths are hardly more enduring than the langunges in which they are preserver. Though they may persist to some extent aftor a language decays and falls into partial disuse, it is only in a degraded and emasculated form that deprives them of their chiof value, as embodying the religions ideas and the philosophy of primitive peoples.

The medicine practices of the Indian have also recoived much attention and a large number of the plants used in the Indian Materia Medica have beon collected, presorved, and their Indian and botanical names obtained. In addition, the formulas and secrot practices attonding their use have been carofully recorlod. As was to be expected, it has been found that so intimately interwoven are the Indian systems of religion and medicine that it is practically impossible to say where the one ends and the other begins. It has also been demonstrated that contrary to popular belief, the chief and almost solo offucacy possessed by socalled Indinn medicine liog, not in the inherent virtue of the
plants usen, but in the mystio properties imparted to them by the sorcerers or professional "Modicino men."

During the year one of the Burean assistants visited Oasa Grande, in Arizona, with a view to determining the best method to give effect to the act passed by Oongress for preserving the andent ruin. The preservation from the hand of the vandal and the effects of time and exposure of the more important Indian mounds and ruins whieh are situated within the nedional domain, is one that may well receive attention. The land upon which many of them are situated is of little value for economic purposes, and the comparatively small outlay required for their restoration, when sueh is necessary, and for their preservation, is small when contrasted with their historical and archroological value and their popular interest.

No phase of tribal life and society presents a more ourious and interesting study than that exhibited by the Pueblo Indians, who, in many respects, were far in advance of less sedentary tribes. Study of one of them, Sia, was begun during the year, and other Pueblos will be visited and studied in succession.

Further details respecting the work of the Burean will be found in the report of its director, Major J. W. Powell, given in full in Appendix I.

NEOROLOGY.

SAMUEL SULIIVAN OOX.

I am ealled upon to record here the death of one of the most public. spirited and versatile members of Congress that have served upon the Board of Regents, the Hon. Samuel Sullivan Oox, a member of the Honse of Representatives, who was born at Zanesville, Ohio, Soptember 30, 1824, and first elected a Regent on December 19, 1861. Hedied at his home in New York on the 10th of September, 1880.

At a meoting of the Board, held on the 8th of Jantary, 1890, a committee was appointed to propare resolntions on the services and character of Mr. Cox, consisting of the Becretary, Hon. Joseph Wheoler, Dr. Welling, and Hon. Mr. Lodge, and thoy subsequently reported as follows:

To the Board of Reqents:

Your committee report that the Mon. S. S. Cox was flrst appointed a Regent of the Smithsonian Institution Decomber 10, 1801, and that ho flled that offleo, excopt for intervals caused by public duties, to tho time of his denth.

While he was not a regular attendant at all the meetings of the Board, he was ever ready to advance the interests of the Institution and of seionce, eithor as a Regent or as a member of Congress; and although such men as Hamlin, Fessenden, Colfiax, Ohass, Garfiold, Shorman, Gray, and Waito, in a list comprising Presidents, Vice-Presidents, Ohief-Justices, and Senators of the United States, were his associates,
there were none whose service was longer or more gratefully to be remembered, nor perhaps any to whom the Institution owes more than to Mr. Oox.

The regard in which his brotlrer Regents held Mr. Oox's aceuracy of characterization and his instinctive recognition of all that is worthiest of honor in other men may be inferred from the eulogies which he was requested by them to deliver among which may be particularly mentioned the one at the commemoration in honor of Professor Henry in the House of Representatives. But though these only illustrate a very small part of his services as a Regent, your committee are led by their consideration to recall that his first act upon your Board was the preparation and delivery of an address at the request of the Regents on their late colleague, Stephen A. Douglas, and that on this occasion he used words which your committee permit themselves to adopt, as being in their view singularly characteristic of Mr . Oox himself:
"It was not merely as one of its Regents that he showed himself the true and enlightened friend of objeots kindred to those of this estab. lishment; he ever advocated measures which served to nd vance knowledge and promote the progress of humanity. The encouragement of the fine arts, the rewarding of discoverers and inventors, the organiza. tion of exploring expeditions, as well as the general diffition of educa. tion, were all objects of his special regard."

In view of these facts it is-
Resolved, That in the death of Hon. Samuel Sullivan Oox the Smithsonian Institution has suffered the irreparable loss of a long-tried friend, the Board of Regents of a most valued associate and active member during fifteen years of service, and the country of one of its most distingnished citizons.

Resolved, That the Board of Regents desire to express their deep sympathy with the beroaved family of the decensed, and that a copy of these resolutions be transmitted to the whldow of their late associate.

Mr. Oox was descended from a long lino of distinguished ancostors. His father, Hon. Levilel Trylor Oox, who moved from New Jersey to Zanesville early in the century, held the position of Stato semator and elerk of the supreme court of Ohio; his grandfather, General James Cox, was an officer in the Revolution, spenker of the New Jersey assembly, and member of Congress at the time of his denth; his greatgrandfather, Judge Joseph Oox, was a distinguished man of his time, as were his great-groat-grandfather, James Oox, and his great grent-great-gandfather, "Ihomas Oox, ono of the oxiginal proprietors of the province of Dast New Jersey.

Upon the completion of a classical courso Mr. Cox studied law, and at theage of twenty-flve, turning his attention to joumalism, was the editor of the Oolmmbia Statesman; at twenty nine he was the chairman of the committeo of the Domocratic party of Ohio. Whon searcely more than thirty he was offered an appointment as secrotary of legation to Great Britain, but declined the honor, thotigh he afterwards accepted a similar position and represented tho United Státes at Pern. at thirty-two he was elected to Congress and continued as a member of. that body, almost without interruption, for a period of over thirty years. Ho was elected Speaker pro tempore of tho House of Ropresentatives
in 1876, nud was minister to Turkey during the flrst part of President Oleveland's adininistration, receiving from the Sultan shortly after this mission the degree of the order of the Mejidieh.

Of Mr. Oox's political career it is unuecessary to speak. The unanimity with which his fellow. Oongressmen hastened to pay tribute to his momory, in terms most glowing and affectionate, attests his esteem in the House of Representatives. No one upon the floor of the House of Representatives in late years has appreciated more fully or has cham. pioned to such an extent the cause of science. To him the scientifio departments of the Government looked for assistance and appreciation; as a member of the Board of Regents he was a firm supporter of the liberal policy laid down for the Institution by Professor Henry.

Respectfully subinitted.
S. P. Langley, Secretary of the Smithsonian Institution.

APPENDICES 'IO SECRETARY'S REPORT.

APPENDIX I.

REPORT OF THE DIREC'IOR OF THE BUREAU OF ETHNOLOGY.

Sin: I have the honor to present the following report upon the work of the year. dividing it for convenience into two general heads, viz, field work and office work.

FIELD WORK.

The field work of the year is divided into (1) motind explorations and (2) general field studies, the latter having been directed during the your chiefly to aroheology, language, religious practices, and pictography.

Mound explorations.-The work of exploring the mounds of the eastern United States was, as in former yems, under the superintondence of Prof. Cyrus thomas. During this year ho discontinned explorations in person, boing engaged almost the outire time upon the preparation of the second volume of his report and of au ad-. ditional bulletin, with aecompanying maps of the archeologic loonlities.
Mr. Henry L. Roynolds, howover, was employul during the summer in exploring the works in Manitoba and the two Dakotas with spocial roference to their types and distribution. The results of this investigation proved vory satisfactory, as the types within this eroe aro found to bo umanally well dofined, according to physionl atruture and contents. While thas omployed othor archeologion romains wero noted and oxaminod, suoh as the bowlder outlines of oiroles and animals and the anoiont village sites on tho Missouri River. A full report coneoming those invostigations will nypear in tho forthcoming repert of Professor Thomus. Mr, Reynolds also made a viait to cortain oarthworks in lowa and Ladiana for the purpose of aseertaining their types. In the antumn ho was omployed in South Carolina and Georgia oxploring the monnde of that section, about whioh little was known, Two mounds-a largo one on the Wateree diver, below Camden, South Carolina, and one on the Savamabla River, Georgia-proved of special intorest. The contents of tho lattor consisted of as fine spocimens of evory olass of primitivo art as havo boen found in momits.
Mr. James D. Middloton, who had aotod an a rogular assistant from tho organization of the division,' was ongaged during the month of July, 1880, in survoyiag and making plats of cortain anoiont worke of Miohignn and Ohio. At the ond of the month he resignod hite position in the Burean.

Mr. Jamos Mooney, atthough ongaged in another line of rebearoh, obtahod important information for the Mound Division, in roforence to tho location, diatribution, and oharactor of the anoiont works of the Cherokeo in westorn North Carolima and aljoining seotious.

General Field Studics.-In tho nutumn of 1889 Mr . W. II. Holmes was direoted to take oharge of the aroheologio field-work of the Burean. In Soptombor ho bogan exenvations in the anolent bowlder quarries upon Pinoy Eranol of Rook Crook, near Washington. A tronch was carricd actoss tho prineipal quarry, whioh had a width of more than 50 feet and s dopth in places of 10 feet. The meiont mothods of quarrying and working the bowlders were studiod aud several thousands of specimons wore col-
lected. Work wae resumed in the next spring and five additional trenches were opened acrose widely separated portions of the ancient quarries. Much additional information was colleoted, and many specimens were added to the collection. In June work was commenced on another group of ancient quarries, situated north of the new Obseryatory, ou the west side of Rock Creek. Very extensive quarrying and implement-making had been carried on in this place. The conditions and phenomena were almost identioal with those of this Piney Branoh site. Subsequently an ancient soapstone quarry near 'Ienally town was examined. The ancient pitting corresponded quite closely with that of the bowlder quarries and the condition of the pits indicated equal age.
Dr. W. J. Hoffinan proceeded early in July to White Earth Reservation, Minnesota, to continue the collection and study of mnemonic and other records relating to the Mide' wiwin or "Graud Medioine Soclety" of the Ojibwa Iudians. He had already spent two seasons with this tribe, aud having been satisfactorily prepared, was initiated into the mysteries of the four several degrees of the soclety, by which means he was enabled to record the ceremonials of initiation, which was desired by the Indians, so that a complete exposition of the traditions of the Ojibwa cosmogony and of the Midé' Soclety could be preserved for the information of their descendants. Through intimate acqusintance with, and recognition by, the Midé priests, Dr. Hoffmann secured all the important texts employed in the ceremony-much of which is in an archaic form of speech-as well as the musical notation of songe sung to him for that parpose; also the birch-bark records of the society, and the muemonic songe on birohbark, employed by the Midē prieste, as well as those of the J夭'ssakki'd and the WAbøn δ^{\prime}; which represent two other grades of Shamans.

- The so-called cosmogony oharts, four versions of which wers secured, had not previously been exhibited to a white man, nor to Indians until after the necessary fees had been paid for such service, preparatory to admission into the society.

He also secured, as having connection with the general subject, a list of plants and other substances constituting the materia medica of the above-named locallty, the method of their preparation, administration, and reputed action, the whole being connected with incantation and exoroism.
Mr. Victor Mindeleff made a sliort trip (from Deceniber 7 to January 20) to the ruin of Casa Grande, in Arizona, visiting also the sites of Mr. F. H. Cushing's work while In charge of the Homenway expedition. Plans and photographe were secured on this trip, and fragments of typical pottery were colleoted from the principal ruin visited. Cass Grande was found to be almost identioal in character with the many ruine seattered over the valleys of both the Gila and Salado.

On July 3 Mr. James Mooney started on a th ird trip to the Cherokee reservation in North Carolina, returning November 17. During this time he devoted his attentiou ohiefly to the translation and study of the saored formulas used by the Shauans, obtained by himi during a previons visit. In this work he omployed the service of the most prominent medicine men, anong them being the writers of some of the original formulas, and olvained detailed explanations of the acoompanying ceremonies and the theories upon which they were basod, together with desoriptions of the mode of preparing the medioine and the variousurtioles used in the same conneotion. He was also permitted to witness a number of these ceremonies, notedly the solemn rite known as "going to water." About three hundred specimens of plants used in the mediolne practice were also collected, with their Indian names aud uses, in addition to about five hundred previonsly obtained. These plants were sent to the botanists of the Snithsonian Institution for identification nader their scientifio names. The study of these Cherokee plant names, in connectiou with the medical formulas, will throw mach light upon Indian botanic classification and therapentics. The study of the botany is a work of peculiar diffoulty, owiug to the absence of any aniform gystem among the varions practitioners. Attention was also given to the ball play; and several photographs of different stages of the ball dance were seoured. One of the
oldest men of the tribe was also euployed to prepare the feather wands used in the eagle danee, the pipe dance of the prairie tribes, and the calumet dance spoken of by the early Jesuit writers, whioh has now been discontinued among the Cherokee日 for about thirty years. These wands were deposited in the National Museum as a part of the Cherokee collootion, oltained on various visits to the reservation.

A considerable amount of miscellaneous informatlon in regard to myths, dances, otc., was obtained, and a special stady was made of their geographio nomenclature for the purpose of preparing an aboriginal map of the old Cherokee country. With this object a visit was made to the outlying Indiau settlements, especially that on Cheowah River, in Graham County, North Carolina, and individuals originally from widelyseparated districts were interviewed. The maps of the Geological Survey, on a scale of 2 miles to an inch, were used in the work, and the result is a colleotion of probably mote than one thousiand Cherokee names of localities within the former territory of the tribe, given in the correet form, with the meaning of the names and whatever looal legende are connected. In North Carolina practically every local name now knowin to the Cherokees has been obtained, every prominent peak or rock, and every cove and noted bend in a stream having a distinotive name. For Georgla and a portion of Tennessee the names mast be obtained chiefly from old Indianenow living in the Iudan Territory. It inay be nuted here that as a rule the Chorokees and some other triles have no names for rivers or settlements. The name lelongs to the district and is applied alike to the stream, town, or mountain located in it. When the people of a settlement remove, the old name remains behind, and the town in to new loation takes the name attached to the new district. Each district along a river has a distinct name, while the river as a whole has none, the whole tendenoy in Indian languages being to sipecialize. The last six weeke of this field season were spent by Mr. Mooney in visiting varlous polints in North and South Carolina, Georgia, Tennessee, and Alabama, within the former limits of the Cherokees, for the purpose of locating mounds, graves, and other antiquities for an arohmologic map of their territory, and collecting from former traders and old residents materials for a historio sketol of the tribe.

Mr. Jeremiah Curth spent July, and until Angust 28, 1889, at varions points on the Khmath River, from Orleans Bar to Martin's Ferry, Humboldt County, California, in colleoting inythe and reviewlug voonbularies of the Weitspekan and Ehnikan languages. From August 30 to September 10 he was at Blue Lake and Areata, Humboldt Counts, California, engaged in taking down a Wishoshkan vocabulary and colleoting information concerning the Indians of the region thereabout. Arriving in Round Valley, Mendocino County, Callfornia, September 16, he remained there till October 16, and took vooabularies of the Yuki and Palaihnihan langiage. From Round Valley lie went to Niles, Alameda County, California, where he obtained partial vocabularies of three languages formerly spoken in that region. Of these one was spoken at Sulsun, another was klidred to the Mariposan, a third was Costanoan. On October 27 he arrived in Redding, Shasta County, Califorula, where he obtained a considerable addition to his material provionsly collected in the form of mythe and additious to the Palalhnilan vooabulary. During this work he visited also RoundMountaln, On Januiry 10, 1890, he returned to offlee work.

From July 10 to November 9, 1889, Mr. J. N. B. Hewitt was engaged in field work, Untll September 7 he was on the Onondaga reservation, near Syracuse, New York, Where legends, tales, and myths were collected and recorded in the vernacular ; also asoounts of the religions ceremonies and funeral rites were obtained, the terme formlug the Onondagau solieme of relationships of affinity and consanguinity werè recorded, and. valuable matter pertalning to the league and its wampum record was also colleoted.

Froni the last mentioned date to the 9 th of November he was engagod on the Grand River reservation in Canada, where he successfully made speblal effort to obtain the chants and speeohes used in the condolence council of the league. The religious doc-
trinet and beliofs of the pagin Iroquois wert recorded; plant and unimal names were collected; many religions aud gentiles soligs were secured, and acconnts of the princlpal Iroquoian "medicines" in the vernaoular were obtained. A. Wyandot vocabulary was also recorded.

Mrs. T. E. Stevenson left Washington in March, 1890, to atudy the Sia, Jemez, and Zuni Indians. She made Sia her first point of investigation, and found so much of ethnologio interest in this Pueblo that she continued her work there to the end of the fiscal year engaged in making a vocabulary and studying the habits, onstoms, my thology, and medicine practices of these people. She has been admitted to the coremonials of the seoret societies and has made detalled accounts of them, the altars being photographed by Miss M. S. Clark, who accompanied her. Her investigations so far have resulted in a olear exposition of the religion of the people.

OFFICE WORK.

The Director was engaged during the year, when his other duties would permit, in the preparation of a work on the characteristics of Indian languages.

Col. Garriok Mallery, U. S. Army, was oncupied in continued study of sign language and pictography with the collection and collation of additional material obtained by personal investigation, by correspondence, and by the examination of authorities. This work was performed with apecial reference to the preparation for early publication of a monograph on sach of those subjects, that on piotography to be first presented. The re-arrangement and revision of naterial already published in the preliminary papers on the sign language and on the plotographs of the North American Indians whioh respectively appeared in the first and fourth annual reports of this Bureau, and the iusertion of matter obtained later by expluration and researoh, have been conjoined with discussion and comparison. By this treatment it is hoped that the monuglaphs on sign langnage and plotography, having as their text tho attainments of the North American Iudians in those directions, may contribute to the understanding of similar exhibitious of evanescent and durable thought-writing, whether still employed in other parts of the world or now only found in records of material remains.

During the fiscal year Mr, H, W. Henshaw was engaged, in addition to his administrative duties, in assisting the Director in the flnal preparation of the lingulstio map of North America north of Mexico, and the accompanying report, whioh is now completed and in tho hands of the printer. He also began tho final revision for the printer of his diotionary of Indian tribal names.

Rev. J. Oweu Dorsey completed his editorial work in couneotion with the publleation of RIggs' Dakota-English Diotionary. He wrote artioles on the following subjects: Measures and valuing; The Dha-du-ghe Society of the Ponka uribe; Omaha dwellings, furnilure, and implenents; Omaha olothing and personal ornameats; Ponka and Omaha songs; Tho places of gentes in Siouan oamping ciroles; Winnebago folklore notes; Teton folklore; Owaha folklore; The gentile system of the Bletz tribes; and a Dakota's account of the sun-dance. He revised some of his Omaha and Ponka genealogical tubles and began the arrangement of Kansa tables or a similar oharacter. He oontinued the elaboration of his monograph on Indian personal names, and completed the following lists in which the Indian names precede their English meauings: Wiunebago, 383 uames; Lowa, Oto, and Missouri, 520 ; Kwapa, 10 ; and Kansa, 604.

Dr. Dorsey filished the preparation of his texts for Contributions to North Amerioan Ethnology, Vol. 6, The (Gegihn Langnage. Part 1r. Additional myths, stories, and letters, and corrected proof for the volume as far as page 651. He prepared a manuecript of other Oniaha and Ponka letters, to be published as a bulletin. He wegan au article entitled "A study of Siouan oults," for which over forty colored Hútrations were prepared by fudians, under hls direction; and of this artiole he
oompleted four ohapters, treating of the quits of the Omaha, Ponka, Kansa, Osage, Yowa, Oto; Missouri, and Winuebago tribes, and half of a fifth ohapter that desoribes the cults of the Dakota and Assinlboin. When not otherwise engaged, he was oocupied in making entries on slips for the Cegiha-English Dictionary. From September to Deoember, 1889, he obtained from George Miller, an Omaha, who came to Washington to aid him, additional myths, legends, letters, folklore, and sociologio material, grammatical notes anil correotions of diotlonary eutries, besides genealogioal tables arranged according to the subgentes as well as the gentes of the nmaha tribe.

During the year Mr. Albert S. Gatschet was wholly engaged in office work. He fiulshed his last draught of the "Klamath Grammar," a language of south western Oregon, making numerous additions, also appendices, ms follows; Idioms and dialectio differences in the languago; colloquial form of the language; syntactic examples; complex synonymous terms; roots with their derivatives. The typographic work on the grammar was terminated, the proofs and revises having all been read ly the author. The last portion of the entire soork, being the "ethnographic sketch of the Klumath people," was theu re-written from earlier notes while consulting the best topographio and bistorical materials obtainable. Mr. Gatsohet also drew a map of "the headwaters of the Klamath River," the home of the tribes, being on a scale of 15 miles to the luch, which will appear as the frontispiece in Part I. The "ethnographio eketch" is now in the hands of the printer.
Mr. Jeremiah Curtiu was ongaged from January 10 to June 30, 1890, in arranging the myth material collected by him in the field and iu copying vooabularies. The Hupa, Ehmikan, and Wishoshkan vocabularien were finished and the Yana partly done on June 30, 1890.

The office work of Dr. W. J. Hoffman consisted in arranging the material gathered by him during the preceding three field seasons and in preparing the manuseript for publication, which has been completed. Duriug the first three months of the year 1890 a delegation of Menomonl Iudians were at Washington, District of Columbia, on business connected with their tribe, and during that period Dr. Hoffman obtained from them a colleotion of facte relating to mythology, sooial organization and govoriment, the gentile system and division of gens into phratries, together with many facts relating to the Mitia'wit, or "Grand Mediolne Society" as they term it. These are interesting and valuable, as some portions of the ritwal explain doubtful parts of the Ojibwa phraseology, and vice versa, although the two societies differ gieatly in the dramatized portion of the forms of initiation.
On his return from the field in Noveniber Mr, James Mooney devoted his attention to the elaboration of the sacred formulas already obtained. Two hundred of these formulas, being about one-third of the whole uumber, have now been translated. In each onse the trauslation from the original manusoript in Cherokee characters is given first, then a tranalation following the idion and spirit of the original as closely as possible, and finally an explanation of the medioine and ceremonies used and the underlylug theory. About one-half of the whole number relate to medioine. The othere deal with love, war, self-proteotion, the ball play, agrioulture, and life-conjuriug. A prellininary paper with a number of specimen formulas will appear in the seventh aunual report of the Bureau. The whole collection will constitute a unique and interesting oontribntion to the aboriginal literature of Amerioa. All the words occurring in the formulas thus far translated have been glossarized, with grammatio notes and references from the original texts, making a glossary of about two thousand words, a great part of which are in the archaio or sacred language. Several weeks were also given to the preparation of an arohmologio map of the old Cherokee conntry from materials collected in the field and from other information in possession of the Bureau.
During the year Mr, W. H. Holmes has been ohiefly engaged in the preparation of papers on the Arts of the Mound Builders, to form a part of the monograph upod the Mound Buihiers, by Prof, Cyrua 'hbomas. Four papers are contemplated; one upon

Pottery, a econd upon Art in Shell and Bone, a third upon Textle Fabrics, and a fourth upon Pipes. Three of these papers are well advanoed towards completion. In addition to this work he has prepared papers relating to his field explorations. Theee tiolude a report apon exoeipations in the ancient qnartzite bowlder workshops and the soapstone quarries of the District of Colambia, and a rook shelter in West Virginia. Portions of these papers have been pablished in the American Anthropologist.
Mr. James C. Pilling has continued to devote anch time as he could command for the purpose to the preparation of bibliographies of the languages of North America. At the close of the fisoal year 1888-99 the proof-reading of the Bibllography of the Maskhogean Languages was completed, but the edition was not ready for delivery. It was delivered Angust 8, 1889.
After the Muskhogean Bibliography had bean finithed, work was at once begun on the Algonquian, by far the largest of those yet undertaken. Muoh of the material for this was already in hand, the collection having been gradually pursued during several yearn preceding, and the greater part of the work remaining consisted in ascembling, arranging, revising, and verifying that material. August $16-22$ were profitably spent by Mr. Pilling in the Lenox, Astor, and New York Historioul Society libraries, at New York Oity, and the Massachusette Historical Society, Boston Athensenm, and Boston Public libraries, at Boston, ohiefly in verlfying and revising the material in hand. The first portion of the manusaript was transmitted to the Publio Printer November 15, 1889. At the close of the fiscal year final proof had progressed to the two hundred and fifty-eighth page, carrying the work approximately half way to completion.
From the let to the 10 th of July, 1899, Mr. J. N. B. Hewitt was engaged in collating and recording Iroquoian proper names, both of persons and places, as they ocour in the narratives of the early explorers and historians of the pristine habitat of the Iroquolan peoples. Afterwards, to the 9 th of November, he was employed in field work.
Upon his return to the office and until the end of the fiecal year he was engaged in translating and annotating the myths, legends, tales, and all of the other matter whioh he had previously colleoted in the field; and in translating and recording for easy reference, for the purpose of verification and exposition of the matter so colleoted, the mythologio, ethnographio, and othor antbropologio data found in the early French narratives of the New World, aud espectally that which is found in the works of Ohamplain, Laftan, Charlevoix, and in the Jesuit Relations. Much linguigtio material has boen oitained from the translations of the matter whloh Mr. Hewitt personally collected while engaging in field work.
Prof. Oyirus Thomas was perionally engaged during the entire year ou the preparation of his report on the field work and colleetlons of the precedlug seven years. A bulletin'giving the archoologlo looulities within the motud area, together with a sories of acoompanying maps, was completed for publication. It will form a olosely printed octavb of abont tivo huddred and fifty pages. His report, which requires mach comipatibon and reterence as well as stady of the works explored and objects obtained, le progresoling as rapidly as is consistent with proper care and due regard tor details; and will be completed and presented for publioation during the next ascal yér.

Mr. Hearry L. Reynoldn, on his return from field duty, aselated Professor Thomas in the preparation of that part of his report and bulletin relating to those arohnologic districts the works of which he had visited. He then resamed the preparation of tis patiet on the aboriginal nse of metal. In May he made an examination of the metal specimens in the private and public arohmologioal colleotions of New York City, ath in June visited Providence and Boston in search of estain rare historio data relatiag to the early life and otastoms of the Indians, looth in respeot to the use of uittal atid to other fiuattori. He was engiged in the offce upon this work at the olove of the flocal year.

During the year Mr. Viotor Mindeleff was engaged apon a report on the arohitecture of Tusayan aud Cibola. This work was interrupted by a short field trip to the ruin of Casa Grande, as mentioned under the head of fleld work, and was resumed on his return from that trip. The report, together with the data for its illustrations, has been finished for publication. A report was also prepared on the repairs and protection of the ruin of Casa Grande, on the Glla River, in Arizona. This report was accompanied by diagram, plans, and a series of photographs. He also was ocoupled in an arohitectural discussion on this ruin, together with one on the ruins on the Rio Salado, excavated by the Hemenway expedition, whioh were visited by him.
During the first four months of the fisoal year Mr. Coumos Mindeleff was engaged in revising manusoript and otherwise assiating Mr. Viotor Mindeleff in the preparation of a report on Puello Architecture, his own portion of the report having been proviously finished. The report was handed in for publication in December, 1889. Ho then commenced the preparation of a series of maps, upon whioh the location of all known ruins in the ancient Pueblo country will be plotted, in order to show their distribution. The maps were partly done and the plotting of the ruine was commenoed. When completed the maps will show the location of all ruins mentioned in literature or knowu to explorers and will be accompanied by a oard catalogue containing a description of each ruin and referenoe to the literatore relating to it, the whole forming a valuable record. It is iniended that a resume of this shall be published.

During the year the work of the modelling room was continned under the direction of Mr. Cosmos Mindeleff, and was confined almost entirely to the enlargement of the "duplicate serles," referred to in previous reports. The large model of Penusco Blanco, one of the Chaco ruins, reported last year as commenced, was completed, out into sections for convenience of shipment, and boxed. A duplicate of a model of the Pueblo of Tewa, the original of which was made in 1883, was finished and exchanged for the original in the National Musenm. The original was condemned and destroyed and another duplicate was made for the duplicate series. A duplicate was also made of a model of Schumepovi, and the original was put in order and added to the series. A duplicate of a model of the Pueblo of Shipaulovi was also finished and added to the same series. The original model of Casa Blanoa oliff ruin was withdrawn from the Museum, and a number of duplicate casts were made, one of whioh was finished and re-deposited in the Musenm. Duplicates were also made of models of Great Elephant Mound, Great Etowah Mound, aud two others. In the latter half of the fisoal year work was commenced on the duplioatiou of two very large models, one of Walpi and the First Mesa, the other of Mummy Cave oliff ruin. The original models had been very hurriedly made for the New Orleans Exposition, and, being cast in plaster of paris, had suffered consilerably in transportation. An attempt was mado to cast the models in paper, and in both oases the attempt was very successful. The first duplicate of the Walpi nodel was completed and deposited in the National Museum, to replace the original which was destroyed. The finished model weighed about 500 pounds, instead of 2,500 pounds, the weight of the original. The model of the Mummy Cave was cart, but was not finished at the close of the year. A second dupllcate of Walpl, for the duplloite series, was oust, but not inished, at the close of the year. It will be divided intio seotions for convenience of shlipment. Toward the close of the year work was commenced on two new models whioh will le need to illustrate a report of Mr. Holmes, upon his work of the Arolimology of the District of Columbia.

- But one demand was made during the year upon the duplicate serles. This was for a number of transparencles to be exhibited as a part of the display of the United States at the Paris Exposition. Sixty of these large photographs on glass were sent and two grand prizeg were awarded them. Upou the conclusion of the exposition the transparenoles were returned, and some damage suffered in transportation wha made good by the United States Commission.

Daring the year nine models, ranging in size from 2 feet equare to 14 by 5 feet, were finished; twelve models, including duplicate casts, wore flilished but not painted; and four models were commenced and not finished.

Mr. De Lancey W. Gill during the year succeeded Mr. Holmes in the oharge of preparing and editing the illustrations for the publications for the Bureau. The following list shows the number of drawings that have been prepared under his supervision for actual publication during the year:

Architectural drawings, drawings of mounds, earthworks, ancient ruins, etc.... 102

Maps, diagrams, and seotious .. 64
Objeets of stone, wood, shell, bone, ete ... 377
Total.. 543
These drawings were prepared from field surveys and sketches, from photographs, and from the objects themselves. No field work has been done by Mr. Glll's division during the year although many valuable drawings and photographs were prooured in Arizona by Mr. Viotor Mindeleff and in the District of Columbia by Mr. W. H. Holmes.

The photographio work remalns under the able management of Mr. J. K. Hillers. The following statement shows the amount of work done in the laboratory:

Negatives.		Prints.	
Slze.	Number.	Size.	Number.
28 by 34	12	28 by 34	36
20 by 24	0	20 by 24	26
14 by 17	2	14 by 17	6
11 by 14	20	71 by 14	128
8 by 8	90	8 by 10	629
6 by 8	14	6 by 8	68

Photographs were obtained of Indians from sittinge as follows:

Tribe.	Number.
Dakota ...	32
Sao and Fox	σ
Otoe......	4
Mokl.....	6
Umatilla...	5

During the year the Sisth Annual Report of the Bureau of Ethnology to the Secretary of the Smithsoniau Institution was issued. It contains the introdinotory report of the Director, J. W. Powoll, 35 pages, with accompanying papers, as follows: Anoient Art of the Province of Chiriqui, Colombla, by William H. Holmes ; a Study of the Textile Art in its relation to the Development of Form and Ornanient, by Willlam H. Holmes; Aids to the Sitndy of The Maya Codices, by Prof. Oyrus Thomas; Osage Traditions, hy Rev. J. Owen Dorsey; the Central Eskimo, by 1)r. Frauz Boas. The work forms a royal octavo volume of lvili +657 pages, inoluding a general index, and is illustrated by 546 figures in the text, 10 plates, and 2 maps in pooket.

Very respeotfully,
J. W. Powfle,

Direotor.

Prof. S. P. Lanaley,
 Secretary of the Smithsonian Inotitution.

APPENDIX II.

REPOR' OF THE CURATOI OF EXOHANGES FOR THE YEAR ENDING JUNE $30,1890$.

Sir: I have the honor to submit the following report of the operations of the Bureau of International Exchangee for the fiscal year ending June 30, 1890.
This report has boen prepared in a form somewhat similar to the reports of previous years, being for the sake of convonience divided into the following headlags :

Tabular statement of the transaotions of the office and comparison with the work of previous years.
Expense.
Nainber of correspondents.
Intarnational exchange of official documents, ete.
Efficlency of the service.
List of transportation compauies.

TRANBACITONS OF THE BUREAU OF INTERNATIONAL EXCHANGE DURING THE FIBCAL YEAR. 1889-'90.

	$\left\lvert\, \begin{aligned} & \text { July, } \\ & 1880, \end{aligned}\right.$	$\left\|\begin{array}{c} A \text { ug. }_{n} \\ 1889 . \end{array}\right\|$	Sept.,	$\begin{aligned} & \text { Oot., } \\ & 1880 \end{aligned}$	$\begin{aligned} & \text { Nov., } \\ & 1880 . \end{aligned}$	$\begin{aligned} & \text { Deo. } \\ & 1889 . \end{aligned}$	$\begin{aligned} & \text { Jan., } \\ & 1890, \end{aligned}$	$\begin{aligned} & \text { Feb., } \\ & 1800 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Mar., } \\ 1890 . \end{array}$	$\begin{aligned} & \text { Apr. } \\ & \text { 1890. } \end{aligned}$	$\begin{gathered} \text { May. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { June, } \\ & 1890 . \end{aligned}$
Number of paokages received \qquad	3,711	4, 565	8,049	2,029	10,040	3,395	6,692	2, 299	13,745	6, 505	4,304	17,338
Woight of prokages received	". 0 , 655	13,289	14,331	0,305	29,409	8,624	12,458	10,48C	6, 621	13,802	18,900	34,814
Entries mado:												
Forelgn...............	4,893	2,887	1,015	2,694	6, 649	4,702	6, 742	3,730	$8_{1} 3225$	0,689	4,612	8,220
Domestio............	1,208	3,112	724	1,018	1,214	838	2,128	482	1,682	1,882	1,138	1,050
Ledger accounts :												
Forelgn sooleties	4,408											6,131
Domestio sooleties...	1,385											1,431
Foreign individuals..	4,690											6;340
Domestlo indtviduals.	2,010											3,100
Domentlo paokages sent.	1,103	2,038	573	605	1,084	686	1,760	287	1,046	1,611	035	800
Involoes written	871	628	451	427	1,443	1, 663	608	2, 021	1,082	1,818	1,000	8,655
Cases shlpped abroad....	33	16	61	14	115	46	31	107	- 125	40	68	210
Acknowledgments re. corded:												
Forelgn.	810	793	- 428	760	860	210	222	686	799	477	1,453	000
Domeatlo	228	1,031	423	600	540							*6, 2c6
Letters received.........	119	90	84	103	87	01	110	125	174	149	185	182
Letters written	98	41	164	67	171	82	108	192	217	102	118	267

Recapitulation.

!	Total,	Incteaso over 1858-'89.		Total.	$\begin{aligned} & \text { Inorease } \\ & \text { over } \\ & 1888-189 . \end{aligned}$
Number of paokages recelved	82, 672	6,606	Domeatio individualo	3,100	490
Weight of paokages recaived	202,657	22,729	Domestio paokages sent......	13,216	14,002
Entries made:			Invoices written.	16,948	2,850
Foreign.....................	60, 118	13,976	Cases shipped abroad.........	873	180
Domertic	16,352	+1,924	Aoknowledgments recorded:		
Ledger accounts:			Foreign...................	8,398	956
Forelgn socletles	6,131	685	Domestlo	9, 026	2,144
Domestio nocleties........	1,431	76	Letters recelved...............	1,609	205
Foreign individuals........	6,340	1,641	Letters written...............	1,625	1425

* From December to June Inclusive.
\dagger Deorease.
An idea of the growth of the service since 1886 is convesed by the anuexed summary:

Comparative statement.

Paokagen,	1880-'87.	1887 ${ }^{\prime} 88$.	1888-'89.	1889-90.
Recelved	62, 218	75, 107	76,968	82, 672
Shipped:				
Domestlo...	10,294	12,301	17, 218	18,216
Foreign.	41,424	02, 300	58, 035	69, 036

EXPRNSE.

The expenses of the Exchange Bureau are met in partely a direct appropriation made by Congress in the following terms:
"For expenses of the system of international exohanges between the United States and foreign countries, under the direction of the Sinithsonian Institution, including salaries or compensation of all necessary employees, fifteen thousand dollars."

This is supplemented by appropriations to several Government Bureaus by wheh they are enabled to puy a portion of the oost of the exchange of their documents at a rate of 5 cents per ponnd weight as established by the Board of Regents. Smaller sums have been received from State institutions desiring to make nse of the service, and the deficienoy is paid from the Smithsonian fund."

The receipts and disbursements by the acoounting officer of the Smithsonian Institution on account of the international exchanges, as shown in his statement for the fiscal year, dated July 1, 1890, were as follows:

Recoipts.
Direst appropriation by Congress
\$15, 000.00
Repayment to Sulthsonian Institution:
United States Government Departments 1,771.63
Socletien and other soarsen
*The actual cost of the exchanges from July 1,1889 , to Jupe 30,1890 , compiled from the, accounting offecr's books and including the recelpts and disbursements for the figcal year, entered up to September 24, 1890, way $\$ 17,407.30$.
Fifteen thousand dollars of this sum ($\$ 17,407.30$) were appropriated by Congress directly to the Smithsoulau Institution, $82,009.34$ were ropaid to tho Institation by Government Bureans, $\$ 28.40$ by State institutions and the deficiency, $\$ 369.56$, was met by the Smithsonian fund.

Disbursomento.

	From Con. gremalonal appropriations.	Ropaymenta.
Salarles and compensation of employes	\$11, 638.48	\$11200
Salarles of foreign agents.	1,500.10	…........
Frelght.	989. 67	1,113.00
Paoking boxes	443.41	222. 50
Printing, stationery, postage, oto.	407.44	316. 88
	14,088.01	1,704.09

Bills for the transportation of exchanges lave been rendered to all Gnvernment Bureaus receiving or sending publications dnring the year, except in a few instances where the amount was trifing. The total received from such sources was $\$ 1,771.53$, as mentioned above.
It may not be superfluous to repeat the statement made in previous yoars, that this method of meeting the expenses of the Exchange Bureau is extremely unsatiefactory hoth to the Sinithsonian Institution and to the Government Bureans that have occasion to make use of the service, and I again recommend that a sufflolent appropriation be procured to cover the entire eost of the exchanges, thereby enabing it to anderstand at a glance the exact amount appropriated for such purposes. At present the appropriation is distributed through all the prideipal appropriation bills of the Government.

In order to effect the desired change, that is, to collect in a single item the entire appropriation for international exchanges and at the same time to make allowances for the payment of ocean frelght, the sum of $\$ 27,500$ was asked for, for the flacal year 1889-'00 based upon the detailed statements submitted in my last report. The amount finally appropriated was $\$ 15,000$, the same as that for the year preceding.

CORRESPONDENTS.

The number of correspondents now upon our books is 16,002, divided into nocieties and institutions, individuals, foreign aud comestic, as follows:

	Forelgn,	Domeatic.
Sooleties and institutions	8, 181	1,431
Indis tuals	6,310	3,100
Total.	11,471	4, 531

A comparison with similar figures for last year shows a net increase of 2,672 .

INTERNATIONAL EXCHANGE OF OPFIOIAL DOCUMENTS.

The exchange of offolal doommente between the Government of the United States and that of foreign oountries has been carried on through the fintermediary of the Smithsonian Institntion, though this exchange bas only been placed upon a deffnite diplomatio footing since January 15, 1889, the date upon which the convention signed at Brussels on March 15, 1886, was proclalmed by the President of the Unlted States. Thls convention, the text of which was given in full in Dr. Kidder's report on exchanges for the year 1887-'88, provided that there should be eatablished in each of
the contraoting countries a bureau for the special transmission of the pabliontions of its Goverument, the transactions of its learned societies, etc., to foreign governments and individuals, and for the receipt from the simllar bureaus of other countries of the publioations of their government and solentifio and literary societies, This involves, as wili be seen; but little or no modifioation of the present long-established Smithsonian Institution exchange system, and it is hoped that the offoial recoguition of the value of such a service by so many governments will result in extending the soheme that has been in operation here for the past forty years, the expense of which has been borne largely by the funds of James Smithson.

In accordance with a provision made in the Brussels Convention the Governments of the Argentine Republic and of Paraguay have signified their adhesion to the convention, the former on September 3, 1889, and the latter on December 10, 1889. The countries therefore inoluded in the international agreement are:-The United States of America, the Argentine Republio, Belginm, Brazil, Italy, Paraguay, Portugal, Servia, Spain, Switzerland, Uruguay.

While neither England nor Germany appear in the above list, both of these courtries have addressed inquiries to this institution through diplomatio ohannels with regard to exchanges with our Government, and it is most gratifying to report that the British Goverument, through Her Majesty's Stationery Office, has presented to the Goverument of the United States, for deposit in the Library of Congress, an importan's collection of the publications of the parliamentary and executive offices from the years 1882 to 1889, constituting a most valuable series of documente and forming a parlial return for the series of pablicatious issued by our own Government since 1868 and sent regularly to the British Maseam. Morenver we have the assurance that this valuable series will be continued in annual shipments.

The Government of Germans has also expressed its appreciation of the international exehange service in suoh a way as to lead us to expect that it will in due time make fitting acknowledgmeut of the series of United States Government publioations presented to the Royal Publio Library, and to the Library of the Imperial German Par. liament at Berlin.

A second convention made at Brussels, and also proolaimed by the President on the 15th of January, 1889, provided for the immediate exohange of Parliamentary journals and the like, but it had not at the olose of the fiscal year been set in satisfactory operation. An effort was made ly a letter addressed to the Departinent of State on December 12, 1889, to carry out the stipulations of this treaty as far as the United States Government was concemed, and upon the recommendation of the Secretary of State a joint resolution appropriating $\$ 2,000$ for the purpose was passed liy the Senate on Jannary 22, 1890, but it has not yet been acted upon by the House.

EFFICIENOY OF THE BERVICE,

An inspection of the tables presented at the beginning of this report bears suffleient evidence that the Bureau has not deoreased iu effloienoy during the past jear, expecially when it is considered that the inoreased number (6,606) of packages was handled and accounted for with a decrease in the olerical force during eleven monthe, At the close of the year there were but 321 packages on hand and the record work was tolerably well up to date.

The distribution to forelgn conutries was made in 873 cases, representing 385 transmissions, as follows :

		Casen
Argentino Republio	Mexicot	7
Austria*	Netherlands.	12
Baden*	New South Wales	9
Bavaria*	New Zealand.	8
Belginm	Nioaragın	2
Bolivia	Norway	8
Canadat	Paraguay	1
China	Peru	6
Chill	Polynesia	2
Colombia	Portugal	7
Costa Rica	Prussia*	4
Cuba	Queensland	9
Denmark	Russia	18
Dutch Guiana	San Salvador	1
Ecuador	Saxony*	4
Egypt	South Australia	8
France.	Spain	8
Germany.	Sweden	9
Great Britain	Switzerland	15
Greece	Tasmania	6
Guatomala	Turkey	6
Hayti.	Uruguay	2
Hingary*	Veuczuela.	7
India	Viotorla	8
Italy.	West Indles.....	. (\ddagger
Japan	Wirtemberg* .	4
Liberia		

* Miscellaneous oxolanges included in transmissions to Germang. \dagger In addilion to a large amount sent by mall. 1 By matl.

The entire number of publications sent abroad during the year under the provisions of the aot of Congress of Maroh 2, 1867, has been 27,300 , and there have been received in return but 1,820 paokages or volumes. The United States Governmont Departments linve forwarded to their correspondents abroad through the Bureau 16,496 paokuges or volumes, and have receiverl in returu 8,886 . The total, then, of the exohanges for the enrichment of the Goverinment librarles has been 10,706 packages received and 43,796 packages sont abroad, a total of $54,50 \%$ packages, or 66 per cent. of the total number of packages handled.

Statenent of Governmental sxchanges distributed during the year 1889-90.

	Paokagen.			Packages.	
	RA. celved for.	Sent by.		Re ceived for.	Sent by.
American Ephemeris	1		Libuary of Congresa	1, 820	
Army Medical Mnsenm	2		Light-House Board	2	2
Botantoal Gardens.	1	1	Marine Hospital		72
Bureau of Education	68		Nantical Almanac	18	31
Burean of Engineers, U. S. Army.	43	272	National A cademy	276	1,658
Burean of Ethnolog.Y	0	2,669	National Board of Health	2	
Bareau of the Mint.	2		National Masenm	108	2,200
Burean of Statistics	16	2	Navr Department	7	2
Census Bureau.	9		Naval Obeervatory	113	811
Conat Surves	72	18	Office of Indlan Affairs	3	
Commissioners of the District of			Ordnance Burean, U. S. Army...	5	7
Columbla .	1		Patent Office.	212	497
Comptroller of the Currency	1		Smithsonian Iustitntion	1,795	3,657
Department of Agrioulture......	95	888	Smithsonian Institution (by		
Department of the Interior......	23	102	mail)	6, 050	
Department of Labor............	6	99	Smithsonian Institution (re-		
Department of State	15		turned to Document Difision).	22	
Entomological Commission......	-8		Signal Office	74	175
Exchange Burean...............	8		Surgeon.General.	136	302
Fibh Commission	91	414	Treasury Department	11	4
General Land Office.	4		War Department.	17	128
Geologioal Survey ,	413	2,685		10,695	16,494
House of Representatives			Public Printer :		$27,300$
Hyarographio Onfee	48			10,685	43, 794
Total Governent exchauges... 54, 489					
Mtacellaxneons exchanges					28,083
Total exohanges					82, 872

Of the 82,572 parcels recoived by the Exchange Burean, 69,356 wore for foreign and 13,216 for domestio distribution.

While it is thus shown that more work has been done and with less force than in the preceding years, I strongly recommend that a slight increase in the office force be made in order that it nay be possible to bandle more rapidly the large nud constantly increasing amount of exchange material. An additional assistant in the shipping room will, I am confident, preventanyreasonable complaints of delays in the office proper. Delays that occur by reason of slow ocean transportation will be obviated when suffleient appropriation is made to pay for freight; the delays that ocnur in the foreign exchange bureaus or agente, except those in the pay of the Smithsonian Institntion, lie of conrse beyond the control of the Institution.
The foreign agents of the Institution, Dr. Felix Flugel, Leipzig, and Messrs. Willjam Wesloy \& Son, London, have given the same careful attention to the interests of the Institution as in former years and are entitled, as well as the iminediate employés of the Bureait, to my warmest thanks. Grateful acknowledgments are also due to the following transportation companies and firms for their continued liberality in grauting free freight or otherwise assisting in the transmission of exobange parcels and boxes, while to others we are indelted for reduced rates in consideration of the disinterested services of the lnstitution in the diffusion of knowledge among men.

Allan Steamship Company (A, Sohumacher \& Co., agents), Baltimore.
d'Almeirim, Baron, Royal Portugnese consal-general, New York.
Amerioan Board of Commissioners for Forelgn Missions, Boston.
American Colonization Soolety, Washington, District of Columbia.
Anohor Steamship Liue (Henderson \& Bro., agents), New York.
Atlas Steamship Company (Pim, Forwood \& Cor), New York.
Bailey, H. B., \& Co., Now York.
Barler \& Co., New York.
Bixby, Thomas E., \& Co., Boston.
Borland, B. R., New York.
Bors, C., consul-general for Sweden and Norway, New York.
Botassi, D. W., consul-general for Greece, New York.
Boulton, Bliss \& Dallett, New York.
Calderon, Climaco, consul-general for Colombia, New York.
Caldo, A. G., consul-general for Argentiue Repmblio, Now York.
Cameron, R. W. \& Co., New York.
Baltazzi, X, consul-general for Turkey, New York.
Compagnie, Generale 'Transatlantique (A. Forget, agent); Now York.
Cunard Royal Mail Steam-ship Company (Veruon H. Brown \& Co., agent), New, York.
Denuison, Thomas, New York.
Espriella, Justo R. de la, consul-general for Chili, Now York,
Florio Rubattino Line-Navigaziono Generale Italiano (Phelps Bros. \& Co.), New York. -
Grace, W. R., \& Co., New York.
Hamburg Amerioan Packet Company (R. J. Cortis, manager), New York.
Heusel, Bruckmann \& Lorbaoher, Now York.
Inman Steam-ship Company (Henderson \& Bro., agenta), Now York.
Mantez, Jose, coneul-general for Uruguay, Nery York.
Merohant, S. L. Co., New York.
Muñoz y Eepriella, New York.
Murray, Ferris \& Co., New York.
Nayarro, J. N., consul-general for Mexico, New York.
Netherlauds American Steam Navigation Company (W. H. Vanden Toorn, agent) New York.
New York and Brazil Mail Steam-ship Company, Now York.
New York and Moxico Steam-ship Company, Now York.
North Geruman Lloyd (agents: Oelrichs \& Co., New York; A. Schumacher \& Co., Baltimore).
Obarrio, Melohor, consul-general for Bolivia, New York.
Paoifo Mall Steam-ship Compauy (H. J. Bullay, superintendent), New York.
Panama Raliroad Compauy, New York.
Pioueor Line (R. W. Cameron \& Co.), New York.
Perry, Ed., \& Co., New York.
Pomares, Mariano, consul-general for Salvador, New York.
Red Star Line (Peter Wright \& Sons, agente, New York and Philadelphia).
Royal Daulsh cousul, New York.
Royal Spanish consul, New York.
Ruiz, Domingo L., cousul-general for Eoundor, Now York,
Stewart, Alexauder, consul-general for Paraguay, Washington, Distriot of Colum. bia.
Toriello, Enrique, consul-general for Guatemala, New York.
Vatable, H. A., \& Co., New York.
White Cross Line of Antwerp (Funch, Edye \& Co.), New York.
Wiloon \& Aomas, New Xork.

Upon January 1, 1890, a new system of recording the correspondence was adopted, having been submitted to a prelliminary trial of several nionths to testits applioability to the special wants of the office. Every letter or invoice received is assigned a ourrent number, and is entered at once in a book for the purpose, a card index facilltating reference to the letters filed ohronologioally. All out-going lettiors are ontered in a similar book.

The collection of seientifio and other directories, Government year-bcoks, and lists of members of learned societies, has received a number of valuable additions, and it is hoped that with inoreased funds at command and a diminution of more pressing needs this collection will be made an important feature of the Exchange Burean.
Perhaps the most serviceable information to those having occasion to make use of the service is that contained in Exhibit A, appended, showing the number of shipments each month to the various countries will which wo are in correspondence.

Very respectfully yours,

Whliam C. Winlock,
Curator of Exchanges.

Mr. S. P. Langley, Secrelary of the Smithsonian Institution.

Exhibit A.

Transmission of exohanges to foreign countries.

Countries.	Date of tranomision, etc.
Argentine Republio	September 13, 1880 ; January 2, February 15, June 23, 1890.
Austria.Hungary	Ineluded in transmission to Germany
Bolglum	August 29, November 23, 25, 1880; February 10, March 6, May 7, June 3, 16, 1890 .
Bolifla	Fobluary 17, 1880.
British Colonlos	Included in trausmiselon for England.
China	December 30, 1889; February 21, May 10, 1890,
Chill	September 13, 1889 ; January 2, Fobruary 17, June 23, 1890.
Colombia	Feloruary 17, June 23, 1890.
Costa Rica	February 14, June 23, 1890.
Cuba	Ootobor 16, 1889, Feltuary 20, June 23, 1890.
Denmark	September 14, November 25, 1889 ; February 20, April 21, June 16, 1890,
Datoh Gulana	February 17, 1890.
East India	February 21, June 21, 1890. Also Inciuded in transmissions to England,
Ecuador	February 17, June 23, 1890.
Egypt	Fobruray 21, June 24, 1890.
France and Colonies.	July 6, August 12, September 7, October 22, November 14, 23, Decenber 7, 1889, Janaary 5, 27, Felruary 4, 11, 12, March 4, 21, 20, May 1, June 0 , 19, 24, 1890.
Germany	July 3, 20, 25, August 14, September 3, Oetoler 12, November 7, 11, 23, December 13, 1889; January 4, 27, February 3, 12, March 6, 23, 29, April 25, May 16, 29, Juue 6, 18, 1890.
Great Britain, eto .	July 10, Auguit 8, September 11, Oetober 18, Novernber 8, 10, 23, December 7, 28, 1889; Jannary 2, 28, February 7, 11, 13, 20, 21, March 8, 22, A pril 2, 30, May 6, 13, June 4, 14, 24, 30, 1890.
Greeos.	February 20, June 16, 1890.
Guatomala	February 14, June 23, 1850.
Hayti.	February 20, June 23, 1890.
Italy..	July 15, Angust 30, October 26, November 15, 23, Decomber 27, 1880; January 27, February 14, 20, Maroh 6, 81, April 5, June 6, 20: 1890,

Transmission of exohanges to foreign countries-Continued.

Countries.	Date of transmission, eto.
Japan.	September 10, December 30, 1889; February 21, May 10, 23, June 21, 1890.
Liberia	February 11, June 24, 1890.
Mexico	Septeniber 24, 1889; February 15, March 20, 1800. The majority of Mexican exohanges are sent by reglatered mall.
Now South Wales	September 27, December 23, 1889; Fobruary 21, May 13, June 21, 1890.
Netherlands and colonies....	September 12, November 15, 23, 1889 ; January 31, February 15, Maroh 6, J̌ne 3, 13, 1890.
New Zealaud	December 23, 1889; February 24, May 13, June 21, 1800.
Nlcaragua	February 14, June 23, 1880.
Norway	October 25, November 25, 1884; dpril 24, June 10, 1890.
Paraguay	February 17, 1880.
Pera	February 17, June 23, 1890.
Polgnesia	February 24, June 21, 1890.
Portugal	December 31, 1889; February 24, June 14, 1800.
Queensland.	November 16, December 23, 1889; January 18, May 13, June 21, 1890.
Roumanla	Ineluded in Germany,
Russia.	July 11, 25, September 20, November 15, 23, December 30, 1889; Febru. ary 10, 13, Musch 6, 31, A pril 7, May 14, June 6, 20, 1890.
Servia	Included In Germany.
San Salvador	February 17, 1890.
South Australla	Decemier 20, 1889; February 24, May 18, June 21, 1890.
Spain	Deceniber 31, 1889, February 24, May 24, June 16, 1800.
Sweden	September 12, 1889; Jauuary 3, April 3, May 31, June 20, 1800.
Switzerland..	July 12, 29, September 19, November 23, December 27, 1889; February 14, 24, March b, May 14, June 6, 20, 1890.
Tasmania.	February 21, Juno 21, 1890.
Turkey .	Fellraary 24, Tune 10, 1890.
Uruguay	Fobruary 17, June 23, 1890.
Venezuela	September 13, 1889; Felruary 17, June 23, 1890,
Vlotoria	Soptember 27, 1889; Felruary 21, May 13, June 21, 1890.

In addition to the above, shipments of United States Congressional publications were made on September 7, November 30, 1889 ; March 17, June 28, 1890, to the governments of the following-named countries:
Argentine Republio.
Austria.
Baden,
Bavaria.
Belglim,
Buenos A,res.
Brazil,
Cauada (Ottawa).
Ganada (Toronto).
Cbili,
Colombia.
Denmark.
France.
Germany.
England.
Greace.
Hayti.
Hungary.
India.
Italy.
Japail.
Mexico.
Netherlands,
New South Wales.
New Zealand.
Norway.
Peru.
Portugal.

Prussia.
Queensland.
Ruesia.
Saxoliy.
South Australla.
Spain.
Sweden.
Switzerland.
Tasmania.
Turkey.
Venezuela.
Viotoria.
Wurtemberg.

APPENDIX III.

REPORT OF THE ACTING MANAGER OF THE NATIONAL ZOOLOGICAL PARK.

On June 15, 1890, the animals exhibited for some years past at tho National Musenm, and forming the nucleus of a collection for the National Zoological Park, were turned over to the acting manager of the park.

They are shown in detail in the fullowing list :

Name.	Speor. men.	Name.	Speol. men.
makmals.		mirids.	
Opossum (Didelphys virginiana	8	Golden Eagle (Aquila chrybaëtus, L).	
Peccary (Dicotyles tujagu, L.)	1	White-hoaded Eaglo (Haticeetus leuco-	
Mule Deer (Oariaous macrotis, Say)	1	cephalus,	
Columblan Blaoktalled Deer (Cariacus columbianus, Rleh.) \qquad	1	Cooper's Mawk (Accipiter cooperi, Bonap.) Red-shouldered Hawk (Buteo lineatur,	
Virgisia Deer (Oariacus virginianus, Bodd.) \qquad	1	Gmel.) Sparrow Hawk (Falco sparverius, L.)...	2
Amerloan Elk or Waplti (Oerous cana. donsis, Erxl.)	4	Great Horned Owl (Bubo virginiantus, Gmel.) \qquad	
Amerioan Blson (Bison americanus, Gmel.) \qquad	6	Barn Owl (Strix pratincola, Bonap.) Barred Owl (Syrniuinnebulosum, Forat.).	11
Rocky Mountain Sheep (Ovis montana, Ouv.) \qquad	1	Red and blio Macaw (Ara chloroptera).. Red and blue and yollow Maoaw (Ara	
Angora Goat (Oapra hirous angorensis)..	6	macao)	
Woodohuek (Arctomys monax, L.).......	5	Yellow and liue Macaw (A ra araraunea)	
Pratrio Dog (Cynomys ludovioianus, Ord.)	3	Sulphurerested Cookatoo (Oacatua gal.	
Striped Gopher (Spermophilus tredecimli. neatus, Mitohill) \qquad	11	erita)	
Red Squirrel (Sniurus hudeontie, Pallaa).	2	bianue, Wils.)	
Gray Squiriel (Sciurus carolinensis caro. linensis, Omel .).	1	Long-orested Jay (Oyanocitta stelleri macrolopha, Baird) \qquad	
Flylog Squlirel (Sciuropterus volucella volucella, Pallas.) \qquad	2	Carollua Paroquet (Oonurus carolinensis, L.).	
Canada Porouplne (Erethizon dorsalu: dorsatus, L.) \qquad	3	Houdan Chlokens (allus bankiva)...... Frizzled Chitukens (Gallus bankiva).....	
Gulnea Pig (Oavia aperea).	4	Bronze Turkeys (Meleagris gallopavo, L.)	
Black Bear (Ursus americanue, Pallas) .. "Cinnamon" Bear (Drousainericanus	3	Whlte Turkoys (Meleagriagallopavo, L.). Canada Gooso (Branta canadensis, L_{1}).	
Sllver.tip Grizzly Bear (Orsua horribilis, Ord.) \qquad	1	Night Heron (Nyoticorax nycticorax navitus, Bodd.) \qquad	
Racocon (Prooyon lotor, Li)	5	Turtle Dove (Zenaidura nacroura, L.)..	
Forret (Putorius furo, L.).	2		
Gray Fox (Urocyon dirginianus, Sohreber)	4	Blask Snake (Bascanion conetrictor, L.).	
Swift Fox (Vulpes relox, Say)	2	Hog. nosed Adder (Heterodon platyrhinus,	
Fed Fox (7 ulpes fulvus fulvus, Desmarest)	9		
Panther (Felis concolor, Lis).	1	Elephant Tortoise (Testuto elephantopu(s)	
White-throated Capnohin Monkey (Cebue hypoleucus, Humboldt)	1	Galapagos Tortolse (Testudo nigrita)....	
Brown Capuohln Monkey (Oebus fatuellus)		(Alligator mis\%rsippiensis,	
GrivotMonkay (Uercopitheous callitrichus)			
Macaque Monkey (Macacus cynomolgus).			
			186

Map showing the location of the National Zoological Park.

It has hitherto been imposeible to give suitable housing to these animals, most of which are gifte to the Government, and many of them are kept in a long, low shed, imperfectly lighted and heated, wherein animals acoustomed to the most diverse olimates are of necessity indiseriminately placed, the common Virginia opossum receiving the same heat and treatment that serves for the parrots and cookatoos. In an annex to this shed the monkeys are placed, and it has been possible to give them somewhat more suitable protection. The larger animals are confined either in separate out-door oages or in shelter-barns and pens, but these constructions are ansuitable and insuffioient even for the small number of such animals kept. Happily, this condition is not a permanent one, as Congress has provided for the care and maintenance of the collection in the National Zoologioal Park.

No zoological collection has ever been placed in a site so satisfactory. It is ample in extent, being about four times larger than any zoolngical garden in this country and from ten to fiftecin times the size of most of the gardens of Europe. It is within a short distance of the oity, boing but little over one-half mile from its limits (see map No. 1) easily aocessible by excellent roads; yot it has all the quiet and seclusion of a remote country district. Within its bounds every variety of slope exposure is found, from the north sides of hills covered with dense growth, suitable for animals requiring coolness and shade, to the sunuy southern aspects for tropical and subtropical species. The natural variety of surface is also great. Rocks form natural cliffs where wild sheep and goats can jump and olinb ; densely wooded portions forn an excellent cover for shy animals, and a large open field aloug the creek affords an opportunity for excellent grazing grounds. In the creek itself aquatio animals aud birds may be suitably reared.

That the picturesqueness of the region is notable is shown by the names given to different parts of it in the grants aud early deeds of the eighteenth century. There it is found that a considerable part of the park was known as "Protty Prospeot," also as "The Rock of Dunbarton," while other parts are from the tracts of "Mount Pleasant" and "Pleasant Plalns." The actual owners from whom the site was immediately derived are shown on the accompanying map No. 2. A portion of it was once owned by John Quinoy Adams, who built upon the creek the "Colnmbia Mill," for many yoars past known as "Adams's Mill,". Fragmentary ruins of some of the mill buildings still remain.
The only habitable building found within the limits defining the park was that knowu as the "Holt Honse." This mansion is one of the few-remaining in the District dating back to near the beginning of the century, it having been built in 1805. Though is a very dilapidated coudition, it is thought desirable to repair it, preserving as far as possible its charaoteristio features, and it will be used for the offices of the Park.
The original forest oovering this land was doubtless mainly oaks, hickories, and tulip trees. A portion of this was cleared away, and the land was probably oultivated for many years. Being then allowed to lie fallow, there aprang up upon it a thick second grow th of sorub plines and cedars. A large variety of trees of natural growth is found. A list of those already noted that may lo olassed as iudigenous follows:

Popular name.	Sclentitio name.
Tulip tree	Liriodendron Tulipifera, L .
Amerioan holly.	Ilex ¢paca, Att.
White or alver maple	Acer dasycarpum, Ehrh.
lied or swamp maple	A cer rubrum, L .
bax eller..	Negundo aceroides, Moench.
Common looust	Robinia Pooudacacia, I.
Honey locust.	Gleditschia triacanthos, \mathbf{L}.
Red bad or Judas tree	Oercis Canadenvis, 1.
H. Mis. 129	

ORNITHOLOGY OF THE ZOOLOGIOAL PARK.

This region has long beeu known to be, because of its sectusion and natural ad, vantages, one of the favorite nesting grounds for the birds that visit the Distriot of Columbia. At niy requeat Mr. H. W. Henghaw, a well-known authority in ornithology, has made the special report whioh follows:
"For many reasons the situation of the site of the National Zoological Park is seen to be a wise one, and from no point of view do its advantages appear greater than as a haunt of our native birds. A section which has long been known to be the ohosen home of birds and animals in a state of nature would seem to be a peouliarly fitting abode for them in a state of captivity. It is certain that neither within the District nor in the region immediately about it is there a spot whioh is recortell to by such numbers of birds, nor one where the rarer migratory species can so cortainly be found. The park region has long been familiar to every bird collector who has over mado Waghington his headquarters, and probably no area of equal size ham furnighed so
many speoimens to the collection of the National Maseum and of private collectors as this.
"To appreciate its advantages as a haunt in which to study the habits of our birds one must visit it in eariy morning about the middle of May. At this time thousands of birds are eagerly whaging their way to their northern homes, and the little groves of pines aud the outlying deciduous thickets are filled with hundrode of warblers, flyoatohors, and sparrows. Among others one may be pretty sure to find, awid througs of commoner species, numbers of Bay-breasted and Blackburnian Warblers. Should the visitor carefully scan the low thickets a Mourning or Conneeticut Warbler, rare birds indeed in this latitude, may, perchance, reward his search.
"The Worm-eating and Kentucky Warblers are always present abont that dato, though in small uunibers. So, too, are the Yellow-belliod and Least Flycatchers ; while the Traills Flyeateler is an oceasional visitant. There is a thicket on the west bank of the oreek which Lincoln's Finch, long minoticed in the district, visits eaoh spring, and I have seen seven or eight of a morning. The Searlot Tanagor, whose bright colors arrest the eye of even the most careless, flinds here a favorite resort, and the Rose-breasted Grobbeak, always a prize to the collector, is a regular and common visitor to the tall oaks that cover the oastern slopes. The northeast corner of the park is the only spot known to mo where the song of the Summer Tanager nay bo heard with auything like certainty, for it is ons of our rarest summer visitors. Not so the Olive-backed Thrushos. Sevoral of the five species are common olsewhore, but nowhere do they all occur so abundantly as hore, even the Gray oheoked being numerous. The above are but a few of many species that throng the tree-tops and brushpiles at this time of year.
"To explain just why this spot of all others in the District should we the favorite resort for our birds would be difficult. Roek Creek is elsewhere as well wooded as it is here. Elsewhore ite banks furnish far more picturesque places, and if we oan suppose that birds are infuenced in their choice of a resort by the absthetic sense, why are not such places equally favored with their presence?
"I am inolined to believe that the answer is to be found in the somewhat prosaic reason that the gentle slopes of the oreek at this point invite the early sunshine, and that the succession of woods, thickets, and open spots favor the presence of insects and seed-produciug plants. In other words, that here the birds find the exact kind of sholter they require and food in abundance.
"A list of the birds thatare known to have nested within the limits of the park, suall though this area is, would include almost all the land birde oredited to the District. A catalogue of the birds of the District was prepared by Dectors Cones and Prentiss several years sinee (1883), and published by the National Musenm under the title of 'Avifauna-Columbiana.'
"As, however, having a more intimate relation to the Park, I subjoin a list of the birds which are known to have nested within the Park area withill recent years. Many of them, it is to be hoped, will refuse to recognize as valid the exclusive title of possession conferred by Congress, and will continue to occupy their old homes as theirs loy squatters' rights. Others doubtless, let us liope a small minority, will prefer to yiold their ancient titlos and move to more seoluded spots in the adjolining territory.
"But ninety-one speoies of land birds are known to breed within the llmits of the District, and the following list slows that of this number sixty-one species, or more than 76 per cent., breed regularly or occasionally within the Park. The superior advantages it offers to bird life will therefore be readily appreelated."
"List of birds nesting within the National Zoological Park.

Popular name.	Soientific name.	Popnlar name.	Sclentitio name.
Woodcook.............	Philohela minor.	Scarlet tanager.......	Piranga crythomelas.
Bob White	Colinus virginianus.	Snmmer tanager	Piranga rubra.
Turtle dove.	Zenaidura macroura.	Rough-winged swal.	Stelgidopteryx serripen.
Broad-winged hawk ...	Buteo latissimus.	low.	nis
Soreech owl.............	Mejascops noio.	Cedar waxwing.......	Antpelis cedrorum.
Yollow-billed ouckoo ..	Coccyzus americanus.	Red-eyed vireo	Vireo olivaceous.
Black-billed cuckoo....	Coccyzus erythrophthal.	Warbling vireo	Vireo gilous.
	тия.	Yellow throated vireo.	Tireo flavifrone.
Kingfisher	Ceryle alcyon.	White-eyed vireo.....	Fireo noveboracensis.
Downy woodpecker....	Dryobates pubescens.	Black and white war-	Mniotilta varia.
Red.headed woodpeoker	Melanerpe erythrocephalus.	bler. Worm-eating warbler.	Helmitherus vermivorus.
Flicker	Oolapter auratue.	Yellow warbler	Dendroica aytioa.
Ruby.throated hum. ming-bird.	Tro hilue colubris.	Prairie warbler Oven-bird.	Dendroica discolor. Seiurus aurocapillus.
King bird..............	Tyrannue tyrannue	Loulslana water.	Sciurus motacilla.
Crested flycatoher.....	Myiarchus crintus.	thrush.	
Phosbo...................	Sayornis phebe.	Kentucky warbler....	Geothlypie formoda.
Wond pewee...........	Contopus virens.	Maryland yellow.	Geothlypis trichas.
Acadian flycatcher	Empidonax acadicus.	throat.	
American orow	Corous americanus.	Yellow-breasted ohat.	Icteria virens.
Flah crow	Corvus osvifragus.	American redstart....	Setophaga ruticilla.
Cow bird	Molothrus ater.	Mookingbird	Mimus polyglottus.
Orchard oriolo	Icterue spurius.	Catbird................	Galeoscoptes carolinendis.
Baltimore oriole	Icterus galbula.	Brown thrasher.......	Harporhynchus rufus.
European house spar. row.	Passer domesticus.	Carolina wren House wren	Thryothorus ludovicianus. Troglodytes aédon.
Americmn goldfaoh....	Spinus triotis.	White-breasted nut.	Sitta carolinensis.
Grashopper sparrow..	Ammodramue s. passeri. nus.	hatoh, Tufted titmouse	l'aius bicolor.
Chipping sparrow	Spizella socialis.	Carolins ohiokadec	l'arue carolinenais.
Field sparrow	Spizella pusilla.	Blue-gray gnatcatoher	Polioptila carruka.
Song bparrow	Melospizu fasciata.	Wood thrush	Turdus mustelinus.
Towhee.................	Pipilo erythrophthalmus.	American robin.......	Merula nigratoria.
Cardinal................	Cardinalis cardinalis.	Bluebird	Sialia sialis.
Indigo banting.........	Passerina cyanea.		

Many other creatures likewise flud a natural home within these limits, and though no systematio colleotion has yet been made, there has been observed during the season in the Park or its immediate vicinity the common woodchuck, the cotton-tail rabbit, the Virginia opossum, and the flying squirrel.

BOTANY OF THE ZOOLOGIOAL PARK.

An examination of the flora has been made by Mr. W. Hunter, an employe of the Park and a competent botanist, who received advice and assistance from Prof. Lester F. Ward and Prof. W. H. Knowlton. The Hat of plants is necessarily incomplete, owing to the fact that the observatious did not commence until lute in the season. Excluding the trees a list of which has already been given, the following were noted:

Clematus Virginlana, L.
Anemonella thaliotroiden, Spach.
Anemone Virginiana, L.
Hepatica trilobs, Chaix.
Ranunculus repens, L.
Ranunculus repens, L., var. hispidus, Torr. and Gray.
Aconitum ancinatum, L.
Cimiolfuga racemosa, Nutt.
Asimina triloba, Dunal.
Menispermum Canadense, L.
Podophyllum peltatum, L.
Sanguinaria Canadensis, L.
Nasturtium palustre, D. C.
Nasturtium Armoracia, F'ries.
Barbarea vulgaris, R. Br.
Arabis Canadensis, L.
Dentaria laciniata, Muhl.
Drabs verna, L.
Capsella Bursa-pastoris, Moench.
Lepidiam Virginicum, L.
Leohea minor, Walt.
Viola cucullata, Ait.
Viola sagittata, Ait.
Viola perlata, L. In bloom October 21, 1890.

Viola pedata, L., var. bicolor, Pursh. In bloom Ostober 9, 1890.
Polygala verticillata, L.
Dlanthus Armeria, L.
Saponaria offlcinalis, L.
Sllene stellata, Ait.
Cerastlum viscosum, L.
Stellaria media, Suith.
Stellaria pubera, Michx.
Anyohia dichotoma, Miolix.
Portulaca oleracea, L.
Claytonia Virginioa, L.
Asoyrum Crux-Andrem, L.
Hypericum perforatum, L.
Hypericum macnlatum, Walt.
Hyperioum mutilum, L.
Hypericum nudicaule, Walt.
Malva rotundifolia, L.
Sida spinosa, L.
Abutilon Avicennem, Gaertu.
Linum Virginianum, L.
Geranium maonlatum, L.
Oxalis violacea, L .
Oxalis cornioulata, L., var. stricta, Sav. Impatiens pallida, Nutt. Impatiens fulva, Nutt. Enonymus Americanus, L. Celastrus scandens, L. Ceanothus Americanus, \bar{Z}. Vitis Labrusca, L.

Vitis mativalis, Michx.
Vitis cordifolla, Lam.
Ampelopsis quinquefolia, Michx.
Staphylea trifolla, L.
Rhus typhina, L.
Rhus glabra, L.
Rhus copallina, L.
Rhis Toxicodendron, L.
Baptisia tinctoria, R. Br.
Trifollum arvense, L.
Trifolinm pratense, L.
Trifollum repens, L.
Tephronia Virginiana, Pers.
Stylosanthes elatior, Swartz.
Desmodium nudiflorum, D. C.
Desmodium paniculatum, D. C.
Lespedeza retioulata, Pers.
Vioia Caroliniana, Walt.
Phaseolus perennis, Walt.
Strophostyles pedunoularis, Ell.
Cassia Chammorista, L.
Cassia nictitans, L.
Spirma Aruncus, L.
Rubus oceidentalis, L.
Rabus villosus, Ait.
Rubus Canadensis, I.
Geum album, Gmel.
Fragaria Virginiana, Duchebne.
Potentilla Norvegica, L.
Potentilia Canadensis, L.
Agrimonia Eupatoria, L,
Agrimonia parvillora, Hook.
Rosa luoida, Ehrl.
Rosa Carolina, L.
Saxifraga Virginiensis, Michx.
Henchera Americana, L.
Hydrangea arboreacens, L.
Penthoram sedotitea, L.
Cuphea viscobissima, Jacq.
Epiloblum coloratum, Muhl.
Ludwigia alternifolia, L.
Ludwigia palustris, Ell.
Enothera biennis, L.
Enothera fruticosa, L.
Gaura biennis, L.
Ciroma Lutetiana, L.
Passiffora lutea, L.
Sanicula Canadensis, L.
Cicuta maculata, L.
Cryptotmnia Canadensia, D. C.
Thaspium barbinode, Nutt.
Angelica hirnuta, Mahl.
Dancus carota, L.
Aralia nudicanlis, L. Cornus atoloulfera, Miohx.
Sambuous Canadensis, L.

Viburnum pranifoliam, L.
Vibarnum dentatam, L.
Lonicerá sempervirens, Ait.
Cephalanthas ocoidentalis, L :
Honstoria purpurea, L.
Houstonia cærulea, L.
Mitchella repens, L.
Diodia teres, Walt.
Galium Aparine, L.
Galinm triflorum, Michx.
Gallum pilosum, Ait.
Vernonia Noveboracensis, Willd.
Elephantopus Caroliuianus, Willd.
Eupatorium purpaream.
Eapatorium perfoliatnm, 1.
Eupatorinm ageratoides, L.
Eupatorium colestinitm, L.
Chrysopsis Mariana; Nutt.
Solidago bicolor, L.
Solidago bicolor, L., var. concolor, Gray.
Solldago cabia, L.
Solidago ulmifolia, Mhhl.
Solldago nemoralis, Ait.
Solidago lanceolata, L.
Solidago Canadensis, L.
Sericoćarpus conyzoldes, Nees.
Aster corymbosua, Alt.
Aster patens, Alt.
Aster nadulatus, \mathbf{L}.
Aster ericoides, L.
Aster panlculatus, Lam.
Aster panioèus, L.
Aster linariifolius, L.
Erigeron Canadensis, L.
Erigeron bellidifolius, Muhl.
Erigeron annuas, Pers.
Erigeron strigosais, Muhl.
Antennaria plantaginifolia, Hook.
Gnaphaliam polyceephalnin, Mlohx.
Polymnia Canadeinis, L.
Silphium trifoliatnm, L.
Ohrysogonum Virginianum, L.
Ambrosia trifida, L.
Ambrosia trifida, L.; var. integrifolia, Gray.
Ambrosia artemisemfolia, L.
Xanthium strumarium, L.
Eclipta proenmbens, Michx.
Rudbeckia fulgida, Alt.
Rudbeokia laolniata, L.
Helianthus divaricatus, L.
Helianthus doronicoides, Lam.
Actinomeris squarrosa, Nutt.
Coreopsis verticillata, L .
Bidens, frondoma, L.
Bidens chrysanthemoldes, Michx.

Bidens bipinnata, L.
Helenium autnmnale, $L_{\text {. }}$
Achillea Miliefollum, L.
Anthemis arvensis, L.
Chrysanthemum Lencanibemam, L. .
Arnica nudicanlis, L.
Erecthites hieracifolia, Raf.
Arctium lappa, L.
Cnicus lanceolatus, Hoffm.
Cnious altissimus, Willd, var. discolor, Gray:
Cnicus altissimus, Willd.
Hieracium venosum, L.
Taraxacum offlcinale, Weber. In bloom Oct. 9, 1890.
Chondrilia juncea, L. Opposite npper quarry.
Lactuca Canadensis, L.
Lactuca Canadensis, L., var. integrifolia, Torr \& Gray.
Lactuca leucophma, Gray.
Prenanthes serpentaria, Pursh.
Lobella syphilitica, L.
Lobelia spicata, Lam.
Lobella idflata, L.
Specuiaria perfoliata, A. D. C.
Gaylussacla resinosa, Torr \& Gray.
Vaccinlum vacillaus, Solander.
Epigua repens, L.
Gaultheria procumbens, $L_{\text {. }}$.
Leucothöl racemosa, Gray.
Kalınia latifolla, L.
Rhododendron nudiflorim, Torr.
Chimaphila umbellata, Nutt.
Chimaphila macnlata, Pursh.
Monotropa aniflora, L.
Steironema olliatum, Raf.
Chlonanthus Virginion, L,
Apocynum canuabinum, L.
Asclepias tuberosa, L.
Sablatia angularis, Pursh.
Phlox maculata, L.
Polomoniam reptans. L.
Ellisia Nyotelea, L.
Cynoglossnm Virginionm, L,
Echinospermnm Virginioum, Lehm.
Echium valgare, L.
Ipomos hederacea, Jacq.
Ipomoea purpnrea, Lam.
Ipomosa lacunoma, L.
Convolvulus spithamens, L.
Solanuin nigram, L.
Solanum Darolinense, L,
Physalis pubescens, L.
Datura stramoniuin, L.
Datura tatula, L.

Verbascum Thapsas, L.
Verbasctim Blattaria, L.
Linaria vulgaris, Mill.
Sorophularla nodosa, L., var. Marylandica, Gray.
Chelone glábra, L.
Mimalus ringens, L.
Ilysanthes riparia, Raf.
Veronica offioinalis, L.
Gerardia pedionlaria. L.
Gerardia flava, L.
Gerardia tenuifolia, Vahl.
Pedicularis Canadensis, L.
Epiphegus Virginlana, Bart.
Tecoma radicans, Jnss.
Ruellia oiliosa, Pursh.
Dianthera Americana, L.
Phryma Leptostacliya, L.
Verbena nrticefolia, L.
Trichostema dichotomum, $L_{\text {. }}$.
Collinsonia Canadensis, L.
Mentha Cauadensis, L.
Lycopus Virginicus, L.
Lycopus sinuatus, Ell.
Cunila Mariana, L.
Pycaanthemnn incanum, Michx. Calamintha Nepeta, Link.
Calamintha Clinupodium, Benth.
Hedeoma pulegioides, Pers.
Salvia lyrata, L.
Monarda fistulosa, L.
Lophanthus nepotoldes, Benth.
Nepeta Glechoma, Benth.
Scutellaria laterifiora, L,
Scutellaria serrata, Andrews.
Scutellaila pilosa, Miohx.
Branella valgaris, L.
Lamlum amplexicaule, L.
Plantago major, L.
Plántago Ragelli, Decsue.
Plantago lanceolata, L.
Amarantus paniculatis.
Amarantus retroflexus, L.
Amarantus spinosus, L.
Chenopodiuin album, L.
Chenopodium, anibrosioides, L.
Fhytolacoa decandra, L.
Polygonum orientale, L.
Polygonum Penneylvanionm, L.
Polygonam Virginianinm, L.
Polygonum avionlare, L.
Polygonam erectum, L.
Polygonnm eagittatum, L.
Polygonam dumetorum, Li, var. scandens, Gray.
Rumex orispnn, L.

Rumex obtusifolionn, L. Rumex Acetosella, L. Asarum Canadense, L. Aristolochia Serpenitaria, L. Lindera Benzoin, Meisner. Euphorbia maonlata, L.
Euphorbia hypercifolia, L.
Euphorbis oorollata, L.
Acalypha Virginioa, L_{1}.
Laportea Canadenisis, Gaudichand.
Pllea pumila, Gray.
Boohmeria oylindrica, Will.
Aluus serrulata, Ait.
Corylus Amerioana, Walt.
Salix humilis, Marshall. Above lower quarry.
Arismma triphyllam, Torr.
Symplocarpus fastidus, Salisb.
Orchis spectabilis, L.
Goodyera pubescens, R. Br.
Corallorhiza odontorhiza, Nutt.
Hypoxye erecta, L.
Dioscorea villosa, L.
Smilax rotundifolia, L.
Smilax glauca, Walt.
Polygonatum biflornm, Ell.
Smilmolna racamosa, Desf.
Erytbronlum Amerisanum, Smith.
Uvularia perfoliata, L.
Medeola Virginioa, L.
Luzula campeatris, DC.
Jnncus tenuis, Willd.
Tradescantia Virginica, L.
Cyperus strigosus, L.
Oyperus ovularis, Tore.
Rhynchospora glomerata, Vahl.
Carex platyphylla, Carey.
Leersia oryzoldes, Swartz.
Phleum pratense, L.
Cynodon Dactylou, Ters.
Brachyelytrun, aristatum, Beanv.
Eleusine Indea, Grertn.
Muhlenbergin Mexicana, Trin.
Mahlenbergia diffusa, Sohreb.
Dactylls glomerata, L.
Poa aniua, L.
Poa compressa, L. ,
Poa pratensis, L.
Pon brevifolia, Mnhl.
Eragrostis major, Host.
Eragrostis peotinacea, Gray.
Bromus eocalinns, L.
Elymus Virginious, L.
Elymus striatus, Willd.
Paspalum setaceum, Mlehx
Panicnm sanguinale, L.

Panicum latifolinm, L.
Panicum miorocarpon, Muhl.
Panicum dichotomum, L.
Panicum Oras-galii, L.
Setaria glauoa, Beauv.
Setaria viridis, Beauv.
Erianthns saccharoides, Michx.
Andropogon fuscatus.
Andropogon Virginions, L.
Equisetum hyemale, L.
Polypodium vulgare, L .
Pteris aquilina, L.
Adiantrm pedatum, L.
Aspleninm Triohomanes L.
Asplenium ebeneum, Ait.

Asplenium thalypteroides, Mlohx
Asplenium Filix-foemina, Bernh.
Phegopteris Lexagouoptera, Fee.
Aspidium Novaboracense, Swartz.
Aspidium Filix-mas, Swartz.
Aspidium acrosticholdes, Swartz.
Cystopteris fragilis, Beruh.
Onoolea sensibili.
Dicksonia pilosiuscula, Walld.
Botryohium ternatum, Swartz, var. obli. quun, Milde.
Botrychium tornatum, Swartz, var. dis. seotum, Milde.
Botrychium Virginianum, Swartz.
Lycopodium complanatum, L.

GEOLOGY OF THE ZOOLOGICAL PARK,
A special report upon the geology of the Park has been kindly furnished by Mr. W. J. McGee, geologist to the Geological Sirvey.
"There is transmitted herewith a geologically colored niap of the National Zoological Park.
"Except that the prevailing rock formation is complex in structure and of age not yet definitely determined, the geology of the Park is exceediugly simple. The formations are:


```
Pleistocene...................................Columbia loam and gravel.
```


"In addition to these well oharacterized formations there is a limited variety of residna left on decomposition of rock in place, of torrential or overplacement deposits formed by wash adown slopes, otc.
"The recent alluvium is confined to the chanmel and flood plain of Rock Creek. It consists of loam, sand, and gravel partly derived from the older formations within the Park, bat mainly brought in by Rook Creek from beyond the limits of that reservation. These materials-are sometimes irregularly stratifled, bit again assorted into sheets, sand-banks, gravel-bars, and more extended stretohes of loam. It should be observed that the allavium area, together with the channel maandering through it, are coterminous with the flood plain of Rook Creek, and hence are subjectuto-arerflow during great freshets.
"The Columbla formation is a deposit of loam, gravel, bowlders, etc., formed daring the first ice invasion of the glacial period. Its age is therefore early Pleistocene. About rivers the formation commonly consists of two members, the upper a homogeneous loam commonly red or brown in color, and the lower a led of sand, gravel, cobble-stones, and bowlders commonly stained brown by ferric oxide, sometimes stratified, and here and there displaying a peculiar black stain which is mainly ferruginons, but has been found to contain a trace of cobalt. Along the rivers of the Middle Atlantio slope the formation is sometimes fashioned into terraces; and some of its best developments in the District of Columbia (from which the name is taken) are terradiform. In the Park the deposit displays the usual division into a superior loam and an inforior bed of coarse materials; and the usual topographic form is assumed since the deposit is practicaliy confined to the pine-clad terrace or bench north and west of Rock Oreek, in the central part of the reservation. The formation is indeed confined to these terraces, save that an ill-defined and perhaps scarcely continu-
ous spur extends into the little valley of the brench that forms the principal affuent of Rock Oreek, and that another spur (fron whioh the loan has been washed, laying bare the coarse materials of the inferlor meinber) extends sontheastward beyond the terrace-scarp toward the upper angle in the course of Rock Oreek. The red loam of the upper member was derived mainly from the Piedmont gueiss of the upper reaches of Rock Creek; while the lower member consists of sand and some loam from the same source, wen-ronuded pebbles and oobble-stones frcin the Potomac formation, angular or slightly water-worn fragments of quartz from the veins of that material cutting the gueise both within the Park and beyond its limits, bowlders of gneisa, eto.
"The Potomac furmation is a series of sunds, clays, and gravels extending from the Roanoke to the Delaware, but best developed along the Potomae River, in honor of which the formation was ohristened. The age, determined through paleo-botany by Professor Fontaine, is early Cretaceous; determined from vertebrate paleontology by Professor Marsh, is Jurassic; and as determined by pliysical geology the formation represents the beginning of the Cretaceous. Along its westernmost margin the formation is usually represented by outlying patches of gravel commonly orowning ominences; and this is the charaoter displayed In the Park. Five small areas only occur in the reservation: There is a remnant retaining the original structure crowning the second greatest eminence in the north western part; there are two small remnants, one certainly displaying the original strusture upon the eminence occupied by the Holt mansion in the sontheastern corner of the reservation; there is a fourth remnant, which may be in place, but is probably a residunm let down and disturbed by the decay of the subjacent gneiss, mid-length of the southwestern boundary; and there is another small area, which is certainly residual ink the northeastern portion. These remnants and others of like character beyond the limits of the Park are of espeeial interest in that thelr cobble-stones were extensively used by aboriginal men for the mannfacture of ride Implements. Modern man also utilizes the cobble-stones extensively for road-making and other purposes.
"The Pledmont gneiss is a vast complex of crystalline rocks extending from Alabama to New Jersey. Many rock varieties are recognized within the complex; but they have not yet been systematioally difforentiated throughout any considerable purt of the terrane. Within the Park the prevailing rocks are schists varying in composition from place to place, and varying also in dip and strike. In genoral the dip is high, sonetimes nearly vertical, and the prevailing strike is northerly and southerly. The gneiss is the prevailing formation of the Park. It is overlain in part by alluvium and by the Columbia formation, as well as by the isolated remnants of the Potoman formation; and elsewhere it has been decomposed to a considerable depth so that it is concealed by a mantle of materials derived from lts own deatruotion either ip place or carried down slopes ly gravity and the wash of storm waters. This mantle of decomposed rook may be 20, 50, or even more feet in thiokness, and probably averages no less than 15 or 20 feet over the entire resorvation. So profound has heen this decomposition of the orystalline rooks that exposures occur only in the steeper bluffs where Rook Creek has corroded rapidly during the later Neocene, Pleietocene, and recent times. The rocks of the Pledmont belt are seldom suffioiently firm, tongh, and durable to yield valuable building stones, and within the Park they give little promise in this direction. At three points only is the promise even fair: In the extreme northwestern corner of the reservation, toward the northern end of the old quarry mid-length of the eastern side, and in the old quarry opposite Adamn's Mill.
"Within the Park, as beyond its limits, the Piedmont gneisses are frequently intersected by veins of quartz. These range from sheets but a fraction of an inoh thick to great masses many yards across. Some of the more conspicuous examples have been mapped. No law governing the trend or incliuation of these velne is indicated by these exposures, and no such law has thus far been formulated; but although the relation of the quartz veins to the gueisses is not apparent, there is an obvious rela-
tion between these obunrate rock masses and the topography. Many of them appear in eminences or in the extremities of salients jutting streamward from the general upland; and even where they have not been observed their existence may be suspectod in all the more sharply-out salients.
"The Piedmont gneiss varies from place to place in mineral composition as well as in strueture, and now and then sheets or masses of steatitew the soapstone of the aborigines and early white settlers-may be found. This is true within the Park as well as beyond its limits, and at two points quarries have been opened for the extraction of these materials for industrial purposes.
"The topographio configuration of the Park is well shown upon the map. The gracefully ouryed hills and steep ravines characteristic of the country about the National Capital here represent the work of Rock Creek during ages of erosion, and from hilis, vallers, and ravines the systematic geologist reads a record of erosion apon liness first determined by rook struoturo, afterward modifled by the superposition of an extensive formation-the Potomac-and fitally developed under the influence of these conditions affected albeit by the structure of the rocks reached by the stream in the latter stages of ite cutting. It is by reason of the varied conditions represented in this complicated history that, while the configuration is commonly adjusted to the hard quartz veins, there are cases in which quartz and topography are nanifestly independent in their distribntion.
"The Park is watered as well as drained by Roek Creek and a few spring-born streamlets. Within the reservation there are two walled springs, two others that have received some attention, and a number of minor seeps; but the yield of these springs is trifling, none now giving permanent streams and all threatening to diminish as the surface is further deforested or trampled. Wells of small yield may doubtless be found by excavating in nearly any part of the Park; but the Potomac and Colunibia areas are too emall to affiord reservoirs; the dips of gueise are too steep to give strong subterranean streams, and the structure of the prevailing formation is too complex to permit determination of such small subterranean water-ways as may exist; moreover, wells east of Rock Croek will inevitably be contaminated within a few years, if not at present, in consequence of the recent spread of population over the adjacent uplands; and there is prospective danger of like contamination west of the water-way. Accordingly the Park mist look either to Rook Creek or beyond its own limits for permanent water supply."

Unmistakable signs of Indian occupation have been found. Professor Holmes, the archmologist of the Geological Survey, male a careful examination of the bowlderbeds of the Potomac formation, and found many ohipped implements, showing that here, as olsewhere in the Rook Creek region the quartzite pobbles are slaped into weapons. While most of those found were the imperfoctly formed and rejected stones, some portions of finishod blades were discovered. It is not improbable that an Indian village once existed withiu the Park limits, near the soapstone quarry on the eastern side of the creak.

At the close of the fiseal year, the development and alaptation of this beautiful region to the purposes of a zoological park were alroady commenced; competent professional advice was procured, and plans were under consideration for accommodating the animals now in the collection and those that will shortly be dded. Respeetfnlly submitted.

[^9]
Appendix IV.

REPOR'T OF THE LIBRARIAN.

SIR : I have the honor respectfully to sulumit my report on the work of the library during the year from July 1, 1889, to Jnue 30, 1890.

The work of recording and caring for tho accessions has been carried on as during the preceding year, the entry numbers on the accession book ruining from 193,431 to 207, 175 .

The following condensed statement shows the character and number of these accessions:

Publications received between July 1, 1889, and June 30, 1890:

	Octavo or smaller.	Quarto or larger.	Total.
Volumes.	1,236	527	1,763
Parts of volumes.	5,202	8,256	13,458
Pamphlots	3,770	564	4,330
Maps.	036
Total.			20,187

Of these pablications 8,695 (namely, 785 volumes, 6,900 parts of volumes, and 1,010 pamphletsj were retained for use in tho National Mnseum, and 1,059 medical dissertations were doposited in the library of tho Surgeon-General, U. S. Army. The re mainder were promptly sent to the Library of Congress on the Monday following their roceipt.
Among the most important additions to the list of serials dining the year may be inentioned the following publioations:
Advanco.
Amerioan Agricnlturist.
Ameriean Apioultiurist.
American Arohitect.
American Artisan.
Amerioan Art Printer.
American Athlete.
American Cabinntmaker and Upholateror.
American Carpet and Upholstery Trado.
American Ohemical Revlew.
American Cultivator.
American Dairyman.
American Druggiat.
American Engineer.
American Garden.
American Journal of Railway Appliancos.
American Lithographor and Printer.
American Machinist.

Advanco.
American Agricnlturiat.
Amerieun Apicultinrist.
American Architect.
American Artisan.
American Art Printer.
Aerican Atblete. American Carpet and Upholstery Trado.
American Chemical Revlew.
American Cultivator.
Americal Dairyman.
American Druggiat.
American Engineer.
American Garden.
American Journal of Railway Appliancos.
American Machinist.

Amorican Miller.
Amerioan Silk Journal.
American Teachor.
L'Ami do l'Enfance.
Annales de l'Acadónied'Arohoologie d'Anvers.
Annales de l'Extreme Orient et de l'Afrique.
Annial Report of the Metropolitan Miseum, New York.
Annual Report of the New York State Forest Commission.
Innial Report of the Pennsylvania Academy of Fine Arts.
Aunual Report of the Providence Publio Library.
Anthony's Photographic Balletin. L'Anthropologie.

Arohiteoture and Building.
Archives de Physiologie.
Arizona Weekly Journal-Miner.
Astronomisohe Arbeiten (K. K. Gradmessungsburean, Wien).
Beacon (Photographic).
Bibliotheca Sacra.
Boletin del Ministerio deIndustria, C̣hile.
Builder and Wood Worker.
Building Buiget.
B"'- lis de l'Acadómie d'Aroheologie Pavers.
Bulletin du Comito des Forges de France.
Bulletin of the Geographical Society of Bncharest.
Bulletin of the Public Iibrary of Cincinnati.
Bulletin de la Socí́tó Belge delectriciens.
Bulletin de la Socícto Bretonne de Geographie.
Bulletin de la Société de Géographie de Marneille.
Bulietin de la Soelete de G6ographie de Toulonse.
Briokmaker.
California Arehitect.
Carpet and Upholstery Trade.
Carriage Monthly.
Central Sohool Journal, Keoknk, Iowa.

- Ciroulars of the Engineers' Club of Kansas City.
Chicago Journal of Commerce.
Colorado School Journal.
Common Sehool Edueation.
Connoisseur.
Contributions of the Old Rosidents' Historical Association, Lowell, Mass.
L'Economiste Français.
Edinburgh Ciroulars.
Education.
Educational Current.
Educational Journal, Toronto.
Educational Monthly.
Educational Record.
Electrical Engineer.
Elcotrical Review.
Eleotrical Worid.
Entomological Newe.
Farmers' Review.
Freeman.
Gleanings in Bee Cultare.
Granite Monthly.
Hatter and Furrier.
Husbandman.
Homiletle Monthly.
Illinois Sohool Journal.

Indiana Sohool Journal.
Industrial Review.
Industrial World.
Inland Architect.
Inland Printer.
Iron.
Iron Industries Gazette.
Jourual du Ciel.
Journal of Comparative Medicine.
Journal of Education.
Journal de l'Instruction Publique, Montreal.
Journal de Mathématiques Elómentaires. Jomrnal de Mathómatiques Spóciales.
Journal of the Tyneside Gengraphical Society.
Journal of the United States Cavalry Association.
Loon.
Lutheran Church Review.
Magazine of Art.
Magazine of Christian Literature.
Manuel Gónéral de l'Instruction Primairo.
Manufacturers' Gazette.
Massachusetts Ploughman.
Mathesis.
Mechanieal Newf.
La Medioina Cientifica.
Milling World.
Mining and Solentifie Press.
Mining and Scientific Review.
Missonri Sohool Journal.
Mittheilungen des Doutseh-Amerikanisolou Techniker-Verbandes.
Mittheilungen des Deutschen, wissensohaftlichen Vereines in Mexico.
Moniteur du Praticion.
Mouvement Géographique.
Musioal Herald.
National Car and Locomotive Builder,
National Educator.
North American Fauna.
Northwestern Miller.
Northwestern Mechanic.
Nouvelles Annales do la Construction.
Observer.
Ohto Elanational Monthly.
Orchard and Carden.
Ornithologischas Jahrbuch.
Palmarès de l'cocole polytechnique et de l'académie Commerciale Catholique de Montreal.
Paper and Press.
Paper Trade Journal.
Papers of the American Astronomical Socioty.

Pharmaceutical Era.
Photographie Times.
Popular Gardening.
Popular Soience Nows.
Portago Lake Mining Gazetto.
Pottery and Glassware Reporter.
Public School Journal, Bloomington.
Publio School Journal, Mount Washington, Ohio.
Prairie Furmor.
Proceedings of the Car Buildors' Association.
Proceedings of the Civil Engineers' Assoclation of Nobraska.
Proceedings of the Engineoring Society of Western Pennsylvania.
Procecdings of tho Long Island Historion Society,
Procecdings of the Western Society of EnHineers.
Professional Papers of the Uuited States Engineering School.
Quartorly Jolunal of Economies.
Railrond Engineoring Journal.
Railway Age.
Railway News.
Railway Reviow.
Railway World.
Records of the Australian Musonm.
Records of the Bible Soolety, New York,
Records and Papers of the New London County Historical Socioty.
Reports of tho Boston Socioty of Civil Engineers.
Roports of the Brooklyn Institnte.
Koports of the Denver Society of Civil Engineers.
Reports of the Geological Survey of Nowfoundland.
Reports of the Iowa Sooiety of Civil Engineors.
Roports of the Iron and Steel Association.
Reports of the Michigan Association of Civil Enginters.
Reports of the National Civil Sorvice Association.

Reports of the Nebraska Weather Service.
Reports of the Ohio Sooiety of Civil Eu. gineers.
Reports of the State Hortienltural Society of New Jersey,
Revista de Cienelas Medicas.
Revista da Sooiedade de Geographia do Rio de Janelro.
Roller Mill.
St. Louis and Canadian Photographer.
St. Louls Miller.
Sainfundet.
School Bulletín.
Sehool Eluoation.
School Journal.
Solocted Papers, Civil Engineors' Club, Champaign, Illinois.
Semi-Tropical Plantor.
Sunday-Solool Times.
Shoe and Leather Reporter.
Southwestern Jonrnal of Education.
Spirit of the Times.
Statistisk Tidskrift.
Toricher.
'Teehniker.
Toxas Sohool Journal,
'Iextile Colorist.
Transaotions of tho Canadian Socioty of Civil Enginecrs.
I'masaetions of the Gcographical Society of Quebec.
Transuotions of the Illinois State Hortieulturn Socloty.
'Trudy. Vjeatnik literatury' i nanki,
Typogruphie Advertisor.
Ulster Agrionlturist.
Vjestnik Estestvozunnijil.
Wallace's Monthly.
Westom Architect and Buildor.
Western School Joumal.
Western Sportsman.
Wood Worker.
World's Progress.
Lo Yacht.
Zeitschrift fir Katholische Theologio.
Zoe.

The following universities have sent complote sets of all their aeademio publications, ineluding the inangural dissortations published ly the students on graduation: Basel, Berm, Bomn, Dorpat, Erlangen, Freiburg-im-Breingin, Glesson, Göttingen, Greifswald, Halle-an-der-Saale, IIolsingfors, Jena, Kiel, Köningsberg, Leipzig, Marburg, Strassburg, Tubiagen, Utrecht, Wir\%burg, and Zurich.

Among other important accessions may be mentionod the following: A con plete set of the catalogues of tho Bodleian Library; a complete set of the publicatious of the National Civil Service Reform Association; a set of thirty graduatiug dissertajions delivered at the University of Upsala during the reotorship of Linnmus, pre-
sented by the Högre Allmänna Liaroverk at Vestor\&s, Sweden; a full set of the pulblications of the Board of Trade, London; a full set of the publications of Cornell Univeraity, comprising 23 volumes and 35 pamphlets; Lendenfoldu's "Monograph of Horny Sponges," presented by the Royal Society; two more volumes of the Chatlenger Report, namely Vol, 32 of the Zoology and Vol. 2 of the Chemistry and Pbyeies, from the British Government; a large and inportant series of Indian government publications from the secretary of state for India, London; a large and valuable series of French Government publications, from the Bureau Francais des Eohanges Internationauux; A, Moksary's "Monographia Chrysididarum orbis terrarum universi," fron the Royal Hungarian Academy at Budapest in addition to the highly valuable series of publioations usually sent by this academy; full sots of State reports, eto., from New Jersey and Vermont; complete sets of charts and othor publications from the hydrographio offces of Groat Britain and Russia; parliamentary reports from Germany and Sweden; a remarkable colleotion of photographs from Mecua, taken in the Holy City itself, entitled "Blider ans Mecea," presented by the author, C. S. Hurgronje, Lididen, Netherlands; " 13riofwechsel des Gottfried Wilholm Leibnitz," from the Royal Public Library, Hanovor; a collection of 21 physical papors, from Prof. G. Gore, of Birmingham, England; and the following books, from the respective anthors: "Throngh and Throngh the Tropics;" "Norsk, Lapp, and Finn;" "Land of tho White Elephant;" "Around and About South America," by Frank Vincent, jr.; "Avifauna Italica," by Professor Giglioli; "Flora of British India;" pt. 16, ly Sir Joseph Dalton Hooker; "Handbueh der Gewebelehre der Menschen,"-by Prof. Albert Külliker; "Von der Capstadt ins Land der Maschukulumbe," by Dr. Eınil Holub; and "Gypsies of Modern India," and "Ancient and Modern Britous," by David MacRitchio.

Vory respectfully submitted.
Juhn Murdocir,
Librarian.
Mr. S. P. Langley,
Secretary of the Smithoonian Instilulion.

Appendix V.

PUBLICATIONS OF THE YEAR.

GMITHBONIAN CONTHIBUTIONS TO KNOWLEDGE.

As mentioned in the last report, a momoir on the "Geuesis of the Arietidas," by Prof. Alpheus Hyatt, had been accepted for publication in the series of "Contributions to Knowledge," aud was in the hands of the printer. This work has been conpleted, and issued during the yoar as No. 673, in the Snithsonian list of publications. It forms a guarto volume of 265 pages (inelnding introdnction, index, and oxplauations of plates), and is illustrated with 35 figures in the text, 6 folding eharts or tables, and 14 plates, of which 10 are heliographs.
No. 891. "The Solar Corona, disenssed by Spherical Harmonice," by Prof. Frank H. Bigelow. This memoir is published in quarto form in the same style as the Contributions to Knowledge, though not designed to be inoluded in the volumes of that series. It comprises 2% pages, and is illustrated with 4 diagrams, and 1 phototype plate.
No. 692. "Photographs of the Corona, taken during the Total Eolipse of the Sun, January 1, 1889. Struoture of the Corom," ly David P. Todd. This, like the preceding, although in quarto form, is not intended for the Contribution series. It consists of 9 pages of text, with 2 photographic plates, showing 9 different views of the Solar Corona during the total eclipes.
No. 731. Vol, xxyr of the Sinithsonian Contributions to Knowledge, This volune comprises: Artiole 1, "Researches upon the venoms of Poisonons Serpente," by S. Weir Mitohell, M. D., and Edward 'T. Reiohort, M. D., published in 1880; artiole ${ }^{2}$, "Genesis of the Arietide," by Alpheus Hyatt, above desoribed. This forms a quarto volume of $x i+401$ pages, illustrated with 40 wood-onts and 19 plates.

BMITIISONIAN MIBCELLANEOUS COLLIEOTIONS.

No. 694. "Report on Smithsouian Exchanges for the year onding June 30, 1887," by George II. Boehtior. (From the Smithsonian Report for 1887.) Octavo pamphlet of 24 pages.
No. 695. "The Advance of Soience in the last Half-century," ly Thomas H. Huxley. (From tho sultheonian Roport for 1887.) Octavo pamphlet of 42 pages.
No, 696. "An Account of the Progress in Astronomy in the year 1886," by William C. Winlook. (From the Smithsonian Report for 1887.) Octavo pamphlet of 89 pagees.

No. 697. "Au Account of the Progress in North Amorican Geology in the year 1880," by Neison H. Darton. (From the Smithsonian Report for 1887.) Octavo pamphlet of 41 pages.
No. 698. "Blbliography of North American Paleontology in the year 1886," by John Belknap Marcon. (From the Smithsonian Report for 18.7.) Ootavo pamphlet of 57 pages.
No, 699. "An Account of the Progress in Vulcanology and Seismology in the year 1886," by C. G. Rockwood, jr. (From the Smithsonian Report for 1887.) Octavo pamphlet of 24 pages.

No, 700. "An Account of the Progress in Geography and Exploration in the year 1886," by William Libbes, jr. (From the Smlthsonian Report for 1887.) Octavo pamphlet of 13 pages.

No. 701. "An Acconnt of the Progress in Physles in the year 1886," by George F. Barker. (From the Smithsonian Report for 1887.) Oetavo pamphlet of 60 pages.
No. 702. "An Account of the Progress in Chemistry in the year 1886," by H. Carrington Bolton. (From the Silithsonian Report for 1887.) Octavo pamphlet of 61 pages.
No. 703. "Au Account of the Progress in Mineralogy in the year 1886," by Edward S. Dana. (From the Smithsonian Report for 1887.) Octavo pamphlet of 28 pages.

No. 704. "An Acconnt of the Progress in Zoology in the year 1886," by Theodore Gill. (From the Smithsonian Roport for 1887.) Octavo pamphlet of 46 pages.
No. 705. "An Account of the Progress in Anthropology in the year 1886," by Otis T. Mason. (From the Smithsonian Report for 1887.) Oetavo pamphlet of 45 pages.

No. 706. "Miscellaneous Papers relathg to Anthropology." (From the Smithsonian Report for 1887.) This collection comprises: "An Iudian Mummy," by James Lisle; "Mound in Jefferson Connty, Cemessee," by J. C. MoCormick; "Aneient Mounds and Earthworks in Flogd and Corro Gordo Counties, Iowa," with 6 figures, by Clemont L. Wobster; "Indian graves in Flayil and Chickasaw Counties, Lowa," with 1 figure, by Clement L. Webster; "Ancient Momids in Johnson County, Iowa," with 1 tiguro, by Clenient L. Webstor; "Aneiēnt Mounds in Iowa and W̄isoonsin," with 1 figure, by Clement L. Webster ; "Mounds of the Westeru Prairies," by Clement L. Webster; "Tho Twana, Chemakum, and Klallam Indians of Washington Territory," by Myron Eells; "Anchor Stones," with 7 fignres, ly B. F. Snyder; "Antiquities in. Mexico," with 1 flgure, by S. B. Evans; forning in all an octavo pamphlet of 123 pages, illustrated with 17 fgures.

No. 707. "Biographical Memolr of Arnold Guyot," by James D. Daina. (From the Smithsonian Report for 1887.) Octavo pamphlet of 30 pages.
No. 708. "A Cluical Study of the Skull," by Harrison Allen, M. D. Octavo pamphlot of 83 pages, illustrated with 8 figures. This is the lenth of the series of "Toner Leotures."
No. 709. "Report on the Seetion of Steam Trmaportation in the U. S. National Musoum, for the your ending Jumo 30, 1886," by J. Elfreth Watkins, with 8 phates. (From the Simithsonian Report for 1886, Part in.) Octavo pamphlet of 22 pages.
No. 710. "The Meteorite Collection in the U. S. National Musenm, a Catalogue of Meteorites reprosented, Novomber 1, 1886," by F. W. Clarko. With one plate. (From the Smithsonian Report for 1886, Part in.) Octavo pamphlet of 11 puges.
No. 711. "The Gom Collection of the U, S, National Maseum," by Georgo F. Kunz. (From the Smithsonian Report for 1886, Part 11.) Octavo pmiphlet of 9 pages.
No. 712. "The Colleotion of Bullding and Ornamental Stones in the U. S. Nathonal Musoum: a Hand-book and Catalogne." With 14 flgares and 9 plates. By George P. Merrill. (From the Suithsonian Report for 1886, Part 11.) Octavo pamphlet of 372 pages.

No. 713. "How to Colleet Mammal Skine for purposes of Study and for Mounting:" With 9 figures. By William T. Hornaday, (From the Smithsouian Report for 1886, Part in.) Ootavo pamphlet of 12 pages.

No. 714, "List of Aceessions to the U. S. Natlonal Musenm during the year ending June 30, 1886; with desoriptive notes." (From the Smithsonian Report for 1886, Part in.) Octavo pamphlet of 109 pages.

No. 715. "Cradles of the American Aborigines." With 46 figures. By Otls T. Mason. (From the Smithsonian Report for 1887, Part II.) Octavo pamphlet of 52 pages.
No. 71b. "Notes on the Artificial Deformation of Children among Savage nud Civlized Peoples; with a Bibliography." By Dr. J. H. Porter, (From the Smilthsodian Report for 1887, Part 1r.) Octavo pamphlet of 23 pages.

No. 717. "The Human Beast of Burden." With 54 figures, By Otis T. Mason. (From the Smithsonian Report for 1887, Part 11.) Ootavo pamphlet of 59 pages.
No. 718. "Ethno-Conchology : a Study of Primitive Money." With \%2 figures and nive plates. By Robert E, C. Stearns. (From the Smithsonian Report for 1887, Part 1i.) Ootavo pamphlot of 38 pages.
No. 719. "The Extermlnation of the Amorioan Bison." With 21 plates and 1 folding map. By Willian T. Hornaday. (Fron the Smithsonian Report for 1887, Part in.) Octayo pamplilet of 184 pages.

No. 720. The Preservation of Museum Specimens from Insects and the effeots of Dumpnoss." With 5 figures. (From the Smithsonian Report for 1887, Part 11.) Oetavo pamphlet of 10 pages.

No. 721. "List of Accessions to tho U. S. National Museum; during the yenr ending June 30, 1887, with descriptive notes." (From the Smithsonian Report for 1887, Part 'iI.) Octavo pamphlet of 129 pages.

No. 724. "The George Catlin Indian Gallery in the U. S. National Museum; with momoir and statistics." Illustrated with 138 plates and 6 folding maps. By 'Thomas Donaldson. From the Smithsonian Report for 1885, Part in.) Ootavo volume of vii +939 pages.

No. 732. "Throwing-sticks in the National Museum." With 17 plates. By Otis T. Mason. (From the Smithsonian Report for 1884, Part II,) Octavo pamphlet of 11 pages.
No. 733. "Basket-work of the North American Aborigines.", With 64 plates. By Otis T. Mason. (From the Smithsonian Report for 1884, Part II.) Octavo pamphlet of 16 pages.

No. 734. "A Study of the Eskimo Bows in the U. S. National Museum." With $1 \overline{2}$ plates. By John Murdoch. (From tho Smithsonian Report for 1884, Part in.) Octavo pamphlet of 10 pages.

No. 741. "Index to the Literature of Thermodynamies." Yomprising Part 1, a subject index under 54 topics; and Part II, an author index., with the titles of papers in full. By Alfred Tuckerman. Octavo volume of 244 pages.

No. 745. "Cheok-list of Publications of the Smithsonian Institution, to July, 1890," Octavo pamphlot of 35 pages.

SMITIBONIAN ANNUAL REPORTS.

No. 689. "Annual Report of the Board of Regents of tho Smithsonian Institution, showing the operations, expenditures, and condition of the Institution for the jear ending June 30, 1887. Part 1." This part comprises the report of the Institution proper, and contains the Journal of Proceedings of the Board of Regents at the annual meeting held January 12, 1887; the Report of the Executive Cominittee of the Board, and the. Report of Professor Baird, the Secretary of the Institution; followed by the "General Appendix," in which are given the following papers: Advance of Soience in the Last Half Century, by T. H. Huxley ; Progress in Astronomy in 1886, by Willian C. Winlock; in North American Geology, by Nelson H. Darton; in North American Paleontology, by J. B. Marcon; in Vuloauology and Selamology, by C. G. Rookwood ; in Geography and Exploration, by Willian Libbey ; in Physics, by George F. Barker; in Chemistry, by H. Carrington Bolton; in Mineralogy, by Edward S. Dana; in Zoölogy, ly Theodore Gill; and in Anthropology, by Otis.T. Mason. Also, papers on an Iudian Mummy, by James Lisle; Monnd In Jefferson County, Tennessee, by J. C. McCormiok ; Anolont Mounds in Iowa, eto, by Clement L. Webster; Indians of Washington Territory, by Myron Eolls; Anchor Stones, by B. F. Snyder; Antiquitics in Mexico, ly S. B. Evans; concluding with a Biographical Memoir of Arnold Guyot, by james D. Dana. The Report forms an octavo volume of $x x+735$ pages, illustrated with 10 figures and 3 plates.

No. 690. "Annual report of the Board of Regents of the Smithsonian Inatitate for H. Mis. $129 —$ - 0
the year ending June 30, 1887. Part n." Being the report of the operations and condition of the U. S. National Museum. This part contains: 1 . The report of the assistant secretary, G. Brown Goode, upon the condition and progress of the Musenm. 2. Reports of the surators of the different departments. 3. Papers illnstrative of the collections in the U. S. National Museum, 4. Bibliography for the year, including (1) the publications of the Natlonal Museum, and (2) papers by offcers of the National Museum and others relatiog to Mnsenm material. 5. List of accessions for the year. This part forms an octavo volume of xviii +771 pages, illustrated with 127 figures, 31 plater, and 1 folding map.

No. 722. "Report of S. P. Langley, Secretary of the Smithsonian Institution, for the year ending June 30, 1889." Octavo pamphlet of 84 pages.
publication of the bureau of ethnology.
No. 693. "Sixth Anuual Report of the Bureau of Ethnology to the Seoretary of the Smithsonian Institution, 1884-'85." By J. W. Powell, Director. This work contains the introductory report of the Director, 58 pages, with accompanying papers as follows: "Ancient Art of the Province of Chiriqui," by William H. Holmes; "A Study of the Textile Art in its relation to the Development of Form and Ornament," by William H. Holmes; "Aids to the Study of the Maya Codices," by Cyrus Thomas; "Osage Traditions," by Rev. J. Owen Dorsey; "The Central Eskimo," by Dr. Frauz Boas. The report forms a royal octavo volume of lviii +675 pages, illustrated with b46 figures, 7 plates, and 3 maps.

Appendix VI.

REPORT ON PROFESSOR MORLEYS RESEARCHES.

Wasirington, January 17, 1891.

Prof. S. P. Langley,

Dear Sir: The accompanying lotter from Prof. A. A. Michelson I can gladly indorse in every particular. I am familiar with Professor Morley's work, having followed it from the start, and l know it to be the lest work of its kind in the history of science. A part of it involves a re-determination of certain physioal constants of oxygen and hydrogen; and on this side of the question the classical researches of Regnault are far excelled by the investigations so far made by Morley. Hitherto (for a period of 3 or 4 years), the experiments have been carried on by Professor Morley at his own personal expense, without aid from auy lustitution. Such a burden no private individual should be compelled to bear; and I feel sure that aid given by the Smithsonian Institution will redound to its credit, and in the most direct manner tend to fulfill the intention of its founder, himself a ohemist.
The work upon which Professor Morley is engaged is, from a obenical stand-point, findamontal in its character, bind it has both a theoretical and a practical bearing. All of the calculations upon which accurate chemical analyses depend rest upon our knowledge of the atomic weights; and the ratio betweenoxygen and hydrogen is the corner-stone of the entire system. It is both the most important and the most diffcult to measure of all the atomic weight ratios, and it directly affects nearly every other value in the whole series of constants. Furthermore, all the physical properties of the atoms are now believed to be functions of their mass, and thisidea is dominant in the periodic law of Mendelejeff. That law sliows the elements to be not independent of each other, but closely related; so that the exact neasirement of their atomio weights bears directly upon the problem of the ultimate coustitution of matter. If all mattor is one entity, then the weights of the different so-called "elementary" atoms should be connected by some definite mathematical law; and such a law can only be developed upon the basis of the mest refined experimental researches. In the measarement of atomic weights "accidental errors," whioh practically vanish from averages, do little harm; bit the "constant errors" are troublesome and allpervasive. Furthermore, since one atomic weight serves as the atarting point for the determination of others, the constant orrors become cumulative, and their elimination is anything lut easy.

In Morley's determinations of the atomio w'eight of oxygen, the errors are controlled by exact manipalation on the one liand, and by wide variations of method on the other. If six or seven distinct methods of measurement, iuvolving different possibilities of error, give at last the same valne songht, then the presumption is that constant. errors have been eliminated altogether. Up to the present date Professor Morley has investigated the preparation of oxygen and hydrogen in absolute purity, the influence of impurities in known amounts, the composition of water by volume, and the relative densities of the two gases. The series of experiments upon the composition of water loy volume have already been made public, and the results obtained are accurate for a single experiment, to within one part in 26,000 . Such accuracy was never before
approached, even remotely, in investigations of this kind. He now has in view the eynthesis of water by several distinct quantitative processes, and these involve large weighinge. For example, hydrogen is so light that large bulks must be taken in order that the errors of weighing may not exerolse an appreciable influence. In order to do this, giase globes holding 20 litres are used; and their weight is considerable. The ordinary analytical balances, ranging from 200 to 1.0000 grammes, are wholly unavailable for the purpose, and hence an exceptional balance, such as Rilpreoht has made for the International Bureau of Weights and Meastres at Paris, becomes necessary. In the office of onr own Coast and Geodetio Survey there is a balanoe approaching these in character; so sensitive as to show the difference between two standard kilogrammes placed side by side or one on top of the other. This difference in position of two weights is a difference of distance from the center of the earth of a few centimetres only, and yet it corresponds to a difference in weight of about , 000015 . gramme. This difference, according to Professor Mendenhall, is perfectly appreciable with the balances now in use. I can nol say whether or not Ruprecht keeps these finer balances in stock, but I suspect that one would have to be bullt to order, so that some months would elapse before it could be delivered. The cost should not exceed \$500, and the balance, after serving Professor Morlay's purpose, might be returned to the Institution, where it would have permanent value. The present investigation could thus be assisted with little or no actual sinking of capital, and the aid to research would continne long after the single investigation of Professor Morley was finished. I sincerely bope that the assistance sought may be given.

Very respectfully,

F. W. Claree.

APpFindix vil.

REPORT ON INTERNATIONAL CONGRESS OF ORIENTALISTS.

Prof. S. P. Langiey,
Washington, D. C. :
Sir: In accordance with your instruction I attended the Eighth International Congress of Orientalists as delegate of the Smithsonian Institution. The meetinge of the oongress were held in Stoekholm and Christiania, nuder the auspices of His Majesty the King of Sweden and Norway, from September 1 to September 12, 1859. The members assembled in Stookholm on September 1 and adjourned on September 7 to meet in Christiania from September 8 to Soptember 11. September 12 was apent in Götheburg, where a farewell reception was given.
Five general meetings were held and the various sections met daily for the transaetion of business.
There were registered as subsoribers to the congress 710 names (204 Soandinavians and 506 foreigners); more than one-half of the (286) foreign members were present. The foreign members came from twenty-eight different countries, as indieated in the following table: -

[^10]If arranged ecoording to the number of subsoribers the list would be as follows:

1. Sweden 142 15. Switzerland 8
2. England............................ 84
3. Germany 80
4. Norway 62
5. Italy 48
6. France 41
7. Holland 39
8. Amerioa 39
9. Anstria............................ 36
10. Turkey............................. 28
11. Russia................................ 26
12. Denmark'........................... 19
13. Finland 13
14. Indla................................ 11
15. Egypt.................................. 7
16. Persia............................... 4
17. Portugal 4
18. Belgitum............................. 4
19. Japan 3
20. Spain 3
21. Siain 2
22. Greece 2
23. Abyssinia 1
24. Beazil................................ 1
25. Colombia 1
26. Servia............................... 1
27. Roumania 1

If arranged according to the number of members present the order would bo:

1. Sweden	142	15. Persia	6
2. Germany	60	16. Egypt	4
3. England	58	17. Portugal	4
4. Austria	25	18. Switzerland	4
5. France	19	19. Japan	2
6. Denmark	18	20. Greece	1
7. Russia	18	21. Belgium	1
8. Holland	17	22. Siam	1
9. America	15	23. Abyssinia	1
10. Finland	11	24. Brazil	1
11. Italy	9	25. Colombia	1
112. Norway (\%).	6	26. Servia.	1
13. Turkey	5	27. Ronmania	0
14. India	5	28. Spain	0

Comparing these figures with those of the preceding Oriental congresses it would seem that there is an increase of devotion to Oriental studies among European scholars. At the Seventh Congress, held at Vienna in 1886, there were 414 subsoribers and 228 members present; at the Sixth Congress, Leld at Leyden in 1883, there were 453 subseribers and 219 members present; at the Fifth Congress, held at Berlin in 1881, there were 296 sulbscribers and 189 members present.

The following table indieates the number of subscribers and members present at each of the eight international congresses of Orientalists:

	Subscribers.	Presont.".		Subseribers.	Pres. out.
1. Paris (1873)	1,063	(t)	5. Herlin (1881)	1,240	189
2. London (1874)........	1,491	(t)	6. Leyden (1883).......	1,453	219
3. St. Petersburg (1876)...	1,507	(\dagger)	7. Vionua (1886)	1,414	228
4. Florence (1878)........	1,218	127	8. Stookholm (1889)....	1,710	493

* Eighty-nine foreign members attenäed. . \dagger Not recorded.

The increased interest is even more marked on the part sf Americans. 'Io the Vianua congress there were eleven American anbseriburs of whom five (Briggs, Leland, S. A. Smith, Thatcher, and Whitohonse) were present. To tho Stookholm congress there were forty American subscribers, of whom sixteen were present. A list of the American subsoribers is herewlth sulbjoined :

1. Dr. Cyrus Adler, Johns Hopkins University, Baltimore, Maryland.
2. Dr, W. M. Arnolt, Johns Hopkins University, Baltimore, Maryland.
3. Prof, Charies A. Briggs, Union Theologioal Seminary, 700 Park avenue, Nep York,
4. Prof. Francis Brown, Union Theologioal Seminary, 700 Park avenue, New

York.

"5. Prof. Thomas Chase, 50 Barnes atreet, Providence, Rhode Island.
6. Rev, Lysander Dickermann, Public Library, Boston, Massaohusetts.
n7. Prof, Richard T, Ely, Johns Hopkins University, Baltimore, Maryland,
*. Prof, Richard H, Gottheil, Columbia College, New York.
9. Rev. J. T. Gracey, 20% Eagle street, Buffalo, New York.
"10. Prof. William R. Harper, Yale University, New Haven, Conneotiout:'
"11. Prof. James Taft Hatfield, Northwestern University, Naperville, Illinois.
"12. Prof. Paul Haupt, Johns Hopkine University, Baltimore, Maryland.
*13. Mrs, Panl Haupt, Baltimore, Maryland.
"14. Prof. Henry Hyvernat, Catholic University, Brookland, District of Columbia.
15. Prof. A, V. Williams Jaokson, Columbia College, New York.
16. Prof. Morris Jastrow, jr., University of Penusylvania, Philadelphia, Pennsylvania.
17. Dr. Christopher Johnston, jr., Johns Hopkins University, Baltimoro, Maryland.
18. Rev. S. H. Kellögg, D.D., 86 Charles street, Toronto, Cauada.
*19. Prof, Charles R. Lanman, Harvard University, Oambridge, Massachusetts.
20. Oharles G. Leland, Philadelphia, Penneylvania.
*21. Mrs, Charles G. Leland, Philadelphia.
"22. Joseph Moore, jr., 1821 Walnut street, Philadelphia, Pennsylvania.
*23. Dr. Ed, Olsson, president University of Dakota, Vermillion, Dakota.
24. E. D. Perry, New York.
*25. Prof. Samuel B. Platner, Adelbert College, Cleveland, Ohio.
26. Prof. Robert W. Rogers, Diokinson College.
"27. Mrs. Karl Rydingsvärd, Boston, Massachusetts.
28. David Aulsberger, 1220 North Twelfth street, Philadelphia, Penneylvania.
29. Mayer Sulaberger, 1303 Girard avenue, Philadelphia, Ponnsylvaniu.
30. S. M. Swenson, New York.
31. Seymour D. Thomson, St. Louis, Missouri.
32. Dr. Williain H. Ward, 251 Broadway, Now York.
33. Prof. R, F. Weidner, Auguetaua Theologioal Sominary, Rook Ialand, Illinois.
34. Dr. Charles E. Weal, 133 Montague street, Brooklyn, New York.
35. Captain Whitehonse, 15 Fifth avenue, New York.
36. Prof. W. D. Whitney, Yale University, New Haven, Conneotiont.
*37. Prof, Alonzo Williams, Brown Univarsity, Providence, Rhode Island.

* 38. Prof, Robert D. Wilson, Western Theologioal School, Allegheny, Pennsylvania. vania.

39. Johns Hopkius University, Baltimore, Maryland.
40. The Newberry Library, Ohicago, Illinois.

The following table indicates the number of American subsoribers and mombers present at the Eight'International Congresses of Orientalists:

	American subscribers.	Americans present.
1. Paris (1873)	${ }^{1} 38$	${ }^{6} 2$
2. London (1874)	29	${ }^{6}$)
3. St. Petersburg (1876)	$\begin{array}{r}37 \\ 4 \\ \hline\end{array}$	(5)
5. Ferrince (1881)	$\begin{array}{r}4 \\ 6 \\ \hline\end{array}$	${ }_{7}$
6. Leyden (1883).	8	${ }^{1} 1$
7. Vienna (1886)	11	5
8. Stockholm (1889)	40	17

This marked increase was no doubt ohiefly due to the circulation of a special American edition of the programme for the Stockholm Congress, published by the Smithsonian Institution at the request of the secretary general of the congress, Connt Landberg. This oircular contained a revised English translation of the original programme including additions and corrections especially furnished for this purpose by the secretary-general of the congress. Copies of this circular were sent to all the members of the American Oriental Society as woll as to a great many libraries and colleges in this country.
Bat three American institutions were represented by delegates : Brown University, Providence, Rhode Island, by Prof. Alonzo Williams, and the Smithsonian Institution and the Johns Hopkins University by Prof. Panl Haupt.
It is to be regretted that the American Oriental Society did not sent a delegate to the congress. The sending of a representative and the presentation of a complete set of the journal ot the American Oriental Society to the honorary president of the congress wonld have been appreeiated. There was no delegate of the United States Government, nor had England, Germany, or Prussia responded to the invitation to send governmental dolegates. The following countries sent such delegates.

Austria,	Coburg-Gotha,	Italy,	Russia,
Baden,	Denmark,	Japan,	Roumania,
Bavaria,	Egypt,	Notherlands,	Saxony,
Bosnia,	France,	Persia,	Siam,
Brazil,	Indla,	Portagal,	Turkey,

The following nulversities were represented:

Bombay,	Giessen,	Kasan,	Potersburg,
Brown,	Greifswald,	London,	Prague,
Cambridge,	Halle,	Rund,	Rome,
Copenhagen,	Helsingfors,	Munich,	Upsala,
Edinburgh,	Johus Hopkins,	Oxford,	Vienna.

I may be allowed to montion ospecially Charles A. Brigge, D. C. Gilman, Professor Henry, Professor Salibbury, A. Van Name. Andrew D. White, W. D. Whitney; the American Oriental Society, the Philosophical Society, of Hartford, Comectient; the Smitheonian Institution, The late Dr. Schliemann, too, is registered as one of the American anbscribers.
${ }^{2}$ W. D. Whitney, Egbert C. Smyth, Genoral J. M. Read, ote.
${ }^{3}$ W. D. Whitney, E. E. Salisbury, and A. Van Name, of New Haven ; G. Atwood and Kov. O. D. Millor, of Boston ; S. S. Haldoman, of Philadelphia, and D. C. Gilman, of Baltimore.
${ }^{4}$ W. D. Whitney, Prof. W. Benade, Dr. Berond. The latter two wore prosent.
${ }^{6}$ Gen. J. Merodith ReadU. S. consnl-genoral to Paris, Mre. Read, and the sinologist Charles Reedy.
${ }^{-}$Not recorded.
7 Poters.
${ }^{8}$ F. Brown.

Among the learned societies and institutions represented by delegates may be mentioned the Royal Aaiatle Society, the Society of Biblical Archmology, the Palestine Exploration Fund, the India Otice of London, the Aeiatio Society of Bengal, the Societé Asiatiqne of Paris, the Germau Oriental Society, the Vatican Library, the Royal Academies of Rome, Turin, Munich, Pesth, etc.
In accordance with the statement in the programme that the patron and honorary president of the congress would he pleased to accept snch works as would be deposited for presentation to His Majesty, soholars and institations all over the world offered more than 3,000 valuable works and serials covering the entire range of oriental strudies.
The following works were presented by American institutions and soholars:

1. Ameriaan Mission Press and American Bible Society, Beirut, Syria. About 50 Arabio publioations. (See Liste des auvrages offorts, p. 19.)
2. Johns Hopkins University, Baltimore, Maryland.
a. The American Journa Iof Philology, volumes I-Ix, Baltimore, 1878-'89.
b. Johns Hopkins University Circulars, volumes I-vili, Baltimore, 1878-'89.
o. The Williams Manusoript. Reproduction in phototype of 17 pages of a Syriac MS. containing the Epistles known as "Antilegomena," Baltimore, $18 * 6$.
d. Contributions to Assyriology and Comparative Semitic Philology, edited by Friedrich Delitzsch and Paul Haupt, with the coöperation of the Johns Hopkins University, Baltimore, Maryland, volume 1, part 1, Leipsic, 1889.
3. The Smithsoniau Institution on bebalf of the U. S. National Museum:

Aseyrian and Babylonian seals, facsimifes and flat improssions, illustrating the method after which the smaller Assyro-Babylonian objocts preserved in private American collections are reproduced for the study collestion at the U.S. National Museum.
Owing to a mistake of the Luropean Express Company the box containing these objects did not arrive in time to be presented to the king at the general meeting of the congress in Stockholm. At the request of the Sinithsonian delegate the United States minister to Sweden and Norway, Gen. W. W. Thomas, sulbmitted the presents to King Oscar at a spocial audience. The expression of interest by the king on that occasion was conveyed in a letter of General Tbomas herewith subjoined :

United States Legation, Stookholm, November 12, 1889.

Prof. Paula Haupt:
My Dear Sim: Your note from on board the steamer was duly roceived, and some time after the box came to hand.
I might at once have sent the box through the usual offeial channels to the king, but on opening it I found its contents of such value, and so noatly and orderly arranged and classiffed that I desired to make sure that His Majesty should see this model gift of the Smithsonian.
The opportunity desired has ocourred.
I to day had an audience of the King.
I took the box with me and had it carried into the audience chamber. In the ante room I unpacked and took out the imar box, and also unpacked some of the little boxes and the anoient geals contained thorein. His Majosty bimself took up the fine inner box or tray, containing all the small boxos, placed it on his writing desk, read the large genoral inseription in gold lotters on black ground, and oxamined earefully foveral of the Assyrian soals and casts, and exprossed his admiration at tho boanty and clearness of the sonle and the skill and method of the arrangement.
The King said he should take time at his leisure to look over the seals more thoroughly, and would then decido where to place the tray. His Majesty also desired me to express his thanks to the Smithsonian Institution for this leantiful and useful giftas woll as his appreciation of the method and skill displayed in the cases and general arrangement.

Congratulating the Smithsonian and yourself, not only upon this present and its gracious reception, bit upon the general exhibit made by the United States at the Oriental Congress at Stookholm in seals and books, and last and best, in mien, I remain, my dear sir, yours very sincerely,

> W. W. Thomas, Jr.

The following works were presented by American Orientalists:

1. Thomas Chase, of Providence, Rhode Island: Hellas, her Monuments and Scenery Cambridge, 1883.
2. E. van Dyck, Cairo: Real property, mortgage, and wakf, according to Ottoman law.
:. J. T. Gracey, D D., of Buffalo, New York :
a. India by J. T. Gracey, Roohester, New York, 1884 :
b. The Galistan of Sa'di, edited in Persian by A. Sprenger, Calcutta, 1851.
3. Wm. R. Harper, of New Haven, Connectiout :
a. Elements of Hebrew, tenth ed.
b. Introdnctory Hebrew Method Manual, fifth ed.
c. Hebrew Vocabularies, third ed.
d. Elements of Hebrew Syntax.
e. Hobraica, volumes I-v.
b. Paul Haupt, of Baltimore, Maryland:
a. The Babylonian Nimrod Epic, Leipsic, 1890.
b. The Cuneiform Account of the Deluge, Leipsic, 1881.
o. A modern fragment of the old Babyloniau Nimrod Epic, containing a legend of Noah and the demon Kater (inseribed day tablet).
d. Contributions to Assyriology and Comparative Semitic Philology, part 1, Leipsic, 1889.
e. On the Semitic Sounds and their Transliteration, Leipsic, 1889.
4. Henry Hyvernat, of Washington, District of Columbia: -
a. Les actes des martyrs de l'Egypte, volume 1, Rome, 1887.
b. Album de paleographie copte.
5. S. II. Kellogg, Western Theologioal Seminary, Alloghany, Pennsylvania:
a. A Grammar of the Hindi Language.
b. The Light of Asia and the Light of the World.
6. Ch. R. Hanman, of Cambridge, Massachusette, a Sansorit Realer, Parts 1-III, Boston, 1888.
7. Dr. John Wortabet, Beirnt:
a Elements of Anatomy.*
b Elements of Physiology.*
o Temples and Tombs of 'Thebes."
The Eighth International Congress of Orientalists presented some special features distinguishing it from all its prelocessors compared with the previons meetinge.

The Government took an especial interest in the proceedings throughout. Kirg Osoar acted as patron and honorary president opened the congress (in the great esoutcheon hall of Riddarhnset, the palace of the Swedish nobility, in Stockholm) with a happily worded Frenoh address; elosed it with an admirably expressed Latin oration; was in the chair at the general meeting of all the sections, and attended one of the meetinge of the Semitic section $1 b$ for enneiform research.t At Christiania the

[^11]meeting was opened in the name of the King by the minister of publio instruction. The King bed offered two prizes (by special deoree of January 6, 1886), one for $\%$ work on the History of the Semitic Languages, and the other on the Civilization of the Arab Muhammed. No works of European or American Orientalists were submitted to the special committee appointed for the purpose of reporting the recommendation for the award of the prizes. But six Arabic works on the second-named subjeot by Oriental nuthors had beer sent to the committee, and one of thiese Oriental seholars, Mahmud Shookree el-Aloasee of Baghdad, though not coming ap fully to the requirements, was considered worthy of King Oscar's gold medal for art aud science, with the ribbon of the order of Wasa.
Quite a number of native scholars from the East were present and took an active part in the proceedings.
Abdallah Fikrl Pasha spoke on the Divan of Haban Ibn Thabit.
Sheikh Hamza Fathallah: On the right of women in the Islam.
Mahmud Omar: On Arabic proverbs in Egypt.
Emin Bey Fikri : Against those who prefer modern Arabio to the classical langaage.
These three papers were in Arabic, the following native Oriental scholars spoke in English:
Jivanji Jamshedji Modi: On the position of the Haoma in the Avesta of the Parsecs.
In his opening address the seoretary-general called attention to this special featire of the congress, ald expressed the hope that this active participation on the part of native Oriental scholars would be the starting point of a new era for the civilization of the East.
A great many of the most distinguished Orientalists from all parts of the globe were present, among them may be mentioned : Bnugsch, Bilhler, Chwolson, Dillmann, Euting, Giusburg, de Goeje, Donner, Gubernatis, Guidi, Halavs, Kern, Kromer, Mohren, Max Muiller, Oppert, Reinlsch, de Rosiy, Rost, Sayco, Schefer, Sohlegel, J. Schmidt, Spiegel, Weber.

Over a hundred papers of great value were read:
Twenty-four in the Semitio seotion Ia (Arabie and Islam).
Twenty-six in T section Ib (ounelform research, ete).
Twonty-two in section II (Aryan).
Nineteen in section III (Egyptian, etc.).
The following papers wore read by Amorican Orientalists:
a. Prof, Paul Haupt, The Death of Sargon II.
u. Prof. Henry Hyvornat, tho paliengraphical introduction to his Aotg of the Martyrs in Egypt.

- Chas. G. Leland: The Pidjin (Chinese-English) dialect and its rolation to other mixed dialects, followed by a communication on the dissidence of the Chinese philosophers concerning the question of human natire.
The scientific character of the meeting, however, was somewhat impaired by the almost excessive hospitality of the Soandinavian hosts, and especially by the number of tourists who attracted by the programme attended. It looked ocoasionally as though the Congreas woro rather a succession of festivitics than a sorious gatlioring of soholars for scientifle purposes. It was cencecially regrotted that there was hardly any time for private intercourse between individual fellow-workors. Since the meering of the Congress some foelling has doveloped against so great a diaplay of hospitality in the future.
Whers the next International Congress of Oriontalists is to meet has not yot been detorminod.
At the genoral meeting of all the eections hold at Stockholm on August 6, under tho prosidency of King Osear, it was suggested by the delegate of the Smithsonian Institution (aftor a special mecting of all the American oriontalists present, with the

American minister in the chnir) that the Tenth Congress should be held in Amerioa in 1893. The idea seemed to meet with general approval, but it remains to be seen whether the American orientalists will be ready to extend a formal invitation.
Professor Haupt addressed King Osoar at this occasion as follows:
"I have the honor to present to your majesty the first part of a new publioation which is intended to contribate, above all, to the solution of the problem set by your majesty, viz, the history of the Semitic langlaages. The series is entitled Contributions to Assyriology and Comparative Semitic PLilology. I snbmit the first part on behalf of the Johns Hopkins University, of Baltimore, with whose co-operation the work is published. I beg lesve to add some other publications issued ander the auspices of the Johns Hopkine University.
"1. The photo lithographic re production of 17 pages of a Syriac MS.
"2. A complete series of the Johns Hopkins University circulars, which report on the development of this new university since the year 1879 and which contaln at the same time numerons contributions to Oriental researoh.
"3. The 9 volumes of the American Journal of Philology (published at Baltimore nuder the auspices of the Johns Hopkins University) whioh contain eeveral important articles of our venerable leader in Oriental philology, Professor Whitney, as well as papers by other American orientalists, both Indo-European and Semitio.
"I am also instructed as delegate of the Smithsonian Institution to present to your majesty on behalf of the U. S. National Museum a number of Habylonian and Assyrian seals (facsimiles aud flat impressions) illustrating the methods after which smaller Assyrian and Babylonian objects preserved in private American collections are reproduced for the study collection of the U. S. National Museun.
"Your majesty will see what iuterest is had in America in Oriental studies, especlally in ouneiform research. There are more instructors in Assyriology now in the United States than at all the European universities combinod. Also at this cougress there are nearly forty American orientalists inscribed as members.
"7. I can not suppress the hope that our European follow-workers in view of the progress of Oriental studies in America will be willing before long to have, perhaps, the Tenth International Congress of Orientallsts meet in the United States. The distance will hardly deter many. It will, perhaps, be posslble to place at the disposal of the members a steamor which would carry them to America and back again to Europe. Nor would the attendance at the Cougress take much time. Even in onse there shonld be 6 days in Washington (or wherever we should agree to meet), followed by an excursion to the West, Chicago, the Lake region, Niagara Falle, and thence, agaln, through Boston, New York, Philadelphia, and Baltimore to Washington, it would be possible to do all that (including the passage across the Atlantie both ways) in a little more than one month. The gracions intereat which your majeaty has devoted to Orlental studics will always exeroise an encouraging influence, and I trust that at the meoting of the Congress on American soil wo shall not be too far behind the older European centers of Oriontal learning."

Rëspectfully submitted.
paur Haupt.

GENERAL APPENDIX

To THE

SMITHSONIAN REPORT FOR 1890.

ADVERTISEMENT.

The object of the General Appendix to the Annual Report of the Smithsonian Institution is to furnish brief accounts of scientific discov. ery in particular directions; occasional reports of the investigations made by collaborators of the Institution; memoirs of a general character or on special topics, whether original and prepared expressly for the purpose, or selected from foreign journals and proceedings; and briefly to present (as fully as space will perinit) such papers not published in the Smithsonian Oontributions or in the Miscellaneous Oollections as may be supposed to be of interest or value to the numerous correspondents of the Institution.

It has been a prominent object of the Board of Regents of the Smithsonian Institution, from a very early date, to enrich the annual report required of them by law, with memoirs illustrating the more remarkable and important developmente in physical and biological discovery, as well as showing the general character of the operations of the Institution ; and this purpose has, during the greater part of its history, been carried out largely by the publication of such papers as would possess an interest to all attracted by scientific progress.

In 1880 the Secretary, induced in part by the dis-continuance of an annual summary of progress which for thirty years previous had been issued by well-known privāte publishing firms, had prepared by competent collaborators a series of abstracts, showing concisely the prominent features of recent scientific progress in astronomy, geology, meteorology, physics, chemistry, mineralogy, botany, zoölogy, and anthropology. This latter plan was continued, though not altogether satisfacfactorily, down to and including the year 1888.

In the report for 1889 a return was made to the earlier method of presenting a miscellaneous selection of papers (some of them original) embracing a considerable range of scientific investigation and discussion. This method has beon continued in the present report, for 1800.

THE SQUARING OF TEE OIRCLE.

AN HISTORICAL SKETCH OF THE PROBLEM FROM THE EARLIEST TIMES TO THE PRESENT DAY."

By Hermann Sohubert.

I.-UNIVERSAL INTEREST IN THE PROBLEM.

For two and a half thousand years both trained and untrained minds have striven in vain to solve the problem known as the squaring of the circle. Now that geometers have at last succeeded in giving a rigid demonstration of the impossibility of solving the problem with ruler and compasses, it seems fitting and opportune to cast a glance into the nature and history of this very ancient problem. And this will be found all the more justifiable in view of the fact that the squaring of the circle, at least in name, is very widely known outside of the narrow limits of professional mathematicians.

The resolution of the Frenoh Academy.-The Proceedings of the French Academy for the year 1775 contain, at page 61 , the resolution of the Academy not to oxamine, from that time on, any socalled solutions of the quadrature of the circle that might be handed in. The Academy was driven to this determination by the overwhelming multitude of professed solutions of the famous problem, which were sent to it every month in the year-solutions which, of course, were an invariable attes. tation of the ignorance and self-consciousness of their authors, but which suffiered collectively from a very important error in mathematics: they were wrong. Since that time all professed solutions of the problem received by the Academy find a sure haven in the waste-basket, and remain unanswered for all time. The circle-squarer, bowever, sees in this high-handed manner of rejection only the envy of the great towards his grand intollectual discovery, Ho is determined to meet with recog. nition, and appeals, therefore, to the public. The newspapers must obtain for him the appreciation that scientifie societies have denied. And every year the old mathematical sea serpent more than once disports itself in the columns of our papers, that a Mr. N.'N., of P, P., has at last solved the problem of the quadrature of the circle.

[^12]General ignorance of quadrators.-But what kind of people are these circle-squarers, when examinod by the light! Almost always they will be found to be imperfectly eilucated persons, whose mathematical know. ledge does not exceed that of a modern college freshman. It is seldom that they know accurately what the requirements of the problem are and what its nature. They never know the two and a half thousand years' history of the problem, and they have no idea whatever of the important investigations and results which have been made with reference to the problem by great and real mathematicians in every century down to our time.

A cyclometric type.-Yet great as is the quantum of ignorance that circle-squarers intermix with their intellectual products, the lavish sup. ply of conceit and self-consciousness with which they season their per. formances is still greater. I have not far to go to furnish a verification of this. A book printed in Hamburg in the year 1840 lies before me, in which the author thanks Almighty God at every second page that He has selected him and no one else to solve the "problem phenomenal" of mathematics, "so long sought for, so fervently desired, and attempted by millions." After the modest author has proclaimed himself the unmasker of Archimedes's deceit, he says: "It thus has pleased our mother nature to withhold this mathematical jewel from the eye of human investigation until she thought it fitting to reveal truth to sim. plicity."

This will suffice to show the great self-consciousness of the author. But it does not suffice to prove his ignorance. He has no conception of mathematical demonstration; he takes it for granted that things are so because they seem so to him. Errors of logic, also, are abundantly found in his book. But apart from this general incorrectness, let us see wherein the real gist of his fallacy consists. It requires considerable labor to find out what this is from the turgid language and bombastic style in which the author has buried his conclusions. But it is this: The author inscribes a square in a circle, circumscribes another about it, then points ont that the inside square is made up of four congruent triangles, whereas the circumscribed square is made up of eight such triangles; from which fact, sceing that the circle is larger than the one square and smaller than the other, he draws the bold conclusion that the circle is equal in area to six such triangles. It is hardly conceivable that a rational being could infor that something which is greater than 4 and less than 8 must necessarily be 6. But with a man that attempts the squaring of the circle this kind of ratiocination is possible.

Similarly in the case of all other attempted sol tions of the problem, either logical fallacies or violations of elementary arithmetical or geometrical truths may be pointed out. Only they are not always of such a trivial nature as in the book just mentioned.

Let us now inquire whence the inclination arises which leads people to take up the quadrature of the cincle and to attempt to solve it.

The allurements of the problem.-Attention must irst be called to the antiquity of the problem. A quadrature was attempted in Egypt 500 years before the exodus of the Israelites. Among the Greeks the problem never ceased to play a part that greatly influenced the progress of mathematics. And in the middle agesalso the squaring of the circle sporadically appears as the philosopher's stone of mathematics. The problem has thus never ceased to be dealt with and considered. But it is not by the antiquity of the problem that circle-squarers are enticed, but by the allurement which everything exerts that is calculated to raise the individual out of the mass of ordinary humanity, and to bind about his temples the laurel crown of celebrity. It is ambition that sparred men on in ancient Greece and still spurs them on in modern times to crack this primeval mathematical nut. Whether they are competent thereto is a secondary consideration. They look upon the squaring of the circle as the grand prize of a lottery that can just as well fall to their lot as to that of any other. They do not remember that-

Toil before honor is placed by sagacious decrees of Immortals,
and that it requires years of continued studies to gain possession of the mathematical weapons that are indispensably necessary to attack the problem, but which even in the hands of the most distinguished mathematical strategists have not sufficed to take the stronghold.

About the only problem known to the lay world.-But how is it, we must further ask, that it happens to be the squaring of the circle and not some other unsolved mathematical problon upon which the efforts of people are bestowed who have no knowledge of mathematics yet busy themselves with mathematical questions: The question is answered by the fact that the squaring of the circle is about the only mathematical problem that is known to the unprofessional world-at least by name. Even among the Greeks the problem was very widely known outside of mathematical circles. In the eyes of the Grecian layman, as at present among many of his modern brethren, occupation with this problem was regarded as the most important and essential business of mathematicians. In fact they had a special word to desig. nate this species of activity, namely, $\tau=\tau \rho \mu, \omega \nu i \zeta \varepsilon i v$, which means to busy one's self with the quadrature. In modern times, also, every edncated person, though he be not a mathematician, knows the problem by name, and knows that it is insolvable, or at least, that despite the efforts of the most famors mathematicians it has not yot been solved. For this reason the phrase "to square the circle," is now used in the sense of attempting the impossible.

Belief that rewards have been offered.-But in addition to the antiquity of the problem, and the fact also that it is known to the lay world, we have yet a third factor to point out that induces people to take up with it. This is the report that has been spread abroad for a hundred years now, that the Acalemies, the Queen of England, or some other influen-
tial person, has offered a great prize to be given to the one that first solves the problem. As a matter of fact we find the hope of obtaining this large prize of money the principal incitement to action with many circle-squarers. And the author of the book above referred to begs his readers to lend him their assistance in obtaining the prizes offered.

The problem among mathematicians.-Although the opinion is widely current in the unprofessional world that professional mathematicians are still busied with the solution of the problem, this is by no means the case. On the contrary, for some two hundred years, the endeavors of many considerable mathematicians have been solely directed towards demonstrating with exactness that the problem is insolvable. It is, as a rule-and naturally-more diffeult to prove that something is impossible than to prove that it is possible. And thus it has happened, that up to within a few years ago, despite the employment of the most varied and the most comprehensive methods of modern mathematics, no one succeeded in supplying the wished-for demonstration of the problem's impossibility. At last, Professor Lindemann, of Königsberg, in June, 1882, succeeded in furnishing a demonstration-and the first demonstra. tion-that it is impossible by the exclusive employment of ruler and compasses to construct a square that is mathematically exactly equal in area to a given circle. The demonstration, naturally, was not effected with the help of the old elementary methods; for if it were, it would surely have been accomplished centuries ago; but methods were requisite that were first furnished by the theory of definite integrals and departments of higher algebra developed in the last decades; in other words, it required the direct and indirect preparatory labor of many centuries to make finally possible a demonstration of the insolvability of this historic problem.

Of course, this demonstration will have no more effect than the resolution of the Paris Academy of 1775 in causing the fecund race of circle squarers to vanish from the face of the earth. In the future as in the past, there will be people who know nothing and will not want to know anything of this demonstration, and who believe that they can not help but succeed in a matter in which others have failed, and that just they have been appointed by Providence to solve the famous puzzle. But unfortunately the ineradicable passion of wanting to solve the quadrature of the circle has also its serious side. Oirclesquarers are not always so self-contented as the author of the book we have mentioned. They often see or at least divine the insuperable difficulties that tower up before them, and the conflict between their aspirations and their performances, the consciousness that they want to solve the problem but are unable to solve it, darkens their soul and, lost to the world, they become interesting subjects for the science of psychiatry.

II.-NATURE OF THE PROBLEM.

Numerical rectification.-If we hare a circle before us, it is easy for us to determine the length of its radius or of its diameter, which must be donble that of the radius; and the question next arises to flud the num. ber that represents how many times larger its circumference, that is the length of the circular line, is than its radius or its diameter. From the fact that all circles have the same shape it follows that this proportion will always be the same for both large and small circles. Now, since the time of Archimedes, all civilized nations that have cultivated mathematics bäve called the number that denotes how many times larger than the diameter the circumference of a circle is, π-the Greek initial letter of the word periphery. To compute π, therefore, means to calcu-. late how many times larger the circumference of a circle is than its diameter. This calculation is called "the numerical rectification of the circle."

The numerical quadrature.-Next to the calculation of the circumfer. ence, the calculation of the superficial contents of a circle by nieans of its radius or diameter is perhaps most important; that is, the computa. tion of how much area that part of a plane which lies within a circle measures. This caleulation is called the "numerical quadrature." It depends, however, upon the problem of numerical rectification; that is, upon the calculation of the magnitude of π. For it is demonstrated in elementary geometry that the area of a circle is equal to the area of a triangle produced by drawing in the circle a radius, erecting at the extremity of the same a tangent-that is, in this case a perpendicularcutting off upon the latter the length of the circumference, measuring from the extremity, and joining the point thus obtained with the center of the circle. But it follows from this that the area of a circle is as many times larger than the square upon its radius as the number π amounts to.

Oonstruotive rectification and quadrature.-The numerical rectiflcation and numerical quadrature of the circle based upon the computation of the number π are to be clearly distinguished from problems that require a straightline equal in length to'the circumference of a circle, or a square equal in area to a circle, to be constructively produced out of its radins or its diameter; problems which might properly be called "constructive rectification" or "constructivo quadrature." Approximately, of course, by employing an approximate value for π these probloms are easily solvable. But to solve a problem of construction, in geometry, means to solve it with mathematical exactitude. If the value π were exactly equal to the ratio of two whole numbers to one another, the constructive rectification wonld present no difficulties. For example, suppose the circumference of a circle were oxactly $3 \frac{1}{7}$ times greater than its diameter; then the diameter could be divided into seven equal parts, which could be easily done by the principles of planimetry with ruler and
compasses; then we would produce to the amount of such a part a straight line exactly three times larger than the diameter, and should thus obtain a straight line exactly equal to the circumference of the circle. But as a matter of fact, and as has actually been demonstrated, there do not exist two whole numbers, be they ever so great, that exactly represent by their proportion to one another the number π. Oonsequently, a rectification of the kind just described does not attain the object desired.

It might be asked here; whether from the demonstrated fact that the number π is not equal to the ratio of two whole numbers however great, it does not immediately follow that it is impossible to construct a straight line e, xactly equal in length to the circumference of a circle; thus demonstrating at once the impossibility of solving the problem. This question is to be answered in the negative. For there are in geometry many sets of two lines of which the one can be easily constructed from the other, notwithstanding the fact that no two whole numbers can be found to represent the ratio of the two lines. The side and the diagonal of a square, for instance, are so constituted. It is true the ratio of the latter two magnitudes is nearly that of 5 to 7. But this proportion is not exact, and there are in fact no two numbers that represent the ratio exactly. Nevertheless, either of these two lines can be easily constructed from the other by the sole employment of ruler and compasses. This might be the case, too, with the rectifica. tion of the circle; and consequently from the impossibility of represent. ing π by the ratio between two whole numbers the impossibility of the problem of rectification is not inferable.

The quadrature of the circle stands and falls with the problem of rectification. This is based upon the truth above mentioned, that a circle is equal in area to a right-angle triangle, in which one side is equal to the radius of the circle and tie other to the circumference. Supposing, accordingly, that the circumference of the circle were rectifled, then we could construct this triangle. But every triangle, as is taught in the elements of planimetry, can, with the help of ruler and com. passes, be converted into a square f xactly equal to it in area. So that, therefore, supposing the rectifleation of the circumference of a circle were successfully performed, a square could be constructed that would be exactly equal in area to the circle.

The dependence upon one another of the three problems of the computation of the number π, of the quadrature of the circle, and its rectifleation, thus obliges us, in dealing with the history of the quadrature, to regard investigations with respect to the value of π, and attempts to rectify the circle as of equal importance, and to consider them accordingly.

Oonditions of the geometrical solution.-We have used repeatedly in the course of the discussion the expression "to construct with ruler and
compasses." It will he necessary to explain what is meant by the specification of these two instruments. When such a number of conditions is annexed to a requirement in geometry to construct a certain figure that the construction only of one figure or a limited number of tigures is possible in accordance with the conditions given, such a complete requirement is called a problem of construction, or briefly a problem. When a problem of this kind is presented for solution it is necessary to reduce it to simpler problems, already recognized as solvable; and since these latter depend in their turn upon other still simpler problems, we are fiually brought back to certain fundamental problems, upon which the rest are based but which are not themselves reducible to problems less simple. These fundamental problems are, so to speak, the undermost stones of the edifice of geometrical construction. The question next arises as to what problems may be properly regarded as fundamental; and it has been found that the solution of a great part of the problems that arise in elementary planimetry rests upon the solution of only five original problems. They are:
(1) The construction of a straight line which shall pass through two given points.
(2) The construction of a circle the center of which is a given point and the radius of which has a given length.
(3) The determination of the point that lies coincidently on two given straight lines extended as far as is necessary-in case such a point (point of intersention) exists.
(4) The determination of the two points that lie coincidently on a given straight line and a given circle-in ease such common points (points of intersection) exist.
(5) The determination of the two points that lie coincidently on two given circles-in case such common points (points of intersection) exist.

For the solution of the three last of these inve problems the eye alone is needed, while for the solution of the two first problems, besides pencil, ink, chalk, and the like, additional special instruments are required: for the solution of the flrst problem a ruler is most generally used, and for the solution of the second a pair of compassos. But it must be remembered that it is no concern of geometry what meohanical instruments are omployed in the solution of the flve problems mentioned. Geometry simply limits itsolf to the pre-supposition that these problems are solvable and regards in complicated problem as solved if, upon a specifleation of the constructions of which the solution consists, no other requirements are demanded than the flve above mentioned. Since, acenrdingly, geometry does not itself furnish the solution of these flve problems, but rather exacts them, they are termed postulates." All

[^13]problems of planimetry are not reducible to these five problems alone. There are problems that can be solved ouly by assuming other problems as solvable which are not included in the five given : for example, the construction of an ellipse, having given its center and its major and minor axes. Many problems, however, possess the property of being solvable with the assistance solely of the five postulates above formulated, and where this is the case they are said to be "constructible with ruler and compasses," or "elementarily" constructible.

After these general remarks upon the solvability of problems of geometrical construction, which an understanding of the history of the squaring of the circle makes indispensably necessary, the significance of the question whether the quadrature of the circle is or is not solva. ble, that is, elementarily solvable, will become intelligible. But the conception just discussed of elementary solvability only gradually took clear form, and we therefore tind among the Greeks as well as among the Arabs, endeavors, successful in some respects, that aimed at solving the quadrature of the circle with other expedients than the five postulates. We have also to take these endeavors into consideration, and especially so as they, no less than the unsuccessful efforts at elementary solution, have upon the whole advanced the science of geometry and contributed much to the clarification of geometrical ideas.

III.-HISTORICAL ATTEMPTS.

The Eqyptian Quadrature.-In the oldest mathematical work that we possess we find a rule that tells us how to make a square which is equal in area to a given circle. This celebrated book, the Papyrus Rhind of the British Museum, translated and explained by Bisenlohr (leipsic, 1887), was written, as it is stated in the work, in the thirty-third yoar of the reign of King Ra-a-us, by a seribe of that monarch, named Ahmes. The composition of the work falls accordingly into the period of the two Hiksos dynasties, that is, in the poriod between 2000 and 1700 B. G. But there is another important circumstance attrohed to this. Ahmes mentions in his introduction that he composed his work after the model of old treatises, written in the time of King Ruenmat; whence it appears that the originals of the mathematieal expositions of Alimes, are half a thousand years older yet than the Papyrus Rhind.

The rule given in this papyrus for obtaining a square equal to a circle, specilies that the diameter of the circle shall bo shortened oneninth of its length and upon the shortened line thus obtained a square crectu. Of course, the aroa of a square of this construction is only approximately equal to the area of the circle. An idea may be obtained of the degree of exactness of this original, primitive quadrature by our remarking that if the diameter of the circle in question is one metre in length, the square that is supposed to be equal to the circle is a little less than half a square decimetro larger; an approximation not so accarate as that computed by Archimedes, yot much more correct than
many a one later employed. It is not known how Ahmes or his predecessors arrived at this approximate quadrature; but it is certain that it was handed down in Egypt from century to century, and in late Egyptian times it repeatedly appears.

The Biblical and Babylonian quadratures.-Besides among the Egyptians we also find in pre.Grecian antiquity an attempt at circle.compu. tation among the Babylonians. This is not a quadrature; but aims at the rectiffeation of the circumference. 'The Bablyonian mathematicians had discovered that if the radius of a circle be successively inscribed as chord within its circumference, after the sixth inscription we arrive at the point of departure, and they concluded from this that the circumference of a circle must be a little larger than a line which is six times as long as the radius, that is, three times as long as the diameter. A trace of this Babylonian method of computation may even be found in the Bible; for in I Kiugs vii, 23, and II Ohron. iv, 2, the great laver is described, which under the name of the "molten sea" constituted an ornament of the Temple of Solomon; and it is said of this vessel that it measured 10 cubits from brin to brim, and 30 cubits roundabout. The number 3 as the ratio between the circumference and the diameter is still more plainly given in the 'Calmud, where we read that "that which measures three lengths in circumference is one length across."

Amony the Greeks. - With regard to the earlier Greek mathemati-cians-as Thales and Pythagoras-wo know that they acquired the foundations of their mathematical knowledge in Egypt. But nothing has been handed down to us which shows that they knew of the old Dgyptian quadrature, or that they dealt with the problem at all. But tradition says that subsequently the teacher of Euripides and Pericles, the great philosopher and mathematiciaii Anaxagoras, whom Plato so highly praised, "drew the quadrature of the circle" in prison, in the year 434. This is the account of Platarch in the seventeenth chapter of his work "De Exilio."

Anaxayoras.- The method is not told us in which Anaxagoras had supposably solved the problem, and it is not said whethor knowingly or unknowingly he accomplished an approximate solution after the manner of Ahmes. But at any rate, to Anaxagoras belongs the merit of having called attention to a problem that bore great fruit, in having incited Grecian scholars to busy themsolves with geometry, and thus more and more to advance that science.

The quadratrix of Hippias of Dlis.-Again, it is reported that the mathematician Hippias of Elis invented a curved line that could be made to serve a double purpose; first, to trisect an angle, and, second, to square the circle. This curved line is the retoapenvitnoad so often mentioned by the later Greek mathematicians, and by the Romans, callod "quadratrix." Regarding the nature of this curre we have exact knowledge from Pappus. But it will be sufficient, here, to state that the quadratrix is not a circle nor a portion of a circle, so that its construc.
tion is not possible by means of the postulates enumerated in the preceding section. And therefore the solution of the quadrature of the circle founded on the construction of the quadratrix is not an elementary solution in the sense diseussed in the last section. We can, it is true, conceive a mechanism that will draw this curve as well as compasses draw a circle; and with the assistance of a mechanism of this deserip. tion the squaring of the circle is solvable with exactitude. But if it be allowed to employ in a solution an apparatus especially adapted thereto, every problem may be said to be solvable. Strictly taken, the invention of the curve of lippias substitutes for one insuperable difficulty another equally insuperable. Sometime afterwards, about the year 350, the mathematician Dinostratus showed that the quadratrix could also be used to solve the problem of rectification, and from that time on this problem plays almost the same rôle in Grecian mathematios as the related problem of quadrature.

The Sophists' solution.-As these problems gradually became known to the non-mathematicians of Greece, attempts at solution at once sprang up that are worthy of a place by the side of the solutions of modern ama. teur circle-squarers. The Sophists, especially, believed themselves competent by seductive dialectic to take a stronghold that had defied the intellectual onslaughts of the greatest mathematicians. With verbal nicety, amounting to puerility, it was said that the squaring of the circle depended upon the finding of a number which represented in itself both a square and a circle; a square by being a square number, a circle in that it ended with the same number as the root number from which, by multiplication with itself, it was produced. The number 36, accordingly, was, as they thought, the one that embodied the solution of the famous problem.

Contrasted with this twisting of words the speculations of Bryson and Antiphon, both contemporaries of Socrates, though inexact, appear in high degree intelligent.

Antiphon's attempt.- Antiphon divided the circle into four equal ares, and by joining tho points of division obtained a square; he then divided each are again into two equal parts and this obtained an inscribed octagon; thence he constructed an inseribed dodecagon, and perceived that the figure so inseribed more and more approached the shape of a circle. In this way, he said, one should proceed, until there was inscribed in the circle a polygon whose sides by reason of their smaliness should coincide with the circle. Now this polygon could, by methods already taught by the Pythagoreans, be converted into a square of equal area; and upon the basis of this fact Antiphon regarded the squaring of the circle as solved.

Nothing ean be said against this mothod except that, however far the bisection of the arcs is carried, the result must atill remain an approximate oue.
Bryson of Heraklea.-The attempt of Bryson of Heraklea was better atill; for this scholar did not rest content with finding a square that was
very little sinaller than the circle, but obtained by means of circumseribed polygons another square that was very little larger than the circle. Only Bryson committed the error of believing that the area of the circle was the arithmetical mean between an inscribed and a circumscribed polygon of an equal number of sides. Notwithstanding this error, however, to Bryson belongs the merit, first, of having introduced into mathematics by his emphasis of the necessity of a square which was too large and one which was too sinall, the conception of maximum and minimum "limits" in approximations; and secondly, by his comparison with a circle of the inscribed and circumscribed regular polygons, the merit of having indicated to Archimedes the way by which an approzimate value for π was to be reached.

Hippocrates of Ohios.-Not long after Antiphon and Bryson, Hippo. crates of Ohios treated the problem, which had now become more and more famous, from a new point of view. Hippocrates was not satisfied with approximate equalities, and searched for curvilinearly bounded plane figures which should be mathematically equal to a rectilinearly bounded figure, and therefore could be converted liy ruler and compasses into a square equal in area. First, Hippourates found that the crescent. shaped plane figure produced by drawing two perpendicular radii in a circle and describing upon the line joining their extremities a semicircle, is exactly equal in area to the triangle that is formed by this line of junction and the two radil; and upon the basis of this fact the endeavors of the untiring scholar were directed towards converting a circle into a crescent. Naturally he was unable to attain this object, but by his eftorts to this end he discovered many a new geometrical truth; among others the generalized form of the theorem mentioned, which bears to the present day the name of Inunla Hippooratis, the lunes of Hippocrates. Thus it appears, in the case of Hippocrates, in the plainest light, how the very insolvable problems of science are qualified to advance seience; in that they incite investigators to devote themselves with persistence to its study and thus to fathom its dopths.

Luclid's avoidance of the problem.-..Following Hippocrates in the historical line of the great Grecian geometricians comen the systematist Huclid, whose rigid formulation of geometrical prinoiples has remained the standard presentation down to the prosent contury. The Elements of linclid, however, contain nothing relating to the quadrature of the circle or to circle computation. Oomparisons of surfaces which relate to the circle are indeed found in the book, but nowhere a computation of the circumference of a circle or of the area of the circle. This palpable gap in Euclid's system was flled by Archimedes, the greatest mathematician of antiquity.

Archimedes's caloulations.-Achimedes was born in Syracnse in the year 287 n. o., and devoted his life, there spent, to the mathematical and the physical soiences which he enriched with invaluable contributions. He lived in Syracuse till the taking of the town ly Marcellus, in the year

212 s . 0 . When he fell by the hand of a Roman soldier whom he had forbidden to destroy the figures he had drawn in the sand. To the greatest performances of Archimedes the successful computation of the numbel' π unquestionably belong. Like Bryson he started with regular insoribed and circumseribed polygons. Ho showed how it was possible, begin. ning with the perimeter of an inscribed hexagon, which is equal to six radii, to obtain by way of calculation the perimeter of a regular dodec. agon, and then the perimeter of a flgure having double the number of sides of the preceding one. Treating, then, the circumscribed polygons in a similar manner, and proceeding with both series of polygons up to a regular 96 sided polygon, he perceived on the one haud that the ratio of the perimeter of the inscribed 96 -sided polygou to the diameter was greater than 6336:2017 , and on the other hand, that the corresponding ratio with respect to the circumscribed 96 sided polygou was smaller than 14688:46732. He inferred from this, that the number π, the ratio of the circumference to the diameter, was greater than the fraction $\frac{6338}{20174}$ and smaller than $\frac{14}{4} \frac{1}{8} \frac{8}{3} \frac{8}{2}$. Reducing the two limits thus found for the value of π, Archimedes then showed that the first fraction was greater than $3 \frac{1}{7} \mathrm{~T}$, and that the second fraction was smaller than $3 \frac{1}{7}$, whence it followed with certainty that the value sought for π lay between $3 \frac{1}{7}$ and $3 \frac{1}{7} \frac{0}{1}$, The larger of these two approximate values is the only one usually learned and cmployed. That which fills us mosi; with astonishment in the Arohimedean computation of π, is, first, the great acumen and accuracy displayed in all the details of the computation, and then the unwearied perserverance that he must have exercised in calculating the limits of π without the advantages of the Arabian system of numerals and of the decimal notation. For it must be considered that at many stages of the computation what we call the extraction of roots was necessary, and that Archimedes conld only by extremely tedions calculations obtain ratios that expressed approximately the roots of given numbers and fractions.

The later mathematioians of Grecce.-.With regard to the mathematicians of Greece that follow Archimedes, all refer to and omploy the approximate value of $3 f$ for π, without however contributing anything essentially now or additional to the problems of quadrature and of cyelometry. Thas from of Alexandria, the fither of survoying, who flourished abont the year 100 13. σ_{0}, employs for purposes of practieal measurement sometimes the valne $3 \frac{1}{7}$ for π and sometimes oven the rougher approximation $\pi=3$. The astronomer Ptolemy, who lived in Alexandria about the year 150 A., D., and who was famous as being the anthor of the planetary system univer. sally recognized as correct down to the time of (Jopernicus, was the only one who furnished a more exact value; this he designated, in the sexigesimai system of fractional notation which he employed, by 3,8 , 30 -that is 3 and $\frac{8}{60}$ and $\frac{30}{30} \pi$, or as we now say 3 degrees 8 minutes (partes minutce primes) and 30 seconds (partes minute seounda). As
a matter of fact, the expression $3+\frac{8}{80}+\frac{3}{8} 80=3 \frac{17}{120}$ ropresents the number π more exactly than $3 \frac{1}{7}$; but on the other hand is, by reason of the magnitude of the numbers 17 and 120 as compared with the num. bers 1 and 7 , more cumbersome.

Among the Romans.-In the mathematical sciences, more than in any other, the Romans stood upon the shoulders of the Greeks. Indeed, with respect to cyelometry, they not only did not add any thing to the Grecian discoverles, but often evinced even that they either did not know of the beantiful result obtained by Archimedes or at least did not know how to appreciate it. . For instance, Vitruvius, who lived during the time of Augustus, compnted that a wheel 4 feet in diameter must measure $12 \frac{1}{2}$ feet in circumference; in other words, he made π equal to 38 . And, similarly, a treatise on surveying, preserved to us in the Gudian manuseript of the library at Wolfenbilttel, contains the following instructions to square the circle: Divide the cirsumference of a oircle into four parts and make one part the side of a square; this square will be equal in area to the circle. Aside from the fact that the rectitication of the ars of a circle is requisite to the construction of a square of this kind, the Roman quadrature, viewed as a calculation, is more inexact even than any other computation ; for its result is that $\pi=4$.
Among the Hindus.--The mathematical performances of the Hindus were not only greater than those of the Romans, but in certain directions even surpassed those of the Greeks. In the most ancient source for the mathematies of India that we know of, the Oulvasitras, which date baek to a little before our chronological era, we do not find, it is true, the squaring of the circle treated of, but the opposite problem is dealt with which might fittingly be termed the circling of the square. The half of the side of a given square is prolonged one third of the excess in length of halt the diagonal over half the side, and the line thus obtained is taken as the radius of the circle equal in area to the square. The simplest way to obtain an idea of the exaetness of this construction is to compute how great π would have to be if the construction were exactly correct. We find out in this way that the value of π, thon which the Indian circling of the square is based, is about from five to six hundredthes smaller than the true value, whereas the approximate π of Archimedes, $3 \frac{1}{7}$, is only from one to two thonsandths too large, and the old Dgyptian value exceeds the true value by from one to two hundredths. Oyclometry very probably made great advances among the Hindus in the flrst four or five centurios of our era; for Aryabhatta, who lived about the year 500 after Ohrist, states that the reltio of the circumference to the diameter is $02832 \div 20000$, an approximation that in exactness surpasses even that of Ptolemy. The Hindu result gives $3 \cdot 1410$ for π, while π really lies between $3 \cdot 141592$ and $3 \cdot 141593$. How the Hindus obtained this excellent approximate value is told by Ganega, the commentator of Bhâskara, an author of the twelfth century. Ganega says that the method of Archi-
medes was carried still farther by the Hindu mathematicians; that by coutinually donbling the number of sides they proceeded from the hex. agon to a polygon of 384 sides, and that by the comparison of the circumferences of the inscribed and circumseribed 384 -sided polygons they found that π was equal to $3927 \div 1250$. It will be seen that the value given by Bhaskara is identioal with the value of Aryabhatta. It is further worthy of remark that the earlier of these two Bindu mathe. waticians does not mention either the value $3 \frac{1}{7}$ of Archimedes or the value $31 . \frac{7}{27}$ of Ptolemy, but that the later knows of both values and especially recommends that of Arehimedes as the most useful one for practical application. Strange to say, the good approximate value of Arybhatta does not occur in Bramagupta, the great Hindu mathematician who flourished in the beginning of the seventh century; bat we find the curious information in this author that the area of a circle is exactly equal to the square root of 10 when the radius is unity. The value of π as derivable from this formula (a value from two to three hundredths too large) has unquestionably arisen upon Hindu soil, for it occurs in no Grecian mathematician; and Arabian authors, who were in a better position than we to know Greek and Hindu mathematical literature, declare that the approximation which makes π equal to the square root of 10 is of Hindu origin. It is possible that the Hindu people, who were addicted more than any other to numeral mysticism, sought to find in this approximation some conuection with the frot that man has ten fingers; and ten accordingly is the basis of their numeral system.

Reviewing the achievements of the Hindus generally with respect to the problem of the quadrature, we are brought to recognize that this people, whose talents lay more in the line of arithmetical computation than in the perception of spatial relations, accomplished as good as nothing on the pure, geometrical side of the problem, but that the merit belongs to them of having carricd the Archimedoan method of computing π several stages farther, and of having obtained in this way a much more exact value for it;-a circumstance that is explainable when we consider that the Hindus ave the inventors of our present system of numeral notation, possessing which they casily outdid Arohimedes, who omployed the awkward Greek system.

Among the Ohinese.-.-With regard to the Ohinese, this people operated in ancient times with the Babylonian value tor π, or 3 , but possessed knowledge of the approximate value of Archimedes, at least since the end of the sixth century. Besides this, there appears in a number of Ohinese mathematical treatises an approximate value peculiarly their own, in which $\pi=3_{\frac{7}{5} 0}^{7}$; a value, however, which, notwithstanding it is written in large figures, is no better than that of Archimedes. Attempts at the construotive quadrature of the circle are not found among the Ulinese.

Among the Arabs.-Greater were the merits of the Arabians in the advancement and development of mathematics, and especially in virtue of the fact that they preserved from oblivion both Greek and Hindu mathematios, and handed them down to the Ohristian countries of the West. The A rabians expressly distinguished between the Archimedean approximate value and the two Hindu values, the square root of 10 and the ratio 62832: 20000. This distinction occurs also in Muhammed Ibn Musa Alchwarizmi, the same scholar who in the beginning of the niuth century brought the principles of our present system of numerical notation from Iudia and introduced the same into the Mohammedan world. The Arabians however studied not only the numerical quadrature of the circle, but also the constructive; as, for instance, Ibn Alhaitam, who lived in Agypt about the year 1000, and whose treatise upon the squaring of the circle is preserved in a Vatican codex, which has unfortunately not yet been edited.

In Ohristian times.-Ohristian civilization, to which we are now about to pass, produced up to the second half of the fifteenth century extremely insiguiticant results in mathematics. Even with regard to our present problem we have but a single important work to mention-the work, namely, of Frankos Von Littich upon the squaring of the circle, published in six books, but only preserved in fragments. The author, who lived in the first half of the eleventh century, was probably a pupil of Pope Sylvester ur, himself a not inconsiderable mathematician for his time, and who also wrote the most celebrated book on geometry of the period.

Oardinal Nicolaus de Ousa.-Greater interest came to be bestowed upon mathematics in general, but especially on the problem of the quadrature of the cirele, in the second half of the fifteenth century, when the soiences again began to revive. This interest was espeeially aronsed by Oardinal Nicolans De Ousa, a man highly esteemed on account of his astronomical and calendarial studies. He claimed to have discovered the quadrature of the circle by the employment solely of compasses and ruler, and thus attracted the attention of soholars to the now historic problem. People believed the famous cardinal and mavelled at his wisdom, until Regiomontanus, in lettors which he wrote in 1464 and 1405, and which were published in 1533, rigidly demonstrated that the cardinal's quadrature was incorrect. The construction of Ousa was as follows: The radius of a circle is prolonged a distance equal to the side of the inseribed square; the line thus obtained is taken as the diameter of a second cirole, and in the latter an equilateral triangle is deseribed; then the perimeter of the later is equal to the cireumference of the original circle. If this construction, which its inventor regarded as exact, be considered as a construction of approximation; it will be found to be more inexact even than the construction resulting from the value $\pi=3 \frac{1}{7}$. For by Ousa's method π would be from five to six thousandthes smalier than it really is.

Bovillius, and Orontius Fincus:-In the beginuling of the sixteenth century a certain Bovillius appears, who announced anew the construction of Ousa, meeting, however, with no notice. But about the middle of the sisteenth century a book was published which tho scholars of the time at first received with interest. It bore the prond title "De Rebus Mathematiois Haotenus Desiderutis." Its author, Orontius Fineus, represented that he had overcome all the difficulties that had ever stood in the way of geometrical investigators; and incidentally be also communieated to the world tho "true quadrature" of the circle. His fame was short-lived. For alterwards, in a book entitled "De Erratis Orontii," the Portugnese Petrus Nonius demonstrated that Orontins's quidrature, like most of his other professed discoveries, was incorrect.

Simon Van Eyok.-In the perlod following this the number of circle. squarers so incroased that we shall have to limit ourselves to those whom mathematicians recognize. And particularly is Simon Van Eyck to be mentioned, who towards the close of the sixteenth century pub. lished a quadrature which was so approximate that the value of π de. rived from it was more exact than that of Archinedes; and to disprove it the mathematician Peter Metitus was obliged to seek a still more accurate value than $3 \frac{1}{7}$. The erroneous quadrature of Van Byck was thus the occasion of Metius's discovery that the ratio 355: 113, or $3 \mathrm{~J}^{\frac{1}{1} \frac{6}{3}}$, varied from the true value of π by less than one one-millionth, eclipsing accordingly all values bitherto obtained. Moreover it is demonstrable by the theory of continued fractions that, admitting figmes to four places only, no two numbers more exactly represent the value of π than 355 and 113.

Joseph sealiger.-In the same way the quadrature of the great philologist, Joseph Scaliger, led to refutations. Like most cirele-squarers who believe in their discovery, Scaliger also was little versed in the elements of geometry. He solved, however-at least in his own opinion he did-the fumons problem; and published in 1592 a book upon it, which bore the pretentions title "Nova Oyolometria," and in which the name of Arohimedes was derided. Tho worthlessness of his sup. posed discovery was demonstrated to him by the greatest mathematicians of his time, namely, Vieta, Adrianus Romanus, and Olavius.

Longomontanus, John Portu, and Gregory of St. Vincent.--Of the erring circle squarers that flourished before the middle of the seventeenth century three others deserve particular mention;--Longomontanus of Oopenhagen, who rendered such great services to astronomy, the Neapolitan John Porta, and Gregory of'St. Vincent. Longomontanus made $\pi=3 \frac{14 \mathrm{Ab}}{100 \mathrm{t}}$, and was so convinced of the correctness of his result that he thanked God fervently, in the preface to his work "Inventio Quad. rature Oirouli," that Ho had granted him in his high old age the strength to conquer the celebrated difficulty. John Porta followed the initiative of Hippocrates, and believed he had solved the problem by
the comparison of lunes. Gregory of St. Vinceut published a quadrature the error of which was very hard to detect, but was finally discovered by Descartes.

Peter Metius, and Vieta.-Of the famous mathematicians who dealt with our problem in the period between the close of the fifteenth century and the time of Newton, we first meet with Peter Metius, before mentioned, who succeeded in finding in the fraction 355: 113 the best approximate value for π involving only small numbers. The problem received a different ad vaucement at the hands of the famous mathematician Vieta. Victa was the first to whom the idea occurred of renre. senting π with mathematical exactness by an infinite serles of continuable operations. By comparison of inscribed and circumscribed polygons, Vieta found that we approach nearer and nearer to π if we allow the operations of the extraction of the square root of $\frac{1}{2}$ and of addition and of multiplication to succeed each other in a certain manner, and that π must come out exactly if this series of operations could be indefinitely continued. Vieta thus found that to a diameter of 10,000 million units a circumference belongs of 31,415 million, and from 926,535 to 926,536 units of the same length.

Adrianus Romanus, Ludolf Van Deulen.-But Vieta was outdone by the Netherlander Adrianus Romanius, who arlded fiveadditional decimal places to the ten of Vieta. To accomplish this he computed with unspeakable labor the circumference of a regular circumscribed polygon of $1,073,741,824$ sides. This number is the thirtieth power of 2 . Yet great as the labor of Adrianus Romanus was, that of Ludolf Van Coulon was still greater, for the latter calculator succeeded in carrying the Archimedean process of approximation for the value of π to 3 decimal places, that is, the deviation from the true value was smaller than one one thousand quintillionth, a degree of exactness that we can hardly have any conception of, lindolf published the figures of the tremendous computation that lerl to this result. His calculation was carofully examined by the mathematician Griomberger and declared to be correct. Iudolf was justly proud of his work, and, following the example of Archimedes, requested in his will that the result of his most important mathomatical performance, the computation of π to 35 decimal places, be ongraved upon his tombstone, a request which is said to have been carried out. In honor of Iudolf, π is called to day in Germany the Ladolfian number.

The new method of Snell. Huygens's verification of it.-Although through the labor of Ludolf a degreo of oxaetness for oyolometrical operations was now obtained that was more than sufficient for any practical purpose that could evor arise, neither the problem of constructive rectification nor that of constructive quadrature was thereby in any respect theoretically advanced. The investigations conducted by the famous mathematicians and physicists Huygens and Snell, about the middle of the se venteenth century, were more important from amathe. H. Mis, 120--8
matical point of view than the work of Ludolf. In his book Oyolometri. ous Snell took the position that the method of comparison of polygons, which originated with Archimedes and was employed by Ludolf, need by no means be the best method of attaining the end sought; and he succeeded, by the employment of propositions which state that certain arcs of a circle are creater or smaller than certain straight lines connected with the circle, in obtaining methods that make it possible to reach results like the Ludolfian with much less labor of calculation. The beautiful theorems of Snell were proved a second time, and better proved, by the celebrated Dutch promoter of the science of optics, Huygens (Opera Varia, pp. 365 et seq.; Theoremata De Cirouli et Hy. perbolae Quadratura, 1651), as well as perfected in many ways. Snell and Huygens were fally aware that they had advanced only the prob. lem of numerical quadrature, and not that of the constructive quadra. ture. This, in Huygens's case, plainly appeared from the vehement dispute he conducted with the English mathematician, James Gregory. This controversy has some significance for the history of our problem, from the fact that Gregory made the first attempt to prove that the squaring of the circle with ruler and compasses must be impossible.

The controversy between Huygens and Gregory.-The result of the controversy, to which we owe many valuable treatises; was that Huygens finally demonstrated in an incontrovertible manner the incorrectness of Gregory's proof of impossibility, adding that he also was of opinion that the solution of the problem with ruler and compasses was impossible, but nevertheless was not himself able to demonstrate this fact. And Newton, later, expressed himself to a similar efficet. As a matter of fact it took till the most recent period, that is over 200 years, until higher mathematics was far enough advanced, to furnish a rigid demongtration of impossibility.

Before we proceed to consirler the promotive influence which the invention of the differential and tho integral ealeulus had upon our problem, we shall entumerate a fow at least of that never-onding line of mistaken quadrators who have delighted the world by the frults of their ingenuity from the time of Newton to the present period; and out; of a pious and sincere consideration for the contemporary world, wes shall entirely omit in this to speak of the circle-squarers of our own time.

Hobbes's quadrature.--Mirst to be mentioned is the colebrated English philosopher Hobbes. In his book, De Problematis Physiois, in which he chiefly proposes to explain the phenomena of gravity and of ocean tides, he also takes up the quadrature of the circle and gives a very trivia! construetion that in his opinion definitively solved the problem, making $\pi=3 \frac{1}{5}$. In view of Hobbes's importance as a philosopher, two mathematicians, Huygens and Wallis, thought if proper to refute

Hobbes at length. But Hobbes defended his position in a special treatise, in which, to sustain at least the appearance of being right, he disputed the findamental principles of geometry snd the theorem of Pythagoras; so that mathematicians could pass on from him to the order of the day.

Frenoh quadrators of the eighteenth century.-In the last century France especially was rich in circlesquarers. We will mention: Oliver de Serres, who by means of a pair of sonles determined that a circle weighed as much as the square upon the side of the equilateral triangle inscribed in it, that therefore they must have the same area, an experiment in which $\pi=3$; Mathulon, who offered in legal form a reward of a thousand dollars to the person who would point out an error in his solution of the problem, and who was actually compelled by the courts to pay the money ; Basselin, who believed that his quadrature must be right because it agreed with the approximate value of Archimedes, and who anathematized his ungrateful contenporaries, in the confidence that he would be recognized by posterity; Liger, who proved that a part is greater than the whole, and to whom therefore the quadrature of the circle was child's play; Olerget, who based his solution upon the principle that a circle is a polygon of a definite number of sides, and who calculated, also, among other things, how large the point is at whioh two oircles touch.
Germany and Poland.--Germany and Poland also furnish their contingent to the army of circle-squarers. Lieutemant-Oolonel Oorsonich produced a quadrature in which π equaled $3 \frac{1}{8}$, and promised 50 ducats to the person who could prove that it was incorrect. Hesse, of Berlin, wrote an arithmetic in 1776, in which a true quadrature was also " made known," π being exactly equal to $3 \frac{14}{15}$. About the same time Professor Bischoff, of Stettin, defended a quadrature previously published by Oaptain Leistner, preacher Merkel, and sohoolmaster Bühm, which made π implioite equal to the square of $\frac{9}{5} \frac{2}{5}$ not even attaining the approximation of Arohimedes.
Construotive approximations--LInler, Kocalnsly.-.From attempts of this character are to be clearly distinguished constructions of approximation in whice the invontor is aware that he has not found a mathematically exact construction, but only an approximate one. The value of such a construction will depend upon two things--first, upon the dogree of exactness with which it is numerleally expressed, and secondly on the fact whether the construction ean be more or less easily made with ruler and compassès. Oonstructions of this kind, simple in form and yet suffloiently exact for practical purposes, have for conturies been furnished us in great numbers. The groat mathomatician, Euler, who died in 1783, did not think it out of place to attempt an approximate construction of this kind. A very simple construction for the rectifcation of the cingle, and one which has passed
into many geometrical text books, is that published by Kochansky in 1685, in the Leipziger Berichte. It is as follows:

Abstract

Ereot upon the diameter of a circle at its extremities perpendicnlars; with the center as vertex, mark off upon the dianeter an angle of 30°; find the polut of intersection with the perpendicular of the line last drawn, and join this point of intersection with that point upon the other porpendicular, which is at a distance of three radii from the base of the perpendicular. The line of junction thus obtained is then very approximately equal to one-half of the circumference of the given circle.

Oalculation shows that the difference between the true length of the circumference and the line thus constructed is less than $\frac{{ }^{100000}}{}$ of the diameter.

Inutility of constructive approximations.-Althougk such construc. tions of approximation are very interesting in themselves, they nevertheless play but a subordinate rôle in the history of the squaring of the circle; for on the one hand they can never furnish greater exaotuess for circle computation than the thirty five decimal places which Ludolf found, and on the other hand they are not adapted to advance in any way the question whether the exact quadrature of the circle with ruler and compasses is possible.

The researoles of Newton, Leibnitz, Wallis, and Brouncker.-The numerical side of the problem, however, was considerably advanced by the new mathenatical methods perfected by Newton and Leibnitz, commonly called the differential and the integral calculus. And about the middle of the seventeenth century, some time before New. ton and Leibnitz represented π by series of powers, the English mathematicians Wallis and Lord Brouncker, Newton's predecessors in a certain sense, succeeded in representing π by an influite series of flgures combined by the first four rules of arithmetic. A new method of computa. tion was thus opened. Wallis found that the fourth part of π is represented more exactly by the regularly formed product

$$
\frac{4}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \frac{3}{7} \times \frac{8}{7} \times \frac{8}{9} \times, e t 0_{9}
$$

the farther the multiplication is continued, and that the result always comes out too small if we stop at a proper fraction, but too large if we stop at an improper fraction. Lord Eromoker, on the other hand, represents the value in question by a continued fraction in which all the denominators are equal to 2 and the numerators are odd square numbers. Wallis, to whom Brouncker had communicated his elegant result without proof, demonstrated the same in his "Arithmetic of Inflnites."

The computation of π could hardly be farther advanced by these results than Ludolf and others had enrried it, though of course in a more laborious way. However, the series of powers derived by the assistance of the differential calculus of Newton and Leibnitz furnished a means of computing π to lundreds of decimal places.

Other caloulations.-Gregory, Nowton, and Leibnit\% next found that the fourth part of π was equal exactly to

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{0}-\frac{1}{17}+\frac{1}{13}-\ldots
$$

if we conceive this series, which is called the Leibnitzian, indefinitely continued. This series is indeed wonderfully simple, but is not adapted to the computation of π, for the reason that entirely too many members have to be taken into account to obtrin π accurately to a few decimal places only. The original formula, however, from which this series is derived, gives other formulas which are excellently adapted to the actual computation. This formula is the general series:

$$
\alpha=a-\frac{1}{3} a^{3}+\frac{1}{5} a^{5}-\frac{1}{7} a^{7}+\ldots
$$

where α is the length of the are that belongs to any central angle in a circle of radius 1 , and where a is the tangent to this angle. From this we derive the following:

$$
\frac{\pi}{4}=(a+b+o+\ldots)-\frac{1}{3}\left(a^{3}+b^{3}+c^{3}+\ldots\right)+\frac{1}{5}\left(a^{5}+b^{5}+c^{5}+\ldots\right)-\cdots
$$

where $a, b, c \ldots$ are the tangents of angles whose sum is 45°. Detiormining, therefore, the values of $a, b, c \ldots$, which are equal to small and easy fractions and fulfill the condition just mentioned, we obtain series of powers which are adapted to the computation of π. The first to add by the aid of series of this description additional decimal places to the old 35 in the number π was the English arithmetician Abraham Sharp, who, following Halley's instructions, in 1700, worked out π to 72 decimal places. A little later Machin, professor of astronomy in London, computed π to 100 decimal places; putting, in the series given above, $a=b=c=d=\frac{1}{5}$ and $e=-\frac{1}{2} \frac{1}{9}$, that is omploying the following serios:
$\left.\frac{\pi}{4}=4 \cdot\left[\frac{1}{5}-\frac{1}{3.5^{3}}+\frac{1}{5.5^{5}}-\frac{1}{7.5^{7}}+\cdots\right]-\left[\frac{1}{239}-\frac{1}{3.239^{3}}+\frac{1}{5.239^{6}} \cdots\right]\right]$
In the year 1819, Lagny, of Paris, outdid the computation of Machin, determining in two different, ways the first 127 decimal places of π. Vega then obtained as many as 140 places, and the Hamburg arithmetician, Zacharias Dase, went as far as 200 places. The latter did not use Machin's sories in his calculation, but the series produced by putting in the general series above given $a=\frac{1}{2}, b:=\frac{7}{5}, c=\frac{1}{8}$. Finally, at a recent date, π has been computed to 500 places.

The computation to so many docimal places may serve as an illustration of the excellence of the modem mothod as contrasted with those anciently employed, but otherwise it has neither a theoretical nor a practical value. That the computation of π to say 15 decimal places more than sufficiently satisfles the subtlest requirements of practice may be gathered from a concrete example of the degree of exactuess thus obtainable.

Idea of exactness obtainable with the approximate values of π.-Im. agine a eircle to be described with Berlin as center, and the circum. ference to pass through Hamburg; then let the circumference of the circle be computed by multiplying its diameter with the value of π to 15 decimal places, and then conceive it to be actually measured. The deviation from the true length in so large a circle as this even could not be as great as the 18 millionth part of a millimetre.

An idea can hardly be obtained of the degree of exactness produced by 100 decimal places. But the following example may possibly give us some conception of it. Oonce:ve a sphere constructed with the earth as center, and imagine its surface to pass through Sirius, which is $134 \frac{1}{2}$ million million kilometres distant from us. Then imagine this enormous sphere to be so packed wioh microbes that in every cubic millinietre millions of millions of these diminutive animalcula are present. Now conceive these miorobes to toe all unpacked and so distributed singly along a straight line that every two microbes are as far distant from each other as Sirus from us, that is, $134 \frac{1}{2}$ million million kilometres. Oonceive the long line thus fixed by all the microbes as the diameter of a circle, and imagine the circumference of it to be caiculated by multiplying its diameter with π to 100 decimal places. Then, in the case of a circle of this ennmous magnitude even, the ciroumference thus calculated would not vary from the real circumference by a millionth of a millimetre.

This example will suffice to show that the calculation of π to 100 or 500 decimal places is wholly useless.

Professor Wolff's ourious method.-Before we close this chapter upon the evaluation of π, we must mention the method, less fruitful than curious, which Professor Wolff, of Zurich, employed some decades ago to compute the value of π to 3 places. The floor of a room is divided up into equal squares, so as to resemble a huge chess-board, and a needle exactly equal in length to the side of each of these squares is cast haphazard upou the flocr. If we calculate now the probabilities of the needle so falling as to lie wholly within one of the squares, that is, so that it does not cross any of the parallel lines forming the squares, the result of the calculation for this probability will be found to be ex. actly equal to $\pi-3$. Oonsequently a sufficient number of casts of the needle according to the law of large numbers mist give the value of π approximately. As a matter of fact, Professor Wulf, after 10,000 trials, obtained the value of π correctly to 3 decimal places.

IV.--PROOF THAT THE PROBLEM : INSOLVABLE.

Mathematicians ::ow seek to prove the insolvability of the problem. Fruitful as the calculus of Newton and Leibnitz was for the evaluation of π, the problem of converting a circle into a square having ex. actly the same area was in no wise advanced thereby. Wallis, Newton, Leibuitz, and their immediate followers distinctly renoguized this. The
quadrature of the circle could not be solved; but it also could not bo proved that the problem was insolvable with ruler and compasses, although everybody was convinced of its insolvability. In mathematics, however, a couviction is only justified when supported by incontrovertible proof; and in the place of endeavors to solve the quadra. ture there accordingly now come endeavors to prove the impossibility of solving the celebrated problem.

Lambert's oontribution.-The first step in this direction, small as it was, was made by the French mathematician Lambert, who proved in the year 1761 that π was neither a rational number nor even the square root of a rational number; that is, that neither π nor the square of π can be exactly represented by a fraction the denominator and numerator of which are whole numbers, however great the numbers be taken. Lambert's proof showed, indeed, that the rectifieation and the quadrature of the circle could not be possibly accomplished in the particular way in which its impossibility was demonstrated, but it still did not exclude the possibility of the problem being solvable in some other more complicated way, and without requiring further aids than ruler and compasses.

The conditionse of the demonstration.-Proceeding slowly but surely it was next sought to discover the essential distinguishing properties that separate problems solvable with ruler and compasses, from problems the coustruction of which is elementarily impossible, that is, by solely employing the postulates. Slight reflection showed that a problem elementarily solvalle, must always possess the property of having the unknown lines in the figure relating to it connected with the known lines of the figure by an equation for the solution of which equations of the tirst and second degree alone are requisite, and which may be so dignosed that the common measures of the known lines will appear only as integers. The conclusion was to be drawn from this, that if the quadrature of the circle and consequently its rectification were elementarily solvable, the number π, which represents the ratio of the unknown circumference to the known dianeter, must be the root of a certain equation, of a very high degree perhaps, but in which all the numbers that appear are whole numbers; that is, there would have to exist an equation, made up entirely of whole numbers, which would be correct if its unknown quantity were made equal to π.

Final success of Professor Lindemann.-SSince the beginning of this century, consequently, the offorts of a number of mathematicians have been bent upon proving that π generally is not algebraical, that is, that it can not be the ront of any equation having whole numbers for coefficients. But mathematics had to make tremendous strides forward before the means were at hand to accomplish this demonstration. After the French academician, Professor Hermite, had furnished im. portant preparatory assistance in his treatise Sur la Fonotion Expo. nentielle, published in the seventy-seventh volume of the Comptes

Rendus, Professor Lindemann, at that time of Freiburg, now of Königs. berg, finally succeeded, in June, 1882, in rigorously demonstrating that the number π is not algebraical,* thus supplying the first proof that the problems of the rectification and the squaring of the circle, with the lelp only of algebraical instruments like ruler and compasses are insolvable. Lindemann's proof appeared successively in the Reports of the Berlin Academy (June, 1882), in the Comptes Rendus of the French Academy (vol. oxv, pp. 72-74), ard in the Mathematischen Annalen (vol. $\mathrm{Xx}, \mathrm{pp} .213-225$).

The verdict of mathematics.-"It is impossible with ruler and com. passes to construct a square equal in area to a given circle." These are the words of the fual determination of a contreversy which is as old as the histors of the human mind. But the race of circle squarers, unmindful of the verdict of mathematics, that most infallible of arbiters, will never die out so long as ignorance and the thirst for glory shall be united.

For the benefit of my matLematical readers I shall present here the most impor-
tant steps of Lindemann's demonstration, M. Hermite in order to prove the transcen-
dental character of

$$
e=1+\frac{1}{1}+\frac{1}{1.2}+\frac{1}{1.2 .3}+\frac{1}{1.2 .3 .4}+\ldots
$$

developed relations between certain definite integrals (Comptes Rendus of the Paris
Aoademy, 1873, vol, rxxyin). Proceeding from the relations thus established, Pro-
fessor Lindemann first demonstrates the following proposition : If the coeffleients of
an equation of $n+h$ degree are all real or complex whole numbers and the n roots of this
equation $z_{1}, z_{2}, \ldots, z_{n}$ are differeut from zero and from each other it is impossible for

$$
e^{z_{1}}+e^{z_{2}}+e^{z_{3}} \cdots+e^{z_{n}}
$$

to be equal to $\frac{a}{b}$, where a and b aro real or complex whole numbers. It is then ehown that also between the functions

$$
e^{r z_{1}}+e^{r z_{2}}+e^{r z_{3}}+\ldots e^{r z_{n}}
$$

where r denotes an intoger, no linear equation oan oxist with rational ooefficients variant from zero. Finally the beantiful theorem results: If z is the root of an lrosducible algebrule equation the coefteients of which are real or complex whole numbors, thon e^{2} can not be equal to a rational number. Now, in reallty $e^{\pi \gamma-1}$ is oqual to in rational number, namely, -1 . Consequently, $\pi \sqrt{ }-1$, and therefore itself, oannot be the root of an equation of nth degree having whole numbers for coeftioionts, and therefore also not of suoh an equation hav ig rational coeffolents. If the squaring of the olrole with ruler and compasses were possible, however, π would have the property last mentioned.

PROGRESS OF ASTRONOMY FOR 1889, 1890.

By William O. Winlook.

The following record of astronomy for the jears 1889 and 1890 is presented in essentially the same form as its predecessors. The compiler has made free use of reviews, in the various branches of astronomy, contributed by specialists to the Athencum, Nature, Journal of the Astronomical Society of the Pacifio, the Observatory, Bulletin Astronomique, the Astronomical Journal, and other periodicals.

NEBULAE.

Motions of the planetary nebulce in the line of sight.-No. 11. of the Publications of the Astronomical Society of the Pacific contains a very important paper by Mr. James E. Keeler on the "Motions of the planetary nebula in the line of sight." The paper is an important one in a twofold aspect : first, in its bearing on a matter just now under discussion by the highest authorities, as to the character and position of the brightest nebular line, and secoudly, in the evidence it affords of nebular movements.

As to the character of the nebular line, Mr, Keeler's testimony is most emphatic, and entirely confirms Dr. Huggins's observations. "The nebular lines," he reports, "appeared to be perfectly monochromatic images of the slit, widening when the slit was widened and narrowing to excessively flne sharp lines when it was closed up." The chief nebular line "showed no tendency to assume the aspect of a remnant of fluting under, any ciroumstances of observation." This observation, made not on one nebula, but on a number, and with a dispersion often equivalent to that of 24 prisms of 60°, for the fourth spectrum of a Rowland's grating of 14,438 lines to the inch was often used, is by far the strongest evidence we have yet had on this question of the character of the chief nebular line, and it is dead against Mr. Lockyer's theory.

The position of the nebular line is also fixed with very considerable certainty ; and here, again, Dr. Huggins's observations receive complete confirmation. It was not, in any one of the nebule observed, coincident with the fluting of magnesium, but was always seen some distance to
the blue. The importance of this observation, especially when taken with the report as to the character of the line, is of the highest kind in its bearing on Mr. Lockyer's great meteoritic theory. If the chief neb. ular line is not the remnant of the magnesium fluting the very keystone is knocked away from the arch and the edifice as such falls to pieces. No doubt there would be many isolated fragments of considerable value still left. The structure mighteven be put together again, hereafter, on a new plan, and with a more lasting result, but the theory as it now stands-the theory as a whole-would be irretrievably wrecked. On the other hand, if the identity which Mr. Lockyer asserts were estab. lished, it would be a victory for him of the first importance.

It is indicative of the progress of practical spectroscopy that the Whole question turns on an almost inappreciable difference of position, the mean value for the wave-length of the nebular line as found bry Mr . Keeler from ten nebulæ, being $5,005.68$ tenth-meters, whilst that of the fluting of magnesiun is $5,006.36$. In the brightest nebula examined the wave-length obtained was $6,006,13$ tenth-meters, only 0.23 distant from the magnesium fluting. As the observations stand they point strongly to the nebular line being slightly but distinctly more refrangible than the edge of the magnesium fluting, and therefore not due to it. But the amount of displacement is not so great as to make it altogether inconceivable that it is due to the relative motion of the nebule and the solar system, for all the ten nebulæ observed are in that hemisphere toward which the sun is travelling, and seven of them are within 45° of the apex of the "Sun's Way," so that a correction must be applied which would tend to bring the nebular line nearer to the fluting; how much nearer we cannot, in our iguorance of the speed of the sun's motion in space, at present say, but a rate of 36 miles per second would suffice to make the accord a perfect one. If Mr. Keeler could obtain a series of comparisons of the F line in these nebulæ with hydrogen, the problem would be solved. Or the determination of the place of the line in a number of nebule in the hemisphere we are leaving would go far to settle the matter. In the mean time it is still possible that the eventual result may favor Mr. Lookyer's theory. It may be added in reference to Mr. Lockyer's paper, appearing in No. 293 of the Proceedings of the Royal Society, that if we accept Mr. Keeler's, measures it is clear that Mr. Lookyer did not employ sufficient dispersion to decide the point at issue.

The second point brought out by Mr. Keeler's measures is the fact that the nebula have very distinct movements of their own. As we do not yet know to what substance the chief nebular line is due, and as Mr. Keeler could not make any measures of the blue hydrogen line in the nebule at all comparable in accuracy to those he made of the chief line, we can not say that the difference in position of the chief line from auy given comparison line is due to the motion of the nebula. All we can do at present is to observe a number of nobule, adopt the mean
place they give as the true position of the nebular line, and record the differences from this mean as due to differences of motion from the mean motion. The extreme difference observed between any two nebulæ amounted to very nearly 70 miles per second.

It is impossible to leave this paper without a word on the accuracy of the measures. The spectrum of $\Sigma 6$ was examined on nine nights. The greatest difference of any one night's observation from the mean was only 0.11 tenth-metre, or in miles per second 4.2 ; the mean difference but 0.04 , or in miles per second 1.5 . Such accuracy was only possible by using an enormous dispersion, and it implies vory perfect instrumental and atmospheric conditions. But it also implies an extreme delicacy of eye and hand In the observer; the "man behind the telescope" is in evidence. For it should be remembered that the great size of the Lick telescope is no special advantage in work of this particular class, its high proportion of focal length to aperture being a distinct disadvantage. A much smaller object-glass, with a focal length of 12 to 1 , would give brighter images.-(E. W. Maunder. The Observatory, No. 168.)

Mr. Lockyer having published some results at variance with those obtained by Dr. and Mrs. Huggins with respect to the principal line in the spectrum of the great nebula in Orion, they have made careful redeterminations, decisively confirming their previous results: (1) that the principal line is not coincident with, but falls within, the terminstion of the magnesium flame band; (2) that in the nebula in Orion this line presents no appearance of being a "fluting."

The faint star discovered in the trapezium of the Orion nebula by Alvan Olark, when the Lick telescope was first mounted, has beenfound by Barnard to be double, another star has also been detected in the trapezium by Barnard, and also one of about the same magnitude (sixteenth) as the Olark star just preceding the trapezium.

Within the ring of the well-known ring nebula of Lyra six stare have been found by Holden and Sohaeberle with the $36 \cdot \mathrm{inch}$ Lick telescope where but one was known before, and five new stars have been found in the nebulosity.

ASTRONOMIOAI, OONSTANIS.

Refraction.-M. Radau has published in volume 10 of the Paris Observ. atory Annales a very complete memoir on astronomical refraction, whioh deals with the theoretical as well as the practical side of the question, and contains complete tables in a coinvenient form suitable for actual computation.
Diurnal nutation.-M. Folie's work on diurnal nutation has not met with general acceptance. One of the latest discussions of the subject is that by Herr Lehman Filhes, published in No. 2975 of the Astronom. isole Naohrichten.

Precession.-A useful table of the third term of the precession has been computed by Herr Kloock and published by the Kiel Observatory.

Harkness's astronomical, physical, and geodetio constants.-Prof. Wm. Harkness, of the U. S. Naval Observatory, has been at work for some time upon a homogeneous system of inter-related constants, more trustworthy values of which are to be attained by the solution of equations of condition, in which the best values resulting from observation are introduced and combined with the expression of their mutual relations.

A preliminary communication of results was made to the Astronom. - ical Journal, No. 194, but it seems preferable to quote here the final values published by Professor Harkness in Appendix III to the Washington Observations for 1891, though the latter work was not issued till after the close of the year 1890.

Professor-Harkness has collected the various determinations of each of the constants in question, decided upon the values to be adopted in the computations, often using the method of least squares for this purpose; and has then employed this method in order to obtain a resultant homogeneous systom.

Among the results obtained are the following:

The mean distance of the earth from the sun, with the above value of the solar parallax is $92,796950 \pm 59715$ miles, or $149,340870 \pm 96101$ kilometers.

STAR OA'MALOGUES.
The star catalogue of the Astronomische (Iesellsohaft.-The first parts of the great catalogue of the Astronomische Gesellschaft appeared in 1890. They are the volumes containing the catalogues of zones observed by Krueger at Helsingfors and Gotha, by Boss, at Albany, and by Fearnley and Geelmuyden at Ohristiania. The two first mentioned volumes contain respectively the positions of 14,680 and of 8,241 stars for the equinox of 1875.

It may be worth while to recall here the origin of this great undertaking, now nearing completion. The zones of the Histoire celeste francaise, published by Lalande comprise about 50,000 stars from the first to the eighth mugnitude, but they were not catalogued till nearly half a century after their completion. Those of Bessel, observed at Koenigsberg from 1821 to 1833 , contain 62,000 staris from the first to the ninth magnitude between -15° and $+45^{\circ}$ deelination; the two cata.
logues of Weisse appeared in 1846 and 1863. From 1841 to 1852 Argelander continued his work at Bonn, and his northern zones (published in 1846) contain 22,000 stars between $+45^{\circ}$ and $+80^{\circ}$ and the southern zones (published in 1852) 17,000 between -15° and $-31 \circ$, catalogued by Oeltzen (1851 to 1857). The positions in these different catalogues depend upon meridian observations.
In 1852, having finished his zones, Argelander conceived the plan of a work of much greater extent. It was to fix approximately the positions of all stars to the ninth magnitude, and perhaps a little below (9.5), visible in our latitudes. To accomplish this the plan was to employ simply a small telescope, the observer, with his eye always at the telescope, to call out to a recorder, who sat close by with a chronometer. The preliminary trials, by J. Schmidt, being successful, the work was begun, and, with the help of Krueger and Schoenfell, on whom the greater part of the labor fell, the revision of the northern sky was finished in 1859 ; and this is the work that we know as the "Bonn Durchmusterung."

The Durchmusterung, published between 1859 and 1862 iu volumes 3, 4, and 5 of the Bonn Observations, contains no less than 324,198 stars, lying between 2° south declination and the north pole, the zone bet ween $+81^{\circ}$ and the pole being a revision of Oarrington's catalogue. Volume 6 of the "Bonn Beobachtungen," contains futhermore 34,000 positions, determined by Argelander with the meridian circle. The stars of the Durchmusterung are plotted on a series of charts published in 1863. Since Argelander's death Schoenfeld has completed a similar piece of work for our southern sky, the "Siidliche Durchmusterung" (1886), containing more than 133,000 stars, between -2° and -23°, and Gould at Cordoba has extended the zones to the neighborhood of the south pole.

Upon the organization of the International Astronomische Gesellschaft in 1865, the question at once came up of undertaking, by the co.operation of several observatories, the exact determination of the positions of all these stars provisionally catalogued in the Durchmusterung. A programme for the work, prepared by a special committee, was finally decided upon at the meeting in Vienna in 1869. The new revision was confined to the limits of -20 and $+80^{\circ}$ declination, the positions of the circumpolars seeming to be sufflciently well known from the work of Oarrington and that of the astronomers at Hamburg and Kazan. The zones were at first assigned as follows:
80° to 75° Kazan,
75 to 70 Dorpat.
70 to 65 Christiania.
65 to 55 Holsingfors.
55 to 50
50 to 40 Bonn.
40 to 35 Chioago,
35° to 30° Loipaig.
30 to 25 Camintigo (England)
25 to 15 Borlin.
15 to 10 Lolpzig.
10 to 4 Mannheim,
4 to 1 Noufohintel.
+1 to -2 Palermo.

Pulkowa undertook the determination of 539 fundamental stars carefully selected by Dr. Auwers, which should form points of referenco.

In the 20 years that have elapsed since the great catalogue was
deoided upon several changes have been made in the origiual programme, the work being eventually divided up among the following observatories:
800 to 75° Kazan.
75 to 70 Dorpat.
70 to 65 Christiania.
65 to 55 Helsingfors-Gotha.
55 to 50 Cambridge (U.S.).
50 to 40 Bonn.
40 to 35 Lund.
35° to 80° Leyden.
30 to 25 Cambridge (Eng.).
25 to 15 Berlin.
15 to 5 Lelpzig.
5 to 1 Albany.
+1 to- 2 Nicolaief.

The work of observation is now finished. Some of the zones have been published (Kazan, Ohristiania, Helsingfors, Lund), others are in press, and the catalogues have been began. Three of the catalogues (Albany, Helsingfors-Gotha, and Ohristiania,) have just appeared. Meanwhile the zones have been extended to the southern sky, the following being to a greater or less extent under way:

$$
\begin{aligned}
& -2^{\circ} \text { to }-6^{\circ} \text { Strasbirg. } \quad-14^{\circ} \text { to } 18^{\circ} \text { Washington. } \\
& -6 \text { to }-10 \text { Vienia. } \\
& -10 \text { to }-14 \text { Cambridge (U. S.). }
\end{aligned}
$$

The positions of the 303 fundamental southern stars are furnished by observations undertaken at the Oape of Good Hope, Madison, Annapolis, Oarlsruhe, Leiden, and Strasburg. Gould's southern zones extend from -23° to -80°, and it is to be hoped that before long we shall have a catalogue embracing the whole sky, the valne of which will be in no wise diminished by the photographic chart which is about to be begun.
The observations for the Helsingfors.Gotha catalogue were made almost entirely by Dr. Krueger with a $0^{\mathrm{m}} .15$ (5.9 inch) Reichenbacla meridinn circle. The star positions are for the epool 1875, and besides the right ascension and declination, the precession and secular variation, and wherever possible the proper motion are given. The observations for the Albany zone were made by Professor Boss with a $0^{\prime \prime \prime}, 20$ (7.9 inches) Pistor \& Martin's meridian circle, the transits being recorded on the ehronograph, while Dr. Krueger used the "eye-and•ear" method.
The probable errors come out:

Experiments were made with wire-gauze screens by Professor Boss to determine the effect of difference of magnitude upon the observations, his result being that a change of one magnitude produced a change of $0^{0,014}$ in the personal equation in observing a transit.

A third installment of the catalogue, that containing the stars from $+64^{\circ} 50^{\prime}$ to $+70^{\circ} 10^{\prime}$, has also appeared. The observations were made by Professors Fearnley and Geelmuyden with the Ertel meridian circle of the Ohristiania Observatory, of 48 lines aperture. The probable error of a single observation is given as $\pm 0^{3} .054 \mathrm{in}$ right ascension ($\pm 0^{\mathrm{A}} .02$ in a great circle) and $\pm 0^{\prime \prime} .54$ in declination.

Yarnall's catalogue.-A third edition of the catalogue of southern stars observed with the transit instrument and mural circle at the U. S. Naval Observatory from 1845 to 1877 has been published, the work of revision having been conducted by Professor Frisby. Great pains have been taken to eliminate all errata detected in the previous editions, both by the careful examination of published lists of corrections and by comparisons with other catalognes. The whole number of stars in the new edition is 10,964 .
Munich catalogue.-Band 1 of the "Neue Annaleu der k. Sternwarte in Bogenhausen bei Munchen" contains a catalogue of 33,082 stars down to the tenth magnitude inclusive, between -32° and $+24^{\circ}$ declination, reduced to the epoch 1880.0. The observations were made with a Reichenbach meridian circle of $109^{\text {min }}$ (4.3 inches) aperture and circle of 0.95^{m} (37.4 inches) diameter.
Second Melbourne catalogue.-This catalogue contains the results of observations made with the old transit circle of 5 inches aperture from the beginning of 1871 to the end of August, 1884 ; places of 1,211 stars are given for 1880.
Brussels catalogue.-The Brussels catalogue contains 10,792 stars for the epoch 1865, observed with the Brussels transit instrument and mural circlo in the years 1857-1878; the general catalogue is preceded by the positions of the fundamental stars used in the reductions. A supplement is to be published giving corrections to the catalogue due to a number of inaccuracies detected in the reductions.
The Williams Oollege oatalogue of north polar stars.-Professor Sadford has published a catalogue of right ascensions of 261 stars, mostly within 10° of the north pole, and observed by him with the $4 \frac{1}{2}$-inch Repsold meridian circle of the Field Memorial Observatory at Williams. town. The results have been reduced to the epoch 1885.0. Professor Safford characterizes his catalogue as an "attempt to strengthen the weak point of all our standard catalogues-the right ascensions of polar stars," and he draws the following conclusions from his work.
"First. That it is highly conducive to accuracy, systematic as well as in detail, to base a catalogue of polar right ascensions upon standard places in all hours of right ascension, rather than upon double transits alone.
"Second. That the introduction of meridian marks according to Struve (long-focus object glasses, also suggested by Rittenhouse) is a great advantage to the primary oatalogues.
"Third. That the eye-and-ear method should be retained as the standard within a narrow rather than a wide range of polar distance.
"Fourth. That modern meridian instruments are subject to irregalar small changes of position, which are not direct functions of the tem. perature; so that in all differential work it is better to keep a close watch upon clock rate and instrumental adjustments rather thau to trust the instrumental zero points for more than 2 hours without redetermination of the most essential.
"Fifth. That the right ascensions here given are reasonably accurate-
"Sixth. That a thorough comparison of the chronographic and eye-and-ear method within a wide range, both of magnitudé and declination, is desirable."

- Greenwioh 10.year catalogue, 1877 to 1886, published in the volume of Greenwich Observations for 1887, contains 4,059 stars for the epoch 1880.0.

The catalogue of 303 reference stars for the southern zones of the Astronomische Gesellschaft has been published by Dr. Auwers, and although the material accumulated since 1880 , when the provisional list was issued, is not sufficient to give places of a thoroughly satisfactory degree of accuracy, the final corrections will probably be extremely small.

A collection of all available meridian observations of stars that will be within 10 of the north pole in 1900 has been prepared, under the direction of Professor Pickering, by Miss Winlock and published as the ninth memoir in volume 18 of the Harvard Observatory Annals. .

STELLAR PARALLAX.
Professor Pritcnard intends to examine for parallax, by the aid of photography, all stars of the second magnitude suitably situated for observation at Oxford, in the hope of contributing to our knowledge of what Herschel called the "construction of the heavens." With reference to the differences in the results obtained by different observers, Professor Pritchard says: "Guided by the suggestions of recent experience, I now think that suoh differences of 'parallax' might very reasonably have been anticipated and may probably be accopted as matters of fact without in any degree impugning the accuracy of the observa. tions. For in process of this work on parallax, and also from the general history of similar inquiries, it has been made abundantly evident that no necessary connection exists between the brightness of a star and its position in space, or distance from the sum. Nevertheless it is this very difference of brightness mainly which guides us in the selection of comparison stars. The 'parallax' is, in fact, and is becoming more and more generally recognized to be, a difforential quantity, fuinter stars being in very many instances much nearer to us than others possessing incomparably greater brightness. In passing I may here instance a lyyre as compared with 01. Oygni; is Uentani as
compared with ε Indi. lia fact, the position in spaee of the faint com. parison stars in relation to that of the star whose parallax is sunght is, if not a matter of aecident, at all events wholly unknown until the observations and computations are complete."

Professor Pritchard's results for stellar parallax; as published in the third volume of the Oxforil Observations, are as follows:

Star.	Magnitulte.	Proper motion.	Parallax,
$61^{1} \mathrm{Cygui}$	4.98	5.16	0.44
$61^{2} \mathrm{Cygni}$	4.98	5.16	0.44
μ Cassiopeice	5. 40	3,75	0.04
Polaris.....	2.05	0,05	0.08
α Cassioneire	2.41	0,05	0.04
β Cassiopeios	2.32	0.55	0.16
γ Casslopeite	2.19	0.02	0.01
α Cophei	2.57	0.16	0.06

The greater part of this volume is devoted to a discussion of the parallax of 61 Oygni and the results seem to justify his remark that "the four comparison stars probably belong to a remote system not containing 61 Oygni." The probable errors deduced are small.
At the annual visitation to the Oxford Observatory on June 12, 1890, Professor Pritchard announced the results of the determination of parallaxes of six more stars by the photographie method, as follows:

	Parallax.	Prol. error.
	"	11
ε Cygui.	$+0.115$	土 0.034
\boldsymbol{r} Cygui.............	-. 040	. 029
β Anirlmomedio	$+.092$. 023
α Ariotis	$+.080$. 027
$\alpha{ }^{\text {a }}$ 'ersel	+ 0.74	. 039
β Urse Minoris	+ .02\%	. 030

The subjoined table forms a summary of a paper publisned in the Astronomischo Nachrichten, Nos. 2915 and 2916, by Dr. Oudemmis, in which he collects tho soattered results for stellar parallax obtained in the pust sixty years. Dr. Oudemans conchudes that "stars with proper motions groater than 0." 05 have probably an ammal parallax of 0.10 to 0.100 .

No, of н1 1 LI B .	Proper motion.	Annial pamalins.	Distance int light yents.
\cdots	"	"	
0	4.93	0.32	10
9	2.33	. 20	16
1	1.00	. 20	16
10	0388 0,115	.18 .119	18 20

H. Mis. 120--9

PROMER MO'IIONS.

Professor Boss has published in the Astronomical Journal the proper motions of 29 ă stars of the Albany zono $\left(+0^{\circ} 50^{\prime}\right.$ to $\left.+5^{\circ} 10^{\prime}\right)$.

In the Bulletin Astronomique for Maroh, 1890, is a most useful cata. loguo, compiled by Bossert, of all stars whose proper motion is known to exceed $0 .^{\prime \prime} 50$. They are thus distributed :

No. of stars.	Proper motion greater tian
6	11
4	5.0
6	4.0
6	3.0
11	2.0
30	1.6
15	1.2
38	1.0
77	0.8
73	0.6

DOUBLE AND MULIUPLE S'IARS.
Some very elegant ain simple formule for determining the true orbit of a bianary star, originally published in Russian, have been brought ont by Professol Glasonapp.
ξ Seorpii.-Here Schorr has made a study of the motions in this triple system by mothods similar to those employed by Dr. Seeliger on ζ Oancri. The star is known as $\Sigma 1908$, tho magnitudes of its components boing $\Lambda=3.9,3=5.2, \mathrm{O}=7.2$.
η Ophinchi has been divided into two nearly equal components by Burnham with the 36 -inch Liek telescope, and ho thinks that it will prove to be a binary of short period. He has also found companions for Aldebaran, r Oassiopeio, and δ Oygni, and has been able to soparato and measure a companion to the principal star in the pair e If the existence of which was suspected by provious observers.

Photographs of the spectrim of Spica have pit beyond question the reality of its motion in the direction of the line of sight. Dr. Vogel has deduced from observations of 1889 and 1890 a poriod of revolution of about 4 days.

PMO'HOMLE'JRY.

Iho restits of obsorvations made with the meridian photometer of tho Harvard observatory by Prof, IG. O. Piekering and Mr. Wendell during tho years 1882-1888, have appeared as volume 24 vof the Harvad Anmals. The principal work done with this instrument was "the der termination of the magnitudes of a sufficient number of stars cons tained in the Durehmusterung, and distributed with approximato mul. formity, to sorve for fituro estimates on measures of magnitude, bud to ouable previous estimates to bo reduced to tho photometrio somle."

The number of stars of whioh obsorvations are recorded is 20,125 ; so that when the sters enumerated in volume 20 of the Annals are reckoned, the total number of stars observed reaohes 20,982. Measures have also boen made of 1.66 variable stars and of several planete and satellites. In the "Harvard Photometry" the brightest stars wore compared solely with Polaris. In tho presont observations λ Urso Minoris was selected as the standard stax, but the results are made to depend upor a sories of 100 cireumpolar stars, the magnitudes of which were frequently determined with the smaller instrument.

Photographio photometry.-The readiest and most offective means of detormining the magnitudes of stars from an examination of the disks impressed on a sensitized film is a problem that has received much attention recently, and contributions to the literature of the subject have been made from the three observatories of Harvard, Stockholm, and Potsdam.

Professor Pickering gives in volume 18 of the Earvard Annals three catalogues of magnitudes, embracing, on the whole, some 2,500 stars, the first catalogue giving the photographic magnitudes of all the stars brighter than the fifteenth maguitude within $1 \circ$ of the pole; the second, the magnitudes of many of the stars in the Pleiades; and the third the magnitudes of 1,131 stans generally brighter than the eighth magnitude near the equator.

The contribution from the Potsdam observatory is confined to the discussion of the magnitudes of stars in the Pleindes as impressed on plates taken with a chemically corrected objoct-glass by Dr. Sohoiner, and with the reflecting teleseope of the Hereny obsorvatory, supplemented by some photographs of the artificial stars in a Zöllner photomoter. IThe principal rosults of tho inquiry are twofold : first, that the increase of the diameter of the star disk varies as the square root of the time of exposure; and secondly, that a simple linear relation exists betweon the observed diameter and the magnitude.

The third contribution to this subject is from Dr. Oharlier, of Stookholm, who deduces a furmula which exprosses the connection botiween the photographie brilliancy of a star and its photographed image in such a manner as to insure a coinoldence as fia as possiblo between the photographic and photometric magnitudes.

VARIABYM AND (OOLORED S'IARS.

Ohandler's cataloguo of variablo stars.--(Ohandler's adminable cata. logue of variablo stars has been adopted by Schoonfold in the ophemerides published in the Viorteljahesschrift, und it also furnishos the data for the ephemorides of the Annuairo da Bureau des liongitudes and the Observatory, and is thus formally recognized as the standard authority on valiables. Mr. Ohander publishes in the Astronomical Jomrnal (No. 210) threo tables supplementary to the cataloguo, containing (1) a dist of now variables arranged as in the original catalogue; (2) a ligt of
additions and comections to the eloments of the catalogue; and (3) a list of stars probably variablo, but whose variability needs further conthmation before dethitive letters can be assigned. 'Ino attention of observers is directed to this list.

Taking his catalogno of 1888 as a basis, Mr. Ohandler has made an iifivestigation of the relation existing between the lengths of the periods and the number of the variables; their color, range of fluctuntion, forms of light curves, inregularities of periods and of light-variations. Periods under 20 days predominate, while for the long-period stars a well-marked maximum is indicated abont ajeriod of 320 days. With regard to color, the redder the tint the longer the period; and with regard to range of fluctuation, while it is probable that there is a de. pendence of range upon the duration of the period, the relation is not one of strict proportionality of range to period. It furthermore appears that the average ratio of increase to decrease for stars with periods less than 100 days is about 0.65 ; between 100 and 200 days it is slightly in excess of unity; it then declines as the periods lengthen; at first, gradually, but in the neighborhood of a year, with extroordinary sudden. ness, recovering as quickly until it again exceeds unity in the group of extremely long periods. In the case of the numerical laws of the perturbations of the periods, Mr, Ohandler remarks that his researches are not yet complete, but that, broadly, in the case of long.period variables, the irregnlarities me periodie in their nature, and in the case of those of short period, secular and exceptional.

Algol.--Prof. II. O. Vogol, of Potsdam, has published the results of some interesting olservations of the changes in the spectrum of Algol at the times of tho dimimation and recovery of its light. Shese, whilst fully confiming the view origmally suggested by Goodricko, that the periodic variability of this star is cmused by the revolution of a dark companion outting off part of its light in the manner of an eolipse, and the calculation of Professor Piekoring that the diameter of the companion amounts to about oight-tonths of that of the principal star, havo onabled Professor Vogel to obtain apmroximate values of the mutual distance and actual sizes and masses of the two stars, as woll as of their orbital velocities round thoir common conter of grinvity. He finds, in fact, that thoir diametors aro probably abont $1,080,000$ and 850,000 Inglish miles respectivoly; that the distance of their centers from emeh other amoants to about $3,290,000$ miles, and that the orbital velocity of Algol is about 27 , whilst that of its companion is abont 56 miles. Tho mass of the former he detormines to be about double that of the latter, the one being approximately four-ninthe and the other two ninthe of the sun's mass.' It is not necessary, he remarks, to suppose that the companion is absolutely opaquo, but only that its light is vory much feeb. lor than that of the prinoipal star.

It moy be added tint the Greenwich observations conflam Dr. Vogel's conclusion of the motion of the star in a small orbit.

A remarkable star of the Algol type, having the shortest perion known, was discovered in 1888 by Prof. H. M. Panl, of the U. S. Naval Observatory. The star is 12 Antlim of Gould's Urmometria Argentinn, $u=9^{11} 20^{12} 50^{9}, \delta=-28^{\circ} 4.7$ (1875.0). The range of magnitude is 6.7 to 7.3 , and according to Ohander it goes through its changes in $3^{3} 20^{\text {nin. }}$.

From an examination of one of the photographie plates taken by the Harvard observatory party, at the Ohosica station in Peru, Protessor Pickering has announced the discoverv of a long-porion variable in Orelum of the same class as O Oeti, 12 Hydre, and in Leonis. The spectra show bright hydrogen lines.

A number of other now variables have been detected in the examination of the photographic plates taken at the observatory, and have been announced by Professor l'ickoring in the Astronomisclie Nach. richten. Some attention has also been paid to this subject by Dr. J. O.• Kapteyn in measuring the plates taken at the Onpe of Good Hope for the formation of Dr, Gill's photographic southern Durohmusterung, and also by Mr. Roberts in the prosecution of his work in astronomical photography.

A general index to observations of variable stars, prepared under the direction of Prof, E. O. Pickering, forms No. 8 of Vol. 18 of the Harvard Annals. A large number of umpublished observations are reforred to, particularly three extensive series of observations by Argelander, Heis, and Schmidt, to whose manuseripts access was given.

A now edition or rather revision of Birmingham's Red Star Oatalogue has been printed in No. V of the Onnningham Hemoirs of the Roynd Irish Academy. The work of rovision was undertaken by Rev. II. A. lispin in 1886, with the 17 -inch equatoxial roflector, and in the course of the work a number of new rod stars, new variables, and stars with bright lines in their speetra wore discoverod. Thore is also an additional list of 629 "xuddy stars."

SHMLISAR SPGOIRA,

Speotrum of ECDrsa Majoris,--Profensor Pickering has reported a re. markably interoating peculiarity in the spectrum of this star. It was noticed that the K. line was double in the photographs taken Maroh 20, 1887, May 17, 1889, and Angust, 27 and 28, 1880, while on many other dates the line appoared hazy as if the components wero slighty separated, and at other cimes the lino was well defined and single. It was eonelnded that the line was donble at intervals of 52 days beginning Mareh 27,1887 , and it was predicted that tho doubling would occur again on Decomber 9,1880 , and this prediction was conflrmed by ench of three photographs on the latter date. Professor Piekering says:
"The only satisfactory explanation of this phenomenon ns yet proposed is that the brighter component of this star is itself a donble star having components noaly equil in brightness and too close to have been separated as yot visually, Niso that the time of rovolution of the sys.
tem is 104 days. When oue component is approaching the earth all the lines in its spectrum will be moved toward the blue end, while all the lines in the spectrum of the other component will bo moved by an equal amount in the opposite direotion if thoir masses are equal. Each line will thus be separated into two. When the motion becomes perpendioular to the line of sight, the spectral lines recover their true wavelength and become single."

From the amount of separation of the lines Professor Piekering concludes that the relative velocity of the two components must be about 100 miles per second. If the orbit is circular and its plane passes through the sun, the distance craveled by one component, regarding the other as fixed, would be $900,000,000$ miles, and the distance apart of the two components would be $143,000,000$ miles, or about that of Mars and the sun. The combined mass would be about forty times that of the sun to give the required period.

Several other stars have been found from the Harvard photographs with a similar doubling of the lines, among them β Aurige and b Ophiuchi. For β Aurige Professor Pickering deduced a period of 4 days, and his results have been fully confirmed by observations made with quite different apparatus by Dr. Vogel at Potsdam.

A doubling of the K line in several photographs of the spectrum of Vega taken by Mr. A. Fowler, apparently indicating that Vega was a double star of the ζ Urse Majoris type, has not been conflrmed by the photographs of Pickering, Vogel, and Henry.

The Henry Draper Memorial.- -.'The third annual report of Professor Piokering announces the practical completion of two branches of the work undertaken, tho photographic survey of the spectra of all stars north of - 25° declination having been effected on a twofold scale, the one survey inchuding all stars brighter than the seventh magnitude, the other including stars two magnitudes fainter. The Bache 8-inch doublot employed in this work has been transforred to a station near Ulots. iea in Peru and similar surveys for the stars down to the sonth pole have been commenced.

The fourth anmual report of the Menry Draper Memorial contains as a frontis piece an engraving showing the periodical dupliontion of the K line in the spectrum of β Aurige, the study of which, with othor similar eases has been tho most important work of the 11 -inch equa. torial at Harvard. 'lhe spectroscopic survey of tho brighter stars in the northern hemisphere (to -25° declination) is nearly pinted and the work on fainter staw is boing satisfactorily pressed. Beshess the spectra, eharts of the entire sky are boing formed with the same tolescopes. A photographic map of the sky will thus be provided, approximately on the scale of the Durchmusterung, but inchuding fainter stars; so far as it has been completed it has proved very convonient for studying suspeoted variables and in detecting orrors in star cata. lognes.

Reference should also be made here to the lists of stars with peculiar speetra detectex upon the Harvard Observatory photographic plates and published from time to time by Professor Pickering in the Astronomisohe Naohriohten.

A spectroscopic survey of the southern heavens by direct observation has been undertaken at the Melbourne Observatory. An 8 -inch rofracter and the 4 -foot reflector will be used in the work.

MO'IIONS OF S'IARS IN THE LINE OF SIGHT.

The following is a comparison of the results for motion in the line of sight obtained by Dr. Vogel at Potsdain with a photographic telescope, und those obtained by Maunder at the Greenwich Observatory by eye observations. The motions are given in geographical miles, + represonting recession, and - approach :

	Vogel,	Mannder.
Capella	-17.1	+22.6
. Aldeharan	+-30.3	+31.6
ar Porsol.	-7.2	-22.5
E'rocyon	-7.2	+ 3.8

Dr. Vogel's interesting rosults with regard to Algol and other stars have beon alluded to elsewhere.

Bright lines in sieller speotra.--lyrr. Dspin has detected bright lines in the speota of a manber of variables when noar thoir maxima, among them R Leonis, R Hydree, \% Uygni, R Andromedre, and S Uassiopeixe all of Secoh's third type. Similar lines in the spectra of U and V Uygni, of the fourth type havo been suspected by the liek observers, and when these stars wore far romoved from their maxima. Mr. Keelor also finds that ho is able to break up the apparently continuons spectra of stars of the type of the Wolf- Rayet stars in Oygnus into an oxtremely complicated range of absorption bande and faint bright lines.
A. romarkable form of speetrum has beon diseovered by Professor Plekering in that of the star Pleione, for the fine consists in this caso of a narow bright line superposed on a broador dark line, the other lyy y gen lines showing some indiontions of a similar character.

AS'IRONOMLOAL PMO'OGRALJY.

The photographie ohart of the heavens.-..The permanent committee appointed by the Astrophotographic Oongress at Paris, in 1887, as notod in the Review of Astronomy for the years $188 \%-38$, held their first meeting at the Paris Observatory in September, 1890. The results of the seven seances are eontained in a series of twonty-eight resolutions, some of the most important of which are mentioned below.

The zones were assigned to the several participating as follows
NOR'IH.

	Latiturle.		Zone,	
	a	1	\bigcirc	
Helsing fors.	+6:	9	$+90$	$+70$
Potsilain ...	52	24	70	
Oxford.	61	45	18	
Grgonwich	01	28	48	40
Puria.	48	50	40	
Vfonia	48	13	32	24
Bordeanx	44	60	24	18
Toulouse.	43	37	18	12
Catania	37	30	12	
Alglers...	30	48	$+15$	
San Fermindo	36	27	0	- 6
Ohaphitepec.	19	26	- 6	-12
Taonbaya.	$+19$		-12	-18

sourt.

No obsexvatory in the United States appears on this list. A bill was introduced in Congress making an appropmation to ennble the United States Naval Observatory to midertake a shave of the work, but the bill failed to become a law.

The committe decided that the fiold of the telescope available for measurement should be 2° square; that the photographic plates employed (which are to bo of plate glass) should bo $100^{\mathrm{mm} \mathrm{\prime} \mathrm{\prime}}$ (6 t inches) square and the sories of reference lines 13$)^{\mathrm{mm}}$ ($5 \frac{1}{8}$ inches) square with the lines $5^{m m}$ apart.

Twelve test ohjeets were selected, all of which are situated near the equator, at intervals of about two hours of light ascension. In addition to these, the Pleiades, Presope, and a group in Oygnus woro solected for the use of the more northern observatories.

Io flx the time of exposure so that the plates shall contain suiurs to the eleventh magnitude, it, was deoiden to dotermino flast the time neeesaary to photograph a star of tho 9.0 magnitude of Argelander's scalo, and thereby multiplying by 6.25 the time of exposure for magnitude 11.0 will be obtained.

Ihree more numbers (3,4 , and 5) of the Bulletin du Oomite International permanent pour l'Wxecention Photographique de la Oarte du Oiel have been published. Among the many papers contributed to these
bulletins which have a very important bearing upon astronomien pho. tography, mag be mentioned one by Dr. Bakhuysen on the measurement of the plates by the method of rectangular coordmates, In which he obtains star.places comparing favorably with those from meridian observitions. Dr. Vogel contributes one or tito papers on the "résenux" and the measurement of the plates, and Professor Kipteyn sug. gests the expediency of taking the catalogue plates with three exposures at intervals of six months, for the purpose of deturmining the stars' proper motions and parallaxes. Dr. Scheiner has an important paper on the application of photography to the detormination of stellar mag. nitudes.
In the fifth number of the Bulletin, Professor Holden his two papers on the photographic magnitudes of stars, and Mr. Schaeberle one on the same subject. There is also an abstract of Dr. Lindemann's photometric determination of the star magnitudes of the Bom Durchmus. terung, and a paper by M. Trépied on the necessity of eoming to some muderstanding as to what is meant by stars of the $9 \mathrm{~h}, 11 \mathrm{th}$, and 14 th magnitudes on the photographic plates.
The question of the reproduction of the plates and of the publication of the map has been left open, but it is probable that one or more bureans will be established for measuring the negatives obtained at observatories not provided with special apparatus for the purpose, and photographic copies of all plates will be preserved in selected places in case of accident to the original negatives.

A meeting of those interested in the various branches of astronomical photography other than the chart was called by Messis. Janssen and Common in September, 1880. The chief matters for discussion being a complete photographic record of solar phenomena, including solar spectrum photography; a systomatic description of the lumar surfaco by photography on a large scale; photographs of planets and their satellites, of comets, moteors, and particularly of nebule, clusters, and of stellaw spectra.

In disoussing the theory of tho photography of a star projected upon a bright background, Professor Holden calles attention to the faet that the most important factor is the ratio of the focal length to the aperture of the objective; genorally speaking it would bo an advantage to diaphragm the objective during the day. This is also true with regard to ordluary observations during the day, a point of partienlar importance in connection with meridian observations.
Authoritative testimony as to the value of photography for obtaining accurate measures of star elusters is given by Dr. Elkin, who has compared Dr. Gould's reductions of Rutherfure's photographe of the Pleiades taken over 20 years ago, with the heliometor measures made at Köngsberg and Now Haven. The smallness of the probable orror Dr. Elkin regards as proof that in photography we have a means of investigation for mierometrio work at least on a par with any oxisting
method, and doubtless far surpassing the present methods in case of measurement and output of work.

The Henry Brothors are reported to have made a decided advance in lunar photography in the plates taken with the equatorial of 0 m. 32 (12.6 inches) aporture intended for the chart work. The improvement is attributed especially to the process of enlargement employed, which makes the diameter of the moon about $1^{m i n}$ (39 inches). This photographio work is to be continued with the great equatorial coude, which is soon to be mounted and provided with a photographic objeotive.

Mr. Roberts has devised a machine, which he calls a "pantograver," for measuring the magnitudes of the stars depicted upon the photographic plates and trausforring them to metallie plates for printing.

oomets.

-The origin of comets.-Dr. Bredichin, the present director of the Pulkowa Observatory, who has devoted much time to the study of cometary phenomena, has expressed theopinion that perionic cometsowe their origin to the segmentation of ordinary parabolic comets, having been thrown off from the latter by an eruption such as it is generally supposed we have witnessed in the great comet of 1882 , and earlior in Biela's.comet. Dr. Kreutz's monograph on this great September comet of 1882 forms one of the most important of recent contributions to cometary literature. The formidable obstables to an aceurate determination of its orbit presented by the disintegration of the nuclens into soveral points of condensation seem to have been most skillfully surmounted by the computer. His flat value for the period of revolution is 772.2 years.

Dr. Holetsehok claims that the systematic grouping of cometary perihelia in certain directions (270° and 90° of heliocentric longitude) has no connection with the general motion of the solar system in spuce, but is due to the position of the earth at the time that such discoveries are most readily made.

An important paper on the capture theory of comets will be found in the Bulletin Astronomique for June, 1889, and in the same journal for December, 1800, M. Iissermal has a further contribution to the game şubject.

The Observatory for August, 1880, has a nseful table of the approximate positions at the time of discovery of all comets seen sinco 1800 , with brief notes on the physical apporance of each. Mr. Donning, who bas compiled this table, proposes to supplement it by one with similas data for the comets from 1840 to 1868.

Brorsen's onmet.-A careful searoh for Brorsen's comet, which passed perihelion in 1890, was made by Jrooks and Swift, but without effect, This comet was discovered in 1846, and was last scen in 1879 ; if could not bo seen at the roturn in 1884. Tempol's second comet, and Bar. nard's comet 1884 II , were also expected to return to perlhelion in

1800, but were unfavorably situated for observation and escaped detection.

Comets of 1889 and 1890 .-W. R. Brooks reported the discovery, on the morning of January 15, 1889, of a faint comet in Sagittarius, and to it the designation Oomet a 1889 was given, as the firstcomet discovered lluring the year. A careful search for the object was made by a num. ber of observers, especially by Barnard and Swift, but without success. As the three observations necessary for determining the orbit were not secured, the comet is not catalogued with those of the jear. A comet announced by Swift on July 15, 1880, is also omitted, as it proved to be identical with the comet discovered by Brooks on August 7, 1888. (1888 III).

A phenomenon reported at Grahainstown, South Afriea, on the 27 th of October, 1890 , should be mentioned in connection with the notes on comets. It was described as a bright band one-fourth of a degree wide and 30° longitude, afterwards increasing to 900°. At one end it looked like the head of a eomet, while the other end faded out gradually. Its motion was extraordinary, as it swept over more than 100° in less than $1^{\mathrm{h}} 15^{\mathrm{m}}$.

The comets for the years 1889 and 1890, with their final designations, in the order of perihelion passage are as follows:
Comet 1889 I: The first comet of 1889 , in the order of perihelion
$=$ Comet o 1888 . passage, was that discovered by Barnard at the Lick Observatory with a 4 -inoh comet-sceker on September 2, 1888, or the morning of Soptember 3. It was also independently discovered by Brooks, at Geneva, New York, on the following morning. At the end of November, and as late as January 4,1880 , it was visible to the naked eye. Porihelion was passed on Janmary 31, 1880, and by that time, the comet disappeared in the sun's rays. The finst observations after conjunction were made about May 24, and it was followed till its light was again overpowered by that of the sun, late in Ootober, 1880, its appoarance boing about the same as before perihelion, small, round, quite bright, and with a shorl; tail. The orbit seems to be hyperbolic.

Bamard remarked on June 3 that there was an anomalous tail directly following the comet, abont 10 in length and some 2^{\prime} or 3^{\prime} broad, a phenomenon which, aocording to Bredichin, was probably an effect of perspective.
The comet was observed again at, the Liok Observatory by Marnard August 17, 1800, although its distances from the earth and sun were then, respectively, 0.0 and 6.5 in torms of the carth's mean distance. The later observations conflrm the hyperbolic charactor of the orblt. Comet 1880 II: I On the evoning of March 31, 1880, L. D. Barnard $=$ Comot 81889 . \quad discovered, with the 12 -inch equatorinl of the Lick Ubservatory, a very small and slender comet, with a tail 15^{\prime} long. By the ond of April it was lost in the evening twilight, reappearing again, with extremely slow geocentrie imotion, about July 25 , and romaining visible to November 21. The grent perilielion distance of this comet is
especially notewortliy, amounting to 21 thmes the distance of the earth from the sun, a distance which seems to have been surpassed in the catalogue of comets only by comet 1885 II, with a perihelion of $2 \frac{1}{2}$, and the comet of 1729, with perilielion distance 4.

Oomet 1889 III:
$=$ Comet o 1889 .

Mr, Barmard discovered another comet at about stellation Andromeda. At the time of discovery the comet, was only three days past perihellou. It was then very faint and rapidly became still fainter, being last observed on Angust 0. The elements computed by Berberich show considerable ellipticity in the orbit, the period of revolution being 128 years.
Oomet 1889 IV: \quad A tolerably bright comet was discovered with the $=$ Comet e 1889. combe, Mackay, Queeusland (latitude-210 9^{\prime} south), on July 19. It had a sharp, stellar nucleus, and a tail 30^{\prime} long; in a photograph taken by Baruard at the Lick Observatory on Juiy 30, the tail could be followed still farther, to a distance of almost 10 from the head. A second tail was reported by Kammermann, of Geneva, on the 17th of August, and a segmentation of the nucleus by Riceò about a week earlier.

Professor Holden finds that the brightest part of the tail was $\frac{10}{10}$ of the brightness of the brightest part of the solar corona during the

The comet was followed in the northern hemisphere to about the ond of the year.
The spectrum according to the Lick and Palermo observations in July and Augnst showed no peenliarity; the carbon bands, and the continuous spectrum of the nuclens, alono being recorded.
Oomet 1889 V :
William R. Brooks, of Geneva, Now York, while $=$ Comot d 1889. \quad sweeping in the southwestern sky on the morning of July 6, 1889, detected a suspicions looking nebulons objeet, the cometary character of which ho was able to conflim on the following morning; it was then faint, of about 11th magnitude, a diameter of 1^{\prime}, stellar nuclens, and tail 1.0^{\prime} long. The comet attracted no especial attention from astronomers till August 1, when Barnarl discovered that it had two simall and nebulois companions, and on the morning following it was evident that these two objects were moving with the parent comot through space. Mr. Barnard says:
"On August 3 they were oxamined with the 30 -inch equatorial, which showed the whole group very bemutfully. Wach of the companions had a very small nuclens and condensation in a very small hoad and a short faint tail, presenting a perfect miniature of the larger one, whioh was pretty bright and well developed, with sminll nuelous and slightly fanshaped tail to long. There was then absolutely no nebulous comnection with the larger, nor has there been at any time since, either in the 12 inch or in the 36 -ineh telescope. Nothing whatever has been seen here of the nebulous envelopo spoken of by the Viemn observers as appar-
ently inclosing the whole group (A. N., 2914). I have from the first carefully looked for a nebulous connection. Under unfavorable circum. stances the tails of B and O might be imagined to be a conneeting nebulosity, but the teil of B falls short of A, and that of O does not nearly reach B. Wach comet is in appearance absolutely independent of the other. The tails of all three have lain in the line of the nucleus of A, and therefore have not sensibly deviated, from the position-angle 2410."
"On August 4, two other companions were detected with the great telescope, one of which was measured, the other being too elusive to se' the wire on. I have numbered these four companions B, O, D, D, in themorder of inereasing right ascension, A being the larger comet, D and E being the two last discovered. D has been seen several times since the moon withdrew, but has always been too faint to observe. It has not seusibly changed its position, E lus only been seen once. Its position angle referred to O would bo the same as that of D, and ita distance twice as great. Four or flve other nebulous bodies observed near the comet, August 2, have not since been seen, and were probably nebulous.
"The results of the observations of the two brighter companions are oxtromely interesting. Measures of B have been mate on eighteen, and of O ou seventeen uights. These two have almost exaetly the same position-angles, which have been sensibly constant. Their distances from the main body have, however, heon increasing, At the last observations, 13 seoms to bo stationary, the distance from A romaining constant, while O continues to recede."
Mi. Ohanden's investigation of the orbit of this comet has dovesoped a strong probability that it is identical with a comet discovered by Messier in 1770, often called Lexoll's lost comet, beeause that astronomer calculated that it was moving in an elliptic orbit with a period of about ba years, though it was not seen aftorwards. It is now well known that this was due to the thet that at the return in 1776 its position was such as to render any observation impossible, and before another return could take place the comet made in 1779 so closo an approach to the planet Jupiter as complotely to change the nature of tho orbit. Mr. Ohandler finds that Brooks's comet also made a near upproach to Jupitor, so noar, in fact, on May 20, 1886, that it was only about nino diametors of Jupiter distant, or only a littles ontside the orbit of his third satellite. Oaleulation of the elements of the comet orbit before this appulse leads to the conchusion that they present a great similarity to those of Lexoll's comet after its approach to the planet in 1770, rendering the probability great that the bodies are identical. Mr. Ohandler shows that no similar serions disturbance will ocent again until 1921, so that appearances may bo looked for in 1806, 1003,1910 , and 1917, at each of which return the condition of visibility will be favorable, giving opportunitios for further investigations into the motions of this interesting comet, which, it appears, narrowly
escaped being converted into a fffth satellite of Jupiter. Mr. Barnard succeeded in finding and observing the comet again, on the night of November 21, 1800, with the 36 inch Liok telescope, eight months after it had been given up as beyond reach; and when its dlstance from the earth was 3.09 , and from the sun 3.55 .
Oomet 1889 VI:
$=$ Comet $f 1889$.
Swift, at Rochester, discovered a new comet on was a fuint round ind ceedingly faint during its entire period of visibility; being seen in only the most powerful telescopes about the middle of January, The orbit proved to be elliptical, and with the rematichly short period of 8.8 years, according to Searle's computation.

Oomet 1890 I: A faint comet was discovered ly Borelly at the
$=$ Comet g 1889. Marseilles Observatory on December 12, 1889, this being the first comet, altor an interval of three years, discovered in Europe. On Jomury 8, 1890, it appeared in the finder of the Munioh refractor like a faint star of the seventh or eighth magnitude.
Oomet 1890 II : $=$ Comot a 1890.

Discovered by W. R. Brooks at the Smith Ob. small comet with stellar nucleus and short tail. It was still observable about the middle of October.
Oomet 1890 III : . Discovered by Ooggia at the Marsoilles Obsorva. $=$ Comet $b 18100$. tory, July 18, 1890. It was quite bright, round, with central condensation eomparablo with a star of about tenth or oloventh magnitude. Its lighti rapidly diminished and it soon disap. peared below the northwest horizon. Parabolie elements represent the observations quito aceuretely, though they show some resemblance to those of the comet of 1580 .
Oomet 1800 IV : This comet was discovered three months and a
$=$ Comot e 1890. half after perihelion passage by Zona at Palermo, November 16, 1800. It was at flest quite bright, but grow fainter rapidly, thongh it was still observed afier the elose of the year.
Oomet 1890 V: An ephemerts for d'Arrest's poriodic comet
$=$ Comet $a 1890$.
$=$ d'Arrest's comot. had been prepared by Leveant, and the comot was looked for withoitt success for some time, and it was feared that it had gone by undetected, whon it was pieked up by Barnard at the Liek Obsorvatory on Oetobor (6, as an entiroly unoxpected object. On the flest fow nights the comet was extromoly faint and diffused, but it was soon lator with a $3 x$-inch finder.
Oomet 1890 VI: Discovered by W. F. Denning at Bristol, Eng.

$$
=\text { Comet o } 1890 .
$$ land, July 23 , with a lu-inch reflector, a fant, romnl nebulosity, about 1^{\prime} diameter with faint central condonsation, and quite near $\%$ and ζ Ursa Minoris. It moved directly towards the oquator, and was visible till Novomber, having a small stellar nueleng of tho thirtoonth magnitule; and a faint diffused tail.

Oomet 1890 VII: $=$ Comet $f 1890$. period, was discovered by R. Spitaler at Vienna, Novomber 16, 1800.

Dr. Spitaler, in looking for the comet discovered by Zona, turned the 27 inch telescope towards the place which it should occupy, according to tho dispatch received by him, and immediately perceived a very faint comet, but concluding from the description that Zona's was brighter, by turning the telescope a little he found the latter, physical connection between the two being exeluded by the slower motion of his own. The period appears to bo about 6.4 years.

Approximate elements of the comets of 1889 and 1890.*

* Seo Abtronomical Soumal, Nob, 212 and 238.

MEITHORS.

A valuable resumo of moteoric astronomy has been publishod by Prof. J. In. Eastman in the Bulletin of tho Phosophical Socioty of Washing. ton. (Vol, Xn.) Abstracts of the various theories propounded in ex-
planation of neteors are given, aud extensive catalogues of observed meteors and meteorites.

Mr. Denuing pointed out, several years ago that there were a number of meteor streams in which the meteors seemed to radiate from the same point in the sky for a period of three months or more. The ouly expla. nation of this phenomenon seemed to be that the meteors were moving with frightful velocity through space, but M. Tisserand, from a mathematical study of the problem, shows that these meteors do not all come from the same stream; they may perbaps belong to a family presenting certain common characteristics, but they are in reality different streams accidentally falling together, a not very iuprobable assumption considering the great number of meteor streams and the difficulty of determining the radiant with any degree of precision.

Mr. Denning does not, however, admit that an accidental coincidence of radiant points of different streams is a sufficient explanation of the phenomena he has observed.

The zodiadal light.- Prof. Arthur Searle, who has made a sinecial study of the zodiacal light, finds that the permanence of the ordinary western light, subject only to slight variations in the degree of visibility, is confirmed by the observations of the last 50 years at the Hanaud Observatory. The zodiacal bands, which are said to form a prolong. ation of the ordinary zodiacal light, were not seen, though stellar or uebulous bauds, one extending from Aquila to the Pleiades, and the second from Præsepe to Coma Berenices have been noticed and perhaps ofter an explanation of the zodiacal bands. The Gegenschein, it is sug. gested, may be due to a maximum of light reflected from the meteoric matter scattered in the solar system.

The observations of Prof. O. Michi Smith, carried on at iutervals since 1875 indicate a periodie appearance of the line at wave-length 555° in the zodiacal light spectrum ; a line differing but little in wave-length from the auroral line (wave-length 500.7).

PLANFTS.

A very laborious work is being carried on in the office of the American Dphemeris, under the superintendence of Profersor Newcomb-the re-determination of the elements of all the larger planets. Professor Newcomb's plan includes the re-reduction of the older planetary observations and the discussion of the later ones, with a view of reducing them all to a uniform system. Another branch of this planetary work is a determination of the mass of Jupiter from the motions of Poly. hymuia, and a comparison of Hansen's tables of the moon with observed occultations since 1750 .

The first volume of this series of memoirs upon the theories of the major planets has appeared in the "Astronomical Papers," of tho Amorican epliemeris, heing a new lisonssion of dupiter and Saturn by Hill. He has determiued the complete aualytical expressions for the
coilidinates of these two planets, giving also a provisional comparison of his theory with observations. The method followed is in general that of Hansen.

In commenting upon recent determinations of planetary masses from the motions of comets, Professor Hall says :
"The objection to deducing values of planetary masses from the motions of comets consists, I think, in the fact that apparently other forces than that of gravitation act on these bodies. As a comet approaches the sun it changes form, disintegrates, and matter is thrown off to form a tail. Until we know more of the theory of these changes the conputation of masses from the motions of comets and inferencesabont the resisting medinm in spase must be uncertain."

Meroury. - The observations of Schroter early in the present century indicated that Mercury had a motion of rotation about its axis of about 24 hours. Subsequent observers failed, however, to confirm his observations, and the question of Mercury's rotation has generally been regarded as one of the unsettled problems of astronomy. M. Schiaparelli, taking advantage of the clear sky of Milan, has observed Mercury since 1881 , obtaining about one hundred and tifty sketches, showing quite well-marked spots, from which he has deduced a rotation period of 88 days, the same, in fact, as the period of rotation of the planet around the sun. Schiaparelli also concludes that the axis of rotation must be nearly perpendicular to the orbit of the planet, the rotation being uniform.

Dr. von Hardtl has obtained the following values for the mass of Mercury :

> I. Mass of Mercurs, $1: 5,012,842$ from Winneoke's comet.
> II. Mass of Mergury, $1: 5,514,700$ Le Verrier's equation modified.
> III. Mass of Mercury, $1: 5,648,600$ Enoke's conet, $1819-1868$.
> IV. Mass of Mereury, $1: 5,669,700$ Enoke's coniet, $1 \times 71-1885$.

Venus.-Schiaparelli has coucluded, from an exhaustive rediseussion of all the older observations, combined with his own observations of 1877 and 1878 , that Venus rotates upon its axis in 225 days, or the same time that it rotates about the sun, contrary to the generally received hypothesis that its rotation period is about 23 hours. Venus, then, as well as Mercury, would seem to turn always the same face to the sun, as the moon turns the same face to the earth.

Him Earinh-Variation of latitude. - The subject of the change of terrestrial latitudes, to which allusion has been made in previons reports, continues to receive considerable attention from astronomers and geographers. The following results have been obtained by Dr. Kiistwer, ill continuation of his former researches, from 7 pairs of stars at three different times of the year:

$$
\begin{array}{rr}
\text { Epoob. } & \text { Latitude of Berlin. } \\
188 \mathrm{~A} .32 & +52^{\circ} 30^{\prime} 16^{\prime \prime} .73-0.8 \cdot \Delta \mathrm{~A} \\
1884.30 & 166^{\prime \prime} .96+0.83 \angle \mathrm{~A} \\
1885.31 & 16^{\prime \prime} .52-0.85 \angle \mathrm{~A}
\end{array}
$$

H, Mis, $129-10$
where $\Delta \mathrm{A}$ represents the correction to the assumed constant of aberration. The direct inference from these figures is that in 7 months the latitude of Borlin decreased $0^{\prime \prime} .44$. Pulkowa showed about the same time a similar change:

Epooh.	Latlucle of Pulkowa
188.31	$+59^{\circ} 46^{\prime} 18^{\prime \prime} .52$
1883.51	$18^{\prime \prime} .54$
1884,70	$18^{\prime \prime} .63$
1885.23	$18^{\prime \prime} .33$
1885.31	$18^{\prime \prime} .31$

a decrease of $0^{\prime \prime} .33$ from 1884.70 to 1885.31.
The general agreement of these results certainly calls for further investigation; and to test the matter Mr. Preston has been sent out by the U. S. Coast Survey, and Dr. Marcuse by the International Geodetic Commission, to Honoluln, which is at the opposite end of the earth's diameter from Berlin, and by simultaneous observations at these two stations it is hoped the question will be settled.

It is quite possible that the origin of the apparent change at Berlin in 1884-1885 is meteorologioal, a view to which Dr. Foerster inclined in bringing the inater before the Association Géodesique in 1888. The whole question is, then, whether there are changes in the disposition of atmospheric strata sufficient to account for the facts observed, or the axis of rotation and the axis of inertia of the earth are not sensibly coilicident.

A complete résume of the subject is given by M . Tisserand in the Bulletin Astronomique for September, 1890.

- Mr. Ricco has experimented with a somewhat novel demonstration of the rotundity of the earth. At the observatory of Palermo, which is situated at a distance of 14 miles from the Mediterranean and 236 feet above its level, a geat number of photographs of the sun reflected from the surface of the water have been taken a few minutes after rising or before setting, and they show that the diameter in the plane of reflec. tion is less in the reflected image than in the direct. This deformation is due to the fact that the surfice of the water forms a cylindrical mirror, with axis horizontul and normal to tho plane of reflection. The amonut of the observed flattening accords well with that demanded by theory.

Standard time.-The introduction of the system of standard time, which has been fonnd of such practical usefulness in the Uuited States, Las been quietly agitated in other countries for several years past, and a well-written article upon the subject by Dr. Robert Schram will be fonnd in the Observatory for April, 1890. The adoption of a uniform time system, the time of the fifteenth meridian east of Greenwioh; has been very fayorably looked upon in Austria and Germany for railroad purposes.

Of the proposed change of the beginning of the astronomical day from midday to the preceding midnight nothing has been heard since the original agitation of the subject at the time of the Meridian Oonference at Washington in 1884.

The moon's physioal libration.-Dr. Julius Franz of the Königsberg observatory has done an excellent piece of work in bringing to light and discussing (vol, 38, Königsberg Beobachtungen) the observations of the moon made by Schliter, an assistant of Bessel's, in 1841-1843, the work having been undertaken by Schliiter under the immediate supervision of his distinguished chief. The observations were continued by Wichmann after Schliter's death, but Wichmann was nevar able to do more than to reduce his own observations for preliminary results to be used in a discussion of all the material available.

Dr. Franz recommends the substitution of observations of the spot Miosting Δ for those of the limbs, in determining the moon's place, a method upou which a report was published by the late Dr. O. H. F. Peters in the U. S. Ooast Survey volume for 1856.

Temperature of the moon.-A memoir on the temperature of the moon by Mr. S. P. Langley forms a part of the fourth volume of the publications of the National Academy of Sciences, and is re-published in a somewhat abbreviated form in the American Journal of Science for December, 1889. The paper may be regarded as the completion of a piece of work commeuced in 1883, and represented by papers read in 1884 and 1886, as well as the present one. The principal conclusion drawn is "that the mean temperature of the sunlit lunar soil is much lower than has been supposed, and is most probably not greatly above zero centigrade." The principle by which this temperature is estimated is that the position of the maximum in a curve, representing invisible radiant heat of different wave-lengths, furnishes a criterion as to the tempera. ture of the radiating solid body. In the lunar spectrum two distinet heat maxima are found-one correspouding to radiation reflected from the soil, the other to that emitted by it (when warmed by sunshine). The determination of the second maximum with accuracy would give an accurate value for the temperature of the sunlit soil; but, unfortunately, the absorption-bands produced by the earth's atmosphere ob. scure this maximum, and render the conclusions somewhat uncertain; so that Professor Langley is compelled to state his principal conclusion in a guarded manner, as above quoted.

The Proceedings of the Amerioan Academy of Arts and Sciences (vol. 24) contains an account of some measures of lunar radiation made by Mr. O. O. Hutchins, by means of new thermograph which he has devised. This lustument consists of a single thermal junction of nickel and iron placed in the focus of a small concave mirror, and is found to be much more sensitive than a thermopile of forty eight couples. The measures of lunar radiation were made with an arrangement similar to that of a Herschel's telescope with the themograph in place of an eye
piece, the conclusion reaclied being that the heat which the earth recelves from the moon is to that from the sun as 1 is to 184,560 . From observations during the eclipse of January 28,1888, Mr. Hutchins infers that all but a minute portion of the rays from the lunir soll and rock are cut off by our atmosphere, as it seems impossible that a surface like that of the moon, upon which the sun has been shining for many days, should suddenly cease to radiate when the sun's light is withdrawn.

MARS.-Durin gthe opposition of 1890 Mars again received special attention from the Lick observers. Experiments were tried with colored glasses, with diminished apertures, etc., all with small success. Many photographs were also secured, but none that were pronounced satisfactory. The mystery of the "canals" is still further increased by the fact that while Professor Holden and Mr. Keeler always saw the canals as dark, broad, somewhat diffused bands, and Mr. Schaeberle saw them in the same way when the seeing was bal, but under good conditions described them as narrow lines a second of are or so in width. On April 12 Mr . Schaeberle saw two of the canals doubled, thereby verifying Professor Schiaparelli's observations. The positions of most of the canals have also been verified by some of the Lick astronomers.

Jupiter.-Mr. J. E. Keeler pablishes in the monthly notices for No. vember a drawing of Jupiter made with the Lick 36 . inch on the night of August 28, 1890. The great red spot is described as being of about the same dimensions as in 1889 , with a dark shading at its following end, but the middle whiter and the arrangement of belts somewhat different. "It would seem, on the whole, that the surface features of Jupiter indicate less activity in the internal forces of the planct,than was manifest a year ago."

Barnard and Burnham have reported a very curious doubling of the first satelitis as seen with the 12 -inch equatorial of the Lick observ. atory. Of this phenomenon there seems to be but two possible explana. tions : either there is a white lelt on the satellite parallel to the belts of Jupiter or the satellite is actually double.
M. Belopolsky has brouglit out from an examination of drawings of Jupiter a peculiar variation in the time of rotation (first noted by Oas. sini) with the latitude. A velocity of $9^{\prime \prime} 51^{m}$ was found in the zone 0° to 5° in both hemispheres, and a time of rotation of $9^{h} 55.5^{\mathrm{m}}$ for the remainder of the surface, both hemispheres, except between 5° and 10° of north nud south latitude, where the two velocities appear to occur with equal frequency.

Saturn.-A peculiar white spot on the rings of Saturn attracted considerable attention in the early part of 1880 . This spot was first seen by Dr. Terby, of Ionvain, on March 6,1889 , who reported it as adjacent to the shadow of the ball and similar to the white spots sometimes seen upon Jupiter; on March 12 it was again seen with an 8 inch Clark telescope, but on the $15 \mathrm{th}, 20 \mathrm{th}, 22 \mathrm{~d}$, and 22 A , and on April 2 , it whs
invisible. While several observers confirmed Dr. Terby's discovery, nothing to correspond sufficiently with his description conld be made out by others, though provided with much more powerful apparatus. Professor Hall has expressed the opinion that it was an optical effectof contrast.

The very fine division of the outer ring detected with the 36 -inch Lick refractor early in 1888 was again seen in 1889 at a distance of about one sixth of the breadth of ring A from its outer edge. A dark shading extended inwards from the new division almost to the inner edge of the ring. Professor Holden has noted also an extremely narrow brighter polar cap abont 5 seconds of arc wide, in a direction parallel to the equator, and perpendicular to this about the width of the Oassini division at the anse.

An interesting monograph on Saturn, the result of fourteen years work, is contributed by Prof. Asaph Hall as Appendix in to the Wash: ington Observations, 1885. The characteristic of this memoir is great cantion, and the three drawings of the planet, where a few scanty markings represeut all that Professor Hall can certainly see with a fine telescope, should re-assure those who have been dissatisfied with their modest instruments because they conld not therewith recognize the elaborate detail described by more inaginative observers. To quote the author's own words: "The appearance of Saturn in our 26 .inch refractor undergoes great changes from night to night, and sometimes even from hour to hour during the same night. Probably these changes are due to variations in our own atmosphere and in the action of the objective, and they do not therefore indicate real changes in the planet. Whenever we have a steady and transparent atmosphere, the outlines of the planct, the faint belts and markings on the ball, the shadow of the ball on the ring, the dusky ring, and the Oassini division are clear and distinct, and the abnormal phenomena sometimes seen are not visible. Without exception, my experience is that on good nights the planet always has this natural appearance. But on poor nights, when the image is blazing and unsteady, one can see and imagine many strange things about this wonderful object."

Professor Hall finds for the rotation period of the planet from observations of the white spot (1876, December 7 to 1877 , January 2) 10^{h} $14^{\mathrm{m}} 23^{\mathrm{s}} .8 \pm 2^{\mathrm{s}} .3$ mean time (see Astron. Nachr. No. 2146). Oareful discussions are also given of the position and dimensions of the ring.

The notch in the oulline of the shadow was never seen at Washing. ton, either loy Professor Hall or his assistant. "The curvature of the outline of the shadow presented an anomaly in 1876 when the convexity appeared to be turned towards the ball, contrary to what we should expect from geometrical considerations. The notes show that something of this kind was seen after the re-appearance of the ring in 1878. After the ring was well openel, the chrvature of the outline alwaye appeared natural or turned away from the ball." (Observatory.)

The last determination of the thickness of Saturn's ring, as Professor Hall has pointed ont, was made in 1848 by W. O. Bond, who found that it was less than 0.101 ; Dusejour estimated its thickness at 0.12 , and Schroeter at 0.113 . At the disappearance of the ring in September and October, 1891, the conditions of observation are not very favorable, a better opportunity occurring in 1892.
In connection with the approaching disappearance of the ring, an account of observations made by M. E. L. Trouvelot upon the passage of the sun and earth through the plane of the rings in 1877-78 is of especial interest.
Saturn's satellites.-Dr. Hermann Strave has published the second installment of his work on the theory of Saturn's satellites. In this he discusses the orbits of Mimas and Enceladus, and their connection with the other satellites, and he has been able to account satisfactorily for the large corrections to the computed position of Minas required during the past few years. In his previous paper Dr. Struve was led to assume a sensible mass for the ring-system of Saturn, but he now concludes that this hypothesis must be rejected, the mass of the ring being so small that the terms to which it would independently give rise in the disturbing function are as yet undetected by observation.

A determination of the orbit of Titau and the mass of Saturn, the result of several years' work with the Yale observatory heliometer, is published by Mr. Asaph Eall, jr., in the Transactions of the Yale Observatory, 1889. His value for Saturn's mass is $1: 3500.5 \pm 1.44$, agreeing well with Bessel's value 1: 3002, and that obtained by Struve 1:3498.

Uranus.-Dr. Huggins has found evidence of solar lines in the photographic spectrum of Uranas, with an exposure of two hours (June 3, 1889). All the principal solar lines were seen, but no others either bright or dark. Mr. Taylor, on the other haud, has reported bright flutings seen with a direct vision spectroscope attached to the five foot reflecter of Oommon's observatory, Ealing, and if this observation is confirmed it will of course prove that the planet is at least in part-selfluminous.

THE MINOR PLANETS.

The discovery of additional members of the zone of asteroids goes on without the least signs of abatement, and the number has now reached 301 , no fewer than 6 having been found in 1880, and 14 in 1801. Twice during 1800 (April 25 and September 9) two were discovered on the same evening by the same observer; and the twr, discovered by Palisa on April 25 were independently discovered by Oharlois on the following evening, April 26.

List of minor planeto discovered in 1889 and 1800.

Numher.	Name.	* Discoverer.	Date of discovery.
			$1889 \text {, }$
283...	Elorinda	Oharloia, nt Nice.......	Jani. 28.
284.	- Ameliado	Maj 29.
28\%..	Regina	Palisa, at Vienna	Ang. 3.
236...		Charlois, at Nice.	Do.
287...	Nephthys	Peters, at Clinton	Ang. 25. 1890.
288...	Glauke	R. Luther, at Dilsseldorf	Feb. 20.
280.	Nenetta	Charlois, at Nice......	Mar, 10.
290...	Bruna	Palisa, at Vienna	Mar. 20.
291.	Alice	... do	Apr. 25.
292..	Ludovica	...do	Do.
293.	Brasilia	Charlois, at Nico	$\text { May } 0 .$
204..	Félicia...	P..do........	July 15.
295.	Thoresia..	Palisa, at Vienna	Aug. 17.
296.		Charlois, at Nica.	Ang. 10.
297.		... do	Sepit, 9.
298.		... 10	Do.
299.		Palisa, at Vienna	Oct. 6.
300...		Clinrlois, ut Nice.	Oct. 3.
301...		Palisa, at Vienna ...	Nov. 16.

An asteroid discorered by Charlois, November 14, 1890, and supposed by him to be 298 (discovered September 9), proved to be not identical with the latter: Oonsequently it takes the number 302.

SOLAR SYSTEM.

Prof, Lewis Boss has made a new determination of the amount and direction of the solar motion based upon a list of 253 stellar proper motions derived from the Albany zone olservations. Professor Boss considers, as the most probable result from these data, that the apex of the sun's way is in right ascension $18^{\mathrm{h}} 40^{\mathrm{m}}$; declination $+40^{\circ}$, or not far from the star Vega.

Herr Oscar Stumpe, of Borm, has made a new determination of the direction of the solar motion from the proper motions of 1,054 stars, which he divides into four groups, according to the magnitudes of their proper motionsin a great circle. He thus obtains four different values of the apex of the sun's way, all agreeing in locating that point in the constellation Lyra, or in the adjacent part of Oygnus.

Prof. J. R. Eastman, in an address as president of the Pbilosphical Society of Washington, has given an analysis of the investigations to determine the apex of the sun's motion and its velocity of trauslation. He shows that, contrary to the ordinarily accepted belief, faint stars are nearer us than bright stars; n result also shown by the list of stellar parallaxes recently published by Oudemaus.

SUN.

Rotation of the sun.-Mr. Orew, whose observations of the rotation of the sun were noted in a previous summary, has made a new series of observations for the correction or confirmation of his conclu. sion that the angular velocity of rotation increased with an increase of latitude. He still finds shorter rotation periods for the higher latitudes, the mean value for the period at latitude 45° being 18 hours shorter than at the equator, though owing to the smallness of this anount and the uncertainty of the observations he is of the opinion that "no certain variation of period with latitude has been detectel with the spectroscope." Attention is called however to the wide differences of the equatorial period as obtained by different methods, differences which may be due to the fact that we are really dealing with different strata of the sun, though here also much reliance must not be placed upon the observations.

Spectroscopic observations made by Duner for determining the rota. tion time of the sun, confirm the slowing down of the time of rotation with an increase of heliocentric latititude, quite contrary to the result recently obtained by Wilsing. A period of 25.46 days is deduced for the sidereal rotation at the equator, and 38.54 days for that at latitude 74.9°.

Diameter of the sun.-Dr. Auwers discusses, in the third memoir on the diameter of the sun, communicated to the Berlin Academy, the observations at Green wich by Maskelyne and his assistants from 1765 to 1810. Ourious differences of personal equation between different observers are brought out. Instead of Maskelyne's observations giving progressively smaller values of the sun's dianeter during his whole observing life, as has hitherto been supposed, Dr. Auwers's very exhaustive discussion indicates that after the first two years (which gave a very large value) the observed diameter remained nearly constant for the period 1767 1772, then during the years $1772-1790$ the diameter was continually decreasing, lastly from 1790-1810 the observations gave a diameter continually increasing. The minimum value in 1790 was $31^{\prime} 58^{\prime \prime} .13$-about $1^{\prime \prime}$ smaller than the value obtained from modern heliometer measures.

Spoerer's rescarohes on sun spots. - Professor Spoerer, who has devoted much attention not only to the cuirent state of the solar activity, but also to the early records of sun spots, published early in 1889 two im. portant papers on the results of his researches in the latter field. The two papers are entitled respectively, Ueber dio Poriodicitït der Sonnen. fleoken seit dem Jahre 1618, communicated to the Royal Leopold-Oaroliwe Academy, and Sur les différences que présentent lhémisphere nord et l'hemisphère sud du Soleil, appearing in the number of Bulletin Astronomigue for February, 1889. The conclusions arrived at in these two papers may be summarized under the three following heads:

First: These earlier observations afford us many examples of the operation of the "law of zones;" that is to say, a little before a mini.
mum spots are only seen in low latitudes, at about the time of minimum spots near the equator cease to appear, while a fresh series of spots break out a great distance from it, and thencetorward to the next minimum the mean heliographic latitude of the spots tends to decline continuously, until at length spots are again seen only in the yicinity of the equator. This law held good, Professor Spoerer shows, for the minima of $1619,1755,1775,1784,1833$, and 1844 , and to some extent for that of 1645 .
Second: Though in general a predominance of spots for a time in one hemisphere is sooner or later balanced by a correspondiug predominance in the other, this is not always the case, and Professor Spoerer calls attention to three periods in which the soathern hemisphere was decidedly the more prolific. The first was from 1621 to 1625 , there being no northern spots in 1621 and 1622, and but few in the three following years. Another is the present period, for from 1883 to the present time the southern spots have been nearly twice as uumerous as the northern. But the third was the most remarkable, for from 1672 to 1704 we have no record of any uorthern spots at all; and Cassini and Maraldi expressly declared, on the appearance of a northern spot in 1705, that they did not recollect ever to have observed a spot in that liemisphere before. Northern spots continued to be infrequent until 1714.

Third: For a period of about seventy years, ending in 1716, there seems to have been a very remarkable interruption of the ordinary course of the spot eycle. In several years no spots appear to have been seen at all, and in 1705 it was recorded as a most remarkable eveut that two spots were seen on the sun at the same time, for a similar circumstance had scarcely ever been seen during the sixty years previous. So far as the observations go, the "law of zones" also seems to have been in abegance, for no regular drift was apparent, the mean latitude being low-about 8° or 9°-during the entire time.

Professor Spoerer is still continuing his researches into aucient sun. spot records, and hopes to be able to examine the manuseripts of Plantade (1705-1726) and of Flaugergues (1794-1830). (E. W. M. Monthly Notices R. A. S., February, 1890).
Attention should be directed to a paper in the Monthly Notices for December, 1890, by Rev. A. L. Cortie', S. J., on the sun-spot observations made at Stonyhurst in the years 1882-89.

A comparison of sun-spot statistics for 1878 with the records of 1889 gives a suin-spot period of exactly 11 sears, and it seems probable that the real minimum occurred about the end of 1889 . This probability is increased by the appearance on March 4, 1890, of a large spot in heliographic latitude $+34^{\circ}$, which during its period of visibility in a semirotation of the sun passed within one-sixth of the sun's diameter from its morthern edge. During the whole of the year 1889 the southern hemisphere of the suu manifested greater activity than the northern;
protuberances were seen, according to Tacchini, in both hemispheres at high latitules where there were neither spots nor facule; there were also zones with spots and without faculæ. '

Mr. Lockyer bas presented a second report to the Solar Physics com. mittee on the observations of sun-spot spectra made at South Kensing. ton. He finds that the observations (to February, 1888) confirm the conclusion which he arrived at in 1886, that "as we pass from minimum to maximum the lines of the chemical elements gradually disappear from among those most widened, their places being taken by lines of which we have at present no terrestrial representatives.

SOLAR SPEC'IRUM.

Thollon's chart of the solar speotrum.-In 1879 Tbollon presented to the Acadénie des Sciences a map of the solar spectrum, extending from A to H, made with his great spectroscope. His work was renewed with more perfect apparatus, but on account of the great labor of the under. taking he contined himself to the region from A to b; this was pre. sented to the Academy in 1885, and gained the Lalande prize. Thollon continued this work until his death, and it has now been published in 33 maps with a total length of $10^{\mathrm{m}} .23$ (33.6 feet), and contains about 3,200 lines, between the limits ado pted, A and b, the positions of which were determined from 252 sharp lines adopted as "fundamentals."

Thollon made special efforts to distinguish the telluric rays from those entirely due to the sun; and with this end in view he observed the sun at different altitudes, noting the hygrometric conditions of the air. Of these 3,200 lines mapped, 2,090 were of solar origin, 866 tellurie, and 246 mixed, that is to say resulting from the superposition of tellurie and solar lines. The breadth and intensity of each line is given upon an arbitrary scale.
M. Bigourdan, in a review of Thollou's work, published in the May number of the Balletin Astronomique, says that for the part of the spectrum studied no work is comparable with that of Thollon except the maguificent photographs of Rowland, and he finds upon a critical comparisou of different regions of considerable extent that Rowland's photographs contain no lines not upon Thollon's chart, though the faintest lines given upon the chart are frequently lacking in the photograplis. Between wave-lengths 5,262 and 5,337, for example, in Rowland's photograph, there are not half the number of lines that there are upon Thollon's chart, though it is probable that the original negatives would not show so large a alifforence.

Rovoland's determination of elements in the sun.-Professor Rowland's examination by photograply of the spectra of 58 elements and their comparison with the spectrum of the sun shows the existence in the sun of 35 different elements; the existence of 8 more in the sun is doubtful, while of 10 he finds no trace. The element represented by the greatest number of lines is iron, there being 2,000 or more lines in the spectrum
of iron found also in the solar spectrum. Iron is followed by nickel, titallium, manganese, chromium, cobalt, carbon, with decruasing frequency of coincidences, ending with lead and potassiam, for which but one line is found in common with the sun.

The full list of elements in the sun, arranged according to the intensity and the number of lines in the solar spectrum, is as follows:

Elements in the sun, arranged according to the intensity and the number of lines in the solar spectrum.

Not in solar spectrum.

Antimony.	Cessilum.	Rubldium.
Arsenic,	Gold.	Selenlum.
Bismuth.	Indium,	Sulphur.
Boron.	Mercury.	Thallium.
Nitrogen (vacuani tube).	Phosphorus.	Preeseodymium.

Substances not yet tried.

Bromine.	Iodine.	Oxygen.	Gallium.	Thalium,
Chlorine.	Fluorine	Tellurium,	Holluilum.	Terbiun, etc.

Professor Rowland says: "With the high dispersion here used the 'basic lines' of Lockyer are widely broken up and cease to exist. Indeed it would be difficult to prove auything except accidental coincidences among the lines of the different elements. - Accurate investigation generally reveals some slight difference of wave length or a common impurity. Furthermore, the strength of the lines in the solar
spectrum is generally very nearly the same as that in the electric aro, with only a few exceptions, as, for instance, calcium. The cases mentioned by Lockyer are generally those where he mistakes groups of lines for single lines or even mistakes the character of the line entirely. Altogether there seems to be very little evidence of the breaking up of the elements in the sun, as far as my experiments go."
M. Janssen, in Angust, 1890, repeated the observations that he made in 1888, upon Mont Blauc, this time ascending to the summit. He confirmed completely his former'result that the lines of the spectrum due to the action of oxygen in our atmosphere dimiuish with the alti. tude, indicating that at the limit of the atmosphere these rays would disappear entirely and in conseguence that oxygen is not actually present in the sun's atmosphere. This conclusion had already receivel confirmation from a series of observations of the spectrum of an electric light placed on the Eiffel Tower, as viewed from the observatory at Meudon.

EOLIPSES.

Eolipses of 1859, and 1890. -During the year 1889, there were five eclipses, three of the sun and two of the moon; and during 1890, three eclipses, two of the sun and one of the moon. Two of the solar eclipses of 1889 were total, and one of 1800 was total over a portion of the central line.

The Alinanac records also a lunar appulse on June 2,1890 , the nearness of the approach and the uncertainty as to the effect of the earth's atmosphere renderitg it doubtful whether the moon wonld actually enter the earth's shadow. Of the eclipses of the moon nothing of especial interest has been reported. A brief summary of the observa. tions of the solar eclipses is given below:

Total eolipse of the sun January 1, 1889. -The event of chief astro. nomical interest in the year 1889, was the eclipse of the sun on New Year's day, the last total solar eclipse visible in the United States in this century. The line of central eclipse crossed California, Nevada, Idaho, Wyoming, Montana, and Dakota, the width of the belt of totality being about 96 miles in Ualifornia; the partial phases of the eclipse were visible over the greater part of North America, first contact being observed at Washington a few minutes before sunset. Ample preparations were made for utilizing the less than two minutes of totality, and printed circulars suggesting to amateur observers the most efficient manner of employing the means at their command were widely circirlated. The most thoroughly equipped party in the fleld was that from the Harvard observatory under the charge of Prof. W. H. Pickering, at Willows, Oalifornia. This party alone secured between 50 and 60 photographs taken with 14 telescopes or cameras and 8 sjectroscopes, one of the telescopes being of 13 inches aperture, the largest ever used in observing a total solar eclipse. A party from the Lick observatory
under Mi. Keeler was at Bartlett Springs; one fron Washington University observatory, St. Louis, under Prof. H. S. Pritchett at Norman; one from Carleton College observatory under Professor Payne at Ohico; and many other available points were occupied by individual astronomers or photographers. At Oloverilale the Pacific Ooast Amateur Photographic Association was represented by 30 cameras.

Professor Holden has published a full report of the Lick observatory party and itş coöperators-the frontispiece being an admirable photo. graph of the coroua by Barnard, taken with a telescope of $3 \frac{1}{4}$ inches aperture stopped down to $1 \frac{3}{4}$ inches. Professor's Holden's "conclusions" in which he summarizes, the observations are as follows:
I. That the characteristic coronal forms seem to vary periodically as the sun spots (and auroras) vary in frequency, and that the coronas of 1867, 1878, and 1889 are of the same strongly marked type, which corresponds, therefore, to an epoch of minimum solar activity.
II. That so-called "polar" rays exist at all latitudes on the suu's surface, and are better seen at the poles of tho sun, simply because they are there projected against the dark background of the sky and not against the equatorial extensions of the outer corona. There ap. pears to be also a second kind of rays or beams that are connected with the ring like extensions. These are parts of the "groups of synclinal structure" of Mr. Ranyard.
III. The outer corona of 1889 terminated in branching forms. These branching forms of the outer corona suggest the presence of streams of meteorites near the sun, which, by their reflected light and by their native brilliancy, due to the collisions of their individual members, may account for the phenomena of the outer corona.
IV. The disposition of the extensions of the outer corona along and very near the plane of the ecliptio might seem to show that, if the streams of meteorites above reforred to really exist, they have long been integral parts of the solar system.
V. The photograples of the corona which were taken just before contact II and just after contact III prove the corona to be a solar append. age, and are fatal to the theory that any large part of the coronal forms are produced by diffraction. . . -
VI. The spectroscopic observations of Mr. Keeler show conclusively that the length of a coronal line is not always an indication of the depth of the gaseous coronal atmosphere of the sun at that point, and hence to indicate the important conclusion that the true atmosphere of the sun may be comparatively shallow.
VII. Mr. Keeler draws the further conclusion in his report that the "polar" rays are due to beams of light from brighter areas of the sun illuminating the suspended particles of the sun's gaseous envel.

[^14]opes. In order that the conclusion may stand it is necessary to show that all these "polar" beams are composed of rectiliuear rays. . . . An important conclusion from [the photographic and photometric] measures seems to be that it is impracticable to photograph the corona in fall sunshine with our present plates, and that a photographic search for Vulcan is hopeless.
The Smithsonian Institution has published a series of photographs of the corona of this eclipse made by different observers and reduced for convenience to a uniform scale, and has also published a saggestive paper by Prof. F. H. Bigelow tracing a close agreement between mag. netic lines of force computed for the " 1 n and the curves of the polar filaments shown upon the Pickering photograph.

Eolipse of the sun 1889, June 27.-An annular eclipse visible in the sonthern part of Africa. Dr. Auwers and Dr. Gill obtained a number of measures of the cusps with the Oape heliometer.

Eolipse of the sun 1889, December 21-22.-Three principal points were available as observing stations: the southwest corner of the island of Trinidad totality lasting $1^{\mathrm{m}} 46^{6}$; Cayenne on the coast of French Guiana, totality $2^{\mathrm{m}} 3^{\circ}$; and Cape Lado a point on the western coast of Africa jueit south of St. Paul de Loanda, totality $3^{\mathrm{m}} 12^{\circ}$. Two expeditions went out to Africa, one sent by the United States Government under Prof. D. P. Todd, and provided with most elaborate apparatus, and the other from the Royal Astronomical Society of England under the direction of Mr. A. Taylor. Oloudy weather prevented both of these parties from securing observations. Another party from the Royal Astronomical Society under Father Perry, at the Salut Islands, was partially successful as far as observations go, but resulted most disastrously in the death of Father Perry from dysentery within a few days after the eclipse. M. de la Baume Pluvinel was also at the Salut Islands and secured a number of photographs. The Liek observatory party at Oayenne, Messrs. Burnham, Schaeberle and Rock well, were successful; securing good photographs.

Eclipse of the sun 1890, June 17.-The annular eclipse of June 17, 1890, was central over portions of Northern Africa and Southern Asia, and was visible as a partial eclipse over the whole of Europe. In the southern part of Italy three-fourths of the sun's disk was covered by the moon. Observations partially successfal were obtained by Profes. sor Ricco at Palermo. At Cauea, M. de la Banme Pluvinel secured several photographs of the partial and annular phases, and also of the spectrum of the annulus, the latter proving to be the same as the ordinary solar spectrum.

Eolipse of the sun 1890, December 11.-A total eclipse of the sun occurred on December 11, 1890, the central line being confiped to the ocean sonth of Australia. In consequence of the earth's globular surface, the eclipse was annular at the begiuning and end, and total between $13^{\mathrm{h}} 55^{\mathrm{m}}, 3$ and $16^{\mathrm{h}} 20^{\mathrm{m}}, 5$ Greenwich mean time, In portious of

Australia, and in Tasmania, and in New Zaaland, it was visible as a partial eclipse. No observation of special interest was reported.

Mr. J. M. Schaeberle has published in the Monthly Notices a theory of the solar corona, in which he concludes that the corona is due to the light emitted and reflected by the filaments of matter thrown out by the sun, the corresponding forces being variable and with a period about the same as the sun-spot period. The rays of double curvature are explained by the rotation of the sun, and the apparent changes in the general form of the corona by the position of the observer with reference to the plane of the sun's equator.

The Smithsonian Institution published in 1889 a series of re-produe. tions of a number of photographs of the eclipse of January 1,1889 , sent from various stations on the Pacific coast. The photographs are for convenience of comparison reduced to a uniform scale of about 1 inch dianeter. Explanatory notes and remarks suggested by a study of the photographs are added by Prof. David P. Todd.

Mr. H. H. Turner in the Philosophical Transactions (vol. 180, p. 385 393) discusses the observations of the eclipse of August 29, 1886, made at the island of Grenada.

SOLAR PARALLAX AND THE TRANSIIS OF VENUS.

Transits of Venus in 1761 and 1769.-A thorough, and probably the final, re-redaction of the observations of the transits of Venus in 1761 and 1769 has been made by Professor Newcomb in volume 2, part 5 , of the astronomical papers of the Americar Ephemeris, a primary object being the determination of the position of the node of Venus. The value obtained for the solar parallax is $8^{\prime \prime} .79$ with a probable error of $+0^{\prime \prime} .034$.

Plofessor Harkness of the U. S. Naval Observatory has devoted several years of work to an elaborate discussion of the solar parallax and its relaterl coustants. His principal results are elsewhere referred to, the defluilive value for the solar parallax being $8^{\prime \prime} .80905 \pm 0^{\prime \prime} .00567$.

The French photograplis of the transit of Venus give tor the solar parallax the value $8^{\prime \prime}: 80 \pm 00^{\prime \prime}, 06$.

OBSERVATORIES.

Information in regard to the work going on at astronomical observatories has been derived from the reports contained in the Vierteljahrs. solvift, in the Monthly Notices, aud in Loew 's Observatoires astronomiques de Provence, and also from the separate reports published by a few observatories. The compiler is indebted in some instances to directors of observatories who have communicated to him directly data in relation to the institutions under their charge. When it has seemed necessary to make a distinction, the year has been added to the note.

Allegheny : Langley.-Work upon radiant energy has been continued, and the time service has been maintained as in previous yoars.

Alatiers: Trépied.-A meridian circle of $0^{m} .19$ (7.5 inches) and an equatorial of $0^{m} .12$ (4.7 inches) have been adiled to the equipinent. Ob. servations have been made upon a catalogne of 10,000 starc in the zone -18° to -23°. It is expected that the photographic equatorial will soon be installed. (1889.)

ARMAGH: Dreyer.-Observations of nebule and physical observations of Jupiter and Saturn; time service.

Basel: Riggenbaoh.-Devoted entirely to the instruction of studeuts.
Berlin: W. Foerster,-Observations with the transit circle, obser. vations with the 9 -inch equatorial of asteroids, comets, and double stars, and with the small transit of comparison stars and stars occulted by the moon.

Besangon: Gruey.-Observations of comets; horology. The observ. atory possesses an equatorial coude.

Birn Oastle: Lord Rosse.-Preparing for publication a sories of sketches of the milky way; measures of lunar heat during the eclipse of January 28, 1888, Lave been reduced.

BONN : Sohönfeld,-Zone observations $+40^{\circ}$ to $+50^{\circ}$ with the transit. circle. Reductions in a forward state. (1889.)

Bordeaux : Rayet.-Preparations are being made for observing the zolle - 20° to -20°. The photographic equatorial has been mounted. (1889.)

Breslau: Galle.-Ohiefly magnetic and meteorological work. Small transit used for time service.

Oambridge (England): Adams.-Mr. Newall has presented his 25 -inch refractor to the university observatory, and the university authorities have voted to spend about $\$ 11,000$ on its installation near the present observatory, and to appoint an observer, at $\$ 1,200$ per annum, to devote himself to resesrch in stellar physics. It is under. stood that the work with this instrument will be under the charge of Mr. H. F. Newall.

Volume 22 of the publications has been issued and deals with the observations from 1866 to 1809.

Oamden.-The amateur astronomical society at Camden, Now Jersey, has a small observatory, with $5 \frac{1}{2}$-inch equatorial, transit instrument, chronograph, clock, etc.

OAPE OF GOOD HOPE: Gill.-With the meridian circle regular observations have been made of the sun, Mercury, Venus, comparison stars, stars occulted by the moon, etc. The heliometer has been constantly in use and much uttention has been given to astronomical pho. tography. Prof. J. O. Kapteyn has measured detinitively 389 negatives of the plates of the southern photographic Durchmusterning, covering 8,769 square degrees of the sky. This work represents 489,490 observations of about 193,000 stars, or about 63 per cent. of the whole work.

Dr. Gill, the astronomer royal for the Oape, and Dr. Auwers, of Rerlin, by taking alternate watches of observation (June 10 to August 26, 1880) secured an admirable series of observations of Victoria, which was in an exceptionally favorable position for determining the solar parallax. A large part of Dr. Gill's report for 1889 is devoted to the geodetio work which is undor his direction.
Oarleton Oollege: Payne.-The first volume of publications consists of a catalogue of $\mathbf{6 4 4}$ comparison stars observed with the Repsold meridian circle, by Dr. Wilson.

Oatania: Riced. - The observatory recently founded at Oatania will be chiefly devoted to astrophysics, photograply, meteorology, and seismology. It contains a Merz refractor of $0^{\mathrm{m}} .35$ (13.8 inches) aperture, one by Cooke of $0^{\mathrm{m}} .15$ (5.9 inches), and a photographic telescope, by Steinheil, which will be used for photographing the zone $+12^{\circ}$ to $+6^{\circ}$. (1890.)

Ohamberlin : H. A. Howe.-The disks for the 20 inch refractor are being worked by Olark, and the mounting is well advanced at the shop of Fauth \& Co., Washington. . The initial publication of the new observatory is a report upon observations of the eclipse of January $1,1889$.

DEARBORN : Hough.-An illustrated description of the new observatory at Evanston.will be found in the "Sidereal Messenger for October, 1889.

Denver.-In addition to the working observatory founded by Mr. Ohamberlin, an observatory for students is in course of erection. A. 6 -inch equatorial and a 3 -inch transit have been ordered.

Denyer. (See, also, Ohamberlin.)
DRESDEN : von Engelhardt.-Observations of nebula star.clusters and comets. Baron von Engelhardt has recently published a second part of his "Observations Astronomiques," containing principally measures of double stars, star. charts, nebulæ, and comets. (1889).

DUNSINK : Ball.-A new reflecting telescope of 15 inches aperture has been presented to the observatory by Mr. Isaac Roberts for photographic researches on stellar parallax.

DÜSSELDORF: Luther.-Observations of small planets, and computation of their ephemerides. Since 1847, 1,474 observations of 172 asteroids have been made. (1889).

Edinburgh : Oopelaid.-The site for a new observatory building two minutes of are south of the present observatory was selected in 1389. The plans have been completed and it is hoped that the work of construction will soon be begun. It is interesting to note that though the new site is within 500 yards of the suburban railway, the porphyrite rock of which the hill consists does not appear to transmit any perceptible vibration from the railway even when the heaviest trains are passing. Dr. Becker has continued his determinations of the positions of nebulee and work in stellar and solar spectroscopy.
H. Nis. 129-11

Georgetown : Hagen.-Observations of variable stars have been made systematically, and experiments in photographic observations of star transits by Father Hageu and his assistant, Father Fargis.

Geneva: Gautier.-Ohiefly engaged in testing chronometers and watehes. Observations of the sun and of comets have been made with the equatorial. Dr. Raoul Gautier has been appointed professor of astronomy and director of the observatory, Ool. E. Gautier retaining the title of honorary director.

Glasgow (England): Grant. Transit circle observations.
Göttingen : Sohur.-Heliometer used in measuring Prasepe, Ple. iades, and double stars. (1889.)
Greenwioh: Oliristie.-In the report for 1889 it is noted that the observations with the transit circle by reflexion have been much facili. tated and improved by using an amalgamated copper-bottom mercury trough for the artificial horizon. Two photographic objectives have been tried, one of 0 inches aperture to be used as a pilot for the 13 -inch star-charting telescope stars, and the other of 4 inches in connection with the 28 -inch refractor,
The annual visitation in 1890 took place on June 7. The collection of historical instruments and the new photographic equatorial especially attracted the attention of some 300 visitors present. It is proposed to put up a large new building with four wings to reliere the overcrowded condition of the older buildings. It is expected that the new 88 -inch refractor will be installed at an early day. The 13 -inch photographic equatorial was received from Grubb on March 17, 1890, and was mounted aud made ready for use. The astronomer royal reported that the work of the observatory had proceeded without essential modification.
"The observations for the longitude of Paris made in 1888 have now been completely reduced and the definitive results found by the French and English observers are respectively, $9^{\mathrm{ma}} 21^{\mathrm{s} .04}$ and $9^{\mathrm{m}} 20^{\circ} .84$. In view of this unsatisfactory discordance - . . it seems desirable that the determination should be repeated with interchange of instru. ments as well as of observers."
The 1887 volume of Greenwich observations contains among its ap. pendices the ten-year catalogue deduced from observations made from 1877 to 1886. The total number of stars is $4,0 \tilde{9} 9$, the positions being giveu for 1880.0

Haryard Oollege: Pickering.-Mibs O. W. Bruce, of New York, has made a gift of $\$ 50,000$ to the Harvard observatory to be applied to the construction and maintenance of a photographic telescope having an objective of about 24 inches apertare and a focal length of 11 feet. The figuring of the lens has been intrusted to Alvan Clark, who has experienced some diffculty in securing proper glass. The Bache 8 -inch telescope of similar construction has been in constant use in Oambridge
for four jears, and is now in Peru photographing the southern sky; with it stars too faint to be seen with the 15 -inch refractor have been photographed, and a corresponding advantage is anticipated from the increase of the aperture to 24 inches.
Volume 17 of the Annals is now completed and consists of the following papers, which have been separately printed and distributed during the last few years: I. Magnitudes of stars employed in various nautical almanacs; II. Discussion of the Uranometria Oxoniensis; III. Photometric observations of asteroids; IV. Total eclipse of the moon, 1888, January 28; V. Total eclipse of the sun, 1886, August 29; VI. Detection of new nebulx ly photography; VII. A photographic determination of the brightness of the stars; VIII. Index to observations of variable stars ; IX. Meridian circle observations of close north polar stars ; X. Meridian circle observations of close sonth polar stars.
Volume , \%1, part 1, contains the observations of the New England Meteorological Society made during 1888 . Volume 24 contains a long series of meteorological observations made on the summit of Pike's Peak, Oolorado, between January, 1874, and June, 1888, by U. S. Army Sigual Service observers.
Kalocsa: Fenyi.-Physical observations of the sun. (1889.)
Kew : Whipple.-Meteorological, magnetic, and solar observations.
Kisi: Krueger.-The catalogue of zoue $+55^{\circ}$ to $+65^{\circ}$ has been published. Oomputation of the orbits of comets and asteroids.
Königsberg: O.F.W. Peters.-Observations of zone $+83^{\circ}$ to $+90^{\circ}$; also heliometer observations of wide double stars. (1889)
Kremsmünster: Wagner.-Observations of comets and asteroids; time service.
Leipzig: Bruns.-Observations of zone $+5^{\circ}$ to $+10^{\circ}$; observatious with the heliometer; time service.
Lund: Möller.-Spectroscopic observations to determine the sun's rotation period. The printing of the Zone Oatalogue is in progress. The second volume of Zone Observations, $+36^{\circ}$ to $+40^{\circ}$, has been published.
Lynn (Massachusetts),-Private observatory of Mr. O. W. Wilson. Latitude $+42^{\circ} .5$, longitude 71° west. The principal instrument is one of Alvan Olark \& Sons' 6 .inch refractors of unusual exeellence.
Lyons: Andre.-Meridian work; physical observations of the sun and of Jupiter.
McOormiok: Stone.-Ohiefly engaged in observations of double stars and nebulx. Volume 1, part 4, of the Pablications contains doublestar ineasures made in 1885 and 1886 by Leavenworth and Muller.
Marsellles: Atephan.-Revision of Riimkers Oatalogue; observatious of comets, asteroids, nebulæ and variable stars. (1889.)

Melbourne: Ellery.-Transit-circle observations, observations of comets and astroids and of stellar spectra. The great reflector has been repolished, and its performance is reported as improved. The photographic telesrope for the interuational chart work has been received and mounted. The Second Melbourne General Oatalogue of Stars, containing 1,211 stars and embodying the results of observa. tions made with the old transit circle from the beginning of 1871 , has been published.

MILAN: Sohiaparelli.-The 18 inch equatorial was used for double. star measures; the observations of Mercury, 1881-88, were discussed, and the rotation period determined. (1889.)

MUNIOH: Seeliger.-Work on a catalogue of 33,082 stars; observations of comets and measures of the star cluster in Perseus.

Natal: Nevill.-Observations of the position of the moon. There has been formed a manuscript catalogue of about 4,000 observations of right ascensions of zodiacal stars used in deterinining the places of the moon during the jears 1883-98. Time service.

NioE: Perrotin.-Oharlois has been remarkably successful in his search for new asteroids. The third volume of Aunals contans a new chart of the solar spectrum by Thollon, the concluding part of the discussion of the theory of Vesta by Perrotin, and the observations made in the years 1887-88.

O'Gyalla : Konkoly.-Observations of sun spots and meteors; photographic researches.

OXFORD University : Pritchard.-Experimental work on the new photographic objectives by Grubb has occupied much time; the parallaxes of six more stars hare been determined by photography. (1890.)

Pakis: Mouohez.-The large transit circle has been used for the sun, planets, and stars of Lalande's catalogue; the Gambey transit for observation of fundamental stars in groups of 24 to 48 hours; the Gambey circle for experiments on flexure and the determination of latitúde; comets and nebule have been observed with the west equatorial, and the equatorial coude has been used in determining the constants of refraction and aberration. The work for which the Paris observatory has been especially known of late years, astronomical photography, has been actively pursued by the Henrys. The frontispiece of Admiral Monchez's report for 1889 is a representation of the great equatorial coude of 18 metres focal length and 0.6 metre (23.62 inches) aperture. Attention has been given to photographing of stellar spectra by placing prisms of 22° or 45° in front of the objective of the telescope, and Admiral Mouchez has announced that spectroscopic observations will form a regular part of the observatory work in future.

Ponsdam : Vogel.-Astrophysical work, determination of the motion of stars in the line of sight by means of photography; spectrum analysis in general; photometric measures of large planets and a photometric

Durchmusterung of the northern sky ; observations of san spots. The new refraetor for the photographic star chart is erected and some experimental work has been done. (1889.)

Prag: Safarik.-Doublestar measures; drawings of the moon; chiefly devoted to observations of variable stars. (1889.)

Prag (University observatory): Weinek-Drawings of moon; occultations. Time service. (1889.)

Pulkowa: Brediohin.-Prof. Otto Struve retired from the directorship of the observatory, which he has held for over 25 years, and has been succeeded by Dr. Bredichin, formerly director of the observatory at Moscow. Three volumes were issued in 1889: Volume 8 containing the catalogue of Bradley's stars, a volume containiug an investigation by Lindemann of the photometric scale of the Bonn Durchmusterung, and the third volume, the "Jubilee" volume, with an historical account of the observatory for 25 years, a monograph on the 30 -inch refractor, and a description of the astrophysical observatory. The volume contains several fine engravings of the observatory and 30 inch. (1889-90.)

RADCLIFFE: Stone.-Transit-circle observations of the zone $0^{\circ}-15^{\circ}$, and of the sun and moon.
Rome: Denza.-The new observatory of the Vatican has been built partly upon the site of the old observatory, founded in 1582 , and partly upon a tower dating from the time of Leo IV. Special attention will be given to astronomical photography.
Rousdon (Lyme Regis) : Peek.-Observations of variables. Time service.

Stookhorm : Gyldén.-Largely engaged in mathematical researches upon orbits. Photographs have been taken of the Pleiades and of a region extending about 4° around the north pole. (1889.)
Stonyhurst : Sidgreaves,-Father Perry, whose sad death immedi. ately after observing the total eclipse of the sun on December 21, 22, 1880, has been elsewhere referred to, has been succeeded in the directorship of the observatory by Father Walter Sidgreaves. (1889.)
Sirassburg: E. Becker.-Observations of comets and heliometer measures of the sun's diameter; also transit-circle observations of the sun and major planets.
Sydney: Russell.-Transit-circle observations, and with the $11 \frac{1}{2}$-inch equatorial observations of comets. and of double stars. The photographic telescope for chart work has been mounted upon an elevated site 620 feet above the sea and 11 miles inland from the present observ. atory. Each instrument has its own group of accumulators, conven. iently charged by the help of a gas engine.
Smithisonian Astro physioal Observatory : Langley. - Àn astro. physical observatory has been established as a department of the Smithsonian Institution at Washington, occupying at present a tem.
porary building in the Sinithsonian grounds, erected in 1889-90. The principal instruments are a very large siderostat by Grubb, a large spectro-bolometer, special galvanometer, and resistance box. ke . searches in telluric and astro-physics will be carried on.

SWARTHMOee Oollege : Miss S. J. Ounningham.-The observatory building contains four rooms: A transit room, in which is a 3.inch Warner and Swasey transit and mean-time clock; a pier room at pres. ent utilized as a sidereal clock room; a work room containing the chro. nograph, chronometer, and a small reference library; and the dome, in which is a 6 -inch Warner and Swasey equatorial. Connected with the observatory is the signal service station of the state weather service, fully provided with the necessary meteorological and other apparatus. (1890.)

Tadubaya: Anguiano.-The construction of the new observatory has progressed farorably, the photographic department being entirely finished and the instruments mounted. The photographic equatorial is by Grubb, of the pattern adopted by the astrophotographic congress in 1889 and furnished for most of the observatories taking part in the international chart. Among the minor apparatus added to the equip. ment of the observatory may be mentioned a complete portable photographic outfit; a Merz polariscope for the 15 -inch equatorial ; a Pritchard's wellge photometer by Hilger; a mercury artificial horizon by Gauthier for the merilian circle; a complete meteorological outfit; a petroleum motor and electric light installation.

In Augast, 1889, two additions were made to the observatory staff; Messrs. Oamilo A. Gonzalez and Guillermo Puga, who have been as. signed to duty on the meridian circle. They have been engaged in stadying the instrumental constants and have undertaken the observa. tion of certain stars to the tenth magnitude, conveniently situated for reference stars for the zone of the photographic map assigned to the Tacubaya observatory. Sr. Felipe Vallo has been engaged with the equatorial in observations of comets, asteroids, and nebula.

A series of daily observations of sun spots and faculæ has been made. Photographs of the sun have been taken with the photoheliograph, Two parties were sent out to observe the total solar eclipse of October 22, 1889, one to Yucatan and one to San Luis Potosi. (1890.)

Tananarivo: Uolin.-An observatory has been established on a hill about 4,400 feet high a short distance to the east of Tananarivo on the island of Madagascar. It has an equatorial, meridian instrument, and photographic telescope for solar work. (1889.)

TOKYO: Terao.-A large number of observations of comet e, 1888, made by Professor Teara and Mr. J. Midzuhara have been published as the second fasciculus of volume 1 of the Annals, (1889.)

Toulousk : Baillaud.-The photographic telescope has been monnted.

United States Naval Observatori: MoNair. -The reports of the superintendents of the Naval Observatory show no material change in the character of the work from the years immediately preceding. On June 28, 1890, Oapt. T. V. McNair succeeded Oapt. I.. L. Plythian as Suporintendent, Oapt. McNair's report covering the fiscal year June 30, 1890. The walls of the main building for the new observatory were practically completed by the end of 1890 ; aiso the great equatorial and clock and observer's rooms. The iron work for the three transit-circle rooms is ready. The buildings will scarcely be ready for occupancy before the summer of 1892 .

Upsala: Dunér.-From an extensive series of spectroscopic observations to determine the rotation period of the sun, it appears that the period varies from 25.5 days to 38.6 days, increasing with the heliographic latitude.

Vienna (von Kuffer's observatory) : Herz.-.The latitude from obser. vations with the Repsold meridian circle, $1889-90$, is $+48^{\circ} 12^{\prime} 46^{\prime \prime} .67$.

Washington (Oatholic University of America): Searle.-A suall observatory has been built at the Oatholic University in the suburbs of Washington (D. O.), and is under the direction of Rev. G. M. Searle. The position is latitude $+38^{\circ} 56^{\prime} 15^{\prime \prime}$; lougitude $5^{\text {h }} 8^{m} 0^{\mathrm{m}} .0$ west of Greenwioh. The telescope, which will be mounted in 1891 is 9 inches aperture, 9 feet focus, glass and tube by Olacey, mounting by Saegmuller (Fanth \& Oo.). The cells and center piece of tube are made of aluminum. A small meridian circle, and photographic and spéctro. scopic apparatus will also be provided. A 5.inch telescope is now in use. (1890.)

Washington. (See, also, Georgetown; alsu, Smithsonian astrophysical observatory; also, U. S. Naval Observatory.)

Washburn : Comstook.-The sixth volume of publications contains the meridian observations of 1887 aud observations of double stars.

Yale: Neoton.-The heliometer triangulation of the region near the north pole has been completed, and some observations of Iris, Victoria and Sappho have been obtained in coöperation with the observatories at the Oape of Good Hope and Leipsic, for the determination of the solar parallax.

Zuriok : Wolf.-Physical observations of the sun.

ASIRONOMICAL INSTRUMENTE.

In the fourth part of the Bulletin of the Astro-photographic congress, Dr. H. U. Vogel describes the photographic refractor constructed for the observatory at Potsdam by the Repsolds. This instrument has two objectives; eje-piece and plate-holder are in the same tube, conforming to the resolutions of the congress in 1887 , but tho peculiarity is in the form of mounting, which is quite different from both the Eng.
lish and the French forms. The pillar that supports the polar axis is not upright, but L-sha ped, the lower part being inclined nearly in the plane of the equator, the upper almost at right angles 10 this, extending toward the north pole and inclosing the polar axin. The support possesses very great stability, and its form permits sin uninterrupted motion of the telescope in all positions.

In Engineering for December 19, 1890, will be found a description of the Melbourne photographic telescope made by Sir Howard Grubb.

An instrument for comparing and measuring celestial photographs, somewhat similar to that designed by Mr. Roberts, has been devised by Mr. Oommon.

An apparatus for eliminating personal equation in the observation of sudden phenomena, such as the disappearance of a star when occulted by the moon has been devised by Mr. S. P. Langley, and is described in the Bulletin of the Philosophical Society of Washington, vol. XI. The principle of the method consists in associating a motion, real or apparent, of the object, with intervals of time so that the apparent position of the object at the instant of the occurrence of any phenomenon being noted the time of the occurrence will be known. Experiments made with artificial stars show that it is quite possible for a comparatively inexperienced person to observe an occultation with a probable error of only one-fortieth of a second.

The great Lick refractor of 36 inches diameter is to be surpassed by one still larger, ordered for the University of Southern Oalifornia, at Los Angeles. This lens is to be 40 inches in diameter, and the crown glass disk for the achromatic combination is now in the hands of the Olarks, who pronounce it a remarkably fine piece of glass.

It may perbaps be mentioned here that a bill was introduced in the United States Congress making an appropriation of $\$ 1,000,000$ for a refractor of 5 feet aperture for the U. S. Naval Observatory, but the plan never received support from the Government astronomers.

Mr. Brashear has under way at his shop in Allegheny a 16. inch objective for Oarleton Oollege Observatory, one of 12 inches for Brown University, and a second of 12 inches for Mr, G. E. Hale, of Ohicago. He is also making a large spectroscope and spectrograph for Professor Young, at Princeton, which is expected to be the finest in the United States; a very eomplete spectroscope with Jena glass objectives and prism is being made for Carleton College, and a new star spectroscope for Lick Observatory. For the Willard photographic telescope of the Lick Observatory, he is making an equatorial mounting with controlled clock.

MISCELLANEOUS.

Personal equation.-The attention of astronomers interested in the subject of personal equation should be directed to a paper prepared by a physiologist, Dr. E. O. Sanford, of the Johns Hopkins University,
and pablished in volume 2 of the American Journal of Psychology. An important contribution to the astronomical side of the subject is an inrestigation by Dr. Wislicenus, of the Strasburg Observators, who has investigated the personal equation in transit observations, not only for a horizontal position of the telescope, but for all inclinations. By placing a small convex lens behind the ocular an artificial star is obtained which is easily moved in the plane of the reticule with a velocity corresponding to any declination. Dr. Wislicenus concludes from his experi: ments that the inclination of the telescope has a considerable effect upou the observor's personal equation.
One of the essays contributed to the celebration of the Pulkowa Jubilee was a discussion of absolate personal equation by H. G. van de Sande Bakhuyzen. The artificial star observed was the meridian mark of the transit circle, to which an apparent motion'was given by interposing a prism fixed excentrically to a circular rotatiug plate. Very satisfactory results were obtained. The personality depending upon direction of apparent motion seemed to be generally small for seven observers who tried the apparatus.

ASTRONOMIOAL SOCIETIES.

The Astronomical Society of the Pacific.-Under the leadership of Pro. fessor Holden and the astronomers at the Lick Observatory the Astronomical Society of the Pacific was founded February 7, 1889, as a result of the cordial coöperation of amateur and professional astronomers in successfully observing the total solar eclipse of the preceding New Year's-day. Any person interested in astronomy is invited to join its membership. Three meetings each year are held in San Francisco and three meetings at Mount Hamilton. An excellent series of publications, in octavo form, issued at irregular intervals, has reached the second volume. These "publications" contain papers read before the society, and also notices from the Lick Observatory prepared by members of the observatory staff. A fund has been established known as the "Donohoe fund for the maintenance of the comet merlal of the Astronomical Society of the Paciflc," the principal conditious of the gift, a medal of bronze, being the discovery of a new comet or the first precise determination of position of a periodic comet at any one of its expected returns. The discoverer is to make his discovery known in the usual way, and also to communicate it immediately to the director of the Lick Observatory. No application for the bestowal of the medal is required.
The British Astronomical A88ociation.-A new ustronomical society, to be called the British Astronomical Association, has been formed in England to meet the wishes and needs of those who fud the subscription of the Royal Astronomical Society too high, or its papers too advanced, or who are, as in the case of ladies, practically excluded from becoming fellows; it is also to afford a means of direction and organization in the work of observation to amateur astronomers. The
new society is thus to be regarded as supplementary to the older one, and not its rival. The first general meeting was held on October 24, 1890, in the hall of the Society of Arts, Adelphi, London, and the officers nominated by a provisional committe. were elected, Oapt. W. Noble being made president. The sections under which the work of observation is organized are: Meteoric, solar, lunar, spectroscopic, and photographic, colored stars, variable stars, donble stars, and Jupiter, each section being presided over by an amateur astronomer who has devoted special attention to the subject named. The first number of the Journal appeared in October, 1890, under the able editorship of Mr. E. W. Mannder.

Gesellschnft Urania.-The building forming the headquarters of the Gesellschaft Urania was completed in July, 1889, and is described at some length by Dr. M. W. Meyer in the February and March numbers of Himmel und Erde. The Gesellschaft is for the purpose of popularizing science. The chief astronomical instrument is a 12 -inch refractor by Bamberg, the glass for which was made by Schott \& Co., of Jona. There are also a 6 -inch and a 4 -inch refractor, a 6 -inch reflector, a 21. inch transit, and a 5 -inch comet-seeker. These instruments are for the use of visitors, and for cloudy nights a collection of 700 lantern slides is provided.

The thirteenth meeting of the Astronomische Gesellschaft was held at Brussels, Soptembr 10 to 12, 1889. The next meeting is at Munich in 1891.

Astronomical prizes.-The Lalande prize of the French Academy of Sciences was awarded for 1889 to M. Gonnessiat of the Lyons observa. tory, the Valz prize to Oharlois, and the Janssen prize to Lockyer.

In 1890 the Lalande prize was awarded to Schiaparelli for his observations determining the rotation of Mercury and Venus, the Valz prize to Glasenapp for his determination of the orbits of double stars, and the Janssen prize to Young. The Damoiseau prize, for which but one memoir was presented, was continued for another year with the same subject: To perfect the theory of the inequalities of long period caused by the plancts in the motion of the moon.

The Oopley medal of the Royal Society was awarded on November 20, 1890, to Professor Simon Newcomb for his contributions to gravitational astronomy.

The first award of the Donohoe medal was made to Mr. W. R. Brooks for the discovery of a comet on March 19,1890 ; the second to Mr. W. F. Denuing for his comet of July 23, 1890, and the third to Monsieur Jerome Coggia, astronomer of the observatory of Marseilles, for his discovery of a comst on July 18,1890 , this being the eighth comet discovered by M. Ooggia.

A generons gift has been made in aid of astronomical research by Miss C. W. Bruce, of New York, who placed in the hands of Professor Pickering, director of the Harvard Observatory, $\mathbf{\$, 0 0 0}$. In answer to a circular
issued by Professor Pickering, numerous requests were received for hid from this fund, and various sums were awarded by Professor Pickering so as to aid as wide a range of astronomical subjects as possible, and to aid investigators in all parts of the world.

Among new works of general interest to astronomers may be mentioned Miss Olerke's "The System of the Stars;" a new edition of Chambers' Astronomy in three volumes. The first two volumes of an able "Traite de mecanique celeste," the first containing the general theory of perturbations, and the second on the figures of rotation of celestial bodies; these are to be followed by a third volume on the Iunar theory, theory of Jupiter's satellites, Hansen's method for the calculation of perturbations, and other methods of recent date. Another work which has been found useful as a text-book is Dziobek's Die mathematischen Theorien der Planeton-Bewegungen.

Dr. Scheiner has published a treatise on spectrum analysis which is intended to form the first volume of complete work on astrophysics.

The first volume of the national edition of the works of Galileo has appeared under the patronage of the King of Italy.

Dr. Dreyer has published a biography of Tycho Brahe upon which he has been at work for several years past.

A very interesting paper on Bowditch, who translated Laplace's "Mécanique Oéleste," has been contributed by Prof. Joseph Lovering to the Proceedings of the American Academy of Sciences.

An index to the literature of spectroscopy, compiled by Mr. Alfred Tuckerman, has been published in the Smithsonian Miscellaneous Oollections. It contains a bibliography of the history of the subjects ; of books; of apparatus; of spectrum analysis in general; of qualitative analysis; of quantitative analysis; of absorption spectra; of alkalies and alkaloids; of astronomical spectroscopy ; of carbon compounds, and of the spectra of metals; there is also a list of 799 authors. The number of titles is 3,829 .

Another useful contribution to astronomical bibliography is the catalogne of the Orawford Library at the Royal Observatory at Edinburgh, presented to the observatory by the Earl of Orawford, and formerly constituting the library of the Dun Echt Observatory. The catalogue was compiled by the present astronomer royal for Scotland, Mr. Oopeland, and contains a number of rare works.

Reference should also be made to a new edition of M. Lancaster's useful little Liste générale des observatoires, appearing in 1890 with many additions and corrections.

ASTRONOMICAL BIBLIOGRAPHY FOR 1889.

A brief bibliograpliy of astronomy for the year 1890 having been contributed to the Sidereal Messenger for 1891, it seems unnecessary to cover more than the year 1889 in the present review. The titles given below include the most important books and journal articles of 1889 , that
have come under the compiler's notice, some few titles having been taken from reviews or catalogues, where the publications themselves have not been accessible.

In the reference to periodicals the volume and page are simply separated by a colon; thus: Astron. Jour. 8:153 indicates volume 8, page 1b3, of the Astronomical Journal. The following less obvious abbrevia. tions occur :

```
Abstr. \(=\) Abstract.
    Am. = American.
    Bd. \(=\) Band.
        \(\mathrm{d} .=\mathrm{di}\), der, del, ete.
        ed. \(=\) edition.
    \(\mathrm{Htt} .=\mathrm{Heft}_{\mathrm{e}}\).
    hrag. \(=\) herausgegeben.
        il. \(=\) illustrated.
j., jour. \(=\) journal.
    k. k. = kaiserlich, königlich.
    Lfg. \(=\) Lieferung.
    M. \(=\) Marks.
    n. d. \(=\) no date.
    n. p. \(=\) no place of publication.
```

```
    n F : \(=\) neue Folge.
    n. s. \(=\) new series.
    Not. - Notices.
Obsvy. = Observatory.
            p. \(=\) page.
            \(\mathrm{pl} .=\) plates.
portr. \(=\) portrait.
    \(\mathrm{pt},=\) part.
            r. = realo.
    Rev. \(=\) Review.
            s. \(=\) series.
    sc. \(=\) science, suientifio.
    vol, \(=\) volumes.
\[
\begin{aligned}
\text { n } \mathrm{F} & =\text { neue Folge. } \\
\text { n. s. } & =\text { new series. } \\
\text { Not. } & =\text { Noticees. } \\
\text { Obsvy. } & =\text { Observatory. } \\
\text { p. } & =\text { page. } \\
\text { pl. } & =\text { plates. } \\
\text { portr. } & =\text { portrait. } \\
\text { pt. } & =\text { part. } \\
\text { r. } & =\text { realo. } \\
\text { Rev. } & =\text { Review. } \\
\text { s. } & =\text { series. } \\
\text { so. } & =\text { sciene, scientifio. } \\
\text { vol. } & =\text { volumes. }
\end{aligned}
\]
```


NECROLOGY OF ASTRONOMERS FOR 1889-90.

- Biographical sketches of most of the following astronomers are to be found in the colnmens of the Astronomisele Naohrichten, in the Viertel. jahrschrift, der Astronomischen Gesellschaft, or in the Monthly Notices of the Royal Astronomical Society.
'Adolph (Carl). Born at Nordstemmen, Hanover, April 8, 1838; died January 3, 1890.

Cacciatore (Gaetano). Bori at Palermo Maroh 17, 1814 ; died at Palermo June 16, 1889, at. 75.
De Larue (Warren). Born at Guernsey January 18, 1815; died April 19, 1889, att 74.
Erck (Wentwortit). Born in Dublin, 1827; died at Sherrington, Wioklow, January 15,1890, at. 63.
Fearnley, (Cari Frederik). Born at Frederiksbald December 19, 1818; died August 22, 1890, at 72.
"Fimviz (Cilarles). Died February 2,1890 , at 46.
Montigny (C. M. V.). Died at Schaerbeck, Maroh 16, 1890, at 71.
Newali. (Robert Stiring). Borin in Dundee May 27, 1812; died April 21, 1889, ct. 77.
Oom (Frfaderico Augusto). Born at Lisbon December 4, 1830; died at Lisbon July 24, 1880, at 60 .
Perry (Stephen Joserf). Born in London Augast 20, 1833; died at sea near Demarara, December 25, 1889, at. 56.
Peters (Christian Heinhich Friedmich). Born at Coldenbuitel, Schlesiwig, September 19, 1813; died at Jlinton, New York, July 19, 1890, at. 77.
Respighi (Lorenzo). Born at Cortemaggiore, Pracenza, October 7, 1824; died at Rome December 10, 1849, at. 75.

Rosenberger (Otto august). Born at Tukkum, Russia, August 10, 1800; died at Halle Jauuary 23, 1890, ret. 90.
Schulitz (Hekman). Born at Nygvarn, Södermanland, July 7; 1823; died at Stookholm May 8, 1890, et. 67.
Thmpel (Ernst Wihhelm Labereont). Born at Nieder-Kunersdorf, Saxony, Docember 4, 1821 ; died at Arcetri Mareh 16, 1889,* nt, 66.
Weld (Alfred). Born August 5, 1823; died at Grahamstown July 24, 1890, at. 67.

ASTRONOMICAL BIBLIOGRAPHY, 1889, 1890.

Asteroid 80.

Bryant (R.) Orbit of the planet (80) Sappho. Astron. Naolir., 121: 321-32.
-. Orbit of planet (80) Sappho, the secular perturbalion of the minor plauets upou elements of that orbit, and the mass of planet Jupiter. Astron. Jour., 8: 185-9.
Kirkwood (D.) Inclination of the asteroids. Sill. Moss., 8: 305-7.
Lehmann (P.) Zusammenstellung der Planeten-Entdeckungen im Jahre 1888. Vrtljsehr. d. astron. Gesellseh., 24: 4-9.

Astronomers.

Morton (E. J. C.) Heroes of soience. Astronomers. 8+341 p. L2uio. London and New York, [1889].
Astronomioal Society of the Paoifio.
[BY-laws, etc. Socety organized Feb. 7, 1889.] Pub. astron. soc. Paoitic 1: 1-7. Mefing of the Astronomical Society of the Paeific. Sid. Mess., 8: 358. -
Astronomy.
Ball (R. S.) Elements of astronomy. New ed. $4+459 \mathrm{p} .12 \mathrm{mo}$. London, 1889 ,
Holden (E. S.) List of the principal astronomical journals, transaotions of societies and books of roference.] Pub, astron. soc. Paelfic 1: 15. 1889.
—. Work of an astronomieal society. Pub, astron, soc. Pacifio 1: 9-15. 1889.
Parker (W. H.) Familiar talks on astronomy, with chapters on geography and navigation. $13+264 \mathrm{p}$. 12°. Chicago, 1889.
Porter (J. G.) Our celestial home. An astronomer's view of heaven. 116 p. 16mo, New York, [188! ${ }^{1}$].
Liskin (W.) Lehrbueh der sphlirisolen und theoretischen Astronomie und der mathematisolien Geographie. $12+280 \mathrm{p} ., 1 \mathrm{pl} .8$ 8o. Stuttgart, 1889.
Young (C. A) A text-book of general astronomy, for colleges and scientifio schools. 8vo. Borton, 1889.
Astronomy (Bibliography of).
Houzeat (J. C.) Bibliographie genorrale de l'astronomie.
Astronomy (History of).
Bertin (G.) Babylonian astronomy. Nature $40: 237,285$.
Epping (J.) Astronomisches aus Babylon. 100 p. il. 8vo. Fribourg-en-Brisgau, 1889.

Astronomy (Progrebs of).
Plammarion (C.) Lea progròs de l'astronomie pendantlomíée, 1888. L'Astron. 8: 162-74. 1889.
Winlock (W. C.) Account of tho progress in astronomy in the year 1886. Smithsonian rept. 1886-87: 991-87. Al80, Reprint.

Chronometers.

Hilfiker (J.) L'influence de la pressionde l’air sur la marohe des chronomètres. 22 p. 12mo. Neuchatel, 1889.

Repr. from: Bull. Soc. d. nc. nat. de Nouchatel, 17.

[^15]
Comet Winnecke.

von Haerdtl (E.) Bahn des periodisohen Konieten Winneoke in den Jahren 1858-86. II. Theil. 38 p. 4to. Wien, 1889.

Comet 1867 III.

Broon (P.) Bahnbestimmung des Cometen 1867 III. Sitzungsh. d. k. Akad. d. Wissensch. in Wien, 97. \&. Abth. Also, abstr. : Astron. Naehr., 121: 353-8. Comet 1880 V.

Bebbe (W.) and Puldips (A. W.) Orbit of Swift's comot 1880 V, detormined by Gibbs's vector method. Astron. Juir., 9: 113-121.

Comet 1887 I.

Oppeniakim (H.) Definitive Bestimuinag der Bahn dos grossen Siidcometen 1887 I. Astron. Naclir., 121: 337-42.

Comet 1889, Jan. 15.
barnard (E. E.) Search for tho comet reported, 1889, Jam. 15, by Mr. Brooks. Astron. Jour., 8: 168.
Comet 1889 V.
Barnard (E. E.) Companions to comet d 1889 (Brooks). Astron. Jour., 9 : 77-78.
-. Companions to conet $a 1889$ (Brooks). Sid. Mess., 8: 360-63.
-. A very remarkable comet. Pub. astron. soc. Pacilic 1: 72.

- tity of the latter with Lexoll's comet of 1770. Astron. Jour., $9: 100-3$.

Comets.

Brediciin (T.) Quelques mots sur lorigine des comètes poriodiquos. Astron. Nachr., 120: 331. 1889. Also: Bull. Soe. Inip. d. uat. di: Moscon, 1889, No. 2. Callandreu (O.) Thérie des comètes périodiques. 64 p. -4to. Paris, 1889. Repr. from: Aun. obs. d. Par. 20.
Cometary discoveries during the years 1840-'68. Obsry., 12: 435.
Denning (W. F.) Notes on comets and comet seeking. Obsry.,12: 256, 285, 311, 349, 372, 403, 433.
Kreutz (H.) Bericht üher Cometen. Vrtljgebr. d. astron. Gesellsch., 24: 293-8. 1889.

Maunder (E. W.) Comet 1887 I and cometary tails. Obsry., 12: 70-4.
Sonuliof (L.) Notes sur quelques comètes à courte période. Bull. astron, 6: 465-71.
Tisserand (F.) Théorie de la capture des comètes périodiques. Bull. astron, f : 241, 289.

Comets of 1888.

Krkutz (H.) Zusammenstellung der Cometen-Ersoheinungen des Jahres 1888. Vrtljsehr. d. astron. Gesellsoh., 24: 9-17.

Computing Maohines.

babmage (H. P.) Babbage's calculating engines . . . $8+342+3$ p. 11. portr. pl. Lond., 1889.
Corona (Solar).
Anney (W. de W.) and Thonpe ('I. F.) Determination of the photometric intensity of the coronal light . . . eelipse 1886, Aug. 28-29. Phil. Trans., 363-84. 1889.

Bigelow (F. H.) Solar corona discussed by spherical liarmonics. 22 p., 1 pl. 4to. Washington, 1889.

Smithbonian publication No. 691.

Cosmogony.

Croll (J.) Siellar evolution and its relations to geological time. $11+118 \mathrm{p}$. 12mo. New York, 1889.

Reo. hy Fowler (A.) Nature 40: 199.
Hirn (G. A.) Constitution de l'espace cóleste. 332 p., 1 pl. 4to. Paris, 1889.

Dearborn Observatory.

Hough (G. W.) New Dearborn Observatory. Il.' Sid. Mess., 8: 341-48.
De La Rue (Warren) [1815-'89].
Hugains (Marganet L.) [Obituary notice . . .] Obsry., 12 : 244-50.
Double Btars.
Clehke (A. M.) New double stars. Nature 41 : 132.
Earth.
Caldanibaeau (O.) Remarques sur la theorie de la figure do la terro. Bull. astron., 6 : 185-92.
Howe (H. A.) Eirth tremors. Sid. Mess., 8 : 448-4!.
Poincané (H.) Flguro de la terre. Bull. astron., $6: 5,49$.
Sominparelli (G. V.) Rotation de la terre sons l'hftance dos actions goologiques. 32 p .8 8o. St.-Pétersbourg, 1889.
Woonwanis (R. S.) ' We mathemation thoories of tho oarth. is p. 8vo. Salem, 1889.

Address as vice.president of Seet. A, Amer. Ass. Adv. Sc., Toronto, 1880.

Easter.

Dates de la fête de paqios . . . [1582-2200]. L'Astron. 8: 418. 1889.
Eclipse of the Sun, 1886, August 28-29.
Pickering (W. H.) 'lotal eclipse of the Sun, Angust 20, 1886. Ann. Harv. Coll. Obsry., 18: 85-111. (v. 18, no. 5.) 4pl. Also, Reprint.
Eclipse of the Sun, 1889, January 1.
Honden (L. S.) [Preliminary report] on the solar echipse of Jamary 1, 1889. il. Obsry., 12: 130-4.
Reports on the observations of the total eclipse of the Sun of January 1, 1889, published by the Lick Observatory. $10+210$ p. il. 8vo. Saeramento, 1889.
Pickiming (W. H.) [Photograph of the corona taken during] the total solar eolipse of January, 1889. Sid. Mess., 8: 337-39.
'Iond (D. P.) Photographs of the corona . . . [with notes on the] structure of the corona. 10 p., 2 pl. 4to. Washington, 1889.

Smithsonian publlation No. 692.
Eclipse of the Sun, 1889, December 21.
Holden (E. S.) Lick Observatory expedition to observe the solar celipse of December 21, 1889. Sid. Mess., 8: 339-41.
Encke (J. F.) Gesammelte mathematiselie und astronomiseho Ablandlangen. 3. Band. Astronomischo und optische Abhandlungen. 158 1. 8vo. Berlin, 1889.

Fedorenko (Iwan) [1827-88].
Lewit/zy (G.) Todes-Anzeige. Astron. Nachr., 120: 310.
Geodesy.
Gonn (J. H.) Blbliography of geodesy. Rept. U. S. Coast und Geod. Surv. 1887: 312-512 (Rept. 1887, App. 16). Also, Reprint.

Harvard College Observatory.

Pickeming (E. C.) The Bruce photographic toloseopo. 11. Ato. Cambrilge, 1889.

Pickering (E. C.) [Circular showing the noed for] a large photographic telescope. 4 p. 4to. Cambridge, 1888 . Also: Sid. Mess., 8: 304.

Horizon (Artificinl).

Mailiat (-.) Noil vean bain do mercuro, perfoctionne. liAstron., 8: 107. 1889.
Houzeau.
Langaster (A.) Notes biographiques sur J. C. Hohzeall. 120 p., portr. Bruxelles, 1889 .

Euygheng (C.)

Euvaes complètes . . . Tome 2. $6+639$ p., 1 pl. La Hague, 1899.
Jupiter (Satellites of).
Downing (A. M. W.) [Glasenapp's disoussion of eolipses of Jupiter's satellites.] il. Olsery., $12: 173,210$.

Jupiter.

Barnard (E. E.) Observations . . . with a 5 -inch refractor durlng the yoars 1879-1886. il. Pub, astron. soc. Pacific, 1: 89-111.
Flammarion (C.) Le monde de Jupiter. il. L'astron., 8: 361-401. 1889.
Holden (E. S.) Drawinge . . . made with the 26 -inch equatorial at Washington during 1875. il. Pub. astron. soc. Paoific, 1: 111. 1889.
[L'occultation de Jupiter. 1889. Aug. 7.] il. L'Asstron., 8: 322.
Terby (F.) [Structure de la bande nord équatoriale de Jupiter.] 4 p . il. \&vo. Bruxelles, 1889. Bull. Aoad. roy. de Bolg., 3. s., 18, nos. 9, 10.
——. Same. 6 p. il. 8 vo. Bruxelles, 1890. Bull. Acad, roy. de Belg., 3. s., 18, No. 12, 1889.
Whliams (A. S.) Zenographical fragments: the motions and changes of the markings oil Jupiter during 1886-87. 118 p., 9 pl. 8vo. London, 1889.

Jupiter (Orbit of).

Hill (G. W.) Leverrior's determination of the second-order terins in the secular motions of the eccentricities and perihelia of Jupiter and Saturn. Astron. Jour., 9 : 89-91.

Karlsruhe Observatory.

Veroffientlichungen . . . Heft 3. 8+204 p., 3 pl. 4to. Karibruhe, 1889.
von Kuffner Observatory.
Publicationen der von Kuffinerschen Sternwarte in Wien. 1. Band. 217 p., 12 pl. 4to. Wien, 1889.
Le Verrier (U. J. J.) [1811-77].
Statue . . . a l'observatoire de Paris. L'Astron., 8: 281. 1889.

Lick Observatory.

Holden (E. S.) L'obsorvatoire Lick, il. L'Astron., 8: 241, 305. 1889.

Lunar theory.

Franz (J.) Die Konstanten der physisohen Libration des Mondes, abgelietet aus Schliter's Beobachtungen. Känigaberg, 1889.

Rev. by R[adau] (R.) Bull. astron., 6: 309-407.

MoCormick Observatory.

Publications . . . v. 1, pt. 4. Double stars. 1885-86. [51]]. 8vo. Univ. of Virginia, 1880.

Mars.

Flammarion (C.) Changements actuellement observes à la surface do la planèto Mars. il. L'Astron., 8: 208, 285. 1889.
——. Observations de Mars faites a l'observatoire Lick . . . il. L'Astron., 8: 180-84. 1889.
Gmbigny (P.) Les marées sur Mars. L'astron., 8: 381-8. '1889.
H[olden] (E. S.) Variations of the surface of Mars. Pub. astron, boc. Paciffe, 1: 122.
Mac Coll (H.) A journey to the planet Mars. Naturo. London, 1889.
Rev. by Gregory (R. A.) Nature, 40: 291.
Meisel (F.) Versuch, die Verdoppeling der anf der Marsoberflidohe beobachteten Linien auf optisehen Wege zn erklären. Astrou. Nachr., 121:371.
Nouvelles déconvertes sur Mars: canaiax, laos et mers dédoubles. il. L'astron., 9: 401-11. 1890.
Schmaparella (G. V.) Sur la planète Mars. il. L'Astron,, 8: 19, 42, 89, 124. 1889.

Meohanios (Colostial).
Trsserand (F.) Traité de mécanique celeste. Tome 1. 474 p. 4to. Paris, 1889. Traxter (R, P,) Prinoiples of meohanics as applied to the solar system. 70 p . il. 8vo. San Francisco, 1889.

Meteors.

BrEDiohin (T.) Qnelques propriótes remarquables des courants méteoriques. Vrtljsohr, d, astron. Gesellsoh., 24: 273-9. 1889.
Denning (W, F.) Determination of attennated meteor-streams. Obsry., $12: 182$.
Kleiber (J.) Petite histoire des étoiles filantes. L'Astron., 8: 413. 1889.
Lockyer (J. N.) Notes on meteorites. Nature, 39: 402; 40: 136.
Monck (W. H. S.) Meteors and meteorites. Sid. Mess., 8 : 3y5-402.
Miorometers (Double inage).
Bhendel (M.) Ueber eín neues von Herri Dr. Wellmann construirtes Doppel-bild-Mikrometer. Vrtljsohr. d. astron. Gosellsch., 24 : 268-72, 1889.
Moon.
Boys (C. V.) Heat of the moou nod stars. il. Proo. roy. soc., 47 : 480-99.
Langley (S. P.) Temperature of the moon. Am. J. Sc., [38]: 421-40. 1889.
——. Same. Mem, nat. acad. so., 4: 103-212. 20 pl. 4°. 1889. Also, Reprint.
Milky way.
Plassmann (J.) Ueber Grösse, Gestalt und Sternflille dor Milchstrasse. 10 p.8vo. n. l., 11. ג.

Mitohell (Ormsby Moknight).
Porter (J. (1.) Ormsby Moknight Mitohell. Sid. Mess., 8 : 442-47.
Nebula in Lyra.
Hall (A.) Note on the ring.nebula in Lyra. Astron. Jour, $9: 64$.
Photograpiye de la nébulembe de la Liyre. il. L'Astron., 9: 441-6. 1890.
Nebula in Orion (Great).
C[ommon] (A. A.) [Note on a photograph by Roberts.] il. Obsry., 12: 105.
Nebula.
Young (C. A.) Note on recent papers of Dr. Huggins. Sid. Mess., 8: 289-91,
Clerk (A. M.) Spectra of the Orion nobula and of the aurora. Obsry, 12: 366-70.
Nutation.
Folie () Détermination de la nutation diurne. Bull, astrou., 6: 100-3.
Objeotives.
Eattermann (H.) Untersuohnngen iiber die Gestalt der Bilder und dio Theorio der Messungen ausserhalb der optischen Axe von astronomisohen Instrumenten. Astron. Nachr., 120: 337-416.
Steinheil (A.) Finfluss der Objeotivoonstruetion anf die Liohivestheiling in seitlioh von der optisohen Axe golegenen Bildumenten von Steruen bei zweilinsigen Systemen. Sitzungsb. d, math,-phys. Cl. d, k. bayer. Akad. d. Wissensch., 19 (Iftt. 3) : 413-15. 1889.
--: Vertheilung des Lichtes in seitlioh von dor Axe gelegenen Sternbililern und den Einfluss der Construction des Objectives hiernaif. Vrtljsehr, al. astron. Gesellsch., 24: 254-9. 1889.

Observatories.

Beamer (G. H.) Report on astronomical obsorvations for 1886. Smithson. Rept., 1886: 307-483. Also, Reprint.
Budaer de l'astronomio et do In mótoorologie [en France 1891]. L'Astron, 0: 436. 1890).

Jahresbemphte der Sternwarten fur 1888. Vrtljsehr, d, astron, Gesellech., 24 :1 85-171.
H. Mis, 129—12

Ocoultations.
Callaninreal (O.) Prédiotion des oconltations. Ball, astron., $6: 129-41$.

Orbits.

Glauser (J.) Bahnbestimmung nach Lambert. Astron. Nachr., 121: 65-70.
Searies (G. M.) Computation of the true anomals, radius-vector and coordiuntes in ellipses of great eccentricity. Astron. Jour., 8: 153-6.
Scuuliof (L.) Formiles diftérentielles poir les variations des fléments d'une orbite. Bull, astron., 6: 151-192.
Oxford University Observatory.
Astronomidal observations . . . miler the direotion of C. Priteliard. Nö. 3. Researohes in stollar parallax by tho nd of photograping. $8+138$ p. 8 vo . Oxford, 1889.
Parallax.
von Rebeur-Paschwitz (E.) Hillistafeln zur Berechunug der Parallane fin Cometen-und Planotenbeobachtnngen. Varöflontl. d. Grossheragl. Struwrt. zu Karlsruho, 3 : 183-204. 1889.
Parallax (Solar).
Harkness (W.) On the massos of Meroury, Venns, and the Earth and on the bolar parallax. Astron. Jonr., 9: 9-15, 31.
-. On an orror in computation of tho solar parallax. Astron. Jour., 9: 5-31.
Parallax (Steller).
Belopolsky (A.) Beitrag zur Ermitielung von Steruparallaxenaus Durchgangeheobaohtungen. Astron, Nachr., 121: 113-28.
Flammakion (C.) Distances des otoilos. ['lubles.] L'ustron., 8: 441-50. 1889. Clerke (A. M.) Star distances. Nature, 41: 81.
Paris Exposition (1889).
L'astronomie il'exposition. J'astron, 8: 450.
Paris Observatory.
Rapport annuel . . . pour l'aunce 1888 . . . par [E.] Mouchez. 26 p . 4ta Paris, 1889.
Personal equatioz.
Bakhuyzen(H. G. van de Sando). Beselireibung eines Apparates zu derabsolnton persöuliches Fehters . . . 40 p., 2 pl . 4to. Haag, 1889.
Gonnessiat (l^{\prime}.) Recherchus sur les aremes jorsonnollos daus los observations. de passuges. Bull. astron., 6: 4il-80.
Langley (S. P.) Obsorvation of sidden phenomena. Sid. Moss., 8: 291-90.
Low (M.) Der persïnllcho Fehler bei Messung voí Zenith.Distanzen und Azlminten. Astrotn, Nachr., 121: 307-16.
Personal soale,
Boquet (F_{i}) Reoherche sur la valear des observations do passages, Bull. astron., (5: 337~43.
Photographic Congress, Paris (1887).
Bullemin da comité international pormanont pour l'exécution photographique de la carte du olel. p. 147-286 (30 ot 4^{e} fasciculo).
[Circular of Internatlonal Congress on colestial photography.] Olesry., 12: 3;3-32.
[Raponts of meotling of permanent committee on clarting, and of organization of committee on celestial photography and spectrosoopy.] Obsry., 12: 363-f.
Photography.
Mefting of the pernanent committeo of the astro-photographie congress. Sid. Mess., 8: 410-14.
Pickicmina (E. O.) Photogmphie ditermination of the brightiess of the stars. Ann, Harv. Coll, Olssry, 18: 119-214 (v. 18, No. 7). Also, lReprint.

Photography (Astronomical).
Flammarion (C.) Les progrés de la photographie céleste. il.. JiAstron., 8: 121-4. 1890.
Holden (E. S.) Photographing and seeing stars in tho day-time. Astron. Jour., 9: 73-74.
Photography (Stellar).
AnOTHER photographic ohart of the heavens. Obsry., 12: 308-11.
Chanlier (O. V. L.) Auwendung dor Sternpbotographie zu Helligkertsmessungen der Sterne. $8+31$ p. 4to. Leipzig, 1889.

Pub. d. astron. Gesellisoh., 19.
Gould (B. A.) Rednotion of photographic observations, with a determination of the position of the Pleiades from photographs by Mr. Rutherfurd. Mem. Nat'l Aoad. Sc., 4: 173-90 (v. 4, 3. mem.). Also, Reprint.
Kapteyn (J. C.) Bericht iber die zur Horstelling einer Durchmusternng des sidalich , it Himmols ansgefuhrten Arboiten. Vrtljselr, d. astron. Gesellsch., 24: 213-20.
L^ cantr photographique du ciol, L'astron,, 8: 388-91. 1889.
Pickigring (E. C.) Photographic ehart of the heavons. Obery, 12: 375.
Reunion du comitó international permanent pour l'ex́ention de la carto photographique du ciel, a leobservatoire io Paris en septombre 1889. 112 p., 4to. Paris, 1889.

Photometry.

Suhaeberle (J. M.) Photographic brightness of the fixed stars. Pub. astron. soc. Pacific, 1:53-64.
SCImeiner (J.) Bestimmung der Sterugrössen aus photographischen Aufuabmen. Astron. Nachr., 121: 49-62.

Planets.

Gregory (R. A.) Determidation of masses in astronomy. Nature, $40: 80$.
Hall. (A.) Deduction of planetary masses from the motions of comets. Astron. Johr., 9: 47.

Pleiades.

Elkin (W. L.) Comparison of Dr. Gould's reductious of Mr. Rutherfurl's Ploiades photograplis with the heliometer results. Astron. Joni., 9: 33-35.
Gould (B. A.) Detemination of the position of the Pleiades from photographe by Mr. Rutherfurd. Mom, mat'l acad. sc., 4: 173m0. (v. 4, 3, mem.) Also Reprint.
Præsepe.
Goum (B. A.) Reduction of photographic observations of tho Presopo. Mom, Nat. Acad. Sc., 4: 193-9. (v. 4, 4, mem.) Also, Reprint.
Proper motion.
Boss (L.) Proper motions of stars in the Albany zones. ($+0^{\circ} 50^{\prime}$ to $50^{\circ} 10^{\prime}$ for 1885.) Astron, Jour., 9: 57-144.

Red stars.

Clehke (A. M.). Some southern red stars. Obsry., 12: 134.

Refraotion.

Láska (W.) Ueber olne ainfache Rofractionsformel. Astron. Nachr., 121:111. Lehmann-Fifines (R.) Eine genilherte Refractionsformel. Astron. Nachr., 121: 383.
Raday (R.) Essai sar les rofractions astronomiquos. 80 p. 4to. Paris, 1830.

Resisting medium,

Hail (A.) Resistiug medium in space. Sid, Mess., 8: 433-42.

Baturn.

Anding (A.) Die Seeliger'sche Theorie des Satnrnringes und der Beleuchtung der grossen Plaueten therhaupt. Astron. Nachr., 121: 1-16.
Hall (A.) White spot on the ring of Saturn. Astron. Jour., 9: 23.
Holden (E. S.) Reported ohanges in rings of Saturn. Astron. Jour., 8: 180-1.
Kerlen (J. E.) Onter ring of Saturn. Astron. Jour., 8: 22 175.
Leckyer (J. N.) Note on the spectrum of the rings of Saturn. Astrou. Nachr., 121 : 15.
Terby (F.) La tache blanohe de l'annean de Saturne . . . Obary., 12: 286.
-. Sur l'aspect de la planète Saturne et spocialement sur une taohe blanche et brillante observéo sur son anneau. il. Astrou. Nachr., 121 : 109, 173, 233, 305, 336, 367.
Saturn (Ringe of).
Tisserand (F.) Theorie de Maxwell sur l'aunean de Saturne. Bull. astron., 6:383, 417.

Solar system.

Boss (L.) Systematio corrections of star positious near Eiquator, with a note on the constants of solar motion. Astron. Jour., 9:17, 25.
Spectrum (Solar).
Janseen (J.) Ascension boientifique au mont Blanc. L'Astron., 9: 446-9, 1890.
-. Origine tellurique des raies de l'oxygène dans le spoctre solaire. L'Astron., 8: 206. 1889.
Langley (S. P.) The solar and the lunar spectrum. il. Mem. nat.acad. sc., 4 : 159-70, 5 pl. Also, Keprint.
Spectra (Stellar).
Espin (T. E.) Stars with remarkable spectra. Astron. Nachr., 121:33-6.
Píckering (E. C.) Henry Draper memorial. Third annaal report of the pho. tographic study of stellar spectra. $8 \mathbf{p}$. 4to. Cambridge, 1889.

Star-oatalogues.

Auwers (A.) Vorliiufiger Fundamental-Catalog für die südlichen Zonen der. Astronomischen Gesellschaft. Astron. Nachr., 121 : 145-72.
Berichte tiber die Beobaohtung der Sterne bis zur neunten Grösse am nördlichen Himmel. Vrtljschr., 24 : 280-93. 1889.
Catarogure d'étoiles deduits des observations publiées dans les vole vi et vii. Observations de Poulcova. v. 8. 1889.
Ofrtel (K.) Beziehunger der in den Berliner astronomisohen Jahrl)itohern von 1860 bis 1883 gogebenon Fixsternörter zum Fundamontal-Catalog der Astro. nomischon Gesellsohaft. Astron. Naohr., 121 : 225-32.
Kreutz (H.) Berichtigungen zu der Bonner Durchmusterungen-Zone 55 ${ }^{\mathrm{c}}-\mathrm{f} 5^{\circ}$. Astron. Nachr., 121 : 23-8.
[Peters (C. H. F.) ve. Borst (C. A.) Aetion to recover manineript. Supreme court, Oneida Co., N. Y. Opinion of Justice P. C. Williams in favor of Peters.] 19 p. 8vo. Utlea, 1889.
Pever's Star-catalogue. Sid. Mess., $8: 455-58$.
[Winiock (A.)] Meridian-oirole observations of elose polar stars. Ann. Harv. Coll. Obsry., 18: 259-84. (v. 18, no. 9.) Also, Reprint.
Btar-oharts.
Cotiam (A.) Charta of the constellations, London. 1889.
Star-placem.
Boss (L.) Systematic corrections of star positions near the Equator, with a note on the coustants of solar motion. Astron. Jour., $9: 17,25$.
Gould (B. A.) Comparisons of the photographic with the instrumental, determinations of star-placem. Astron. Jour., 9: 36-37.

Stars (Motion of) In the line of sight.
Voarl (H. O.) Ueber die auf dem Potedamer Observatorium unternommenen Unteranohungeu liber die Bewegungen der Sterne im Visions-Radius vermittelst der speotrographisohen Methode. Astron. Naohr., 121: $241-58$.
Sun.
Wolf (R.) Berioht tiber die Thätigkelt auf der Sonne in Jahre 1888. Astron. Nachr., 121 : 107.
-.. Statistique solaire de l'année 1888. L'Astron:, $8: 61.1989$.
Sun (Diameter of).
Auwers (A.) Neue Untersuohnngen tiber den Durchmesser der Sonne, III. Sitzungsb. d. k. preuse. Akad. d. Wissensch., 1889: 111-170.
Sun-spots.
Bruquikre (H.) Maxima et minima solaires. L'Astron., 8: 417. 1889.
Spoemer (G. F. W.) Yon den Sonnenfleoken des Jahres 1888 und yon der Verschiedenheit der nördlichen und slidlichen Hallunugel der Sonne seit 1883. Astron. Naehr., 121 : 105.
--. Sur les différences que présentent l'hémisphère nord et l'hénisphère sud du soleil. Bull. astron., 6 : 60-3.
Tables (Astronomical).
Parkhurst (H. M.) Astronomical tables. 456 p. 16 mo . New York, 1889.
Telescopes.
Battermann (H.) Unterauchungen iiber die Gestalt der, Bilder und die Theorie der Messungen ansserhalb der optisohen Axe von astronomischen Instrumenten. Astron. Naehr., 120: 337-416.
Common (A, A.) Great telescopes. Obrry., 12: 138.
t[ennant $]$ (J. F.) Distortion in telescopic images. Obsry., 18: 304-8.
Tempel [Guglielmo Ernesto, 1821-'89.]
Sohiaparelli (G. V.) Anzeige des Todes . . . Astron. Nachr., 121:95.
Thermograph.
Hutchins (C. C.) \& Owen (D. E.) Account of a new thermograph . . . measures of lunar radiations. Proc. Am. Acad. Arts Sc., 24: 125-45. Also, Reprint, 1889.
Three bodies (Problem of).
Brendkl (M.) Gylden's thoory. Obsry., 12: 399-403.
F[LAMmarion] (C.) Le probleme des trois corps. L'Astron., 8: 265-8. 1889.
LiApounor (A. M.) [Stability of motion in a speoial case of the problem of three bodles.] 94 p. 8vo. Silberberg, 1889, [In Russian.] Rev. by R[adau] (R.) Bull. astrou., 6: 481-9.

Tides.
Ferrel (W.) Laplace's solution of the tidal equations. Astron. Jour., 9: 41-44.
Time services. A
Obseryatory lucal patronage threatened. Sid. Mers., 8: 452-54.
Time (Universal).
La Turquie et l'unifioation du temps. L'Astron., 8:49. 1889.
Transit instruments.
Hamy (-). Variatious de l'axe de rotation des instrumente mbridiens. Bull. astron., 6: 377-83.
Trangit observations (Reduotion of).
Chandler (S. C.) Note on the equation of the meridian transit instrument. Astron. Jour., 8: 147.

Uranus.

Gheanry (R. A.) The planet Uranns. Nature, $40: 235$.
Hugains (W.) Spectrum of Uranus. Astron. Nadhr., 121: 369.
-. Photographic spectra of Uranus and Saturn. Sid. Mesth, 8: 450-52.
Lockyer (J. N.) Note on the spectrum of Uranus. Astron. Nachr., $121: 369$.

Variable stars.

Ohandler (S. C.) The period of U Coroute. Astron. Jour., 9: 97-9.
—. The varlable Y Cygni. Astron. Jour., 9; 42-3.
-. Light-variations of U Cephel. Astron. Jour., $9: 49-53$,
-. General relations of variable star phenomena. Astron. Jour, 9: 1-5.
-. Contributions to the knowledge of the inequalities in the periods of the variable stars. Astron. Jour., 8: 161-6, 172-5.
[Pickering (E. C.)] Index to observations of variablo stars. Aun. Harv. Coll. Obsry., 18: 215-57. (v. 18, no.8.) Also, Reprint.
SChONFLLD (E.) Ephemeriden veräuderlicher Storne filr 1890. Vitljsclîr. d. astron. Gesellsch., 24 : 220-34.
Yendell (P.S.) Corrigendum to the elemente of X Cygni. Astron. Jour., 9: 8. Venus.

Schaparelli. Transl. by Tesby Lee. L'Astron., 9: 285, 325,411. Aug. and Sept. Yale Observatory.

Thansactions . . . v. 1, pt. 2. Researohes with the heliomoter. Determination of the orbit of Titan and the mass of Saturn, by A. Hall, jr. [37] p. 4to. Now Havon, 1889.

THD MATHEMATIOAL THEORIES OF THE EAIRTH.*

By Robert Simpson Woodward.

The name of this section, which by your courtesy it is my duty to address to day, implies a community of interest amongst astronomers and mathematicians. This community of interest is not diffleult to explain. We can of courso imagine a considerable body of astronomical facts quite independent of mathematics. We can also imagine a much larger body of mathematical facts quite independent of and isolated from astronomy. But we never think of astronomy in the large sense without recognizing its dependence on mathematics, and we never think of mathematics as a whole without considering its capital applications in astronomy.

Of all the subjects and objects of common interest to us, the Earth will easily rank first. The earth furnishes us with a stable foundation for instrumental work and a fixed line of reference, whereby it is possible to make out the orderly arrangementiand procession of our solar system and to gain some inkling of other systems which lie within telescopic range. The earth furnishes us with a most attractive store of real problems; its shape, its size, its mass, its precession and nutation, its internal leat, its earthquakes, and volcanoes, and its origin and destiny, are to be classed with the leading questions for astronomical and inathematical research. We must of course recognize the claims of our friends the geologists to that indefinable something called the earth's crust, but considered in its entirety and in its relations to sinilar bodies of the universe, the Earth has long been the special province of astronomers and mathematicians. Since the times of Galileo and Kepler and Oopernieus it has supplied a perennial stimulus to observation and investigation, and it promises to tax the resources of the ablest observers and analysts for some centuries to come. The mere mention of the names of Newton, Bradley, d'Alembert, Laplace, Fourier, Gauss, and Bessel, calls to mind not only a long list of inventions and discoveries, but the most

[^16]important parts of mathematical literature. In its dynamical and physical aspects the Earth was to them the principal object of research, and the thoroughness and completeness of their contributions toward an explanation of the "system of the world" are still a source of wonder and admiration to all who take the trouble to examine their works.

A detailed discussion of the known properties of the earth, and of the hypotheses concerning the unknown properties, is no fit task for a summer afternoon; the intricacies and delicacies of the subject are suitable only for another season and a special audience. But it has seemed that a somewhat popular review of the state of our mathematical knowl. edge of the Earth might not he without interest to those already familiar with the complex details, and might also help to increase that general interest in science, the promotion of which is one of the most important functions of this association.

As we look back through the light of modern analysis, it seems strange that the successors of Newton, who took up the problem of the shape of the Earth, should have divided into hostile camps over the question whether our planet is elongated or flattened at the poles. They agreed in the opinion that the Earth is a spheroid, but they debated, investigated, and observed for nearly half a century before deciding that the spheroid is oblate rather than oblong. This was a eritical question, and its decision marks perhaps the most important epoch in the history of the figure of the Earth. The Newtonian riew of the oblate form found its ablest supporters in Huygens, Maupertuis, and Olairaut, while the erroneous view was maintained with great vigor by the justly distinguished Cassinian school of astronomers. Unfortunately for the Oassinians, defective measures of a meridional are in France gave color to the false theory and furnished one of the most conspicuous instances of the deterring effect of an incorrect observation. As you well know, the point was definitely settled by Mauper. tuis's measurement of the Lapland arc. For this achievenent his nane has become famous in literature as well as in science, for his friend Voltaire congratulated him on having "flattened the poles and the Oassinis;" and Carlyle has honored him with the title of "Earth-flattener."*
Since the settlement of the question of the form-progress toward a knowledge of the size of the Earth has been consistent and steady, until now it may be said that there are few objects with which we have to deal whose dimensions are so well known as the dimensions of the Earth. But this is a popular statement, and like niost such, needs to be explained in order not to be misunderstood. Both the size and shape of the Earth are defined by the lengths of its equatorial and polar axes; and, knowing the fact of the oblate spheroidal form, the lengths of the axes may be found within narrow limits from simple measure-

[^17]ments conducted on the surface quite independently of any knowledge of the interior constitution of the earth. It is evident in fact, without recourse to mathematical details, that the length of any arc, as a degree of latitude or longitude on the earth's surface, must depend on the lengths of those axes. Oonversely, it is plain that the measurement of such an are and the determination of its geographical position constitute an indirect measurement of the axes. Hence it has happened that scientific as distinguished from practical geodesy has been concerned chietly with such linear and astronomical measurements, and the zeal with which the work has been pursued is attested by triangulations on every contineut. Passing over the earlier determinations as of historical interest ouly, all of the really trustworthy approximations to the lengths of the axes have been made within the half century just passed. The first to appear of these approximations were the wellfounded values of Airy,* published in 1830. These, however, were almost wholly overshadowed and supplanted eleven years later by the values of Bessel, \dagger whose spheroid came to occupy a most conspicuous place in geodesy for more than a quarter of a century. Knowing as we now do that Bessel's values were considerably in error, it seems not a little remarkable that they should have been so long accepted with. out serious question. One obvious reason is found in the fuct that a cousiderable lapse of time was essential for the accumulation of new data, but two other possible rensons of a different character are worthy of notice because they are interesting and instructive, whether specially applicable to this particular case or not. It seems not improbable that the close agreement of the values of Airy and Bessel, computed independently and by different methods-the greatest discropancy being about 150 feet-may have been incautiously interpreted as a confirmation of Bessel's dimensions, and hence led to their too ruady adoption. It seems also not improbable that the weight of Bessel's great name may have been too closely associated in the minds of his followers with the weights of his observations and results. The sauction of eminent anthority, especially if there is added to it the stamp of an official seal, is sometimes a serious obstacle to real prog. ress, We can not do less than accord to Bessel the first place amongst the astronomers and geodesists of his day, but this is no adequate justification for the exaggerated estimate long entertained of the precision. of the elements of his spheroid.

The next step in the approximation was the important one of Clarke \ddagger in 1866. His new values showed an increase over Bessel's of about half a mile in the equatorial semi-axis and about three-tenths of a mile

[^18]iu the polar semi-axis. Since 1806, General Clarke has kopt pace with the accumulating data and given us so many different elements for our spheroid that it is necessary to affix a date to any of his values we may use. The later values, however, differ but slightly from the earlier ones, so that the spheroid of 1866 , which has come to be pretty geterally adopted, seems likely to enjoy a justly greater celebrity than that of its inmediate predecessor. The probable error of the axes of this spheroid is not much greater than the hundred thousandth part,* and it is not likely that new data will change their lengths by more than a few hundred feet.

In the present state of science, therefore, it may be said that the first $o^{\text {rder }}$ of approximation to the form and dimensions of the Earth has been successfully attained. The question which follows naturally and immediately is, how much further can the approximation be carried? The answer to this question is not yet written, and the indications are not favorable for its speedy announcement. The first approximation, as we have seen, requires no knowledge of the interior density and arrangement of the eartb's mass; it proceeds on the simple assumption that the sea surface is closely spheroidal. The second approximation, if it be more than a mere interpolation formula, requires a knowledge of both the density and arrangement of the constituents of the earth's mass, and especially of that part called the crust. "All astronomy," says Laplace, "rests on the stability of the earth's axis of rotation." \dagger In a similar sense we may say all geodesy rests on the direction of the plumb line. The simple hypothesis of a spheroidal form assumes that the plumb line is everywhere coincident with the normal to the spheroid, or that the surface of the spheroid coincides with the level of the sea. But this is not quite correct. The plumb line is not in genemal coincident with the normal, and the actual sea level or geoid must be imagined to be an irregular surface lying partly above and partly below the ideal spheroidal surface. The deviations, it is true, are relatively small, but they are in general much greater than the nuavoidable errors of observation and they are the exact numerical expression of our ignorance in this branch of geodesy. It is well known, of course, that deflections of the plumb line can sometimes be accounted for by visible masses, but on the whole it must be admitted that we possess only the vaguest notions of their cause and a most inadequate knowledge of their distribution and extent.

What is trie of plumb-line deflections is about equally true of the deriations of the intensity of gravity from what may be called the spheroidial type. Given a closely spheroidal form of the sea level and it follows from the law of gravitation, as a first approximation, without

[^19]any kuowledge of the distribution of the earth's mass, that the increase of gravity varies as the square of the sine of the latitude in passing from the equator to the poles. This is the remarkable theorem of Stokes,*. and it enables us to determine the form or elliptieity of the Larth by meaus of pendulum observations alone. It must be admitted, however, that the values of the ellipticity recently obtained in this way by the highest authorities, Olarke \dagger and Helmert, \ddagger are far from satis. factory, whether we regard them in the light of their discrepaney or in the light of the different methods of computing them. In general terms we may say that the difficulty in the way of the use of pendulum observations still hinges on the treatment of local anomalies and on the question of reduction to sea level. At present, the case is one concerning which the doctors agree neither in their diagnosis nor in their remedies.
Thuruing attention now from the surface towards the interior, what call be said of the earth's mass as a whole, of its laws of distribution, and of the pressures that exist at great depths? Two facts, uamely, the mean density and the surface density, are roughly known; a third fiat, namely, the precession constant, or the ratio of the difference of the two principal moments of inertia to the greater of them, is known with something like precision. These facts lie within the domain of observation and require only the law of gravitation for their verification. Certain inferences, also, from these facts and others, have long been and still are held to be harily less cogent and trustworthy, but before stating them it will be well to recall briefly the progress of opinion concerning this general subject during the past century and a half.
The conception of the earth as having been primitively fluid was the prevailing one among mathematicians before Olairaut published his Théorie de la Figure de la Terre in 1743. By the aid of this conception Clairaut proved the celebrated theorem which bears his name, and probably no idea in the mechanics of the earth has been more suggestive and fruitful. It was the central idea in the elaborate investigations of Laplace and received at his hands a development which his successors have found it about equally diffienlt to displace or to improve From the idea of huidity spring naturally the hydrostatical notions of pressure and level surfaces, or the arrangement of fluid masses in strata of uniform density. Hence follows, also, the notion of continuity of increase in density from the surface toward the center of the Earth. All of the principal mechanical properties and effects of the earth's mass, viz, the ellipticity, the surface density, the mean density, the precession constant, and the lunar inequalities, were correlated by Laplace §

[^20]in a single hypothesis, involving only one assumption in addition to that of original fluidity and the law of gravitation. This assumption relates to the compressibility of matter and asserts that the ratio of the increnient of pressure to the increment of density is proportional to the density. Many interesting and striking conclusions follow readily from this hypothesis, but the most interesting and important are those relative to density and pressure, especially the latter, whose dominance as a factor in the mechanics of celestial masses seems destined to survive whether the hypothesis stands or falls. The hypothesis requires that, while the density increases slowly from something less than 3 at the surface to about 11 at the center of the Earth, the pressure within the mass increases rapidly below the surface, reaching a value surpassing the crushing strength of steel at the depth of a few miles and amounting at the center to no less than $3,000,000$ atmospheres. The infer. ences, then, as distinguished from facts, are that the mass of the Earth is very nearly symmetrically disposed about its center of gravity, that pressure and density except near the surface are mutually dependent, and that the earth in reaching this stage has passed through the fluid or quasi-fluid state.

Later writers have suggested other hypotheses for a continuous dis. tribution of the earth's mass, but none of them can be said to rival the hypothesis of Laplace. Their defects lie either in not postulating a direct connection between density and pressure or in postulating a connection which implies extreme or impossible values for these and other mechanical properties of the mass.

It is clear, from the positiveness of his language in frequeut allusions to this conception of the eartb, that Laplace was deeply impressed with its essential correctness. "Observa ${ }^{4}$ ons," he says, "prove incontestably that the densities of the strata (couches) of the terrestrial spheroid increase from the surface to the center," " and "the regularity with which the observed variation in length of a second's pendulum follows the law of squares of the sines of the latitudes proves that the strata are arranged symmetrically about the center of gravity of the earth." \dagger The more recent investigations of Stokes, to which allusion has already been made, forbid our entertaining anything like so confldent an opinion of the earth's primitive fluidity or of a symmetrical and continuous arrangement of its strata. But, though it must be said that the sufficiency of Laplace's arguments has been seriously impugned, we can Lardly think the probability of the correctness of his conclusions has been proportionately diminished.

[^21]Suppose, however, that we reject the idea of original fluidity. Would not a rotating mass of the size of the earth assume flaally the sdme aspects and properties presented by our planet Would not pressure and centrifugal force suffice to bring about a central condensation and a symmetrical arrangement of strata similar at least to that required by the Laplacian hypothesis? Oategorical answers to these questions can not be given at present. But, whatever may have been the antecedent condition of the earth's mass, the conclusion seems una. voidable that at no great depth the pressure is sufficient to break down the structural characteristics of all kuown substances, and hence to prolluce viscous flow whenever and wherever the stress difference exceeds a certain limit, which can not be large in comparison with the pressure. Purely observational evidence, also, of a highly affirmative kind in support of this conclusion, is afforded by the remarkable results of Tresca's experiments on the flow of solids and by the abundant proofs in geology of the plastic movemēnts and viscous flow of rocks. With such views and facts in mind the fluid stage, considered indispensable by Laplace, does not appear necessary to the evolution of a planet, even if it reach the extreme refinement of a close fulfillment of some such mathematical law as that of his hypothesin. If, as is here assumed, pressure be the dominant factor in such large masses, the attainment of a stable distribution would be simply a question of time. The flaid mass might take on its normal form in a few days or a few months, whereas the viscous mass might require a few thousand or a few million years.
Some physicists and mathematicians, on the other hand, reject both the idea of existence of great pressures within the earth's mass, and the notion of an approach to continuity in the distribution of density. As representing this side of the question the views of the late M. Roche, who wrote much on the constitution of the earth, are worthy of consideration. He tells us that the very magnitude of the central pressure computed on the hypothesis of fluidity is itself a peremptory objection to that hypothesis.* Accorling to his conception, the strata of the earth from the center outwards are substantially self-supporting and unyielding. It does not appear, however, that he had submitted this conception to the test of numbers, for a simple calculation will show that no materials of which we have any knowledge would sustain the stress in such shells or domes. If the crust of the earth were self-supporting, its crusbing strength would have to be about thirty times that of the best cast steel, or five hundred to one thousand times that of granite. The views of Roche on the distribution of the terrestrial densities appear equally extreme.t He prefers to consider the mass as

[^22]made up of two distinct parts, an outer shell or crust whose thickness is about one-sixth of the earth's radius, and a solid nucleus havinglittle or no central condensation. The nucleus is conceived to be purely metallic, and to have about the same density as iron. To account for geological phenomena, he postulates a zone of fusion separating the crust from the nucleus. The whole hypothesis is consistently workel out in conformity with the requirements of the ellipticity, the superficial density, the mean density, and precession; so that to one who can divest his mind of the notion that pressure and continnity are impor. tant factors in the mechanics of such masses, the picture which Roche draws of the constitution of our planet will present nothing incongruous.

In a field so little explored and so inaccessible, though hedged about as we have seen by certain sharply limiting conditions, there is room for a wide range of opinion and for great freedom in the play of liypothesis; and although the preponderance of evidence appears to be in favor of a terrestrial mass in which the reign of pressure is well-nigh absolute, we should not be surprised a few decades or centuries hence to find many of our notions on this subject radically defective.

If the problem of the constitution and distribution of the earth's mass is yet an obscure and difficult one after two centuries of observation and investigation, can we report any greater degree of success in tho treatment of that still older problem of the earth's internal heat; of its origin and effects? Uoncerning phenomena always so impressive and often so terribly destructive as those intimately connected with tho terrestrial store of heat, it is natural that there should be a considera. ble varicty of opinion. The consensus of such opinion, however, has long been in favor of the hypothesis that heat is the active cause of many and a potent factor in most of the grander phenomena which geologists assign to the earth's coust; and the prevailing interpretation of these phenomena is based on the assumption that our planet is a cooling sphere whose outer shell or crust is constantly cracked and crumpled in adjusting itself to the shrinking nucleus.

The conception that the earth was originally an intensely heated and molten mass appears to have first taken something like definite form in the minds of Leibnitz and Descartes.* But neither of these philos. ophers was armed with the necessary mathematical equipment to sub. ject this conception to the test of numerical calculation. Indeed, it was not fashionable in their day, any more than it is with some philosophers in ours, to undertake the drudgery of applying the machinery of analy. sis to the details of an hypothesis. Nearly a century elapsed before an order of intellects capable of dealing with this class of questions ap. peared. It was reserved for Joseph Fourier to lay the foundation and

[^23]build a great part of the super-structure of our modern theory of heat diffinsion, his avowed desire being to solve the great problem of terrestrial heat. "The question of terrestrial temperatures," he says, "has always appeared to us one of the grandest objects of cosimological studies, and we have had it principally in view in establishing the mathematical theory of heat."* This ambition however was only partly realized. Probably Fourier under-estimated the ditnculties of his problem, for his most ingenious and inclustrious successors in the same field have made little progress beyoud the limits he attained. But the work he left is a perenuial index to his genius. Though quite inadequately appreciated by his contemporaries, the Analytical Theory of Heat, which appeared in 1820 , is now conceded to be one of the epoch. making books. Indeed, to one who has caught the spirit of the extraordinary analysis which Fourier developed and illustrated by numerous applications in this treatise, it is evident that he opened a field whose resources are still far from being exhausted. A little later Poisson took up the same class of questions and published another great work on the mathematical theory of heat. \dagger Poisson narrowly missed being the foremost mathematician of his day. In originality, in wealth of mathematical resources, and in breadth of grasp of physical principles he was the peer of the ablest of his contemporaries. In lucidity of exposition it would be euough to say that he was a Frenchman, but he seems to have excelled in this peculiarly national trait. His contributions to the theory of heat have been somewhat overshadowed in recent times by the earlier and perhaps more brilliant researches of Fourier, but no student can afford to take up that enticing, though difficult, theory without the aid of Poisson as well as Fourier.

It is natural, therefore, that we should inquire what opinions these great masters in the mathematics of heat diffusion held concerning the earth's store of heat. I say opinions, for, unhappily, this whole subject is still so largely a matter of opinion that, in discussing it, one may not inappropriately adopt the famous caution of Marcus Aurelius, "Remember that all is opinion." It does not appear that Fourier reached any definite conclusion on this question, though he seems to have favored the view that the Earth in cooling from an earlier state of incandescence reached finally through convection a condition in which there was a uniform distribution of heat throughout its mass. This is the consistentior status of Leibnitz, and it begins with the formation of the earth's crust, if not with the consolidation of the entire mass. It thus affords an initial distribution of heat and an epoch from which analysis may start, and the problem for the mathematician is to assign the subse-

[^24]quent diatribution of heat and the resulting mechanical effects. But no great amount of reflection is necessary to convince one that the analysis can not proceed without making a few more assumptions. The assump. tions which involve the least difficulty, and which for this reason, partly, have met with most favor, are that the conductivity and thermal eapacity of the entire mass remain constant, and that the heat conducted to the surface of the earth passes off by the combined process of radiation, convection, and conduction, without producing any seusible effect on surrounding space. These or similar assumptions must be made before the application of theory can begiu. In addition, two data are essential to numerical calculations, namely, the diffusivity, or ratio of the conductivity of the mass to its thermal capacity, and the initial uniform temperature. The first of these can be observed, approximately, at least; the second can only be estimated at present. With respect to these important points which must be considered after the adoption of the consistentior status, the writings of Fourier afford little light. He was content perhaps to invent and develop the exquisite analysis requisite to the treatment of such problems.

Poisson wrote much on the whole subject of terrestrial temperatures and carefully considered most of the troublesome details which lay between his theory and its application. While he admitted the nebular hypothesis and an initial fluid state of the Earth, be rejected the notion that the observed increase of anderground temperature is due to a prim. itive store of heat. If the Earth was originally fluid by reason of its heat, a supposition which Poissen regarded quite gratuitous, he conceived that it must cool and consolidate from the center outwards; * so that according to this view the crust of our planet arrived at a condition of stability only atter the supply of heat had been exhausted. But Poisson was not at a loss to account for the observed temperature gradient in the earth's crust: Always fertile in hypotheses, he advanced the idea that there exists by reason of interstellar radiations, great variations in the temperature of space, some vast regious being com. paratively cool and others intensely hot, and that the present store of terrestrial heat was acquired by a journey of the solar system through one of the hotter regions. "Such is," he says, "in my opinion, the true cause of the augmentation of temperature which occurs as we descend below the surface of the globe." \dagger This hypotheisis xvas the result of Poisson's mature reflection, and as such is well worthy of attention. The notion that there exist hot foci in space was advanced also in another form in 1852 by Rankine, in his interesting speculation on the re-concentration of energy. But whatever we may think of the hypothesis as a whole it does not appear to be adequate to the case of the

[^25]Earth unless we suppose the epoch of transit through the hot region exceedingly remoto and the temperature of that region exceedingly high. The continuity of geological and paleontological phenomena is much better satisfied by the Leibnitzian view of an earth long subject to comparatively constant surfaes conditions but still active with the energy of its primitive heat.

Notwithstanding the indefatigable and admirable labors of Fourier and Poisson in this field, it must be admitted that thes accomplished little more than the preparation of the machinery with which their suecessors have songht and are still seeking to reap the harvest. The difficulties which lay in their way were not mathematical but physical. Had they been able to make out the true conditions of the earth's store of heat, they would undoubtedly have reached a high grade of perfection in the treatment of the problem. The theory as they left it was much in ad rance of observation, and the labors of their successors have therefors necessarily been directed largely towards the determination of the thermal properties of the earth's crust and mass.

Of those who in the present generation have contributed to our knowledge and stimulated the investigation of this subject, it is hardly necessary to say that we owe most to Sir William Thomson. He has made the question of terrestrial temperatures highly attractive and instructive to astronomers and mathematicians, and not less warmly interesting to geologists and paleontologists. Whether we are prepared to accept his conclusions or not, we must all acknowledge our indebtedness to the contributions of his master hand in this field as well as in most other fields of terrestrial physics. The contribution of special interest to us in this connection is his romarkable memoir on the secular cooling of the Earth.* In this memoir he adopits the simple hypothesis of a solid sphere whose thermal properties remain invariable while it cools by conduction from an initial state of uniform temperature, and draws therefrom certain striking limitations on geologic time. Many geologists were startled by these limitations, and geologio thought and opinion have since been widely influenced by them. It will be of interest there. fore to state a little more fully and clearly the grounds from which his arguments procecd. Uonceive a sphere having a unlform temperature initially, to cool in a medium which instantly dissipates all heat brought by conduction to its surface, thus keeping the surface at a constant temperature. Suppose we have given the initial excess of the sphere's temperature over that of the medium. Suppose also that the capacity of the mass of the sphere for the diffusion of heat is known, and known to remain invariable during the process of cooling. This capacity is called diffusivity, and is a constant which can be observed. Then from these data the distribution of temperature at any future time can be assigned, and hence also the rate of temperature increase, or the tem-

[^26]II. Mis. 120--13
perature gradient, from the surface towards the center of the sphere can be computed. It is tolerably certain that the heat conducted from the interior to the surface of the Darth does not set up any re-action which in any sensible degree retards the process of cooling. It escapes so freely that, for practical purposes, we may say it is instantly dis. sipated. Hence, if we can assume that the Earth had a specifled uniform temperature at the initial epoch, and can assume its difiusivity to remain constant, the whole history of cooling is known so soon as we determine the diffusivity and the temperature gradient at any point. Now, Sir Willian Thomson determined a value for the diffusivity from measurements of the seasonal variations of under-ground temperatures, and numerous observations of the increase of temperatare with depth below the earth's surface gave an average value for the temperature gradient. From these elements, and from an assumed initial temperature of 7000° Fahr., he infers that geologic time is limited to something between twenty million and four hundred million years. He says: "We mustallow very wide limits in such an estimate as I have atternpted to make; but I think we may with much probability say that the consolidation can not hive taken place less than 20 million years ago, or we should have more underground heat than we actually have, nor more than 400 million years ago, or we should not have so much as the least observed underground increment of temperature. That is to say, I conclude that Leibnitz's epoch of emergence of the consistentior status was probably between those dates." These conclusions were announced twenty-seven years ago and were republished without modification in 1883. Recently, also, Professor Tait, reasoning from the same basis, has insisted with equal confldence on cutting down the upper limit of geologic tlme to some such figures as ten million or fifteen million yeurs.* As mathematicians and astronomers, we must all confess to a deep interest in these conclusions and the hypothesis from which they flow. They are very important if true. But what are the probabilities \& Having been at some pains to look into this matter, I feel bound to state that, although the hypothesis appears to be the best which can be formulated at present, the odds are against its correctness. Its weak links are the unverified assumptions of an initial uniform temperature and a constant diffusivity. Very likely these are approximations, but of what order we can not decide. Futhermore, if we accept the hypothesis, the odds appear to be against the present attainment of trustworthy numerical results, since the data for oalculation, obtained mostly from observa. tions on continental areas, are far too meagre to give satisfactory average values for the entire mass of the earth. In short, this phase of the case seems to stand about where it did twenty years ago, whon Huxley warned us that the perfection of our mathematical mill is no guarenty of the quality of the grist, adding that, "as the graudest mill will not

[^27]extract wheat flour from peascods, so pages of formule will not get a definite result out of loose data.".

When we pass from the restricted domain of quantitative results concorning geologic time to the freer domain of qualitative results of a general character, the contractional theory of the earth may be said still to lead all others, though it seems destined to require more or less modification if not to be relegated to a place of secondary importance. Old, however, as is the notion that the great surface irregularities of the earth are but the outward evidence of a crumpling crust, it is ouly recently that this notion has been subjected to inathematical analysis on anything like a rational basis. About three years ago Mr. T. Mellard Readet announced the doctrine that the earth's crust from the joint effect of its heat and gravitation should behave in a way somewhat analogous to a bent beam, and should pnssess at a certain depth a "level of no straiu" corresponding to the neutral surface in a bean. Above the level of no strain, according to this doctrine, the strata will be subjected to compression and will undergo crumpling, while below that level the tendency of the strata to crack and part is overcome by pressure which produces what Reade calls "compressive extension," thus keeping the nucleus compact and continuous. A little later the same idea was worked out iudependently by Mr. Oharles Davison, \ddagger and it has since received elaborate mathematical treatment at the hands of Darwin,§ Fisher, $\|$ and others. The doctrine requires for its application a competent theory of cooling, and hence can not be depended on at present to give anything better than a general idea of the mechanics of crumpling and a rough estimate of the magnitudes of the resulting effects. Using Thomson's hypothesis, it appears that the stratum of no strain moves downward from the surface of the earth at a nearly constant rate during the earlier stages of cooling, but more slowly during later stages; its depth is independent of the initial temperature of the earth; and if we adopt Thomson's value of the diffusivity, it will be about two and a third miles below the surface in a hundeed million years from the beginving of cooling, and a little more than fourteen miles below the surface in seven hundred million years. The most important inference from this theory is that the geological effects of secular cooling will be confined for a very long time to a comparatively thin crust. Thus; if the earth is a hundred million years old, orumpling should not extend much deeper than two miles. A test to which the theory has been sub-

[^28]jected, and one which some * consider crucial against it, is the volumetric amount of crumpling shown by the Earth at the present time. This is a difficult quantity to estimate, but it appears to be much greater than the theory can account for.

The opponents of the contractional theory of the Earth, believing it quantitatively insufficient, have recently revived and elaborated an idea first suggested by Babbage t and Herschel in explanation of the greater folds and movements of the crust. This idea figures the crust as being in a state bordering on hydrostatic equilibrium, which can not be greatly disturbed without a re-adjustment and consequent movement of the masses involved. According to this vien the transfer of any considerable loarl from one area to another is followed sooner or later by a depression over the loaded area and a corresponding elevation over the unloaded one, and in a general way it is inferred that the ele. vation of continental areas tends to keep pace with erosion. The process by which this balance is maintained has been called isostasy, \ddagger and the crust is said to be in an isostatic state. The dynamics of the superficial strata with the attendant phenomena of folding and faulting are thus referred to gravitation alone, or to gravitation and whatever opposing force the rigidity of the strata may offer. In a mathematical sense, however, the theory of isostasy is in a less satisfactory state than the theory of contraction. As jet we can see only that isostasy is an efficient cause if once set in action, but how it is started and to what ex. tent it is adequate remain to be determined. Moreover, isostasy does not seem to meet the requirements of geological continuity, for it tends rapidly towards stable equilibrium, and the crust ought therefore to reach a state of repose early in geologic time. But there is no evidence that such a state has been attained, and but little if any evidence of diminished activity in crustal movements during recent geologic time. Hence we infer that isostasy is competent only on the supposition that it is kept in action by some other cause tending constantly to disturb the equilibrium which would otherwise result. Such a cause is found in secular contraction, and it is not improbable that these two seem. ingly divergent theories are really supplementary.

Closely related to the questions of secular contraction and the mechanies of crust movements are those vexed questions of earthquakes, volcanism, the liquidity or solidity of the interior, and the rigidity of the earth's mass as a whole;-all questions of the greatest intersst, but still lingering on the battle fields of scientific opinion. Many of the "thrice slain" combatants in these contests would fain risk being slain again; and whether our foundation be liquid or solid, or, to speak more

[^29]precisely, whetlier the Earth may not be at once bighly plastic under the action of long-continted forces and highly rigid under the action of periodio forces of short period, it is pretty certain that some jears must elapse before the arguments will be convincing to all concerned. The difficulties appear to be due principally to our profonnd ignorance of the properties of matter subject to the joint action of great pressure aud great heat. The conditions which exist a few miles beneath the surface of the earth are quite beyond the reach of laboratory tests as hitherto developed, but it is not clear how our knowledge is to be improved without resort to experiments of a scale in some degree comparable with the facts to be explained. In the mean time, therefore, we may expect to go on theorizing, adding to the long list of dead theories which mark the progress of scientific thought with the hope of attaining the trath not so much by direct discovery as by the laborious process of eliminating error.
When we take a more comprehensive view of the problems presented by the Earth, and look for light on their solution in theories of cosmog. ouy, the difficulties which beset us are no less numerous and formidable than those encountered along special lines of attack. Much progress has recently been made, however, in the elaboration of such theories. Roche," Darwin.t and others have done much to remove the nebulosity of Laplace's nebular hypothesis. Poincare \ddagger and Darwin § have gone far towards bridging the gaps which have long rendered the theory of rotating fluid masses incomplete. Poincare has, in fact, shown us how a lomogeneous rotating mass might, through loss of heat and consequent contraction, pass from the spheroidal forin to the Jacobian ellipsoidal form, and thence, by reason of its increasing speed of rotation, separate into two unequal masses. Darwin, starting with a swarm of meteorites and gravitation as a basis, has reached many interesting and instructive results in the endeavor to trace out the laws of evolution of a planetary system.|l But notwithstanding the splendid researches of these and other investigators in this field, it must be said that the real case of the solar system, or of the earth and moon, still defies analysis; and that the mechanics of the segregation of a planet from the sum, or of a satellite from a planet, if such an event has ever happened, or the

[^30]mechanics of the evoluticn of a solar system from a swarm of meteorites, are still far from leeing clearly made out.

Time does not permit me to make anything but the briefest allusion to the comparativels new science of mathematical meteorology with its alreally considerable list of well-defued theories pressing for acceptance or rejection. Nor need I say more with reference to those older mathematical questions of the tides and terrestial magnetism than that they are still unsettled. These and many other.questions, old and new, might serve equally well to illustrate the principal fact that this address has been designed to emphasize, namely, that the mathematical theories of the earth already advanced and elaborated are by no means complete, and that no mathematical Alexander need yet pine for other worlds to conquer.

Speculations concerning the course and progress of science are usually untrustworthy if not altogether fallacious. But, being delegated for the hour to speak to and for mathematicians and astronomers, it may be permissible to offer, in closing, a single suggestion, which will perhaps help us to orient ourselves aright in our various flelds of research. If the curve of scientific progress in any domain of thought could be drawn, there is every reason to believe that it would exhibit considerable irregularities. There would be marked maxima and minima in its general tendency towards the limit of perfect knowledge; and it seems not improbable that the curve would show throughout some portions of its length a more or less defivitely periodic succession of maxima and minima. Races and communities as well as individuals, the armies in pursuit of truth as well as those in pursuit of plunder, have their periods of cuiminating activity and their periods of placid repose. It is a curious fact that the history of the mathematical theories of the earth presents some such periodicity. We have the marked maximum of the epoch of Newton near the end of the seventeenth century, with the equally marked maximum of the epooh of Laplace near the end of the eighteenth century; and, judging from the recent revival of geodesy and astronomy in Europe, and from the well-nigh general activity in mathematical and geological research, we may hope, if not expect, that the ond of the present century will signalize a similar epoch of productive activity. The minima periods which followed the epochs of Newton and Laplace are less definitely marked but not less noteworthy and instructive. They were not periods of placid repose; to find such one must go back into the night of the middle ages; but they were periods of greatly diminished energy, periods during which those who kept alive the spirit of investigation were almost as conspicuous for their isolation as for their distinguished abilities. Many causes, of course, contributed to produce these minima periods, and it would be an interesting study in philosophic history to trace out the tendency and effect of each cause. It is desired here, however, to call attention to only one canse which contributed to the somewhat general apathy of the periods mentioned,
and which always threatens to dampen the ardor of research immediately after the attainment of any marked success or alvance. I refer to the impression of contentment with and acquiescence in the results of science, which seems to find casy access to trained as well as untrained minds before an investigation is half completed or even fairly begun. That some such tacit persuasion of the completeness of the knowledge of the earth has at times pervader scientific thought, there call be no doubt. This was notably the case during the period which followed the remarkable epoch of Laplace. The profound impression of the sufficiency of the brilliaut discoveries and advances of that epoch is aptly deseribed by Oarlyle in the half humorons, half sareastic language of Sartor Resartus. "Our theory of gravitation," he says, "is as good as perfect: Lagrange, it is well known, has proved that the planetary system, on this scheme, will endure forever; Laplace, still more cunningly, even guesses that it could not have been made on any other scheme. Whereby, at least, our natical logbooks can be better kept; and water transport of all kinds has grown more commodious. Of geology and geognosy we know enough; what with the labors of our Werners and Huttons, what with the ardent genius of their disciples, it has come about that now, to many a royal society, the creation of a world is little more mysterious than the cooking of a dumpling; concerning which last, indeed, there have been minds to whom the question-How the apples ivere got in-presented diffeulties." This was written nearly sixty years ago, about the time the sage of Ecelefechan abandoned his mathematies and astronomy for literatine to become the seer of Ohelsea; but the force of its irony is still applicable, for we have yet to learn, essentially, "How the apples were got in" and what kind they are.

As to the future, we can only guess, less or more vaguely, from our experience in the past and from our knowledge of present needs. Though the dawn of that fature is certainly not heralded by rosy tints of overconfidence amongst those acquainted with the difficulties to be overcome, the prospect; on the whole, has never been more promising. The converging lights of many lines of investigation are now brought to bear on the problems presented by our planet. There is ample reason to suppose that our day will witness a fair average of those happy accidents in science which lead to the discovery of new principles and new methods. We have much to expect from the elaborate machinery and perfeeted methods of the older and more exact sciences of measnuing and weighing-astronomy, geodesy, physies, and chem. istry. We have more to expect, perhaps, from geology and meteorology, with their vast accumulation of facts not yot fully correlated. Much, also, may be anticipated trom that new astronomy which looks for the secrets of the earth's origin and history in nobulous inasses or in swarms of meteorites. We have the encouraging stimulus of a very general and rapidly growing popular concorn in the objects of our inquiries,
and the freest avenues for the dissemination of new information; so that we may easily gain the alvantage of a concentration of energy without centralization of personal interests. To those, therefore, who can bring the pre-requisites of endess patience and unflagging industry, who can bear alike the remorseless discipline of repeated failure and the prosperity of partial success, the field is as wide and as inviting as it ever was to a Nowton or a Laplace.

ON THE PHYSIOAL STRUOTURE OF THE EAR'TH.*

By Henry Hennessy, F. R. S.

The structure of the Earth, as a mechanical and physical question, is closely connected with the origin and formation of its satellite, and of the planets and satellites belonging to the same solar system. The Inilliant results obtained during the present and preceding century by the aid of mathematical analysis, whereby the motions of those bodies have been brought within the grasp of dynamical laws may have led to the notion that by similar methods many obscure problems relating to the planct we inhabit might be accurately solved. But although the general configuration of the Earth and planets has been treated mathematically, with results which leare little to be desired, when applications of analytical methods are attempted to questions of de. tail in terrestrial structuri, the complication of the conditions is so great as to impose the necessity on some investigators of so altering these conditions as to make their results perfectly inapplicable to the real state of the Earth. Physical geology presents problems the solu. tion of which undoubtedly calls for mechanical and physical considera. tions; but these may in general, under the complex uature of the phenomena, be often better reasoned out without the employment of the symbolical methods of analysis. In most cases the conditions are totally unlike those above alluded to, which almit of precise numerioal computations. The heterogeneous character of the rocks composing. the Earth's crust, and the probably varied nature of the matter compos. ing its interior, render mathematical applications rarely possible, and sometimes misleading Suoh views seem to bo gradually gaining strongth among geologists who pay attention to questions of a general nature, and no one has beetor expressed them in recent times than Prof. M. I. Wadsworth.t

The principle upon which I have ventured to found all my researches on terrestrial physics is this: to reason on the matter composing the globe from onf knowledge of the physical and mechanical proporties

[^31]of its materials which come under our notice. Of these properties the most important are density, compressibility, and contraction or dilation from changes of temperature. Nowton and other philosophers have already adopted the same principle to a limited extent, when assuming for the mass of fluid composing the Earth in its primitive condition those specifle properties which have been assigned to all kinds of fluids observed at the surface. It is impossible to frame any statement more erroneons and misleading than that I have endeavored to render the question more hypothetical than it was. On the contrary, I have dis. carded the invariable assumption of mathematicians who treated the question, namely, the hypothesis of the invariability of positions of the particles composing the solidifying earth. The speculations of all rational inquirers upon the Earth's internal structure must necessarily start from the same general principle as above. Some investigators have disregarded that principle and made the problem thereby a purely mathematical exercise.

In order to reason upon the Earth's figure, we must assume that the laws of Huid equilibrium apply to the inner portions of the fluid as well as the outer. There is nothing hypothetical in reasonings as to the formation of the solid shell and the law of increase of ellipticity of its inner surface as a result of the transition of the formerly fluid matter to the state of solidity. On the contrary, the assumptions of Mr. Hopkins and other mathematicians, that this transition created no change in the law of density of the matter composing the Earth and in the ellipticity of the strata of equal pressure, are not merely hypothetical; they are directly opposed to well-established physical and mechanical laws.

On the other hand, those who have concluded that nothing can be known of the form of the fluid nuclens seem to deny that the recognized laws of matter apply to the internal condition of the Earth. The shape of the nucleus and the figures of its stiata of equal density follow from physical and mechanical laws, just as the forms of the isothermal sur. faces within the spheroid follow from the known laws of conduction of hent. Some of the mechanical reasoninge regarding the strata of the nucleus and the structure of the solid shell can be presented withont employing mathematical symbols, and in what follows I have, as far as possible, avoided the use of such symbols.

This course, moreover, possesses the advantage of making many parts of reasonings more clear to geologists and observers of the stratigraphical fenturcs of the Earth, who are in reality the ultimate judges of the matter, and not mathematioians. The necessity under which the latter are constrained whon dealing with problems, of throwing the preliminary propositions into simple, well deflned shapes, admitting of definite deductions, obliges them to overlook the most essential conditions of the very questions at issue, and they thus arrive at results which may be precise, but which are totally ineonclusive with reference to the Darth's structure.

TUE MEOIANIOAL AND PHYSIOAL PROPFR'LIES OF THE MATIER COMPOSING THE WARTI.
(1) The materials of the Earth must manifestly influence its general structure, and no inquiries with this structure can be usefully made if the physieal properties of these materials are not kept in view. If the interior of the Earth is in a fluid state it is reasonable to believe that the thuid is not the ideal substance called by mathematicians a perfect liquid, namely, a substance not only endowed with perfect mobility among its particles, but also absolutely incompressible. It is more reasonable to believe that the thuid in question resembles the liquid outpourings of voleanoes, or at least some real and tangible liquid whose properties have been experimentally studied. I have already shown that by overlooking this simple principle certain untenable conclusions, which agsert the exclusively solid character of the Earth, have been deduced. Here I propose to develop some additional argiments rela. tive to one of the properties of liquids which has an essential bearing upon the internal structure of the Earth.
(2) In a former paper, on the limits of bypotheses rogarding the properties of matter composing the Earth's interior,* I find that having referred to published statements where the facts were not clearly put forward, I underrated the compressibility of liquids as compared with solids. The influence of the imperfect experiments of the Academia del Oimento has long injurionsly operated in defining liquid and solid matter, and has produced a remark able conflict of opinions.

On taking the results of the best experimental investigations it appears that, although liquids are but slightly compressible as compared with gases, they are highly compressible as compared with solids. In many treatises on physics and mechanics which have a high reputation, matter is divided into solids, elastic fluids or gases, and incompressible fluids or liquids. Hence the erroneous inference seems to have arisen that liquids are incompressible, not only in comparison with gases, but also in comparison with solid bodies. I was surprised to find this remarkably misleading proposition formally stated, long alter the dectsive experiments of Oersted, Oolladon, and Sturm, Regnault, Wertheim, and Grassi, in such a work as Pouillet's Aléments de Physique, and also in the German translation by Miller. The great compressibility of liquids as compared with solids is seldom affirmed as a distinct general proposition in books on physics. It occurs, however, in Deschanel's treatise, both in the original and in the English edition. Daguin statos, in vol. I of his T'raité de Physique, $2 d$ odition, p. 40, that the compressibility of liquids was long considered doubtful, but nevertheless they are more compressible than solids.

Lame also pointed out the great compressibility of liquids as eom-

[^32]pared with solids. I have before now referred to the statement of the same proposition in the comprehensive work of the late Prof. O. F. Naumann, the Lehrbuoh der Geognosie, vol, 1, p. 269, 24 edition.*

Although in many physical questions the compressibility of liquids may be neglected as well as the compressibility of solids, we are not entitled to assume at any time that the latter are relatively more compressible than the former. In questions where the pressure of columus of liquid of great magnitude comes under consideration we can $n o$ longer treat the liquid as incompressible. In the prohlem of oceanic tides the incompressibility of the water has been assumed, but if a planet were covered with water to a depth of 100 miles it would be scarcely correct to make such an assumption. The compressibility is negligible in a small mass of water, but it can not be neglected in a large mass. Such an assumption is equally unwarrantable with regard to properties of matter which, though negligible in some problems, are not in others. Thus in the common hydrauhe questions liquids are assumed to be incompressible ; it would be more correct to say the compressibility is neglected. In small problems connected with limited portions of the atmosphere the compressibility of air may be also neg. lected, but we could not neglect it for a high column of the atmosphere. If, as before remarked, the Earth were surrounded with an ocean 100 miles deep, the compressibility of the water could not be well over. looked in tidal questions; then, a fortiori, compressibility can not be neglected in such a problem as the tides of a liquid spheroid having a radius nearly equal to that of the earth. This is immediately made manifest by expressiug the compressibilities of liquids, not in terms of the amount due to a single atmosphere of pressure, as is done in most tabulated groups of results; but by some very much greater standard, such as one or two thousand atmospheres. In the experiments of Perkins \dagger the highest pressure employed was 2,000 atmospheres, and with this he reduced a column of water by nearly oue-twelfth of its volume. The results of experiments with great pressures such as this are highly illustrative of the force by which a fluid may be compressed in the Earth's interior. The aetual coèffcients of cubical compressibility, on which calculations could be based, may be partly obtained from the more exact researches of Regnanlt, Grassi, and other recent experiments, or from special investigations on fluid matter conducted with precautions such as these observers have employed. l3y then comparing the moduli of compressibilities caleulated from pressures of 1,000 or 10,000 atmospheres there could be no possibility of overlooking the consequences as to the relations of liquids and solid bodies in any case where they could be subjected to pressures of abnormal magnitude.
(3) The propagation of sound in liquids and solids gives further proof of the greater compressibility of liquids.

[^33]The rate v of transmission of sound in solids and liquids is a func. tion of their compressibilities. In solids,

$$
v=\sqrt{\frac{g b}{\rho}}
$$

where W is the modulus of elasticity and ρ the density. In liquids,

$$
v_{1}=\sqrt{\frac{g H a}{\mu \rho_{1}}}
$$

where μ is the coefficient of cubic compressibility, H the pressure of the atmosphere, and a the density of mercury. But as in solids the modulus of elasticity is inversely as the compressibility k, we have

$$
\frac{v}{v_{1}}=\sqrt{\frac{\mu \rho_{1}}{k \rho H a}}
$$

Both in solids and liquids the velocity of somnd is inversely as the square roots of the densities and compressibilities. Although such solids as metals and rocks are denser than most liquids, the limits of their elastic compressibility are so much less that sound is propagated far more quickly through such solids than through liquids. In steel and metals generally this has been long since established. In rocks the velocity of sound has been computed from direct experiment by Mallet, aud has been found to be greater in continuous homogeneons rock than the velocities observed in liquids.*
(4) If we had not the results of direct experiment on the compressibilities of liquids and solids to assure us that these properties in liquids are in excess of those obtained for solids we might fairly infer this conclusion from the relative dilatability of such substances under differences of temperature. \dagger The construction of our common thermometers is based on the greatly superior dilatability of the liquids inclosed in the thermoneter-tube over the material of the tube itself. The dynamical theory of heat clearly establishes that the expansion of solids and liquids is a mechanical action as much as their compression under the action of force, and the substances which contract least by

[^34]
cooling are precisely those which contract least under pressure. Gases which contract most by pressure are also the most dilatable by heat. Liquids occupy an intermediate place between solids and gases in relation both to the dynamical effect of pressure and the action of loss of heat. If, instead of the experiment of the Academia del Oimento with globes of porous metal, an experiment with equally strong but impervious vessels had been made, the deformation of each globe would have been unaccompanied by the exudation of the liquid, and the totally false statement that solids are more compressible than liquids would not have so long injuriously intluenced physical science.

the rotation of the earth oonsidernd as partly fluid and PARTLY SOLID.

(1) The problem of the precessional motion of the Earth considered as a solid shell flled with liquid devoid of viscidity and friction has been elaborately investigated by Mr. Hopkins, in his "Researches ot Physical Geology," in the Philosophical Transaotions for 1839, 1840, and 1842, and the result obtained by him has been often quoted as extremely remarkable. Before treating the same question, it may be necessary to state that on the continent of Europe the application made by Mr. Hopkins of his result to geology is not generally admitted, and views such as I have aliways firmly upheld seem to be more gencrally adopted; but some confusion appears to exist as to Mr. Hopkins's results and those to which I have been led. Thus in a recent treatise on systematic geology the author says, with reference to the thickness of the solid crust of the earth, there are plainly only four possibilities to be thought of:

1. The Earth is through and through solid.
2. The Earth is through and through fluid, with a solid crust.
3. The Earth has a solid nucleus and a solid crust, with fluid stratum lying between.
4. The Earth is solid, but furnished with cavities which are flled with fluid.

The first and last of these possibilities are not admissible, according to astronomical observations. According to the investigations of Hopkins the action exercised by the sun and moon on the positiv of the Earth's axis in space, by which precession and nutation are produced, would be different according to the structuro we attributo to the earth. The values established by observation compel us to regard the earth as for the most part in a fluid state, in order that the results may har. monize with caloulation (Pfaff, Grundriss der (reologie). This is tho reverse of what Hopkins has concluded, and is precisely what I have long since enunciated, whioh I have always contimued to maintain, and which forms the cumulative result of the investigations in the text of this paper. In a report to the Royal Irish Academy on "Experiments on the Influence of the Molecular Influence of Fluids on their Motion
when in Rotation," p. 57,* I referred to a proof obtained by me of the result alluded to, and I now may be allowed to submit this proof to those interested in the question.
(2) Let us suppose the earth to consist of a solid spheroidal shell composed of nearly similar spheroidal strata of equal density, and having the ellipticities of the inner and onter surfaces small and nearly equal. The shell is supposed to be full of liquid and to rotate around its polar axis. Under these conditions the attraction of an exterior body would tend to produce pressure between the flitd nucleus and the inner surface of the shell. Whatever may bo the direction of this pressure, it can be resolved into a force normal to the shell's surface and into forces in its tangent plane. The normal force might be effective in causing a deformation of the shell, or, if the latter were rigid, it would be destroyed by the shell's resistance.

If friction existed between the materials of the shell and the fluid of the nucleus, the resolved forces in the tangent plane would tend to change the motion of the shell from the motion it would have if empty. But if no friction and no adhesion oxisted between the particles of the liquid and the shell's nearly spherical surface, and if the particles of the liquid are free from viscidity and internal friction among themselves, this purely tangential component could exercise no influence on the motions of the shell. If the solid envelope containing fluid was bounded by planes such as a prismatic vessel or box, it is manifest that unequal normal pressures on the faces of such prism would tend to produce couples, and thus possible rotations. Such a case has been considered by Professor Stokes, and he has shown that a rectangular prism filled with fluid will have the same motion as if the flud was replaced by a solid having the same mass, center of gravity, and principal axis, but with much smaller moments of inertia corresponding to these axes. But in a continuously curved and nearly spherical vessel the normal pressure arising from the disturbance of the liquid could not produce the same results. The tangential components of the forces acting at the surface of the liquid could, in this case, be alone effective, and if no friction or viscidity existed at this surface such tangential action would totally disappear. The conclusion of Mr. Hopkins's first memoir is, that if the ellipticity of the inner and outer surfaces of the solid shell were the same, precession would bo unaffected by the fluid, and any suall inequality of nutation would be totally inappreciable to observation (p. 423, Phil. Trans., 1839). This may be rendered more manifest by recalling the general oquations for the surface of a fluid obtained by Poisson, Navier, Meyor, and other mathematicians when tho internal friction of the fluid is taken into account. If α, β, γ, be the angles made by the normal to the curved surface of the fluid, X, Y, Z the components parallol to the rectangular axes of x, y, and z, it appears that we shall have at the fluid surface, when nearly splerical,

[^35]\[

$$
\begin{aligned}
& X=h{h^{2}}^{2}\left[2 \frac{d u}{d x} \cos \alpha+\left(\frac{d u}{d y}+\frac{d v}{d x}\right) \cos \beta+\left(\frac{d u}{d z}+\frac{d v}{d x}\right) \cos \gamma\right] \\
& Y=h h^{2}\left[\left(\frac{d v}{d x}+\frac{d u}{d y}\right) \cos \alpha+2 \frac{d v}{d y} \cos \beta+\left(\frac{d u}{d z}+\frac{d u}{d y}\right) \cos \gamma\right] \\
& Z=h i^{2}\left[\left(\frac{d u}{d x}+\frac{d u}{d z}\right) \cos \alpha+\left(\frac{d u}{d y}+\frac{d v}{d z}\right) \cos \beta+2 \frac{d w}{d z} \cos \gamma\right],
\end{aligned}
$$
\]

where u, v, w are components of velocity parallel to the coorrdinate axes, and where k is a coefficient depending on friction and viscidity. If no viscidity and no friction exists we must have $k=0$, and hence also

$$
X=0, Y=0, Z=0
$$

Now, as X, Y, and Z are the effectivecomponents with which the nearly spherical mass of fluid acts at its surface when each of them is separ. ately equal to zero, it follows that the fluid can do no work at the surface, and the motions of the shell would take place quite independently of the contained mass of fluid when the latter is totally devoid of friction and viscidity.
(3) It has long since been clearly shown that the motion of the axis of the Earth, considered as a solid body, may be determined by the differential equations

$$
\begin{aligned}
& \frac{d \psi}{d t}=-\frac{1}{U n \sin \theta} \frac{d V}{d \theta} \\
& \frac{d \theta}{d t}=\frac{1}{C n \sin \theta} d V \\
& d \psi .
\end{aligned}
$$

V is the potential of the rotating solid, C its inaximim moment of in. ertia, θ and ψ direction angles of the axis of rotation. In the case of the Earth, θ has a particular value when it becomes the obliquity of the eoliptic, and p the longitude of the first point of Aries. It follows that the detormination of ψ and θ at any time depends upon O and V.

By analytical transformations, which are fully given by Poisson in his memoir Sur la Rotation do la Terre autour de son centre de Gravite, and by other writers, it finally appears that the variations of 0 and ψ depend on equations in which a factor enters of the form

$$
20-A-13
$$

where A, B, O, are the three principal moments of inertia of the Earth. In a spheroid of revolution $A=B$, and the factor becomes $\frac{2(O-A)}{0}$,

As precession depends essentially on the variation of the angle $\%$, it foliows that the complete expression of the factor $\frac{\sigma-A}{O}$ is of primary importance.
(4) Mathematicians, during the past two conturies, have devoted much attention to the question of the figure of a rotating mass of fluid, with especial reference to the explanation of the spheroidal figures of the earth and her sister planets. Solutions of this problem have been presented, especially by Olairaut, Legendre, Laplace, Gauss, Ivory, Jacobi, and Airy ; and it is not a little remarkable that in applying these solutions to the case of the Earth every one of these investigators has not only supposed the Earth to have been originally in a fluid state, but that the particles of the mass rotained the same positions after solidification had taken place. This tacit or openly expressed assumption of the unchangeable position of the particles of the original fluid mass on their passage to a complete or partial state of solidity lies at the root of the whole question of the Earth's structure. For the first time in the treatment of the physico-mathematical problem, I distinctly discarded this assumption and I afffrmed that the position of the particles of matter, on passing from the state of fluidity to solidity, must assume positions in conformity with mechanical and physical laws. In this way the hypothesis of the Earth's primitive fluidity became more simple and much more rational ; for it was as manifestly absurd to assume that the particles of the fluid mass, on passing into a solid state of consistence, retained their original positions, as it would be to assume that if the whole Earth became liquefied tho positions of its particles soould be unchanged. The corrected and simplified hypothesis is also fruitful in important results; butit is singular that, as far as I am aware, no mathemetician seems to have understood or appreciated its bearing on the physical structire of the Earth, except M. Plana, by a remark in a momoir pablished by him towards the close of his career.
(5) Befure presenting my conclusions on the shape of the inner surface of the solidifled shell and Plain's remark relative to the same subject, it is necessary to recall some results established by Olairant and frequently put forward by mathematical investigators of the Earth's figure. It seems to be universaliy admitted that if a mass of hetorogeneons fluid composed of strata of equal density, each increasing in density from the surface of the mass to its center, is set in rotation, the several strata will be spheroidal, but their ellipticities will not be equal. The ellipticities will decrease from the onter surface toward the center. This law of decroase of ellipticity toward the center is not a hypothetioal result, but a necessary deduction from the properties of thids. As all known lluids are compressible, stich an arrangement of strata of equal density as that referred to must follow from the supposition of the existence of auy mass of fluid of such magnitude as the whole Barth. The increase
of the Earth's density from its surface to its center is, moreover, a factt clearly revealed by the mean deusity of the Larth being double that ofi the materials composing the outside of its solid shell.

If the inorease of density in going from the surface to the center of i a large mass of fluid is due to compression exercised by the outer upon the inner strata, it follows that the greater the total quantity of fluiki the greater will be the difference between the density at its surface and its center, and the less the quantity of fluid the less will be this difference. With a small spheroid of compressible fluid the variation of density might be neglected and the mass regarded as homogeneous. Suppose such a small mass of Huid to be set in rotation, its surface will become spheroidal, and it will have the well-known ellipticity $\frac{5}{4} m$, where m is the ratio of centrifugal force to gravity at the equator of the spheroid. If now this original spheroid be supposed to be overlail with masses of the flud, one after another, the inner portions will be sensibly compressed, and the whole mass will begin to vary in density in going from ceuter to surface. The outer surface will now present an ellipticity less that $\frac{5}{4} m$. If fresh layers of fluid are continually applied to the outer surface, the variation of density will continue, and the differ. ence between the density at the center and surface will increase. The ellipticity of the outer stratum of fluid will at the same time diminish to a value corresponding to the law of density. Let us now reverse this operation and suppose a great mass of liquid in rotation; its outer stratum will be less dense than those beneath, and its greatest density must be at the center. Let the outer strata of equal clensity be suocessively removed, so as to leave a succession of free fluid surfaces, until a spheroid is reached in which the difference of density is insensible. It is manifest that with each successive removal of the upper stratum of liquid the compression in the remaining strata becomes reduced, and also the variation in density from surface to center, until this variation becomes altogether extinguished. With the same velocity of rotation, the ellipticities of the surfaces of liquid thus successively exposed would increase up to the limiting value, $\frac{5}{4} \mathrm{~m}$.

If at any time of the Darth's solidifleation we suppose a nuelens of fluid to be inclosed within the solid shell, the successive increasing of thickness of the shell, from the congelation of the fluid matter of the nuelens, mast be aceompanied by the removal of successive outer strata from the moleus. Trom what has been seen already, the nucleus will tend to acquire an increase of ellipticity, and therefore to mould the semifluid pasty matter about to pass into a solid state into a shape different from what it would have if no change whatever in the position of the particles had taken place. As the nuelens is supposed to be in a state of fusion from heat, the successive additions to the inner surface of the shell from the matter of the nucleus must proceed at a very slow rate. The congelation of the surface stratum of the nucleus must be a process of the same order of slowness as the flow of hoat throngh the shell; and the mathematical theory of conduction established by Fourier
shows that this can not proceed otherwise than slowly. The changes in shape of the surface of the nuolens would be correspondingly slow and gradual. When once a comparatively rigid outer crust had been formed, the process of molding additional strata of solidified matter against the inner surface of the crust from the nuolens would proceed in a slow and gradual order, so that the resulting solid strata would conform to the shape impressed upon them by the molding forces. A remarkable illustration of the way in which fused matter ejected from the Earth's interior may, while turning on its center and at the same time cooling, mold itself against a solid crust formed upon it has been adduced by Oharles Darwin, and has already been quoted by me on a former occasion. Fron these considerations. I have been led to conolude, that the ellipticity of the shell's inner surface may exceed but can not be less than the ellipticity of its outer surface; * and referring to the same question, Plana used the words, "La loi des ellipticités a subi dansle passage de l'état liquide a l'état solide une alteration sensible par laquelle toutes les couches se sont constitueés de manière a avoir un même applatissement et plus grand que le précedent." M. Plana has further stated his views in the same volume of the Astrononisohe Naohriohten for 1852, thus: "Il est permis de penser que ces couches (de la fluide intériense) en se consolidant, ont subi des modifications a la verité fort petites, mais assez grandes pour nous empecher de pouvoir dériver, avee tout l'exactitude que l'on pourrait souhaiter, l'état de la Terre solid de son état anterieure de fluidité"
This paragraph gives a distinct adhesion to the improved form of the hypothesis of the original fluidity of the Darth; and this concurrence on the part of M. Plana is the more important, as it is possible that he had formed his conclusions independently. He refers to a letter written by himi on the subjeet to Fumboldt; and it is remarkable that, in the fifth and last volume of "Cosmos," published not long before the author's death, some adjacent notes allude to Plana's views, and contain references to the investigations of Mr. Hopkins and to my early researches.

At this period Humboldt could scarcely have had time to examine the mechanical and physical reasonings, and he merely quoted the papers in the Philosophical Transactions as if he had seen thom for the first time. I am not aware of any evidence as to whether Plana had known their contents; and it is possible that his conclusions as to the forms of the strata of the shell and muelens had been formed indepondently, though published a short time after my investigations.
The amexed figure may assist in making clear the results of the preceding paragraph. The outer ellipse represents the outline of the exterior surface of the Earth's erust, which is shaded and bounded in wardly by a surface slightly more elliptical. The fluid nucleus included within the shell is represented with strata decreasing in ellipticity towards the

[^36]center. This arrangement is necessarily followed by a mass of fluid under such conditions as the nucleus, or under the conditions of the entirely fluid Earth. If the matter composing the Earth underwent no change in passing from the fluid to the solid state, instead of the arrangement here represented, the inner surface of the shell would have a smaller ellipticity than its. outer surface, and the strata of the shell, as well as those of the nucleus, would be less oblate in going from the outer surface.
(6) It is important to distinetly bear
 in mind that the constitution of the shell and nucleus indicated by the foregoing reasonings is not based on any hypothesis of a specific law of density of the interior strata of the Earth. It is a deduction from the established properties of fluids quite as vigorous as the conelusions regarding the spheroidal shape of a mass of rotating liquid. On the other hand, the supposition tacitly or openly made by Mr. Hopkins and his followers, that the ellipticity of the inner stratum of the solid shell is precisely the same as that which this stratum had when fluid, is not merely a hypothesis-it is an assumption which is directly contradicted by the recognized physical properties of all known liquids, and even contradicted by the funda. mental principles of hydrodynamies. Upon this assumption was based the calculation of the ratios of the inner and outer ellipticities of the shell which would eorrespond to the observed value of the precession of the Harth's axis, and hence the limiting value of the thickness of the shell. But when the fundamental assumption on which this ratio is calculated is shown to be in eontradiction to physical and meohanical laws, the whole of the conclusions drawn from such a calculation must fall to the ground.

In the Meoanique Oéleste, Laplace, following Olairaut, proved that if the density in-a fluid sphoroid decreases from the center to thie surface, the ellipticity of the strata of equal density must derrease from the surface towards the center. This result forms the groundwork of some of the arguments employed in the present inquiry. Legendre and Laplace also deduced a law of density from the properties of compressible fluids, and from this law the latter unfolded a law of ellipticity of the strata of equal density. The results arrived at in my present iuquiry are manifestly totally indopendent of the law of density $\rho=\frac{A \sin q a}{a}$, deduced by Legendre and Laplace. In order to apply this law to the strata of the solidified shell, the assumption must necessarlly be made that the particles of the fluid underwent no change in position on passing to the solid state. This was assumed
by Mr. Hopkins and Archdeacon Pratt; and, as we liave seen, such an assumption is not only unwarmated, but is absolutely contradicted by the established laws of hydrodynamies. My conclusions are not only in harmony with those laws, but necessarily require them to be kent constantly in view throughont the whole investigation.
(7) The result obtained in section (3) allows of an immediate and casy application to the inquiry before us, if we admit that the strata of equal densit: in the shell have all equal ellipticities-an admission which has been already shown to be a particular ease of a rigorous and exact deduction from hydrodynamical principles. In this case let us consider the ratio of the difference of the moments of inertia of any spheroidal stratum to its greatest moments of inertia. It will readily appear that the difference of the greatest and least moments of inertia, of all the strata, divided by the sum of the greatest moments of inertia, will be the same as that for a homogeneous shell whose inner and outer elipticities are equal.
If ρ be the densits of any spheroidal stratum of equal density, then for that stratum

$$
\frac{\sigma_{1}-A_{1}}{O_{1}}=\frac{\int \rho\left(x^{2}+y^{2}\right) d x d y d z-\int \rho\left(z^{2}+y^{2}\right) d x d y d z}{\int \rho\left(x^{2}+y^{2}\right) d x d y d z}
$$

and as ρ may be placed outside the sign of integration, it disappears both from numerator and denominator. As we shall see presently,

$$
\frac{O_{1}-A_{1}}{O_{1}^{2}}=\frac{1}{2}\left(1-\frac{b_{1}^{2}}{a_{1}^{2}}\right)
$$

where b_{1} and a_{1} are the semi-axes of the stratum; and for all other strata of equal density we would have

$$
\begin{gathered}
{O_{2}-A_{2}}_{O_{2}}=\frac{1}{2}\left(1-\frac{b_{2}^{2}}{a_{2}^{2}}\right) \\
\frac{O_{3}-A_{3}}{U_{3}}=\frac{1}{3}\left(1-\frac{b_{3}^{2}}{a_{3}^{2}}\right), \ldots \frac{O_{n}-A_{n}}{O_{n}}=\frac{1}{2}\left(1-\frac{b_{n}^{2}}{a_{n}^{2}}\right) .
\end{gathered}
$$

Now if these strata aro all similar, and have equal ellipticities,

$$
\frac{b_{1}}{a_{1}}=\frac{b_{2}}{a_{2}}=\frac{b_{3}}{a_{3}}=\ldots \frac{b_{1}}{a_{n}} ;
$$

and hence

$$
\frac{O_{1}-A_{1}}{O_{1}}=\frac{O_{2}-\Lambda_{2}}{O_{2}}=\frac{O_{3}-\Lambda_{3}}{A_{3}}=\ldots \frac{O_{n}-\Lambda_{n}}{O_{n}}=\frac{1}{2}\left(1-\frac{b^{2}}{a^{2}}\right)
$$

214. ON THE PHYSICAL STRUCTURE OF THF EARTH.
where b and a are the onter semiaxes of the shell composed of all the strata of equal density. But

$$
\frac{1}{2}\left(1-\frac{l^{2}}{a_{2}}\right)=\frac{C-A}{O}=\frac{O_{1}+O_{2}+\cdots+O_{n}-\left(A_{1}+A_{2}+\cdots+A_{n}\right)}{C_{1}+O_{2}+\cdots+O_{n}} .
$$

This is the symbolical form of the proposition just stated.
In a homogeneous solid of revolution the general expression for the moment of inertia is

$$
\pi \int y^{2} x d x ;
$$

and from the ordinary treatises on mechanics it readily appears that from a spheroid,

$$
O=\frac{8}{15} \pi a^{2} b, \quad A=B=\frac{4}{15} \pi a^{2} b\left(a^{2}+b^{2}\right)
$$

where b is the semi-polar and a the semi-equatorial axis. Hence we have

$$
\frac{\partial-A}{C}=\frac{2 a^{4} b-a^{4} b-a^{2} b^{3}}{2 a^{4} b}=\frac{a^{4} b-a^{2} b^{3}}{2 a^{4} b}=\frac{\left(a^{2}-b^{2}\right)}{2 a^{4} b} a^{2} b=\frac{a^{2}-b^{2}}{2 a^{2}}=\frac{1}{2}\left(1-\frac{b^{2}}{a^{2}}\right),
$$

and

$$
\frac{2(O-A)}{O}=\left(1-\frac{b^{2}}{a^{2}}\right)
$$

In a spheroidal shell for whose inner surface the semi-axes are b_{1} and a_{1}, we have the moments of inertia with respect to the axes by taking the moments for the inner spheroid bound ed by b_{1} and a_{1} from those of the outer spheroid.

Calling the former O_{1} and A_{1}, we have as before,

$$
\sigma_{1}=\frac{8}{15} \pi a_{1}^{4} b_{1}, \quad A_{1}=\frac{4}{15} \pi a_{1}^{2} b_{1}\left(a_{1}^{2}+b_{1}^{2}\right)
$$

Oalling O_{1} and A_{1} the monents of ingrtia of the shell, we have therefore,

$$
O_{1}=\frac{8}{15} \pi\left(a^{4} b-a_{1}^{4} b_{1}\right), \quad A_{1}=\frac{4}{1 \tilde{D}} \pi\left[a^{2} b\left(a^{2}+b^{2}\right)-a_{1}^{2} b_{1}\left(a_{1}^{2}+b_{1}^{2}\right)\right] ;
$$

and hence

$$
\frac{O_{1}-A_{1}}{U_{1}}=\frac{a^{2} b\left(a^{2}-b^{2}\right)-a_{1}{ }^{2} b_{1}\left(a_{1}{ }^{2} b-b_{1}{ }^{2}\right)}{2\left(a^{4} b-\left(a_{1}{ }^{4} b_{1}\right)\right.}=\frac{a^{4} b\left(1-\frac{b^{2}}{a^{2}}\right)-a_{1}{ }^{4} b_{1}\left(1-\frac{b_{1}{ }^{2}}{a_{1}^{2}}\right)}{2\left(a^{4} b-a_{1}{ }^{4} b_{1}\right)} .
$$

If e and e_{1} be the outer and inner ellipticities of the shell,

$$
e=1-\frac{b}{a}, e_{1}=1-\frac{b_{1}}{a_{1}}, \text { and if } e=e_{1}, \frac{b}{a}=\frac{b_{1}}{a_{1}}
$$

In this case $\frac{\sigma_{1}-A_{1}}{O_{1}}=\frac{\left(a^{4} b-a_{1}{ }^{4} b_{1}\right)\left(1-\frac{b^{2}}{a^{2}}\right.}{2\left(a^{4} b-a_{1}^{4} b_{1}\right)}=\frac{1}{2}\left(1-\frac{b^{2}}{a^{2}}\right)$,
or

$$
\frac{O_{1}-A_{1}}{O_{1}}=\frac{O-A}{O}
$$

Oonisequently the precessional motion of such a shell would be the same as that of a homegeneous spheroid of the same ellipticity. If $e=\frac{1}{5} \frac{1}{0}$, it appears that the value of precession for such a spheroid would be $57^{\prime \prime}$, while its observed value is $50^{\prime \prime} \cdot 1$.* Now, as it is impossible to admit such a difference where the result of observation is so well established, we must conclude that the solid shell of the Earth, composed of nearly equi-elliptic strata, can not extend to its center-in other words, that the Darth can not bo altogether a solid from its surface to its center. On the other hand, the fluid nuclens contained within the shell can not be devoid of friction and viscidity, bat must possess these properties in common with all fluids that have ever been observed on the Earth's surface. These properties of the liquid may, as I have long since annomeed, cause the shell and liquid nuclens to rotate together as one solid mass. The same conclusion was afterward put forward by M. Delauney; and experiments made under his direction, and afterward, at the instance of the Royal Irish Academy, by me, show that in rotating glass vessels filled with water the amount of friction and viscidity is such as to render any difference of slow motion between the liquid and its containing vessel insensible. With liquids so viscid that water is in comparison limpid, such as pitch, honey, and especially voleanic lava in a fused state, the results would be absolutely decisive. To this class of liquids the fluid matter of the Earth's interior, so far as it has come under observation, undoubtedly belongs; and hence the overwhelming certainty of our general conclusions as to the connection between the Earth's structure gnd its rotation.
(8) If the tendeney of the solid crust is to become more elliptical at its inner surface as it increases in thickness, some interesting consequences appear to follow. If the shell were unaccompanied by the nucleus, or if no friction existed at their surfaces, the changes in the relations of the principal moments of inertia of the shell might be supposed to canse its rotation to become unstable, so as to bring about conditions which might result in a change of the axis of rotation. It is easy to show on the most favorable suppositions that this could not occur. The increasing ellipticity of the inner surface of the shell would be due to the increasing oblateness of the surface of the fluid nucleus, and this would be at its maximum if the nencleus approached a state of homogeneity; but the fluid can not approach this state unless the radius of the nucleus is so small that the variation in density due to pressure becomes insensible, whence all its strata would possess the same deinsity. This condition with a certain thickness of the solid shell

[^37]may bring about equality in the two prineipal moments of inertia of the shell. The most favorable case would be for a homogeneous shell. Hence we have only to solve the very simple problem: Given the thickness of a homogeneous spheroidal shell at its pole, required ts thickness at the equator, so as to make its princlpal moments of inertia equal. We have from the expressions for O_{1} and A_{1} in (7),
$$
a^{2} b\left(a^{2}-b^{2}\right)=a_{1}^{2} b_{1}\left(a_{1}^{2}-b_{1}^{2}\right), \quad \text { or } a_{1}^{4}-a_{1}^{2} b_{1}^{2}=a^{2} b\left(a^{2} b^{2}\right)
$$
which gives
$$
\int \quad a_{1}=\frac{1}{\sqrt{2}} \sqrt{b_{1}{ }^{2}+\sqrt{\frac{4 a^{2} b\left(a^{2}-b^{2}\right)}{b_{1}}}+b_{1}{ }^{4}}
$$

This may be written

$$
\frac{a_{1}}{b_{1}}=\frac{1}{\sqrt{2}} \sqrt{1+\sqrt{\frac{4 a^{2} b\left(a^{2}-b^{2}\right)}{b_{1}^{5}}}+1}
$$

If we take $e=\frac{1}{2} \frac{1}{0}$ for the outer ellipticity of the shell, and $e_{1}=\frac{1}{2} \frac{1}{30}$ for its maximum inner ellipticity, we can easily find the values of $\frac{a}{b}$ and $\frac{a_{1}}{b_{1}}$; from whence it appears that in order to have equal moments of inertia the thickness of the shell should be . 047 of its equatorial semiaxis, and the mean radius of the nuclens would thus be reduced from the original value when the whole mass was fluid by a fraction less than one twentieth. Under theae conditions the ellipticity of $\frac{1}{2} \frac{1}{30}$, corresponding to homogeneity, could not exist; and hence it may be concluded that, whether the shell is thin or whether the Earth has become almost altogethor solid, the moment of the inertia of the shell with respect to its polar axis must be always greater than the moment of inertia for its equatorial axis.

The tendency of the fluid nucleus to increase in ellipticity might produce a result worthy of examination by volcanologists, namely, a possible increase in the development of volcanic phenomena in equatorial as compared to polar regions with the progressive solidification of the Earth up to a certain point. UntiL the thickness of the shell has become very great, recent periods should exhibit a greater development of volcanic energy towards the equator than toward the poles as compared to remote epochs.

NOTE.

On the annual precession oalsulated on the hypothesis of the Warth's solidity.
In discussing the influence of the internal structure of the Earth upon precession it bas been frequently assumed that with the ellipticity $\frac{1}{2}$. the annual precession of a homogeneous solid shell or completely
solid spheroid would be 57". This was the result of Mr. Hopkins's calculations; and the difference, amounting to between six and seven sec.onds between it and the observed value, formed the basis of all his conclusions relative to the Earth's iuternal condition. Hitherto I have not seen any reason for doubting the above numerical result; but on looking more closely into the question it appears probable that we must reduce the precession for the hypothetical solid spheroid to about $50^{\prime \prime}$. If the Earth were a spheroid perfectly rigid, the amount of pre. cession can̉ be calculated from formula given in Airy's Tracts, Pratt's Mechanioal Philosophy, Pontecoulant's Théorie Analytique du Système du Monde, or Resal's Traitó de Mécanique Oeleste. In the two latter works Poisson's memoir on the rotation of the Earth about its center of gravity is very closely followed, and the formule are those which I have generally employed. From these writings we have

$$
P_{1}=\frac{3 m^{2}}{4 n}(2 O-A-B)(1+\gamma) \cos I ;
$$

where I is the inclination of the equator to the ecliptic, γ the ratio of the Moon's action on the Earth compared to that of the Sun, m the Earth's mean motion around the Sun, $\frac{m}{n}$ the ratio of this mean motion to the Earth's rotation, and A, B, O the three principal movements of the inertia of the Earth. When the Earth is supposed to be a spheroid of revolution, $A=B$, and the bove becomes

$$
\text { (1) } P=\frac{3 m^{2}}{2 n} \frac{C-A}{O}, \quad(1+\gamma) \cos 1 .
$$

Pratt gives the formula

$$
\text { (2) } P=\frac{3 n^{1}}{2 n}\left(\frac{O-A}{A}\right)\left\{1+\frac{n^{2}}{n^{1}} \frac{1-\frac{3}{2} \sin ^{2} \mathrm{i}}{1+\gamma}\right\} 180^{\circ} \text {; }
$$

where i is the inclination of the Moon's orbit to the ecliptic, γ the ratio of the Earth's mass to that of the Moon.

In all these formula, or in any others by which the precession can be calculated, the Moon's mass enters directly or indirectly. When Mr. Hopkins made his calculation more than forty years ago, he appears to have taken the value of the Moon's mass and all his other numerical data from the early editions of Airy's Tracts. He uses 306.26 for the Earth's period, 27.32 for the Moon's. He makes $I=23^{\circ} 28^{\prime}, i=5^{\circ}$ $8^{\prime} \Sigma\left(y^{\prime \prime}\right.$, and the Moon's mass $\frac{1}{70}$ of the Darth's mass. All of these values require revision, and it may be remarked that Sir George Airy has more recently expressed the opinion that $\frac{1}{80}$ may be taken as the value of the Moon's mass.* (On this question I may be permitted to remark

[^38]that there are three different plienomena from which the Moon's mass has been determined: (1) The perturbations of the Earth's motion in its orbit around the Sun by the action of the moon; (2) the tides; and (3) the untation of the Earth's axis. The largest mass, or $\frac{1}{70}$ nearly, has been obtained from the first, and the smallest from nutation. But the values obtained from nutation are not very accordant, and moreover the close connection between nutation and precession makes it a doubtful matter to calculate the amount of one from a quantity depend. ing on the other. The moon's mass obtained from the tides is that Which has been employed by Laplace, Poisson, and other mathematicians as the most probable. It appears that a recent discussiou of the tides in the United States, made by Mr. Ferrel, has given the same value as that found by Laplace. This circumstance, as well as the fact that the value so obtained lies between the values found by the other methods, gives us reason to place much confidence in the result. If wo call P_{1} the precession for a homogeneous spheroid whose ellipticity is E, then from (1)
$$
P_{1}=\frac{3 m^{2}}{2 n} E(1+\gamma) \cos I .
$$

If we take the value of the Moon's mass given by the tides, or rather the ratio of the Moon's action to that of the Sun thus given, we shall use the value of γ employed by Poisson, Pontécoulant, and Resal; if we also employ for D the value which Oolonel Olarke shows good ground for deeming the most probable,* that is $\frac{21}{293 \cdot 40}$ instead of $\frac{1}{300}$ or even smaller fractions hitherto accepted, I find that P_{1} becomes $56^{\prime \prime} \cdot 05$. By Pratt's formula and the numerical values he employs, except for E, I find

$$
P_{1}=54^{\prime \prime} \cdot 879
$$

If we take $\frac{1}{80}$ for the Moon's mass in Poisson's formula, γ becomes $2 \cdot 2062$, and

$$
P_{1}=53^{\prime \prime} \cdot 574
$$

If we change γ to 80 in Pratt's formula with

$$
E=\frac{11^{2} \cdot \frac{1}{20}}{2 \cdot}, P_{1}=52^{\prime \prime} \cdot 95
$$

The value for the observed precession now generally admitted is $50^{\prime \prime} \cdot 37$. It is therefore manifest that the difference between this and the precession of a homogeneous equi-elliptic spheroid can not be admitted to be as great as Mi. Hopkins has declared it to be. From the values of P_{1} which I have calculated we should have

$$
P_{1}-P=5^{\prime \prime} .68 \text { and } 4^{\prime \prime} 507, \text { with the Moon's mass }=\frac{1}{75} ;
$$

[^39]$$
P_{1}-\dot{P}=\frac{3^{\prime \prime} \cdot 204}{3^{\prime \prime} \cdot 617}, \text { and } 2^{\prime \prime} .58, \text { if we take the Moon's mass }=\frac{1}{80} .
$$

On calculating P with the Moon's mass $=\frac{1}{80}$, Sun's mass 354936, γ is 2.25395. If we take for 1 its value in 1852 , or $23^{\circ} 27^{\prime} 32^{\prime \prime}$, and maks

$$
m=3599^{\circ} \cdot 9931, \frac{m}{n}=0027303, A=\frac{1}{293.40}
$$

the following calculations can be made.

$$
\begin{aligned}
\log m & =2 \cdot 5562965 \\
\log (1+\gamma) & =0.5124109 \\
\log \cos I & =0.9625322 \\
\log \frac{m}{n} & =\frac{-3+4362104}{.4674500} \\
\log \frac{3}{2}[60 \times 60] & =\frac{3.7323937}{4 \cdot 1998437}, \\
\log P_{1} & =\frac{2 \cdot 4675489}{1.7322948}=\log 53^{\prime \prime} .988, \\
\text { or } P_{1}=54^{\prime \prime} \text { nearly, } & P_{1}-P=3^{\prime \prime} .617 .
\end{aligned}
$$

Oonsequently instead of admitting Mr. Hopkins's result of $7^{\prime \prime}$ for the difference between the precession of a homogeneous spheroid with the Earth's ellipticity and the precession actually observed, we may affirm that this difference is probably not more than $4^{\prime \prime}$ or $5^{\prime \prime}$.

With the best values for the numerical elements the difference is, Lowever, too well ascertained to be overlooked, and it leads to the conelusion that the Earth can not consist of an entirely solid mass composed of equi-elliptic strata, and that it is therefore partly composed of a solid shell bounded by surfaces such as I have elsewhere indicated, with an interior mass of viscid liquid, such as is ssen flowing from the volcanic openings of the shell, arranged in strata conforming to the laws of hydrostatics, or in other words, with strata of equal density decreasing in ellipticity toward the Earth's center:

GLAOIAL GEOLOGY.

By Prof. James Geikie, F. R. S.

The results obtained by geologists, who have been studying the periphoral areas of the drift-covered regions of our continent, are such as to satisfy us that the drifts of those regions are not iceberg-droppings, as we used to suppose, but true morainic matter and fluvio-glacial defritus. Geologists liave not jumped to this conclusion; they have only accepted it after laborious investigations of the evidence. Since Dr. Otto Torell, in 1875, first stated his belief that the "diluvium" of north Germany was of glacial origin a great literature on the suliject has sprung up, a perusal of which will show that with our German friends glacial geology has passed through much the same succession of phases as with us. At first icebergs are appealed to as explaining everythingnext we meet with sundry ingenious attempts at a compromise between floating ice and a continnous ice-sheet. As observations multiply, however, the element of Hoating ice is gradually eliminated, and all the phenomena are explained by means of land ice and "schmelz-wasser" alone. It is a remarkable fact that the iceberg hypothesis has always been most strenuously upheld by geologists whose labors have been largely confined to the peripheral areas of drift-covered countries. In. the upland and mountainous tracts, on the other hand, that hypothesis has never been able to survive a moderate amount of accurate observa. tion.
The notion of a general ice-sheet having covered a large part of Europe, which a few years ago was looked upon as a wild dream, has been amply justified by the labors of those who are so assiduously investigating the peripheral area of the "great northern drift." And perhaps I may be allowed to express my own belief that the drifts of middle and southern England, which exhibit the same complexity as the "lower difuvium" of the conthent, will eventually be generally acknowledged to have had a similar origin.
I now pass on to review some of the general results obtained by con-

[^40]tinental geologists as to the extent of area occupied by inland ice dur. ing the last great extension of glacier ice in Hurope. It is well known that this latest ice-sheet did not overflow nearly so wide a region as that underneath which the lowest bowlder clay was accumulated. Gerard de Geer has given a summary* of the general results obtained by himself and his fellow.workers in Sweden and Norway; and these have been supplemented by the labors of Berendt, Geinitz, Hunchecone, Klockmann, Keilhack, Schröder, Wahnsohaffe, and others in Germany, and by Sederholm in Fiuland. From them we roarn that the endmoraines of the icecircle round the southern coasts of Norway, from whence they sweep southeast by east across the province of Gottland in Sweden, passing through the lower ends of Lakes Wener and Wet. ter, while similar moraines mark out for us the terminal front of the inlaud ice in Finland at least two parallel frontal moraines passing inland from Hango head on the Gulf of Finland through the southern part of that province to the north of Lake Ladoga. Further northeast than this they have not been traced; but, from some observations by Helmersen, Sederholm thinks it probable that the terminal ice front extended northeast by the north of Lake Onega to the eastern shores of the White Sea. Between Sweden and Finland lies the basiu of tho Baltic, which at the period in question was filled with ice, forming a great Baltic glacior which overflowed the Aland Islands, Gottland and Oland, and which, fauning out as it passed toward the southwest, invaded, on the south side, the Baltic provinces of Germany, while, on the north, it crossed the sonthern part of Scauia in Sweden and the Dauish islands to enter upon Jutland.

The general conclusion arrived at by those who are at present inves. tigating the glacial accumulations of northern Europe may be sum. marized as follows:
(1) Before the invasion of northern Germany by the inland ice the low grounds bordering on the Baltic were overflowed by a sea which contained a boreal and aretic fauna. These marine conditions are indicated by the presence, under the lower bowlder elay of more or less well-bedded fossiliferous deposits. On the same horizon occur also beds of sand, containing fresh-water shells, and now and again mammalian remains, some of which imply cold and other temperate climatic conditions. Ubviously all these deposits may pertain to one and the same period, or more properly to different stages of the same period-some dating back to a time when the climate was still temperate, while others clearly indicate the prevalence of cold conditions, and are there: fore probably somewhat younger.
(2) The next geological horizon in ascending order is that which is marked by the "Lower Diluvium"- the glacial and fluvioglacial detritus of the great ice. sheet which flowed sonth to the foot of the Harz Mountains. The bowlder clay on this horizon now and again contains

[^41]marine, fresh-water, and terrestrial organic remains, derived undoubtedly from the so call ed preglacial beds already referred to. These latter, it would appear, were plowed up and largely incorporated with the old ground moraine.
(3) The interglacial beds which next succeed contain remains of a well-marked temperate fauna and flora, which point to something more than a mere partial or local retreat of the inland ice. The geographical distribution of the beds and the presence in these of such forms as Elephas antiquus, Oervus elephas, O. megaceros, and a flora comparable to that now existing in northern Germany, justify geologists in concluding that the inter-glacial epoch was one of long duration, and characterized in Germany by climatic conditions apparently not less temperate than those that now obtain. One of the phases of that inter-glacial epoch, as we have seen, was the overfowing of the Baltic provinces by the waters of the North Sea.
(4) To this well-marked inter-glacial epoch succeeded another epoch of arctic conditions, when the Scandinavian inland ice once more invaded Germany, plowing through the interglacial deposits, and working these up in its ground moraine. So far as I can learn, the prevalent belief among geologists in north Germany is that there was only one inter glacial epoch; but, as already stated, doubt has been expressed whether all the facts can be thus accounted for. There must always be great difficulty in the correlation of widely separated interglacial deposits, and the time does not seem to me to have yet come; when we can definitely assert that all these inter glacial beds belong to, the same geological horizon.
I have dwelt upon the recent work of geologists in the peripheral areas of the drift-covered regions of northern Europe, because I think the results obtained are of great interest to glacialists in this country. And for the same reasou I wish next to call attention to what has been done of late years in elucidating the glacial geology of the Alpine lands. of central Europe, and more particularly of the low grounds that. stretch out from the foot of the mountains. Any observations that. tend to throw light upon the history of the complex drifts of our own peripheral areas cau not but be of service. The ouly question concern-ing the ground moraines that has recently given rise to much discussion: is the origin of the materials themselves. It is obvious that there are only three possible modes in which those materials could have been: introduced to the ground moraine; either they consist of superficial' morainic debris which has found its way down to the bottom of the old: glaciers by crevasses; or they may be made up of the rock rubbish, shingle, gravel, etc., which doubtless strewed the valleys before these were occupied by ice; or, lastly, they may have been derived in chief measure from the underlying rocks themselves by the action of the ice that overflowed them. The investigations of Penck, Blaas, Böhm, and Briickuer appear to me to have demoustrated that the ground moraines
are composed mostly of materials which have been detached from the underlying rocks by the erosive action of the glaciers themselves. Their observations show that the regions studied by them in great detail were almost completely buried under ice, so that the accumulation of superficial moraines was, for the most part, impossible; and they advance a number of facts which prove positively that the ground moraines were formed and accumulated under the ice. These geologists do not deny that some of the material may occasionally have come from above, nor do they doubt that preëxisting masses of rock rubbish and alluvial accumulations may have been incorporated with the ground moraines ; but the enormous extent of the latter and the direction of transport and distribution of the erratics which they contain can not be thus accounted for, while all the facts are readily explained by the action of the ice itself, which used its subglacial débris as tools with which to carry on the work of erosion.
Professor Heim and others have frequently asserted that glaciers have little or no eroding power, since at the lower ends of existing glaciers we find no evidence of such erosion being in operation. But the chief work of a glacier cannot be carried on at its lower end, where motion is rednced to a minimum, and where the ice is perforated by sub-glacial tumnels and arehes, underueath which no glacial erosion can possibly take place; and yet it is upon observations made in just. such places that the principal arguments against the erosive action of glaciers have been based. . . . If we wish to learn what glacier.ice can accomplish, we must study in detail some wide region from which the ice has completely disappeared. Following this plan, Dr. Blaas has been led by his obserrations on the glacial formation of the Inn Valley to recant lis former views, and to become a formidable advocate of the very theory which he formerly opposed. To his work and the memoirs by Ponck, Brückner, and Bölm, already cited, and especially to the admirable chapter on glacier erosion by the last-named author, I would refer those who may be anxions to know the last word on this muchdebated question.
The evidence of inter glacial conditions within the Alpine lands continues to increase. These are represented by alluvial deposits of silt, sand, gravel, conglomerate, breccia, and lignites. Penck, Böhm, and Brickner find evidence of two interglacinl epochs, and maintain that there have been three distinct and separate epochs of glaciation in the Alps. No mere temporary retreat and re-advance of the glaciers, according to them, will account for the phenomena presented by the in. ter-glacial deposits and associated morainic accumulations. During interglacial times the glaciers disappeared from the lower valleys of the Alps; the climate was temperate and probably the snow-fields and glaciers approximated in extent to those of the present day. All tho evidence conspires to slow that an interglacial epoch was of prolonged duration. Dr. Briickner has observed that the moraines of the last
glacial epoch rest here and there upon loess, and he confirms Penok's observations in South Bavaria that this remarkable formation never overlies the morainic accumulations of the latest glacial epoch. According to Penck and Brückner therefore the loess is of interglacial age. There cau be little doubt, however, that loess does not belong to any one particular horizon. Walnschaftis* and others have shown that throughout wide areas in north Germany it is the equivalent in age of the "Upper Diluvium," while Schmnachert points out that in the Rhine valley it occurs on two separate and distinct horizons. Professor Andreæ has likewise shown that there is an upper and lower löss in Alsace, each characterized by its own special fauna. \ddagger
There is still considerable ditference of opinion as to the mode of formation of this remarkable accumulation. By many it is considered to be an aqueous deposit; others, following Richthofen, are of opinion that it is a wind-blown accumulation, while some incline to the belief that it is partly the one and partly the other. Nor do the upholders of these various hypotheses agree amongst themselves as to the precise manner in which water or wind has worked to produce the ob: served results. Thus, amongst the supporters of the aqueous origin of the loess, we find this attributed to the action of heavy rains washing over and re-arranging the material of the bowlder clays.§ Many, again, have held it probable that loess is simply the tinest loan distributed over the low grounds by the Hood waters that escaped from the northern inland ice and the mers de glace of the Alpine lands of central Europe. Another suggestiou is that much of the material of the loess may have been derived from the denudation of the bowliter clays by flood water during the closing stages of the last cold period. It is pointed out that in some regions at least the loess is underlaid by a layer of erraties, which are believed to be the residue of the denuded bowlder clay. We are reminded by Klockmann\| and Wahnschaffet that the inland ice must have acted as a great dam, and that the wide areas in Germany, etc., would be flooded, partly by water derived from the melting inland ice and partly by waters flowing uorth from the hilly tracts of middle Germany. In the great basins thus formed there would be a cominingling of fine silt material derived from north and south, which would necessarily come to form a deposit having much the same oharacter throughout.

From what I have myself seen of the loess in various parts of Germany', and from all that I have gathered from reading and in conver. sation with those who have worked over loess-covered regions I incline

[^42]to the opinion that loess is for the most part of aqueous origin. In many cases this can be demonstrated, as by the occurrence of bedding and the intercalation of layers of stones, sand, gravel, etc., in the deposit; again, by the not infrequent appearance of fresh.water shells; but perhaps chiefly by the remarkable uniformity of character which the loess displays. It seemed to me reasonable also to believe that the flood waters of glecial times must needs have been charged with finely divided sediment, and that such sediment would be spread over wide regions in the low grounds-in the slack waters of the great rivers and in the innumerable temporary lakes which occupied or partly occupied many of the valleys and depressions of the land. There are difterent kinds of loess or loess-like deposits, however, and all need not have been formeă in the same way. Probably some may have been derived, as Wahnschaffe has suggested, from the denudation of bowlder clay. Pos. sibly, also, some loess may owe its origin to the action of rain upon the stony clays, producing what we in this country would call "rain-wash." There are other accumulations, however, which no aqueous theory will satisfactorily explain. Under this category comes much of the socalled Berglöss, with its abundant land shells and its generally unstratifed character. It seems likely that such loess is simply the result of sub-aerial action, and owes its origin to rain, frost, and wind acting upon the superficial formations and re-arranging their finer-grained constituents. And it is quite possible that the upper portion of much of the loess of the lower grounds may have been re-worked in the same way. But I confess I can not yet find in the facts adduced by German geologists any evidence of a dry-as-dust epoch having obtained in Europe during any stage of the Pleistocene period. It is obvious, however, that after the Hood waters had disappeared from the low grounds of the continent sub-aërial action would come into play over the wide regions covered by glacial and tluvio-glacial deposits. Thus, in the course of time these deposits would become modified, just as similar accumulations in these islands have been top-dressed, as it were, and to some extent even re-arranged.

I am strengthened in these views by the conclusion arrived at by M. Falsan, the eminent French glacialist. Oovering the plateaux of the Dombs, and widely spread throughont the valleys of the Rhone, the Ain, the Isere, etc., in France, there is a deposit of loess, he says, which has been derived from the washing of the ancient moraines. - At the foot of the Alps, where black schists are largely developed, the louss is dark gray; but west of the secondary chain the same deposit is yellowish and composed almost entirely of silicious materials, with only a very little carbonate of lime. This limon, or loess, however, is very generally modifled towards the top by the chemical action of rain, the yellow loess acquiring a red color. Sometimes it is crowded with calcareous concretions; at other times it has been doprived of its calcareous element and convorted into a kind of pulverulent silica or quartz, This, the true
loess, is distinguished from another, lehm, which Falsan recognizes as the product of atmospheric action, formed, in fact, in place from the disiutegration and decomposition of the subjacent rocks. Even this lehm has been modified by runuing water, dispersed or accumalated locally, as the case may be.*
All that we know of the loess and its fossils compels us to include this accumulation as a product of the Pleistocene period. It is not of postglacial age, even much of what one may call the "remodified loess" being of Late Glacial or Pleistocene age. I can not attempt to give here a summary of what has been learned within recent years as to the fauna of the loess. The researches of Nehring and Liebe have faniliarized us with the fact that at some particular stage in the Pleistocene periol a fauna like that of the alpine steppe lands of western Asia was indigenous to middle Europe, and the recentinvestigations of Woldrieh have increased our knowledge of this fauna. At what horizon, then, does this-steppe fauna make its appearance ${ }^{9}$ At Thiede Dr. Nehring discovered in so called loess three successive horizons, each characterized by a special fauna. The lowest of these faunas was decidedly arctic in type; above that came a steppe fanua, which last was succeeded by a fauna comprising such forms as mammoth, woolly rhinoceros, Bos, Oervus, horse, hyæna, and lion. Now, if we compare this last fauna with the forms which have been obtained from true postglacial deposits, those deposits, namely, which overlie the younger bowlder clays and flood accumulations of the latest glacial epoch, we find little in common. The lion, the mammoth, and the rhinoceros are conspicuous by their absence from the postglacial beds of Europe. In place of them we meet with a more or less aretic fama, and a high alpine and aretic flora, which, as we all know, eventually gave place to the flora and fauua with which Neolithic man was contemporaneous. As this is the case throughont northwestern and central Europe, we feel justified in assigning the Thiede beds to the Pleistocene period, and to that interglacial stage which preceded and gradually merged into the last glacial epoes.
If the student of the Pleistocene fauna has certain advantages in the fact that he has to deal with forms many of which are still living, he labors at the same time under disadvantages which are unknown to his colleagues who are engaged in the study of the life of far older periods. The Pleistocene period was distinguished above all things by its great oscillations of climate, the successive changes being repeated and producing correlative migrations of floras and faunas. We know that arotic and temperate faunas and Horas flourished during interglacial times, and a like succession of life forms followed the final disappearance of glacial conditions. A stady of the organic remains met with in any particular deposit will not necessarily, therefore, enable us to assign these to their proper horizon. The geograph.

[^43]ical position of the deposit and its relation to leistocene accumulations elsewhere must olearly be taken into aocount. Already, however, much has been done in this direction, and it is probable that ere long we shall be able to arrive at a fair knowledge of the various modit. eations which the Pleistocene floras and faunas experienced during the protracted period of climatio changes of which I have been speaking. We shall oven possibly loarn how often the arotio, steppe, prairie, and forest fintins, as they have been defined by Woldrioh, replaced each other. Even now some approximation to this bettor knowledge has been made. Dr. Pohlig;* for example, has compared the remains of the Pleistocene fannas obtained at many different places in Europe, and has presented us with a classification which, although confessedly incomplote, yet serves to show the direction in which we must look for furthor advances in this departmont of inquiry.

During the last twonty years the evidence of interglacial conditions both in Europe and America has so increased that geologists generally no longer doult, that the Pleistocene period was oliaracterized by great changes of elimate. The occurrence at many different localities on the continent of beds of lignite and fresh water alluvia, containing remains of Pleistocone mammalia, intercalated between separate and distinct bowlder clays, has left us no alternative. The interglaclal beds of the Alpine lands of Oentral Nurope are paralleled by similar deposits in Britain, Scandinavia, Germany, and France. But opinions differ as to the number of glacial and interglacial epochs, many holding that we have evidence of only two cold stages and one general interglacial stage. This, as I have said, is the view entertained by most geologists who are at work on the glacial accumulations of Scandinavia and North Germany. On the other hand, Dr. Ponck and others, from a study of the drifts of the German alpine lands, believe that they have met with evidence of three distinct epochs of glaciation and two opochs of interglacial conditions. In France, while some observers are of opinion that there have been only two epochs of general glaciation, others, as for oxample, M. Tardy, flad what they consider to bo evidence of several stoch opochs. Others again, as M. Falsan, do not believe in the existence of any intergheial stages, although thoy readily admit that there were great indvances and retronts of the ico during the glacial perlod. M. Falsan, in short, believes in oscillations, but he is of the opinion that these were not so extensive as others maintained. It is, therefore, simplya question of degree, and whether we speak of oscilla. tions or of opochs wo must needs admit the fact that through all tho glaciated tracts of Duropo fossiliforous deposits occur intorcalated among glacial accumulations. Whe successive advance and retroat of

[^44]the ice, therefore, was not a local phenomenon, but characterized all the glaciated areas. And the evidence shows that the osoillations referred to were on a gigantic scale.
The relation borne to the glacial accumulations by the old river alluvia which contain relies of paleolithic man early attracted attention. From the fact that these alluvia in some places overlie glacial deposits the general opinion (still held by some) was that paleolithic man must needs be of postglacial age. But since we have learned that all bowlder clay does not belong to one and the same geologieal horizon-that, in short, there have been at least two, and probably more, epochs of glaciation-it is obvious that the mere occurrence of glacial deposits underneath paleolithic gravel does not prove these lattor to be postglacial. All that we are entitled in such a case to say is simply that the implement-bearing beds are younger than the glacial accumulations upon which they rest. Their horizon must be determined by first ascertaining the relative position in the glacial series of the underlying deposits. Now, it is a remarkable fact that the bowlder clays which underlie such old alluvia belong, without exception, to the earlier stages of the glacial period. This has been proved again and again, not only for this country but for Europe generally. I am sorry to reflect that some twenty years have now elapsed since I was led to suspect that the paleolithic gravels and cave deposits were not of post-glacial but of glacial and inter-glacial age. In 1871-72 I pub. lished a series of papers in the Geological Magazine, in which I set forth the views I had come to form non this interesting question. In these papers it was maintained that the alluvia and cave deposits could not be of post-glacial age, but must be assigned to pre glacial and inter. glacial times, and in chief measure to the latter. Wvidence was adduced to show that the latest great development of glacier ice in Europe took place after the sonthern pachyderms and paleolithic man had vacated England; that during this last stage of the glacial poriod, man lived contemporanoonsly with a northern and alpine fama in such regions as southern France; and, lastly, that paleolithic man and the sonthern mammalia never re-visited northwestern Europe after extreme glacial conditions had disappeared. These conclusions were arrived at after a somewhat detalled examination of all the evidence then available, the remarkable distribution of the paleolithic and ossiferons alluvia having, as I have said, partientarly impressed me. I colored a map to show at onco the aroas coverod by the gheial and flavio. glacial deposits of the last gheial opoch, and the regiens in which the implement-loaring and ossiferous allavia had been met with, when it became apparent that the later never ocourred at the surface within the regions ocenpied by the former. If ossiforons alluvia did here and there appear within the recently gilaciated areas, it was always sither in eaves or as infra. or interglacial deposits. Since the date of these resoarches our knowledge of the geographical distribution of Ploisto-
cene deposits has greatly increased, and implements and other relics of paleolithic man have been recorded from many new localities throughout Furope. But none of this fresh evidence contradicts the conclusions 1 had previously arrived at ; on the contrary, it has greatly strengthened my general argument.

Thus as years advance the picture of Pleistocene times becomes more and more clearly developed. The conditions under which our old paleolithic predecessons lived-the olimatio and geographical changes of which they were the witnesses-are gradually being revealed with a precision that only a few years ago might well have seemed impossi. blo. This of itself is extremely interesting, but I feel sure that I speak the conviction of many workers in this fleld of labor when I say that the olearing up of the history of Pleis tqcene times is not the only end which they have in view. One can hardly doubt that when the conditions of that period and the causes which gave rise to these hive been more fully and definitely ascertained we shall have advanced some way towards the better understanding of the climatic conditions of still earlier periods. . . . It would almost seem as if all oue had to do to ascertain the climatic condition of any particular period was to prepare a map depicting with some approach to accuracy the former relative position of land and sea. With such a map could our meterrologists infer what the climatic conditions must have been? Yes, provided we conld assure them that in other respects the physical conditions did not differ from the present. Now, there is no period in the past history of our globe the geological conditions of which are better known than the Pleistocene. And yet when we liave indicated these upon a map we find that they do not give the results which we might have expected. The climatic conditions which they seem to imply are not such as we know did actually obtain, It is obvious, therefore, that some additional and perhaps exceptional factor was at work to produce the recognized results. What was this disturbings element, and have we any evidence of its interference with the opera. tion of the normal agents of climatic changes in earlier periods of the world's history? We all know that various answers have been givell to such questions. Whether amonget these the correct solution of the enigma is to be found time will show. Momnwhile, as all hypothesis and theory must starve without facts to feed on, it behooves us as working geologists to do our best to add to the supply. The success with which other problems have been attaoked by geologigis forbils us to doubt that ere long we shall have done much to dis\%el some of the mystory which still onvolopes the question of geological olimates.

THE MISTORY OF THE NIAGARA RIVER.

By G. K. Gimben't.

The Niagara River flows from Lake Erie to Lake Ontario. The shore of Erie is more than 300 feet higher than the shore of Ontario; but if you pass from the bigher shore to the lower, you do not descend at a uniform rate. Starting from Lake Drie and going northward, you travel upon a plain-not level; but with only gentle undulations-until you approach the shore of Lake Ontario, and then suddenly you find yourself on the brink of a high bluff or cliff overlooking the lower lake, and separated from it only by a narrow strip of sloping plain. The bird's.eye view in Plate I is constructed to show the relations of these various features, the two lakes, the broud plateau lying a little higher than the shore of Lake Erie, the cliff, which geologists call the Niagara Esearpment, and the nairow plain at its foot.

Where the Niagara River loaves Lake Drie at Buffialo and enters the plain, a low ridge of rock crosses its path, and in traversing this its water is troubled; but it soon becomes smooth, spreads out broadly, and indolently loiters on the plain. For three-fonrths of the distance it can not be said to have a valley, it rosts upon the surface of the plateau; but then its habit surdenly changes. By the short rapid at Gout faland and by the oataract itself the water of the river is dropped 200 feet down into the plain, and thence to the cliff at Lewiston it races headlong through a deep and narrow gorge. Irrom Lewiston to Lako Ontavio there are no rapids. The river is again broad, and its channel is scored so deeply in the littoral plain that the current is relatively slow, and the level of its water surface varios but slightly from that of the lake.
The narrow gorge that contains the river from the Falls to Lewiston is a most peculiar and noteworthy feature. Its width rarely equals the fourth of a mile, and its depth to the bottom of the river ranges from 200 to 500 feet. Its walls aro so steop that opportunities for climbing up and down them are lurea $_{3}$ and in these walls one. may see the

[^45]

geologie structure of the phateau. They are constituted of hedded rocks-limestone, shate, and sandstone-lying nearly horizontal, and a little examination shows that the same strata occur in the same order on both sides, "So evenly are they matched, and so uniform is the general width of the gorge, that one might suspeet, after a hasty examination, the two sides had been oleft asunder by some Plutonio agency. But those who have made a study of the sulject have reached a differont and better conclusion- the conclusion that the trench was oxcavated by rumning water, so that the strata of the two sides are alike becanse they are parts of continuous sheets, from each of which a narrow strip has here been cut.

The contour of the cataract is subject to change. From time to time blocks of rock break away, falling into the pool below, and new shapes are then given to the brink over which the water leaps. Many such falls of roek have taken place since the white man occupied the banks of the river, and the breaking away of a very large section is still a recent event. By such observation we are assured that the extent of the gorge is increasing at its end, that it is growing longer, and that the eataract is the cause of its extension.
This determination is the first element in the history of the river. A change is in progress before our oyes. The river's histony, like human history, is heing enacted, and from that which occurs we can draw inferences concerning what has occurred, and what will occur. We can look forward to the time when the gorge now traversing the fourth part of the width of the platean will completely divide it, so that the Niagara will drain Lake Erie to the bottom. We can look back to the time when there was no gorge, but when the water flowed on the top of the plain to its edge, and the Falls of Niagara were at Lewiston.

We may think of the river as laboring at a task-the task of sawing in two the platean. The task is partly aceomplished. When it is done the river will assume some other task. Before it was begun what did the river do?
How ean we answer this questiong the aurplus water discharge from Lake Brie can not have flowed by this course to Lake Ontario without sawing at the platean. Before it began the cutting of the gorge it did not flow along this line. It may have flowed somewhere else, but if so it did not constitute tho Niagara River. The commence. ment of the cutting of the Niagarit gorge is the beginuing of the his. tory of the Niagari River. Wo have accomplished somewhat of our purpose if we have discovered that our river had a beginning.

We are so accustomed to think of streams, and especially large stroams, as permanent, as flowing on forever, that the diseovery of a deflnite beginning to the life of a great river like the Nagara is im. portant and impressive. But that diseovery does not stand alone. Indeed, it is but one of a large class of similar facts familiar to students
of geology. Let us consider for a moment the tendency of stream his. tories and the tendency of lake historics. Wherever streams fall over rocky ledges in rapids or in cataracts, their power of cososion is greatly increased by the rapid descent, and they deepen their channels. If this process continues long enough, the result must be that each strenm will degrade its channel through the lard ledges until the descent is un more rapid there than in other parts of its course. It follows that a stream with eascades and water•falls and numerous rapids is laboring at an unfinished task. It is either a young stream, or else nature has recently put obstructions in its path.

Again, consider what occurs where a lake interrupts the course of a stream. The lower part of the stream, the outflowing part, by deepening its channel continually tends to drain the lake. The upper course, the inflowing stream, brings mud and sand with it and deposits them in the still water of the lake, thus tending to flll its basin. Thus, by a double process, the streams are laboring to extinguish the lakes that lie in their way, and given sufficient time, they will accomplish this.

Now, if you will study a large map of North America, you will find that the region of the Great Lakes is likewise a region of small lakes. A multitude of lakes, lakelets, ponds, and swamps where ponds once were, eharacterize the surface from the Great Lakes northward to the Arctic Ocean, and for a distance sonthward into the United States. In the same region waterfalls abound, and many streans consist of mere alternations of rapids and pools. Further south, in the region beyond the Ohio River, lakes and cataracts are rare. The majority of the streams flow from source to mouth with regulated course, their waters descending at first somewhat steoply, and gradually becoming more nearly level as they proceed. At the south the whole drainage system is mature ; at the north it is immature. At the sonth it is old; at the north, young.
The explanation of this lies in a great geologic event of somewhat recent date-the event known as the age of ice. Previous to the ice age our streams may have been as tame and orderly as those of the Southern States, and we have no evidence that there were lakes in this region. During the ice age the region of the Great Lakes was somewhat in the condition of Greenland. It was covered by an immense sheet of ice and the ice was in motion. In general it moved from north to south. It earried with it whatever lay loose upon the surface. it did more than this, for just as the soft water of a stroam, by dragging sand and pebbles over the bottom, wears its chamel deoper, so the plastic ice, holding grains of sand and even large stones in its under surface, Iragged these aeross the underlying rook, and in this way not only scoured and seratehed it, but even wore it away.
In yet other ways the moving ice mass was malogous to a river. Its motion was porpetual, and its form changed littlo, but that which moved was continually renowed. As a river is supplied by rain, so the
glacier was supplied by snow falling upon regions far to the north. To a certain extent the glacier discharged to the ocean like a river, break. ing up into icebergs and floating away; but its chief disoliarge was upon the land, through melting. The olimate at its southern margin was relatively warm, and into this warm climate the sheet of ice steadily pushed and was as steadily dissolved.

Whatever stones and earth were pioked up or torn up by the ice moved with it to its southern margin and fell to the ground as the ice melted. If the position of the ice margin had been perfectly uniform its continuously deposited load might have built a single high wall; but as the seasons were cold or warm, wet or dry, the ice margin advanced and retreated with endless variation, and this led to the deposition of irregular congeries of hills, constituting what is known as the "drift deposit." Eventually the warm climate of the south prevailed over the invader born of a cold climate, compelling it to retreat. The motion of the ice current was not reversed, but the front of the glacier was melted more rapidly than it could-be renewed, and thus its area was gradually restricted. During the whole period of retres.ohment the deposition of drift proceeded at the margin of the ice, so that the entire area that it formerly occupied is now liversified by irregular sheets and heapings of earth and stone.
The ancient configuration of the country was more or less moritied by the erosive action of the ice, and it was further moditied by the deposits of drift. The destructive and constructive agencies together gave to the land an entirely new system of hills and valleys. When the ice was gone the rain that fell on the land could no longer follow the old lines of drainage. Some of the old valleys had perhaps been obliterated; others had been changed so that their descent was in a different direction, and all were obstrincted hore and there by the heaps of drifts. The waters were held upon the surface in innmmerable lakes, cach overflowing at the lowest side of its basin, and thus giving birth to a stream that descended to some other lake. Often the new lines of descent-the new water courses-corossed regions that before had had no streams, and then they were compelled to dig their own channels. Thus it was that the whole water systom of a vast region was refashioned, and thus it has come to pass that the streams of this region are young.
Like evory other stream of the ristriet of the Great Lakes, the Niagara was born during the molting of the ice, and so wo may bogin our chronicle with the very beginning of the eiver.
If you will again call to mind the features of a general map of the United States and Oanada, and consider the direetion in which the streams flow, you will perceive that there is a continnous upland, a sort of main divide, separating the basin of the Great Lakes from the basin of the Mississippi.* It is not a mountain range. In great part it is a

[^46]region of hills. In places it is only the highest part of the plain; but it is nevertheless a continnous upland, else the waters would not be parted along its course. When the ice had its greatest extent it passed over this upland, so that the waters produced by its melting fell into the Ohio and other tributaries of the Mississippi, as well as into streams that diseharged to Delaware and Ohesapeake Bays. Afterward, when the glacier gradually fell back, there came a time when the ice front lay in the main to the norih of the great water parting, but had not yot re. ceded from the Adirondack Mountains, so that the water that flowed from the melting glacier could not escape by way of the St. Lawrence River, but gathered as a lake between the upland divide and the ico front. In fact, it formed not one but many lakes, each discharging across the divide by some low pass, and as the great retreat progressed these lakes were varied in number and extent, so that their full history is exceeding complex.

The surfaces of these lakes were stirred by the winds, and wares beat upon their shores. In places they washed out the soft drift and carved clifts; elsewhere they fashioned spits and bars. These cliffs and spits and other monuments of wave work survive to the present time, and have made it possible to trace out and map certain of the ancient lakes. Ihe work of surveying them is barely begun, but from what is known we may add a chapter to the history of our river.

There was a time when one of these lakes occupied the western portion of the basin of Lake Erie, and discharged across the divide at the point where the city of Fort Wayne now stands, running into the Wabash River and thence into the Ohio. The chamel of this discharge is so well preserved that its meaning can not be mistaken, and the associated shore lines have beon traced for many milos eastward into Ohio and northward into Michigan. Afterward this lake found some other point of discharge, and a new shore line was mate 25 feet lower. Twice agnin the point of diseharge was shifted and other shore lines were formed. The last and lowest of the series has been traced eastward across the States of Ohio and Pennsylvania and into western New York, where it fudes away in the vicinity of the town of Oareyville. At each of the stages ropresented by these four shore lines the site of the Niagara was Bither buried beneath the ice or else sub. merged under the lake bordering the ice. There was no river.

The noxt ohange in the history of the lakes was a great one. The ice, which had previously ocenpied nearly the whole of the Ontario basin, so far withdrew as to enable tho aceumulated water to flow ont by way of the Mohawk Valley. 'The lovel of' discharge was thas and. denly lowered 500 feet, and a largo district provionsly submerged beoame dry land. Then for the first time Lake Brie und Lake Ontario wore separated, and then for the that time tho Niagara River carried the surplus water of Lake Brie to Lake Ontario.

The waves of the now-bom Lake Ontario at once began to earve
about its margin a record of its existence. That record is wonderfully clear, and the special training of the geologist has not been necessary to the recognition of its import. The earliest books of travel in western New York describe the Ridge road, and tell us that the ridge of sand and gravel whioh it follows was even then recognized by all resilents as an ancient beach of the lake.* In the Province of Ontario, the beach was examined and described by the great English geologist, Oharles Lyell, during his celebrated journey in Ameriea, \dagger and it afterward received more careful study by Mr. Sandford Fleming, \ddagger and by the geologists of the Oanadian Survey.§. In western New York it was traced outby the great American geologist, James Hall, during hissurvey of the geology of the fourth districtof the State.\| Within a few years more attention has been given to detail. Prof. J. W. Spencer has traced the line continuously from the head of the lake at Hamilton, past Toronto, Windsor, and Grafton, in the vicinity of Belleville, \mathbb{T} beyond which point it is hard to follow. South of the lake, I myself have traced it from Hamilton to Queenstown and Lewiston, thence to Rochester, and all about the eastern end of the basin to Watertown, beyond which point it is again difficult to trace. Southeast of the present margin of Lake Ontario there was a great bay, extending as far south as Oayuga Lake, and including the basin of Oneida Lake, and it was from this bay that the discharge took place, the precise point of overflow being the present site of the city of Rome. For this predecessor of Lake Ontario Professor Spencer has proposed the name of Iroquois.
Putting together the results of his survey and of my own, I have been able to propare a map (Pl. II) exhibiting with a fair amount of detail the outline of the old lake. It will be observed that the northeastorn portion of the shore is not traced out. In fact it is not trace. able. The water was contained on that side by the margin of the glacier, and with the final melting of the ice all record of its shore vanished.
The form and extent of Lake Iroquois, and the form and extent of each other lake that borderod the ice front, were determined partly by the position of the pass ovor which the discharge took place, and by the contour of the land; but they were also determined to a great extent by the peculiar attitude of the land.

[^47]

Perhaps a word of general explanation is necessary in speaking of the uttitude of the land. Geologists are prone to talk of elevation and subsidence-of the uprising of the earth's crust at one place or at one time, and of its down-sinking at another place or another time. Their language usually seems to imply the rise or fall of an area all together, without any relative displacement of its parts; but you will readily see that, unless a nising or sinking tract is torn asunder from its surround. ings, there must be all about it a belt in which the surface assumes an inclined position, or, in other words, where the attitude of the land is changed. If the district whose attitude ohanges is a lake basin, the change of attitude will cause a ehange in the position of the line marked about the slopes of the basin by the water margin, and it may even canse the overtlow of the basin to take a new direction.
The Ontario basin has been subjected to a very notable ohange of attitude, and the effect of this change has been to throw the ancient shore line out of level. When the shore line was wrought by the waves, all parts of it must have lain in the same horizontal plane, and had there been no change in the attitude of the basin, every point of the shore line would now be found at the level of the old outlet at Rome. Instead of this, we find that the old gravel spit near Toronto-the Davenport ridge-is 40 feet higher than the contemporaneous gravel spit on which Lewiston is built; at Belleville, Ontario, the old shore is 200 feet higher than at Rochester, New York; at Watertown 300 feet higher than at Syracuse; and the lowest point, in Hamilton, at the head of the lake, is 325 fect lower than the highest point near Watertown. From these and other mensurements we learn that the Ontario basin with its now attitade inclines more to the sonth and west than with the old attitude.
The point of dischnge remained at Rome as long as tho ice was crowded high against the northorn side of the Adirondack Mountains, but e entmally there came a time when the water escaped oastward between the ico and the mountain slope. The line of the St. Lawrence was not at once opened, so that the subsidence was only partial. The water was held for short times at various intermediato lovols, recorded at the east in a series of faint shore lines. Owing to the attitude of the land, these shores are not tracenble all about the basia, but pass beneath the present water level at various points.
linally the ice blockade was raised in the St. Yawrence Valloy, and the present outlet was established. During the poriod of fimal rotrent the attitude of the land had slowly changed, so that it; was not then so greatly depressed at the north as before; but it had not yot acquired its present position, and for a time Lake Ontario was smaller than now, its western margin lying lower down on the slope of the basin.

An attompt has been mado in P'l. un to exhibit diagramatically the relations of ice dams and basin attitudes to one another and to the river. The various elements are projected, with exaggeration of hoights, on a
vertioal plane running a little west of south, or parallel to the direction of greatest inclination of old water-planes. At N is represented the Niagara escarpment and the associated slope of the lake basin; at A the Adirondack Mountains. R and T are the passes at Rome and at the Thousand Islands. Successive positions of the ice front are marked at $\mathrm{I}^{1}, \mathrm{I}^{2}$, and I^{3}. The straight line numbered 1 represents the level of lake watèr previous to the origin of the Niagara River; 2 gives the first position of the water level after the establishment of the Rome outlet; and the level gradually shifted to $3 ; 4$ is the first of the series of temporary water levels when the water escaped between the mountain slope and the ice front; 5 represents the first position of the water level after the occupation of the Thousand Island outlet; and 6, the present level of Lake Ontario.
It should be added pareuthetically that the shore of Lake Iroquois as mapped in Pl. Ir is not quite synchronons. Between 2 and 3 of Pl. in there was a continuous series of water levels, but it was not eas, to map any one except the highest. The northern part of the map delineates the margin of water level 2 and the southern part the margin of water level 3.
It is easy to see that these various changes contribute to modify the history of the Niagara River. In the beginning, when the cataract was at Lewiston, the margin of Lake Ontario, instead of being 7 miles away, as now, was only 1 or 2 miles distant, and the level of its water was about 75 feet higher than at present. The outlet of the lake was at Rome, and while it there continned there was a progressive change in the attitude of the land, causing the lake to rise at the mouth of the Niagara until it was 125 feet higher than now. It fairly, washed the foot of the cliff at Queenston and Lewiston. Then came a time when the lake fell suddeuly through a vertical distance of 250 feet, and its shore retreated to a position now submerged. Numerous minor oscillations were caused by successive shiftings of the point of discharge, and by progressive changes in the attitude of the land, until finally the present outlet was acquired, at which time the Nagara River had its greatest itugth. It then encroached 5 miles on the modern doman of Lake Ontario, and begen a delta where now the lead-line ruus out 30 fathoms.

While the level of discharge was lower than now, the river had differeut powers as an eroding agent. The rocks underlying the low plain along the margin of the lake are very soft, and where a river flows across yielding rocks the depth to which it orodes is limited chiefly by the level of its point of discharge. So when the point of discharge of the Niagara River-the surface of the lake to which it flowed-was from 100 to 200 feet lower than now, the river carved a channel far deeper than it could now carve. When afterward the rise of land in the vicinity of the outlet carried the water gradually up to its preseut position in the basin this channel was partly filled by sand and
H. Mis. $120-16$
other débris brought by the current; but it was not completely filled, and its remarkable present depth is one of the surviving witnesses of the shifting drama of the Ontario. Near Fort Niagara 12 fathoms of water are shown on the charts.

Mr. Warren Upham has made a similar discovery in the basin of the Ked River of the North. That basin held a large lake, draining southward to the Mississippi-a lake whose association with the great glacier Upham appropriately signalized by naming it after the aposile of "the glacial theory," Louis Agassiz. The height, of the old Agassiz shore has been carefully measured by Mr. Upham, through long distances, and it is found to rise continuously, though not quite uniformly, to ward the north. Similar discoveries have been made in the basins of Erie, Huron, and Michigan, and the phenomena all belong approximately to the same epoch. So, while the details remain to be worked out, the general fact is already established that during the epoch of the ice retreat the great plain coustituting the Laurentian basin was more inclined to the northward than at present.

It was shown, first in the case of Lake Agassiz, and afterward, as already stated, in the case of Lake Ontario, that the change from the old attitude of the land to the present attitude was in progress during the epoch of the ice retreat. The land was gradually rising to the north or northeast. In each lake basin the water either retreated from its northern margin, so as to lay bare more land, or encroached on its southern margin, or else both these changes occurred together; and in some cases we have reason to believe that the changes were so extensive that the outlets of lakes were shifted from northerly passes to more southerly passes.

To illustrate the effect of the earlier system of land slopes upon the distribution of water in the region of the Great Lakes I have con. structed the map in Pl, IV. It does not postulate the systein of levels most divergent from the present system, but a system such as may have existed at the point of time when the last glacial ice was melted from the region. The molern system of drainage is draiwn in broken lines; the hypothetic system in full lines, with shading for the lake areas; and a heavier broken line toward the bottom of the map marks the position of the present water-parting at the sonthern edge of the Laurentian basin.

In the ancient system of drainage, Georgian Bay, instead of being a dependency of Lake Huron, is itself the principal lake, and receives the overtlow from Huron. It expands toward the noitheast so as to include the basin of Lake Nipissing, and its discharge is across a somewhat low pass at the east end of Lake Nipissing, and thence down the Ottawa River to the St. Lawrence. Lake Michigan, instead of communicating with Lake Huron by a strait, forms a tributary lake, dis. charging its surplus through a river. Lake Superior has the same relations as now, but its overflow traverses a greater distance before

FLatt IV.-HYTVTHETIC HYDROGRAPITY AT A DATE AFTKR THE MELTHNG OF THE GREAT GLACTER FROM THE ST. Fipianatiox,-Water.parting in heavy broken lino. Miniern hyirography in light broken lines. Ancient rivern in full linen. Anciont
reaching Lake Huron. Superior, Michigan, Huron, and Georgia constitute a lake system by themselves, independent of Erie and Ontario, and the channel of the Detroit River is dry. Lake Erie and Lake Ontario, both greatly reduced in sizo, constitute another ehain, but their connecting link, the Niagara River, is a comparatively small stream, for the diversion of the upper lakes robs the river of seven-eighths of its tributary area.

Whether this hypothetic state of drainage ever existed, whether the ice retreated from the Nipissing pass while still the changing attitude of the land was such as to turn the Georgian outlet in that direētion, are questions not yet answered. But sugh data as I have at present incline me to the belief that for a time the upper lakes did discharge across the Nipissing pass.

Professor' Speucer has decribed a channel by which Georgian Bay once drained across a more southerly pass to the valley of the Trent River, and thence to Lake Ontario.* He states that there is an ancient shore line about Georgian Bay associated with this outlet, and that he has traced this line westward and southward until it comes down to the shore of Lake Hurou, demonstrating that duriug the existence of that outlet also, the Detroit River ran dry. The Trent pass is much higher than the Nipissing pass, so that it appears necessary to assume that during the history of the Trent outlet for the upper lakes the great glacier still occupied the region of Lake Nipissing, preventing the escape of the water in that direction.

The map in PI. v represents the system of lakes and outlets at that time. It is largely theoretic, but at the same time I believe its general features consistent with our present knowledge of the facts.

Unless I have misunderstood Professor Spencer, Lake Ontario was at high stage in the first part of the epoch of the Trent Valley outlet, and was afterwards at low stage. I have selected as the date of my map the epoch of the high stage, with the outlet of Ontario at Rome, and have indicated an ice sheet so extensive as to block the way not only at Lake Nipissing but at the pass of the Thousand Islands. The date of this map is earlier than the other; it belongs to a time when the northward depression of the land was greater. Lake Erie is repre. sented as less in extent, for its basin in that position would hold less water. Huron and Ontario would likewise be smaller were their waters free to escape over the lowest passes; but the ice blocks the way, and so their waters are raised to the level of higher passes. Of the contemporaneous relations of the upper lakes we know nothing at present. They are drawu as though communicating with Lake Huron, but it is equally possible that they fell into some other drainage system. Here again the Detroit channel was not in use, and the Niagara River was outlet only for the waters of the Erie basin.

[^48]

[^49]Graphic methods are ill adapted to the communication of qualifled or indefnite statements. By the aid of a map one can indicate definitely the relation of Albany to other places and things, but he cannot say indeflitely that Albany is somewhere in eastern New York, nor can he say, with qualification, that it is probably on the Mohawk River. For this reason I have decided to publish these two maps only after hesitation, because I should greatly regret to produce the impression that the partieular configuration of lakes and outlets here delineated has been actually demonstrated. The fats now at command are sug. gestive rather than conclusive, and when the subject shall have been fully investigated it is to be expected that the maps represeating these epochs will exhibit material differences from those I have drawn. The sole point that I wish to develop at this time is the probability that during a portion of the history of the Niagara River its drainage districtthat area from which its water was supplied-was far less thau it is at the present time. There is reason to believe that during an epoch which may have been short or long - we can only vaguely conjecturethe Niagara was a comparatively small river.

The characters of the gorge are in general remarkably uniform from end to end. Its width does not vary greatly; its course is flexed but slightly; its walls exhibit the same alternation of soft and hard rocks. But there is one exceptional point. Midway, its course is abruptly bent at right angles. On the outside of the angle there is an enlargement of the gorge, and this enlargement contains a deep pool, called the Whirlpool. At this point, and on this side only, the material of the wall has an exceptional character. At every other point there is an alternation of shales, sandstones, and limestones, capped above by an unequal deposit of drift. At this point limestones, sandstones, and shales disappear, and the whole wall is made of drift. Here is a place where the strata that floor the plateau are discontinuous, and must have been discontinuous before the last occupation of the region of the glacier, for the gap is filled by glacial drift.

Another physiographic feature was joined to this by Lyyell and Hall. They observed that the cliff limiting the plateau has, in general, a very straight course, with few indentations. But at the town of St. David's, a few miles west of Queenston, a wide flaring gap occurs. This gap is partly filled by drift, and although the glacial nature of the drift wàs not then understood, it was clearly perceived hy those geologists that the drift-flled break marked the position of a line of erosion established before the period of the drift. Putting together the two anomalies, they said that the drift-filled gap at the Whirlpool belonged to the same line of ancient erosion with the drift-filled gap at St. David's." Their concluslon has been generally accepted by subsequent investigators, but the interpretation of the phenomena was carried

[^50]little further until the subject was studied by Dr, Julius Pohlman.* He pointed out that the upper course of the ancient gorge could not have lain outside the modern gorge. If the course of one gorge lay athwart the course of the other, we should have two breaks in the continuity of the strata, instead of the single one at the Whirlpool. The upper part of the ancient gorge necessarily coincides with a part of the modern gorge; and so when the cataract, in the progressive excavation of the cañon, reached a point at the Whirlpool where it had no firm rock to erode, it had only to clear out the incoherent earth and bowlders of glacial drift. To whatever distance the gorge of the earlierstream extended, the modern river found its laborions task performed in advance.
Let us put together what we have learned of the Niagara history. The river began its existence during the final retreat of the great ice sheet, or, in other words, during the series of events that closed the age of the ice in North America. If we consider as a geologic period the entire time that has elapsed since the beginning of the age of ice, then the history of the Niagara River covers only a portion of that period. In the judgment of most students of glacial geology, and, I may add, in my owu judgment, it covers quly a small portion of that period.
During the course of its history the length of the river has suffered some variation by reason of the sucessive fall and rise of the level of Lake Ontario. It was at first a few miles shorter than now; then it became suddenly a few miles longer, and its present length was gradually acquired.

With the change in the position of its mouth there went a change in the height of its mouth; and the rate at which it eroded its channel was affected thereby. The influence on the rate of erosion was felt chiefly along the lower course of the river, between Lewiston and Fort Niagara.
The volume of the river has likewise been inconstant. In early days, when the lakes levied a large tribute on the melting glacier, the Ningara may have been a larger river than now; but there was a time When the discharge from the upper lakes avoided the route by Lake Erie, and then the Niagara was a relatively small stream.
The great life work of the river has been the digging of the gorge through which it runs from the cataract to Lewiston. The beginning of its life was the beginning of that task. The length of the gorge is in sone sense a measure of the river's age. In the main the material dug has been hard limestone and sandstone, interbedded with a colerent though softer shale; but for a part of the distance the material was incoherent drift.
The geologic age of the earth-the time during which its surface has been somewhat as now, divided into land and reean, subject to endless waste on the land and to endless accumulation of sediment in the
*Proceedings Am. Assoc. Adv. Soi., 35th moeting (Buffalo), pp. 221-222.

ocean, green with verdure and nourishing the varied forms of animal life-this time is of immense duration. Even the units into which geologists divide it, the periods and epochs of their clironology are themselves of vast duration. Human history is relatively so short, and its units of centuries and years are so exceedingly brief, that the two orders of time are hardly commensurate. Over and over again the attempt has been made to link together the two chronologies, to obtain for the geologic units some satisfactory expression in the units of human history. It can not in fairness be said that all these attempts have failed, for some of them are novel and untested; but, however successful or unsuccessful they may have been, the interest in the subject remains, and no discussion of the history of the Niagara River would be complete without some allusion to its value as a geologic chronometer. It is true we know but little of the ratio the river epoch bears to the extent of the glacial period, or to any longer geologic unit; but yet were we able to determine, even approximately, the time consumed by the river in cutting its gorge, we should render less hazy and rague our conception of the order of magnitude of the units of the earth's geologic bistory. The problem has been attacked by numerous writers, and the resulting estimates have ranged from three or four thousand years to three or four million years.
The method of reaching a time estimate has been, first, to estimate the present rate of recession-the rate at which the cataract is increasing the length of the gorge; second, to compute, with the aid of this estimate and the kuown length of the gorge, the time necessary for the entire excaration; and, third, some writers have moditied their result by giving consideration to various conditions affecting the rate of erosion during earlier stages of the excavation. The enormous range of the resulting estimates of time has depended chiefly upou the imperfection of data with reference to the present rate of recession of the falls. It is but a few years since measurement of the rate of recession was substituted for bald guessing.
This measurement consists in making surveys and maps of the falls at different times, so that the amount of change in the interval between surveys can be ascertained by comparison of the maps. In 1842 Professor Hall made a survey of the outlines of the falls, and he published, for the use of future investigators, not ouly the map resulting from the survey, but also the bearings taken with the surveying instrument in determining the principal points of the map.* He likewise left upon the ground a number of well-marked monuments to which fature survess could be referred. Thirty-three years later a second survey was made by the United States Army Eugineers, and they added still further to the series of bench marks available for future reference. Three years ago my colleage, Mr. R. S. Woodward, executed a third survey. \dagger

[^51]Plate vir exhibits the ontline of the crest of the falls, together with the brink of the cliff in the vicinity of the falls, as determined by Mr. Woodward in 1886, and also shows a part of the same ontline as determined by Professor Hall 44 years earlier.* If both were precise, the area included between the two lines would exactly represent the reces. sion of the Horseshoe and American falls in 44 years, and the retreat of the cliff face at Goat Island in the saine time. I regret to say that there is internal evidence pointing to some defect in one or both surveys, for there are some points at which/the Wood ward outline projects farther towards the gorge than the Hall outline, and yet we can not believe that any additions have been made to the face of the cliff, Nevertheless, a critical study, not merely of these bare lines on the chart, but also of the fuller data in the surveyors' notes, leads to the belief that the rate of recession in the central part of the Horseshoe Fall is approximately determined, and that it is somewhere between 4 and 6 feet per annam. The amount fallen away at the sides of the Horseshoe is not well determined, but this is of less importance, for such falling away affects the width of the gorge rather than its length, and it is the length with which we are concerned.
The surveys likewise fail to afford any valuable estimate of the rate of retreat of the American Fall, merely telling us that its rate is far less than that of the Horseshoe-a result that might be reached independently by going back in imagination to the time when the two falls were together at the foot of Goat Island, and considering how much greater is the distance through which the Horseshoe Fall has since retreated. The rate of retreat of the central portion of the Horseshoe is the rate at which the gorge grows longer.

Now if we were to divide the entire length of the gorge by the space through which the Horseshoe Fall retreats in a year, we might regard the resulting quotient as expressing the number of years that the falls have been occupied with their work. This is precisely the procedure by which the majority of time estimates have been deduced, but in my judgment it is not defensible. It implies that the rate of retrogression has been uniform, or, more precisely, that the present rate of retrogression does not differ from the average rate, and this implication is open to serious question. I conceive that future progress in the discussion of the time problem will consist chiefly in determining in what ways the conditions or circumstances that affect the rate of retrogression have varied in past time. In order to discuss intelligently these conditions, it is necessary to understand just what is the process by which the river increases the length of its gorge.

There can be no question that the cataract is the efflcient engine, but what kind of an engine is it What is the principle' on which it, works ?

[^52]

Plate Vif.-Calit of the Cliff Ling at the head of the Niagahi Gorge, conpiled to bhow the Receseion from 1842 to 1826.
 1842. Full line crest of falla as mapped by the U. S. Geol. Surver in 1886, with other features as mapped by the U. S. Lake Sarvey in 1875.

It has already been stated that the rocks at the falls lie in level layers. The order of succession of the layers has much to do with the nature of the cataract's work. Above all is a loose sheet of drift, but this yields so readily to the wash of the water that we need pay no attention to it at present. Under that is a bed of strong limestone. This is called the Niagara limestone, and in thickness is 80 feet. Beneath it is a shale, called the Niagara slale, with a thickness of 50 feet; and then for 35 feet there is an alternation of limestone, shale, and sandstone, known collectively as the Olinton group. This reaches down very nearly to the water's edge. Beneath it and extending downward for several hundred feet is a great bed of soft, sandy shale, interrupted, so far as we know, by a single hard layer, a sandstone ledge, varying in thickness from 10 to 20 feet. These are the Medina shales and the Medina sandstone. The profie in the figure indicates that the hard layers project as slelves or steps, and that the softer layers are eaten back. I have been led so to drav them by considerations of analogy only, for uniderneath the center of the great cataract no observations have been made. We only know that the river leaps from the upper surface of the Niagara limestone and strikes upon the water of the pool. The indicated depth of the pool, too, is a mere surmise for in that commotion of waters direct observation is out of the question. But where the United States Engineers were able to lower their plummet, a half a mile away, a depth was discovered of nearly 200 feet, and I have assumed that the cataract is scouring as deeply now as it scoured at the time when that part of the gorge was dug.
It is a matter of direct observation that from time to time large blocks of the upper limestone fall away into the pool, and there seems no escape from the inference that this occurs because the erosiou of the shale beneath deprives the limestone of its support. Jnst how the shale is eroded and what is the part played by the harder layers beneath are questions in regard to which we are much in doubt. In the Oave of the Winds, where one can pass beneath and behind one of the thinner segments of the divided fall, the air is filled with spray and heavier masses of water that perpetually dash against the shale, and though their force in that place does not seem to be violent, it is possible that their continual beating is the action that removes the shaly rock. The shale is of the variety known as calcareous, and as its calcareous element is soluble, it may be that solution plays its part in the work of undermining. What goes on beneath the water of the pool must be essentially different. The Niagara River carries no sediment, and therefore can not scour its channel in the manner of most rivers, but the fragments of the limestone bed that fall into the pool must be moved by the plunging water, else they would accumulate and impede its work, and being moved, we can understand that they becoine powerful agents of excavation. Water plunging into a pool acquires a gyratory motion, and, carrying detritus about with it, sometimes bores deep

Plate VIII.-Section of Nlagara falls, showing the arrangement of harp and soft strata, and mllustrating a theory of the process of erosion
holes, even in rocks that are hard. These holes are called technically "pot-holes," and there is much to commend the suggestion that the excaration within the pool is essentially pot-hole work.*

The process which I have describel is that which takes place in the central part of the Horseshoe Fall, where the greatest body of water is precipitated. At the margin of the Horseshoe, and also at the American Fall, in which places the body of falling water is much less, the process is different. There is there no pot-hole action and no pool. The fallen blocks of limestone form a low talus at the foot of the cliff, and upon them the force of the descending water is broken and spent. Such of you as have made the excursion through the Dave of the Winds will recall that thougl for a few steps you traveled upon an undisturbed rock stratum, one of the layers of the Olinton group, the greater part of the journey lay across large fallen blocks of limestone, irregularly heaped. Where, then, the volume of falling water is relatively small, the great bed of shale below the Olinton ledges plays no part, and the rate at which the limestone breaks away is determined purely by the rate of erosion of the shale bed lying just beneath it.

The difference between the two processes is of great importance in the present connection, because the two rates of erosion are very different.

I am fully aware that this sketch of the cataract's work is not a satis. factory explanation of the mode of recession, but it yet serves a present purpose, for it renders it possible to point out that the rate of recession is affected by certain factors which may bave varied during the early history of the river. We see that the process of recession is concerned with a heavy bed of hard rock above, with beds of softer rock beneath, with the force of falling water, and possibly, also, with the solvent power of the water.

Ooncerning each of these factors a number of pertinent questions may be asked, questions that should certainly be considered, whether they are answered or not, hefore any solution of the time problem is regarded as satisfactory. To illustrate their pertinence, a few will be propounded.

Question 1. Does the limestone vary in constitution in different parts of the gorge? If its texture or its system of cracks and joints varies, the process of recession may vary in consequeuce.

Question 2. How does the limestone bed vary in thickness in different parts of the gorge? This question is easily answered, for at all poiuts it is well exposed for measurement.

Question 3. How is the thickness of the limestone related to the rate of recession? This is more difficult. The débris from a very thick bed of limestone would oppose great resistance to the cataract and check its work. The débris from a very thin bed would afford sinall and inefficient pestles for pot-hole action, and might lead to a slow rate of

[^53]recession. If the thickness now seen at the cataract were slightly increased or slightly diminished, it is not at once apparent how the rate of recession would be affected, and yet there might be au important diferénce.

We have seen that the pre-glacial stream whose channel is betrayed at the Whirlpool reinoved the Niagara limestoue through a portion of the gorge, and

Question 4 asks: Through what portion of the gorge was the Niagara limestone absent when the Niagara River began its work 1

Question 5. Does the rock section beneath the limestone-the shale series with its imbedded harder layers-does this vary in different parts of the gorge?

Question 6. Through what distance were the several members of the underlying rock series removed by the action of the pre-glacial streain i

Ooming now to cousider the force of the falling water, a little consideration serves to show that the force depends on at least three things: The height through which the water falls, the degree of concentration of the stream, and the volume of the river.

The height of the fall is the vertical distance from its crest to the surface of the pool below.

Question 7 asks: How has the height of the crest of the fall varied during the history of recession?

Question 8. How has the height of the base of the fall varied! And this involves a subsidiary question-to what extent has the excavated gorge, as left by the retreating cataract, been re'flled, either by the falling in of fragments from the cliffs or by contributions of débris brought by the current

Question 9. What has been the form of the channel at the crest of the fall from point to point during the recession Wherever the clianhas been broad, and the water of uniform depth from side to side, the force of the falling water has been applied disadvantageously; wher. over the channel has been narrow, or has been much deeper in some parts than in others, the force of the water has been applied advanta. geously.

There are many ways in which it is possible that the volume of the river was made to differ at early dates from its present volume. During the presence of the ice there was a different climate, and there were different drainage systems.

Question 10. During the early history of the river was the annual rainfall on which its water supply depended greater or less than now?

Question 11. Was the evaporation from the basin at that time greater or less than now It is believed that at the present time the Niagara River receives less than half the water that falls upon its basin in rain and snow, the remainder being returned to the air by evaporation from the lakes, from the surface of the land, and from vegetation.

Question 12. Was the water supply increased by ablation There
may have been times when the overlapping edge of the glacier discharged to the Laarentian Basin large bodies of water furnished by the melting of ice that had songealed from the clouds of regions far away.

Question 13. Was the drainage area of the river at any time increased through the agency of ice barriers? Just as the Winnipeg basin was made to sendits water to the Mississippi, so we can imagine that regions north of the Great Lakes and now tributary to Hudson's Bay had their discharge temporarily turned to Lake Snperior and Lake Huron.

On the other hand, we have seen Clat the discharge of the whole district of the upper lakes was for a time turned away from the Niagara River. Therefore we ask :

Question 14. To what extent and for what periods was the volume of the river diminished through the diversion of the discharge of the apper lakes

Assuming all these questions to be answered one by one, and the variations of different sorts determined, it is still necessary to learn the relations of those variations to each other, and so we ask:

Question 15. How have the variations of rock section, the variations of cataract height, the variations of form of channel, and the variations of volume been related to one another in point of time? What have been their actual combinations:

Question 16. How have the various temporary combinations of factors affected the process of retreat and the rate of recession?
The tale of questions is not exhausted, but no more are needed if only it has been shown that the subject is not in reality simple, as many have assumed, but highly complex. Nome of the questions are, indeed, easily answered. It may be possible to show that others are of sinall moment. It may even be that careful study of the local features will enable the investigator to infer the process of cataract work at each point from the existing condition of the gorge, and thas relieve him from the necessity of considering such remote questions as the nature of glacial climate and the history of glacial retreat. But after all paring and pruning, what remains of the problem will be no bagatelle. It is not to be solved by a few figures on a slate, nor yet by the writing of many essays. It is not to be solved by the cunning discussion of our scant, yet too puzzling, knowledge-smoothing away inconvenient doabts with convenient assumptions and cancelling out, as though compensatory, terms of unknown value that happen to stand on opposite sides of the equation. It is a problem of nature, and, like other natural problems, demands the patient gathering of many acts, of facts of many kinds, of categories of facts suggested by the tentative theories of to-day, and of new categories of facts to be suggested by new theories.

I have said our problem is but the stepping stone to another problem, the discovery of common units for earth history and human history. The Niagara bridges the chasm in another way, or, more strictly, in
another sense, for the term of its life belongs to both histories. The river sprang from a great geologic revolution, the banishment of the dynasty of cold, and so its lifetime is a geologic epoch; but from first to last man has been the witness of its toil, and so its history is interwoven with the history of man. The human comrade of the river's youth was not, alas, a reporter with a notebook, else our present labor would be light. He has even told us little of hiinself. We only know that on a gravelly beach of Lake Iroquois, now the Ridge road, he rudely gathered stones to make a hearth, and built a fire; and the next storm breakers, forcing back the beach, buried and thus preserved, to gratify yet whet our curiosity, hearth, ashes, and charred sticks.*

In these Darwiniau days we can not deem primeval the man possessed of the Promethean art of fire, and so his presence on the scene adds zest to the pursuit of the Niagara problem. Whatever the antiquity of the great cataract may be found to be, the antiquity of man is greater.
*American Anthropologist, vol. 11, pp. 173, 174.
Н. Mis. $129-17$

THE MEDITERRANEAN, PHYSICAL AND HISTURIUAL.*

By Sir R. Lamberif Playfair.

When the unexpected honor was proposed to me of presiding over. your deliberations, I felt some embarrassinent as to the subject of my address. Geography as a science, and the necessity of enccuraging a more systematic study of it, had been treated in an exhaustive manner during previous meetings. . . . In my perplexity I applied for the advice of one of the most experienced geographers of our Society, whose reply brought comfort to my mind. He reminded me that it was generally the custom for presidents of sections to select subjects with which they were best acquainted, and added: "What more instructive and captivating subject could be wished than the Mediterranean, physical and historical?"

For nearly a quarter of a century I have held an official position in Algeria, aud it has been my constant delight to make myself acquainted with the islands and shores of the Mediterranean, in the hope of being able to facilitate the travels of my countrymen in that beautiful part of the world.

I can not pretend to throw much new light on the subject, and I have written so often about it already that what I have to say may strike you as a twice-told tale; nevertheless, if you will permit me to descend from the elevated platform occupied, by more learned predecessors, I should like to speak to you in a familiar manner of this "great sea," as it is called in sacred Scripture, the Mare internum of the ancients" "our sea," Mare nostrum of Pomponius Mela.

Its shores include about $3,000,000$ square miles of the richest country on the earth's surface, enjoying a climate where the extremes of tem. perature are unknown, and with every variety of scenery, but chiefly consisting of mountains and elevated plateaux. It is a well defined region of many parts, all intimately connected with each other by their geographical character, their geological formation, their flora, fauna, and the physiognomy of the people who inhabit them. To this general

[^54]statement there are two exceptions;-namely, Palestine, which belongs rather to the tropical countries lying to the east of it, and so may be dismissed from our subject; and the Sahara, which stretches to the south of the Atlantic region-or region of the Atlas-but.approaches the sea at the Syrtis, and again to the eastward of the Oyrenaica, and in which Egypt is merely a long oasis on either side of the Nile.

The Mediterranean region is the emblem of fertility and the cradle of civilization, while the Sahara-Egypt, of course, excepted-is the traditional panther's skin of sand, dotted here and there with oases, but always representing sterility and barbarism. The sea is in no sense, save a political one, the limit between them; it is a mere gulf, which, now bridged by steam, rather unites than separates the two shores. Civilization never could have existed if this inland sea had not formed the junction between the three surrounding continents, rendering the coasts of each easily accessible, whilst modifying the climate of its shores.

The Atlas range is a mere continuation of the south of Europe. It is a long strip of mountain land, about 200 miles broad, covered with splendid forests, fertile valleys, and in some places arid steppes, stretch. ing eastward from the ocean to which it has given its name. The highest point is Morocco, forming a pendant to the Sierra Nevada of Spain; thence it runs, gradually decreasiug in height, through Algeria and Tunisia, it becomes interrupted in. Tripoli, aud it ends in the beautiful green hills of the Oyrenaica, which must not be confounded with the oases of the Sahare, but is an island detached from the eastern spurs of the Atlas, in the ocean of the desert.

In the eastern part the flora and fauna do not essentially differ from those of Italy; in the west they resemble those of Spain; one of the noblest of the Atlantic conifers, the Abies pinsapo, is found also in the Iberian peninsula and nowhere else in the world, and the valuable alfa grass or esparto (Stipa tenacissima), from which a great part of our paper is made, forms one of the principal articles of export from Spain, Portugal, Morocco, Algeria, Tunisia, and Tripoli. On both sides of the sea the former plant is found on the highest and most inaccessible mountains, amongst snows which last during the greater part of the year, and the latter from the sea level to an altitude of 5,000 feet, but in places where the heat and drought would kill any other plant, and in undulating land where water can not lodge.

Of the three thonsand plants found in Algeria, by far the greater number are natives of southern Europe, and less than one hundred are peculiar to the Sahara. The macchie or maquis of Algeria in no way ditfers from that of Oorsica, Sardinia, and other places; it consists of lentisk, arbutus, myrtle, cistus, tree-heath, and other Mediterranean shrubs. If we take the commonest plant found on the southern shores of the Mediterranean, the dwarf palm (Ohamcrops humilis), we see at once how intimately connected is the whole Mediterranean region, with
the exception of the localities I have before indicated This palm still grows spontaneously in the south of Spain, and in some parts of Proveuce, in Oorsica, Sardinia, and the Tuscan Archipelago, in Calabria and the Ionian Islands, on the continent of Greece, and in several of the islands in the Jevant, and it has only disappeared from other conntries as the land has been brought under regular cultivation. On the other hand, it occurs neither in Palestine, Egypt, nor in the Sahara.

The presence of European birds may not prove much, but there are manmalia, reptiles, fish, and insects common to both sides of the Mediterranean. Some of the larger animals, such as the lion, panther, jackal, etc., have disappeared before the march of civilization in the one continent, but have lingered, owing to Mohammedan barbarism, in the other. There is abundant evidence of the former existence of these and of the other large mammals which now characterize tropical Africa in France, Germany, and Greece. It is probable that they only migrated to their present habitat after the upheaval of the great sea which, in Eocene times, stretched from the Atlantic to the Indian Ocean, making southern Africa an island continent like Australia. The original fanna of Africa, of which the lemur is the distinctive type, is still preserved in Madagascar, which then formed part of it.

The fish fanna is naturally the most conclusive evidence as to the true line of separation between Europe and Africa. We find the trout in the Atlantic region and in all the snow fed rivers falling into the Mediterranean; in Spain, Italy, Dalmatia; it occurs in Mount Olym. pus, in rivers of Asia Minor, and even in the Lebanon, but nowhere in Palestine south of that range, in Egypt, or in the Sahara. This freshwater salmonoid is not exactly the same in all these localities, but is subject to considerable variation, sometimes amounting to specific distinction. Nevertheless it is a European type found in the Atlas, and it is not till we advance into the Sahara, at Tuggurt, that we come to a purely African form in the Chromidæ, which have a wide geographical distribution, being found everywhere between that place, the Nile, and Mozambique.
The presence of newts, tailed batrachians, in every countryw around the Mediterranean, except again in Palestine, Egypt, and the Sahara, is another example of the continuity of the Mediterranean fauna, even though the species are not the same throughout.

The Sahara is an immense zone of desert which commences on the shores of the Atlantic Ocean, between the Oanaries and Oape de Verde, and traverses the whole of north Africa, Arabia, and Persia, as far as Central Asia. The Mediterranean portion of it may be said roughly to extend between the fifteenth and thirtieth degrees of north latitude.
This was popularly supposed to have been a vast inland sea in very recent times, but the theory was supported by geological facts wrongly
interpreted. It has bcen abundantly proved by the researches of travellers and geologists that such a sea was neither the cause nor the origin of the Libyan Desert.

Rainless and sterile regions of this uature are not peculiar to north Africa, but occur in two belts which go round the world in either hem. isphere at about similar distances north and south of the equator. These correspond in locality to the great inland drainage arcas from which no water can be discharged into the ocean, and which occupy about one-fifth of the total land surface of the globe.

The African Sahara is by no means a uniform plain, but forms several distinct basins containing a considerable extent of what may almost be called monntain laud. The Hoggar Mountains, in the center of the Sahara, are 7,000 feet high, and are covered during three months with snow. The general average may be taken at 1,500. The physical character of the region is very varied; in some places, such as at Tiout, Moghrar, Touat, and other oases in or bordering on Morocco, there are well watered valleys, with fine scenery and almost European vegetation, where the fruits of the north flourish side by side with the palin tree. In others there are rivers like the Oued Guir, all affluent of the Niger, which the French soldiers, who saw it in 1870, compare to the Loire. Again, as in the bed of the Oued Rir, there is a subteria. nean river, which gives a sufficient supply of water to make a chain of rich and well-peopled oases equal in fertility to some of the finest portions of Algeria. The greater part of the Sahara, however, is hard and undulating, cut up by dry water courses, such as the Igharghar, which descends to the Ohott Melghigh, and almost entirely without animal or vegetable life.

About one sixth of its extent consists of dunes of moving sand, a vast accumulation of detritus washed down from more northern and southern regions-perhaps during the glacial epoch-but with no indication of marine formation. These are difficult and even dangerous to traverse; but they are not entirely destitute of vegetation. Water is found at rare but well-known intervals, and there is an abundance of salsolacebus plants which serve as food for the camel. This sand is largely produced by wind action on the underlying rocks, and is not sterile in itself; it is only the want of water which makes it so. Wherever water does exist or artesian wells are sunk oases of great fertility never fail to follow.

Some parts of the Nahara are below the level of the sea, and here are formed what are called ohotts or seblhas, open depressions without out. lets, inundated by torrents from the southern slopes of the Atlas in whinter, and covered with a saline efflorescence in summer. This salt by no means proves the former existence of an inland sea; it is produced by the concentration of the natural salts, which exist in every variety of soil, washed down by winter rains, with which the unevaporated residue of water becomes saturated.

Sometimes the drainage, instead of flooding open spaces and forming chotts, finds its way through the permeable sand till it meets impermeable strata below it, thus forming vast subterranean reservoirs where the artesian sound daily works as great miracles as did Moses's rod of yore at Meribah. I have seen a column of water thrown up into the air equal to 1,300 cubic meters per diem, a quantity sufficient to redeem 1,800 acres of land from sterility and to irrigate $\mathbf{0 0 , 0 0 0}$ palm trees. This seems to be the true solution of the problem of an inland sea, a sea of verdure and fertility caused by the multiplicatiou of artesian wells, which never fail to bring riches and prosperity in their train.

The climate of the Sahara is quite different from that of what I have called the Mediterranean region, where periodical rains divide the year into two seasons. Here, in many places, years elapse without a single shower; there is no refreshing dew at night, and the winds are robbed of their moisture by the immense continental extents over which they blow. There can be no doabt that it is to these meteorological and not to geological causes that the Sahara owes its existence. Reclus divides the Meditarranean into two basins, which, in memory of their history, he calls the Phoenician aud the Carthaginian, or the Greek and Roman Seas, more generally known to us as the Eastern and Western Basins, separated by the island of Sicily.

If we examine the submarine map of the Mediterranean we see that it must at one time have consisted of two inclosed or inland basins, like the Dead Sea. The western one is separated from the Atlantic by the Straits of Gibraltar, a slallow ridge, the deepest part of which is at its eastern extremits, averaging about 300 fathoms, while on the west, bounded by a line from Cape Spartel to Trafalgar, it varies from 50 to 200 fathoms. Fifty miles to the west of the straits the bottom suddeuly sinks down to the depths of the Atlautic, while to the east it descends to the general level of the Mediterranean, from 1,000 to 2,000 fathoms.

The W'estern is separated from the Eastern Basin by the isthmus which extends between Oape Bon, in Tunisia, and Sicily, known as the "Adventure Bank," on which there is not more than from 30 to 250 fathoms. The depth between Italy aud Sicily is insignificant, and Malta is a continuation of the latter, being only separated from it by a shallow patch of from 50 to 100 fathoms, while to the east and west of this bank the depth of the sea is very great. These shallows cut off the two basins from all but superficial communication.

The confguration of the bottom shows that the whole of this strait was at one time continuous land, affording free communication for land animals between Africa and Europe. The palæontological evidence of this is quite conclusive. In the caves and fissures of Malta, amongst river detritus, are found three species of fossil elephants, a hippopotamus, a gigantic dormonse, and other animals which could never have lived in so small an island. In Sicily, remains of the existing elephant
bave been found, as well as the Elephas antiquus, and two species of hippopotamus, while nearly all these and many other animals of African type have been found in the Pliocene deposits and caverns of the Atlantic region.
The rapidity with which such a transformation might have occurred can be judged by the well-known instance of Graham's Shoal, between Sicily and the island of Pantellaria; this, owing to volcanic ageney, actually rose above the water in 1832, and for a few weeks had an area of 3,240 feet in circumference and a height of 107 feet.
The submersion of this isthmus no doubt occurred when the waters of the Atlantic were introduced through the Straits of Gibraltar. The rainfall over the entire area of the Mediterranean is certainly not more than 30 inches, while the evaporation is at least twice as great; therefore, were the straits to be once more closed and were there no other agency for making good this deficiency, the level of the Mediterranean would sink again till its basin became restricted to an area no larger than might be necessary to equalize the amount of evaporation and precipitation. Thus not only wonld the strait between Sicily and Africa be again laid dry, but the Adriatic and Agean Seas also, and a great part of the Eastern Basin.
The entire area of the Mediterranean and Black Seas has been estimated at upwards of a million square miles, and the volume of the rirgrs which are discharged into them at 226 cubic miles. All this and much more is evaporated annually. There are two constant curreuts passing through the Straits of Glbraltar, super-imposed on each other; the upper and most copious one flows in from the Atlantic at a rate of nearly 3 miles an hour, or 140,000 cubic metres per second, and supplies the difference between the rainfall and evaporation, while the under current of warmer water, which bas undergone concentration by evapora. tion, is continually flowing out at about half the above rate of movement, getting ric if the excess of salinity; even thus, however, leaving the Mediterranean salter than any other part of the ocean except the Red Sea.

A similar phenomenon occurs at the eastern end, where the fresher water of the Black Sea Hows as a surface current through the Dardanelles, and the salter water of the Mediterranean pours in below it.
The general temperature of the Mediterranean from a depth of 50 fathoms down to the bottom is almost constantly $56 \circ$ F., whatever may be its surface rise of temperature. This is a great contrast to that of the Atlantic, which at a similar depth is at least 30 colder, and which at 1,000 fathoms sinks to $40^{\circ} \mathrm{F}$.
This fact was of the greatest utility to Dr. Oarpenter in connection with his investigations regarding currents through the straits, enabling him to distiuguish with precision between Atlantic and Mediterranean water.
For all practical purposes the Meiliterranean may be accepted as being,

What it is popularly supposed to be, a tideless sea; but it is not so in reality. In many places there is a distinct rise and fall, though this is more frequently due to winds and currents than to lunar attraction. At Veuice there is a rise of from 1 to 2 feet in spring tides, according to the prevalence of winds up or down the Adriatic; but in that sea itself the tides are so weak that they can hardly be recognized, except during the prevalence of the Bora, our old friend Boreas, which generally raises a surcharge along the coast of Italy. In many straits and narrow arms of the sea there is a periodical flux and reflux; but the only place where tidal influence, properly so called, is unmistakably observed is in the Lesser Syrtis, or Gulf of Gabes. There the tide runs at the rate of 2 or 3 knots an hour, and the rise and fall varies from 3 to 8 feet. It is most marked and regular at Djerba, the Homeric island of the Lotoplagi. One must be oareful in landing there in a boat, so as not to be left high and dry a mile or two from the shore. Perhaps the companions of Ulysses were caught by the receding tide, and it was not only a banquet of dates, the "honey-sweet fruit of the Lotus," or the potent wine which is made from it, which made them "forgetful of their homeward way."

The Gulf of Gabes naturally calls to mind the proposals which were made a few years ago for inundating the Salara, and so restoring to the Atlantic region the insular condition which it is alleged to bave had in pre-historic times. I will not allude to the English project for introducing the waters of the Atlantic from the west coast of Africa. That does not belong to my subject. The French scheme advocated by Com. mandant Roudaire, and supported by M. de Lesseps, was quite as visionary and impracticable.

To the south of Algeria and Punis there exists a great depression, stretching westward from the Gulf of Gabes to a distance of about 235 miles, in which are several ohotts or salt lakes, sometimes only marshes, and in many places covered with a saline crust strong enough to bear the passage of camels. Oommandant Roudaire proposed to cut through the isthunuses which separated the various chotts, and so prepare their basins to receive the waters of the Mediterranean. This done, he intended to introduce the sea by a canal, which should have a depth of 1 metre below low.water level:

This scheme was based on the assumption that the basin of the chotts has been an inland sea within historic times; that, little by little, owing to the difference between the quantity of water which entered and the amount of evaporation and absorption, this interior sea had disappeared, leaving the chotts as an evidence of the former condition of things; that, in fact, this was none other than the celebrated Lake Triton, the position of which has always been a puzzle to geographers.

This theory however is untenable. The isthmus of Gabes is not a mere sand bank. There is a band of rock between the sea and the basin of the chotts, through which the former never could have penetrated in modern times. It is much more probable that Lake Triton was the
large bight between the island of Djerba and the mainland, on the shores of which are the ruins of the ancient city of Meninx, which, to judge by the abundance of Greek marble found there, must have carried on an important commerce with the Levant.

The scheme has now been entirely abandoned. Nothing but the mania for cutting through isthmuses all over the world which followed the brilliant success achieved at Suez can explain its having been started at all. Of course, no mere mechanical operation is impossible in these days; but the mind rofuses to realize the possibility of ressels circulat. ing in a region which'produces nothing, or that so small a sheet of water in the immensity of the Sahara could have any appreciable effect in modifying the climate of its shores.

The eastern basin is much more indented and cut up into separate seas than the western one. It was therefore better adapted for the com. mencement of commerce and navigation. Its high mountains were landmarks for the unpracticed sailor, and its numerous islands and harbors aftorded shelter for his frail bark, and so facilitated communication be. tween one point and another.

The advance of civilization naturally took place along the axis of this sea, Phonicia, Greece, and Italy being successively the great nurseries of human knowledge and progress. Phoenicia had the glory of opening out the path of ancient commerce, for its position in the Levant gave it a natural command of the Mediterranean, and its people sought the profits of trade from every nation which had a seaboard on the three continents washed by this sea. Phonicia was already a nation before the Jews entered the Promised Land; and when they did so, they carried on inland traffic as middlemen to the Phœnicians. Many of the commercial centers on the shores of the Mediterranean were founded before Greece and Rome acquired importance in history. Homer refers to them as daring traders nearly a thousand years before the Ohristian era.

For many centuries the commerce of the world was limited to the Mediterranean, and when it extended in the direction of the East it was the merchants of the Adriatic, of Genoa, and of Pisa who brought the merchandise of India, at an enormous cost, to the Mediterranean by land, and who monopolized the carrying trade by sea. It was thus that the elephant trade of India, the caravan traffic through Babylon and Palmyra, as well as the Arab kafilehs, became united with the Occidental commerce of the Mediterranean.

As civilization and commerce extended westward, mariners began to overcome their dread of the vast solitudes of the ocean beyond the Pillars of Hercules, and the discovery of America by Uolumbus and the circum-navigation of Africa by the Portuguese changed entirely the current of trade as well as increased its magnitude, and so relegated the

Mediterranean, which had hitherto been the central sea of human intercourse, to a position of secondary importance.

Time will not permit me to enter into further details regarding the physical geography of this region, and its history is a subject so vast that a few episodes of it are all that I can possibly attempt. It is intimately connected with that of every other country in the world, and here were successively evolved all the great dramas of the past and some of the most important events of less distant date.
As I have already said, long before the rise of Greece and Rome its shores and islands were the seat of an advanced civilization. Phonicia had sent out her pacific colonies to the remotest parts, and not iusiguificant vestiges of their handicraft still exist to excite our wonder and admiration. We have the megalithic temples of Malta, sacred to the worship of Baal, the generative god, and Ashtoretl, the conceptive goddess, of the universe. The three thousand nurhagi of Sardinia, round towers of admirable masonry, intended probably for defense in case of sudden attack, and the so-called giant graves, were as great a mystery to classical authors as they are to us at the present day. Minorca has its talayots, tumuli somewhat analogous to but of ruder construction than the nurhagi, more than 200 groups of which exist in various parts of the island. With these are associated subordinate constructions intended for worship, altars composed of two immense monoliths erected in the form of a T, sacred inclosures and megalithic habitations. One type of talayot is especially remarkable, of better masonry than the others, and exactly resembling inverted boats. One is tempted to believe that the Phœuicians had in view the grass habitations or mapalia of the Numidians described by Sallust, and had endeavored to reproduce them in stone: Oblonga, incurvis lateribus tecta, quasi navium carince sunt.
For a long time the Phcenicians had no rivals in navigation, but subsequently the Greeks-especially the Phocians-established colonies in the western Mediterranean, in Spain, Corsica, Sardinia, Malta, and the south of France, through the means of which they propagated not ouly their commerce but their arts, literature, and ideas. They introduced many valuable plants, such as the olive, thereby modifying profoundly the agriculture of the countries in which they settled. They have even left traces of their blood, and it is no doubt to this that the women of Provence owe the classical beauty of their features.

But they were eclipsed by their successors. The empire of Alexander opened out a road to India, in which, indeed, the Ploovicians had preceded him, and introduced the produce of the Last into the Mediter. ranean; while the Tyrian colony of Oarthage became the capital of another vast empire, which, from its situation midway between the Levant and the Atlantic Ocean, enabled it to command the Mediterranean traffic.

The Oarthaginians at one time ruled orer territory extending along
the coast from Oyrene to Numidia, besides having a considerableinfluence over the interior of the continent, so that the name of Africa, given to their own dominions, was gradually applied to a whole quarter of the globe. The ruling passion. with the Carthaginians was love of gain, not patriotism, and their wars were largely fought with mercena. ries. It was the excellence of her civil constitution which, according to Aristotle, kept in cohesion for centuries her straggling possessions. A country feebly patriotic, which intrusts ber defense to foreiguers, has the seeds of inevitable decay, which ripeqed in her struggle with Rome, despite the warlike genius of Hamilcar and the devotion of the magnanimous Hannibal. The gloomy and cruel religion of Carthage, with its human sacrifices to Moloch and its worship of Paal under the name of Melkarth, led to a criminal code of Draconic severity and alienated it from surrounding nations. When the struggle with Rome began, Carthage lad no friends. The first Punic war was a contest for the possession of Sicily, whose prosperity is even now attested by the splendor of its Hellenic monuments. When Sicily was lost by the Oarthaginians, so also was the dominion of the sea, which hitherto had been uncontested. The second Punic war resulted in the utter prostration of Oarthage and the loss of all her possessions out, of Africa, and in 201 B . C., when this war was ended, 552 years after the foundation of the city, Rome was mistress of the world.

The destruction of Carthage after the third Panic war was a heavy blow to Mediterranean commerce. It was easy for Oato to utter his stern Delenda est Oarthago. Destruction is easy, but construction is vastly more diffeult. Although Augustus in his might built a new Oartbage near the site of the old city, he could never attract again the trade of the Mediterranean, which had been diverted into other channels. Roman supremacy was unfavorable to the growth of cominerce, because, though she allowed unrestricted trade throughout her vast empire and greatly improved internal communications in the subjugated countries, Rome itself absorbed the greater part of the wealth and did not produce any commodities in return for its immense consumption, therefore Mediterranean commerce did not thrive under the Roman rule. The conquest of Oarthage, Greece, Egypt, and the East ponred in riches to Rome, and dispensed for a time with the needs of productive industry, but formed no enduring basis of prosperity.

It is ouly in relation to the Mediterranean that I can refer to Roman bistory; but I must allude to the interesting episode in the life of Diocletian, who, after an anxious reign of 21 years in the eastern division of the empire, abdicated at Nicomedia, and retired to his native province of Illyria. He spent the rest of his life in rural pleas. ures and horticulture at Saloua, Hear-which he built that splendid palace within the walls of which subsequently arose the modern city of Spalato. Nothing more interesting exists on the shores of the Mediterranean than this extraordinary edifice, perhaps the largest that
ever arose at the bidiling of a single man; not only vast and beautiful, but marking one of the most important epochs in the kistory of architecture.
Though now obstructed with a mass of narrow, tortuous streets, its saitent features are distinctly visible. The great temple, probably the mausoleum of the founder, has become the cathedral, and after the Pantheon at Rome there is no finer specimen of a heathen temple turned into a Ohristian church. Strange it is that the tomb of him whose reign was marked by such unrelenting persecution of the Ohristiaus should have been accepted as the model of those baptisteries so commonly constructel in the following centuries.

Of Diorletian's Salona, one of the chief cities of the Roman world, but little now remains save traces of the long, irregular walls. Recent excavations have brought to light much that is interesting, but all of the Ohristian epoch, such as a large basilica which had been used as a necropolis, and a baptistery, one of those copied from the temple of Spalato, on the mosaic pavement of which can still be read the text, Siout cervus desiderat fonten aquarum ita anima mea ad te Deus.
The final partition of the Roman Empire took place in $365 ; 40$ years later the barbarians of the North began to invade Italy and the south of Europe; and in 429, Genseric, at the head of his Vandal hordes, crossed over into Africa from Andalusia, a province which still bears their name, devastating the country as far as the Oyrenaica. He sub. sequently annexed the Balearic Islands, Corsica, and Sardinia; Le. ravaged the coasts of Italy and Sicily, and even of Greece and Illyria; but the most memorable of his exploits was the unresisted sack of Rome, whence he returned to Africa laden with treasure and bearing the Empress Eudoxia a captive in his train.
The degenerate emperors of the West were powerless to avenge this insfilt; but Byzantium, though at this time sinking to decay, did make a futile attempt to attack the Vandal monarch in his African stroughold. It was not, however, till 533, in the reign of Justinian, when the successors of Genseric had fallen into luxurious habits and had lost the rough valor of their ancestors, that Belisarius was able to break their power and take their last king a prisoner to Oonstautiuople. The Vandal domination in Africa was destroyed, but that of the Byzantines was never thoroughly consolidated; it rested not on its own strength, but on the weakness of its enemies; and it was quite unable to cope with the next great wave of invasion which swept over the land, perbaps the most extraordinary event in the world's history, save only the introduction of Oliristiauity.

In 647, 27 years after the Hedjira of Mohammed, Abdulla ibn Saad started from Egypt for the conquest of Africa with an army of $\mathbf{4 0 , 0 0 0}$ men.

The expedition had two determining causes-the hope of plunder aud the desire to promulyate the religion of El Islam. The sands and
scorching heat of the desert, which had nearly proved fatal to the arny of Oato, were no bar to the hardy Arabians and their enduring camels. The march to Tripoli was a fatiguing one, but it was successfully accomplished; the invaders did not exhaust their force in a vain effort to reduce its fortifications, but swept on over the Syrtic desert and north to the province of Africa, where, near the splendid city of Suffetula, a great battle was fought between them and the army of the Exaroh Gregorius, in which the Ohristians were signally defeated, their loader killed, and his daughter allotted to Ibn-ez-Zobair, who had slain her father.

Not only did the victorious Moslems overrun north Africa, but soon they had powerful Heets at sea, which dominated the entire Mediterranean, and the emperors of the last had enough to do to protect their own capital.

Egypt, Syria, Spain, Provence, and the islands of the Mediterranean successively fell to their arms, and until they were ohecked at the Pyrences by Charles Martel it seemed at one time as if the whole of southern Europe would have been compelled to submit to the disciples of the new religion. Violent, implacable, aind irresistible at the moment of conquest, the A rabs were not unjust or hard masters in countries which submitted to their conditions. Every endeavor was, of course, made to proselytize, but Ohristians were allowed to preserve their religion on payment of a tax, and even Popes were in the habit of entering into friendly relations with the invaders. The Ohurch of St. Oyprian and St. Augustine, with its 500 sees, was indeed expunged, but five centuries after the passage of the Mohammedan army from Egypt to the Atlantic a remnant of it still existed. It was not till the twelfth cen. tury that the religion and language of Rome became utterly extinguished.

The Arabs introduced a high state of civilization into the countries where they settled; their arohitecture is the wonder and admiration of the world at the present day; their irrigational works in Spain have never been improved upon; they fostered literature and the arts of peace, and introduced a system of agriculture far superion to what existed before their arrival.

Oommerce, discouraged by the Romans, was highly honored by the Arabs, and during their rule the Mediterranean recovered the trade which it possessed in the time of the Phonicians and Oarthaginians; it penetrated into the Indian Archipelago and Ohina; it travelled west. ward to the Niger, and to the east as far as Madagascar, and the great trade route of the Mediterranean was once more developed.

The power and prosperity of the Arabs culminated in the ninth century, when Sicily fell to their arms; it was not, however, very long before their empire began to be undermined by dissensions; the temporal and spiritual authority of the Ommiade Klialifs, which extended from Sind to Spain and from the Oxus to Yemen, was overthrown by the Abba.
sides in the year 132 of the Hedjira, A. D. 750. Seven jears later Spain detached itself from the Abbaside empire; a new caliphate was established at Oordova, and hereditary monarchies began to spring up in other Mohammedan countries.
The Oarlovingian empire gave an impulse to the maritime power of the sonth of Europe, and in the Adriatic the fleets of Venice and Ragusa monopolized the traffic of the Levant. The merchants of the latter noble little republic penetrated even to our own shores, and Shakespeare has made the Argosy or Ragusie a household word in our language.

During the eleventh century the Ohristian powers were no longer content to resist the Mohammedans; they began to turn their arms against them. If the latter ravaged some of the fairest parts of Europe, the Ohristians began to take brilliant revenge.
The Mohammedans were driven out of Corsica, Sardinia, Sicily, and the Balearic Islands, but it was not till 1492 that they had finally to abandon Europe, after the conquest of Granada by Ferdinand and Isabella.

Abont the middle of the eleventh century an event took place which profoundly modified the condition of the Mohanmedan world. 'Che Caliph Mostausir let loose a horde of nomad Arabs, who, starting from Eggpt, gpread over the whole of north Africa, carrying destruction and blood wherever they passed, thus laying the foundation for the subsequent state of anarchy which rendered possible the interference of the Turks.
English commercial iutercourse with the Mediterranean was not unknown even from the time of the Orusades, but it does not appear to have been carried on by means of our own vessels till the beginnug of the sisteenth century. In 1522 it was so great that Heury VIII appointed a Oretan merchant, Censio de Balthazari, to be " master, governor, protector, aud consul of all and singlar the merchants and others, his lieges and subjects, within the port, island, and country of Orete or Oandia." This is the very first English consul known to history, but the first of English birth was my own predecessor in office, Master, John Tipton, who, aftor having acted at Algiers during several years in an unofficial character, probably elected by the merchants themselves to protect their interests, was duly appointed consul by Sir William Harebone, ambassador at Oonstantinople, in 1585, and received just such an exequatur from the Porte as has been issued to every consul since by the Government of the country in which he resides.
Piracy has always been the scourge of the Mediterranean, but we are too apt to associate its horrors entirely with the Moors and Turks. The evil had existed from the earliest ages; even before the Roman conquest of Dalmatia the Illyrians were the general enemies of the Adriatic. Africa, under the Vandal reign, was a nest of the fiercest pirates. The Venetian chronicles are full of complaints of the ravages
of the Corsairs of Ancona, and there is no other name but piracy for such acts of the Genoese as the unprovoked pillage of Tripoli by Andrea Doria in 1535. To form a just idea of the Corsairs of the past, it is well to remember that commerce and piracy were often synonymous terms, even among the English, up to the reign of Elizabeth. Listen to the description given by the pious Oavendish of his commercial circumnavigation of the globe: "It has pleased Almighty God to suffer me to circumpass the whole globe of the wdrld. . . . I uavigated along the coast of Ohile, Peru, and New Spain, where I made great spoils. All the villages and towns that ever I landed at, I burned and spoiled, and had I not been discovered upon the coast, I had taken a great quantity of treasure," and so he concludes, "The Lerd be praised for all his mercies!"

Sir William Monson, when called upon by James I to propose a scheme for an attack on Algiers, recommended that all the maritime powers of Europe should contribute towards the expense and participate in the gains by the sale of Moors and Turks as slaves.

After the discovery of America and the expulsion of the Moors from Spain, pirary developed to an extraordinary extent. The audacity of the Barbary Corsairs seems incredible at the present day; they landed on the shores and islands of the Mediterranean, and even extended their ravages to Great Britain, carrying off all the inhabitants whom they could seize into the most wretched slavery. The most formidable of these piratical states was Algiers, a military oligarehy, consisting of a body of jauissaries, reeruited by adventurers from the Levent, the outcasts of the Mohammedan world, criminals and renegades from every nation in Europe. They elected their own ruler or Dey, who exercised despotic sway, tempered by frequent assassination; they oppressed without mercy the natives of the country, accumulated vast riches, had immense numbers of Ohristian slaves, and kept all Europe in a state bordering on subjection by the terro: which they inspired. Nothing is sadder or more inexplicable than the shameful manner in which this state of things was accepted by civilized nations. Many futile attempts were made during successive centuries to humble their arrogance, but it only increased by every manifestation of the powerlessness of Europe to restrain it. It was reserved for our own countryman, Lord Exmouth, by his brilliant victory in 1816, forever to put an end to piracy and Ohristian slavery in the Mediterranean. His work, however, was left incomplete, for though he destroyed the navy of the Algerines and so rendered them powerless for evil on the seas, they were far from being humbled; they continued to slight their treaties and to subject even the ageuts of powerful nations to contumely and injustice. The French took the only means possible to destroy this nest of ruffians by the almost unresisted occupation of Algiors and the deportation of its Turkish aristocracy.

- They found the whole country in the possession of a hostile people,
some of whom Lad never been subdued since the fall of the Roman Empire, and the world owes France no small debt of gratitude for Lav. ing transformed what was a savage and almost uncultivated country into one of the richest as well as the most beautiful in the basiu of the Mediterranean.
What has been accomplished in Algeria is being effected in Tunisia. The treaty of the Kasr-es-Saeed, which established a Freuch protectorate there and military occupation of the regency, were about as highthanded and unjustifiable acts as are recorded in history; but there can be no possible doubt regarding the important work of civilization and improvement that has resulted from them. European courts of justice have been established all over the country, the exports and imports have increased from twenty-three to fifty-one millions of francs, the revenue from six to nineteen millions, without the imposition of a single new tax, and nearly half a million per annum is being spent on education.
Sooner or later the same thing must happen in the rest of north Africa, though at present international jealousies retard this desirable consummation. It seems hard to condemu such fair countries to continued barbarism in the interest of tyrants who mis-goveru and oppress their people. The day can not be far off when the whole southern shores of the Mediterranean will eujoy the same prosperity and civil. ization as the northern coast, and when the deserts which are the result of mis-government and neglect will assume the fertility arising from security and industry, and will again blossom as the rose.
It cannot be said that any part of the Mediterranean busin is still unknown, if we except the Empire of Morocco. But even that country Las been traversed in almost every direction during the past 20 years, and its geography and natural history have been inlustrated by men of the greatest eminence, such as Gerhard Rohlfs, Monsieur Tissot, Sir Joseph Hooker, the Vicoute de Foucauld, Joseph Thomson, and numerous other travellers. The least known portion, at least on the Mediterraueau coast, is the Riff country, the inhospitality of whose iuhabitants has given the worl "ruffan" to the English language. Even that has been penetrated by De Foucauld disguised as a Jew, and the record of his exploration is one of the most brilliant contributious to the geography of the country which has hitherto been made.
Although, therefore, but little remains to be done in the way of actual exploration, there are many by-ways of travel couparatively little known to that class of the community with which I have so nuch sympathy, -the ordinary British tourist. These flock every year in hundreds to Algeria and Tunis, but few of them visit the splendid Roman remains in the interior of those countries. The Oyrenaica is not so easily accessible, and I doubt whether any Englishmen have travelled in it since the exploration of Smith and Porcher in 1861.
H. Mis. 129-18

Oyrene almost rivalled Oarthage in commercial importance. The Hellenic ruins still existing bear witness to the splendor of its flve great cities. It was the birth-place of many distinguished people, and amongst its hills and fountains were located some of the most interesting scenes in mythology, such as the Gardens of the Hesperides, and the "silent, dull, forgetful waters of Lethe."

This peninsula is only separated by a narrow strait from Greece, whence it was originally colonized. There, and indeed all over the eastern basin of the Mediterranean, are many little-trodden routes, but the subject is too extensive; I am reluctantly compelled to restrict my remarks to the western half.

The south of Italy is more frequently traversed, and less travelled in, than auy part of that country, Of the thousands who yearly embark or disembark at Brindisi few ever visit the land of Manfred. Otranto is only known to them from the fanciful descriptious in Horace Walpole's romance. The general public in this country is quite ignorant of what is going on at Taranto, and of the great arsenm and dockyard which Italy is constructing in the Mare Piccolo, an inland sea containing more than 1,000 acres of anchorage for the largest ironclads afloat, yet with an entrance so narrow that it is spanned by a revolving bridge. Even the Adriatic, though traversed daily by steamers of the Austrian Lloyd's Company, is not a highway of travel, yet where is it possible to find so many places of interest within the short space of a-week's royage, between Oorfu and Trieste, as along the Dalmatian and Istrian shores, and among the islands that fringe the former where it is diff. cult to realize that one is at sea at all, and not on some great inland lake?

There is the Bocche di Oattaro, a vast rent made by the Adriatic among the mountains, where the sea flows round their spurs in a series of canals, bays, and lakes of surpassing beauty. The city of Uattaro itself, the gateway of Montenegro, with its picturesque Venstian fort. ress, nestling at the foot of the black mountain, Ragusa, the Roman successor of the Hellenic Epidaurus, queen of the southern Adriatic, battling with the waves on her rock bound peninsula, the one spot in all that sea which never submitted either to Venice or the Turk, and for centuries resisting the barbarians on every side, absolutely unique as a mediæval fortified town, and worthy to have given her name to the argosies she sent forth ; Spalato, the grandest of Roman monuments ; Lissa, colonized by Dionysius of Syracuse, and memorable to us as having been a British naval station from 1812 to 1814 , while the French held Dulmatia; Zara, the capital, famous for its siege by the Orusaders, interesting from an ecclesiological point of view, and venerated as the last resting place of St. Simeon, the prophet of the Nuno dimittis; Parenza, with its great basilica; Pola, with its noble harbor, whence Belisarius sailed forth, now the chief naval port of the Austrian Empire, with its Roman amphitheater and graceful triumphal arches, be-
sides many other places of almost equal interest. Still farther west are Oorsica, Sardinia, and the Balearic Islands, all easily accessible from the coasts of France, Italy, and Spain. Their ports are constantly visited by mail steamers and private yachts, yet they are but little ex. plored in the interior.

I have endeavored to sketch, necessarily in a very imperfect mauner, the physical character and history of the Mediterranean, to show how the commerce of the world originated in a small maritime state at its eastern extremity; how it gradually advanced westward till it burst through the Straits of Gibraltar and extended over seas and continents until then undreampt of, an event which deprived the Mediterranean of that commercial prosperity and greatness which for centuries had been limited to its narrow basin.

Once more this historic sea has become the highway of nations; the persistent energy and genius of two men have revolutionized navigation, opened out new and boundless fields for commerce, and it is hardly too much to siny that if the Mediterranean is to be restored to its old position of im_{i})ortance, if the struggle for Africa is to result in its regeneration, as happened in the New World, if the dark places still remaining in the farther East are to be civilized, it will be in a great measure due to Waghorn and Ferdinand de Lesseps, who developed the overland route and created the Suez Oanal.

But the Mediterranean can only hope to retain its regenerated position in time of peace. Nothing is more certainly shown by past history than that war and conquest have changed the route of commerce in spite of favored geographical positions. Babylon was couquered by Assyrians, Persians, Macedonlans, and Komans, and though for a time her position on the Euphrates caused ber to rise like a Phonix from her ashes, successive conquests combined with the luxury and effeminacy of her rulers, caused her to perish. Tyre, conquered by Nebuchad. nevzar and Alexander, fell as completely as Babylon had done, and her trade passed to Alexandria. Ruined sites of commercial cities rarely again become emporia of commerce; Alexandria is an exception dependent on very exceptional circumstances.

The old route to the East was principally used by sailing vessels, and was abandoned for the shorter and more economical one by the Suez Oanal, which now enables a round voyage to be made in 60 days, which formerly required from 6 to 8 months. This, however, can only remain open in time of peace. It is quite possible that in the event of war the old route by the Cape may be again used to the detriment of traffic by the Mediterranean. Modern invention has greatly economized the use of coal, and steamers, by the use of duplex and triplex engines, can run with a comparatively small consumption of fuel, thus leaving a larger space for cargo. England, the great carrying power of the world, may find it more advantageous to trust to her own strength and the secut-
ity of the open seas than to run the gauntlet of the numerous strateg. ical positious of the Mediterranean, such as Port Mahon, Bizerta, and Taranto, each of which is capable of affording impregnable shelter to a hostile fleet, and though the ultimate key to the Indian Ocean is in our own hands, our passage to it may be beset by a thousand dangers. There is no act of my career on which I look back with so much satisfaction as on the share I had in the occtanation of Perim, one of the most important links in that chain of codling stations which extends through the Mediterranean to the farther East, and which is so neces. sary for the maintenance of our naval supremacy. It is a mere islet, it is true, a barren rock, but one surrounding a noble harbor, and 80 cm inently in its right place that we can not contemplate with equanimity the possibility of its being in any other hands than our own.

It is by no means certain whether exaggeratod armaments are best suited for preserving peace or hastening a destructive war; the golden age of disarmament and international arbitration may not be near at hand, but it is even now talked of as a possibility.

Should the poet's prophecy or the patriot's dream be realized and a universal peace indeed bless the world, then this sea of so many victories may long remain the harvest field of a commerce nobler than conquest.

STANLEY AND THE MAP OF AFRIOA.*

By J. Scott Keltie.

It is 19 years since Stanley first crossed the threshold of central Africa. He entered it as a newspaper correspondent to find and succor Livingstone, and came out burning with the fever of African exploration. While with Livingstone at Ujiji, he tried his 'prentice hand at a little exploring work, and between them they did something to settle the geography of the north end of Lake Tanganyika. Some three sears and a half later he was once more on his way to Zanzibar, this time with the deliberate intention of doing something to fll up the great blank that still occupied the center of the continent. A glance at the first of the maps which accompany this paper will afford some idea of what Oentral Africa was like when Stanley entered it a second time. The ultimate sources of the Nile had yet to be settled. The contour and extent of Victoria Nyanza were of the most uncertain charactex. Indeed, so little was known of it beyond what Speke told us, that there was some danger of its being swept off the map altogether, not a few geographers believing it to be not one lake, but several. There was much to do in the region lying to the west of the lake, even though it had been traversed by Speke and Grant. Between a line drawn from the north end of Lake Tanganyika to some distance beyond the Albert Nyanza on one side, and the west coast region on the other, the map was almost white, with here and there the conjec. tural course of a river or two. Livingstone's latest work, it should be remembered, was then almost unknown, and Oameron had not jet returned. Beyond the Yellala Rapids there was no Congo, and Living. stone believed that the Lualaba swept northwards to the Nile. He had often gazed longingly at the broad river during his weary sojourn at Nyangwo, and yearned to follow it, but felt himself too old and exhansted for the task. Stanley was fired with the same ambition as his dead master, and was young and vigorous onough to indulge it.

What, then, did Stanley do to map out the features of this great blank during the 2 years and 9 months which be spent in crossing from Bagimoyo to Boma, at the mouth of the Oongo? He determined, with an accuracy which has since necessitated but slight modification,

[^55]

CENTRAL AFRICA, AFTER STANLEY.

618 VOIHAV 30 dVK MHL CNV XATNVL8
the outline of the Victoria Nyanza; he found it to be one of the great lakes of the world, 21,500 square miles in extent, with an altitude of over 4,000 feet and border soundings of from 330 to 580 feet. Into the south shore of the lake a river flowed, which he traced for some 300 miles, and which he set down as the most southerly feeder of the Nile. With his stay at the court of the clever and cunning Mtesa of Uganda we need not concern ourselves; it has had momentous results. Westwards he came upon what he coneeived to be a part of the Albert Nyanza, which he named Beatrice Gulf, but of which more anon. Ooming southwards to Ujiji, Stanley filled in many features in the region he traversed, and saw at a distance a great mountain, which he named Gordon Bennett, of whioh also more anon. A little lake to the south he named the Alexandra Nyanza; thence he conjectured issued the sonthwest source of the Nile, but on this point, within the last few months, he has seen cause to change his mind. Lake Tanganyika he circumuavigated, and gave greater accuracy to its outline; while through the Lukuga he found it sent its waters by the Lualaba to the Atlantic. Orossing to Nyangwe, where with longiug eyes Liringstone beheld the mile-wide Lualaba flowing " north, north, north," Stanley saw his opportunity, and embraced it. Tippu Tip failed him then, as he did later; but the mystery of that great river he had made up his mind to solve, and solve it he did. The epic of that first recorded journey of a white man down this majestic river, which for ages had been sweeping its unknown way through the center of Africa, he and his dusky companions running the gauntlet through a thousand miles of hostile savages, is one of the most memorable things in the literature of travel. Leaving Nyangwe on November 5, 1876, in 9 months he traced the many-islanded Congo to the Atlantic, and placed on the map of Africa one of its most striking features; for the Oongo ranks among the greatest rivers of the world. From the remote Ohambeze, that enters Lake Bang weolo to the sea, it is 3,000 miles. It has many tributaries, themselves affording hundreds of miles of navigable drains, waters a basin of a million square miles, and pours into the Atlantic a volume estimated at $1,800,000$ cubic feet per second. Thus, then, were the first broad lines drawn towards filling up the great blank. But, as we know, stanley two years later was once more on his way to the Oongo, and shortly after, within the compass of its great basin, he helped to found the Oongo Free State. During the years he was officially connected with the river, either directly or through those who served under him, he went on filling up the blank by the exploration of other rivers, north and south, which poured their voluminous tribute into the main stream; and the impulse he gave has continued. The blank has become a network of dark lines, the interspaces cevered with the names of tribes and rivers and lakes.

Such, then, briefly, is what Stanley did for the map of Africa during his great and ever-memorable journey across the continent. Once more

Mr. Stanley has crossed the continent, in the opposite direction, and taken just about the same time in which to do so. Discovery was not his main object this time, and therefore the results in this direction have not been so plentiful. Indeed, they could not be; he had left so comparatively little to be done. But the additions that he has made to our knowledge of the great blank are considerable, and of high importance in their bearing on the hydrography, the physical geography, the climate, and the people of central Africa.

Let us rapidly run over the incidents of this, in some respects, the most remarkable expedition that ever entered Africa. Its first purpose, as we know, was to relieve, and if necessary bring away, Emin Pasba, the governor of the abandoned equatorial province of the Egyptian Sudan, which spread on each side of the Bahr-el-Jebel, the branch of the Nile that issues from the Albert Nyanza. Here it was supposed that he and his Egyptian officers and troops, and their wives and children, were beleagured by the Madhist hordes, and that they were at the end of their supplies. Emin Pasha, who as Eduard Schnitzer was born in Prussian Silesia, and educated at Breslau and Berlin as a physician, spent 12 years (1864-1876) in the Turkish service, during which he traveled over much of the Asiatic dominions of Turkey, indulging his strong tar es for natural history. In 1876 he entered the. service of Egypt, and was sent up to the Sudan as surgeon on the staff of Gordon Pasha, who at that time governed the equatorial province. In 1878, two years after Gordon had been appointed governor-general of the whole Sudan, Emin Effendi (he had Moslemized himself) was appointed governor of the equatorial province, Which he found completely disorganized and demoralized, the happy hunting-ground of the slave-raider. Within a few months Emin had restored order, swept out the slavers, got rid of the Egyptian scum who pretended to be soldiers, improved the reven ue, so that instead of a large deficit there was a considerable surplus, and established industry and legitimate trade. Meantime the Mahdi had appeared, and the movement of conquest was gathering strength. It was not, however, till 1884 that Emin began to fear danger. It was in January of that yoar that Gordon went out to hold Khartoum; just a jear later both he and the city fell before the Madhist host. Emin withdrew with his officers and dependents, numbering about $1,5(10$, to Wadelai, in the south of the province, within easy reach of Albert Nyanza.

Rumors of the events in the Sudan after the fall of Khartoum reached this country, but no one outsids of scientifle circles seeraed to take, much interest in Emin till 1886. Rapidly, however, Europe became aware what a noble stand this simple savant, who had been foisted into the position of governor of a half-savage province, was making against the forces of the Mahdi, and how he refused to desert his post and his people. Towards the autumn of 1886 public feeling on the subject rose to sach a height that the British Government, which was held to blame
for the position in the Sudan, was conpelled to take action. Our representative at Zanzibar, as early as August of that year, instituted inquiries as to the possibility of a relief expedition, but in the end, in dread of international complications, it was decided that a government expedition was impracticable. In this dilemma, Sir (then Mr.) Willian Mackinnon, chairman of the British India Steam Navigation Oompany, whose connection with east Africa is of old standing, came forward and offered to undertake the responsibility of getting up an expedition. The Emin Pasha relief committee was formed in December, 1886, and Government did all it could to aid, short of taking the actual responsibility. Mr. H. M. Stanley generously offered his services as leader, without fee or reward, giving up maniy lucrative engage. ments for the purpose. No time was lost. The sum of $£ 20,000$ had been subscribed, including $£ 10,000$ from the Egyptian Government. Mr. Stanley returned from America to England in the end of December; by the end of January he had made all his preparations, selecting 9 men as his staff, including 3 Euglish officers and 2 surgeons, and was on his way to Zanzibar, which was reached on February 21. On the 25th the expedition was on boarl the Madura, bound for the mouth of the Congo, by way of the Oaps; 9 European officers, 61 Sudanese, 13 Somalis, 3 interpreters, 620 Zauzibaris, the famous Arab slaver and merchant, Tippu Tip, and 407 of his people. The mouth of the Oougo was reached on March 18; there the expedition was trans. shipped into small vessels and landed at Matadi, the limit of navigation on the lower river. From Matadi there was a march of 200 miles, past the cataracts, to Stanley Pool, where the navigation was resumed. The troubles of the expedition began on the Oongo itself. The question of routes was much discussed at the time of organizing the expedition, the two that found most favor being that from the east coast through Masai land and ronnd by the north of Uganda, and that by the Oongo. Into the comparative merits of these two routes we shall not enter here. For reasons which were satisfactory to himself-and no one knows Africa better-Mr. Stanley selected the Oongo route, though had he foreseen all that he and his men would have to undergo he might hare hesitated. As it was, the expedition, which it was thought would be back in England by Ohristmas, 1887, only reached the coast in November, 1889. But the difficulties no one could have foreseen, the region traversed being completely unknown, and the obstacles enconntered unprecedented even in Africa. Nor when the goal was reached was it expected that months would be wasted in persuading Emin and his people to quit their exile. Not the keenest-eyed of African explorers could have foreseen all this.

Want of sufficient boat accommodation and a scarcity of fool almost amountiug to famine hampered the expelition terribly on its way up the Congo. The mouth of the Aruwimi, the real starting point of the expedition, some 1,500 miles from the month of the Oongo; was not
reached by Mr, Stanley and the first contingent, till the beginning of June, 1887. The distance fron here in a straight line to the nearest point of the Albert Nyanza is about 450 miles; thence it was believed communication with Einin would be easy, for he had two steamers available. But it was possible that a detour would have to be made towards the north so as to reach Wadelia direct, for no one knew the conditions which prevailed in the country between the Aruwimi mouth and the Albert Nyanza. As it was Mr. Stanley took the course to the lake direct, but with many a circuit and many an obstruction and at a terrible sacrifice of life. An intrenched camp was established on a blaff at Yambuya, about 50 miles up the left bank of the Aruwimi. Major Barttelot was left in charge of this, and with him Dr. Bonny, Mr. Jameson, Mr. Rose Troup, Mr. Ward, and 2057 men ; the rear column was to follow as soon as Tippu Tip provided the contingent of 500 natives which he had solemnly promised. Although the whole of the men had not come up, yet everything seemed in satisfactory order; explicit instructions were issued to the officers of the rear column, and on June 28, 1887, Mr. Stanley, with a contingent consisting of 389 officers and men, set out to reach Emin Pasha. The officers with him were Captain Nelson, Lieutenant Stairs, Dr. Parke, and Mr. Jephson.
Five miles after leaving camp the difficulties began. The expedition was face to face with a dense forest of immense extent, choked with bushy undergrowth and obstructed by a network of creepers through which a way had often to be cleaved with the axes. Hostile natives harassed them day after day; the paths were studded with concealed spikes of wood ; the arrows were poisoned ; the natives burned their villages rather than have dealings with the intruders. Happily the river when it was again struck afforded relief, and the steel boat proved of service, though the weakened men found the portages past the cataracts a great trial. It was fondly hoped that here at least the Arab slaver had not penetrated; but on September 16, 200 miles from Yambuya, making 340 miles of actual travel, the slave camp of Ugarowwa was reached, and here the treatment was even worse than when fighting the savages of the forest. The brutalities practiced on Stanley's men cost many of them their lives. A month later the eamp of another Arab slaver was reached, Killinga Longa, and there the treatment was no better. These so-called Arabs, whose caravans consist mainly of the merciless Manyuema, from the country between Taganyika and Nyangwe, had laid waste a great area of the region to be traversed by the expedition, so that between August 31 and November 12 every man was famished; and wheu at last the land of devastation was left behind, and the native village of Ibwiri eutered, officers and men were reduced to skeletons. Out of the 389 who started only 174 entered Ibwiri, the rest dead, or missing, or left behind, unable to move, at Ugarowwa's. So weak was everybody that 70 tons of goods
and the boat had to be left at Kilinga Longa's with Captain Nelson and Surgeon Parke.

A halt of 13 days at Ibwiri, with its plenty of fowls, bananas, corn, yams, beans, restored everybody; and 1.73 sleek and robust men set out for the Albert Nyanza on November 24. A weak later the gloomy and dreaded forest suddenly ended; the open country was reached; the light of day was unobstructed; it was an energence from darkness to light. But the difficulties were not over; some little fighting with the natives on the populous platean was necessary before the lake could be reached. On the 12th, the edge of the long slope from the Oongo to Lake Albert was attained, and suddenly the eyes of all were gladdened by the sight of the lake lying some 3,000 feet almost sheer below. The expedition itself stood at an altitude of 5,200 feet above the sea. But the end was not yet. Down the expedition marched to the southwest corner of the lake, where the Kakongo natives were unfriendly. No Emin Pasha had been heard of ; there was no sign even that he knew of Stanley's coming or that the messenger from Zanzibar had reached him. The only boat of the expedition was at Kilinga Longa's, 190 miles away. Of the men 94 were behind sick at Ugarowwa's and Kilinga Longa's; only 173 were with Stanley; 74 of the original 341 were dead or missing; and, moreover, there was anxiety about the rear column.

Stanley's resolution was soon taken. Moving to the village of Kavalli, some distance up the steep slope from the lake, the party began a night march on December 15, and by January 7, they were back at Ibwiri. Here Fort Bodo, famous in the records of the expedition, was built. The men were brought up from the rear, and on April 7, Stanley, with Jephson and Parke, once more led the expedition to Lake Albert, this time with the boat and fresh stores. Meantime Stanley himself was on the sick list for a month. This time all the natives along the route were friendly and even generous, and on April 22, the expedition reached the chief Kavalli, who delivered to Stanley a letter wrapped in American cloth. The note was from Dmin and stated that he had heard rumors of Stanley's presence in the district; it begged Stanley to wait until Emin could communicate with him. The boat was launched and Jephson set off to find Emin. On the 29th, the Khedive steamer came down the lake with Emin, the Italian Casati, and Jephson on board. The great object of the expedition seemed at last to be all but fulfilled.

But the end was not yet. There was the party at Fort Bodo ; there were the sick further back, with whom Lieutenant Stairs had not returned when Stanley left the fort ; and, above all, there was the rear column left at Yembuya - with Major Barttelot. It would tako some time for Bmin to bring down all his people from Wadelai and other stations. So after spending over 3 weeks with the vacillating Emin, Stanley, on May 25, was once more on the march back to Fort Bodo
to bring up all hands. He left Jephson, 3 Sudanese, and 2 Zanzibaris with Emin, who gave him 102 natives as porters, and 3 irregulars to accompany him back. Fort Bodo was reached on June 8, and was found in π flourishing state, surrounded by acres of cultivated fields. But of the 56 men left at Ugarowwa's only 16 were alive for Lieutenant Stiairs to bring to Fort Bodo. As there was no sigu of the rear column nor of the 20 messengers sent off in March with letters for Major Barttelot, Stanley felt bound to retrace his steps through the terrible forest. This time he was better provisioned, and his people (212) escaped the horrors of the wilderness.

Fort Bodo was left on June 16, Stanley letting all his white companions remain behind. Ugarowwa's camp was deserted, and he himself, with a flotilla of fifty-seven canoes, was overtaken far down the river on August 10, and with him, 17 of the carriers sent off to Major Barttelot in March; 3 of their number had been killed. On the 17 th the rear column was met with at Bonalya, 80 miles above Yambuya, and then for the first time Stanley learned of the terrible disaster that had befallen it-Barttelot shot by the Manyuema; Jameson gone down the Oongo (only to die); Ward away : and Troupinvalided home. No one but Dr. Bonny; of the 257 men only 72 remaining, and of these ouly 52 fit for service. No wonder Mr. Stanley felt too sick to write the details; and until we have the whole of the evidence it would be unfair to pronounce judgment. One thing we may say : we know, from Mr. Werner's recently published "River Life on the Uongo," that before Major Barttelot left Yambuya to follow Stanley it was known to Mr . Werner, to more than one Belgian officer, to several natives, and to the Manyuema people with Barttelot, that instructions had been given by Tippu Tip to these last to shoot Major Barttelot if he did not treat them well. Yet no one cared to warn the Major and he was allowed to dopart to his almost certain fate. The thing is too sickening to dwell upon. It was at this stage that Stanley sent home his first letters, which reached England on April 1, 1889, 20 months after hestarted from the Aruwimi, and over 2 years after heleft England. The relief was intense ; all sorts of sinister rumors had beel floated, and most people had given up the expedition for lost.

Once more back through the weary forest, with the expedition reorganized. A new route was taken to the north of the river through a rogion devasted by the Arab slavers; and here the expedition came near to starvation, but once more Fort Bodo was reached, on December 20. Here things were practically as Stanley had left them ; there was no sign of Dmin, though he had promised to come to the fort. The combined expedition marched onwards, and Mr. Stanley, pushing on with a contingent, reached the lake for the third time, on January 18, only to learn that Emin and Jephson had been made prisoners by Emin's, own mon; the Mahdists had attacked the station and created a panic, and all was disorganization and vacillation. At last, however,
the chief actors in this strange drama were together again; and Mr. Stanley's account of Emin's unstable purpose, the long arguments with the Pasha to persuade him to come to a decision; the ingratitude and treachery of the Egyptians, the gathering of the people and their burdensome goods and chattels preparatory to quitting the lake - these and many other details are fresh in our memories from Stanley's own letters. But the main purpose of the expedition was accomplished, at however terrible a cost, and however disappointing it was to find that after all Emin was reluctant to be "rescued." When the start was made from Kavall's on April 10 last, 1,500 people in all were mustered. An almost mortal illness laid Stanley low for a month shortly after the start, and it was May 8 before the huge cararan was fairly under way. Some fighting had to be done with-raiders from Unyoro, but on the whole the homeward march was comparatively free from trouble, and full of interest; and on December 6 Mr . Stanley once more entered Zanzibar, which he had left 2 years and 10 months before. Such briefly are some of the incidents of the rescue expedition; let us now as briefly sum up the geographical results.

When Stanley left for Africa, in January, 1887, there remained one of the great problems of African hydrography still unsolved-what is known as the problem of the Welle. Schweinfurth and Junker had come upon a river at some points which seemed to rise in the neigbborhood of the Albert Nyanza, and appeared to flow in a northwest direction. The favorite theory at the time was that the river Welle was really the upper course of the Shari, which runs into Lake Ohad far away to the northwest. But as the Oongo and its great feeders on the north, and the lie of the land in that direction, became known, it began to be conjectured that after all the Welle might send its waters to swell the mighty volume of the great river. Stanley, I know, hoped that, among other geographical work, he might be able to throw some light on the course of this puzzling river. But, as we see now, the cares and troubles that fell upon him prevented him going much out of the way to do geographical work. While, however, Stanley was cleaving his way through the tangled forest, Lieutenant Van Gcle, one of the Free State offcers, proved conclusively that the Welle was really the upper course of the Mobangi, one of the largest northern tributaries of the Oongo. But another kindred problem Stanley was able to solve. Before his journey the mouth of the river Aruwimi was known; the great naval battle which he fought there on his first descent of the river is one of the most striking of the many striking pictures in the narrative of that famous journey. But beyond Yambnya its course was a blank. The river, under various names, "Ituri" being the best known, led him almost to the brink of the Albert Nyanza. One of its upper contributories is only 10 minutes' walk from the brink of the escarpment that looks down upon the lake. With many rapids, it is for a great part of its course over 500 yards wide, with groups of islands here and there.

For a considerable stretch it is navigable, and its entire length, taking all its windings into account, from its source to the Oongo, is 800 miles. One of its tributaries turns out to be another river which Junker met further north, and whose destination was a puzzle.-The Nepoko.
Thus this expedition has enabled us to form clearer notions of the hydrography of this remarkable region of rivers. We see that the sources of the Congo and the Nile lie almost within a few yards of each other. Indeed, so difficult is it to determine to which river the various waters in this region send their tribute that Mr. Stanley himself, in his first letter, was confident that the southern Lake Albert belonged to the Congo and not to the Nile system. It was only actual inspection that convinced him he was mistaken. How it is that the Ituri or the Aruwimi and other rivers in the same region are attracted to the Oongo and not to the Nile is easily seen from Mr. Stanley's graphic description of the lay of the country between the Congo and the Albert Nyanza. It is, he says, like the glacis of a fort, some 350 miles long, sloping gradually up from the margin of the Congo (itself at the Arawimi month 1,400 feet above the sea), until ten miles beyond one of the Ituri feeders it reaches a height of 5,200 feet to descend alnost perpendicularly 2,900 feet to the surface of the lake, which forms the great western reservoir of the Nile.
But when the term "glacis" is used, it must not be inferred that the ascent from the Congo to Lake Albert is smooth and unobstructed. The fact is that Mr. Stanley found himself involved in the northern section of what is probably the most extensive and densest forest region in Africa. Livingstone spent many a weary day trudging its gloomy recesses away south at Nyangwe on the Lualaba. It stretclies for many miles north to the Monbuttil country. Stanley entered it at Yambuya, and tunnelled his way through it to within 50 miles of the Albert Nyanza, when it all of a sudden seased and gave way to grassy plains and the unobstructed light of day. How far west it may extend beyond the Aruwimi he can not say; but it was probably another section of this same forest region that Mr. Panl du Chaillu struck some 30 years ago, when gorilla hunting in the Gaboon. Mr. Stanley estimates the area of this great forest region at about 300,000 square miles, which is more likely to ba under than over the mark. The typical African forest, as Mr. Drummond shows in his charming book on "Tropical Africa," is not of the kind found on the Aruwimi, which is much more Sonth American than African. Not even in the "great sponge," from which the Zambesi and the Oongo draw their remote supplies, do we meet with such impenctrable density. Trees seattered about as in an English park in small open clumps form, as a rule, the type of "forest" common in Africa. The physical causes which led to the dense packing of trees over the immense area between the Congo and the Nile Lakes will form an interesting investigation. Mr. Stanley's description of the great forest region, in his letter to Mr. Bruce, is well worth quoting:
"Take a thick Scottish copse, dripping with rain. Inagine this copse to be a mere undergrowth, nourished under the impenetrable shade of ancient trees, ranging trom 100 to 180 feet high; briars and thorns abundant; lazy creeks, meandering through the depths of the jungle, and sometimes a deep affluent of a great river. Imagine this forest and jungle in all stages of decay and growth-old trees falling, leauing perilously over, fallen prostrate; ants and insects of all kinds, sizes, and colors murmuring around; monkeys and chimpanzees above, queer noises of birds and animals, craskes in the jungle as troops of elephants rush away; dwarfs with poisoned arrows securely hidden behind some buttress or in some dark recess; strong brown-bodied aborigines with terribly sharp spears standing poised, still as dead stumps; rain pattering down on you every other day in the year; au impare atmosphere with its dread consequences, fever and dysentery; gloom throughout the day, and darkuess almost palpable throughout the night, and then if you will imagine such a forest extending the entire distance from Plymonth to Peterhead, you will have a fair idea of some of the inconvenience encured by us from June 28 to December 5, 1887, and from June 1, 1888, to the present date, to continue again from the present date till about December 10, 1888, when I hope to say a last farewell to the Oongo forest."

Mr. Stanley tries to account for this great forest region by the abundance of moisture carried over the contivent from the wide Atlantic by the winds which blow landward through a great part of the year; but it is to be feared the remarkable phenomenon is not to be accounted for in so easy a way. Investigatiou may prove that the rain of the rainiest region in Africa comes not from the Atlantic, but the Indian Ocean, with its moisture laden monsoons; and so we should have here a case analogous to that which occurs in South America, the forests of which resemble in many features those of the region through which Mr. Stanley has passed.

But the forest itself is not more interesting than its human denizens. The banks of the river in many places are studded with large villages, some, at least, of the native tribes being cannibals. We are here on the northern border of the true negro peoples, so that when the subject is investigated the Aruwini savages may be found to be much mixed. But unless Europe promptly intervenes, there will shortly be few people left in these forests to investigate. Mr. Stanley came upon two slavehunting parties, both of them manned by the merciless people of Manguema. Already great tracts have been turned into a wilderness, aud thousands of the natives driven from their homes. From the etholo. gist's point of view the most interesting inhabitants of the Aruwimi forests are the hostile and cunning dwarfs, or rather pigmies, tryo caused the expidition so much trouble. No doubt they are the same as the Monbuttu pigmies found farther north, and essentialy similar to the pigmy population found scattered all over Africa, from the Zambesi to
the Nile, and from the Gaboon to the east coast. Mr. Du Ohaillu found them in the forests of the west 30 years ago, and away south on the great Sankuru tributary of the Oongo Major Wissman and his fellow explo. rers met them within the past few years. They seem to be the rem. nants of a primitive population rather than the stunted examples of the normal negro. Around the villages in the forest wherever clearings had been made the ground was of the richest character, growing crops of all kiuds. Mr. Stanley has always maintained that in the high lands around the great lakes will be found the most favorable region for European enterprise; and if in time much of the forest is cleared aray, the country between the Congo and Lake Albert might become the granary of Africa.

To the geographer, however, the second half of the expedition's work is fuller of iuterest than the first. Some curious problems had to be solved in the lake region, problems that had given rise to much discussion. When in 1864 Sir Samuel Baker stood on the lofty escarpment that looks down on the east shore of the Albert Nyanza, at Vacovia, the lake seemed to him to stretch illimitably to the south, so that for long it appeared on our maps as extending beyond 1 degree south latitude. When Stanley, many years later, on his first great expedition, after crossing from Uganda, came upon a great bay of water, he was naturally inclined to think that it was a part of Baker's lake, and ealled it Beatrice Gulf. But Gessi and Mason, members of Gordon Pasha's staff, circumnavigated the lake later on and found that it ended mors than a degree north of the equator. So when Stanley published his narrative he made his "Beatrice Gulf" a soparate lake lying to the south of the Albert Nyanza. Mr. Stanley saw only a small portion of the southern lake, Muta Nzige, but in time it expanded and expanded on our maps until there seemed some danger of its being joined on to Lake Tanganyika. Emin himself, during his 12 years' stay in the Sndan, did something towards exploring the Albert Nyanza, and found that its southern shore was fast advancing northward, partly owing to sediment brought down by a river, and partly due to the wearing away of the rocky bed of the Upper Nile, by which much water escaped and the level of the lake subsided. Thus, when Baker stood on the shore of the lake in 1864, it may well have extended many miles farther sonth than it does now. But where did the river come from that Mason and Emin saw running into the lake from the south? As was pointed out above, Stanley at flest thought it could not come from his own lake to the south, which ho believed must sond its waters to the Oongo. But all controversy has now been ended. During the famous exodus of the 1,500 from Kavilli to the coast, the intensely interesting country lying between the northern lake, Albort, and the sonthern lake, now named Albert lidward, was traversed. Great, white, grassy plains stretch a way sonth from the shores of Lake Albert, which under the glitter of a tropical sun might well be mistaken for water; evidently they had been L. Mis. 120-10
uuder water at quite a recent period. But soon the country begins to rise, and round the base of a great mountain boss the river Semliki winds its way through its valley, receiving through the picturesque glens many streams of water from the suows that clothe the mountain tops. Here we have a spleudid country, unfortunately harassed by the raids of the Wanyoro, in dread of whom the simple uatives of the mountain side often creep up to near the limit of snow. Up the mountain, which Lientenant Stairs ascended for over 10,000 feet, blackberries, bilberries, violets, - heaths, lichens, and trees that might have reminded him of England flourish abundantly. Here evidently we have a region that might well harbor a European population. The mountain itself, Ruwenzori, a great boss with numerous spurs, is quite evidently an extinct voleano, rising to something like 19,000 feet, and remindiug one of Kilimanjaro, farther to the east. It is not yet clear whether it is the same mountain as the Gordon Beunett seen by Stanley in his former expedition, though the probability is that, if distinct, they belong to the same group or mass. Apart from the mountain the country gradually ascends as the Semliki is traced up to its origin in Lake Albert Edward. Mr. Stanley found that, after all, the southern Nyanza belongs to the great Nile system, giving origin to the farthest southwest source of Egypt's wonderful river, which we know receives a tribute from the snows of the equator.

The southern lake itself is of comparatively small dimensions, probably not more than 45 miles long, and is 900 feet above the northem Lake Albert. Mr. Stanley only skirted its west, north, and east shores, so that probably he has not been able to obtain complete data as to size and shape. But he has solved one of the few remaining great problems in African geography. The two lakes lie in a trough, the sides of which rise steeply in phaces 3,000 feet, to the great plateans that extend away east and west. Whis trough, from the north end of Lake Albert to the south end of Lake Albert Edward, is some gio statute miles in length. About 100 miles of this is occupied by the former lake, 45 by the latter, and the rest by the country between, where the trough, if we may indulge in an Irishism, becomes partly a plain, and partly a great mountain mass. But this trough, or fissure, a glance at a good map will show, is continued more or less south and sontheast in Lakes Tanganyika and Nayassa, which are essentially of the same character as Lakes Albert and Albert Edward, and totally different from such lakes as Victoria Nyanza and Bangweolo. Here we have a feature of the greatest geographical interest, which still has to be worked out as to its origin.

There is little more to say as to the geographical results of the Emin Pasha relief axpedition. There are many minute details of great, interest, which the reader may see for himself in Mr. Stanley's letters, or in his forthcoming detailed narrative. In his own characteristic way he teils of the tribes and peoples aromind the lakes, and between the
lakes and the coast; and it was left for him on his way home to discover a great southwest extension of Victoria Nyanza, which brings that lake within 150 miles of Lake Tanganyika. The results which have been achieved have been achieved at a great sacrifice of life and of suffering to all concerned; but no one, I am sure, will wish that the work had been left undone. The few great geographical problems in Africa that Livingstone had to leave untouched, Stanley has solved. Little remains for himself and others in the future beyond the flling in of details; but these are all-important, and will keep the great army of explorers busj for many years, if not for generations.

ANTAROTIO EXPLORATION.*

By G. S. Griffiths.

My-experience during the four years which hare elapsed since this project was first mooted in Melbourne is that any reference to the subject is sure to be met with the query Cui bonos What good can it do What benefic can come from it? What is the object to be served by such an expedition?

In setting myself to the task of answering these questions let me observe that it would indeed be strange if an unexplored region $9,000,000$ square miles in area-twice the size of Europe-and grouped around the axis of rotation and the magnetic pole could fail to yield to investigators some novel and valuable information. But when we notice that the circle is engirdled withont by peculiar physical conditions which must be correlated to special physical conditions within, ppeculation is exchanged for a confident belief that an adequate reward must await the skilled explorer. The expected additions to the geog. mphy of the region are, of all the knowledge that is to be sought for there, the least valuable. Where so many of the physical features of the country-the hills, the valleys, and the drainage lines-have been huried beneath the snow of ages, a naked outline, a bare skeleton of a map, is the utmost that can be delineated. Still, oven such knowledge as this has a distinct value, and as it can be acquired by the explorers as they proceed abont their more important researches, its relatively small value ought not to be admitted as a complete objection to any enterprise which has other objects of importance. Our present acquaintance with the geography of the region is excessively limited. Ross just viewed the coasts of Victoria Land betweon $163^{\circ} \mathrm{E}$. and $160^{\circ} \mathrm{W}$. longitude; he trod its barren strand twice, but on each oceasion for a few minutes only. From the adjacent gulf he measured the heights of its volcanoes, and from its offling he sketched the walls of its icy barrier. Wilkes traced on our map a shore line from $97^{\circ} \mathrm{E}$. to $167^{\circ} \mathrm{E}$. longitude, and he backed it up with a range of monntains, but he landed nowhere. Subsequently Ross sailed over the site assigned to part of this land,

[^56]and hove his lead 600 fathoms deep where Wilkes had drawn a mountain. He tells us that the weather was so very clear that had high land been within 70 miles of that position he must have seen it ("Ross's Voyage," 1278). More recently Nares, in the Challenger, tested another part of Wilkes's coast line, and with a like result; and these circumstances throw doubts upon the value of his reported discoveries. D'Urville subsequently followed a bold shore for a distance of about 300 miles from $136^{\circ} \mathrm{E}$. to $142^{\circ} \mathrm{E}$. longitude; whilst in $67^{\circ} \mathrm{S}$. latitude, and between $45^{\circ} \mathrm{E}$. and $60^{\circ} \mathrm{E}$. longitude, are Enderby's and Kemp's lands. Again, there is land to the south of the from which trends from 45° to $75^{\circ} \mathrm{S}$. latitude. These few discontinuous coast lines comprise all our scanty kuowledge of the Antarctic land. It will be seen from these facts that the principal geographical problem awaiting solution in these regions is the intercounection of these scattered shores. The question is, do they constitute parts of a continent, or are they, like the coasts of Greenlaud, portions of an archipelago, smothered under an overload of frozen snow, which conceals their insularity? Ross inclined to the latter view, and he believed that a wide coannel leading towards the Pole existed between North Cape and the Balleny Islands ("Ross's Voyage," 1221). This view was also held by the late Sir Wyville Thomson. A series of careful observations upon the local currents might throw some light upon these questions. Ross notes several such in his log. Off Possession Island a current, running southward, took the ships to windward (ibid., 1195). Off Coulman Island another drifted them in the same direction at the rate of 18 miles a day (ibid., 1204). A three quarter knot northerly current was felt off the barrier, and may have issued from beneath some part of it. Such isolated observations are of little value, but they were multiplied, and were the currents correlated with the winds experienced the information thus obtained might enable us to detect the existence of straits, even where the channels themselves are masked by ice barriers.

Finally, it is calculated that the center of the polar ice-cap must be 3 miles, and may bo 12 miles deep, and that the material of this ice mountain being viscous, its base must spread out under the crushing pressure of the weight of its center. The extrusive movement thus set up is supposed to thrust the ice cliffs off the land at the rate of a quarter of a mile per annum. These are some of the geographical questions which await settlement.

In the geology of this region we have another subject replete with interest. The lofty volcanoes of Victoria Land must present peculiar features: Nowhere else do fire and frost divide the sway so completely. Ross saw Erebus belching out lava and ashes over the snow and ice which coated its flanks. This circumstance leads us to speculate on the strata that would result from the alternate fall of snow and ashes during long periods and under a low temperature. Volcanoes are built up, as contra-distinguished from other mountains, which result
from elevation or erosion. They consist of débris piled round a vent. Lava and ashes surround the crater in alternate layers. But in this polar region the snow-fall must be taken into account as well as the ash deposit and the lava flow. It may be thought that any volcanic ejecta would speedily melt the snow upon which they fell, but this does not by any means necessarily follow. Volcanic ash, the most wide-spread and mosí abundant material ejected, falls comparatively cold, cakes, and then forms one of the most effective nonconductors known. When such a layer a few inches thick is spread over snow even molten lava may flow over it withont melting the snow beneath. This may seem to be incredible, but it has been observed to occur. In 1823 Iyell saw on the flanks of Etua a glacier sealed up under a crust of lava. Now, the Antarctic is the region of thick-ribbed ice. All exposed surfaces are quickly covered with snow. Snow-falls, fish-falls, and lara-flows must have been heaping themselves up around the craters during unknown ages. What has been the result? Has the viscosity of the ice been modified by the intercalation of beds of rigid lava and of hard-set ash Does the growing mass tend to pile up or to settle down and spread out Is the ice wasted by evaporation, or does the ash layer preserve it against this mode of dissipation? Nhese interesting questions can be studied round the South Pole, and perhaps nowhere else so well.
Another question of interest, as bearing upon the location of the great Antarctic continent, which it is now certain existed in the Secondary period of geologists, is the nature of the rocks upon which the lowest of these lava beds rest. If they can be discovered, and if they thien be found to be sedimentary rocks-such as slates and sandstones, or plutonic rocks-such as granite, they will at once afford us some data to go upon, for the surface exposure of granite signifies that the locality has been part of a continental land sufficiently long for the weathering and removal of the many thousands of feet of sedimentary rocks which of necessity overlie crystalline rocks during their genesis; whilst the presence of sedimentary rocks implies the sometime proximity of a continent from the surfaces of which alone these sediments, as rain-wash, could have beon derived.

As ancient slate rocks have already been discovered in the ice-clad South Georgias, and as the drag-nets of the Erebus and the Ohallenger have brought up from the beds of these icy seas fragments of sandstones, slates, and granite, as well as the typical blue mud which invariably fringes continental land, there is every reason to expect that such strata will be found.

Wherever the state of the snow will permit, the polar mountains should be searched for basaltic dikes, in the hope that masses of specular iron and nickel might be found, similar to those discovered by Nordenskiöld, at Uvifak, in north Greenland. The interest taken in these metallic masses arises from the fact that they alone, of all the
rocks of the earth, resemble those masses of extra-terrestial origin which we know as meteorites. Such bodies of unoxidized metal are unknown elsewhere in the mass, and why they are peculiar to the Aretic it is hard to say. Should similar masses be found within the Antarctic, a fresh stimulus would be given to speculation. Geologists would have to consider whether the oxidized strata of the earth's crust thin ont at the poles; whether in such a case the thinuing is due to severe local erosion, or to the protection against oxygen afforded to the surface of the polar regions by their ice caps, or to what other cause. Such discoveries would add something to our knowledge of the materials of the interior of our globe and their relation to those of meteorites.

Still looking for fresh knowledge in the same direction, in series of pendulum observations should be taken at points as near as possible to the pole. Within the Arctic circle the pendulum makes about 240 more vibrations per day than it does at the equator. The vibrations increase in number there becanse the force of gravity at the earth's surface is more intense in that area, and this again is believed to be due to the oblateness of that part of the earth's figure, but it might be caused by the bodily approach to the surface at the poles of the masses of dense ultra-basic rocks just referred to. Thins, pendulum experiments may reveal to us the carth's figure, and a series of such observations, recorded from such a vast and untried area, must yield important data for the physicist to work up. We should probably learn from such investigations whether the earth's figure is as much flattened at the Antarctic as it is known to be at the Aretic.

We now know that in the past the North Polar regions have enjoyed a temperate climate more than once. Abundant seams of Paleozoic coal, large deposits of fossiliferous Jurassic rocks, and extensive Eocene beds, containing the remains of evergreen and deciduons trees and flowering plants, occur far within the Arctic circle. This circumstance leads us to wonder whether the corresponding southern latitudes have ever experienced similar climatic vicissitudes. Oonclusive evidence on this point it is difficult to get, but competent biologists who have examined the floras and faunas of South Africa and Australia, of New Zealand, South America, and the isolated islets of the Southern Ocean, flad features which absolutely involve the existence of an extensive Antarctic land-a land which must have been elothed with a varied vegetation, and have been alive with beasts, birds, and insects. As it also had had its fresh-water fishes, it must have had its rivers flowing and not frost-bound, and in those circumstances we again see indications of a modified Antarctic clinate. Let us briefly consider some of the ovidence for the existence of this continent. We are told by Professor Hutton, of Ohristchurch, that 44 per cent. of the New Zealand flora is of Antaretic origin. The Auckland, Campben, and Macquarie Islands all support Antarctic plants, some of which appear never to
have reached New Zealand. New Zealand and South America have three flowering plants in common, also two fresh-water fishes, five seaweeds, three marine crustaceans, one marine mollusk, and one marine fish. Similarly New Zeeland and Africa have certain common forms, and the floras and faunas of the Kerguelen, the Orozets, and the Marion Islands are almost identical, although in each case the islands are very small, and very isolated from each other and from the rest of the world. Tristan d'Acunba has fifty-eight species of marine Mollusca, of which number thirteen are also found in South America, six or seven in New Zealand, and four in South"Africa (Hutton's Origin of New Zealand Flora and Fauna). Temperate South America has seventy-four genera of plants in common with New Zealand, and eleven of its species are identical (Wallace's Island Life). Penguins of the genus Eudyptes are common to South America and Australia (Wallace, Dist. of Animals, 1399). Three groups of fresh-water fishes are entirely confined to these two regions. Aphritis, a fresh-water genus, has one species in Tasmania and two in Patagonia. Another small group of fishes known as the Haplochitonidæ inhabit Tierra dal Fuego, the Falklands, and South Australia, and are not found elsewhere, while the genus Galaxias is confined to Sonth Temperate America, New Zealand, and Australia. Yet the lands which have these plants and animals in common are so widely separated from each other that they conld not now possibly interchange their inhabitants. Oertainly towards the equator they approach each other rather more, but even this fact fails to account for the present distribution, for, as Wallace has pointed out, "the heat-loving Reptilia afford hardly any indications of close affinity between the two regions" of Sonth America and Australia, "whilst the cold-onduring Amphibia and fresh-water fishes offer them in abundance" (Wallace, Dist. of Animals, 1400). Thus we see that to the north interchange is prohibited by tropical heat, while it is barred to the south by a nearly shoreless circumpolar sea. Yet there must have been some means of intercommunication in the past, and it appears certain that it took the shape of a common fatherland for the varions common forms from which thoy spread to the northern hemisphere. As this father-land must have been accessible from all these scattered southern lands, its size and its disposition must have been such as would serve the emigrants either as a bridge or as a series of stepping.stones. It must have been either a continent or an archipelago.
But a further and a peculiar interest attaches to this lost continent. Those who have any acquaintance with geology know that the placental Mammalia-that is, animals which are classed with such higher forms of life as apes, cats, dogs, bears, horses, and oxen-appear very abruptly with the incoming of the Tertiary period. Now, judging by analogy, it is not likely that these creatures can have been developed out of Mesozoic forms with anything like the suddenness of their apparents.
entrance upon the scene. For such changes they mast have required a long time, and an extensive region of the earth, and it is probable that each of them had a lengthy series of progenitors, which ultimately linked it back to lower forms.

Why, then, it is constantly asked, if this was the sequence of creation, do these missing links never turn up? In reply to this query, it was suggested by Huxley that they may have been developed in some lost continent, the boundaries of which were gradually shifted by the slow elevation of the sea margin on one side and its simultaneous slow depression upon the other, so that there has always been in existence a large dry area with its livo stock. This dry spot, with its fauna and Hora, like a great raft or Noal's Ark, moved with great slowness in whatever direction the great earth-undulation travelled. But to-day this area, with its fossil evilences, is a sea-bottom; and Huxley sup. poses that the continent, which once ocenpied a part of the Pacifle Ocean, is now represented by Asia.

This movement of land-surface translation nastwards eventually created a connection between this land and Africa and Europe, and if when this happened the manmalia spread rapidly over these countries, this circumstance would account for the abruptness of their appearance there.

Now, Mr. Blanford, the president of the Geological Society of London, in his annual address, recently delivered, advances matters a stage further, for he tells us that a growing acquaintance with the biology of the world leads naturalists to a belief that the placental mammalia and other of the higher forms of terrestrial life originated during the Mesozoic period still further to the southwards-that is to say, in the lost Antarctic continent, for the traces of which we desire to seek.

But it almost necessarily follows that wherever the mammalia were developed there also man had his birth-place, and if these speculations should prove to have been well founded wo may have to shift the location of the Garion of Balen from the northern to the sonthern hemis. phere.

I need hardy suggest to you that possibilities such as these must add greatly to our interest in the recovery of any traces of this mysterious region. Whis land appears to have sumk beneath the seas after the close of the Meso\%oic. Now, the submergence of any mass of land will distarb the climatie equilibrimm of that region, and the disappenrance of an Antarctic continent would prove extromely potent in vary. ing the climate of this hemisphere. For to day the sun's rays fall on the South Polar regions to small purpose. The unstable sea absorbs the heat, and in wide and comparatively warm streams it carries off the caloric to the northern hemisphere to raise its temperature at the expense of ours. But when extonsive land received those same heat rays, its rigid surfaces, so to speak, tethered their caloric in this hemi-
sphere, and thus when there was no mobile current to steal northwards with it, warmth could accumulate and modify the elimate.
Under the influences of such changes the icy mantle would be slowly rolled back towards the South Pole, and thus many plants and aniuals were able to live and multiply in latitudes that to day are barren. What has undoubtedly occurred in the extreme north is equally possiWe in the extreme sopith. Bat if it did occur-if South Polar lands, now ice bound, were then as prolific of life as Disco and Spitzbergen once were-then, like Spitzbergen and Disco, the unsubmerged remminits of this continent may still retain organic evidences of the fact in the sliape of fossil-bearing beds, and the discovery of such deposits would confirm or confute such speculations as these. The key to the geological problem lies within the Antarctic Oircle, and to find it would be to recover some of the past history of the southern hemisphere. There is no reason to despair of discovering such evidence, as Dr. McOormack, in his account of Ross's voyage, records that portions of Victoria Land were free from snow, and therefore available for investigation; besides which their surface may still support some living forms, for they can not be colder or bleaker than the peaks which rise out of the continental ice of North Greenland, and these, long held to be sterile, have recently disclosed the existence upon them of a rioh though humble flora.
We have now to consider some important meteorological questions. If we look at the distribution of the atmosphere around the globe we sball see that it is spread unequally. It forms a stratum which is deeper within the troples than about the poles and over the northern than over the southorn hemisphere, so that the barometer normals fall more as we approach the Antarctic than they do when we near the Aretic. Manry, taking the known isobars as his gudde, has caleulated that the mean pressure at the North Pole is 29.1 , but that it is only 28 at the South (Manry's Meteorology, 259). In other words, the Antarctic Oircle is permanently much barer of atmosphere than any other pait of the globe. Again, if we consult a wind chart, we shall see that hoth poles are marked as calm areas. Wach is the dead center of a perpotual wind vortex, but the Sonth Polar indranght is the stronger. Polarward winds blow aeross the forty. Iffth degree of north latitude for 189 days in the year, butideross the forty-fifth degree of sonth latitnde for 200 days. And while they are drawn in to the North Pole from over a disk-shaped area 5,500 milos in diameter, the South Polar indraught is felt thronghont an area of 7,000 miles across. Lastly, the winds which circulate about the South Pole are more heavily charged with moisture than are the winds of corresponding parts of the other hemisphere. Now, the extrome degree in which these three conditions, of a perpetual grand cyolone, a moist atmosphere, and a low barometer, co-operate without the Antarctic ought to produce within it an exceptional meteorologieal state, and the point to be determined is
what that condition may be. Maury maintained that the conjunetion will make the climate of the South Polar area milder than that of the north. His theory is that the saturated winds being drawn up to great heights within the Antarotic must then be eased of their moisture, and that simultaneously they must disengage vast quantities of latent heat; and it is because more heat must be liberated in this manner in the South Polar regions than in the north that he infers a less severe climate for the Autarctic. He estimates that the resultant relative differ. ences between the two polar elimates will bo greater than that between a- Oanadian and an English winter (Maury's Meteorology, p. 466). Ross reports that the South Polar summer is rather colder than that of the north, but still the sonthern winter may be less extreme, and so the mean temperature may be higher. If we examine the weather reports logged by Autarctic voyagers, instead of the tomperature merely, the advantage still seems to rest with the south. In the first place, when the voyager enters the Antarctic he sails out of a tempestuous zone into one of calms. To demonstrate the truth of this statement I have made an abstract of Ross's log for the two months of January and February, 1841, which he spent within the Antarotic Oircle. To enable everyone to understaud it, it may be woll to explain that the wind force is registered in figures from 0 , which stands for a dead oalm, up to 12 , which represents a hurricano. I find that during these 60 days it never once blew with the force 8-that is, a fresh gale; only twice did it blow force 7 , and then only for half a day each time. Force 5 to 6-fresh to strong breezes-is logged on 21 days. Force 1 to 3 - that is, gentle breezes-prevailed on 34 days. The mean wind foree registered under the entire 00 days was 3.43 -that is, only a 4 to 5 knot breeze. On 38 days blue sky was logged. They never had a single fog, and on 11 days only was it even misty. On the other hand, snow fell almost overy second day. We find such entries as these: "Beantifully clear weather," and "Atmosphere so extraordinarily clear that Mount Horschel, distant 90 miles, looked only 30 miles distant." And again, "Land seen 1.20 miles distant; sky benutifully clear." Nor was this season exceptional, so far as wo can tell, for Dr. MeCormaek, of the Hrebus, in the third year of the voyage, and after they had left the Antaretio for the thidd and last time, enters in his clary the following remark. He says: "It is a curious thing that we havo alvays met with the flnest weather within the Antarctio circlo; cloar, clondless sky, bright sun, light wind, and a long swell" (MoCormack's Antarotio Voyage, vol. $\mathrm{r}, \mathrm{p} .345 \mathrm{~b}$. It would seem as if the stormy wosterlies, so familiar to all Australian visitors, hat given to the whole southern hemisphere a name for bad weather, which, as yet at least, has not been earned by the South Polar regions. It is probable, too, that the almost continuous gloom and fog of the Aretic (Seoresby's Aretio Regions, pp. 97 and 137) July and Angust have projudiced seamen against the Antaretic summer: The true character of the cllinate of this region is
one of the problems awaiting solution. Whatever its nature may be, the area is so large and so near to us that its meteorology must have a dominant influence on the climate of Australia, and on this fact the value of a knowledge of the weather of these parts must rest.
Io turn to another branch of science, there are several questions relating to the earth's maguetism which require for their solution long. maintained and continuous observations within the Antarctic circle. The mean or permanent distribution of the world's magnetism is believed to depend upon causes acting in the interior of the earth, while tho periodic variatiors of the needle probably arise from the superficial and subordinate currents produced loy the daily and yearly variations in the temperature of the earth's surface. Other variations occur at irregular intervals, and these are supposed to be due to atmospheric electricity. All these different currents are oxcessively frequent and powerful about the poles, and a sufficient series of observations might enable physicists to differentiate the various kinds of currents, and to trace them to their several sourees, whether internal, superficial, or meteoric. To do this properly at least one land observatory should be established for a period. In it, the variation, dip, and intensity of the magnetic currents, as well as the momentary fluctuations, of these elements would all be recorded. Fixed term days would be agreed on with the observatories of Australia, of the Oape, America, and Europe, and during these terms a concerted continuous watch would be kept up all round the globe to determine which vibrations were local and which general.

The present exact position of the principal south magnetic pole has also to be flxed, and data to be obtained from which to caleulate the rate of changes in the future, and the same may be said of the foci of magnetic intensity and their movements. In relation to this part of the subject, Oaptain Oreak recontly roported to the British Association his conclusions in the following terms. He says: "Great advantage to the science of terrestrial magnetism would bo dorived from a now magnotic survey of the sonthorn hemisphere extending from the parallel of 40° south, as far towards the geographical polo as possible."

Intimately comected with torrestrial magnotism are the phenomena of amoras. Their nature is very obseure, but quite recontly a distinet advance has been made towards discovering some of tho laws which regulate them. Thanks to the labors of Dr. Sophus Jromkolt, who has spont a year within the Aretie circle studying them, we now know that thoir movements are not as eceontric as they have hitherto appeared to be. He tells us that the Aurora Borealis, with its crown of many lights, oncircles the pole obliquoly, and that it has its lower edge suspended above the earth at a height of from 50 to 100 miles, the mean of 18 trigonometrical measurements, taken with a base line of 50 miles, boing 75 miles. The aurora forms a ring round the pole which changes its latitude four times a yoar. At the equinoxes it attains its greatest distance from tho pole, and at midsummer and midwinter it approaches
it most closely, and it has a zone of maximum intensity whioh is placed obliquely between the parallels of 60° and $70^{\circ} \mathrm{N}$. The length of its meridional excursion varies from year to year, decreasing and inereasing through tolerably régular periods, and reaching a maximum about every 11 years, when, also, its appearance simultaneously attains to its great. est brilliancy. Again, it has its regular yearly and daily movements or periods. At the winter solstice it reachesits maximum annual intensity, and it has its daily maximum at from 8 P. M. and 2 A. M., according to the latitude. Thus at Prague, in latitude 50° N., the lights appear at about 8.45 P. M. ; at Upsala, latitude 60° N., at 9.30 P. M.; at Bossekop, 70° N., at 1.30 A. M. Now, while these data may be true for the northern hemisphere, it remains to be proved how far they apply to the southern. Indeed, seeing that the atmosphere of the latter region is moister and shallower than that of the former, it is probable that the phenomena would be modifled. A systematic observation of the Aurora Australis at a number of stations in high latitudes is therefore desirable.

Whether or not there is any counection between altroral exhibitions and the weather is a disputed point. Tromholt believes that such a relationship is probable (Under the Rays, 1283). He says that, "however clear the sky, it always became overcast immediately after a vivid exhibition, and it generally cleared again as quickly" (Under the Rays, 1235). Payer declares that brilliant auroras were generally succeeded by bad weather (Voyage of Tegethoff, 1324), but that those which had a low altitude and little mobility appeared to precede calms. Ross romarks of a particular display "that it was followed by a fall of snow, as usual" (Ross's Voyage, 1312). Scoresby appears to have formed the opinion that there is a relationship indicated by his experience. It is, therefore, allowable to regard the ultimate establishment of some connection between these two phenomena as a possible contingency. If, then, we look at the oleven-year eycle of auroral intensity from the meteorological point of view, it assumes a new interest, for these periods may coincide with the cycles of wet and dry seasons which somo moteorologists have deduced from tho records of our Australian climato, and the culmination of the one might be rolated to some equivalent change in the other. For if a solitary auroral display bo followed by a lowored sky, suroly a period of continuous anroras might give rise to a period of continuons cloudy weather, with rain and snow. Fritz considers that ho has established this eloven-year cycle upon the strength of auroral records extending from 1583 to 1874, and his deductions have been verified by others.

In January, 1886, we had a wide-spread and heavy rain-fall, and also an auroral display seen only at Hobart, but which was suffleiently powerful to totally suspend communication over all the telegraph lines situated between Thamania and the Ohina coast. This sensitiveness upon the part of the electic surrents to auroral excitation is not novel, for long experience on the telegraph wires of Scandinavia has shown that
there is suoh a delicate sympathy between them that the electric wires there manifest the same daily and yearly periods of activity as those that mark the auroras. The current that reveals itself in flre in the higher regions of the atmosphere is precisely the same current that plagues the operator in his office. Therefore, in the records of these troublesome earth currents, now being accumulated at the observatory by Mr. Ellery, we are collecting valuable data, which may possibly enable the physicist to count the unseen auroras of the Antaretic, to calculate their periods of activity and lethargy, and, again, to cheok these with our seasons. But it need hardly be said that the observations which may be made in the higher latitudes and directly under the rays of the Aurora Australis will have the greater value, because itis ouly near the zone of maximum auroral intensity that the phenomena are manifested in all their aspects. In this periodicity of the southern aurora I have named the list scientific problem to which I had to direct your attention, and I would point out that if its determination should give to us any clew to the changes in the Australian seasons which would enable us to forecast their mutations in any degree, it would give to us, in conducting those great interests of the country which depend for their success upon the annual rain-fall, an advantage which would be worth many times over all the cost of the expeditions necessary to establish it.

Finally, there is a commercial object to be served by Antarctic exploration, and it is to be found in the establishment of a whaling trade between this region and Australia. The price of whalebone has now risen to the large sum of $£ 2,000$ a ton, which adds greatly to the possibilities of securing to the whalers a proftable return. Sir James Ross and his officers have left it on record that the whale of commerce was seen [y them in these seas, kejond the possibility of a mistake. They have stated that the animals were large, and very tame, and that they could have been canght in large numbers. Within the last few years whales have been getting very scareo in tho Arctic, and in consequonee of this two of the most successful of the whaling masters of the present day, Capts. David and John Gray, of Peterhead, Scotland, have dovoted some labor to collecting all the data relating to this question, and they havo consulted such survivors of Ross's expedition as are still availablo. They have published the results of their investigations in a pamphet, in which they urge the establishment of the flshery strongly, and they stato their conclusions in the following words. They say: "We think it is established beyond doubt that whates of a species similar to the right or Greenland whale, found in high northorn latitudes, oxist in great numbers in the Antaretic seas, and that the establishment of a whale fishery within that aroa would be attended with successful and profltable results." It is not necessary for me to add anything, to the opinion of such experts in the business. All I desire to say is that if such a fishery were created, with its headquarters in Melbourno, it
would probably be a material addition to our prosperity, and it would soon increase our population by ounsing the families of the hardy seamen who would man the fleet to remove from their homes in Shetland and Orkney and the Scotch coasts and settle here.

In conclusion, I venture to submit that I have been able to point to good aud substantial objects, both scientific and commercial, to justify a renewal of Antarctic research, and 1 feel assured that nothing could bring to us greater distinction in the eyes of the whole civilized world than such an expedition, judicously planned and skillfully carried out.

HISTORY OF GEODETIC OPERATIONS IN RUSSIA.

By Col. B. Winskowski, of the General Staff, and Prof. J. Howard Gore, B. S., P'h. D.

Abstract

From the time of the unification of the several Moseovite states there has been felt the need of descriptions of the separate parts. But it was not until the middle of the sixteenth century that the inexact and unsatisfactory "Great Plan" made any attempt towards filling this need. Systematic geodetic operations, however, did not receive any attention until the time of Peter the Great, who sent out foreigners, especially invited for this purpose, together with such Rassians as Lad been under their instruction, to make surveys of different parts of the empire. These disconnected surveys were made without any definite correlation of the separate parts, and in a very crude manner-using cords for measuring lines, astrolabes for angle determinations, and large quadrants for latitude observations. When Delisle arrived in St. Petersburg in 1726, in response to an invitation from the emperor, an impetus was given to the exact seiences. In connection with the Academy of Sciences, fonnded likewise in 1726, he organized special astronomic expeditions for determining, in addition to other work, the geographical position of points to cheok the geography of the Great Plan, and to make such revisions as might be necessary. In these pperations longitudes were determined by the celipse of Jupiter's satellites. The result of these expeditions was the Russian Atlas, edited by the Academy in 1745, consisting of one general and nineteen special maps, constrincted on a scale of 34 versts* to the inch. Notwithstanding its imperfections, this athas was far superior to my of its period, and ante•dated all general maps except those of France and ltaly. Delisle awakened great interest in astronomy at Russia's capital, and secured the necessary permission and aid to observe every important astronomie event that was visible from any part of her domain. This created a need for assistants, and called forth a number of astronomers whose names are known to us, as Krassilnikow, a momber of Bering's expedition; Krashennikow, who made the first deseription of Kam-

[^57]chatka, aud Roumovsky, explorer of northern European Russia. In 1789 the last named published a teble of the geographical positions of sixty-two stations in Russia. It may be remarked, in this connection, that at that time no country of western Europe possessed such a number of well.determined places.

In the eighteenth century the measurement of an are of the meridian was even planned, but why it was not carried out is not known at the present time. Delisle thought it possible to measure in the meridian of St. Potersburg an are of 220 or 230 , and in the year 1737 a base line was measured on the iee between St. Petersburg and Cronstadt and several stations were selected.

In 1796, by order of the Bmperor Panl, the Depot of Maps was instituted, which laid a solid foundation for a separate department specially occupied with all the geodetic and cartographic work in the state. Soon after Schubert gave special instruction in astronomy and geodesy, looking to the better qualification of men for this work. But owing to the troublesome times at the beginning of the present century, a stop was put to the progress of all geodetic operations. However, carto. graphie work was making rapid progress, not only in the interior of the state, but in such neighboring states as the fortunes of war introduced Russian troops, as for instance in 1816-'18, while the army wasin France, more than 10,000 square versts were mapped. In this survey mountains were for the first time drawn by cross hatchings, according to Lehman's system.

After the close of the war with Napoleon geodetic operations in Russia began to develop very rapidly, and lying at the foundation of accurate maps, the practical value was so apparent that no obstacle to their progress was encountered. The great extent of the country precluded the plan which naturally suggested itself of covering the entire state with a network of triangulation before beginning the mapping. Oonsequently independent nots were started which later could bo united and broight into a harmonious whole. Vilat was the first province which was covered by a triangulation. It was prosecuted in 18161821, tuder the direction of General Temner, and is of interest to us because its principal triangle entered into the groat meridional are.

This work rested on three bases moastred with an apparatus constructed on the Borda principle under the supervision of Professor Reisig. Temner discovered that the bohavior of the metal components under varying tomperatures was wholly unreliable and at once proposed an apparatus consisting of only one metal, in the shape of a bar of iron 14 feet long, with a slide projecting boyond the end of one of the bars to measure the interval between two bars when they are bronght into approximate contact. This device has been emploged in a variety of forms and is now known as the contact-slide. The temperature of the bars during the measuring was aseertained from two thermometers on each bar, the bulbs of which were insertel into the body of the bar.

The angles in this net were measured with repeating circles, employing for each angle from twenty to fifty repetitions. For the probable error of alggle determinations $0^{\prime \prime} .62$ was found to be an average. Astronomic observations were made at only one point with the longitudes referred to the observatory of Vilna.

Almost simultaneously with the above-maned operations in Vilna, a young enthusiastic astronomer of the Dorpat University, W. Struve, acting in response to a request from the Livonian Economical Seciety, covered Livonia with a trigonometrical not. In this work the angles were measured with a sextantand the bases with wooden rods, so that but little confidence can be placed in the results, still it was while engaged upon this work that Struve formed a liking for geodesy and conceived the plan of making a great are measurement for the purpose of determining the lengths of degrees in different latitudes.

His great interest in the work attracted the attention of the univer. sity authorities, and in answer to his request they furnished him with the necessary means and instruments. The base apparatus was of his own invention, and still bears his name. The salient feature introduced in its construclion was the contact lever, which indicated on a graduated arc over which one end of the lever swept the exact measuring length each time the bar was put in place. Inclination was deter. mined by means of a special level.

A large theodolite, provided with four verniers, served as the anglereading instrument. In this work Struve was the first to abandon the seductive, unreliable method of repetition, using in its place the method of directions. It was so apparent to many that an angle measured say twenty times, with only one reading of the circle, would be affected by all error only one-twentieth as large as if the single reading corresponded to only one pointing. Struve clearly saw that this method introdnced other errors more pernicious than those of reading, but so firmly was the Borda repoating circlo flxed in the confldence of its nsers that had not Ganss embraced the new plan in his monumental work it is likely that the method of repotition would have contimed to impair geodetie determinations. However much we aro indobted to Ganss for assisting in the change, we owe the inception to Struve.

The results of this first degree measuromeit, which extendod from the isle of Mohland, in the Fimnish Gulf, to the town Jacobstadt, on the river Dvina, are given in Struve's Breitengradmessun! in den Ostsceprovinzen Russlands, Dorpat, 1831.

On flnishing this work, Struve, seoing no natural obstacles in the way, hoped to extend an are along the meridian of Dorpat. He was soon in a position to take up this undertaking, since as director of the observatory at Pulkova he was virtmally at the head of all astronomie and geodetio operations in Russia. Fortunately ho received the appro. bation of Emperor Nicholas, and moder his patronage this branch of seiontifle work prospered. The greati are, which received wellonigh unintermpted attention for more than 40 years, had as its central fea-
ture the Baltic are; to this was successively joined Fenner's meridional chains in the provinces of Vilna, Lithonia, Volynia, and Podolsky. In the years 1830-1844, triangles were added until the chain reached from the isle of Hohland to Hornea, in the north, and in the following years Tenner carried the southern end through Bessarabia, terminating at Staraja.Nekrasovka, at the mouth of the Danube. For the continuation of the arc northward from Tornea the co-operation of the Swedish Government was necessary, as the best disposition of the triangles threw the stations alternately in Russia and in Sweden, finally crossing the north of Norway. Struve went to Stock holm to lay the matter before King Osear, who at once entered into the spirit of the undertaking, and not only gave his consent but contributed aid in carrying it on. In 1845, this part of the work was begun, and with the assistance of Selander, on the part of Sweden, and Hansteen, for Norway, the field work was completed in 1852.

This entire arc comprises $25^{\circ} 20^{\prime}$, in which there are 258 principal triangles resting on ten base lines, and fixed in position on the earth's surface by astronomic observations at thirteen stations. As a supplement to this work may be mentioned the chronometrical expedition between Pulkova and Dorpat, made in 1854. In this operation thirtyone chronometers were transported ten times. The details of this are measurement are given quite fully in "Are du Meridien," which was published in French and Russian in 1860. This are has entered into all of the more recent determinations of the figure of the earth, and in the computations of General Bonsdorff it alone gives for the ellipticity 208.

Ares of parallel have also received some attention. In 1826, the French Government announced that there was already in existence an are of parallel approximately in latitude $47^{\circ} \mathrm{N}$. from Brest, on the wast, to TChemowizt, on the east, and that if the Russians would continue this are eastward valuable geodetic data would result. The plan was received with favor, but different obstacles intervened, so that it was not until 1848 that it conld be carried out. By this time the triangulation had roached the so-called Now Russia, and in the general purpose to cover thig entire scction with a network of triangles General Wrochenko, the chief, received instructions to so perform his work that amongst his triangles there should be an uninterrupted chain along this parallel of such strength and accuracy that they could form an integral part of this are.

The field operations contimed without serious interruption up to their completion in 1856, extending over an are of about 20° amplitude from Bologan to Astrakhan, at the month of the Volga. For this work three bases have been measured in addition to tho checks which came down from the northern work. As the determination of the amplitude depends upon differences of lougitudes this part of the work was delayed awaiting the construction of telegraph lines. At the
present time longitules of flyo stations are known, and the final results will soon be published.

In 1860, it was decided to carry an arc along the fifty-second parallel, which, when completed, would have, between Haversfordwest, in England, and Orsk, on the river Ural, an amplitude of $63^{\circ} 31^{\prime}$. To Russia's share fell $29^{\circ} 24^{\prime}$, while the other countries had their work finished. In addition to this, Russia at this time had on ly a few triangles suitably situated that were sufficiently accurate to form a part of this arc; therefore it was necessary to revise some of the former work and to add to it much that was wholly new. In the prosecution of this work many obstacles were met with, especially while traversing the marshes of Minsk, where, on account of the heavy timber and the flat character of the ground, it was necessary to build high signals, in some cases as much as $1 \tilde{0} 0$ feet in height.

The field operations were completed in 1872. One can form an idea of the magnitude of this triangulation when it is said that in Russia there are 321 triangles, of which 199 are taken from Tenner's nets in Poland and along the Volga, while 122 were measured by General Zilinsky especially for this arc. They rest on seven base lines, two in Tenner's chain and flve it the eastern part. Fifteen astronomical stations have beon occupied for longitudo determinations, chiefly by Russian officers, although six points were in other countries; these were: Breslan, Leipzig, Bonn, Newport, Green wich, and Haversfordwest. ILime observations were mado with portable transit instruments, and latitudes were ascertained from observations made with the vertical circlos of Repsold. For the transmission of time, telegraphic signals consisting of the turning aside of the needle of a galvanoscope were employed. Between two complete determinations of time four groups of twelve signals each were sent at irregular intervals of time, varying from 13 to 17 seconds. Six repetitions of such a set constituted a longitude dotermination.

At the present time the computations are in press, forming parts of volumes 46 and 47 of the Memoirs of the Lopographic Section of the General staff. Wo are fortunately able to give the final results, as follows:

Stations.	Geolletlocllif: of longitmile.	Astronomls ditit of longitule.	IMin.	Ayc of fifty. hecomil paral. lalin metres.
	- 11	- 11	"	
Chonstohow--Waramw	$1 \begin{array}{llll}1 & 53 & 67.77\end{array}$	64 8. 85	+-11.08	131,851. 1
Waranw -- (rooluo	$\begin{array}{llll}2 & 48 & 10.12\end{array}$	$\begin{array}{llll}2 & 48 & 3.45\end{array}$	-0.07	192, 601. 4
(irolno-Jobrulsk	5) 23 38, 38	6) 23140.60	+ 8.12	370, 408, 1
13pbruisk-Orel	() $\quad \mathbf{0} 0 \quad 14.77$	$\begin{array}{llll}6 & 50 & 23.70\end{array}$	-1.8.03	400, 605, θ
Oral-Mpotzk.	$\begin{array}{llll}3 & 32 & 24.02\end{array}$	$\begin{array}{llll}3 & 32 & 18.15\end{array}$	-6.87	243, 027.2
Lhpotzk-Sarntov	$\begin{array}{lll}0 & 20 & 12.00\end{array}$	$\begin{array}{llll}6 & 20 & 25.35\end{array}$	+1.12. 30	441,000.6
Sarntoy-Samma.	423.04	4221.00	-13.34	277, 601, 2
Samara-Orenburg.	$\begin{array}{llll}6 & 1 & 27.02\end{array}$	$6 \quad 1.35 .85$	+. 8.83	844,017, 6
Oronlourg-Orak	$\begin{array}{llll}3 & 27 & 23.22\end{array}$	$\begin{array}{llll}3 & 20 & 47.70\end{array}$	- -35.62	237, 200. 8
Chomstohona...Orak.	$\begin{array}{llll}39 & 20 & 363\end{array}$	$\begin{array}{llll}30 & 25 & 61.15\end{array}$	- 12, 08	2, 700, 132, 8

In 1816, was begun the general triangulation of Russia which was to serve as the hasis of accurate maps. At first the operations in different sections were isolated, and when connections were made discrepancies were discovered. This suggested to General Schubert, at the time chief of triangulation in the province of St. Peterburgh, that a central department having charge of all astronomic, geodetic, topographic, and cartographic work should be established. His proposal was favorably received by the authorities, and in 1822, the Military Topographic Corps was founded with Schubert at its head. At the same time was organized the Topographic School, where young men could prepare themselves for service in the corps. That the founder showed great wisdom in forming his plan of organization is apparent from the fact that but few changes have taken place up to the present time.

This institution is charged with all operations looking towards the complete mapping of all Russian possessions. These in a great part lie in inhospitable climes, and many are the abode of deadly fevers or savage hordes, so that the work is of surpassing difficulty. All this, however, has delayed but not deterred the determined observers, so that at the present time nearly all Russia is provided with a secondary triangulation suitable for cartographic operations. In this work the only important feature introduced was in the measurement of base lines by means of wires. This method, known in Europe as the Jiaderin apparatus, consists of a pair of tapes of different metals, usually one brass and one steel, each 25 metres long. In measuring both are used side by side and are stretched under the action of a constant tension. Two sliding scales attached to the top of a tripod are aljusted so that the zero mark on one coincides with the end of the brass wire and the zero of the other coincides with the end of the steel wire. Then the wires are carried forward and the rear end of the brass wire is brought into , eoneidence with the zero of the seale which had been adjusted to its front end, and the same adjustment is made for the steel wire. If the two wires should remain equal in length there would be no disagreement in the rero marks, but as the rates of expansion of these two metals are widely different the distance between the zeros at the first laying of the wires is due to their unequal expansion, and each time the wires are put in place this distance is angmented or diminished according as the tomperature is continually increasing or decreasing. From this it can be seen that the entire base line can be regarded is measured by a single length of an apparatus constructed on the Borda principle and at a temperature equal to the mean temperature experienced in measuring. With these wires great speed can bo attained, reaching as much as 8 kilometres a day, and judging from the Moloskowizy base, where the discrepancy between two measures was only 1 centimeter in a base 9,822 metres, sufficient accuracy is readily secured.

Not only for the purpose of determining the amplitude of ares of par.
allel, but also for locating or correcting the location of points distant from fixed observatories, was it early necessary to ascertain differences of longitude. The first step in this direction was inade in 1833, when fifty-six chronometers were transported in the steamer Heroules to points along the shores of the Baltic Sea. This was followed by several large or primary expeditions, fixing points from which smaller or see. ondary expedicions radiated as from centers. The most important of these is the well known expedition carried on under the direction of Struve, for determining the difference of longitude between Greenwich and Pulkova. The next was between Pulkova and Moscow, with forty chronometers. During these exchanges a great number of box chronometers were transported in carriages, and it was found that in a good spring vehicle, even over bad roads, the rate of the chronometers were as constant as when they were carried by water. In the frequent expeditions following these, when no less than eighty chronometers were employed, observations and comparisons were made not only at the terminal points, but also at several intermediate stations. The great number of chronometers in use made it necessary to find some means of lessening the time necessary for their comparison. When, as was at first the case, siderial and mean-time chronometers wore compured, 4 minutes were lost while waitling for a coincidence. As the outcome of this necessity Struve invonted the thirteen striker, that is, a chronomoter making thirteen beats or strokes in 6 seconds. This gives, whether comparing with a star or mean ehronometer, a eoincidence every 6 seconds within a range of $0^{\prime \prime} .02$, which is sufficiently acenrate. An uncompensated chronometer always formed a part of the equipment, serving as a means for fluding the temperature coefficients of the compensated chronometers more satisfactorily than if temperalures were taken from aceompanying thermomoters. As one would expect, the Russians have made very elaborato inrestigations regarding the rates of chronometers and their disturbing cansos.

Assoon as Russin whs eovered with a telegraphie net the new method of determining difference of longitudes was tried and at onco adopted The first application of this scheme was in Finland, between the sta. tions Cronstadt and Uleaborg. This was in 1800, and since that time each year has witnessed at least ono new determination. In 1868 ob. servations were made for finding the longitudes of Wiborg, Lovisa, Molsingfors, and \AA ilbo with reference to Pulkova. In theso operations thero was used for the first time the mothod of finding time by a transit insirument set in the vertical of Polaris. This method had been known for a long time, but had not been used because of the complicated computations involved. But W. Dillen, of Pulkova, gave formule and tables which made it possible to compute the correction of the clock almost as quiekly as if the observations were made in the meridian.

The greatest undertaking in the why of telographic longitudes are the labors of Shamgorst and Kulberg, who, in 1873-76, gave a series of
points from Moscow to Vladivostak, covering Siberia and embracing arcs having a total amplitude of more than 100°. This huge undertaking had two objects in view : to give the exact position of a number of stations which were to serve as the bases of numerous smaller opera. tions, especially chronometric expeditions, and to determine in the most accurate maner the longitude of stations where observations of the transit of Venus were to be made in 1874. The observations were made with portable transitinstruments specially adapted for quick aud convenient shifting in azimuth, making it possible to readily place the instrument in the vertical of Polaris. For latitudes these same instruments were used, being placed in the prime vertical. The account of this expedition takes up nearly the whole of the thirty-eighth volume of the Memoirs of the Topographical Section of the General Staff. Upon examination it is found that the latitudes were affected with a probable error of $0^{\prime \prime} .1$, while the probable error of a longitude determination is $0^{\prime \prime} .043$. From the successive transmission of time backwards and forwards the velocity of the galvanic current was found to be 93,548 kilometres per second.

While the triangulation was in progress, zenith-distances were observed from which the heights of stations were completed, but thess operations have not been consistently followed out, so that theie are in many parts of Russia a lack of well-determined altitudes. General Tenner gave due attention to this special werk, and in his chain he united the Baltic and the Black Seas. His results showed that the former is 0.53 fathom higher, but as the probable error is 1.5 fathoms but little confidence was placed in the theory that there was any difference in the level of these two seas. But with the Unspian Sea a different state of affair's was supposed to exist. It had been suspected that this sea was lower than either of the two just named, so in 1836-37, a large expedition was organized, in which Fuss, Sawitch, and Sabler were participants. They began at Kagalnik near the Asov Sea, crossed the northern portion of the Oaucasian deserts to the Tschornoi Rynok on the Oaspian. For greater aceuracy the zenith distances were meas. ured at very short distances, approximately 3.5 versts. These distances were ascertained. by computation from short lines measured by placing bars end to end on a rope stretched tight. The results, published in 1849, showed that the Caspian Sea is 85.45 feet lower than the Black Sea. Subsequently almost the same value was obtained, but still later a value 4 feet greater was found, suggesting that the level of the Ons. pian is decreasing. This fact has had further demonstration. The academician Lenz made a mark on a rock near the town of Baku exactly on a level with the sea; this mark in 1861 was 3.93 feet higher than the water, and more recent comparisons show that the difference is increasing.

The other Russian interior sea, the Aral, is, on the contrary, higher than the level of the ocean. The special levelling party sent out for
this purpose in 1874, came to the conclusion that the Aral Sea is higher than the Oaspian by 243 feet.

In 1871, systematic spirit leveling was begun, and in its prosecution many interesting facts havé been brought to light. One of these is the different levels of the water in the Baltic Sea. Taking 0 fur the level of water at Oronstalt, the height of the sea level proves to be:

	Metres.
At Rerol.	-0.57
At Dinaminde	-0.88
At Libau.	-1.24

Another is the discrepancy between spirit levelling and geodetic levelling in obtaining the elevation of the threshold of the Dorpat Observa. tory. This amounts to nearly 4 metres, and is suggestive of a considcrable local disturbance.
The first local attraction observed in Russia was in the neighborhood of Moscow, where, owing to the absence of hillo, one might least ex. pect a discrepancy between geodetic and astronomie results. Soon after the completion of the triangulation in the province of Moscow this deflection attracted public attention, and the astronomer Schweizer undertook a special investigation. The result showed that in this province, almost in the direction from east to west, there is a strip along whose northern boundary there is a considerable (. $)^{\prime \prime}$) northern deflection, and on the southern border a southerly deflection of $10^{\prime \prime}$. It is supposed that along this belt there must be a vast extent of matter of comparatively small density, or underlying it great cavities.

The most elaborate in vestigation of local deflection of the plumb-line was made in the Oancasus by General Stebnizki and published in the Memoirs of the St. Petersburg Academy of Sciences for 1870. From the analysis of the astronomic and trigonometric operations executed on both sides of the principal Cancasian ridge it became evident that, in general, to the north of the mountains there exists a deflection to the south and on the south an opposite deflection. The greatest discrepancies in the astronomic and geodetic latitudes proved to be in Vlarlikankasus, $-35^{\prime \prime} .76$; in Alexandrovskaja, $-18^{\prime \prime} .14$; in Petrovk, $-18^{\prime \prime} . \tilde{0} 6$; and in Dushet, $+18^{\prime \prime} .29$. Availing limself of the surveys already executed furnishing a great number of very accurately determined points, General Stebnizki compnted the effect whish the attraction of the exterior mountainous mass would have upon the astronomic latitude of the different stations. In these computations no attracting mass was considered which was distant more than 240 versts, while the chice disturbing causes wera frequently fonnd to lie within a circle with a radius of 80 versts, the station ocenpying the central point. It was found that the greater part of the noted discrepancies were sufficiently accounted for by the law of attraction having regard to the exterior mass alone. In the casesjust oited the computed differences reduced the station errors to $3^{\prime \prime},-1^{\prime} .31,+2^{\prime \prime} .15$ and $-0^{\prime \prime} .86$. But there are other
stations where the computed attraction is either insufficient for the explanation of the observed discrepancy or oven contradicts it. Among such stations the following are remarkable:

	Tifis.	Elisabotyol.	Shemalia.
	"		
The observed defteotlon	-7.66	-32.75	--23.21
The computed defiection	+2. 41	-20.50	+16.43
Difference.	-9.97	-12.25	-39.04

As all of these stations lie approximately on the same parallel, and each showed a strong deflection to the south, there must lie to the sonth under the surface of the earth an extent of matter of great density, or to the north under the Oaucasian ridge a mass of less density. The latter hypothesis has fou nd a parallel in the deflections observed near the foot of the Himalaya Mountains. Besides the latitude deflections, General Stebnizki calculated the deflections of the vertical at longitude stations, but their number so far is insufficient to serve as a basis for generalization.

For more than a century, the pendulum has been regarded in Russia as a geodetic instrument of great value, but no very accurate observa. tions were made prior to 1826 -'29, when Oaptain Latke made a cruise around the world on the man-of-war Seniavin. He swung a Kater pendulum at ten stations. The results, published in 1833, gave for the ellipticity $1: 267.8$, or $1: 269$ if two somewhat donbtful stations are disregarded. Besides the desultory observations of Professor Parrot of Dorpat in 1820, nothing of consequence was attempted until 180j-38, when the Academy of Sciences of St. Petersburg sent out an expedition in charge of Sawitch, Smyslow, and Lenz. Thay selected twelve stations along the great Russian meridional are ('Tornea, Nicolaistad, St. Petersburg, Reval, Dorpat, Jakobstadt, Vilna, Belin, Kremenetz, Kishener, Kamenetz and Isinail), and employed a reversible Repsold pendulum. The results 1 : 309 for the ellipticity of the earth.

Since this time, many observations have been made in various portions of the Russian domain, and with the pendulum work, as with all other branches of geodetio operations, the best methods soon find a place, and results are obtained that are comparable with those of any country.

QUART/ FIBERS*

By O. Y. Boys, F. R. S.

I.

In almost all investigations which the physicist carries out in the laboratory, he has to deal with and to measure with accuracy those subtle and to our senses inappreciable forces to which the so called laws of nature give rise. Whether he is observing by an electrometer the behavior of electrienty at rest, or 15 a galvanometer the action of electricity in motion; whether in the ontis of Crookes he is investigating the power of radiant matter, or with the famous experiment of Cavendish he is finding the mass of the earth-in these and in a host of other cases ho is bound to measure with certaints and accuracy forces so small that in no ordinary way could their existence be detected; while disturbing causes which might seem to be of no particular consequence must be eliminated if his experiments are to have any value. It is not too much to say that the vers existence of the physicist depends upon the power which he possesses of producing at will and by artiflcial means forces against which he balances those that he wishes to measure.

I had better perhaps at once indicate in a general way the magnitude of the forces with which we have to deal.

The weight of a single grain is not to our senses appreciable, while the weight of a ton is sufficient to crush the lifo ont of anyone in a moment. A ton is about $15,000,000$ grains. It is quite possible to measure with unfailing aceuracy forces which bear the same relation to the weight of a grain that a grain bears to a ton.

To show how the torsion of wires or threads is made use of in measming forces, I have arranged what I can hardly dignify by the name of all experiment. It is simply a straw hung horizontally by a piece of wire. Resting on the straw is a fragment of sheet.iron weighing 10 grains. A magnet so weak that it can not lift the iron yet is able to pull the straw round through an angle so great that the existence of the feeble attraction is evident to everyone in tho room.

Now it is clear that if, instead of a straw moving over the table simply,

[^58]we had here an arm in a glass case and a mirror to read the motion of the arm, it would be easy to observe a movement a hundred or a thousand times less than that just produced, and therefore to measure a force a hundred or a thousand times less than that exerted by this feeble magnet.

Again, if instead of wire as thick as an ordinary pin I had used the finest wire that can be obtained, it would have opposed the movement of the straw with a far less force. It is possible to obtain wire ten times finer than this stubborn material, but wire ten times finer is much nore than ten times more easily twisted. It is ten thousand tines more easily twisted. This is because the torsion varies as the fourth power of the diameter, so we say $10 \times 10=100 ; 100 \times 100=10,000$. Therefore with the finest wire, forces 10,000 times feebler still could bo observed.

It is therefore evident how great is the advantage of reducing the size of a torsion wire. Even if it is only halved the torsion is rednced sixteen-fold. To give a better idea of the actual sizes of such wircs and fibers as are in use I shall show upon the screen a series of photographs taken by Mr. Chapman, on each of which a scale of thousandths of an inch has been printed.

Soale of 1000 the of an inoh for Migs. 1 to 7. The soale of Figs. 8 and 9 is much finer.

The first photograph (Fig.1) is an ordinary hair-a sufficiently fumiliar' object, and one that is generally spoken of as if it were rather fine. Much fings than this is the specimen of copper wire now on the sereen
(Fig. 2), which I recently obtained from Messrs. Nalder Brothers. It is only a little over one-thousandth of an-inch in diameter. Ordinary spun glass, a most beautiful material, is about one-thousandth of an inch in diameter, and this would appear to be an ideal torsion thread (Fig, 3). Owing to its fineness its torsion would be extremely small, and the more so because glass is more easily deformed than metals. Owing to its very great strength, it can carry heavier loads than would be expected of it. I imagine many physicists must have turned to this material in their endeavor to find a really delicate torsion thread. I have so turned only to be disappointed. It has every good quality but one, and that is its imperfect elasticity. For instance, a mirror hung by a piece of spun glass is casting an image of a spot of light on the scale. If I turn the mirror, by means of a fork, twice to the right, and then turn it back again, the light does not come back to its old point of rest, but oscillates about a point on one side, which however is slowly changing, so that it is impossible to say what the point of rest really is. Further, if the glass is twisted one way first, and then the other way, the point of rest moves in a manner which shows that it is not influencel by the last deflection alone; the glass remembers what was done to it previously. For this reason spun glass is quite unsuitable as a torsion thread ; it is impossible to say what the twist is at any time, and therefore what is the force developed.
So great has the difficulty been in finding a fine torsion thread that the attempt has been given up, and in all the most exact instruments silk has been used. The natural cocoon fibers, as shown on the screen (Fig. 4), consist of two irregular lines gummed together, each about one two thousandth of an inch in diameter. These fibers must be separated from ono another and washed. Then each component will, according to the experiment of Gray, carry nearly 60 grains before breaking, and can be safely loaded with 15 grains. Silk is therefore very strong, carrying at the rate of from 10 to 20 tons to the square inch. It is further valuable in that its torsion is fur less than that of a floer of the same size of metal or even of glass, if such could be produced. The torsion of silk, though exceedingly small, is quite sufficient to upset the working of any delicate instrument, because it is never constant. At one timo the flber twists one way, and another time in another, and the evil effect can only be mitigated by using large apraratis in which strong forces are developed. Any attompt that may bo made to increase the delicacy of apparatus by reducing their dimensions is at once prevented by the relatively great importance of the vagaries of the silk suspension.

The result then is this. The smallness, the length of

Fro. 4. poriod, and therefore dolicacy, of the instruments at the
physicist's disposal have until lately been simply limited by the behavior of silk. A more perfect suspeusion means still more perfect instruments, and therefore advance in knowledge.
It was in this way that some improvements that I was making in an instrument for measuring raliant heat came to a dead-lock about 2 years ago. I would not use silk, and I could not find any thing else that wonld do. Spun glass even, was far too coarse for wy purpose; it was a thousand times too stiff.

There is a material invented by Wollaston long ago, which however I did not try beeause it is so easily broken. It is platinum wire which has been drawn in silver, and finally separated by the action of nitric acid. A specimen about the size of a single line of silk is now on the screen, showing the silver coating at one end (Fig. 5).

As nothing that I knew of could be obtained that would be of use to me, I was driven to the necessity of trying by experiment to find some new material. The result of these experiments was the development of a process of almost ridiculous simplicity which it may be of interest for me to show.

The apparatus consists of a small cross-bow, and an arrow made of straw with a needle point. To the tail of the arrow is attached a tine rod of quartz which has been melted and drawn out in the oxy. liydrogen jet. I have a piece of the same material in my hand, and now after molting their ends and joining them together, an operation which produces a beautiful and dazzling light, all I have to do is to liberate the string of the bow by pulling the trigger with one foot, and then if all is well a fiber will have been drawn by the arrow, the existence of which can be made evident by fastening to it a piece of stamp paper.

In this way threads can be produced of great length, of almost any degree of finenoss, of extraor. dinary uniformity, and of enormous strength. I do not believe, if any experimontalist had been prom. ised by a good fairy that he might have anything he desired, that he would have ventured to ask for any ono thing with so many valuable properties as these flbers possess. I hope in the course of this evening to show that I am not exaggerating their morits.

In the first place, let me say something about the degree of fineness to which they can bo drawn. There is now projected upon the screen a quartz fiber one flve thousandth of an inoh in diameter' (Fig. 6). This is one which I had in constant use in an instrument loaded with about 30 grains, it has a section only ono-sixth of that of a single
line of silk, and it is just as strong. Not boing organic, it is in no way affected by changes of moisture and temperature, and so it is free from the vagaries of silk which give so much trouble. The piece used in the instrument was about 16, inches long. Had it been necessary to employ spun glass, which hitherto was the finest torsion material, then, iustead of 16 inches, I should havo required a piece 1,000 feet long, and an instrument as high as the Eiffel tower to put it in.

There is no difficulty in obtaining pieces as fine as this, yards long if required, nor in spiuning it very much finer. There is upon the screen a single line made by the small garclen spider, and the size of this is perfectly evident (Fig. 7). You now see a quartz fiber far finer than this, or, rather, you sees a diffraction phenomenon, for no true image is formed at all; but even this is a conspicuous object in comparison with the tapering ends, which it is absolutely impossible to trace in a mieroscope. The next two photographs,
 taken by Mr. Nelson, whose skill and resources are so famous, represent the extreme end of a tail of quartz, and though the scale is a great deal larger than that used in the other photographs, the end will be visible only to a few. Mr. Nelson has photographed here what it is absolutely impossible to see. What the size of these ends may be 1 have no means of telling. Dr. Royston Piggott has estimated some of them at less than one-millionth of an inch, but what. ever they are they supuly for the first time objects of extreme smalluess the form of which is certainly known, and therefore I can not helpl looking upon them as more satisfactory tests for the microscope than diatoms and other thinge of the real shape of which wo know nothing whatever.
Since figures as large as a million can not be realized properly, it may bo worth while to give an Illustration of what is meant by a fiber onemillionth of an inch in diameter.

A pieco of quartz an inch long and an inch in diameter wonld, if drawn out to this degree of fineness, be sufficient to go all the way round the world 658 times; or a grain of sand just visiblo-that is, onehundredth of an inch long and one-hundredth of an inch in diameterwould make 1,000 miles of such thread. Further, the pressure inside such a thread due to a surface tension equal to that of water would be 60 atmospheres.

Going back to such threads as can bo used in instruments, I have made use of fibers one ten-thousanth of an inch in diamoter, and in these the torsion is 10,000 times less than that of spun glass.

As these fibers aro made flner their strength increases in proportion
to their size, and surpasses that of ordinary bar steel, reaching, to use the language of engineers, as high a figure as 80 tons to the iuch. Fibers of ordinary size have a strength of 50 tons to the inch.

While it is evident that these fibers give us the means of producing an exceedingly small torsion, and one that is not affected by weather, it is not yet evident that they may not show the same fatigue that makes spuu glass useless. I have therefore a duplicate apparatus with a quartz fiber, and you will see that the spot of light comes back to its true place on the screen after the mirror has been twisted round twice.

I shall now for a moment draw your attention to that peculiar property of melted quartz that makes threads such as I have been describing a possibility. A liquid cylinder, as Plateau has so beautifully shown, is an nustable form. It can no more exist than can a pencil stand on its point. It immediately breaks up into a series of spheres. This is well illustrated in that very ancient experiment of shooting threads of resin electrically. When the resin is hot, the liquid cylinders which are projected in all directions break up into spheres, as ybu see now upon the screen, As the resin cools they begin to develop tails; and when it is cool enough, i. e., sufficiently viscous, the tails thicken, and the beads become less, and at last uniform threads are the result. The series of photographs show this well.

There is a far more perfect illustration which we have only to go into the garden to find. There we may see in abundance what is now upou the screen-the webs of those beautiful geometrical spiders. The radial threads are smooth, like the one you saw a fow minutes ago, but the threads that go round and round are beaded. The spider draws these webs slowly, and at the same time pours upon them a liquia, and still further to obtain the effect of lamehing a liquid cylinder in space he, or rather she, pulls it out like the string of a bow, and lets it go with a jerk. The liguid cylinder can not exist, and the result is what you now see upon the screen (Fig. 8). A more perfect illustration of the regular breaking up of a liquid cylinder it would be impossible to find. Nhe beads are, as Plateau showed they ought to be, alternately largo and small, and their regularity is marvellous. Sometimes two still smaller beads are developed, as may be seen in the second photograph, thus completely agreeing with the results of Plateau's investigations.

I have heard it maintained that the spider goes round her web and places these beads there afterwards. But since a wob with about 360,000 beads is completed in an hour-that is, at the rate of about 100 a second-this does not seem likely. That what I have said is true, is made more probable by the photograph of
a beaded web that I have made myself by simply stroking a quartz fiber with a straw wetted with eastor oil (Fig. 9). It is rather larger than a spider line; but I have made beaded threads, using a fine fiber, quite indistinguishable from a real spider web, and they have the further similarity that they are just as good for catching flies.
Now, going back to the melted quartz, it is evident that if it ever became perfectly liquid it could not exist as a filer for an instant. It is the extreme viscosity of quartz, at the heat even of an electric arc, that makes these fibers possible. The only difference between quartz in the oxy. hydrogen jet, and quartz in the arc, is that in the first you make threads and in the second are blown bubbles. I have in my hand some microscopic bubbles of quartz showing all the perfection of form and color that we are familiar with in the soap bubble.

An invaluable property of quartz is its power of insulating perfectly, even in an atmosphere saturated with water. The gold leaves now diverging were charged some time before the leoture, and hardly show any change, yet the insulator

Fig. 8. is a rod of quartz only three quarters of an inch long, and the air is kept moist by a dish of water. The quartz may even be dipped in the water aud replaced with the water upon it without any difference in the insulation being observed.
Not ouly can fibers be made of extreme fineness, but they are won: derfully uniform in dianeter. So uniform are they that they perfectly stand an optical test so severe that irregularities invisiole in any mit croscope would immediately be made apparent. Erersone must have noticed when the sun is shining upon a border of flowers and shrubs how the lines which spiders use as railways to travel from place to place glisten with brilliant colors. These colors are only produced when the fibers are sufficiently fine. If you take one of these webs andexain. ine it in the sunlight, you whll find that the colers are variegated, and the eftect consoquently is one of great beauty.

A quartz fiber of about the same size shows colors in the same way, but the tint is perfectly uniform on the fiber. If the color of the fiber is exnmined with a prism, the spectrum is found to consist of alternate bright and dark bands. Upon the screen are photographs tnken by Mr. Briscoe, a student in the laboratory of South Kensington, of the spectra of some of these fibers at different angles of incidence. It will be sean that coarse flbers have more bands than fine, and that the nuin. ber increases with the angles of incidence of the light. There are peou. liarities in the march of the bands as the angle increases which I can not describe now. I may only say that they appear to move not uniformly but in waves, presenting very much the appearance of a cater. pillar walking.
H. Mis. 120-21

So uniform are the quartz fibers that the spectrum from end to end consists of parallel bauds. Occasionally a fiber is found which presents a slight irregularity liere and there. A spider line is so irregular that these bands are hardly observable; but as the photograph on the sereen shows, it is possible to trace them rumning up and down the spectrum when you know what to look for.

To show that these longitudinal bauds are due to the irregularities, I have drawn a taper piece of quartz by hand, in which the two edges make with one another an almost imperceptible augle, and the spectrum of this shows the gradual change of diameter by the very steep angle at which the bands run up the spectrum.

Into the theory of the development of these bands I am unable to enter; that is a subject upon which your professor of natural philosophy is best able to speak. Perhaps I may venture to express the hope, as the experimental investigation of this subject is now rendered possible, that he may be induced to carry out a research for which he is so eminently fitted.

Though this is a subject which is altogether beyond me, I have been able to use the results in a practical way. When it is required to place into an instrument a filver of any particular size, all that has to be done is to hold the frame of tibers toward a bright and distant light, and look at them through a low-angled prism. The banded spectra are then visible, and it is the work of a moment to pick out one with the number of bands that has been found to be given by a flber of the desired size. A coarse fiber may have a dozen or more, while such fibers as I find most useful have only tro dark bands. Much finer ones ex. ist, showing the colors of the first order with one dark band; and fibers so five as to correspond to the white or even the gray of Newton's scale are easily produced.

Passing now from the most scientific test of the uniformity of these. nibers, I shall next refer to oue more homely. It is simply this: the common garden spider, except when very young, can not olimb up one of the same size as the web on which she displays such activity. She is perfectly helpless, and slips down with a run, After vainly trying to make any headway, she flually puts her hands (or feet) into her mouth, and then tries again, with no better success. I may mention that a male of the same species is able to run up one of these with the greatest ease, a feat which may perhaps save the lives of a few of theso unprotected creatures when quart/ fibers are more common.

It is possible to make any quantity of very flne quartz fiber without a bow and arrow at all, by simply drawing out a rod of quartz over and over again in a strong oxyhydrogen jet. Then, if a stand of any sort has been placed a few feet in front of the jet, it will be found covered with a maze of thread, of which the photograph on the sereen represents a sample. This is hardly disinguishable from the web spun
by this magnificent spider in corners of greenhouses and such places. By regulating the jet and the manipulation, anything from one of these stranded cables to a single ultra-microscope line may be developed.

And now that I have explained that these fibers have such valuable: properties, it will no doubt be expected that I should perform some feat with their aid which, up to the present time, has been considered, impossible, and this I intend to do.
Of all experiments the one which has most excited my admiration is the famous experiment of Cavendish, of which I have a full-size model. before you. Ilhe object of this experiment is to weigh the earth by comparing directly the force with which it attracts things with that due to large masses of lead. As is shown by the model, any attraction which these large balls excrt on the small ones will tend to deflect this 6 foot beam in one direction, and then if the balls are reversed in position the deflection will be in the other direction. Now, when it is considered how enormously greater the earth is than these balls, it will be evideñt that the attraction due to them must be in comparison excessively small. To make this evident the enormous apparatus you see had to be constructed, and then, using a fine torsion wire, a perfectly certain but small effect was produced. The experiment however could only be successfinly carried out in cellars and underground places, because changes of temperature produced effects greater than those due to gravity.*
Now I have--in a hole in the wall-an instrument no bigger than a galvanometer, of which a model is on'the table. The balls of the Oavendish apparatus, weighing several hundredweight each, are replaced by balls weighing 184 pounds only. The smaller balls of $1 \frac{8}{4}$ pounds are replaced by little weights of 15 grains each. The 6 -foot beam is replaced by one that will swing round freely in a tube three quarters of an inch in diameter. The beam is, of course, suspended by a quartz fibre. With this microscopic apparatus, not only is the very feeble attraction observable, but I can actually obtain an effect eighteen times as great as that given by the apparatus of Oavendish, and, what is more important, the accuracy of observation is enormously inoreased.

The light from a lamp passes through a telescope lens and falls on the mirror of the instrument. It is reflected back to the table, and thence by a fixed mirror to the seale on the wall, where it comes to a focus. If the mirror on the table were plane, the whole movement of the light would be only about 8 inches, but the mirror is convex, and this magnifles the motion nearly eight times. At the present moment the attracting weights are in one extreme position, and the line of light is quiet. I will now move them to the othor position, and you will see the result-the light slowly begins to move, and slowly increases in

[^59]movement. In 40 seconds it will have acquired its highest velocity, and in 40 more it will have stopped at 5 feet $8 \frac{1}{2}$ inches from the start. ing point, after which it will slowly move back again, oscillating about its new position of rest.

It is not possible at this hour to enter into any calculations; I will only say that the motion you have seen is the effect of a force of less than one ten-millionth of the weight of a grain, and that with this apparatus I can detect a force two thousand times smaller still. There would be no difficulty even in showing the attraction between two No. 5 shot.

And now in conclusion, I would only say that if there is anything that is good in the experimenis to which I have this evening directed your attention, experiments conducted largely with sticks and string and straw and sealing-wax, I may perhaps be pardoned if I express my conviction that in these days we are too apt to depart from the simple ways of our fathers, and instead of following them, to fall down and worship the brazen image which the instrument-maker hath set up.

II. *

Before I enter upon the subject upon which I have to address you, I wish to point out that, quite apart from any deficiency on my part which will be only too apparent in the course of the evening, it is my inten. tion to commit two faults which may well be considered unpardonable. In the first place, I shall speak entirely about my own experiments, even though I know that the iteration of the first personal pronoun for the space of one hour is apt to be as monotonous to an audience as it is wanting in taste on the part of a lecturer. In the second place, I am going almost to depend upon the motions of a spot of light to illustrate the actions which I shall have to desoribe, in spite of the fact that it is impossible for an audience to get up any onthusiasm when watching the wandering motion of a spot of light the result of the manipulation of a mystery box, of which it is impossible to see the inside. These however are faults which are the immediate consequence of the nature of my subject.

Physicists deal very largely with the measurement of extremely mi. nute forces, which it is of the utmost importance that they should be able to measure accurately. Now, forces may be considered under two aspects. It may be that the force which is developed and which has to be measured is a twist, in which case the twisting force may be ap. plied to the ond of a wire directly, when the amount through which that wire is twisted is a measure of the twisting force. Or the force may be a direct pull or a push, which may also be measured by the twist of a wire if it is applied to the end of a lever or arm carried by the wire.

[^60]Now supposing that the force-whether of the nature of a twist or of a pull (it does not matter which) -is too small to produce an appreciable twist in the wire, it is olvious that a finer wire must be employed, but it is not obvious how much more easily a fine wire is twisted than a coarse one. If the fine wire is one tenth of the diameter of the coarse one, we must multiply, ten by itself four times over in order to find how much more easily twisted it is, and thus obtain the enormous number 10,000 ; it is 10,000 times more easily twisted than the coarse one. Thus there is an enormous advantage in increasing the minuteness of the wire by means of which feeble twisting or pulling forces are measured. But if the delicacy of the research is such that even the finest wire which can be made is still too stiff, then, even though with such wire, which is somewhere about the thousandth of an inch in diameter, forces as small as the millionth part of the weight of a single grain can be detected with certainty, the wire is of no use; and as wire can not be made finer, some other material must be used. Spun glass is fine and strong, and is still more easily twisted than the finest wire, but it possesses a property somewhat analogous to putty. When it has been twisted and then let go, it does not come back to its old place, so that though it is much more largely twisted than wire by the application of a force, it is not possible witic accuracy to measure that force. There is, or rather I should say there was, no material that could be used as a torsion thread finer than spun glass; and therefore physicists use instead a fiber almost fiee from torsion. A single thread of silk as spun by the silkworm is taken and split down the niddle, for it is really double, and one-half only is used. This is far finer than spun glass, and being softer in texture, it is much more easily twisted. Silk is ten thousand times more easily twisted than spun glass. So easily twisted is silk that in the majority of instruments the stiffness of the silk is either of no consequence at all, or at any rate it only produces but the slightest disturbing effeot. Now, if it is necessary to push the investigation further still by the continued increase in the delicacy of the apparatus, silk itself begins to prevent any progress. Silk has a certain stiffneas, but if that were always the same it would not matter; but then it possesses that putty-like character of spun glass, but in a far ligher degreo; it is aftected by every variation of temperature and moisture, and any really delioate measures are out of the question when silk is used as the suspending fiber.

This, I helieve, is a fairly accurate account of the state of the case, three years ago. At that time I was improving, or attempting to improve, a certain olass of apparatus of which I shall have more to say presently, and I was met by the diffoulty that a greater degree of delicacy was required than was possible with existing torsion threads. Silk would have entirely prevented me from reaching the degree of delioncy and certainly in this instrmment that I hope to show this evening that I have attained.

Being then in this diffleulty I was by good fortune and necossity led to devise a process which I propose at once to show you. I shall not desoribe the preliminary experiments, but simply describe the process as it stands. There is a small cross-bow held in a vice, and a little arrow made of straw with a needle point, and I have here a fragment of rook crystal which has been melted and drawn into a rod. It re. quires a temperature greator than that developed in any furuace to melt this material so that it may be drawn out. If the arrow, which also carries a piece of the quart\% rod, is placed in the bow, and if both pieces are heated up to the melting point and joised together, and then the arrow is shot, a fiber of quartz is drawn, -that is to say, it is drawn if there is not an accident.

The arrow has flown, and there is now a flber not very fine this time, which I shall hand to our president. At the same time I can pass him a piece of much finer fiber, made this afternoon, which shows (and this is a proof of its flneness) all the brilliant colors of the spider line when the sun shines upon it, but with a degree of magnificence and splendor which has never been seen on any natural object.

The main features of these fibers are these. You can make them as fine as you please; you can make them of very considerable length; you can make pieces 40 or 50 feet long, withoat the slightest trouble, at almost every shot. Even though of that great length, they are very uniform in diameter from end to ond, or at any rate the variation is small and perfectly regular. The strength of the fiber is, I think I may safely say, something astonishing. Fibers suoh as I have in use at the present time in an ingtrument; behind me are stronger than ordinary bar steol; they carry from 60 to 80 tons to the squaro inch. That is one of their mosti important foatures, for this reason,-...that on accomet of their enormous strength you can make use of very much fluer fibers than would bo possible if thoy were not so strong; and I have already explained the importance of the lineness of the fiber when delicacy is of the first importance.

As to the diameter of these fibers, I have said they can be made as fine as you please. X shall not trouble you with a large number of figures, but one or two may probably be interesting to those who are in the habit of using philosophical apparatus. In the first place, a flber a great deal flner that a single fiber of silk (that is, one five-thonsandth of an inch in diamoter), will oarry an apparatus more than 30 grains in woight. I have in one of the pieces of apparatus which 1 shall uso presently, a ilbor the fffeen thousandth of an ineh in diamoter. TIhat is, so flno that if you wore to take a hundred of them and twist them into a bundle you would produce a compound cable of the thickness of a singlo silkworm's thread. I do not moan the silk used for sowing that is wound on a reel, becauso that is composed of an onormons number of silk threads; but a single silkworm's thrond as it is wound from the
cocoon, and that fiber is at the present time onrrying a mirror the movements of whioh will presently be visible in all parts of this large room.

But that is by no means the limit of the degree of fineness which ean be reached. A flber the fiftern-thousandth of an inch in thickness is quite a strong and conspionous object. You may go on making them until you can not see them with the naked eye. 'You may go on following them with the microscope until you can not see thom with the micro-scope-that is to say, you can not find thoir end,-they gradually go out. The ends are so flue that it is impossible ever to see them in any microscope that can be constructed, not because the microscopes are bad; but because of the nature of light. But that is a point upon which I shall not say more this evening. It has been estimated that probably the ends of some of these are as fine as the millionth part of an inchI do not care whether they are or whether they are not, because they can never be seen and never be used-buti cortainly the hundred-thousandth of an inch is by no means beyond the limit which can be obtained. As these large numbers of hundreds of thousands and millions are figures which it is impossible for anyloody thoroughly to realize, I may for the purpose of illustration say that if we were to take a piece of quartz about as big as a walnut, and if we could draw the whole of that into a thread one hundred-thousandth of an inch in dianoter-threads which can certainly be produced-there would be enough to go round the wond about six or seven times.

These quartz fibers, on account of their dueness, are eminently capable of measuring minute forces-that is to say, they would be capable if they were free from that putty-like quality which I have desoribed as making spun glass usoless. Now, experments made both in this country and in Australia show that to a most extraordinary dogree they are perfectly free from that one fault of spun glass.
The number of usefil properties of quart\% that has beon molted is so great that I can merely take, in a more or loss disjointed way, one or two; and I propose, in the first placo, to say somothing which I think may be especially interesting to chomists and perhaps to our president. I should like to ask experimental ohemists what they would think of a material which could be drawn into tubes, blown into bulbs, johed together in the same way that glass is joined, drawn out, attached to a Sprengel pump, sealed off with a Sprongel vacumm which would bo tramparent, which would bo less acted uon than glass by corrosivo chomieals, and which flatly at the point at which phatinum is as flade as wator would still retain its form. Mere is such a tube with a boll bown rit the ond, I have found that it is possible to mako tubes (thongh it can not bo dono in the ordinary way as with glass) and to blow bulbs with quath, and that they have this advantage which glass does not possess, namely, that it is almost impossible to crack them by the sudden application of heat.

Then there is mother property which quart? fibers and rods possess
whioh I shall be able to show only imperfectly, namely, the power of insulating anything oharged with electrieity under conditions under which in general insulation is impossible. You now see upon the sureen an eleotroscope, the leaves of which were charged at noon, and they are still divergent, but not to a very great extent, beoause they have anffered from unavoiduble shaking during the day. The point to which I especially whsh to refor is this. In olectroscopes and all electrostatic apparatus one puts in a dish of sulphuric acid, (which is an abomination;) in order to keep the atmosphere dry. I have in tinis electroscope such a dish, but it is flled with water in order to keep tho atmosphere moist. Experiments carefully made, using the same box-everything the same, except that in one case the insulating stem was made of quartz and in the second case it was mude of the best flint glass well washed, of the same shape and size-show that if the atmosphere is perfectly dry the electricity escapes from both at tho same rate; but that if the atmosphere is perfeetly moist the electricity escapes from the leaves insulated by the clean washed flint glass only too quickly; whereas, from the leaves insulated by the quartz the rate is identically the same as it was in cither ease when the atmos. phere was perfectly dry,

I have said that these fibers are uniform in diameter, and fine and smooth and strong, and that they glisten with all the colors of the spider web, but that thoy aro far more brilliant, It was naturally rather a curlous point to note what a suider would do if by any chance she should find herself on such a web; fud now that I am doaling with live and wild animals which can not possibly be trained, the conditions aro such as to ronder the success of an experiment ontirely a matter of ohance. However, I propose to make use of the spider as a test of tho very great smoothess and slipporiness of one of these fibers. There are here three little spiders which have been good enough, sinco they came to Leeds, to spin upon these little wooden frames thoir perfect and benutiful geometrical webs. I have succeoded in placing ono of these firmes in the lantern withont distmrbing the spider, which you can now see waiting upon her web, I must now, withont disturbing the peace of mind of the spider, carry her to a web of quarts; and therefore it is necessary that the spider should bo fortunate enough to eatoh a fly. Now, instend of bringing a fly I will maké an ordinary tuming fork buzz against; tho web. Sho immediately pounces upon the imaginary fly, and thus I can without frightening her pheo her upon the quartz fiber. Unfortunately this spider has slipped and has got away, but with another I am moro successful. I intonded to sliow that the small and common garden spider could not climb the quartz fiber, but for some reason this spider is able to get up with difllenty. However I shall not spend any more time upon this experiment.

I shall now at onco speak abont tho inslrument which netually led me to the invention of the process for making quartz fibers. 'Shis,
whioh I have oalled a radio-miorometer, is an instrument of very great delicacy for measuring radiant heat from such a thing as n candle, a fre, the sun, or anything else which radiates heat through space.,

The radiomierometcr which I wish to show this evening is resting upon a solid and steady beam, and as usual its index is a spot of light upon the scale. You see that that spot of light is almost perfectly steady. Now the heat that I propose to measure, or rathor the influence of, which I intend to show you, is the heat which is being radiated from a candle fixed in the front of the upper gallery some 70 or 80 feet from the instrument; and in order that you may be sure that the indioation of the instrument is due to the heat from the candle, and not to any manipulation of the apparatus on the beam, I shall perform the experiment as follows. None of the apparatus at this end of the room will be touched or moved in any way; but by a sting 1 shall simply pull the candle along a slide up to a stop, at which position it will shine upon the sensitive part,of the radio-micrometer. Instantly the spot of light darts along the scale for a distance of ten feot, and then after leaving the seale it comes to rest upon the face of the balcony five or six seconds after it began to move. Now if the candle is allowed to move back through about a foot, you will see that the instrument will cool down at once-it is at present suffering from the heat which falls upon it from the distant candle; but it will cool down at onco, and the index will go back to its old place. It is very nearly at its old place now. I will now let the candle shine upon it again. The index at once goes on to the balcony as before, and now that the candle is moved away again, the index has assumed its old place upon the seale.

That really showe that we have here the menns of measuring heat with a degree of delioncy, and also with a degreo of certainty, oase, and quickness, which has nover yot beon equalled. It is probable that the measure which I have given of the degree of delicacy that I have reached in my astronomical apparatus-namely, that the heat of a candle more than two miles away san certainly bo felt-will not seem so absurd now that you havo seon this less porfect apparatus at work, as it does to poople whose experience is limited by the thermopile or their sonses.

You can now see tho spot of light; it is porfoctly quiot in its old place. I wish to show you that this instrument is unlike those which are ordinarily used for this purpose. All the heat, the very considerable heat, due to this electrie are lamp, is actually falling on the instrument, but not upon its sonsitivo surfaco, and there is no indication. There aro a large number of peoplo in the room--it does not feel the heat from them. Stray heat which it is not mennt to feel-which is not in the line along which it can seo, on feol-has no influence upon it. When the candle was moved to the place to which it was looking, it felt tho heat, and you saw the movemont of the indox. What is perhaps more important than all is that it is an instrument which does
not even feel the influence of a magnet. I have here a magnet, and on waving the magnet about near the instrument there is no movement of the index at all; it does not dance up and down the scales as it cer. tainly would do in the case of a galvanometer, because this magnet would aftect a galvanometer at the other end of the room. We have then a degree of sensibility which is certalnly not easily developed in any other way. I must except however the instrument which Professor Langley of America has recently brought to a great state of perfection. I am umable to state, from want of information, whethor his instrument is as sensitive as the one I have just shown, but whether it is or is not as sensitive, it certainly can not compare with this in its freedom from the disturbing effects of stray heat falling upon it, or of the magnetic or thermo electric disturbances which give so much trouble where the galvanometer is employed.

Now this apparatus I was recently using in some astronomical ex. perimants on the heat of the moon and the stars. As these experiments could only be made with an instrument such ns this, possessing extreme sensibility and freedom from extraneous disturbances, and as. this instrument is both the canse of the discovery and the first result of the application of the quartz fibers, I have thought it well to repent a typical experiment upon the moon's heat, but, like Peter Quince, I am in this diffeully. As he said, "There is two hard things, that is to bring the moonlight into a chambor." In fact, at the present time the moon has not risen, and if it had we should not be much bettor off. Peter Quinco proposed that they should in case of moonlight failing have a "lanthorn" and a bunch of" thoms. Ihat no donbt was suffeient for the conversation of Pyramus and lhisbe, but that would not do for the purpose of showing the variation of radiation from point to point upon the moon's surface, and as that is the oxperiment which I now wish to show-an experiment which this instrument onables ono to make with the greatest ease and cortainty--it is necessary to have something better than a "lanthom" and a bunch of thorns. Therofore I have been obligerl, as the moon is not available, to bring a moon. Now this moon is a rem moon; it is not a representation; it is not a slide; it is a real moon, and it is mado by taking an egg-sholl and painting it whito. Ihat egg.sholl is now placed upon a stand, and is illuminated by the sum- thatis, an electue light; and in order that the moon may be visible, the room must be darkened. The moon is now shining in the sky. An image of the moon is cast by means of a coneave mirror upon a translacent sereen. There is in addition an. other mirror which throws a small image of the same moon luon the radio-micromoter There is one more thing to explain. There is upon the soreon a black spot which represents the sensitive surface of the rudio-micrometor. What bears the same proportion to the moon which you see on the screen as the sensitive surface of the radio-micrometer bears to the imoge of the moon that is cust unon it. Now the two mir.
rors are arranged to movo by olock-work, so as to make the two images travel at proportional rates. The moon is travelling with the dark edge foremost, and now that the terminntor of the mon lias come upon the sensitive surface, the heat is felt and the deflection of the instrument is the result. Now, as the noon is gradually travelling shrough the sky, the radiation is slowly and steadily inereasing, because the radia. tion from the moon gets greater and greater, as the point at which the sum is shining vertioally-that is, a point at right angles with the terminator-is approached; it is here a maximum, and thon it falls baek, and as soon as the moon has gone off the instrument, you will see the index fall back almost suddenly. But there is something more. This moon in one respect is better than the other moon. At the present time it represents the moon nineteen days old, a moon, that is to say, which is waning, and which goes through the sky with its dark edge foremost. The clook-work will now bring the moon back again, and convert the nineteen-day moon into a nine-day moon, one in which the bright edge goes forward. What I want you to notice (and it will be perfectly evident) is this, that the spot of light will now go up the scale suddeuly, will then rise to a maximum position, and will then fall slowly until the terminator is reached, which proves that in the former case the slow rise and sudden fall, or the presentsudden rise and slow fall was not a peculiarity of the instrument, but was due to the fact that the different points of the moon radiated in the manner whioh I have stated. Ilhere is one point which, as the moon has now loft the instrument, I should like to show; that is, that it is a real moon and not a more slide. That is shown by gradually moving the sun round. Now it is at right angles to the line of view, and we have got the halfmoon. As it goes round, tho moon continues waning, appearing more like a new moon, and at last we have an eclipse of the sun, which may be annular if the proportions of the apparatus are properly arranged.

I wish now to make a fow statoments as to the delicacy of apparatus that can bo made with the help of quartz fibers. I would wish you most distinetly to understand that it is not sufficient to go into a shop and buy apparatus as it is now made, roplace tho silk by quartz, and to suppose you can got a degree of delicacy such as I. have shown you. Ilhat is not sufficient. If you take out the silk and put in a quarts flber tho apparatus will be much improved, and yon can then increase its delicacy. You will then escape the troubles due to silk; but ono aftor the other a now series of disturbances will appear, and anything like ultimate, extreme, and minuto acouracy will still seem ont of the ques. tion. Now, it has been my business to oliminate one by one theso disturbing inflnences. I will not woary you with a description of them all, and the methods by which they may be certainly provided against. These disturbing eanses, which at the present time with instruments carying a sille fiber are not even known to exist, or if known to exist, are practioally of no consequenco whatever, come one by ons into prom.
inence, when you attempt to push the delicacy of your apparatus to the extent that I have reached in the home made apparatus which I have here this evening. I do not propose to give more than one illustration, and as this is one which I found out by aceident, and whioh at the time very much annoyed me, I imagine that it may be of interest to explain the circumstances under which this was observed.

In the experiments I made on the heat of the moon and the stars it was necessary to determine to what degree of delicacy the apparatus could be brought,-that is to say, to determine what deflection would be produced by a known and familiar source of radiation. For this pur. pose the source of heat that I used was a common candle, placed suff. ciently far off to produce a convenient deflection. I began by placing the cundle about 100 yards away, but I was obliged to place the candle at a distance of 250 yards. At that distance I could not conveniently at night turn the shatter on and off with a string. Therefore I adopted. the more simple and practical plan of asking my nicee to stand at the top of the hill and to pull the string when I gave the sigual. The signal was nothing more nor less than my saying the word "on" or "off," so that without moving I could observe the deflection due to the heat of the candle at that distance. Those were the ciroumstances, but when I shouted "on," before the sound could have reached my niece at the top of the hill, the spot of light had been driven violently off the soalo. This seemed as if, as I suspected at the time, one of my little eightlegged friends had got inside the apparatus, and feeling the trombling due to the sound, struck forward, as the diadema spider is known to do, and tried to catch the thing that was flying by. But further experiments showed that this was not the case. It happened that the sound of my voice was just that to which the telescope tube would respond. It cohoed to that note, the instrument felt the vibration of the air, and that was the result.
In order to show that an instrument will feel the motion in the air under the influence of sound, I have arranged an exporiment of the sim. plest possible elaracter. I should say that the flxst instrument of this kind was mado many years ago by Lood Rayleigh; lut I feel sure that even he would not be prepared for the delicacy to which apparatus on this principle ean be brought. It simply dependes upon this finmiliar and well-known fact. A card or a loaf allowed to drop through the air does not fall the way of the least resistance- -that is, edgeways-but it turns into the position of greatest resistance, and falls broadside on, or it overshoots the mark, and so gets up a spin.

Supposing you take a little mirror susponded at an angle of 45 do. grees to the direction of the waves of sound, the instant sound-waves proceed to travel, that mirior turns so as to get into such a position as to obstruct them. The merror that I have for this purpose weighs about the twentieth part of a grain, and the fibor on which it is suspended is about the fifteen thousandth part of an inch in diameter.

The mirror is so small and light that the moment of inertis, is a twohundredth part of that which people ordinarily oall the minute and delicate needle of the Thomson mirror-galvanometer. With a fiber only a few inohes long, there is no diffculty in getting a period of oscillation of 10 or 11 seconds. When the light from the lamp is reflected and falls upon the scale, as it will be in a minute, then a movement of the light from one of those great divisions to the next-that is, a movement of 3 inches-will correspond to a twisting force such as would be produced by pulling the end of a lever an inch long with a force of a thousand-millionth part of the weight of a grain. It would be easy to observe a movement ten or a hundred times less. My difficulty now is that it is impossible to speak and at the same time to keep that spot at rest, because the instrument is arranged to respond to a certain note. .This is not the predominating note of my voice, but sluce the voice, like all other noises as distinguished from pure musical sounds, consists of a great number of notes, overy now and then the note to which the instrument is tuned is sure to be sounded, and then it will respond. Therefore, while I am speaking it is impossible to keep the spot of light at rest. However, in order to show that the instrument does respond to certain notes, even if feeble, with a degree of energy and suddemness which I believe would never be expected, I shall with theso small organ pipes sound three notes. But I must explain beforehand what I am going to do, as the sound of my voico will spoil the experiment. I shall, standing as far away as I can get from the instrumont, flist sound a note that is too high; I shall then sound a note that is too low; and thon I shall sound the note to which the instrument is tuned. I must ask everyone duriug this experiment to be as quiet as possible, as the faintest somnd of the right sort, will interfere with the success of the experiment. [The first two notes sounded loudly produced no result, while the moment the dight note was heard the light went violently off tho seale and travelled round the room.] When this little organ pipe was blown at the farthest end of the room this afternoon, it alrove the light off the soale almost as violently as it did just now.
[The Cavendish experiment of obsorving the nttraction due to gravitation between masses of lead was then explained, and the actual experiment, performod with apparatus no larger than a galvanometer, in which the attracting masses were two pounds and flfteen grains, respectively, in which the boain was only about flve eighths of an inch long, and in which the total force was less than one ten.millionth of the woight of a grain, was then shown. The actual deflection on the soale was rather more than ton feet; and eighty seconds were required for the single oscillation. With this apparatus forces two thousand times as small could be observed, though the flber is, in comparison with others that were made uso of, exceedingly coarso. Forces equivalent to one
million millionth of the weight of a grain were stated to be within the reach of a manageable quartz fiber.]

Now that I have shown all that my limited time has permitted me, I wish finally to answer a question which is frequently put to me, and which possibly some in the room may have asked theselves. The question may be put broadly in this form: "These fibers no doubt are very fine and very wonderful, but are they of any practical use?" This is a question which I find it diffleult to answer, because I do not clearly know what is meant by "practical use." If by "a thing of practical use" you mean something which is good to eat or to drink or if you mean something which we may employ to protect oursolves from the extremes of heat or cold or moisture, or if you mean-and this is a point which those who have studied biology will perhaps appreciate more than otherssomething which may be made use of for the purpose of personal adornment, if that is what you mean by "practical use," then, with the ex. ception of the possibility of being able to weave garments of an extraor. dinary degree of fineness, softuess, and transparency, quartz fibers are of no "practical use." But if you mean something which will enable a large and distinguished body of men to do that which is most important to them more perfectly than has been possible hitherto-I allude of course to the experimental philosopher and his experimental work, whieh after all has laid the foundations upon which so much that is called praetioal actually is luilt-if this is what you mean, then I hope that the fow experiments which I have been able to show this evoning are sufficiont to prove that quartz flbers aro of some practical use; and thoy have sorved this additional purpose, with what success I am unable to say: they have provided a subject for an evoning lecture of the British Association.

THE RESEAROHES OF DR. R. K(ENIG

ON 'THE PHYSICAL BASIS OF MUSICAL HARMONY, AND TIMBRE."

By Prof. Sylyanus P. Thompson.

I.

Not often does it fall to the lot of a bcientiflo man to become the monthpiece of another whose researches have lasted over a quarter of a century; yet this is the enviable position in which I find myself on this occasion as the spokesman of Dr. Rudolph Kcuig, who is kniown not only as the constructor of the finest acoustical instruments in the word, but as an investigator of great originality and distinction, and author of numerous memoirs on acoustics. Dr. Konig, who has of late made very important contributions to our knowledge of the physical basis of music, using apparatus immensurably superior to ony hitherto employed in experimentel investigations of this subjoct, has on various occasions, when I . have visited him in Paris, shown me these instruments, and repeated to me the results of his researches. Important as these are, they are all too little known in this country, even by the professors of physics. It was, therofore, with no little satisfaction that the Oomncil of the Physionl Socioty learned that Dr. Koonig was willing to send over to London for exhibition on this occasion the instruments and apparatus used in theso researches. And their satisfaction to-day is heightened by the faet that Dr. Konnig has himsolf' very kiudly come over to demonstrate his own researches, and has given us the opportunity to welcome him personally amonget us.
The splendid apparatus around me belongs to Dr. Konnig and forms but a very small part of the collection which adoms his atelier on the Quai d'Anjou. Ho lives and works in seclusion, surrounded by his instruments, oven as our own Faraday lived and worked amongst his clectric and magnetic apparatus. His great tonometer, now nearly completed, comprises a set of standard tuning forks, adjusted ench one by his own hands, ranging from 20 vibrations per second up to nearly 40,000, with perfect continuity, many of the forks being furnished with sliding adjustments, so as to give by actual marks upon them any de.

[^61]sired number of vibrations within their own limits. Beside this colos. sal master-piece, Dr. Kosnig's collection includes soveral large wavesirens and imumerable pieces of apparatus in which his ingonious manometric flames are adapted to acoustical investigation. There also stands his tonometric clock, a timepiece governed, not by a pendulum, but by a standard tuning.fork, the rate of vibration of which it accurately records.

It is not surprising that one who lives amongst the instruments of his own creation and who is familiar with their every detail should discover amongst their properties things which others whose acquaint. ance with them is less intimate have either overlooked or only in. perfectly discerned. If ho has in his researches advanced propositions which contradict or seem to contradict the accepted doctriues of the professors of natural philosophy, it is not that he deems himself one whit more able than they to offer mathematical or philosophical explanations of them ; it is because, with his unique opportunities of ascertaining the facts by daily observation and usage, he is impelled to state what those facts are and to propound generalized statements of them, even though those facts and generalized statements differ from those at present commonly received and supposed to he true.
At the very foundations of the physical theory of musie stand three questions of vital importance:
(1) Why is it that the ear is pleased by a succession of sounds belonging to a certain particular set called a seale?
(2) Why is it that, when two (or more) musical sounds are simultaneously sounded, tho ear flnds some combinations agreenble and others disagreeable?
(3) Why is it that a note sounded on a musical instrument of one sort is different from and is distinguishable from the same note sounded with equal loudness upon an instrument of another sort?

These three querles involve the origin of meloily, the cause of harmony, and the reason of timbre.
Tho theories which have been fromed to accome for each of these three features of musie are based on a double foundation, partly physical, partly physiological. With the physiological aspect of this foundation we have to-night nothing to do, boing concerned only with the physical aspect. What, then, are the physiem fomblations of melody, of harmony, and of timbre? Demonstrable by exporiment they must be, in common with all other physical facts; otherwise they can not be aceopted as proven. What are tho facts and how can they be demonstrated?

We are not here, however, to fight over again the battle of the temperaments, nor do I purpose to enter upon a discussion of the origin of melody, which, indeed, I believe to be associative rather than physical. I shall confle myself to two matters only, with which the recent researches of Dr. Koenig ere concerned:- the causc of harmony, and the
nature of timbres. Returning, then, to the ratios of the vibration numbers of the major seule, we may note that two of these, iamely, the ratios $9: 8$ and 15:8, which correspond to the intervals oalled the major whole tone and the seventh, are dissonant-or, at least, are usually so regarded. It will also be noticed that these particular fractions are more complex than those that represent the consonant intervals. This naturally raises the question: Why is it that the consonant intervals should be represented by ratios made up of the numbers 1 to 6 and by no others?
To this problem the only answer for long was the entirely evasive nud metaphysical one that the mind instinctively delights in order and number. The true answer or rather the first approximation to a true answer was only given about 40 years ago, when von Helmholtz, as the result of his ever-memorable researches on the sensations of tone, returned the reply: Because only by fulfilling numerical relations whieh are at once exact and simple oan the "beats" be avoided which are the cause of dissonance. The phenomenon of beats is so well known that I may assume the term to be familiar. An excellent mode of making beats addible to a large adience is to place upon a wind-chest two organ-pipes tuned to $u t_{2}=128$, and then flatten one of them slightly by holding a finger in front of its mouth. Von Helmholtz's theory of dissonance may be briefly summarized by saying that any two notes are discordant if their vibration numbers aro such that they produce beats:-maximum diseordance occurring when the boats oceur at about 33 per second,-beats if either fower than theso or more numerous being less disagreeable than beats at this frequency. It is in immediate consequence that the degree of dissonance of any given interval will depend on its position on the scale. For example, the interval of the major whole tone, represented by the ratio $9: 8$, prodnces four beats per second at the bottom of the pianoforto keybonrd, 32 beats per second at the middle of tho keyboard, and 256 beats per second at the top. Such an interval ought to be discordant therefore in the middle octaves of the seale only.
To this view of von Helmholt\% it was at flrst objected that, if that were all, all intervals should be equally harmonions provided one got far onough away from being in a bad anison; fiths, angmeited fifths, mull sixths, minor and major, ought to be equally harmonious. This no musician will allow. Wo account for this von Melmholts makes the finther supposition that the beats ocemr, not simply between the findamental or pitime tones, but also between the uppor partials whioh usually accompany prime tones. This leads me to say a word about upper partial tones and harmonics. I believe many musicians use theso two terms as synonymons, but they ought to be carefully distinguished. Nilie term harmonies oughit to be rigidly reserved to denote higher tones which stand in definite harmonic relations to the fundamental tone. The grent mathematioan Fourier first showed that any truly H. Mis. $120-22$
periodie function, however complex, conld be analyzed out and expressed as the sum of a certain series of periodic functions having frequencies related to that of the fundamental or first number of the series, as the simple numbers $2,3,4,5$, ete. Thirty years later, G. S. Ohm suggested that the human ear actually performs such an analysis, by virture of its meohanical structures, upon every complex sound of a periodic character, resolving it into a fundamental tone, the octave of that tone, the twelfth, the double octave, etc. Von Helmholtz, arming him. self with a series of tuned resonators, sought to pick up and recognize as members of a Fourier series the higher harmonies of the tones of various instruments. In his researches he goes over the ground pre. viously traversed by Rameau, Smith, and Yonng, who had all observed the co-existence, in the tones of musical instruments, of higher partial tones. These higher tones cerrespond to higher modes of vibration in which the vibratile organ-string, reel, or air column-subdivides into two, three, four, or more parts. Such parts naturally possess greater frequency of vibration, and their higher tones, when they co-exist along with the lower or fundamental tone, are denominated upper partial tones, thereby signifying that they are higher in the scale and that they correspond to vibrations in parts. It is to be regretted that Professor Tyndall, in his lectures on sound, rendered ron Helmholtz's Oberpar. tialtime by the term overtones, omitting the most signifient half of the word. To avoid all confusion in the use of such a term I shall rather follow Dr. Konig in speaking of these as sounds of subdivision. And I must protest emphatically against calling these sounds harmonies, for the simple reason that in many cases they are very inharmonions. It is a matter to which I shall recur presently.

Returning to the subject of beats, ithe question arises, What becomes of the boats when they ocour so rapidly that they cense to produce is discontinuons sensation upon the ear? The view which I have to put before you ia the name of Dr. Kcenig is that they blend to make a tone of their own. Earlier aconsticians have propoumled, in accoremeo with this view, that the grave Larmonio of Iartini (a sound which corresponds to a frequency of vibration that is the difference between those of the two tones producing it) is duo to this canse. Von Helmholt\% has taken id different view, denying that the beats can blend to form a sound, giving reasons presently to be examined. Von Holmholt/s considered that he had discovered a new species of combinational tone, mamely, one corresponding in frequency to the sum of the froquencies of the two tones, whereas that discovered by Tartini (and before him by Sorge) corresponded to their difference. Accordingly, he includes under the term of combinational tones the differential tone of Tartini and the summational tone which he considered himeelf to have discovered. To the existence of such combinational tones he aseribed a very important part in determining the character, harmonions or olberwise, of cords; and to them also he attributes the ability of the
ear to discriminatis between the degrees of harmoniousness possessed by such intervals (flths, sixths, etc.) as consist of two tones too widely apart on the soale to give beats of a discontinuous oharacter. He also considers that such combinational tones are chiofly effeetive in producing beats, the summational tones of the primaries beating with their uppor partial tones; and that this is the way in which they make an interval more or less harmonious.
The whole fabrie of the theory of harinony as laid down by von Helmholtz is thus seen to repose upon the presence or absence of beats; and the beats themselves are in turn made to depend, not upon the mere interval between two notes, but upon the timbres also of those notes, as to what upper partials they contain, and whether those partials can beat with the summational tone of the primaries. It becomes, then, of the utmost importance to ascertain the precise facts about the beats and about the supposed combinational tones. What the numbers of beats are in any given case, whethor they do or do not correspond to the alleged differential and summational tones, these are vital to the theory of harmony. Dqually vital is it to know what the timbres of sounds aro, and whether they can bo accurately or adequately represented by the sum of a set of pure hamonics corresponding to the terms of a Founier series.
In investigating beats and combinational tones, Dr. Koonig deomed. it of the highesti importance to work with instruments producing the purest tones; not with hamonium reeds or with polyphonios sirens, the tones of whieh are avowedly complex in timbre, but with massive steel tuning forks, the pendalar movements of which are of the simplest possible charactor. Massive tuning-forks properly excited by bowing with a violoncello bow, or, in the case of those of high pitch, by striking them with an ivory mallet, omit tones remarkably free from all sounds of subdivision, and of so tinly pondular a charaeter (unless over-excited) that none of the himmonies corresponding to the mombers of a Fourier sories can bo detected. No living soul has had a tithe of the experience of Dr. Koenig in the handling of tming forks. Tens of thonsands of thom havo passed throngh his hands. Ho is necustomed to tune them himself, making use of the phenomonon of beats to test their aceuraey. Ho has traced ont the phenomenon of boats through every possible degreo a_{-}pitch, even beyond tho ordinary limits of audilility, with a thoroughmess utterly impossible to surpass or to equal. Hence, when hestates the results of his experionce, it is idle to contest the facts gathorod on such a unique basis. The results of Dr. Koenig's observations on beats are easily stated. Ho has observed primary beats, as well as beats of secondary and highor orders, from the inter. ference of two simplo tones simultaneonsly sounded.

When two simple tones interfere, the primary beats always belong to one or other of two sets, called an inforior and a superior set, corresponding respectively in number' the two remaindors, positive and
negative, to be found by dividing the frequency of the higher tone by that of the lower.

This mode of stating the facts is a little strange to those trained in English modes of expressing arithmetical calculations, but an example or two will make it plain. Let there be as the two primary sounds two low tones having the respective frequencies of 40 vibrations and 74 vibrations. What are the two remainders, positive aud negative, which result from dividing the higher number, 74, by the lower number 40 : Our English way of stating it is to say that 40 goes into 74 once and leaves a (positive) remainder of 34 over. But it is equally correct to say that 40 goes into 74 twice all but 6, or that there is a negative remainder of 6. Well, Dr. Koenig finds that, when these two tuning forks are tried, the ear can distinguish two sets of beats, one rapid, at 34 per second, and one slow, at 6 per second.

Again, if the forks chosen are of frequencies 100 and 512 , we may calculate thus : 100 goes into 512 five times, plus 12 ; or 100 goes into 512 six times, minus 88 . In this actual case the 12 beats belonging to the inferior set would be well heard; the 88 beats belonging to the superior set would probably be almost indistinguishable. As a rule, the inferlor beat is heard best when its number is less than half the frequency of the lower primary, whilst, when its number is greater, the superior beat is then better heard. Dr. Konig has never been able to hear any primary beat which did not fall within this rule.

Dr. Kœnig will now illustrate to you the beats, inferior and superior, as produced by these two massive tuning-forks,* each weighing about 50 pounds and each provided with a large resonating cavity consisting of a metal cylinder about 4 feet long, fitted with an adjustable piston. One of them is tuned to the note $u t_{1}=64$. The other also sounds $u t_{1}$; but, by sliding down its prougs the adjustable weights of gun-metal and screming in the piston of the resonator, its pitch can be raised a whole tone to $r e_{1}=72$. Dr. Komig excites them with the cello bow, first separately, that you may hear their individual tones, thou together. At once yon hear an intolerable beating, the beats coming 8 per second. This is the inferior beat, corresponding to the positive remainder; the superior beat you cannot hear. Dr. Koenig will raise the note of the second fork from $r e_{1}$ to $m i_{1}=80$, and the beats quicken to 16 per second. Raising it to $f a_{1}=85 \frac{1}{3}$, and then to $80 l_{1}=96$, while the first fork is still kept at $u t_{1}$, the beats increase in rapidity, but are fainter in distinct. ness. If Dr. Koonig now substitutes for the second fork one tuned to $l a_{1}=100{ }^{2}$, you may be able to hear two leats, the inferior one rapid and faint at $42 \frac{2}{3}$ per second, and the superior one slower, but also faint, at $21 \frac{1}{8}$ per second. Still raising the pitch to the true seventh tone $=112$, the rapid inferior beat has died out, but now you hear the superior

[^62]strongly at 16 per second. If it is raised once more to $8 i_{1}=120$ (the seventh of the ordinary scale), the beats are still stronger and slower at 8 per second. Finally, when we bring the pitch up to the octave $u t_{2}=128$, we find that all beats have disappeared : there is a perfectly smooth consonance. The facts so observed are tabulated for you as follows :

Table I.-Primary beats.-

Primary tones		Ratlo.	Inferlor leats.	Superlor beats.
${ }_{64}^{u t_{1}}$	rel 72	8:9	8	-
${ }_{64}^{4 u_{1}}$	${ }_{\text {m }}{ }_{80}$	4:5	16	-
${ }_{64}^{461}$	${ }_{851}^{f a_{1}}$	3:4	214	-
$\stackrel{u}{4}$	${ }^{80} 80$	2:3	32	32
${ }_{64}^{4 t_{1}}$	la 1081	3:5	421	213
${ }_{4}{ }_{4}{ }_{4}$	112	4:7	-	16
$\stackrel{u t}{4}$	${ }_{120}^{81}$	8:15	-	8
${ }_{64}^{4 \ell_{1}}$	${ }_{\substack{428 \\ 128 \\ 128}}$	1:2	-	0

Suppose now, keeping the lower fork unaltered, we raise the pitch of the higher note (taking a new fork that starts at the octave) from $u t_{2}$ to $80 l_{2}$ by gradual steps, we shall find that there begins a new set of primary beats, an inferior set, which are at first slow, then get more rapid and become undistinguishable, but succeeded by another rapid and indistinct, which grow stronger and slower, until as the pitch rises to sol_{2}, the frequency of which is exactly three times that of $u t_{1}$, all beats again vanish. This range between the octave and the twelfth toue may be called the second "period," to distinguish it from the period from unison to the first octave, which was our first period. Similarly, the range from the twelfth tone to the second octave is the third period, and from thence to the major third above is the fourth period, and so forth. In each period up to the sixth or seventh of such periods, a set of inferior and a set of superior beats may be observed,and in every case the frequency of the beats corresponds, as I have said, to one or other of the two remainders of the frequencies of the two tones. No beat has over been observed corresponding to the sum of the frequencies, even when using the slowest forks. None has ever been observed corresponding to the difference of the frequencies, save in the first period, where of course the positive remainder is simply the difference of the two numbers.

That you may hear for yourseives the beats belonging to one of the higher periods, Dr. Konig will take a pair of forks which will give us some of the superior beats in the fourth period. One of the forks is the great $u t_{1}=64$, as previously used, the other is $m i_{3}=320$, their ratio being $1: 5$. Sounded together they give a pure consonance, but if the smaller one is loaded with small pellets of wax to lower its pitch
slightly, and then bow it, at once you hear beats. It was in studying the beats of these higher periods that Dr. Kcenig made the observation that, whereas the beats of an imperfect unison are heard as alternate silences and sounds, the beats of the (imperfect) higher periods-twelfth tone, double octave, etc.-consist mainly in variations in the loudness of the lower of the two primary tones, an observation which was independently made by Mr. Bosanquet, of Oxford.

Passing from the beats themselves, I approach the question, What becomes of the beats when they occur too rapidly to produce on the ear st discontinuous sensation? On this matter there have been several couflicting opinions, some holding, with Lagrange and Young, that they blend into a separate tone; others, with von Helmholtz, maintaining that the combinational tones can not be so explained and arise from a different causo. Let it be observed thet, oven if beat-tones exist, it is quite possible for beats and beat-tones to be simultaneously heard. A similar co-existence of a corsinuous and a discontinuous sensation is afforded by the familiar experiment of producing a tone by pressing a card against the periphery of a rapidly rotating toothed wheel. There is a certain speed at which the individual impulses begin to blend into a continuons low tone, while yet there are distinguishable the discontinuous impulses, the degree of distinctness of the two co existing sounds being dependent on the manner in which the card is pressed against the wheel, that is to say, on the nature of the individual im. pulses themselves. The opponents of the view that beats blend into a tone state plainly enough that, in their opinion, a mere succession of alternate sounds and silences cannot blend into a toue difierent from that of the beating tone. Having said that the beats can not blend, they then add that they do not blend; for, say they, the combinational tones are a purely subjective phenomenon. Lastly, they say that eveu If the beats blend they will not so explain the existence of combinational tones; because the combinational tones have frequencies which do not correspond to the number of the beats.

In the teeth of all these views and opinions, Dr, Kanig-without dogmatizing as to how or why it is-emphatically affirms that beats do produce beat tones; and he has pursued the matter down to a point that leaves no room for doubting the general truth of the fact. The alleged discrepancy between the frequency of the observed combinational tones and that of the beats disappears when closely scrutinized. Those who count the beats by merely taking the difference between the frequencies of the two primary tones, instead of calculating the two remainders, will assuredly find that their numbers do not agres in pitch with the actual sounds heard. But that is the fault of their miscalculation. Those who use harmonium reeds or polyphonic sirens instead of tuning forks to produce their primary tones must not expect from such impure sources to re-produce the effects to be obtained from pure tones. And those whe say that the beats calculated truly from the two remainders
will not account for the summational tones have unfortunately something to unlearn-namely, that, when pure tones are used, under no circumstances is a tone ever hearl the frequency of which is the sum of the frequencies of the two primary tones.
The apparatus which Dr. Koouig has brought over enables him to demonstrate in a minner audible, I trust, to the whole assembly in this theatre the existence of the beat tones. His first illustrations relate to tones of primary beats, some belonging to the inferior, others to the superior set, in the first period.
He takes here the fork $u t_{6}=: 2048$, five octaves higher thain the great $u t_{1}$. To excite it he may either bow it or strike it with an i vory mallet. With it he will take the fork one note higher, $r_{6}=2304$. When he took the same interval with $u t_{1}$ and $r e_{1}$, the number of beats was 8 . The ut and re of the next octave higher would have given us 16 beats, that of the next 32, that of the next 64, of the fourth octave 128, and that of the fifth 256 . But 250 per second is a rapidity far ton great for the ear to hear as separate sounds. If there were 256 separate impulses, they would blend to give us the note $u t_{3}=256$. They are not impulses, but beats; nevertheless, they blend. Dr. Konig strikes the $u t_{6}$, theu the $r e_{6}$, both shrill sounds when yon hear them separately; but when he strikes them in quick succession one after the other, at the moment when the mallet strikes the second fork you hear this clear $u t_{3}$ sounding out. I am not going to wasto your time in a disputation as to whether the sound you hear is objective or subjective. It is enough that you hear it, pure and unmistakable in pitch. It is the grave harmonic; and the number 256, which represents its frequencs, corresponds to the positive remainder when you divide 2304 by 2048.
Now let me give you a bent tone belonging to the superior set; it also will be a grave harmonic, if you so please to call it; but its frequency will correspond neither to the difference nor to the sum of the frequencies of the two primary tones. Dr. Konig takes $u t_{6}=2048$ as previously, and with it sig $=3810$. Let us calculate what the superior beats ought to be : 2048 goes into 3840 twice, less 250 . Then, 250 being the negative remainder, we ollght to hear from these two forks the beat tone of 250 vibrations, which is $u t_{3}$, the same note as in our last experiment. He strikes the forks, and you hear the result. The beat tone, which is neither a differential tone nor a summational tone, corresponds to the calculated number of beats.

If I take $u t_{6}=2048$ and $80 l_{8}=3072$, the two remainders both come out at 1024 , which is $u t_{5}$. Dr. Konig will first sound $u t_{5}$ itself, separately, on an $u t_{5}$ fork, that you may know what sound to listen for. Its sound has died away; and now he strikes $u t_{0}$ and $80 l_{6}$, when at once you hear $u t_{5}$ ringing ont. That sound which you ill hearl correspouds to the calculated number of beats. That is enough for my present purpose.

The next illustration is a little more complex. I select a case in which the bent tones corresponding to the inferior and the superior
beats will both be present. We shall have four toues altogether-two primary tones and two beat tones. The forks 1 select are $u t_{6}=2048$, as before, and a fork which is tuned to vibrate exactly 11 times as rapidly at $u t_{3}$-it is the eleventh harmonic of that note, but does not correspond precisely to any note of the diatonic scale. It has 2816 vibra. tions, and is related to $u t_{8}$ as $11: 8$. The two remainders, will now be 768 and 1280 , which are the respective frequencies of $80 l_{4}$ and mi_{5}. Dr. Koenig will first sound those notes on two other forks, that you may know beforeliand what to listen for. Now, on striking the two shrill forks in rapid succession, the two beat tones are heard.

If I select, instead of the eleventh harmonic, the thirteenth harmonic of $u t_{3}$, vibrating 828 times in the second, to be sounded along with $u t_{6}$, the same two beat tones will be produced as in the preceding case; bat $m i_{5}=1280$ is now the inferior one, corresponding to the positive remainder, whilst $80 l_{4}=768$ is the superior tone, corresponding to the negative remainder. It is certainly a striking corroboration of Dr. Konig's view that the beat tones actually heard in these last two experiments should come out precisely alike, though on the old view, that the combinational tones were simply the summational and differential tones, one would have been led to expect the sounds in the two experiments to be quite different.

One other example I will give you of a beat tone belonging to the second period. The two primary notes are given by the forks $u t_{5}=$ 1024 and $r e_{6}=2304$. The beat tone which you hear is $u t_{3}=256$, which corresponds to the positive remainder.

It will be convenient to draw up in tabular form the results just obtained. These may be considered as abbreviations of the much more extended tables drawn up by Dr. Konig, which hang upon the walls, and which are to be found in his book, "Quelques Dxpériences d'Acoustique."

Tabic II.-Sounde of primary beats.

Primary tones.	Rajlo.	Inferior beat tone.	Superior beat tone.
$\left.\begin{array}{cc}11_{6} \\ 2018 & r e_{6} \\ 2304\end{array}\right\} \ldots .$.	8:0	$1\left\{\begin{array}{c}u t_{3} \\ 200\end{array}\right.$	-
$\left.\begin{array}{cc}116 & 184 \\ 2048 & 3840\end{array}\right\}$	8:15	-	$1\left\{\begin{array}{l}u t_{3}^{\prime} \\ 250\end{array}\right.$
2048 111_{4} 3840 0		$4 \mathrm{uls}^{\text {c }}$	${ }_{4}\{250$
2018 3072 3 , 3	8:12	$4\{1024$	$4\{1024$
$\left.\begin{array}{cc}11 t_{6} & (11 \text { th) } \\ 2018 & 2816\end{array}\right\} \ldots$	8:11	$3\left\{\begin{array}{l}0014 \\ 708\end{array}\right.$	$5\left\{\begin{array}{l}\text { mis } \\ 1280\end{array}\right.$
11t6 (18th)	8:13	5 ${ }^{\text {mis }}$	$3\left\{\mathrm{col}_{4}{ }^{\text {- }}\right.$
21048 3328 ${ }^{\text {d }}$, .	8:13	\{ 1280	¢ 788
	4:0	$1\left\{\begin{array}{l}11 t_{3} \\ 256\end{array}\right.$	-

II.

So far we have been dealing with primary beats and beat.tones; but there are also secondary beats and secondary beat-tones, which are produced by the interference of primary beat-tones. An example of a secondary beat is afforded by the following experiment. Recurring to the preceding table of experiments, it may be observed that when the two shrill notes, $u t_{6}, 80 l_{6}$, giving the interval of the fifth, are sounded to. gether, the inferior and superior beat-tones are both present and of the same pitch. If, now, one of the two forks is lightly loaded with pellets of wax to put it out of adjustment, we shall get beats, not between the primary tones, but between the beat-tones. Suppose we add enough wax to reduce the vibration of $80 l_{6}$ from 3,072 to 3,070 . Then the positive remainder is 1,022 and the negative remainder is 1,026 , the former being $u t_{5}$ flattened two vibrations, the latter the same note sharpened to an equal amount. As a result there will be heard four beats per secoud-secondary beats. Similarly, the intervals $2: 5,2: 7$, if slightly mistuned, will, like the fifth, yield secondary leats. Or, to put it in another way, there may be secondary beats from the (mistuned) beattones that are related (as in our experiment) in the ratio $1: 1$ or in the ratios $3: 4,3: 5$, etc., and even by those of $1: 2,4: 5,4: 7$, etc.
I have given you au example of secondary beats; now for an exam. ple of a secondary beat toue. This is afforded by one of the previous experiments, in which were sounded $u t_{6}$ and the 11 th harmonic of $u t_{3}$. In this experiment, as in that which followed with the 13th harmonic, two (primary) beat-tones were produced, of 768 and 1,280 vibrations respectively. These are related to one another by the interval $3: 5$. If we treat these as tones that can themselves interfere, they will give us for their positive remainder the number 256, which is the frequency of uts. As a matter of fact, if you listen carefully you may, now that your attention has been drawn to it, hear that note, in addition to the tro primary tones and the two beat-tones to which you listened proviously.
In von Helmholtz's Tonempfindungen he expresses the opinion that the distinctness with which beats are heard depends upon the narrowness of the interval between the primary tones, saying that they must be nearer together than a minor third. But, as we have seen, using bass sounds of a sufficient degree of intensity and purity, as is the case with those of the massive forks, beats can be heard with every interval from the mistuned unison up to the mistuned octave. Even the interval of the fifth, $u t_{1}$ to $80 l_{1}$, gave strongly marked beats of 32 per second. When this number is attained or exceeded, the ear usually begins to receive also the effect of a very low continuous tone, the beats and the beat-tone being simultaneously perceptible up to about 60 or 70 beats, or as a rougheess up to 128 per second. If, using forks of higher pitches, but of narrower interval, one produces the same number of beats, the beat-tone is usually more distinct. Doubt-
less this arises from the greater true intensity of the sounde of higher pitch. With the object of pursuing this matter still more closely, Dr. Koenig constructed a series of 12 forks of extremely high pitch, all within the range of half a tone, the lowest giving $8 i_{g}$ and the highest $u t_{7}$. The frequencies and the beats and beat-tones given by seveu of them are recorded in Table III.

Table III.

The first of these intervals is a diatonic semitone; the second of them is a quarter-tone; the third is an eighth of a tone; nevertheless, a sensitive ear will readily detect a difference of pitch between the two separate sounds. The last of the iutervals is about half a comma.
These forks are excited by striking them with a steel hammer. Some of the resulting beat.tones will be heard all over the theater; but, in the case of the very low tones of 40 mal 32 vibrations, only those who are close at hand will hear them. The case in which there are 26 beats is curious. Most hearers are doubtful whether they perceive a tone or not. There is a curious fluttering effect, as though a tone were there, but not continuously.

We have seen, then, that the beat-tones correspond in pitch to the number of the beats; that they can themselves interfere and give secondary beats; and that the same number of beats will always give the same beat tone irrespectively of the interval between the two primary tones. What better proofs could one desire to support the view that the beat-tones are caused, as Dr. Young supposed, by the same cause as the beats, and not, as von Helmholtz maintains, by some other cause? Yet there are some further points in evidence which are of signiffeance and lend additional weight to the proofs already adduced.

Beats behave like primary inpulses in the following respect, that when they come with a frequency between 32 and 128 per second, they may be heard, according to circumstauces, either discontinuonsly or blending into a continuous sensation.

It has been objected that, whereas beats imply interference between - two separate modes of vibration arising in two separate organs, combir-nation-tones, whether summational or differential or any other, must
take their origin from some one organ or portion of vibratile matter vibrating in a silugle but more complex mode. To this objection an experimental answer has been returned by Dr. Koenig in the following way. He takes a prismatic bar of steel, about 9 inches in length, and files it to a rectaingular section, so as to give, when it is struck at the middle of a face to ev oke transversal vibrations, a sound of some welldefined pitch. By carefully adjusting the sides of the rectangular section in proper proportions, the same steel bar can be made to give two different notes when struck in two directions respectively parallel to the long and short sides of the rectangle. A set of such tuned steel bars are here before you. Taking one tuned to the note $u t_{6}=2,048$, with $r e_{6}=2,394$, Dr. Koenig will give you the notes separately by striking the bar with a small steel hammer when it is lying on two little bridges of wood, first on one face, then on the other face. If, now, he strikes it on the corner, so as to evoke both notes at once, you immediately hear the strong hoom of $u t_{3}=256$, the inferior beat-tone. If Dr. Koenig takes a second bar tuned to $u t_{6}$ and $8 i_{6}=3,840$, you hear also $u t_{3}$, this time the superior beat-tone. If he takes a bar tuned to $u t_{6}$ and the 11th harmonic of $u t_{3}$ (in the ratio 8:11) you hear the two beat-tones $80 l_{4}$ and $n i_{5}$ (in ratios of 3 and 5 respectively), precisely as you did when two separate forks were used instead of one tuned bar.
Dr. Konig goes beyond the mere statement that beats blend to a tone, and lays down the wider proposition that any series of maxima and minima of sounds of any pitch, if isochronous and similar, will always produce a tone the pitch of which corresponds simply to the frequency of such maxima and minima. A series of beats may be regarded as such maxima and minima of sound; but there are other ways of producing the effect than by beats. Dr. Kœnig will now illustrate some of these to you.
If a shrill note, produced by a small organ-pipe or reed, be conveyed along a tube, the end of which terminates behind a rotating disk pierced with large, equidistant apertures, the sound will be periodically stopped and transmitted, giving rise, if the intermittences are slow enough, to effects closely resembling beats, but which, if the rotation is suffciently rapid, blend to a tone of definite pitch. Dr. Konig uses a large zinc disk with 16 holes, each about 1 inch in diameter. In one set of experiments this disk was driven at 8 revolutions per second, giving rise to 128 intermittences. The forks used were of all different pitches from $u t_{3}=256$ to $u t_{7}=4096$. In all cases there was heard the low note $u t_{2}$ corresponding to 128 vibrations per second. In another series of experiments, using forks $u t_{2}$ and $u t_{3}$, the number of intermittences was varied from 128 to 256 by increasing the speed, when the low note rose also from $u t_{2}$ to $u t_{3}$.
From these experiments it is but a step to the next, in which the intensity of a tone is caused to vary in a periodic manner. For this pur-
pose Dr.Koonig has constructed a siren-disk (Fig. 1), pierced with holes arranged at equal distances around seven concentric circles; but the sizes of the holes are made to vary periodically from swall to large. In'each circle are 192 equidistant holes, and the number of maxima in the respective circles was $12,16,24,32,48,64$, and 96 . On rotating

Fia. 1^{-}
this disk, and blowing from behind through a small tube opposite the outermost circle, there are heard, if the rotation is slow, a note corresponding to the number of holes passing per second and a beat corresponding to the number of maxima per second. With more rapid rotation two notes are heard-a shrill one, and another 4 octaves lower in pitch, the latter being the beat-tone. On moving the pipe so that wind is blown successively through each ring of apertures, there is heard a shrill note, which is the same in each case, and a second note (corresponding to the successive beat-tones) which rises by intervals of fourths and fifths from circle to circle.

These attempts to produce artificially the mechanism of beats were, however, open to criticism; for in them the phase of the individual vibrations during one maximum is the same as that of the individual vibrations in the next succeeding maximum; whereas in the actual beats produced by the interference of two tones the ohases of the indi-

Fra. 2 :
vidual vibrations in two successive maxima differ by half a vibration, as may be seen by simple inspection of the curves corresponding to a series of beats. When this difference was pointed out to Dr. Koenig, he constructed a new siren disk (Fig. 2), having a similar series of
holes of varying size, but spaced out so as to correspond to a difference of half a wave between the sets. With this disk, beats are distinctly produced with slow rotation, and a beat-tone when the rotation is more rapid.
Finding this result fiom the spacing out of apertures to correspond in position and magnitude to the individual wavelets of a complex train of waves, it occurred to Dr. Koonig that the phenomena of beats and of beat-tones might be still more fully re-produced if the ed ge of the disk were cut away into a wave-form corresponding precisely to the case of the resultant wave produced by the composition of two interfering waves. Accordingly he calculated the wave-forms for the cases of several intervals, and having set ont these curves around the periphery of a brass plate, cut away the edge of the plate to the form of the desired wave. Two such wavedisks, looking rather like circular saws with irregular teeth, are depicted in Figs. 3 and 4. These correspond to

the respective intervals $8: 15$ and $8: 23$. A number of such wavelisks corresponding to other intervals lie upon the table; thesie two will however suffice. In the first of these the curve is that which would be obtained by setting out around the periphery a series of 120 simple'sinusoidal waves, and a second set of 64 waves, and then com. pounding them into one resultant wave. In order to permit of a comparison being made with the simple component somnds, two concentric rings of holes have been also pierced with 120 and 64 holes respectively. Regarding these two numbers as the frequency of two primary tones, there ought to result beats of frequency 8 (being the negative remainder corresponding to the superior beat). An interior set of 8 holes is also pierced, to enable a comparison to bo made. To experiment with such wave disks they are mounted upon a smoothly running whirling-table, and wind from a suitable wind-chest is blown against the wave edge from behind through a narrow slit' set radially. In this way the air-pressures in front of the wave-edge are varied by the rush of air between the teeth. It is a question not yet decided how
far these pressures correspond to the values of the ordinates of the carves. This question, which involves the validity of the entire principle of the wave-siren, can not here be considered in detail. Suffice it to say that for present purposes the results are amply couvincing.

The wavedisk (Fig. 3) has been clamped upon the whirling-table, which an assistant sets juto rotation at a moderate speed. Dr. Koonig blows first through a small pipe through one of the rows of holes, thea through the other. The two low notes sound out separately, just a major tone apart. Then he blows through the pipe with a slotted mouthpiece against the waved edge; at once you hear the two low notes interfering, and making beats. On increasing the speed of rotation the two notes become shrill, and the beats blend into a beat-tone. Notice the pitch of that beat-tone: it is precisely the same as that which he now produces by blowing through the small pipe against the ring of 8 holes. With the other wave-disk, having 184 and 64 holes in the two primary circles, giving a wave form corresponding to the interval 8:23, the effects are of the same kind, and when driven at the same speed gives the same beat-tone as the former wave-disk. It will be noted that in each of these two cases the frequency of the heat-tone is neither the difference nor the sum of the frequencies of the two primary tones.

A final proof, if such were needed, is afforded by an experiment, which though of a striking character, will not necessarily be heard by all persons present, being only well heard by those who sit in certain positions. If a shrill tuning-fork is excited by a blow of the steel mallet, and held opposite a flat wall, part of the waves which it emits strike on the surface, and are reflected. This reflected system of waves, as it passes out into the room, interferes with the direct system. As a rosult, if the fork, held in the hand, be moved toward the wall or from it, a series of maxima and minima of sound will successively reach an ear situated in space at any point near the line of motion, and will be heard as a series of beats; the repidity with which they succeed one another being proportional to the velocity of the movement of the fork. The fork Dr. Konig is using is $u t_{6}$, which gives woll marked beats, slow when he moves his arm slowly, quick when he moves it quickly. There are linits to the speed at which the human arm can be moved, and the quickest speed that he can give to his, fails to make the beats blend to a tone. But if he will take $80 l_{6}$, vibrating $1 \frac{1}{4}$ times as fast, and strike it, and move it away from the wall with the fastest speed that his arm will permit, the beats blend into a short low growl, a non-uniform tone of low pitch, but still having true continuity.

The first portion of my account of Dr. Konig's researches may then be summarized by saying that in all circumstances where beats, either natural or artificial, can be produced with sufficient rapidity, they blend to form a beat-tone of a pitch corresponding to their frequency.

III.

I now pass to the further part of the researches of Dr. Koonig which relates to the timbre of sounds. Prior to the researches of Dr. Konig it had been sapposed that in the reception by the ear of sounds of complex timbre the ear took no account of, and indeed was incepable of perceiving, any differences in phase in the constituent partial tones. For example, in the case of a note and its octave sounded together, it was supposed and believed that the sensation in the ear, when the difierence in phase of the two components was equivalent to onchalf of the more rapid wave, was the same as when that difference of pliase was onequarter, or threequarters, or zero. I had myself, in the year 1876, when studying some of the phenomena of binaural audition, shown reasons for holding that the ear does nevertheless take cognizance of such differences of phase. Moreover, the peculiar rolling or revolving effect to be noticed in slow beats is a proof that the ear perceives ${ }^{\text {some }}$ differance due to difference of phase. Dr. Konig is however the first. to put this matier on a distinct basis of observations. That such differences of phase occur in the tones of musical instru-- ments is certain; they arise inevitably in every case where the sounds of subdivision are such that they do not agree rigidly with the theoretical harmonics. Fig. 5 depicts a graphic record taken by Dr. Konig from a vibrating steel wire, in which a note and its octave had been simultaneously excited. The two sounds were scarcely perceptibly different from their true interval, but the higher note was just suff. ciently sharper than the true harmonic octave to gain about oue wave in 180. The graphic trace has in figure 5 been split up into five pieces

FIg. 5.
to facilitate insertion in the text. It will be seen that as the phase gradually changes the form of the waves undergoes a slos change from wave to ware. Now, it is usually assumed that in the vibrations of symmetrical systems, such as stretcherl cords and open columus of air, the sounds of subdivision agree with the theoretical harmonics. For example, it is assumed that when a stretched string breaks up into a nodal vibration of four parts, each of a quarter its length, the
vibration is precisely four times as rapid as the fundamental vibration of the string as a whole. This would be true if the string were absolutely uniform, homogeneous, and devoid of rigidity. Strings never are so; and even if uniform and homogeneons, seeing that the rigidity of a string lias the effect of making a short piece stiffer in proportion than a long piece, can not emit true harmonics as the sounds of subdivision. In horns and open organ pipes the width of the colnmn (which is usually neglected in simple calculations) affects the frequency of the nodal modes of vibration. Wertheim found the partial tones of pipes higher than the supposed harmonics.

These things being so, it is manifestly insumcient to assume, as von Helmboltz does in his great work, that all timbres possess a purely periodic character; with the necessary corollary that all timbres consist merely in the presence, with greater or less intensity, of one or more members of a series of higher tones corresponding to the terms of a Fourier series of harmonics. When, therefore, following idens based on this assumption, von Helmholtz constructs a series of resonators, accurately tuned to correspond to the terms of a Fourier series (the first being tuned to some fundamental tone, the sccond to one of a frequency exactly twice as great, the third to a frequency exactly three times, and so forth), and applies such resonators to aualyze the timbres of various musical and rocal sounds, he is trying to make his resonators pick up things which in many cases do not exist-upper partial tones which are exact harmonics. If they are not exact harmontes, even though they exist, his tuned resonator does not hear them, or only hears them imperfectly, and he is thereby lead into an erroneous appreciation of the sound under examination.

Further, when in pursuance of this dominant idea he constructs a system of electro-magnetic tuning forks, accurately tuned to give forth the true mathomatical harmonics of a fixed series, thinking therewith to reproduce artificially the timbres not only of the various musical instruments but even of the vowel sounds, he fails to reproduce the supposed effects. The failure is inherent in the instrument; for it can not reproduce those natural timbres which do not fall within the circumseribed limits of its imposed mathematical principle.

Nothing is more certain than that in the tones of instrumenta, particularly in those of such instruments as the harp and the pianoforte, in which the impulse, once given, is not sustained, the relations between the component partial tones are continually changing, both in relative intensity and in phase. The wavelets, as they follow one another, are ever changing their forms; in other words, the motions are not truly periodic-their main forms may recur, but with modifications ever changing.

To estimate the part played in such phenomena by mere differences of phase-to evaluate, in fact, the influence of phase of the constitu. ents upon the integral effect of a compound sound-Dr. Koonig had
recourse to the wave-siren, an earlier invention of his own, and of which the wave-disks which have already been shown are examples.

In the first place, Dr. Koenig proceeded synthetically to construct the wave-forms for tones consisting of the resultant of a set of pure harmouics of gradually decreasing intensity. The curres of these, up to the tenth member of the series, were careftully compounded graphically: first with zero difference of phase, then with all the upper members shifted on one quarter. then with a difference of a half-wave, then with a difference of three-quarters. The results are shown in the top line of curves in Fig. 6, wherein it will be noticed that the curve for difference

Fio. 6.
of phase $=\frac{t}{\hbar}$ is like that for zero difference, but reversed, left for right; and that the curve for difference of $\mathrm{phase}=\frac{3}{4}$ is like that for difference $=\frac{4}{4}$, but inverted. Now, according to volv Helmholtz, the sounds of all these four curves should be precisely alike, in spite of their diffeiences of form and position. To test the matter, these carefully plotted curves were set out upon the circumference of a cylindrical band of thin metal, the edge being then cut anay, leaving the unshaded portion, the curve being repeated half a docisn times, and meeting itself after passing round the circumference. For convenience, the four curves to be compared are set out upon the separate rims of two such metallic cylindrical hoops, which are mounted upon one axis, to which a rapid motion of rotation can be imparted, as shown in Fig. 7. Against the dentilated edges of these rims, wind can be blown through narrow slits connected to the wind chamber of an organ table. In the apparatus (Fig. 7) the four curves in question are the four lowest of the set of six. It will be obvious that as these curves pass in front of the slits H. Mis. 129-23
from which wind issues, the maximum displacement of air will result when the slit is least covered, or when the point of greatest depression of the curve crosses the front of the slit. The negative ordinates of the carve correspond therefore approximately to condensations. Air is

Fia. 7.
now being supplied to the slits; and when I open one or other of the valves which control the air passages, you hear one or other of the sounds. It must be audible to everyone present that the sound is londer and more forcible with a difference of phase of 1 than in any other case, that produced with $\frac{3}{4}$ difference being gentle and soft in tone, whilst the curves of phase 0 and $\frac{1}{2}$ yield tones of intermediate quality. Dr. Koenig found that if he merely combined together in various phases a note and its octave (which was indeed the instance examined by me binaurally in 1876), the loudest resultant sound is given when the phase difference of the combination is $\frac{4}{4}$, and the mildest when it is $\frac{3}{4}$.
Returning to Fig. 6, in the second line are shown the curves which result from the superposition of the odd members only of a harmonic series of decreasing amplitude. On comparing together the curves of the four separate phases, it is seen that the form is identical for phases 0 and $\frac{1}{2}$, which show rounded waves, whilst for phases $\frac{1}{4}$ and $\frac{3}{4}$ the forms are also identical, but with sharply angalar outline. These two varieties of curve are set out on the two edges of the highest metallic circumference in the apparatus depicted in Fig. 7. The angular waves are found to yield a londer and more strident tone than the rounded waves. though, according to vou Helmholtz, their tones should be alike.
A much more elaborate form of compound wive siren was constructed by Dr. Konig for the synthetic study of these phase relations. Upon a single axis, one behind the other, is mounted a series of 16 bracs disks,
cut at their edges into sinusoidal wave forms. These represent a harmonic series of 16 members of decreasing amplitude, there being just 16 times as many small sinuosities on the edge of the largest disk as there are of large sinuosities on that of the smallest disk. A photograph of the apparatus is now thrown upon the screen. It is described fully by Dr. Koenig in bis volume on "Quelques Experiences," and was figured and described in Nature, July 20, 1882, vol. XXVI, p. 277. Against the edge of each of the 16 wave disks wind can be separately blown through a slit. This instrument therefore furnishes a funclamental sound with its first fifteen pure harmonics. It is clear that any desired combination can be obtained by opening the appropriate stops on the wind-chest; and there are ingenious arrangements to vary the phases of any of the separate tones by shifting the positions of the slits. The following are the chief results obtained with this instrument. If we first take simply the fuudamental tone and its octave together, the total resultant sound has the greatest intensity when the difference of phase $\delta=\frac{1}{}(i, e$, when the maximum displacement of air occurs at the same instant for both waves); and at the same time the whole character of the sound becomes somewhat graver, as if the fundamental tone predominated more than in other phases. The intensity is least when $\delta=\frac{3}{4}$. If, however, attention is concentrated on the octave note while the phase is changed, its intensity seems about the same for $\delta=4$ as for $\delta=\frac{8}{4}$, but weaker in all other positions. The compound tones firmed only of odd members of the series have always more power and brilliancy of tone for phase differences of $\frac{1}{4}$ and $\frac{3}{4}$, than for 0 and $\frac{1}{2}$; but the quality for $\frac{1}{4}$ is always the same as for $\frac{3}{4}$, and the quality for 0 is always the same as for $\frac{1}{2}$. This corresponds to the peculiarity of the corresponding wave form, of which the fourth line of curves in Fig. 6 is an example. For compound tones corresponding to the whole series, odd and even, there is in every case minimum intensity, brilliancy, and stridence with $\delta=3$, and maximum with $\delta=4$. Inspection of the tirst and third lines of curves in Fig. 6 shows that in these wave forms that phase which is the most forcible is that in which the maximum displacement and resulting condensation is sudden and brief.

Observing that wave forms in which the waves are asymmetricalsteeper on one side thian on the other-are produced as the resultant of a whole series of compounded partial tones, it occurred to Dr. Konig to produce from a perfect and symmetrical sinusoidal wave curve a complex sound by the very simple device of turning into an oblique position the slit through which the wind was blown against it. In Fig. 8 is diawn a simple symmetrical wave form, eglnprtv. If a series of such Wave forms is passed in front of a vertical slit, such as $a b$, a perfectly simple tone, devoid of upper partials, is heard. But by inclining the slit, as at $a b^{\prime}$, the same effect is produced as if the wave form had been changed to the oblique outline $e^{\prime} y^{\prime} l^{\prime} n^{\prime} p^{\prime} r^{\prime} t^{\prime} \cdot v^{\prime}$, the slit all the while remaining upright. But this oblique form is precisely like that obtained
as resultant of a decreasing series of partial toues (Fig. 6, a). If the slit be inclined in the same direction as the forward movement of the waves, the quality produced is the same as if all the partial tones coincided at their origin, or with $\delta=0$; while if inclined in the opposite

Fia. 8.
direction the quality is that corresponding to $\delta=\frac{1}{2}$. It is easy to ex. amine whether the change of phase produces any effect on the sound. Before you is rotating a simple wave disk, and air is being blown across its edge through a slit. Dr. Koenig will now tilt the slit alternately backward and forward. On tilting the slit forward to give $\delta=0$, you hear a purer and more perfect sound; and on tilting it back, giving $\delta=\frac{1}{2}$, a sound that is more uasal and forcible.

All the preceding experiments ogree then in showing that differences of phase do produce a distinct effect upon the quality of compound tones; what then must we say as to the effect on the timbre of the presence of' upper partial tones or somds of subdivision that do not agree with any of the true harmonics: A mis.tuned harmonic-if the term is permissi-ble-may be looked upon as a harmonic which is undergoing continual change of phase. The mistuned octave which yielded the graphic curve in Fig. 5, is a case in point. The wavelets are continually changing their form. It is certain that in a very large number of musical sounds, instrumental and vocal, such is the case.

It was whilst experimenting with his large compound wave siren that Dr. Koenig was struck by the circumstance that under no conditions, and by no combination of pure harmonics in any proportion of intensity or phase, could he reproduce any really strident timbres of sound, like those of harmonium reeds, trumpets, and the like; nor could he produce satisfactory vowel qualities of tone. Still less can these be produced satisfactorily by von Helmholtz's apparatus with electro-maguetic tuning forks, in which there is no control over the phases of the components. The question was therefore ripe for investigation whether for the production of that which the ear can recoguize as a timbre, a definite unitary quality of tone, it was necessary to suppose that all the successive wavelets should be of similar form. Or, if the forms of
the successive wavelets are continually changing, is it possible for the ear still to grasp the result as a unitary sensation?
If the ear could always separate impure harmonic or absolutely inharmonic partials from their fundamental tone, or if it always heard pure harmonics as an indistinguishable part of the unity of the timbre of a fundamental, then we might draw a hard and fast line between mere mixtures of sound and timbres, even as the chemist distinguishes between mere mixtures and true chemical compounds. But this is not so; sometimes the ear can not unravel from the integral sensation the inharmonious partial ; on the other hand, it can often distinguish the presence of truly harmonious ones. Naturally, something will depend on the training of the ear' as is the case with the conductor of an orchestra, who will pick out single tones from a mixture of sounds which to less perfectly trained ears may blend into a unitary sensation.

Dr. Konig accordingly determined to make at least an attempt to determine synthetically hor far the ear can so act, by building up specific combinations of perturbed harmonics or inharmonic partials, giving rise to waves that are multiform, as distinguished from the uniform waves of a true periodie motion. The wave siren presented a means of carrying this attempt to a result. On the table before me lie a number of wave flisks constructed with this aim. This will be successively placed upon the whirling table, and sounded; but I most warn gou that the proper effects will only be perceived by those who are near the apparatis, and in front of it.

Upon the eilge of the first of the series there has been cut a curve graphically compounded of 24 waves as a fundamental, together with a set of four perturbed harmonies of equal intensity. The first harmonic consists of 49 waves $(2 \times 24+1)$, the second of 75 waves $(3 \times 2 t+3)$, the third of $101(4 \times 24+5)$, the fourth of $127(5 \times 24+7)$. The resulting curve possesses 24 waves, no two of them alike in form, and some highly irregular in contour. The effect of blowing air through a slit against this disk is to produce a disagreeable sound, quite lacking in unitary character, and indeed suggesting intermittence.
The second ware disk is constructed with the same perturbed harmonies, but with their amplitudes diminishing in order. This disk produces similar effects, but with more approach to a unitary character.

In the third disk there are also 24 fundamental waves, but there are no harmonies of the lower terms, the superposed ripples being perturbed harmonics of the filth, sixth, and seventh orders. Their numbers are $6 \times 24+6,7 \times 24+7$, and $8 \times 24+8$, being, in fact, three harmonics of a fuudamental 25. This disk gives a distinctly dual sort of sound, for the ear hears the fundamental quite separate from the higher tones, which seem in themselves to blend to a unitary effect. There is also an intermittence corresponding to each revolution of the disk, like a beat.
The fourth disk resembles the preceding; but the gap between the
fundamental and the three perturbed harmonics has been filled by the addition of three true harmonics. This disk is the first in this researchwhich gives a real timbre, though it is a peculiar oue. It preserves, however, a unitary character, even when the slit is tilted in either direction. The 24 waves in this disk all rake forward like the teeth of a circular saw, but with unitiform ripples upon them. The quality of tone becomes more crisp when the slit is tilted so as to slope across the teeth, and more smooth when in the reverse direction.

The fifth disk, which is larger, has 40 waves at its edge. These are cut with curves of all sorts, taken hap-hazard from various combinations of pure harmonics in all sorts of proportions and-varieties, no two being alike, there maxima and minima of the separate waves being neither isochronous nor of equal amplitude. This disk gives an entirely unmusical effect, amid which a fundamental tone is heard, accompanied by a sort of rattling sound made up of intermittent and barely recognizable tones.

The sixth disk is derived from the preceding by selecting eight only of the waves, a ud repeating them five times around the periphery. In this case each set of eight acts as a single long curve, giving bents, with a slow rotation and a low tone (accompanied always by the rattling mixture of higher tones) when the speed is increased.

The seventh disk was constructed by taking 24 wares of perfect sinusoidal form, and superposing upon them a series of small ripples of miscellaneous shapes and irregular sizes, bnt withont essentially departing from the main outline. This disk gives a timbre in which nothing can be separated from the fundamental tone, either with vertical or tilted slit.

The eighth and last disk consists of another set of 24 perfect waves, from the sides of which irregular ripples have been carved away by hand, with the file, leaving however the summits and the deepest parts of the hollows untouched, so that the maxima and minima are isocbronous and of equal amplitude. This disk gives also a definite timbre of its own, a little raucous in quality, but still distinctly having a musical unity about it.

We have every reason therefore to conclude that the ear will recog. nize as possessing true musical quality, as a timbre, combinations in which the constituents of the sound vary in their relative intensity and phase from wave to wave.

What, then, is a timbre? Ur. Koenig would be the first to recognize that these last experiments, though of deepest interest, do not afford a final answer to the question. We may not yet be in a position to frame a new definition as to what constitutes a timbre, but we may at least conclude that, whenever that definition can be framed, it will at least include several varieties, including the non-periodic kinds with multiform waves, as well as those that are truly periodic with uniform waves. We must not on that account however, rush to the conclusion that the
theory of von Helmholtz as to the nature of timbre has been over. thrown. The corrections introduced into lunar theory by Hansen and Newcombe have not overturned the splendid generalizations of New. ton. What we can and must confess is that we now know that the acoustic theory of von Helmholtz is, like the lunar theory of Newton, correct only as a first approximation. It has been the distinctive merit of Dr. Kobnig to indicate to us the magnitude of the correcting terms, and to supply us not only with a rich store of experimental facts but with the means of prosecuting the research synthetically, beyond the point to which he himself has attained.

In thanking Dr. Koenig for the courtesy which he lias shown to this society in bringing over his apparatus and in demonstrating its use to us, we must join in congratulating him on the patience, perspicacity, and skill with which he has carried out his researches. We know that his exceptional ablities as experimentalist and constructor have done more than those of any other investigator to make the science of experimental acoustics what it is to day; and we must unite in wishing him long life and prosperity to complete the great work on which already he has advanced so far.

THE CHEMIOAL PROBLEMS OF TO DAY.*

By Viotor Meyer.
Translated by L. H. Friminurg.t

When, a short time ago, I. was called upon to speak before jou, I gladly and zealously approached the work which such an occasion seemed to call forth. It seemed to me that it wonld be an effort worthy of this assemblage of scientific men to recall the permanent additions that chemistry has made in our day to the treasure of human knowledge and to enumerate the problems which seem to lie nearest us in the future.

A science which, as such, is hardly older than the great European revolution, the centenuial of which we witnessed a few months ago, and which in this short time has caused changes in our spiritual and material life hardly less than those of the political revolution, such a science, I have thought, may without temerity boast of its achieve ments.

And yet the chemist approaches such a task with a certain hesitation from which the astronomer, the physicist, and the mathematician are free. Has it not been in our own day that the most prominent orator amongst German naturalists, one who astonishes us by the comprehensiveness of his knowledge, has adopted as his own Kant's judgment on chemistry, namely, that "chemistry is a science, but not a science in the highest sense of the word; that is, a knowledge of nature reduced to mathematical mechanics." And this dictum is accepted, not as a blemish upon our science, but with the fullest and most perfect recognition of the immense achievements which modern chemistry has registered as its own.

But all of the marvellous successes of the atomic theory and of the doctrine of structure, the synthesis of the most complicated organic compounds, the blessings of an enlarged pharmacopceia, the potent revolution in technological processen, the new and systemaic methods

[^63]of production which have been characterized by an eminent technolo. gist as "the gaining of gold from rubbish "-all this seems trifing to the mind that looks down from its standpoint of mathematical inechanics when compared with the work of a promised Newton of chemistry, who some day will represent chemical reactions in the thought and in the language of mathematical physics.
And if he who looks from a height is justified in the expression that to day chemistry, in the recognition of ultimate causes, stands yet below astronomy of the time of Kepler and Copernicus, must not the chemist lose courage if he attempts, before an illustrious assemblage, to raise a song of praise to his science, to glorify what she has done and what in the future she seems chosen to do? If in spite of this the attempt be made, it inust be with that resignation which rests upon the belief that "we should consider everything, but aim only at that which is possible."
Though we share, with full conviction, the expectations of a Newtonian period in chemistry, we hardly venture to hope that that period is near, and even the most enlightened representatives of the newer physical chemistry seem but precursors of that distant era.

Perlaps the chemist, immersed in the daily work of his science, fails to take the comprehensive view of one who from a distant height looks down upon the same. But those who are surrounded by the whirl of hourly renewed work recognize all the more clearly the immense amount that remains still to be achieved before those distant aims can be realized. This epoch, so rich in path-finders in the department of physics, has rarely directed the highest order of research into the territory of our science, and especially have the more complicated chemical phenomena been avoided.

If in a period that has witnessed the discoveries of Helmholtz, Robert Mayer, Joule, Olausius, and van't Hoff, the revolutionizing progress of kuowledge has been limited to physics, and if ouly modest applicatious of what was gained have been made in related studies, then the epoch seems not yet to be at hand in which chemical processes can be thought of as we think of the movements which we feel as sound, light, or heat.

A humiliating statementl But, strange to say, the chemist of to day has hardly time to complain of this resignation imposed upou him, and this for reasons easily understood.

If without question it is the aim of all natural scieuce to understand phenomena so fully that they may be described in a mathematical form, and, as far as they are unknown, may bo predicted, a science which is so far distant from this aim as to look merely for the path that shall some day lead to it, must be considered as in its infancy. In the present stage our way of thinking and acting has this peculiarity. In every science imagination must stand as auother power alongside of knowledge and reasoning. But the influence of imagiuation upon knowledge is all the greater the further this latter is distant from the men-
tioned ideal. And thus it happens that in the chemistry of to day imagination and intuition have a larger scope than in other sciences, and that occupation with the same, besides the pure scientific satisfaction that it yields, brings an enjoyment which, in a certain sense, reminds one of the activity of an artist. He however who only knows chemistry as a tradition of perfectly clear facts, or who thinks to see the real soul of chemical study in measuring the physical phenomena which accompany chemical transformations, feels no breath of this enjoyment.

The feeling is only disclosed to him who ventures into that ocean of the unknown that is spread out before us in the organic ohemistry of the day; to him who is not appalled by a wilderness, populated with thousands of indivuals, of which every one shows a pesuliar, fully unknown originality, and to him who attempts to become better acquainted with some of them, even if he is at a loss for means of approaching them. To proceed with success in this direction is only granted to the genius; the method that leads onward can not be learned, and it has only beer practiced with success by a small number of cliosen ones.

Indeed, in the experimental study of organic chemistry, the "presentiment" of happenings, the actuality of which is not indicated by any law to be expressed in words, has shown surprising results; here the thought is aided by a something, which we may meanwhile term "chemical feeling," n name which will disappear as soon as the progressive approach of chemistry to the mathematical physical basis shall have disclosed its meaning and shall have tabulated it anongst the methods which lead to the recognition of the new. The effect of this peculiar chemical method of study is not here to be dwelt upon in detail. Let it suffice to say that without it, the most brilliant discov. eries in organic chemistry would not have been made; just as little as a Kekule would without it, have been able-in contradiation of numerous data in chemical literature never before doubted-to affirm the non-existence of isomeric monochlorbenzol and of such bodios as were said to consist of a benzol ring and but one bi-valent atom. Those significant hypotheses by means of which the knowledge of aromatic substances has been revealed to us, could not have been made solely upon the ground of exact observation; they required at the same time a pronounced chemical instinct. There was no logical reason in declaring the existence of a phenylene oxide as an impossibility, since the ethylene oxide did exist; he who nevertheless ventured to do so, and at the same time ran directly in the face of experience, was surely led by a feeling which the present status of chemistry forbids as to replace by a process of thought.

But to return from the field of organic to that of general chemistry. Before we can arrive at a mathematico.physical treatment of chemical phenomena in general, two fundamental problems must be solved; an hypothesis which allows a control by experiment (even within the same
limits which to this day are imposed upon physics in regard to the law of gravitation), must auswer these questions: What is Ohemical Affinity? and What is Valency?

By means of laborious detail work, chemistry tries to approach the solution of these enigmas; but he who pursues chemical methods, who stands in the midst of chemical work-which aims only, as at a far distant task, at the discovery of a sure path-still sees such obstacles to be cleared away that he gives up the hope of living to see the new chemical era. He finds satisfaction in the consciousness of having exerted his best abilities in the elucidation of some minor and precursory principles.

If now we begin to consider-within the appointed limits-the most important achievemenis of chemistry, we can not, at this place and at this hour of our meeting, be in doubt as to what is to be mentioned in the first place. The hospitable city which shelters us boasts of an advantage which is envied her by every other alma mater; here, chemis. try for more than a human lifetime has. been represented by Robert Bunsen, of glorious name, and the very days which find us here assembled, follow immediately the moment in which this hero of science has retired from his acidemical occupation. Who does not think, at such an hour, of the great teachor around whom ardent pupils from all parts of the globe were accustomed to congregate But who, being called upon to day to speak of the results of chemistry within the walls of Heidelberg, would not before all direct an eye upon that one discovery which has lifted chemistry beyond terrestrial research, which bas enabled her, like astronomy, to search the universe and to dissect the starry heavens, chemically, by the subtle appliances of analysis? If "old Heidelberg" has become a pearl amongst German citien by its history, by its numerous traditions, by the incomparable beauty of its situation,-if its university is the ideal of the German academical youth, we may well regard as an immortal leaf in its wreath of honor, along with these glorious titles, the union of those two great men who first met in this city in the most courageous enterprise of the penetrating mind; who have pursued with astonishing success the investigation which has made spectral analysis the most potent of scientific weapons, and has rendered their names a charm calling forth the admiration of the older minds and kindling in the minds of mere school boys the flane of enthusiasm in the study and exploration of nature. The immeas. urable results of that discovery-the consequences of which extend every day over new territories-are known in the widest circles, and to mention them to day in detail would be but carrying owls to Athens. It behooves us in this place to mention reverently the names of Bunsen and Kirchhoff, to think of them with gratitude, and to hope that men, their equals, may not be entirely wanting in the next generation! The younger one of them-whose scientific fertility was only equalled by his greatness of soul and the charming modesty of his heart-has
been taken away from us before old age had natarally limited him. Bunsen wo still rejoice to call ours, who now, allowing the tools of his work to drop from his hand, looks forth to the evening of his life in quiet, happy leisure. May lie be permitted for a long time to look back upon a life filled with greatest scientific achievements; may his calm, friendly eye rest for many years upon the incomparable picture of his beloved Heidelberg.

We have mentioned spectral analysis, though it has been almost for an age the common property of science. Let us also cast a gratelul retrospect upon a deeply furrowing revolution-of which chemistry also, for several decades, has boasted as a substantial possession-upon the development of the doctrine of structure, that solid theoretical foundation from which the prond edifice of modern organic chemistry rises. A generation has grown up around us which has received as a matter of fact this doctrine which still seems new to us older ones. But those far-seeing men, whose eyes recognized the immensely simple in the seemingly impenetrable complication of the carbon compounds, are still actively alive amongst us, and it is their happy lot to reap in their own activity what once they sowed in juvenile work. Here the cye is directed upon the masier of chemical research-August Wilhelm von Hofmann ; before all upon his researches upon the organic nitrogenons bases,-researches which do not find their equal in organic chemistry and which, even more perfectly than Dumas' fundamental discovery of trichoracetic acid, allowed the fundamental conception of substitution to expand into the living consciousness of chemists, at first, curiously, by supporting the theory of types in organic compounds and then by promoting the transition to the structural or constitutional view, which at present embraces, with unparalleled perfection, the whole territory of organic compounds.

But the suggestion of this doctrine, which finds its crowning success in the recognition of the inner aggregation of the atoms, is associated for all time with the name of a man who, although a master of rare art in experimenting, knew how to surpass what he had achieved at the laboratory table, by the convincing power of his speculative work. We can not here dispute the part which other eminent chemists have taken in the development of the doctrine of structure-chere are, Butlero, Oooper, Erlenmeyer, Frankland, Kolbe, Odling, Williamson-but the glorious guide in this great and victorious movement forward, he, to whose eyes was disclosed not only the tetra-valence of carbon, but also the solution of the problem of the constitution of organic compounds, in the recognition of the property of carbon atoms to be linked to eaoh other by their valencies; he is the philosopher of organic chemistry August Kekule. The name of this discoverer, who also started upon his high and soaring flight from Heidelberg, is justly mentioned alone when we want to recall in a word the putting forth and the development of the leading chemical theories.

The researches in this direction are so numerous and so tollsome, and yet the result is so surprisingly simple! The carbon atom is endowed with four, the oxygen atom with two, the hydrogen atom with one point of attack for the chemical affinity. The cause of the aggregation of the atoms within the molecule lies in the mutual saturation of these units of affinity or valencies. It is the number of valencies which decides the possibility of the existence of a compound. Amongst the legion of imaginable combinations of these three elements only those are capable of existence in which every valency is saturated by that of another atom. Through this knowledge a new method of inquiry was opened, in particular for organic chemistry, the immense territory of which for many years seemed totally to absorb the working power of chemists. But then dawned the first signe of a further development. . Hardly a decade had elapsed since the general admission of the doctrine of valency when a fundamental deepening of the same was announced, which our science awes to two savants, working independently of each otherto Le Bel and van't Hoff. These chenists, considering those substances which turn the plane of polarization of light, arrived at views which soon led to a result until then thought to be out of reach, a conception of the aggregation of the atoms within the molecules in space. Thus a field of study was created which van't Hoff called "la ohimie dans Despace" and which we now call Stereo.ohemistry.

It was recognized that the carbon atom stretched out its four valencies in defnite directions, and this in a symmetrical manner. The combination of a carbon atom with four other atoms, for example, methane, OH_{4}, is representable by the picture of a tetrahedron in the stereometric center of which the carbon atom is situated, while the hydrogen atoms occupy its four corners.

Numerous cases of isomerism, until then not understood, could be explained in this manuer and were regarded as stereo-chemical ones. The cause of optical activity was found to consist in the presence of an a-symmetric carbon atom, that is, one which is combined with four dif. ferent groups.
Also the stereometric forms of a few simple molecules were considered; it was recognized, e. g., that a compound of three carbon atoms linked together by one bond respectively could not contain those atoms in a straight line, but that they must lie in the angles of a triangle the sides of which form an angle equal to that in which the directions of valency of the carbon atom intersect each other.
By the applications of these considerations- to more complicated molecules, which contain a chain of atoms closed within itself, Adolph von Baejer has enlarged our theory in a manner full of consequence.
Kekulé in times past had recognized that carbon shows a particular disposition to form closed chains of six atoms. The discoveries of Baeyer and his followers, as well as Fittig's work on lactones, taught that such closed chains or rings formed of fewer atoms also exist. But
while rings of six or five atoms easily form, it is more diffucult to combine fewer atoms, four or three, to a closed chain. The cause of this fact Baejer recoguized as lying in the stereometric conditions. The angles which the sides of a regular hexagon and pentagon form with each other very nearly coincide with those in which the directions of the valencies of the carbon atom intersect each other, and thus in linking five or six atoms together the circle, so to speak, closes itself, while if more or less atous are present this can only be arrived at by strong deviation of the directions of affinity.

But still more surprising discoveries were hidden in van't Hoff's the. ory. The gifted Dutch thinker had penetrated to the idea that two atoms which are linked together by a single valency rotate freely around an axis the direction of which coincides with that of the linking valency, but that this rotation is stopped as soon as double linking takes place. This latter is an immediate consequenco of the tetrahedric conception. If I stretch outimy two fore-fingers and let their points touch each other, then the hands can rotate around them as an axis; but if I stretch both thumbs and both fore-fingers and allow their corresponding points to touch each other, then a system results in which rotation is impossible.
These two propositions of van't Hoff, having remained almost unnoticed for adecade, have lately come into great prominence. In a series of important researches Johannes Wislicenus has proved that applying these propositions and at the same time considering the specific affinities of the groups or elements present, the stereometric aggregation of the atoms in certain molecules can be determined with probability. In an ingenious manner he hae atilised the addition phenomena shown by carbon atoms trobly linked together for an interpretation of a sterfometric aggregation of the atoms in the compounds formed.

Wislicenus, applying van't Hoff's ideas with courage and strictness, has advanced organic chemistry in an important manuer and has opened a field for experimental research, which heretofore had been avoided with a precaution suggestive of timidity.

New discoveries came from other sides. An intimate research into the oxims of beuzil lead to the surprising result that the validity of the secoud proposition of van't Hoff is not without exception. Oases were noticed in which the free rotation of carbon atoms united by a simple bond, which van't Hoff disclosed, did not obtain. Further inquiry into this subject led to a renewal of the question, "What does chemical valency really mean?" A question to which the mind incessantly demands an answer. It had long since been suggested that valency had some relation to the electric behavior of the atoms. The chemistry of the day expresses Faraday's fundamental electrolytic law thus: An electric current which flows through several fused electrolytes severs in each of thein the same number of valenoies, not of atoms.

It was found by von Helmholtz that those quantities of electricity which, during the electrolytic process, move with the ions are dis-
tributed among the valencies. Riecke, in virtue of his pyro-electric researches, was led to the view that the atoms are surrounded by certain systems of positive and negative electric poles.

Uniting these results with those of purely chemical experimentation, we arrive at the idea that the valencies do not appear as points of attack proper, but as having linear dimensions. The carbon atom represents itself as a sphere, surrounded by an envelope of mether which coutains the valencies. The latter seem to be determined by the presence of two opposite electric poles which rest at the ends of a very short straight line. Such a system is called a di.pole. The attachment of two valencies to each other consists in the attraction of their opposed poles. It is evident that in a radial position of the di-poles they form an axis around which the atoms are able to rotate, but that this rotation is upset in case of a tangential position. In what has been said so far and through further considerations in regard to the electrical charge of the atoms and of the di-poles a reason is found for the repulsion of the four valencies and conscquently for the tetrahedric grouping of the same.

The fact that the valencies can deviate from this position now becomes intelligible; we perceive why the valencies of one atom can not unite with one another, while those of different atoms can combine; it is clear that there can exist two kinds of simple linking, one of which admits of rotation, while the other does not; finally, that in cases of manifold linking the free rotation must be annulled. Hence this hypothesis opens to us an understanding of the most important properties of chemical valency.

So much may be said of the problems relating to the theory of valency.
But the doctrine of substitution has likewise experienced a peculiar enlargement. Dumas first showed that the properties of organic compounds are generally little changed when the hydrogen of the same is replaced loy univalent elements or groups. Now it has been learned from later experiments that even much more radical changes in the composition do not inaterially infuence the properties of the substance. If for example we replace in the hydro-carbon benzol-two carbon and two hydrogen atoms by one atom of sulphur, the resulting product, thiophen, resembles benzol chemically and physically so closely as to be mistaken for it. We learn from this that the sulphur atom is able to take upon itself the functions of four atoms of entirely different nature. Similar facts have been found in regard to oxygen and to the imido group, which is equivalent to it.

Turning away from these researches to east a glance upon general chemical studies which lie some years behind us, we must above all consider one of the most far reaching discoveries of our epoch, the revelation of the natural system of the ohemical elements. We owe this to the far-seeing Demetrius Mendelejeff. By the side of the titanic figure of the Russian scholar we see the Englishman, Newlands, and our own countryman, Lothar Meyer, successfully co-operating in the foundation
and the structure of this work. What these men created has since become generally known; they showed that the properties of the elements are funotions of their atomio weights. Mendelejeff taught us to predict the existence and the properties of chemical elements as yet unkuown with a cortainty that reminds us of Le Verrier's prediction of the discovery of the planet Neptune. We can say with confidence that even today numerous elements, the qualities of which, as well as the place which they will occupy in the system, can be minutely foretold, wait merely to be discovered.
The natural system has imposed upon us a problem of the greatest significance in the new determination of the atomic weights, the numerital values of which are now of increased interest. But numerous other problems are presented by the new system of the elements. Above all we are at a loss to discern the cause of the inner nexus of the elements as the system offers it. Also by diligent work the less studied elements must be properly brought within the rystem. Fortunate circumstances may allov as to discover the numerous elements indicated by the periodic lew. Here let us note a peculiar coincidence. We know to day about seventy elements, but Mendelejeff's table indicates so far-two small periods of seven elements each, and five large ones of seventeen elements, respectively. To these must be added hydrogen, forming a "group" in tself.
By addition of these figures, $(2 \times 7)+(5 \times 17)+1$, we obtain exactly the number 100.
it is true that no one can say whether the missing elements will really be discovered, or if further new periods might not be indicated by which this number 100 would be exceeded. But, as far as positive data are at hand, they indicate exactly the number mentioned and nothing points beyond it ,-an odd coincidence which seems to ally the number of the existing elements with the number of our fingers.
The discovery of the system of the elements leads us back to the question whether the chemical elements are separate worlds in themselves or whether they represent different forms or conditions under which one ultimate substance exists, a question that has occupied the philosophical mind since very early times. The same question was raised anew by the discovery of spectral analysis. Whosuever regards the numerous lines of the spectrum of a metal will hardly be convinced that the metal from which they emanate should be an eternally undecomposable element. In a similar manner the compound nature of the elements is indicated by comparison of the regularities in numbers of the atomic weights with the homologous series of organic chemistry.

In the pursuit of this question, which, since Prout's hypothesis and the surprises offered by Stas's determinations of atomic weights, has not been allowed t n rest, positive results are not to be found. The decomposition of substances called elements into simpler ones has not been accomplished.
H. Mis. 129-24

Nevertheless something has been achieved, since an increased interest has been drawn towards pyro.chemical research.
To day new methods of experiment permit of a comparatively easy determination of the vapor density and consequently of the molecular state of the substances at the highest temperatures.

Numerous inorganic compounds, above all the very elements, have been studied in regard to their vapor density at a white heat.
While many of them, as oxygen, nitrogen, sulphur, and mercury, re. main unchanged under such conditions, the molecules of chlorine, bro. mine, and iodine, respectively, were split into two atoms, in conformity with Avogadro's surmise of the compound nature of elementary mole. cules.

In the same manner, the vapor density, and hence the molecular condition of the less volatile substances, zine, thallium, antimony, and bismuth, was suc essfully determined at a white heat.
Oareful research resulted in the exposure of the old fallacy of the existence of a sulphur molecule containing six atoms.

But how many of the problems which crowd around us at this point are for the time being entirely beyond the reach of the experimenter!
To day pyrochemical work is limited to a temperature of $1700^{\circ} 0$., because vessels of porcelain and platinum, to the use of which we are limited, fuse above that temperature. The possibility of performing quantitative experiments at these temperatures seemed to us some years ago to be an unexpected progress, but to day we complain that the trivial cause of a want of proper vessels forbids us to increase the temperature up to 2000° or $3000^{\circ} \mathrm{O}$. There is no doubt that we should arrive at new unthought of facts, that the splitting of still other elementary molecules would be possible, that a new chemistry would be revealed to us, if-being provided with vessels of infusible material, we could work at temperatures at which water vapor could not exist and at which detonating gas would be a non-inflammable mixture!

Let us now enter other fields of physical chemistry. Golden fruit, daily increasing, has beeu harvested upon this field during these latter days. Again we see van't Hoff take the lead. His keen eve has enabled us to penetrate the nature of solution, which forms the beginuing of a new epoch in molecular physics. The quintesseuce of his discoveries may be thus expressed:
"Solutions of different substances in the same liquid, which contain in the same volume an equal number of molecules of the dissolved sub. stance, show the same osmotio pressures, the same vapor pressure, and the same freezing point."
This surprising generalization offers the possibility of determining the true moleoular weight of substances by experimenting upon them in solution, while heretofore this has only been possible by transforming them into the gaseous state, hence only for volatile substances, since
dilute solutions behave in regard to the molecular state of the dissolved substance like gases.

In this manner new methods are given for the determination of molecular weights, which we are now able to determine by means of measurements relatiug to the freezing point, the vapor pressure, or the osmotio pressure of a solution of the substance to be tested.
These results are of the highest possible practical importance for chemistry, since they widen in an unexpected manner the possibility of the determination of molecular weights, and in a still higher degree we are surprised by the elucidation which they offer in regard to the nature of solution. Olausius had already admitted, within narrower limits, that in solutions of electrolytes some of the dissolved molecules were decomposed into their ions, but now this has been proved in a larger measure, particularly by Arrhenius. What a change our conceptions will have to undergo if we have to accustom ourselves to regard a dilute solution of sodium chloride as one containing, not undecomposed molecules of this salt, but separated atoms of sodium and chlorine!

We owe these revolutionizing innovations to the investigations of van't Hoff, Arrhenius, Ostwald, Planck and de Vrie, but in regard to experimental research especially to the splendid work of Raoult, which during recent years has effected this mighty theoretical progress.
Thus we see physical chemistry moving on in weighty development. Special laboratories are opened for her, and a special journal also has been started which is open alike to the records of experiment and to theoretical discussion. Through the foundation of this organ physical chemistry has been furthered in a most active manner. All the guestions of the time and all those in dispute belonging to this department of science receive in this paper \boldsymbol{x} thorough disenssion. Dynamicalchemical questions are successfully studied, a signifleant impetus is given to the study of structure and affinity (widened as our knowledge of the nature of solutions has made necessary), by means of the study of the relations between chemical nature and electric conduction.
The inquiry into the intimate relations that exist between physical and chemical properties, which was inaugurated half a century ago by Hermann Kopp, is now being deepened and widened.

It is true that the great lopes which sprang from the study of thermochemical questions have so far been ouly partly fulfilled, but consecutive measurements offer more clearness also in this case.
There is no field of our science in which we may expect greater revolutions in the tine near at hand than in that of physical chemistry! The value of these for general chemistry will be greater in proportion as the representatives of the same will recognize their task in this: Above all to remain upon the ohemical standpoint and to improve chem. istry by the application of physical modes of thought and experiment. Those who tried to further the progress of chemistry by the use of physical methods, but with insufficient consideration for chemical rela-
tions, have been led into serious errors. The respect due to work of the highest merit, continued for years, has thus been lessenad. Apparently this has even been overdone, and it is much to be deplored if the interest of chemists for physical chemistry should be diminished because some of its representatives are inclincd to over-rate the value of their results. He who swims in the midst of high waves is unable at times to see over the crests.

- Innumerable, also, are the problems which meet us in the domain of organic chemistry.

After the astonishing harvest of synthetical results which has been reaped here, hardly any problem of synthesis seems unapproachable. Since the artificial preparation of alizarin by Graebe and Liebermann, of indigo by von Baeyer, of conine by Ladenburg, of uric acid by Horbaczewski and particularly by Behrend, since Emil Fischer and Kiliani have elucidated the chemistry of the sugar grcap and Wallach that of the terpenes, we may well look hopefully for a clearer knowledge of the bodies comprised under the name albumin, and to its synthesis.

But even such success tends only to render us more modest, since it shows us at the same time how narrow are the limits within which chemical synthesis moves. Assuming even that the preparation of albumin had been achieved, how infinitely far we should still be from a conception of the nature of organized bodies! Perhaps science is separated by an impasisable chasm from the artificial preparation of a simple cell. Such an acbievement lies at least beyoud the sphere of chemistry.

But shall we really never succeed in sounding the process of assim. ilation, which, in spite of its simplicity, presents itself to us so enigmatically? Will it be found impossible to prepare artificially in our laboratorios, from carbon dioxide and water, sugar and starch, a process which nature performs unceasingly in the green parts of plants?

The chemist however should not step prematurely upon the field of biology while so many great problems remain untouched in his own peculiar sphere of investigation.

The method of research in organic chemistry, in spite of the brilliant successes already recorded, forces us even to-day to coufess that only a very minute proportion of known substances is within its reach. In order to isolate an organic substance we are generally confined to the purely accidental properties of orystallization or volatilization. Have nat those thousands of amorphous substances which cannot be characterized by any chemical property and which the chemist is forced to lay aside because be is unable either to purify them or to transform them into volatile or crystallizable bodies, -have they not the same claim upon our interest as their more beautiful and more manageable comrades?

The most siguificant progress of organic chemistry does not consist in single discoveries, nor in further expansion of synthetical success.

What we want is : new methods for recognizing the individuality of substances. The black substances of earthy nature, the innumerable formless and resinous products in the bodies of plants and animals, the coloring matter which giver beauty to flowers, all of these to day mock our efforts to know them; they will form a new and inexhanstible field for the prosecution of chemical research, when methods shall have been found with which to begin this research.
And as in organic chemistry, so in mineral chemistry every step leads to questions which we have as yet no means of answering. The synthesis of minerals and of rocks has made important progress, it is true, and this as well as the application of the doctrine of structure to the study of mineral species gradually leads to the understanding of their constitution; but we are as yet unable to use, in the stady of minerals, the method of analytical decomposition which has been so successfully used to study the constitution of organic substances, and above all we lack the least knowledge in regard to the true moleoular weight of minerals.
Quite recently we have been presented with no less than three new and fruitful methods for the determination of the molecular weight, but not one of them gives us an indication of the true molecular weight of the most simple oxides, such as silicic anhydride or calcium oxide.

We know to day very well that silicie anhydride can not have the formula SiO_{2}, that this must be multiplied by a very large factor; but of the numerical value of this latter we have no indication. And thus also in mineral chemistry we must aim not exclusively at finding new facts, but new methods of research in the first place, if a period of new discoveries is to be attained in this branch of our sciance. .
But how can we conclude this brief review without mentioning also the applications of ohemistry to the industrial arts, the progress of which has mainly contributed to spread the splendor of our science most widely? The intinite variety of the tar colors, surpassing the colors of flowors in number and brightness, is daily increased by new discoveries. The technology of these dyes and pigments forms the most brilliant triumph of purely scientific laboratory work applied to manufactures. This industry in the simplest manner and on the largest scale performs the synthesis of compounds the complex nature of which is indicated by the names they bear. The unscientific man is frightened when a beautiful and brilliant dye is referred to as Hexamethylmethoxytriamidotriphenylcarbinol; for the initiated there lies in this unpleasant name a full account of the synthesis and the constitution of the dye.

Industry has learned to derive not only colors, but healing medicines also from coal tar. Antipyrin, discovered by Knorr, upon the basis of Emil Fischer's fundamental research upon the hydrazines, brings to thousands suffering from fever, relief at least-if not cure. Let us hope that the time is not far distant when real fever curatives, which like the natural alkaloids of the cinchona bark, not only temporarily sup.
press the disease, but really cure it, may be propared by synthesis. Until then be patient and do not chide chemistry if, for the time being, she offers only silver instead of gold.

Events in this field of the great chemical industries are significant. We are the witnesses of a great combat taking place between the older process of Le Blanc for the preparation of soda and the new one of Solvay called the ammonia-soda process. The intelligence and inventive genius of manufacturers have added under the pressure of this competition a large number of improvements to the manufacture of sulphuric acid and of soda, and new and valuable methods for the preparation of chlorine. Here, more than in any other branch of chemical industry, the struggle for existence is fierce.

The manufacture of iron, that most important chemical industry, is transformed by innovations. The imposing changes wrought by the older process of Bessomer, by the new one of Thomas, are they not based purely upon chemical reactions? The grandest upplication of a a complicated chemical reaction to a great manyfar trire is, perhaps, the dephosphorizing of pig-iron by lining the Bessener converter with basic material, an invention which we owe to Thomas and Gilchrist. From this again, agriculture derives an advantage in the use of the Thomas slag containing the phosphorus which heretofore rendered iron ore less valuable. This then is truly a transformation of stone into bread, similar to the older manufacture of soluble fertilizers from mineral phospbates. Nevertheless, the era of bliss which was prophesied three years ago at the Berlin meeting of naturalists by our illus. trious colleague, Ferdinand Oohn, has not yet dawned. He held that all struggles for existence amongst men, arising from want of food, (the bread question, will be done away with, when chemistry shall have learned to prepare starch from carbon dioxide and water. But since time immemorial the farmer is occupied in this very chemical industry, and it would hardly be great progress if the farm were merely replaced by a chemical factory. But we may reasoniably hope that chemistry will teach us to make the fiber of wood a source of human food.

Incleed, if we consider how small is the quantity of starch which the grain furnishes us, and further that the wood fiber has exactly the same chemical composition as starch, we see the possibility of increasing the production of food indefinitely by solving this problem: To transform cellulose into starch.

If this problem were solved we should find an inexhaustible source of human food in the wood of our forests, in grass, and even in straw and chaff. The beantiful researches of Hellriegel have recently disclosed the fect, which in former times was disputed, that certain plants transform atmospheric nitrogen into albumin and that this process can be improved by suitable treatment.

The increase of albumin in plants, according to a plan, together with the production of starch out of cellulose-this would in reality signify the abolition of the bread question.

May it some day be granted' to chemistry through such a discovery to inaugurate a golden age for humanity.

I have tried to give a review of the most important problems which are set before chemical science. I have mentioned a goodly number, but the short time of one hour permits me to truch but slightly upon the greater ones. There are so many problems before us, which await an immediate solution as to justify what I said in the beginning; that to day the chemist has no time to complain because the epoch of a mathematical treatment of his science has not yet arrived.
Nevertheless, the brilliant successes which bave been gained, the wonderful results which are immediately within our reach, have not the power to turn our eyes from this final problem.
The Newton prophesied to Ohemistry by Emil du Bois Reymond, may he appear at a later period; until he comes, may many a generation honorably plow on in the sweat of its brow! We must remember that nature is not understood by us until we are able to reduce its phenomena to simple movements, mathematically traceable.
The time will come, even for chemistry, when this highest kind of treatment will prevail. The epooch in which the foremost impulse of its research was a serenely creative imagination will then have passed; the joys, but also the pangs and struggles, peculiar to youth, will have been overcome.
Re-united to Physics, her sister science, from whom her ways at present are separated, Ohemistry will run her course with firm and unfaltering steps.

THE PHOTOGRAPHIO IMAGE.*

By Prof. Raphael Meldola, T. R. S.

The history of a discovery which has been developed to such a remarkable degree of perfection as photography has uaturally been \boldsymbol{a} fruitful source of discussion among those who interest themselves in tracing the progress of science. It is only my presence in this lecture theater, in which the first public discourse on photography was given by Thomas Wedgwood at the beginning of the century, that justifies my treading once again a path which has already been so thoroughly well beaten. If any further justitication for trespassing upon the ground of the historian is needed, it will be found in the circamstance that in the autumn of last year there was held a celebration of what was generally regarded as the jubilee of the discovery. This celebration was considered by many to have reference to the public disclosure of the Daguerreotype process, made through the mouth of Arago to the Freuch Academy of Sciences on August 10, 1839. There is no doubt that the introduction of this process marked a distinct epoch in the history of the art, and gave a great impetus to its subsequent development. 'But while giving full recognition to the value of the discovery of Daguerre, we must not allow the work of his predecessors and contemporaries in the same field to sink into oblivion. After the lapse of half a century we are in a better position to consider fairly the influence of the work of different investigators upon modern photographic processes.

I have not the least desire on the present occasion to raise the ghosts of dead controversies. In fact, the history of the discovery of photography is one of those subjects which can be dealt with in various ways, according to the meaning assigned to the term. There is ample scope for the display of what Mr. Herbert Spencer calls the "bias of patriotism." If the word "photography" be interpreted literally as writing or inscribing by light, without any reference to the subsequent permanence of the inscription, then the person who first intentionally caused a design to be imprinted by light upon a photo-sensitive compound must be regarded as the first photographer. According to Dr. Eder, of Vienna, we must place this experiment to the credit of Johann

[^64]Heinrich Schulze, the son of a German tailor, who was born in the Duchy of Madgeburg, in Prussia, in 1687, and who died in 1744, after a life of extraordinary actirity as a linguist, theologian, physician, and philosopher. In the year 1727, when experimenting on the subject of phosphoreacence, Schalze observed that by pouring nitric acid, in which some silver had previously been dissolved, on to chalk, the undissolved earthy residue had acquired the property of darkening on exposure to light. This effect was shown to be due to light, and not to heat. By pasting words cut out in paper on the side of the boltle containing his precipitate, Schulze obtained copies of the letters on the silvered chalk. The German philosopher certainly produced what might be called a temporary photogram. Whatever value is attached to this observa. tion in the development of modern photography, it must be conceded that a considerable advance was made by spreading the sensitive compound over a surface instead of using it in mass. It is hardly necessary to remind you here that such an advance was made by Wedgwood and Davy in 1802.* The impressions produced by these last experimenters were unfortunately of no more permanence than those obtained by Schulze three quarters of a century before them.

It will perhaps be safer for the historian of this art to restrict the term photograph to such impressions as are possessed of permanence. I do not of course mean absolute permanence, but ordinary durability in the common-sense acceptation of the term. From this point of view the first real photographs, i. ϵ., permanent impressions of the camera picture, were obtained on bitumen fllms by Joseph Nicéphore Niepce, of Ohalons-sur-Sâone, who, after about 20 years' work at the subject, had perfected his discovery by 1826. Then came the days of silver salts again, when Daguerre, who commenced work in 1824, entered into a partnership with Niepce in 1829 , which was brought to a termination by the death of the latter in 1833 . The partnership was renewed between Daguerre and Niepce de St. Victor, nephew of the elder Niepce. The method of fixing the camera picture on a film of silver iodide on a silvered copper plate-the process justly associated with the name of Daguerre-was ripe for disclosure by 1838 , and was actually made known in 1839.

The impartial historian of photography who examines critically into the evidence will find that quite independently of the French pioneers experiments on the use of silver salts had been going on in this country, and photographs, in the true sense, had been produced almost simultaneonsly with the announcement of the Daguerreotype process by two Englishmen whose names are as household words in the ranks of science. I refer to William Henry Fox Talbot and Sir John Herschel. Fox Talbot commenced experimenting with silver salts on paper in

[^65]1834, and the following year he succeeded in imprinting the camera picture on paper coated with the chloride. In January, 1839, some of his "photogenic drawings"-the first "silver prints" ever obtainedwere exhibited in this Lnstitution by Michael Faraday. In the same month he communicated his first paper on a photographic process to the Royal Society, and in the following month he read a second paper before the same society, giving the method of preparing the sensitive paper and of fixing the prints. The outcome of this work was the "Calotype" or Talbotype process, which was sufficiently perfected for portraiture by 1840 , and which was fully described in a paper communicated to the Royal Society in 1841. The following year Fox Talbot received the Rumford medal for his "discoveries and improvements in photography."

Herschel's process consisted in coating a glass plate with silver chloride by subsidence. The details of the method, from Herschel's own notes, have been published by his son, Prof. Alexander Herschel. \dagger By this means, the old 40 foot reflecting telescope at Slough was photographed in 1839. By the kindness of Professor Herschel, and with the sanction of the Science and Art Department, Herschel's original photograples have been sent here for your inspection. The process of coating a plate by allowing a precipitate to settle on it in a uniform film is however impracticable, and was not further developed by its illustrious discoverer. We must credit him however as being the first to use glass as a sub-stratum. Herschel further discovered the important fact that while the chloride was very insensitive alone, its sensitivoness was greatly increased by washing it with a solution of silver nitrate. It is to Herschel also that we are indebted for the use of sodium thiosulphate as a fixing agent, as well as for many other discoveries in connection with photography which are common matters of history.

Admitting the impracticability of the method of subsidence for producing a sensitive film, it is interesting to trace the subsequent development of the processes inangurated about the year 1839. The first of photographic mothods-the bitumen process of Niepce-survives at the present time, and is the basis of some of the most important of modern photo-mechanical printing processes. [Specimens illustrating photo-etching from Messrs. Waterlow \& Sons exhibited.] The Daguerrentype process is now obsolete. As it left the hands of its inventor it was unsuited for portraiture on account of the long exposure required. It is evident moreover that a picture on an opaque metallic plate is incapable of re-production by printing through, so that in this respect the Talbotype possessed distinct advantages. This is one of the most important points in Fox Talbot's contributions to photogra-

[^66]phy. He was the first to produce a transparent paper negative from which any number of positives could be obtained by printing through. The silver print of modern times is the lineal descendant of the Talbotype print. After 40 years' use of glass as a substratum we are going back to Fox Talbot's plan, and using thin flexible films-not ex. actly of paper, but of an allied substance-celluloid. [Specimens of Talbotypes, lent by Mr. Orookes, exhibited, with celluloid negatives by the Eastman Uompany.]

If I interpret this fragment of history correctly, the founders of modern photography are the three men whose labors have been brielly sketched. The jubilee of last autumn marked a culminating point in the work of Niepce and. Daguerve and of Fox Talbot. The names of these three pioneers must go down to posterity as coequal in the annals of scientific discovery. [Portraits by Mr. H. M. Elder shown.] The lecture theater of the Royal Institution offers such tempting opportuwities to the chronicler of the history of this wonderful art that I must close this treatment of the subject by reminding myself that in select. ing the present topic Lhad in view a statement of the case of modern photography from its scientific side only. There is hardly any invention associated with the present century which has rendered more splendid services in every department of science. The physicist and chemist, the astronomer and geographer, the physiologist, pathologist, and anthropologist will all bear witness to the value of photography. The very first scientific application of Wedgrool's process was made here by the illustrious Thomas Young, when he impressed Newton's rings on paper moistened with silver nitrate, as described in his Bakerian lecture to the Royal Society on November 24, 1803. Professor Dewar has just placed in my hands the identical slide, with the Newton rings still visible, which he believes Young to have used in this classic experiment. [Shown.]

Our modern photographic processes depend upon chemical changes wrought by light on films of certain sensitive compounds. Bitumen under this influence becomes insoluble in hydro-carbon oils, as in the heliographic process of the elder Niepce. Gelatine mixed with potassium dichromate becomes insoluble in water on exposure to light, a property utilized in the photo etching process introduced in 1852 by Fox Talbot, some of whose original etchings have been placed at my disposal by Mr. Orookes. [Shown.] Ohromatized gelatine now plays a most important part in the autotype and many photo mechanical proc. esses. The salts of iron in the ferric condition undergo reduction to the ferrous state under the influence of light in contact, with oxidizable organic compounds. The use of these iron salts is another of Sir John Herschel's contributions to photography (1842), the modern "blue print" and the beantiful platinotype being dependent on the photoreducibility of these compounds. [Oyanotype print developed with ferricyanide.]

Of all the substances known to chemistry at the present time, the salts of silver are by far the most important in photography on account of the extraordinary degres of sensitiveness to which they can be raised. The photograpbic image with which it is my privilege to deal ou this occasion is that invisible impression produced by the action of light on a film of a silver haloid. Many methods of producing such films have been in practical use since the foundation of the art in 1839. All these depend on the double decomposition between a soluable chloride, bromide, or iodide, and silver nitrate, resulting in the formation of the silver haloid in a vehicle of some kind, such as albumen (Niepce de St. Victor, 1848), or collodion on glass, as made practicable by Scott Archer in 1851. For 20 years this collodion process was in universal use; its history and details of manipulation, its development into a dry plate process by Colonel Russell in 1861, and into an emulsion process by Bolton and Sayce in 1864, are facts familiar to every one.
The photographic film of the present time is a gelatino-haloid (generally bromide) emulsion. If a solution of silver nitrate is added to a solution of potassium bromide and the mixture well shaken, the silver bromide coagulates and rapidly subsides to the bottom of the liquid as a dense curdy precipitate. [Shown.] If instead of water we use a viscid medium, such as gelatine solution, the bromide does not settle down, but forms an emulsion, which becomes quite homogeneous on agitation. [shown.] This operation, omitting all details of ripening, washing, etc., as well known to practical photographers, is the basis of all the recent photographic methods of obtaining negatives in the camera. The use of this invaluable vebicle, gelatine, was practically introduced by R. L. Maddox in 1871, previous experiments in the same direction having been made by Gaudin (1853-61). Such a gelatinobromide emulsion can be spread miformly over any sub-stratum-glasi, paper, gelatine, or celluloid-and when dry gives a highly sensitive film.

The fundamental problem which 50 years' experience with silver haloid films has left in the hands of chemists is that of the nature of the chemioal change which occurs when a ray of light falls on such a silver salt. Long before the days of photography, far back in the sixteenth century, Fabridius, the alchemist, noticed that native horn silver became colored when brought from the mine and exposed. The fact presented itself to Robert Boyle in the seventeenth century, and to Beccarius, of Turin, in the eighteenth century. The change of color undergone by the chloride was first shown to be associated with chemical decomposition in 1777 by Scheele, who proved that chlorine was given off when this salt darkened under water. I can show you this in a form which admits of its being seen by all. [Potassium iodide and starch paper were placed in a glass cell with silver chloride, and the arrangement exposed to the electric light till the paper had become blne.] The gas which is given
off under these circumstances is either the free halogen or an oxide or acid of the halogen, according to the quantity of moisture present and the intensity of the light. I have found that the bromide affects the iodide and starch paper in the same way, but silver iodide does not give off any gas which colors the test paper. All the silver halolds become colored on exposure to light, the change being most marked in the chloride, less in the bromide, and least of all in the iodide. The latter must be associated with some halogen absorbent to render the change visible. [Strips of paper coated with the pure haloids, the lower halves brushed over with silver nitrate solution, were exposed:] The different degrees of coloration in the three cases must not be considered as a measure of the relative sensitiveness; it simply means that the products of photo-chemical change in the three haloids are inherently possessed of different depths of color.

From the fact that halogen in some form is given off, it follows that we are concerned with photo chemical decomposition, and not with a physical change only. All the evidence is in favor of this view. Halo. gen absorbents, such as silver nitrate on the lower halves of the papers in the last experiment, organic matter, such as the gelatine in an emulsion, and reducing agents generally, all accelerate the change of color. Oxidizing and halogevizing agents, such as mercuric chloride, potassium dichromate, etc., all retard the color change. [Silver chloride paper, painted with stripes of solutions of sodiam sulphite, mercuric chloride, and potassium dichromate, was exposed.] It is impossible to account for the action of these chemical agents, except on the view of ohemical decomposition. The ray of light falling upon a silver haloid must be regarded as doing chemical work; the vibratory energy is partly spent in doing the work of chemical separation, and the light passes through a film of such haloid partly robbed of its power of doing similar work upon a second film. It is difficult to demonstrate this satisfactorily in the lecture room on account of the opacity of the silver haloids, but the work of Sir John Herschel, J. W. Draper, and others has put it beyond doubt that there is a relationship of this kind between absorption and decomposition. It is well known also that the more refrangible rays are the most active in promoting the decomposition in the case of the silver haloids. This was first proved for the chloride by Scheele, and is now known to be true for the other haloids. It would be presumption on my part in the presence of Oaptain Abney to enlarge upon the effects of the different spectral colors on these ha. loids, as this is a subject upon which he can speak with the authority of an investigator. It only remains to add that the old idea of a special "actinic" force at the more refrangible end of the spectrum has long been abandoned. It is only because the silver haloids absorb these particular rays that the blue end of the specirum is most active in promoting their decomposition. Many other instances of photo chemical decomposition are known in which the less refrangible rays are the most
active, and it is possible to modify the silver haloids themselves so as to make them sensitive for the red end of the spectrum.

- The chemical nature of the colored products of photo-chemical decomposition is still enshrouded in mystery. Beyond the fact that they contain less halogen than the normal salt, we are not much in advance of the knowledge bequeathed to us by Scheele in the last century. The problem has been attacked by chemists again and again, but its solution presents extraordinary difficulties. These products are never formed-even under the most favorable conditions of division and with prolonged peripds of exposure-iu quantities beyond what the chemist would call "a mere trace." Their existence appears to be determined by the great excess of unaltered haloid with which they are combined. Were I to give free rein to the imagination I might set up the hypothesis that the element silver is really a compound body invariably containing a minute percentage of some other element which resembles the compound which we now call silver in all its chemical reactions, but alone is sensitive to light. I offer this suggestion for the consideration of the speculative chemist.* For the colored product as a whole, i. e., the product of photo-decomposition with its combined unchanged haloid, Carey Lea has proposed the convenient term "photo-salt." It will avoid circumlocution if we adopt this name. The photo-salts have been thought at various times to contain metallic silver, allotropic silver, a sub-haloid, such as argentous chloride, etc., or an oxy'haloid. The freemetal theory is disposed of by the fact that silver chloride darkens under nitric acid of sufficient strength to dissolve the metal freely. The acid certainly retards the formation of the photo salt, but does not prevent it altogether. When once formed the photo-chloride is but slowly attacked by boiling dilute nitric acid, and from the dry photosaly mercury extracts no silver. The assumption of the existence of an allotropic form of silver insoluble in nitric acid con not be seriously maintained. The sub-haloid theory of the produce may be true, but it has not yet been established with that precision which the chemist has a right to demand. We must have analyses giving not only the percentage of halogen, but also the percentage o" silver, in order that it may be ascertained whether the photo-salt contains anything besides metal and halogen. The same may be said of the oxy-haloid theory; it may be true, but it has not been demonstrated.
The oxy-haloid theory was first suggested by Robert Hunt \dagger for the

[^67]chloride; it was taken up by Sahler, and has recently been revived by Dr. W. R. Hodgkinson. It has been thought that this theory is disposed of by the fact that the chloride darkens under liquids, such as hydro carbons, which are free from oxygen. I have been repeating some of these experiments with various liquids, using every possible precaution to exclude oxygen and moistare; dry silver chloride heated to incipient fusion has been sealed up in tubes in dry benzene, petroleam, and carbon tetrachloride, and exposed since March. [Tubes shown.] In all cases the chloride has darkened. The salt darkens moreover in a Urookesian vacuum.* By these experiments the oxy chloride theory may be scotched, but it is not yet killed; the question now presents itself, whether the composition of the photo-salt may not vary according to the medium in which it is generated. Analogy sanctions the sup. position that when the haloid darkens under water or other oxygen. containing liquid, or even in contact with moist or dry air, that an oxychloride may be formed and enter into the composition of the photosalt. The analogy is supplied by the corresponding salt of copper, viz, cuprous chloride, which darkens rapidly eit exposure. [Design printed on flat cell filled with cuprous chloride by exposure to electric light.] Wöhler conjectured that the darkened product was an oxychloride, and this view receives a certain amount of indirect support from these tubes [shown], in which dry cuprous chloride has been sealed up in benzene and carbon tetrachloride since March; and although exposed in a southern window during the whole of that time the salt is as white as when first prepared. Some cuprous chloride sealed up in water and exposed for the same time is now almost black. [Shown.]

When silver is precipitated by reduction in a finely divided state in the presence of the haloid, and the product treated with acids, the excess of silver is removed and colored products are left which are somewhat analogous to the photo-salts proper. These colored haloids are also termed by Carey Lea photo-salts because they present many analogies with the colored products of photo chemical change. Whether they are identical in composition it is not yet possible to decide, as we have uo complete analyses. The first observations in this direction were puNished more than 30 years ago in a report by a British Association Committee, in which the red and chocolate-colored chlorides are dis-

[^68]tinctly described. Carey Lea has since contributed largely to our knowledge of these colored baloids, and has made it appear at least highly probable that they are related to the products formed by the action of light. [Red photo chloride and purple photo-bromide and iodide shown.]
The photographic image is impressed on a modern film in an inappreciable fraction of a secoud, whereas the photo-salt requires an appreciable time for its production. The inage is invisible simply because of the extremely minute quantity of haloid decomposed, In the present state of knowledge it can not be assorted that the material conposing this image is identical in composition with the photo-salt, for we know the composition of neither the one nor the other. But they are analogons in so far as they are both the result-of photo chemical decomposition, and there is great probability that they are closely related, if notidentieal, cliemically. Itmay turnout that thereare various kinds of invisible images, according to the vehicle or halogen absorbent-in other words, according to the sensitizer with which the silver haloid is associated. The invisible image is revealed by the action of the developer, into the function of which I do not propose to enter. It will suffice to say that the final result of the developing solution is to mag. nify the deposit of photo salt by accumulating metallic silver thereon by aceretion or reduction. Owing to the circumstance that the image is impressed with such remarkable rapidity, and that it is invisible when formed, it has been maintained, and is still held by many, that the first action of light on the film is molecular or physical, and not chemical. The arguments in favor of the chemical theory appear to me to be tolerably conclusive, and I will venture to submit a fow of them.
The action of reagents upon the photographic film is quite similar to the action of the same reagents upon the silver haloids when exposed to the point of visible coloration. Reducing agents and halogen absorbents increase the sensitiveness of the film: oxidjzing and halogenizing agents destroy its sensitiveness. It is difficult to see on the physical theory' why it should not be possible to impress an image on a film, say of pure silver bromide, as readily as on a film of the same haloid imbedded in gelatine. Everyone knows that this can not be done. I have myself been surprised at the extreme insensitiveness of films of pure bromide prepared by exposing films of silver deposited on glass to the antion of bromine vapor. On the chemical theory we
very pale rod body on boing transformed by ohlorhydle and nitrio acids." In another exporiment silver arsenite whe formed, this boing treated with caustio sodn, and the black proolpitato then treated successively with chlorhydic and nitrie acids: "Silvor is dissolved, and there is left a substanco - - - [of] a rioh ohocolate or maroon, ote." This on analysis was fonnd to contain 24 per cont. of ohlorina, the normal chloride requiring 24.74 and the subohioride 14.08 per cont. The committee whioh conducted those exporlments consisted of Messrs, Maskelyne, Hadow, Hardwiok, and Llowolyn. B. A. Rep., 1859, p. 103.
know that gelatine is a splendid sensitizer-i. e., bromine absorbent. There is another proof which has been in our hands for nearly 30 years, but I do not think it has been viewed in this light before. It has been shown by Oarey Lea, Eder, and especially by Abney, who has investigated the matter most thoroughly, that a shearing stress applied me. chanically to a sensitive film leaves an impression which can be developed in just the same way as though it had been produced by the action of light. [Pressure marks on Eastman bromide paper developed by ferrons oxalate.] Now that result can not be produced on a surface of the pare haloid; some halogen absorbent, such as gelatine, must be associated with the haloid. We are concerned here with a chemical change of that class so ably investigated by Professor Spring, of Liege, who has shown that by mere mechanical pressure it is possible to bring abont chemical reaction between mixtures of finoly divided solids.* Then again, mild redncing agents, too feeble to reduce the silver haloids directly to the metallic state, such as oltaline hypophosphites, glacose or lactose and alkali, etc., form invisible images which can be developed in precisely the same way as the photographic image. All this looks like chemical change, and not physical modification pure and simple.

I have in this discourse stoically resisted the tempting opportanities for pictorial display which the subject affords. My aim has been to summarize the position in which we find ourselves with respect to the invisible image after fifty years' practice of the art. This image is, I venture to think, the property of the chemist, and by him must the scientific foundation of photography be laid. We may not be able to give the formula of the photo-salt, but if the solution of the problem has hitherto eluded our grasp it is because of the intrinsic difflculties of the investigation. The photngraphic inage brings us face to face-not with an ordinary, but with an extraordinary class of chemical changes due entirely to the peculiar character of the silver salts. The material com posing the image is not of that definite nature with which modern chemical methods are in the habit of dealing. The stability of the photosalt is determined by some kind of combination belween the subhalotd or oxy-haloid, or whatever it may be, and the excess of unaltered haloid which enters into its composition. The formation of the colored product presents certain analogies with the formation of a saturated solution ; the product of photo chemical decomposition is formed under the influence of light ap to a certain percentage of the whole photo-salt, beyond which it can not be increased,--in other words, the silver haloid is saturated by a very minute percentage of its own product of photo. decomposition. The photo-salt belongs to a domain of chemistry-a no-

[^69]man's land-peopled by so called "molecular compounds," into which the pure chemist ventures but timidly. Bat these compeands are more and more urging their claims for consideration, and sooner or later they will have to be reckoned with, even if they lack that defniteness which the modern chemist regards as the essential criterion of chemical individuality. The investigation may lead to the recognition of a new order of chemical attraction, or of the old chemical attraction in a different degree. The chemist who discourses here upon this sabject at the end of the half century of photography into which we have now entered will no doubt know more about this aspect of chemical affinity; and if I may invoke the spirit of prophecy in concluding, I should say that a stady of the photographic film with its invisibleimage will have contributed materially to its advancement.

A TROPIOAL BOTANIO GARDEN.*

BY M. TREUB.

A short time ago botanic gardens were arraigned by the rector of one of the largest universities of Europe in a serious discourse. The orator, a celebrated phyto-physiologist, complained that these gardens no longer keep pace with the botanical science of the day. In the middle ages and until the middle of the sixteenth century botanic gardeus were collections of officinal plants. Since that period they have become truly scientific institutions. Abandoning pure speculation, attention was given to living things themselves, particularly to plants. Patrons and scientists combined their efforts to bring from the most distant countries rare or unknown specimens. In the gardens, depos. itories of this wealth, the difficult task was attempted of presenting, oll a reduced scale, the entire vegetable world, and of bringing together (as far as possible), all existing vascular plants. In spite of the constantly increasing number of plants introduced into Europe, this general plan was for a long time followed, and not until the beginning of the present century, was it felt that the method must be changed. In the first place it should have been recoguized that it was impossible to collect in a single garden, however large and well managed, anything like the enormous number of vascular plants distributed on our globe. Besides, (and this is a more serious argument,) the conditions offered to introduce plants in gardens are so far from natural, that exotic cultivated plants can not be considered as furnishing a proper basis of comparison in scientific researches, as these are at present understood. Too many plants in conditions too abnormal is briefly the criticism made by the orator.
These institutions, attacked from so high a place, have not failed of defenders. While recognizing that part of the criticism is well founded, it is urged that if the object in view was varied somewhat by insisting -more than has heretofore been done-upon the adoption of a common plan, the botanic gardens of Europe would easily avoid the dangers with which they are menaced. It is not necessary that we take any part in this controversy, for the objections - whether well-founded or not-do not apply to botanic gardens of the tropics, as we will endeavor to show in the following pages.

[^70]The number of botanic gardens situated in the tropical zone is much greater than might be supposed. According to a recent enumeration there are not less than fifteen in the British possessions. In the French colonies they are found at St. Denis in Reanion Island, at La Point-d Pitre in Guadeloupe Island, at St. Pierre in Martinique, at Pondicherry, and at Saigon. Spain has one at Havana, and one at Manila; and Holland has a single one at Buitenzorg in theisland of Java. There are also tropical botanic gardens in South America, and these bring the total number to a considerable figure. Still it must be admitted that some are not botanic gardens properly so-called, but, rather agricultural stations and gardens of acclimation. There are others however, that while not abandoning tropical agrisulture, merit the names of great scientific establishments. As the chief of this kind, those of Oalcutta, of Buitenzorg in Java, and of Peradeniya in Ceylon (in chronological order) should be cited.

The royal garden of Calcutta was founded in 1786 by Ool. Robert Hyde, who was its first director. Among his successors are found the celebrated names of Wallich and Griffth, the greatest naturalist of our century in the extreme East. The garden of Oalcutta has now been for several years ander the wise and able direction of Dr. G. King, to whose care the herbarium of Calcutta owes its great reputation. The royal garden of Peradeniya in the Island of Ceylon was founded iu 1821. Situated near Kandy, at an altitude of nearly 500 metres [$[1,000$ feet], having a moist and hot climate, occupying more than $\mathbf{6 0}$ hectares [150 acres], and connected as it is with the post of Oolombo by a railway, the garden of Peradeniya possesses conditions most favorable in every respect. For many years it was uuder the direction of Dr. Thwaites, a man of real merit, but who thought a botanic garden in a tropical country should be in some manner a reduced copy of the virgin forest. This system, more original than meritorious, excludes any methodical arrangement of plants and necessarily restricts the number of specimens. Dr. H. Trimen, the successor of Dr. Thwaites, as soon as he arrived in Oeylon, 9 years ago, realized the disadvantages of the plan of his predeesssor. To distribute over an area of 60 hentares, without any order, a great number of plants, for the most part not labelled, was to fatally embarrass the scientifle use of the rich collections that had been brought together. So Dr. Trimen did not hesitate to adopt a new arrangement of plants according to the natural system and to label them as far as it was possible to do so. With branch establish. iwents apon the plain and upon the mountain, the garden of Peradeniya has before it a brilliant future. The third of the gardens mentioned, that of Buitenzorg in the island of Java, was founded in 1817. We will briefly relate its history and show by a study of its present organization that a new era is commencing for large tropical gardens, and that their influeuce will constantly increase in the future evolution of the science of plants.

I.

On the 29th of October, 1815, a squadron quitting the roadstead of Texel in the north of Holland set sail for the East Indies. The passengers (for they carried them apon these slips of war), must have rejoiced that they had left the storms and fogs of the North Sea for the sunny coasts of Malaysia The squadron took to Java the commissioners. general to whom the sovereign of Holland had committed the task of assuming in his name the government of the Dutch East Indies. Being a man of broad views, the new king had attached to the commission a distinguished naturalist, Reinwardt, professor in the Atheneum of Amsterdam, in order that the study of the marvellous natural products which constitute the wealth of the Dutch possessions in the south of Asia might be settled upon a solid basis.
The squadron did not enter the straits of Sunda until the last of April in the following year. The high functionaries, sailing after a long voyage between charming islets, set like emeralds in thin silver fillets of breakers, briathing the faint odors from the neighboring coasts, must at last land and take up their task. The future indeed reserved for them many disappointments, and it was only after long and tedious diplomatic mancervers that the English authorities, on the 19th of August, 1816, decided to turn over to the plenipotentiaries of the king of Holland the rule of the Dutch Indies. Barou Van der Oapellen the commissioner who was to perform the functions of governor-general shortly installed himself at Buitengarg, taking Reinwardt with him.
Buitenzorg, the residence of the viceroy of the Dutch Indies, is situated 58 kilometres [36 miles] from Batavia, in $106^{\circ} 53^{\prime} 5^{\prime \prime}$ east longitude and $6^{\circ} 35^{\prime} 8^{\prime \prime}$ south iatitude, upon one of the long ridges that extend to the north of the great monntain of Salak. An enchanting site, possessing a beautiful and healthful climate, it is not surprising that the governors-geueral established themselves there instead of at Batavia, however large and beantiful that "city of villas" might be. This preference, accorded to Buitenzorg by the representatives of the king, was the cause of the creation of a botanical establishment at that point. In fact, upon the request of Reinwardt, the commissionersgeneral decided-by a decree of April 15, 1817-to found a botanic garden at Buitenzorg upon an uncultivated territory belonging to the domain and ceded by Baron Van der Oapellen. On this territory, contiguous to the park and to the palace garden, work was commenced on the 15th of May by some fifty native workmen, under the direction of two chief gardeners, one of whom, brought out by Reinwardt, had been employed in the same capacity in Holland, while the other was a pupil of the royal garden of Kew. It would have been difficult to find in the whole island of Java a place more appropriate for a garden of this kind, for owing to certain conditions, Buitenzorg unitos to other advantages that of having no dry season, properly speaking. It is evident that
ouly a small number of plants could endure a period of almost continuous drought for 4 or 5 months, such as is habitual to the east of Java. Even the climate of Bataria, where 2 or 3 months without heavy rains are not rare, would be less suitable for a botanic garden than Buitenzorg, where they complain if in the middle of the dry season, rain is nbsent for 3 consecutive weeks. These frequent and heary rains are doubly advantageous for the garden; Buitenzorg owes to them its ever luxnriant vegetation (never ceasing, as one may say), and they cause a lowering of the mean temperature which wakes it possible to cultivate many plants from the virgin forests of the mountains, although the altitude of Buitenzorg is only 280 metres [000 feet]. In order to give an idea of the mass of water which is ordinarily shed upon the "Sans Souci" of Java,* it will be sufficient to say that at Buitenzorg there falls a mean quantity of 4,600 millimetres $\mid 180$ inches] of rain per year, while iu Holland, one of the most rainy conntries of Europe, there falls per year but 660 millimetres [26 inches]. No settled plan was at first adopted, aud the archives contain no indication of auy kind relative to the earliest management of the garden. We merely know that its founder, Reinwardt, took advantage of many voyages made by him to send plants to Buitenzorg. Yet the itrst catalogue of the "Botanic Garden of the State," the name officially adopted, published some months after the departure of Reinwardt, enumerates only 912 species of plants. Reinwardt returned to Europe in June, 1822, to occupy a chair in the University of Leyden. Upon his recommendation the Government placed at the head of the garden a botanist of exceptional merit, Dr. O. L. Blume, who thus became the first director of the "Hortus Boyoriensis," \dagger and whose seientific renown was cradled in the garden at Buitenzorg. Blume displayed a remarkable activity as director. He commenced in 1825 the publication of a work upon the flora of Dutch India; with a feverish activity he brought out during 1825 and the early part of 1820 , seventeen parts, describing more than 1,200 new species, a great number of genera, and several families of plants entirely unknown up to that time. The garden profted directly from the work of Blume, because the collection of living phants was enriched by a numerous series of species discovered by him. On the other hand, Blume succeeded in attaching to the garden, besides a considerable force and the two chiof gardeners, a third European gardener, and a draftsman. In short, the young institution came out brilliantly in every respect, and it seomed to promise a remarkable future. A cruel reverse however soon proved the uncertainty of these favorable prognostications. Blume, after having nearly broken down, lad to return to Europe in 1826, to re-establish his health. Alinost at the same time Baron Van der Oapellen was re placed by the Viscount

[^71]du Bus de Gisignies. The former had neglected nothing to stimulate the colony, but in doing this, grand seigneur that he was, he had no thought of cost. So Du Bus was sent out as commissioner-general, with an order to diminish the expenses, and to re-establish the balance of the colonial budget. He executed the orders received, and the expenses were immediately reduced, but how many usefal institutions were nearly or quite suppressed! The botanic garden of Buitenzorg was the first victim of the new measures. It was nearly wiped ont. In August, 1826, the posts of director and draftsman were abolished and but one European gardener was left. By a decree of the following year the special appropriation for the garden was discontinned, and it was decided that thereafter the "Botanic Garden of the State" should be kept up by a part of the sum allowed to the governors.general for the maintenance of their Park of Buitenzorg.
Happily there are providential interventions, thanks to which, struggling institutions resist the most murderous attacks. Such an intervention occurs when there arises a firm and persevering man who is able to demonstrate for yet another time, that will triumphs over the most vigorous decrees due to the necessities of the moment, and destined to disappear with the circnmstances which brought them forth. Such a man arose and the intervention was effected. General Oount van den Bosch, successor to the Viscount Bus de (isignies, who landed at Batavia in January, 1830, brought with him from Holland an assistant gardener, a young man who had occupied an inferior position in a country house near The Hague. Toward the end of the year the only chief gardener remaining at the garden fell sick, set out for Europe, and died on the voyage. - The assistant gardener of the governor general was selected to replace him. His name was J. E. Teysmann. Half a centur: later this simple gardener, who was given no other instruction than that of the primary schools, received a testimonial as brilliant as it was rare of the esteem he had won in the scientific world.

Besides diplomas of honor, medals struck with his effigy, felicitations from all parts of the world, there was given him an album, in which more than a hundred botanists, together with Darwin and De Oandolle, offered him their greetings, and this album had inseribed upon it, on a phate of gold, the following:
"Celeberrimo indefessoque, J. TA. Teysmann oum dimidium per saoulum Arohipelagi indioi thesaurum botanicum exploravit, mirantes collegge."

To have attained this eminence a man must have possessed extraordinary qualities, and Teysmann certainly had them. A man of strong character in every respect, he to the end of his life united with great energy and an active intelligence the ardent desire to seize any occasion for self.instruction, for extending his knowledge of his specialty, and particularly for enlarging lis views.

From 1830 to 1837, nothing is heard of either the Garden of Buiten. zorg or of the chief gardener. The botanic garden existed during that
period only in name, and the chief officer considered that the first ten years he passed in Java was only a term of apprenticeship. Still it was during that period, in 1837, that the colonial government decided on a measure which was finally to bring about most fortunate conse. quences.

The executive member of a so-called natural history commission, to whom was assigned the scientific direction of Buitenzorg, was then Diard, of French nationality, and it was he who warmly arged upon the governor the appointinent of Mr. Hasskarl, who had recently landed at Batavia and who wished a position. Diard succeeded in obtaining a provisional appointment for Mr. Hasskarl, first as gardener, then as botanist, and in the latter capacity he was charged with the systematic arrangement of the plants of the garden. - Tbis idea of Diard, carefully carried out, by Mr. Hasskarl, contributes much more to the scientific value of the gardeu than does the great number of speoies cultivated. Extensive arborescent groups, composed of the largest plants, were thus arranged in the natural order, and the botanist during the tive years that he was attuched to the garden was able to determine a large number of species and to compose the second catalogue of the garden, published in 1844, embracing over 3,000 plants, among which were many entirely new.

Diays and Mr. Hasskarl went to Eurgee on leave, and Teysmann agaic, remained alone and in very difficult circumstances, for after the departure of Diard the control of the botanic garden passed to a military man, the steward of the governor general's palace. This extraordinary arrangement continued, and for about 30 years soldiers controlled the Hortus Bogoriensis. Under such conditions a new perioil of decline, if not of complete eclipse, of the garden would have been inevitable had it not been for the presence of the energetic Teysmann. The more difficulties he encountered the more he displayed his rare qualities in the interests of the institution to which he felt himself attached for life. Iravelling much throughout the whole archipelago, he continually sent plants and seeds to the Buitenzorg. Upon his return he was constantly in the breach, fighting for the interests of his garden, not even recoiling from conflicts with his military chief, conflicts that it must be confessed were frequent. The result of this line of conduct was that in 1864, with the aid of Binnendijk, vho came to Java in 1850, Teysmann issued the third catalogue of the garden, in which the number of species under permanent culture exceeded 8,000 .

Finally, in 1868, the long periods of vicissitudes came to a close. The garden again became a scientific institution of the state, with a special director and appropriation, and ontirely independent of the stewards of the palace, with whom it was to have, hereafter, only neighborly relations. This return to the primitive organization was due to the influence of Teysmann, who himself maintained continuous relations with the garden by numerous consignments of seeds and plants
gathered during voyages to the remotest parts of the Dutch posses. siens. The government appointed as director Dr. Scheffer, of the University of Utrecht, a pupil of Mignel, the anthor of the Flora of the Dutch Elast Indies. The new director began his scientific researches as soon as he was installed at Java. A few years later he obtained from the government a subsidy for the publication of a scientific collection entitled Annals of the Botanic Garden at Buitonzorg. Daring the administration of Dr. Scheffer two changes of great importance took place. The collections belonging to the service of the Mines, contained in a large museum opposite the garden, were transferred to Batavia, and the government gave the building to the botanic garden for its herbarium, its collections, and its library. A second, not less important, was the founding, in 1876, of a garden and school of agricultare. The latter has since been abandoned. The considerable extension given to the garden ought to have implied an increase in the scientific staff. Unfortunately this was not understood, and Dr. Scheffer remained alone up to the time of his death, which took place in 1880, when he was 32 years old. The period since the death of Dr. Scheffer can not be said to belong to the domain of history, and we will therefore content ourselves. with oasting a rapid glance over the present organization of the garden.
The interest attached to the history of any institution depends, above all, upon the importance and extent which that institution presents at the time when it is considered. The reader will judge if that is the case with the establishment of which we are writing.
The State Botanic Garden at Buitenzorg comprises three different gardens. There is first, the botanic garden proper, in the center of the city, conupying an area of 36 hectares [89 aares], wedged in between the park oí tes bovernor-general, a little river, the Tjiliwong, and the postal road. It is traversed throughout its width by a large and tine avenue called the Avenue of the Kanaries, after the native name of the trees that border it, beautiful trunks of Oanarium Oammune, attaining a height of about 30 metres [100 feet]. Upon this avenue, which borders a great pond enlivened by a pretty island, carriages and footmen freely pass. From it roads practicable for carriages, in part open to the public, pass in all direstions and form the arteries to which are attached a perfect maze of foot-paths of different sorts. Plants of one family are, as we have said, found together. They form scattered groups, or rather they occupy one or more divisions bounded by the paths. Each division has at one of the angles a list of the genera it contains. Wach species is represented by two specimeng, one of which carries a label bearing the scientific name, the uetive name if there is one, and usually stating the products of the plant. In consideration of the great number of elimbing plants of tropical countries, Teysmann had the happy idea of putting thein together in a special part of the garden, where they also are arranged according to their natural affinities.

There is here offered a wide field for interesting observations. Including herbaceous plants, the total number of species is about 9,000 . In the middle of the garden there is a range of nurseries where young plants are cultirated, partly under shelters that protect them from the heat of the sun or from the injurious effect of beating rains. Some plants require special care, notably a certain number of ferns, arums, and orchids. These are placed in two buildings that resemble the hothouses of Darope, with the difference, however, that at Buitenzorg they serve to keep the plauts cool and not to give them a more elevated temperature. The garden lias its own earpenters who construct buildings of this sort; a small detail which will give an idea of the seale upon which everything is organized. The native force is composed of about 100 individuals, among whom are 3 employes having special knowledge of botany, much more than we would expect to find among Malays. This foree works under the orders of a chief gardener and a second gardener. The garien is open night and day, an arrangement which is only possible in the Dast where they are not yet suffieiently advanced to consider that property is robbery. At the two principal entrances there are gate-keepers but no gates.
The agricultural garden, the second division of the Hortus Bogoriensis, is situated about a league from the center of Buitenzorg and covers not less than 70 hectares [173 acres]. The arrangement of the place and the distribution of the plants at onee shows that the aim is exclusively practical. Everything is regular, the roads and foot paths intersecting at rightangles, the divisions thus formed of almost iniform size, the plants in each division all of the same species and the same age. While in the scientific division each species is represented by but two specimens of ench species, here there are a handred, but only cultivated plants that are or may become useful to agriculture or colonial industries; the different species and varieties of colfee, of toa, of sugar-cane, of rubber and gutta-perelia trees, the Erythroxylon Ooca which furnishes cocaine, trees which produce tamin and oils, forage plants, etc. A special part of the gardon is resorved for oficinal plants. There is a gardener. in-chief to direct the work, and a force or 70 native workmen.
The third garden is found at a considerable distance from Buitenorg on one of the slopes of the neighboring volcano of Gede. With an area of 30 hectares [74 acres], at an altitude of 1,500 metres [0,000 feet], it possesses a climate marvelously adapted for the cultivation of plants of the indigenons mountain flora, as well as those of Australia and Japan. About 10 natives work there under the orders of a European gardener. The three gardens which together constitute the State Botanic Garden at Buitenzorg have a total area of nearly 140 hectares [346 acres].
The museum, situated opposite the botanic garden proper, is a building $44 \cdot \mathrm{metres}$ long [144 feet], specially constructed for the purpose to
which it is now applied, although it was originally used for mineralogical collections. It is composed of a hall occupying the body of the principal story, and of two wings. On the flour of the hall are upright closets along the wall, and glass cases in the center containing collections both botanical and technical. Part of the exhibits are dried and part are preserved in spirits. The herbarium occupies the gallery which runs around the eutire hall, 4 metres above the floor. The dried plants are not, as in Europe, placed in portfolios, but in tin boxes in order that they may be better protected against insects and moisture, those groat enemies of collections in tropical countries. As a matter of course, corrosive sublimate, naphthaline and carbon bisulphide are considered at Buitenzorg as important allies in this constant fight against insects. The number of tin boxes containing the herbarium exceeds 1,200. Nach box contains, on an average, 100 specimens. One of the wings of the building is set apart for the service of the museum, a division which has for its chief the adjunct director of the garden assisted by a naturalist. The other wing, a little more than 10 metres long and nearly 11 metres wide, is wholly devoted to the library, which contains more than 5,000 volumes. This is a considerable number when it is remembered that it is a special botanical library, although books of general natural history and transactions of academies of sciences such as those of Paris, Berlin and London, are not wanting. In the matter of descriptive botany an attempt is made to obtain, besides classical and indispensable works, whatever relates to the flora of the extreme Orient. The books on general botany are supplemented by the most recent treatises and publications on morphology, anatomy, physiology, and vegetable paleontology. But the special wealth of the library of the garden at Buitenzorg is the series, generally complete, of all the roports and botanical reviews of the first rauk at present published in Dutch, Frenoh, IOnglish, and Italian. The special isolation of a botanical gardon situated at equally romote distances from the soientific contres of the Old and the Now Woxld makes it nocessary to attend earefully to the maintenance of tho library, keeping it woll up to the advances of scienco.

Thore are three laboratories, and there will soon be a fourth, for in acoodance with the proposition of the colonial government accopted by the mother country, the foree in the garden of Buitenzorg is to be increased by two new functionarios, a botanist and a chemist, whose task it will be to furnish by patient and careful investigations scientifie datia as to the useful plants of tropical countries and their culture. The laboratory intended for the chemist is not yet opened. Behind the museum in a special building is the pharmacological laboratory where a pharmacal chemist temporarily attached to the garden carries on investigations upon alkaloids and other curious and useful substances which tropical plants contain. Oonsidering the small amount of exaet knowledge that we have concerning these substances this happy inno.
vation ean not but produce results of great practioal utility as well as of great scientifle interest.

Two botanical laboratorios are placed in the main botanio gardens, behind the range of nurseries. One of these, a large hall 6 metres wide and 20 long, is reserverl for foreign scientiats who come to pass some time at the Hortus Bogoriensis to make inrestigations and to study the tropical flory in its home. This laboratory is lighted by five windows at each of which there is a work table. Olosets placed against the opposite wall contain the necessary atensils, optical and other apparatus, flasks, vases, etc., and the so-called micro-chemical reagents. Besides, there is a small collection of working books so that investigators need not have to depend upon the main library. It is also proposed to facilitate the researches of visitors, by placing in the hall a herbarium consisting entirely of specimens of plants cultivated in the garden, so that in cases of doubt the rapid ldentification of any such plant may be made without having recourse to the herbarium of the museum. This special laboratony herbariam is at present only began. The arrangement of the hall is simple, offering at once the advantages of good light and plenty of room. This last point is an essential thing in hot countries, where open space is necessary, especially in a laboratory for research. Even at Buitenzorg, where the evenings, nights, and mornings are fresh, the mean temperature in the middle of the day is from 288° to 29° O. [82 ${ }^{\circ}$ to 84° F.]. There are even days during the dry season when for 2 or 3 hours in the fatter part of the day the mercury rises to 31° O. [880 ${ }^{\circ}$].

The second botanical laboratory, about 100 paces distant, baoked up against the office of the garden and communioating with it, is reserved for the director and the new functionary, the botanist who is expeoted from Europe.

The fourth laboratory, that of agricultural ohemistry will shortly be established in the garden of agrioulture. In the near vieinity of the botanical laboratory aro the offees and a small photographie and lithographic workshop for the dratisman photographer. The offices, formerly badly arranged in two small rooms of the museum, havo just been trans. ferred to a special buidding, given up for that use by the Government, a new proof of the solicitude the government of the Duteh Dast Indies and of the mother country always feels for the Garden of Buitenzorg.

II.

What are the principles of the organization we have just described, and how does it work? What are the advantages peculiar to large botanical gardens in the tropies, and why is there reason to expect them to exercise a great influenco over the future development of botany $\%$ Before answering these questions an understanding must be reached on an essential point; that is to say, the different way in which
pure and applied science is studied in Lurope on the one hand and in a tropical country on the other. When among European peoples soience took the marvellous flight which characterizes onr century, a differ. entiation soon commenced. Purely soientific studies and investigations romained as formerly more or less directly attached to the universities and faculties, in a word, to superior instruction, properly so called. But at the same time the remarkable useful applications whioh accompanied the progress of soience necessitated the creation of special institutions, polytechnic schools, technical laboratories, experimental gardens, agricultural stations, etc. Both of these sieter branches, pure and applied science, equally demanded indefatigable workers, trained in method and gifted in intelligence. While having a totally different object, they remain in relatiou and continual contact. Still the specialization exists and it may be easily foreseen that it will increase. It is the same or will be the same in colonies where the olimatic conditions permit the European to fix his vermanent habitation, lut it is not the case for European colonies in tropical countries. There the colonists do not come with the intention of remaining permanently. On the contrary, from the time of their arrival in the distant country, however beautiful and fertile it may be, they are firmly resolved to return to their uative land. The majority of them, having acquired social position or the wished-for fortune, hasten to return home, almost certain to find that the recollections of ohildhood and youth are deceptive, and that the climate and social organization in Europe are far from reaohing the ideal which they had formed during their sojourn at the antipodes.

Recently the question has been mush discussed whether Europeans can found colonies (in the strict sense of the word) in tropioal countries, reside there for several successive generations, and raise there a pure blooded race. The celebrated Professor Virchow is one of those who deny with great authority and energy the possibility of a true acolimation of a Duropean race in Ω tropionl country. If a naturelist who has dwolt in the beantiful island of Java for some yearg, and who is a forvent admirer of it, may be allowed to have an opinion on this mooted question, I must avow that ovarything goes to show that M. Virehow is right. But whatever opinion may be held concorning the theovotical possibility of this aeclimation, the plain factis this, that in the Dutoh Dast Indies, and so far as I know in other tropical countries also that have boen under European control for some centuries, the pures race has not sueceeded in becoming acclimated.
This point once understood, it will be clearly seen why (with rare ex. ceptions) universities, faculties of sciences, and similar institutions have hitherto been wanting in tropical colonies. Familics send their sons to Furope to study and take their degrees. The toaching body of the university, with its laboratories, its llbraries, its cabinets, and its collections, does not there exist; and yet it is especially in a tropical colony that material interegts, so important there, ought to criuse great value to be
placed upon applied science. This is a contradiction at once apparent, and which becomes still more obvious if we pass from the general case to the special one of botany, which is of the first importance, because of the great influence it has upon tropical agniculture. The time has passed, and we should be glad of it, when the high price of colonial products, the want of co-operation, excessively cheap labor, and sometimes also oppression of the native population, made all special knowledge superfluous to anyone who chose to take the chance of making his fortune in agriculture. We are already far from the period when the grossest empiricism was usually sufficient, pormitting the acquirement of weilth by those destitute of education and often even of intelligence.

To insure solid results, tropical agriculture-no less than that of temperate countries-demands judgment and special knowledge, and the need is felt of establishing it also on a firm scientific basis. It has it is true been said, adopting a practical view of the very narrowest kind, that the contradiction we have just pointed out, did not necessarily exist, since it was only necessary to take for a scientific basis the results of the researches of European scientists, only that the application will be somewhat different in the tropics. This is a very grave error, especially since it relates to the phenomena of life. It is vain for us to compare as to their effects upon vegetation, the dry season with winter, and the rainy season with spring and summer. The forms and functions in which vogetable life manifests itself in an equatorial country are quite different from those in the temperate zone. The essential laws which rule life are the same, but the manifestations of it are quite different; It is therefore for the immediate interest of tropical colonios to possess sciontific establishments for the study of life in its forms and in its functions. As institutions of this laind depending upon universities or faculties do not exist, it is ovident that botanic gardens established by the state are indisponsable. Those gardens serve a double purpose, scientific and practical, but, it should not be forgotten that it is in science ouly that they must have thoir root. The seientifle institution forms the trunk on which the branoheg are grafted. If the trunk is hampored over so little in its growth and loses its vigor, the branches will certainly suffer, and in the ond may perish. Thus overything which lowers the scientifle tone of a tropical botanic garden is contrary not only to the advancement of science, but also to the direct interests of the colony.

It is neccessary to insist upon this trath becanse there is always among agriculturists a tendency to confound a botanie garden with an agricultural station or with an experimental garden. This error is excusable in persons who not understanding the festina lente of science, aro continually wishing immediate muswers to questions of vegetable pathology and physiology which they ask in the interesta of the special culture in which they ars engaged. This want of patience and comprehension of the modus operandi in scientifle investigations is the principal reason why agricultural stations faunded by agriculturists them.
selves are liable not to give the results expected and certainly merited by the laucable efforts of those who established them. A state establishment pursues its regular development protected against these im. patient demands. It gradually extends its sphere of action for the interests of all, but without allowing the variable and often exaggerated exigencies of the moment to disturbit. The first duty of the functionaries placed by the colonial govermment at the head of the botanic gardens is to combat the lack of stability and continuity, the scourge of every colony. It is not only the right but the duty of governments to demand that the persons to whom they have entrusted these posts shall not have variable aud narrow views, excusable in othors, but never in a naturalist. The latter has had the benefit of an enlightened scientifte education, and there is expected of him a certain breadth of view which should be the result of his own researches. These general priuciples admitted, let us see how they are carried out in the particular case muder consideration. The government of the Dutch East Indies authorizes the director of the garden at Buitenzorg to distribute gratuitously seeds and plants of usetul vegetables. In 1888 there was sent to all parts of the archipelago 1,400 packages of seeds, cuttings, and young seedlings of useful plants. It is by means of the garden of agriculture that it is possible to gratify so many demands. But this garden is part of a scientific organization and would not work well if alono. The following examples will show this: When the remarkable anmsthetio qualities of cocaine were discovered, it was only necessary to go to the two specimens of Erythroxylon coca of the group of Drythroxylaced in the botanic garden proper. Enongh seed could be gathered to make a little plantation in the garden of agriculture. When, a year after, a scientist urged upon the colonial secretary at 'lhe Hague that the introduction of Erythroxylon coca should be attempted at Java, the Baitenzorg athorities were able to answer that thousands of seed gathored in the garden of agriculture had just been distributed. The tree for a long time known as the producer of the best quality of gutta-pereha, the Palaquium (Ssonandra) gutta is believed to grow nowhere in a wild state; at all evonts it is almost impossiblo to obtain seeds. In tho division of Sapotaces in the garden of Buitenzorg, aro two specimons from 30 to 40 years old which produce every 2 years a great number of seeds. From them has come the young plantation in the garden of ugriculture as well as a great number of specimens in a large separate plantation of gutta-percha trees commenced by the government some years ago under the auspices of the garden of Buitenzorg. The camphor tree of Sumatra, a plant of great value, is very diffieult to obtain, first because its seed are very few, then becanse they lose very rapidly their germinating power, even during a short voyage. By taking special pains Teysmann succecded in introducing the tree at Buitenzorg. In 1885 the specimens at the botanic garden began to bear fruit, and now the garden of agriculture possesses a plantation of young H, Mis, 129-26

Sumatra camphor trees, while there is besides a considerable number of plants to be distributed during the next rainy season. Why was it that a short time after their qualities became known, the garden of agriculture possessed new cacao trees from Nicaragua, rubber trees, forage plants, and new varieties of coffee plants from Brazil, oleiferous plants, plants for cooking and useful trees from Gaboon, rubber climbers from Zanzibar, etc. 1 It was only because, having the great botanic garden to depend upon, it could offer its correspondents in exchange many a plant interesting to botany or horticulture. The researches hitherto made at Buitenzorg upon the pathology and physiology of plants of general culture have been but few in number, and besides they have been more or less against the interests of the garden, an additional proof of what has just been stated. As soon as the two new function. aries, the botanist and the chemist, especially appointed for these researches shall arrive, the scientitic force of the garden at Buitenzorg will be sufficiently numerous and varied to answer every need. On the one hand it will be impossible to lower the general scientifle tone; or the other, patient and careful researches will give to agriculture a solid basis by which it will not fail to profit. The trunk will preserve the necessary sap for the food of the branches on which practical aims will have been grafted. That which will be accomplished in a little time for agriculture, took place a year ago for pharmacology and toxicology. Although the skillful pharmacal chemist who is the chief of this now division has only commenced his researches, the results obtained up to the present time furnish conclusive proofs both of the utility of the measure undertaken by the colonial government and of the necessity of attaching this laboratory to a great botanic garden.

At the time of the founding of the Hortus Bogoriensis the great utility which it would flnally be to the colony was perceived, but this was not the chiof motive for its creation. When the government of Folland sent Reinwardt to the Dutch Dast Indies it was, as expressly stated by the sovereign, "for the purpose of obtaining as thorough a knowledge of our colonies as our neighbors possess of theirs." It was the intention of the king to contribute, by encouraging seientifie explo. ration in the colonies, toward "rendering manifest the happy rehobidtation of the Dutol name. The result of generous ond olevated ideas, it is the duty of the garden of Buitenzorg never to forget its origin. To continue an emulation with the neighboring colonies, to aid in mak. ing küown every possible aspect of the exuberant vegetation of the tropics, to contribute to the advancement of soience independent of any direct utility, is really to render service to the colony, and in a way which, in the long run, is quite as effcacious as that which looks only towards direct practioal interest. The more civilization advances the more it is demanded of nations which possess great kingdoms in faraway countries blessed by heaven that they should not forget that royalty has its responsibilities and that it can not be allowed to withdraw
itself from the noble task of adding to our knowledge of nature, independent of any direct advantage, either present or future.

A considerable part of this duty falls upon botanic gardens, especially when they possess special advantages like that of Buitenzorg. We said at the beginning that the adverse criticisms made against botanic gardens would not apply to those of the tropics because the latter are placed under quite special conditions. In fact, the short descriptions which we have just given will suffce to make it understood that judg. ing by Buitenzorg there is no attempt at making an immense collection of plants in abnormal conditions. It is true that in many divisions of the garden growth has caused the trees to approach each other too closely, but the suecimens that suffer in this way do not at all remind us of those slender, spindling specimens of hothouse growth attacked by the learned oritic. As to the conditions offered to plants it is evident that there is a great difference between hothouses and a garden. Not that the Hortus Bogoriensis offers to all its plants a perfectly natural situation, but from that to abnormal conditions is a long way. It is sufficient to recall that aside from young plants and the very few species that are cultivated under shelter, all the plants grow in the open ground. In the second place it is evident that the great number of vegetables seattered over such a vast space implies the impossibility of giving a factitious life to any one specimen by over care. In general it may be suid that every plant introduced into Buitenzorg with which the slimate does not agree ends by dying,-generally in a very short time. The plants that continue to grow in a tropical garden may develop more or less well, but it is very rare that we have to admit that they are abnormally developed, so the taxonomist and the morphologist can study the plants of the garden without fearing to fall every moment upon characters that are unnatural or disfigured by eulture. In the rare cases of doubt the herbarium is there to serve as 8 check and to allow a comparison with neighboring species not cultivated in the garden. In viow of the great number of tropical ligncous-plants, the stiudy of living speeimens has for the systematist some real advantages over the study of herbarium specimens. The latter are necessarily but small fragments, carrying, it is true, flowers and fruits, but very rarely showing poly-. morphism, so frequent in vegetation. The physiologist and the anato. mist may make their rescarches on development, the play of functions, and the minute structure of the plants of the garden without the fearof being led into orror by degenerations and reductions due to a life of starvation and ill-health consequent on unnatural conditions. For this sort of researches the absence of a dry season is of special advantage to the garden of Buitenzorg. The periodicity shown in the successive. stages of the evolutionary cyele of a plant is there almost always due. to internal causes and quite rarely to the direct influence of extermal causes. This is, for the phyto-physiologist, an advantage which he, does not find in the temperato zone and rarely in the tropics.

We see in what favorable circumstances the botanists attached to the Hortus Bogoriensis and residing at Buitenzorg study in every aspect the flora of the Uuteh East Indies, and in general the manifestations of vegetable life in a tropical country, but they would have very badly understood their task and shown a regrettable narrowness of ideas if they had wished to preserve for themselves the discoveries and the investigations in this vast aud fertile field of study. Far from this, it is their daty to constantly urge their brethren beyoud the ser to come and protit by the opportuuity of studying a great number of questions it would be impossible to attank in Europe. A generous scientific hospitality offered to all, profitable to science aud worthy of the colony that has the advantage of being able to offer it, is the ouly line of con. duct proper to follow. For the purpose of carrying out a plan like this the government of the Dutch East Indies founded at Buitenzorg four years ago the laboratory of research which is at the disposal of foreign maturalists.

At length we have reached the important question, what reason is there to think that botanic gardens in the tropics have entered upon a new phase in which they will exercise great influence upon the study of botany? The answer is as simple as it is short: because they have become botanical stations similar to the zoollogical stations on the coasts of Europe. Any one interested in natural solences must know that zoology owes a great part of its recent rapid advaucoment to these littoral stations. However unlikely it may appear we may prediot that botanioal gardens of the tropics will have in future a still greater importance in the advancement of botany. To effect this they must be large and favorably situated like that of Buitenzorg and of Paradeniya, where they have just followed the example of establishing a laboratory for visitors.

In order that this prognostication may be realized two things are necossary. Finst, that botanists shall follow the example given by their collemgues, the \%oologists, in bocoming less reelusive; then, that they shonld have more aceurate ideas as to the "porils" to which one is exposed in a soa voyage, and espeoially as to the "dangers" whioh meèt a visitor to a tropical olimato. Rocks, hurricanes, and shipwreoks on one side, fatal disenses, wild beasts, serpents, and venomous creatures of all kinds on the other, are so many phantoms which haunt timid imaginations and projudiced minds. Whoover is acquainted with the great steamers that make the voyage to the Indian Ocean knows that the perils and inconveniences which it wes imagined must be ondured on board these well-equipped and comfortably fitted vessels have very little basis of fact. Three or four weeks of doloe far niente passed on board a great mail steaner, during which one enjoys the excellent fresh sea air, are advantageous to the health. It is true that it is sometimes a little tiresome, that there is at times a little monotony in the diversions offered by the flying fish and porpoises. But on the other
hand what excellent memories are preservad of the long days on board! The apprehension which has the least foundation in fact; that of the dangers which one incurs by passing a few months in a tropical country, is yet more difficult to dissipate. The filse opinions on this subject, which are found in every country, have a singular tenacity of life. If one only goes to a healthy and oivilized locality a sojourn of a few months in a tropical country presents no danger whatever. On the contrary, for many constitutions, autumn and winter in Europe are far from being as healthy as the climate of the tropics. Oertainly it is possible that the latter may be injurious, but such an effect is only felt after a prolonged exposure.
However unfounded such fears may be they oan not be overcome if there remains any doubt but that a sojourn of some months in a botanic garden in the extreme Orient will bs of great use to a naturalist. The remark has sometimes been made that a botanic garden of this kind, however great and rich it may be, can not give by itself any adequate idea of the vegetation of a virgin forest which has such an irresistible attraction for the observer of living nature. This is true, but it should not be forgotten that in Java, as in many other tropical countriss, primitive nature and civilization jostle each other. At Buitenzorg, the vice-regal residence, an exoursion of 1,2 , or 3 days transports the botanists to a perfectly virgin forest, so near is it. Besides, a branch establishment of the garden is situated upon the mountain called Tyibodas, which touches the very edge of the forest from which it was recovered. There naturalists visiting the betanical station of Buitenzorg go to pass some time for the purpose of making observations and gathering at their ease plants from their native wilds. In order that these wilds may be safe from any injury by the natives, and that their primitive character may be preserved, the government has taken care to put an area of some 200 hectares [nearly 1 square mile] under the immediate control of the botanic garden.
There are certain obstacles to be met when one would make a voyage to the Dast Indies, such for example as proparing for an absence of considerable duration, a loave to be obtained or a public inission to be asked for, or objections of members of the family unaccustomed to travelling. Therefore it may be asked whether such a voyage secures to the investigator not only the certainty of establishing now facts which may be arranged on well-known lines, but also whether there is much chance of discovering new paths which when oxplored will lead science to new results. This question should receive a stronger affrmative answer than might be supposed by many naturalists who have never quitted Furope. In order to appreciate how flerce is the struggle for life in the tropics, amd to comprehoud how nature has exhansted herself in furnishing to the combatints in diversity of offensive and defensive arms elsewhere unknown, it is necessary to observe it upon the spot. Oue must see for one's self-to eite but one example-trees of lofty
stature covered to the top with a bosky vegetation of parasites and epiphytes, to be able to conceive how, in their own special way these wrestlers have multitudes of special adaptations of which we as yet Tout dimiy perceive the origin and the functions. Only after having experienced the surprise caused by the sight of the luxuriant vegetation of the tropies, can the physiologist at last obtain a true idea of the wonders reserved for him in the stady of vital phenomena manifesting themselves with such remarkable force. Finally, it should be borne in mind that the present climatological conditions of equatorial countries are very much like those which formerly extended over the entire surface of our globe. It is therefore indispensable that we should study tropical plants if we wish to solve the series of riddles relating to the origin and affliation of the plant groups of our period. To the botandists who study this rarvellous flora in its native situation is reserved the honor of flling out the great gaps in our present knowledge and of making discoveries whose importance and signification we can now Dut partially guess.

What we have just said is neither premature nor out of place. First, the results already obtained sustain it. Besides, naturalists have recently given a proof of the interest they have in extending their researches to equatorial countries. During the 4 years that the laboratory for research has been established at Buitenzorg it has been visited by fourteen naturalists, and all but one came from beyond the sea and from different countries. It is to be regretted that we have to add that no French botanist has, up to the present time, come to oecupy a work table in the laboratory of the Hortus Bogoriensis. Without doubt the number of visitors will go on increasing, and at length they will come from all nations. He who has the honor of now directing the scientific establishment described in this article is the first to desire it. Indeed, it is with the intention of encouraging and stimulating this movement that it has beon writton.

TEMPERATURE AND LIFE.*

By Henry de Vartgny.

Everything that lives gencrates heat. Wherever there is life there is simultaneously a production and liberation of heat. On the other hand, there exist for all organic life, animal or vegetable, limits of temperature, above or below which life can not be sustained and between which points only can full development be attained. Temperature is therefore an important element in all life, and it is interesting to consider in detail the facts upon which this conclusion rests. We must weigh successively two questions: namely, the generation of heat by organic life, and the influence exerted upon that life by the theometric variations to which it may be subjected-variations which necessarily react upon internal temperature, with different degrees of intensity, however, as we shall see.

I.

Every animal is a source of heat. This is distinctly appreciable in man, birds, and superior organisms in general, and the characteristic temperature of the various members of the animal kingdom presents interesting, although inconsiderable, differences. Birds generate more heat than any other organism, in so far as their temperature is shown to reach a higher point. According to various obsorvers, it varies from 39° to $44^{\circ} \mathrm{C}$., while that of man and mammals ranges between 37° and $39^{\circ} \mathrm{C}$. (98° and $102 \circ \mathrm{~T}$.)

Man, mammals, and birds are called creatures of equable temperature, homeothermic-that is warm-blooded-...animals. By this is meant that their individual temperature is high, that it vares but slightly, and that it does not follow the changes in the surrounding atmosphere. Another class of organisins, representatives of which are never found among birds or mammals, are called heterothermic-cold-bloodedanimals; creatures of variable temperature, since, in their normal physiological state, their individual temperature follows closely the changes in the atmosphere about then. The temperature of reptiles, batrachians, fishes, mollusks, crustacea, insects, etc., is almost identical

[^72]to that of the water or air surrounding them. All animals except mammals and birds are cold-blooded animals. It is to be noted how. ever that certain mammiels, usually rodents, are in turn warm. blooded and cold•blooded. These are hibernating animals, which after the fall of the external temperature below a certain point, become torpid and fall asleep, their own temperature being hardly higher than that of the air about them. Of these we shall speak again later.

Without the aid of certain instruments heterothermic animals would appear to generate no heat whatever; for to our senses, their tempera. ture is the same as that of their surroundings. In the case of reptiles, however, the temperature exceeds that in which they are placed, (the difference being estimated when the external temperature was at a point between 5° and $15^{\circ} 0$.) as much as 6,7 , aud 8 degrees, though it more frequently varies from 1 to 4 degrees. In the case of batrachians it is less, scarcely exceeding 2 or 3 degrees under the same conditions. The difference is still less appreciable in flshes, and it reaches its low. est point in invertebrates, in which the temperature only occasionally shows an excess of one-fourth or one-half of a degree centigrade over the temperature of their surroundings. Insects, particularly those which live in communities, generate at times considerable heat. Thus Reaumur observed the temperature in a bee-hive raised to 120.5 O . when the external air was at - 30.70 . In short, heterothermic animals generate little heat, but its production is constant.

- What is the cause of this calorification 9 This is the question into which we are now to inquire. The strangest ideas have been entertained in regard to it. One investigator makes a mysterious principlo of animal lreat, the seat of which is the heart, where it develops so high a degree of temperature that touching this organ by chance results in a painful burn. The author of this theory has evidently never practised vivisoction, for, as a matter of fact, the heart is ono of the coldest of the organs, in mammals its tomperature rarely exceeding 39° or 40° O. According to J. Huntor, the celebrated surgeon and anatomist, this mystorious principle of animal heat resides in the stomach. Barthe\% and his followors attribute it to an entirely different canse; more reasonable (in that it excludes the supernatural and mystorions), but no less erroneons. Their belief is that it is due to the commingling of the several liquid and solid portions of the organism. It was havoisior who laid the foundations of the true theory of calorification. Having made an exact calculation of the nature and properties constituting the atmosphere in its normal condition, he demonstrated in an irrefutable manner that air, oxpelled by a living creature, contains carbonic acid in larger quantities than the air which ho inhales. A combination has therefore taken place botween the oxygen in the air and the carbon contained in the organism. "Pure air, in passing through the lings, offects a combination analogons to that which takes place in the combustion of charcoal. Now, in the combustion of charcoal there is a
liberation of matter from the fre, consequently there must be likewise a liberation of matter from the combustion in the lungs." That is to say, since the lungs evolve carbonic acid, a generation of heat must follow, for the reason that heat is under all circumstances an accompaniment of combastion. A living organism produces heat because it burns. The study of a contury goes to show the accuracy of this conclusinn.
According to Lavoisier the lungs appear to be the seat of respiratory combustion and calorification. On this point however he is gaarded in what he says, and this reserve is justifiable, as, in point of fact, their rolle is quite a different one from that which he supposes. Lagrange, a short time after Lavoisier, combatted this supposition, stating that if the lungs were actually the seat of these combustions, the heat generated would be of such intensity that this organ would suffer injury sufficiently serious to be incompatible with life. This, however, is an exaggeration. The production of heat has been estimated, and, even supposing the lungs to be the exclusive seat of this function, the temperature of this organ would not be intense enough to be injurious. The most exact researclies have shown what is the work assigned to the lungs in the process of calorification. This organ which, owing to its innumerable cells, representing a surface of 150 or 200 square metres (this, although astonishing, is indisputable), only serves to bring in contact the blood and the air. The net-work of capillaries, separated from the air by a fine layer of cells, represents a surface equal to about three-fourthis of that of the entire lungs, and forms a sanguineous coating of 100 or 150 square metres. This has little depth, it is true, only containing 2 litres of blood. This however signifies little, for in order to secure absorption, it is extent of surface rather than depth which is required; the latter being of slight consequence. Moreover if there are at a given moment 2 litres of blood in the lungs it is estimated by a simple calculation that the total quantity of blood passing through the lungs in the course of 24 hours is about 20,000 litres. In fact, the anatomy of the lungs is admirably arranged to give them this absorb): ing eapacity, and experience shows that their role is exactly that for which their organization is best adapted. The hlood which permentes the lungs absorbs the oxygen in the inhaled air, hy reason of a chemieal aflluity between the homoglobine of these red globules and that gas, and carries it throughont the body. It is in the recesses of tho, tissues over all parts of the organism that this oxygen, separating itself from the hemoglobine, unites with the carbon of the tissues, and ignites in order to give birth to heat and carbonic acid; necessary results of all combustion. The acid which is taken up loy the blood is finally expelled through the luings.
Oalorlfteation is thus the result of combustions which take place at all points of the animal economy. It is in complete dependence upon the relations of two other functions-respiration (that is to say, the supply of oxygen for burning) and alimentation (the supply of carbon or of
combustibles). We shall have occasion to refer to this point later on. Oalorification is produced not only in the langs, as Lavoisier believed up to a certain point, but in all the tissues of the organism, the proof of it being that the tissues respire in a condition of life. Uxception is made, however, of cutaneous grewths, such as hair and nails, these being lifeless portions of the organism. If the tissues respire it is because there is a combination of oxygen and carbon, hence combustion, hence heat. The demonstration of the respiration of the tissues is easily furnished by experiment. Let an animal be killed and fragments of muscle, i:ver, brain, bone, etc., detached. Let, these be placed in a test tube containing oxygen, and inverted on mercury. At the end of a space of time, which varies in length, and in proportion differing according to the tissues, there will be found in the test tube carbonic acid which has replaced a part of the oxygen, and which establishes in an indisputable manner the respiration which has taken place.

In short, animal heat results from combustion of the carbon in the tissues with the oxygen of the air, this element being introduced into the blood by the action of the lungs, and carried by this liquid throughout every portion of the body. Oombustion takes place in all the tissues (and in the blood itself, although but slightly) in varying degrees, being greater in extent in the muscles, brain, and glands, and less so in the bones and other anatomical portions of the structure.

Is calorification, then, the result of combustion and oxydation only? It was for a long time so believed, but in reality other influences enter into this function. The organism is, in fact, the theater of ehemical phenomena, infiuite in variety. The materials derived from the food are assimilated by various chemical processes, and the action of elimination is accomplished by phenomena of no less variety. All the combinations, decompositions, reductions, etc., which the different materials undergo, give rise invariably to the generation or absorption of heat. In plain language, all chemical action produces heat or cold, according to circumstances, and this production is in conformity with chemical laws which are now fully understood.

Among numerous chemical phenomena of this sort in the organismphenomena which have been thoroughly studied by M. Berthelot-special reference may be made to hydrations, decompositions, combinations, and fermentations. All these phenomena take place in the bodies of living creatures, and all play their part in the process of calorification. Oalorifieation is then the result of multiplied chemical actions which occur at all points of the organism, actions of which some generate, while others absorb heat, but among which those of the former evidently predominate. Among the heat-giving phenomena oxydations are the most important, but it is woll to romomber that this is not their only attribute, as Lavoisior believed.

The simple fact that respiration is not carried on with the same activity in all the tissues indicates a priori that there must be an appro.
ciable difference in their temperature. This is in spite of the fact that in living orgauisms the equal distribution of temperature is favored by the contact of heated portions with those which are less so, either directly or indirectly, by the circulation of the blood. In spite of this tendency to establish an equality of temperature, it is easy to distinguish those of the highest temperature. They are naturally those of most activity, froin a chemical standpoint, and whose respirations are most frequent. The liver, brain, glands, heart, and museles belong to this class. The heat generated by these organs is in proportion to the chemical activity and to the amount of work which they themselves perform. Every organ is, in fact, warmer when in a state of activity than when in a state of repose.
Caloritication is thus the result of chemical phenomena which take place in the recesses of the tissues. These phenomena, which are numerous and active in animals of the higher class (homeotherms), are much less so in cold-blooded animals; but this point is not important, the difference being in degree, not in kind.
Here a question arises: Why does man have an equable temperature at the poles, where the temperature is 30 degrees below zero, and in Sahara, where there are 40 degrees of heat Why are not man and warm-blooded animals influenced to a greater degree by the temperature in which they live, and how are they enabled to contend with these extremes of temperature In several ways, from a physiological standpoint, for at this cime we are not to consider the means devised by man for his protection. To enable him to endure extreme heat, he is supplied with a sudatory apparatus which acts as soon as the internal temperature begins to rise. The action of external heat brings the sudatory glands into activity, and evaporation of the perspiration produces refrigeration to a marked degree. Note, by the way, that this evaporation is only possible in an atmosphere relatively dry, and is less in proportion to the humidity of the atmosphere surrounding the body. On this account one suffers more from heat when the air is full of moistuxe than when it is dry. Humidity impedes and retards evaporation, and in consequeace also refrigeration.

Certain animals are endowed with this sudatory apparatus for the same purpose as man, but many of them are entirely without it. Among the latter class are birds, dogs, rabbits, ete. In what way are these protected against heat? As far as we know, no researches have been made on this point in regard to birds; but concerning dogs, M. Oh. Richet has reached very interesting conclusions. In this animal refrig. oration is effected by means of the respiratory organs, for it is by this means only that they can bring about a copious ovaporation. The dog perspires through his lungs, as is the case with all oreatures which have this organ, even man hinself, but with the dog this is the only means of effecting perspiration, and it is therefore employed to a far greater extent. When a dog is heated he thrusts out his tongue in
order to facilitate the passage of air through the mouth. He breaties quickly, sometimes with great rapidity, in order to induce a more abundant exhalation of moisture. It is much to be desired that a study of refrigerating mechanisms be pursued in behalf of those beings which have no perspiring capabilities, as such a study would be fruitful in interesting results.

When the interual temperature of man is at a low point, sufficient: refrigeration is effected simply by the flow of blood, which is always. towards the surface. Influenced by external heat the cutaneous tubes expand, by this means they are able to contain a larger quantity of blood, and radiation from the skin is thus increased, resulting in a cooling tendency, which spreads through the entire system by reason: of the circulation of the blood, which is also accelerated, and thus: facilitates refrigeration.
From a physiological point of view the organism is less fully equipped for protection against extreme cold. Oold however is less dangerous to organic life than heat, and for this reason nature has prepared it more perfectly to meet the latter. A sensation of cold stimulates animal life to activity, and by this very result produces warmth. Moreover animals of cold climates have in the winter a heavier growth of fur, which serves as a protection. In addition to this resource, we shall point out the fact that cold contracts the tubes of the skin which diminishes refrigeration; respiration is accelerated and with it organio combustion. The need of food is greater and it is eaten in larger quantities, all of which introduces into the system a greater quantity of combustible material. Observe for a moment the immense importance of the nervous system in its effect upon bodily temperature. This fact has been clearly demonstrated by many experiments in physiology, as well as by clinical observations.
To epitomize, the heat of anmals is generated by chemical phenomena which takes place with'n the organism. With some species these phenomena are very active and the temperature proportionately high. In addition they are furnished with a regulating apparatus so arranged that within certain broad limits oscillations in the external temperature modify only to a slight degree, or insensibly, their internal temperature. These are the homeothermic species. With the others (the heterotherms) in which chemical phenomena are feeble and inactive, there is a temperature correspondingly low. These, moreover, have no protection against the influence of the ontside temperature, following closely its variations. Their own temperature is, in faet, the result of their environment, more than of the chemical phenomena within. This difference betiveen warm and cold blooded animals is considerable, for in the case of the former, under average normal conditions, the external temperature has no, or little, action upon the temperature of the animal.

Oalorification is a general phenomena among animals from protozoan
to man. There are differences in degree, but the fact is universal. It remains for us to prove that this is not only the rule with animals, but is also true wherever there is vegetiable life, constituting in fact an inherent function in all animate matter.

Plants respire, consequently they generate beat. This is an ascertained fact of which proof has been given by numerons experiments. The cholorophyllic function, which effects a decomposition of carbonic acid in the oxygen which is exhaled, and in carbon which is incorporated in the tissues, has, for a considerable time, obscured the true manner of respiration, making it appear that vegetables respire in an entirely different way from auimals. The process is the same in the two classes of organisms. To assure ourselves of the fact, however, it is necessary to eliminate the chlorophyllic function by having recourse to a particular arrangement; experimenting upon plants without chlorophyll, or upon chlorophyllio plants kept in darkness-the chlorophyllic function acting only in light. In taking the above precautions, we establish the fact that respiration exists among all plants-with more activity, it is true, in young plants than in older ones, in plants which are in course of development, rather than those which have already attained itheir full growth. This respiration, as in animals, consists of chemical phenomena. It is caused ly an absorption of oxygen, and a combination of that gas with the tissues of the plant, by which heat is produced. As observatiou has demonstrated to us, everything that has life generatos heat by reason of the chemical phenoment which accompany life. The germination of seeds, for example, does not occur without this ievolution of heat. To assure ourselves of this, let a thermometer be placed in the midst of a quantity of seed in process of germination, taking care to insure the elimination of carbonic acid in proportion as it is produced-for it arrests respiration and calorifioation. The thermometer will be seen to rise $5^{\circ}, 10^{\circ}, 15^{\circ}$, and $20^{\circ} 0$. The generation of heat in this ease is therefore considerable. Varions experiments madewith seeds bave substantinted the conclusion. Flowers also produce a remarkable amount of heat, the truth of which Lamarok was the first to establish. It is with flowers of certain aroides that experiments have been most successful, and which have furnished the most exact data. The tomperature of the spathe of these plants when in full flower indjcates a generation of considerable heat, presenting sometimes an excess of $5^{\circ}, 10^{\circ}$, and 15° over the surrounding temperature. To show that this calorification is a result of respiration, let a flower be covered with oil in order to exclude the oxycen in the air, or let it be placed in an inert gas from whioh all oxygen has been exhausted (nitrogon for instance), and icstemperature will be reduced to almost nothing; combus. tion is retarded if not entirely suppressed. Very delicate experiments have established beyond a doubt that a close correlation exists between the supply of oxygen and the anount of heat produced, the latter being proportionate in intensity to the quantity of oxygen absorbed.

One has a right therefore to assume that all flowers evolve a certaim amount of heat, variable, it is true, for one flower differs from another, but always clearly appreciable. A similar evolution is obsorved in the active organs of plants when they are excited to movement. It has been established in the case of germs ly the means of thermo-electric needles. It is much more sensible than in the case of adult plants, in which life is less active and inteuse.

We see in the vegetable, as in the animal kingdom, that heat is generated, and that it is due, for the most part, to oxidations within themselvas. It is possible to establish the existence of a complete likeness between these two classes of organisms. The demonstration which substantiates itself every day of the identity and unity of the funda. mental laws of life, in spite of variation in furm and appearance, is not one of the least benefits which have resulted from the investigations of modern science.

At the point where caloritication results from chemical phenomena accompanying nutrition and respiration a close dependence springs up between it and the process of alimentation. This dependence alearly exists. The phenomena of alimentation are in consequence of the in. troduction of food into the organism in such a manner that it ean be assimilated, portions of it immediately, and that which remains after it has undergone ohemical modifications. To the former category various salts and water belong; to the latter, organic compounds, flesh. fruits, vegetables, milk, etc. Whare there is a total lack or insaff. ciency of alimentation the animal perishes, especially when there is no reserve supply of nutriment in the form of fat. At the same time its temperature falls. This fact has been established by Ohossat, who has made an exhaustive study of inavition. Animals deprived of nutriment generate less heat. Their temperature diminishes each day, and finally, at the moment of death, sinks to $10^{\circ}, 15^{\circ}$, or 20° below the normal medium. The temperature of pigeons, for example, falls from 40° or 42° to 20° or 18°. The same phenomenon exists in the case of man or mammals. It is the same with them as with a boiler when the furnace is not fed; the fire is extinguished and heat disappears. In the vegetable kingdom there is in all probability a similar occurrence, although no visible proof is given of it as far as we know. Experiment, in this case is very difflcult, but an indirect proof is furnished by the fact, well known to agriculturists and botanists, that the suppressiou or dimiuution of such and such mineral salts necessary to vegetable life will result in the deterioration and relative unfruitfulness of the plant. That which diminishes their vitality and their proportions diminishes also their nutrition, and as a natural cousequence their production of heat.

There is therefore between the processes of alimentation and caloriflcation a fixed relation, and one can readily determine among the many. different kinds of foods those which contribute most towards caiorift.
cation. Ohemistry shows us by exact sualyses that different bodies, in oxidation, evolve varying degrees of heat. Let us imagine a given quantity of oxygen introduced into the blood to assist the oxidations which are the priocipal though not exclusive source of animal heat. The amount of heat which will be produced by the combustion of this volume of oxygen with the material existing in the tissues will vary aocording to the nature of the material. Oombining with certain substances the same quantity of oxygen will generate ten times more heat than will result from certain other combinations. That which is true of oxidations is also true of other chemical phenomena incident to ca-lorification-that is to say, hydrations, de-hydrations, decompositions, combinations, etc. The production of heat varies considerably accord. ing to the chemical nature of the substances which are influenced by these modifications. It is enough to say that certain foods are more productive of heat than others. Observation has long sinceshown the effects, in a cold climate, of a diet rich in fats and in sugar, and experience establishes the fact that these substances develop a greater degree of heat than albuminoids. On the other hand, we all know that iuhabitants of warm climates need less food and are more abstemious than those of a cold region. The need for being heated is less pronounced in their case on account of the temperature in which they live, and in which the external cooling is little or nothing in extent.

The relations which exist between the processes of calorification and respiration are no less evident. Anything that obstructs respiration obstructs also the generation of heat. This is more pronounced in the case of creatures with whom oxidation plays a very important part in the generation of heat. The deprivation or diminution of pure air very quickly results in serious disturbance, due to the irregularity oceasioned in the vital functions by an insufficient exchange between the blood and the atmosphere. Supposing that llfe were possible during a temporary but somewhat prolonged cessation of respiration, the temperature of the body would quickly diminish. The higher olass of beings may not furnish proof of this fact, being so exceedingly sensitive to the deprivation of pure air, but by the lower organisms it is clearly proven. We have seen it in depriving of its share of oxygen a flower of arum or of colooasia by dipping it cither in oil or in azote, when the phenomenon of thermogenesis is considerably diminished.
In fine, the relations of caloriflcation to the activity of the organism are quite as clear as those of which we have just spoken. These are manifest among vegetables as among animals. With the first the generation of heat is greatest during movement, or in reference to the more active portions, from the point of view of vitality and growth, and during the organization of the tissues; in germs, in which the chemical changes are rapid, numerous, intense, and in flowers during the operation of fecundation.

With animals all aetivity is accompanied by an elevation of the tem.
perature, local or geueral, according to the intensity and duiation of the activity. It is thus that a muscle in the act of contracting evolves more heat than when in a state of repose, and this production is such that it easily increases the temperature of the body $2^{\circ}, 3^{\circ}, 5^{\circ}$. In the same manner, a mental or intellectual effort results in a proluction of considerable heat. The glands in an active state generate large quantities of heat, as is seen by the temperature of their secretions and of the venous blood, which has served in the formation of the latter. This is why the venous blood of the kidneys is warmer than the arterial blood, and according to Olaude Bernard the temperature of the hepatic vein, which brings back the blood from the liver to the heart, is the highest in temperature, especially during the process of digestion, at which time the liver is very active, and the chemical processes which take place are also numerous and intense. This is sufficieut to show the dependence of the generation of heat upon the chemical activities of the body.

By reason of natural and normal cessations of the phenomena which aro instrumental in generating and liberating heat, it is impossible for the temperature of a being to be absolutely equable. Even with the most warm-blooded animals there are many normal variations. In a sound man, in normal coudition, these variations take place within the space of about 24 hours. The temperature is highest from 10 o'clock, or midday, to 6 or 7 o'clock in the evening, reaching its lowest point between miduight and 0 o'clock in the morniug. Violent exercise, of course, increases it several degrees, and the process of digestion is accompanied by a slight fever. In a word, a multitude of circumstances ocour each hour which render variable, within certain limits, it is true, the generation of heat. In addition, and this is quite natural, according to the explanations given above, the temperature is not the same in all portions of the organism. Uertain portions are more thermogenic than others, and others are more exposed to a loss of heat. The calorifle topography of the organism is acourately known. We know that the hepatie vein is one of the warmest points of the body, its position being a protected one, and containing, as it does, blool heated by the intense chemical action which takes place in the liver. The brain has probably the same temperature as this voin. On the other hand, the skin always shows a much lower temperature ($3^{\circ}, 5{ }^{\circ}$, or 0°) than that of the rest of the organism, suffering as it does considerable loss from radiation.

Leaving the question of external heat, we find that internal temperature is the direct result of two factors, thermie generation and waste. Heat generated is the result of chemical processes, inflnits in variety, of which the body is the theatre, processes amoug which that of oxidation holds a predominant place. As soon as oxidation is retarded, there follows a difficulty in breathing, accomponied by a lowering of the tomperature. The cause of this is the diminution itself and the
reaction it probably exercises upon the other thermogenic chemical actions. As to waste, this is incurred in accordance with well-known physical laws, and with warm-blooded animals it is sometimes facilitated and sometimes diminished by the action of the regulating mechanism placed under the dependence of the nervous system, a mechanism which in its normal condition tends to preserve for the organism a temperature nearly constant, diminishing the losses when the production of heat is feeble or insufficient in respect to the temperatare of the surrounding medium, and augmenting these losses, ou the contrary, when the atmosphere is too high, or when the production is so great that it tends to inflame the bodily organism.
The only difference, from the physiological standpoint, in the calorification which exists among warm-blooded and cold•blooded auimals is, that with the latter the production of heat is sligh.i and the regulating apparatus absent. These species engender little heat, and are unable to regulate their losses. They also follow the rariations in the outside temperature almost to as great an extent as inanimate objects; whereas warm-blooded animals conform in a less degree to the outer atmosiphere, and also with less impunity.

II.

We are now to consider between what limits of temperature organic life cau be maintained. Auimals of the highest temperature, protected though they are against the extremes of heat and cold, can be placed nuder conditions which render these protective means inadequate, and this in a state of nature and apart from all experimentation.
A word first on the thermic variations which occur in the inkiabited zone of our playet; a zone limited in extent, comprising an average of 8 to 10 kilometres in altitude, its elevations and depressions being about equal in distance from the level of the sea; a zone exceedingly small when compared with the diameter of the earth. Beyoud the limits of this region life has never existed, or at least exists no longer. We are more especially interested in that portion of the earth which can support organic life. The extreme points of temperature observed in the atmosphere are -70° and $+56^{\circ} \mathrm{O}$. The former observation was made at Iakoutsk, the latter at Mourzouk. These are said to represent very exactly the extreme limits, forming a difference of 125° or $130^{\circ} 0$. At these far distant points human life is possible, and also that of certain animals. In the ocean the thermometric digressions are not as great. According to Wyville Thompson, the temperature of the Atlantic Ocean reaches 0° at a depth of only 4,200 metres; at 0,000 metres it registers 5°; at 800 metres, 4°, and at 2,000 meties it is 3°. About the same can be said of the Pacific Ocean. Should the temperature upon the surface or at the bottom of the sea descend lower than - 1° or - 20 the water freezes. It is not neecessary for us to consider this

$$
\text { H. Mis, } 120-27
$$

point however, since it is complicated by the introduction of a new factor-the suffocation of the inhabitants of the water as a result of this congelation. The Mediterranean Sea is less cold, the temperature at the bottom being aloout 12° or 13°. The Red Sea rises to 21°, and at the surface to 32°. The variations are less in the center, not exceed. ing $34^{\circ} \mathrm{O}$. It is therefore on the earth and in the air that the extremes of temperature are found. The immense influence of the rays of the sun upou temperature should be taken into acconnt. A thermometer which registers 27° in the shade will rise to 31° when placed in the sun, and when resting upon a bit of black cloth it will reach 80°. A thermometer placed on the helmet of a cuirassier and exposed to the sun will rise to 60° or 70°, and in a compartment of a furnace it rises to $75^{\circ} \mathrm{O}$. On the other hand we must not forget that life exists in regions where the temperature reaches 90° and $98^{\circ} 0$ (Hooker, Flourens, etc.). This conclusion, therefore, is reached, that there are some creatures which can live at $+100^{\circ}$ and others at -60° or -70°. These figures represent the extremes of temperature to which living beings are exposed under actual terrestrial conditions, but they do not represent those which certain of these classes can resist, for certain spores of bacteria resist more than $+100^{\circ}$ and $-100^{\circ} 0$, according to recent ex. periments. Let us admit at the start, to simplify matters, that life can be sustained at -150° and at $+1.50^{\circ}$. Are all these creatures able to sustain life with impunity, even for a short time, in such extremes of temperature ${ }^{9}$ Possibly so, but only for a limited space of time, and surrounded by a nonconductor. This proves nothing; the only interesting phases of this question are the facts or experiments which relate to the results ubtained by organisms remaining in such extremes for a prolonged length of time-interesting where they succumb, being suffocated or frozen, as well as when they are able to survive by preserving their normal temperature. We will not dwell upon those casen, which are both numerous and interesting, where man and animal have endured for a few moments or seconds extremes of temperature, only considering the cases where their continuation is sufficiently prolonged for the temperature to affect them.

There is for every species of animal and vegetable, indeed even for each variety, a thermic optimum, that is to say, an average of temperature which is most favorable to its growth and development. It should not be forgotten, however, that with all species of organic life a certain adaptation is possible, the limits of which are more or less restricted. In many instances it is possible to sustain life among animals in a medium which would have bcen fatal to them if they had been suddenly introduced into it , by carefully managing the conditions and transitions. This fact is especially recognlzed in chemical elements, of which many instances have been given. It is true as well of thermic conditions. At the same time, even when alaptations are made, new environment acts on the organism, influencing and modifying its structure
or functions, and it may he said that for all life there is a degree of temperature which is more favorable than any other to its perfeot development. The limits of temperature thas favorable to a given class are surprisingly narrow. This is especially true in the case of microbes. The bacillns of bntyric fermentation is most active at 40°. At 42° it multiplies more rapidly, but diminishes in activity. At 45° it no longer effects fermentation. For alcoholic fermentation the most favorable point is between 25° and 30°, although it ceases at zero-the freezing point, and at 100°-the boiling point. The miorobe of carbuncular diseases thrives at 377° to 39°. At 41° it dies. Oonvincing evidence of this is given by Pasteur, who has shown that a fowl in normal condition, its temperatare being from 41° to 42°, can not become inoculated with a disease of this kind. If you cool the fowl artificially by means of cold water, so that its temperature diminishes 20 or $3{ }^{\circ}$, the microbe maltiplies abundantly in the blood of the fowl and kills it, at least if the cooling process is continued. If that ceases, a return to the normal condition of the animal will dissipate the disease. A temperature of 35° is most favorable to lactic fermentation. The fermentation of putrid matter is less restricted. It is carried on anywhere from 0° to 40°, although the most favorable points are between 15° and 35°. Examples of this kind may be given in great numbers. What is more interesting, however, than this enumeration, is the study of the results which are induced by subjecting a given miorobe to a degree of temperature higher than that which is best adapted to it, not sufficiently high, however, to be fatal to its existence. Very evident modifications are by this means produced in its physical condition. It becones weakened, and there is a marked diminution in its vitality. This fact is the basis of the interesting processes of preventive vacciua. tions, of which Pasteur has giveu us so many striking and useful exam. ples. Only a slight increase of temperature is needed to transform a dangerous microbe into an invaluable auxiliary in the art of healing or preventing infectione diseases. On the contrary spores of bacteria can be sulbjected to considerable variations of temperature without being productive of any modificatious. These spores withstand admirably extremes of temperature, for instance -100° and $+100^{\circ}$, the bacteria which spring from these losing none of their virulence. Some species of bacteria may be frozen for many months and live. This is true of the bacteria of typhoid fever, according to Fraenkel and Prudden. Oontrary to the general impression, congealing does not purify impure water.

It is interesting to note that the sensibility of common leavens, as referred to their thermic variations, is repeated in soluble leavensthat is to say, with the products of the activity of certain cellules, which exhibit some of the qualities of the ordinary leavens. Thus pepsin is active anywhere between 37° and 40°. At 50° it acts in a less degree, becoming almost inactive at 90°. The pancreatic juice exereises its
chemical action most thoroughly at 40°. At 20° it acts slightly, and at $60{ }^{\circ}$ its ration ceases entirely. In considering the tissues of complex organisms, we ascertain analogous phenomena. Protoplasms of different organisms, although they are often supposed to be ideutical, present very unequal opposition to thermic variations. In oue case it dies at 30° or 20°, in others it lives at 0°, at -5°, at -10° (Nordenskiold). We know that eggs of birds require for their development a temperature, narrow in limits, which can not be overstepped without destroying the embryo, or producing malformations. Eggs of invertebrates are somewhat similar, but their exigencies are less restrieted, and they accommodate themselves to greater differences of temperature.

Every being, to live and move, requires enviroument of a certain temperature. Some are less exacting, and adapt themselves to variations; others, on the contrary, can not endure even slight changes. Some seek the cold, others-heat; but all in a marked manner, as we know from the difficulties experienced in acclimating species to a new climate. A few examples will not be out of place. The polar region, with its prolonged and rigorous cold, and our high summits, always clothed with a mantle of ice, produce a fauna and flora which is peculiar to them. . In these regions, where man is able to exist only at the cost of a considerable effort, there are mammals, insects, plants of all kinds, which can reach here only their full growth and perfect development. In a temperate or wartn climate they lose their vitality and perish, never in reality becoming acclimated. Warm-blooded animals which live in these regions have the same temperature as their cospecies in warm climates. They maintain thomselves by appropriate food and a heavy growth of fur, discarded by them when the weather moderates. Oaptain Black has observed in Siberia when the external temperature was at -35°, that the temperature of a fox was 41°, making a difference of 76°. The roverse of these polar regions and glaciers are the hot spriugs. Here also we find a characteristic fauna and flora. Many observers have drawn up a list of sea weeds, infusorials, and fungi, living in the waters, the temperature of which varies from $5\left(0^{\circ}, 60^{\circ}\right.$, and even $90^{\circ} \mathrm{O}$, and that thrive and multiply.

Between the coldest regions, which some species delight in, and the hot springs, or the tropical regions, where others attain their lighest development, we find grades of organisms whose resistance to extremes of temperature is less and which prefer more temperato surroundings, manifesting a partiality for such and such a point in the thermic scale. To be assured of these preforences one has only to consult the documents showing the distribution of species and their acclimation. The most curious fact disclosed by the preceeding data is the great resist. ance of the protoplasm of certain creatures to temperatures, which, judging from other cases, ole would suppose must be fatal. The protoplasm in certain cases can sustain a temperature of zero, or lower still, and others can live at 90° and even higher temperatures. This is.
a remarkable fact which neither physiologists nor chemists are able to explain.

In short, there exists among organisms a certain number of species, vegetable or animal, able to withstand extremes of temperature, and to live normally therein, while the majority can live only in more uniform and moderate temperatures. We will now see by what means the different organisms withstand or succumb to temperatures, other than those to which they naturally accomodate themselves, and to what influences they are subjected.

Let us consider first heterothermic organisms, or cold-blooded animals, which follow the oscillations of the surrounding atmosphere, and the temperature of which rises and falls proportionately on account of the absence of the regulating apparatus by which they could control their own production and loss of heat. These organisms possess a sensibility which is regardless of variations in their temperature. They can undergo with impunity oscillations in the atmosphere about them which would endanger the life of warm-blooded animals, possibly destroying it eutirely. The latter, man included, can not live a moment if their in. ternal temperature exceeds about 45° (1130 F.) The cold•blooded animals can vary their temperature within very considerable limits. The ennmeration of the latter would not be particularly interesting; it is sufficient to say that the temperature of cold-blooded animals of our countries varies according to circumstances from 0° to 35° and 40°. That which arrests our attention is the summing up of the influence of different temperatures on the functions of these animals. As a matter of course, temperatures exist which are not deadly, which are consisten i with the life of these creatures. We shall see later in what way the extremes of temperature act.

It is a well-substantiated fact, by means of experiments which, though not numerous, are very exact, that there is for avery living creature a degree of heat which is absolutely indispensable in order that its development be as complete as possible. On this point we have had for several years, thanks to the valuable labors of Boussingault, most interesting data. Being given a certain vegetable we can eatimate that the time which elapses between the appearance of its vegetation and its complete maturity is short in proportion to the height of the temperature at which it vegetates, and long in proportion to its degree of lowness, exception being made, let it be understood, of thermic conditions which are dangerous or fatal. Otherwise statca: Being given a plant which lives between 15° and 30°, of which the thermic optimum is 25°, its development will be slower in a constant temperature of 15° than in one of 20° to 25°, and the retardation is proportionate to the thermic difference. It seems that in whatever latitude or climate it thrives, there exists there for the plant just the quantity of heat necessary for its development. It is easy to prove that this hypothesis is exact and conforms to the facts of the case. The following is an example: From
the day when a seed germinates to the moment when the plant reaches its maturity an average is taken of the temperature for each eycle of 24 hours. Atterwards an average is made of these averages for all the period which has passed between the two moments mentioned above and this average is to be multiplied by the number of days which have passed. Suppose this action of the plant has taken 90 days, and that the average of averages is 17 , then you obtain the figure 1530, which represents the degrees of heat furnished in 90 days,-a day being taken as a unit of time. A very interesting fact is, that, if the same observations are made with the same species of plant under difierent thermic conditions, or in a different climate, the same figure is obtained, although the number of days necessary to the development may vary from simple to treble, according to the climate. The study of regetable physiology is rich in interesting facts from the standpoint which is now occupied. In this way different seeds are very differently influenced by cold. One does not germinate below 15°, while others germinate at 4°, and still others at zero. One plant developes best at a temperature which is fatal to another.

In the animal kingdom analogous facts have been observed in a very exact manner. A little fresh-water mollusk (lymnée) furnishes Ourl Semper, the learned zoollogist of Würzburg, with very interesting facts in this connection. Below 12° this animal, although leading an active life and taking its food regularly, underwent no growth, though it was able to reproduce, its eggs developing perfectly. From 12° to 25° (which is its most favorable temperature) its assimilation was per. fect, and the animal grew and developed. Semper remarks that these mollusks, subjected permanently to a tomperature of 10° or $12{ }^{\circ}$, remain small and cease to develop. They produce a dwarfed breed, which in their turn reproduce normally, remaining, however, smaller than the other lymnées. On the other haud, an unnaturally large speoies can be produced by maintaining the mollusks by artificial means at the highest point of temperature. There is still another fact which accords with that of which we have just spoken. A well-known naturalist, Mobbius, has discovered that the same species of marine mollusks common to the Baltic and to the coast of Greenland differ groatly in size. At the Baltic they are small and have a thin shell, while on the coast of Greenland they are mach larger in size and are provided with a thick shell. This is explained by the fact that in the Baltic the variations of tem. perature are more frequent and the cold is more intense than in Greenland, in consequence of which the development of the mollusk is more difficult and intermittent.

Tomperatures lower than this most favorable point have a marked effect upon animals and plants, which shows itself in the latter by a retardatiou of developmen; which at the same time becomes less com. plete. On the contrary, ternperatures not fatal, but relatively high in regard to their natural condition, favor their growth, which becomes proportionately rapid and complete. It is thus with the eggs of certain
speces of crustacea, as the apus and branchipus, which develop between 0° and $+30^{\circ}$, accomplishing their complete evolution in 24 hours at a temperature of 30°, while between 10° and 20° it takes weeks to obtain the same result. Tadpoles hatch in 10 days at a temperature of 15.5°; at 10.5° it requires 15 days. Notice how various are the requirements of different creatures in the matter of temperature. That of 30°, so favorable to branchipus, is fatal to many, excepting tho entire animal life of Arctic seas, and also, as I have already shown, a number of species of the Mediterranean, especially those which inhabit the seashore and can not adapt themselves to temperatures in pools heated by the summer suls.

There is therefore for every species a certain temperature at which development is most rapid and life most easy. The limits of this thermic condition vary considerably according to the species and even the va. riety. Subjected to the influence of a lower temperature than that which is most favorable, each animal's development is retarded, in dif, ferent degrees, and often fails to attain perfection. If exposed to a higher temperature than that which is best adapted to them, distarbances are produced, alimentation becomes impaired, and the animalor vegetable-begins to pine, as is also the case with man in excessively hot climates.

This influence of temperature on life is not only manifested in degree and rapidity of development, it also appears in other phenomena; coloration, for instance. In this way Weissmann has shown that two butterflies, Vanessa levana and Vanessa prorsolevana, differing in coloration upon certain points, have been looked upon as belonging to two distinot species, whereas in reality they represent but one. The difference is simply a question of temperature. One comes from an egg laid during the winter, and one from one laid in the summer, but it is easy to obtain at will either variety from the same egg by heating or cooling artificially, according to the case. A more important question is the influence which the temperature exerts upon sexual development. Oold retards and sometlmes arrests it ; a certain degree of temperature favors and accelerates it; and it is well known that sexual development in man himself is hastened by the influence of a hot climate. In Ouba, and other warm ollmates, a girl attains maturity at 12 years. But the temperature must not be too high either. Orusta. coa kept for several weeks at 19° do not acquire sexual activity, whereas at 9° or 100 it is acquired in 2 days.

Temperature thus exercises considerable influence upon all organ. isms. An interesting proof of these effects on the intensity of life (if it may thus be called) is furnished by a study of the influence exercised by this factor on the aetion of poisons and medicines. Alexander von Ilumboldt, and after him many investigators, have noted that this action is more instantaneous and rapid in high tomperatures (which are neither fatal nor dangerous in themselves) than at a lower degree.

Oceasionally in the latter case, a poison becomes perfectly inactive and inoffensive, although it would prove deadly if the temperature rose a few degrees. This fact is now well understood, and account of it is taken in dealing with toxicology. This explains the frequent contra. dictions between the conclusions of different investigators, because they have not experimented under the same thermic conditions, and most of thom have failed to note the exact temperature. Another proof of temperature on the general functions of the organism is the proof furnished by a comparative study of the resistance of beings to asphyxia. When the temperature is low, asphyxia is slower and more difficult. - A frog immersed in water, its head covered, and only cutaneous respiration possible, will survive from 6 to 8 hours with the water at 0°. At 15° or 16° it will only live a fourth of this time. To consider another phase of the same question : poisonous plants are more deadly under thermic conditions favorable to their growth than when strug. gling to live in an atmosphere colder or warmer than that adapted to their peculiarities.

We have been considering so far the influence of thermio variations which are not of necessity deadly. We will now turn our attention to those whic 1 are fatal in their effects, first observing that the effeets vary according to the species, and also according to certain conditions, some intrinsic or inherent in the organisma, others oxtrinsic or relative to the conditions under which the thermic extremes oceur. It is well known, for example, how unequal is the resistance of vegeta. bles and seeds to extremes of heat and cold. Some freeze casily, others with diffeculty. It depends much upon their bulk and the proportion of water contained in their tissues. Somedo not die immediately after freezing, oven when the thawing is rapid, others only survive whon the thawing is slow and gradual. A very important factor is the condition of the vitality. We know that spores of bactoria and seeds of plants withatand degrees of temporature at which noither bacteria nor plants could live. This fact is so well known that it is only necessary to touch upon it.
It may seem strange that torpid organisms have more resistance than the higher species to adverse circumstances; yet it is true that the less active the lifo the less vumerable it is, and less can extorior forces disturb the functions which are already almost dormant and torpid. Oold kills a great number of the lower organisms by reason of the disorganization of the tissues which takes place when congealed, and this disorganization is complete in proportion to the amount of water which the tissues contain. There are, however, many organisms among the cold-blonded elass which die before they reach the point of freezing. Invertebrates and plants belonging to warm climates, as well as many microbes, succumb when the thermometer has only reached 0°. In which casa the method of death is different, it being produced by a slackening of all the functions. Extreme heat kills plants and animals
of the coid-blooded class at different degrees of intensits, being much higher, however, than those at which warm-hlooded species succumb. In the one case they are, in plain language, dried up, the heat depriving the tissues and functions of the water necessary to their existence; in The other, the vital material coagulates and life is no longer possible, this caluse being the more general one. This congealing, however, is not always fital, even in the case of animals of high organization. It has long been known that in the northern part of America and Russith travelers transport frozen flshes, rigid and brittle, which being placed in water of a temperature of 8° and 10° regain their activity, althougli they may have been frozen for 10 or 12 days. Science has refused to believe these statements, but careful experiments have anthenticated them. In 1828 and 1829 Gaymard froze several toads thoroughly, and they returned to their normal condition and activity on being thawed. Care must be taken that both the freezing and thawing are gradual. This is the principal precaution to be taken in making experiments of this sort. The great English naturalist, Hunter, believed that the life of man could be prolonged by being frozen from time to time. He thought that if frozen and revived several times in the course of a few years the limits of life could be considerably extended. Unfortunately the experiment brought death instead of prolouging life.

Let us now consider the warm-blooded organisme, the creaturea whose temperature is more stable and does not follow the thermic vasiations in the atmosphere about them. A mammal or a bird withstands a considerable amount of cold. If indigenous to a cold region, prote oted by thick fur or warm plumage, and in a position to secure the nourishment it needs, it can live in a temperature at $50{ }^{\circ}$ bolow zero, its own tomperature remaining fixed and normal. It is true also of man, who by protecting himself by appropriato elothing, easily withstands quito as low points of temperature, particularly if there is an absence of wind. We all know by experience that a moderately cold temperature with wind blowing is much harder to boar than intense cold without wind. The explanation of this fact is very simple. The wind tends to constantly doprive the body of the layer of warm air, whieh forms between the body and the clothing, and to facilitate radiation and loss of heat by substituting for it cold air.

But what happens under experimental or natural conditions when an animal or men is subjected to the action of intense colds The organism withstands it for a certain length of time, but this ondurance has its limits, variable, it is true, according to species and conditions. A moment necessarily arises, if the cold be sufficiently sovere or prolonged, when the organism is no longer in a state to generate sufficient heat to withstand the cold or, what is practically the same, when the loss is too considerable though tho generation were sufficient. From that moment the temperature of the animal begins to decrease. This diminution is compatible with life up to a certain point, which varies accord-
ing to the species. Some animals can live, their temperature being as low as 15° or 20°. The temperature of a rabbit, for example, can fall from 38° or 40° to 20°. That of man may fall to $20^{\circ}, 25^{\circ}$, and oven 24° without resulting in death, according to anthentic observations made by Reinke and Nicolayssen upon drunkards. It does not scem, however, according to Olande Bernard, Magendie, and other physiologists, that oue can with impunity lower the temperature of warm-blooded animals below $20^{\circ} 0$. At 20° death is almost inevitable; below that point it is certain. The nervous system is destroyed, involving the entire organism. The blood becomes weakened and unegual to perform its work.

Surgeons of large armies have left us valuable information concerning the effects of intense cold on human beings. In the case of men who are tired and jaded, intense cold is immediately fatal-especially where it is a sudden immersion in very cold water, for in this case the loss of bodily heat is great. Larrey states that in crossing the Beresina, men perished instantly upon entering the water, and Virey and Desgenettes testify to similar cases. With some death was caused by cerebral congestion, with others it was caused by ancmia of the brain. When the action of the cold is less sudden, but more prolonged, the result is otherwise. A general benumbing of the body takes place,-of the senses, the brain, the intelligence, a gradual torpor, an invincible sleep from which none awake. "Whoover seats himself, falls into a sleep, and whoever sleops avakes no more," said Solander. Death is produced by a slow paralysis of the nervous systom or by asphyxia.

Warm-blooded animals are enabled to resist the cold by reason of their very aotive thermogenesis, which prevents them from becoming chilled. Bat once let their resistance be overcome and thoy suceumb to much higher temperatures than those which overcome cold-blooded organisms. Many of the latter can endure $10^{\circ}, 5^{\circ}$ and even 0° without perishing. The former die when once their internal temperature falls below 180 or 20°. A more forcible reason why the latiter can not resist intense cold is becanse it destroys the portion congenled and therofore the entire organism.

Life is also diffealt at high temporatures. Man and some animals can, it is truo, remain soveral minutes in a swoating-room in which the temperatiue is vory high-even $1.00^{\circ}, 120^{\circ}$, and 130° ('Lillet and Duhamel, Delaroche and Berger, ote.) -but under these conditions the stay is always very short; if prolonged boyond 10 or 15 minutes the experienco would prove fatal. The perspiration is so excessive that it produces a loss of the heat which is necessary to counterbaiance the tomperature to which the atmosphere tends to subject the organism. There is another point to be noticed. Air is a bad oonductor, and hot air heats the body incomparably less than wator subjected to the influence of heat. Water, on the contrary, is an excellent conductor. It is impossible to endure for any time the contaet of water at 50° and 00°.

Moist air is a better couductor than dry air, and it is still better if charged with steam. Thus man can easily remain for 10 minutes in a sweating room of dry air at 90° or $10 n 0$, but could not endure the same length of time in moist air at even a lower temperature. He wonld soon be overcome in the latter case at 90° or 100°. That which is triue of high temperature is naturally true also of low. Dry air is not so good a conductor as moist, and moist air is inferlor to water as a conduotor. One can live in air at degrees of cold which would surely be fatal if the enviromment were a liquid. Wo have already stated how weak is the resistance of warm-blooded organisms to high degrees of temperature. In fact, in spite of perspiration and exhalations of vapor by the lungs, it is often impossible for the equilibrium to be maintained, and the organism becomes overheated. Its temperature can be inereased very little without being fatal. It endures a decrease of 15° or 20° in its internal temperature, while an increase of more than 5° or 6° would be dangerous. If the temperature of man or mam. mal reaches 44° or 46° death results. Birds can exist at a point somewhat higher. First comes a period of great exoitation and convulsions, from which it falls into a comatose state, followed by death. This result has not yet been olucidated as clearly as desirable. Death under all eircumstances is sufficiontly complex, but its complexity varies according to its conditions. There are dis-arrangements in the chemistry of the muscles, a portion of which undergoes a change. There are affections of the blood which may be lacking in oxygen thongh not presenting indications of any particular poison. Notwith. standing Claude Bernard, it is the thermic rigidity and the museular injury whieh are most gerions. These are of themselves sufficient to cause death, for thoir effect is to arrest respiration and circulation.

In conclusion we can say that there is, in the case of heterothermic organisms, great ondurance of intense cold, and, to a certain extent, of heat, despite the vory marked action of thermic variations upon their organizations. In the caso of homeothermic organisms we find moderate endurance of low tomporature, and very little resistance to an increase of internal temperature. For then a low temperaturo is accompanied with much less danger than a high ono. The former has to bo pronounced to entail death, whereas a slight rise of tomperature beyond a certain point will produce immediato and fatal results.

Between these two classes of organisms there is anothor group called hibernating animals. These are, for the most part, rodents, which, at the approach of cold weather, make an underground habitation well covered with moss and othor substances, whore they romain motionless, rolled up like a ball, during the bad soason, sleeping during the entire time, torpid, neithor eating nor drinking. With these animals the internal temperatme becomos vory low, following somewhat the ther. mic variations. They scarcely breathe. Their respiratory combustions diminish, and their temperature descends to $20^{\circ}, 15^{\circ}$, and 10°, and even
lower. Horwath has stated that the temperature of a hibernating marmot reached 20 . As soon as warm weather returns they wake up, become active, and their temperature becomes normal. They are much leaner than before their winter's sleep, having lived for several months on their own accumulation of fat. Here is an animal alternately warm blooded and cold blooded in summer and winter. The cause of this strange alternation has not yet been explained and is exceedingly complicated. With them the thermic production is relatively slight. It is cold that determines the hibernal sleep, for it is easy to prodice this by subjecting the animal to prolonged cold by artiflial means. No investigations to my knowledge have been made of the resistance of this species of animals to heat. I mean to say, of the elevation of internal temperature above the normal level of the summer, but it is not to be supposed that their endurance would be as great as in caso of extremes of cold.

This class of hibernating animals unite the heterothermic and home. othermic species, and serve to show once again that everything in nature is related. Sudden lenps are no longer held to exist in the physiology of creatures which are similar in organic structure; science finds every where transitions.

Finally, all living organisins generate heat, more or less it is true, according to their activity and their structure, but all produce it. In the same manner all organisms submit to the influence of the surrounding atmosphere, although all do not follow the variations. For oach there is a degree of heat which is best adapted to its perfect developmont. All die as soon as the external temperature reacts on the intermal temperature to such an extent that the latter is carried above or below a certain point. The only difference is in the facility with which this action of the external temperature operates upon the internal temperature of the organism.

MORPHOLOGY OF THE BLOOD OORPUSOLES.*

By Uharles-Sedgwiok Minot.

If one goes through the very extensive literature dealing with blood corpuscles one finds the most divergent views deronded, and cau hardly reach clear ideas, for the conceptions do not agree among themselves, either as to their structure or as to the development of the corpuseles. According to some the red corpuscles arise from the white; according to others the white corpuscles arise from the red; and according to still others both kinds nnise from indifferent celle. In regard to one point only is the majority of investigators united, namely, in the silent assumption that all blood corpuscles are of one and the same kind in spite of the absence of the nucleus in mammalian corpuscles. It is just this assumption that has cansed endless confusion, and the morpholog. of the blood corpuscles can be cleared up only by starting with the recognition of the fundamental difforence between nucleated and nonnucleated corpuscles. Further, it must be recognized that no corpuscles, noither red nor white, arise from nuclei.

The origin of red corpuscles from nuelei has been maintained several times. Ihis notion is based upon defectivo observations. It is very easy in the chiek, for oxample, to convince oneself that the flrst blood corpuseles are cells; in the area vasculosa, at the time of the blood formation, the red blood cells are readily seen, in part lying singly, in. part in groups (blood islands), adherent to the vascular walls; the free cells are constituted chiefly by tho nucleus, which is surrounded by o very thin layor of protoplasm, which is very easily ovorlooked, especially if the preparation is not suitably stained; thisexplains, I think, the state. ment mades by Balfour (Works, vol. r) and others, that the blood corpuscles consist only of nuclei. By following the development along further we find that the protoplasm enlarges for neveral days, and that during the same time there is a progressive diminution in size of the nuclens, which however is completed bofore the layer of protoplasm reaches its ultimate size. The nucleus is at first granular, and its nucleolus, or mucleoli, stands out clearly; as tho nucleolus shrinks it becomes

[^73]round, and is colored darkly and alinost uniformly by the usial nuclear stains. This species of blood corpusele occurs in all vertebrates, and. represents the gonuine blood colls. According to the above description we can distinguish three principal stages: (1) young cells with very little proteplasm; (2) old cells with much protoplasm and graunar nucleus; (3) modified cells with shrunken nucleus, which colors darkly and more uniformly. I do not know whether the first form occurs in any living adult vertebrate, although the assumption seems justified that they are the primitive form. On the other hand, the second stage is obviously that characteristic of the Ichthyopsida in general, while the third form is typical for the Sauropsida. Therefore the development of the blood cells in amniota offers a new confrmation of Louis Agas. siz's law (Haeckel's Biogenetiches Grundgesetz).

The blood cells of mammals pass through the same metamorphoses as those of birds; for example, in rabbit embryos the cells have reached the Ichthyopsidan stage on the eighth day; two days later the nucleus is already smaller, and by the thirteenth day has shrunk to its final dimensions.

The white blood corpuscles appear much later than the red cells, and their exact origin has still to be investigated, for it has not yet been determined where they first arise in the embryo; nevertheless we may venture to assert that they arise outside the vessels. The formations of lencocytes outside of the vessels is already known with certainty to occur in later stages as well as in the adult. The sharp distinction betweon the sites of formation of the red and white colls appeaxs with special olearness in the medulla of bone in birds, as we know from the admirable investigations of J. Denys (La Oelluls, tome rv). The white blood corpuscles then are colls, which are formed rolatively late, and wander into tho blood from outside.

The non-nucleated blood corpuscles of adult mammals are entirely new elements which are peouliar to the class, and arise neither from red nor yet from white blood cells. Their actual dovelopment was flist discovered (so far as I know) by J. A. Sohaffer, who has given a detaied account of the process in the ninth edition of Quain's Anatomy, and has shown there a full appreciation of the signifteance of his discovery. Unfortunately Schaifor's important investigations have received litulo attention. Kuborn has recently conflumed Sohaffer's rosults in an article (Anatom. Anzoiger, 1890) on the formation of blood corpascles in the liver. One can readily study the process in the mesentery and omentum of human and other embryos. The essential point of Schiffers fliscovery is that the non-nucleate corpuscles have an intre.cellular origin, and aldse by differentiation of the protoplasm of vaso-formative cells. Soveral corpuscles arise in each cell without participation of tho nuclens; thoy are therefore specialized masses of protoplasm, and may perhaps best be compared to the plastids of botanists. I venture to propose the name of blood-plastids for these structures, since the

Morphology of the Blood Corpuscles by Minot.
The four upper firures (A, B, C, D) represen corpuscles from robits, the number giving the ages of the embryos in days; E, from a shark; F and G. from a bird: H. from man.
[$A 11$ the figures are magnifiec 545 diameters.]
term corpugcle (globule, Körpercheni) has no defnite morphological meaning.
Sonsino (Arch. Ital. Biol. xI) affirms that the red blood cells trans. form themselves into plastids. I have, however, never been able to find the intermediate forms in my own numerous proparations. I deem it probable that he has seen merely the degenerating stages of the red cells.
The present article is an abstract of a communication made in August last to the American Association for the Advancement of Science, Since thin Howells's memoir on the blood corpuscles has appeared (Journal of Morphology, ry, 57). The author deseribes the ejection of the nuclens from the red cells, and believes that this results in the formation of red plastids. The process is, I think, really degenerative, and the resemblance between the non-nucleated body of the cell and a true plastid, is not one of identity. Certainls, until proof is offered that the observations of Schater, Kuborn, and myself, upon the intra cellular origin of the plastids are proved erroneous, the emigration of the mucleus of the red cells can not be held to result in producing plastids, but only to be degenerative. That the red cells degeuerate and disap. pear has been known; Howolls's valuable obserrations indicate the method of their destruction.
The above review shows that the vertebrate blood corpuseles are of three kinds: (1) red cells; (2) white cells; (3) plastids. The red and white cells occur in all (?) vertebrates; the plastids are conflned to the mammals. The red eolls present three ohiof modifications; whether the primitive form occurs in any living adult vertebrate I do not know; the second form is persistont in the Iehthyopsida, the third form in the Sauropsida. According to this wo must distinguish :
A.-Onocelled blood, i. e., frst stage in all vertebrates; the blood contains only red cells, with little protoplasm.
B.--Two colled blood, having red and white cells; the red cells have either a large, coarsely gramular nuclens (Ichthyopsida), or a smaller, darkly staining nuolous (Sauropsida, mammalian embryos).
O.-.-Plastid blool, without red cells, but with white cells and red plastids; occurs only in adult mammals.
Mammalian blool in its development passes through these stages, as well as through the two phases of stage 13, all in their natural sequence; the ontogenetic order follows the phylogenetic.

I pass by the numerons authors whose views conflict with mine, partly because the present is not a suitable oceasion for a detailed discussion, partly because those authors who have asserted the origin of one kind of blood corpuselo by metamorphösis from another have failed to find just the intermediate forms; it seems to me therefore that most, at least, of the opposing views collapse of themselves.

WEISMANN'S THEORY OF HEREDITY.*

By George J. Romanes.

The recently published translation of Professor Weismann's essays on heredity and allied topics has aroused the interest of the general public in the system of his biologioal ideas. But seeing that his system, besides being somewhat elaborate in itself, is presented in a series of disconnected essays, originally published at different times, it is a matter of no small difficulty to gather from tho present sollection of these essays a complete view of the system as a whole. Therefore I propose to give a brief sketch of his several thcories, arranged in a manner calculated to show thoir logical connection one with another. And in order also to show the relation in which his resulting theory of herodity stands to what has hitherto been tho more usual way of regarding the facts, I will begin by furnishing a similarly briof sketch of Mr. Darwin's theory unon the subject. It will bo observed that these two theories constitute the logical antipodes of explanatory thought; and therofore it may be said, in a general way, that all other modern theories of heredity-such as those of Spencer, Haeckel, Elsherg, Galton, Naegeli, Brooks, Hertwig, and Vries-occupy positions moro or loss intermediato between these two extremes.
When olosely analyzed, Mr. Darwin's theory-or "provisional hy. pothesis of panyenesis"-will bo found to embody altogether seven assumptions, viz:
(1) That all the component cells of a multi-cellnar organism throw off inconcoivably minute germs or "gemmules," which are then dispersed thronghout the whole systom.
(2) That theso gemmules, when so dispersed and supplied with proper nutriment, multiply by self-division, and under suitable conditions, are orpable of developing into physiologioal cells like those from which they were originally and severally derived.
(3) That while still in this gemmular condition, these cell soods have for one another a mutual affuity, which leads to their boing collocted from all parts of the systom by the roproduotive glands of the organism; and that, when 80 collocted, they go to constitute the essential material of the sexual elements, ova and spermatozoa boing thus nothing more

[^74]than aggregated packets of gemmules which have emanated from all the cells of all the tissues of the organism.
(4) That the development of a new organism out of the fusion of two such packets of gemmules is due to a stummation of all the dovelop. ments of some of the gemmules which these two packots contain.
(5) That a large proportional number of the gemmules in each packet, however, fail to develop, and are then transmitted in a dormant state to future generations, in any of which they may be developed subse. quently, thus giving rise to the phenomena of reversion or atavism.
(6) 'That in all cases the development of gemmules into the form 0^{\prime} their parent cell depends on their suitable union with other partially developed gemmules, which precede them in the regular course of growth.
(7) That gemmules are thrown off by all physiological cells, not only during the adult state of the organism, but dming all stages of its development. Or in other words, that the production of these cell seeds deponds upon the adult condition of parent cells, not upon that of the multi-cellular organism as a whole.

At first sight it may well appear that we have here a very formidable array of assumptions. But Mr. Darwin ably argues in favor of each of them by pointing to woll-known analogies, drawn from the vital processes of living cells, both in tho protozoa and metazoa. Tor example, it is ahready a woll-recognized doctrino of physiology that each cell of a metazoön, or multicellular organism, though to a large extent dependent on others, is likewise to a certain oxtent independent or automatous, and has the power of multiplying by self division. Iherofore, as it is cortain that the sexual clements (and also buds of all descriptions) include formative matter of some kind, the flrst assumption-or that which supposes such formative mattor to bo partioulate-is cortainly not a gratuitous assumption. Again, the second assumption-namoly, that this particulate and formative material is disporsed throughout all the tissues of the organism--is sustained by the fact that both in cortain plants and.in certain invortelbrate animals a severed portion of the organism will develop into an entire organism simis ... to that from which it was derived, as for example is the case with a leaf of begonia and with portions cut from cortain worms, sea-anomonos, jelly-fish, ete. This well-known fact in itself seems enough to prove that the formative ma. terial in question must cortainly admit (at all ovents in many cases) of being distributed throughont all the tissues of living organisins.

The third assumption--or that which supposes the formative material to be especially aggregated in the sexual elements-mis not so much an assumption as a statement of obvious fact; while the fourth, fifth, sixth, and seventh assumptions all follow deductively from their predocessors. In other words, if the first and second assumptions be granted and if the theory is to comprise all the facts of heredity, then the remaining five assumptions are bound to follow.

To the probable objection that the supposed gemmules must be of impossibly minute size-seeing that thousands of millions of them would require to be packed into a single ovum or spermatozoön-Mr. Darwin opposes a calculation that a cube of glass or water having only one ten-thousandth of an inch to a side contains somewhere between sixteen and a hundred and thirty-one billions of molecules. Again, as touching the supposed power of multiplication on the part of his gemmules, Mr. Darwin alludes to the fact that infectious material of all kinds exhibits a ratio of increase quite as great as any that his theory requires to attribute to gemmules. Furthermore, with respect to the elective affinity of gemmules, he remarks that "in all ordinary cases of sexual reproduction the male and female olements certainly have an elective affinity for each other;" of the ten thousand species of Oomposite, for example, "there can be no doubt that if the pollen of all these species conld be simultaneously placed on the stigma of any one species, this one would elect, with unerring certainty, its own pollen."
Such then in brief outline; is Mr. Darwin's theory of pangenesis.
Professor Weismann's theory of germ-plasm is fundamentally based upon the great distinction that obtains in respect of their transmissibility between characters which are congental and characters which are acquired. By a congenital character is meant any individual peculiarity, whether structural or mental, with which the individual is born. By an acquired character is meant any peculiarity which the individual may subsequently develop in consequence of its own indivilual experience. For example, a man may be born with some malformation of one of his fingers or he may subsequently acquire such a malformation as the result of accident or disease. Now in the former case-i. $e_{\text {., }}$ in that where the malformation is congenital-it is extremely probable that the peculiarity will be transmitted to his children ; while in the latter case-i.e., where the malformation is subse. quently acquired-it is virtually certain that it will not be transmitted to his children. And this great difference between the transmissibility of characters which are congenital and charactors which are acquired extonds universally as a general law throughout the vegetable as well as the animal kingdom, and in the province of mental as in that of bodily organization. Of course this general law has always been well known and more or less fully recognized by all modern physiologists and medical men. But before the subject was taken up by Professor Weismann it was generally assumed that the difference in question was one of degree, not one of kind. : In other words, it was assumed that acquired charncters, although not so fully-sind therefore not so certainly-inherited as congenital characters, nevertheless were inherited in some lesser degree ; so that, if the same character continued to be developed successively in a number of sequent generations, what was at first only a slight tendency to be inherited would become by
summation a more and more pronounced tendency, till eventually the acquired character might, be as atrongly inherited as any other character which was ab initio congenital. Now it is the validity of this assumption that is challenged by Professor Weismann. He says there is no evidence at all of any acquired characters belng in any degree in. herited, and therefore that in this important respeet they may be held to differ from congenital characters in kind. On the supposition that they do thus differ in kind, he furnishes a very attractive theory of heredity, which serves at once to explain the difterence, and to rep. resent it as a matter of physiological impossibility that any acquired character can, under any circumstances whatsoever, be transmitted to progeny.

In order fully to comprehend this theory, it is desirable first of all to explain Professor Weismann's views upon certain other topics which are more or less closely allied to, and indeed logically bound up with the present one.

Starting from the fact that uni-cellular organisms multiply by fission and gemmation, he argues that aboriginally and potentially, life is immortal ; for, when a protozoön divides into two-more or less equal parts by fission, and each of the two halves thereupon grows into another protozoön, it, is evident that there has been no death on the part of any of the living material involved; and inasmuch as this process of íssion goes on continuously from generation to generation, there is never any death on the part of such protoplasmic material, although there is a continuous addition to it as the numbers of individuals increase. Similarly, in the case of gemmation, when a protozoön parts with a small portion of its living material in the form of a bud, this portion does not die, but develops into new individual; and therefore the process is exactly analogous to that of fission, save that only a small instead of a large part of the parent substance is involved. Now if life be thus immortal in the case of uni-cellular organisms, why should it have ceased to be so in the ease of multi-cellular organisms? Weismann's answer is that all the multi-cellular organisms propagate themselves, not exclusively by flssion or gemmation, but by sexual fertilization, where the condition to a new organism arising is-that minnte and specialized portions of two parent organisms should fuse together, Now it is evident that with this ehange in the method of propagation, serious disadvantage would accrue to any species if its sexual individ. uals were to continue to be immortal; for in that case every species which multiplies by sexual methods would in time become composed of indivuals broken ciown and decrepit through the results of aceident and disease-always operating and ever accumulating throughout the course of their immortal lives. Oonsequently as soon as sexual methods of propagation superseded the more primitive a-sexual methods, it lecame desirable in the interests of the sexually-propagating species that their constituent individuals should cease to be immortal, so that
the species should always be recuperated by fresh, joung, and wellformed representatives. Consequently also, natural selection would speedily see to it that all sexually.propagating species should become deprived of the aboriginal endowment of inmortality, with the resnit that death is now a universal destiny anong all the individuals of such species, that is to say, among all the metazoa and metaphyta. Nevertheless, it is to be remembered that this destiny extends only to the parts of the individual other than the contents of those specialized cells which constitute the reproductive elements, for although in each individual metazoön or metaphyton an innumerable number of these specialized cells are destined to perish during the life and with the death of the organism to which they belong, this is only due to the aecident, so to speak, of their contents not having met with their com. plements in the opposite sex; it does not belong to their essential nature that they should perish, seeing that those which do happen to met with their complements in the opposite sex help to form a new living individual, and so on through successive generations ad infinitum. Therefore the reproductive elements of the metazoa and metaphyta are in this respect precisely analagous to the protozoa: potentially, or in their own uature, they are immortal; and, like the protozoa, if they die, their death is an accident due to unfavorable circumstances. But the case is quite different with all the other parts of a multicellular organism. Here, no matter how favorable the circumstances may be, every coll contains within itself, or in its very nature, the eventual doom of death. Thus, of the metazoa and mtaphyta it is the specialized germplasms alone that retain their primitive endowment of everlasting life, passed on continuously through genoration after generation of succes. sively perishing organisms.

So far, it is contended, we are dealing with matters of fact. It must be taken as true that the protoplasm of the uni-cellular organisms and the germ-plasm of the multicellular organisms have been continuous through the time since life first appeared upon this earth; and although large quantitics of each are perpetually dying through being exposed to conditions unfavorable to life, this, as Weismann presents the matter, is quite a different case from that of all the other constituent parts of multi cellular organisms, which contain within themselves the doom of death. Furthermore, it appears extremely probable that this doom of death has been brought about by natural selection for the reasons assigned by Weismann, namely, because it is for the benefit of all species which perpetarte themselves by sexam methods that their constituent individuals should not live longor than is necessary for the sake of originating the next generation and fairly starting itin its own struggle for existence. For Weismanu has shown, by a somewhat hiborious though still largely imperfect research, that there is throughout all the metazon a general correlation between the natural life time of individuals composing any given species and the age at which they
reach maturity or first become capable of procrention. This general correlation however is somewhat modified by the time during whiteh progeny are dependent upon their parents for support and protection. Nevertheless, it is evilent that this modification tends rather to confirm the view that expectation of life on the part of individuals has in all cases been determined with strict reference to the requirements of prop. agation, if under propagation we include the rearing as well as the production of offspring. I may observe in passing that I do not think this general law can be found to apply to plants in nearly so close a manner as Weismann has shown it to apply to animals; but leaving this fuct aside, to the best of my judgment it does appear that Weis. mann has mado ont a good case in favor of such a general law with regard to animals.

We have come then to these results. Protoplasm was originally immortal (barring accidents), and it still continues to be immortal in the case of unicellular organisms which propagate a-sexnally. Butin the case of all multicellular organisms, which propagate sexually, nat. ural selection has reduced the term of life within the smallest limits that in each given case are compatible with the performance of the sexual act and the subsequent rearing of progeny, reserving however the original endowment of iminortality for the germinal elements, whereby a continuum of life has been secured from the earliest appearance of life until the present day.

Now in view of these results, the question arlses, Why should the sexual methods of propagation have become so general if their effect has been that of determining the necessary death of all individuals presenting them? Why, in the course of organic evolution, should these newer methods have been imposed on all the higher organisms, when the consequence is that all these higher organisms must pay for the innovation with their lives? Weismann's answer to this question is as interesting and ingenious as all that has gone before. Sceing that sexual propagation is so general as to be practically universal among multi-cellular organisms, it is obvious that in some way or other it must have a most important part to play in the general scheme of organic evolution. What then is the part that it does play? What is its raison d'être? Briefly, according to Weismann, its function is that of furnishing congenital variations to the over-watehful agency of natural selection, in order that natural selection may always preserve the most favorable and pass them on to the next generation by heredity. That sexual propagation is well calculated to furnish congenital variations may easily be rendered apparent. We have only to remem. ber that at each union there is a mixture of two germinal elements; that each of these was in turn the product of two other germinal elements in the preceding generation, and so backwards ad infinitum in geometrical ratio. Remembering this, it follows that the germinal element of no one member of a species can ever be the same as that of any
other member; on the contrary, while both are enormonsly complex prolucts, each has had a different ancestral history, such that while one presents the congenital admixtures of thousands of individuals in one line of descent, the other presents similar admixtures of thousands of other individuals in a different line of descent. Oonsequently, when in any sexual union two of these onormonsly complex gerninal elements fuse together and constitute a new individual out of their joint endowments, it is perfectly certain that that individual can not bo exactly like any other individual of the same species or even of the same brood; the chances must be inflnity to ono against any singlo mass of germplasm being exactly like any other mass of germ-plasm; while any amount of latitude as to difference is allowed, up to the point at which the difference becomes too pronounced to satisfy the conditions of fertilization, in which case, of course, no new individual is born. Hence, theoretically, we have here a sufficient cause for all individual variations of a congenital kind that can possibly occur within the limits of fertility, and therefore that can ever become actual in living organisms. In point of fact, Weismann believes-or at any rate began by believing-that this is the sole and only canse of variations that are congenital, and therefore (according to his views) transmissible by heredity. Now whether or not he is right as regards these latter points, I think there can be no question that sexual propagation is, at all events, one of the main canses of congenital variation; and seeing of what enormous importance congenital variation must always have been in supplying material for the operation of natural solection, we appear to have found a most satisfactory answer to our question,-Why has sex. ual propegation become so universal among all the higher plants and animals? It has become so because it is thas shown to have been the condition to producing congenital variations, which in turn constitute the condition to the working of natural selection.

Having got thus far, I should like to make two or three subsidiary remarks. In the first placo it ought to be observed that this luminous theory tonching the canses of congenital variations was not originally propounded by Professor Weismam, but oocurs in the writings of several previous anthors and is expressly alluded to by Darwin. Never. theless, it occupies so prominent a place in Weismann's system of theories and has by him been wrought up so much more elaborately than by any of his predecessors that we are entitled to regard it as par excellence the Weismannian theory of variation. In the next place it ought to be observed that Weismann is careful to guard against the seductive fallacy of attributing the origin of sexual propagation to the agency of natural selection. Great as the beneflt of this newer mode of propagation must have been to the rpecios presenting it, the benefit can not have been conferred by natural selection, seeing that the bene. fit arose from the fact of the new method furnishing material to the operation of natural selection, and therefore insofar as it did this,
constituting the condition to the principle of natural selection having been called into play at all. Or in other words, we can not attribute to natural selection the origin of sexual roproduction without involving ourselves in the absurdity of supposing natural selection to have origimated the conditions of its own activity.* What the causes may have been which originally led to sexual reproduction is at present a matter that awaits suggestion by way of hypothesis; and therefore it now only remains to add that the general structure of Professor Weismann's system of hypotheses leads to this curious result, namely, that the otherwise ubiquitous and (as he supposes) exclusive dominion of natural selection stops short at the protozon, over which it can not exercise any influence at all. For if natural selection depends for its activity on the occurrence of enngenital variations, and if congenital variations depend for their occurrence on sexual modes of reproduction, it follows that no organisms which propagate themselves by any other modes can present congenital variations, or thus become subject to the influence of natural selection. And inasmuch as Weismann believes that such is the case with all the protozoa, as well as with all parthenogenetic organisms, he does not hesitate to accept the necessary conclusion that in these cases natural selection is without any jurisdiction. How, then, does he account for individual variations in the protozoa? And still more, how does he ancount for the origin of their innumerable species? He accounts for both these things by the direct action of external con-

[^75]ditions of life. In other words, so far as the uni-cellular organisms are concorned, Weismann is rigidly and exclusively an advoeate of the theory of Lamarck, just as much as in the case of all the multicellular organisms he is rigidly and exclusively an opponent of that theors. Nevertheless, there is here no inconsisteney; on the contrary, it is consistency with the logical requirements of his theory that leads to this sharp partitioning of the uni-cellular from the multi-cellular organisms with respect to the causes of their evolution. For, as he points out, the conditions of propagation among the uni-cellular organisms are such that parent and offispring are one and the same thing; "the child is a part, and usually a half, of its parent." Therefore, if the perent has been in any way modifled by the action of external conditions, it is inevitable that the child should, from the moment of its birth (i. e., fissiparous separation), be similarly modifed; and if the modifying influences continue in the same liues for a sufficient length of time the resulting clange of type may become sufficiently pronounced to constitute a new species, genas, etc. But in the case of the multi-cellular or sexual organisms the child is not thus meroly a severed moiety of its parent; it is the result of the fusion of two highly specialized and extremely minute particles of each of two parents. Therefore, whatever may be thonght tonoling the validity of Weismann's deduction that in no case can any modification induced by external conditions on these parents be transmitted to their progeny, at least we must recognize the validity of the distinction which he draws between the facility with which such transmission must take place in the uni cellular organisms as compared with the difficulty-or, as he believes, the impossibilityof its doing so in the multi-cellular.

We are now in a position to fully understand Professor Weismann's theory of heredits in all its bearings. Briefly stated, this theory is as follows : The whole organization of any multi-cellular organism is composed of two entirely different kinds of cells, namely, the germ cells, or those which have to do with reproduction, and the somatic cells, or those which go to constitute all the other parts of the organism. Now the somatio cells in their aggregations as tissues and organs may be modifled in numberless ways by the direct action of the environment as well as by special habits formed during the individual life time of the organism. Butalthough the modifeations this induced may be and generally are adaptive,--sueh as the increased musoularity caused by the use of muscles, "practice making perfect" in the case of nervous aldinstments, and so on,-in no case can these socalled acquired or "somato genetic" characters exercise any influence upon the germ-cells, such that they should re-appear in their products (progeny) as congenital or "blasto-genetic" cbaracters. For according to the theory, the germ cells as to their germinal contents differ in kind from the somatic cells, and have no other connection or dependence upon them than that of deriving from them their food and lodging. So much then for
the somatic cells. Turuing now more especially to the germ cells, these are the receptacles of what Weissmami calls the germ-plasm; and this it is that which he supposes to differ in kind from all the other constituent elements of the organism. For the germ.plasm he believes to hare had its origin in the uni cellular organisms, and to have been handed down from them in one continuous streim through all successive generations of multi-cellular organisms. Thus, for example, suppose we take a certain quantum of germ plasm as this occurs in any individual organism of to day. A minute portion of this germ-plasm, when mixed with n similarly minute portion from another individual, goes to form a new individual. But in doing so only a portion of this minute portion is consumed; the residue is stored up in the germinal cells of this new individual in order to secure that continuity of the germ-plasm which Weismann assumes as the necessary basis of his whole theory. Furthermore, he assumes that this overplus porion of germ-plasm which is so handed over to the custody of the new individual is there capable of growth or multiplication at the expense of the nutrient materials which are supplied to it by the new soma in which it finds itself located; while in thus growing or multiplying it faithfully retains its bighly complex character, so that in no one minute particular does any part of a many thousand.fold increase differ as to its ancestral characters from that inconceivably small overplas which was first of all intrusted to the embryo by its parents. Therefore one might represent the germplasm by the metaphor of a yeast-plant, a single particle of which may be put into a vat of nutrient fluid; there it lives and grows upon tho nutriment supplied, so that a new particle may next be taken to imprognate another vat, and so on ad infinitum. Here the successive vats would represent sticcessive generations of progeny; but to make the metaphor complete one would require to suppose that in each case the yeast-cell was required to begin by making its own vat of nutrient, material, and that it was only the residual portion of the cell which was afterwards able to grow and multiply. But although the metaphor is necessarily a clumsy one, it may serve to emphasize the allin. portant feature of Weismenn's theory, viz, the almost absolute independence of the germ-plasm. For just as the properties of the yeastplant would be in no way affected by anything that might happen to the vat short of its being broken up or having its malt impaired, so according to Weismann the properties of the germ.plasm cannot bo affected by anything that may happen to its containing soma short of the soma being destroyed or having its nutritive functions impaired.

Such being the relations that are supposed to obtain between the soma and its germ plasm, we have next to contemplate what is sup. posed to happen when, in the course of evolution, some modification of the ancestral form of the soma is required in order to adapt it to some change on the part of its environment. In other words, we have to consider Weismann's views on the modus operandi of adaptive development, with its results in the origination of new species.

Seeing that according to the theory, it is only congenital variations which can be inherited, all variations subsequently acquired by the intercourse of individuals with their environment, however beneficial such variatious may be to these individuals, are ruled out as regards the species. Not falling within the province of heredity, they are blocked off in the first generation, and therefore present no significance at all in the process of organic erolution. No matter how many generations of eagles, for instance, may use their wings for purposes of flight; and no matter how great an inerease of muscularity, of endurance, and of skill, may thus be secured to cach generation of eagles as the result of individual exercise; all these advantages are entirely lost to progeny, and young eagles have ever to begin their lives with no more benefit bequeathed by the activity of their ancestors than if those ancestors had all been barn-loor fowls. Therefore the only material which is of any count as regards the species, or with reference to the process of evolution, are fortuitous variations of the congenital kind. Among all tho numberless congenital variations, within narrow limits, which aro perpetually occurring in each generation of eagles, some will have reference to the wings; and although these will be fortuitons, or occurring indiseriminately in all directions, a fow of them will now and then be in the direction of increased muscularity, others in the direction of increased endurance, others in the direction of increased skill, and so on. Now each of these fortuitous variations, which happens also to be a beneficial variation, will be favored by natural selection; and beoause it likewise happens to be a congonital variation, will be perpetuated by heredity. In the course of time, other congenital variations will happen to arise in the same directions; these will be added by uatural selection to the advantage already gained, and so on, till after hundreds and thousands of generations the wings of eagles become evolved into the marvelous structures which they now present.

Such behg the theory of natural selection when stripped of all remnants of so-called Lamarckian princlples, we lave noxt to consider what the theory means in its relation to germ-plasm. For as before ex. plained, congental variations are supposed by Weismann to be due to new combinations taking placo in the germ-plasm as a result of the union of two complex hereditary histories in every act of fertilization. Well, if congenital variations are thus nothing more than variations of som-phasm " writlarge" in the organism which is cleveloped out of the plasm, it follows that natural selection is really at work upon these variations of the germ-plasm. For although it is proximately at work on the congenital variations of organisms after birth, it is ultimately, and through them, at work upon the variations of germ-plasm out of which the organisms arise. In other words, natural selection in picking out of each generation those individual organisms which are by their congonital charucter bost suited to their surounding conditions of life, is thereby pioking out those peculiar combinations or variations
of germ-plasm, which, when expanded into a resulting organisu, give that organism the best chance in its struggle for existence. And inasmuch as a certain overplus of this peculiar combination of germ. plasm is intrusted to that organism for bequenthing to the next generation, this to the next, and so on, it follows that natural selection is all the while conserving that originally pecular combination of germ. plasm, until it happens to meet with some other mass of germ-plasm by mixing with which it may still further improve upon its original peculiarity when, of course, natural selection will seize upon this im. provement to perpetuate as in the previous case. So that on the whole we may say that natural selection is ever waiting and watching forsuch combinations of germ-plasm as will give the resulting organisms the best possible chance in their struggle for existence; while at the same time it is remorselessly destroying all those combinations of germ-plasm which are handed over to the custody of organisms not so well fitted to their conditions of life.

It only remains to add that, according to Weismann's theory in its strictly logical form, combinations of germ-plasm when once effected are so stable that they would never alter except as a result of entering into new combinations. In other words, no external influences or internal processes can ever cliange the hereditary nature of any particular mixture of germ-plasm, save and except its admixture with some other germ-plasm, which, being of a nature equally stable, goes to unite with the other in equal proportions as regards hereditary character. So that really it would be more correct to shy that any given mass of germ-plasm does not change oven whon it is mixed with some othor mass-any more, for instance, than a liandful of sand can be said to ehange when it is mixed with a handful of clay.

Oonsequently, we arrive at this curious result. No matter how many genorations of organisms there may have been, and therefore no matter how many combinations of germ-plasm may have taken place to give rise to an existing population, eash existing unit of germ-plasm must have remained of the same essential nature of constitution as when it was first started in its immortal career millions of years ago. Or re verting to our illustration of sand and clay, the particles of each must always romain tho same, no matter how many admixtures they may undergo with particles of other materials, such as chalk, slate, etc. Now inasmuch as it is an essential-becanse a logically nocessarypart of Weismann's theory to assume such absolute stability or unchaageableness on the part of germ-plasm, the question arises, and has to lie inet,-What was the origin of those differences of charncter in the diffurent germ-plasms of multi-cellular organisms which flrst gave rise, and still continue to give rise, to congenital variations by their mixture one with another? This important question Weismann answers by supposing that these differences originally arose out of the differences in the uni-cellular organisms, which were the ancestors of the primitive
multi-cellular organisms. Now as before stated, different forms of unicellular organisms are supposed to have originated as so many results of difterences in the direct action of the environment. Oonsequently, according to the theory, all congenital variations which now occur in multi cellular organisms are really the distant results of variations that were aboriginally induced in their uni-cellular ancestors by the direct action of surrounding conditions of life.

I think it will be well to conclnde by briefly summarizing the main features of this elaborate theory.

Living material is essentially, or of its own nature, imperishable, and it still continues to be so in the case of unicellular organisms which propagate by fission or gemmation. But as soon as these primitive methods of propagation became, from whatever cause, superseded by sexual, it ceased to be for the benefit of species that their constituent individuals should be immortal, seeing that, if they continued to be so, all species of sexually-reproduciug organisms would sooner or later come to be composed of broken down and decrepit individuals. Oonsequently, in all sexually-reproducing or multi-cellular organisms, natural selection set to work to reduce the term of individual life-times within the narrowest limits that in the case of each species are compatible with the procreation and the rearing of progeny. Nevertheless, in all these sexually-reproducing organisms the primitive endowment of immortality has been retained with respect to their germ-plasm, which has thus been continuous, through numberless generations of perlshing organisms, from the first origin of sexual reproduction till the present time. Now it is the union of germ-plasms which is required to reproduce now individuals of multi-cellular organisms that determines congenital variations on the part of such organisms, and thus furnishes natural selection with the material for its work in the way of organic evolution,-work therefore which is impossible in the case of uni.cellular organisms, where variation can never be congenital, but always determined by the direct action of surrounding conditions of life. Again, as the gorm-plasm of multi-cellular organisms is continuous from generation to generation, and at each impregnation gives rise to a more or less novel set of congenital characters which are of most service to the organisms presenting them, is really or fundamentally at work upon those variations of the germ-plasm which in turn give origin to those variations of organistas that we recognize as congenital, thorefore, natural selection has always to wait and to watch for such variations of germ-plasm as will eventually prove beneficial to the individuals developed therefrom, who will then transmit this peculiar quality of germ-plasm to their progeny, and so on. Therefore also-and this is most important to remember-natural selection as thus working be. comes the one and only cause of evolution and the origin of species in all the multi-cellular organisms, just as the direct action of the environment is the one and only cause of evolution and the origin of species
in the case of all the uni-cellular organisms. But inasmuch as the mul-ti-cellular organisms were all in the first instance dorived from the unicellular and inasmuch as their germ-plasm is of so stable a nature that it can never be altered by any agencies internal or external to the organisms presenting it, it follows that all congenital variations are the remote consequences of aboriginal differences on the part of unicellular ancestors, And lastly, it follows also that these congenital variations-although now so entirely independent of external conditions of life, and even of activities internal to organisms themselves-were originally and exclusively due to the direct action of such conditions on the lives of their unicellular ancestry; while even at the present day no oue congenital variation can arise which is not ultimately due to differences impressed upon the protoplasmic substance of the germinal elements, when the parts of which these are now composed constituted integral parts of the protozon, which were directly and differentially affected by their converse with their several environments.

Such then is Weismann's theory of heredity in its original and strictly logical form. But it is now necessary to add that in almost overy one of its essential features, as just stated, the theory has had to undergo-or is demonstrably destined to undergo-some radical modification. On the present occasion however, my object is merely to state the theory, not to criticise it. Therefore I have sought to present the whole theory in its' completely connected shape. On a future occa-slon-I hope within the present year-it will be my endeavor to dis. connect the now untenable parts from the parts which still remain for investigation at the hauds of biological science.

ri'HE ASOENT OF MAN.*

By Frank Baker, M. D.

The science of Anthropology, one of the younger daughters of human knowledge, is so vast in its scope that to master all of its different ram. ifications scems a hopeless task. Having for its object the compreheusive study of man, including his origin, his development, and his present condition, its aim is to focus and co-ordinate the general results derived from a vast number of subordinate branches. The philologist contributes information concerning the origin and growth of language and its effect upon civilization; the mythologist tells of the psychological side of the human mind and traces the rise and progress of religious ideas; the archaologist, in order to fix their places in the history of mankind, searches for the remains of peoples long since passed away. All these depend for their material upon external records, left by tradition, by writing, by sculpture, or by implements and weapons. With greatest care every anoient habitation of man is searched in order to learn from it the details of the life of its former inhabitants.

Within comparativoly recent times still another avonue of informa. tion has been found, for we have learned that it is not alone by these external records that man's history can be traced, but that important facts may be obtained by studying the constitution of his body; that the changes and vicissitudes of his existence are recorded on his very bones, in characters long undeciphered, but to which the clow has at last been found. My labors have led me more partioularly to this department of anthropology, and a concise summary of the main heads of this research may be of value and interest.

The views propounded by Lamarck in the early part of this contury, with reference to the modifleation of living organisms by use and adaptation, have been remarkably confirmed in modern times. Dxhaustive researches into the constitution and properties of the cells composing living tissues show that they are subject to continual change, each im. pulse from without being registered by some small alteration in their physical condition. Impulses of a similar kind continuously acting

[^76]produce greater changes, and long.continued repetition notably alters even the hardest and most enduring of structures. Thus it is that bones are modified in form by muscular pull and the surfaces of teeth are shaped by incessant grinding. These alterations are more readily apparent to us because they affect very hard and easily preserved organs, but the effects are equally potent, thongh not so clearly recog. nizable, in the softer tissues of the body, Every act of our lives is certainly but surely registered within the marvollous structure of our bodies. Not a muscle can contract without an absolute change substance; in its not a nerve-cell candischarge with out some self-destruc. tion.

Most of these changes being very minute and evanescent are quite beyond our power to accurately estimate, and were the increments of change confined to a single life time, were each individual to stand only for himself and compelled to earn his experience by the same tedious struggle, use and adaptation would have but little porver to mold mankind into races and varieties. But, by the action of a law as yet im. perfectly understood, the adaptations of each individual are transmitted to its offspring; or, to speak more accurately, the offispring pass through the changes more easily and quickly than the parent did. While each has always to go back to the beginning and commence from the simple blastema of the primitive egg, the younger has the advantage of being able to adapt itself more quickly to its surromindings, provided these have not too greatly changed, and thus starts a little way ahead of its ancestor in the race for life. In consequence of this law, changes bocome cumulative, and a cause acting for a great length of time upon a series of successive generations flnally produces a well-marked and casily observed effect in the structure of individuals; changing colors, modifying organs, shaping whole regions of the body.

Again, if after such changes have been offected, these causes coase to operate and the organs they have shaped are no longer of use, the latter become reduced in size, atrophy, and recede, remaining however in a vestigial condition for many, many generations as records of the past history of the race, as dolmens and cromlechs certify to former customs and flint arrow-heads and stone hatchets give evidence of a previous state of civilization.

The human body abounds in testimony of this sort,--indications of the pathway by which humanity has climbed from darkness to light, from bestiality to civilization,-relics of countless ages of struggle, often fierce, bloody, and pitiless.

These are fotind in every organ of the body, and each new investiga. tion adds to their number. To enumerate them all would be impossiblo within the limits assigned me by your patience. I will thorefore tonch only upon a fow of the more striking ones, especially those connected with the modifications of the limbs, with the erect position, and with the segmentation of the body.

The limbs, being organs of support and locomotion, show great variations in the zoollogical series, and the hand of man has long been looked upon as especially significant of his high position in the animal king. dom, one of the chief distinctions between him and the nearest brutes. Toa certain extent this is correct. No other creature possesses so highly complex and effective an organ for grasping and adjusting objects, and it is preemineutly this that has mpde man a tool-using animal. On comparing a human hand with that of the anthropoid apes it may be seen that this effciency is produced in two ways : first, by increasing the mobility and variety of action of the thumb and fingers; second, by reducing the muscles used mainly to assist prolonged grasp, they being no longer necessary to an organ that is inteaded for delicate work, and requires constant re-adjustment. Thus some elements are added und some taken away. Now according to the theory I have enunciated, the latest elements ought to show signs of their recent origin, to be somewhat imperfectly differentiated and liable to return to their primitive state, while those going ont of active use ought to lie vestigial, not equal in size or force to muscular orgaus generally, very liable to variation or disappearance. This is what actually occurs.

Ainong the new elements is a special Hexor muscle for the thumb, arising high up on the forearm. A very slight examination shows that this muscle has been split off from the flbers of the deep flexor that bends the terminal joints of the fingers. In most apes the two form a single muscle, and in man the thumb flexor very often shows unmistakable evidence of such origin. In about 10 per cent. of persons, part of its flbers pass over to and become blended with the parent muscle. Not infrequently I have seen the two entirely united, returning absolutely to their primitive condition. The deep and superficial flexors of the fingers show signs of a similar relationship, as they frequently blend more or less, tending to revert to tho type shown in most lower animals. Indeed, if we go back to embryonio life wo find all the muscles of the anterior part of the fore-arm united in what is termed the pronato flexor mass, recalling the original condition of mas. culature in the earliest animals possessing limbs.

In the category of disinpearing muscles comes the palmarus lonijus a muscle of the fore arm which in many animals is an important aid in climbing and grasping. It takes its origin from the upper arm and passes to the hand, where it expands into a large sheet of thick mem. brane called the palmar fascia, which splits into soveral slips passing to each finger. The pull of the muscle acts upon all the fingers together, keeping them bent without independence of action, Now in man the fingers have each two separate flexor tendons that cen act to a certain extent independently. To insure their independence they are at the wrist enclosed in a remarkable tubular conduit or subway formed by soldering the palmar fascia to the wrist-bones. This at once destroys uny effective action of the palmaris longus on the fingers and it becomes
H. Mis. 129——20
a flexor of the wrist. This soldering undoubtedly took place because the muscle was no longer required as a finger-holder. Like other organs that after playing a part of considerable functional importance bave come from change of habit to be of but little value, it shows the most astonishing tendency to variation. Not a week passes in a large dissecting room that some curious anomaly is not found in this musele. Sometimes it is seen almost in its primitive condition, the palmar fascia being comparatively movable and the palmaris longus having some effect upon the flexion of the fingers; oftener it unites wholly or partially with some portion of the pronato-Hexor mass or disappears altogether. "The disappearance is usually only appareut, however. Regressive struc. tures rarely disappear totally, for on careful search a strip of fascia can usually be found that represents the atrophied and aborted organ.

Since these two examples differ in that the first represents the development of a new muscle while the second is the atrophy of an old one, we ought to find racial differences corresponding to these two conditions. Our studies of racial anatomy are as yet far from sufficient to give us complete information upon these points, and I would especially avoid generalizing upou too meager data. It has however appeared to me that in negroes the palmaris longus is more inclined to assume its primitive type-that is, is less likely to vars-while the long flexor of the thumb is on the contrary more inclined to be partially, if not wholly: united with the deep flexor of the fingers.

Connected intimately with the hand are the other portions of the thoracic limb that carry it from place to place. Here again we may note many points indicating a progressive development of the member. When the arm is naturally and easily bent at the elbow it does not carry the hand to the shoulder, as might be expected, but towards the mouth. The reason for this is that the articular surfaces of the elbowjoint are not cut horizontally across the axis of the humerus, but inclined at an angle of about 20°. This obliquity does not occur in the footus aud is less in Bushmen, Austmlians, and the anthropoid apes. It is associated with another peculiarity; indeed, may be said to be caused by it. Ihis is a twisting of the liumerus on its long axis, which occurs markedly in the higher races. If we hold up endwise the humerus of a Duropean we see that the longest diameters of the upper and lower ends very nearly coincide. 'In the negro we flud the lower diameter turned more towards the body, stlll more in the anthropoid apes, and again more as we descend the scale. Embryology teaches that the humerus was formerly set so that the hollow of the elbow looked towards the body rather than forward, and it seems therefore that as the functions of ${ }^{\prime}$ the limb became more various, the lower end of the bone gradually twisted outward around the long axis until its diameter described a considerable arc. This turned the hand with the palm to the front, extended its range, anc si apted it for a wider usefulness. Greater tivist is found in the right humerus than in the left and in the humeri of
modern times than in those of the stone age. As the torsion increased some provision became necessary for carrying the hand easily across the body to the mouth. This was effected by the inclination of the articular surfaces of the elbow-joint already mentioned.

Many movements of the arm in man are produced by muscles acting upon the shoulder-blade or scapula. As the hand was turued outward and a wider range given, these increasel in extent and importance, and the scapula accordingly widened out at its vertebral border in order to give a more extensive attachment for muscles. In order to accurately estimate this change the ratio of the breadth to the length of the scapula is taken. This ratio, called the scapular index, is highest among the white races, less in the infant, in negroes, and in Austra. lians, and still less in anthropoid apes. It is significant also that the vertebral border of the scapula is the lasi to form in the foetus. We have therefore three modifications-the torsion of the humerns, the inclination of its lower articular surface, and the scapular index-all depending upon each other, all varying together pari passu, and all showing a progressive development both in the individual and the race.

Muscle is composed of one of the most highly organized and expensive tissues of the body. Unless fed constantly with a great supply of blood to keop up its active metabolic changes, it quickly wastes, functional activity being absolutely necessary to its proper maintenance, as any one knows who has seen how rapidly the muscles of an athlete diminish when he goes out of training. If from accident or change of habit its use altogether ceases, its protoplasm is gradually removed, its blood supply diminishes, and it shrinks to a mere band or sheet of fibrous tissue. Ohanges of function may therefore affect the form of muscles, one portion becoming tendinous or fascia-like; may even cause them to shift their places, ly inducing a development on one side and an atrophy on another, or to disappear altogether, being replaced by fascia or ligament. A similar regression may take place in bone and cartilage a high-grade, actively metabolic tissue, difficult to maintain, being replaced by a low-grade one comparatively slow to change. It is therefore not unusial to find that muscles, bones, and cartilages performing important functions in some animals are represented by vestigial structures in those higher in the scale. Our conclusions on this subject are confirmed by finding occasional instances where the hereditary tendency has beeñ greater than usual and the parent form is re-produced more or less completely in the higher animal. The palmar fascia at the distal end of the palmaris longus, to which allusion has been made, represents a former muscular portion, relics of which probably remain as some of the small thumb muscles.

Another interesting instance is the opitroohleo-anconeus, a sinall muscle at the elbow joint, used in apes to effect a lateral movement of the ulna upon the humerus. In man the ulna has become so shaped thiat the lateral movement is almost wholly lost, and the muscle has
accordingly degenerated, being represented by a strip of fascia. Very often however, a few muscular fibers are still found in this situation.
Several minor peculiarities that remind us of prinitive conditions occur in the region of the humerus. Occasionally a supracondyloid process is found, throwing a protecting arch over the brachial artery and median nerve; in this resembling the supracondyloid foramen of marsupials. Struthers found this to be hereditary, occurring in a father and four children. A. perforation of the olecranon fossa, the pit at the lower end of the humerus into which the beak-like end of the ulua fits when the arm is fully extended, may probably be regarded as a rever. sion toward the condition of anthropoid apes. This frequently occus in South African and other low tribes and in the men of the stone age. Recently Dr. D. S. Lamb has found it remarkably frequent in pre-historic Indian humeri from the Salado Valley, Arizona.

While the region of the hand and fore-arm indieates increase of specialization, the upper part of the limb generally testifies to a regression from a former more highly developed state. The anatomy of the Hying apparatus of a bird shows a series of muscular, ligamentous, and bony structures comected with its upper arm far beyond anything ever seen in man. The coracoid bone, a very important element of the shoulder girdle in tirds, has become reduced in man to a little vestigial ossicle that about the sixteenth year becomes soldered to the scapula as the coracoid process. The muscles arising from this,-peotoralis minor, coraco-braohialis, and biceps,-are structures represented in birds by strong, flying muscles. The subolavius, a little slip onding at the clavicle, appears to have formerly passed to the coracoid bone or to the humerus and been employed in arm movement. The pectoralis major appears to represent what was formerly a series of muscles. All these have a tendency to repeat their past history, and the number of variations found among them is legion. The bieeps show traces of its former complexity by appearing with three, four, or even five heads, by a great variety of insertions, by sending a tendon outside the joint capsule instead of through it, as is the rule. The pectoralis major may break up into several different muscular integers, inserted from the shoulder capsule down to the elbow. The coraco-brachialis shows the same instability, and by its belavior clearly indicates its derivation from a much larger and more extensive muscular sheet.

Not less significant are the ligaments about the shoulder. Many of these appear to be relics of organs found active in auimals lower in the scale. Thus the coraco-acromial ligament spanuing over the shoulder joint is probably a former extension of the acromion process; the rhom. boid, conoid, trapezoid, and gleno-humeral ligaments represent regressive chauges in the subolavius inuscle, the coraco-humeral ligament, at former insertion of the peotoralis minor. Bauds of the deep cervical fascia alone remain to testify to the former existence of the levator clav.
ioulce, a muscle present in most mammals and used to pull forward the shoulder girdle when walking in a quadrupedal position. In negroes I have frequently found it more or less complete. A fibrous strip uniting the latissimus dorsi to the triceps is all that remains of an important muscle, the dor8o epitroohlearis, passing from the back to the elbow or forearm, used by gibbons and other arboreal apes in swinging from branch to branch. Testut found this fully developed in a Bushman. I have myself seen various muscular slips that must represent some portions of it, and authors generally describe it as occurring in 5 or 6 per cent. of individuals.
The hind limbs of apes are popularly thought to be remarkably specialized. The term quadrumana or four-handed is used to characterize the class; yet it is quite true that this term involves a false conception. No animal has four exactly similar feet, still less four hands. The feet of the ape differ widely from hands; the great toe is not really opposable like the thumb, but morely separable from the others and differently set, so as to afford a grasp like that of a cramp iron. The gibbon alone has a small muscle of the foot that may be compared with the opponens of the thumb. That these peculiarities are also shared by man to some extent is well known. It is quite possible to train the toes to do certain kind of prehensile work, even to write, cut paper, and sew. A baby not yet able to walk can often pick up small objects with its toes. Compare the marks caused by muscular action on the sole of a baby's foot with those on the hand, and it will be seen that there are distinct signs of this prehension. Even the opponens hallucis of the gibbon is not infrequently found in man, The foetal condition of the foot also approaches that of the apes, the heel being shorter and the joints so arranged that the sole can be easily turned inward. In the ape the first or great toe is turned inward and upward by shortening its metatarsal bone and setting it obliquely upon the ankle. This shortening and obliquity also occurs in the foetus; the adult condition, in which the metatarsal bone is lengthened and set straight so as to give a longer and firmer internal border to the foot, being gradually acquired. Many savage tribes still use the foot for climbing and have a shorter metatarsal, a wider apan between the first and second toes, and greater ease in inverting the sole. Connented with this ease of inversion should be mentioned a peculiar, ape-like form of the tibia that occurs in people of the stone age, in the mound builders, and in some American Indians. This is a flattened, saber-like condition of the bone known as platyonemy. It is apparently to give greater surface of attachment and resistance to the pull of the tibialis antious, the principal muscle that turns the sole inward. It is interesting to note that this peculiarity is much more marked in some carly human skeletons than in any of the anthropoid apes.
The poet says that while other animals grovelling regard the earth,

Jupiter gave to man an uplifted countenance, and ordered him to look heavenward and hold his face erect towards the stars.

> "Pronaque cum speetent animalia cetera terram, Os homini sublime deilit, coolnmque tueri Jussit, et orectos ail sidera tollere vultus."
> Ovid, Metamorphoses : I, 84-86.

The erect position is however gradually acquired. As in the sphinx's riddle, we literally go on all fours in the morning of life, and the diff. culty that an infant experiences in learning to walk is strong evidence that this is an accomplishment acquired by the race late in its history. We ought (if this is the case) to find in the human body indications of a previous semi-erect posture. There is a vast amount of evidence of this character, and I can only sketch the outlines of it.

The erect position in standing is secured by the shape of the foot, by the attachment of strong muscles at points of severest strain, and by the configuration of the great joints which permits them to be held locked when a standing posture is assumed. All these features are liable to great variation; they are less marked in children and in the lower races. Let us examine them somewhat more carefully.

The Oancasian type of foot is evidently that best adapted for the erect position. The great toe is larger, stronger, and longer than the others, making a firm support for the inner anterior pier of the arch formed by the bones-an arch completed by a well-developed heel and maintained by a strong, dense band of luscia and ligament binding the piers together like the tie-rod of a bowsíring truss-thus producing a light and elastic structure almirably adapted to support the weight of the body and dininish the effect of shocks. In the lower races of man all these characters are less marked. The great toe is shorter and smaller, the heel-bone less strongly made, the arch much flatter. This flattening of the arch produces the projection of the heel found in some races.

The muscles required for maintaining the erect position are those which from our predilection for human anatomy we are apt to call the great extensors, overlooking the fact that in other animals they are by no means as well developed as in man. Being required at the points of greatest strain, all are situated on the posterior aspect of the bodythe calf, the buttosk, nud the back.

A very slight examination of any lower animal will show how strikingly it differs in the muscular development of these regions. The

[^77]great muscle of man's calf, the triceps extensor sura, is formed by the welding together of some four muscles separate in many lower forms. Varieties are found in man showing all grades of separation in these elements. One of the muscles, the plantaris, was formerly a great flexor of the toes, the plantar fascia representing its former distal ex. tont. Like the palmaris of the arm it lost its original function by the welding of the fascia to the bones to secure the plantar arch, and its functions being then assumed by other muscles it began to dwindle, and is now represented by a mere vestigial rudiment of no functional value. It is well known that the lower races of men have sinaller calves than Europeans. Again, it should be noted that as the erect position is assumed the muscles required for the flexion and independont action of the toes become reduced in character. A comparison with other forms shows that some of the small muscles now confined to the region of the foot formerly took their origin higher up, from the bones of the leg. Losing in functional importance, they have dwindled in size and gradually moved downward.

The great glutci muscles of the buttock find their highest development in man. They are subject to similar variations. Oertain muscles of this region, normal in apes, are occasionally found in man: a separate head of the great glataus, derived from the ischilm, and the scansorius or climbing musele that assists the great flexor of the thigh (the ilio.psoas), may be mentioned.

The enormous size and complexity of the muscles of the back in man are well known. The erector of the spine fills up the vertebral grooves and sends up numerous tendons along the back like stays supporting the masts of a ship. The mass of this muscle is comparatively less in anthropoid apes.

Notwithstanding all these powerful muscles, it would be impossible to retain the erect position for any great length of time were we to depend upon them alone, for it requires (as before stated) a great expenditure of force to keep a muscle in active use. It becomes rapidly fatigued and then loses its power, as any one may prove by standing in any constrained position, even "in the position of a soldier," for half an hour. To provide against this, a beantiful arrangement of joints and ligaments has been developed.

When in the erect attitude the ankle.joint is so arranged that its bones are in a position of greatest stability and the center of gravity is so adjusted that it falls directly upon it. This reduces to a minimum the amount of muscular force required to keep the borly erect. At the knee the center of gravity falls a little in front of the axis of the limb, and the back and sides of the joint are provided with check ligninents or straps that hold the joints locked in a position of hyper extension, so that no muscular force whatever is used to maintain it. These ligaments are regressive structures, being vestiges of former insertions of muscles near the joint. At the hip a similar condition occurs, the
center of gravity falling behind the joint and the whole weight of the trunk being hung upon the ilio-femoral ligament, a heavily thickened portion of the joint capsule. This structure is much more marked in man than in other mammals, and is found to vary considerably in its size and strength.

The spinal column has been remarkably modified to adapt it to the erect position. Before the fifth month of uterine life the whole spine describes a single, large, dorsally directed curve like that of the quadruped, arranged to accommodate the viscera. As this would be incom. patible with the erect posture, two additional curves in the opposite direction are formed : one in the region of the loins just where the center of gravity would begin to fall forward, another in the neck to counteract the heavy and unstable weight of the head. These curves are gradually acquired. While possessed by all races, and in a less degree by the higher apes, they arrive at their highest development in Europeans; while tho lumbar curve of the lower races of men is much better adapted to running in a semi-erect position through the jungle or bush. Careful measurements slow that the shapes of the vertebre have been gradually modifled. There is no abrupt transition from the spine of the lowest savages-Australian, Bushman, Andaman-to that of the gorilla, gibbon, and chimpanzee.

There is also evidenco that the posterior limbs have moved forward upon the spinal column in order-that the erect position may be assumed with less effort. In man there are between the skull and the sacrum twenty,four vertebre. The other primates have usually twenty-six, although the gorilla, chimpanzee, and orang agree with man. Now in fotal life the attachment of the hip-bones to the sacrum commences from below upward. Union first oucurs with the third sacral vertebra, leaving twenty-six presacral, then advances forward, the first sacral uniting last of all. The hip-bones actually move up along the spine a distance of two segments. Occasionally this shifting is carried still further, and but twenty-three presacral vertebrie are left. Anomalies caused by an arrest of development at some stage of this process are notat all infrequent. The most common is the want of union between the hip-bones and the first sacral vertebra, thus producing apparently six lumbar vertebres. A most beautiful specimen of this anomaly was found last wiuter in my laboratory.

The spine is sustained erect by stringing from vertebra to vertebra numbers of short ligaments that reduce to a minimum the muscular exertion required to support it. These are particularly numerous between the spines aloug the great dorsal curvature. Some of these lig. aments are replaced by small muscles, very inconstant and variable, the survivals of a whole syatem of musculatime that had for its object the moving of the separate joints of the spine, one upon another.

The head is also much modifled by the erect position. In quadrupeds, its suspension requires an extensive apparatus, a large, strong,
elastic strap-the ligamentum nuoha-passing from the tips of the thoracio vertebres to the occiput, sending processes to all the neck ver. tebre involved in the strain. Though need for it has in great degree ceased since the head has become poised in such a way as to involve but little expenditure of muscular force, yet relics of this great suspensory apparatus remain in man's neck in the form of thickened fascial bands.
The arrangement of the great foramen of the skull that transmits the central axis of the nervous system, the spinal cord, is necessarily different in an animal carrying its head erect. The foramen would naturally tend to be set forward more under the center of gravity and its inclination would be more nearly horizontal. Here again we see that the ideally perfect form is more nearly approached in the civilized races. It is never quite realized, and indeed the whole skull and its contents evince markedly that they are still undergoing an evolution. Again the lower races show variations that unite them with the anthropoid apes. While a negro may have a foramen magnum inclined 37 degrees to the horizontal, the orang may fall to 36 degrees.

But it is not onls in this way that wo get evidence that the erect position has been gradually acquired. Since gravity plays an important part in the functions of the visceral and circulatory systems, any marked change in the line of equilibrium mist necessarily be accompanied by disturbances. These disturbances to a certain extent conHlet with the acquirement of the position, as they weaken the animal. In the course of time the body may perhaps become adapted to the changed conditions, but before that perfect adaptation takes place there is a period of struggle. There is abuudant evidence that such a strug. gle has occurred and is yet going on, the adaptation being as yet far from complete.
The most striking and important of these adaptations concerns the pelvis. When the erect postur 3 is assumed the weight of the viscera being thrown upon this bony girdle, it becomes adapted for thoir sup. port by assuming a more fixed and dish-like shape. This is naturally more pronounced in the female, since with her the pelvis must bear the additional weight of the preguant uteris. It is evident that a solid, unyielding, laterally expanded ring of small aperture would give the most effective support in the erect position, but it is equally clear that with any such structure parturition would be impossible. In the quadruped the act of parturition is comparatively easy, the pelvis offering no serious hindrance. The shape of the female pelvis is therefore the result of a compromise between two forms, one for support, the other for ease in delivery. When we reflect that aloug with the acquirement of the erect position, the size of the head of the child has gradually increased, thus forming still another obstacle to delivery and to the adaptation which might otherwise have taken place, wo can realize how serious the struggle has been, and no longer wonder that
deaths in child-birth me much more common in the higher races aud that woman in her entire organization shows signs of having suffered more than man in the upward struggle.

In no other animal is there shown such a distinction between the pelvis of the male and that of the female, a distinction that increases as we ascend the scale. While the amount of individual variation is great, we yet see, particularly in the pelvis of the Andaman Islanders and of the Polynesian races, distinctly simian characters. The scanty material at band indicates that a similar transition occurred between the modern and pre-historic types. The approximation of the infantile and simian forms is well known.

The pelvis alone does not suffice to support the viscera. In quadrupeds the whole weight is slung from the horizontal spine by menns of a strong elastic suspensory bandage of fascia, the tunica abdominalis. The part of this near the thorax has in man entirely disappeared, being no longer of any use. In the groin it remains to strengthen the weak points where structures pass out from the abdominal cavity. That it often is insufficient to withstand the great pressure is testifled by the great prevalence of hernia, another sign of imperfect adaptation. The frequency of uterine displacements, almost unknown in the quadruped, has also been noted. It is significant that one of the most effective postures for treating and restoring to place the disturbed organ is the so-called "knee-elbow position," decidedly quadrupedal in character.

Many other indications are found in the viscera. The urinary bladder is so arranged in man, that any concretions that may occur, do not gather near the opening of the urethra, where they might be discharged, but fall back into the cul de-sac at the base, where they eularge and irritate the mncous lining.* The cecum, with its vermiform appendage, a vestigial organ finding its proper functional activity far below man, is so placed in quadrupeds that the action of gravity tends to free it from faecal accu. mulations. In man this is not the case, and as a consequence inflammation of this organ or its surrounding tissues, very serious and often fatal, is by no means rare. It may be noted that the ascending colon is obliged to lift its contents against gravity, and that in a lowered state of the system this inight very readily induce torpidity of function.

The gall bladiler in qualrupeds also discharges at an advantageous angle. In man, although the difference is slight, it appears to be suff-

[^78]clent to cause at times retention and consequent inspissation of the bile, leading to the formation of gall-stones.
The quadruped's liver hangs suspended from the spine, but as the erect attitude is assumed it depends more and more from the diaphragm. The diaphragm in its turn develops adhesions with the fibrous covering of the heart, which is continuous with the deep fascia of the neck, so that in effect the liver hangs suspended from the top of the thorax and base of the skull. This restricts in some degree the action of the diaphragm and confanes the lungs. This must have an effect upon the aelration of the blood, and consequently upon the ability to sustain prolonged and rapid muscular exertion. L.a extra lobe of the right ling that in animals intervenes, either constantly or during inspiration, between the heart and the diaphragm, is occasionally found in a vestigial state in man.
The vascular system abounds in evidences that it was primarily adapted to the quadrupedal position. By constant selection for enormons periods of time, the vessels have become located in the best protected situations. It is scarcely possible to injure a vessel of any size in an animal without deeply penetrating the body or passing quite through a limb. In man, on the contrary, several great trunks are comparatively exposed, notably the great vessels of the thigh, those of the forearm, and of the ventral wall.
The influence that gravity has upon the circulation is well known. The horizontal position of the great venous trunks favors the easy flow of blood to the heart without too greatly accelerating it. Man, in whom these trunks are vertical, suffers thereby from two mechanical defects,the difficulty of raising blood through the ascending vena cava, whence come congestion of the liver', cardiac dropsy, and a number of other disorders, and the too rapid delivery through the descending cava, whence the tendeney to syncope or fainting if for any canse the action of the heart is lessened. Olevenger's admirable discovery that the valves of the veins are arranged for a quadrupedal position should also be mentioned here. Evidently intended to resist the action of gravity, they shauld, to be effective, be found in the large vertical trunks. But in the most important of these they are wanting. Hence are caused many disorders arising from hydrostatic pressure, such as varicose veins, varicocele, hemorrhoids, and the like. Yet the values occur in several horizontal trunks, where they are, as far as we know, of no use whatever. Place man on all fours however, and it is seen that the entire system of valves is arranged with reference to the action of gravity in that position. The great vessels along the spine and the portal system being then approximately horizontal do not require valves, while all the vertical trunks of considerable size, even the intercostal and jugular veins, are provided with them. A confirmation of this view is found in the fact that the valves are variable in character and tend to disappear in the veins where they are no louger needed.

Wvery animal possessing a backbone may be said to be formed by the ulion of a series of disk-like segments arranged on a longitudinal axis. These segments are originally similar in character, but become specially modified in innumerable wass to meet the needs of the individual. Anatomists conclude, upon surveying the whole field, that this indicates a derivation of the vertebrates from some form of the annelid worms, among which a single unit produces by successive budding a copnpound longitudinal body. This riew is fully confirmed by the behavior of the human einbryo.

The number of the segments varies considerably, rising sometimes to as many as three hundred in some fishes and reptiles, and being genernlly greater in the animals below man. There are many indications, however, that in man, segments formerly possessed have disappeared. Leaving the skull for the present out of account, there are in the adult thirty-three or thirty-four vertobre that may be held to represent these segments; the additional vertebra, when it occurs, almost invariably belonging to the coccygeal or candal series. In the human embryo thirty eight segmentscan at one time be made out. Four or five of these generally disappear, but cases are by no means wanting in which they remain until after birth and constitnte a well-marked free tail. In one case, carefully examined and described by Lissner, a girl of 12 years had an appendage of this character 12.5 centimetres (very nearly 5 inches) long. Other observers, probably less careful and exact, report much greater lengths. From some observations it would appear that abnor. mities of this kind may be transmitted from parent to offspring.

Dr. Max Bartels recently collected from widely scattered literature reports of 116 actually observed and described cases of tailed men. In 35 instances, authors reported such abnormities to be possessed by an entire people, they themselves having observed certain individuals. These cases are scattered throughoat the whole of the known globe and extend back for a thousand years. When we consider that the authenticity of many cases is beyond question, and that the number that escaped accurate observation and report must be much greater, we can see that, we are not dealing with a phenomenon that is so rare as has generally been supposed.

Other regressive structures are abundant in this region. The spimal cord in its earlier state extended the entire length of the vertebral canal. In the child at birth it occupies only 85 per cent. of that length; in the adult 75 per cent. This is due mainly to the more rapid growth of the spine. There stretches however from the lower end of the cord down to the very end of the spine a small thread like structure, the filum terminale, a degenerated vestige of the lower caudal part of the spinal cord. Wiedersheim suggests that the frequent occurrence of degenerative disorders in the lower end of the adult cord may be due to a pathological extension of the normal atrophy. Rauber found in this region traces of two additional pairs of spinal nerves. The vessel that runs
down in front of the sacrum and coccyx corresponding to the caudal artery of quadrupeds shows signs of a former more extensive distribution, as it ends in a curiously convoluted structure known as the coceygeal gland, containing vestiges of vascular and nervous tissues. Traces of caudal muscles still remain, notably the isohio-coccygeus, which in animals moves the tail sideways, and the anterior and posterior saorococoygeus, for flexing and extending it. Occasionally the agitator caudo is found as a muscular slip passing from the femur to the coccyx. These muscles can uot be of any value in man, as the coccyx is practically immovable. At the point where the end of the spine was primarily attached to the skin a dimple is formed by regressive growth, and here the direction of the hairs also indicates that an organ has become aborted.
Another interesting condition connected with segmentation is the varying number of the ribs. Most mammals have more ribs than man, and as we descend in the scale they continue to increase. A study of development indicates that a rib is probably to be considered as an integral portion of a vertebra. As the arch of a vertebra incloses the central nervous system, so the ribs inclose the visceral systom. If this be correct they ought to be found throughout as far as the body cavity extends. This is really the case. They exist in the neck as the anterior bars of the transverse processes, in the loins as the transverse or costal processes themselves, in the sacrum welded together into what are known as the lateral masses. A great number of consideratious derived from comparative anatomy, from embryology, and from variations found in the adult, combine to support these conclusions.

Nothing would seem less likely at first sight than that the capacious expanded brain-case or skull with its complicated structure should be composed of segmental pieces like the vertebre; yet there is no doubt that the poet Goethe was on the right track when he made that importult generalization. The details of the segmentation are very far from being worked out, but a vast amount of evidence indicates that the general conclusion is correct.
Since the predominant necessity in the construction of the skull is to afford a protection for the brain, we need not be surprised to flud that it is very greatly modified in man. Enormons labor has been bestowed upon oraniology in an attempt to separate definitely the races of men is well as to connect them with the lower forms. The success in estab. lishing races has not been such as was anticipated. A constant intergrading of forms defies all attempts at a hard and fast classification, We also see types that intergrade between anthropoids and man, and find abundant evidence that the human skull was derived from a form similar to that of still lower mammals.

At first man's skull seems to be much simpler than the typical form. The bones are tewer and less complicated. But follow back the course of development and we find the bones separating-the frontal into two
pieces, the occipital and temporal each into four, the sphenoid into eight, repeating what we find as we descend the vertebrate scale.

Many of these peculiarities may remain throughout life. Such are the inter-parietal bone (found very trequently in ancient Peruvian and Arizonian skulls), the division of the frontal and temporal bones each into two, the persistence of the intermaxillary bones and of that division of the cheek or malar bone known as the os japonioum. Even cleft palate, a deformity and defect in man, merely re-produces a state natural to some of the lower mammals.

There are also present structures that are homologous with the socalled visceral arches represented in the thorax by ribs. Such are the lower jaw, the hyoid bone, and the thyroid cartilage. A study of the embrso shows us that these are portions of a series of bars primitively arranged on the plan of the branchial apparatus of the water-breathing vertebrates. Each bar has its appropriate skeleton and vascular supply and is separated from the contiguous ones by a cleft that at first passes entirely through the soft tissues and communicates with the primitive visceral cavity. These clefts may persist and cause serions deformities. The skeleton of the mandibular and hyoid bars is remark. able as containing indications of elements present in the lower vertebrates. In fishes, the lower jow articulates with a large bone apparently not found in mammals, but on tracing carefully the development of the mammalian skull it is found that this bone is represented by the incus, one of the minute ossicles of the ear. In the foetus the primi. tive lower jair, in the shape of a bar of cartilage, actually extends into the ear cavity and the upper end of it remains as the mallens. Relics of the hyoid or second brauchial arch are also found,- the styloid process of the temporal bone being one of them.

The eapacity of the cranium is usually held to distinguish man remarkably, yet the lowest microcephali approach the apes in this res. pect and the lower races have unquestionably smaller brains than the higher. As far as can be judged, there has also been an increase in average capacity during historic times. One fact pointed out by Gratiolet is very significant. In monkeys aud in the inferior races the ossification of the sutures commences at the anterior part of the head, while in Europeans these sutures are the last to close. This would indicate a greater and longer continued increase of the frontal lobes of the brain.

The same remarks may be made concerning the facial angle and prognathism. While by none of the different angles proposed have we been able to definitely separate distinct races, yet we find that the angle of the lower races and of microcephali approaches that of the anthropoid apes, and that as the capacity of the skull has increased the jaw has been thrust back under it to support the weight. This shortening of the jaw gives the characteristic expression of the civilized face. We at once recognize a brutal physiognomy by the projection and development of the great masticating apparatus, used in most animals
near man as a formidable weapon of defense. The shortening has produced some very remarkable changes. It has shoved the third molar or "wisdom tooth" so far back that it is crowded against the as. cending part of the jaw, thereby occasioning disturbance and trouble in its eruption. Being no longer practically useful, it tends to disappear, and many people never cut any wisdom teeth. Among the Anstralasians, on the contrary, a fourth molar is not infrequently found; this rarely occurs in European skulls also. Evidences exist of a lost incisor in the upper jaw on each side. Dental follicles form for it and usually abort, but occusionally the tooth appears fully developed in the adult. The great canines or eye-teeth, used in apes and other animals for tearing and holding, are in them longer and larger than the other teeth, and room is made for them in the opposite jaw by leaving an interval, called the diastema, between the canine and the tooth next to it. These large projecting canines have disappeared in the normal human skull and the diastema has accordingly closed up. Yet it is by no means uncommon to see the whole arrangement re-appear, especially in low.type skulls. Projecting canines or "snag teeth" are so common in low faces as to be universally remarked, and would be oftener seen did not dentists interfere and remove them. It may be noted also that the muscle that lifts the lip from over the canines and bares the weapon, often re-appears in man and is used to produce snarling and disdainful expressions.

Many details of structure of the skull point in the same direction. Occasionally the occipital bone has it third condyle, as in some other mammals, or a large lateral projection like that of a vertebra, the paxa. mastoid process, or indications of a separate centrum (os basioticum of Albrecht). It may have interiorly ithollow (fossette vermienne) for the vermiform process of the cerebellum, and exteriorly a large transverse ridge (torus ocoipitalis) on whioh are inserted tho museles of the nape. All these peculiarities are more frequent as we descend the seale, whether we regard the lower races of man, microcephalic individuals, or lower animals. Like many of these atavistic features they aro also more common among the criminal classes.
I have omitted the discussion of many important structural features that mark various stadia in man's ascent. From the muscular system alone there could be adduced a very great number of instances of the survival of primitive forms and of progressive variations, particularly in the development of the muscles of the face and breast. In the osscons system also there are many such, among which may be mentioned the episternal bones, the cential bones of the wrist and ankle, and the os acetabuli. The exact siguificance of these is still under discussion, as is also the question of supernumorary digits that some. times appear on the hands and feet.
Additional instances might be drawn from the visceral system. The larynx contains small throat pouches like the groat air saces of the
anthropoid apes. The pharyux of the embryo is lined with cilia like that of the very lowest vertebrates. Traces of the primitive intestine are shown by the peculiar distribution of nerves and the folding of the peritoneum. The liver and spleen both occasionally indicatea previous simpler condition, and the intestine has sometimes diverticula of no functional use-indeed, likely to be disaitrantageous-yot pointing to a previous state. These anomalies never occur at random, but can be explained consistently upon the theory of reversion.

The genito-urinary system abounds in them. The uterts may have two cavities, as in many quadrupeds, or approach that condition by being bicornuate, as in apes, and a great variety of othor vestigial structares occur, all pointing back to an original neutral condition, before the sexes were differentiated.

In the neryous system there is no lack of instances. Our studies of the brain are as yet far from complete-indeed, wo seem to be only at the threshold of a reasonable knowledge of the nervous centers-and the crowd of names, the inextricable maze of synonymy that now obscures that region, is only a mark of our iguorance. It is a case of "omme ignotum pro mirifico;" ignorant of the true value of the parts we examine, we have named even the most insignificant details of struc. ture. Perhaps one of the most interesting results of modern research is the conclusion that the psychic life of our ancestors must have been different from our own, since they possessed organs of sensation differing in degree and probably in kind. The sense of smell as indicated by the size of the olfactory bulbs of the brain is derreasing in acuteness. The fortal brain possesses comparatively larger bulbs, as do also the brains of lower races, and of anthropoid apes. The sense, being no longer required for the preservation of the species, is slowly becoming dalled. Jacobsou's organ, a curious structure found in many manmals, combining in some unknown manner the olfactory and gustatory senses, occurs in a vestiglal state in man, and the duct connecting it with the mouth yet remains as the anterior palatine canal. The pineal and pituitary bodies of the brain probably ropresent obliterated sense organs, the former being an eye, the latter having some connection with the pharynx. Our other senses have also been modified. The eye has a rudimentary third eyelid, such as birds and lizards possess, covered with minute hairs. The external ear shows signs of derivation from the pointed ear of quadrupeds and abounds in vestigial muscles such as thoy use for controlling and directing it.

From this rapid sketch it will be apparent to you that the evidence that man's path upward hass led along the same route travelled by other animals is now very powerful in its cumulative weight. By no other argument can we satisfactorily explain the bewildering maze of resemblances; yet when called upon to fix the exact line by which we have reached our present estate we at once meet with serious diffloulties. It is a popular misconception that there has been a regular chaiu-like
series, with now and then a "missing link." The various races of men and the higher simians are merely one branch of the great tree Yggdrasil, that overshadows the whole earth and reaches up into heaven. The individuals that wo compare occupy the terminal twigs of that branch, being not related directly, but only as springing from a coumon stock. The fact that resemblances occur does not necessarily prove a liueal descent, but ratiar a common ancestry. The races of man arose far back in pre-historic night. Each in its own way fought the struggle for existonce. Favored more by climate, the Oaucasian appears to have attained an intellectual superiority; yet it should not be forgotten that the others also excel, each in its own special way. Tho white races endure with difficulty the climate of the tronics, and without help would starve in the Australian bush and the Arefic ice fields.

Notwithstanding all that I have said concerning reversive characters, we yet have hardly sufficient structural grounds for separating the races of man. Different varieties of the Cancasian race show marked valiations. Between the lowest and most brutalized laborers and the cultivated and intelligent classes there exist anatomical differences as great as those which separate the white and the negro. The rapid change in the African races, remarkably shown in America in the three gencrations now before us, is a more conclusive proof of inferiority, as it indicates that they havo not had time to acquire fixed characters.

Again, as to the anthropoid apes, it is evident that they have widely diverged from man and that none represent the primitive ancestor from which all were derived. The comparison of a humav. skull with that of an adult gorilla or chimpanzee is very striking. On the one hand we see all the structural features subordinated to the necessity of forming a capacions receptacle for the brain; on the other, a similar subordination for producing an effective fighting apparatus-jaws, teeth, and ridges for the insertion of powerful muscles. In one, intelligence predominates; in the other, force. The skulls of the young of all these species show however minch greater resemblances than those of adults. This seems to indicate that there mast have been a primitive common type from which all have diverged. Savages, when ill-fed and living in unfinvorable conditions, may simulate the habits of anthropold apes, and this has an effect upon their physical structure, yet not on that account should we too readily accept their close relationship.

In this summary I have purposely refrained from any disenssion of the physiological phenomena that necessarily aceompany anatomical structure. Yet these are most important. Anatomy and physiology are inseparable, each being dependent upon the other. 'The results of the erect position, of inereased size of brain, of greater specialization of limbs, are almost incalculably great, so great that they affect the whole life of the animal, control his habits, clirect his actions in war and in the chase, and finally mold peoples, nations, and races.
H. Mis. $120-30$

As Onvier was able to deduce an animal's habits from the shape of his teeth, so we may speculate as to man's past and future from an ex. amination of his anatomy. "Ho pede Herculem" has not ceased to be true. It would be impossible for mo to adequately treat of all these results in one short hour; the subject must necessarily be deferred to another time and another place. If I have succeeded in showing you that structural features form no insignifcant part of anthropology my object is attained.

ANTIQUITY OF MAN.*

By John Evans, F. R. S.

In the year 1870 , I had the honor of presiding over what was then the Department of Ethnology in the Biological Section of the British Association at its meeting in Liverpool. Since that time 20 yoars have elapsed, during the greater portion of which period the subjects in which we are principally interested have been discussed in a department of anthropology forming part of the organization of the Biological Section, although since 1883 there has been a new section of the association, that of anthropology, which has thus been placed upon the same level as the various other sciences represented in this great parliament of knowledge. This gradual advance in its position among other branches of science proves, at all events, that whatever may have been our actual increase in knowledge, anthropology has gained and not lost in public estimation; and the interest in all that relates to the history, physical characteristics, and progress of the human race is even more lively and more universal than it was 20 years ago. During those years much study has been devoted to anthropological questions by able investigators, both in England and abroad, and there is at the present time hardly any civilized country in the world in which there has not been founderl, under some form or another, an anthropological society, the publications of which are yearly adding a groater or less quota to our knowledge. The subjects embraced in these studies are too numerous and too vast for me to attempt even in a cursory manner to point out in what special departments the principal advances have been made, or to what extent views that were held as well established 20 years ago have had either to be modified in order to place them on a surer foundation, or have had to be absolutely abandoned. Nor could I undertake to enumerate all the new lines of investigation which the ingenuity of students has laid open, or the different ways in which investigations that at first sight inight appear more curious than useful have eveutually been found to have a direct bearing upon the ordinary affairs of human life, and their results to be susceptible of

[^79]application towards the promotion of the public welfare. I may how. ever in the short space of time to which an opening address ought to be confined, call your attention to one or two subjects, both theoretical and practical, which are still under discussion by anthropologists, and on which as yet no general agreement has been arrived at by those who have most completely gone into the questions involved.

One of these questions is: What is the antiquity of the human race, or rather, what is the antignity of the earliest objects hitherto foum which can with safety be assigned to the handiwork of man? This question is susceptible of being entirely separated from any speculations as to the genetic descent of mankind; and even were it satisfactorily answered to day, new facts might to morrow come to light that would again throw the question entirely open. On any view of probabilities it is in the highest degree unlikely that we shall ever discover the exact cradle of our race, or be able to point to any ohject as the first product of the industry and intelligence of man. We may however I think, hope that from time to time fresh discoveries may be macie of objects of human art-under such circumstances and conditions that we may infer with certainty that at some given point in the world's history mankind existed, and in sufficient numbers for the relics that attest this oxistence to show a correspondence among themselves, even when discovered at remote distances from each other.
Thirty one years ago, at the meeting of this association at Aberdeen, when Sir Oharles Lyell, in the Geological Section, called attention to the then recent discoveries of Palrolithic implements in the valley of the Somme, his conclusions as to their antiquity were received with dis. trust by not a few of the geologists present. Five years afterwards, in 1864, when Sir Oharles presided over the mecting of this association at Bath, it was not without reason that he quoted the saying of the Irish orator, that " they who are born to affluence can not easily imagine how long a time it takes to get the chill of poverty out of one's bones." Nor was he wrong in saying that "we of the living generation, when called upon to make grants of thousands of years in order to explain the events of what is called the modern period, shrink naturally at first from mak. ing what seems so lavish an expenditure of past time. Throughout our early education we have been accustomed to such strict econoiny in all that relates to the chronology of the earth and its ininabitants in remote ages, so fettered have we been by old traditions, beliefs, that oven when our reason is convinced and we are persuaded that we ought to make more liberal grants of time to the geologist, we feel how hard it is to get the chill of poverty out of our bones."

And yet of late years how little have we heard of any seruples in ac. cepting as a recognized geological fact, that both on the oontinent of Europe and in these islands, which were then more closely connected with that continent, man existed during what is known as the Quaternary period, and was a contemporary of the mammoth and hairy rhinov-
eros, and of other animals, several of which are either entirely or locally extiuct. It is true that there are still some differences of opinion as to the exact relation in time of the beds of river gravel containing the relics of man and the Quaternary fauna to the period of great cold which is known as the Glacial period. Some authors have regarded the gravels as pre-Glacial, some as Glacial, and some as post-Glacial ; but after all, this is more a question of terms than of principle. All are agreed for instance, that in the eastern counties of England implements are found in beds posterior to the invasion of cold conditions in that particular region, though there may be doubts as to how much later these conditions may have prevailed in other parts of this country. All too are agreed that since the deposit of the gravels considerable changes have taken place in the configuration of the surface of the country, and that the time necessary for such changes must have been very great, though those in whose bones the chill of poverty still clings are inclined to call in influences by which the time required for the erosion of the river valleys in which the gravels occur may be theoretically diminished.

On the other hand, there have been not a few who, feeling that the evidence of the existence of the human race has now been satisfactorily established for Quaternary times, and that there is no proof that what has been found in the ordinary gravels belongs to any thing like the first phases of the family of man, have sought to establish his existence in far earlier Tertiary times. In the view that earlier relics of man than those found in the river gravels may eventually be discovered, most of those who have devoted special attention to the subject will, I think, concur. But sish an extension of time can only be granted on conclusive cridence of its necessity, and before accepting the existence of I'ertiary man the grounds on which his family tree is based require to be most carefully examined.

Let me say a few words as to the principal instances on which the believer in Tertiary man relies. These may be classiffed under thres heads:* (1) the presumed discovery of parts of the human skeleton; (2) that of animal bones said to have been cut and worked by the hand of man ; and (3) that of flints thought to be artificially fash. ioned.

On most of these I have already commented elsewhore.t Under the first head I may mention the skull discovered by Prof. Oocchi at Olmo, near Arezzo, with which, however, dintinctly Neolithic implements were associated ; the skeletons found at Uastelnedolo, of which I need only say that M. Sergi, who described the discovery, regarded thom as the remains of a family party who had suffered shipwreck in Pliocene times; and the fossil man of Denise, in the Auvergne, mentioned by

[^80]Sir Oharles Lyell, who may have been buried in more recent times under lava of Pliocene date. On these discoveries no superstructure cin be built. The Oalaveras skull seems to have better elaims to a high antiquity. It is said to have been found at a depth of 153 feet in the auriferous gravels of Oalifornia, containing remains of mastodon, and covered by five or six beds of lava or volcanic ashes. But here again doubts enter into the case, as well-fashioned mortars, stone hatchets, and even pottery are said to occur in the same deposits. In the same way the discoveries of M. Ameghino at the mouth of the Plata, in the Argentine Republic, require much further corroboration.

The presumably worked bones which I have placed in the second category, such as those with incisions in them, from St. Prest, near Ohartres, the cut bones of Cetreea in Tuscany, the fractured bones in our own crag deposits, and numerous other specimens of a similar character, have, by most geologists, been regarded as bearing marks entirely due to natural agencies. It seems more probable that in bones deposited at the bottom of Pliocene seas cuts and marks should have been produced by the teeth of carnivorous fish than by men who could only have lived on the shores of the seas, and who have left behind them no instruments by which such cuts as those on the bones could have been produced.

As to the third category, the instruments of flint reported to have been found in Tertiary deposits, those best known are from St. Prest and Thenay, in the northwest of France, and Otta, in Portugal.

These three localities I have visited ; and though at the two former, the beds in which the flints were said to have been found are certainly Pliocene, there is considerable doubt in some cases whether the flints have been fashioned at all, and in others where they appear to have been wronght, whether they belong to the beds in which they are reported to have been found, and have not come from the surface of the ground. IVen the suggestion that the flints of 'Ihenay were fashioned by the Dryopithecus, one of the precursors of man, has now been retracted. At Otta the flakes that have been found present, as a rule, only a single bulb of percussion, and having been found on the surface, their evidence is of small value. The exact geological age of the beds in which they have occurred is moreover somewhat doubtful. On the whole, therefore, it appears to me that the present verdict as to Tertiary man must be in. the form "Not proven."

When we consider the vast amount of time comprised in the Tertiary period, with its three great principal subdivisions of the Eocene, Miocene, and Pliocene, and when we bear in mind that of the vertebrate land animals, of the Eocene, no one has survived to the present time, while of the Pliocene, but one-the hippopotamus-remains unmodified, the chances that man as at present constituted should also be a survivor from that period seem remote; and against the species Homo sapiens having existed in Miocene times, almost incalculable. The ì
priori improbability of finding man unchanged, while all the other ver. tebrate animals around him have, from natural causes, undergone more or less extensive modification, will induce all careful investigators to look closely at any evidence that would carry him back beyond Quaternary times; and though it would be unsafe to deny the possibility of such an early origin for the human race, it would be unwise to regard it as established except on the clearest evidence.
Another question of more general interest than that of the existence of 'lertiary man is that of the origin and home of the Aryan family. The views upon this subject have undergone important modification during the last 20 years. The opinious based upon comparative philology alone have received a rude shock and the highlands of Oentral Asia are no longer accepted without question as the cradle of the Aryan family, but it is suggested that their home is to be sought somewhere in northern Europe. While the Germans contend that the primitive Aryans were the blue eyed dolichocephalic race of which the Scandimavians and North Germans are typical examples, the French are in favor of the view that the dark-haired brachycephalic race of Gauls, now well represented in the Auvergne, is that of the primitive Aryans. I am not going to enter deeply into this question, on which Oanon Isaac Taylor has recently published a comprahensive treatise, and Mr. Frank Jevons a translation of Dr. Schrader's much more extensive work, "I'he Pre-historic Antiquities of the Aryan Peoples." Looking at the changes that all languages undergo, (even when they have the advantage of having been reduced into the written form,) and bearing in mind the rapidity with which these changes are effected; bearing in mind, also, our extreme ignorance of the actual forms of language in use among prehistoric races unacquainted with the art of writing, I, for one, can not wondor at a something like a revolt having arisen against the dogmatic assertions of those who have, in their efforts to re construct early history, confined themselves simply to the comparative study of languages and grammar. But notwithstanding any feeling of this kind, I think that all must admire the enormous industry and the varied critical faculties of those who have pursued these studies, and must acknowledge that the results to which they have attained can not lightly be set aside, and that so far as language alone is concernod, the different families, their provinces, and mutual relations, have in the main become fairly established. The study of "linguistio paleontology," as it has been termed will help no doubt in determining still more accurately the affinities of the different forms of language, and in fixing the dates at which one separated from another, as well as the position that each should occupy on the family tree, if such a tree exists. But even here there is danger of relying too much on negative evidence; and the absence-in the presumed original Aryan languageof special words for certain oljects in general use, ought not to be re. garded as affording absolute proof that such objects were unknown at
the time when the languages containing such words separated from the parent stock. Not only Prof. Huxley, but Broca and others have insisted that language as a test of race is as often as not, or even more often than not, entirely misleading. The mamer in which one form of language flourishes at the expense of another; the various ways in which a language spreads even otherwise than by conquest; the fact that different races with totally different physical characteristics are frequently found speaking the same language or but slightly different dialects of it;-all conduce to show how imperfect a guide comparative philology may be so-far as anthropological results are concerned.

Of late, pre-historic archwology has been invoked to the airl of linguistic researches; but here again there is great danger of those who are most conversant with the one branch of knowledge being but imperfectly acquainted with the other. The different conditions prevailing in different countries, the degrees of intereourse with other more civilized nations, and local circumstances which influence the methods of life, all add difficulties to the laying down of any comprehensive scheme of archeological arrangement which shall embrace the relics, whether sepulchral or domestic, of even so limited an area as that of Europe. We are all naturally inclined to assume that the record of the past is comparatively complete. But in archreology no more than geology does this appear to be the case. The interval between the period of the river-gravels and that of the caves, such as Kent's Oavern, in England, and those of the reindeer period of the south of France, may have been but small, but our knowledge of the transition is next to none. The gap between the Palrolithic period and the Neolithic has, to my mind, still to be bridged over, and those who regard the occupation of the Belgian caves as continuous from the days of the roindeer down to late Neolithic times seem to me pos. sessed of great powers of faith. Dven the relations in time between the kjokkenmoddings of Denmark and the remains of the Neolithie age of that country are not as yet absolutely clear; and who can fix the exact limits of that age? Nor has the origin and course of extension of the more recent Bronze civilization been as yet satisfactorily determined; and until more is known both as to the geographical and chronological development of this stage of culture, we can hardly hope to establish any detalled succession in the history of the Neolithic civilization that went before it. In the meantime it will be for the beneflt of our science that speculations as to the origin and home of the Aryan family should be rife; but it will still more effectually conduce to our eventual knowl. edge of this most interesting question if it he consistently borne in mind that they are but speculations.

Turning from theoretical to practical subjects, I may call attention to the vastly improved means of comparison and study that the ethnologists of to day possess as compared with those of 20 years ago. Not only have the books and periodicals that treat of ethnology multi-
plied in all European languages, but the number of museums that have heen formed with the express purpose of illustrating the manners and customs of the lower races of mankind has also largely increased. On the Continent, the museums of Berlin, Paris, Oopenhagen, and other enpitals have either been founded or greatly improved; while in Eng. land our ethnological collections infinitely surpass, both in the number of objects they contain and in the method of their arrangement, what was accessible in 1870. The Blackmore Museum at Salisbury was at that time already founded, but has since been considerbly angmented. In Luondon, also, the Ulristy collection was already in existence, and calculated to form an admirable nucleus around which other objects and collections might cluster; and thanks in a great degree to the trustees of the Ohristy collection, and in a far greater degree to the assiduous attention and unbounded liberality of the keeper of the de. partment, Mr. Franks, the ethnological galleries at the British Museum will bear comparison with any of those in the other European capitals. The collections of pre-historic antiquities, enlarged by the addition of the fine series of urns and other relics from British barrows explored by Uanon Greenwell, which he has generously presented to the nation, and by other accessions, especially from the French caverns of the Reindeer period, is now of the highest importance. Moreover, for purposes of comparison the collections of antiquities of the Stone and Bronze periods found in foreign countries is of enorinous value. In the ethnological department the collections have been materially inereased by the numerous travellers and missionaries which this country is continually sonding forth to assist in the exploration of the habitable world; and the student of the development of human civilization has now the actual weapons, implements, utensils, dress, and other appliances of most of the known savage peoples ready at hand for ex. amination, and need no longer trust to the often imperfect representa. tions given in books of travel. But besides the collection at Bloomsbury there is another most important museum at Oxford, which that university owes to the liberality of General Pitt-Rivers. It is arranged in a somewhat different manner from that in London, the main purpose being the exhibition of the various modifications which ornaments, weapons, and instruments in common use have undergone duing the process of development. The skillful application of the doctrine of evolution to the forms and characters of these products of human art gives to this collection a peculiar charm, and brings out the value of applying scientific methods to the study of all that is connected with human culture, oven though at first sight the objects brought under consideration may appear to be of the most trivial character. . . .

The subjects of an anthropological survey of the tribes and castes in our Indian possessions, and of the continued investigation of the habits, customs, and physicial characteristics of the northwestern tribes of the Dominion of Canada, were both recommended for consid-
eration to the council of this association by the general committee at the meeting at Newcastle. We have heard from the report of the council what has been done in the inatter. The rapidity with which the various native tribes in different parts of the world are either modified, or in some cases exterminated, affordsa stroug argument for their characteristics, both physical and mental, being investigated without delay.

There are indeed now but few parts of the world the inhabitants of which have not, through the enterprise of travellers, been brought more or less completely within our knowledge. Even the center of the dark African continent promises to become as well known as the interior of South America, and to the distinguished traveller who has lately returned among us, anthropologists as well as geographers owe their warmest thanks. It is not a little remarkable to find so large a tract of country still inhabited by the same diminutive race of human beings that occupied it at the dawn of European history, and whose existence was dimly recognized by Homer and Herodotus. The story related by the latter about the young men of the Nasamones who made an expedition into the interior of Libya and were there taken captive by a race of dwarfs receives curious corroboration from modern travellers. Herodotus may indeed slightly err when he reports that the color of these pygmies was black, and when he regards the river on which their principal town was situated as the Nile. Stanley however who states that there are two varieties of these pygmies, utterly dissimilar in complexion, conformation of the head, and facial characteristics, was not the first to re-discover this ancient race. At the end of the sixteenth century, Andrew Battel, our countryman, who, having been takeu captive by the Portuguese, spent many years in the Oongo district, gave an account of the Matimbas, a pigmy nation of the height of boys of twelve years old; and in later times Dr. Wolff and others have recorded the existence of the same or similar races in Oentral Africa. Nor must we forget that for a detailed account of an Acca skeleton we are indebted to the out-going president of this association, Professor Flower. It is not however my business here to enter into any detailed account of African exploration or anthropology. I have made this incidental mention of these subjects rathor from a feeling that in Airica, as well as in Asia and America, native races are in danger of losing their primitive characteristics, if not of partial or total extermination, and that there also the anthropologist and naturalist must take the earliest possible opportunities for their researches.

TEE PRIMITIVA HOVE OF THE ARYANS.*

By Prof. A. H. Sayoe.

In my address to the Anthropological Section of the British Association in 1887, I stated that in common with many other anthopologists and comparative philologists, I had come to the conclusion that the primitive home of the Aryans was to be sought in northeastern Durope. The announcement excited a flutter in the newspapers; many of whose readers had probably never heard of the Aryans before, while others of them had the vaguest possible idea of what was meant by the name.

Unfortunately it is a name which, unless carefully defined, is likely to mislead or confuse. It was first introduced by Prof. Max Miiller and applied by him in a purely linguistic sense. The "discovery" of Sanskrit and the researches of the pioneers of comparative philology had shown that a great family of speech existed, comprising Sanskrit and Persian, Greek and Latin, Tentonic and Slav, all of them sisterlanguages descended from a common parent, of which however no literary monuments survived. In place of the defective or cumber. some titles of Indo-German, Indo.European, and the like, which had been suggested for it, Prof. Max Miller proposed to call it Aryan-a title derived from the Sanskrit Árya, interpreted "noble" in later Sans. krit, but used as a national name in the hymns of the Rig. Veda.

It is much to be regretted that the name has not beon generally adopted. Such is the case however, and it is to day like a soul seeking a body in which to find a liabitation. But the name is an excellent one, tinough the philologists of Germany, who govern us in such matters, have rofused to accept it in the sense proposed by its author; and we are therefore at liberty to diseover for it a new abode and to give to it, a now sciontific meaning.

In the onthusiasm kindled by the sight of the fresh world that was opening out before them the flrst disciples of the sclence of comparative philology bolieved that they had found the key to all the secrets of man's origin and earlier listory. The parent speech of the Indo-European languages was entitled the Ur'sprache, or "Primeval Language," and its analysis, it was imagined, would disclose the elements of articu-

[^81]late speech and the process whereby they had developed into the mani. fold languages of the present world. But this was not enough. The students of language went even further. They claimed not only the domain of philology as their own, but the domain of ethnology as well. Language was confounded with race, and the relationship of tribe with tribe, of nation with nation, was determined by the languages they spoke. If the origin of a people was required, the question was summarily de. cided by tracing the origin of its language. English is on the whole a Teutovic language, and therefore the whole English people must have a Teutonic ancestry. The dark-skinned Bengali speaks languages akin to our own ; therefore the blood which runs in his veins must be derived from the same source as that which runs in ours.

The dreams of universal conquest indulged in by a young science soon pass away as facts accumulate, and the limit of its powers is more and more strictly determined. The Ursprache has become a language of comparatively late date in the history of linguistic development, which differed from Sanskrit or Greek only in the fuller inflexional character. The light its analysis was believed to cast on the origin of speech has proved to be the light of a will.o'the-wisp, leading astray and perverting the energies of those who might have done more profitable work. The mechanism of primitive lauguage often lies more clearly revealed in a modern Bushman's dialect or the grammar of Esquimaux than in that much-vaunted Ursprache from which such great things were once expected by the philosophy of human speech.

Ethnology has avenged the invasion of its territory by linguistic science, and has in turn claimed a province which is not its own. It is no longer the comparative philologist, but the ethnologist, who now and again uses philological terms in an ethnological sense, or settles racial affinities by an appeal to language. The philologist first talked about an "Indo.European race;" such an expression could now be heard only from the lips of a youthful ethnologist.

As soon as the discovery was made that the Indo-European languages were derived from a common mother, scholars began to ask where that common mother-tongue was spoken. Butit was agreed on all hands that this musthave been somewhere in Asia. Theology and history alike had taught that mankind came from the Dast and from the East accordingly the Ursprache musthave come too. Hitherto Hebrew had been generally regarded as the original langange of humanity ; now that the Indo. Enropean Ursprache had deprived Hebrew of its. place of honor, it was natural, if not inevitable, that like Hebrew, it should be accounted of Asiatic origin. Moreover it was the discovery of Sanskrit that had led to the discovery of the Ursprache. Had it not been for Sanskrit, with its copious grammar, its early literature, and the light which it throw on the forms of Greek and Latin speech, comparative philology might never have been born. Sanskrit was the magician's wand which had called the new science into existence, and without the help of Sanskrit,
the philologist would not have advanced beyond the speculations and guesses of classical scholars. What wonder then if the language which had thus been a key to the mysteries of Greek and Latin, and which seemed to embody older forms of speech than they, should have been assumed to stand nearer to the Ursprache than the cognate languages of Europe? The assumption was aided by the extravagant age assigued to the monuments of Sanskrit literature. The pooms of Homer might be old, but the hymus of the Veda, it was alleged, mounted back to a primeval antiquity, while the Institutes of Manu represented the oldest code of laws existing in the worid.

There was yet another reason which contributed to the belief that Sanskrit was the first-born of the Indo-European family. The founders of comparative philology had been preceded in their analytic work by the ancient grammarians of India. It was from Panini and his prede. cessors that the followers of Bopp inherited their doctrine of roots and suffixes and their analysis of Indo-European words. The language of the Veda had been analyzed 2,000 years ago as no other single language had ever been analyzed before or since. Its very bounds had been carefully probed and distinguished, and an alphabet of extraordinary completeness had been devised to represent them. It appeared as if the elements out of which the Sanskrit vocabulary and grammar had grown had been laid bare in a way that was possible in no other language, and in studying Sanskuit accordingly the scholars of Europe seemed to feel themselves near to the very beginnings of speech.

But it was soon perceived that if the primitive home of the ludoEuropean languages were Asia, they themselves ought to exhibit evidences of the fact. There are certain objects and certain phenomena which are peenliar to Asia, or at all events are not to be found in Europe, and words expressive of these ought to be met with in the scattered branches of the Indo-European family. If the parent language had been spoken in India, the climate in which they werg born must have left its mark upon the face of its offspring.

But here a grave difficulty presented itself. Men have short memories, and the name of an object which ceases to come before the senses is either forgotten or transferred to something else. The tiger may have been known to the speakers of theparent language, but the words that denoted it would have dropped out of the vocabulary of the derived languages which were spoken in Europe. The same word which signifies an oak in Greek signifies a beech in Latin. We can not expect to to find the European languages omploying words with meanings which recall objects met with only in Asia.

How then are we to force the closed lips of our Indo-European languages, and compel them to reveal the secret of their birth-places Attempts have been made to answer this question in two different ways.

On the one hand it has beon assumed that the absence in a particular language, or group of languages, of a term which seems to havo boen
possessed by the parent speech, is evidence that the object denoted by it was unknown to the speakers. But the assumption is contradicted by experience. Because the Latin equus has been replaced by caballus in the modern Romanic languages, we can not conclude that the horse was unknown in Western Europe after the fall of the Roman Empire. The native Basque word for a "knife," haistoa, has been found by Prince L.-L, Bonaparte in a single obscure village; elsewhere it has been replaced by terms borrowed from Freuch or Spanish. Yet we can not suppose that the Basques were unacquainted with iustruments for cutting until they had been furnished with thew by their French and Spanish neighbors. Greek and Latin have different words for "fire;" we can not argue from this that the knowledge of fire was ever lost among any of the speakers of the Indo-European tongues. In short, we can not infer from the absence of a word in any particular language that the word never existed in it; on the contrary, when a lauguage is known to us only in its literary form it is safe to say that it must have employed many words besides those contained in its dictionary.

A good illustration of the imposibility of arriving at any certain results as long as we confine our attention to words which appear in one but not in another of two cognate languages is afforded by the Indo. European words which denote a sheet of water. There is no word of which it can be positively said that it is found alike in the Asiatic and the European branches of the family. Lake, ocean, even river and stream, go by different names. A doubt hangs over the word for "sea;" it is possible, but only possible, that the Sanskrit pathas is the same word as the Greek π avzos, the etymology of which is not yet settled. Nevertheless, we know that the speakers of the parentlanguage must have been acquainted, if not with the sea, at all events with large rivers. Naus, " a ship," is the common heritage of Sanskrit and Greek, and must thus go back to the days when the speakers of the dialects which atterwards developed into Sanskrit and Greek still lived side by side. It survives, like a fossil in the roeks, to essure us that they were a water-faring people, and that the want of a common IndoEuropean word for lake or river is no proof that such a word may not have once existed.

The example I have just given illustrates the second way in which the attempt has been made to solve the riddle of the Indo-European birthplace. It is the only way in which the attempt can succeed. Where precisely the same word, with the samo meaning, exists in both the Asiatio and the European membors of the Indo-Euronean familyalways supposing, of course, that it hes not been borrowed by either of them-we may conclude that it also existed in the parent speech. When we find the Sanskrit aswas and the Latin equus, the oxact phonetic equivalents of one another, both alike signifying "horse," we are justifled in believing that the horse was known in the country from which both languages derived their ancestry. Though the argument
from a negative proves little or nothing, the argument from agreement proves a great deal.
The comparative philologist has by means of it succeeded in sketching in outline the state of culture possessed by the speakers of the parent language, and the objects which were known to them. They inhabited a cold country. Their seasons were three in number, perhaps four, and not two, as would have been the case had they lived south of the temperate zone. They were nomad herlsmen, dwelling in hovels, similar, it may be, to the low round huts of sticks and straw built by the Kabyles on the mountain-slopes of Algeria. Such hovels conld be erected in a few hours, and left again as the cattle moved into higher ground, with the approach of spring, or descended into the valleys when the winter advanced. The art of grinding corn seems to have been unknown, and crushed spelt was eaten instead of bread. A rude sort of agriculture was however already practiced; and the skins worn by the community, with which to protect themselves against the rigors of the climate, were sewn together by means of needles of bone. It is even possible that the art of spinning had already been invented, though the art of weaving does not appear to have advanced beyond that of plaiting reeds and withies. The community still lived in the stone age. Their tools and weapons were made of stone or bone, and if they made use of gold or meteoric iron, it was of the unwrought pieces picked ap from the ground and employed as orna. ments; of the working of metals they were entirely iguorant. As among savage tribes generally, the various degrees of relationship were minutely distinguished and named, even the wife of a husband's brother receiving a special title; bitt they could count at ieast as far as a hundred. They believed in a multitude of ghosts and goblins, making offerings to the dead, and seeing in the bright sky a potent deity. The birch, the pine, and the withy were known to them; so also were the bear and wolf, the hare, the mouse, and the snake, as well as the goose and raven, the quail and the owl. Oattle, sheep, goats, and swine were all kept; the dog had been domesticated, and in all probability also the horse. Last, but not least, boats were navigated by means of oars, the boats themselves being possibly the hotlowed trunks of trees.

This account of the primitive community is necessarily imperfect. There must have been many words, like that for "river," which were once possessed by the parent speeeh, but afterwards lost in either the Eastern or Western branches of the family. Such words the comparative philologist has now no means of discovering. He mastaccordingly pass them over along with the objects or ideas which they represent. The picture he can give us of the speakers of the primeval Indo.European language can ouly be approximately complete. Moreover it is always open to correction. Some of the words wo now believe to have been part of the original stock carried away by the derived dialects of Asia and Europe may hereafter turi out to have been borrowed by one of
these dialects from another, and not to have been a heritage common to both. It is often very difficult to decide whether we are dealing with borrowed words or not. If a word has buen borrowed by a language before the phongtic changes had set in which have givon the language its pecaliar complexion, or while they were in the course of progress, it will undergo the same alteration as native words coutaining the same sounds. The phonetic changes which have marked off the High German dialects from their sister tongues do not seem to go back bejond the fall of the Roman Empire, and words borrowed from Latin before that date will accordingly have submitted to the same phonetic changes as words of native origin. Indeed, when once a word is borrowed by one language from another and has passed into common use it soon becomes naturalized and is assimilated in form and pronunciation to the words among which it has come to dwell. A curious example of this is to be found in certain Latin words which made their way into the Gaelic dialects in the fourth or fifth century. We often find a Gaelic c corresponding to a Welsh p, both being derived from a labialized guttural or $q u$, and the habit was accordingly formed of regarding a c as the natural and necessary representative of a foreign p. When therefore words like the Latin pascina and purpura were introduced by Ohristianity into the Gaelic branch of the Keltic family they assumed the form of caisg and corour.

It is clear that such borrowings can only take place where the speakers of two different languages have been brought into contact with one another. Before the age of commercial intercourse between Europe and India we can not suppose that Europeau words could have been borrowed by Sanskrit or Persian, or Sansknit and Persian words by the European lauguages. But the case is quite otherwise if instead of comparing togother the vocabularies of the Eastern and. Western members of the Indo. European stock we wish to compare only Western with Western or Eastern with Eastern. There our difficulties begin, and we must look to history, or botany, or zoölogy for aid. From a purely philological point of view the English hemp, the old high German hanf, the old Norse hanpr, and the Latin cannabis might all be derived from a common source, and point to the fact that hemp was known to the first speakers of the Indo-European languages in northwestern Europe. But the botanists tell us that this could not have been the case. Hemp is a product of the Dast which did not originally grow in Germany, and consequently both the plantitself and the name by which it was called must have come from abroad. So again, the lion bears a similar name in Greek and Latin, in German, in Slavonic, and in Keltic. But the only part of Europe in which the lion existed at a time when the speakers of an Indo. European language could have become acquainted with it were the mountains of Thrace, and it must accordingly heve been from Greek that its name spread to the other cognate languages of the West.

It has been needful to enter into these details before we can approach the question, What was the origlnal liome of the parent Indo-European lauguage? They have been too often ignored or forgotten by those who hares set themselves to answer the question, and to this cause must be ascribed the larger part of the inisunderstandings and false conelusions to which the inquiry has given birth.

Until a few years ago, I shared the old belief that the parent speech had its liome in Asia, probably on the slopes of the Bindu Kush. The fact that the languages of Europe and Asia alike possessed the same words for "winter" and "ice" and "snow," and that the only two trees whose names were preserved by both-the "birch" and the "pine"were inhabitants of a cold region, proved that this home did not lie in the tropics. But the uplands of the Hindu Kush, or the barren steppes in the neighborhood of the Oaspian Sea, or even the valleys of Siberia, would answer to the requirements presented by such words. Taken by themselves they were fully compatible with the view that the first speakers of the Indo. European tongues were an Asiatic people.

But when I came to ask myself what were the grounds for holding this view, I conld find none that seemed to me satisfactory. There is much justice in Dr. Latham's remark that it is unreasouable to derive the majority of the Indo. European languages from a continent to which only two members of the group are known to belong, unless there is an imperative necessity for aloing so. These languages have grown out of dialects once existing within the parent speceh itself; and it cortainly appems more probable that two of such dialects or languages shonld have made their way into a new world, across the bleak plains of Tartary, than that seven or eight should have done so. The argument, it is true, is not a strong one, but it raises at the outsot a presumption in favor of Lurope. Before the dialects had developed into languages their speakers could not have lived far apart; there is in fact ovidence of this in the case of Sanskrit and Persian ; and a more widely spread primitive community is implied by the numerous languages of Europe than by the two languagos of Asia. A widley spread community however is less likely to wander far from its orginal seat than a community of less extent, more especially whon it is a community of heddsmen and the tract to be traversed is long and baren.

Apart from the general prejudice in favor of an Asiatic origin due to ohl theological teaching and the effeot of the discovery of Sanskrit, I can find only two arguments which have been supposed to be of suffleient weight to determine the choice of Asia rather than of Burope as the eradle of Indo-Enropem speech. The first of these arguments is linguistic, the second is historical or ruther quasi-historical. On the one hand it has been laid down by eminent philologiste that the less one of the derived languages has deflected from the parent speech, the more likely it is to be geographically nearer to its earliest home. The faithfulness of the record is a test of geographical proximity, As Sanskrit H. Mis. 120-31
was held to be the most primitive of the Indo.European languages, to reflect most clearly the features of the parent speech, the conclusion was drawn that that parent speech had beein spoken at no great distance from the country in which the hymns of the Rig. Veda were first com. posed. The conclusion was supported by the second argument drawn from the sacred books of Parsaism. In the Vendidad the migrations of the Iranians were traced back through the successive creations of Ormazd to Airyanem Vaejob, "the Aryan Power," which Lassen localized near the sources of the Oxus and Jaxartes. But Bréal and De Harlez have shown that the legends of the Veudidad, in their present form, are late and untrustworthy-later, in fact, than the Ohristian era; * and even if we could attach any historical value to them, they would tell us only from whence the Iranians believed their own ancestors to bave come, and would throw no light on the cradle of the Indo.Euro. pean languages as a whole. The first argument is one which I think no student of language would any longer employ. As Professor Max Miller has said, it would suffice to prove that the Scandinavians emigrated from Iceland. But to those who would still urge it, I must repeat what I have said elsewhere. Although in many respects Sanskrit has preserved more faithfully than the European languages the forms of primitive Indo.European grammar, in many other respects the converse is the case. In the latest researches into the history of IndoEuropean grammar, Greek holds the place once occupied by Sanskrit. The belief that Sanskrit was the elder sister of the family led to the assumption that the three short vowels $x, ¢$, and \check{x} have all originated from an earlier $\check{\mathrm{h}}$. I was, 1 believe, the first to protest against this assumption in 1874, and to give reasons for thinking that the single monotonons \check{x} of Sanskrit resulted from the coalescence of three dis. tinct vowels. The analogy of other languages goes to show that the tendency of time is to reduce the number of vocalie sounds possessed by a language, not the contrary. In place of the numerous vowels possessed by ancient Greek, modern Greek can now show only five, and cultivated English is rapidly merging its vowel sounds into the socalled "neutral" ∂. Since my protest the matter has been worked out by Italian, German, and French scholars, and we now know that it is the vocatie system of the European languages rather than of Sanskrit which most faitlifully represents the oldest form of Indo. Turopean speech. The result of the discovery, for discovery it must be ealled, has been a complete revolution in the study of Indo-Europeen etymology, and still more of Indo- Europeai grammar, and whereas ten years ago it was Sanskrit which was invoked to explain Greek, it is to Greek that the "new school" now turns to explain Sanskrit. The comparative philologist necessarily cannot do without the help of botli; the greater

[^82]the number of languages he has to compare the sounder will be lifs inductlons; but the primacy which was once supposed to reside in Asia has been taken from her. It is Greek, and not Sunskrit, which has tanght us what was the primitive vowel of the reduplicated syllable of the perfect and the angment of the aorist, and has thus narrowed the discussion into the origin of both.

Until quite recently however the advocates of the Asiatio home of the Indo. Elropean languages found a support in the position of the Armenian language. Armenian stands midway, as it were, between Persia and Europe, and it was imagined to have very close relations with the old language of Persia. But we now know that its Persian aftinities are illusory, and that it must really be grouped with the languages of Durope. What is more, the decipherment of the cuneiform inscriptions of Van has cast a strong light on the date of its introduction into Armenia. These inscriptions are the records of kings whose capital was at Van, and who marched their armies in all directious during the ninth, eighth, and seventh centuries before our ord. The latest late that can as yet be assigned to any of them is 13. 0, 040. At this time there were still no speakers of an Indo-European language in Armenia. The language of the inscriptions has no connection with those of the Indo-European family, and the personal and local names occurring in the countries immediately surronnding the dominions of the Vannie kings, and so abundantly mentioned in their toxts, aro of the same linguistic charactor as the Vannic names themselves.

The evidence of classical writers fully bears out the conclusions to be derived from the decipherment of the Vannic inseriptions. Herodotus (vir. 73) tells us that the Armenians wore colonists from Phrygia, the Phrygians themselves having been a Thrakian tribe which had migrated into Asia. The same testimony was borne by Eudoxos,* who further averred that the Armenian and Phrygian languages resembled one another. The tiadition must have been recent in the time of Herodotus, and we shall probably not go far wrong if we assign the ocenpation of Armenia by the Phrygim tribes to the age of upheaval in Western Asia which was ushered in by the fall of the Assyrian Empire. Professor Fick has shown that the scanty fragments of the Phrygian language that have survived to us belong to the European brauch of the Indo-European fimily, and thas find their place by tho side of Armonian,

Instead therefore of forming a bridge betweon Orient and Occident, Armenian represonts the furthermost flow of ludo. Duropean spseeh from West to Cost. And this flow bolongs to a relativoly lato porlod. Apart from Aimenian wo can discovor no tiaces of Indo Baropean occupation between Media and the Halys until the days whon Iranian Ossetes sottled in the Uaucasus and the mountaineers of Kurdistan adopted Iranian dialects. I must re iterate here what I have said many years ago : if there is one fact which the Assyrian monnments make

[^83]clear and indubitable, it is that up to the closing days of the Assyrian monarchy no Indo. European languages were spoken in the vast tract of civilized country which lay between Kurdistan and Western Asia Minor. South of the Caucasus they were unknown untll the irruption of the Phrygians into Armenia. Among the multitudinous names of persons and localities belonging to this region which are recorded in the Assyrian inscriptions duriug a space of several ceuturies there is ouly one which bears upon it the Indo-Europern stamp. This is the name of the leader of the Kimmerians, a nomad tribe from the northeast which de. scended upon the frontiers of Assyria in the reign of Esor-haddon, and was driven by him into Asia Minor. The fact is made the more striking by the further fact that as soon as we clear the Kurdish ranges and enter Median territory, names of Indo. European origin meet us thick and fast. We can draw but one conclusion from these facts. Whether the Indo European languages of Europe migrated from Asia, or whether the converse were the case, the line of march must have been northward of the Caspian, through the inhospitable steppes of Tartary and over the snow-covered heights of the Ural Mountains.

An ingenious argument has lately been put forward, which at first sight seems to tell in favor of the Asiatic origia of Indo- European speech. Dr. Penka has drawn attention to the fact that several of the Duropean langunges agree in possessing the anme word for "eel," and that whereas the eel abounds in the rivers and lakes of Scandinavia, it is unknown in those cold regions of Western Asia where, as we have seen, it has been proposed to place the cradle of the Indo. European family. But it is a curious fact that in Greek and Latin, and apparently also in Lithumian, the word for "eel" is a diminutive derived from a word which denotes a suake or snake like ereature. This, it has been urged, may be interpreted to mean that the primeval habitat of the Indo. Duropean languages was one where the snake was known, but the eol was not. The argument however cannot be pressed. We all agreo that the first speakers of the Indo. Duropean languages lived on the land, not on the water, and that they were herdsman rather than fishermen. Naturally therefore they would become aequainted with the snake before they became acquainted with the eel, however much it might abound in the rivers near them, and its resemblance to the suake would lend to it its name, In Koltic the eel is called a "water-snake," and to this day a prejudice against eating it on the ground that is a suake exists in Keltic distriets. All we can infer from the diminutives anguilla, èryeles is that the Italians and Greeks in the first instance gave the name to the fresh-water eel, and not to the hage conger.

I can not now enter fully into the reasons which have led me grad. ually to give up my old belief in the Asiatic origin of the Indo. Duropean tongues, and to subscribe to the views of those who would refer them to a northern European birtloplace. The argument is a complicated one, and is necessarily of a cumulative character. The individual links
in the chain may not be strong, but collectively they afford that amount of probability which is all that we can hope to attain in historical research. Those who wish to study them may do so in Dr. Penka's work on the "Herkunft der Arier," published in 1886. His hypothesis that southeru Scandinavia was the primitive "Aryan home" seems to me to have more in its favor than any other hypothesis on the subject which has as yet been put forward. It needs vorification, it is true, but if it is sound the veriflcation will not be long in coming. A more profound ex. amination of Tentonic and Keltic mythology, a more exact knowledge of the words in the several Indo. European languages which are not of Indo. Duropean orgin, and the progress of archoological discovery, will furnish the verification we need.

Meanwhile it must be allowed that the hypothesis has the counte. nance of history. Scandinavia, even before the sixth century, was characterized as the "manufactory of nations; "* and the voyages and settlements of the Norse Vikings offer a historical illustration of what the pre-Listoric migrations and settlements of the spoakers of the Indo. Eiropean languages must have been. They differed from the latter only in being conducted by sen, whereas the prehistoric migrations followed the valleys of the great rivers. It was not until the age of the Roman Empire that the northern nations becamo acouainted with the sailing-boat; our English sail is the Latin sagulum, "the little cloak of the soldier," borrowed by the Tentons along with its name, and used to propel their boats in imitation of the sails of the Roman vessels. The introduction of the sail allowed the inhabitants of the Scandinavian "hive" to push boldly out to sea, and nsherod in the era of Saxon pirates and Danish invasion.

Dr, Penka's argunents are partly anthropological, partly archoological, He shows that the Kelts and Teutons of Roman antiquity were the tall, blue-eyed, fair-haired, dolicho-eephalie race which is now being fast absorbed in Keltic lands by the older inhabitants of them. The typical Frenchman of to day has but little in common with the typical Gaul of the age of Cresar. The typical Ganl was, in fact, as much a conqueror in Gallia as he was in Galatia, or as modern researches have shown, as the typical Kelt was in Ircland. It seems to have been the same in Greece. Here too the golden-haired hero of art and song was a representative of the ruling class, of that military aristocracy which overthrew the early enlture of the l'eloponnese, and of whom tradition averred that it had come from the bleak North. Little trace of it now remains; it is rarely that the travoler can dis. cover any longer the modern kinsfolk of the golden-haired Λ pollo or the blue eyed Athene.

If we would still flad the ancient blonde race of Northern Europe in its purity we must go to Scandinavia. Here the prevailing type of the

[^84]population is still that of the broad shoulderen, long-headed blondes who served as models for the Dying Gladiator. And it is in southern Scandinavia alone that the pre-historic tumuli and burying.grounds yield hardly any other skeletons than those of the same tall dolicho. cephalic race which still inhabits the country. Elsewhere such skele. tons are either wanting or else mixed with the remains of other races. It is therefore reasonable to conclude that it was from southern Scandinavia that those bands of hardy warriors originally emerged, who made their way sonthward and westward and even eastward, the Kelts of Galatia penetrating like the Phrygians before them into the heart of Asia Mivor. The Norse migrations in later times were even more extensive, and what the Norse Vikings were able to achieve could have been achieved by their ancestors centuries before.
Now the Kelts and Teutons of the Roman age spoke Indo-European languages. It is more probable that the subject populations should have been compelled to learn the language of their conquerors than that the conquerors should have taken the tronble to learn the language of their serfs. We know at any rate that it was so in Ireland. Here the old "Ivernian" population adopted the language of the small band of Keltic invaders that settled in its midst. It is only where the conquered possess a higher civilization than the conquerors, above all, where they have a literature and an organized form of religion, that Franks will adapt their tongues to Latin speech, or Manchus learn to speak Ohinese. Moreover in southern Scandinavia where we have archæological evidence that the tall blonde race was searcely at any time in elose contact with other races, it is hardly possible for it to have borrowed its langnage from some other people. The Indo-European languages still spoken in the country must, it would seem, be descended from languages spoken there from the earliest period to which the evidence of human occupation reaches back. The conclusion is obvious: Southern Scandinavia and the adjacent districts must be the first home and starting-point of the Western branch of the Indo-European family.

If we turn to the Eastern branch, we find that the farther east we go the fainter become the traces of the tall blonde race and the greater is the resemblance between the speakers of Indo-European languages and the native tribes. In the highlands of Persia, tall, long-headed blondes with blue eyes can still be met with, but as we approach the hot plains of India the type grows rarer and rarer until it ceases altogether. An Indo-Luropean dialect must be spoken in India by a dark-skinned jeople before it can endure to the third and fourth generation. As we leave the frontiers of Europe behind us we lose sight of the race with which Dr. Penka's arguments would tend to connect the parent speech of the Indo. European family.

I can not now follow him in the interesting comparison he draws between the social condition of the southern Scandinavians as disclosed by the contents of the prehistoric "kitchen maidens," and the social
condition of the speakers of the Indo.European parent speech according to the sobered estimate of recent linguistic research. The resemblance is certainly very striking, thongh, ou the other hand, it can not be denied that arehæological science is still in its infancy, and that Dr. Penka too often assumes that a word common to the European languages belonged to the parent speech, an assumption which will not, of course, be admitted by his opponents.
What more nearly concerns us here however is the name we should give to the race or people who spoke the parent language. We can not call them Indo-Europeans; that would lead to endless ambiguities, while the term itself has already been appropriated in a linguistic sense. Dr. Penka has called them Aryans, and I can see no better title with which to endow them. The name is short; it has already been used in an ethnological as well as in a linguistic sense, and since our German friends have rejected it in its linguistic application it is open to every oue to confine it to a purely ethnological meaning. I know that the author has protested against such an application of the term; but it is not the first time that a father has been robbed of his offspring, and he can not object to the robbery when it is committed in the cause of science. For some time past the name of Aryan has been without a deflnition, while the first speakers of the Indo. European parent speech have been vainly demanding a name; and the priests of anthropology cannot do better than to lead them to tho font of science and there baptize them with the name of Aryan.

THE PIRE•HIS'ORIO RAOES OF ITALY.*

By Canon Isaad 'Taylor.

Nowhere in the world is there such a mixture of races-such a colluvies gentium-as in Italy.
at the beginning of the historic poriod we flad Siculi and Sicani in the south, Etruscans in the north, and in the center Umbrians, Latins, Sabines, and Samnites, all speaking Aryan languages. At a very early time the Oarthaginians made good their footing in the west of Sicily, and the Grceks established colonies in the east. Sonthern Italy became Magna Grecia-so that the greater Greece lay beyond the Adriatic, just as the greater Britain now lies beyond the Atlantic. The Greeks. pushed their trading posts as far as Oume in the Bay of Naples, and the Phoenicians established theirs at Cere, 20 miles from Rome.

In the fourth century 13. O. the Gauls poured over the Alps into the plain of the Po, establishing a Gallia Oisalpina in the north answering to the Magna Grecia in the sonth.

And then, when the Roman legions had conquered Italy and the Eastern Woild, Rome herself was overrun by the peoples she had sub. dued. Rome became an oriental city. The Orontes, as a Roman writer complained, had emptied itself into the Tiber. A flood of Syrians, Jews, Greeks, Egyptians, Aficans, Spaniurds, Gauls, and Dacians-slaves, freedmen, or adventurers-poured into the Eternal Oity, making it a cloacamaxima-the universal sewor of the world. Ihen came the inroads of the northern hordes-Heruls, Goths, Vandals, Huns, and Lombards -who rushed in to appropriate the treasures which during four centuries had been plundered from Africa and Asia. Next came the inroads of Normans, Moors, Spaniards, French, and Germans, and lastly, the peaceable invasion of winter residents.

Ihese are the races which, in historic times, have been added to the pre-historic peoples of the land.

At the beginning of the historic period we flnd the Dtruscans estab. lished north of the Tiber, the Laths and other tribes speaking Aryan languages further to the south, and an earlier aboriginal population in the Apennines and Calabria.

In books written only 30 years ago the oldest civilization of Italy is attributed to a mysterions people, who are called the Pelasgi. We

[^85]hear of these Pelasgi in Greece as well as in Italy. Those megalithic structures which still excite our wonder-the walls of Mycene and Tiryns, as well as those of Oortona and Russelle-are called Pelasgic. Crere and Oortona are said to have been Pelasgic cities prior to the Etruscan conquest. We must therefore begin by asking who were these Pelasgi. The modern doctrine, it is hardly needful to say, is that the word bas no ethnological significance, the name Pelasgic being merely equivalent to "ancient" or "aboriginal." The term was a term of ignorance, like the word "natives" now applied to Polynesians, Patagonians, Red Indians, or Maoris. We may therefore leave the Pelasgians ont of account; or rather, try and find ont what races wore grouped together by ancient writers under this convenient but delusive appellation.

What we may call "the ethnological horizon" has wonderfully widened of late years. For vast periods, for many millemilums, we are able to trace the history of man in Europe. He is now proved to bave been the contemporary of the great extinct carnivora and pachyderms, and to have followed northwarl the retreating ice sheet of the last glacial epoch. The history of these primoval races has been traced by the tools and weapons which they have left, and by the shape and charaeter of their skulls.

Arehreologists have distinguished the successive ages of stone, bronze, and iron. The bronze age in Italy is believed to have commenced some 4,000 years ago. The stone age, which preceded it, is divided into two epochs, the Palacolithic age, or age of chipped flints, and the Neolithic age, when the flint implements were ground or polished. The Palrolithic people were utter savages, clad in skins, living in caves or rock shelters, making use of 110 fixed sepulehers, subsisting on shell fish or the products of the chase, ignorant of pottery, without bows and arrows, and armed morely with spears, tipped with flint, horn, or bone.

Skulls which are bslieved to be of Palmolithic age have been found in various parts of Italy-at Olmo, at Isola del Liri, at Mentone, and in some Sicilian caves. They are all dolichocephatic, or long skulls. Owing to the presence in their refise heaps of human bones which seem to have been broken in order to extract the marrow, it is believed that these people occasionally practised cannibalism. But their chief food seems to have consisted of wild horses of a small breed, which then roamed over Gurope in immense herds. Dnormons refuse heaps, consisting mainly of the bones of horses, have been found ontside the caves which were inhabited by this race. In the caves at the foot of Monte Pellogrino, near Palermo, the floor is formed by a magma of the bones of wild horses, which were either stalked with spears, driven by the hunters into pit-falls, or chased over the cliffs. Similar deposits have been found at the cave of Thiiyngen, in Switzerland, and in front of the rock shelter at Solutre, near Macon, where there is a vast de-
posit, the relles of the feasts of these savages, nearly 10 feet in thickness and more than 300 feet in length, composed entirely of the bones of horses, and comprising the remains of from $20 ; 000$ to 40,000 individials.

The Palæolithic period must have lasted for unnumbered millenniums. Archæologists conjecture that it came to an end some 20,000 years ago, when it was succeeded by the Neolithic periorl, which may have lasted for some 16,000 jears. At the beginning of the Neolithic age, when regular sepulchers were first used, we tind savages, who may probably be the descendants of the Palæolithic people, spread over western Europe. They were clad in skins, stitched together with bone needles. They wore bracelets of shells, and painted or tattooed their bodies with rell oxide of iron. Broca considers that this early race is allied to the North African tribes, their language probably belonging to the Hamitic class, without inflexions and almost withont grammar.

To us the chief interest of these people lies in the fact that their descendants may probably be traced in the present inlabitants of Sardinia and of sonthern Italy, as well as in some parts of the British Istands and of Spain, They are usually called the Iberian race. In the early Neolithic period we find skulls of the Iberiat type all over western Europe, in Oaithness, Yorkshire, Wales, and Somerset, in the south of France, in Spain and Italy. 'Ihis race was swarthy, with olive complexion and black curly hair; it was orthognathous, leptorhinic, and highly dolichocephalic, with a low orbital index, and short stature, averaging about 5 feet 4 inches. Their present descendants are found in Donegal, Galway, and Kerry, in some of the Hebrides, in Denbighshire, and in the connties bordering on Wales. They are also to be recognized among the Spanish Basques, the Berbers, the Kabyles, the Guanches of 'leneriffe, the Corsicans, the Sardinians, the Sicilians, and the people of sonthern Italy. Pansanius informs us that the Sardinians were Libyans, or what we should now call Berbers. Seneca says that Oorsiea was peopled by Iberians and Ligurians. Thucydides and Ephoros also inform us that the oldest inhabitants of Sicily were Iberians.

There are several pre-histovic skulls of this race in the Kincherian Musenm at Rome, and the Falerian skull in the Villa Papa Ginlio belongs to the same type. These skulls are orthognathous and dolichocephalic, resembling the modern Sardinian skull and ancient Iberian skulls found in caves at Gibraltar and in Sicily.

This ancient type is still predominant in southern Italy, Sicily, Sardinia, and Oorsica. Professor Oalori, of Modena, has measured more than 2,400 skulls in different provinces of Italy. In southern Italy only 36 per cent, are round-headed, with a cephalic index* above 80; whereas

[^86]in northern Italy the proportion is 87 . per cent. In northern Italy less than 1 per cont. are of the extreme Sardinian type, with the index below 74; while in sonthern Italy 17 per cent. belong to this type. The difference of race, as shown by the difference in the sliape of the skull, may account to some extent for the difference in the existing civilization in the north and south of the peninsula.

Early in the Neolithic age, before the reindeer had withdrawn from Belgiam, another race makes its appearance in Europe. They were a round-headed people of short stature, with a mean cephalio index of about 84. We first find their remains in the sepulchral caves of Belgitum and central France, whence they extended to Savoy and to the Rhetian and Maritime Alps. They manafactured rude pottery; their wea. pons were axes of flint, carefully chipped and roughly polished, and spears tipped with bone or horn. The skull is of the same shape as that of the Lapps, whom they'resembled in their short stature. Their original speech is probably represented by the Basque, and a few of their words may be preserved in mountain names of the Alpino region, such as Olma, "a hill," whioh is seen in the name of Oimiez near Nice, of the Oima de Jazi, and of the Oovennes. They are designated as the Anvergnat, Rhetian, or Ligurian race.

In the early Neolithic period we find in Italy only these two races, the dolichocephalic, or long-headed, Iberian race, who are physically allied to the North African tribes, and the brachycephalic, or roundheaded, Ligurian race, allied to the Lapps and Finns. These two races inhabited the same caves, together or in succession. Thus in a Neolithic cave at Monte Tignoso, near Livorno, two skulls were found, one of the Iberian type, with an index less than 71, and another of the Lignrian type, with an index of 92 . In another Neolithic cave, called the Oaverna della Matta, merian skall was found with an index of 38 , and a Ligurian skull with an index: of 84 . No anthropologist would admit that these skulls conld have belonged to men of the same race.

We now come to the third Italian race, which may be called the Umbrian or Latin race. They spoke an Aryan language, and must be regarded as the ancostors of the Romans. They made their appeamese in Durope at a mueh lator time, probably not more than 6,000 or 7,000 years ago. 'Jhoy were taller and more powerful than either of the earlier races, and were orthocephalio, withan index of from 79 to 81. When wo fhrst meet with them, they aro no longer mere savages, living solely by the chase, butare a pastoral people, who had domesticated the dog, the ox, and the sheep, find who had invented the eanon, and even the ox-wagon, in which they followed their hords over central Burope. They no longer, like the two earlier races, sheltored themselves in eaves, but lived in hats made of bonghs plastered with clay, and in winter in pit dwellings roofed with poles and twigs.

We can trace this raco all over Oontral Europe. We find their re. mains in the round barrows of Britain, but more especially in the pile
dwellings which they orected in the lakes of Germany, Switzerland, and northern Italy.

From southorn Germany they spread to western Switzerland, where wo flud the remains of their settlements in the lakes of Constance, Neufehatel, Bienne, and Genova. These Swiss sottlements began in the stone age, but were in many cases continuously inhabited from the age of stone through the age of bronze, coming down, in a few cases, to the age of iron. We cin trace these people advancing gradually in civilization, at first subsisting mainly on the chase of the stag and the wild boar, afterwards, as these beasts became searce, depending wore and more on their domestionted animals, the ox and the sheep, and gradually taming the goat, the pig, and the horse. At flist we find them without cereals, and evidently ignorant of the rudest agriculture, laying up in earthen pipkins stores of acorns, hazel-nnts, and water chestmuts; and then, after a timo, growing barley, wheat, and flax, learning to spin and weave, to tan leather, and even to make boots. They are identifled with the Helveii, a Oeltic people.

This race gradually extended itself to Italy, crossing the Alpine barrier either through Darniola or by one of the western passes, and occupying by degrees Venetia, Lombardy, and the Dmilia, and tinally, the whole valley of the Po.

When they flrst appear in Italy they worestill in the stone age, and had domesticated the ox, but were ignorant of agricultite. Now the bonze age is believed to have began in Italy not later than 1900 m . o., and therofore this Umbro Latin Aryan race must have entered Italy considerably more than two thousand years before the commencement of olle era.

On arriving in Italy they lonilt pile dwollings in the North Italian lakes, similar to the pile dwellings of Switzerland and southern Germany, and disclosing much the same stage of civilization. We cannot donbt that they belonged to the same race, and this is conflomed by the close comnection botween Ueltic and Italic spoech.

In Italy, as well as in Switzorland, the pile dwollings began in the age of stone and lasted down into the age of bronze. Many of the small lakes havo been converted into poat-bogs, and in digging out tho peat the remains of these settlements have boen diselosed.

One of tho settloments has been discovered in a poat moor at Morcurago, near Aroma. This moor was formerly a shallow lake, in which a pile dwelling was built by some of the earliest settlers of the UmbroLatin race. They had no knowledge of agrieulture, but fed on hazelnuts and wild chorries. They had rude pottery, and polished flint implements. Adug.outcanoe, a disk of walnut wood, which had ovidently formed the wheel of an ox.cart, and ono bronze pin were found, showing that the suttiement was not finally abandoned till the nge of bronze had commenced.

Frather north, in the Lake of Varese, there are seven villages built;
on piles, two of them large, with numerons huts, whioh might almost be called towns. One of these towns belongs entirely to the stone age, exhibiting no trace of metal, but with remains of the stag, ox, goat, and pig. The other was founded in the stone age, but survived into the age of bronze, a pin, a fish-hook, and two spear-heads, all of bronze, having been found.

Another large pile dwelling in the Lago de Garda, opposito Peschiera, was founded in the stone age, and was in continuous occupation through the age of copper to the age of bronze.

Porlaps the most instructive of these lake settlements is the pile dwelling in the Lake of Fimon, near Vicenza. It must have been founded very soon after the Uimbrians first reached Italy, and was destroyed before they had passed from the pastoral to the agricultural stage of civilization. There are two successive relic-beds, separated by an interval, which shows that the carlier town was burned, and then, after a time, re-built. In the oldest bed there is no trace of agriculture, even of the rudest kind. The inhabitants lived chiefly by the chase, but had domesticated the ox and the sheep. The bones of the stag and the wild boar are extremely numerons, and these animals evidently formed the chief food of the people, the bones of the ox and the sheep being rare. Thero is no grailn, and no cereals of any kind, but great stores of hazel-nuts have been found, together with waier-chestnuts (Trapa natans), wild cherries, and stores of acorns. The acorns were roasted for food, as is proved by fragments adhering to earthen pipkins. Flint tools and rude pottery are found, but no trace of metal. The settlement was burned, and after a time re-bullt. The newor relic.bed contains numerous flint chips, and one bronze ax, showing that the age of metal had commenced. But the notable fact is, that at the time of this new settlement the people had passed from the hunting to the pastoral stage. Wild animals had now become searce, bones of the stag are absent, and those of the wild boar are rare, but those of the ox and the sheep have become common. The agricultural stage had not howover been reached when this second settlement was destroyed, tho only farinaceous food boing hazolnute, comel, chorides, and acorns. 'The dwellings were round hits, buit of wattlo, and plastered with chay. The romains of a canoe have been found.

Wo learn therefore that when the Umbro- Latin peoplo reached Italy they were ignomat of motals and of agriculturo, living mainly by the chase, and on wild fruits, nuts, and acoms.

After the lakes at the foot of the Alps had been ocenpied, the population increased, and gradually oxtended itsolf southward, building pile dwellings in the marshes in the neighborhood of Mantua. Tho race noxt crossel the Po, erecting on dry land in the plain of the Emilia similar villages of pile dwollings, the remains of which are very numer: ous, and go by the name of terre mare. These terve mare, or "marl beds," are small knolls or elevations, rising a fow feet above the plain,
and are most numerous in the provinces of Parma, Reggio, and Modena. They consist of berls of brownish or dark-colored oarth, rich in phosphates and nitrates, and which are now used by the peasants for manuring their fields. They are plainly the refuse heaps or middens of ancent villages, which were pile dwellings erected on dry land. Thoy vary from an adre to 3 or 4 acres in extent, und usually rise some 10 feet above the plain, resembling the Arab villages in Egypt, each standing on its tell, raised nbove tho inundation. These knolls are composed solely of the refuse of habitation, of the bones of auimals, and of broken pottery thrown out from the huts, which were built on platforms resting on piles. The lower strata of rubbish belong to the age of stone, while in many cases the upper strata loelong to the age of bronze. They must have been occupied for many centuries, to allow of such vastaceumulations of refuse. They were protected by a square enithen mound or rampart, surmounted by palisudes, like a New Zealand pah.

These terre mare, of which nearly a hundred are known, disolose clearly the civilization of the first Aryan settlers in Italy, the aucestors of the Latin race. They made mats from the bark of the clematis; they knew how to prepare and to weave flax; they even obtained amber beads from the Baltic, but they possessed no swords, fibule, or rings. They had neither iron, gold, silver, nor glass. Bronze was cast, but not forged. We find strainers for preparing honey, and hand-mills or querns for griuding grain, but there is no sign of bread having been baked. The vino was cultivated, but the art of making wine had not been discovered. No idols of any kind havo been found. Certain earthen ware orescents, supposed at one time to have beon symbols used for lunar worslip, prove to bo neek-rests, used for sleeping on the ground, ao as to wroid distarbing tho olaborate coiffure. The dwollings were merely huts of wattle and dab, no stone or mortar having been used in their construction. The people hunted the stag, the roo, and the wild boar, and kept dogs, oxen, sheep, goats, and pigs. They had no fowls. The nss was unknown, and it is doubtfil whother they had tamed the horso. Ihey had dishes perforated with holes, which wero probably nsed for making choese, hut no fish-bonos or fish-hooks have been fomm. They grow whoat, boans, and llax, and gathored wild apples, sloes, and cherries. Acorns were carofully presorved in jars for winter uso.

These peacefil people minst have inhabited the platin of the Po for at loast a thousand years, probably for a moll longer time, two or ovon three thousand years. They had alvoned to the bronze ago, and must be regarded as the ancestors of the Latins mud the other Aryan tribess of Italy.

At some period in the bronze age they were suddenly overwhelmed by the invasion of the Etruseans, if fieree and anvage race which broke in on them from the north. All their settlements were destroyed-not
one survived to the iron age, whioh probably eommenced in Italy in the ninth or tenth century B. O. On other grounds it is belleved that the Etrusoan invasion was not later than the eleventh contury B, d. We learn from Varro that the Dtruscan era began 291 years before the Roman. The Roman cra begau in $753 \mathrm{n}, \mathrm{o}$, , and therefore the Etruscan ora dates from 1044 B . o. But it is not likely that the Etruscan era began before the conquerors had settled down into an organized state-duodeoim populi Etruria, or confederation of the twelve Etruscan tribes. We may therefore, with some probability, place the Etruscan invasion of Italy in the twelfth century b. o. It may not improbably be connected with the great movement of racos about this poriod, which began with the conquest of Syria by the Hittites, and of Egypt by tho Hyksos, and ended with the Thessalian and Dorian invasions of Greece, and that consequent emigration of the older Greek tribes to Asia Minor which lies at the base of the Homerie Epos. It is possible that the Etruscans may themselves have been an Asiatio peoplo, akin to the Kheta and the Hyksos. This supposition derives support from the similarity in the appearance of the Hittites and the Etruscans as portrayed on their respective monuments, from the old tradition which connects the Etruscans with Asia Minor, and also from the recent discovery in Lemnos of inseriptions believed to be in a language of the Etruscan type.

After overwhelming the Umbrian settlements in the valley of the Po, the Etrinscans extended their dominion across the Apenninos to the Arno and the Liber. It seems probable that the foundation of Rome was due to the Umbro-Latin fugitives, who placed tho Tiber as a barner between themselves and the invaders, establishing themsolves on the Palatine, as their Dtruscan foes did at Voii, 11 miles north of Romo. Just as the foundation of Vonice is attributed to the fugitives from the invasion of Attila and the Hins, so the foundation of Rome may be due to fugitives from the invasion of the Dtruseans. Ihis is supported by the faet that the terra mare and the palaftete, which aro believed to constitute the primitive sottlements of the Unibro-Latin Aryan race, are not found south of tho Apennines beyond the Emilia and the valley of the Po. She Btrusem dominion and eivilization ondured for some 700 years. At longth it fell beforo the invasion of the Gande in 400 Br . O., just as the Umbrian eivilization had fallen bofore the inroad of the Ftrusean hordes. And thas Doturia Oirempadama, tho formor Umbitan land, became cisalpine Gaul, its possession reverting to a poople who in race and language were nearly akin to its formor inhabitants.

The settloments of the Gauls are recogntaed by the torguos and the long iron swords whish are found in their graves. At Bologna, in the cemeteries of the Oertosa and Marzabotto, wo have tho tombs of the three successivo races, Umbrimus, Dtruscans, and Gamls, all difteront in chametor, and easily to be distinguished.

Thus it appears that the fertile plain of the Po was ocenpied by many successive races, whose descendants may, with greator or less certainty,
bo recognized in the present population of Italy. We have first the Pareolithic Iberian savages, mere hanters and probably oamibals, living in caves, ignornut of pottery, whose descondants may be traced in Sardinia and Southern Italy. They were followed, in the early Neolithife period, by the Ligurians, possessed of pottery, but without domestio animals. Thoir descendants now ocenpy the Rhotian and Maritime Alps. They wore stucceeded towards the close of the Neolithic age by the Umbro-Latin race, who lived in huts and pile dwellings instead of caves, who possessed oxen and sheep, canoes and wagons, and who gradually aequired a knowledge of bronze. In the bronze age, sometime before the middle of the eleventh century 13. O., they were overwhelmed by the Etruscan inrond, thoir villages were destroyed, and they fled southward from the invaders. Ihen, at the close of the fifth century B. o, the Etruscan dominion was destroyed by the Boii and other Gaulish tribes, who were in the iron stage of civilization, Finally came the conquest of the Romans, and afterwards those of the Heruls, Goths, Huns, and Lombards.

The people who lived in the pile dwellings in the valley of the Po, and who are usually called Umbrians, were clearly of the same race as the ancient Romans. The skull is of the same shape, the type of civilimation was the same, and Latin and Umbrian were merely dialects of the same language.

Owing to the practice of cremation genuine Roman skulls are rare, and of skulls ostensibly Roman many turn ont to be those of freedmen or provincials. Bat, judging from the few we possess, the shapo of the head was almost idention with that of the Umbrians, of the Swiss lacustrine people, and of the Deltie roind barow raco of Britain. The great brealth of the Roman skull is well seen in the portait busts of Tiberius, Nero, Vespasian, Titus, mad Marcus Aurelius.

That; the Romans were originally in the same pastoral stage of civiliation as the Umbrinns is shown by the fact that the words for money and property, peounia and poulium, wo derived from peous, oattlo; while the ox, which appoars on some enply Roman coins, may indicate the fuet that the ox was tho standard of pecminey value, Tho hat urns found in the anelont cemetery of Alba Longa show that the Imtins at first lived in hats like those of the Jmbrians. The odes Vesto in the Formm, the most venerable relio of early Rome, was originally a lut of wiokerwork and straw, and so was the càsa Romuli on tho Pala. tine.

The population of Italy has now becomo so mixed that in many provinces it is difloult to detect and separate the original elements. But tho Sardinians and tho peasants of Sonthem Italy still display the primitive Iberian type, and the (treek type survives on the sites of some of the old Greok colonies. For instance, at Naxos and Syracuse about 24 per cent, of the people have blue oyes, while at Palermo, which was never a Greek city, the proportion is less than 1 per cent. In some H. Mis. $129-\quad 32$
parts of Lombardy Teutonic village names are numerous, and Teutonic names, of Gothic or Lombard origin, are common among the nobility. Filiberto, Humberto, and Garibaldi are genuine Teutonic names; so also is that of the Italian seaman, Amerigo Vespucel, who bore the Gothic and Lombardic name of Amario, which he has given to the New World.

It is curious that America, the continent which has become the pat. rimony shared nearly equally by the Teutonic and Latin races, should itself bear a Teutonic name, whose Latinized form bears indispatable wftness to the Teutonic conquest of the oldest seat of the Latin race in Italy.

THE AGE OF BRONZE IN EGYPT.*

BY OSOAR MONJIELIUS.

It is generally admitted that bronze was known and made use of in Egypt from the earliest-times of the ancient empire, about 6,000 years ago it but authors do not agree so well in respect to iron. The majority affirm that this metal was also known in the valley of the Nile at an epoch not less remote. Very strong reasons however appear to me to demonstrate that it was in the second millenium before the Ohristian era, that the use of iron possessed in Egypt an importance that authorizes us to speak of an age of iron in that country. The greater part of the time, then, that embraces Egyptian civilization should be considered as an age of bronze.

Assuredly to the majority of persons this conclusion will appear unexpected, if not absurd. Egyptim civilization, in fact, during the period mentioned was ominent to a degree that can searcely bo believed possible without an acquaintance with iron. But we must not forget that, the Aztecs in Mexico, with their civilization largely doveloped, were still living in a pure age of bronze on the flist arrival of Europeans. The most important and almost note-worthy reason that has been cited to establish the age of iron in Dgypt several thousand years before the Ohristim ora is that at this remoto epoch massive edifices were already orected there in wrought stone, and that this stone is so hard that it can be cut only with implements of iron, or rather of stecl. The colebratod German ligyptologist, Mr. Lepsins, aflirms: "Gront masses of carvod granite, certain specimens of which are met with from the fourth dynasty of Manethon, do not permit us to question that iron was known at that era." On the other hand it has been established by

[^87]special experiments that metal instruments are not required in order to carve a stone as hard as that of Egyptian ediftces, Stone implements may be employed, although in this manner the work progresses very slowly, and requires a great deal of patienco.*

But the Dgyptians had had eccasion to excreiso pationce, and every work can be accelerated by a multiplieation of the forces put in opera. tion. The Dgyptian kings in their enterprises of construction were not accustomed to spare their laborers. Moreover it must be noted that, Egypitian grauite is so hard that our best steel instruments are soon ruined when one attempts to work with them. The fine figures which are found on Egyptian monuments, and especially tho hioroglyphics, may rather be designated as engraved than carved. "It is in no wise im. probable," says the English antiquarian, Mr. Wilkinson, who interested himself very much in the ancient Egyptains, "that they were familiar with che use of emory at the time when that substance, which is met with in the islands of Archipelago, was accessible to them; nud if this be admitted we can explain the perfection and admirable deli. cacy of the hieroglyphies upon the monuments of granite and basalt. We then also compreliend why implements of bronze will be preferred to those of stell, which are harder and denser; for it is evident that emery powder will be incrusted upon the former and that its action on stone becomes greater in proportion to the quantity fixed on the sharp edge of the ehisel; in our times, with thesame view, we prefer soft iron tools to those of have steel."

It is probable that sand-or emery, if they really possessod it-was used in the sawing of stone. We can thus more easily explain why verdigrls has been sometimes obsorved in the quarios upon places where fragments of the rook have been detached by much sawing.t

The proof that bronze implements were omployed by Egyptians for stone work is given by a Grecian author, Agatharchides, who lived abont a lundred years before the birth of Jesus Ohrist, He relates that in his timo bronze tools had been found in the gold mines in logypt, whieh had formerly been nsed by tho mining laborers. Ho oxplains the utilization of bronza very coiroctly in stating that ifon was entirely unknown at the time when the first operntions in mining wore bogin. $:$

Upon the monmments in the time of the ancient empire we sometimes see ropresentations of mon who aro carving stone by the instrumentality of chisels, whose yellow or reddish-brown color shows that they wero of bronze.§

[^88]At Thebes, in the midst of the waste from the carving of stones, Wilkiuson found a large bronze ohisel which evidently had been forgotton by the citizens thousands of years ago.* This chisel, 22 centimoters in length, presents at the upper extremity vory elear marks of blows from a hammer, but the edge is so intact that it appears new. It would soon have been destroyed if workmen little accustomed to such implements had endeavored to cut with it a stone similar to that which it shaped in other days.

That the Dgyptians, by means of their bronze implements, could have been able to produce what they have made, undoubtedly does not depend, as has been supposed, upon the fact that they were in pos. session of the secret talent, hid for so long a timo, of tempering bronze, but only that they had the skill acquired by long practice of using their utensils, a skill that we no longer possess, being accustomed to other instruments. It can not be denied that the manner in which the stones of Egyptian monuments are cut, presents a great analogy with the fabrication of pre historlc tools of stone and the sockets of their handles. Even lately it was supposed that these tools and their sockets could not have been fabricated without the ail of steel instruments. This view was sustained until experiments had placed beyond all dispute the fact that by using stone, bone, or wood solely, such tools could be made and perforated, provided that the necessary skill and time were bestowed on this work.

Imposing edifices of hard stone, richly adorned with reliefs, may be constructed without iron. Proof of this is furnished by Mexico and Contral Amorica, which are rich in monuments of this kind anterior to Oolumbus and to the introduction of iron into those countries by Duro. peans. One cannot therefore rely upon tho finct that the construction and embellishment of the stately ediflees of the ancient empire are impossible without steel, to maintain that the age of iron commenced in Ugypt at that distant period.

We must thon fix the epoch of the introntuction of the age of iron into Dgypt by tho same mothod which has so well succeeded in other eountries. This problem attraoted too late the attention of the Dgypt. ologists. The greator portion of tho diseoveries that aro pertinent to this question were not therefore investigated as they shonld have been. It will bo seen prosently however that the doomments aro mumerons and olear, and that; the paintings especially instruet us with vory great exactitude.

It; is necessary to examine the facts by grouping them under four heads:
(1) What are the objects in iron diseovered in Dgypt which date from tho most remote cra, and of what character aro they?

[^89](2) What are the most ancient inscriptions in which iron is mentioned? Oan we be fully enlightened through them in respect to the signifleation of the hieroglyphice which are supposed to designate iron
(3) What are the most antique monuments representing arms and instruments of iron?
(4) Up to what epoeh did they continue in Egypt to employ arms and instruments of bronze? Can we perceive upon these objects marks left as a consequence of loug usage, whether in the reparation of the sharp, edges, or otherwise, proving that they were used, and that they were not fabricated solely for the tomb?
To the first interrogatory it is easy to respond: Fragments of iron instruments have been found in a few pyranids; and if they date from the time of these mausoleums they fully establish the great antiquity of iron in Egypt. The best known of these fragments is the one dis. covered by an Englishman, Mr. Hill, in 1837, in the great pyramid at Gizeb, built about 3,000 years before Ohrist. It is supposed that it was a fragment of an instrument with which the surface of hewn stone was polished, but it is also believed that it is not of steel, but of iron. It may have been discovered near the orifice of one of the narrow atmos. pheric canals which traverse the body of the pyramid as far as the mortuary cavern, and in articulation of the stones, but not untll after the two layers of exterior blooks forming the cap of the pyramid has been removed. No fissure was observed or aperture of any desoription, through which this iron after the construction of the pyranid might have been introduced at the point where it was found. For this reason several persons, having explored this locality immediately after the discovery, have publicly attested their conviction that the fragment of iron bad been left between the stones during the construction of the pyramid, and that it could not have been inserted there after this periocl.*
Similar discoveries have been made more recently. Thus M. Maspero, in 1882, collected several parts of iron hoes in the black pyrmid at Abonkir, probably built during the sixth dymasty; that is to say, in the third millenimm before the Ohristian cra. He discovered, moreover, a few fragments of iron instruments is the mortar between two stones, in a pyramid in the vieinity of Lesneh. \dagger Jhis pyramid is not anterion to the seventeenth dynasty, and its construction consequently immediately preceded the inauguration of the New Empire. Mr. Maspero, as I believe, has given no information more precise in regard to the situation and the bearing of these fragments of iron.

Reasons that we are abont to assign authorize us to doubt the conclusions which have been drawn from these discoveries. The presence of these iron fragments is certain; but are we equally assured that they date from the erection of the monuments that contained them? Tho

[^90]points at which thay have been met with-have they not been accessible to man from time to time during the thousands of years that have followed the construction?*
Oan it be affirmed that the layers of stone under which they were lying were intact, and that the blooks had never been displaced and afterwards restored to their place? In our days these blocks have been removed without any harm being done to the solidity of the edifice. The circumstances of the bearings do not extinguish all possibility of their introduction at an epoch more or less late, and it does not seem that we are justified in drawing from these discoveries the conclusion that iron was already known and employed by the Egyptians 3,000 years b. o.t One has so much the less the right to an opposite conclusion, as we are about to see, from all that is known elsewhere concerning the epoch when irou was used, not only in Dgypt, but even in other countries.
Lepsius, who supposes that iron was in use in Egypt from the fourth century, \ddagger is obliged to avow that in Ngyptian tombs, until now, few objects in iron have been found, and that these objects are some of an uncertain era, others recent. This declaration of one of the most eminent scholars in Egyptian antiquity was made, it is true, 12 years ago, but, more recently, in the special circle of Egyptologists loubts have been manifested concerning the antiquity of iron in Egypt. §
Incontestable proofs of the existence of iron before the epoch of the new empire, that is to say, before the middle of the second millenium; 13. G., have not been produced. Having maintained as evident that the Egyptians were in possession of iron at an opoch far more remote, thoy have meanwhile tried to explain the absence of this metal in the most ancient Necropolises and Mansoleums by invoking a religious prejudice.
Iron was regarded as the bone of Typhon, the enemy of Osiris, and for this reason considered impure; one conld not make use of it even for the most ordinary requirements of life withont pollating his soul in a way that would chuse him harm both on earth and in the other world. Meanwhile, Mr. Maspero, one of the most eminent Dgyptologists, has demonstrated that this explamation is not satisfactory, for

[^91]he say's (p. 295), "IThe religions impurlty of an object has never sufficed to prevent the use of such object. To cite but a single example, pork also was dedicated to Iyphon and considered impure; they were bred however in droves, and the number of these animals was considerable enough, at least in cortain cantons, to allow the good Herod. itus to relate that they were let loose in the fields after the harvests in order to press down the earth and bury the grain. Besides, in Egypt each individual object was not exclusively pure or impure, but sometimes one, sometimes another, according to circumstances. It is thas that the boar and the sow, despite their Typhonian charaeter, were the animals of Isis, and consequently share the Osirion purity. Iron, which certain traditions call tho bone of Typhon, is commonly called "bonipit," the substance of heaven; it is hence pure in certain aspects, and itupure in certain others."

Religions soruples had not phaced any obstacle to the employment of iron in Ngypt at the epoch when this useful metal was really known, for divers iron instruments have been found in contemporaneous tombs. Many of these objects have been deposited in the museum of the Louvre; they are all probably posterior to the fifteenth century 13.0. and very near to that date. The most ancient-if we do not consider the fragments already montioned which come from the pyramidsthat are known in Egypt, and the age of which can be established, is a curved blate resembling a reaping hook, which Belzoni one day put under one of the Sphinxes at Karnak, lint the age of this blade does not go beyond the seventh contury B. O.* Maspero, who supposes the nese of iron in Dgypt to be very anciont, has endeavored in twoinstances to find an explanation of the varity of thes metal. He thinks, in the first place, that iron utensils which conld not be employed have been re. molted, But this does not explain to us the reason why in Dgepptian museums objects in iron are more rare than objeots in bronze. The reensting of bronzes out of use was at least practiced as much.

In the second place, Mr. Masporo, and with him many other's, have desired to explain the absence of iron by arguing its destruction by rust. But it is necessary to recall that Wegytian tombs are so dry that here, less than anywhore olse, could iron have been corroded by oxidation. Besides, rust has not the consuming activity whol is sometimes believed. A great deal of time is required to necomplish its work of destruction; and in point of fact this rust could not entiroly disappenי.

[^92]In the tombs the rusted object, or the trace of the rust upon neighbor. ing objects, would have been discovered.*

Now never in my knowledge has a vestige of iron been found more or less rusted, never even has the stain of rust been found in the tombs prior to the fifteenth century $\mathbf{3}$. \mathbf{O}.
This is all the more important as among the discoveries of the first millenium 13. o. both in Ngypt and elsewhere, numerous iron objects, among which the several well preserved, have been met with (Rhind, Thebes, p. 218). Now, if an object made of iron can be preserved almost intact during two or three thousand years, there is no reason why this object should have disappenred withont leaving any trace if it had remained a little longer in the carth and under identical conditions.
Inasmuch as to day almost all the hieroglyphic inscriptions can be read without difflentty, it might be supposed that it was easy to respond to tho second inquiry above made and specify the group of characters that constitute the name of iron. Now, erndite men differ in this partieular ; with one it is such a term, with a second another.

It does not appertain to me, who am not an Egyptologist, to examine if the various and contradictory opinions do not proceed from the fact that some have imagined they discovered the word "iron" in inserip. tions of an epoch when this metal was as yet unknown.

I do not know, further, if the group of hieroglyphies which is reputed to signify the torm iron on a recent occasion referred to has the same signiflcation in the inseriptions of the New Empire. It loes not suffice that the word exists; it is necessary to prove also that this term at a remote period did not signify anything else; and for example, that there was instead of the meaning iron the meaning bronze or some other metal in genoral.

A striking example of such a change of signifleation is tho following: In India in the oarly ora of the Verias ayas, designated bronzo, and then, after the introduction of iron it was applied to the new motal. The Latin has preserved the primitive sonse of the word res. The problem is very essentially eleared up if recourso bo had to another catagory of instruction: this is our third standpoint.
Among the miral paintings, so numerons and so often aimirably preserved, there are a groat many arms and modelled instruments, the greater part red or yollow, the rest blne. Surely ono will not deny that the red and the yallow represents copper and bronze and the bhe iron or steel.

In a tomb comparatively modern, that of Rameses III, some arms are red, others blue. Rhind (Thebes, p. 221) has orroneously drawn from

[^93]this the conclusion that colors are without signification. This fact demonstrates only that at that epoch some arms of bronze and others of iron were employed, although the latter metal had then been long known.

When we examine attentively the paintings of ancient times we observe that arms and tools are painted there red or yellow, never blue. Lepsias, who believes in the antiquity of iron in Egypt, is nevertheless very much surprised at the fuct (p. 57) that red or light brown is employed in the re-production of axes, arrow barbs, pruning hooks, saws, chisels razors, and butcher knives.

It is in the paintings of the new empire alone that metallic objects are painted blue. This can be naturally explained. Bronze, until towards the fifteenth century B. O., was employed only for the fabrica. tion of arms and instruments; iron was not as yet in use. Let us ex. amine, finally, the last aspect of the question. The absence of objects made of iron in the mortuary furniture of the ancient era could have no signification or importance if those of bronze were equally wanting. But it is not thus. Bronzes are met with abundantly in the tombs.

We can now, thanks to the lattor, approach the fourth of our queries. Among the most remarkable discoveries of bronzes anterior to the new empire, or contemporaneous with the early centuries of that era, we may cite that of Drali-aboul-Neggah, to the north of Thebes. In 1860, some Arabe exhumed from the sand a coffin, that of Queen A'hho. tep. This queen had been married to Kamos, a king of the seventeenth dynasty, and perhaps the mother of King Ahinos I, or of his consort Nofirtari. King Alinos was the first of the eighteenth dynasty. A'h. hotep, consequently was living more than 1,500 years B . σ. Her coffin contained a large number of precious objects and arms, with which the museum of Boula is enriched and whioh we are about to describe.* There was gold, silver, bronze, but no trace of iroll.
A.rms and bronze instruments were in use at a later period and coneurrently with those of iron. This is proven by numerous bronzes in the Boulaq Museum and the European museums which bear the name of Thoutmos III. This king of the eighteenth dynasty lived during the first half of the seventeenth century B. O. If one lias carefully read the group of hieroglyphics which it is assumed constitutes the term iron, they were acquainted with that motal at that epoch. There are also bronzes which bear the name of Queen Hatschopsitu, the sister and coregent of Thoutmos III. The inseriptions that bear these names are engraved or written with ink on the bronze itself or on the wooden handles of the tools (Figs. 29 and 39). It is proper to note that on ser-

[^94]eral of these objects the same insoription is seen, with insignificant changes "The gracious God Ra-men-Kheper (pronomen of Thoutmos III), the beloved of Ammon, when the cord was stretched at Amensuraku." It is supposed that it relates to the foundation of a "pylon" which Thoutmos caused to be built at Karnak.*
The fact that upon so many objects we meet with the name of this king would indicate that this name is of frequent occurrence in Egyp. tian insoriptions. This however may be the effect of accident which on a single day exposed an exceptional number of these objects; thus in a tomb at Thebes were discovered several baskets filled with instruments of this character. \dagger

It has been supposed that the arms and tools exhumed from the tombs had been specially fabricated of bronze to be employed at ceremonies either solemn-for example, the foundation of a "pylone," as we have just seen-or funereal. \ddagger
The bronze from the considerations of religious orders would have continued to be utilized long after industry might have manufactured arms of iron and tools for ordinary use. But this supposition is contradieted. Since a great number of those bronzes bear evident marks of long use, they were not fabrichted, consequently in order simply to be deposited in the tombs.§ At the close of the second milleuinm B. \mathbf{O}. arms of bronze were not yet entirely replaced by iron arms. The mural paintings in the tomb of King Ramses III at Thebes, which date from the twelfth century, prove this; here a great quantity of arms may be seen, the major part blue, the remainder red. Lance-barbs and swords with two edges are sometimes red, at others blue.\|

The arms represented in this tomb were those which were used in war at the time of Ramses III. It cannot therefore be assumed that the red arms were of bronze, because they were especially fabricated for the tomb. They are painted, red because bronze arms were then in

[^95]general use. It is very important to establish that brouze arms were common in the second century, and even that they were in a majority at this moment, which is already an iron age. Such would not have heen the case if (as many authors suppose) iron had been known and employed in this country for thousands of years. This is an obser. vation of which the value will be apprehended. If iron had been in the service of industry from the early dynasties it would not be found. so rare still towards the second century. Everywhere else it is agreed that when iron appears, bronze is not long in yielding place to it for the fabrication of swords, axes, knives, etc. The experience acquired everywhere on this subject does not permit us to doubt that it would not have been otherwise on Egyptian soil, or that bronze, in despits of the presence of iron, would have remained so long alone or almost ex. clusively utilized.

It seems to result from the discoveries of Schliemann at Mycene and Tiryns, and which belong to the close of the second milleninm b. c., that iron was not known in Egypt as early as has been asserted. Amongst so many objects of every variety which have been collected in the tombs of Mycene, there is no trace of iron, whilst hundreds of swords and other arms are of bronze. In the royal palace at Tiryns there is no iron or trace of iron.*

Now, the antiquities of these two cities testify to a powerful influence from Egypt, undoubtedly exercised through the agency of the Phonicians, and it would then be scarcely possible that iron should have beon completely unknown in Greece, if for two thousand years it had already been known in Egypt.

From what we have just said it follows with great probability that the Dgyptians, during the whole time of the ancient empire, and probably until almost fifteen hundred years B. o., were not acquainted with the use of irou, and employed only bronze for their arms and instru. ments; that the age of bronze consequently continued in Egypt until the epoch mentioned, and that iron, as yet, towards the close of the second milleninm B. O., had not altogether replaced bromze for the construotion of armis and edged instirumonts.

The most remarkable discovery in Neypt of bronze arms is, as we have already said, that which was made in the coffln of Queen A'hhotep. A mong the great quantity of precions things which this tomb contained we first mentioned were the following objeots, which constitated a part of the toilet of that princess: Several gold bracelets, ornamented with precious stones and plates of glass, rings for the legs of gold, a golden chain, a diadem, a large collar and a decoration for the breast of gold

[^96]and precious stones, the handle of a fan of wood laminated with gold; an ebony mirror of gold and gilded bronze, otc. But along with these were found in the tomb of the queen various arms and a small boat of massive gold mounted upon a wooden chariot with wheels of bronze and a similar boat of silver. In the golden boat tirelve oarsmen are seen, also of gold, who are rowing under the orders of the helmsman and pilot in the prow. In the center of the boat a dininutive personage holds an ax and a baton of authority; a cartonche engraved behind the helmsman teaches us the death for which ho was originally predestined. This boat is King Kamos. The vessel itself is a symbol of the craft on which the deceased must embark acrording to the creed of the Egyptians, and be borne to Abydos in order to enter the other world.

Upon a few other objects found in this tomb may be read the names of the kings, Kamos, Ahmos, and the prenomen of the latter, Nibpelitiri,

The arms found in the toinb are of great importance to our subject. They are three poniards with blades of bronze and gold; two axes, one of gilded bronze, the other of silver; nine small hatehets, three of gold and six of silver; and a baton of anthority, made of black wood and gold.

The figures that we are abont to refor to are grouped upon the plates apart from the text here subjoined. One of the poniards was originally sheathed in a scabbard of gold.* The handle is of wood, and ornamented with small triangles in cornelian, lapis-lazuli, feldspar and gold forming the reverse. For the pommel, four female heads in pricked gold; an inverted bull's hearl eonceals the soldering of the blade to the handle. The body of the blade is of dark bronze, inlaid with massive gold and damascened. Upon tho upper face above the prenomen Nibpehtiri a lion is pursuing a bull, in advance of which two locusts are quietly proceeding. The lowor facet bears the name of Ahmos I and fifteen flowers in full hoom which issue one from another and disap. pear toward the point of the blade. Another poniard (Fig. 18) has \& gold handle, the blade being of bronze. The third poniard (Fig. 11) is formed with a very heavy blade, and a disk of silver serving as a handle. Figure 12 exhibits the poniard from a side point of view.t

One of the large axes is represented in Tig. 26. The handle is of cedar wood, ormamented with a golden leaf. The name of tho king, Ahmos, is here traced in incrustations of lapis-laznli, cornelian, turquoise, a nd green feldspar. The blade is provided with a simple hande

[^97]of wood and maintained in its socizet by a coil of gold thread. It is of black bronze and has been gilded.

One of its facets bears lotuses on in ground of gold; the other represents Ahmos threatening with his axe a barbarian, lalf over. thrown, whom he is holding by the hair of his head. A bove this scene is represented the god of war, Monton Thebain, under the form of a griffin with the head of an eagle.*

The other axe is of the same form, the handle being of horn garnished with gold, the blade being of silver. Among the bronze axes found in Egypt with which I am acquainted none is perforated in the same way as the axes used in our days. All are of the same form as the wedges of bronze so common during the age of bronze in Europe, and are fast. ened to the handles by thongs or other bands.

All the Egyptian axes that I have had an opportunity to see at the Louvre and in other collections have been tlat wedges without any traces of elevation along the borders, "straight borders" \dagger without shoulders near the middle portion, to prevent the blade from entering into the handle when one struck with it.

The blales are either nearly of the same form as the axes of stone (Fig. 36) or else somewhat enlarged at the edge. The upper portion of several have a form characteristic of Fgyptian uxes (Fig. 28). It is rectilinear and prolonged into a point toward the two extremities.

There were however other forms of bronze axes, besides. Ainong the re-productions which date from the early era of the ancient empire, axes with a half circular blade are to be scen, as in Fig. 31. This blade is massive; but later on, towards the close of the ancient empire, the blade has verry often the form that is shown in Fig, 32, with two round holes near the handle. \ddagger The arm represented by Fig. 33 has a similar blade with two holes, only more elongated; the surface of the handle is of silver. §

Sometimes the axe blades are pierced through and through like that

[^98]of Fig. 34, and present divers images. Oelts, with sockets similar to those which are so often found in Euroje, are unknown in Egypt, but celts with pinions are met with there which approach in appearance those with sockets. The pinions, which are folded around the handle, are found only on one side; Fig. 40 represents such a celt. The latter is made of iron, but, bronze celts of the same form are lihewise dis. covered in Egypt.*

In Egyptian tombs, poniards with double edges have been found of bronze. The hilt is frequently formed from a bronze plate, the two sides covered with wood, horn, bone, or ivory.

The hilts of the poniads represented by Figs. 1 and $3-5$, which are of this description, have aromid them a border in bronze. A like bor. dor may also be scen in the larger part of the hilt of figure 2 , but the pommel is entirely of bone, or rather of ivory fastened by a rivet, parallel to the blade.

Upon the handles last mentioned, the hilt properly speaking is, as is generally the case, much large than the pommel. Such however is not always the case. A poniard of bronze discovered at Thebes, of the same type as in Fig. 9, has a pommel almost as large as the hilt. \dagger

In the poniard represented in Fig. 9, the pommel is a little larger than the hilts. \ddagger The latter has two semi-ciroular holes and is of ivory, while the rest is of horn or hard wood, fastencd with bronze rivets. In Fig. 10, the pommel is very much larger than the handle, in which arenot to be included the long and narrow lobes of the handle, which comprise the upper extremity of the blade. \& Still larger is the pommel of the poniard which is represented by Fig. 11, and which we have already described; the two semi-circular holes which are seen in the pommel of Fig. 9 are likewise found in Fig. 11, as also in Fig. 10. Each of these four poniards have pommels almost circular.

[^99]Fig. 8 shows us a poniard of bronze deposited in the museum at Berlin, the pommel of which is very much larger than the hilt. The pommel, not round, but elongated, is of ivory; the rest of a dark sub. stance (horm or rhinocerous hide), fastened with large rivets incrusted with gold.

Sometimes the whole hilt is of metal, as in the case of one of the poniards found in the tomb of Queon A'hhotep (Fig. 18), the blade being of bronze the hilt of gold. Yet more precions is the hilt of the other poniard discovered in the same tomb (Fig. 10). The mural paintings of the tomb of King Rameses III at Thebes represent a number of arms, among others long poniards with double blades, as in Fig. 20. The blades of some are painted red, others blue or green.*

The hilts of these arms are yellow; probably they were made of gold or were gilded. An arm of similar form (Fig .19), which must have been of bronze, since it is painteil red, is seen in another mural picture.

Besides these poniards with double edges, a kind of long knife or short sword with one edge was employed in Dgypt. On the Theban bas relief, King Rameses II woars an arm of this form, and the god Ammon is quite often represented with a like arm in his haud. A bas. relief in a temple at lbsambul, in Nubia, shows us Ammon and King Rameses III, the latter raising his hand to strike a multiture of vanquished enemies. In the hand of the god the arm reproduced in Fig. 13 is seeñ. It is paintod red, and must consequently havo been of bronze. Among the arms of mural paintings already montioned in the tomb of Rameses III are soveral of this chatacter, a few oven carved (Fig. 6), but they are all blue, and consequently were of iron.

The museum of the Louvie possesses an arm in bronze of this type (Fig. 14). The blade and the hilt are fused in one piece; the hilt, which ends on the reverse side in a little eye, is ornamented with a dog very well modeled; on the blado is seen a legend in hieroglyphics.

Dgyptian monuments very often roprosent poniards rather long (lig. 20), but veritable swords are not seen during the period we have under consideration. Neither, as I am aware, has the discovery of a real sword in bronze been made in ligypt. It is trie that in the magnificent colleotion of Mr. John Evans, at Nasla Mill, is doposited a bronze sword whioh was discovered at Kawtara during the construction of the Suez canal, and consequently nom the frontier. It is very uncertain therefore, whether it can be called Egyptian, at loast considoring that it is the sole one of its kind. The blade, 43 centimeters long, ends above in a tongue slight and curved forward in the form of a hook; at the base of the blade are two rivet holes.t

The Berlin masenm likewise possesses a bronzo sword which is reputed to havg been discovered in Lower Agyptof. But this indieation

[^100]is inreliable, and so much the less probable, inasmuch as the blade in nowise recalls Egyptian poniards, but, on the contrary, resembles many European swords of bronze.
The Egyptians, like other nations, made use of lances. On Egyptian monuments these arms are sometimes seen provided with very short handles.*

Bronze barbs are also found, but not in large numbers, in the collection of Egyptian antiquities. One of these is exhibited in Fig. 41; the long socket is formed by a fold so that a lengthy fissure is seen. t

Bronze lances, the sockets of which are formed in this primitive manner, have not ouly been discovered in Egypt, but also in Oyprus and Greece. Some of the lance points of Egyptian bronze have a very 'larrow barb, others are of greater width. \ddagger

As innumerable representations demonstrate, the bow played a prominent rôle among the Egyptians, both in war and in the chase. Uonsequently, a large quantity of arrow points of bronze have been found. A goodly number of them have a stalk, by means of which they are attached to the staff (Fig. 23). They are ofteu also ornumented with two long projections from the barb (Fig. 24). Others are provided with a sock et (Fig. 22). Sometimes the sockets of he arrows (Fig. 21) are formed by folding back the edges of the lower portion; that is, in the same manner as in the cases of the sockets for the lance barbs.

A large proportion of Egyptian arrow points are made with three sharp edges. Such barbs are frequent in western Asia and Greece, where they belong to epochs comparatively recent.

Sometimes upon Egyptian monuments the arrow points have a transversal edge (Fig. 25), the red color of which makes us apprehend they were of bronze.

Arrow points of silex with a transversal edge have been found in Dgypt and in so me European countries, such as France and sonthern Sweden.

Amongst the bronze implements it is necessary to remark, besides the axes already mentioned, chisels (Fig. 39), knives (Fig. 42), saws (Fig. 44), (Irills, awls (Fig. 46), small pincers, hooks (Fig. 4ñ), etc. A large number of them have still retained their handles of wood or horn. Just

[^101]as upon the axes and poniurds, are often seen upon these implementseither on the handle or the bronze itself-a legend in hieroglyphics.

The majority of the implements which we have just cited are also represented on Egyptiau monuments, and are there usually painted red* (Figs. 38 and 44). Sickles and needles were also made of bronze; likewise mirrors, strings for musical instruments resembling harps, not to cite other examples.t The mirrors, which are round slabs or plates, with haudles, resemble those with which we are acquainted from Estruscan tombs.

We possess as yet very few Egyptiau bronzes of a well determined age, and these date almost all from ages immediately bordering on the epoch when they had begun to use iroll. Now we can not respond as completely as we would wish to this important question, What forms are characteristic to each period of the Egyptiau age of bronze?

It is only very seldom-as, for instance, when hilts of poniards (Figs. 0-11), or handles of axes (Figs. 30-33) are reterred to-that we can follow the typologie development. Meauwhile that which we know already is very interesting. The discovery of the tomb of Queen A'hhotep proves that poniards of the type of Fig. 11 are a little anterior to the year 1500 B. 0 .

As a consequence the types (Figs. 9 and 10) belong to a more remote era. \ddagger This is confirmod by the fact that the original of Fig. 9 was discovered in tho same tomb as the ax represented by Fig. 33.

This tomb ought to date from the year 2000 B . C. or thereabouts, since the axes similar to Fig. 15, as we have seen, are represented upon the monuments of the twelfth dynasty, reigning at that period. Ton fow ligyptian bronges of the epoch we are examining have been until now chemically investigated. We can, however, discover that the bronze then employed in Egypt, as that used in Europe during the age of bronze, was an alloy of copper and tin, probably without the intentiona. addition of lead, zinc, or other metal. §

An Egyptian poniard analyzed by Vanquelin, containing 85 parts to 100 of copper, 14 parts to 100 of tin, and 1 part to 100 of iron, or of other metals. ||

Other arms of Egyptian bronzo are composed of 94 parts to 100 of cop. per, 6.9 parts to $1(0)$ of tin, and 0.1 part to 100 of iron. 9

According to Wilkinson ** the proportion of tin in nlmost all Egyptinn bronzes analyzed up to the present time is about 12 parts to 100 .

[^102]The Eggptians were forced to import the tin necessary for their in dustries, and this was certainly an enormous quantity. They probably had recourse to Asia, for this precious metal, even more indispensable in antiquity than in our own days. * Oopper, on the other hand, was common, if not in their own country, at least in the immediate vicinity. The peninsula of Siuai possesses considerable mines, mining operations in which began at a period very remote.

[^103]
DESCRIP'IIONS OF THE PLATES.

Plate I.

Fig. 1. Bronze poniard; hilt of wood and bronze ($\frac{t}{t}$.* Musemm of tho Lonves. (Lindenschmit; Altherthmeilmer unscrer Heidenschen Vorzeit, 2, xi, Pl. 3, Fig. 1.)
-Fig. 2. Bronze poniard; hilt of bronze, wood, and ivory ($\frac{1}{8}$). Musemm of the Louvre. (Lindensohmit; Alterthilmer 2, Xı, Pl. 3, Fig. 2.)
Fig. 3. Brouze poniard; hilt of wood and bronze ($\frac{1}{3}$). Museum of tho Louvre. (After a plotograph.)
Fig. 4. Bronze ponlard; hilt of ivory and bronze (t). British Muselin. (Kemble, Hore ferales, Pl. 8, Hig. 2.)
 graph.)
Fig. 6. Saber, painted blae; murul painting on the tomb of Ramoses III, at Thebes. Reseillni Moumenti oivili, Pl. 121; Lepsius les Metaux dans les inscriptious (gyplionines Pl. e, Fig. 2.)
Fig. 7. Bronze knlfe, Collection of Mr. Greenwoll at Durham, England, (Aftor a design exnouted by Mr. Soderberg.)

[^104]

The Age of Bronze in Egypt.

Plate-II.

Fig. 8. Poniard (bronze) ; liitt of bronze, horn (or rhinoceros hide), and ivory (t), Berlin Musemm. (Bastian aud Voss. IDie Bronzeschwerter des Königliohen Mitreums zu Berlin, Pl. 16, Fig. Bla. Compare $31 b$ of the amme; plate sheath of leathers)
Fig. 9. Bronzo ponined; hilt of bronze, lvory, und horn (t). British Mnsenm. (Kemblo, Moro ferales, Pl. 7, Flg. 3.)
Fig 10. Bronze poniard; hilt of bronzo and bone (t). Collection of Mr. Green well at Dirham. (After desigit oxecuted by Soderberg.)
Fig. 11. Bronze poniard; hilt of bronze and silver ($\frac{1}{2}$). Mnsenm nt Bonlaq. (From a photograph.)
Flg. 12. 'The same ponlard, side viow. Perrott and Chiplea, Histoire de l'Avt dans l'Antlquite vol. $\mathrm{x}, \mathrm{p}, 8: 30, \mathrm{Fig}, 564$.
Fig. 13. Arm painted red, handlo jollow. Templa of Ibsambin in Nnbia, in the timo of Ramesos III, Chimpollion, monnments egyptiens, vol, 1, PI, 11, Leppsins, Les Métaux, Pl. 2, Fig. 8 .
Fig. 14. Large knife of bronze ($\mathrm{c}, \frac{1}{2}$). Lonvre Museum, (From a photograph.) 518

The Age of Bronze in Egypt.

Plate III.

Fig, 15. Bronzo poniard, wood and precions stones ($\frac{1}{2}$, see the description, p, 30, fonnd in tho tomb of Queen A'hhotep. Bonlaq Musoum. (F'rom a photograph.)
Fig. 16. Hronzu poniard; (d ${ }_{2}$, British Musonlı. (From photograph,)
Fig. 17. Bronze poniard: ($\frac{1}{2}$, Lowor portion of the hilt of hollow bronzo, upper portion wantlag. Bonlat Misoum. (From 4 photograph.)
Fig. 18. Bronae poninid, hilt ot rold (A), fomblin the coffin of Queen A'hhotep. Bonlag Musenm. (From nphotograph.)
Fig. 19. Poniard painted red, tho hilt. yollow. Mural painting. Lopsins; Les Mŕtanx; P1. 2, Fig, 9.
Fig. 60. Loug poniard painted red, hit yellow. Mural painting on the tomb of Ramoses III at Thobes (Rosellini, Monmmentii cirili), PI, 121. Lopsins, Les Métanx Pl. 2, Fig. 1.
Fig. 21. Arrow point of ooppor (pmo) (t), British Mnsonm, Komble, Morr forales, Pl. 6, Fig. 1.
Fig. 22. Arrow barb of bron\%o (3). Bonlaq Musoum, (From a photograph.)
Fig. 23. Arpow babl of bronze (号), Bonlaq Mnsenm. (From a photograph,)
Fig. 24. Arrow barb of brouzo (号). Bonlaq Masonim. (From a photograph,)
Fig. Qi. Armow barl with a transvorsal aharp edge, painted red. Maral painting. Lopshing, Les Métaux Pl.. 2, Fig. 12.

The Age of Bronze in Egypt.r.

Platite IV.

Fig. 26. Ax of gilt bronze, hilt, wood and preolons stones ($\frac{1}{6}$). Cofiln of Queen A'hhotop, Bonlaq Museum. (From a photograph.)
Fig. 27. Reverse of the same ax. (From a photograph.)
Fig. 28. Bronze ax ($\frac{1}{2}$). Bonlaq Museum. (From a photograph).
Fig. 29. Bronzo ax boaring the name of Tleontmos III, the handle of wood (f). Boulaq Musoum. (From a photograph.)
522

27.

28.

29. .

The Age of Bronze in Egypt.

Phate V.
Jige, 30 und 31. Axos. Mural paintings of tho sixth dynasty. Lepalis, Dentimaller

Fig. 3:2. A. , blale pintad yollow (or red). Mural painthig of tho Twelfth dymasty. (Lopslis, Denkmailer vol, m, Pl, 161. Lepains, Les Méume Pl. \%, Fig, 2.)
Fig, 33, Bronzenx; tho surface of the handla of silver (!). Beltish Masomb. (From aphotoginphi)
Fig. 34. Bronze ax; piemoen throngh, handlo of wool (t). British Mnsomm. (Ftom a plotographi.)
Fig. 35. Bronzo ax ; ($\frac{1}{3}$). British Musontin, (From in photograph.)
Fig. 36. Bronzonx; (0. $\frac{1}{2}$). Museum of the Lonvor, (From a photograph.)
Flg. 37. Bronzo ax ; boaring the name of 'Thontimas III; landlo of wool. Jemoires
 front viow of tho blade.
 Fig. 16.

The Age of Bronze in Egypt.

Plate VI.

Fig. 39. Bronze ohisele ($\frac{1}{8}$), hilt bearing the name of Thoutmos III, of wood. Boulan Masenum. (From a photograph.)
Fig. 40. Colt ($0, \frac{1}{2}$). Musoum of the Louvro. (From a photograph.) The Loyden Musenin possosses a celt of bronzo of the same form.
Fig. 41. Lance birl) of hronze (d), Bonlaq Miseum, (From a photograph.)
Fig. 42, Bronzo knifo (c. \ddagger). Bonlag Musenm. (F'rom a photograph.)
Fig. 43. Bronze alav (t), woodon handle, British Misonm. (From a photograph.)
Fig. 44. Saw painted rod. Miral painting. (Lopsius, Lés Métanx, Ple 2, Fig. 14.)
Fig, 45. Bronze flahhook ($\frac{1}{2}$). Bonlay Maseun. (From a photograph.)
Fig. 46. Bronzo awl (t), wooden handlo. British Mnseum, (F'rom a photograph.) 520

The Age of Bronze in Egypt.

PROGRESS OF ANTHROPOLOGY IN 1890 ,

By Prof. Otis T. Masonn.

INTRODUOIION.

In the present summary of anthropology it is designed to show the progress of the science in a somewhat olementary manner, in order to reach a larger number of roaders. The phrase, "natural history of man" is here taken to mean the employment of the apparatus, processes, and principles of natital history to the study of mankind. IThis definition will be subject to constant changes. Just as soon as any set of phonomena or facts concorning our species may be arranged, elnssified, and studied after the manner of the naturalist, only then should they be admitted into the laboratory of anthropology.

Once admitted, their difflentios will not cease. In order to keep pace with other naturbl knowledge, these sexies of phonomenn or fats must evor bo subjected to now forms of serutiny. Botanists and zooblogists are constantly inventing better apparatus and refining their methods, and furthermore, each department of these sciences requires spocinl machinery and nppliances to porfect the doliency of the senses and to enable the investigator to hold large masses of facts before his mind at once.

Anthropology therefore is required to be a most vigorous seience, keping pace with avery improvement in othor sciences, both genoral and special, and reflning its own apparatus and methods perpetually.

The summary which at the close of each year faithfally choonicles the topies discussed, the organized moans of resench, the improvement in apparatus and the results attained, serves as a historical monument by means of which futuro students may trace their way backward in the development of the science.

A complete syllabus of anthropology would include-flirst, what man is, and second, what man does. What man is may bo denominated structural anthropology; what man does, functional anthropology.

Science always deals with phenomena, and the mame of each seience is derived from tho things observed and studied. For instance, we
may arrange the varions parts of the subject under consideration in the order of phenomena:

To expresss his thonglits . Glossology.
'I'o supply his wats . ' ' 'oolinology.
'Io gratify his desires . Aesthentics.
'To ancomit for phonomena Scienco und philosopliy.
'I'o co-operate in the netivitios nid onds of lifo...... Sochology.
In presence of a spint world . Tho seionce of relighon,

- The past of human life aind wetions is studied-Soience.
(1) In things lecayed or ding from tho earth Archeology.
(2) In the deciphorment of inseriptions...... Indeography.
(3) In the aets and sayings of tho inlettered Folk-loro.
(4) In writton rocords . History.

Solences helpinel to antleropolom!.
'I'o dotermine tho material of art-prodnets. It inemang,
'lo flx tho ago of rolies . Geology'.
In studying tho matinal olects of man and iho math on oneh other.. Geography.
To detomine man's place in matmo and his aequalntaneo therewith

Botany and zoillogy.
It will readily be seon that one man may not be profoundy versed in anthropology, but everyone who reads the foregoing syllabus ganefally will at a glance discover that there is some particular branch of the subject for which he is titted by his daily oempations.

The resonrees ahready in oxistence for the stmdent, both general and special, will be noted in the proper order. 'They may be classiffed as follows:
(1) Those relating to the subject as a whole.
(3) The resources of biological studies.
(3) Psycho-physical investigations, that is, the study of psychology experimentally.
(4) The races of men.
(5) Language.
(6) Arts and archeology.
(7) Sociology.
(8) Philosophy, folk-lore, and mythology.
(9) The relation of mature to man.

I.-GENERAL ANIIIROPOLOGY.

It must be remembered in this connection that we have not now to lay the foundation for a new scionce, but to bring together the results of an exceedingly vigorons one. The resources at our command are:
(1) General treatises, like Tylor's "Anthropology," eourses of lectures, encyolopedias, and classifieations.
(2) Societies with their published proceedings and transactions and periodicals devoted entirely to the study of man.
(3) Assemblies and congresses, national and international, with their Comptes-rendus.
(4) Museums and collections, public and private, with catalogues and books of instructions. Expositions.
(5) Special libraries containing both literature and albums.
(6) Laboratories, as in other seiences, for investigation both in structural and functional anthropology.
The most noteworthy event in our science for Americans, was the Congress International des Americanistes, at Paris. At this meeting ithe compte-rendu of the seventh session held in Berlin (1888) was presented. The list of papers there printed is as follows:
-On the name America, Guido Oora. Basques, Bretons, and Normans on the coast of North America in the beginning of the sixteenth eentury, M. Gaffarel. Publication of writings and docments relative to 'Oolumbus and his times, on the occasion of the celebration of the fourth 'centemary of the discovery of America, Guido Cora. Ensayo historico de la legislacion primitiva do los estados españoles de América, M. Pabié. Bemerkungen zur modernen Littexatur iber die Entdeekung Amerikas, M. Geleich. On the Nahuatl version of Sahagun's Historia de la Nueva España, Daniol (g. Brinton. Archeology of Mexico and South Amorica, Dr. Heger. Oolliers de pierre de Porto Rico, Jimenez de la Espada. Antiquities of the State of Vera Oruz, Hermann Strobei. Areheological resilt of a voyage to Mexico, Edward Seler. Origin, working hypothesis, and primary researehes of the Hemenway Sonthwestern Arehmological Exposition, F. H. Oushing. Antiquities of Nicaragua, Oharles Boralius. Antiquites céramiques do líle de Marajo; sur la néphrite et la jadeite, Ladislau Netto. Sur la provenanco do la néphrite et la jadeito, R. Virehow. Die Verbreitung der Eskimo Stänmer, II. Rink. The Aztecs and their probable relations to the Pueblo Indians of New Mexico, S. B. Evans. De lemploi de la coca dans les pays septentriomax de l'Amérigue du Sud, A. Emist. .Die Bekleidng eines reichen Guajiro Indianers, O. M. Pleyte, Sur la eraniologie amerieaine, R. Virchow. An anatomical characteristic of the hyoid bone of the preColumblan Pueblo Indians, Arizoma, Drs. Wortman and Ten Kate. Dio Frage nach der Einheit oder Vielleit der amerikanisehen Eingeborenenrasse geprift ander Untersuchung ihros Man whelses, Gustav Fitseh. Die Ohronologio des, diluvialen Mensohen in Nordamerika, Emil H, Mis. 129——34

Schmilt. Vestiges laissés par les populations pré.Oolombiennes de Niearagua, Désiré Pector. Uber alt-peruanische Hausthiere, Dr. Nehring. Die Nutmpflauzen der alten Peruaner, L. Wittmack. Diritto e morale nel Messico antico, Vincenzo Grossi, La cremazione in America prima e dope Oristotoro Oolombo, Grossi. Anthropologie des pettples d'Anahnae au tomps de Oortez, R. Hartmann. Was Ameriea peo. pled from Polynesia? Horatio Hale. Ftude sur la langue Mam, le Oomte de Charencey. Textes, analyses e' ocabulaire de la langue Timucua, Raoul de la Grasserie. De la fumille linguistique Pano, id. The historicalarchives of the Hemenway South western Archæological Expedition, Adulf Bandelier. Sur le debris de cuisine (Sambaquis) du Brésil, H. Milller. Das Verbältniss zwischen dem Ketschua und Aimaraid. Sur une aucienne carte de l'Amérique, M. Gaffarel. Verwandtscheften und Wanderungen des Tschebtscba, Max Uhle. Trois familles linguistiques des bassins de l'Amazone et de l'Orenoque, Lucien Adam. Bibliographie des récentes conquetes de la linguistique sud-américaine, Lucien Adam. Das Tomalamatl der Aubin'sehen Sammlung und die Verwandten Kalenderbiicher, Edward Seler. Die Entzifferung der Maya Hand. sehriften, E. Förstemann. Olassiticationehronologique des monuments architectoniques de lancien Pérou, Ferdinand Borsari. Contribution id baméricanisme da Cauca (Oolombie), Leon Douay. Linguistique des peuples qui habitent le centre de l'Amérique du Sud, von den Steinem. Figures pertuvionnes on argent, Liiders.
The Section of Anthropology in the American Association for the Advancement of Science had for its presiding officer Dr. Frank Bnker, the director of the National Zoülogical Parks. His address will be noticed in the olapter on Biology. The following are the titles of important pupers read: Lhdian origin of maple sugar, H. W. Henshaw; Fort Ancient, W. K. Moorehead; Abonghal stone implements of the Potomac Valles, W. H. Holmes; Darthwork near Fosters, Little Miani Valloy, Ohio, F. W. Putnam; Brains and medisected head of man and chimpanzee, Burt G. Wilder; Gold beads of Indian manufacture from Florida and Now Jersey, U. O. Abott; A study in mental statisties, J. Justrow; Arts of modern savages tor interpreting archeology, O. A. Mason; Relation of mind to its physical basis, D, D. Cope; Ancient hearth in the Little Miami Valley, F. W. P'ntnam; Evolatiou of a sect, Anita N. Meqeo.

The sixtieth meeting of the Britioh Association for the Advancement of Science was held in Leeds, September 3-13. The vice presidential address of Mr. John Evans was devoted mainly to this question: What is the antiquity of the human race, or, rather, what is the antiquity of the carliest objects hitherto found which can with safety be assigned to the handiwork of man? As regards 'Tertiary man there are thret classes of evidence, to wit: (1) the presumed discovery of parts of the loman skeleton; (2) that of amimal bones said to have been cut and worked by the hand of man; and (3) that of flints thought to be arti-
ficially fashioned (J. Anthrop. Inst., xir, $\mathbf{\text { of }} 65$; Tr. Hertsford Nat. Hist. Soc., 1,545$)$. In summing up the evidence, Dr. Evans says that the present verdict as to Tertiary mun must be in the form of "not proven." The latter part of the address is devoted to the question of the Aryan language and the Aryan race and to the improved resources of anthropological study. Papers were read upon the following topies: Hered. itism, F. O. Morris; Religion of tho Australian aborigines, J. W. Fawcett; The present aspect of the jade question, \mathbf{F}. W. Rudler; Is there a break in mental evolution? Lady Welby; Unidentified peoples in Britain in pre-Roman times, Dr. Phene ; Yourouks of Asia Minor, T. Bent; Aryan cralle land, J. Stuart Glennic; Reversions, Nina Layard; Physical development, G. W. Hambleton; Archoological remains bearing on the origin of the Anglo-Saxons in England, Dr. Munro; Duggleby "Howe," E. Maure Cole; Romano-British graveyard in Wet-wang•with-Fimber, J. R. Mortimer; Minute neolithic implements, H. C. March; Retrogression in prebistoric civilization in Thames Valley, H. Stopes; Boring of stone lammers, W. Horne ; Stethographic tracings of male and female respiratory movements, Wilberforce smith; Human remains at Woodyates, Wittshire, J. G. Garson; Old and modern excavations of the Wandsdyke at Woodyates, Gen. Pitt Rivers.

The British Association committees form an active part of the general meetings. Upon anthropological subjects were the Report upon the new edition of the little handbook for collectorg entitled Notes and Queries; Report of the committee on authropometric laboratory; On prehistoric inhabitants of Britain; On nomad tribes of Asia Minor; On northwestern tribes of Oanada; On India. The British Association for the Advancement of Science, coöperating with the Anthropological Institute of London, organized a lecture course on anthropology, differing from the Paris course not only in being less technical, but also in the repetition of the lectures before institutions and before the public in various cities throughout the United Kingdom. The series was as follows: :-
(1) Physical anthropology. By Dr. Garson.
(2) The geological history of man. By F. W. Rudler.
(3) Prehistoric dwellings, tombs, and monuments. By A. L. Lewis.
(4) Development of the arts of life. By Henry Balfour.
(5) Social institutions. By W. W. Brabrook.
(6) Anthropometry. By G. W. Bloxam.

During the current year the beneficent results of the Paris Exposition began to appear; especially in the form of reports on the various con. gresses. Of the tenth session of Oongres international d'Anthropologie et d'Archéologie préhistoriques, M. Hamy, Membre do l'Institut, and general secretary of the congress, prepared the Compte Rendu, a pamphlet of 48 pages. The French Association for the Advancement
of Science met during the current year at Limoges, August 7-15. In this association is a section devoted exclusively to anthropological subjects.

The twenty first meeting of the German Anthropological Association was held at Munster, Westphalin, August 11-15. At each one of these annual meetings it is customary to explore thoroughly the anthropological resources of the region. Professor Hosius this year read a paper on the geognostic structure of Westphalia, the prehistoric stations and the remains of quaternary animals found there, aud Professor Nordhoff followed up this commmication with one upon the urns and the weapons found in this state.

The German Association of Naturalists and physicians (Versammlung deutscher Naturforscher und Aertzte) must not be confounded with the General Anthropological Society of the empire and Austria. The first named lield its sixty third merting in Bremen, $15-20$ th September.

Tho Russian Association of Naturalists and physicians held its eighth meeting in St. Petersburg, Jauuary 8-19. In the 70 sessions 2,200 took part and over 400 communications were made. One of thie ten sections was dovoted to geography, ethnography, and anthropology. The subjects discussed were, migrations, history of primitive culture, anthropometry, local archreology, and the ethnography of Russia, Upon this last point the opportunities of study are unparalleled and the Russian ethnographers liave not failed to make use of them.

There is no better illustration of the rapidity with which the seience of anthropology has asserted itself than the museo de la Plata, a sketch of which is here given (Plate I). The capital of the province of Buenos Ayres, the city of La Plata, was founded in 1882, to replace as a seat of provincial authority the city of Buenos Ayres declared in 1880 to be the capital of the republic. In the brief space of time intervening, under the energetic management of Signor Frandisco P. Moreno, a fully equipped museum is completed. The anthropological portion owes its existence almost entirely to the director. It is especially rich in material illustrating the aboriginal lifo of the republic. (Plate II.-Ground-plan of Museum.)

In the summary of last year a brief acconnt was given of the manner in which the science of man is covared in the institutions of Paris. Dr. Sophus Mitler contributes the following list for Copenbagen:
(1) Royal Musenm of Northern Antiquities. Devoted to carly Denmark, including the stone, the bronze, the iron, and the historic perion,until 1000 .
(2) The Folk Museum, general historic museum, from 1660 to 1800 . Will be united with the Museun of Northern Antiquities under one direction in a new building.
(3) Rosenburg Oastle, the collections to illustrate the life and history of the present dynasty.
(4) The Fredericksburg Oastle Oollection, general Danish history from 1000-1800.

Museo de la Plata.

(5) A new museum for mediæval and modern times in other countries of Europe.
(0) Fibuographic Museum, arranged to show the civilizations of the world by tribes. This was probably the first collection in lurope to be loid out upon a strictly ethnographie basis.
(7) Royal Museum of classic antiquities in Prinzens Palais.
(8) Royal collection of coins in Prinzens Palais.

No mention is made here of the royal galleries of art nor of the collection of crania and skelutons in the Zoölogical Museum. The visitor to Oopenhagen never fails to spend a day in the Thorwalsden Museum, into which the affectionate esteem of his fellow citizens has gathered the works of the great sculptor and his personal effects and displayed them most attractively.

A work of primary importance, which the director of every other anthropological museum should imitate with great promptuess and care, is Dr. Hamy's volume elltitled Origines du Musée d'Ethnographie du Trocadero, Paris. The furst exotic presents known to have come to France were the gifts of Haroun al Raschid to Oharlemagne, 801 and 807, A. D. From that moment to the present all sorts of treasures, gotten in many ways, have been in the charge of public keepers. The modern museum is shown by this volume to have been the growth of ages, the beginning or germ being the curiosity of the king or some of the nobility. It would be well if every important museum could have a volume of history like Dr. Hany's "Origines."

In aldition to a thorough history of each public museum, prepared ly its own authorities, the exigencies of intercommunication have led to the founding of a journal for museum workers, entitled, Interna. tionales Archiv fiir Ethnographie (Leyden), aud in Febtuary, appeared the first number of the Bulletin des Musees, Paris. It is edited by Mr. Edward Garnier and Léonce Benedite, aud resembles the Berlin "Year Book of the Royal Prussian Art Collections," under the heading of "Mouvement des Musces it gives notes oll other national galleries and collections, and a bibliography.

The standard list of joumals remains the same. No unthropologist can afford to neglect the following list:

The American Anthropologist, Washington; Arohiv fiir Anthropologie, Brannschweig ; 'Archivio per l'Antropologia, Firenze; Bulletins de la So. cióté d"Anthropologie de Paris; Internationales Arohiv filr Ethnographie, Leyden; Journal of the Anthropological Institute of Great Britain and I'eland, Lonion; L'Anthropologie, Paris; Mittheilungen der Authropolo. gisohen Gesellsohaft in Wien; Verhandlunyen der Berliner Gesellsohaft filir Authropologie, etc., Berlin; Zeitschrift,fiir Ethnologie, by the same society.

Journals of a popular character which can not be neglected are: Academy, London; The American Naturalist, New York; Athenceum, London; Ausland, Stinttgard; Nature, Londou; Popular Science Monthly, New York; Rérue Soientifique, Paris ; Soiënce, New York.

II.-BIOLOGIOAL ANTHROPOLOGY.

This enormous subject, covering practically the whole of the structural part of anthropology, is amply represented in a few publications. For titles alone the Index Medicus and the Index Catalogue of the Surgeon. General's library are the best gaides accessible to Americans.
In England this part of the subject is most elaborately worked nut in the biological and zoölogical journals. The Paris Bulletins, the German Archiv and Zeitschrift, the Italiau Archivio, and the Austrian Mittheilungen, though covering the entire science, are specially rich and full in biological matters. With the original papers, accounts of meetinge, reviews of publications and bibliography there is little more to be desired either for the beginner or for the adranced student.
Dr. Frank Bakerdevoted his vice presidential address before Section H of the American Association to the organs of the human body that point to a past condition much lower than the present;-indicatious of the pathway by which humanity has climbed from darkness to light, from bestiality to civilization. These organs are of two kinds, those that added or improved and those that are taken away or atrophied. Those specially mentioned are connected with the modifications of the limbs, with the erect posture, and with the segmentation of the body.
In the hand the special flexor muscle of the thumb is a new element, while the palmaris lougus is in the category of disappearing muscles. The torsion of the humerus and the incurvation of its trochlear surface and the scapular index all show a progressive development both in the individual and in the race.
The palmar fascia, the epitrochles-anconeus, a process resembling the supra-condyloid foramen of marsupials, the perforation of the olecranon fossa remind of primitive conditions. While the region of the hand and fore arm indicates increase of specialization, the upper part of the limb generally testifies to a regression. This principle is illustrated by examples. The hind limbs of apes as compared with the human legs and the acquisition of the erect posture are closely examined. Upon the latter point Dr. Baker summarizes the evidences that the adaptation of man to the erect posture is yet far from complete.

These resemblances with anthropoid apes are held to indicate not lineal descent, but common ancestry, and the differences in the races of mankind do not justify our separating them ou structural grounds.

In his work ou races and peoples Dr. Daniel G. Brinton summarizes the physical characteristics used in classifteation of mankind:

Scifme of Principal Physical Eleminnts.

Eyes	$\left\{\begin{array}{l} \text { Megraseme. rounl eyes. } \\ \text { Mesoseme nedinil eyes. } \\ \text { Microsemie } \end{array}\right.$
Jaws	$\left\{\begin{array}{l}\text { Orthoguathio } \text {. stralght or vertical jaws. } \\ \text { Mesognathic...... } \text { mediull jaws. } \\ \text { Prognathloprojeoting jaws. }\end{array}\right.$
Face	$\left\{\begin{array}{l}\text { Clamaprosopio low or broad face. } \\ \text { Mesoprosoplo medinnt face. } \\ \text { Lutoprosople narrow or high face. }\end{array}\right.$
lv	

On the 13th of March Mr. J. Venn gives in Nature the results of a series of measurements male upon the students of Oambridge Univer. sity, in England. The following queries are put, according to Dr. Galton's system : (1) The distance of the clearest vision, (2) traction upon the dynamometer, (3) force of pressure by the hand, (4) volume of the liead, (5) capacity of pulmonary inspiration, (6) stature, (7) weight of the body. The most interesting result relates to the head, which is found to be larger in volume in the better students, and in all classes to increase up to the age of 25 . Into comparison with this study maybe brought that of Pauline Tarnowsky upon 150 prostitutes, 100 female thieves, $\mathbf{1 0 0}$ peasants, and 50 women of culture:

	Prostlutes.	Thieves.	Peasints.	Sulcural.
Anteroposterlor diameter and tratiserse maxlimmon divlded by 2 \qquad				
	160.3	161. 6	183.2	164.2
Harizontal oircumforenco.	531.0	535.5	531.0	638.0
Frontal dlameter	137.5	138.0	138.2	145.8
Cephallo inilex	80.0	80.2	79.9	70.1
Stature.	153.5	155.0	150.4	154.1

The vexed question at this moment in the science oalled criminology is whether there is an ensemble of characteristics which consign their possessor to a life of crime, or which may be used to distinguish different sorts of criminals. In some form the Italian school are committed to this doctrine, and are more or less opposed by the French school.

In 1880 Dr. N. Anontchine, of Moscow, published an elabornte work on stature of men in Russia compared with that of other nations. An excellent summary of this monograph is given in L'Anthropologie ($1,62-74$), with chart and map. Hvery work of importance on human biology is noted in the Index-Medicus, published by Dr. J. S. Billings and Dr. Robert Fletcher, of the Surgeon-General's Office, in Washing. ton. The permanent record of this literature is to be found in the Index.Oatalogue of the Surgeon.Gencral's Office. Further important works are the following : Anthropometric Identification of Oriminals, Bertillon; Anthropometry, Galton, Hurd; Ascent of Man, Baker; Oerebral Oonvolutions, Turner; Ohest Development in Young Persons, Berry ; Oolor of Skin in Oriental Races, Beddoe ; Oorsets, Robin; Oross-

Infertility, Gulick; Evolntion and Disease, Sutton; Evolution of Sex; Gediles, Ryder; Giants, Laloy; Heredity, Hutchinson, La Pouge,, Turuer, Weismann, Thompson, Stoller; Human Selection, Wallace;: Hypertrichosis, Jaws and Teeth, Talbot; Longevity and Olimate, Rer. mondino, Humphrey; Olecranon Perforation, Lamb; One-sided Occu. pation, Miller; Urbitomaxillary Suture, Thoms; Paternal Impressions, Bullard ; Physical Proportions, Greenleaf, Bellary ; P'hysiological Selection, Romanes; Physique of Women, Bowditch; Pigment in the Negro, Morison ; Right Landedness, Baldwin; Rumination, Einhorn; Sex, WalCian; Skull of Oharlotte Oorday, Topinard, Benedikt; Tailed Men, Schaeffer ; Teeth of Prehistoric Skeletous, Ward; Weight of the Human Body, Ranke.

111.-PSYCHOLOGY.

In the science of anthropology, psychology is the application of meas. ures to the activities of the mind through its material agency, the brain and the nervous system. The two sets of phenomena, those of the normal mind and healthy brain and those of the abnormal mind, are included. The former find their able organ in the American Journal of Psychology, Worcester, Massachusetts, and the Jatter phenomena are treated in the journals of neurology.

Abroad the greatest activity jrevails in this department of research. Wundt's Studien, Dubois.Reymond's Arohiv, Pfliuger's Archiv, most of the physiological journals, Mind, Bruin, and even the periodicals devoted to criminology, must be consulted.

The American Journal of Puychology furnishes (int, 275-286) a report: on the amount of psychophysical instruction in the following American institutions of higher learniug : University of Wisconsin, University of Nebraska, New York College for the Training of Teachers, Oolumbia: College, Harvard University, Yale University, Army Medical Museum, University of Pennsylvanịa, Indiana University, Olark University, and University of Toronto. In each case the instructors' names are givem and a syllabus of the instruction. It wonld be well to repeat here, didl space permit, these curricula, to mark the present position of this branch of anthropolog. It will suffice to append Dr. J. MeK. Oattell's account of work done in the psychological laboratory of the University of Pennsylvania.
"Special courses in psyohology were given at the University of Pennsylvania by Professor Fullerton aud Prof. James McKeen Oattell. Professor Fullerton delivered two courses-one for undergraduates, the other for graduate students. In these courses special stress is laid on psychological analysis aud those regions of psychology which border on the theory of knowledge. Professor Oattell gave three courses extending through the year-an introductory course in experimental psychology, a course beginning with the special sturly of some psychological problem and taking up in the second half' year comparative, social, and
abuormal paychology, and an advanced course in physiological and experimeutal psychology. These courses include either practical work or research on the part of the student. A lecturer on philosophy and an assistant in psychology are about to be appointed, and additional courses will be given next year.
"In addition to these special courses, physiological, abnormal, and comparative psychology may be studied in the medical and biological departments of the unirersity. These are probably without rival in America, and offer complete courses of lectures, practical work, and clinics. Psychology borrows frohrand lends to all the sciences. Every one of the large aumber of advanced courses offered by the university bears some relation to psychology, and may prove useful to the student. The asylums and hospitals will be found of special advantage to: the student of psychology.

The new library building of the university is nearly completed. There is a special endowment for the purchase of philosophical and psycho. logical books, and auy books needed by students for special work will! be obtained. The university press is about to begin the issue of a series: of monographs representing work done in the fields of philosophy and psychology. The first number, now in press, is a psychological study on "Sameness and Identity," by Professor Fullerton. Following this: number will be a series of researches from the laboratory of psychology and an edition of Descartes" "Meditations," with Latin and English texts and philosophical commentary."

Professor Oattell makes the following report of work done in the psychological laboratory. "The chief work before experimental psy. chology is the measurement of mental aprocesses. As experimental physics is devoted to the measurement of time, space, and mass in the material world, so experimental psychology may measure time, com. plexity, and intensity in conscionsness. In so far as cases are investigated in which one mental magnitude is the function of another, a mental mechanics is developed.
"The laboratory possesses apparatus, which measures mental times conveniently and accurately. This apparatus has been described in Mind (No. 42), but since then it has been improved. The chronoscope has been altered and a new regulator made, so that the mean variation of the apparatus is now under one thousandth of a second. New pieces have been built for the production of sound, light, and electric stimuli. Apparatus for measuring the rate of movement and for other purposes have been added. The observer is placed in a compartment separated from the experimenter and measuring apparatus. With this apparatus resesrches are being carried out in several directions. Professor Dolley is measuring the rate at which the nervous impulse trav. els, using two different methods. In one series of experiments an electrical stimulus is applied to different parts of the body, and a reaction is made either with the hand or foot. The rate of transmission in
the motor and sensory tracts of the spinal cord has thus been determined. In a second series of experiments two stimuli are given at dif. ferent parts of the body, and the interval between them adjusted until the observer seems to perceive them simultaneonsly. It is thought that those experiments will throw more light on human physiology than cases in which the nerve (motor only) of a partly dead frog is artiticially stimulated. The times are also of interest to psychology, as they are needed in order to determine purely mental times. Mr. Witmer is measuring the personal difference in reaction-times, anil the work will be extended to different mental processes. These times seem to vary with age, sex, nationality, education and occupation, and their study may have practical value as well as theoretic interest. Length of life should be measured by rate of thought. Experiments are also being made on the variation in the reaction-time from hour to hour and day to day. With the co-operation of Dr. Weir Mitchell and other eminent nearologists the alteration in the time of physiological processes in diseases of the nervous system is being studied. It is believed that such tests may be of use in diagnosis. The nervous impulse may be sent through the system in different directions until a relative delay discovers the diseased part. Recovery and progression may be studied by noting the alteration in time:
"Owing to the introduction of cerebral surgery and the advances recently made in the treatment of diseases of the nervous system, any method which may make diagnosis more exact deserves careful study. In addition to the time of physiological processes in disease, other tests of loss of seusation, power and intelligence, are made in the labora. tory. The following ten tests are recommonded; the methods, etc., are described in an article now in press for Mind: (1) Dynamometer pressure; (2) rate of movement; (3) sensation-areas; (4) pressure caus. ing pain; (5) least noticeable difference in weight; (6) reaction time for sound; (7) time for naming colors; (8) bisection of 50 centimeters line; (9) judgment of 10 seconds time; (10) nu mber of letters remembered on hearing once. These determinations are made not only on those who are suffering from disease, but also on every one who wishes to be tested. It is hoped that the samo tests will be made elsewhere, so that the results of a large number of observations may be compured and combined. The undergraduate students in experimental psjcology undertakes a course of laboratory work in which about two hulldred tests and measurements are made. It is hoped that when a suffcient mass of data has been secured, it will have some scientific value. In the cases of two of the tests given above, the rate of movement and the pressure causing pain, researches are being carried out in the laboratory. By altering the distance and nature of the movement, and the point of the body to which the pressure causing pain is applied, new quautitative results are obtained."

Professor Fullerton is carrying on a research to determine the rate
at which a simple sensation fades from memory. A stimulus is allowed to work on the sense-organ for one second, and after an interval of one second a stimulus slightly different in intensity is given for one second, and the least noticeable difference in intensity is determined by the method of right and wrong cases. The interval between the stimuli is then altered, and it is determined how much greater the difference between the stimuli must be in order that it may be noticeable. The rate of forgetting is thus measured in terms of the stimulus. Intervals varying from one second to three minutes have been used. For these ex. periments new apparatus was constructed, and it was discovered that when sensations of light are excessive and last for one second, the least noticeable difference in iticensity is not abont one one-hundredth, as is sapposed, but much the, same as for the other senses under like conditions. Other observations, such as the importance of keeping the time of stimulation constant, the strouger stimulus coming before or after the weaker, the degree of confidence, the personal and daily variation, etc., have made a new investigation of the leasi noticeable difference in sensation necessary. This is at present in progress, while further work on memory must wait for its completion. Mr. De Bow is in the meanwhile making experiments determiuing the time of stimulation giving the greatest accuracy of discrimination.

The rate, extent, and force of movement is the subject of a somewhet extended investigation, which will not be completed for some tine. The maximum rate of movement has been noticed above. Experiments on the maximum pressure have been published, as also on extent of right and left handed movements. But the least noticeable difference in the rate, extent, and force of movement has never been studied in the same way as the least noticeable difference in passive sensation. Yet it would seem to need such study even more, owing to the importance and obscurity of the "sense of effort."

The laboratory possesses apparatus for studying the time, intensity, and area of stimulation needed to produce the just uoticeable sensation and a given amount of sensation. These mental magnitudes are correlated so that one may be treated as the function of the other. The results of studying the relation of time to intensity have been published in Brain (pt. 31), it being found that the time colored light must work on the retiua in order that it may be seen, increases in arithmetical progression as the intensity of the light decreases in geometrical progression. The relation of area to intensity and time is now being studied. Other experiments on the relation of intensity, time, and area of stimulation, as determined by the length of the reaction-time and accuracy of discrimination, have been begun.

The laboratory has a valuable collection of Koenig's apparatus for the study of hearing and the elements of music, and a spectrophotometer, a perimeter, and other pieces for the study of vision. Work on hearing and vision has been begun in several directions, but is at pres.
ent clelayed for lack of workers. Some progress is, however, being made in studying the fusion of sensations of light, the laboratory pos. sessing special apparatus by which colored surfaces of given areas may in any succession work on the retina for given times. Mr. Newbold, who has been helping with the experiments on memory, is about to begin a research on attention, and it is hoped that next year there will be others ready to undertake original work. Among the subjects for which apparatus has been secured and preliminary study has been made are: The building of complex perceptions, exertion, and fatigue, the meas. urement of contrast, the association of ileas, and subeonscions mental processes.

Dr. Joseph Jastrow has prepared for the series of Fact and Theory Papers a small volume on the itmerelations of mertal phenomena. "The study of the time-relations of mental phenomena is important from several points of view. It serves as an index of mental complexity, giving the sanction of objective demonstration to the results of subjective observation; it indicates a mode of analysis of the simpler mental acts, as well as the relation of these laboratory products to the processes of daily life; it demonstrates the close inter-relation of psycho. logical with physiological facts, an analysis of the former being indis. pensable to the right comprehension of the latter; it suggests means of lightening and shortening mental operations, and thus offers a mode of improving educational methods; and it promises in various directions to deepen and widen our knowledge of those processes by the complication and elaboration of which our mental life is so wonderfully built up. An excellent bibliography of well selected authorities relating to general psy-cho-physics, time-reactions, adaptive reactions, and association times will be found at the end of the volume. The American Journal of Pryohology, edited by President Stanley Hall, and published at Olark University, Worcester, Massachusetts, is the standard authority on the physical side of psychology.

Metaphysical psychology, represented in the Englishepublication Mind, may be said to have fairly entered the arena of anthropology since the revelations of consciousness are now subjected to experimental examination. The following topics show the range of study on both sides: Animal Intelligence, Alix, Fovean; Double Oonsciousness, Binet; Effect of Fatigue on Muscular Contraction, Lombard; Effect of Music on Animals, Stearns, Weissman; Experimental Psychology, Jastrow ; History of Reflex Action, Hodge's Hypuotism, Felkin, Innes, Lays, Moll, St. Olair, Boujean, and many others; Inhibition in the Phenomena of Couscience, Beriet; Intelligence of Animals, Oorsetti; Mental Evolution, Varigny; Mental Tests, Cattell; Origin of Mind, Uarus; Origin of Human Faculty, Romanes; Perception of Length and Number A mong Little Ohildren, Binet; Physiognomy and Expression, Mantegazza; Principles of Psychology, James;-Psychic Life of MicroOrganisms, Beriat; Psychic Time Measures, Fricke; Psychology of

Attention, Ribot; Relation of Mind to Its Physical Basis, Oope, Salter; Sense of Direction in Animals, Lubbook; Space Conseiousness, Speucer.

$$
\text { IV.-ETHNOLOGY }{ }_{6}
$$

Since the dividing lines between races have come to be dravn upon color rather thau upon osteology, much ingeuuity has been expended in devising a scheme of colors. Broca's standards, published in the first elition of the British Association "Anthropological Notes and Queries," are well known. They appear also in the French "Queries." Dr. Bedloe, president of the London Anthropological Institute, has further studied these Broca standards and makes the following subdivisions:
(1) Red (including pink) passing through reddish brown towards black.
(2) Orange, or reddish yellow, passing through brown towards black.
(3) Yellow, nassing through yellow brown and olive brown toward black.
(4) Gray or cendre, darkening to black.

Dr. Beddoe presents an ingenious table, in which the proportious of these colors are given for people that he has specially examined.

Elements of color-Decads.

This is followed by a more extended table, in which the proportions of Broca's numbers entering into each skin color are given. The notable differences of form existing between the parts of the skeleton and the other profound portions of the body in different groups of mankind seem to have been produced antecedent to these migrations and separations which have brought about race distinctions at present, such as color of skin and eyes and texture of the hair.

Dr. Daniel G. Brinton has published a volume on Races and Peoples, in which he combines the results of a course of lectures before the Academy of Natural Sciences of Philadelphia. This volume supplies a vacancy previously existing, since there was no good summary of ethnology published in English giving the results of moderu research. The peculiar doctrine of the author is the location of man's origin in southwestern Europe and the parts of Africa opposite, both on zoölog. ical and archeological grounds. His classifications of mankind, though agreeing essontially with those of other recent systematists, possess
sufficient intorest to be repiated, since they grow somewhat ont of Dr_{1}, Brintou's theory concerning man's cradle land. They are reproduced here in order to enable the reader to compare them with those of Welcker, Topinard, Hackel, Miiller, Flower, Quatrefages, and others in preceding summaries of the Smithsonian Report:

Gonoral ethnographio soheme.

-Brinton, D. G., Ruces and Peogles, Now York, 1890, 1. (5),
[Tribes in italice are extinct.]

-Brinton, Races and Peoples, Now York, 1890, p. 140.
Soheme of Aryac migration.
(Extinct peoples in italice.)

-Brinton, D, G., Races and Peoples, New York, 1890, 1. 153.
Soheme of the European race-South Mediterranean Branch.
[Extinct peoples, in italics.]

1. Hamitic stook.	$\left\{\begin{array}{l} \text { 1. Libyan group..........Numidians, Getulians, Libyans, Mauritanians, Guan. } \\ \text { ches, Berbers, Rlfaus, Zonavos, Kabyles, Tuarek, } \\ \text { Tiblus, Ghadumes, Mzabites, Ghanatas, Etruscans, } \\ \text { Anoriles, Assyrian, Hittites (i). } \end{array}\right.$
	2. Edjut
	3. East African group....Gallas, Somalis, Dunakils, Beiljas, Bulus, Afars, Khamira.
	1. Arablan group........ Himayarites, Sabcain, Nabotheans, Arabs, Bedawin, Ehkilis.
II. Semitic stock.	2. Abjssinian group. ... AmLarnis, Tifris, 'Cigrians, Ghoez, Ethiopiany, Har. rarns. 3. Chaldeau group.......Israclites, A ramcane, Sumarltuas.

Brinton, D. G., Races auil Peoples, Now York, 1890, 1. 104,

Sokeme of the Austafrican Race.

I, Negrilio branol. .	1. Equatorial group...... Akkas, Tikkitikkis, Obongas, Dokos, Vouatoans,
	Kimoe of Madagascar.
	uth Afrioan group.. Bushuen, Hottentots, Namapluan, Quapuas.
	1. Nilotio group Slilluks, Dinkas, Bougos, Kiks, Baris, Niters.
	2. Sudaneso gronp Hanssas, Battas, Bornus, Kanorif, N gurus, Ak
II. Negro branch...	3. Senegamblan group...Serreres, Banyums, Wolof, Foys. 4. Guinean group........ Ashantio, Dahomie, Fantis, Yorubas, Mandingoer, Vole, Krus.
	Nuhian gioup......... Nubas, Barabras, Dongolowis, Pouls, Tumalis, Nyam Nyams, Monbuttus.
III. Negrolit lummoh.	2. Bantı group.......... Caffres, Zulus, Bechuanas, Sakalavas, Damas, Herrurus, Suahells, Ovambos, Bassutos, Barolongs, Beugas, Duallas, Wagandas.

-Brinton, D. G., Races and Peoples. Now York, 1890, p. 174.
Soheme of the Asian Race.

-Brinton, D. G., Races anil Peoples. Now York, 1890, p. 194.
Scheme of Insular and Litoral Peoples.

	$\left\{\begin{array}{c}\text { 1. Nigrito GroupMincopios, Aetas, Sohobangs, Mantras, Semangs, } \\ \text { Sakales. }\end{array}\right.$
1. Negritio stook	2. I'rpuan Group \qquad Prpuas, Now Guineaus. 3. Melanesian (tronll.... . Natives of Foajea Islands, New Caledonia, Loyalty Islanile, New IIobrldes, ete.
II. Malaylosturk	
[II. Anstrailentouk	2. Dravidian (iroup. Dravidas, Tamula, Telugus, Canarese, Malayalas, Totlas, Khonds, Mundan, Bantals, Kolils, Bhilias.

Brinton, D. (i. Races and Peoples, New York, 1890, p. 220.
It is not necessary to more than mention the essay at classification made by Dr. Lombard the preceding year and published in the Bulletins de la Sociéte d'Anthropologie, Paris (xir, 129; 185). The author starts ou' with the hypothesis that the human species first appeared
in the circumpolar region during the Miocene epoch and that it expanded slowly and progressively over all the continents. As soon as the parts of this original group separated, races were formed which set up a movement from north to south, the more recent and better perfected driving before them the older and more degraded. Three primary races are demanded by this theory, and their modern representatives are to be seen in Tierra del Fuego, Oape Oolony, and Tasmania or Australia.
The best journals on ethnography and ethnology are the organs of the great societies in England, France, and Germany. The geographic magazines and publications of all the societies devoted to geography can not be overlooked. While their ruling motive is the conquest of the world for civilization they do not fail to mention and deseribe the aborigines. The Internationales Arohiv fïr Ethnographie, Leyden, edited by J. D.E. Schmeltz, is designed exclusively for museum directors who have in charge ethnographic material.
The difficulty still remains of confounding language with blood, in this area of anthropology, to such an extent that lists of tribes coutain tongues, and vice versa. Trained ethnologists, however, make the proper distinction, and gradually the error will eliminate itself.

General works on Ethnology.-The beech tree in Ethnology, Taylor; Ethnography, Races and Peoples, Brinton ; Ethnology in relation to races and peoples, Achelis; Geographic names, Hirrle, also Bulletin I, United States Board of Geographic names; Numeration in the light of ethnography, Gilnther, Reinach; Pygmies, Werner; Race and disease, Hoffmeister, Stokris ; Race susceptibilities, Grieve : Teeth of different races, Belty.
America-Age of puberty among Indians, Holder; Americanists, Brinton; Beothuks, Gatschet; Cherokees, Moony; Oherokees and Mound-builders, Thomas ; Eskino, Murdoch, Rink ; Illustrated Americana, Hunuewell; Indians of Puget Sound, Eells; The Mexicans, Gooch, Seler; Northwest Ooast tribes, Jacobsen; Omaha and Ponca Indians, Dorsey; Peopling of America, Quatrefages; South American Culture, Stilibel; Tribes of Oanada, Boas; Ethnography of Venezuela, Marcano; Western Denes, Morice.

Europe.-Aryan cradle-land, Glemnie, Huxley, Taylor; Basques, Stoll; Dthnography of Europe, Lombard; Ethuography of Turkey, Garnett; Ethology of British Isles, Rhys; Etruscans, Brinton, Bugge; Finland, Reuter; Germans and Slavs, Virchow; Lapps, Amich, Deniker, Khabouzine, Rabot; Origin of the Engllsh, Freeman; Prehistorie races of Italy, Taylor; Russia, Stuart; The Slavs, Hellwald; Stature in Russia, Anoutchine; Tartars in the Orimea, Deniker.
Asia.-Annametes, Deniker; Anthropology in India, Ibbetson; Ar: menia, Lanin; Asia Minor, Bent; Oambodia, Oombette; Oaucasus, De Morgau; Ohina, Gordon, Tcheng; Oochin Ohina, Oombelte, Faure; Ethnography of Western Asia, Lombard; History of Israel, Renan; H. Mis, 129-35

India, Tavernier; Indo-Ohina, Rosset; Japanese studies, Remy ; Kirghiz, Khabouzine, Kurds and Yesides, Kovalewsky; Thibet, Delbard, Rockhill, Sandberg.

Africa.-Angolese, Topinard; Bantu stock, Haarboff; Oongo tribes, Stanley (the Stanley literature in geographic journals and scientific periodicals), Ward; Dahomy, Delbard; Gaboon, Delbard; Madigas. car, Oliver; South African Ethnology, Macionald.

Uceanica.-Australia, Porter, Howitt, Rechus; Borneo, Woodford; Indian Archipelago, Baron Hoevell; Flores and Oelebes, Weber; New Caledonia, Oombette; New Hebrides, Inhaus; Polynesian race, Fornander; Solomon Islanders, Woodford; Tasmania, Roth; Torres Strait, Haddon.

Prof. A. H. Keane, of London, prepared for Ohambers' Encyclopædia, new edition, articles on ethnographic titles.

V.-GLOSSOLOGY.

Tbe resources of linguistic studies in the. United States are, on the classical side, represented by the American Journal of Philology, and on the ethnic side by the studies and publications of the American Oriental Society, by Dr. Daniel Brinton's American series, and by the collections of the Bureau of Etbnology in Washington.

Abroad, the list of philological journals is too long to reproduce; furthermore, in most of them language is studied quite apart from man who uses it. Tribibers catalogues, not forgetting the Journal of the Royal Asiatic Society; Revue de Linguistique; Zeitschrift der Morgenländischen Gesellschaft, Lazarus and Steinthal's Zeitschrift and Fried. lander's Oatalogues must be cousulted for works in special lines. The following papers may be consulted: Asiatic affinitics of Malay languages, Wake; Blackfeet language, Tims; Oategory of Moods, Grasserie.; Ohinook jargon, Hale ; Oomparative Grammar, Grasserie; Eskimo Vocabularies,-Wells; Ethnographic basis of Language, Leitner; Evolution of Language, Murphy; Gothic languages, Balg; IndoEuropean linguistics, Regnaud; Language of the Missisaguas, Oham. berluin; Manual of Oomparative Philology, Schrader; New Linguistic Family, Henshaw; Phonograph in the Study of Songs, Fewkes; Poule language, Tautain; Science of Langaage, Sayce; Semitic languages, Wright; Textes Manchu, Bang; Timucua text, Gatschet; Tupi language, Dom Pedro; Zulu Dletionary, Manner.
i
VI.-TEOHNOLOGY.

Klemm's plan of tracing out the lineage and migrations of human inventions, perfected later by General Pitt-Rivers, is really the most productive of scientific results among ethnologic methods. The study of an art in its historic elaboration may be called technography and the tracing of an art through the tribes that practice it ethuotechuics. At any rate, every year some one among the host of anthropologists gathers the specimens and the evidence to show how oug of our well known
implements, processes, or art products has come to be what it is. The following is a good example of this: A symposium was held by the Anthropological Society of Washingten to study the arrow.maker's art. Six members made communications and their resultsare publişhed in the Anthropologist. Fach reader was an expert in his fleld, so that, practically, there is little more to be said on that subject. Illustrations of some of the methods are to be found in the Reports of the Smithsonian Institution, but the perfecting of the point is shown only in the American Anthropologist and is reproduced here to give the subject a wider circulation. The steps are as follows: (1)

Fig. 1,--Free hand or direot peroassion.
Free hand or direct percussion; (2) direct percussion, manner of

Fia. 2.-1)ireat percusmion.
striking when the edge is sharp; (3) indirect percussion, practiced by

Fig. 3.-Indirect percission.
tho Wintuns and described by B. B. Kedding ; (4) indirect percussion,

F10. 4.-Indjrect jercussion. Two persons engaged.
two persons being concerned ; practiced by the Apaches, according to

Catlin; (i) flaking by pressure, a bone implement loeing used, a, bone

Fia. b. -rlaking by pressure; a bone imploment lielag used.
tool, b, the stone, o, the flake; (6) flaking by pressure; manner of

Fin, 6.-Flakidg by pressure.
holding as observed among many tribes by J, W. Powell and others;

Fio. 7.-Flakíng by pressure.
(7) flaking by pressure, a bone point being used, the implement to be
used resting on a support; (8) flaking by pressure, bone pincers being used.

Fio. 8.-Flaking by pressure; bone pincers being used.
An excellent example of the study of artgenealogically is Henry Balfour's description of the old British pibcorn or horn pipe and its affinities. (J. Anthrop. Inst., London, xx, 142-154, 2 pl.) The family tree would stand thus:

In the accompanying plates the relationships are better presented to the eye. They are inarked im and iv.

EXPLANATION OF HENHY HALNOUR'S DLATE III.
Fig. 1. Double hornpipe, from the village-dio Maria, Tenos, Grecian Archipelago.
Fig. 2. Slde view of same.
Fig. 3. Upper portion of same, with gourd mouth-piece removed, showing reede.
Fig. 4. One of the sounding reeds removed.
Fig. 5. Bagpipes from the Grecian Archipelago.
Fig. 6. One of the sounding reeds removed.
Fig. 7. Pibcorn from the faland of Anglesea.
Fig. 8. Back view of the pipe, with end pieces removed, showing wed in aitu:
Fig. 9. Sounding reed of same.
plate III.

Hornpipe and Bagpipes, Grecian Archipelago; and Pibcorn from anglesea.

Arab Reed pipes, deckhan Pipes, and Hindoo Hornpipe.

Fig. 10. Double reed pipes, Zuminarah, Arab, from Egypt.
Fig. 11. Single reed pipe from Egypt.
Fig. 12. Double pipes, Toomeri, Dockan, India.
Fig. 13. Same, with gourd removed, showing sounding reeds in situ.
Fig. 14. Hindoo "horn-pipe" with double plpes and large gourd reservoir.
Fig. 15. same, with gourd and horn bell mouth removed, front view, showing sounding reeds in situ.
Mr. Walter Hough, of the U. S. National Museum, in a very elaborate manner, worked out the primitive methods of tire-making, so that he is much better acquainted with the art than any savage ever was. The geographic distribution of each form is interesting in the light of ethnography, and the gradual claboration of this primitive art up to the last century an instructive chapter in the growth of invention.

Barr Ferree, of the Leonard Scott Publishing Company, wrote a series of articles on the influence of climate and nature in giving shape and character to primitive architecture. The subject is one of great interest.
J. E. Watkins, of the U. S. National Museum, follows the historic method in tracing the p rogress of the carrying industry and the elabo. ration of-modern engineering.
W. H. Holmes publishes in the anuual report of the Bureau of Ethuol. ogy a paper on the evolution of ormament, based on the close study of a large series of aboriginal yottery, basketry, and other fabrics. It is shown that many of the patterns which have had the greatest popularity in the world originated among primitive peoples. A list of important papers follows: Aboriginal Fire-making, Hough; Artistic Anatomy. Richer ; Boomerangs, Baker; British Pibcorn, Balfour; Oats from Bubas, tis, Virchow; Olimate and Architecture, Ferreo; Oulture Plants, Richter; Ourrency and Measures in Ohina, Morse; Dawn of Metallurgy, Mello; Evolution of the Gondola, Pierson; Erolution of Ornament, Holmes; Fortlacation, Olarke; Garden Vegetalles, Sturtevant; Industrial Arts in India, Birdwood; Japanese Pottery, Rowes ; Maple Sugar, Henshaw; Mechanic Art in the Stone Age, Hayes; Musio in New Hebrides, Hagen ; Musical Notation in the Middles Ages, sub voce; The Nephrite.jadeite question, Berwerth; Origin of Bronze, Wilson; Origins of Technology, Issinas; Primitive Surgery, sub voce; Proas, Sturtevant; Quarry Workshop in the District of Columbia, Holmes; Sources of Jade, Pierce; Swords, sub voce; Throwing Spear, Nuttall; Trade route from Peking to Kashgaria, Bell; Venezuela Pottery, Erust; Wild Horse of Sungaria, Trouessart; Writing Materials and Books among the Ancient Romans.

> VII. -ARCH AOLOGY.

The two archmologies, classic and pre-historic, have for their ofticial organ the American Journal of Archaology and of the History of Fine Arts. (Boston, Ginn \& Oo.) It speaks authoritatively for the Arch.
mological Iustitute of America and the American School of Olassical Studies atAthens, whose headquarters are at Oambridge, Massachusetts. All branches of archcelogy and art, oriental, classical, early Ohristian Medireval, and American, find a medium of utterance in the Journal. The Institute welcomes to its membership all men and women who desire to aid and share in the advance of knowledge concerning the past of the human race.

American archelogy has its organs in the American Antiquarian, the American Anthropologist, the reports of the Peabody Museum, the publieations of the U. S. Smithsonian Institution, and the U. S. National Museum, the series of publications issued by Dr. D. G. Brinton, and the transactions of local societies.

The Museum of American Archmology in connection with the University of Pennsylvania perfected its organization by publishing its first Annual Report, Vol. i, number 1, containing list of additions to the library, catalogue of accessions, and the first report of the curator, Dr. C. C. Abbott.

The subject of archoology has taken on a vigorous growth during the current year. Professor Putnam, of Harvard University and Peabody Museum, has carefully studied the prohistoric remains in the Ohio valley. In two papers in the Century Magazine, especially he has given in a brief space and in a popular mannor the result of his minute examinations. Professor Putnam also prepared for the World's Fair Committee a comprehensive plan for an archæological and ethaographic exhibit. Over this department Professor Putnam will preside. The researches of the Peabody Museum explorations lead Putnam to the conclusion that the mound-builder was a short-headed Sontherner; that his civilization was broken up by a long-headed Northerner, and that the Indian is the result of a mixture of these two.

The Hemenway sonthwest archaological expedition bore its first fruit in vol. v, of the Papers of Archæological Institute of America, American series. Mr. A. F. Bandelier contributes in this volume four papers upon the history of the Southwest, to wit: (1) A sketch of the knowledge which the Spaniards in Mexico possessed of the countries north of the province of New Galicia, previous to the return of Oabeza de Vaca, in the year 1536; (2) Alvar Numez Cabeza de Vaca, and the importance of his wanderings from the Mexican Gulf to the slope of the Pacific for Spanish explorations towards New Mexico and Arizona; (3) Spanish efforts to penetrate to the north of Sinaloa, between the years 1536 and 1539 ; (4) Fray Marcos of Nizza, and (5) the expedition of Pedro de Villazar from Santa Fé, New Mexico, to the banks of the Platte River, in search of the French and the Pawnees, in the year 1720 .

William H. Holmes, of the Burean of Ethnology, publishes the result of an extended exploration in a bowlder quarry near Washington Oity, at Piney Brauch. This site turns out to be a veritable workshop, and
a careful study of the debris leads the investigator to the conclusion that the forms occurring here are not implements at all, but failures, which the savage artisan has thrown away. Mr. Holmes has been enabled to demonstrate this by learning the stone chipper's art and actually repeating the steps in his processes. The value of this careful exploration lies in the assistance which it will lend to other archaeologists who visit to review their own work with new light.

Archæologists will be pleased to learn that the Hon. Henry Shirley found in Pedro Blaff Oave, Jamaica, a crauium belonging to one of the aborigines who inhabited the island before the European conquest. It had been artificially detormed during infancy by the depression of the frontal region, or frouto occipital compression with sorresponding lateral expansion. The island of Jamaica has yielded a remarkably small number of evidences of aboriginal occupation.

Dr. Brinton prepared for his "Races and Peoples" a scheme of geologic time during the age of man in the eastern hemisphere, which is here re-produced.

Soheme of geologio time during the age of man in the eastern hemisphere.

The eighth Russian Archeological Congress was held in Moscow, January 8 to 24 . It was the twenty-ffth anniversary of founding the Royal Archreological Society in Moscow, February 7, 1864. The
occasion was one of great importance both socially and scientifically, as the following list of topies will show:
(1) Pre-historic antiquilies.
(2) Historico-geographic and ethnographic antiquities.
(3) Monuments of fine arts.
(4) Oustoms and usages in Russia.
(5) Religious monuments.
(6) Russo-Slavic linguistic and paleographic monuments.
(7) Olassic, Slavo-Byzantine and western antiquities:
(8) Oriental and heathen antiquities.
(9) Archrographic montuments.

There is an excellent report of this meeting in the Mittheilungen, Wien ($\mathrm{xx}, 14 \mathrm{~S}-164$).

An event in archæology worthy of record in $1889-90$ was the removal of the National Egyptian Museum from Bulâ on the east side of the Nile to the spacious Khedival palace at Gizeh on the west. ern bank.

The death of Schlimmann removed one of the most romantic characters in the scientifie work. The conception of exploring the site of ancient Troy was formed in his boyhood. His assiduity in amassing a fortune to this end, and his untiring effort to spend his fortune to secure that end have held him up to the admination of two geverations. That his interpretation of his discoveries may not be in every case correct, will not detract greatly from his just meed of praise.

Archæological pnblications of general interest will be found under the following titles: Aboriginal Monuments in North Dakota, Montgomery; American Antiquities, Peet (under several titles); Antiquity of Man, White (series of papers on the Warfare of Science in Pop. So. Monthly) ; Antiquities of Tennessee, Thruston; Archaology, Powell; Archeology of India, Fithrer; Archeology of Ohio, Putnam; Bronze Age, Montelius; Oliff Dwellings, Ohapin, Mearns; Discoveries in Egypt, Edwards, Brugsch, Naville; Fort Ancient, Ohio, Moorehead; French Archeology, Mortillet; Gashed Bones and the Antiquity of Man, Hughes; Oriental Archreology, Sayce; Prehistoric Anthropology, Wilson; Prehistoric Oave dwellings, Bickford; Stone Ago in Africa, Andree; Winnipeg Mound Region, Bryce.

> VIII.—SOOIOLOGYY.

In December of 1889 , the American Academy of Political and Social Science was organized in Philadelphia under the most favorable anspices. The list of subscribing members reached the number of 800 in the first six months of the Academy. The most distinguished university presidents and professors are among the governing body. This coöperative action marks an era in a branch of anthropology hitherto difficult to summarize. The resources of sociological study are unlimited.

Census reports, tables of vital statistics, blue books, literature of the Bureau of Labor, of interstate commerce, of education, Johns Hopkins tracts on historical and political science; the great reviews, all of them; the daily press are only a few of the great organs of sociology. The existence of a national society with an official organ will enable the specialists to cull from this great mass the publications in his line of study.

Anthropology comes to the aid of justice in the success of the Bertillon method of measuring and identifying criminals. This has found favor not only in all France, but in the United States, and even in the Argentine Republic. To the ordinary police questions of sex, height, age, and color of the eye are added the cephalic diameters, the length of the foot, length of the middle finger, length of the ear, length of the forearm, and personal scars or individual peculiarities. The many beneficial effects of the certain identification of a criminal, in spite of all aliases and disguises that have already been published, the ability to separate the first offense from the professional villainy, are not the least among the obligations society owes to anthropology.

The discussion still continues upon the subject whether there are certain morphological indications of criminal proclivities so marked that society may use them to protect itself by confining the subject before the crime may be committed.

The wide range of inquiry in the province of sociology is indicated in the following titles: Anthropology of Prostitutes, Tamousky; Artificial Deformation of the Head, Delisle, Nicolucci ; Ohild Marriage in India, Bralimin; Ohronology of Ohina, Gordon; Oommunism, Laveleye; Oomparative Oriminality, Tarde; Courtesy, Mallery ; Orime and Suicide, Oorre; Oriminal Anthropology, Garnier, Galton, Garofalo, Germa, Lombroso, Paravant, Ellis, Proal; Disposal of the Dead, Tay. lor; Duk-Duk Oeremonies, Ohurchill; The Ear as a Sign of Defective Development, Warner; Ethical Problem, Oarus; Evolution and Inheritance, Eimer ; Gentile System of the Navajos, Matthews; Goverument, Huxley; Infancy of Oriminals, Taverni; Infant Marriages in India, Fawcett; Japanese Women, Loti ; Judicial Dictionary, Stroud; Judicial Torture, Gundry ; Justice and Political Ethics, Spencer; La Convade, Meyners; Masks, Boas, Meyer; Marriage and Heredity, Nisbet; Marringe Relation, Wake; Mutual Aid Among Animals, Krapotkin; North American Indian Ohildren, Pajeken; Origins of Common Law, Pollock; Police Anthropometry, Spearman; Political Evolution, Letourneau; Polyandria, Raynaud; Primitive Fashions, Basu; Primitive Games, Thurn; Province of Sociology, Giddings; Racing in 1890, Stutfield; Society Among Animals, Girod; Student Life in Paris in the Twelfth Century, Francke; Survival of Aucient Unstom, Gomme; Tattooing in Tunis, Bazin (also sub voce); Thiel'Talk, Wilde; Trephined Orania, Verneau; Young Parisian Orimiuals, Jolly, Roux.

IX.-RELIGION AND FOLK.LORE.

One of the remarkable results of coöperation in the study of folk-lore is seen in the possibility of such a work as Professor Frazer's Golden Bough. The priest of Diana, near Aricia, took office after killing his predecessor. Before doing this the candidate was obliged to break a bough from a sacred tree in the grove, identified with the Golden Bough plucked at the Sibyl's bidding by Aneas before entering upon his jouruey to the world below. The two questions, why was the priest obliged to kill his predecessor? and why, before killing him, was he obliged to pluck the Golden Bough? drive the author to consult the whole body of knowledge recently accumulated in comparative religion. The lower forms of animisom are quite familiar to Professor Frazer, who explored them in the preparation of his well-known work entitled Totemism.

Sir Monier Williams has placed within the reach of English-speaking people a study in comparative religion in his work on Buddhism in its connection with Brahmanism and Hinduism and in its contrast with Ohristianity. There is no better example of the amenability of such matters to scientifie treatment than is furnished by Buddhism. At first it was not a religion at all. It recognized no spirit world; it had no ecclesiastical organization, no places of worship, no cult whatever. Out of itself partly and in its association with surrounding religions it became, in the north especially, the most complicated and exacting of calts founded upon spirit worlds of countless number, of every variety of inhabitants intimately associated in every conceivable way with the people of the earth. The study of Buddhism is a chapter in the natural history of religion.

The American Folk-lore Society held its annual meeting in Oolumbia Oollege, Now York, under the presidency of Dr. Daniel G. Brinton. The report of the council gave the most flattering account of the prosperity of the organization, A movement was made toward enlarging the scope of the society's publications.

The folklorist needs no better gnide than the Journal of American Folk Lore, edited in Cambridge, Massachusetts, by W. W. Newell. Original papers of great merit fill the body of the numbers, but reviews of current literature and a list of all publications upon the subject put the student at once into communication with his colleagues.

In the same manner the Rérue de l' Histoire des Religions, published under the auspices of the Musee Guimet, in Paris, takes notice of all current literature on the natural history of religions. It is a guide book to this branch of science. During the current year this periodical enters its twenty-first volume. The Annales du Musée Guimet are devoted to memoirs too long and technical for the Revue.

Mr. Francis O. Macauley, of Philadelphia, has conceived the idea of a folklore museum. In pursuance of his suggestions Mr. Oulin pub. lished a paper in the Journal of American Folk-Lore, and organized a
department devoted to this subject in the Museum of Archæology of the University of Pennsylvania.

Attention is called to the following titles: Aryan Oosmogony, Veckenstedt; Buddhism, Griffin, Williams; Oomparative Religion, Frazer; Diabology, Jewett; Evolution of a Sect, MeGee; Folklore, Newell; Humanities, Powell; Mythology of the Menomoni, Hoffman; Natural Religion, Mîller; Polytheism in Ohina, Lyall; Prayer Among the Hindus, Roussel; Primitive Religion, Schurtz; Religion of the Semites, Lloyd ; Taoist Religion, Benton.

> X. -MAN AND NA'IURE.

Prof. N. S. Shaler published a series of papers on A.merica in its relation to civilization, including aboriginal life as well as that of the white race. One of the most interesting chapters in this study is that which relates to the change from agricultural to hunting life wrought, in the aborigines by the invasion of the buffalo; or, rather, it might be called the reciprocal action of buffalo and Indian. The burning of forests encouraged the growth of grass; this invited the buffalos; they onticed the farmer from his stone hoe and laborious husbandry to take u_{1}) the spear and the bow. Meat was easier to procure than corn; furthermore, the buffalo destroyed the corn and left the farmer nothing else to do but to pursue the occupation of Nimrod.
M. Marcelin Boule brought together in L'Anthropologie (1, 89-103) a series of reviews on quaternary geology in its relation to the antiquity of man. This list includes Forsyth Major, on the Mammalian fanna of the Val d'Arno (Quart. J. Geol. Soo., Lond, Xhi, 1). 1); A. J. JukesBrowne, on the Bowlder clays of Lincolnshirs (id., 114); Aubrey Strahem, on the Glaciation of Sonth Lancashire, Oheshire, and the Welsh Border (id., xLII, 369) ; R. M. Dilley, on the Pleistocene succession in the Trent, Basin (id., xin, 437) ; J. Prestwich, on the Date, duration, and conditions of the glacial period, with reference to the antiquity of man (id., xLifi, 393); T. Mellard Reade, on An estimate of post-glacial times (id., Xliv, 291) ; Rev. O. Visher, on the Oceurrence of elephas moridionalis at Dewlest, Dorset (id., XLIV, 818); J. R. Kilroe, on Direction of ice-flow in the north of Ireland (id., xliv, 827); Jsmes Oroll, on Prevailing misconceptions regarding the evidence which we ought to expect from former glacial periods (id., xLV, 220); J. Presiwich, on the Occurrence of paleolithic implements in the neighborhood of Ightham, Kent (id., XLv, 270); Henry Hicks, on the Oac Gwyue Oave, North Wales (id., xliv, 661).

BIBLIOGRAPHY OF ANTHROPOLOGY, 1890.

Aarboger for Nordisk Oldkyndighed og Historie, udgivene af det Kongelige Nordiske Oldskrift-Selskab. Kjöbenhavn, vol. v in 1890.
Abbott, C. C. Exhibition of a bone Image from Livingston County, N. Y. Am. Ass. Adv. Sc.
—— Exhibition of gold beads of Indian manufacture from Florida and New Jersey. Ain. Ass. Adv, Sc. First annual report of the curator of the Museum of American Arclıcology in connection with the University of Pennsylvania. Phila. By order of the council. Vol. 1, No. 1, 54 pp .
Abboirc, Edwin A. Illusion in religion. Contemp, Kev., Nov., 721-7ia.
Aneronomby, Joins. The first mention of gypsies in Finland. J. Gypsy Lore Soc., Edinb., II, 73-74.
—— Magic songs of the Finns. Folk-Lore, London, i, 17-46.
Achelis, A. Die Geschlechtsgenossenschaft und die Entwickelung der Ehe. Ztschr. Gesellsch. f. Erdkunde. Berlin, 302-316.
Achelis, 'l'ir. Ethnologie und Geschichte. Das Ausland, Stuttgart, ixifi, 548-552, 560-570.

- Ethnologlo und Philosophie. Das Ausland, Stuttgart, LXifi, 744-751, 811-814, 830-834, 1007-1010, 1026-1030.
——The science of ethnology: its history. development, and method. Open Court, Chicago, IV, 2312-2316.
Actes du Congris international des couvres et institations feminines. Paris. 539 pp . 8 vo .
Aowonth, H. A. On the Tulsi plant. Journ, Anthrop. Soc., Bombay, II, 109-112.
Adalet. A voice from a larem. Nineteenth Cent., Lond., xxviil, Aug.
——Life in the harem. Nineteenth Cent.' Lond., xxviri, Dec.
Adam, Luoien. Arte de la lingua de los Indios Antis o Campas. Paris: Maisonneuve. 118 pp. 8vo. (No. 13 of American Linguistic Library.)
Adams, Chables Kendald. Recent historical work in colleges and universities of Europe and America. An. Rep. Am. Hist. Assoc., Wash., 19-42.
Adamy, R. Zwei hugelgräber des vogelsberges. Ergänz. z. Ztschr. f. Ethnol., Berl., I, $55-50$.
Admen, Cyizus. Oriental customs of courtesy. Am. Anthrop., Wash., III, 387, 388.
Agassis, M. L'ile de Java. Bull. Soc. de Glog. do Lyou, IX, 120-216.
Africa. Wost African tribesat Paris Exposition, 1889. (Sec Le'Authropologie, 1, 257.) Aidé, Hambiton. Manners and customs of Sicily in 1890. Nineteonth Cent., Lond., xxviri, Oct.
——Was I hypnotized? Ibid., April.
Ablien, G. Sacrod stones. Fortnightly Rev., Lond., n. s., Xlvif, 97-116. (Sec also Androw Lang, 10 March.)
Aıix, E. L'esprit de nos bêtes. Paris. 650 pp . 8vo.
Allen, Mambison. A clinical study of the skull, delivered May 29, 1889. Smithsoniau iniscellaneous collections, 708. The Toner lecture, x, Washington. 81 pp . 8vo.
Allen, Wilhiam F. A short history of the Roman people. Boston, Ginn \& Co.
Aisherg, Monity. Das recht im völkerleben, Das Ausland, Stuttgart, Lxinf, 905967, 986-989.
in'Alviella, Count G. S. The migration of symbols. Pop. Science Month., N. Y., $\mathrm{xxxVII}, 778-787$.
Am Uk-Quein., Monatsschrift fiir Volkskunde, Wien. Vol. i, 1890. Ed. Friedrich S. Krauss.

American Anthropologist. Organ of the Anthropological Society of Washington. Vol. III, 1890. By the Society. Quarteriy.

American Antiquarian and Oriental Journal. Mendon, 1890, xir. Edited by Stephen D. Peet.

American Antiquarian Society. Worcester, Mass. (Sce Proceedings.)
American Association for the Advancement of Soience, (See Proceedingz.)
American Journal of Archeology aud History of the Fine Arts. Boston, Ginn \& Co. Vol. vi, 1890. (Organ of the Archeological ${ }^{*}$ Institute of America and of the American School of Classical Studes at A thens.) Quarterly.
American Journal of Philology. Baltimore, 1890, xi. Edited by Basil L. Gildersleeve. Quarterly.
American Journal of Psychology. Vol. III. Clark University, Worcester, Mass. Quarterly:
American Naturalist. Philadelphia, 1890, xxiv. Monthly.
American School of Classical Studies in Athens. Papers, Vols. I-Iv. Archrological Iustisnte of America.
Anales del Museo Michoacano, Editor Dr. Nicholas Leon, Morelia, Mexico, 1890, Escuela de Artes, vol. 1-3.
Anales del Museo nacional de México, Mexico: Escalante, Vol. v, 1890.
Anales de la socledar cientifica Argentina, Buenos Aires, Coui, xxix, 1890.
Andree, Riohard. Das gelöste Mound builder Prohlem. Das Ansland, Stuttgart, Lxili, 441-443.
—— Die Stelazeit Afrika's. Internat. Arch. f. Ethnog., Leiden, III, 81-84.
Andrew, C. M. The beginnings of the Connecticut towns. Ann. Amer. Acad. Pollt. \& Soc. Sc., Phila., I, 165-191.
Aunales du Musée Guimet. Paris: E. Laronx, vol, -, 1890. (Sec alsn Revue de l^{\prime} histoire des religions.)
Aunales de l'extrême orient et de l'afrique, Paris. Augustin Challamel, 2. s., xiri aud xiv.

Annenkof, Lieutenant-General. Des resources que l'Asie centrale pourrait offria la colonisation russe, avec cartes dans le texte. Bull. Soc. d' gég., Par., 7.s., XI, 237-254.
Annual Report of the American Historical Association for the year 1880. Edited by, Herbert B. Alams, secretary. Wash., 1890, Gov't Print. Office, 427 pp .
Annual Repoiz oi the Peabody Museum. Cambridge, Mass: F. W. Putuam, Director.
Annual Report of the curator of the Museum of Amerlean Archeology in connection with the University of Pennsylvanin. Presented to the president and council of the University Archeological Association, Phila. By the conncil, I, No. 1, 54 pp .
Antiqua. Zurich: Lohbauer. Vol. viif, 1890. Monthly.
Antiqua speclal Zeitschrift für prïhistorische Architologie und einschligige Gehiete. Strassburg, 1890, vili.
Anourcimine, D.-N. La répartition géographique de la taille dans la population masculine de la Russle. (O geographitegeskom rasprediólénil rosta moujskavo maselenia Rossii sravnitelno rasprediéléniem rosta drougikh stranakh.) Saint-Péterbourg, 1889. [Rev. par Léon Laloy.] Anthropologie, Par., i, 62-74.
Anthropologie, L'., judiciaire al Paris en 1889. Arch. de l'anthrop. crim., Par., 1890, v, 473-498.
Anthropologio (L^{\prime}). paraissant tous les deux mois sous la direction de MM. Cartailhac, Hamy, Topinard. (Matériaux pour l'histoire de l'homme, Revue d'antliropologie, Revue d'ethnographie, réunis.) T. i, No. 1 (Jan-fév., 1890). Paris, 1890, Chamerot, $156 \mathrm{pp} ., 6 \mathrm{pl}$. 8 vo .
Antiquary (The). A magazine devoted to the study of the past. London: EliiotStock. Vol. XXII in 1890.
Arabes et Fellahs, étude des moeurs egyptiennes. Annales L'Extr. Orient, Par., 2. s. xIII, 140-143.

ARoELIN, A. et Ducrost. Les nouvelles fouilles de Solutré (près Mácon, SaoneetLoire). Anthropologie, Par., I, 295-313.
Archeological Institute of America. Tenth annual report: 1888^{\prime} ' 89 , with appendices on the recent progress of archeology by Alfred Emerson, Henry W. Haynes, and Ad. F. Bandelier, Cambridge, 1889, Wilson. 108 pp .8 סo.
Archeological and ethnological papers of the Peabody Mnseum. Harvard University, Cambridge: By the museum.
Archives de l'anthropologie criminelle, Paris.
Archiv für Anthropologie. Organ der deutschen Gesellschaft für Anthropologie, etc. Braunschweig: Vieweg. Vol. xix, 1890. Also Correspondenz-Blatt, Xx; and Catalogue of anthropological literature.
Archivio per l'anthropologia e la etnologia organ della societì italiana di anthropologia, etnologia e priscologia comparata. Edited by Paolo Mantegazza. Firenze, 1890, $\mathbf{x X}$.
Archivio per lo studio delle tradizioni popolari, Palermo. Vol, IX, 1890.
Arno, C. Principali anomalie riscontrate su 151 minorenni detenuti alla Generala (Torino). Arch. di psichiat., etc., Torino, XI, 97.
Arnold, Sir Eifin. Japonica. I. Japan, the country. Scribner's Mag., N. Y., ViII, 663-682. 18 ills.
Annolis, H. Alamanische Griber an der obern Donau. Erglinz. z. Ztschr. f. Ethnol., Berl., I, 54, 55.
Ashwin, C, Godfrey. Modern science and nataral religion. J. of 'Ir. Victoria Inst., XXIII, 123-136.
Asiatic (The) Quarterly Review, London, 1890, Swan Sonnenschein \& Co., X.
Aspelin, J. R. Centralasiatische Inschriften. Ausland, Stuttgart, 326-329.
Assoriation Française pour l'avancement des sciences, Paris, 1890.
Aurioh, H. v., Die Lappen und ihre Sagen. Das Ausland, Stuttgart, Lxin, 508-511, 536-539, 552-554.
———thuologische Klassifikation der kaukasischen Stimme. Das Ausland, Stuttgart, "Lxili, 704-710.
Das Ausland Wochenschrift für Erd-und Völkerkunde herausgegeben vou Karl von den Steinen, Stuttgart, LXII.
A. von. Das Verschwinden der asiatischen Eskimos. Das Ausland, Stuttgart, 1890, LXIII, 519-520.
Avesta. The sacred books of the Parsis, edited by K, F. Geldner. Stuttgart, 1880, Kohllammer, pp. 161-277. 4to.
Bacohali, Bu. Gypsy acrobats in ancient Afriea. J. Gypsy Lore Soc., Edinb., II, 193-203.
Bachficio, G. Die Mongolen in Polen, Schlesien, Böhmen, und Mïhren. Innsbruck, 1889, Wagner: 89 pp. 8vo.
Barts, Organisation politique, civile et pénale de la tribu des Moussoronghes. Bull. Soc. Roy. Belge. Geog., Brux., XIV, 137-153.
Baker, Frank. The ascent of man. Am. Anthrop., Wash., III, 257-319. Also Reprint.
Baken, H. The black fellow and his boomerang. Scribner's Mag., N. York, vir, 374377.

Balidwin, J. M. Righthandedness and effort. Science, N. Y., XVi, 302.
Balfoun, H. The old British "pibcorn" or "hornpipe" and its affuities. J. Anthrop. Inst., Lond., $\mathrm{Xx}, 142-154,2 \mathrm{pl}$.
BALG, G. H. A comparative glossary of the Gothic language, with especial reference to English and German. With a preface by Prof. Francis A. March. Mayville, Wisconsin, 1887-1889. [Rev. in: Am. J. Philol., Balto., XI, 99-101, by Maurice Bloomfield.]

BALL, W. P. Are the effects of use and disuse inherited? Au examination of the view held by Spencer and Darwin. New York: Macmillan \& Co. $12+156$ pp. 12 mo .
Banoroft, Hubert H. History of Utah, 1540-1887. San Francisco, History Company. 855 pp. 8 vo.
Bang, W. Textes mandchous. Le muséon, Louvalu, ix, 475-477.
babon van Hoebeli, G. W. W. C. Bijdrage tot de ethuographie van den indischen archipel. Internat. Archlv f. lithnog., Leiden, ill, 186-188. 1 pl.
Bartels, Max. Die bildenden Kïnste bei den Dayaks auf Borneo, von Alois Rahmund Heine. Ein Beitray zur allgemeinen Kunstgeschichte. 10 Tafeln, 90 ills. 1 Karte, 228 Seiteu. qr. 8vo. Wien, Alfred Hölder. [Rcv. in: Ztschr. f. Ethnol. Berl., xxis, 168.]
——R. Cullerre. Die grenzen des Irreseins. Ins Deutsche äbertragen von Dr. Otto Dornblüth. Hamburg, 270 Seiten. [Rev. in: Ztsehr. f. Ethnol., Berl., xxir, 103.]
——Krauss, Frlederich S. Mehmed's Brautfahrt (Smailagič Melon). Ein Volksepos der südslavischen Mohammedaner. Deutschr. fon Carl Gröber-Wein, Alfred Hölder, 12. 130 Seiten. (Rev, in: Ztsolir. f. Ethnol., Berl, xxir, 103-104.)
——Krauss, Friederich S. Volksghabe und religiöser Brauch der siddslaven. Voreviegend nach eigenen Ermittelungen. xvi and 170Seiten. 8. Miinster, i, W, 1890, Aschendorffsshe Buchbandlung. [Rev. in: Ztschr. f. Ethool., Berl., xxir, 104, 105.]
Barter. Du culte eu honneur a angcor-Vat. Annales L'Extr. Orient, Par., 2. s., xIII, 193-200.

- Laugue et littérature annamite, annales l'extr. Orient, Par., xiv, 238-251.

Babthéleny, L. Cent proverbes arabes, Rev. d. Ling., Par., xxíi, 349-368.
Basset, René. Lofqmâa berhére. Avec quatre glossaires et une étudo sur la légendé de Loqman. Leroux, In-12.
Basu, Kedarnatif. Some relics of primitive fashions. Journ. Aathrop. Doc., Bombay, II, 92-95.
Bataidiard, P. Les débuts de l'immigration des Tsiganos dans l'Europe ocsidentale au quinzieme sicele; résuné suivi d'explication chronologiques. Bull. Soc. d'anthrop. de Par., 4, s., I, 290-318.
—— The immigration of the Gypsics into western Europe in the fifteenth century. J. Gypsy Lore Soc., Edinl), II, 27-53.

Bawa, Aifamadu. The marringe customs of the Moors of Ceylon. Journ, Ceylon Br. Roy. As. Soo., 1888. Colombo, x, 219-262.
Baye, J. de. L'Art des barbares ila ohute de l'empire romain. L'Anthrop, Pas., 1890, , 385-400. 8 figs.
Bagin.. Étude sur le tatonage dans In régonco de Tunis. Anthropologie, Par., i, ö66579. 16 figg.

Bearmmone, E. The natives of Mowat, Dandai, New Guinea [with notes liy A. C. Haddon]. J. Authrop. Lust., Lond., xix, 459-468.
Beauchamp, W. M. Comparison of relics in Ontarioand Now York, Amer, Antiquar, Mendon, xif, 107-173. 2 ligs.
Braunis, If. L'Evolution du systime nervenx. l'aris. 315 p p. Byo .
 holm-Christiania (rapport sommaire). Bull. Soc. d'mithrop. d. Par., XII, 3. s., 578-581.
Beativors, E. Les voyagos transathatiquea des Kono. Lene relation estelle veridiquo et leur carte anthentique? Le Muscon, Lonvain, Ix, 352-371.
Bempor, John, Ohservations on the matural colour of the skin in certain oriental races. J. Anthrop, Inst., London, xix, $257-269$.

Beitrige zur Anthropologio und Urgeschichte Bayerns. Organ der Mithehoner geselle schaft fïr authropologie, ethnologie und urgeychichte. Bdited by Johannes Rankund Nicolaus Ridinger, Müuchen, 1800, Bassermann, xix.
H. Mis. $129-36$

Beitrige zur Kunde der indogermanischen Sprachen. Edited by Adalbert Bezzenbergor. Gottlingen, $1890, \mathrm{xVI}$,
Beld, E. H. The use of the tall hat. Commopolitan, N. Y., IX, 8\%-87.
Bell, Mark S. The great ceutral Asian trade route from Peking to Kashgaria. Proc. Roy. Geog. Soc., Lond., XII, 57-93.
Bellamy, Edward. What nationalism means. Contemp. Rev, July, 1-18.
Bellay, Cf. P. Proportions du eorps humain. Paris: Belgrave, 79 pp. 8vo.
Belmar, Francisco. Cartilla del Idioma Zapo-teco Serrano. Oajaca, 1890. 30 pp . 12 mo .
Bendixen, B. E. Aus dermittelalterlichen Sammlang des Maseums in Bergen. Bergens. Museums Aarsheretning, liergen, 3-48, 3 pl. Ein Hanap, 40-51.
Benfilit, Maumice. Étude métrique du crâne de Charlotte Corday. Paris, C. Stcinbeil. 21 pp., 1 tab. 8vo. Bibliotheque d'anthropologie criminelle et des sciencepénales. From Arch. de l'Anthrop. Orlm., v, 293-313, 1 diag.
Bent, J. Theodore. The Bahroin Islands, in the Persian Gulf. Proc. Roy. Geog. Soc., Lond., XII, 1-19, 3 ills., 1 map.
——Explorations in Cilicia Tracheia. Proc. Roy. Geog. Soc., Lond., XII, 445-460, 3 ills.

Report of the committee appointed to investigate the hablts and customs and physical chayacteristics of the nomad tribes of Asia Minor and to excavate on sites of ancient occupation. Rep. Brit. Ass. Adv, Sc., 1889, Lond., LIX, 176-186.
Benton, W. G. The Taouist religion. Pop. Sc. Month., N. Y., XXXVI, 329-334.
Bérard, A. Premiers résultats de la loi du 27 mai 1885 sur la relégation des réldivistes. Arch. de l'anthrop. crim., Par., v. 35-50.
Berins, E. M. The myths and legends of Ancient Greece and Rome. London: Blackie. 342 pp .12 mo.
Bergen, Mrs. Fanniy D. Animal and plant lore. Pop. Sc. M., N. Y., XXXVII, 240252.

- Some saliva charms. J. Am. Folk-Lore, Boston and N. Y., III, 51-50.

Bhegen, J. Y.ajr, and Fanny D. Bergen. A primer of Darwinism and organic evolution. Boston, Lee \& Shepard, 6-261 pp.
Beri, Caterina Pigorini. Le superstizloni e i pregiudizii delle marche appennine. Archivio per l'anthrop. e la ethnol., Firenze, xx, 17-50.
Berky, J. J. Chest development in young persons. N. Eng. M. Month., Danbury, Conn., IX, 451-459.
Beminolon. Note sur delix cranes phéniciens trouvés en Tunisie. Anthropology, Par., I, 314-319.
Bertilion, J. Anthropometric identification of criminals. [From 'The 'Times, Apr. 23, 1890.] J. Koy. Statist. Soc., Lond,, LIII, 323-326.
——La lol dite "des sept enfants." Rev. scient., Par., 1890, Xlvi, 77-82.
Berwer'm, F. Die Nephrlt Jadeit-Frage: Mitth, d. anthrop. Gesellsch. In Wien, n. F., X. [Sitzuagsl)., 51-58.]

Bettany, G. I. 'The red, brown, and black men of America and Australia, and their white supplanters. New York: Ward, Locke \& Co. 289 pp. 12 mo.
Betry, E. G. A critical examination of the teeth of several races, including one hundred and filty mound builders, selected from the collection of the Army Medical Museum at Washington, D. O. Dental Rev., Chicago, IV, 225-283. Al80: Reprint.
Bickford, F. T. Prehistoric caverlwollings. Century Mag., N. Y., XL, 896-911, 13 ills.
Blbliothèque d'Anthropologic oriminelle et des Sciences pénales. Paris: Steinhil.
Bijdragen tot de Taal-land-en Volkenkunde. Hague, 1890 , Nijhoft, 5. s., V.
Binet, A. L'inhibition dans les phénomenes de conscience. Rev. philosoph., Aug.
——On double consciousness; experimental peychological studies, with an introductory essay on experimental psychology in France. Chicago, Open Court, 2-93.

Binet, A. Perception des longnears et des nombres chez quelques petits enfants. Rev. Philos. Paris, July.
—— The psychic life of micro-organisms. A study of experimental psyehology. Longmans, Green \& Co.
Birdwood, George. The industrial arts of India. J. Soc. Arts, Lond., xxxviiI, 790-792; 802-803. [See Journal, XxxviII, p. 511, April, 18.]
Blade, Clementina On marriage. Fortnightly Rev., April.
Black, G. F. Notice of a collection of arrows and spear heads, etc., from Alabama, United States, recently presented to the Museum. Proc. Soc. Antiquar, Scotland, 396-410.
Blano, Edouard. Les roates de l'Afrique septentrionale au Soudau. Bull. Soc. d'géog., Par., xi, 7. 8., 169-216.
Bleioher, G. Les vosges. Le sol et les habitants. Paris, Bibl: soient. contemp., J. B. Bailliere. [Rev. in: Antbropologie, Par., 1, 720-721, by R. Collignon.]

Bloxam, G. W. Fifth report of the committee appointed for the purpose of investigating and publishing reports on the physical character, languages, and industrial and social condition of the northwestern tribes of the Dominion of Canada. RepBrit. Ass. Adv. Sc., 1889, Lond., Lix, 797-893, 6 pl.
Blumentritt, F. Die Seelenzahl der einzelnen elngebornen Stiamme der Phillppinen. Bijdr. Taal-land-en Volkenk. Hague, 5. s., v, 121-123.
Boas, Franz. Cranium from Progreso, Yucatan. Proc. Am. Antiquar. Soc., Worcester, vi, $350-357,2 \mathrm{pl}$.
——The first general report on the Indians of British Columbia. Brit. Ass. Adv. Sc., Lond., 1890, 5-97, 6 pl .
_- Schädelformen von Vancouver Island. Verhandl. d. Berl. Gesellsch. f. Anthrop., Berl., 29-31.
——The ase of masks and head-ornaments on the northwest coast of America. In. ternat. Arch. f. ethnog., Leiden, III, $i-15,2 \mathrm{pl}$.
Bodingron, Alioe. The importance of race and its bearing on the "negro question." Westminster Rev., Lond., exxxiv, 415-427.
-. Mind in man and animals. Ilvid., Sept.
Bollettino di paletuologia italiana.
Bolfon, H. Carrinaton. Four weeks in the wilderness of Sinai and notes on Egypt. Bull, Am. Geog. Soc., N. Y., XxiII, 575-598.
——Gombay, a festal rite of Bermudian negroes. J. Amer. Folk-Loro, Bost. and N. Y., III, 222-226.
——Seega; an Eggptian game. J. Am. Folk-Lore, Boston, III, 132-134. (Details of a game played with 24 men of two colors on a board of 25 squares.)
——Some Hawailan pastimes, read at New York neeting of Am, Folk-Lore Society, Nov. 28.
Bonjean, A. L'hypnotisme et la saggestion mentale. Paris. 316 pp .8 vo .
Bonnafoux, J. F. Légendes et croyances superstitieuses conservees dans lo départmeut de la Creuse. Guéret: Ve letoulle, 40 pp .8 vo.
Bonnemèe, Lionel. Un chamy de bataille a Louerre (Maine-et-Loire). Bull, Soc. d'anthrop., d. Par., XII, 3. s., 623-624.

- Les sépultures sous-ardoises. Bull. Soc. d'anthrop. de Par., 4. s., 1, 71-76.

Bootin, General. In darkest England and the way out. International headquarters of the Salvation Army. [Rev, in: The Athenæum, Lond, 3288, Nov. 1, 578, 579.]
Bosohetti, Federico. Darwin-Settegast (trasformisti). Linneo-Sanson (uon trasformisti) e. le leggi dell'ereditarietia (studiate nelle lors fonti teorico-pratiche) con nuove ipotesi fisio-embriologiche (localizzazione cerebrale ed ovalo spermatica) sulla determinazione paterna e materna del sesso, temperanente e costituzione individuali nell'uomo e negli animali. Torino: Festa e Tarizzo. 179 pp . 8 vo.

Bosshard, G. Dle prähistorische station von Eucutenl. Antiqua, Strassburg, vif, 25-27.
Bouohrbeau, A. Modifications survenues pendant la premidre annce de service dans la tallle, le polds, le périmétre thoracique des jeunes soldats incorporés au 3° réglment de hussards. Aroh. de méd. et pharm. mil., Par., xv, 16-21.
Boute, M. Bleioher et Filiche. Recherches relatives í quelques tufs quaternaires du Nord-Est de la France. Bull. Soc. géol, xyir, 506. [Rev. in: L'Anthrop., Par, 1, 426, 427.]
———Constitution géologique des environs du Puy (Haute-Loire). Bull. Soc. geol., xvi1, 270. [Rev. in: L'Anthrod., Par., I, 425.]
———Frederic Sacco. L'orlyine du loess en Piémont. Bull. Soc. géolog. de France, 3. s., xVI, 229. [Rev. in: L'Anthrop., Par, , 1, 423, 424.]
-L_Landesque. Recherches sur le Quaternaire ancien des bassins de la Dordogne et de la Garonne. Bull. Soc. géol. de France, xvir, 301. [Rev. in: C'Anthrop., Par., 1, 425, 426.]
Miohel-Lévy et Munier-Chalmas. Étude sur les environs d'Issoire Bul. Soc. geolog. de France, xvir, p. $267 . \quad$ [Rev. in: L'Anthrop., Par., I, 424, 495.]
Boulland. Des plis pavillou de l'oreille au point de vue de l'identité. Gaz méd. de Par., 7. 8., vii, 436.
Bourke, John G. Notes on Apache mythology. J. Amer. Folk-L., Rost. and N. Y. 1II, 209-212.
—— Notes upon the Gentile organizations of the Apaches of Arizoua. J. Am. FolkLore, Boston, III, 111-126.
——— Vesper hours of the stone age. Am. Anthrop., Wash., Hit, 55--63.
Bourazan, F., A sacred dietiouary: An explanation of Seripture names and terms Iondon. 462 pp .8 vo .
Bowdrci, H. P. The physigue of women in Massachusetts. Rep. Bd. Health, Mass., 1889, Bost., xxi, 287-304.
Bowes, James L. Japanese pottery. Edward Howell: Liverpool. 600 pp .8 ko .
brace, C. I. The unknown god; or inspiration umong pre-christian races. Hodder. 340 pp . 8vo.
Brahmin official, A. Child marringe and enforced widowhood in India. Asiat, Quart. Rev., Lond., x, 421-433.
Bramweld, Lord. Property. Nineteenth Cont., Lond, Xxviif, March and April, Brinton, Danima, G. The African race in America. Edinburgh edition. Chambers' Cyclopedia.

- The cradle of the Semites. Read before the Oriental Club of Pbiladelphia. pp. 26.
- On Etruscan and Libyan mames. A comparative study. Proc. Am. Philos, Soc., Phila., xxvits, 39-52.
——Essays of an Americanist. I. Ethnologic and Archeologic. II. Mythology and Folk-Lore, III. (iraphle Systoms and Literature. IV. Linguistic. Phila.: Porter \& Co. XII, $489 \mathrm{pp}, 8 \mathrm{vo}$.
- Folk-Lore of the hones. J. Am. Folk-Lore, Bost, and N. Y., iif, 17-22.
- Racesand Peoples: Lectures on the science of ethnography. New York: N. D. C. Hodges. $313 \mathrm{pp}, 8$ figs., 9 schemes, 6 charts. 12mo. [Rev. in: Amer. Anthrop;, Wash., 1891, iv, 86-88, by Otis T. Mason.]
- Note on the Puquina language of Peru. Proc. Amer. Philos. Soc., xxviri. Also Reprint.
- On the Chontallis sud Popolucas. Read before the Congres internat. des Americanistes, Oct. 1890, and published in its Compte-rendu.
- On a petroclyph from the island of St, Vincent. Proc, Acal. Nat. Sciences. Phila,

Brisefo, R. Repertorio de antiquedades ohilenas, o sea los primeros pasos por Chile. Santiago de Chile. 580 pp . fol.
British Association for the Advancement of Science. (See Report.)
Bhouardel. Le criminel. Gaz. d. hôp., Par., lixiti, 313, 341, 338, 469, 493, 629 , 577, 669, 698.
Brown, Mabie A. The Icelandic discoverers of America. New York, J, B. Alden,
Brown, Mrs. W. Wallace. Wa-ba-ba-nal, or Northern lights. J. Amer. Folk-L., Bost. and N. Y., IiI, 213-214.
Bruoe, G. W. I. K. Notes on a journey through Mashonaland in 1889. Proc. Roy. Geog. Soc., Lond., XII, 346-352.
Brugere, F. Fouille de tumulus dans la commune de Saint-Ybard. 5 pp. 8po. Ball. Soc. se. hist. et arch. de la Correze. [.Rev. in: Anthropologie. Par, i, 753, by E. Cartailhac.]
Brugsoh, H. Die Aggyptologie, Abriss der Entaifterungen und Forschungen auf dem, Gebiete der Hggyptischen Sehrift, Sprache und Alterthumskuude. II, Leipzig: Friedrich. pp. 241-535, 8°.
——_Religion u, Mythologie dēr alten Wgypter, Namen-Register. Leípzig, Heinrichs' Verl. 759-772. qr. 8vo.
Brühi, G. Fin Ausflug nach Pacharamac. Illist. /tschr, i. Land.-u. Väkerk, Brnschwg., LVII, 289-294. Map.
-- Precolumbian syphilis in the western hemisphere. Article 2. Ciucin, JancetClinie, n. s., Xxiv, 275-280.

- The ruins of Iximehe. Amer, Antic̣uar., Mendon, xit, 345-348.

Bryan, John O. Lookouts among the effigy mounds. Amer. Antiquar., Mendon XII, 288, 289.
Bryoe, G. The Winnipeg mound region; being the most northerly district where mounds have been examined on the American continent. [Abstr.] Proc. Ain. Ass. Adv. Sc., 1889, Salem, Xxxviri, ,344.
Buomionz, Vorgeschichtliche Begribonisse und Wohnstiaten, Verhandl. d, l3erl. Anthrop. Gesellsch., Berl., 367-377.
Buchneri, O. Alte Gribber bei Giessen. Erginz, \%, Zischr. f. Ethnol., Berl., I.
Buck, Canl D. The accusative plural of I-, U•, and R-stems in Sanskrit andAvestan, Am. Philol, Balto., Xi, 291-301.
Bugae, S. Etruskisch und Armenisch. Sprachveregleichende forschungen, I. Christianla. 171 pp . 8vo.
Bulland, F. D. Paternal impressions. Sonth, Callf, Praet., Los Angeles, v, 324-327.
Bulletin de la Soolété arohéologique de Toumaine. Tours: Deslis frores. 8vo.
Bulletin de la Société archéologique, solentilijue et littéraire du Vendômois Vendome; Lemercier. 8vo.
Bulletín de la Sooićté d'anthropologie de Bruxelles, Bruxelles (1890), Tome v. Bvo.
Bulletin de la Société d'anthropologie de Lyon (1800), Tome vir.
Balletin de la Societe do geographie. Parıs: Soe. de géog., 7. a., Vol. Xi in 1890. Quarterly.
Bulletin de la Société d'othnographie. 1890. Alliance sciontillque universelle, Institution ethnographique, Socicte d'ethnographique, Socióté d'ethnographie, Société orientale, Societ́́ sinico-japonaise, Société africaine, Socićt́́ americaine de France, Sociéto oceanienne. Paris: Soc. d'ethnographie, 2. s., in 1890.
Bulletin des Musces. Edited by Ǵlouard Carnier and Léonce Benedite. First number appeared Fobruary, 1890.
Bulletin et mémoires do la Société archéologifue du département d'lle-et-Vilaine. Paris, 1890. 8vo.

Bulletin et mémoires de la Société uationale des antiquaires de France. T. 49. Paris: Nogent-le Rotrou. 8vo.

Bulletin of the American Geographical Society. Published quarterly. New York, XXII, 1890.

Bulletin of the California Academy of Sclences, San Francisco, 1890.
Balletin of the Essex Institute, Salem, Mass., Vol. II.
Bulletins de la Société d'anthropologie de Paris. Paris. [Organ of Paris Authropological Society.] Vol. 3. s., XII in 1890.
Bulletin société royale belge de geographie. Bruxelles, 1890, xiv.
Ballettino della Commissione aroheologica Comunale di Roma. Roma, 1890, Aead. dei Lincei. Anno XVII.
Bulletino di Paletnologia Itallana.
Burck, W. Einige Bedenkingen tegen de Theorie van Weismann aangaande de Beteekenis der sexueele Voortplanting in Verband met de wet van Knight-Darwin. Natuurk. Tljdschr. v. Nederl. Indië, Batav., 8. s., x, 501-544, 1 pl.
Burmeister, H. Annales del Museo Nacional de Buenos Aires para dar a conocer los objectos de historia natural nuevos 6 poco conocidos conservados en este establecimiento. Buenos Aires. [Rev.] Natare, vol. 42, 293, 294.
Burnett, S. M. Racial influeuce in the etiology of trachoma. Med. News, Phila., IVII, 542.

- Reciprocal Responsibilities. Wash., 15 pp .

Buscuan, G. Germanen und Slaven, eine archäologisch-anthropologische Studie. Münster, Aschendorff. 49 pp .8 vo.
Campbelf,.J. A. A battle described from the ranks. Nineteenth Cent., Lond., xxviry, June.
Canfield, Wilifam H. Garden-beds and stone idols. Amer. Antiquar., Mendon, XII, 287, 288.
Capitau. Annes de jet in tranchant transversal, concave ou convexe. Bull. Soc. d'anthrop. de I'ar., XIf, 3. s., 609-614, 14 figs.
Capus, G. Kafirs siahponches. Réponses an questionnaire de sociologie et d'ethnographie de la sociéte. Bull. Soc. d'anthrop. de Par., 4. s., i, 250-273.
——Le toit du monde. Paris. 289 pp .16 mo .
Carlisle, Bishop of. Wallace on Darwinism. Pop. Sc. Month., N. Y., xxxvir, 75-90. [Rev.in: Nineteenth Cent., Lond., xxvir, 408-423.]
Cartailifac, Émilic. La question des dolmens et des coffres de pierre devant la So. ciété polymathique, 44 pp., in 8vo. Vannes (Ext. du Bull. Soc. Polymat. du Morbihan). Par,: G. deClosmadeuc. [Rev, in: Anthropologie, Par., I, 606, 60\%]
——Les bronzes prchistorigues da Cambodge et les recherches de M. Ludovic Jammes. Anthropologie, Par., I, 641-650, 15 figs.
—— Maxime Hédene. Le Brouze. Paris: Hachette, 1890. 288 pp. 8vo. 80 figs. [Rev.in: L'Anthrop, Par., 1, 434.]
—— Roche-de-Vic et antres enceintes prohisioriques de la Corroze Brive, 51 pp. in 8qo. (Bull. Soc. se. hist. et arch. de la Correze), par Ph. Lalande. [Rev, in: Anthropologie, Par., I, 608, 609.]
Carton. Note sur la disposition du bitcher funéraire employe par les habitants employe par les habitants de Bulla Regia. Paris. 4 pp. 8 vo.
Carus, Paul. Fundamental problems. The methorl of philosophy as a systematic arrangement of knowledge, Chicago, 1889, Open Court Pub. Co.
——— The ethical problem. Chicago, Open Court Pub. Co. 00 pp .

- The origin of the mind. The Monist, Chicago, I, 69-86.

Casartelef, Ia. Sântar: La Pierrede-touche du cheval. Le Muston, Louvain, ix, 96-104, 185-191.
de Casthilo, R. Gran diccionario geográlico, estadistleo o hiatorico de España y gus provincias de Cuba, Puerto-Iico, Filipinas y posesiones de Africa. I. Barcelona. 720 pp . fol.
Catalogue of medixval literature. Pt. III. London, 1890. 8vo.

Catalogue of the Persian, Turkish, Hindustani, and Pushtu manuscripts in the Bodleian library. Begun by Ed. Sachau. Continued, completed, and edited by Hermann Ethe. Part i. The Persian manuseripts. Oxford, Clarenden, Press. [Rev. in: The Athenaum, Lond., 1890, Oct. $18,508,509$.
Catalogue of zoological and palæontological works offered for sale by Dulau \& Oo. Part XI, Mammalia. Part XII, Homo (anthropology and éthnography). London, 1890. 107 pp .16 mo .
Cattell, J. McK. Mental teots and measurements. Mind, Lond. \& Edinb., rv, 373380.

Chadwick, J. W. Evolution and social reform. 1. The theological method, Boston, J. H. West, pp. 255-274. (Modern science essayist, sociological ser, No. 12.)

Chaillé-Long., C. From Corea to Quelpuert: In the footprints of Kublai Khan. Bull. Am. Geog. Soc., N. Y., XXII, 219-266.
Chamberlain, A. F. Language of the Mississaguas of Scugog. Proc. Canad. Inst., Toronto, vil, 3. s., 213-215. (Abstract.)

- Negro creation legend. J. Amer. Folk-I., Bost. and N. Y., III, 302.
- Origin and development of grammatical gender. Proc. Canad. Inst., Toronto, 3. 8., VII, 216, 217.
—— Tales of the Mississagnas. II. J. Amer. Folk-L., Bost. and N. Y., III, 149-154.
—— Notes on Indian child-language. Am. Anthrop., Wash., III, 237-241.
——The thunderbird amongst the Algonkins. Am. Anthrop., Wash., III, 51-54.
—— The two brothers; a Mississagua legend. [Abstr.] Proc.Am. Ass. Adv. Sc., 1889, Salem, XXXVIII. 353.
Channing, Edward. The navigation laws. Proc. Am. Autiguar. Soc., Worcester, VI, 1. S., 160-179.
Chapin, F. H. Cliff-dwellings of the Mancos Cañons. Am. Antiquarian, Mendon, XIII, 193-210, 3 pl .
de Chamenoey, Compe H. Analyse et synthese, par Barbied du Bocage. Rev. d. Iing., Par. XXIII, 369-376.
-- Phonétique souletine. Rev. d. Ling., Par., xxiri, 293-311.
-- Prières en langue Mam. Le Muséon, Louvain, ix, 297-300̃.
Cifatelain, Heli. Dle Grundziige des Kimbundu oder der Angola-sprache, (Reprint from Zeitschr, für African, Sprachen v. Büttner, vols. 2 and 3 . Ber!in, 1890. 100 pp . 8 vo.
Chatelhier, Payl du. Oppidinn de castel-meur en cleden. L'Anthrop., Par., I, 401-412, 20 fgs
Chaumat, H. Conférence sur le darwinisme, faite le 15 mars 1890, al'Association génÉale des étudlants de Grenoble. Grenoble: Breynat et Cid. $43 \mathrm{pp}$. 8vo.
Cherry, R. R. Lectures on the growth of criminal law In ancient communities. London: Maemillan \& Co. "8vo.
Chervin, A. Kapport sur le prix Bertillon. Bull. Soc. d'unthrop. d. Par., xif, 3. as, 672-679.
Chervin, M. Un lapin a une seule oreille. Bull. Soc., d'anthrop. d. Par., XII 3. s., 528-530, 1 ill.
Chevalifr, J. De l'inversion sexuelle aux points de vue clinique, anthropologique et medico-légal. Arch. de l'anthrop. crim. Par., v, 314-336.
Cimair, H. Ueber Hypertrichosis de Menschen. Preg. med. Wehnsehr., xy, $495,512$. von Chbingenspeig-Bieng, Max. Das-Gräberfeld von Reichenhall in Oberbayern. Reichenhall, H. Bïhler'sche Buchhandlung, 1890. 4.164s. mit 1 Kart und 40 Fundtafeln in Lehtkupferdruck. [Rev.] /eltachr. f. Ethnol., Berl., XXiI, 105, 106.
Chbistalier, J. G., und H. Bouner. Übungen in der Akra-oder Ga-Sprache. Basel. 103 pp . Missions-Buchhandlg. 8vo.
Cinudinski, Th. Sur un cerveau momifie extrait d'un crâne ancien du Venezuela. Bull. Soc. d'anthrop. d. Par., XII, 3. s., 520, 521.

Chunzinski, Th. Sur un crâne de France trolivé a Eu. Bull. Soc. d'anthrop. de Par., 4. s., 1, 289.

Chunomidi, W. 'Ihe Duk-duk ceremonies. Pop. Sc., Month., N. Y., XxxviIf, 230243.

OiAmpon, I. Letterature slave in. Milano, 141 pp .16 mo .
Clank, L. J. City sanitation and sewage disposal. Proc. Canad. Inst., YiI, 3. s., $232-244,2 \mathrm{pl}$.
Clarke, C. Pundon. Applied art section: Modern Indian Art. J. Soc. Arts, Lond., xxxVIII, 511-527.
Clarke, G. S. Fortification: its past achievements, recent development, and fature progress. Tond. 306 pp . 8 vo .
Clarke, Hyde. Asin on the Pacific and Behring Sea. Asiat. Quart. Rev., Lond., x, ?73-? 99.
Clarke, H.J. The meaning and history of the logos of philosophy. J. 'Trans. Victoria Inst., x xifi, $940-276$.
Clakke, Mary Olmsten, Song.games ol negro children in Virginia. J. Amer. Folk-L., Bost. and N. Y., H11, 288-290.
Clevenger, S. Y. An infant prodigy. Alienist and Neurol., St. Louis, Xi, 359-365.
ne Closmaneuc. Une tentative avortée d'explication da monument de Carnac. Bull. Soc. d'anthrop., Par., I, s., 4, 339-346.
Clouston, W. A. Some Asiatic jests domiciled in Europe. Asiat. Quart. Rev., Lond., x, 372-387.
Cobr, N. A. On two new instruments for biologists. Abst. Proc. Linnean Soc., N. South Wales, Mareh 20.
Colección de documentos inéditos para la Historia de España por Fuensanta del Valle José Sancho Rayón y M. de Zabalburu, xcvi, Madrid. 521 pp. 4to.
Colección de documentos inéditos relativos al descubrimiento, conquisto y organizacion de las antiquas posesiones españoles de Ultramar. V. Mairid. 359 pp .4 to.
Colaitanni, Napolene. Ire e spropositi di Cesare Lombroso. Catamia: F. Tropea. 117 pp .12 mo .
Colbunn, R. T. Suggestion for a Pau-American as Precursor to an Universal Language. Am. Ass. Adv. Sc.; 1890.
Colinet, Ph. La nature du monde supéreur dans le Rig-Veda, Le Muséon, Louvain, IX, 71-86.
——Les principes do l'exégèse védique d'apres MM. R. Pischel ot K. Geldner. Le Museon, Ix, 250-267, 372-387.
Cohliqnon, R. L'indice céphalique des populations françaiges. Anthropologie, Par., 1, 201-924.
Colifn, E. Momies boliviennes. Bull. Soc. d'anthrop de I'ar., 4. s. I, 62-58, 153-130.
Comberte, CH, Cambodge. Annal L'Extr. Orient, Par., 2. s., Xifi, 36-43.

- La cochinchine. Anmal. L'Extr, Orient, Paris, XiIf, 2. s., 6-20.
—_ Nonvelle-Caledonie et dependances. Annal. W'Extr. Orient, Par., 2. s., Xin, 44-50, 73-80.
Congris International d'anthropologie et d'archéologie próhistoriques 10th session tenue A Parisdu19au 27 Aont1889. Compte Rendupar E.-T. Harny. Paris, 1890. 48pp.
Congres international d'anthropologie et d'archéologie próhistoriques. Session de Paris, 1889. L'anthropologie i_{1} 133-144, 248-254.

Congres International des Américanistes. Compterendu do la septidme session, Berlin, 1888. Berlin, 1800 , Kuhl. 808 pp. $8 v o$.
Bulletins de la Société d'anthropologlo de Paris, Parls, 1800, 3. s., XiI.
Congress of Russian naturalists and pliysicians, session vin, 8-10 Jannary, 1890, St. Petersburg.
Cope, E. D. On the material relatioun of sex in human society. 'The Monist, Chicago, 1, 38-47.
——. The evolution of man. Am. Naturalist, Phila., XXIV, 899-913, 1000-1015.

COPE, E. D. The evolution of mind. Am. Naturalist, Phila., Xxyv, 899-913.

- The relation of mind to its physical basis. Am. Ass. Adv. Sc.

Copper objects from Amerlca before Columbus. Señor V. Marcano. T. Authrop. Inst., $\mathrm{x} \times 220,=221$.
Cora, Guido. Die zigeuner. Das Ausland, Stuttgart, Lximi, 621-625. 652-657, 710714.

Compier H. Les juifs en Chine. L'Anthropologie, Par., 1, 547-551.
(IIrnili, O. H. Old testament history; or the rise of the people of Israel. Open Court Pub. Co., Chicago.
Conke A. Crime et saicide. Parls. 654 pp. 8vo.
Correspondenzblatt der deutschen Gesellschalt fïr Anthropologie, Ethnologie und Urgeschichte. München: Johannes Ranke. Vol, xx in 1890, Monthly. 4to.
Conseiti, A. La intelligenza degli animall bruti. Roma. 598 pp .16 mo .
Cosmos, Guido Cora's. Torino: Guido Cora. Vol. xI.
Cosmos. Revue dessciences et de leursapplications. Paris: By the journal. Founded in 1850. Weekly. 8 yo.
Cox, J. Chas. On early licensing laws and customs. Fortnightly Rev., June, 835840.

Crane, Thomas F. The Exempla or Illustrata. Stories from the Sermones Vulgares of Jacques de Vitry. London, Folk-Lore Society. 304 pp . 8vo.
Crawforn, J, Finds in Nicaragua. Amer. Antiquar.: Mendon, xil, 108-112.
Crofron, H. T. Crimean gypsies. Translated from W. Köppen's Excursions in the Crimea. J. Gypsy Lore Soc., Edinb., II, 74-79.
Cumin, S. Chinese secret societies in the United States. J. Am. Folk-Lore, Bost. and N. Y., III, 30-43.

Customs of the Chinese in America. J. Amer. Folk-I., Bost. and N. Y., III, 191-200.
The I Hing or "Patriotic Rising." - A secret society among the Chinese in America. Rep. Proc. Namismat, and Antic. Soe., Phila., 1887-'89, and separate.
Culderine, R. Die Greñen des Irreseins. Ins Deutsche iibertragen von Dr. Otto Dornblüth. Hamburg, 1890. 270Seiten. [Rev.] /eitsch. f. Ethnol., Berl., XXII, 103.

Cultis Arborim: A descriptive account of phallic tree-worship, with illustrative legends, superstitions, usages, etc., exhibiting its origin and development amongst the Eastern and Western nations of the world, from tho earliest to modern times, with a bibliography of works upon and refering to the phallic caltus. London, Reader. 8vo.
Cunila, J. Gerson da. Notes on the Fanam of Southern India. Journ. Anthrop. Soc., Bombay, II, 155-160.
Cunow, Heinhioh, Die altperuanischen Dorfund Markgenassenschaften, Das AusLand, Stuttgart, IxMI, 853-8ī6, 8\%2-878.
Cummer, J. MoN. Contributions to the folk-lore of New England, J. Ain. Folk-Lore; Bost. \& N. Y., II, 291-294.
Curtin, Jeremiah. Myths and Folk-tales of the Russians, Western Slavs, and Magyars. Boston: Little, Brown \& Co., 1890, vi-555) pp. 8vo. [Kcu. in: Amer. Anthrop., Wash., 1801, [$1,88-90$, by W. W. Newell.]
Oxpnos, J, M. De l'extinction de la race latine. J. d'hyg., Par., xy, 280-203.
Dahomey, Le. Anmales l'extr. Orient, P'ar, XIV, 251-254.
Danmesteticr, James, Chants popu'aires des Afghans, recueillis, publies et traduita. Leronx. Impr, nationale. Gri in. - 8 .
Darwin, C. 'I'he expression of the emotions in men and animals. London. 396 pp . 8vo.
Darwin on the Fuegiaus and Patagonians. Pop. Sc. Month., N. Y., xxxvi, 744-750.

Davainis-Silvestratis, Mecius. The Lithuanian gypsies. J. (iypsy Lore Soc., Edinh., If, 107-109.
Dayies, T. Wyrton. Bible leprosy: (). and N. Test. Stud., Hartford, Xr, 142-152.
Davies, WW. W. The mythological element in Joh. (). and N. Test. Stud., Hartford, XI, 207-212.
Davis, J. W. Report of the committeo * * * appointed for the purpose of ascertaining and recording the localities in the British Island in which evidences exist of the existence of prehistoric inhabitants of the conntry are found. Rep. Brit. Ass. Adv. Sc., 1889, Lond., 1, IX, 318-322.
De Ambertis, 0 . Cervelli di suicidle ditatuati. Arch. di psichiat., ete.,Torino, xi, 205-207.
Dedns, J. The story of the bear and his Indian wife. A legend of the Haidas of Queen Cbarlotte's Island, B. C. J. Amer. Folk-Lore, Bost. and N. Y., II, 255-260.
De Belfa, A. Maschi e femine. Anomalo, Napoli, it, 100-108.
Debersaques, C. Note sur l'anthropométrie criminelle. Ann. Soc. de méd Gand, LXIX, 64-72.
Debieries, C. La fecondation et l'hérédité, telles qu'on doit les comprendre d'après les derniers travaux. Caz. hebd. de méd., Par., 2. s., xxvir, 632-535.
De Clerce, F. S. A. Aanteekeningen naar Aanleiding van Dr. Finsch's Onderzolkingen in Nieuw Guinea. Internat. Arch. Ethnog., Leiden, III, 66-69.
Decline (The) and fall of the little toe. Boston M. and S. J., oxxir, 356.
Delibard E. Au Dahomey. Annales l'extr. Orient, Par., Xiv, 281-283.
———Gabon et Congo frangais. Annules l'extr. Orient, Par, , xrv, 317-318. .
——Au'Phibet. Annales l'extr. Orient Par., 2. s., XIII, 289-292.
Delgado, Joaquim Fiifpe Nery. Relatorio acerca da decinia Sessĩo do Congresso internncional da anthropologia e archeologia prehistoricas. Lisboa, impr. nacional. $48 \mathrm{pp} . \quad \&$ vo.
Delishe, Fernand. Sur les deformations artificielles du crane dens les Denx-Sèvres et la Hante-Garonne. Bull Soc. L'anthrop. d. Par., Xif, 3. s., 649-659, 6 figs.
De Moore, Fi. Le temple reconstruit par Zorobabel-Le Muston Rev. Internat., Lonvain, $1 \mathrm{x}, 5-15$.
De Morgan, J. Mission scientifie all Cancase. études archéologiques et historiques. I. Les Premiers ages des métaux dans. l'Arménie Russe. $231 \mathrm{pp} .$, vii pl., 215 figs. II. Recherches sur les origines des peoples du cancuse, 305 pp., xvi pl., 46 figs. Paris, 1889, Leronx. 8vo.
Deniker, J. E. Veniaminova: Rapport sur un voyage dans la province de Terek et dans la 'Transcaneasie. [Ren. in: L'Antrop., l'ar., I, 437.]

- Journal du vin congris des naturalistes et des médicins russes. Saint Pétersbonrg, 1890, in-4to. [Rci, in: L'Anthrop., Par., I, 494-409.]
—— Journal du Lxir congris des naturalistes et des mélicins allemands a Heidelberg. Tageblatt der ixil versammling dentscher Naturforscherund Aerzte, ete. Heidelberg in-4 to. [Rev. in: I'Anthrop., Par. s I, 491-494.]
- Kavraïski. Notes sur les crânes des sépultures de l'époque seytho-sarmate. Journal de la section anthropol. de la Soc. des amis des sc. nat. de Moscou. [Rev. in: L'Anthrop., l'ar., 1, 467-468.]

Les Lapons russes (Rousskid Lopari), par Kharonaine. [Rev, in: L'Anthropologie, Par., I, 615-619.]
\rightarrow Notes on Siberia, L'anthropologic, 1. 124-131.
Note sur les Tatars do la coto de la Crimé ('amiotka o'Tatarakh ioujnago berega Kryma) par Kharotime. [Rcu. in: I'Anthropologie, Par., i, (19.]

- Zagraf. Distribution des grandes tailles en rapport avec d'autres caracteres anthropologiques dans la population des provinces de Vladimir, de Kostroma et de Yaroslavl. Journal de la sect. anthropol. de la Societo des amis sc. nat., Moscou; 1890. [Rev in: L'Anthrop., Par., I, 468, 469.]

Deniker, J. E., et J. Laloy. Les Annamites. L'Anthropologie, Par., I_{2} 513-524.
-L Les races exotiques a l' Exposition universelle de 1839. L'Anthropologie, Par., I, 257-294, 513-546, 8 figs.
Descomins, L^{\prime} Abbe. Notes sur le Thibet. Bull, Soc. d. géog., Par., 7. s., Xi, 259-279.
Desgrand, Louis. Deux mois en Egypte. Bull. Soc. d, Geog. d. Lyon, ix, 259-284.
—— Progrès de la civilization en Afrique. Bull. Soc. d. geog. d. Lyon, vili, 609652.

Devèze, G. Les aventures du Gouru Paramartta. Contes tamouls. Le Musćon, Louvaín, IX, 16-36.
Deville, Gabbiel. Notes sur le développement du langage. Rev. d. Ling., Par., x xIII, 330-343.
Damandi, M. Station préhistorique de Coucouteni (Romnanie), Bull. Soc. d'anthrop. d. Par., XII, 3. s., 582-699.
Diehl, C. Excursions archeologiques en Grèce, Mycènes, Dolos, Athènes, Olympie, Eleusis, Epliaure, Dodone, Tyrinthe, Tanagra. Paris: Colin et Cie. x-388pp., 8 plans. 18 vo .
Yan Dissela, Johan S. A. Opornerkingen naar aanleiding van de "Atjineesche spraakkunst" van K, F. H. van Langen. Bijdr. Taal-Land-eu Volkenk., Hague, 5б., V, 504-516.
Dittmar, G. Geschichte des deutschen Volkes. Heidelberg, 1891. C. Winter. 240 pp . 8 vo.
Dom Pedro, Kaiser. Die Tupi-Sprache. (Uebersetzt von Hugo Jlind.) Cor.-Bl.d. deutsch. Gesellsch. f. Anthrop., München, XXI, 1-5.
Doring, A. Die ïsthetischen Gefühle. Ztachr. f. Psychol. u. Physiol. d. Sinnesorg., Hamb, u Lelpz., i. 161-186.
Dorlhac de Borue. Quelques notes sur le Gabon. Bull. Soc. d'anthrop. de Par., 4. s., I, 58-70.
DonpfeLid, Witheim. Ueber die Ableitung der griechischrömischen Maasse vonder babylonischen Elle. Zeitsch. f. Ethnol., Berl., XXII, 99-102.
Dorsey, J. O. Indian personal names. Am. Anthrop., Wash., III, 203-268.
-- Omaba clothing and persomil ornaments. Am. Anthrop., Wash., III, 71-78.
——— Ponka and Omaha songs. J. Am. Folk-Lore, Bost. and N. Y., in, 271-276.
——— The Gentile system of the Siletz tribes. J. Amer. Folk-L., Bost. and N. Y., 111, 227-237.
Dorvilif, Maz. La statue qui dévorce. Annales L'Extr. Orient, Par., 2. s., XiIf, 177-181.
Douglass, A. E. Description of a gold ornament from Florida. Amer. Antiquar., Mendon, XH, 14-25, 2 ills.
—— Moands in Florida. Amer. Antlquar., Mondon, XII, 106-107.
Dreiner, Eug. Drei psycho-physiologische studien. I. Der Darwinismus und die Archigonie. II. Die Innervation mit Bezug auf den Hypnotismus. III. Farbenwahrnehmung und Farbenblindheit. Leeipzig, 1891, Verlag des Reichs-Medicinal-Anzeigers, 108 pp. 8vo.
Defeximen, W. Mythologische Beitrige. 1 Heft. Der Cultus dor agyptischen Gottheiten in den Donauländern. Leipzlg: Tenbmer. 152 pp .8 vo.
Dhil, Demetrius. [Psycho-physical types in corrolation to criminals and their varialility, particularly psychology of oriminality.] Moskva: A. 1'. Mamontova. 199 pp. 8vo.
Driven, W. H. P. Deberlption of a new and littlo known tribe called Pohiras, found in an ont-of-the-way cornor of the Lohardugga district. Proc. Asiatle Soc. Bengal, Calcutta, 233, 248.
Drouin, E. Notice historique et geographique sar la Characène. Le Muséon, Louvain, IX, 129-150. Du Rois-Reymond's archiv.

Dumont, A. Essai sur la natalitó aux iles de R6 et d'OlĆron. Bull Soc. d'anthrop., de Par., 4. s., I, 75-131.
Dumoutien, G. La dispute du Tigre et du Dragon. Annales L'Extr. Orient, Par., 2. 8., XIII, 200-207.
—— Notes ethnologiques et historiques sur les Giao-Chi. Anthropologie, Par, I, (651-855, 4 figs.
Durfee, W. F. The development of American industries since Colambus, I. Early steps in iron-making. Pop. Sc, Mouth., N. Y., XXxvir, 145-172.
Duval, Matifis. Rapport sur le prix Godard. Bull. Soc. d'anthrop. d. Par., Xir, 3. s., 670-672.

DWIGHT, T. The closure of the cranial sutures as a sign of age. Boston, M. \& S. J., ox XII, 389-392.
—— The sternum as an index of sex, height, and age. J. Anat. and Physiol., Lond., xxiv, F27-535.
Dymock, W. The Howers of the Hladoo poets. Journ. Anthrop. Soc., Bombay, II, 80-91.

- On the Salamander or Biskhopra. Journ. Anthrop. Soc., Bombay, i, 95-97.
D. L'Homme criminel. Gaz. Méd. de l'Algérie, Alger, Xxxv, 69-62.

EcOles, A. S. Tenth International Medical Congress. Fortuightly Review, Oct., 1890.
Eckert, von. Kopfmessungen kaukasischer Völker, Arch. f. Anthrop., Brnschwg, XIX, 211-249.
Edmunds, E. S. Ancient stone forts in Indiana. Amer, Autiquar., Mendon, XII, 349351.

Edwards, Amelia B. Recent discoverles in Egypt. Bull. Am. Geog. Soc., N. Y., xxif, 555-565. (See also Century Magazine for January.)
Eeriss, M. Myths of the Puget Sound Indians. Amer. Antiquar., Mendon, XII, 160165.

- The religion of the Indians of Puget Sound. Amer. Antiquar., Mendon, XII, 69-84.
Egypt. Races or ethnographie types. J. Anthop. Inst., June, 1889, J'Anthropologie. Paris, I, 333-337.
Egypt L'. Les habitants. Population du Snd. Annales L'Extr. Orient, Par., 2. s., XIII, 226-235.
Empen lefioh, Paul. Mittheilungen über die zweite Xingu-Expedition in Brasilien. Ztashr, f. Ethnol., Berl., XXIf, 81-98, 10 fige.
Einur, C. H. T. Organic evolution as the result of the inheritance of acquired charac. ters, Transl. by J. T. Cunningham [Rev.]. Edinb, Rev. CLXXII, 310-349.
Einionn, M. Die Rumination beim Menschen. Med. Monatschr., N. Y., II, 228-239.
Einzelbeitriige zur allgeneinen und vergleichenden Sprachwissenschaft. Lëipzig: Friedrich. 8vo.
Enferit, P. Die Bevölkerung in Mitteleuropa mit Einsehiuss der Karpatenlander. Petermann's Mittell., Gotha, Justus Perthes, xxxvi, 137-144.
Ehbis, A. B. The Ewe-speaking peoples of the slave coast of West-Africa. London. $32 \% \mathrm{pp} .8 \mathrm{vo}$.
——'The indwelling spirits of men. Pop. Sc. Month., N. Y., Xxxvi, 79t-801.
Eidig, Havelock. The criminal. London. 12mo. 336 pp .1 vol. [Rev, in: Anthropologie, Par., I, 737, 738. By I'. Tophard.]
-- The car in criminals. Lancet, Lond., i, 180.
Elifis, Rominson. The Diree of Valorius Cato. Am. J. Philol., Balto., xi, 1-16.
Ely, Talfoum). Manual of archreology. New York: G. P. Putnam's Sons. 8vo.
Efyssiefe, A. Kounavine's materials for the stidy of the gypsies. J. Gypsy Lore Soc., Edinb., II, 93-100, 161-172, 1 map.
Emin Brey. Zur ethmologie des Albert-Sees. Das Ausland, Stuttgart, Lximi, 203; Negerfabelu, IV, 681.

Ephemeris epigraphlea, edla lussu insiltuti archreologici Romnni cura Th. Mommseni, I. B. Rossil, O. Hirsohfeldi, Vol. vit, Fase. 3, 273-428. Berlin: G. Relmer. 8vo.

Ercikert, Von. Kopfmessungen Kaukasischer Völker. Arch. f, Anthrop., Brascluwg., 1888-'89, xvint, 263, 297; xix, 55, 211.
Erfard, Otro, Hügelgrab bei Dechsendorf. Beitr. z. Anthrop. Bayerns. München, 18, 74-76, 3 pl .
Erast, A, Venezuelanische Thongofitisse und Thonfiguren aus alter und neuer Zeit. Intertat. Archiv. f. Ethnog., Leiden, IIt, 169-175, 1 pl.
Espinas, A. Les origines de la technologie. Rev. Phil., Par., Xxx, 113, 295.
Espinoza, Enbique. Geografica descriptiva de la republica de Chfle. Sautlago, 1890. $264 \mathrm{pp} . \quad 12 \mathrm{mo}$.
Ethridae, R. Has man a geological history in Australia? Abst. Proc. Linnean Soc., N. South Wales, Apr. 30.

Etheridae, R. Notes on aboriginal stone weapous: I. The knife ased by the Mulligan River (North Central Queensland) aborigines in the "Mika" operation. Abst. Proc. Linnean Soc., N. South Wales, 1890, Apr. 30. II. Additional remarks on Mika knives. III, An aboriginal form of tomahawk from Port Stephens. IV. A well-finished tomahawk of ordinary form from Brisbane Water. Ibid. May 28.
d'Ettinghausen et Krasan. L'atavisme des plantes. Rev. seient., Par., xiv, 188.
Eury, J. Le capitaine Binger au Soudain. Anual. L'Extr. Orient, Par, 2. so, xirr, 81-87.
Evins, John. Anthropology. Nature, N. Y., xlii, 507-510.
Fabian, Ait. Hypnotyzm a nauce a praktyce. Odezyty publiezne. Warsawa. 50 pp .4 to.
Fallot et Alezais, Drs. Notes sur l'antopsie d'un indien d'amérique et d'un nègre de la Martinique. Anthropologie, Par., I, 656-678. 2 fiks.
Faure, Alexis. De l'origine récente de l'hommo a l'état do société sur la torre. J. de méd. et pharm. de l'Algérie, Alger, $x v, 26,50,75$.
Les Français en Cochinchine an xvin ${ }^{\circ}$ siécle. Anmales L'Extr: Orient, Par., 2. s., XIII, 321-334, 353-367; xiv, 5-91, 43-58, 107-125, 143-158, 175-185, 225237, 268-280, 209-314, 321-337, $3 \overline{3} 3-371$.
Fauvelle. Durée moyenne de In vie des employés romains a Carthage au deuxième sicole de notre cre. Bull. Soc. d'anthrop. de Par., 4. s., I, 359-371.

- Qu'est-ce que la philosophie? Bull. Soc. d'anthrop. de Par., 4. s., I, 323-339.

Faworrt, F. Notes on the Mouth-lock vow. Journ, Anthrop. Soc., Bombay, II, 97-102, 1 ill.
Pawcett, Milmifentg. Infant marriage in India. Contemp. Rev., N. York, 712-720.
Featherman, A. Social history of the races of mankind. London. 520 pp . 8 vo.

- Turanian stock: being a new division of "social history of the races of mankind." London: Kegan Paul \& Co. 8vo.
Frlikin, R. W. Hypuotism, or psycho-therapentics. London. 84 pp . 8 vo .
Féré, Cin. La distribution de la force musculaire dans la main et daus le pied, étudice au moyen d'un nouvean dynamontètre amalytique. Bull. Soc. d’anthrop. d. Par., xif, 3. 8., 572-575, 1 ill.
-La quene des satyres et la quene des faunes. N. iconog. de la Salpêtridre, Par., HI, 45-48, 1 pl.
Ferguson, Donald. Captain Jüo Ribeiro: his work on Ceylon, and the Prench trans.
- Jation thereof by tho Abbe lo Grand. Joum. Ceylon Br. Roy. As. Soe, 1888, Colombo, x, 203-309.
Ferref, Babr. Climatic inflences in primitive architecture. Am. Anthrop., Wash., iII, 147-158.
"-_Notes on museum arrangements abroad, "Architecture and Building." Now York, Dec. 20, 27; Jan. 31, 10, 1891,

Feron, 1/me. A. L'Homme; origines, luttes, distinées. Paris: Deslis frères. 112 pp . 8 vo.
Fewkes, J. Walter. A contributiou to Passamsquoddy folk-lore. J. Amer. Folk-L., Bost, and N. Y., III, 257-280.

Additional studies of Zuni songs and rituals with the phonograph. Am. Natu. ralist, Phila., Xxrv, 687-691, 1094-1098.
——— On the use of the phonograph in the study of the languages of American Indians. Science, N. Y., XV, 267-269.
Fielde, Adele M. The Chinese theory of evolution. Pop.Sc. Month., N. X, Xxxyi, 397-400.
First annual meeting of the American Folk-Lore Society. J. Amer. Folk-L., Bost. and N. Y., 1890, III, 1-16.

Fisorer, L. H. Indischer Volksschmück und die Art ihn zu tragen, Wien: Hölder. pp. 287-316. 8vo.
Fitzner, R. Tunesische Volksagen. Das Auslaud, Lxili, 651.
Fletoher, Aliue C. A phonetic alphabet used by the Winnebago tribe of Indians, J. Amer. Folk-L., Bost. and N. Y., III, 299-301; Proc. Ain, Assoc. Adv. Sc., Salem, xxxvili, 354-357.
De Fleury, L. Découverte d'ane borne milliaire romaine dans l'ancien cimetière d'Ambernac, arrondisement de Confolens, départment de la Charente., z^{e} éd. Angoulême, Chasseignac. $7 \mathrm{pp} .8^{\circ}$.
Frower, W. H. Exhibition of two skulls from a cave in Jamaica. J. Anthrop. Inst., Lond., $\mathrm{xx}, 110-112$.
——The evolution of the horse. [From J, Roy. Agric. Soc.] Veterinarian, Lond., LXIII, 438-45\%
Fol, H. Sur la ressemblance entre époux. Compt. rend. Acad. d. Sc., Par., ex, 1285.

Folk-Loro Journal. London: Elliott Stock, published for the society, [Merged, with the Archwol. Review, into "Folk-Lore."]
Folk-tales (The) of the Magyars. Collected by Kriza, Erdelyi, Bap, and others. Translated and edited, with comparative notes, by W. H. Jones and Lewis L. Kropf. [Rev, in: A.theneum, Sept. 6, 317.]
Folmeir, A. De Groninger en Friesche terpschedels in do laatste drie Jaren verzameld. Nederl, Tijdschr. v, Geneesk., Amst., 2. R., xxvr, 597-610.
Fornandfr, A. An account of the Polynesian race; ito origin and migrations, $2 d$ ed. (English and Foreign Philosophical Library.) London: laul. 250 pp. 8vo. Fonimer, R. Die Urform des Bilddrucks. Antiqua. Strassburg, viri, 53-56.
——E Ein figurlicher Messergriffder Tönezeit. Antiqun, Strassburg, viII, 27, 28.
—— Ein Schaalenstein bei Oppenan. Antiqna, Strasshurg, Vin, 33--36.

- Ein Téne-Sohwert-Curiosum, Antiqua, Strassburg, 11, 12.
—— Neue Bernsteln-Schmuckstucke von Schwarzort. Antigua, Strassburg, viII, 1-3.

Pfeilspitzen als Amulete. Antifua, Strassburg, viri, 3, 4.
Römischo Bronze, Nachbildungen priihistorischer Steinbeile. Antiqua, Strassburg, Vili, 35-37, 1 pl.

- Sohmuckgegenstiande aus dem Gräborfelde von Akmin. Antigua, Strasshurg, VIII, 43-46, 2 pl.
- Ueber primitive monschliche Statuetten. Antiqua, Strassburg: viri, 62-69, 5 pl .

Zum Capitel der Pfublbaten im Orinoko und anderer amerikaniseher Baumwohnungen. Antiqua, Strassburg, vini, 17.21.
Fonssimand, CARL. Bermudas-öarna. Beriittelse, afgifven tell Svenska Siillskapet för Anthropologi och Geograf, offer en, med anslag af dess Vegastipendium, utförd resa, Ymer, 05-74.

Fouillée, A. L'evolutlonnisme des idees-forces. Rev. phil., Par., xxix, 113, 267, 337.

Foyfá de Coummelles. Les facultés mentales des animaux. Parls, 359 pp. 18 mo. 31 figs.
Fiancee, Kuno. A description of student life at Paris in the twelfth century. Am. J. Philol., Balto., XI, 80-86.

Fraser. HIne-Moa, la fille de Rotorua. Annal. L'Extr. Orlent, Par, 2, s., XIII, 65-72.
Firazer, J. G. Some popular superstitions of the ancients. Folk-Lore, Lond., 1, 145171.
——The golden bough: a stady in comparative religion. London: Mamillan \& Co. 2 vols. [Ree, in: Nature, Lond., xLII, 513-516; Edinh. Rev., olxxif, 316, 538; Athenæum, Aug. 2, 155-158.]
Freeman, E. A. The latest theorles on the origin of the English. Contemp. Rev., Lond., LVII, 36-51.
Freon, F. Obstetrics among the Sioux Indian women. Cincin. Lancet-Clinic, n. s., XXIV, 12-14.
Fresmifeld, Douglas W. Search and travel in the Caucasus. Proc. Roy. Geog. Soc., . Lond., XII, 257-286, 4 pl.
Fressh, J. Ueber haus unil hof des baiwarischen landmannes. Beitr, z. Anthrop. Bayerns. München, Ix, 33-60.
Fricke, K. Ueber psychische Zeitmessung. 1. Die einfache Reaktionszeit. II. Zasainmengesetzte Reaktionszeiten. Biol. Centrillbl., Erlang, 1X, 234, 437, 467.
Fromndeymi, L. J. A progressive grammar of the Malayalam language for Europeans. Mangalore, 1889, xvi, 307 pp. 8vo. Basel, Missiousliuchliaudlg, geb. m. 6. 40.

Fürner, A. Arehaological survey of India. The Sharq i architecture of Jaunpur; with notes on Zafarabad, Sahet-Mahot, and other places in the northwestern provinses and Oudh. Culenta, Thaeker; London, Triibner, [Ren, in: Athenecum, Aug. 16, 231.]
Fuhbert-Dumonticif. Le serpent cracheur. Annales I'Extr, Orient, Par., 2. s., xIII, 144-147.
F., J. Chimpanzees and dwarf in Ceutril Africa. Nature, Lond., xisf, 200.

Gabion, F. A new instrument for measuring the rate of movement of the varions limbs. J. Anthron. Inst., Lond., xx, 200-204.

- Criminal anthropology. The criminal, by Havelock Ellis. Illustrated. (London: W. Scott, 1800.) [Rev. in: Nature, Lond., XLII, 75.]
- On the advisability of assigning marks for boilly emeiency in the examination of candldates for tho puhiic sorvices. Proe. Brit. Ass. Adv. Se., 1859, Lond., LIX, 471-473.
- Mental tests and moasurements. Mind, Lond. \& Edinl), XV., 380.

Ganners, Luoy M. J. The women of' Curkey and their folk-lore, withan ethnographical map and hitioductory chapters on the othoography of Turkey, und folk conceptions of niture, by John S. S. Glenuic. Loudon: Nutt. 4/4pp. 8vo.
Gannich, P. Lo eriminel instinctir ot les droits de la défonse sociale. Am. d'hyg., Par., 3. s., xxif, 414-435.
(iaboralo, R. La eriminologio. Étude sue la mature du orime et la theorio de la pénalité. Vorsailles: Corf et fils, xix. 453 pp .8 go.
Garmison, H. D. The form of the external ear. Am. dss, Adv. Sc.
GAnson, J. G. Remarks on skulls dredged from the 'liames in the neighborhood of Kew. Journ. Anthrop. Inst., Loud., xx, 20-25.
Garson. Report of the committeo $* * *$ appointed for the purpose of calculating the anthropological moasurements taken at Bath, Rep. Brit. Ass. Adv, Sc, 1889, L, ond, , I, $1 \times$, 423-435.

Gatscher, A.S. Dle windhose: ein mythus der Modoc-Indiauer. dm. Ur-Quell.
——The Beothuk Iudians. Proc, Am. Phil. Soc., Phila., xxvirt, 1-16.
——Sinti, der erste Mensch. Eine Schöpfungssage der Kayowē-Indiane, aus ihrer Sprache übertragen vou. Das Ausland, Stuttgart, LXiII, 901-904.
Gatscifer, A., et R. dh la Grasserie. Textes timucua. Rev. d. Ling., Par., xxifi, 344-348. [The anthor's linguistic and ethnograpbic notes in the American Antiquarian must not be overlooked.]
Gaudry, A. Le dryopitheque. J. d'layg, Par., Xv., 293-295. (Also Nature, Par., XVIII, pt. 2, 05.
-- Les enchainements du monde animal dans les temps géologiques; fossiles secondaires. Paris: E.Sary. 322 pp. 8vo.
GAuthine, Jules. Répertoire archéologigne du canton de Rongemont (Doubs). Doubs, Besançon, $16 \mathrm{pp}, 8$ ro.
Gayley, Cifarles Mills, and Fred. Neifton Scott. A guide to the literature of testhetics. Berkeley. 116 pp .8 vo .
Geides, Patrich, and J. Artifur Thomson. The evolution of sex. New York: Humboldt Pub. Co. 2 pts., $10+146 ; 147-295$ pp. 8 vo.
Genin, Aug., Poemes azteques. Paris, 255 pp. $8 v o$.
Geirardin, Léon. L'homme; ćléments de physiologie, d'hygiène, de préhistoire et d'ethnographie. Paris: G. Masson: 360 pp . 12 mo .
Germa, Paul. Le criminel et l'anthropologie criminelle; rapport présentóa la Societé de jurisprudence. Toulouse: Tardieu. 16 pp .8 vo.
Giosal, Pudmanav. Ancient barbaric customs among the Hindus. Proc. Asiatic Soc. Bengal, Calcutta, 138.
Giacomini, C. Sur le ervosil d'un chimpanzé, ['ransl, from: Atti d. r. Accad.d.sc, di Torino, 1888-'9, xxiv.] Arch. ital, de blol, Turin, xin, 25.
Gindinas, F. IH. The province of sociology. Ann. Am. Acad. Polit. and Soc. Sc, Phila., I, 66-77.
Giglioni, Heniy H. Gli ultimi glorni dell'età della pietra. Archivio per l'antrop. e la etnol., Firenze, xx, 65-72.
—— Notes on a remarkable and very leautiful ceremonial stone adze from Kapsu, New Ireland. Internat. Arehiv, f. Ethnog, Leiden, III, 181-186, 1 pl.
Ginman, Heniry. The discovery of the pool of Bethesda, Jerusalem, Am. NaturIlist, Phila., XXIV, 06-97.
Giron, l'. Les sociótes che\% les mimatix. Paris, $53 \mathrm{llgs}$. 18mo.
Giron, P., et E. Massenat. Les stations de l'âge du remne dans les vallées de la Vézère et de la Corrdze. Paris, J. B. Bailliere ot fils [fasc.]. Jto.
Gritée, A. Kinderspelen, Het spel van Kanonike Volkskunde, Gent, 3 , Jaarg, 39.
Givelet, Cif., H. Jadartet L. Deniaison. Répertoire archcologique de l'arrondissoment de Reims (departement de la Marne) 2° fasc. Ville de Reims: Monuments religieux. Reims, Monce, 262 pp, , 8 vo .
Gladmen, Wasitington. Socialism and the Bible. Mag. Christian Lit., N. York, III, 1801, 241-? 48.
Graser, Einward. Skizze der Geschichte und Geographie Arabiens. H. (Feldzug des Gallus, Lihjanfrage, Inschrift von Adulis, Abfassungszeit und verfasser des perip'a maris erythrei.) Das Ausland, Stutgart, LXIII, 090-094.
Glennie, J. S. Stuart. 'The Aryan cradle land. Nature, N. Y., Xhit, b44, 545; Am. Naturalist, Plila., XXIV, 109k-1160.
Glonus. Illustrirte Keitschrift für Liinder. und Volkưkunde, Brannschwoig. Vol. LVII in 1890.
Gaje, M. J. isf, 'The Meidens of the Notherlands. J. Gypsey Lore Soc., Edinb., II, 129-137.
Goldsmid, Fireineric. Lleutenant H. B. Vaughn's recent journey in liastern Persia, Proc. Roy. Geog. Soc., Lrond, XII, 577-595.

Gomme, G. L. The conditions for the survival of archaic oustom. Archeol: Rev, Lond., iv, 422-438.
——A highland folk-tale. Folk-Lore, Lond., I, 197-206.

- The village community; with special reference to the origin and form of its survivals in Britain. New York: Scribner \& Welford. 8vo.
Goour, Fanny Chambers. Face to face with the Mexicans: the domestic life, educational, social, and business ways, statesmanship and literature, legendary and general history of the Mexican people, as seen and studied by an Americau woman during seven years of intercourse with them. Sampson Low, Marston \& Co., London, 200 ill., 8 vo.
Goodale, Elaine. Some lessons from barbarism. Pop. Sc. Month., N. Y., xx xviit, 82-86.
Goode, G. Brown. The literary labors of Benjamin Franklin. Proc. Am. Philos. Soc, xxyiif, Phila., 1-21. Also: Reprint.
The origin of the National Scientific and Educational Institutions of the United States. [Keprint from the papers of the Am. Hist. Ass.] New York. 112 pp. 8vo.
Gordon, C. A. Notes on the ethnology and ancient chronology of China. J. of Tr. of Victoria Inst., xxiII, 169-208.
Graffland, A.E. P. De verbreiding van het Matriarchaat in het landschap. Indragiri. Bijdr. Taal-Land-en Volkenk. Hague, 5. s., v, 40-47.
Gradenigo, G. La conformazione del padiglione dell'orecchio nei normali, negli alienati, e nei delinquenti. Gior.d. r. Accad. di med. di Torino, 3. s., xxxymi, 495-501.
- La conformation du pavillon de l'oreille chez les normanx, chez les aliénés et cheż les criminels. [Résumé original de l'autear.] Rev. de laryngol., etc., Par., x, 489-492.
Grairam, J. B. Scrofula among the Sioux Indians; its origin and nature. Am. Pract. and News, Louisville, n. s., Ix, 1-5.
Grasserie, R. de la. De la catégorie des modes. Le Muséon, Louvain, ix, 37-54, 230-241.
Greenleaf, Dr. New table of physical proportions. Balt. Underwriter, xliti, 303.
firmendey, T. B. Birth and death rate of advanced civilized peoples compared with those in semibarbarous state. Am. Pract. and News, Loulsville, n. s., ix, 393-400.
Ghinve, R. An address ou endemic disease in British Guiana and on certain racial susceptililities. Brit. M. J., Lond., i, 468-470.
Griffin, Sir Leppl, The Burman and his creed. Fortnightly Rev., Nov. 657-676.
Grigg, W. C. Heredity as to triplets. Brit. M. J., Lond., I, 641.
Grofficr, Valfirien. Explorations ot travaux seientifiques des missionaires en 1887 et en 1888 . Bull. Soc. d. Géog. d. Lyyon, $\mathrm{xx}, 217-258$.
Groneman, I. Debesnijdenis van den Kroonprins van Jogiâkartii. Bijdr. Taal-Landen Volkenk., Hague, 5. s., v, 427-468.
- Ecn avond bij den rijksbestuurder van Jogjåkartå. Internat. Arch. f. Ethnog., Leiden, III, 175-180, 1 pl .
Ginoome, F. H. Persian and Syrian gypsies. J. Gypsey Lore Soc., Lidinb., it, 21-27.
Gitiowneme.. Riggrandenser Alterthiumer. Verhandl, d. Berl. Gesellseh. f. Anthrop., Berl., 31-37.
Geimen. Fin Beitrag aur Lehre von dor Fortpllanzungsfithigkeit bei Hypospadio und von der Vererhang dieser Missbildung. Ztschr. f. Med.-Beante, Berl., 1מ, 247250.

Guilaot, E. Le Pelerinage de la Mceque. Ammal, L'Extr. Orient, Par, 2. s., xim, 97-101.
Gumek, J. T. The inconsistencies of utilltarianism as the exclusive theory of organio evolution. Am. J.Sc., N. Haven, 3. s., xı, 1-14.
H. Mis, 129-37

Gulick, J. T. The preservation and accumulation of cross iufertility. Am. J. Sc., N. Haven, 3. s.; xi, 437-442.

Gundry. R. S. Judicial torture in China. Fortnight. Rev., Mar., 404-420.
GUnther, Sigismund. Systems of numeration in the light of ethnography. Beitrage z. Anthrop. u. Urgesch. Bayerns. Munich, Bassermand, ix, 1.

Gupry, H. B. Coral islands and savage myths. J.of Tr. Victoria Inst., London, xxifi, 46-78.
Gustafson, G. Evebo-Fundetog nogleandre nye Gravfund fra Gloppen. Bergens Museums Aarsberetning, Bergen, 1-36, 3 pl.
Guyot, Arnold. Earth and man. Lectures on comparative physical geography in its relation to the history of mankind. New York: Seribner's Sons. 12 mo .
Guyot-Daubès. Physiologie et Hygiène du cerveau. Paris. 8vo. [Rev. in: Anthropologie, Par., r, 714-715, by P. Topinard.]
Hanrioff, B. J. Die Bnntu-stämme Süd•Afrikas. Leipzig: Fock. 126 pp. 8vo.
Haberlandt, M. Der Bannkreis. Cor.-Bl. d. deutsch. Gesellsch. f. Anthrop., München, xxi, 9-12.
Hadnon, Alfred C. Mauners and customs of the Torres Straits Islanders. Nature, N. Y., XLII, 637-642.

The ethnography of the western tribes of Torres Straits. J. Anthrop. Inst:, Lond., XIX, 297-440, 3 pl., 1 mitp.
——Legends from Torres Straits. Folk-Lore, Lond., I, 47-81, 172-197.
hagen, A. et A. Pineau. Les instruments de masique aux Nouvelles-Hébrides, [Abstr. from: Rev. d. ethnog.] Nature, Par., xviif, pt. 2, 52.
hagen B. Anthropologische Studien ans Insulinde. [Report.] Versl.d. k. Akad. v. Wetenseh. Afd. Natuurk., Amst., 3. R., vir, 5-12.

Hale, Huratio. A manual of the Oregon trade language or "Chinook Jargon." Whittaker \& Co. [Rev. in: Tho Athenmum, Lond., 3288, 583-584.]
—__ "Above" and "below." J. Amer. Folk-L., Bost. and N. Y., III, 177-190.
——Huron folk-lore. II. 'The story of Tijalha, the sorcerer. J. Am. Folk-Lore, Bost. and N. Y., 11, 249-254.
———Was America peopled from Polynesia? Berlin, 1890. 8vo. From Proceed.Congr. Americanists of 1888.
Hall, G. R. Northumberland in prehistoric times. Rep. Brit. Ass. Adv. Sc., 1880, Lond., 788.
Haller, J. F. Modern physical deterioration and some remedial anggestions. Boston M. \& S. J., cxxifi, 394-396.

Hamliton, J. C. The African in Camada. [Abstr.] Proc. Am. Ass. Ady. Sc., 1883, Salem, xxxviif, 304-370.

- Maroons of Jamaica and Nova Scotial Proc. Cabad. Inst., 'Toronto, 3. h., vir, 260 -
Haminton, J. H. F. The antiquities of Medamahanuwara. J. Ceylon. Br. Roy. As. Soc., 1888. Colombo, x, 310-325.
Hamlin, Cyrus. Rolert College, Constantinople. Proc. Alli. Antiquar. Soc., Worcester, vi, n. s., 196-212.
Hammeran, A. Hügelgriber bei Frankfurt a. M. Areh. f: Anthrop., Brasehwg., $\mathrm{xix}, 8 \mathrm{~B}-99,3 \mathrm{pl}$.
Hamy, E. T. Alexauder Brunias; peintre ethnographe de la fln du, xvific, sièele Courte notice sir son cenvre. Anthropologie, Parc, ז, 49-56.
-_Les origines du Musée d'Ethnographie, Histoire et documonts. Parls, E. Leroux. $3 ; 1 \mathrm{pp}$. 8vo. Rev. d'Ethtiog., Par., viri, 305-608.
- Sur une mâchoire de phoque du Groenland, trouvée par M. Michacl Mandy dans la grotte do Raymonden (Comptes reudus de l'Acad. des Sciences, 25 aoít 1890) par Albert Gaudry. [Rev. in: Anthropologie, Par., I, 599-601.]

Hand-book of games, The, Vol. I, Table games. London: Bell \& Sons, 1890. [Rev in: Nature, Nov., 1890, pp. 28.]
hannigãn, D. F. Legitimacy of children. Westminst. Rev., June, 1890.
harlez, C. de. La perception des couleurs chez les peuples de l'extréme Orient et l'histoire du sens visuel. Le Mustón, Par., ix, 242-249.
HART, H. L. Women's suffrage and national danger; a plea for the ascendaney of man. London. Remington. 196 pp .8 vo .
Hartland, E. S. Fairy births and human midwives. Archzol. Rev., Lond., iv, 328-343.

- Peeping Tom and Lady Godiva. Folk-Lore, Lond., I, 207-226.
hartmann, k. Peruanische Kartoffelprïparate Chumu. Verhandl. d. Berl. Anthrop. - Gesellsch., Berl., 300-304.

Hartwich. Weitere Auggrabungen auf dem Urnenfeldder La Tène-Periode bei Tangerminde. Verhandl. d. Berl. Anthrop. Gesellsch., Berl., 308-312.
Hauffe, Gst. Equard Benecke's Psychologie als Naturwissenscbaft, bearbeitet von G. H. Borna. Jahnke. 117 pp. 8vo.

Hayden, A. von. Eine Schwertscheide von Hallstatt. Yerhandl. d. Berl, anthrop. Gesellsch., Berl., $\overline{\mathrm{j}}-52$.
hayes, George W. Mechamic art in the stone age. Amer. Antiquar., Mendon, xif, 230-234.
Haynes, Hendy W. Coton Mather and his slaves. Proc. Am. Antiquar. Soc., Worcester, vi, d. s., 191-195.
-The Romau wall in Britain. Bull. Am. Geog. Soce, N. Y., Xxif, 157-210, 1 pl. Heierle, J. Die Verbreitung der Pfahbanten ausserhalb Europas. Antiqua. Strassburg, vili, $5-10,3 \mathrm{pl}$; 58-62.
Hein, Otro. Altpreussische Wirthsehaltsgeschichte bis zur Ordenszeit. Ztshr. f Ethnol., Berl., xxiI, 146-167, 173-216.
Hain, W. Ornamentale Paralelen. Mitth, d. anthrop Gesellsch. in Wein, n. F., x, 50-58, 13 figs.
Heliwalid, Fr. von. Die welt der Slaven. Berlin, Allgemeiner verein fïr deutsche litteratur. 441 pp . 8vo.
Hennig, Cami, Ueber mensehliche Polymastio mad über Utorus bicomis. Arch. f. Anthrop., Brnscheg., x $1 \times$, 185-204.
hensilaw, H. W. A new lingulstic family in Calitornia. Am. Anthrop., Wash., in, 45-50.

- Indian origin of maple stigar. Am. Anthrop, Washi., 1It, 341-351, 1 ill.

Herrie, Gustave. Ninles for the orthography of geographic names. [Reprint from: National Geographic Magazine, II, No. 4, 7 pp .]
Llemmann, E. Ueher Lieder und Branche bei Hochzeiten in Kirnten. Archiv. f. Anthrop., Bruseliwg, xix, 157-172.
Hervé, Georohs. Sixièmo contérence Broca sur les Prétendus Quadrimanes. Bull. Soc. d'anthrop. d. Par., xif, 3. s., 680-717, 10 figs.
Hewicle, W. W. Game of the Child-stealing witch. J. Am. Folk-Lore Bost., m, 139-148.
Hawter, J. N. B. Iroquois shperstitions. Am. Anthrop., Wash., III, 388, 389.
Heweert, E. G. W. On tha artienlar intintive in Polyblus. Am. Jour. Philology, Balto., XI, 207-200).
1hirti, F. Alte Kaiser-Griber in Centralasien. Verhandl. d. Berl. anthrop. Gesellseh., Berl., 52-55.

- Die Geschichte der Hauskatze in China. Verhandl. d. Berl. anthrop. Gesellsch., Berl., 140-153.
Hodge, C. F. A sketch of the history of reflex action. Ain. J. Psychol, Worcester, III, 149-167.

Honge, F. W. A Zuni foot race. Am. anthrop., Wash., III, 227-231.
Howes, R. Dryopithecus Fontani Lartet und seine Beziehungen zum Menchen und zu den anthropomorphen Affen Mitth. d. anthrop. Gesellsch.in Wien, n. F., \times [68$71]$.
Hoffman, W. J. Mythology of the Menomoni Indians. Am. Anthrop., Wash., H1, 243-258.
—— Remarks on Ojibway ball play. Am. Anthrop., Wash., III, 133-135.
——Shamanistic practices. Univ. M. Mag., Phila., 111, 73-79.
Hofrmeister, G. B. Tha influence of race on the course and treatment of disease. Practitioner, Liund., xly, 192-199.
Holder, A. B. The age ol' puberty of Indian girls. Am. J. Obst., N. Y., Xxili, 1074.
Holmes, W. H. Aboriginal stone implements of the Potomac valley. Am. Ass, Adv. Sc., 1890.
——A quarry workshop of the tlaked-stone implement makers in the District of CoJumbia. Ain. Anthrop., Wash., 1II, 1-26, 1 ill,, 4 pl.
——A West Virginia rock-shelter, Am. Authrop., Wash., III, 217-225.

- Collectlons of the Missouri Historical Society. Am. Anthrop., Wash., 111, 384. Excavations in an anclent soap-stone quarry in the District of Columbia. Am. Anthrop., Wash., III, 321-330, 7 figs.
——On the evolution of ornament-an American lessou. Am. Anthrop., Wash., III, 137-146.
Hole, R. C. Holy wolls, their legends aud superstitions. Antiguary, London, Elliot Stock, XXII.
Horsford, Euen N. The discovery of the ancient city of Norumbega. Boston. 42 pp . 4 to.
Hosie, Alexanineb. Three years in western China: A narrative of three journeys in Ssŭ-ch'van, Kuei-chow, and Yunnen. Philip \&Son. [Rev, in: Athenæum, Aug. 16, 217-218.]
Hostmann, Cif, Shudienzur vorgeschichtlichen Archiologie. Branuschweig: Vieweg \& Bohn. 221 pl. 8vo.
Houait, Waliter. Aboriginal fire-making. Am. Anthrop., Wash., if1, 359-371, 6 flgy.
-- Fire-making apparatus in the United States Nutional Museum. Rept. National Museum, 1887, 1888, 531-587, 60 flgs.
Hou'tsma, M. 'In, Bilderanseinem persischen Fabelbuch, Internat. Arch. f: Ethoge, Leld., 115, 149, 150, 1 pl .
Houzí E. Normaux et dégónórés; erreart de Lombioso. Clinique, Brux, iv, 385 -389.
HowiIT, A. W. The Dieri and other kindred tribes of Contral Australia. J. Anthrop. Inst., Lond., $\mathrm{XX}, 30-104,1 \mathrm{pl}$.
Hibuner, Λ. W. Das Afrikanische Hanptling und Königtum. Dats Ausland, bxili, 1800), 160-181.

Ifunson, W. If. 'Tho naturalist on Pampas. Nineteonth Cont., Lond., xxvim, Peb.
Ifugnis, C. H. Note on the conundrum why we are right-handed. West M. Reporter, Chicago, $1800, \mathrm{x}$ II, 147.
Hughes, 'I'. Mokenny. On cats on bone as evidence of man's oxistonco in remote ages. J. of 'Ir. Victoria Inst., $\mathrm{x} \times 1 \mathrm{II}, 209-29$.
Humpink, G. M. Old age; the results of information recolved respecting nearly boo persons who had attsined the age of 80 years; including 74 centenarians Now York: Macmillan \& Co. $12+218 \mathrm{pp} .12 \mathrm{mo}$.
Hunnewelf, James lr. Illustrated Americana, (Since 1600.) Contintied from Par: I (1403-1624), Proc. Am, Antiquar. Soc., Worcester, VI, 06-77; 283-302.
IUNTington, F. D. Social problems and the church. Forim, N. Y., X, 125-141.
Honziker, J. Das rhitoromanische Maus. Verhandl. d. Jerl. Anthrop. Gesellsch,, Berl, 320-327.
Huad, Ka'de C. On anthropometry. 'Times \& Reg., N. Y. and Phila., var, 506-511.

Hutcminson, J. Notes on herodity. Aroh Surg., Lond., I, 242-244.
Ifuximy, T. H. Government: Anarehy or reginentation. Nineteenth Cent., Lond., XXVII, 843-866.
—— Natural rights and political rights, Ibid., Feli. On the natural inequality of man. Ibid. Pop. Se. Montli., N. Y., xxxvir, 761784.

The Arynn question and prehistoric man. Nineteenth Cent., Lond., xxviri, 750-777. Also: Pop. Sc. Month., N. Y., Xxxviri, 341-355,
--The lights of the charch and the lights of sclence. Nineteenth Cent., Lond., xxyur, July.
InBetson, Denzil. Address on the study of anthropology in India. Jour, Anthrop. Soc, Bombay, ri, 117-146.
Ihering, H. v. Ueber die Verbreituug des Cocagenusses in Siidamerika. Das Ausland Stuttgart, ixiri, 908-910.
I Hing. American Branch of the Hearen and Earth League. Philada., Ledger, Aug. 29.

Imifus, E. N. Les Nouvelles-Hébrides. Paris. Berger-Levranltet Cie, 165 pp. 8vo.
Imperial Archæological Society of Moscow. Congress in honor of its 25 th anpiversary, Jan. 20th in Moscow.
Index catalogne of the Library of the Surgeou-General's Office. Washington: Government Printing Office. Vol, XI.
Index Medicus. A monthly classified record of the current medical literature of the world. Boston: G.S. Davis. Vol, x. Mouthly.
Indian affairs. Report of Commissioner, Washington: Government Printing Office.
Indian Annals and Magazine of Natural Science. Ed. by J. Murray. Bombay. In 1890. 8vo. Monthly.

Indicegeneral de las materlas contenidas en los avales de la sociedad cientitica Argentina. Volímes 1 áxxix 1876-1889. Buenos Aires, 1890.
InNes, A. Taylor. Hypnotism in relation to crime and the medieal facalty, Contemp. Rev., Oct., 553-566.
Internationaler Amerikanistenkongress. Das Ausland, Stuttgart, ixxir, 804-868, 881888.

Internationales Archiv für Ethnographie, Edited by J. D. E. Schmelz. Leyden: Trap. [Vol. v in 1800. Especinlly devoted to museums.]
Internationale Zeitschrift für allgemoine Sprachwissenschaft. Heilbronn: Henninger. 8 vo.
Ishati, O. Angehorne Spalten des Ohrlippehens, ein Beitrag zur Vererbungstehre, Arch. f. path. Anat., otc., Borl., (ixix, 241-25is.
 Anthropologie, Par., I, 746, 747, hy Léon Laloy.]
———Ueher angehorene Spalten der Ohrlitppehen. Verhandl. D. Berl. Gesellseh. f. Anthrop., Berl., 55-61.
Jacomsicn, J. Aburan. Bolla-Coola-Sagen. Das Aushand, Stutgart, Lxim, 362-364.
 200, 359-354.
 085.

Jahrbueh des kaiserliehon deutsehen archiiologischen Institute. Vol, v. Also Mrrambilunaben der, etc. Vol. x v.
Jahrbieher fïr Philologie und lacdagogik. Jahrgang, 1880. [Rep. in: Am. J. I'hilol, Balto., 1890, XI, 112-118, by W. E. Waters.]
James, W, Principles of psychology, 2 vols.
Jastrow, J. Aspects of modern psyehology in lipitomes of 'Three Seiences. Open Court l'ub. Co.

TAs'riow, J. A. study of mental statistics. Am. Aso. Adv. Se., 1800.
-- Lixperimental psychology. Open Court Pub. Co., Chicago.
-- 'Time relations of' mental phenomena. N. D. Horges, N. Y.
-- Studies from the laboratory of experimental psychology of the University of Wisconsin. Am. J. Psyehol, Jan., 1800.
Javisom, N. Vorslavische und slavische Funde nus dem Gubener Kreise. Verhanil. d. Berl. Anthrop. Gesellsoh., Berl, 353--360.
—— Iundwall hei Grossbreesen, Kreis Guben. Erginzz. z. Z/tsehr. f. Ethnol,, Berl, I, 51 .
——Wohnungsreste aus der Zeit der Niederlausitzer Griiberfeliler im gubener Stadt-

- gebiete. Frgiinz. z. Ztschr. f, Ethnol., Berl., I, 49-51, 3 figs.

Jersey, Countess of. Ourselves and our foremothers. Nineteenth Cent., Lond., xxviri, Jan.
Jhssopp. The land and its owners in past times. Nineteenth Cent., Lond., xxviri, Feb,
Jeune, Mary. The homes of the poor. Fortnightly Rev, Jan., 67-80.
Jewert, E. H. Diabology. The person and kingdom of Satan. Lond. 8vo.
Joest, W. [et al.]. Mehrere Mittheilungen, betreffend Augenschminke. Verhandl. d. Berl, Gesellsch. f. Anthrop, Berl., 47.

Johneron, H. H. British Central Africa. Proc. Roy. Geog. Soc., Iond., 1890, Xif, 713-743.
JoLx, H. Jeunes criminels parisiens. Arch. de l'anthrop,, crim., Par., V, 147-174, 393-406.
Jordan, D.S. Evolution and the distribution of animals. Pop. Sc. Month., N. Y., XxXVII, 313-322.
Journal Asintique. Paris, 1890, vol. -.
Journal (The) of American Folk-Lore. Bost, and N. Y.: Issued by the American Folk-Lore Society, Vol. III, in 1890. [Valuable bibliography in each number.]
Journal of the Anthropological Institute of Great Britain and Ireland. Vol. xx , in 1890. Lond,: Trïbner.

Journal of the Aslatic Soclety of Pengal. Calcutta: G. R. House.
Journal of the Anthropological Society of Bombay. Bombay: Eancational Society's Press, 1890, 15.
Journal of the Ceylon Branch of the Royal AsiaticSoeiety, 1888. Colombo, 1800, Vol, x.
Journnl of the China Branch of the Royal Asiatic Society. Shanghai, 1890, hi-monthly.
Jourmal of the Gipsy-Lore Society. Edinburgh: Constable, Vol. III, in 1800.
Journal of the Military Service Institution. New York: By the Institution. Vol. xi, in 1890 , bi-monthly.
Tournal of the Royal Asiatic Socioty of Great Britain and Ireland. London: Triübner. Qunrterly, Vol, xxil in 1890.
Journal of the Roynl Statistical Socioty. London: Stanford, Quartorly.
Joumal of Society for Paychical Researeh. Vol. iv, Jmy, 1890. Aiclphi, W. C.
Jonmal of tho Soeloty of Arts. London, 1890, xXXVII,
Jonmal of the Socioty of the Frients of Selence, Mostow, LXVII, in 1800, Section of Anthropology.
Jommal of the Tramenetions of the Vietorin Institute or Philosophical Society of Great LBitain. London, 1890, by tho institute, Vol. xxils,
Jousseaume. Obsorvations anthropologigues faites par le comto 'loleki shu quelques peuplales du centre est de l'Afrique. Buli. Soe. l'mithrop. de Par., 1890, 4, s., I, 35-40.
Junken, Widinam. Travels in Africn during the years 1876-'8. Transinted from the Gorman by A. II. Kome, Map and illustrations. Ghapman \& Mall. [Res in: Athencum, Oct. 25, 1890, 543-544. $]$
Kerin, M, Jalogra. Bijdr, Tail-Tand-en Volkenk., Mague, b. s., v, 120.

Kern, H. Pall-handsehriften van's Rijks Ethnographisch Muteum to Leiden. Bijdr. T'aal-Land-en Volkenk. Hague, 5, s., v, 124-125.

- Rotineesch-Maleische woordenlijst. Bijdr. Taal-Land-en Volkenk. Hague, 5. s., $\mathrm{v}, 1-20$.

Kerr, Joins. History of curling. Edinburgh, Douglas. [Rev. in: Athenmam, July 19, 80, 80.]
Ǩhabourne, N. Les Lapons Russe (Rousskió Lopari) Izvestia (Bull.) Soc. Amis d. Sc. nat., d'Antlirop, ete, lixvi, Moscow, L'Anthropologie, I, B15-619; ulso, Tatars south of Crimea, id., 59,
Khanouzine, Nicoras. Les Yotjacks; upereu historique et ethnographique, par J.-N. Smirnoff. [Ren, in: L'Anthropologie, Par., I, 619-6id.]
Kiecstra, E. B. Sumatra's westkust van 1836-1840. Bljdr. Taal-Land-on Volkenk., Hague, 5. s., v, 127-921, 248-263.
Kinascote, Mrs. H., and N. Sastri. Tales of the Sun; or, Folk-Lotein Southera India. London: W. H. Allen. 320 pp .8 vo.
Kinchioff, A. Forschungen zur deutschen Landes-und Volkskunde. Stittgart, Engelhorn, v, pt. 2. 8 vo .
Kirkpatrick, E. A. Observations of collegespoiors and electives in pasychological subjects. Am. J. Psychol. Worcester, III, 163-173.
Kitriedge, George La, mid Sylyannus Hayward. Engligh folk-tales in America, J. Amer. Folk-I., Bost. and N. Y., 1II, 291-295.

Kitrs, E. I. On a few common terms of native abuse. Journ. Anthrop. Soc., Bombay, 11, 73, 74.
Kluge. Prähistorische Forschungen in der Umgegend von Arneburg. Altmark. Er ginz. 2. Ztselar. f. Ethnol., Berl, 1, 9-16, 27 figs.
Knapp, P. C. The insanity of doubt. Am. J. Psyohol., Worcester, im, 1-23.
Kvoor, O. Sagen aus Hinterpommern. Zeitschr. 1. Volkerk., Leipz, 11, 145-185.
Knott J. Normal ovariotomy, ciroumcision, elitoridectomy, and infibulation; a stady in comparative ethnology. Med. Press and Cire., Lond., n. s., b, 33-36.
Knowles, W. J. Report on the prehistoric remains from the sand-hills of the coast of Ireland. Proe, Roy. Irish Acad., Dubl., 3. s., I, 173-187.
Kofler, Fr. Hagelgriber in der Nithe von Darmatadt. Erginz. \%. Ztsehr. f, Ethnol., Berl, I, 40, 47.
Kornel, Vhamistav. Gypsy ancedotes from Hingary. J. Gypsy Lore Sne., Edinb., II, $85-73$.
Kovalewsky, E. de, Les Kourdes et les Ísides, Bull. Soo. Roy. Belgo Géog., Brux., xiv, 157-180.
Kramp, A. Das Volk der Xosn-Katiern Im östichen Südatrika, mach seiner Geschichto, Eigemart, Verfossung und Roligion. Berlin: Matthios. 200 pp .8 vo .
Krauss, Fmbinioi S. Buyatische Volksilberlieforungen. Das Ausland, Stutgant,

- LxIII, 791-727.
-- Dis Quiligeister hoi den siddshaven. Ansland, Stutgart, 329-333,
--.-.- Mehmed's Brauthart (Smaihgict Moho). Ein Volksepos der südslavisehen Mohammedaner. Doutseh von Carl Gröbor. Wien (Alfied Hölder). 12mo. 130 pp. [Rev.]. Zeitseh, f. Ethmol., Borl, xxin, 103, 104.
----.-. Siavoninu fairies. [Transl, from: Das Ausland.] Pop. Se. Month., N. Y., xxxvif, $884-690$.
- Volksglaube und religiöser Branch der Sitidiavon. Vorwiegend nach eigenon Rrmittelungen. Münster, 1800 (Aschendorff sche Buchhundlung). xvi and 176 pp. 8vo. [Rev.] Zeitschr. f. Ethnol., Berl., xxir, 101, 105.
Khopotkin, Prince. Brain work mad manal work. Nineteenth Cont., Lond,, x xyirr, March.
- Mutual aid among animals. Ninetcenth Cont., No. clxy, N. Y., 699-\%19.

Krauss, Gust. Ein bel Fürsteufeldbuck, Oberbayern, aufgefundenes samisches Gefäss Ergiinz. z. Ztschr. f. Ethnol., Berl., I, 62, 53.
KUhnert, Fr. Zur Kenntnis der älterea Lautwerthe des Chinesischen. Wien, 'lempsky. 40 pp . 8vo.
La Flesohe, Franois. I'he Omaha buffalo medicine-men. J. Amer. Folk-I., Bost. and N. Y., YII, 215-221,
Lagneau, Gustave. Remarques anthropologiques et démographiques sur l'instruction scolaire et l'instruction nilitaire. Orléans: Girardot. 58 pp .8 vo .
Lakowitz. Hügelgrïber bei Klutschau, Kreis Neusturt, Westpreussen. Eergiinz, z. Ztschr, f. ethnol., Berl., I, 61.
Laloy. Léon. Crânes préhistoriques de Hongrie, par Virchow. LRev. in: Anthro. pologie, Par., 1, 624-626.]
—— E. Schmidt. Un cas degigantisme. Arohiv fiir Anthropologie; xvini, [Rev. in: L'Anthrop., Par., $1,460-461$.
—— Malformation heréditaire du pavillon de l'oreille. Anthropologie, Par., I, 580-590, 2 figs.

- Ornstein Quelques cas de transmission des caractères acquis par I'individu. Archiv für Anthropologie, xvirf. [Rev, in: L'Anthrop., Par., I, 461, 462.]
——Travaux purement anthropologiques. L'Anthrop., Par., I, 482-487.
LAMB, D.S. The oleoranon perforation. Am. Anthrop., Wash., III, 159-174.
Lane-Poole, Staniex. Story of the nations. -The Barbary Corsairs. Fisher Umvin. [Rev, in: Athenæum, July 26, 122, 123.]
Lang, A. Was Jehovah a fetish stone? Contemp. Rev., Lond., ryif, 353-365.
Lange, Julius: Bemärkninger om Roskilde Domkirkes Alder og stil. Aarb. f. Nord. Oldk. og Fist., Kjdbush, v, 105-184.
Lanaley, S. P. Report of the Sectetary of the Smithsonian Institution for the year eoding June 30, 1890. Wash.: Gov't Print. 82 pp. 8vo.
Lanin, E. B, Armenia and the Armenian people. Fortuightly Rev., Aug., 258-273.
———The Jews in Russia. Fortnightly, Nov., $481 \cdot 500$.
La Nuova Filosofla. Naples, Dr. Aulrea 'Forre, established in 1890.
L'Anthropologic, founded in Paris in 1800, by the fusion of Materiaux pour l'Histoire de l'Homme, Revue d'Anthropologie and Revue d'Ethographio. Under the direction of MM, Cartailhae, Marny, and Topovard. Bimonthly, G. Masson.
Lapouge, G. De, et R. Bamon. Les lois do l'hérédité. J. de méd. vét, et zootech, Lyon, 3. s., XVI, 107, 243, 304.

Lawrence, C. F. Remarks on the geological position of the skulls dredged from the Thames. Journ, Anthrop. Inst., Loud., xx, 26, 27.
Iadrent, Fimile. Les habitués des prisons do Paris; ótudo d'anthropologie at de psychologie eriminolles. ${ }^{*}$ Preface de M. le Dr, A. Lamasaguc. Lyon: A. Stork. 617 pp., 6 pl., 3 dlag. 8vo.
Lavermyic, É, De. Communism. Contompt, Rov., Mareh, 180u.
Layard, F. Oriontal myths and Christian parallels. Scottish Reviow, July, 1800.
Yien, II. (. 'Tho ondemoniades of Ineretaro. J. Am. Folk-Loore, IBost. and N. Y., III, 33-38.
Lafibver, Aninie. Les mythes ot les dionx de la plaio. Paris: Vanmes. 18 pp. 8 vo.
\ldots L....... Levolution roligieuse. Bull. Soc. d'anthrop. de Par., 4. s., r, 371-395.
Legarain, Ghongms. Le live des transformations. Paris, 56 pp., 4 vo.
Lehmann, C. Ir. Ueber das Verhïltniss des iggptischen, motrischen Systeme zum babylonischen. Verhandl. d. Berl, Gesellsoh. f. Anthrop., Berl., 1899, (330-648; 1890,86-93.
Leidy, Joseph. Notice of some fossil human boncs. 'Trans. Wagner Free Inst. of Science, 1r, 9-12, 2 pl . Also: Reprint.
Leminer, G. W. On the othnographical basis of langunge, with special reference to the customs and language of Minza, J. Anthrop. Inst., Lond., x X, 204-210; 'Ir. Victoria Inst., $\mathrm{X} \times \mathrm{XITI}, 100-122$.

Lkjars, Dr. Circulation veineuse des moignous. Bull, Soc. d'anthrop. d. Par., XII, 3. s., 527, 528.

IJENGYEL. Prehistorio Station. I'Anthropologi6, I, 145-140.
Linon, Nicolas. Anomalles y Mutilaciones Étuicas del Sdstema deutavio entre los Tarascos pre-Colombianos, 8 Sess. d. Cong. Internat. Americaniste. An. d. Mus. Michoacano. Morelia, Mex., III, 168-173.

- Bibliograia Mexicana del Sig lo, xvifi, Au. del Mus. Michoacauo, Morelia, III, 1890, 5-167. A-eh., continued in Vol. IV.
——Un Impreso Mexicano del Sig lo, xvi, Au. d. Mus. Michoneano, Morelia, III, 174-180.
Letourneau, Charies. L'Évolition politique dans les diverses races humaines. Paris: Lecrosnier \& Babé. 584 pp . 8vo.
Le Villenoisy, F. D'une erreur archéologique relative aux bronzes anclens. Revue Archaeol., Par., 3. s., xv, 248-253.
Lewin, L. Ueber das Betelkauen. Internat. Arch. Ethnog., Leiden, iIf, 61-65.
Lewis, Hubert. The ancient laws of Wales. Edited by J, E. Lloyd. [Rev, in: The Athenæum, Lond., 3288, Nov, 1, 581, 582.]
Lewis, T. H. Stone monuments in northwestern Iowa and soathwestern Minnesota. Am. Anthrop:, Wash., III, 269-274.
Lindensoimit, L, Römische Ueberreste and ein frïnkisches Grïberfeld vor Mainz. Ergänz. z. Ztschr. f. Fthnol., Berl., 1890, 1, 47, 48.
Lininsel, S. Studien über Malthusianismus. Wien, W: Branmilller. 44 pp .1 tab. 8vo.
Lloyn, W. The rellgion of theSemites. Westininst. Rev., Lond., oxxxiff 376-383.
Lombard. Description ethnographiques sommaire de l'Asie occidentale; question chamite. Bull. Soc̀. d'anthrop. de Par., 1890, 4. s., I, 219-224.
- Deseription ethnographique sommaire de l'Europe, Question aryenne. Bull. Sos. d'anthrop. d. Par., d. Par., 1890, Xir, 3. s., 472-483.
Lomband, W. P. The effect of fatigue on voluntary musoular contractions. Am. J. Psychol., Worcester, III, 24-42.
Lombroso, C. Homo delinquens. [Transl. from the Italian.] Wien med. B1., 1800, XIII, 87, 103, 110.
—— I'Anthropologie criminelle et ses récents progris. Paris: F. Alcan. 180 pp. 12 mo .
-- Les progies récents de l'anthropologie criminelle. Centralbl. f. Nervenh, it. Psychiat., Coblenz \& Leipz., n. F., I, 102-108.
-_Der Verbrecher in anthropologisoher, it\%tlicher und juristiseher Beaiehang. In dentscher liearbeitung von M. O. Frnonkel, mit Vorvort von Kirchonheim. Hamb.: J. F. Richter. 416 pp . 8vo.
———.-. I'ablhropologie criminello ot ses recents progres. Paris, 1800: Felix Alean, 177 pp., 10 figs . 12 mo . (in Bibl, philos. contemp., reviewed in l'unthropologie, I , 475-481.)
\cdots-...alimsesti dol earcere. Areh, di psiohint., ote., Torino, xi, 1, 117.
fombroso, C., et R. Lissohi. Il delitto politico o le revoluaioni in mpporto allanthropologia od al diritto crimimile, Napoli, II, 97-100.
-.-I Il delitto politico e le rovoluzioni in rapporto al dirito, allintropologia criminalo ed all scienza di governo. Torlno, frat. Brocea. 6a5 pp., is pl, 2 diag., 1 tab, 8 vo.
.-..... La pena nol delitto politleo. Arch, di psichiat., etc., Torino, xı, 139-180,
Rei politici per occasione o per passione. Arch. di psichiat., ete, 'Iorino, XI, $34-55,1 \mathrm{pl}$.
Loti, Dicrak. Japanese women. Harpor's Month., N. Y., Lxxxil, 110-131, 8 ills.
Louchminge, R. M., and Davin M. Hodge. Einglish and Muskokeo Diotionary. Collected from various sources and revised. St. Louls: J. I'. Smith. $\$ 36 \mathrm{pp}$.

Lumbook, Jomn. Le pritendu sens de direction chez les animaux. Rev. Scient., xivi, 500-593.
-- The orlgln of civilization and the primitive condition of man; mental and social condition of savages, Thed. London: Longmans, $550 \mathrm{pp}, 8 \mathrm{vo}$.
-- Prehistoric tímes, as illustrated by ancient remains and the manners and chs. toms of modern savages. 5th ell. London: Williams \& Northgate. $362 \mathrm{pp} .8 v o$.
I, UCe, L. H, and W. H. Three cases of hypospadias in which the sex was undeterminable until puberty. Am. Naturallst, Phila., xxiv, 1010-1019.
von Lusohan. Die Tachtadschy und andere ueberreste der alten Bovölkerming Lykiens, Arch. f. Anthrop., Brnschwh., XIX, 31-53.
Luys, J. The latest discoverles in hypnotism. Fortnightly Rev., June, 898-921; Aug., 168-183.
Lxaid, Sir Alfred. Official polytheism in China. Nineteenth Cent., Lond., Xx viri. July.
L, y dston, G. F. Materlallsm versus sentiment in the study of the causes and correction of orime. J. Am. M. Ass., Chicago, xv, 455-460.

- Materialistic study of erime. Times and Reg., N. Y, and Phila., Xxi, 329-332. MacDonald, J. Manners, customs, superstitions, and religions of South Atriean tribes. J. Anthrop. Inst., Lond., XIX, 264-296; xx, 113; Rev. Sclent. XLV, 641, 678.

Madeio, F. Ferdaz de. Note sur l'absence de la commissure grise da trisieme ven. tricule et les partloularités psyehiques concomitantes. Bull. Soc. d'anthrop. d. Par., XII, 3. s., 513-516.
——— Note sur l'absence de la commissure grise du troisleme ventricule et les particu. larités psychlques concomitantes. Bull. Soc. d'anthrop. d. Par., XII, 3. s., 513516.

- Sur l'absence de la commissure grise du cerveall (Addition il la communitation faite precedentment et réponse aux objectlons il cette communication). Bull. Soe. d'anthrop. d. Par., XII, 3. s., 541-548.
Machean, H. The ancient peoples of Ireland and Scotland considered. J. Anthrop. Inst., Lond., XX, 154-170.
MacQueary, Howard, The evolution of man and Christianity. New York: D. Ap. pleton. 410 pp .
MacRiquire, David. Callot's "Bohemians." J. Gypsy Lore Soc., Edinb, if 7-17, 3 ills.
———Seottish gypsles mider the Stewarts. J. Gypsy Lore Soe., Pdinb., 11, 173-181, 220-237.
-- Earth houses and thoir inhabitants. Areheol. Rev., Iond., IV, 303-421,
Magazine of Amertcan History. New York, Ed, Mary J. Lamb. Vol, xxir in i800.
Makowsky, A. Uebor die Anwesenheit des Menselen wilhrend der Lissereriode in dor Umgohnd von Brimm. Mitth. d, anthoop. (iesellseh. In Wien, II. F., x [Sitzungsh., 60-65].
Maidney, Gammick. Customs of contesy. Am. Anthrop., Wash., iti, 201-216.
——— The fight with the giant witch. Am. Anthrop., Wakh., II, (6an-70.
-- Israelite and Indian. A paraltel in planes of oulture. Proc. Am. Ass. Adv. Se, 1884, Salom, xxxviI, 287-331.
Männer; A. English-Tulu detiomary. Mangalore, 1888. 653 pp . Svo.
Manouvinicr, L. Note sur les eftots d'une deformation artiliciello dit entine chez un nouveat ne Bolivion. Bull. Soc. d'anthrop. d. Par., Xif, 3. s., b67-.579, 1 ill .
Mantecinzza, P. Physiognomy and expression. New York: Seribnerand Wolford. 8vo. London: W. Scott, XI. 327 pl). 12mo.
Marcano, G. Éthographte precolombienne du Veneauda; vallées d'Aragua et de Caracas, 1880. Paris: Ea. Baltonweek. 91 pp. 8vo,
Mardano, V. Precolomblain metallirgy in Veneanola, H. A. J. Anthrop. Inst., Lond., XX, 220.

Marohand, Fel. Besohrelbung dreien: Mikrocephalen-Gehirne, nebst Vorstudien zur Anatomie der Mikrocephaliai, il, Abth. Halle, 112 pp .4 to.
martel, E. A. Les Cóvennes et la région des causses (Lozdre, Aveyron, Hórault, Gard, Ardeche). 2 éd. Villefranohe-de-Rouergie, Bardoux, viIf. 407 pp .8 vo.
Martin, P. Le texte, parisien de la vulgate latine, iv, Le Muscon. Louvain, ix, 65-70, 301-310.
Mabtine\% Vargas, A: Pedimentria y pelibarometria, crecimiento en la iufanela. Gac. Méd., Mexico, xxv, $301-325,3 \mathrm{pl}$.
Mason, O. T. An account of the progress in anthropology for the years 1887, 1888. Smithsonian Report, 1888, Govt. F'rlut. Office, Wash., 1890, 496-582.
-.-Anthropology in Paris during the exposition of 1889. Am. Anthrop., Wash., 1II, 27-36.

- The American Association for the Advancement of Science. Am. Anthrop., Wash., 385-386.
—— Arts of modern savages for interpreting areheology. Am. Ass. Adv. Sc., 1890.
-- Basket-work of the North American Aborigines. [From: Rep. Smithsonian Inst.] Washingtou, 1880, Govt. Print. Ollice. pp. 291-306, 64 pl . 8 vo .
-_Essal d'une classification des races humaives, baste unifiement sur les caractères physiques. Par. M. J. Denlker, [Bull. Soe. d'Anthrop. de Par., XII, 1889, 320-336.] [Reu, in: Ain. Anthrop., Wash., iII, 381-384.]
———'Chrowing-sticks in the Natlonal Museum. [From: Rep, Smithsonian Inst.] Washington, 1890, Govt. Print. Office. pp. 279-289, 17 pl . 8ro.
Massanoli, C. Grande inseription de Nabuchodonosor. Le Muséon, Louvain, ix, 192-208, 269-277.
Masson, Paul. Objets en bronze trouves dans le lit de la Marne, a Trilport. Bull. Soc. d'anthrop. d. Par., Xir, 3. s., 620-623.
Matriews, W. The Gentile system of the Navajo Iddians. J. Am. Folk-Lore, Bost., III, 89-110.
Maxe-Werly, L. Vases a inseriptions baehiques. Paris: Daupeley.Gouverneur, 44 pp .8 vo .
Maxweld, Sir If. Customs. Blackwood's Mag., EdInb., cxivili, 702-712.
von Mayr, Geons. Ueber Untersuhiede im Altersaufban der Bevölkerung, Beitrz. Anthrop. Bayents. Münehen, rx, 61-73.
Mecrackan, W. D. The legend of Willam 'Tell. Athantic Month., Bost., ixvi, 598-600.
Megee, Anita Newcombe. The evolution of'a sect. Am. Ass. Adv. Sc., 1890.
Mc:Cime, W. ,. The evolition of serials published ly selentifie secieties. Philos, Soc. Wash., Bull. xi, 221-246. 1 pl, Also: Reprint.
\cdots Some principles of evidnec rolating to the antignity of' mun. [Alstr.] ['roc. Am. Ass, Adv., Sce, 1880, Salem, xxxiti, 333.
 : 290 9 -209.
Mearns, B. A. Andent dwellings of tho Rio Verde Valley. Pop. Sic. Month., N. Y., xxxili, 745-703.
Membis, O. Arm und Reichzur Merovinger Keit. Arehf. Anthrop., Brnsehwg, xix, 23-20.
Maner, J. J. Bijdrage tot de Kemmis van het Bantsusch Dialect der Sondaneesehe Thal. Bijdr. Taal-Land-en Volkenk, Inague, 万. s., v, 222-2061.
Malat, J. M. 'The dawn of metallurgy. J. Trans. Vietoria Inst., xxili, 277-304.
Mélusine, Recneil do Mythologie, Iftérature populuire, traditions, et usages, 1877-1800, Vol, v, 1800-1891, Paris: II. Gaddo\% edltor; E. Rollam, publisher.
Menamidesant-Mabries, Co. Contribution a l'étude do l'age de la pierre dans l'isthme de Pamma. Paris, Chatillon-sur-Seine. ag pp. 4to.

Mendenilali, I . C. The relations of men of solence to the general publio. Am. Ass, Adv. So, 1800, Indianapolis. 15 pp .
Mendini, G. L'indice cefalico dei Valdesi, Archivio per l'antrop. e la Ftñol., Firenze, $\mathrm{xX}, 61-64$.
Mesmerism and hypnotism. Quarterly Review. July.
Messikommer, H. Fin Massenfund gallischer Potinmunzen in /iifich. Antiqua, Strassburg, VIII, 42-43.
Messikommer, Jacobs. Nene Pfahlbatiten am Greifensee. Antiqua, Strassburg, ViIf, 21-23.
Mew, James, The Hebrew hell. Nineteenth Cent., Lond,, xxvili. August.
Mexico: Archiologlsche Beltrige zur Cultur-Geschichte seiner Bewohner. Hamburg \& Leipzig, 1889, Voso. Rev. in Ztschr. f. Ethnol., XXII, 40-42; also Seler., pp. 42 .
Meyer, A. B, Masken von Neu Guinea und dem Bismarck Archipel. Königliches' Ethnographisches Museum zu Dresden. Band, vir, folio, 15 pp., pls. 15. (Dresden: Stengel \& Markert, 1889.) [Rev.] Nature, vol. 42, 268, 269.
MeYer, J. J. L'administration de lo justice parmi les indigenes dans les iles de Java et de Madoura. Annales l'extr. Drient, Par., XIV, 129-142.
——Les fixations légales relatives a Ia religion musulmane aux Indes Néerlandalses. Annales l'extr. Orient, Par., xiv, 257-267, 289-208.

- Proeve vau Zuid-Bantcuschepoëzie-Bijdr. Taal-Land-en Volkenk., Hague, b. s., V, 469-503.
Meyners d'Estrey, H. La Convade. Rev. Sclent., xlut, 1890, 025-629. [With many references.]
Middendorf, E. W. Dle einheimischen Sprachen Perus. Leipzig; Brockhanis. 393 pp. 8 vo.
Mies, J. Ueber die Unterschiede awischen Länge, Breite, und Litingen-Breiten-Index des Kopfes und Schiidels. Mith. A. Anthrop. Gesellsch. in Wien, n. F., x, 37-49.
Milifer, O. D. Zodiacal ohronology. Amer. Antiquar., Mendon, xit, 313-328.
Mind. London, 1800, Williams \& Norgate, Vol. xv, in 1800.
Minor, O. S. 'The concrescence theory of the vertebrate embryo. Am, Naturalist, Phila., Xxiv, 501, 617, 702.
Mitoifeli, W. The logio of the ethies of evolution. Mind., Lond. and Edinh., XV., 342-356.
Mitheilungen der nuthropologisohen (iesollschaft in Wien. Wien: A. Ifalder, dto; Band Xx, noue folge, Bl. x in 1800, with index to Bd. xi-xx.
Mithellungen aus don oriontalisehon Sammlungen dor kïnigl. Museen m Berlin. Berlin, 1890, Spemann, fol, tat', 03-16
Modi, Jiva nji Jamsiediji. Superatiti ins common to Enrope and Indin. Jomrn. Anthrop. Soc., Bombay, II, 161-171.
 oharts. 8vo. [Rer. in: L'Anthropologie, 1, 314-360.]
Mons, Alabicr. Hyphotism. "Contomporary Solence Soriea," edited by Havelock Pllls, London: Walter Scott. [Keu, in: Nature, XIA, 685-ibi7, by A. 'l. Meyer, N, Y.
Molimndohfe, P. G. von. Easay on Manchaliterature. J. Chtan Br, Roy. Asia. Soc., Shanghai, xxiv, n. s., 1-45.
Mönder, Johinnes. Ein interessanter Befund nm Chiasma nervorum opticormm des Schimpanse. Arch. f. Authrop, Bruschwg., Xix, 20;-209, 1 tab.
Moloney, Aifred. Notes on Yoriba amd tho Colony and l'rotectorate of Lagos, West Africa, Proc. Roy. Geog. Soc., Lond., xit, 608.014.
Monier-Whininms, Monien. Mystical Buddhism in connedtion with the Yoga philosophy of the Mindus. J. of Tr, of the Victoria Inst, Vol. xxity, 12-45.

Monist, The. A quarterly magazine. Chicago: Open Court Company, Vol. I, No. 2, Janhary, 1891.
Monkoe, K, A forgotten remnant. Scribner's Mag., N. Y., VII, 303-317.
M[ONT] (P. D[E]). Onze Vlaamsche "Componisten" ofte Liedjeszangers. Volkskunde, Gent., 3^{e} Jaarg. 25-39.
Montague, A. P. Writing material and books among the ancient liomans. Am, Anthrop., Wash., III, 331-340
Montague, F. O. Arnold Toynbee. Johns Hopkins Univ. Stud. in Hist. Polit. sc., 7. s, I, Baltimore, 70 pp., 8vo, 1889.

Monifilius, O. Y'age du bronze en Égypte. Anthropologie, Par., i, 27-48, 6 pl.

- Verbindungen zwischen Skandinavien und dem westlichen Europa vor Christi Geburt. [Transl.] Arch. f. Anthrop., Brasehwg., xix, 1-21.
Montet, Édouard. On the conception of a future lifeamong the Semitic races. Asiat. Quart. Rev., Lond., x, 319-339.
Montgomery, H. Aboriginal monuments of North Dakota. [Abstr.] Proc. Am. Ass, Adv. Sc, 1889, Salem, xxxvili, 342-344.
Money, W. Lol, meads, and commonable lands. Archeol. Rev., Lond, IV, 344-365.
Mooney, J. The Cherokee ball play. Am. Anthrop, Wash., rif, 105-132.
——Cherokee theory and practice of medicine. J. Am. Folk-Loro, Boston and N. Y., 1890, 11I, 44-50.
———Mehmed's Brautfahrt (Smailayio Meho): Ein Volksepos der südslavischen Mohammedaner. Aufgezeichnet von Dr. Friedrich S. Kranss, Deutsch von Carl Gröber. Wien, Alfred Hölder, 16 mo., 130. [Rec. in: Am. Anthrop., Wash., III, 380-381.]
—— notes on the Cosumnes tribes of California. Am. Anthrop., Wash,, III, 259-262.
Moorgifead, Warren K. Fort Anclent, the great prohistoric earthwork of Warren County, Ohio, compiled from a careful survey, with an account of its mounds and graves, with surveying notes. Cincinnuti: Robert Clark \& Co. $10+129 \mathrm{pp}$.
Moladan, J. X. The race question in the United States. Arena, Boston, II, 385-398.
Morioe, A. G. The Western Denés; their manuers and customs. Proc. Canad. Inst., 'Toronto, 3. s., vil, 109-174.
Monison. Notes alur la formation du pigment chez le negre. Cong. internat. de dermat. et de syph. C. r., 1880, l'ar, 130-134.
Monison, Mrs. O. T'simshian proverbs. J. Am. Folk-Loro. Bost. and N. Y., II, 285.
Monass, C. From brite to man. Am, Naturalist, Philn., xxiv, 341-350.
Monste, H. B. Currency abl measures in China. J. Ohina Br. Roy. Asia. Soc., Shanghai, n. s., 46-135.
Monsacist, E. Anomalio doll' osso ocelpilale in p00 eranii dialienati. [Abstr.] Arch. di psichlat., ete., 'Torlno, x1, 94.
Momimalis, G. de, Fanx objeta françia et italiens. Bull, Soc, d'inthrop. d. Par., XII, 3. s., 500-b11.
....... Gisoment préhistoriguo déconvort par M. Borthier, il Satnt-Aubin. Bull. Soc. d'anthrop. de Par., 4. \&., I, 147-15S.
…-. Les silex de Brénio. Bull. Soc. d'anthrop. d. P'mr, Par., 3. s., xil, 468-472.
---- Mesure des maths, Bull. Soc. d'anthrop, do Par., d. s., 1, 207-211.
--. Origines de la chasse, de la pêcho et do l'ayriculture. . Chasse, peche, domestleation. Paris: Lcceosnier et Babo, xili-blf pl. \&vo. (Bibliotheque anthropologique, xit.)
- Presentation d'm sexdigite. Bnll. Soc. d'anthrop. d. Par., I'ar., xil, 3, s., 531 , 532.
- Squolettes de Castenedolo pretendas tertiaires. Bull. Soc. d'anthrop. d. Par., XII, 3. s., 548-551.
———Sur les nderes de l'Algérie et de la'lonisle. Bull. Soc. d'anthop. de Par., 4, s., 1, 353-350.

Moust, F. J. Notes on M. Bertillon's discourse on the anthropometrio measurement of eriminals. J. Anthrop. Inst., Lond., xx, 182-198.
Muir, J. Original Sanskrit texts on the origin and history of the people of India. Triibner's Orieutal Series. Tribner: Lond., vol, 1, 3d ed, 544 pp .8 vo .
Müller, F. M. Discoveries of the Veda by the Chinese, Persiams, Christian missionaries and scholars. Open Court, Chicago, iv, 2307-2310.
—— Natural religion. "Gifford lectures." Lengmans \& Co. [Rev.in: The Athenæun, Lond., 3293, 770-772.]

Three introductory lectures on the selence of thought. Longmans, Green \& Co., Lond.
-Threa lectures on the sclence of language. Open Court Pub. Co., Chicago.
Muller, J. Dialectio studies in the Swedish Province of Dalecarlia. Am. Ass. Adv. Sc., 1800.

- l'eculiar effects of one-sided occupations on the anatomy and physiology of man. Am. Ass. Adv. Sc., 1890.
Mulder, S. Noglo Halsringe fra Slutningen af Bronze-Alderen og fra den Äeldste Jernaldor. Nordskrift., Copeiihagen, 10-31, 2 pl. [Résumé in French by E. Beauvais, 32-34.]
Munro, R. The Lake dwellings of Europe. London. 612 pp .8 vo .
Mur (Le日), d'enceinte du vieil hanoi. Annales L'Extr. Orient, Par., 2. s., xin, 207-208.
Murioon, Join, A stady of the Eskimo bows in the U. S. National Museum, [From: Rep. Smithsonian Inst.] Washington: Govt. Print. Office. pp. 307-316, 12 pl. 8vo.
———Dress and physique of the Point Barrow Eskinos. Pop. Sc. Month., N. Y., xxxviif, 222-229.
——The history of the "throwing stick" which drifted from Alaska to Greenland Am. Anthrop., Wash., III, 233-236.
—— Notes on counting and moasurlng among the Eskimo of Point Barrow. Am. Anthrop., Wash., III, 37-43.
Murphy, J. J. The factors of ovolution in langunge. J. trans. Vietoria Inst., xxif, 237-248.
Museo Michoacano. History in Anaies dol Museo Michoacano. Morolio, 1890, Esenela de Artes. Año, in, 1-f.
Muséon, Le. Revue internationale. Études de lingnistique, d'histoire et de philosophio. Publiés par des professẹurs de différentes universités. [Société des selences, Sociétó orientale, Vol. ix in 1890. Quarterly.]
Musenm für deutsche Volkstrachten, Berlin. Opencd ollicially (Oct. 27, 1889. Corresp. B1. 1 ' dentsch. (iesellsch. f. Anthrop., xxi, Is90), 5.
Muscums' ('The) Association, Atheneum, Juno 28, 1890, 836.
Musical (The) notation of the middle ayes, Masters \& Co. [Rel, in: Athemenm, Lond, Dec. 20, p1, 862.]
Mythology and monmments of anclont Athens. Being a translation of a portion of the "Attlea" of Pausanias by Margaret de (i. Verrall. With introduelory essay and urcheological eommontary by Jate E. Harrison. Illustr. Manemillan \& Co. [Rev. in: Athemenm, Alt. 2, 166, 167.
Nadaildac; M. Lat station próhistorique de Lengyel (Hongrio). Anthropologie, Par., I, 145-149; Bull. Soc. d'Anthrop., Xif, 3. s., 638-646.
- Le péril mationnt. Paris: De Soye et fils, 46 pp.

Nansen, Fridtsof. The first crossing of Greemland. Trambated from the Norvegian by H. M. Gepp. 2 vols. Longmans \& Co. [Rcv. in: Athenaenm, Lond., 3295, 845-846.]
Nayime, Edouard. The historical rosults of the excavations at Bubastis. J. of'Tr. of Vietoria Inst., xxini, 137-167.
Nazaroff, Anthropology of the Bachklrs. J. d. 1. Soo. des Amis d. Sc. de Moscou, Lxviu, 27-59. L'Anthropologie, 1, 626-628.

Neophytos, Amistote G. Le distriat de Kérassunde au point de vue anthropologique et ethnographique, Anthropologie, Par., I, 679-711.
Newedi, W. W. Additional collection essential to correct theory in folk-lore and mythology. J. Am. Folk-Lore, Bost. and N. Y., III, 23-32.
——Game of the child-stenling witoh. J. Amer, Folk-L., Bost. and N. Y., III, 139148.
—— The study of folk-lore. Trans. N. Y. Acad. Scl, IX, 134-136.
-- The symbolism of backgammon. J. Amer, Folk-L., Bost. and N. Y., III, 208.
New England Historical and Gonealogical Register, Boston, Vol, xiry in 1890.
Nicaise, Auauste. L'archeologle a l'exposition universelle de 1889. Chalons-surMarne: Martin Fròres. 18 pp .8 vo.
Niccolucor, G. Anomalie e deformazioni artificiali del cranio. Anomalo, Nanoli, it, 65̈-72.
.-. L'orlgine dell'uomo. Anomalo, Napoli, II, 161-170.
Niedeble, Lubor. Neue Fundeaus Parsberg. Beitr. \%. Anthrop. Bayerus, Mianchen, ix, 18-32, 4 pl .
Kremann, G. Hissarlik-Ilion. Mitth. d. Anthrop. Gesellsch. in Wien, in. F., x. [sitzaugsb. 1-5.]
Nisbet, J. F. Marriage and heredlty: a viow of psychological evolution, Ward \& Downey, [Rev. in: Athenrenm, July 26, 131.]
Nivelet, F. Gall et sa doctrine. Justification des principes fondamentaux de l'organologie cérébrale; suivie d'une étude sur l'annésie, l'aphémie et l'aphasie et autres propositions relatives au déboulement fonctionnel du cerveau et al'autopsychologie. Paris: F. Alean. 276 p. 8 vo.
de Nording, W. L'unitication des heures avee deux clichés dans le texte. Bull Soc. d. géng., Par., 7. s., XI, 111-137.

Notes d'art et d'archoologic, pablication monsuelle la Reanion artistique. Paris: Mersch. 8vo.
Nuprali, Zelda. On the Atlath or spear-thrower of ancient Mexico. Am. Ass. Adv. Sc., 1890.
Onolonski, N. A. [The skulls of eriminals.] Vestnik obsh. hig. sudeb. i prakt. med., St. Potorsl), VIt, pt. 3, 1-10, 1 tab.
Obst, Dr. Karl Wermams und Otto Pachsteins in Klemasien und Nordsyrian. Das Ausland, stutgart, ixili, 657-660.
Obst, Hermann. Zur Demographio des emropaisehen Russland: Das Ausland, Stuttgart, texiI, 848-853.
Oldenmera, H. Comparative philology: Thestudy of Sanskrit. Open Court Pub. Co., Chicago.
Ohyine, P. Madagasear; or, Robert Drury's Journal, London: Fisher Unwin, 1890. [Rec. in: Nature, N. Y., Xhif, 63\%.]
Open Court, 'The. A weekly magazine of sefence and philosophy, Chicago. Open Court Pril). Co.
Orminame, Olfubr. De Lima a Iquitos par lo Paleoza, la Cordilito do Hunchon, les cerres da Yamachaga, lo tio Pachitea, le Pajomal, avec carte dans le texte. Bull, soc. d. qeog., Par., 7. s., xi, 217-236.

Ormisi, T. F. Mortis dance at Revenly, Folk-Lore J., Lond., vis, 331-356.
Osbore, II. F'. Tho paleontological evidence for the transmission of acpuled elhaveters, Rop. Brit. Ass. Adv. Sc., 1889, Lond., Lix, 621-623.
Ostrimafr, Xaver. Bronzefunde bei Ingolstadt, Bayern. Ergin\%. \%. \%tschr. f. lithnol, Berl., 1890, I, 63.

———Caratteri antropologici di 100 rol per rivolta. Areh. di psichiat., etc., Torino, XI, 204.

Otronenahi, S. L'olfatto ed il gusto nei oriminall in repporto ai normali. Anomalo, Napoli, II, 138-142.
Owen, Mary A. Ole Rabbit an' de Dawg he Stole. J. Amer. Folk-L., Bost. and N, Y., III, 135-138.

Packarn, A.S. Symbolism among the dolmens and standing stones of France. Amer. Antiquar., Mendon, xif, 273-282.

- The effect of cave life on animals and its bearing on the evolution theory. Pop. Sc. Month., N. X., XXXVI, 380-397.
Painter, A. W. The Hill Aryane. Journ. Anthrop. Soc. Bombay, II, 146-155.
Pajeken, F. J. Die kinder der Indianer Norlamerikas, Das Ausland, LxiII, 157; Wie die Indianer Fleisch raïchern, id., 439; Religion, id., 1011.
Papers of the Archwological Institute of America. American series, III. Final report of investigations among the Indians of the Southwestern United States, carried on mainly in the years from 1880 to 1885. Part 1, by A. F. Bandelier. Cambridge, John Wilson \& Son.
Parant, V. L'anthropolugie criminelle, l'état mental des régicides. Écho méd., Toulouse, 2. क., 493, 505.
Paulhan, F. Historic and prehistoric relics. Am, Antijuarian, Mendon, Ill, , xh, 52-60.
- The monuments of the stone age. Am, Antiquarian, Mendon, III., XII, 26-41.

Pauli, Gustav. Durch den sïden Mexikos und durch Central-Amerika. Das Ausland, Stuttgart, IXXII, 101-105, 121-125, 141-145, 161-166.
Payne, F. F. A tew notes upon the Eskimo of Cape Prince of Wales, Hudson'sStrait. Proc. Am. Ass. Adv. Sc., 1889, Salem, $\mathrm{xx} \times \mathrm{ViII}, 358-360$.
Peabody Museum of American Archacology and Ethnology, in connection with Harvard University, xxiv. An, report in 1890 , Vol, x.
Peotor, D. Lissai de localisation des habitants précolumbions de l'Amérique Centrale. Internat. Arch, f. Ethnog., Leiden, III, 31-33.
Pert, S. D. Did the homerang precede the bow and arrow? Armer. Antiquar., Mondon, XII, 179-18:3, 3 figs.
——Historic and prehistorie relics. Ibid., 52-61, 6 figs.
-_ Museams and societies. Ibid., 363-364.
\cdots Phallie worship and fire worship. Ihill., 352-358, 3 Ifgs.
-- Quivira, the phantom city. Ibid., $293-294$.
——- The eliff-dwellers and their works. Ihid., $85-104,16$ figs., 5 pl .
-- The difference botweon Indian and mound-builders' rolics, Tbid, 251-67e, 35 figs.

---. Tho ialand of Mackinaw and native myths. Ibid., 11:-114.
-.-. The monuments of the stone age. Ihill, 20-41.
---- The mound-builders and anciont Moxieans. Ibid., 350-33\%.
—— The "sacred enclostures" of Ohio. Ibicl., 131-154, 8 figs., "maps.
——... The Snake Clan among tho Dakotas. Ibid., 237-24!, 8 flgs.
-...- The stone grave people. Ibill., 320-344, 12 flge. .
…-. Were the Druids in Americis? Ibid. 204-302.
Pefía y Furnández, M. ne I,A, Manual de arqueologia prohistorici, Sevilla, 903 pp. 4to.
PENDIETON, Ifovis. Notes on negro folk-lore and witcheraft in the South. J. Amer. Folk-L., Bost. and N. Y., III, 201-207.
Penka, Kail. Die arische Urzoit im Lichte der nenesten Auschaungeri. Das Ausland, Stuttgart, I, XIII, 741-744, 764-771.
Pennsylvania Magazine of History and Biography, Phila, Hist. Soc., Vol, Xir, in 1890.
Perlostitis and atrophy of ancient Egyptian bones. Lancet, I,ond., $1,404$.

P'errouj, L. La T'unisie uncienne. Anmales L'Extr. Orient, Par., 2. 8., xinf, 288-243, 257-269.
P'eru, etc. A. Stubel, W. Leiss, 13. Koppel. Kultur und Industrio siidamerikanischer Välker. Lerlin, 1889, Asher. [Rev, in: Ztsehr. f. Etbinl., x xif, 43-44.
letermann's Mitteilungen, Gotha, Justus Perthes, x xxyi.
Petersen, H, Gravpladsen fra den neldre Jernalder paa Nordrup Mark ved Ringsted. Nordiske Fortids. det Kgl. Nord, Oldskrift., Copenhagen, 1-14, 3 pl. [Résumé in French by E. Beauvais, 15-18.]

- Hypotheson om religiose Offer-og Votivfund fra Dunmarks forhistoriske Tid. Aarb. f. Nurd. Oldk, og Hist., Kjobenhavn, v, 209-252.
Petri. E.J. Anthropologija. Tome I. Osnovy Anthropologie. [. * * T.I. Principles of.] St. Petersburg: A. llan. 584 pp., 8 pl., 4 eh. 8 vo.
Preifer, E. Aberglaube aus dem Altenburgischen. Thsohr. t. Volkerk., Leipz., II, 160-200. P'fliger's Archiv.
Pimbirpson, A. Zar Ethnographie des leloponnes. Petermanu's Mithell., Gotha, Justies Pertbes, xxxvi, 1-10, 33-41.
Pimbles, Jr., Menky. Primitive man in modern beliefs. J. Amer. Folk-L., Boston and N. Y., III, 60-63.
Piderit, T. The physiognomy of the mouth. ['Tansl. from: Rev. scient., Par.] P'op. Sc. Month, N. Y., xxxvi, 678-687.
Pierce, Gianville T. "'The source of the jade. Amer. Antiquar., Mendon, xil, 174, 175.

Pierson, H. The evolution of the gondola, Cosimopolitan, N. York, Viti, 529-533.
Pinones, Theobone G. Biblical reseateh. Mag, Christian Lit., N. York, 1891, III, 204, 295.
Plat'\%, I3. Die Välker der Erde. Wiiraburg, Woerl, pts. 17=22. 8vo.
lhayfaik, Sir R. Lambeirt. The Mediterranean, Physical and. Historical. Nature, N. Y., XLIf, 480-485.

Plicque, A.-F. Noto sir l'herédité du bec-dellovre. Progrds med., Par., 9. s., xit, 294.

I'ascieks, Kani, Kurzer Mitheilung neber zwoi malayische Spiele. Intermat, archiv f. Ethnog., Leiden, III, 189-194.

Political Scienco Quarterly. Wdited hy the Univorslty Fiaculty of lolitical scionce of Columbia Collego. Now York, Glum \& Co., Vol. v in 1800.
l'orlook, Sir F. Origins of the common law. Contempt, Rev., Dec., 1890.
Ponchon, M. Les mégallihes de la Somme. Bull. Soc. d'anthrop. d, par., Xis, 3. s., 556-567, 9 ills.
 XhVI, 309-403.
 413-42\%.
Porak, Le ortuno do Nicolas Terry, al connu sons le nom do bébé, nain du rol do Pologne. Buil. \& Mém. Soc. abst, et gynce, do Pitr, 77.
Ponter, Lembard G. The aborigines of Australia. Prece, Am, Antignar, Soc. Worcester, VI, 303-322, 3 pl .
l'orimet, S. Ś́pultures préromainos trouvées dans les onvirons do Nimes. Nimes: Chastanier, 12 pp . 8 vo.
Poulion, Edwami B. Mimiery. [Abst.] Natiue, N. Y., xim, 657, 658.
-- On the supposed transmission of acquired chameters. Rop. Brit. Ass. Adv. Se., 1889, Lond., 1890, IIX, 620.
Poweli, F. Y. Recent researeh on Jeutoniemythology. Folk-Lore, Lond., 1, 118-126.
Poweris, J. W. Problems of archeology. Forum, N. York, vilt 638-6i5a.
-.-.- Prehistorle man in Amoriea. Forum, N. York, vili, 480-503.
--... The humanities. Fornm, N. York, X, 410-422.
H. Mis. $129-38$

Pozzi, S. Pseudo-hermaphrodite male. Bull. Soc. d'anthrop. d. Par., xif, 3. s., 602_ 606.

Prexl, R. Besprechungsformeln der Ruminén in Siebenbürgen. Ztschr. f. Völkerk, Leipz., 156, 195.
Preykr, W. Der Hypnotismus. Nebst Anmerkungen und einer nachgelassenen Abhandlung von Braid aus dem Jahre 1845. Wien: Urban \& Schwarzenberg. 217 pp. 8vo.
Primitive (A) surgical instrument. [For the "mika" operation.] Brit. M. J., Iond., I, 1500.
Pritohett, R.T. Ye "Smokiana." London: Bernard Quaritch. 102 pp .
Pronl, L. La responsabilite morale des criminels. Rev. Phil, Par., xxix, 384-398.
——Les statistiques criminelles et le libre arbitre. Ann, d'hyg., Par., 3. s., xxiv, 235-242.
Proceedings of the Academy of Natural Sciences of i'hiladelphia. Phila.: By the Acad., 3. s., vol. Xx, 1890.
Proceedings of the American Antiquarian Society. Worcester, Charles Hamilion, vi.
Proceedings ot the American Association for the Advancement of Science. Fortieth meeting in Indianapolis, 1890.
Proceedings of the American Philosophical Society, Hhiladelphla, 1890, MacCalia \& Co, xxviII .
Proceedings of the Asiatic Society of Bengal. Calcutta: Thomas, monthly, I\& 8 in1890.

Proceedings of the Canadian Institute, Torouto. 1890. Copp, Clark Company, 3.s., VII.

Proceedings of the Royal Geographical Society, London, Edward Stanford, 1890; xiI.
Proceedings of the twentieth annual session of the American Philological Association.
Proceedings of the Royal Institution of Great Britain. London: By the Soclety, 1890.
Proceedings of the Royal Irish Academy. Published by the Academy. Vol, in in 1890.
Prochno, F. Wendische Funde aus der Altmerk. Verhandl. d. Berl. Anthrop. Gesellsch, Berl, 31?-316.
Progress of the Russian expedition to Central Asla under Colonel l'ievtsoff. Proe. Roy. Geog. Soc., Lond., XII, 10-36,
Photireio, Rowhand E. French boycotting and its cure. Nineteenth Cent., N. Y. No. CLXV, 778-785.
Proubrit, S. V. A collection of stone implements from the District of Columbia, [From Proc. U.S. Nat. Mus.] Washington, Govi. Print. Offlee, p. 187-194, 6 pl., 8\%o.
Purlfication (La) selon 1'Avesta et le Gomez, Le Muscon, Louvaln, 1890, IX, 105-11\%,
Putnam, F. W. A singular ancient work at Foster's, Warren County, Ohio. Proc. Amer, Anttquar. Soc., Vi.
—— Notice of a singular earth-work near Foster's, Little Miami Valley, Ohio. Am. Ass. Adv. Sc., 1890.
——On an anolent hearth in the Little Miami Valley. Am, Ass, Ady. Sc., 1810.
-- The Peabody Museum of American Aroheology and Ethnology In Cambringe. Proc. Am. Antiquar. Soc., Worcester, Vi, 11. s., 180-190.
——Prehistoric remains in the Ohio Valley. Century, N. Y., xxxix, 608-703.

- Remarks upon the Nampa Image. Proc. I3oston Soc. Nat. YIist., XXIV, 1890, 441.
.-.- Suggestions relating to an ethnographical exhlbition. An appendix to the report of the committee on jermanent organization, submitted to the mecting of the Pommissioners of the World's Columbian Exposition September 15, 1890, Chicago.
-- The serpent mound of Ohio. Century Mag., N. Y,, April, 871-888. Ills.
Quatrafages, A. ine, Cantonnement et migrations; penpleuent de l'Amérlque, Rev, scient., Par., XLNI, 481-486,

Quathefages, A. de. Les theories transtormistes d'Owen et do Mivart. Rev. soient. Par., xlvi, 33-39.

- Origine de l'homme; théorie de A. Russel Wallace. Rev. scient., Par., xivi, 225-233.
Quedenfeldt, M. Die Bevölkeruugs elemente der Stiadte Tunis und Tripoli, Ausland, Stuttgart, lxilf, 1890, 314, 321, 354, 369, 495, 515, 532, 560.
- Brauche der Marokkaner bei haüsliohen Festen und 'Trauerfilllen, ibid, 716, 730.
——Das Turkische Schattenspiel im Magrib (Tunis), 904, 921.
Rabot, C. De l'ulimentation chez les Lapons. Authropologie, Par, I, 187-200.
——Explorations dans la Laponie Russe. Bul. d. 1. Soo. d. Géog., Paris, 7. 8., xı, 371 .416.
- Une exploration au Groénlaud. Rev. scient., Par., xly, 168-173.

Radloff, W. Sur les anciens dialectas tures. Bull. d. I'Acad. Imp. d. So. de St. Petersb., Xxxin, 291-351.
Ramon, Auguste. Dieu et l'homme; étude philosophique. Paris, 1891: J. B. Baillic̀re \& fils. $\quad 192 \mathrm{pp} .8$ vo.
ramanathan, P. The ethnology of the "Moors" of Ceglon. J. k. S. S., Ceylon, Colombo, $\mathrm{x}, 234-262$.
Rand, Silas T. Glooscap, Cuhkwand Coolpurjot. Amer. Antiquar., Mendon, xif, 283-286.
——The coming of the white man revealed. Amer. Antiquar., Mendon, xir, 155156.
———The legends of the Micmacs. Amer, Antiquar., Meudon, xif, 3-14.
Ranke, Johannes. Les variations extrêmes du poids humain. Beitr. z. Anthrop. u. Urgsch. Bayerns, T. IX, pp. 23. [Rev. in: L'Anthropologie, Par., I, 747, 748, by Léon Laloy.]
Ranking, G. The Nutts and their lauguage. J. Gypsy Lore Soc., Edinb., if, 17-21.
Ratzei, Frienr. Versuch einer Zasamuenfassung der wissenschaftlichen Ergehnisse der Stanleyschen Durohquerung. Petermann's Mitteil., Gotha, Justus Perthes, xxxvi, 281-296.
Rav, L. V. Mïhewerkzeuge. Verhandl. d. Berl. anthrop. (Gesellseh., Borl., 153-160, 318-320.
Raux, M. L'enfance coupable. [Extrait.] Aroh, de l'anthrop, crim., Par., v, 221-258.

- Nos jeunes détenus; étude sur l'enfance coupable avant, pendant et apress son sćjour au quartier correctionnel. Paris: G. Masson. 270 pp . 8vo. [Bibliothéque de criminologie, IV .]
Raynaud, Georges. La Polyandrie; les origines communistes; Adelphogamie; Matriarcat. Clermont: Daix frores. 16 pp .8 va .
Read, Charles H. Naga ornamonts. J. Anthrop. Inst., Lond., mix, 441.
Reclus, E. Some natives of Australasia. Pop. Sc. Month., N. Y., xxxvii, 607-617.
Records of the least. New series, II. Edited by A. H. Sayce Bagster \& Sons. [Rev. in: Athenæum, July 26, 125.]
Refoe, B. Public schools as affecting erime nad vice. Pop. Sc. Mouth., N. Y., xxxvi, 319-328.
Rees, J. D. Meddliug with Hindu marriages, Nineteenth Cent., Lond., x x vin, Oet. Réas, E. Les régieldeg dans l'histoire et daus le prísent; ctude medico-psychologlque. Arch. de l'anthrop. crim., Par., V, 5-34. Also, Reprint.
Regnaud, Paul. Orgine et philosophie du langage. Parls. 443 pp .18 mo .
——Principes généranx de linguistique indo européennc. Hachette. $12 m o$.
Richard, P. Clebärden uad Moinenspiel des Negers. Dits Aushani, fanii, 1890, 381 , 406, 425.
 358-371,

Reinach, Salomon. Friedrich von Duhn Remarques sur la question érasque. Berlin, Spemann, 1890, 21-37. [Rev. in: L'Anthrop., Par., 1, 435. 436.]
———Les découvertes de Vaphio et la civilisation mycénienne d'après des publications recentes. Anthropologie, Par., 1, 559-565.
--Les systómes de numération a la lumidre de l'ethnographie, par Siegnund Gïnther. [Rev. in: Anthropologie, Par, ; I, 614, 615.]
——Próhistorique, ethnographie, etc. L'Anthrop., Par., x, 487-491.

- Tombear de Vaphio (Morće). Anthropologie, Par., I, 57-61.

Keinisoh, Leo. Die Kunama-Sprache in Nordöst-Afrika. Wien: Tempsky, of pp. 8 vo.
———Die Saho-Sprache. II. Wörterbuch-Wien: Hölder. 492 pp .8 vo.
Remonino, P. C. Longevity and clinate. Relations of olimatic conditions to longevity, history, and religion; relatious of elimite to national and personal habits; the climate of California and itseffects in relation to longevity. Tr. M. Soc. Calif., San Francis., 260-298.
Remy, Ch. Études japonaises. Annales L'extr, Orient I'ar., 2. s., xini, 161-177.
Renan, Ernest. Histoire du peuple d'Israil. Paris, Calmann Lévy. [Rev. in: The Athenæum, Lond., 3294, 807, 808.]
Rennie, G. E. Notes on a case of sporadic cretinisin. Australasian, M. Gaz., Sidney, $1 x, 325$.
Report of the British Association for the Advancement of Sclence, in 1800, at Leeds.
Reusens, Le C. Éléments d'archéologie chrétienne. 2d ed. Paris: Ernest Thorin. 2 vols. 8 vo.
Reuter, O. M. Finlands Natur, Folk och Kultar. Stockholm. 173 pp. 8 vo.
Revue de l'histoire de religions. M. Jean Neville, direolor. Paris, E. Leroux, Vol. IV, 1890. Annales du Musée Gulmet. [Excellent bibliographers of religion and kindred subjects.]
Revue des traditions populaires. Paris, Vol. v, 1890. Monthly. Organ of Socioté des

- traditions populaires an Musée d'ethnographe du Trocadero. Paris, Maisonnenve.

Revue de linguistique et de philologie comparée. Paris, Maisonneuve, Vol, xxxiri, in 1890.

Revue Philosophique. Paris, 1890, F. Alean.
Revue solentifique; founded in 1863. Paris, Lagrange, vol. 45, 11 th year, 1800.
Revista del Museo de la Plata. Argentine Republic. Tome i, 1890, Province of Buenos Aires. Also "Annales" del Museo.
Kévue Archéologique.
Revue d'ethnographie de la Sociétí Imperiale des amis des sciences naturelles. 1 annee, 1889, Moscou, 3 vols. A. list of the papers given in L'Anthropologie, $5,474$.
Revue de l'hypnotisme. Paris.
Revue des traditions populaires, Parls.
Revue Scientifique. Paris.
Reynier, J. B. Causes de l'expression spirituelle et mordante de certaius hossus. Gaz. med.-chir. de 'Toulouse, xxif, 165-157.
Rénot, Th. The psychology of attention: 1. Spontaneous or untural attention; 2. Voluntary or artilicial attention, and, 3. Morbid states of attention. Chicago, Open Court Pub, Co.
Rhys. Early ethnology of the British Isles. Scottish Roview, April, 1800.
\longrightarrow My thological treatmont of Celtic ethmology. Scottish Review. Oct. 1800.
IRICOARDI, 1'. Prequidiai esuperstitioni del popolo modenese. Archivio l'inthrop. e lis etnol, Firenze, $x x, 73-110$.
Riciren, PaUs.. Anatomio artistique. Description des formes extérienres du corps hmmain an repos at dans les principanx monvements. Dariy Edit. Plon. 209 pp . 4to. 108 pl. Lice. in: Anthropologie, Par., 1, 712-714, by P. Topinard.]

Ricier, paul. Du rôle de la graisse dans la conformation extérieure du corps humain. N. iconog. de la Salpêtrière, Par., III, 20-26.
Richter, J. Paul. The Guilds of the Early Italian painters. Nineteenth Cent., N. Y., cLXV, 786-800.

Richter, Ut. Culturpflanzen und ibre Bedeutung für das wirthsebaftliche Leben der Völker. Geschichtlich-geographische Bilder. Wien: Hartleben. 228 pp .8 vo .
Rig Van Americanns: Sacred songs of the ancient Mexican. Edited by Daniel G. Brinton. London: Paul. 8vo.
Rink, M. Om Eskimoemes Herkomst. Aarl, f. Nord. Oldk. og Hist., Kjobent., v, 185.

- On a safe conclusion concerning the origin of the Eskimo, which can be drawn from the designation of certain objects in their language. J. Anthrop. Inst., Lond., xIX, 452-458.
Risley, H. H. The race basis of Indian political movements. Contemp. Rev., Lond., Lvir, 742-759.
Riforire, D. G. Natural selection and the spiritual world. Westminst. Rev., Lond., Cxxxili, 459-469.
Riviere, F. Quatrieme promenade ala section d'anthropologie. Les hommes fossiles des grottes de Mentou; procédés d'explöration des grottes, des cavernes, des dolmens; relation d'explorations récentes. Bull. Soc. de méd. prat. de Par., 1890, 814-852.
Robir, Paul. Observations sur l'usage du corset. Bull. Soc. d'anthrop. d. Par., xir, 3. s., 551 .

Robertson, W.S. A curious and important discovery in Indiana. The chief of the Miamis. Mag. Am. Hist., N. Y., XXIv, 46-51.
Rock inscriptions, Arehaic. An account of the cup and ring marking on the sculptural stones of the old and new worlds. London, 1890. 8vo.
Rockitidi, W. Woonvilie. An American in Thibet. Century Mag., N. Y., xli, 3-17, 8 ills.
——'The border-laud of China. Century Mag., N. Y., xli, 250-263, 14 ills.
RODiger, F. Die Lüsung der Chenopodium-Frage. Antiqua, Strassburg, viII, 66-58.
Rohaut, Ch. A. Du transtormisme et de la genération spontanée. lítude scientifique et philosop hique. Ouvrage précédé d'une préface du Dr. Michel Peter. Paris: J. B. Baillidre et fils. $168 \mathrm{pp} . \quad 12 \mathrm{mo}$.

Romanis, G. J. Darwin's latest oritics. Nineteenth Cent., Lond., xxyif, 823-832.
——Orgin of human faculty. Brain, Lond., xif, 289-307.

- Primitive natural history. Nineteenth Cent., Lond., xxviri, August.
——W. A. R. Walläce on physiologleal selection. Monist, Chicago, i, 1-20.
- Weismann's theory of heredity. Contemp. Rev., Lond., Lvil, 686-699.

Rosenbrugh, A. M. Prison reform. [Abst.] P'roc. Canad. Inst., Toronto, vif, 206$21 \%$.
Rosser, C. W. Indoohina. Cambodja, Laos, Siam, Amnam und Cochinchina. Das Ausland, Stuttgart, cxin, 481-485, 505-508.

- Indochinesische stimme. Drs Ausland, Stutteart, laxir, 047-051.

Rossi, G. E, S. Otrolmaim. Tipi di criminall mati. Arch. di psiehiat., ete., Torino, xi, 91-93.
Rerif, H. Liva. 'Tho aborlgines of 'Tasmania. London: Kegan Paul, 'Trench, Trubner \& Co. [Rev, in: Nature, N. Y., Xini, by F. Max Milller, 489-491.]
Rown, E. Ueber den gegenwirtigen Stand der Frage der Vererbung erworbenor Eigenschaften und Krankheiten. Wlen, Klinik, xvi, 181-194.
Roussel, A. De la prièro chez les Hindous. Le musCon, Louvain, 1890, ix, 113-122, 209-229, 438-458.
Rover, Clémence. De l'utilité des sépultures de famille pour lesétudes anatomiques. Bull. Soc. d'anthrop. d. Par., xif, 3. s., 555-656.

Royer, Clemenoe. Sur la phylogenie; a propos d'un lezard hipede. Bull, Soe. d'anthrop. de Par., 4, s., I, 156-206.
Round, J. H. Communal house demolition. Archieol. Rev., Lond., rv, 366-874.
Rubbens, C. Fil de sole contre les pertes de sang. Bull. Soc. d'anthrop., Par., I, 4. s., 287.

Ruohenbach, J. C. Étude sur le royaume d'Assinie. Bul. d. l, Soc. de Géog., Paris, 7. s., XI, 310-349.

Rust, H. N. The adze. Am. Ass. Adv. Sc., 1890.
—— On obsidian implements of California. Am. Ass. Adv. Sc., 1890.
RyDER, J. A. The origin of sex through cumulative integration, and the relation of sexuality to the genesis of species. Proc. Am. Phil. Soc., Phila., xxvill, 109159.

Sacred books of the East, xxxini. The minor law books. Translated by Jul. Jolly, pt. 1, xxxiv. The Velânta Sûtras. Translated by Thibaut, pt. 1. London, 1890. 553 pp. 8 vo.

Sacred books of the East. Edited by Max Mïller, Xxxv. London, 1890. 358 pp. $8 v o$.
St. Clair-Tifomison. Dangers of hypnotism. Westminster Rev., Dec., 1890.
Salin, Bernhami, Studier i ornamentik. Antiq. Tidsk. I'. Sverige. Stockholm, XI, 1-141.
Salmoné, H. A. The main cause of the rise and fall of the Arab dominion. Asiat. Quart. Rev., Lond., x, 434-447.
Salter, W. M. Höffling on the relation of the mind to the body. The Monist., Chicago, 1, 118-123.
Sandburg, Graham. A journey to the capital of Tibet. Contemp. Rev., July, 1890, 64-82.
-_ Philosophical Buddhism in Tibet. Contemp. Rev., Feb., 256-271.
Santos Rocha, A. Uma obra da arte primitiva Rev. de Sci. Nat. e Soc. da Socledade Carlos Ribeiro, Porto, 1, 145-151, 1 pl.
Sapper-Coban, Karri. Die Quekchi-Indianer. Das Ausland, Stattgart, IXIII, 841844, 802-395.
Sayce, A. H. Fxcavations in Judea. Contemp. Rev., Sept., 427-434.
———Introduction to the science of langnage. 3 d ed. ${ }^{2}$ vols., 880 pp . Kegan laul, Trïbner \& Co. 8vo.
——The latest results of oriental arohreology. Contemp. Rev., Lond., IVIII, 907912 Also: Mag, Christian Lit, N. York, III, 296-209.
SOHAEFER, O. UeberSohwanzbllduagen beim Menschen. Demonstrationen von Mlasbildungen aus der Kgl. Franenklinik, ausserdem über einen Fall von Hernía dia. phragmatica congenits. Mïnchon, med. Wohnschr., xxxviI, 634-537.
Sohaudel, f. Deconvertes archeologiques sur les territolres de Villette et CharenoyVezin (Meurthe-et-Moselle). Nanoy: Crepin-Leblond. 6 pp .8 8o,
Scufuffaen, J. Mammit und Mensch in Europa, Jahrh. d. Naturw., Freib, i. Br., 451-454.
-- Die Schiidel der europilischen Menschenrassen. Jahrb. d. Naturw., Freib. i. Br., 440-446.
Schils, G. H. Origine ethnique des populations atricaines. Le Muston, Lonvain, ix, 87-95.
Sombiemann, H. Arbelten aut Hissarllk. Verhandi, d. Berl, Anthrop. Gesellsch., Berl., 349-353.
Sohloss, David F. The aweating system. Fortnightly Revi, April, 532-551.
Sondossan, A. Volkslieder aus Steirmark, Ztsohr, f. Völkerk., Lelpz., II, 148-187
Schmeity, J. D. E. Indonesische Prunkwallen; ein Beitrag zur Kunde des Kunstgewerbes in Indonesien und der ethnologischen Bedeutung des Kris. Internat, Arch. f. Ethnog., Ieiden, III, 85-118, 2 pl .

Schatertz, J. D. E. Ueber einen heiligen Krug von Borneo. Internat. Arch. f. Ethnog., Leiden, 111, 29-31.
gohouler, James. The spirit of historidal research. Ann. Rep. Am. Hist. Aseoc., Wash., 43-51.
Scmbader, O. Prehistoric antiquities of the Aryan peoples: a manual of comparative philology and the earliest culture (being the "Sprachvergleichung und Urgeschichte"). Translated by Frauk Byron Jevons from the second revised and enlarged German edlition with the sanction and coilperation of the author. London: Grifin. 496 pp . 8 vo.
Schreiber, J. Etude sur le subjonctif français. Le Muséon, Louvain, ix, 278-296.
Schumann. Slavische Skeletgriiber von Bagemïhlan der Randow. Verhandl. d. Berl. Anthrop. Gesellsch., Berl., 361.
Schurtz, H. Beitrige zur Trachtenkunde Apikas. Das Ausland, Stnttgart, LXII, 861864, 888-892, 910-913.
—— Eine Religion der Urzeit. Das Ausland, stuttgart, Lxifi, 688-692.
Scifwar'me, W. Mythologisch-Volksthïmliches ans Friedrichsroda and Thüringen. Verhandl. d. Berl. anthrop. Gesellsch., Berl., 131-137.
Sonwatka, F. The sun-dance of the Sionx. Century, N. Y., xxxix, 7is3-759.
Science. Weekly, New York. Vol. xiv, in 1800.
Scottish Review. Quarterly, 1890.
Seidiftz, N.v. Kirgisische Volks-Xichter und Sänger. Das Ausland, Stuttgart, exint, 645-647.
Slaer, Ed. Altmexikanische Studien. 1. Ein kapitel ans dem geschichtswerk des P. Sahagun. 2. Die sogenannten Sacralem Gefisse der Zapoteken. Berlin: Spemann. pp. 117-188. fol.

- Altmexikanische Wurf'hretter. Internat. Arch. f. Ethnog., Leid., IIt, 137-148, 32 ills., 1 pl.
———Religion und Kultus der alten Mexikuner. Das Ausland, Stuttgart, ixir, 781786, 814-817.
SEPP, Dr. Die Urbewohner Althayerns. Grunillinie einer neuen Alterthumsgeschichte unseres Vaterlandes. Beitr, \%. Anthrop. Bayerns. München, ix, 1-7.
Sergr, G. Sopra un cranio deformato scoperto nel Bolognese. Bull. d. r. Acad. med. di Roma, xi, 115.
Severo, R. Primeros vestlgios do periodo neolithico na l'rovincia de Anzola. Rev. de sel. nat. e'soc, da Socledade Carlos Ribeiro, Porto, I , 102-161, 1 pl.
Sewall, C. A. A new extemporapeona litter, copled after tho Mojave Indian method of carrylug the wounded. Med. Rec, N. Y., Xxxvili, 461.
Shater, N. S. Nature and man in America. Seribner's Mag., N. Y., vili. I. 360376; II. 473-484; III. 645-655.,
Shand, -Adexander F . The antinomy of thought. Mind, July, 1890.
Simistri, Panidy Haraprasid. Notes on the superstitions beliefs in the Sunderbums (title). Proc. Asiatio Soc. Bengal, Calcutta, 248.
---- The account of a Bengali Brahmana whoobtained a high position in the Singhalese Buddhist Mierarchy in the Eleventh century A. D. Proc. Aslatic Soc. Rengal. Calcutta; 125.
Shaw, Albert. How London is governed. Century Mag., N. Y., xhi, 132-147.
Shepmern, H. A. The antiquities of the State of Ohio; full and accurate descriptions of the works of the mound-builders; defensive and sacred inclosures, mounds, cemetries, and tombs, and their contents-implonents, omaments, sculptures, etc. Cilloinnati: Robert Clarko \& Co. $\quad 6+139 \mathrm{pp}$. 8 vo.
Short, T. W. Characteristic survivals of the Celts in Mampshire. J. Anthrop. Inst., Lond., $\mathrm{xx}, 3-20$.
Siberia. Note di Viaggio, Stephen Sommier, Areh, per l'anthrop., xvief, fase 3, xix, fase. 1. [Rev. in: L'anthropologie, 1, 124-131.

Sibley, W. K. Left-leggedness, Nineteenth Cent., Lond, xxvil, 773.778; Rep. Brit. Assoc. Ady. Sc., London, LIX, 776.
Sinolatr, F. W. Flint remainsin the Kolaba district. Journ. Anthrop. Soc., Bonbay, II, 75-79.
Siticg, Otto. Ueber unfreiwillige Wanderungen im grossen Ozean-Gotha. 12 pp . 4to.
Sixty folk-tales, from exclusively Slavonic sources; translation, with brief introductions and notes, by A. H. Wratislaw. Boston: Houghton, Minilin \& Co. 8vo.
Skatkowski, B. von. Ueber das Verhältniss gewisser Durchmesser des kindlieheu und des mütterlichen Schädels. Arch. f. Gynaek., Berl., XXXVIII, 501-510.
Skertchly, S. B. J. On fire-making in North Borneo. J. Anthrop. Inst., Lond., Xix, 445-452, 1 pl .

- On some Borneo traps. J. Anthrop. Inst., Lond., xx, 211-219.

Suiter, C. P. Over het al of niet waarschijnlijke van het Overerven van Verkegen Eigenschappen, en het Belang dezer Vraag voor de Biologie. Batav., 8, s., x, 75-96.
Smali, A. IV. The beginnings of American nationality. Johns Hopkins Univ. Stud, in Hist. and Polit. Sc., Balto., 77.
Smirnoff, J. N. Les Votjaks; aperçu historique et ethnographique. Kazan. 308申 $39+4 \mathrm{pp} . \quad 8 \mathrm{vo}$.
Smith, Dele. Additional notes on Onondaga witeheralt and Ho^{n} - do^{\prime}-i. J. Am. FolkLore, Bost. ąnd N. Y., II, 278-2881.
Smith, W. Robertson. The religion of the Semites. New York: D. Appleton \& Co. 488 pp. 8vo.
Smitif, William W. Who first made maple sugar? Amer, Antiquar., Mendon, xif, 176, 17\%.
Snyder, Monrof B. Survivals of astrology. J. Amer. Folk-L., Bost. and N. Y., III, 127-131.
Socicté d' F́lindes philosophiques et sociales. Paris.
Somervilfe, A. A. Experiments at Diton Coliege on the degree of concordance between different examiners in assigning marks for physical qualifications. Rop. Brit. Aes. Adp. Sc., 1889, Lond., LIX, 477.
Sormb, G. Contributions psycho-physiques a l'ítude esthetique. Rev. philosph., July.
Sowa, Rudolipil voñ. Notes on the gypsies of Northwestern Bohemia. J. Gypsy Lore Soc., Edinb., II, 138-142.
——Notes on the Gypsies of Southeastern Moravia. J. Gypsy Lore Soc., Edinh,, II, 226-228.
——Slovak-(7ypsy vocabilary. J. (fypsy Lore Soc., Edinb., II, 110-114, 181-186, 240-246.
Spearman, Ebmund R. Frenoh Police Photography. Nature, N. Y., xhif, 642-644, © ills.

- Mistaken identity and police anthropometry. Vortnightly Rev., Lond., n. s., XLVII, 361-370.
SiPenoer, Herbert. Absolute political athies. Nineteenth Cent., Lond., xxvili, Jan.
-- Our space-consciousuess; a reply. Mind, Lond. and Edinl., xv, 30;-324.
-- On justice. Nineteenth Cent., Lond., Xxvini, March.
The origin of musie. Mind, Lond, and Edinh.: xv, 449-468. dl8o, Pop. Se. Month., N. Y., Xxxviif, 1-18.
Spencer, J. W. Remarks upon the mounds of Sullivin Comity, Indiana. Am. Ass. Adv. Se., 1890.
Spencer, D. F. Local government in Wisconsin. Johns Hopkins Univ. Studia Hist, and Polit. Sc., Balto., 5-15.

Sporrl, Ienaz. Resultate der Ausgrabungen fifr die anthropologische Gesellschaft in Niederösterreich und in Mäliren in Jahre, 1880. Mitth. d. anthrop. Cesellsch. in Wien, xx, 59-100, 40 ills.
Stanley, H. M. Geographical results of the Emin Pasha relief expedition. Proc. Roy. Geog. Soc. Lond., xif, 313-330.

In Darkest Africa. Sampson Lowe, Marston \& Co. 3d ed., 2 vols., 150 ills., 3 maps. 8vo.
Les pygmés do l'Afrique centrale. [Extrait.] Nature, Par., xvir, pt. 2, 67-69.
STANLEY, W. F. Note on a new Spirometer. Journ. Anthrop. Inst., Lond., xx, 28-30.
Starr, Frederiok. Perforated skulls from Michigan. Amer. Antiquar., Mendon, XII, 165-166.
Stearns, Robert E. C. Instances of the effects of musical sounds on animals, Am. Naturalist, Phila., 1890, xxiv, 22-29, 123-130, 236-242.

- On the Nishinam game of "Ha" and the Boston game of "props." Am. An. throp., Wash., III, 353-358, 2 ills.
Steenstrup, J. Die Mammuthjüger-Station bei Predmostira österreichìschen. Kronlande Mähren. Mitth. d, anthrop. Gesellsch. in Wien, n. F., x, 1-31, 3 ills.
Stempf, V. Glossar zu Dechepare's Poesien. Rev. d. Ling., Par., xxim, 312-329.
Stearin, P. von. Die Wotinken. Das Ausland, Stuttgart, lxiif, 576-580, 590-593.
- Ein Beitrag zur Ethnologie des Amurlandes. Das Ausland, Stattgart, LxiII, 757-760, 771-775.
Sterndale, R. A. Asiatic architectnre in Polynesia. Asiat. Quart. Rev., Lond., x, 340-357.
Stevenson, W. H. The long handred and its use in England. Archeol. Rev., Lond., Iv, 313-327.
Stewart, George W. Mounds in California. Amer. Antiquar., Meddon, xi, 42-43.
Stokvis, B. J. Ueber verglelohende Racenpathologie und die Widerstandsfithigkeit des Europiers in den Tropen. Wien, Med. Bl, XIII, $663,580,595$.
Stoni,'Otтo. Zur Kenntuis der heutigen Basken. Das Ausland, Stuttgart, Lxifi, 695. 699, 701-704, 734-737, 751-754, 775-779, 796-798.
Stoller, J. H. Human heredity. Pop. Sc. Month., N. Y., Xxxvi, 350-365.
stolpe, Hjalmar. Om Kristiania Universitets etnografiska Saming. Ymer, Stockholm, $\mathrm{x}, 53$-64.
Stölten, H. O. Der Arzt als Bahubrecher christlicher Kultur die Mission des Arates in China. Jena, G. Neuenhahn, 1890, 8. 55 S. [Rev.] Zeltschi. f. Ethnol, Berl, xxif, 107-108.
Stoops, H. M. Preliminary steps to an archrological map of FranklinCounty, Indina, Am, Ass. Adv. Sc., 1890.
Storno, Jr., Fran\%. Der Bernsteinfund von Oedenhurg. Antiqua, 24, 20, 3 pl. Strasshurg, Vili.
Strbiel, H. Studien über Steigjoche mis Mexico nud Mittel-Amerlka. Internat. Arch. Ethnog., Leiden, Itr, 16, 40, 4 pl .
Strong, Auguspus If. Modern exaggerations of the Divine immanence. Mag. Christian lit., New York, 1891, iII, 276-283.
Sraoun, F. The judicial dietionary of words and phrase j judicially interpreted. London. 8vo.
Shisart-Merritt Ch. La Russie dans le passó, le present, l'avenir. Bull. Sog. d. Geog. d. Lyon, viin, 669-590.
Sthbel, A., W, Reiss, und B. Kapiet. Kultur und Indistrie siddamorikaniseher Völker, nach den im Besitze des Musenms fiir Valkerkunde an Leipzig befindlichen Sammlungen, Vol. I. London. Asher \& Co. [Rev. in: Athenaum, Dec. 9, 199, 200.1

Sttokelberg, E. A. Zum capitel der Schalensteine. Antiqua, Strassburg, vili, 11, 12.

Studien, Berliner, für classische Philologie und Archiiologie, xi, pt. 2. Berlin: Calvary \& Co. 40 pp. 8vo.
Stupart, Capt. Flying proas of the Ladrone Islands. Proc. Cauad. Inst., Toronto, VII, 3. 8., 204, 1 pl.
Suastika, Zur Geschichte der. By Michael v. Zminsrodzki. 4 figs, 4 tables, Archiv f. Anthrop, XIX, 173-181, [A learned paper, immense number of illustr.]

Sturtevant, E. L. The history of garden vegetables. Ain. Naturalist, Phila., xxiv, 30-48, 143-157, 313-332, 646-648, 719-744.
Stutfields, G. Herbert, Racing in 1890. Nineteenth Cent., Lond., Xxviif, June.
Sutton, J. Bland. Evolution and disease. New York: Scribner \& Welford. 8vo. Also London: W. Scott. 298 pp., 1 pl .12 mo .
Svoboda. Die Bewohner des Nicobaren-Archipels. Mitth. d. anthrop. Gesellsch. in Wien, n. F., x [21-31].
Swords. The oldest sword-forms. I. Undset, Zitschr. f. Ethnol., xxiI, 1-29, 67 figs.; also, A-I.. L. orauge Den yngre Jernalders Sverd, rev, at length, id., 30-40.
Symonds, I'. J. On some Indo-Frellch and Indo-Dutch coins. Journ. Anithrop. Soc., Bombay, II, 102-108, 1 pl.
Szombathy, Josef. Die Tumull von Gemeinlebarn. Wien mitthief. d. priihist commission d. Kaiserl. Akad. d. Wiss. 2 tables, 76 figs.
Talbot, E. S. The jaws and teeth of a party of cave and cliff dwellers. Dental Cosmos, Phila., Xxxir, 357-364.
——Statistics of constitutional and developmental irregularities of the jaws and teeth of normal, idiotic, deaf and dumb, blind, and insane persons. J. Am. M. Ass., Chicago, XIV, 563-568.
Tales and legends from the land of the Tzar; a collection of Russian stories, from the Russian, by Edith M. S. Hodgetts. New York [1801]: C. L. Merrill \& Co, (j324 pp.
TARDE, G. La oriminalité comparée. 2^{c} éd. Paris. 215 pp . 18vo.
——— La philosophie pénale. Paris: (t. Mason. 6060 pp . 8vo.
TARNowsky, Pauline. Étude anthropométrique sur les prostitućes et les voleuses. l'aris: lecrosnier \& Babe. 8vo.
Tatars on the south sile of the Crimea. Section of Authrop. Society of the Friends of the Sciences. Moscow, 2 fasc. pp. 59.
Tautarn. Contribution ál'étude de la langue. Foule (Poular). Rev. de lingnistique, Paris, XxiIf, 118-147.
Taverni, R. et Magnan. L'infanzia dei criminali nei suoi rapporti con la predisposizione naturale al crimine. [Transl.] Anomalo, Nupoil, 1889, I, 301-368; 1890, II, 3-12.
Tavernier, Tean Baptiste. Travels in India. 'Transl, from the French edition of 1676, by V. Ball. 2 vols. Maemillan \& Co., London, [Rer. in: Atheneum, Mareh 22, 308-370.]
TAybok, B. The disposal of the dend. Scottish Rev., Oet.
Taylor, Isana. The ethmological significance of the heech. Rep. Brit. Ass. Adr. Sc., 1899, Lond., 782.
——urther researches as to the origin of the Aryans. Rep. Brit. Ass. Adv. Sc., 1880, Lond. , 780-782.
——The origin of the Aryans; un acconnt of the prehistoric ethnology and civilization of Europe. New York, Iumboldt Pub, Co., 2 pts. $0+80,07+108 \mathrm{pp}, 8 \mathrm{vo}$.
———The prehistoric races of Italy. Contemp. Rev., Aug., 261-270.
Titowiren, Narbenzeichnen und Körperbemalen, ein Beitrag zur vergleichenden Ethnologie. By William Joest, Berlin, Asher, $x+112 \mathrm{pp} ., 11$ ohromoliths, 1 plate, 30 etchings. fol,

TCHEng-ri-tong. China: A sketch of its encial organization añd state economy. Asiat. Quart. Rev., Lond,, X, 258-272.
Teaciue, J. J. A seventeenth century prelate. Nineteenth Cent., Lond., xxviif, March.
Teqner, Elof. Tvenne italienska Resande i Sverige pá Karl den elftes Tid. Ymer. $1-52,6$ ills.
Teske, C. Das wappenderer v. Rassewitz. Neustrelitz. 7 pp . 4to.
Trestur, L. Note sur un cas d'apophyse paranastoïde observé chez l'homme. Province méd., Lyon, IV, 64.
Thomas, C. The circular, square, and octagonal earthworks of Ohlo. Washingtón, Bureau of Ethnology. Govt. Print. Also, The Problems of the Ohio Mound, id.
——The Cherokees in Pre-Columbian times. Fact and theory papers. New York, N. D. C. Hodges. [Rev. in: Amer, Antiquar., Mendon, xir, 367, 369.]

Thompson, A. H. The expressional services performed by the face. Dental Cosmos., Phila., xxxif, 85, 169, 633, 683, 757.
Thompson, Enward H. Copies of Maya pottery and implements. Proc. Am. Antiquar. Soc., Worcester, vi, 358, 359, 1 pl.
Thompson, J. A. The history and theory of heredity. Proc. Roy. Soc., Edinb. (1888-'89), XVI, 91-116.
Thomson, A. Additional note on the influence of posture on the form of the articular surfaces of the tibia and astragalus in the different races of man and higher apes. J. Anat. and Physiol., Lond., xxiv, 210-217.
——The orbitomaxillary frontal suture in man and the apes, with notes on the varieties of the human lachrymal bone. J. Anat. and Plysiol., Lond., xxiv, 349-357.
Thomson, J. The results of European intercourse with Africa. Contemp. Rev., Lond., LVII, 339-352.
'liomson, Joserf. . The world's great explorers.-Mungo Park and the Niger. Philip \& Son. [Rev. in: Athengum, June 28, 827, 828.]
Thoulet, J. La campagne scientifique du schooner des États-Unls Grampus en 1889. Bull. Soc. d. geog., Par., 7. s., XI, 138-144.
Thmuston, Gates P. The antiquities of Temnessee and the adjacent States, and the state of aboriginal society in the scale of civilization represented by them. A series of historical and ethnological studies. Cincinnati: Rohert Clarke \& Co., el, xv. $369 \mathrm{pp},. 18 \mathrm{pl}$, and 246 fig . 8vo. [Ret. in: Amer. Anthrop., Wash., 1891, iv, 83-86, by Robert Fletcher.]
m, Thurn, Everard F. Primitive games. Reprint: from "Timehrl," the Journal of the Royal Agricultural and Commercinl Society, 270-307.
'Tims, John W. Grammar and dictionary of the Blackfeet language. Cauada: London. 191 pp .12 mo .
Tis dillier, O. Ueher Sporen und nachrömisches Email (Zweiter Nachtrag.) Cor.- Bl. f. deutsch. Gesellsch. f. Anthrop,, Mïnchen, xxi, 17-20.
Toorn, J. L. Yan der. Het animisme bij den Minangkabauer der Padangsehe Bovenlandeu. Bijdr. Taal-land-en Volkenk. Hague, 5, s, v, 48-104.
Topinard, P. Les Angolais. Bull. Soc. de méd. prat. de Par., 114-120.
-. Essais de craniométrle a propos du eríne de Charlotte Corday. Authropologie, Par., I, 1-20.
-_ Notes and reviews on many subjects in L'Anthropologie. First volume.
Török, A. von. Ueber eine nene Methode den Sattelwinkel zu messen. Zar Reform der wlasenschaftlichen Kraniologie. Internat. Monatschr. f. Anata. and Physiol., Leipz., vir, 97, 148, 203, 224, 3pl.
Totren, C. A. L. Our race: Its origin aud destiny; a series of studies on the Saxon riddle, with an introduction by C. Piazzi Smith. New Haven: "Our Race" Publishing Co. $20+208 \mathrm{pp}$.

T'oung paO. Aruhives pour servir a l'étitle de l'histolré, des langues, de la gégraphie et de l'ethnographle de l'Àsie Orientale. Leide. 8vo.
Treidmel, A. Sagen aus Westpreussen. Zeitschr, f. Völkerk, Leipz., If, 143.
Trivier, Capilaine. La traversée de l'Afrique, Bull. Soc. d. géog. d. Lyon, IX, 5-32.
Tromp, S. W. De Kleeding eener dajaksche Vrouw. Internat. Arch. f. Ethnog., Leiden, 1मI, 1-7, 1 pl .
__ Een dajaksch Feest beschreven en Toegelicht. Bijdr. Taal-Land-en Volkenk. Hague, $\sqrt{\text {. s., }}$ v, 27-39.
Trouessart, E. Le cheval sauvage de la Dzoungarie. Nature, Paris, xviif, 369-371.
Tuaner, S. S. Indian medicine men; the hypnotic countenance. Times and Reg., N. Y. and Phila, XXI, 423-425; Med. News, Lvi, 323.

TURNER, WM. Les circonvolutions cérébrales, étude d'anatomie comparée. Journ. Anat. and Physiol, Edinbourg, xxv. [Kev. in: Anthropologie, Par., I, 728-731, by P. Topinard].

Tulner, Sir WV. On heredity. Rep. Brit. Ass. Adv. Sc., 1889, Lond., Lix, 756-771,

- Human neck with the odontoid process distinct from the body of the axis vertebra. J. Anat, and Physiol., Lond., xxiv, 358.

On implements of stag's horn associated with whales' skeletons found in the Carse of Stirling. Rep. Brit. Ass. Adv. Sc., 1889, Lond., 1890, Lix, 789-791.
Tyrrall, Col. The Barbary corsairs. Part If. Asiat. Quart. Kev., Lond., X, 388-411. Uhle, M. Das Föhringer-Haus, Verhandl. d. Berl, anthrop. Gesellsch., Berl., 62-75. Undset, I. Antike Wagen-Gebilde. Ztschr. f. Ethnol., Berl., xxir, 49-75.
——Archäologische Aufsïtze über südeuropaiische i'undstiicke. Ztschr, f. Ethnol., Berl., XXII, 49-75, $20 \mathrm{flgs} ; 109-145,50 \mathrm{fg}$.
University Archreological Association, Philadelphia. See "Annual Report."
Vambery, Armin. Thefuture of Russia in Asia. Nineteenth Cent., Lond., xxviri, Feb.
Van Hoonacker, A. Nóhémie et Esdras.-Une nouvelle hypothése sur la chronologie de l'épo̧ue de la restauration. Le Muséon, Louvain, IX, 151-184, 317-351.
Variany, H., De. L'ívolution mentale chez lhomme, d'apres M.G.-J. Romanes. Rev. scient., Par., XIVI, 403-407.
Variot. Pigmentation cicatricielle des negres, Bull. Soc. d'anthrop d. Par., Par., 3. s., XII, 465-467.

Vauvince, O, Quelques ateliers et stations préhistoriques du départment de Seine-et-Olse. Bull. Soc. d'Anthrop. d. Par., Par., xir, 3. s., 532-539.
-_Tranchets et fleches prohistorlques du départment de l'A isne. Bull. Soc. d'an$=$ throp. d. Par., XII, 3. s., 628-633, 2 IIgs.
Veckenstedt, E. Die Kosmogonien der Arler. V/tsohr. f. Völkerk., Leipz., 11, 129, 109.

VEDEI, F. Bornholmske Underspïgelsel med sitirligt Hensyn til den senere Jernalder. Aarb. f. Nord. Oldk. og. Hist., Kjob., v, 1-104.
Verneau, R. Carl Lumbiolta nu pays des Cannibales. Voyage d' exploration chez les indigenes de l'Australie orientale, 1880-1884. Paris, Irachette et Cie, 1890, 1 vol. [Revin: L'Anthrop., Par., I, 453-4[50].

- Oránes trópanés. Anthropologie, Par., I, 182.

Gaillaume Capus. La Toit lu Monde (Pamir). Paris, Hachette et Cle, I, in-16, 31 gravures et 1 carte. [Rcu. in: I'Anthrop., Par., I, 449-450.]

L'Allee converte des Mureaux (Seine-et-()ise). Anthropologie, Par., I, 157-180.

- Victor Girand. Les lacs do l'Afrique équatoriale. Voyage d'exploration exécute de 1883 i 1885. Paris, Hachette et Cle, 1 vol. [Ren. in: L'Authrop., Par., 1, 450.453.]
Verkier, E. La région montagneuse de l'est Africain; Ctude sociale sur les indigìnes de ce pays. Bull. Soc. d'anthrop. de Par., 4. s., I, 231-244.

Versammlung deutscher Naturforsoher und Aertze. (XLII) 1889, Heidelberg, 18 to 23 September, Section of Anthropologie and Ethnologie. [Publish annual Tageblatt. Reviewed in L'Anthropologie, $1,491$.
Vial, Paun. De la hangue et de l'écriture indigones au Yûnnấn. Paris, Ernest Leroux. [Rev. in: Amer. Anthrop., Wash., 1891, iv, $90-92$, by W. W. Rookhill.]
Viking Age (The). Quart. Rev., April.
Vinson, Juliten. La Bretagne armoricaine, par N. Quellien. Rev. d. Ling., Par., xxili, 377.
Virohow, Run. Aus der Provinz Posen. Ergiinz. z. Ztschr, f. Ethnol., Berl., 1, 7-9.

- Brehm's Tierleben. Dritte, giinzlich neu bearbeitete Auflage von Prof. Dr. Pechuel-Loesche. Situgetiere. Leipzig und Wien, Bibliographisches Institat. [Rev. in: Ztschr. f. Ethnol., Berl., Xxir, 170-171.]

Die alten Berg Stargard in Pommern. Ergianz. z. Ztschr. f. Ethnol., Berl., I, 30-31.

Die alten Heer-und Handelswege der Germanen, Römer und Franken im deutschen Reiche, by J. Sehnelder. Neuntes Heft. Dísseldorf gr. 8vo. 35 pp . 1 Rev. in: Ztschr, f. Ethnol., Berl., XxII, 170.]

Ein Burgwall bel Heldevorwerk, Kr. Wohlau (Sohlesien). Ergiinz, z. Ztschr. f. Ethnol., Berl., 1, 20-30.
——Eine Excursion nach Lengyel (Siid-Ungarn). Verhandl. d. Berl. anthrop. Gesellsch., Berl., 97-118, 2 pl.
———Germanen und Slaven, eine archiiologisch-anthropologische Studie, by Georg Buschan. Münster, 8, 49 s., 1 Karte, 4 Jafelv. [Rew. in: Ztschr. f. Ethnol., Berl., XXII, 171-172.]
—— Makedonisches Messer von archaisehem Typus. Verhandl. d. Berl. Anthrop. Gesellsch., Berl., 344-346.

- Max von Chlingensperg-Berg. Das Griiberfeld von Reichenhall in Oberbayern. Reichenhall, H. Bïhler'sche. Buchhandlung, 1800. 4, 164 s. mit 1 Karte nud 40 Fundtafeln in Lichtkupferdruck. [Rev. in: Ztschr, f, Ethnol. Berl, XXII, 105, 106.]
———Ostpreussiche Alterthümer, Ergilnz. z. Ztschr. f. Ethnol., Berl., I, 31-32.
- Reise nach der Troas. Verhandl. d. Berl, Anthrop. Gesellsch., Berl, 331-344.
-_Ueberreste von Katzen aus Bubastis. Verhandl. d. Berl. Anthrop. Gesellsch., Berl., 118-126.
——. Yom wandernden Kigeunervolke, by Heinrich von Wislocki. Bilder uus den Leben der Siebenbürger Zigeuner, Geschichtliches, Ethnologisches, Sprache und Poesie. Hamburg, Verlagsanstalt, vormals J. F. Richter, K1. 8, 390 S. [Rev. in: Ztschr. f. Ethnol., Berl., x xir, 169.]
- Vorkommen un Form des siichsischen Hauses in Ost- und West-Holstein. Verhandl. d, Herl. anthrop. Gèsellsch., Berl, $75-82$.
Visite des campements indigenes a l'Esplanade des Invalides. Asie; Afrique; Oceanie. Bull. Soc, des Méd. prat. de Par., 370-410.
Voaks, 'I'ı. Zwei vorgeschichtliche Grilber bei Steindorf in Branuschwelg. Ergiin\%. Z. Ztsohr. f. Ethmol., Berl., 1800, r, 60.

Volkskunde. Tijdschrift voor ncerlandscho Folk-Lore. Gent: Ad Ioste, Edited by Pol do Mont, Antwerp, and Aug. Gittée. Charlerol. Bd Jaargnng in 1800.
Vondrak, W. Altslovenische studien. Wein, Tempsky, 30 pp. 8vo.
Vos, H. Die Verbreitung der Anthropophagie auf dem asiatischen Festlande. Internat. Arch. f. Ethnog., Leiden, III, 69-73.
Yotiaks, J.-N. Sminnoff, Vowsaky. Istorico-otnogratischesky otscherk. Kazan, 308 pp . 8vo. L'Antliropologie I, 019-624.
Wake, C. S. The Asintio aflulties of the Malay language. Proc, Am. Phil. Soc., Phila., Xxvit, 81-87.
-The grow th of the mariage relation. Boston, J. H. West, 67-87. ['The modern sclence essaylat, No. 21.]

Wallace, A. R. Human selectiou. [F Fortnightly Rev.] Pop. Sc. Month, N, Y., XXXIII, 93-108.

Wallace, R. A. Prehistoric Indian evidences in Louisiana. Aner. Antiquar, Mendon, XII, 46-48.
Wallian, S, S. The physiological, pathological, and psychological bearings of sex. Tr. M. Soc, N. Y. [Phila.], 247-259.
Wallis, Henky. The destruction of Egyptian monumenis. Nineteeuth Cent., N. Y., No. OLXV, 720-732.

WANkel. Die Mamuthlagerstätte bei Predmost in Miihren. Cor, Bl, d. deutsch. Gesellseh. f. Anthron., Mïnchen, XXI, 33-36.
Ward, Herbeet. Five years with the Congo cannibals. Chatto \& Windus. 83 ill. London, 8vo.
Ward, J. State of teeth in prehistoric skeletons. Pharm. J. \& Tr., Lond., 3. m., xx, 952.

Warner, A. G. Concerning corporation law. Pop. Sc. Month., N. Y., xxxvii, 323333.

Warner, F. Form of cur as a sign of defective development. Lancet, Lond., i, 344.
Wauters, A. J. L'Elephant en Afrique. Laquestion des transports; quelques particularités sur l'eléphant. Annales L'Extr. Orient, Par., 2.s., XIII, 270-275, 202310, 335-339, 367-3i6.
Waumermans, $1 t_{1}$-Glell. Henri le Navigateur et l'Académie portugaise de Sagres. Bull. Soc. Roy, de Geog. d'anvers, Anvers, xv, 1-173.
Weber, Franz. Bericht uiber neqe vorgeschichtliche Funde in Bayern. Beitr. z. Authrop. Bayerns. München, IX, 77-85.
———Vorgeschichtliches, aus dem Alpengebéete zwischen Inn und Salzach. Beitr, z. Anthrop. Bayerns. München, IX, 8-17.
Weber, Max. Ethnographische Notizen über Floresund Celebes. Internat. Archiv f. Ethnog., Leid., sup., III, 1-49, 8 pl.
Webber, S. G. Natural and acquired limitations from a medical point of view. Boston M. \&S. J., ©XXII, 103-195.
Weicel, M. Ausgrabungen und Untersuchungen von Fundstellen duroh das kïnigh, Maseum für Völkerkunde, Ergiinz. z. Ztschr. f. Ethnol., Berl., 1890, I, 2-7, 10 figs. ; 17-29, 15 figs. ; 33-42, 15 figs.
—— Das Gräberfeld von Wandlitz, Kreis Niederbarnim, Provinz Brandenburg. Lirgänz. zo Ztschr. f. Ethnol., Berl., $x_{;}$61-64, $\overline{6}$ ligs.
Werperr, H. Japanisches Familien-and Erbrecht, Mith. d. deutsch, Gesellsch, I. Nat.-u. Völkerk, Ostasieus, Yokahama, v, 83-140.
Wersbach, A. Der Maori-Schiidel. Mitth. d. anthrop, Gesellsch. in Wien, w. F., x., 32-37, 1 tab.
Weismann, A. The musical sense in animals and men. Pop. Sc. Month., N. Y., xxxvir, 352-358.

- Theory of heredity. Nature, Lond., xuI, 317-323.

Wehls, Roaler Jr., and J. W. Khiley. Fuglish-Eskimo and Eskimo-English vombularies; preceded by elhnographical memoranda concerning the Arctic Eskimosin Alaska and Siberia, by J. W. Kelley, Wash., D. C.: Gov't Printing Office. 4-7\% pp,
Webver, A. The Africau pigmies. Jop. Sc. Month., N. Y., xxxvif, 658-071.
Western China. Its products and trade. Quart. Rev., July.
Westhoff, F. Ueberdie Vererbung von Verletzangen bel Mensch und Tleren, Jahrb. d. Naturw., Freib. I, Br., 309-311.

White, Arnoin. Recent experiments in colonaation. Contemp. Rev., N. Y., 655)672.

White, A. D. The antiquity of man and Egyptology. Pop, Sc, Month., N. Y., XXXVII, 145-160;, 289-302.

White, A. D. The fall of man and anthropology. Pop. Sc. Month., N. Y., xxxvir, 677, 721.

- New chapters in the warfare of science, vil. Comparative mythology. Pop. Sc. Month., N. Y., xxxyi, 577-600.
Whitraker, Thomas. Volkmann's psychology (vol. i). Mind. July.
Wilde, Lady. Ancient cures, charms, and usages of Ireland. Contributions to Irish lore. London: Ward \& Dowuey. 267 pp. 12mo. (Atheneum, March 29, 398.)
Wilde, W. C. Notes on thier talk. J. Amer. Folk-L., Bost. and N. Y., ill, 303-310.
Winder, B. G. Does the poma (occipital operculum) occur in the human brain? Med. Rec., N. Y., Xxvil, 255.
- Exbibition of diagrams of the brains and medisected heads of man and a chimpanzee. Am. Ass. Adv. Sc., 1890.
Whiken, G. A. Albinos in den Indischen Archipel. Bijdr. Taal-Land-en Volkenk., Hague, 5. s., v, 105-120.
- Struma en cretinisme in den Indischen Archipel. Bijdr., Taal-Land-en Volkenk, Hague, 5. s., v, 349-425.
Wilkie, J. Heditary malformation of the thumbs. J. Anat. and Physlol., xxiv, Jan., Edinburg. [Kev. in: L'anthropologle, I, 343.]
Wilser, Ludwig. Anthropologie und Geschichte. Das Ausland, Stuttgart, ixiif, 913-918, 928-434.
- Der Ursprung der Bronze. Das Ausland, Stuttgart, lxmil, 386-392.

Wilson, ,T. Hypothesis of a European origin of' early Egyptian art. Rep. Brit. Ass. Ado. Sc., 1889, Loud., lix, 778.
Wilson, Thomas. A study of prehistoric anthropology. Hand book for beginners. Pamphlet, from Rep. Nat. Mus., 1887-'88, Wash., Gov't Print., 597-671, 20 pls.
——Congresses, mational and international, held in Paris during, and a part of, the French Exposition of 1889. Ain. Naturalist, Phila., xiv, 197-199.
Wlisloккi, H. V. Kinderspiele der siebeubürgischen und sïdungarisoben Zeltzigouner. Ztschr. f. Völkerk., Leipz., i1, 151, 192.
-_Vom wandernden Zigeunervolke. Geschichtliches, Ethnologisches, Sprache und Poesie. Hamburg. 390 pp . Verlagsanstalt \& Druckerei. 8vo.
Wood, J. T. Modern discoveries on the site of ancient Ephesus. Loudon, 8vo.
Wcobford, C. M. A naturalist among the Head-hunters: being an account of three visite to the Solomon Islands in the years 1886, 1887, and 1888. London: Philip. 262 pp .8 vo . [Rel. in: Athencum, March 29, 406-407.]
——Further explorations in the Solomon Islands, Proc. Roy. Geog. Soct, Lond., xi, 393-418, 1 map.
Whede, Fd. Quellen und Forschungen \%ur Sprach und Culturgeschichte der german. ischen Völker. Strassburg, 1891: 'Trübner. 208 pp .8 Bo.
Whichit, W. Lectures on the comparative grammar of the Semitic languages, London. 209 pp . 8vo. Cambridge University Press.. [Rev. in; Athenreum, London, Oct. 11, 475, 476:]
Ymer, Tidskrift utgifven af svenska Sillskapet för Antropologi och Geograll. Stockholm, 1890, x, Samson \& Wallin.
Younc, A. H. Loeations of mounds in Wisconsin. Amer. Antiquar, Mendon, xir, 176, 176.
Yee, Fung. A Chhicse view of railways in China. Nineteenth Cent. Lond., xxvin, Feb,
Zeitschrift fiir Ethologic. Organ der Berliner Gesellsolaft fiir Anthropologie, Ethnologie und Urgeschichte. Berlhi, A. Asher \& Co., Vol, xxir, in 1890.
Zeltshailt für Psychologie und Physiologie der Sinnèzorgane, Vol. 1, in 1890. Hamberg and Lelpsle. L,: Voss.
Zeitschrift filir Volkskunde, Lelpaig. Founded at the ond of 1888,

Zeitechrift für Völkerpsychologie und Sprachwissenschaft. By Lazarus \& Steinthal, Berlin, Band, xx in 1890.
Zielingki, Viadisian Konnei, ine. Notes on the gypates of Poland and Lithuania. J. Gypay Lore Soc., Edinb., 1800, 11, $237-240$.
Zinok, I. Nordisk Archaeologi. Stenalderstudier, Kjhenhavn. 116 pp . Evo.
Zintalaff E. Ueber Gesten und Moinenspiel der Neger, Das Ausland, Lxin, 1890, 461.
Zmignonzki, Michaeiv. Zur Geschichte der Suastika. Arch. f. Anthrop., Brnschwg, XIX, 173-181, 7 tab.
Zönhé, Huqo. Untersuchungen über 24 Sprachen aus dem Schutzgebiete der Nett-guinea-Compagnie. Peterman's Mitteil., Gotha, Justus Perthes, xxxy, 122128, 145-152.
Zwemer, S. M. The Jesus Christ of the Koran. Mag. Christian Lit., N. York, 1891, III, 291-293.

A PRIMITIVI URN BURIAL.

By Dr. J. F. Snyder, Virginia, Oass Oounty, Illinois.

On the broad alluvial plain in the southeastern part of the State of Georgia, through which the Altanaha river takes its course to the sea, at a point a mile and a half north of that stream and nearly a mile from the Savannah, Florida and Western Railway, there is a small natural elevation of the ground rising a fow feet above the general level of the river valley. On the top of this higher ground is one of the numerous Indian burial mounds of that region, measuring some 25 or 30 feet in diameter at the base and 8 or 10 feet high at its center. In February last (1890) in making an excavation in the western edge of this moundnot for archæological investigation, nor by archæologists,-a few inches below the surface the spade broke into a hollow, spherical-looking object that, on inspection, proved to be the round bottom of a large earthen pot which had been buried there bottom up. The solid, hardpacked earth in which it was imbedded was then carefully removed and the vessel was lifted out of its long resting place. Much to the surprise of the explorers another quaint earthen vessel wais discovered within the larger one. This smaller one was standing upright on the natural surface of the ground, securely covered and inclosed by the large pot that had been placed inverted over it, affording it perfect protection from moisture as well as from the pressure of the earth forming the mound heaped over it (Fig. 1.) On examining the smallor vase it was found to be nearly half full of fine white ashos interspersed with caleined fragments of human bones, comprising the charred teeth and cremated skeleton of an adult individual. Lying on the surface of those remains were a quantity of small perforated bone beads (wampum), among which I discovered, uniform in size with the beads, several small pearls that had been pierced through the center for the purpose of stringing, with the beads, in the form of a necklace or other ornament. Whether the mound presented any perinliar features in its construction I have beon muable to lean ; and no further exploration of it has, to this time, been made.

The large pot, which I have succeoded in complotely restoring (Fig. 2) is bell-shaped, quite symmetrical in proportions, and measures 153 inches in height and exactly the same in width across the month. It
is made of compact elay, unglazed, hard bumed, and of the uniform thickness of a fraction more than the fourth of an inch. About the bottom, both inside and out, it presents by discoloration unmistakable evidence of having beon subjected repeatedly to the action of fire, probably for cooking food. Its internal surface is very even and regular and has the appearance of having been smoothed by the hand, as finger marks are faintly discerned, particularly about the upper portion. The outside is roughened by being ornomented all over with a continuous repetition of the peculiar design shown in detail in Fig. 3, which doubtless was impressed upon the soft clay, before it dried, with a stamp cut in intaglio, thus leaving the figure on the vessel in relief, or "raised."
The sinaller vase, in which the ashes of the dead had been deposited, is plain, smooth inside and out, glossy black in color, though not glazed; is thinner and more empact in texture than the large one, looking, at first glance, as if molded of papier mâche. It is free from ornamentation of any sort, and was burned hard after drying. In Fig. 4 it is rep. resented, as is also the covering vase (Fig. 2), one-eighth actual size. Obtusely pointed at the bottom, of conoidal form, it rapidly enlarges to near the top, and contracts again for on inch and three-fourths to the mouth; gracefol in contour, and almost mathematically true and reg. ular in every proportion; it is 13 inches broad at the widest part, $11 \frac{1}{2}$ inches high, and 112 inches across the opening. The fact that in each of these earthen vessels their heiglit and diameter across the month are exactly equal in measurement may be only an accidental coincidence, but would seem to indicate that certain definito principles or rules in the plastic art guided the ancient potters in slaping their vessels.

We are reasonably sure that the wheel and lathe were unknown, as appliances in the manufacture of pottery, to the primitive American Indians. But they must have omployed adequate substitutes for them; for without mechanical aids of some deseription the wonderful proficiency attained by some of the tribes in the ceramic art is diffentt to explain. In the early settlement of the country, abont the saline springs in Southern Illinois, Western Virginia, and other localities, numerous fragments of very large aurthen vessels wero found scattered abont over extonsive aroas adjoining, many of them, when entire, 3 , or 4 feet in length or in dinmeter and a foot or more in depth. They doubtless were mado and ased by the Indians as ovaporating pans for obtaining salt from the salt-impregnated water of the springs. Theso rude earthen kettles were plain on the inside, but invariably bore on the ontside the distinct impression of some kind of woven fabric. They excited the guriosity and astonishment of the backwoods. men; and, at a later time, taxed the ingenuity of the sciontist to discover the mothod by which the ancient artisan shaped and manipulated such nuwioldy masses of soft clay and supported them in place while drying. This problem was solved satisfactorily a few years ago by Mr, George E . Sellers. In his valuable paper on " Aboriginal Pottery of

Flli. $1\binom{1}{16}$.

limi : (118).

Snyder: Primitive Urn Burial.

Fig. 3. Actual Size.

lime. $4\binom{1}{1}$.

Snyder: Primitive Urn Burial.
the Salt Springs in Illinois,"* he quoted the opinions of the late dis. tinguished antiquarians, J. W. Foster, LL. D., and Dr. Ohas, Rau, that "the earthenware has evidently beon molded in baskets," an impracticable method because of the impossibility, as Mr. Sellers points out, of " keeping in form and lining with heavy clay fragile baskets of the large size of these old salt kettles." He then states, "I discovered (at the salt springs near the Saline River, in southern Illinois), what at first I took to be an entire kettle bottom up ; but on removing the earth that eovered it, it appeared to be a solid mass of sun-dried clay. From its position among heaps of clay and shells, its hard, compact, discolored-I may say almost polished-surface, I became satisfied it was a mold on whioh the clay kettles had been formed, precisely as in loan-molding at the present day." The soft clay was retained in proper position on the mold with bandages of coarse textile fabric that left their inpression on the pottery, similar to the imprint that baskets of the same texture would make if the plastic clay had been pressed against their inner surface. This very simple method of easting the large salt kettles-on the outside of the pattern-was probably the same adopted in making the larger of the two pieces of pottery from the Georgia burial mound (Fig. 2.). In its construction the clay when soft must have had firm support on the inner side to resist the pressure necessary to imprint its exterior surface with the carved type. When dried sufficiently to retain its form the vessel may then have been lifted from its mold and smoothed on the inside with water and the open hand. In shaping the smaller vase the thin shoet of tough clay was no doubt taken off the molding block while yot pliable and its upper margin drawn in gradually by careful manipulation. A. slightly wrinkled appearance of tho indrawn margin of the opening bears ovidence of this process.

There is no good reason for believing that these two pieces of earthenware were made purposoly for the inhumation of the incinerated remains they finally inclosed, though they are in every respeed so remarkably well adapted for that use. By placing the conical vaso upright on a support a littlo more than an inch in thiokness, and inverting the large pot over it, the receding rim of the vase exactly fits in the curving side of the pot, as is shown in lrig. 1 ; the one covoring the other so accurately as to woll nigh exclude the passage of air between the parts in contact. And this, I have been informed, was their relative position when recovered from the mound. This vase, though "now" and exhibiting no indications of provious uso, is of a type-... Amphora-like-quite common among the arthenware of the potterymaking pre-Oolnmbian Indians, The large pot, or kettle, as before stated, bems evident marks of long.continued use in domestie or cul. inary sorvice.

[^105]The exterior ornamentation of this large kettle is shown in detail, drawn of actual sizo, by Fig. 3. The dark lines are in relief, standing out level with the original surface of the olay when molded; the white spaces show the face of the carving that sunk its impression, the six. teenth of an inch in depth, in the yielding mass. It will bes observed in this unique design that a woll-dethued cross appears in each circlo surrounded by the intricate scroll lines. The figure of the cross is by mo means uncommon in the works of art of the ancient races inhabiting America before the historic period. It has been found fashioned in stone and copper, engraved on shell aud boue, and in colors on pottery vases and bottles-not to mention the famous carving at Palenque. Its presence among the relics of the mounds has occasioned much speculation and discussion, in the main with no other basis than ludiorous tlights of the imagination. At this late day the fanciful theory of a pre. Oolumbian propagation of Ohristianity in America by the Apostle Saint Thomas, supported at one time by such distinguished scholars as Professor Tiedemann, is scarcely worth a passing notice. "It has been shown by the preceding examples," remarked Dr. Ohas. Rau," which could be multiplied, if it were deemed necessary, that the cross was recognized as a symbol among the more advanced nations of A merica." Gomara says the knowledge of the cross as a religious emblem had penetrated all Spanish Amorica before its discovery and conquest ; and adds, "This veneration of the cross made them (the Indians) more ready to adopt the Ohristian symbol." This rubbish has vanished before the maroh of arohecologioal science, together with the grandeur and splendor of tho "cultired, semi-civilized mound buiders." Tho "sign of the cross," oarvod and sketched by the early mound-building Indians, is now properly considered a moaningless figure of ornamenta. tion adopted by erude savages because of its simplieity of execution. 'lhis advanced opinion is well expressed by Prof. F. W. Putnam, in mentioning a copper ornament of cross shape found in an old Indian gave in Tonnessee. Ho says: "I think it must bo phaced in the samo eategory with the "Tablet of the Cioss' at Palenque, ind bo regarded as an ornament made in its presont form simply because it was an easy design to execnte, and one of nabural conception."

Known instances of the preservation of oremated hmman remains in earthon ware vases, by our prehistorio Indians, are very rare. It was the custom of some tribes to burn their dead collectively. "IThe practice of reserving the skelotons," says Ool. O. O. Jones, w... D., \dagger "until they had multiplied suffeiently to warrant a general cremation or inhumation seems to havo beon adopted." I'hey wero then burned all together and the seothing pyre was covered with earth, hoaperl up into a mound, to be never again disturbed. "Jurial vases," he adds, "inolosing human bones (not burned) have occasionally been found in the grave mounds of

[^106]Tennessee, Alabama, Florida, Mississippi and South Oarolina." And he relates, on pages 455,456 of his valuable work, a very interesting account of the recovery from 4 small shell mound on Colonel's Island, in Liberty Oounty, Georgia, of a burial urn, inclosed in two others, containing the bones of a young child.

The urn-burial from the Altamaha mound-the sabject of this paperis original in design and remarkable for its ingenious simplicity. The pottery-ware is practically imperishable; and sealed almost hermetically, as were the ashes of the dead they contained, in that region where frost is scarcely known, they must have endured forever but for some convulsion of nature-or the implements of civilization. The presence, in the funeral vase, of small pearls with the wampum beads, and the chalk-like condition of both, attest the antiquity of this singular sepulchral deposit. Pearls were worn as personal ornaments in great profusion by the Indians of eastern Georgia when De Soto came among them, in 1540. The Gentleman of Elvas says that 14 bushels of them were found by the Spaniards in one charnel-house at Cofachiqui. Pickett remarks, in his History of Alabama, "There can be no doubt about the quantity of pearls found in this State of Georgia, in 1640, but they were of a coarser and less valuable kind than the Spaniards supposed. The Indians used to perforate them with a heated copper spindle, and string them round their necks and arms like beads."

Centuries havo passo d, with their ceaseless changes, since tho hands of affection placed those venerated ashes of the dead and bead ornaments in that monnd-covered erypt of clay pottery; and thoy who mourned on that occasion have, ages ago, been resolved into dust; but in these simple relies, they left-mas legible as though graven in letters on polished marble-a record of their crude religious feelings, of their ohild like faith and reverence, and of their very human yearnings for life'ever. lasting.

Nome.-.-Since this paper was written the mound \cdot in which the pottery vessels and incinerated human romains were found has been thoroughly explored; and nothing further was discovered but a bed of ashes and charcoal on the ground surface in the center of the tumulus.

MANNERS AND OUSTOMS OF THE MOHAVES.

By George A. Allen, Colorado River Agency, Colorado.

Although the Mohaves are giving up many of their superstitions, some of them still cling to the teachings of their ancestors. They oremate their dead, the funeral pyre being made ready for the corpse as soon as life is extinct, and the body is placed on the pile of wood prepared, while all the friends and relations of the deceased gather around and set up a pitiful moan. Formerly they burned all the property of the deceased, and often the mourners would contribute everything they possessed to the flames, thereby showing the affection and grief they felt for the dead; but this custom is not much practiced at the present time. The women usually contributed a portion of their hair to the flames-that is, those who belonged to the immediate family of the deceased--and would oven sometimes throw themselves on the fire, such was their grief.

While they have but little reverence, they believe there is a God, whom they call Mat-o we lia, and that Mo is the maker of all things; that He has a son, whom they call Mas.ram-ho, who is king of departed spirits. Mat-o.we-lia conducts the movements of the sun, moon, and stars; sends tho rain, sunshine, otc. Mas-zam-ho has full charge of affairs in heaven, or "yVhito Mountain," as thoy call it.

They bolieve the spirits of the dead go up to the "White Mountain" in smoke, and that all the property destroyed in the flames with the deceased will go with him to the "White Mountain," where pots are constantly boiling with something to eat.

They had formerly an annual burning of property, and all wonld contribute something to the flames in expectation of its going up to their doparted friends. This practice is ontirely discontinued on the reservation, but is still kept up by the Yumas at Fort Yuma, and by the Mohaves at Needles and Tort Mohave, off the reservation.

They also have a belief that all the Mohaves who die and are not cromated turn into owls, and when thoy hear an owl hooting at night they think it is the spirit of some dead Mohare returned. They are also suporstitious about eating any kind of food that they are not accustomed to. They will not eat the meat of the beaver, claiming that if they did their noeks would swell. This belief was brought about by
the circumstance of some one having poisoned beaver for their liides; and the Indians who ate of the flesh were poisoned and died; hence, they think all beavers are bad.

After one dies the friends do not eat salt nor wash themselves for four days. But these superstitions are fast disappearing, and in a few years most of them will have died out altogether. The medicine men are most instrumental in keeping them alive.

They formerly practiced polygamy, but this is now discontinued. Their marriage ceremory is a very simple one; they merely agree to live together as man and wife, seldom separating after such an agree. ment is formed.

They regard the hieroglyphics found on rocks as being the relics of some distinct race, of which they have no tradition whatever. Their animal nature, like that of all aborigines, predominates, and they are most happy and contented whon they have plenty to eat. The children are rather bright and inclined to learn when their minds are not diverted by play. When allowed to recreate they play some kind of game from early morn until bed-time.

Some of the women do very artistic work in beads and pottery; they also weave matting from cottonwood bark. The mesquite bean is their principal food in winter; this thoy gather and put up in large willow baskets, which they place upon platforms for storage. The screw beans they put into a kind of kiln, and thus it goes through a sweating process before they are used. 'They have the metate for grinding whent, corn, beans, etc.

Ohief Hook orow is the head of the Mohave tribe, and he is a good, peaceable Indian, but not very progressive, boing inclined to tako life rather easy.

Like all Indians they have plenty of dogs, and will divide their last meal with them. The children are all called "Peet," until they arrive at about four or five years of age, when they are provided with a name.

They live in sweat-houses in wintor and under open sheds in summer. Those who go to the railroad towns and mining camps soon becomo demorallzed with whisky and contaminated by tramps.

With proper means of irrigation and instruction as to farming they would soon become a thriving community.

ORIMINAT, ANTHROPOLOGY.*

By Thomas Wirson, hl.d.

The First International Congress of Oriminal Anthropology was held at Rome in 1885. It opened a new epoch in the history of crime. It was proposed to investigate crime scientifically, biologically, fundamentally; to investigate it in its origin, its causes; to determine, if possible, what share or proportion of responsibility therefor belonged to the criminal, and what to the public. As the causes were to be investigated, so also were the cures. What effect did punishment have for the prevention of crime? What good could be done by education?

I formulate some of the propositions with regard to the commission aud prevention of crime and show the relations of different methods to the end sought to be attained.
I.--The commission of orime-how indinced :

1. By heredity.
2. By edtuention:
a. Environment,
b. Soeiologie influoncos, ohiofly in youth.
o. Economio influonees; ns poverty, famine, \&o.
II.--The provention of orime:
3. By fenr of punishmont:
a. Execution.
b. Imprisonment.
e. Fine.
4. $13 y$ restraint:
a. Imprisonmont in roformatory institntions.
b. Education.
MI.-- For the provention of crime whioh had its canso in horedity:
5. Reatraint of llberty (of the born eniminal) bofore commisaion of any orimo; this for the individual and for effect in the prosent.
6. Restraint of marringe or the prevention of tho birth of ohildron who are cortain to hocomo oriminale.
IV.--Roformation of oriminals:
7. By punibhment after the commiasion of orime.
8. Restraint bofore the commiasion of erimo.
9. Hducation:
a. Roligion and mornls.
b. At home.
o. At ohturch.

[^107]d. In parochial schools.
e. Publio achools:

Teohnical.
Manual.
Night sohools.
The Oongress of Rome of 1885 adjourned to meet in Paris upon the occasion of the French Exposition in 1889, from August 10 to 17 inclusive. The opening session was held at the Palace Trocadero under the presidency of the minister of Justice and Worship, and Kceper of the seal.
The following officers were chosen :
Honorary presidents : MM. Thevenct, Kenper of the Soal, Minister of Justice and of Worship, France; Benedikt, Professor of the University of Viema, Austria; Brouardel, Dean, Professor of Medical Jurispridenee at the Faculty of Mediolne, Paris, France; Demange, Avooat in the Contt of Aplieals of Paris, Member of the Councll of Order, France; Ferri (E.) Professor of the University of Romo, Deputy of the Italian Parliament, Italy; Garofalo (Baron), Viee-President of the Civil Tribunal of Naples, Italy; Hakim (Johnı, President of the National Italian Committee of the Uuiversal Exposition of Paris, Official Delegate of the Committee of the Italian Cougress, Italy ; Hamel (van), Professor of the University of Amsterdam, Holland; Ladame (Doctor), Professor of the Unlversity of Geneva, Switzerland; Lombroso (Cesare), Professor of Medical Jurisprudence, Turin, Italy; Moleschott, Professor of the University of Rome, Sonator of the Klingdom, Italy ; Romiti (Doctor), Professor at the Univeralty of Pisa, Italy ; Semal, Director of the Asylum for the Insane, Mons, Belgium; Taladriz (Alvares), Doall of the Bar at Valladlolid, Spain; Tarde, Judge of Instruction, Sarlat (Dordogne), France; Dr. Lorenzo Tenchini, Professor at the University of Parina, Italy; Wilson (Thomas), Attorney of the Suprene Court, Curator of the Department of Prehistorie Anthropology, U. S. National Musenm, Washington, D. C.
President: M. Ronssel (Doctor Theophile), Sonator, Member of the Academy of Medicine.
Vice-presidents : MM. Lacassagno (Doctor), Profensor of Medical Jurisprudence of the Faoulty of Lyon (Rhone); Motet (Doctor), Medical Expert of the 'ribuanls of Paris.
General seoretary: M. Magitot (Doetor), Member of the Academy of Medioine, Anclent President of the Society of Anthropology of Paris.
Recording seoretaries: MM. Bertillon (Alphonse), Chief in tho Service of Identifeation of the Prefecture of the Polioe in Paris; Bonrnot (Doctor), Seorotary and Editor of the Arohives of Criminal Anthropology of Lyous; Coutagne (Dootor Henri), Medical Expert at the Tribunal of Lyons; Manourrier (Doctor), Professor in the Sohool of Anthropology at Paris.

The official delegates were as follows:
Austria-Hungary : M. Bonedikt, Irofessor of Neuropathology at the University of Vlonna.

Belgium : Dr, Semal, Director of the State Insane Asylum at Mons; Dr. de Smeth, Professor in the University at Brussels.

Brazil: Councillor Ladislas Natto, Direstor of the Museum at Rio Janeiro.
Denmark: Hansen (Soreil), Copenhagen.
United States: Dr. Thomas Wilson, Curator of Prehistorio Anthropology, U. S. National Musenm, Delegate of the Smithsonian Institntion; Clark Bell, Esq., Delegate of the Soeiety of Medical Jurisprudence of New York.

France: MM. Dr. Lacassagne, Delogate of tho Socioty of Anthropology at Lyons. Dr. Letonnean, Delegnto of the Society of Anlhroplogy of Paris.
Haraii: M, II, do Varigiy.
Ifolland: M. Lamel (van), Profossor of tho Law Faculty of Amsterdam.
Ilaly: Makim, (Joln), Prosident of the Itallan Committeo at the Exposition of Paris.
Nicico: M. E, Raphaol do Zayar Enriquez.
P'uraguay: M. Dr. Hasslor.
Peru: MM. Dr. Muniz, Surgeon of the Army in Pern.
Roumania: M. Dr. Incovosco ; Dr. Soutzo, Irofessor of Legal Medicino at tho Faculty of Medicino at Bucharest.
Russia: M. DI. W. do Dokterew, Dologato of tho Society of Public Hygieno, of Moscow.
Scrria: Milonko Veznitel, Doctor of Law.
Sirden: M. Dr. G. Rotziins, Delogato of the Socinty of Anthropology of Slockholm.
There were twenty-two eountries, represented by 192 delogates. At the opening session addresses were made. First, a weleome by the Minister of Justice, by Dr. Brouardel, and Dr. Th. Ronssel, which were responded to on behalf of the foreign delegates by M. Molesehott, president of the Congress at Rome. Tho meetings, after the opening session, were held in the amphitheater of the Faculty of Medicine, the same phace as had been held the Oongless of Hygiene and Demograpliy.
The questions proposed by the committee of organization to be discussed by the Congress were as follows, the preparation of papers thereon having been assigned to the persous whose names respectively follow them:
The first series:

Shetion I.-Chiminay, Biology.

I. The Latost Discoverios in Criminal Anthropology. Prof. Ces. Lombroso, University of Turin, and Prof, L. Tenchini, University of Parma.

- II. Do Criminals Presont any Pbeuliar Amatomic Charactors? If so, how can we disoover thom i Dr. Mauouvrior, profossor of the School of Anthropology of Paris.
III. Establishment of Xeneral Rules for Investigating the Occupants of our Prisons and Insano Asylums by moans of Anthropomotry or Psychology. Prof. Solamama, of Romo, and Lawyor Virgllio Rossi.
IV. Tho Dotermining Conditions of Crime and their Relative Values. Prof. E. Ferrl, doputy Italian Parliament and professor of Criminal Law.
Y. The Infancy of Criminals Considerod in its Relation to Prodisposition to Crime. MM. Prof. Romeo Taverni, Catania, and Dr, Maguan, Director of the Asylum, St. Anne.
VI. Organs and Funetions among Criminals. MM. Dr, Frigorio, of Alexandria, and Dr. Ottolenghi, of Turin.

Section II,-Crime in its Relation to Sochölogy.

VII. The Determination by Means of Criminal Anthropology of the Various Classes of Delirquents. Baron Garofalo, president of the Civil Tribunal, Naples.
VIII. Conditional Liberation.- Dr. Somal, director of the State Ineane Asylum, Mons, Belgiam,
IX. Crime in ita Relation to Ethnography. Dr. Alvarez Taladriz, Madrid.

X. Moral Responsibility ; What are its Foundations i M. Tarde, Judge of in-
stiuction, Sarlat (Dordogne).
XI. Criminal Process from a Sociologic Point of Vierr. M. G. A. Pugliese, Iar. 'yer, Triani, Italy. .
XII. The Relation of Criminal Anthropology to Legislation and Questions of Civil Rights. M. A vocat Florotti, of Naples.
XIII. The Sgstem of Solltary Confinement in its Relation to Biology and Soclol. ogy. Prof, van Hamel, of Amsterdam.

Questions proposed by volunteers:

XIV. Atavism Among Criminals. Dr. Brouarlel, profissor of the School of An. thropology of Paris.
XV. Criminal Anthropology considerod as a branch of General Anthropulogy. Dr. Manonvrier, professor of the School of Anthropology.
XVI. The Teaching of Anthropologio Sciences in the Law Schoois and Colliges. Professor Lactssague, of Lyons.
XVII. Anthropometry as Applied to Young Persons from 15 to 20 Years of A_{h}. M. Alphonse Bertillon.
XVIII. The Employment of the Methods of Criminal Anthropology in the dill if the Police and Arrests of Criminals. Avocat Anfosso and Profestor Romiti.
XIX. The Correctlonal Edteation and Reform of Criminals in Accortance with Biology and Sociology. Dr. Motet, Parle.
XX. Perversion of Affections and Moral Qualities in Infunts. Dr. Magnan, lio. sane Asylum of St. Anne, Paris.
XXI. Mental Degeneration and Slmulation of Lismulty; Reciprodly botisen them. Dr. Pathl Garnier.
XXII. Inthence of the Professions on Cemminnlity. Dr. Henri Contagne, i,you.

XXIII, The Dogonerativo Charactors and Biologic Anomalios Among Criminal Womon. Drs. Belmondo and A. Marro, Italy.
XXIV. Vegetativo Functions Among Criminuls and Xnsane. Drs. Ottolchohi amd Rivono, Italy.
XXV. Canses and Remedes for the Ropulition of Crimo hy tho Samo Persme. Avoonts Barzillal and V. Rossil.
XXVI. Pollueal Crlme from tho Standpolnt of Anthropology. Avoeat Laschi.

XXVII, Crhmitial Soololgy in its Appliention to Jurispuadence. M. Perro S.rrate, judgo of the Tribnmal, Porlgionx (Dorlogno).
XXVIII. Criminal Anthopology in its Rolation to Sooiology. Avocat A. du Bells.
XXIX. Crminal Anthropology in Eggptinin Society in Antiguity. M. Olivicr Beantegard, of Paris.
XXX. Moral and Criminal Rosponsibility of Deaf Mutes, M, Ginmpietro, if Naples.
XXXI. The Relations of Criminal Anthropology with Medieal Jurisprudence. Dr. Zaccarollf, of Naples.
XXXII. The Efiect and Modes of Appleation of the Jemal Law Aecordlug to tho Standard or Viow Point of Criminal Anthropology, M. Vittorio Oliviori, of Verolia.
XxxiII. Criminal Sooiology, Dr. Colajami, of Catanin, Sloily.
XxXiV. The Contagion of the Crime of Murdor. Dr. Anliry, of Saint Brinue, France.
XXXV. Political Assassins-a Modico-Physlologlo Study. Dr, Regls.
XXXVI. The Role of Woman in the Rednotion of Crimo. Dr, (of law) Josegh d'Aguanno, of Palormo.
XXXVII, Medlo. Physlologle Observations on the Criminals of Russia. M. J. Or. chanski, professor of tho University of Charkow.

The discussions of the congress were opened at its second session, Monday morning, August 12, by Signor Lombroso, upon the first question, "The Latest Discoveries of Oriminal Anthropology." His discussion soon developed the fact that there were two great parties in this congress. One, which was led by Lombroso, and might be called the Italian school, for it comprised a great proportion, thongh not all, of the Italian delegates; and the other, lead by Dr. Manouvrier, to whom adhered the majurity of the French delegates.

Question I.-Signor Lombroso said a Greek philosopher in moving, proved the fact of movement, and it is so to day with the discoveries of criminal anthropology. These discoveries prove the existence of the science better than the most rhetorical amplifications. The most important problem of the last congress, then only half resolved, has been completed by the studies of Verga, Brunati, Marro, Batl, Gonzale, Tonnia, Pinero, and by himself. The number of cases of epilepsy with intervals of cousciousness has been extended by genealogic studies of epileptic families, by their derivation from criminals, from consumptives, from aged parents, accompanied with the predominance of awkwardness and clumsiness, by frequent vertigos, occasional delirium, etc. The occasional cases of epilepss without absence of moral sense, but with erelhism or exaggerated sensibilities, explains how some persons, criminals because of their passion, have many times an unconsciousness of their own criminal acts. The role of epilepsy extended itself into the category of the criminal insane, principally among the victims of alcoholism, the hysterics, and other monomaniacs. One has only to take the chart of Esquirol on the Lomicidal monomaniacs to find the manifestation and extent of psychic epilepsy.

The "criminals of occasion," studied anthropologically, have shown in themselves (as one can say in the language of bacteriology) attenuated, but nevertheless, distinctly visible, characters of the born criminal. His sensibility is less obtuse, his reflexes less irregular, the anomaly less frequent, especially in the skull, but they have always the characters of the criminal born in some degree, such as the blackest hair in the servant who is a thief, awkwardness more frequent among the swindlers, and that they are all more governed by impulse.

In my study of the photographs taken by Mr. Francis Galton, said he, I have frund in eighteen skulls of condemned persons, two types which resemble marvelonsly and with an exaggeration which is evident, the characters of the criminal and approaching those of the savage. Frontal sinuses well marked, cheek and jaw bones very large, orbits large and distant, an unsymmetrical face, the nasal overture of a pheleiform type, and lemurian attachment of the under jaw. The other skulls of the swindlers, thieves, and robbers gave to me a type less precise, but the want of symmetry, the great size of the orbits and the prominence of the cheek bones were well marked, though less than in the former cases. The anoma lies were less marked than in the eighteen
skulls above mentioned. This discovery appears to me to have an importance not at first seen, for it serves to increase the signification and importance of the statistics of anthropometry. In order to obtain reliable indications we should investigate only homogeneous groups.

Mr. Lemoine has published in the Archives d'Anthropologie Oriminelle of Lyon an anomaly which is perhaps unique: The union of the frontal lobes found in an ex-momber of the commune who died at his house in Lille.
M. Severi has shown that compared with the normal type the criminals have a great capacity or size and extent of the fossettes of the cerebellum.

Marino has demonstrated the diffusion of the occipital fossette: 22 per cent. among the Papuans and 25 per cent. among the Now Zealanders, while he has confirmed the same proportion that I have found among the Europeans and among the criminals.
Joly has confirmed the strange phenomenon that the physiognomy of criminals loses the stamp or type of their nationality.

Ottolenghi has studied and developed the curious characteristics of criminals in regard to baldness or gray hair. He has found in them an enormons retardation, comparable only to the epilepties and idiots. He also found the wrinkles to be more numerous among criminals, and above all the one naso labial, which he remarked as a characteristic.

The female criminals differ among each other as much as the men, and these characters are almost entirely absent.

The criminals have a peculiar gestionlation. They have a jargon or dialect among themselves, as well as a caligraphy, which latter has been confirmed by hypnotism.

The peculiarities of criminals extend even to their art. They excel in mechanics and in their precision of detail, but they lack in ideality. The study of molecular changes has given some curious results. The average temperature is much above the normal in criminals. It pre. sents but slight variation in pyretic maladies. An analysis of the urine of criminals born gives a greater proportion of phosphoric acid and less of azote.

Lombroso did not continue his presentation at great length nor with great detail. He referred his andience to his last book, which was pub. lished with the maps, scales, and tables therein set forth, and ho declared his unwillingness to take away from his colleagues the pleasure which they might have in presenting some of their own discoveries.

Dr. Manouvrier followed him and disputed his proposition, and plunged into the discussion of the great question whether criminals were born or made. He pronounced the theory of his opponents to be but a recitation of the exploded science of phrenology, which, whatever good it may have proved, was compelled to fall before the poverty of its experimental statistics and our certain knowledge, He admitted the physiologic aud anatomic differences mentioned by Lombroso, but
he declared them to be differences of anatomy and physiology; that they belonged as much to honest men as to criminals, and that the line of difference mentioned by Lombroso bore no relation between an honest man and a criminal. These were structural and other differences of physiology and anatomy, while crime was a matter of sociology.

Baron Garofalo, MM. Drill, Lacassagne, and Benedikt declared their opposition in whole or in part to the theory of Lombroso. M. Drill recalled that the organization of man was far from being simple, that he was an extremely complex being, made up of many component parts and that his life depended upon his surroundings, his education, his training, his companions, and that whatever there might be in the physical or anatomical characteristics of a man which would point towards his crime or the possibility of its commission, that each of these elements entered into and became a factor, and were each and all of them to be considered in deciding this question.

According to M. Dekterew the surrounding circumstances, the social condition, of man played the greatest rôle and had the greatest influence.
M. Pugliese declared crime to be a social anomaly and the consequence of in failure of the criminal to adapt himself to his social surroundings.
M. Benedikt, of Vienna, was of the opinion that criminals were sick men either in body or spirit; and if one examines the exterior morphologic signs to explain and account for the existence of crime in the conduct of a given man', it was equally necessary to investigate the molecular tronble in his cerebral structure. He declared that the physiologic characteristics were a greater factor than the anatomic, and this it was, with the favorable social surroundings, that made the assassin or the robber. The criminal, said he, has no particular stigma or mark by which he can be known from other men. Sometimes there may be signs of a defective organization, but these are marks or signs of the epileptic or of the insane. This was also the viow of Tarde. There might be certain predispositions which were organic or possibly physiologic, which were more or less easily developed according to the social surroundings of the individual and which might, under favorable circumstances induce crime.
M. Lacassagne agreed with Tarde that in considering the problem of criminality it was necessary to take largely into accomnt the social influences. Because these influences and strroundings might modify the organic characteristies and thus create these anatomic anomalies which were relied upon by the Italian school. In order to study the criminal it is first necessary to consider his surrounding. It is not atavism, but the social surroundings, the social condition, which make the criminal. If the condition of the humble and the poor and the young and the ignorant is ameliorated you will diminish immediately the army of criminals. It is society which makes the criminals. Society has only the criminals it merits. Oriminality was above all a social question. M. Lacassague said a factor of crime too inuch neglected was misery, pov-
erty, aud ho dechared it to extend backwards, not only thronghout this life, but might havo been derived from the parents especially the mother. Garofalo disputed the assertion of Lacassagne. He said the statistics would show that crime was committed in equal proportions by the person who was botn and raised, he would not say in afflence, but in such circumstances as to avoid the charge of poverty or misery, and he demanded before these assertions should be made or conclasions accepted that aceurate statistios should be fumished. Madame Olemence. Royer in voked a new factor in the genesis of crime which, in hor opinion, had a greater responsibility than had before ever been attributed to it, to wit, hybridity-the mixture of races, the mixtures of the blood of different races, one of which was usually if not always an inferior.
M. Moleschott, senator from Italy, thanked M. Tarde and Dr. Benedikt for having spoken of the molecular inovements, for, said he, there is the question. The minute researches into tho anatomic conditions made ly Lombroso should not make us to forget the different stages of life which are presented in each individual according to the different conditions of his life and that the first false step has been approached on an inflite scale. A more or less degree, however small, of irritability on the part of an individual may resalt in a duel or other erime, because, according to the words of our Lord Jesus Christ, "We are all sinners."

Dr. Bronardel said that in order to resolve the problem it was neces. sary to apply elinical methods. We do not say that a sick man has the typhoid fever becanse he has the headache, or the diarrhea, or cough, or fover but we say ho has typhoid fover because we have grouped his symptoms and according to their existence and method and the time or period of their apparition we determine that he is afflicted with this malaly. Therefore to the anatomio stigmas of an indiyidual it is neces. sary to add the corresponding psychologic characters. The delirium of combativeness which is due to a poison produced by belladonna is not a cerebral localization. It is due to a modification brought by the presence of the agent in the bloorl, of the nutrition of the entire corebral mass.
M. Ferri declared erime to be a phenomenon extremely complex. It was a sort of polyhedron of which each person saw but a special side. The difforent viows sustained to day are equally true and yet equally incomplete. M, Lombroso, said he, brings to light the biologic side of crime; Drill and Manouvrier showed the social ; Pugliese the legal view ; Tarde presented the physiological side, and Molescholt and Dr. Brouardel declared crime to be a phenomenon at once biologic and social. M. Lacassagne said in the first Oougress at Rome that the criminal was a mierobe which propagates only in a certain condition. Without doubt the conditions and the surroundings make the criminal, but like the bouillon without microbes within it, the surroundings without crimes are powerless to bring forth the criminal.

As the bouillon is complementary to and as necessary as the microbe, so the biologic defects and the favorable social suroundings are the fimdamental aspects of eriminality.

Question II.-Do criminals present any peculiar anatomic characters? If so, how can we discover them? Dr. Manouvrier said that, in order to study the anatomy of criminals, it is necessary to consider their physiological elements, and to divide and subdivide those elements in the attempt to attach one or more to each specific crime or series of crime. It is necessary first to discover a method by which it can be determined whether criminals differ anatomically from honest men, and at the same time whether criminals differ from each other, and wherein. As soon as one can recognize certain special anatomic characters as more frequent or more pronounced among criminals or among such and such category of eriminals, one will then be in the right path to make an analysis of the subject. This is called to-day, in a vague and indefinite manner, the tendency to crime, or the tendency to particular crimes. These tendencies ought to be resolved into their true pliysiologic olements, corresponding to certain elomentary anatomic characters. But the problem is complicated by the intervention of sociologic elements, so that one becomes lost in a labyrinth of speoulation. If one supports the theory that criminals are born, it is but a return to that ancient but now exploded science of phrenology, which from an examination of the head, and so of the brain, the expert could determine from the relative size and value of what he called organs, the virtuons or the vicions character of the individual, which in particular cases was called the tendency to enime, Dr, Manouvier insisted that this theory was completely exploded, that these characteristics were not confined to criminals nor to criminal classes, for all the anatomic distinctions and psychologie characteristics quoted by Signor Lombroso were to be found among honest men as well as among criminals. And he argued that it was not suffeient that you should find a greater proportion of them among criminals than among honest men. If Lambroso's theory, that the man was born a criminal, was to be taken as the rule, then it must be universal, and that men thus bonn inevitably committed crime. If it be the rule then it must onerate in all cases. That it did not so operate proved that it was not the rule, and therefore he concluded the proposition of anatomic character. istics peenliar to criminals did not exist.

Manoturier asked had any one seon an anatomis character which would serve to characterize exclusively the criminals of any certain categors, such as robbers, thioves, assassins, burglars, etc. No anthropologist believes in the existence of such a character. There are many epileptics, drunkards, imbeciles, degenerates, and inferiors of all sorts who have never committed a crime; their action has been such as that they stand fair to the community, and they have a right to be classed with honest men; no one has a right to class them with crimiH. Mis. $120-40$
nals. If some of them havo been criminals, who oan say that they would not have been honest if subjeeted in early life to favorable education and sociologic influences? But, on the contrary, who can say what may not become of the man who has a sound mind in a sound body if he be subjected to the continned pressure of adverse sociologic surroundings. Take as a single illustration the feoble cranium capacity which is not without_certain relation to feebleness of mind. The feebleness of mind may make its owner commit crime under certain deplorable circumstances, but at the same time this may render him more inoffensive under other circumstances. His unfortunate anatomic character may itself conspire to make him more peaceable, honest, and virtuons. In any event it would be hard to affirm that there was a greater proportion of feeble minded men among honest men than among dishonest. And as with feeble-mindedness, so with the other anatomic criminal characteristics.

Some one has used the phrase "all other things being equal," a man with such and such anatomic characteristics wonld be more likely to become a criminal than a man with other characteristics. Manonvier assailed this position, saying that it was fombled in error. It was because "all other things" were not equal that the man became crimiinal. Ho asked what were these things, and suggested the infantile life, familiarity with vice and erime, the surroundings, the want of moral training, sociologic conditions; and these, he said, were the conditions which produce the criminals rather than the anatomic characters. He asserted that the man with characteristics the opposite of Lombroso's criminal, if subjected to the conditions, influences, and temptations which lead towards crime, was as likely to become a eriminal as was he who possessed the characteristics described by Lombroso. He assailed also the idea of a criminal type who stood for the criminal elasses. He declared that, in his opinion, there was no such typto. The eriminal, the thief, might have a head shaped one way in une caso, and another way in another case, with erania or facial anomalies, with deep occipital fassettes, and so forth. But these did not form a type; they were different charaeteristies which had no relation to each other, and which he did not believe had any relation to crime or criminal tendencies. It was as though a man with a long head commits a crime; according to this theory, that forms a criminal type. A man with a broad head commits a crime; that forms a criminal type. And, using different peeuliarities as illustrations, where a man with long arms or long legs, or one with short arms or short legs, commits a crime, then each of these become in their turn eriminal types. Thus you have as criminal types tho long and the short, the round and the square head, the long and the short arm, and the long and the short leg. Wherefore he declared his opinion that, properly speaking, there was no such thing as a criminal type. The criminal type was the man who, having subaitted to the sociologic intluence of crime, having been born and raised therein
and always submitted to them, finds himself in an atmosphere of crime to which he adapts himself, and so commits it in the same kind of way as he breathes the air of the ill-ventilated tenement house or cellar in which he lives. In order to create a type there must be a continuation of characteristics, a recurrence in given directions, which is repeated again and again until it becomes fixed, and the required characteristics are manifested in every normal individual of each generation. This forms a type: without this continued re-appearance of characteristies, no type is formed.

Manouvier declared that no account had been taken of the different kinds of crimes, crimes which were different in their motives, requir. ing different kinds of individuals to commit them, and that a type for one would not stand as a type for the other. He divided these thus:

First: Strange crimes, those inexplicable to the normal man, such as were committed by the insane, by the epileptic, idiots, and the delirious. This ground belongs to pathology and to teratology.

Second: Orimes committed under the influence of passing troubles or delirium, such as anger, drunkenness, jealousy, fear, etc. It is necessary to distinguish in these criminais thus deranged whother they be habitual or accidental; that is to say, the irascible, the labitual drunkard, the insanely jealous, etc.

Third: The crimes accomplished in cold blood, after a certain fash-ion-deliberate, intentional, with malice aforethought; and he asserted that it was to the latter class and to that alone the investigations of this congress should be confined. To the two others it went withont saying that they might have had predispositions to crime as they had predispositions to the varions maladies which influenced them to crime, some of which they could possibly avoid, others of which they possibly could not. In these cases it was the malady that caused the crimes, for which it was responsible, and that the crime in these categories was not the deliberate act or intent of the criminal.

The distinction between the normal and the pathological state, based on a physiological analysis, is indispensable in the study of this subject. But to do this satisfactorily, how great the difficulty? If this be difficult, how impossible to classify properly the doubtful and intermediate cases? Without these doubtful and intermediate cases being fully classified we will have naught but physiological disorder. It is necessary also to distinguish physiologically and anatomically between the normal and the abnormal state (this of the same persons \%). Physiologically it is abnormal to murder or to rob without motive, or at least without other motive than the mere pleasure, whether it be the gratification to the criminal or the pleasure he may receive to see another suffer. But one must be an optimist to believe that it is abnormal to covet the property of another, and so coveting to seek to appropriate it. It is idle not to recognize, in addition to the imperfeccions of human nature, the pernicious influence that is exercised by
the evil education, the evil examples, tho natural or factitions needs, the seductive occasions, the improper liasons, the repugnance to labor, the pleasures of idleness, the apparently natural willingness to oat the bread and enjoy the fruits of another's labor, or the satisfaction of a former escapade which brought profit, and went unpunished; and, in a word, it is useless to refuse to recognize the thonsand different sociologic conditions which may serve to form a million of combinations, any of which may lead towards crime. With what care is one not obliged to guard tho ehild and the young person from the hardening effect of evil influences or from the corruption of his childish innocence and innate honesty and virtue by the persuasions and example of evil associates.

Without cloubt theft appears execrable, while murder is horrible, to those young persons who, thanks to a careful education or the precepts of a good mother, or the influences of a Christian fanily and surroundings, have acquired the habits and situation of honest people; and, novertheless, one can easily imagine a combiuation of circumstances, an acquaintance with vice and crime, by which such an individual has or may become a criminal.

> Viee is a monster of suoh hideons mien, That to bo hated needs but to be seen; Yot seen too oft, fauiliar with her face, We first endure, then pity, then embrace.

And there are all sorts of crimes, and that which might be no tempta. tion in one case might bo overpowering in anothor. With all theso difficulties is it not impossible by any system of classification to draw the line between a normal and an abnormal physiologic state, which will separate the criminal classes from the honest men?

We have still to consider that there are many physiologio peculiarities which become good or bad qualities according to the circumstances, and these circumstances are simply the surroundings, the environment. An amorous temperament might be highly appreciated and complimented in one case, and yot become extremely dangerous in another. The audacity and courage which might be a source of pride in the soldier, would become execrable on the part of a robber. An excellent salesman, the successful drummer, the best newspaper reporter, might, with a change of circumstances, a change in his surroundings, his environment, become a most dangerous swindler, or the best mechanic may become a most dangerous bank burglar or counterfeiter; and his eminence in crime is attained because of his apparently natural excellencies, which might have made him, and which went so far towards making him, an honest and successful man.

Orime is, therefore, not necessarily bound to physiologic peculiarities, nor is it produced by abnormal or disadvantigeous anatomic characters.

It must be remembered that the man, heilthy and normal though he be, is not a man without faults or without tendency to vice. To seek
for this is to seek for the impossible. All men, however honest or virtuous, will be found to have some defect or some vice, otherwise they would be perfection, which is not to be expected of human nature.

A defect or a vice, whether anatomic or physiologic, does not become an anomaly simply because one finds it in a criminal, Anatomically the same remark is to be made; we do not consider as abnormal or inferior every man who is not perfect.

Dr. Manouvrier proceeded to examine the results of anatomic researches made, up to the present timo, upon criminals.

No one has yot accomplished or discovered an anatomic character by which the criminal can be classified into categories, like robbers, swindlers, burglars, etc. The most one can doin investigating the tendency to crime by the examination of the criminal himself is to seek for the specific characteristics, but even these, if found, do not prove that they are specifically criminal or special to eriminals.

All that can be done in this direction, and it is quite another question from the former, is to discover if the criminals examined present certain abnormal antomic characters more frequent and in a higher degree than honest men. To answer either affirmatively or negatively as to the whole aggregate, or even to the average, would be a hardy and even dangerous undertaking. There are honest men who are affected in all the unfortunate and much to be regretted ways suggested by Signor Lombroso-epileptics, imbeciles, degenerates, and even the vicious and inferiors of all sorts; while those who have been classed as honest men are capable of becoming criminals of the darkest dye, and have no more morality or virtue than the most incorrigible robber and thief.

Dr. Manouvrier referred again to the saying, "All other things being equal," the abnormal, the inferior, etc., were more likely to become criminals, etc., "but" he demanded, "is it certain that all things are equal for the criminalg" It is in vain that we have remarked the small. nuinber of individuals becoming criminals out of each hundred persons subjected to these defective sociologic circumstances. The conditions and circumstances which are so difficult to weigh, and above all the infinitely variable combinations, whether taken by themselves or by their complex tendencies, have a different offect upon each individual. Among a hundred individuals thus environed, is it not possible to believe that the ten or twenty who become criminals are those which have been suljected to the combinations, sociologic and physio-sociologic, the most evil, the most powerful, and the most effective in leading them in the wrong path? It is therefore wiser to permit the facts to decide each case for itself.

The documents published are numerous, but they are not yet suff. cient to convince an incredulous anthropologist who finds himself opposed to either vicw, and who proposes to examine them critically. Occasionally monstrous criminals have been exhibited, but that does
not prove that criminals are anatomic monsters, and no more does the fact that some criminals are epileptics prove that all criminals are epileptics, nor that epileptics become criminals. The statistics obtained and the averages sought to be established have been based upon insufficient data. The series have not been sufficiently extended, the figures have been obtained by defective processes, the observations have been uncertain and difterent, and the observers or investigators have been novices in many cases, and in others have proceeded upon different lines, if not by different processes, each one of them more uncertain and defective than the other. They have cited insig. nificant differences which they say exist between honest men and crimmals, but which differences may be found in equal proportion among honest men, if they were so examined, and might also be found between eriminals. They have compared the series of criminals with series of soldiers; that is to say, with men who are chosen for their exemption from infirmities or deformities, and have calculated the relative frequency of these deformities in the two series, or in the series of the two classes withont regard to the difference in their condition. They have cited cranial peculiarities observed by different persons operating in different methods and by different rules, with different standards. And from all these discordant andinharmonious elements they have sought to establish averages in the respective classes whether of criminals or of honest men.

In spite of all this incoherence and erroneons and defective process, whether of gathering facts and obtaining evidence, or of ratiocination, they have obtained statistics, which, aided slightly by preconceived opinion, have almost persuaded some of our wisest and best men that the criminal elasses present in their average a proportion of abnormal or inferior characters greater than those belonging to the classes of honest men. The number of these abnormal or inferior characters are multiplying themselves day by day in the estimation of these wise men, and this is being pushed to such extremes as that soon the man who is believed to be honest will find himself possessing a half dozen of these criminal characteristics. Thus the system is in danger of breaking down of its own weight.

We might with propriety ask, what constitutes a criminal typer If, in making this oxamination of criminals, one unites the characters abnormal, pathologic or inferior, taken in an examination of say a thousand criminals, without considering and arrauging upon the other side the characters found therein which are incompatible with each other, it will be apparent that the investigation will be without value and the conclusion based thereon erroneous. One criminal is plagiocephalic, another has long arms, another a vermien fossette, etc. But it is not any one of these that forms a type whether criminal or otherwise.

In order to form a type one should unite the common characters, eli-
minating the anomalous and pathologie manifestations. In order to obtain an abonormal type, it is necessary to choose for each species of anomalies or alteration an individual in which this anomaly or alteration is well characterized, and then there will be as many types as there are sorts of anomalies or alterations. We therefore can not have a type criminal any more than we can have a type of human monsters:

In order to characterize criminals in general, it is neoossary to obtain the averages, which can be eompared with the averages of other indiviluals of the same raco, the same sex, the same social elass, ete. These latter individuals must themselves he the average of their respective race, sex, or class, and their averages thas taken should become the type or standard.

Honest or virtmons men (a category not less vague than that of criminals) will then be without doubt the metatypie. But these have not yet been studied nor their typo settled. Nevertheless it is these metatypes that wo should compare anatomically with the oriminals if we would make comparison between the anatomic characters of the two classes. Who form this class of honest and virtuous men that furnish the standard by which the criminal classes are to be judged? They may be idle, vicious, evil disposed, imbecile, passionate, brutal, and all that, if they have but escaped being declared by the law to be criminals. In this condition of aftairs is it possible that any one can determine anatomically, or physiologically, or psychosociologically what physical characteristies form a criminal type of man?

What are the results? This is a question to bo resolved by anatomie anthropology, of which the eomparative anatomy of criminals is no more than one chapter. The anatomic study of eriminals in order to become of value has need to be extended to a greater area and in greater detail even than has been here indicated.

There was, of comise, a large discussion among the members of the congress over this question. Nearly every one had a differentidea concerning it.

Professor Lombroso responded to Dr. Manouvrier. He demanded how he would distinguish the eriminals. The criminals of occasion has presented abnormal chamoters. It was not the occasion that made the criminal, but it was the occasion which was presented to an individual predisposed to commit the crime. It has been objected that the woman criminal had no anatomic oharacteristies, but they who made that objection forgot that prostitution was the form of the feminine criminality. He believed somewhat in the idea emitted by Madame Clemence-Royer on the relation between crime and hybridity, or mixture of races, one being inferior. If the crime is not an anomaly, what is it? Is it a virtue? He agreed with Dr. Manouvrier that the cranial capacity is not a characteristic of criminality. Bearing upon the question of atavism he stated that he had found an:ong criminals a great number or proportion of hernia. This was a regressive char.
acter. The role of ptomaines in criminal manifestations appeared to him certain.
M. Tarde responded to Lombroso apropos of the criminal woman. He maintained that an honest woman presented the characteristics ascribed to the criminal woman as described by the Italian school, and nevertheless, woman is less criminal, or takes to crime less than man. Prostitution is the occasion and not the offense. He declared there were no anatomic characters proper or peculiar to the criminal, and, nevertheless, there were organic and physiologic predispositions to crime. The function made the orgau, and the nerve would model the bone; as the river determines the valley, so the crime makes the criminal. If in criminal anthropology one can come to show the localization of criminal characteristics, as has done Broca for the articulate language, the base of the scientific edifice might be considered established.
M. Moleschott and Dr. Bronardel complimented these gentlemen upon the profoundness of their studies. The latter considered the search for the criminal anomaly in physical or anatomical characteristics as illusory. He could admit, the malformations of the pavillion of the car reported by Morel, the occipital fossette and the characters. of the same kind, but these were no cause of criminality in themselves, but only simple indexes of an abnormal development of which the consequences could be many. The epileptics, the insane, show the presence of ptomaines in their urine. He recalled the observations of au epilep. tic woman in his service. Her urine contained a convulsive ptomainc, which injected into a frog produced the same physiologio effects as strychnine. The ptomanic products or the leucomanic toxique found in the veius of the insane and the melancholy result from troubles in general nutrition. Are they canse or are they effect The question demands to be studied.
Dr. Brouardel re'sponded to M. Tarde that if the function made the organ, it could ouly do so in the presence of muscular fiber. A woman without any calf to her leg could never become a dancer.
M. Bajenoff, director of the Asylum of Riazanne, Russia, could not accept everything he had found in the works of Lombroso and his colleagues, but his and their methods seemed to be scientific. His own studies cophalometric had shown to him that honest men had a larger frontal development, while the criminals were better developed in the parietal and occipital portions of their brain or skull.

Baron Garofalo said that crime might be considered always the result of an organic anomaly. In speaking of crimes we should consider only those which were declared so by the public conscience and not always those declared so by the law. Those, for instance, of great cruelty or extraordinary improbity. But one could perceive that criminals always manifested moral anomalies and physical anomalies that were found less frequently in honest men.

Lombroso insisted upou his fundamental distinction between the
criminal born and the criminal of occasion. But lie conceded that the existence of criminal anatomic characteristies might be limited or even absent in the latter class. He declares woman to be a criminal of occasion, except with prostitution, wherein she represented the born criminal. But in the criminal born he insisted upon the existence of physical signs which he declared to be undeniable, and that while their number and importance vary from one individual to another, yet when considered together, Lad a value and signification "absolument incontestable." While he wonld not deny the influences sociologic, mesologic, geographic, and orographic, yet the effect of these intluences was only to intensify the criminal characteristics which existed anatomically and fundamentally. Thus it will be seen that in the discussion between these two representatives of the different schools, in spite of the apparent diversity of their opinion they came nearly together by an exchange of partial and reciprocal concession. Yet this harmony was more appparent than real, for in the subsequent discussions of the Congress, whenever anything was said favoring the existence of a criminal type, it immediately precipitated a return to the former discussion.

In the discussion of the seventh question the whole argument was gone over again. The skull of Charlotte Corday, which belonged, with all guaranty of autbenticity, to the collection of Prince Roland Bonaparte, was presented as an illustration of a born criminal because of the depth of the occipital fossettes. This immediately brought out Lombroso, who retirned to the attack with all his ardor and power, and after lim Benedikt, of Vienna, Garofalo, Forri, Brouardel, and at last, M. Herbette. The latter, with Dr. Brouardel, seemed to be the most conservative. They presented, each of them, in caln and consid. erate but elegant language, the necessity for careful study and profound investigatiou. Festina lenta was their motto. While they recom. mended the investigation and study to be made with ardor, and pusked to the extreme, they counseled that the conclusions should not be made hastily, changes should not be made brusquely, opinions not be announced dogmatically, or by going too rapidly, this science might compromise its force, its authority, or its prestige.

The importance of this question or the value of its discussions in this congress can not be overestimated, for while the substance may have been argued pro and con in years past; yet here for almost the first time the scientific men of the world were assembled in an international congress for its discussion, with full opportunity for preparation, and with the knowledge that they were here to be brought face to face with their opponents or those who held different opinions from themselves, and here they were to appear with what arguments, reasons, statistics they might have in defense of the position which they claimed to be right. Accordingly as this question shall be decided, so slould there be a change in the fabric of our criminal jurisprudence. If men are born criminals then they are not to be punished as they would be if
otherwise. If, on the other hand, they are educated to be criminals, then ought our system of education to be seriously and radically changed. I repeat my impression of the profound importance of this science.

Question III.-Establishment of regular rules for investigating the occupants of our prisons and insane asylums by means of anthropon. etry, or of psychology, by Dr. Sciammana of Rome, reporter.

The study of the criminal had its origin in the purest love for science and the greatest desire to obtain the truth. Perhaps those who com. mence to gather the history of celebrated criminals, to trace their organisms, to study their special physical conditions, the enviromments in which they have lived, or to search for the idea or theory that possessed them at the moment of their erime, or the canse which pushed them to it, did it for naught but scientific curiosity. But in the study of criminal anthropology in these latter days these things have changed, and now, thanks to the civilization of our epoch, its truth is sought for its own sake as well as for the practical benefits which may follow. Every one has recognized the practical importance of the study of criminal anthropology. There are, nevertheless, scientists who deny the fecundity of the researches and who believe that crimes are nothing but the result of the free will of the criminal, and that the influence which pushes him to commit the crime had its origin in the same free but evil and wicked will. But we are not obliged to occupy ourselves with these scientists, however wise they may be, because they have confined their investigations only to the field of theory and have never come down to test of investigation by means of experiments.

Our scientific academies, our medical congress, the administration of the prisons, are all now occupying themselves over the questions, what are the individual characteristics of eriminals, whether anatomic, psychologic, physiologic or sociologic! And in studying these questions they are moved by the highest order of both charity and pride. They are moved to discover the most rational and satisfectory method for the prevention of crime and the reformation of criminals. Various scientific societies and bodies have takon steps in this direction.

The Society of Anthropology of Brussels organized a commission charged to study the characters of professional criminals, and in the bulletins of that society the members published their investigations on the criminals confined at the prisons at Ionvain.

In 1885 the Medical Congress at Antwerp following a communication made by Ur. Semal on the relations of criminality and insanity, voted unauimously to continue these studies, to extend the commission to include the magistrates who tried the criminals, the administrators of the penitentiary and the medical profession.

The International Medical Congress of Barcelona recognized the importance of criminal anthropology and declared that the scientific
inquests were now sufficiently advanced to demand their practical application.

The scientist who desires seriously to study the psychology of a criminal is fairly well received by the prison anthorities in all civilized countries, and a good opportunity is given him for study, whether it shall be during the life of the criminals or upon their bodies after death.

In these conditions it is our duty, as we find ourselves representing. one of the principal sciences in the world, to report, each one, to this Congress of Criminal Antliropology, what he has done, what he can do in his own country, and thus to gather and unite the largest possible number of discovered and verified facts. This congress, representing all countries, may thus agree upon certain facts as the result of a once separate but now united series, and a law be thus established. That law it is our duty to formulate and proclaim.

In 1884, in Italy, when the general direction of prisons was confided to M. Beltrani-Scalia, one of our most illustrions savants, the Government ordained the autopsy of all criminals who die in the prison of the kinglom. It was thus intended to gather from the cadavers of criminals, a series of anatomic and physiologic facts, by which their history relative to crime, aided by the documents of the prison, could be made known.

Dr. Sciammana said he had been charged to formulate a series of questions, to which all the doctors of the prisons of the kingdoms would respond, relative to the exterior examination of the cadavers, but not including anthropometric researches. To respond conscientionsly to the questions by doctors who were eutirely unused to them and whose time was already engaged, required much labor and the consumption of much time, and it was concluded by them that the work was too heavy. Therefore, the scheme has not succeeded as well as was ex. pected, and we have to renounce hope for the present of obtaining this scientific material for studies in criminology. To obviate the difficulty, a new formula of questions has been prepared, which while it has reduced somewhat our scientificinformation, has also so far reduced the labor of answering them, as that the result is even more satisfactory than before.

But there is something to which, in relation to the statistics of crime, the attention of the congress is particularly called. It is not difficult to report all the information concerning the crimes found in the records made by the magistrates or courts who tried the prisoners and the attorney-general who prosecuted them. Also such notes as have been made while the criminals were in prison. But these things are of small utility if there is not also gathered the more precious material concerning the personality of the criminal, the material psycho. logic, anthropologic, teratologic and anatomo-pathologic, which should be studied by competent medical authorities. To accomplish this it is necessary to follow a single method of study and investigation by which the facts gathered can be compared as though they were done by the
same person. Following this system, those who study the materials of criminology will be able to note the most valuable observations and pursue researches which they believe to be the most profitable. It is one of the important worls of this congress, or of its successors, to formulate a code of observation and to establish the common means of record. ing the results.

These researches, made for the purpose of establishing a system of comparative international statistics, ought to be made both upon the criminal while liring and upon his carlaver when dead. The first should be an investigation as to the intellectual capacity of the iudividual, the modes and manifestations of his affections and moral sense, and the degree of his vital energy and will power. This psychologic investigation ought to be preceded by an anamnestic interrogation of the individual or hy an examination of the criminal process against him. Every investigation should include the study of his heredity and neuro-pathology. These anthropologic and clinical researches should be made before the criminal has suffered a prolonged imprisonment; if not, his peculiarities or characteristics may be effected therebs.

The second of the researches should bs upon the cadaver, as to its couditions anthropologic and pathologic, so that it can be determined whether the alterations are due to the preeminence of morbid tendencies or whether they are the result of an abnormal development due to some other cause. These researches should be made both upon the criminal and the insane, and one can thus see the links which form the psycho-pathologic chain of human life, at one end of which we may find insanity and at the other oriminality. Many insane asylums are confided to the care of zealous savants who make these studies and note the results. Attention is called to the exceptional importance of these researches that can be made in the houses of correction, not alone in the interest of science, but that they can serve as a complement to the observations which one may make later upon the same individual if found in the prison. They also may serve as a guide for the treatment and reformation of those who are in the house of correction.

But it is necessary to have a special accord among the savants and the medical authorities of the prisons, insane asylums, and houses of correction so that one can obtain the same researches and results throughout this, whether among the living or upon the cadavers. It is therefore proposed that a commission should be charged to formulate the questions and to establish what might.be called a national code of researches, to which it is hoped all nations will accord their favor and adopt.

Question IV.-The conditions determinative of crime and their relative value.
M. Ferri, professor of penal law in the university at Rome and deputy of the Italian Parliament, was the reporter.

The natural genesis of crime obeys a fundamental law by which all crime is only the result of the simultaneous or indivisible concurrence of the conditions of the individual, whether they be biologic or of the surroundings where the individual was born, lived, and acted.

Every crime, no matter who its author, no matter under what circlunstances committed, can be explained in one of two ways-either as the act or fiat of the individual's free will or as the natural effect of natural causes. The first of these explanations being withoutscientific value, it is impossible to explain scientifically a crime (like every other action, human or animal) if it is not cousidered as the product of an organic coustitution or psychic personality which is called upon to act under certain conditions, either of physical or social surroundings.

It is therefore inexact to affirm that the school of criminal positivists can reduce crime to a phenomenon purely and exclusively anthropologic, for, on the contrary, that school has always maintained from its beginning that crime is the effect of multifarious conditions, anthropological, physical, and social, and that these operate together and may determine the crime by an action simultaneous and inseparable; and if the researches into the biologic conditions are more abuudant or more apparent because of their novelty, that does not contradict the influence of the sociologic condition upon crime.

We are to consider on this occasion the relative value of these three orders of condition in the natural determination to the commission of crime. A response can not be given absolutely or categorically. Besides, the question is frequently misunderstood and misstated. Those who think that crime is nothing but a phenomenon, purely and exclusively social, without the concurrence in its determination by the criminal of his organic and psychic anomalies, misunderstand the universal union of natural forces and forget that one can not limit in an absolute fashion the infinity of causes, which far or near, direct or indirect, may combine or conspire to produce every phenomenon. This position is as erroneous as to say that the life of a mammal is the effect of the action of a single organ, whether lungs, heart, or stomach, or to say that it is maintained alone by food or drink or the oxygen of the atmosphere, and that each of these produces the entire effect without the aid of the other. If crime be the exclusive product of the social surrounding, how is one to explain the fact known to us every day of our lives, that in the same social status and under equal circumstances of misery, poverty, and ignorance, out of each one hundred individvals sixty are not criminal, commit no crime, and out of the remaining forty, five prefer suicide to crime, five become insane, five become beggars or vagabonds, and only twenty-five out of the hundred become criminals; and among the latter the crimes committed differ in variety, -from those the most bloodthirsty, frightful, and inexcusable, to those which are the mildest misdemeanor, and for which the prisoner may be discharged with only a reprimand. The
secondary differences in social conditions which may be found even anong the members of the same family are evidently not sufficient in themselves to explain the enormous differences of these resulting actions.

It is necessary, therefore, to consider this question in a relative sense and to discover which of the three orders of natural causes of crime has the greatest influence in the determination to the commission thereof.

A general or categoric answer can not be given, for the relative influence of the anthropological, physical, and social conditions, vary with each criminal action according to the psychologic and social characters of the individual.

When we consider, for example, the three classes of crimes, those against persons, those against property, those against morality and virtue, it is evident that each order of the determining conditions, and, above all, the biologic conditions and the social conditions, have an influence altogether different in the determination to the crimes of murder, robbery, or violation. And this can be repeated for all categories of crime.
The undeniable influence of social condition, and above all-economic condition in the determination to rob or steal, has much less effect in the determination to murder or violation. And in each category of crimes the influence of the determining conditions is much according to the special forms of criminality. Certain classes of murders (those of occasion) are evidently the effect of social conditions; as, for iustance, alcoholism, gambling, public opinion, etc., while certain other murders are the effect of the ferocity or the moral insensibility of the criminal, or else arising from the psychopathologic condition which corresponds to organic abuormal conditions. And it is the same with certain offenses against good morals which are in a great part the effect of a social condition which condemns some communities to live together in habitations more as herds of wild beasts than as human beings, with a bratal promiscuity of sexes and ages, parents, children, strangers, boys, girls, etc., which will have the effect to prevent every normal sentiment of virtue or modesty and to efface any such sentiment already formed.

Other crimes of the same nature, but more brutal, are derived from the biologic conditions of the criminal, whether they be the result of a sexual psychopathy or a biologic anomaly. While simple theft or larceny may be somewhat the effect of social or economic conditions, yet these influences have but slight effect in comparison with the impulsion given by the individual constitution, whether organic or psychic, in higher crimes, as robbery with violence, or in murder with intent to rob or steal, or other crimes committed in cold blood.
The same observation can be applied to the conditions of the physical surroundings, for example, the augmentation in the number of mimes against property committed during the cold or winter months,
while on the other hand the augmentation of cimes against the person, whether those of blood or against morality, during the warm or summer months. The reason for these things is that we find the individuals affected, to be in that biologic condition wherein they have the least resistance against these evil influences.

The limits of this paper do not permit the proofs, whether anthropologic, psychologic, or statistic, of these conclusions, but these are only the synthesis of numerous studies and positive investigation made upon the tendency or inducement to crime, by observing the crimimals and the causes which affect them. It has been said that for certain crimes and criminals the largest influence ought to be recognized or accorled to the physio-psychic conditions of the individual, which may go from the anthropologic anomaly, scarcely recognizable, to the pathologic state, the most accentuated, yet this does not exclude the possible fact that crime may be a consequence of social condition ; that the physio psychic anomalies of the individual are nothing but the effect of a deleterious social environment which condemns those which it surrounds to an organic and psychic degeneration. This objection wight be good when taken in a relative sense, but is without foundation if one seeks to give it an absolute value.

First, it is necessary to remember that cause and effect are themselves only relative, for each effect is in its turn a cause and viee versa; so that it misery, poverty, degradation, etc., whether material or moral, is a cause of degeneration, the degeneration becomes in its turn a cause of the misery, poverty, and degradation. And so the discussion becomes metaphysical. Investigators into the relations of crime in differ. ent countries (criminal geographors) have claimed a great value for their statistics when they have given the quality of the crime and the number of the criminals in various countries or provinces, and sought to compare one with the other. Instead of these being the differences in biologic condition, as of race; or of physical conditions, as of climate, ete.; they may be governed largely by social or economic conditions; that is, those arising from the differences in agriculture, industry, labor, wages, homes, schools, service in the army, etc.

In the absence of any positive verification, the student of this question may with propriety ask if the social conditions of a given province or country have any real effect upon or relation to its criminality, and whether the social conditions may not be themselves only the effect of the ethnic characters of intelligence, energy, etc., of its inhabitants and the conditions of its climate, soil, etc.

But with more precision one can also aver, even outside the conditions profoundly pathologic, that there are a great number of cases in which the bio-psychic anomalies of the criminals may be the effect of an environment which is physically and morally mephitic.

In each family of sevoral children, in spite of the same surroundings and like favorable conditions, with the same methods of instruction and
education, there will be individuals of different intellectuality, to be remarked from the cradle, as well in the quantity or in the quallty of their talent as in their moral and physiologic constitutions. And this phenomenon, although it be evident only in a small number of cases of the most accentuated characteristics, whether normal or abnormal, does not cease to be true also in the more numerous class of cases of mediocre characteristics. The physical and social conditions may have an influence less patent according as the physio-psychic constitution of the individual is stronger and healthier.

The practical conclusion of these general observations upon the natural genesis of crime is this : That each crime is the result of indi. vidual physical and social conditions; and becanse these conditions have an inflience preponderating more or less in different crines or in different forms of criminality, the most sure and certain means that society has or should employ in its defense against or for the prevention of crime, is twofold; and both ought to be employed and developed simultaneously. On the one hand, the amelioration of social conditions, which will serve as a natural prevention of crime; on the other hand, the elimination of those biologic conditions which determine crime; these measures of elimination should be perpetual or temporary, according as their influence on the biologic conditions are permanent and radical, or as they are temporary and changeable.

There are, said Ferri, five kinds of criminals, which should be distinguished each from the other and treated accordingly; the born eriminal, the insane crimiual, the criminal of oceasion, of passion, of habitude. To prevent crime the government or society should, on the one hand, ameliorate the social conditions, and, on the other, eliminate from society either partially or entirely those with defective characters, according to the degree of danger and the possibility of cure.

M, Alimena declared the essential causes of crime to be the soeial condition and hereditary transmission. According to him the criminal was produced by the same processes as were employed by stock. raisers to rear new races as an improvement of the present races, and adopting the words of Dr, Lacassagne at Rome, "soclety has no crimiuals except such as it merits."

Dr. Manouvrier took up the battle. He said they had reduced the importance of the surroundings. If their theory be true that the occa. sion makes the criminal, then society will make a criminal of the man who is the most inoffensive, and an inoffensive man of him who is most disposed to crime: and he argued his side of the question at length, and with vigor and eloquence.
M. Tarde said we have the agricultural type of man, the military type, the sailor type, and why should we not have the oriminal type? Lombroso took it up by saying that it was undoubted that we had among the criminals the type of the assassin, the type of the robber and burglar, and the type of the thief and swindler. M. Moleschott, senator
of Italy, mentioned an influence towards crime that had not been no. ticed, to wit, the heredity social influence; that is, the tradition which is instilled into the mind of every child, before he knows the difference between right and wrong, that by which he obtains the rudiments of his knowledge of right and wrong. Whether it be correct or not, it is the child's standard. Ho gets it not from any knowledge or theory of justice, but from the tradition of his own neighborhood, as it is taught by his parents and associates, by the people, and as it is believed by them.

Dr. Manouvrier responded : The argument of M. Ferri on the pre disposing importance of the anatomic ehatacters proves nothing, becanse he has taken account of only the general sociologie influences, and not enough of the daily events of inflnite details which happen to every man continually from his birth, and while each one of them was of the minimum in itsolf, yet aggregated made a sociologio surrounding in the life of the man to such extent as to change its form, and make him be. come what ho is. The study of criminality among animals proves that education can change him to be contrary to all his hereditary instincts, even contrary to his essential anatomic orgamzation. M, Rabourdin succeeded in rendering his wolf an honest and respectable animal, so that it would not attack or devour sheep, but would content himself with his regular meals duly served. The regular meal to the wolf played the same role that the daily income does to man, by the grace of which many persons who might easily become criminals pass their days with high heads in society and enjoy the confidence of their neighborhoods with a reputation all their lives of being honest men. He elaborated the necessity of consideration in this matter, not only of the number of the conditions and circumstances which had an influence upon us, butstill further the arrangement and position relative to these conditions. The possible combinations became infinite and not to be measured, and the realization of two cases apparently alike, theoretically alike, might be practically unlike, and what became in one individual entirely possible became in the other entirely impossible. As to his illustration of the wolf, he said that this was introduced to show how diffienlt it was to educate any animal to disobey his instincts, but still the illustration proved that it could be done.

Question V.-The infancy of children in its relation to a predisposition to crlme. Dr. Romeo Taverni, professor of the University of Catania, Italy, and Dr. Magnan, director of the insane asylum at Sainte Anne, Paris, reporters.

First part by Dr. Romeo Taverni. The science of anatomy can not alone tell us the genesis of crime in an individual man, and it never will, becanse the moral life of humanity, the most simple phenomenon, will carry us to many eauses for its explanation, and must be searched for mong many soiences, and will never be found in a single cause nor by a single method. The problem is to search the brain of the
H. Mis. $129-41$
criminal, and find if there be any momalies which would anthorize the idea of a degradation or physical degeneration predominating among that class of men. This problem remains yet an object of study. The results which have come to us up to the present are not conclusive. Among those who make these studies, some have observed too small a number of eases, and others have occupied themselves solely upon the cranial anomalies without interesting themselves with the anomalies of the brain, or vice versa, and the researches have not always been exempt from influence or conception a priori. They have supposed their task to be to establish imaginary relations between par. ticular dispositions, altogether accidental, of the cerebral convolutions of criminals, and certain normal dispositions of the same convolutions amung other persons. The observers have been rare who have sought among criminals for the peculiarities which the surface of the cerebral hemispheres present, and their relation with the type of sknll corresponding, and whether these things are or not the same which the anatomist has already found to exist among individuals not criminals. Nevertheless, the observation of several scientific anatomists appear to affirm that there does not exist any special type of skull or of brain in criminals, and this invites us to consider whether there exists any nor. mal type of skull or brain of non-criminals, honest men.

In the skull and brain of criminals the degenerate characters appear with greater frequency than in those not criminals. But the precise value of this comparative frequency is yet insufficiently determined as well as the manner in which these degenerative characters are proven, so that their full power to canse crimn or, to create a predisposition to crime, does not appear as yet established by any law that can be called invariable. No order of somatic anomaly cncountered among criminals possesses by itself any signification of a material cause of the delinquency nor a physical predisposition to delinquency. Taken together they indicate only the existence of, (1) a degeneration, (2) an organism by which their development has been arrested, or (3) the return of a regressive atavism.

But the physical degradation which is recognized by every fact can not, according to our experience, be found separated from a moral deg. radation. Observation has tanght us that the brain sous-mioro-cephalio is perhaps not apt in its function to conceive principles of which the presence in the understanding is a force necessary to the existence of moral life. So that we have learned that a human skull which recalls by its structure the animal form which it resembles, approaches inore to the ancestral form than another in which the archaic forms have been effaced.

The moral degradation which physical degradation teaches, belongs exclusively to the general operation of the moral life. We do not possess sufficient experimental knowledge of the anatomic structure of any individual to enable us to say, from this, that he had any determining tendency towards crime, nor that it had in any way a bearing upon
his moral sense. There is no scientifle method by which the relationship between his physical structure and his moral sense can be determined, whether the study be made during his life or by autopsy.
(2) The first principle of the science of criminal anthropologs, as tanght in modern times, is to study the criminal rather than the crimo. We have lived among criminals in the prisons of several of the cities as much of the time as was possible. During several years we have kept anamnestic observations and have recorded everything which had relation to the past life of the criminal; but we are not occupied solely in determining, according to the physiognomy of their crime, whether there is any such thing as criminals by instinct. We have never omit. ted an occasion to interrogate the criminal concerning his parents, his tutors, his friends, his master, his murses, doctor, all that could give testimony concerning the infancy and youth of our criminals. One hundred and twenty three of these numerous anamestic tables have been recorded and give an abundance, an exactitude, a minutia of historic information of such nature as to cause us truly to believe that future researches upon this point can do no more. The tables are of persons conclemned for those grave crimes which have been effected by destructive means, wheth er against the person or of property, or one or both. The sex, age, origin, etat civil, profession, the economic condition, religion, intellectual culture of criminals have all been investigated and recorled. There is much variation according to our observation, but we have considered all descriptions and classes of these criminals and have formulated this interesting scientife conclusion : That there is an inaptitude for education in infancy that is evidence of a natural pre-disposition to erime. We have met with cases and occasions where we could base a veritable scientifle proguosis which has contirmed the truth of this experimental doctrine.

A methodical investigation has shown to us seventeen children having this inaptitule for education, that we have forescen with assurance they would become criminals. And they became criminals contrary to the expectation and belief of a number of savants who were obstinate in their opinion that these infants were only backward in their elucation, and who prophesied that they would succeed if their pedagogy was appropriate. In order to resolve the grand question as to the natural predisposition to crime, the scielice of criminology ought to demand critical experience of the pedagogic biology. We deeply regret that the general burean of criminal statistics can not give official information in answer to the two questions: How many children and young people already gathered in the houses of correction become criminal adults? And its complement: How many condemned adults had in their youth been placed in houses of correction?
(3) Onr modern civilization has so improved, that it exceeds the natural capacity of many individuals who live in our midst. Modern civilization represents the last and final effort of the individuals who are
the best equipped. Many persons who now might be regarded as more or less criminal wonld have been esteemed honest if they had been destined to live in the primitive condition of man at the origin of civilization, or, at least, in the civilization of ancient times when our ances. tors formed the barbaric races of Europe. Each political government is a vast organism for the social education of all its citizens. Nevertheless there are persons who, by virtue of an instinctive and invincible opposition, reject the possibility of modification by the adipting efficacy of political govermment. Out of this opposition grows instinct ive criminality. Because of it, criminals perform their actions withont being conscious of evil. Giving free course to their instincts, they have only the consciousness of the good of their own individuality. Their selfishness seeks only their own good, and if they are not to be charged with the evil which their acts cause, no more are they entitled to credit for the good. The family is a small copy of society. The historic evolution of the family is that of society in general. There is a law which gives the highest importance to the good order of general society. There is also another law, only second to this, the good order of the family. The law of general society is the same in a greater sense as is the law of the family. The law of good order in the family is intended for the adaptation of the individual to the social law. It is easy to recognize by observation and experiment that there are some individuals, however small the number, who present an insensible, instinctive, and obstinate resistance to the law of the family. This repugnance to family government is sometimes revented during their infancy. These are the individuals who rebel against education and good order, whether of the family or of the State. The initial alaptation of these individuals to the social law, on which are to be found all ulterior adaptations to law and order, are in a great part achieved by these individuals during their infancy. We ask, in what consists this opposition of the individual, the sludent, the infant, to the good order, whether of the family or society? How is it explained? It appears to consist in tho physical impossibility of the individual to bring into subjection certain of his nervous centers, and his inability to require them to accommodate themselves in their structure so that they can execute with facility all those molecnlar movements on which depend the acts of obedience to the domestio law, whether of the family or of society. These should be repeated and executed with so little friction as to become habitual, and they can be tanght by the ordinary pedagogic process. This want of power in the nervous center brings about in the young person a default in the impressions neces. sary, by which the moral life of the individual is made to correspond to that of society. As a consequence of this default all idealization which leads to this end, is absent in the student without possible substitution, nor can he effect it by any spontaneous appreciation of his intelligence.

The sentiments of these individuals not only are closed against every civilizing action which edueative objects commonly exercise, but the presence of these civilizing influences in the world, and in society or in the family, excites their opposition. They repulse with great efforts their edncators and teachers when they would direct them toward their moral teaching, the object of the educators being to prevent this development of antagonism to the laws of society. The efforts even of the educators and teachers to prevent this opposition itself begets an opposition and increases the antagonism of the scholar. The inaptitude for education on the part of the individual arises because of a natural and irremediable defect or a physiologic inaptitude to the social laws of the family that one observes among some children, sometimes without regarl to their life or surroundings, education, or example. This constitutes their predisposition to crime, and thus has grown up the saying used by many people without knowing that it is true science, sometimes expressed concerning an incorrigible infant, "Oe fils est né pour la guillotine," "He was born to be hmig."

Dr. Maguan, the head of the insane asylum at Sainte.Anne, Paris, was a joint reporter with Monsienr Taverni upon the foregoing ques. tion. Dr. Magnan differed largely from Taverni. He said the question as thus presented seems to admit as an accepted faci an infantile predisposition to crime. That, he said, is an assertion maintained by many criminalists, but one to which he refused his adhesion. He said that, the opinion that attributes to the most of the criminals an ancestral origin, which considers the criminal born and raised as a savage surviving our present actual civilization, which contends that the infant criminality is only a prolonged example of savagery;-this opinion, he says, has always broughtforth contradictions, and he cites certain recent publications:

Tarde, "La criminalite comparee," Paris, 1886. Topinard, "L'anthropologie criminelle-Revue d'anthropologic, No. 6," November, 1887. Oh. Féré, "Dégenérescence et criminalite," Paris, 1888. H. Joly, "Le crime, Etude sociale," Paris, 1888.

Continuing his discussion concerning this supposed pre-disposition to crime, he asked, "Oan any one dare to say that there are primordial forms of crime and that they, with the germs of crime, are natural attributes; in other terms, that the infant is naturally disposed to crime and that the criminal is a man deprived of moral senso?" We think this to be an erroneous determination of observed phenomena.

At the moment of birth and for some days after, the infant has noth. ing more than a vegetative life. It cans into the world where it has to live finding itself surrounded by elements which conflict with its organism and provoke reaction. These are only the instinctive expressions of its emotions. All acts of the respiratory, circulatory, digestive, and other organs are a reflex order and do not demand the intervention of either mind or brain ; mere life is sufficient for their accomplisument

But soon the acquisitions of the new being begin, and the functions of the brain increase. The door opens to an exterior world; the sight, the hearing, the taste, the smell, the sensations within the periphery of the body permits relations more fintimate and complete with the outside world. These new operations bring into play that region in which experimental physiology and pathological anatomy have demonstrated reside the brain centers perceptive and sensitive. This is the organic substratum of our remembrances. In these differences are deposited the lingering images of all our sensorial impressions and it is thence that the centers of ideality draw the necessary material for intellectual elaboration in the formation of ideas. The images passing first to tho frontal region, become the representative sigus of thought and furnish the elements of our determinations.

The excellent work of Meynert on the structure of the brain has taught us the system of the fibers of association and of projection which are the evidence of this functional evolution. If nothing abuormal intervenes, if none of the wheels of the cerebral mechanism are broken and nothing interferes with the activity of the sensori-motrice of infancy then the intervention of the center moderators substitute the active ideo-motrice which, under the influence of the attention, based on experience, gives place to, or is followed by, the volitional act of reason. At a very early day in its life the infint begins to obtain or assume control of itself, say of its hands first, which prodace the phenomenon of attention and of those conflicting motives, agreeable, or the reverse, which preside over the acts of volition. A chart given in the psychiatry of Meynert shows the succession of phenomona in one of these simple mental operations; the image of the flame of the candle thrown by the apparatus of vision on the center cortical posterior, transmits its representation into the frontal rogion and provokes immediately an involuntary movement of the arms and hands towards the brilliant object. A painful impression, such as a burnt finger however, following an analogous atot, aets in an inverse sense upon the psychomotrice region, and a movement of shrinking is apparent. The two sensations, the one pleasurable, the other painful, are compared, the attention is attracted, the education of the moderate center is affected, recognition and memory are called into play, and in what before was only an act of impulse becomes in fact, or at least has the aspect of, deliberation. From the simple vegetative life of the first few days of the infant (simple reflex) it soon passes to tho instinctive life (activité sensori-motrice) thence to the intellectual life (activité ideo-motrice). These three different estates are but three stages of the evolution of one and the same function. The different modes of cerebral activity, the sentiments, will, attention, memory, judgment, reason, etc., that constitute the psychologic faculty develop themselves and become perfected successively by the harmonions action of all parts of the brain. There is a progressive evolution of the mental faculties, until they arrive at that state of conscience which enables us to
discern the true from the false, and the good from the evil; that secret testimony of the soul which gives approbation for good actions, which makes reproaches for evil actions, and is a characteristic of moral sense. The normal individual is not naturally disposed to erime. If he becomes a criminal (criminal of occasion as well as a criminal of habit), he does so under the influence of passion, or of vicions education. The influence of education is well marked in the infant and it takes an exceptional importance in the categories of these unhappy little ones of whom Monsieur Theophile Roussel has taught us so much in his remarkable report, made to the Senate on the sabjects of abandoned or mal-treated infants, and his project of a law for their protection.

Many of these unfortunate criminals fall under the intluence of doplorable surroundings and examples because they are the subjects of a heredity, which may be only nervous or may be the result of alcoholism of their ancestors. This is not a natural pre disposition for crime, but is a pathologic tare, a degeneration that troubles the cerebral function. -Sometimes the center moderators of the braiu are not sufficiently strong to repress the unhealthy appetite and cumb the improper instinct. Sometimes the conter moderators are too feeble to repress the appetites and refuse the unholy demands of these other centers which are in a state of erethism; sometimes, on the contrary, the center moderators are out of equilibrium with themsolves and have not that ponderation which, in their normal state will regulate these instinctive phenomona. But this is a pathologic state, and this study of the degenerates of these sick people belongs exclusivels to the medical profession and should be submitted to a clinical investigation.

With this prelminary discussion the question is separated from theory and gains in precision and in certainty. It is now reduced to a question of diagnosis. The examination still belongs to the loctor. That these individuals will commit offenses and crimes is of small consequence. The investigation of the doctor goes beyond the commission of the act Which is charged as a crime and the inquest shond embrace the lifo of the subject, his utavisms, his physical troubles, as well as the intellectual, moral, and affective modification which they have produced. This detailed analysis and attentive researeh into the past life of the subject will serve to clear the question and will furnish the hest of elements of appreciation upon which the doctor can have his judgment.

We now pass to the discussion proper of the question. The degen. erate hereditaries are born with the mank of their origin. Their phys. ical stamps are well known and we do not stop to investigate them. They are here questions of but secondary importance. We pursue at present the study of the anomalies of cerebral development. According to the seat and generalization of the lesions, necording to the locality of the functional tronbles, the clinical types will be variable, but in spite of their diversity the insensible transitions conduct from one
extremity of the scale to the other, from the degraded idiot to the degenerated superior, intelligent though out of equilibrium.
. We have but little here to say of the idiot who lives after a fashion purely vegetative, occasionally even only by instinct. The peripheric or surrounding excitation provoke the cerebral or medullary reflexes; but they are naught but simple reflexes and the center moderators do notintervene. From the time the frontal regions become free the subject commences to penetrate the dominion of realization and of control. He ceases then to be an idiot and is elevated to the dignity of an im. beelle. The localization of the lesions in such and such a perceptive eenter, or of more or less extent in the anterior region, explains to us that such and such faculties have survived the general destruction and thus there exists the partial genins, the learned idiot. The study of the disequilibriums, which as a class furnish the delingnents, belongs to mental pathology ; and there is in them no great anatomic lesions, but rather the functional tronbles on which depend the modification of the activity of the cerebrospinal axis. The predominating tronble in this class is the want of harmony, the failure of equilibrium, not solely between the mental and intellectual faculties upon one part, and the sentiments and desires upon the other part, but there is a want of harmony of the intellectual faculties between themselves. The want of equilibrium extends to the moral character. A degenerate hereditaire may possibly becone a savant, a distinguished magistrate, an eminent mathematician, a sagacious politician, an efflcient administrator, and yet he may present from the moral point of view those profound defects, those strange and unaccountable actions; and as on our moral side oursentiments and desires are the basis of our determination, it follows that the brilliant facnlties of this individual may be put at the service of an evil cause, that is, at the service of instinct, appetite, whealthy sentiments, etc., which, owing to the feebleness of the will, push him to acts the most extravagant and sometimes the most dangerous.

The abmormal action of the cerebral and spinal conters gives rise to curious functional troubles which are of the psychic kind. The syn. dromic episodes, the extreme manifestations of dis-equilibrium, bring to light by their exaggeration, the false psyehic mechanism which is fomnd, though in less degree, among these degenerates. For example: The illustrations of the effect of the dis-equilibrium are many, and in their manifestations are different, yet they are all referable anal traceable to the one cause-disturbance of mental and moral equilibrimm. An individual affected with some malady or just recovered from a spell of sickness, who becomes hannted, tormented till he shall have recalled the desired word, or fixed in its proper place the face of a passing stranger he has somewhere seen before, is conscions that it is only a phantom, yet is unable to throw off the spell, to banish the image which possesses his cortical center; or mother ease a person is diven as by power, uncontrollable as it is unexplainable, to make an attack upon an
inoffensive and possibly unknown person whom he may find within reach of his fist or weapon; or one tom with a desire for clrink; all these are phenomona of the same features and are illustrations of clisturbed equilibriums.

In these cases a conflict is engendered between the posterior brain (of which this particular center is in a state of erethism), and the morlerating centers. The facts which show these unhealthy impulsions of syndromatic degenerates are analogons to those of other degenerates whose acts are criminal, while in the preceding similar cases the center moderators, in spite of their decreased energy, ean, for a time at least, interpose and hold a cheek or connterbalance on this impulsion. Upon the contrary, among degenerate criminals these centers are scarcely represented. They have small energy, are content to remain idle, will not carry on the contest, and their feeble compulsion leaves the individual withont any protest from the anterior region. He is then ruled by his instinct alone, and this without any counterbalance or government.

Oonclusion: The infinite changes under which are presented the mental differences of those who are hereditarily degenerate, though they may appear much varied, can be definitely classed as follows:
A. Predominance of intellectual faculty, but moral state defective, degenerate criminals.
13. Moral state preponderate, but intellectual faculties and aptitudes mactive or wanting.
O. Apparent equilibrium of the faculties, but prominent defect in bringing them into usage, as in application, effort, emotion, etc.

Having gotten this conception of tho degenerates, it is not astonishing that cerebral anomalies should manifest themselves in their infaney. These are tho original tares which manifest themselves in the psychic life. From the age of 4 or 5 years, even before a vicious education has hat time to influence or modify them, these young subjects will present: characters of impulsiveness, phenomena of mental arest, intellectual and moral anomalies, their strange decisions and uncertain actions as though possessed of an evil spirit and by which they can be segregated. from their fellows and established into a separate class. These are examples of perverse instinct, cruel impulses, cruelty to animals. Usually these strange anomalies belong only to a special part of the brain which may have heen gravely affected by cerebral lesions, or thrown completely out of equilibrium loy functional troubles which may provoke in ecrtain centers a great excitement and in others a dimintition of their adivity. In these children one sometimes encounters a hereditary pathology which may explain the troubles of their cerebral development. The individual cases which serve as illustrations of these propositions are to be fonnd in great number. They are set forth in medical joumals and are given by the standard medieal anthors. In each of these cases and in all others known, it is remarkable that in spite of
these moral monstrosities one does not find any physical modification, or, if so, they are almost impereeptible. Neither is there to be fonmi any physical brand of hereditary or ancestral degeneracy. But a serutiny of their pathologic life will reveal that from their infancy they have been marked by the breaking ont of anomalies of choracter, of in. stinetive perversion, by affective sentiments which show themselves in numberless ways. From the very begiming of their psychic life they have been subject to cerebral anomalies. The history of the infuney of a degenerate adult will show the evident defective side of a mental organization from its earliest years and in the case of degenerate infants we know well what signification to attach to the precocions manifesta. tions of a morbid heredity.

Dr. Mangan presented several cases and showed the photogrephs of many, many more which he said were the hereditary degenerates. Curious enongh the most of them were girls, manly infants from 7 or 9 years old, to 12 and 14 . Their conduct as depicted by him was most vile and abominable. It was unnecessarily and-mprofitably wicked. Only a few can be given as samples of the best, the worst can not be presented:

Marguevite V., of 12 years, of good physique, and without any apparent mark of physical degeneration, rather good looking, intelligent, but full of vanity, of turbulent and variable humor, subject to violent fits of anger when she broke anything, beat her mother, stole what sho could lay her hands upon, and excited her brother to steal. She would bite her little brother without motive and without canse, would take a pin within her mouth and then invite him to kiss her that she might wound him. Her memory was fairly good, but it was sexial troubles which dominated her. - - -

Emile M, would laugh and cry easily and without reason. She had frequent and violent bursts of temper, stole upon every occasion, stole the money from the pookets of her father, took whatever lay abont of personal property, would hide in the ashes and cinders the bread, sugar, ete., destroyed the tools and merchandise in her father's shop, declaring she would like to ruin him; she tried to poison him, and on her starting for school in a gay and langhiing manner, left a cup of coffee for her father in which she had deposited phosphorus. She tried to kill her twin brother, declaring she would like to kill herself. Then followed the sexual troubles.

Louise O., 9 years old, was the daughter of an insane father. She lived in astate of continual excitement. Her intelligence was debilitated, the evil instincts were highly developed, but nevertheless there was no evidence of malformation, no physical stigma. She was inca. pable of attontion, turbulent, was discharged from several schools. The tendency to steal manifested itself at the age of 3 years, and she indulged it upon every oceasion and against the property of every per. son. At 5 years she was arrested after a most violent resistance. She
was a vagabond, wonld ery withont reason, her nemory was feeble, she could read and write, but did not understand arithmetic. She seemed to have no moral sense, was without motesty and knew not virtue. Her actions and conduct was such as not to be described.

Augustine I. was 14 years old. She entered St. Anne at 10 years. Her family back to her grandparents had been seriously affected with epilepsy, alcoholism, delirium, etc. Her physiognomy was agreeable and there were no sigus of physieal degeneration. She had an excitable disposition, her humors were unequal, sometimes she worked with facility, other times she was incapable of attention. She had alterna. tions of excitement and depression, was unstable, passionate, ille, liar to an extreme degree, was tormented by sexial pre-ocenpation, was without any moral sense, without modesty, pity, or affection. Nevertheless was not un-intelligent, although her memory had been neglected. Upon oceasions she was a good worker, but ustally she engaged in all sorts of vagabond, idle, evil life and conluet.

Gorgette J. was 12 years of age. Her physiognomy was agreeable, witheitany physical stain or stigmat that would give the idea that she was a degenerate. The contrast between her physical appearance and her moral state presented a series of deformities unbelievable. She was undisciplined and so could searcely read or write. Evil pratices commenced at $\bar{\sigma}$ years of age and were frightful. Their relations are shocking and impossible to relate.

And so there were others: Jeanne D., Lizzie X., and others again and again quoted by Dr. Magnan, many of whose photographs he exhibited to me. He said those were cited simply as illustrations. The numbers which had come within his observation were many, but even this frequency does not cause us only to accord a secondary importance to these physical signs which are inconstant, and even with the aid of all they seem very difficult to form or constitate a type.

It is not the genemal contestable oharacters as yet undetermined, that can be used to clear the conscience of tho magistrate. Medical juris. prudence demands from the medical faculty greater certainty. The medical expert can not attain to that necessary degree of precision without complete clinical examination in each particular case. Wach ease, he said, requires a positive diagnosis in order to respond to the enigmas of the case or the demands of medico-legal inquest.

Dr. Motet presented some statistics and with them general eonsider. ations in order to complete the commmication of Dr. Magnan. Of the ehildren brought to the house of eorrection during the 10 years from 1874 to 1884 , there were 2,324 children admitted; 680 were illiterate; 1,119 had been abandoned. He was in favor of a strong organization which would give to these unfortunates an education which was at once physical, intellectual, and moral. The agricultural penitentiary colonies were not his ideal when it concerned a child of the large cities. He declared that the state alone onght to have charge and direction
of the education of these unforturates, and to organize a school of industry where they would be taught proper trades, which trades, he said, could easily be armanged for what is known in commerce as the "articles de Paris," and the neoded knowledge tanght to the abandoned and illiterate child. He gave as his opinion that this was the daty of the State to provide and care for these children and to so rear them as they should become honest, respectable, and indastrions men and women instead of the ignorant, illiterate, degenerato criminals, to become which they were now on the high road.

This report gave rise to a great discussion. MM, Motet, Dalifol, Roussel, and Herbette deplored the condition of the law that phaced in the houses of correction-children at an age from 10 to 15 years. If not already oriminals, they soon become perverted and ready to become criminals. A more humanitarian law would have sent them to school and to chureh.

Lombroso said that the perverse instinet of haman nature appears even in the first years of the life of the infant. The infant in his first months is likely to be vain, prond, selfish, cruel, without moral sense, without honesty or truth, withont knowledge or care for the rights of others, and withont affection; and this, said he, is a criminal embry. onnaire. He thanked Dr. Magnan for having explained many ob. seure things found in Meynert. Lombroso explained the origin of his studies upon the eriminality of infints, and said he had done nothing else than to copy the observers Perez, Spencer, and Tain. In the cases submitted by Dr. Magnan whieh he had described and many more of which he had exhibited the photographs, Lombro so deelared that he conld recognize in them the physical characteristics of true criminals. . Those which Dr. Magnan declared to be the evidences of a general paralysis, were to his (Lombroso's) mind natught but those of the criminal born. He conld see in the degenerates the criminal epiloptic, the imbecile, with their stigmas each peculiar to itself. Of the seventy eight photographs in Dr, Bronardel's album he had found but two who had not the criminal traits.
MM. Moleschott and Vin Hamel came to the defense of the infant and invoked its inability of discernment. They declared there were no such things as innate ileas, nor yet was there oither criminality or virtue innate. The infant was born unconscions of either. In its early infancy it is not chaste becanse it is unconscions of sliame. It has no respect for the truth, because it does not know the difference between the trath and a lie. The instinet of destruction is very strong, and it destroys with pleasure and satisfaction. M. Moleschott called to mind a trick of Goethe, reconnted by himself, in which he described his delight in a seene in his infancy when in the absence of his mother ho committed an absolnte carnage among the glass and pottery ware. But the sentiment of honesty and virtue and truth developed with age. It is the law of evolution, but it is necessary that we do notconfound this phase of evolution with physiologic malady or with criminality.

This viow was omphasized by M. Roulet, who said he depended largely upon the physiognomy of the child, to which was added the reports of its conduct. But he declared that during the early infancy there was almost always an absence of discermment. He pleaded for precise detail, close and aceurate investigation, and report among the doctors in order to determine the exact nature and degree of capability; and this, he said, was the mission of the anthropologist, who was destined to establish the differential diagnosis of the infant and determine whether it was a natural-born criminal or not, so as to apply the proper measures, whether it be the house of correction, or a simple edncation.
M. Ronlet was a lawyer before the court of appeals of Paris, was secretary of the French union for the defonse and the tutelage of infants in moral danger. He said that he had defended during the month of October more than four handred infants before the tribunal of Seine; infants who were arrested in Paris for insignificant offenses, as vagabondage, begging, and little thefts. He had always pleaden that they were without discernment; that they should bo acquitted of the crime, but that the state should have eharge of their education. If the infant was acquitted, he demanded that it should be confided to the Freneh Union for the Saving of Infants. Under the operation of this society, the infant was placed in the country and watched over by charitable ladies. If the infant was still evilly disposed, he demanded of the tribumal that he should be sent to the house of correction until he was 20 years of age, where he became the veritable ward of the stateThe society of the French Union for the Saving of Infunts had been organized in 1887 . It was in closo relation with the police and with the magistrates and courts: it had sought and obtained their confldence, and there were now remitted into its care a great many children who otherwise must be sent to prison, there to be swallowed up for all time in the everlasting whirlpool of crime. He asked the aid of some anthopologist, who was at tho same time an anthropometrician, to visit the Palais de Justice each morning, and go with him through the drowd of arrested children and make the necessiny scientife examination that could be perpetuated in the form of statistics ; and to this response Dr. Manouvrier promised his assistance by making that appointment for each morning. 'Their rendezvous would be at the anthropometric laboratory of M. Bertillon.
M. Eschaneur, a Protestant pastor, declared the problem of saving and regeneration of the infant eould be brought about only by love.

Dr. Brouardel gave an interesting deseription of the physical and mental state of the gamins of Paris, so bright and intelligent during their infancy, but which, as has been observed by Lorrains and Tarde, early present the phenomena of a singular degradation. Near their fifteenth year their development was arrested, and a sort of physical decay was produced which led to sextal debasement and perversion, although it did not exclude certain intellectual aptitudes. Some
became musidians, poets, and painters. These indicated troubles of development, which in certain cases produced subjects degraded and debanched, and who, under favoring eircumstances, were disposed to the genesis of erime.
M. Theophile Roussel, senator, declared that to properly discuss this question it was necessary to ocempy an entire conference. The legis. lation, however incomplete it might be, had already done mueh for the protection of infants. The state, which was the heal of the grand family, assumes more and more of guardianship over the abandoned or neglected. And he quoted a proposed law which corresponded exactly to the present preocenpation of this congress.
M. Herbette pursued the same course. How should the infant be treated by the state? If it is deprived of the care and protection of its family, the state shond become its guardian, its protector, its educator, its father. The state is now largely the protector of infants, whether they be deprived of family or not. It protects the infants in the family against the stupidity, immorality, or crime of the parents; it protects the unfortunate, whether criminal or not, in the honse of correction; it protects him before the tribumal and it protects him against himself, because it refuses to give up its guardiauship until he shall have arrived at majority. The state endeavors to preserve the infant from ignorance, vice, or crime. While man lives physically, no one has a right to say that he is morally dead. M. Herbette exhibited a chart of the penitentiaries of the comntry. He insisted that the role of education was prevention of the evil in its course, and, without rejecting the intervention of the societies of charity and protection, he demanded above all the surveillance and control of the state.

Question VI.-The organs and functions of sense among criminals. Dr. Frigerio and Dr. Ottelinghi, of 'Lurin, were the reporters.

First part by Dr. Frigerio.
I.-I'he eye of oriminals.-(1) The color of the iris: I lave examined the color of the iris of 700 persons normal and 1,500 criminals. I have encountered a predominance of the chestmut-colored iris among the criminals, a considerable proportion of blue among the violators, offenders against public morals.
(2) The chromatic sense: This has been examined in 460 criminals with the method of Holingren. I have encountered but 0.86 per cent. of daltonism, a proportion which is feeble compared with the observations made upon Italiaus, which has usually given from 1 to 3 per cent. of dischromatopsy.
(3) Visual acuteness: Uliservations were made upon 100 criminals with the method of Smellen. For refraction we have met with an apparent predominant emmetropic. This visual acuteness is much more developed than among other Italians in the corresponding conditions of life though not criminal.
II.-The skeletons and the form of the nose among criminals.-My observations upon the skeletons have been based upon 609 skulls, among which 397 belong to the normal man, 129 to criminals (75 women and 54 men), 50 were insane, 13 epileptics, and 20 idiots.

The nose of the living person has been studied in 830 persons normal and 392 criminals, of which latter 193 were thieves, 37 swindlers, 28 robbers, 40 murderers, 22 violators. We also examined 60 insane, 40 epileptics, and 10 idiots.

For the observations made upon the skeleton I have encountered the anomaly of the nasal echancrure, that furnishes a hew abnormal char. acter of the criminal man, and which I believe to be atavic. To this must be added frequent irregularity of the nasal overture, osynchie, and deviation of the nasal bone.

Among the living the larger number of criminals show a nose square or wavy, of average length, but rather large and often twisted. The robber has often the broken nose; not large, short, wide, mashed, and twisted: the assassin straight, long, excessively large, wide, nearly always protuberant and twisteci.
III.-The sense of smell among criminals.-I have examined 80 crim. inals (50 men and 30 women) and 50 normal persous, 30 men, the most part the guards at the prisons, and 20 women of average culture. I composed for that purpose an osmometre made by twelve aqueous solutions of the essence of girofle in order of increasing concentration from $\frac{1}{50} 0$ to $\frac{1}{100}$, of which 50 cubic centimetres were each placed in a glass bottle with ground stopper. The following were my conclusions:
(1) An inferior sense of smell among criminals as compared with normal persons.
(2) The sense of smell more feeble among women than among men.
(3) The sense of smell more feeble among criminal women than among normal women.
IV.-The sense of taste among criminals.-I examined 60 habitual criminals, born criminals, 20 criminals of occasion, those which yielded to passion, sudden impulse, etc., 20 normal men of the inferior classes, 50 professors and students, 20 women of average intellectual culture, 20 criminal women. All were between 20 and 50 years of age.

Observations were made of the taste bitter, taste sweet, and the taste salty. It was accomplished by a delicate solution of strychnine sobooo; of sugar $\frac{10}{\overline{0} \frac{1}{0} \overline{0} \overline{0}}$, and salt, $\overline{\frac{1}{0} \sigma}$. The tables are omitted but the conclusions are given as follows:
(1) The taste is less developed among criminals than among normal persons of the same class.
(2) The taste is less developed among those who are criminals born than among the criminals of occasion.
(3) The sense of taste is slightly less among women than among men.
(4) The sense of taste among eriminal women is inferior to that of normat women, but is more delicate than anong criminal men.
(5) Several cases of partial failure of taste among criminal men.
V.-The sense of hearing among criminals.-Second part by Dr. Ottelinghi, of Turin.

No organ of sense comes to such perfection in criminals as that of hearing. We have come to this conclusion both from our direct examination and from the information received from the prison guards. It is without doubt true that the disuse of one sense will serve to sharpen another. As is the sense of touch among the blind, so is the sense of hearing among those prisoners who are condemned to silence. In our prisons where silence is required the prisoners have succeeded in establishing means of communication which might rival the telegraphic apparatus. The cells are divided by a corridor along which eonstantly passes one of the guards, so that the prisoners have no opportunity of comminication with each other. It has come to be known definitely and certainly that they commmicate with each other by means of a tapping or striking upon the wall or other substance. This sort of telegraphic commmication may be likened unto the old Morse alphabet; one stroke for a, two for b, and other changes and variations for the other letters. They did not use the letter h : no reason was given for the omission. Thus it happens that aprisoner will continue his work even in the presence of the guard who is watching him, yet by the strokes which lie may make in his work he can communicate with the other prisoners who may be within carshot, and it does not seem to make much difference to them whether the surromdings are in silenee or amidst a deafening noise. In case of the latter they seem to be able by their fineness of hearing to pick ont the taps or strokes which form the letters, as one would read a book or paper silently, while around him was such a noise as that if he spoke aloud he could seareely hear his own voice.

Although the guardians wore slippers shod with cloth or felt, intended to enable them to walk noiselessly, yet every criminal detects the difference in the step of the various guards so as to tell which one was approaching.

These examinations were made upon 280 criminals in the prisons. For the most part the sense of hearing was in excellent condition. With their eyes bandaged, standing at a distance of 1 or 2 metres, they could hear the ticktack of a watch. We attempted an experience with the transmission of somnd by the aid of the os craniens, but withont any conclusion. Onr examination of insane criminals was also withont conclasion. In the number of autopsies which we made mon insane criminals we have always found the convolution temporo-sphenoidal in a proportionate normal state, and have never found that among the criminals coudemned to silence, there seemed to bo any difference in
the convolution of that portion of the brain, which would tend to show any other than a nomal condition or normal activity. If the shap. ness of hearing among criminals is engendered by the inertia or disuse of the other senses we were unable to find any physiological or anatomical evidence of it in the brains of those whose athtopsies we made.

Question VII.-The determination by means of criminal anthronology of the chass of delinquents to which a given eriminal may belong. Baron Garofalo, vice-president of the civil tribunal of Naples, reporter.

For the determination of this question a psychologieal study of the criminal is indispensable, and this is possibly the principal branch of ciminal anthopology. Tho anatomic characters can only furnish indication, and it is necessary to complete the moral figure of the eriminal by the investigation of his psychic anomaly.
(1) In order to recognize this psychic anomaly the kind of offense will suffice sometimes. But it is necessary that the phrase "kind of offense" should be employed distinct from the language of the penal code or the judicial theory. Thus, for example, in the case of murler the word premeditation may be insufficient to anthorize us to class the offender along with murderers, for one can kill, even with premeditation, the murderer of his father or the seducer of his sister without being thereby classed among the criminals born. All the vengeances of blood, the vendettas, ure of the same kind, because there is not a seeking for that egotistic satisfaction which compels the man to murder or makes him criminal born. These offenses are oftener the effect of an altuism, such as amour proper or case of honor. On the other hand a man may have the most monstrons eriminal nature and yet be a simple murderer without being an assassin; nor is it any better to determine the assalssination from the motive, for either murder or assassination may take phace without any of the motives which influence the average man. Men in all the enjoyment of their psychie faculties will kill sometimes as though they were savages; sometimes from vanity, sometimes to show their foree, their address; sometimes to aequire notoriety. And again, the murder with an apparently suffieient motive, may be nothing more after all than the work of a maniac, epileptic, hysteric, etc. Even in the ease of brigandage one can not be sure of the nature of the eriminal withont having examined him physically and morally. Whero brigandage is endemie a son follows his father or his older brother on an expedition which has no other end than to rob the passing travellers and to kill them if they should resist, still he is not to be elassed liy anthropologists among the born criminals. It may happen that the brig. and who, if investigated anthropologically, ethnologically, or morally, would pass the whole examination with high eredit marks, wonld yet in the cases cited follow his father or older brother in his trade or profes. sion and be a brigand.
H. Mis. $129-42$

A classification of the penal code might make no differences between these offenses, while authropologic and psychologic investigations would have to take account of them.

In order to place a criminal in the degenerate classes of monstrons criminals it is necessary that ho should exhibit m innate or instinctive cruelty, such as is found in certain sarage peoples. In that case the murder is committed with a purely egotistic aim, that is to say, that the eriminal has been moved by a desire of somo individual satisfaction; when there has been on the part of the viction an absence of what would constitute provocation on the part of a normal man; when the murder has been accompanied by brutality made with intent to prolong the agony, that it may give pleasure to the fiendish character of the criminal. It is in these terrible crimes, by which the monstroas nature of the criminal is to be recognized. After this be once established there is still to distinguish between the born assassin and the insane or epileptic individual, who is either impelled by an inaginary superion force or else from want of perception of the nature of crime is held to be not responsible.
(2) The cases cited aro confessed to be of extreme anomaly. Some. times the circumstances themselves in which the crime has been committed are sufficient to show the nature of the eriminal. In cases where this is in donbt and it is desired to determine to which class he belongs, there shonld be the examination psychologic and anthropo. logic. The anthropologic characters are of an importance and oftentimes decisive when taken from the diaguosis of infants or young criminals. There are those who are recognized as having this taint of born criminality by their light offenses, their fighting, lying, eruelty, wantomess, truncy, theft, etc., and those bad boys, incorrigible young. sters, always doing things not simply mischievous, but things which they know to be wrong, thongh they may not be high crimes. But these individuals, being examined by anthropology, may present at the same time the characters of moral insanity and of innate criminality. The sanguinary instinct manifests itself frequently from the first in. fancy by a series of acts just deseribed as slight offenses, but which are unjustifiable, frequently repeated, yet of which the parent or teacher in anthority takes no notice, becanse of the yonth or feebleness of the child. Arrived at manhood, when ho has finished his ovil carcer by assassination, murder, and the higher erimes, then is remembered these minor offenses in his infancy which were the fore-rumers of graver and more hideous crimes. In these and similar cases one ean find the typical physiognomy of the assassin, the cold regard, the fixed eye, the marked cranial deformation, an excessive length of the lower part of the face, the forehead harrow and retreating, and other regressive signs; or, perhaps, such atypic anomalies as platiocephaly and scaphocephecly and among those who commit rape the thickness and grossuess of the
lips. And as for the moral sentiment, there may be shown a complete indifference for the victim. Apathy and egotism may be shown by the preocenpation of the criminal as to the possible duration of his punishment and the pleasures of which it will deprive him. If the anthropologie student will charge up against the delinquent the kind and the frequency of these small offenses in his extreme infancy, will note his psychologic and anthropologie characters, and take into account the heredity of viec, of insanity, or of erime, he cian prophesy that the infant or young person with these mental and moral characteristics will, if the provocation or opportunity arise, become an assassin. It is not rare for the psychopathic form to manifest itself in subsequent time, and then one may fairly conclude it to be a case of either insanity, epilepsy, or a born criminal.
(3) The physical observation of the delinquent should be continued, to the end that one may distinguish the impulsive characters; that is to say, those characters which impede or prevent moral resistance to the passions which excite to crime, principally anger, vengeance, alcoholism, insanity, epilepsy, and certain other characteristies which descend by heredity. This class of delinquents are midway between the malefactors by instinct and those of oceasion. Although this tendency to crime is a germ in their individual organisms, which becomes semipathologic, yet the germ will rest latent and unproductive, if there is not added to it an impulsion from the exterior world. This impulsion is required in order to cause them to commit crime which leads us to class them as criminals of oecasion. As soon as this exterior impulsion is found to be not necessary, or, if the crime is immoderate as compared with the impulsion, then the delinquent is to be classed as a eriminal borin.

The regressive anomalies of the skull and of the physiognomic type of inferior races that has been so frequently remarked in the eriminal born are nefrly always absent from the impulsive criminal. But on the other hand these latter are characterized by nervons anomalies, and by other striking maladies. It follows as a result of this theory that in murders or assantts arising from a quared or riot, one can easily understand how there can be two classes of eriminals-the eriminal impulsive, and the criminal by chance. The first, which are partially criminals born, are much more dangerous to society than tho latter. They may commit crime from disease as much as from instinct and ought to be made objects of particular treatment, as much by the medical man in the hospital as the policeman in the prison.
(4) The terms used in jurisprudence for the description of a great number of erimes signifies nearly nothing for the anthropologist. In the seience of criminal anthropology the author of a given erime may be ranged under different classes of eriminals. He may he a criminal born; he may be a criminal impulsive, or only a criminal of occasion.

According to the penal law there are but two terms: the criminal and the punishment, white erimiual anthropology, the new science, has three terms: (1) the crime, (2) the criminal, and (3) the punishment or the adapted repressive measures. These repressive measures are to be again divided according as they are applied to the different classes of criminals.
(5) In classing as criminals those who commit offenses against property, such as robbers, thieves, swindlers, forgers, ete, psychology plays a rolle even more important than anthropology. The sentiment of probity is less instinctive than that of charity or pity and is not dependent upon the organism because it is more recent and less transmissible by heredity. It happens that exterior causes, such as the surroundings, conditions, examples, education, and economic conditions may have a greater effect upon this species of criminality. In the case of the robber or thief, along with the morbid form, kleptomania, there is an instinct to steal caused by heredity or atavism, which is often manifested by anthropologic signs and above all by special physiognomy. The most striking characters are those mentioned by Lombroso of the extreme mobility of the face and hands, small and bright eye, heavy and continuons eyebrows, the camus nose, small and retreating forehead, etc.

When these characteristics are found upon the recidivist, that is, the incorrigible criminal, one can be sure that he has to do with a crim. inal born. It is frequent that anong vagabonds, robbers, thieves, and other eriminals against property there is a physical and moral nemastheny, a term coined by Benedikt, of Viemat that is to say, an aversion to labor and to every moral combat for the right, derived from a nervons constitution, and which is combined with, or perhaps has produced a desire to enjoy the pleasires of life and to indulge in its luxuries quite beyond his means. When the circumstances of life are hard upon such an individual, and he is subjected to an economic or social crisis, he is more likely to become a crimilal, because crime may adid him in the satisfaction of his desires. To this nemrasthenic class belong the vagabonds, thieves, and swindlers, whose improbity may have commenced by unfortunate circumstances, such as being out of work, loss of place, evil company, bad example, and improper moral education, and which ends in his becoming an instinctive criminal. The nemasthenic and the habitual or instinetive criminal ought therefore to be gronped together, becanse they are equally incorrigible, until at least the social and economic situation of the former shall become so changed as to offer them the enjoyment of all pleasires and luxuries which they desire withont the need to work. It is necessary, however, to make exceptions for young persons who are driven into vagabondage and are thieves by bad examples, and evil surroundings and associations. Although they may have become habitual criminals,
yet they may not be incorrigible, certainly not until they shall have arrived at the age when the character is fixed.
(6) It follows as a necessary conclusion that as each of these classes of delinquents may be determined with anything approaching pre. cision an enlightened legishature should adopt a special treatment. It is not astonishing that the legislators and magistrates who make and. deal with the criminal laws should repulse the services and the aid of psychology and anthropology, and should persist in their a priori per. ceptions and in uniform precepts, withont giving consideration to the infinite variety in criminals produced by so many different canses and influenced so differently by surroundings, all of which go in such supreme degree to form the guilty and reprehensible intent with which the crime was committed, or which on the other hand may take away that intent and form either a justifleation or excuse.
M. Puglia gave his imqualified assent and support to the propositions advanced by Baron Garofalo.
M. Alimena, on the contrary, assailed the entire classification. According to him the examination, whether anthropological, physical, or psychological, was insufficient to more than raise presumptions and invent theories, while certainty was required in dealing with judieial questions and eases. If exterior and physical anomalies are appreciated, why not apply the same mule to intemal anomalies? What, he demanded, did it signify as to the depth or size, more or less, of the oceipital fossette in the skull of Charlotte Corlay which we now saw in the collection of Prince Roland Bonaparte? If it indicates, as is chamed, that she was a born criminal, then instead of being a heroine who rid the world of a monster, she was nanght but a common, valgar, impulsive murderess.

The difference should be recognized between a purely scientific treatment of eriminals and the mactical treatment which they mast reeeive moler the law. If soience adrances so does the law. But they go at different rates. Seience flies on wings of the mind, while the law marehes along in stately and dignified tread with leaden sandals. Scientific crors are easily corrected. They do no harm. They come down upon us and envelop us as does the fog the earth, but like the mists of the moming which fade away before the sunlight of hearen, so do they under the light of investigation ; while the jurisprudence of the eonntry, solid and endaring, and, more like the earth which has been hidden, remains after the fog has been dissolved into a few drops of dew.

He expressed his opinion that of all these seiences, psychology would be most productive in results, and he much regretted that the schools of law and of medicine did not teach this science.

Lombroso responded that his works or his opinions were not opposed to nor contradicted by any psychologic diagnosis. He returned to the skull of Charlotte Corday, which he said demonstrated anatomic char-
acters of the criminal born, such as platycephalic, the occipital fossetto, and other chameters of the virll skull.

Dr. Topinard responded to him by affirming that the skull of Ohar. lotte Corday was normal, and that it presents all the proper characters of the skull of a woman. The platycephalie was a normal character and the vermicular fossette was not an anomaly, and there was nothing irregular in the skull unless it should be its platycephalie, and he said it was rare or never that a skull was the same in all its parts and on beth its sides. Nearly all skulls showed a difference or distinction on the one side or the other.
M. Benedikt opposed this theory of the eraniometrie methods and also the psychologic characteristics entumerated by Baron Garofalo, which, he said, would belong equally to the dyspeptics and the neuralitics. It was easy to make hypotheses, and according to his belief one had as much riglit to say that the occipital fossette was an indication of a predisposition to hemorrhoids as much as it was to crime.

Ferri and Lombroso replied vigorously to Dr. Benedikt, while Senator Moleschott came to his aid.

Dr. Bronardel recalled the speakers to the discussion of the report of Baron Garofalo. The problem proposed by him was a classification of criminals. The crime itself is insufficient to class the criminal. The decision must be upon all the evidence. One insane act is not sufficient to characterize an insane person. It must be established by the antecedents of the subject, his former life, his peculiarties, and his physical signs. This was the only true system to be pursued, and any purely physical or purely psychologic examination would be insufficient and was to be repulsed entirely. Suppose the theories of Baron Garofalo to prevail, then a criminal born, according to his views, should be arested at once and conflned in some special establishment.

M, Herbette took up the discussion and emmerated the results obtained by the administration of the penitentiaries. Wo have, said he, at one time the prisoners and the sick people. The prison is not a hospital. The hospital is an association for the good of the sick and where they may furifish a subject of study and experience. In the most of them the entry is free, and in all the departure equally free. In the prison the situation is entirely different. The prisoner is imprisoned as a result of the penal right of society to protect itself.

M_Lacassagne protested that for the sake of science, for the sake of society, for the sake of investigation into crime and its canses, the law should give to the prison authorities the right to investigate the biology of the criminal and the sole control of the cadaver of the eriminal, whether his death was inflicted by the law or came from other canses.

But M. Herbette dechared he would not go so far, aud ho counseled patience, study, careful investgation, great conservatism, regard for the feelings of the public, so to the end there shonld be no revulsion on their part, for the reforms which were forced might bring great risks to science and compromise its success.

Question VIII.-The conditional liberation of criminals. Dr. Semal, director of the insane asylum of the state at Mons, Belgium, reporter.
(1) In studying the right of society to punish a criminal, one is struck with the insistance of the law upon the characters and circumstances of the offense, withont the slightest examination into the personalities or conditions of the delinquent. Dr. Semal advocated a psychomoral examination of the delinquent in order to determine his condition, whether he was a confirmed eriminal or only a criminal on occasion; and whether he might not in the one case be given a conditional liberation, and in the other be continued indefinitely in confinement. One of the theories of the penal code which forms a fonndation for the right to punish, is the possible reformation of the delinquent; but the idea of a fixed term of imprisonment as a punislment for one chass, and annther term for another class of offenders, is opposed to the theory of possible reformation. To give this idea of reformation full effect, there should be a conditional liberation which should take effect sooner in one proper case, and later, or not at all, in inn improper case. He declared a scheme of conditional liberation could be provided which would be more rational, more humane, and more successful in the reformation of criminals.

The jurist, in writing on this subject, contents himself to remain within the limits of the written law, and declares himself satisfied by the uniform and inflexible application of formulas which have been erystallized in the codes. The decay of these doctmes will appear where to the safety of the public or society is added the desire to reform the oniminal. But their destruction will not be complete until crime is regarded as a natmral phenomenon which can be prevented by a study of the social and individual causes which lead up to it. From this there are to be made two deductions : (1) If the punishment is the principal object of the repressive system, why shonld it be prolonged when it has contnibuted all it can to the reformation of the condemned? This is the foundation of conditional liberation. (2) If the penal condemmation is sufficient to awaken in the heart of the delinquent his heretofore smothered sentiments of right and justice, and if the moral effect of his offense is complete by the fact of his condemmation, why shonld he be com. pelled to serve, or even enter upon, a term of imprisomment? And from this has sprung the theory of conditional sentence. These two propositions contain the germs of the radical reform of the repressive system. They tend to give to the convieted criminal the opportunity to determine by his conduct if he will have his sentence postponed indefinitely, and his liberation made at onee, even thongh it be on probation and under surveillance, he to be returned to prison on his first movement towards a retmen to his former eriminal life.
(2) 'The proposed law of conditional liberation wonld operate upon the sentiments of the condemned person, of which we can suppose the
existence; and in order to establish with certainty this proposition, it is proposed to give him a scientifie psychologic examination.

Man ean be judged only by his acts. There may be a sort of latent criminality always ready to explode under the shock of propitions circumstances, as an expression of a diathesic stage dominated by heredity, and of which biologic science can enumerate the signs. A pisychologic aualysis is indispensable in order to determine these questions. The necessity of a psychologic examination of the delinquent is imposed because it is the only method by which one can determine the existence of such sentiments as will authorize the conditional liberation or ought to postpone the punishment.
(3) As to the practicability of this we have to remark that the present theory and past experience has only resulted in a multiplieation of punishment without having reduced the extent of criminality; and this, whether in the number of the crimes, their frequency, or their grades. By the old system neither the genesis or evolution of crime has been studied; neither the legislator nor the jurist seem to have ever considered why an evil-minded minority should persevere in the commission of crime while the majority of people are horest, well disposed, and of good repute. It is therefore towards the modern school of positivists that we must turn for a solution of this matter, becanse it alone seems to have studied erime as a natural phenomenon arising from multiple causes.
(4) The principle of the reformation of the criminal by the operation of the penal system is in contradiction with the fixation in advance of the duration of the cure to which the delinquent has to submit. The new theory of jurisprudence will permit whoever or whatever eriminal shall show himself to be repentant and inoffensive to be conditionally liborated, and this offer should be made or the opporto. nity given even to those who refuse or those who find themselves in the impossibility to reform. The reformation of the delinguent, or at least his resignation to and respect for social laws, is the essence of this theory of conditional liberation. But, as one can connt to a certain extent upon the vitality of the criminal instinct, and with the persistence of the social conditions which nourished it, it is necessary to prepare for the eventuality of a prolonged incarceration which may be regarded as the result of incurability on the part of the eriminal. The idea is to proportion the length of the imprisonment according to the mature of the delinquent, to the degree of his perversity, and the danger of his return to society before his evil tendencies shall have become enfeebled or nentralized. It is evident that this is more rational than to fix a time certain for his imprisonment aceording to the condition of his offense, which may furnish only an isolated system of the moral malady with which he has been attacked and which was the canse of the commission of his crime. The proposed law of conditional libera-
tion can correct any erroncous verdict or judgment or work any reduction of the term of imprisonment.
(5) The proposed law of conditional condemnation is upon the same principle as that of conditional liberation. It corresponds somewhat to the practice prevailing in some States of the United States of suspension of sentence during the indefinite period of good behavior. It is a measure generous and wise, is addressed to delinquents of tender years,-those who have been arrested for the first time, who may be the victims of circumstances, who are without criminal intent, and who, if the sentence be suspended, would probably never be guilty of the offense again, while, if their sentence should now be carried into execution, it would almost certainly result in the loss to society of one who might become an honest and respected member thereof, and gain in his place he who might easily become a hardened criminal. But the application of this principle is or will be surrounded by researches extremely delicate, which ought to be highly scientific and so lengthened as to include the antecedents of the delinquent, his life, his raising, his surroundings, and to get if possible into che interior of his soul. The word "delicate" has been used, and truly this is necessary, for the responsibility is great, for as the judge may by refusal to suspend sentence lose a momber of good society, so also he may by a suspension of sentence grant indulgence to unworthy subjects and be deceived by hypocritical pretenses and promises, crocodile tears manufactured for the occasion and practiced upon him by a hardened and instinetive criminal.
(6) The instinctive delinquency of the young eriminal is not abso. lutely in relation with the enormity of the crime. This imposes upon the jurist the necessity of a proper selection from among the arrested as well as anong those imprisoned as to whom, in justice, to apply the different systems of treatment. The operation of these two systems, the one of which operates upon those subjects which can possibly be reformed, the other with the prolonged and continned punishment and incarceration, even in solitary confinement, of incorrigible subjects, who, if allowed their liberty in the least degree, will use it only for the contamination of their fellow-prisoners and the preparation and arrangement for themselves to enter into a wider sphere of erime upon their release. These are the foundations of the two systems.
(7) Individualization is necessary in order to recognize and class the delinquents, and to determine whether the medicine to be administered to him for his core shonld be of incarceration or liberation. Sometimes it might be better to adopt the plan of solitary confinement in order to conduct properly this individualization. An anthrojologic examina. tion or a psychologic analysis may not be sufficient to determine to which class he should belong, and therefore he should be tried under different conditions, always bringing out his real and heartfelt sentiment, thus enabling one to determine to which class he belongs and
whether he should be conditionally libented or continned in solitary confinement. To this end an opportunity must be given both by restraining his liberty until he shall be in solitary confinement or extending it until he shall be conditionally liberated. His actions and the psychologic effect which this has upon him must determine the future course to be pursued with him. In doubtful cases the conditional liberation is the most rational, as it is the most humane. It gives the delinquent an opportunity to reclaim himself, and gives him a guaranty that his attempts at reformation will be well seconded.
(8) After having returned to society those of whom we have nothing more to fear in the way of criminal offenses, after having taken allnecessary precautions for those who are to remain under surveillance and possible retum, it is necessary to take steps for those individuals who are by nature rebels and refractory, who reject all ordinary means of reformation, who are delinquents by habitude, and are instinctive criminals. For these individuals their detention, even to solitary confinement, with severe and hard labor, should be kept up until they giveproof of their repentance. If this is refused then we in France and on the continent can only relegate them to a penal colony in a distant ocean or else to solitary confinement in one of our home penitentiaries. The relegation of a recidivist or an incorrigible to a penal colony, solitary confinement, or some other form of severe pmishment, or else treating him as sick or insano and sending of him to a prison asylum; these are the logical corollaries of the propositions for conditional liberation.

The criminat, conditionally liberated, should be required to report for examination whenever needed, and thus the prisoners who are under condemmation of the law would become physical subjects for the study of crime in its psychologic as well as anthropologic phases, and the prison become as woll an asylum and a hospital, affording a clinie for the lawyer, for the doctor, the judge, and the lawmaker.
M. Alimena called the attention of tho congress to the fact that this question had been disenssed for a long time and in many places by legislators and jurists, and he referred to the first eongress of the International Union of Crimimal Law, held at Brussels, in 1889, where the disenssion took place upon the thesis presented by Senator Michand on the law of pardon. He said three methods had been proposed-the conditional sentence, which was enforced in Belgiam ; the suspension of judgment, which was practiced in England, America, and Australia; and finally that of blame, set form in the German eode, the Rassian, Spanish, Portugese, and in some of the cantons of Switzerland and provinces of Italy,
M. Drill remarked that the system of conditional liberation required the exercise of two functions-that of the judgment of the court passing upon the guilt of the eriminal, and the ulterior or subsequent treatment of the criminal, and that these were functions entirely different and ought
to be separated. The first belonged to the jutge and the court, and the second belonged to the administration of the penitentiary. He thought these ought to be kept separate, and it was clearly his opinion that the judge or the court alone should decide upon the culpability of the in. dividual and the application of the penal law. The administration of the penitentiary should be composed of, or should eall to its aid, the must competent scientific gentlemen, who would be able to pass upon any question concerning the physical, physiological, or psychological characteristics of the individual, and this, taking in consideration his antecedents, his social condition and surroundings, his education, companions, etc., together with his conduct while in prison, would enable them to decide upon the application of the conditional liberation.*
M. Bertillon, while giving all credit to the scientific investigations mentioned, begged the congress not to forget that the final end was primarily for the safety and well-being of society, and the reformation or well-being of the criminal only secondary.

Question IX.-Orime in its relation with ethnography. Dr. Alvarez Taladriz, of Valladalid, reporter.
M. Ferri had already described the ethnic influence upon crime, so Dr. Taladriz sought to establish a tendency towards crime on the part of a whole people; the criminality of a nation or of races. He sought to show how the crimes in the Northern, Middle, and Sonthern Spain, were different, and also the difference in criminals. He dechared this difference to be due to the advent of Charles I and Plilip II, as Kings, and that it was but an exposition of the ferocions instinct of the primitive inlabitants of the forests of Germany.

The mesologic influences are conflimed by history in such manner as that it ought to recall to the student of sociologie influence the statis. ties of offenses committed in the cold and warm countries, those between the region of the North and the region of the South. These questions have not been studied from a geographic or ethnie point of view. It is proper that they sliould be. There probably is no place in which this ethnic influence upon crime conld be studied with greater snceess and accuracy than in Spain, where there are such ethnie differences between the people of the different parts of that comntry, and where one will find a corresponding difference in the crimes committed. In the north of Spain offenses are of a character distinct from those of the center and sonth. Crimes against person and property are rare. Those which exist are the result of inherited, primitive usages and enstoms like in the vast motutainons Basque provinces of Catalonia, the kingdoms of Galicia, the Asturias, and Leon, where assassination and homicide slow the terrible characters of the sediment of population

[^108]deposited by the preceding races of Germany during the grand period of invasion of the tribes of the north who occupied these regions more than any other part of the peninsula.

The miners of the center of Spain do not present those characters of ferocity, because their elements are a concourse of varied and multiplied antecedents of the successive dominations which have come to pass in the peninsula.

In the kingloms of Valencia and the Andulasian provinces, the criminal customs of the Arab race were handed down as a sourenir of the Kabyles, where the inhabitants organized themselves into a band of malefactors. The crimes of homicide, assassination, in the majority of cases were only the result of the passion of jealousy coupled with a hate truly African and which considerably angments the number of offenses against persons and property. Nevertheless, wo recall certain acts of nobility, the Arab hospitality, etc. True, there may be exceptions found, as there will always be, to general rules, but the conclusions are:
(1) The physiologic characters of the criminal type manifest themselves in a constant and uniform manner in all epochs and in all races, and without other variations than those imposed by accidental and external circumstances from these epochs and races.
(2) The conditions of race, climate, geograply have their influences upon the senses and passions of mankind and upon the development of crime, as well as upon sociology, religion, ceonomics, or politics.
(3) The grand offenses committed by races and mations ought to be an object of an international penal code by which they could be punished with a certainty and uniformity that wonld bring tliem to an end; while in the same code conld be declared the sacred right of mations and of individats, which should be recognized by all the world.

Question (37), -Medico-psychologic observations upon Russian erimimals. M. J. Orchanski, of Oharkow, Rassia, reporter.
M. Orchanski is professor of the university at Charkow. He was not present to read his paper, and it was presented ly Dr. Brouardel in comnection with Question IX. Only the eonchasions were read and they were in opposition to the Italian school. The paper consisted of arguments and deductions, and did not deal in testimony or statistios.

Dr. Topinard took the opportunity to present his opposition to the title "Criminal Anthopology" and thought it shoud be replaced by that of "Uriminology" as being shorter, easier, better understood, having a dearer meaning, and with everything to recommend the change.

Ir. Manonvier preferred the the term "Anthropologie Juridique."
Question X.-The ancient and new theories of moral responsibility. M. Tade, juge dinstruction at Sarlet, Dordogne, reporter.

This was a long and learned disquisition upon moral responsibility.

The opening paragraph declared that moral responsibility depended upon free will, which, at least, in its relation to crime, was a liypothesis without foundation in truth or justification in law. The discussion became morephilosophical and metaphysical than practical. The most careful report would fail to do it justice or render satisfaction to its author, and it is therefore deemed wise to omit it.

Question XI.-The criminal process considered from a point of view of sociology. H. A. Pagliese, of Trani, reporter.

The moment appears opportune to make the criminal process an object of the study of pemal sociology.
(1) The eriminal process is an institution of State established in the social interest, liaving for its end the search for and repression of crime. The general rules of its formation provide for the discovery and appreciation of crime, the punishment of the anthor, and the conciliation of the social and individual interest. To do this properly requires a magistrate who has technical as well as general knowledge. It is not sufficient in these times of the discovery and investigations of anthropology that he should be simply a judge or even a jurist. It is necessary that he should be acquainted with the studies of anthropology and sociology; that he should understand the social surroundings in which the erime is committed as well as the men who commit it. Whether the State should found the necessary institutions of learning for the training of these magistrates was a question for disenssion, but it is indisputable that they should have a special training. Prosecutors are charged with the trial of eriminal oftenses. In western Emrope these things are not satisfactory; a juge d'instruction, or prosecuting ofticer, scarcely possesses any special training or had any special qualification to fit him for his position. Perhaps he has never written a eriminal process, never seen a cadaver, or attended an antopsy. He knows nothing of anthropology nor of penal sociology, and yet he is called upon to exercise functions the most delicate, most difficult, on which depends the safety of the eitizens and their social surety. He obtains his experience in corpore vivo; he learns at the expense of society. In doing black. smith's work he becomes a blacksmith, and when he shall have become habituated to his position, and qualified in even a mediocre manner, he will be changed to another place with another duty, and another person will replace him to begin again this new life of study and practice. This is not a system but is only education. The fanlts, and the seandal are enormous. Sixty per cont. of criminal processes fail. The real culpables have a good chance of escape, while the innocent rm the danger of losing their honor, their liberty, and, possibly, their life.

It is evident that the criminal process should not, as at present, be limited to the gathering of the proofs pell mell. On the contrary, the prosecutor ought to study the evil and secret causes of the criminal actions, and from them deduce the true reason of punishment. They
ought to seek also for the precedents somatic, psychic, and social, and discover the conditions, surroundings, environments, not only of this particular criminal but of all that have gone to produce such criminal phenomena. It is now time to search for such indications as can be furnished loy anthropology and by criminal statistics, not only for identity, as given by the works of Bertillon, Voisin, and Herbette, but also the biology of crime as has been investigated by Ferri, Garofalo, and Righini.
(2) The investigation and trial should be confided to those who have been techinically educated, experts of special training, one for the prosecution and another chosen by the defense. The defense onght to be admitted to take measures, to ask questions of medical jurisprudence, such as he may need in the interest of his client, and upon these questions the debate should take place and the judgment rendered. This would not be a mere opinion, but would be a true decision of a technical commission, which would settle at once and forever all debate upon that question. It would be a trial before a technical jury as to the questions of medicine or medical jurisprudence or psychiatry. It would also raise the professional dignity of the medical jury, and would assure the world that, cost what it might, the researeh would be in the interest of truth. The right of the judge to demand the decision of science, and along with it the right and the power to trample the decision under his feet is a manifest contradiction. We who lave always maintained that it is not reasonable to submit to a common jury questions of medical jurisprudence, think it time to overturn the ancient maxim that the judge is the expert of experts. The maxim may flatter the vanity of the judge, but it is not true. Each one to his place is the truth. When a question of medical jurisprudence arises the medical jurist ought to be the judge.

This question was brought up at the session of the congress at Rome. Drs. Tamassia and Laccasagne presented it. There was an important debate thereon, and the principle here laid down was approved with a single exception We propose that questions of medieal jurisprudence, of psyohiatry, should be tried before a technical jury, and that they should be authorized not simply to make a suggestion and give an opinion, but to render that which is a real decision and a final judgment. We believe the proposition laid down in the Holy Seriptures to be tho true one, to give to Christ that which belongs to Christ and to Cresar that which belongs to Cessar.
(3) There should bo established a system of preventive detention, that is to say, there shonld be a detention for the purpose of preventing crime by means of imprisonment of the individual before he has committed it, rather than to imprison him after as a punishment for having committed it. The penal process or code in the Latin countries consists of the two steps, one of instruction and the other accusation. In the first the presumption of innocence prevails, and there the preventive
detention should be the exception, but in the second it ought to be the rule. But these things are to be determined by the psychic condition of the delinquent and the nature of the canses which impelled him to erime. If the psychic conditions have been verifled there should be no further hesitation, but the imprisonment or detention should be enforced with rigor.
(4) The judge gives his judgment in three forms: Condemnation, acquittal for inexistence of the crime or of his imocence;-acquittal for insufficiency of proof. This corresponds to the ancient formula: Condemno, absolvo, non liquet. The jury, on the contrary, exeept in Scotland, have only two formulas: Yes, no; guilty or not guilty. If they are in doubt as to his guilt, they respond not guilty. This does not appear just. The jury should have a formula of non liquet-not proven; the laws would then be equal for all.
(5) There should be an appeal in criminal cases as well in acquittals as in convictions. This question was treated by Garofalo, Ferri, Maino, and by Pugliese in the Revue de Jurisprudence in 1885. It has been argued in the affirmative by Mittermaier in his Dic Gesetzgebung und Rechtsbildung.

In this principle it has received its first legislative recognition in paragraph 388 of the Anstrian code and paragraph 300 of the Germanie code. But in these cases it is confined only to corruption or false testimony. It is time, however, that the principle of appeal in the social interest should be recognized without restriction and appeals be taken as easily by the prosecution as by the defense. The law ought to be equal for all. The interest for the one and of tho other ine the same. No reason in justice can be given why one should have an appeal and the other not. It would serve to correct many erroneous, not to say corrupt, judgments and prevent many seandals upon the law.

Dr. Brouardel accepted much said by M. Pugliese, but he combatted some positions. He denied the propriety of making an expert to be a julge or making judges only of experts. The responsibility was too great and the result wonld be unsatisfactory.
M. Benedikt agreed with Dr. Broundel and said that while the edueation of the magistrature should inelude certain prescribed medical studies, they should be always auxiliary to jurisprudence and never above or beyond it. This was in accordance with the opinion of M. Lacassagne.

Question IVr.--Instruction in medical jurisprudence in the law schools. Professor Lacassagne, of Lyons, reporter.

In the presentation of this paper M. Lacassagne repeated largely the ideas which he had pit before the congress at Romo upon the necessity of instruction in medical jurisprudence in the law school. There was a large discussion over this question, but it was confined to the details,
all the speakers, Brouardel, Moleschott, Van Hannel, Ploix, Fere, Tarde, Soutzo, Ferri, and Madame Clemence-Rojer, were in accord with the proposition. It was finally agreed to recommend the examples of the universities of Holland and Belgium, to which might have been added Trinity Oollege, Dublin, all of which have a special course of medicine in their law schools. It was recommended that even in these courses shonld be extended to include a large proportion of anthropology, for Madame Clemence-Royer recalled that according to Socrates the first study of man sliould be man himself.
M. Sontzo insisted that to teach criminal anthropology was to teach medical jurisprudence, and he eited examples among the insane. A paralytic by virtue of his delirium becomes a robber or a thief. In his perverted senses he falls into dipsomania. Another, which, attacked by the mania of persecution, becomes a murderer or a suicide. Another category of individuals who are on the frontiers of insanity may be found in the degenerates, the morally perverted, the drunkards, and all that train of individuals capable of committing crime according to their conditions and surroundings, and among which are to be found the stigmas, physical, moral, and intellectual, that have been tauglit to us by the professors of eriminal anthropology before us. These indi. viduals are not, like the first, absolutely irresponsible, but they are partially or conditionally so. Therefore, said he, the great necessity for the teaching of criminal anthropology, not by the side of, but in. eluding medical jurisprudence, and that this should bo carried on in all the schools of law, and tanght to all those who would become lawyers or judges, or who would have dealings with criminals or insane before the courts or under the law.

ANTHROPOMETRY.

There were two papers before the congress on this subject: No. XVII, "Anthropometry as mplied to persons from 15 to 20 years of age," Alphonse Bertillon, reporter; and No. xvin, "The employment of the methods of eriminal anthropology in aid of the police and for the arrest of criminals:" MM. Avocat Anfosso, of Turin, and Professor Romiti, reporters.

Anthropometry is a branch of the science of anthropology by which the physioal characteristies of man are studied, the investigation being made by measurement.

The application of anthropometry is twofold. One, the more extensive and more scientifie, was largely the result of the investigations of Broca, though there were others who practised the science independent of and even before him. Quetelet of Belgium, Virchow of Germany, Roberts, Francis, Galton, and Dr. John Beddoe of England, and our own doctors Morton and Baxter have all practised anthropometry independeutly of Broan. In France Drs. Topinard and Manouvrier have taken up the science where Broca left it at his death. Tho former has
bern pursuing his investigations into the races of men found in Fiance as determined by color, and he investigates and studies that of the eyes and hair as well as that of the skin. The latter succeeded Broca in the Labratoire d'Anthropologie, and is professor and lecturer upon this subject before the Sehool of Anthropology.

The second use of anthroponetry has been more practical, for, while it is conducted scientifically, it is employed in Europe, principally in France, as a means of identification of individuals, whether required in the army, by the law, by the police, or for private and scientifie uses. It was with regard to the second application of anthropometry that the congress of criminal anthropology ocelupied itself in the two papers set forth at the head of this chapter.

The diseovery of the use of anthropometry for identification is due to Dr. Adolph Bertillon, himself a professor in the school of anthropology, who died in 1883 at the age of 62 years, leaving his two sons to follow in his footsteps, with prospects of becoming equally as eminent as their father. It was the son, Alphonse, who presented question xvir, in which he was assisted by MM. Anfosso and Romiti, the reporters of question xvirr, both of whom were aided in the discussion by M. Cantilo, advocat from the Argentine Republic.
M. Herbette, chief of the penitentiary system of France, early perceived the benefits of this system and adopted it. It is now in use throughout France, thanks to his initiation. He was its ardent advocate at the congress in Rome, and there made it the subject of an address, which was translated by Mr. Edward R. Spearman, a portion of which was adapted and published in the Fortnightly Roview of March, 1890.
M. Alphonse Bertillon is attached to the department of justice and assigned to duty with M. Herbette at police headquarters in Paris, there to use his talent and knowledge in the identification of such per. sous as may be brought before him. 'lhis, of course, means the identification of criminals, or persons arrested.

The morning of Friday, Augnst 16, was devoted to a visit by the congress to the establishment in charge of M. Bertillon to witness the operations of his methods and to hear his explanations. We, how. ever, were favored with a private view on the day before, by the means of which we were better enabled to understand the operations.

The establishment to which wo were introduced would correspond to and probably be known in most eities of the United States as the rogue's gallery. In our country a criminal once arrested, whom they may desire to recognize at some future time, is marched down to a photographic establishment and has his photograph taken by a single negative, carte de visite size, of more or less front view, from which a print is made, which in due time is delivered to the detective corps at police headquarters, where it is placed in a rack for public inspection. It is by comparison with this photograph, and the recognition of wit. H, Mis. 129—43
nesses, that the individual eriminal will be identified in future, if ho should be again arrested. It goes without saying that these methods are extremely unreliable-unreliable at best, but in Paris impracticable and valueless, for there they have no less than 100,000 photographs of criminals who have passed through the police headquarters within the past 10 yoars. It will be recognized as practically impossible to seareh through a pile of 100,000 photographs to find one which shall bear a likeness to the individual under investigation. It would be impracticable, if the photograph, when found, should prove to be the picture of the identical eriminal whose ease was being investigated, but when we consider the differences of appearance of the same individual, and the similarity of different individuals, as shown by the photograph, the im. possibility of successful identification becomes indisputable. To be of any value as means of identification, there should be two photographs taken of each person, one full face, the other a protile. If this be done with the small size, 2 by 34 inches, it would require 10,600 square feeb surface measure for 100,000 photographs. These dis. played on a wall in a strip 5 feet in height would require a space 2,120 feet in length. A search through such a dreary extent of photographs in order to find the particular one to compare with the criminal, whom the officer leads around, and thus be able to identify him, would be like a seareh among the sands upon the seashore, or the leares in the forest, and its impossibility, or, at least, impracticability is dem. oustrated.
M. Bertillon has so armuged his system of anthropemetry, and classifled it-togethor with the photogriphs-ans that his usual search does not extend beyond twenty, and rably above ton, and can easily be reduced as occasion domands, and be accomplished in a few minutes. Upon the occasion of my visit he gave to Drofessor Mason and myself' a descriptive card of a given criminal, who was brought and measured in our presence-hpon the visit of the congress M. Moleschott, senatem from Italy, was given a like chart; and we wero instructed to make the search for ourselves and so understand the elassifieation and find and identify the erininal. The system proved so perfect that we three, strangers, making one first visit to the establishment, heming the description for the first time, were enabled to understand the classification and find the box in which his deseription bolonged, with no more than ten eards in it, and so identify the man in question, and this we did within two minutes time. I will describe the method of procednre and the system of chassification:

The instruments-These are few and simple. Their cost is about \$25. A series of them were disphayed by their maker, M. Colas, at the Exposition in the department of anthropology, and I have described them in the chapter on Anthropology at the Fxposition.

A wooden right-angle for laking the measure of the height. Oalipers for moasuring length and breadth of hoad; two sliding measures of
different lengths for other parts of the body, and the nccessary stands, stools, etc. These will all be understood as the operation proceeds.

The bateh of "arrests" have been brought in for measurement and identiflcation; under the necessary guard they are conducted to a room divided around its walls into open lockers after the fashion of public bath houses. The individual is stripped to his shirt and pantaloons and these lockers are provided with hooks on which to hang the cloth. ing, and a bench with a drawer. Thence he is marehed into the measming room. The services of two men are required; one to take the measuremeuts, the other to write them on the appropriate card. The subject may have already been examined, or he may be examined here as to his name, residence, place of birth, and former convictions, if any. If he be a hardened criminal, an incorrigible, called in French, a recidivist, he will probably give a false name and declare this is his first arrest.

The report of the bureat at Paris shows the following list of persons who did this and were recognized by this system and their descriptive cards found in the boxes as hereafter explained:

Perions.
1883 .. 49
1884.. 241

1881 .. 35%
1888 ... 616
The report for 1886 in full was as follows:

All moasures of anthropometry should bo taken by the metric system and reported in millimetros. By common consent among the principal nations the metric systom has been adopted for anthropometry. Oomparisons are made moth easier and more conreetly from a single and universal standard, and therefore it becomes the daty of the United States to fall into line with her sister mations.

To measure the height of the individual.- By a simple meohanical contrivance the operation can be done rapidly, acenately, and without risk of deception. The subject is barefoot and placed with his baek against tho wall; a strip of wood has been fastened upon the wall so as to furnish a perpendicular edge ; n door or window jamb may serve the purpose equally well. The wooden right angle spoken of can be placed against this edge and moved up and down, the broad bottom of which (an rest lightly upon the head of the indivilual. Lines painted upon the wall, or stripes with the necessary measmes of height -maked upon them, will show with ateuracy the height of the individual.

Maximum length of the head (skull).-The subject being seated, for convenience, one point of the calipers is placed in the hollow above the bridge of the nose, together while the other point is used to find the greatest length at the back of the head. This should be done with accuraey, and so that the length will be given exactly. If done with care the true length can be obtained within 1 millimetre, which is about one twenty-fifth part of an inch. It is admitted that the skull of man developes but little, if any, after his maturity, 21 years of age. No one possesses any power to alter or in any way change the size or conformation of his skull. The same thing is true with regard to the length of bones in the human body, and this had afforded the key to the sy's. tem of anthropometry alopted by M. Bertillon, as he has chosen for his identification those portions of the body over which the individual has no control, and in which it is impossible for him to make any change in their size or length. The length of the head thus taken is a measurement at once aceurate, unchangeable, and beyond the control of the individual or the possibility of deception.

Maximum breadth of head.-This is measured from one parietal bone to the other in the same manner as the length of the head is measured.

Maximum length of arms, extended.-This is a measurement which is popularly supposed to be always equal to the height, but in reality it may vary from 5 to 20 contimetres. It assists therefore in classifying even after the height.

Length of middle finger of left hand.-'Ihis is the best of our indications, for it can be measured to a millimetre, provided care is taken that the finger is bent at an exact right angle with the back of the hand; there can bo no cheating with this and it undergoes no alteration from adult to old age. Notice must, however, be taken of any unusual length of nail in the person being measured.

Mraximum length of lej't foot.-In taking this measurement tho subject must, of course, be barefoot, and in order to avoid any chance of cheating the subject should stand on the left foot only, with the left knee bent. This is not quite so good a measurement for our purposes as that of the middle flager, and dan only be measured to within 2 millimetres.

Oolor of the eycs.-A special table has beon framed for the color of the eyes, which gives seven categories. These are based on the intensity of the pigmentation of the iris. Firstly, we note the oxaet shade of the pigment when it exists, and secondly, the approximate shade of the deep stratum of the periphery of the iris.

Hence the seven divisions:
(1) Iris azure blue and slary bluo with aureole concentrie pupillary aureole more or less pale but destitute of gellowish pigment.
(2) Iris inclining more or less to blue or slate color, but with a light yellowish aureole.
(3) Same shade but with a further anreole, appoaching orange.
(4) Infs reflectlon more or less greenish and with in chestmat anreole.
(5) Same shade with brown aureole.
(6) In this class the chestmit is no longer clustered in min areolo around the pupil, but spread on the whole surface of the iris and only shows some greenish gellow irtsations.
(7) Bye ontirely brown.

This grouping enables us to pass by almost imperecptible transitions from the light blue eye to the pure butw eye. To examine the eyes the operator should place himself in the angle of a window, his back to the light,-avoid using the word gray. For further hetails read the Lievue scientitique of July 18, 1885; also, Annales de Démographie, 1S81-'82, "La couleur de l'Iris en lanthropologic," by Alphonse Bertillon.
This procedure gives six mensures of each individual, but upon neces. sity they can be increased indefinitely. The effect is twofold. One is to procure a reliable means of identification of the individual by means of an accurate measurement of eertain portions, the bony structure of his body, which in the case of the adults does not change. Fatness or leanness, well or ill condition, has no effect unon these measurements. They are and always will be (except the heiglit) the same, and neither b_{y} will or trick can any one make them different. The other effect is to provide an arrangement by which the curds may be segregated and chassified so that the individual can easily be found.

The cards on which these measurements are recorded are of a regular size and pattern, with printed forms, so as to always give the samo indication. Tho size used by M. Bertillon is 5 ? inches square. Both sides aro utilized for description, and on the one are placed the two photo-graphs-front and profile view--the full face on the right, proflle on the left.

These cards are then arranged in boxes or drawers after the manner of call cards in tho U. S. National Maseum ; that is, on edge, the face to the front, the depth of the box being not more than half the height of the card so that it can easily be seen and read during examination without being taken out.

Tho classification of these cards and photographs in their boxes is sum that tho deseriptive card of any intividal will fall into a subdivision of not more than ten or twenty other cards, and ean bo found, as Wis done by Signor Moleschott, Professor Mason, and myself within a space of 2 minutes.
M. Bertillon has at Paris $\mathbf{1 0 0 , 0 0 0}$ photographs of crimmals and arested persons, and these are increasing at a wonderfulty rapid rate. The proportion of 40,000 may be exchuded from our prosent eonsider. ation, being those of women and chillren. Sixty thousaud are of men of mature age, and as we have aheady seen the measurements were made of those portions of the body of the bony stroctures, the size of which or length of which can not be changed.

The prineiple of the dassiffenton of M. Bertillon is to divide each one of these measurements into three elasses: the large, the small, and the medium. This classifloation, beginning with the length of the head, then to its width, extends through all the measurements indicated, and ends in a division containing abont ten cards, but which must not ex. ceed twenty. The lines of demarcation between these divisions are made arbitrarily and with the sole intent to make each division ap. proximately equal in point of numbers. So he has found the numbers for line of division for the length of sknll to be at 184 and 189 millime. tres. All heads the length of which fell between these two numbers inclusive, constituted the middle division; all of 183 and less formed the division of short heads, while all of 190 and more eonstituted the division of long heads.

For the breadth of the skull the two dividing flgures were 153 to 156 , and these formed the middle division. Those 152 and less formed the shortest, and those 159 and over formed the broadest division ; and this system was continued throughout all other measurements.

It was found in practice that this slight difference of 5 millimetres, being only about one-fifth part of an inch, taken, as it were, out of the middle of head measurements, would contain about an equal number with those in the other two divisions.

The divisions made by the measurement of the middle finger of the left hand established for the medimm class from 110 to 115 ; all middle fingers from 109 and under are classed with the short; from 110 to 115 with the medium, and 116 and over with the long flingers. So also with the length of the foot, the spread of the arms, and, as I have said, by the color of the eyes.

In practice the 60,000 photographs would be first divided according to the length of the head, large, medium, and small; and this would separate them into three divisions of 20,000 each, in the case of drawers. The width of the head wonld again divide oach one of these 20,000 into large, small, and mediam, which would give practically 6,000. The threo divisions arising from the spread of the arms and the length of the middle finger will reduce it to 600 . The length of the foot will again reduce it to 63, and the further reduction by the eolor of the eyes of seven classes to 9 photographs in each division, The prineipal divisions are made in the cases of drawers, while the smaller are made within the drawers themselves.

The anthropometric establishment under M. Bertillon does not abolish the use of photography. The photographs are taken in double, a full face and a profile, and this shonld always be done. The change of face arising either from accident or intention on the part of the subject is much less easily controlled by him in profile view than of the full face. IIe can at best only change the lower part of his face, and in making comparisons by photographs, where such a change is suspected, it is well to cover the lower part of the face on the photograph by a spot of
paper and make eomparisons of tho contoth of the head, the shape of the face, the position of the ear and its appeamee, and thas one is emabled to make much better and more satisfactory investigation. If' one would rely upon the photograph there should also be added the other position of a full-length standing portrait.

At l?aris the studio for taking the photographe of eriminals is attached to the establishment of M. Bertillon and is over his office of' measuring. Another suggestion which he makes eoncerning photo. graphs and their beneft and adrantage concerning identification is the necessity of having them the same proportion, the same relative size, and so he insists that the instrments and the subjects shall ahways be at the same distance. Therefore he has the chair in which the subject sits, and also the stand for the camera fastoned firmly to the floor so that they give the same proportionate size of the subject.
M. Bertillon also remanked the importance of inchaling in the pho. tograph a view of the bust. If the head only be shown it gives it an enlarged appearance and so is deceiving, and besides the setting of the head upon the shoulders is as much a means of identification as is the head itself. He said also to throw back the hair oft the ears of the subject when taking the profle view, for it is an organ unchangeable uponits owner and with its characteristies may serve as a means for identification. But with all this M. Bertillon uses the photograph more as an auxiliary, and depends principally upon the measurements.

Horn to make a searoh.-Onr man, whose photograph and measurement is given on the card, is supposed to have just arrlved, the meas. urement made, and his photograph taken. We desire to know if he has ever before passed throngh the depot and whether his card of measurement is here to be found. The length of his head is 191, therefore we find it in the highest division ; that is, with the longest heads, and we know it will be in this row of drawers. The width of his head is 15%. That falls within the medium chass, and we therefore know it will fall within this row of drawers. We have now, by exclusion, reduced the number of cards to be examined from 60,000 to 6,000 . The length of his middle finger is 127, which throws it into the highest of that division, and that has reluced it to 2,000 . The like investigations with regard to his foot, which is 278, and the spread of his arms, whioh are 151 , reduces it, as we have said, to an average division of 63 cards. These are divided among the seven distinctive colors of the eyes, and so the package of cards within which his deseription will be fomd, if at all, is reduced to an average of 9 , and in practice is never to exceed 20 . And this by depending solely upon the measurement and without consulting the photograph.

As a precantion additional to the normal sizes of the varions portions of the body which were selected for measurement, there would be naturally employed any abnormal marks which might he found. If these were agreed in the two descriptions we would deelare the identifleation eom-
plete. Every person has on his body some partientar marks, such as moles, scars from cuts, boils, ete. Three or four of these corresponding would be quite enough to identify a man out of a million provided always that the nature, etc., of the marks has been acourately recorded,

It is very seldom that one finds on an individual identically the same mark and in the same place that has been previously noticed on another, but that two persons should be found bearing three or four scars precisely similar wonld be a co incidence which appears impossible, and wo have certainly never met with such a case.

These marks and, cicatrice are set forth under the appropriate head on the back on the card of Feillier.

I will not attempt to translate that deseription, It is too intricate and with too many abbreviations and private marks for me to do so with certainty. But as an illustration I may quote those which were presented by M. Bertillon to the congress at Rome, and which had been translated by Mr. Spearman:
(1) Oblique ontward scar between second and third joint middle of first finger left hand.
(2) Scar obllque inward of 5 centimetres, left palm, 3 centimetres above third finger.
(3) Mole 8 centimetres below left nipple, and at 10 centimetres from center of body.
(4) Mole 4 centimetres lett of spinal column, 20 below prominent vertebra of neek.

If this series of private marks be found to correspond on the two cards, one would say they were both made from the same individual and that the identification was perfect.

It is not to be expeeted that an inexperienced person will be able to do thit work of anthroponetry withont error. In the beginnings of the system there wore fewer identifications of former eriminals and more failures, but as time has progressed and a certain expertness with regard to measuring and acouracy in making and keeping the records, these errors and failures have been so far eliminated as that Monsienr Bertillon chams it to be practically perfect.

The anthropometric service in the penitentiary and police system of France was established in 1882. The anmual examinations were as. follows: In 1889, 225; 1883, 7,336; 1884, 10,398; 1885, 14,965; 1880, 15,$703 ; 1887,19,150$. U1) to this time the service was considered more or less experimental, and only certain elasses were subject to measurement.

In the year 1888 the application of the system was oxtended to include all persons arrested for any except the bower grades of offenses, and the number in this year who passed through the depot at Paris was increased to 31,849 . This gives an average of about 100 measurements per day. M. Bertillon told me that in practice it took the two men, one to measure the other to record, abont 7 minutes to each prisoner, or 8
prisoners per hour. As it is imporfant that prisoners shonla be exam. ined in court withont delay the entire day is not at their disposal, and so they have four squads of operators, who endeavor to conclude their measurements each day bofore breakfast, as they call it; that is, before 12 m ., the afternoon being devoted to the routine business at the office.

Of the 31,849 offenders or suspeets measured in 1888615 were recog. nized as having been measured before, but who songht to conceal their identity by giving false names and reporting falsoly the number of their arrests. There were only four failures of identification. Four failures out of 31,849 measurements was considered by M. Bertillon to be practieally perfection.

This system of M. Bertillon for identification of individuals by means of anthropometry is having much success. The most superficial examination seems to convince every one of its efficacy and superiority. M. Oantilo, Procureur General at Buenos Ayres, the delegate from the Argentine Republic, bore his testimony before the congress of the marvelous results obtained in the determination of individual identity. He said that the method had been adopted by several of the States of the United States of North America, and also by his own country, the Argentine Republic, the capital, Buenos Ayres, already possessing an installation of the anthropometrie system of Bertillon. He spoke of the necessity for its adoption by all eivilized countries, and he proposed to the oongress a resolntion inviting all governments to adopt it whenever they might have need for the identification of any considerable number of their citizens, which resolution was unanimously adopted.
M. Bertillon stated that after France the Argentine Ropublic was the first government to adopt the anthropometric system by law or official deeree. He eomplimentod the admirable application made in the State of Illinois, principally at the lenitentiary of Joliet, by the private efforts of MM. Mac-Ulanghry, Gallas, Muller, Porteous, of Ohicago, ete.

Monsleur Herbette, in his presentation of this matter at the congress of Rome, following the communication of M. Bertillon,* pointed out, how this rerifying of the physical personality and the indisputable identity of people of adult age should in modern socioty fulfill real requirements and under the most varied services. If it wore a question, for instanee, of identifying the soldiers of an army, or travellers going to distant lands, they could have personal cards having reeognizable signs emabling them always to prove who they are; if it wero a question of completing the records of the ctat divil by sure indications to prevent error or substithtion of persons; if it were a question of recording the distinetive marks of an individual in docmments, titles, contracts so that his identity eould be established either for his own interest, for the interest of third parties, or for that of the state, the full benefit of the anthropometrie system wonld be realized. If there should arise a question of identity in a life certificate, a lifo insurance

[^109]contract or proof of doath, or to certify the identity of a dead person, or one hadly wounded or disflgured, the body having been partially destroyed or had become difficult to recognize in case of a sudden or violent death, the result of a crime, an accident, a shipwreck, a battle, how great would be the advantage of being able to trace these characters, tuchangeable in each individual, inflnitely variably as between one fudividual and another, indelible, in great part, even in death.

There is still more cause to occupy oneself with it if it is a question of identifying distant persons or after the lapse of a considerable time when the general appearance, the look, the features, and the physical habits have changed naturally or artifcially, and that without moving or expense, by the simple exchange of a few notes or figures sent from one country to another, from one continent to another, to be able to know in America what sort of a man it is who has just arrived from France, and to show olearly whether a certain traveler one finds in Rome is the same person that one measured in Stockholm 10 years before.

In one word to fix the human personality, give to each human being an identity, an individuality lasting, mochangeable, always recognizallo, easily proved, this appears to be the extended aim of the new method.

It may consequently be said that the extent of the problem, as well as the importance of its solution, far exceeds the limits of penitentiary work, and the interest, not inconsiderable, which final action has exercised amongst various mations. These are the motives for giving to the labors of M. Bertillon and their practical utilization, the publicity they merit.

Question $X I X$.-Oorrectional edncation--reforms in acoordance with our knowledge of biology and of sociology and their relations to crime. Dr. Motet, reporter.

Dr. Motet, in accordance with M. Dalifol, presented the necessity for a considerable development in moral education as well as professional. Especially should this be so in the agrienltural shools, and M. Van Hamel eame to their aid in showing the success which had attended the moral education in his country of Holland.

Question $X X X$.-Whe relation between mental degeneration and simulation of insanity. Dr. Panl Gamier, reporter.

The bonndary between orime and insanity is very narrow and one which gives to the medical jurist sometimes the greatest diffenlty. It is here that the real eriminal will simulate insanity before the courts in order to escape the responsibility of his acts, and here is to be found the greatest number of the simulators. The degenerate individual, he who has come to be of a lower seale, whether montally or psychologically, is closely related to and linble to become either epileptio or hys. teric. If ho shall simulate either one of these or the insanity growing
out of them, he may bo his owndupe, and finish by beoming the insane person that he at first only pretended to be. The simulation, even when successful, does not necessarily givo evidence of intellectual ability. It does not in these cases require a high order of intellectual ability to deceive; deceit is not intelligence. It is many times diflenlt to deteet insanity in a given individual, but it is much more difficult to detect the simulation of insanity. 'Io do this with certainty requires the most skillful and best trained scientist. A moment's consideration of the proposition will serve to confirm the opinions so many times expressed by members of this Congress as to the necessity for an anthropological education and training on the part of the judges and law oflicers dealing with criminals.

Question $X X I 1$.-The influence of professional life upon criminality. Dr. Henri Contagne, of Lyon, repoiter.

The object of this memoin was to present the importance of those studies which liad for their object a research into what the reporter called "professional psychology," or the psychology of professional life. He said the psychic functions of the individual were greatly influenced by the profession he chose to exereise among his fellows. That the vocation or profession showed the tendency of laces or of individuals. He spoke of the special aptitude of the Hebrew race for financial affairs. His memoir was as moh grophic as witten, and showed nine classes of professions, and the eriminals which had belonged to each. This had been eontinned and kept up by him and his predecessor since the year 1829, and was devoted largely to statisties as woll as enforcing their value and importance. These statistics showed that much the larger proportion of criminals is to be found among the agrioulturd and indastrial population. He onlarged upon the necessity for statisties, and invoked the varions societies, as the bar associations, the medical sooieties, and those representing other trades and professions, to gather with thoronghness and detail the number of eriminals, the labit of life of the various individuals, and especially this with regard to their course in erime. The congress drifted into a disenssion as to the importance of statisties, those to be gathered as well by the state as by the different societies and organizations montioned.
M. Herbette enlarged upon the necessity for complete and accurnte statistics gathered by the penitentinies and prisons, and spoke of the necessity of what he called "a bulletin official individual," which should show every act in erime and in life and in the surroundings of the individual, his temptations, opportunities, his first tendencies to crime, and his criminal life both in and ont of prison, so far as possible, and to this should bo added the anthropologic and psehologic investigations.

Dr. Wilson, from the United States of America, after noticing the necessity for a general plan of gathering statistios with aceuracy and detail, and making a collation and chassiflcation of reports for puposes of comparison, and the fact that this defined thore were searcely any
statisties in the United States in relation to crime and criminats, went on to say that only in some of the States wore records kept so that statistics could be obtained.

New York aud Massachusetts are the most prominent. But thair records are kept, each on its own plan and without relation to the plan of the other, and therefore they lose the beuefit of comparison with each other. In most of the States of the Union there has been only a slight attempt to keep vital statistics. Marriages, births, deaths, conviction for erime, are intended to be made a matter of record, but the penalty provided by law for the negleet is so slight and so rarely enforced as to be ineffectual. Ours is a new country; our jeople have. never been accustomed to strictuess in making or keeping such rec. ords. The population in many localities is sparse, the people change their residence often, they go and come at will, there is no military service demanded of them, and it is exceedingly rare for a pauper to be returned to the place of his original domicil that he may be supported at public expense. So the needs which exist in Europe for such records fail in the United States. The only necessity for such statistics is believed by our people to be for historic or sociologic purposes. This has not yet been sufficiently appreciated by them to overcome the diff. culties. There are also more difficulties than exist in European countries. Our country is large; compared with European countries it has a vast extent. It was also as compared with these countries, discovered only a few years ago. It has had only about 100 years of life. One hundred years ago it had but $3,000,000$ souls; it extends from the Atlantic to the Pacifle, a distance of nigh 5,000 miles, and its center of population remained, until within 50 years, practically on the Atlantic coast, and even now has not gone beyond 600 miles to the westward. Our country had to be rescued from the possession of the barbarian, and a people thins engaged have but little time and less inclination to keep records and statisties which in their opinion have only a senti mental utility. So it has as yet been searcely attompted. We may accomplish it after a time; not at present. The diffentices are increased by our form of govornment. We have that anomaly of two soverignties within one country, two governments over one people; and I explained the difference between our State and national governments, each of which has its own jurisdietion over crime, and yet each is independent of the other. So I said the United States Census is dependent largely for its statistics of crime upon information obtained from the State authorities. If, on the other hand, it be a State census, each will be separato and distinct, and may bo different from any other. So it was that in the State of Pemnsylvania the statistics of erime showed the number of convietions to be 2,930, while the State of New York, with but a slightly increased population returned 58,070 convictions; twenty times more than that of Pennsylvania. The explanation given was, that in the former State convictions only in the courts of
record were reported, while in the latter the convictions were of every kind, whether for small or great offenses.

The meager statistics of crime in the United States, taken from the census of 1880 , and reportel by Mr. A. R. Spofford in his American Almanac, are given in the following table:

Stato.	Criminals in prison.	1'opulathon in 1880 .	Stibo.	Crimhanls lil prison.	Population in 1880.
1. Alabama	Unknown.	1,202, 344	20. Mlssourl	1, 204	2, 109,001
2. Arkansas	Unknown.	802, 662	21. Nebraska		452,432
3. Californla.	015	804, 680	22. Novala	144	62, 205
4. Comnectieut	251	022, 083	23. New IImmpshlie......	180	347,784
5. Dolamure		140,654	24. Now Jorsoy	823	1, 130,892
6. Florida.	71	260, 600	25. New York	3,578	5,083, 1'3
7. Feorgia...............	500	1,538,083	26. Norlh Carolinn		1,400,000
8. Illinols.	1,000	3,078, 636	27. Olito	1,362	3, 107,704
0. Indiana	1,231	1,798, 358	28. Oragon.	104	174, 767
10. Jowa	353	1, 604, 403	20. Pennsy/vania	1,861	4, 283, 738
11. Kansas	406	005, 385	30. Rloolo Istand		270, 528
12. Kentucky	083	1, 018,500	31. Soltlı Carolina	$8: 5$	005, 700
13. Lonlsiann	625	940, 263	32. 'Tennesseo	1,153	1,542, 403
14. Maino.	221	648,045	33. 'loxas		1,508, 509
15. Maryland	170	935, 139	34. Vermont	175	332, 286
10. Massachusetts..	$75 i$	1,783, 086	35. Virghir	1,105	1,312, 203
17. Mtehigan	800	1,634,093	30. West Virglula	218	818,10:
18. Minnesota	235	780, 807	37. Wisconsín	309	1,315,380
10. Miasissippl	097	1,131;890			

Question XXVI-Political offenses from the point of view of anthropology.

This study, written by M. Laschi, an avocat from Verona, was made with the assistance of M. Lombroso. It dealt, with race, genins, and the density of the population in the older and better settled comentries. The author distinguished revolution from revolt. The first he called psjechologie manifestations, and the latter pathologic. He spoke of the infloences of climate and orography, not to mention those social and political, upon the race which might belong to or inhabit a country. He gavo as his opinion, derived from his investigation and the statisties, that the short-headed races, brachycephalies, were conservative, while the longheaded, dolicocephalies, wero revolutionists; that the mixture of these races could modify their character and so change them as a nation, but that occasionally, by roason of atavism, or something similar, peeuliar circumstances, changes in social conllitions as well as in political, the dolicocephalic individual of modern times and in modem countries might break out in revolution, which was nanght else on his part than the return, through heredity, to the original revolitionary characters of some remote ancestor. He said the most revolutionary cities of Enrope, like Paris, Florence, (deneva, were those which manifested the greatest genins and the most viractry of thought.

Dis, Rronardel and Motet believed, on the contrary, that the intlaonce of political erimes was to show the inferiority of intelligence, the
fanatism, the impressionability, and the exaltation of the individual These, said they, wore particular factors in political crimes.

Professor Lombroso cited M. Trine, and said that these political crimes were what the anthropological historian might well call political epilepsy.

Question XXVII.—Jurisprudence applied to eriminal sociology, M. Pierre Sarrante, judge of the tribunal at Periguenx, Dordogne, reportes.

The punishment for crime ought to be against the individual. The particular individual criminal should be made to feel that he received the punishment for his offense. To accomplish this with satisfaction the juge d'instruction should be able to investigate the anthropologic and social factors which have entered into or operated upon the mind of the criminal in cansing him to commit the offense. The juge dinstruction must himself be elucated, and it must be remitted into his hands entirely to judge of the utility, and extent of the examination, and to control the results. To do this successfully it will be necessary to open a course of lectures upon criminal anthropology and medical jurisprudence in the varions schools of law, and to educate the students in these sciences. The reporter proposed as a remedy for some of the lapses in the law, and the miscarriages of justice, an indeterminate sentence by the judge; he proposed profound modifications in the jury system, requiring of them in particular cases, special aptitude, special preparations or educations, enabling them to deal properly with the subject in hand. He would reduce the number of the jurors and would require them to give their answers to the questions submitted to them by the court, which answers should establish the facts in the case with which they as jurors alone had to deal, leaving the questions of law to the judge of the court; leaving the anthropologie questions, those of psychology and physiology, to the trained scientist, who should be a criminal anthropologist. With a trafning of the lawyers and judges in these various seiences, and then a division of their various duties and responsibilities, with higher courts which should combine in them these varions branches of scientifie knowledge, the right of the eriminal would be guarded, while crime wonld be lessened and society protected.

Question $X X X,-\ldots$ The moral and eriminal responsibility of deaf-mutes in their rolations to legislation. M. Giampietro, of Naples, reporter.

He argued the defective physical organization of deaf mutes, and seemed to say that there was a corresponding want of responsibility which should be recognized by the law and the court. Tho important part of his paper, which can not be here followed, was the scientifie portion, the physiologic investigations into the conditions of deaf-mutes and the formation of articulate language. He described certain brain centers which were possessed of such functions in this regard. He called them the centers muditif, phonique, volitif, mnemonique, ideosym. bolique, and moteur.

OOLOR-VISION AND COLOIRBIINDINESS.*

By R: Brudenhll Car'ter.

It is a matter of familiar knowledge that the sense of vision is called into activity by the formation, on the retina or internal nervous expan. sion of the eye, of an inverted optical image of external objects-an image precisely analogous to that of the photographic camera. The retina lines the interior of the eyeball over somewhat more than its posterior hemisphere. It is a very delicate transparent membrane, about one fifth of a millimetre in thickness at its thickest part, near the entrance of the optic nerve, and it gradually diminishes to less than half that thickness at its periphery. It is resolvable by the microscope into ten layers, which are united together by a web of connective tissue, which also carries blood vessels to minister to the maintenance of the structure. I need only refer to two of these layers: the anterior or fiberelayer, mainly composed of the flbers of the optic nerve, which spread out radially from their point of entrance in every direction, except where they curve around the central portion of the membrane; and the perceptive layer, which-as viewed from the interior of the eyeball, may be likened to an extremely the mosaic, each individual piece of which is in communication with a nere fiber, by which the impressions made upon it are conducted to the brain. The terminals of the perceptive layer are of two kinds, called respectively rods and cones; the former, as the name implies, being cylindrical in shape, and the latter conical. The bases of the cones arodirected towards the interion of the eye, so as to receive the light; and it is probable that each cone may be regarded as a collecting apmatus, calculated to gather together tho light which it receives, and to concentrate this light upon its deoper and more slender portion, or posterior limb, which is believed to be tho portion of the whole structure which is really sensitive to luminous impressions. The distribution of the two olements differs greatly in different animals; and the differences point to corresponding differ ences in function. The cones are more sensitive than the rods, and minister to a higher acoteness of vision. In the human eyo there is a small central region in which the perceptive layer consists of cones

[^110]only, a region which the fibers avoid by curving round it, and in which the other layers of the retina are much thinner than elsewhere, so as to leave a depression, and are stained of a lemon-yellow color. In a zone immediately around this yellow spot each cone is surrounded by a single circle of rods; and as we proceed outwards towards the periphery of the retina, the circle of rods around each cone becomes successively double, triple, quadruple, or even more numerous. The yellow spot receives the image of the object to which the eye is actually directed, while the images of surronnding objects fall upon zones which surround the yellow spot; and the result of this arrangement is that generally speaking, the distinctuess of vision diminishes in proportion to the distance of the image of the object from the retinal center. The consequent effect has been well described by saying that what we see resembles a picture, the central part of which is exquisitely finished, while the parts around the center are only roughly sketched in. We are conscious that these outer parts are there; but if we desire to see them accurately, they must be made the objects of direct vision in their turn.

The indistinctness with which we see lateral objects is so completely neutralized by the quick mobility of the eyes, and by the manner in which they range almost unconsciously over the whole field of vision, that it seldom or never forces itself upon the attention. It may be conveniently displayed by means of an instrument called a perimeter, which enables the observer to look steadily at a central spot, while a second spot, or other object, is moved along an are, in any meridian, from the circumference of the field of view towards the center, or vice versa. Slight differences will be found between individuals; but, speaking generally, a capital letter one third of an inch high, which is legible by direct vision at a distance of 16 feet, and is recognizable as a dark object at 40° or 50° from the flxing point, will not become legible at a distance of 1 foot, until it arrives within about 10°.

The image formed upon the retina is rendered visible by two different conditions,-that is to say, by differences in the amount of light which enters into the formation of its different parts, and by differences in the quality of this light, that is, in its color. The former conditions are fulfilled by an engraving, the latter by a painting. It is with the latter conditions only, and with the power of perceiving them, that we are concerned this evening.

Before such an andience as that wheh I have the honor to address, it is unnecessary to say moro abont color than that it depends upon the power possessed by the objects which we describe as colored, to absorb and retain certain portions of white or other mixed light, and to reflect or transmit other portions. The resulting effeet of color is the implession produced upon the eye or upon the brain by the waves of light which are left, after the process of seleative absorption has been accomplished. Some substances absorb two of the three fimdamental eolors
of the solar spectrum, others absorb one only, others absorb portions of one or more. Whatever remains is transmitted through the media of the eye, and in the great majority of the human race, suffices to excite the retina to a characteristic kind of activity. Few things are more curious than the multitude of different color sensations which may be produced by the varying combinations of the three simple elements, red, green, and violet; but this is a part of the subject into which it would be impossible for me now to enter, and with which most of those who hear me must already be perfectly familiar.

Apart from the effect of color as one of the chief sources of beauty in the world, it is manifest that the power of distinguishing it adds greatly to the arteness of vision. Objects which differ from their surroundings by diferences of color are far more conspicuous than those which differ only by differences of light and shade. Flowers are much indebted to their brilliant coloring for the visits of the insects by which they are fertilized; and creatures which are the prey of others find their best protection in a resemblance to the colors of their enviromment. It is probably a universal truth that the organs of color perception are more highly specialized and that the sense of color is more developed in all animals in precise proportion to the general acuteness of vision of each.

From a variety of considerations, into which time will not allow me to enter, it has been concluded that the sense of color is an endowment of the retinal cones, and that the rods are sensitive only to differences in the quantity of the incilent light, without regard to its quality. Nocturnal mammals, stoh as mice, bats, and hedgehogs, have no cones; and cones are less doreloped in noctimal birds than in diurnal ones. Certain limitations of the human color sense may ahmost be inferred from the anatomy of the retina. It is found, as that anatomy would lead us to suppose, that complete color sense exists only in the retinal center, or in and immediately mound the yellow spot region, and that it diminishes as we pass away from this center towards the periphery. The precise facte are more difficult to ascertain than might be supposed; for although it is easy to bring colored objects from the ciremmference to the center of the field of vision on the perimeter, it is by no means easy to be quite sure of the point at which the titue color of the advancing object can flrst be said to be distinctly seen. Much depends, moreover, on tho size of this advancing object, because the larger it is the sooner will its image fall upon some of the more sparsely distrib. uted cones of the peripheral portion of the retinti. Testing the matter upon myself with colored cards of the size of a man's visiting card. I find that I am conscions of red or blue at about 40° from the fixing point, but not of green until it comes within about 30°; while, if I take three spots, respectively of bright red, bright green, and bright bla, ench half a centimotre in diameter and separated from its noighbor on either side by an interval of half a centimetre, spots which woild be H. Mis, 129——4
visible as distinct and separato objects at 8 metres, I can not fairly and distinctly see all three colors until they come within 10° of the center. Beyond 40°, albeit with slight differences betwoen individuals and on different meridians for the same individual, colors are only seen by the degrea of their luminosity; that is, they appear as light spots if upon a dark ground and as dark spots if upon a light ground. Speaking generally therefore, it may be said that human vision is only tri-chromatic, or complete for the three fundamental colors of the solar speetrum, over a small central area, which certainly does not cover more than 30° of the field; that it is bi-chromatic, or limited to red and violet, over an ammulus outside this central area; and that it is limited to light and shade from thence to the ontermost limits of the field.

The nature and imitations of the color sense in man long ago sug. gested to Thomas Young that the retina might contain three sets of fibers, each set capable of responding to only one of the fundamental colors; or in other words, that there are special nerve fibers for red, special nerve fibers for green, and special nerve fibers for violet. It has also been assumed that the differences between these fibers might essentially consist in the ability of each set to respond only to light vibratious of a certain wave length, much as a tuned string will only respond to a note with which it is in unison. In the human subject, so far as has yot been ascertained, no optical differences between the cones are discoverable; but, the analogy of the ear and the facts which have been supplied by comparative anatomy combine to render Young's hypothesis exceedingly probable, and it is generally accepted, at least provisionally, as the only one which furnishes an explanation of the facts. It implies that elements of all three varieties are present in the central portion of tho retina; that elements sensitive to green are absent from an annulus around the center ; and that the peripheral portions are destitute of any elements by which color sense can be called into ae tivity.

According to the observation already made, that the highest degree of acuteness of vision is necessarily attended by a corresponding acute. ness of color sonse, we should naturally expect to flnd such a lighly devoloped color sense in birds, many of which appear, as regards visual power, to surpass all other creatures. I need not dwell upon the oftendescribed acuteness of vision of vultures or upon the vision of fishing birds, but may pass on to remark that the aenteness of their vision ap. pears not only to be unquestionable, but also to be much more widely diffused over the retina than is the ease with man. If we watch domestic poultry or pigeons feeding we shall frequently see a bird, whon busily picking up fond immediately in front of its beak, suddenly make a lateral dart to some grain lying sidewise to its line of sight, which would have been pratically invisible to a haman oye looking in the game direction as that of the fowl. When we examine the retina the explanation both of the aenteness of vision and of its distribution be-
comes at once apparent. In birds, in some reptiles, and in fishes not only are cones distributed over the retina much more abundantly and more evenly than in man, but the cones are provided with colored globules, droplets of colored oil, at their apiees, through which the light entering them must pass before it can excite sensation and which are practically impervious to any color but their own. Each globule is so placed as to intervene between what is regarded as the collecting portion of the cone and what is regarded as its perceptive portion in such a way that the latter can only receive color which is capable of passing through the globule. The retine of many birds, especially of the finch, the pigeon, and the domestic fowl, have been carefully examined by Dr. Waelchli, who finds that near the center, green is the predominant color of the cones, while among the green cones, red and orange ones are somewhat sparingly interspersed and are nearly always arranged alternately, a red cone between two orange ones, and vice versa. In a surrounding portion, called by Dr. Waelchli the red zone, the red and orange cones are arranged in chains and are larger and more ntmerous than near the yellow spot. The green ones are of smaller size and fill up the inter spaces. Near the periphery the cones are scattered, the three colors about equally numerous and of equal size, while a few colorless cones are also seen. Dr. Waelehili examined the optical properties of the colored cones by means of the micro-spectroscope and found, as the colors would lead us to suppose, that they transmitted only the corresponding portions of the spectrum, and it would almost seem, excepting for the few colorless cones at the peripheral part of the retina, that the birds examined must have been unable to seo blue, the whole of which would be absorbed by their color globules. It would be neces. sary to be thoroughly acquainted with their food in order to understand any advautage which the birds in question may derivo from the predominance of green, red, and orange globules over others, but it is impossible to consider the structure thus deseribed without coming to the conclusion that the birds in which it exists must have a very acute sense of the colors corresponding to the globules with which they are so abundantly provided and that this color sense, instead of being localized in the center, as in the human eye, must be diffused over a very largo portion of the retima. Dr. Waelchli points out that the coloration of the yellow spot in man must, to a certain extent, exclude blue from the central and most sensitive portion of his retina.

It is hardly necessary to mention how completoly the high differentiation of the cones in the creatures referred to-tends to support the hypothesis of Young, that a similar differentiation, although not equally manifest, exists also in man. If this be so, we must conclude that the region of the yellow spot contains cones, some of which are capable of being ealled into activity by red, others by green, and others by violet; that a surrounding ammilus contains no cones sensitive to green, but such as are sensitive to red or to violet only; and that, beyond and around
this latter region, such cones as may exist are not sensitive to any color, but, like the rods, only to differences in the amount of light. When cones of only one kind are called into activity the sensation produced is named red, green, or violet, and when all three varieties are stimulated in about an equal degree the sensation produced is called white. In the same way the immumerable intermediate color sensations, of which the normal eye is susceptible, must be ascribed to stimulation of the three varieties of cones in unequal degrees.

The conditions of color-sense which in the human race (or at least in civilized man) exist normally in outer zones of the retina, are found in a few individuals, to exist also in the center. There are persons in whom the region of the yellow spot is absolutely insensitive to color, and recognizes only differences in the mount or quantity of light. To such persons the term "color-blind" onght perhaps in strictness to be limited; but the individuals in question are so rare that they are, hardly entitled to a monopoly of an appellation which is conveniently applied also to others. The totally color-blind would see a colored picture as if it were an engraving, or a drawing in black and white, and would perceive differences between its parts only in the degree in which they differed in brightness.

A more common condition is the existence, in the center of the retina, of a kind of vision like that whieh normally exists in the zone next surrounding it; that is, a blindness to green. Persons who are blind to green appear to see violet and yellow much as these are seen by the normal-sighted, and they can see red, but they can not distinguish it from green. Others, and this form is more common than the preceding, are blind to red, and a very small number of persons are blind to violet. Such blinduess to one of the fundamental colors may be either complete or incomplete; that is to say, the power of the color in question to excite its proper sensation may be either absent or feeble. In some cases the defect is so moderate in degree as to be adequately deseribed by the phrase "defective color-sense."

The experiments of Helmholtz upon color led him to supplement the original hypothesis of Young by the supposition that the special nerve elements excited by any one color are also excited in some degree by each of the other two, but that they respond by the sensation appropriate to themselves, and not by that appropriate to the color by which they are thus feebly excited. This, which is often called the Young. Helmholtz hypothesis, assumes that the pure red of the spectrum, while it mainly stimulates the fibers sensitive to red, stimulates in a less degree those which aro sensitive to green, mid in a still less degree those which are sensitive to violet, the resulting sensation being red. Pure green stimulates strongly the green-pereoptive flbers, and stimulates slightly both the red-perceptive and the violet-perceptive-resulting sensation, green. Pure violet stimulates strongly the violet-porceptive fibers, less strongly the green-perceptive, least strongly the red-
perceptive-lesulting sensation, violet. When all three sets of flbers are stimulated at once the resulting sensation is white, and when a normal eye is directed to the spectrum the region of greatest luminos. ity is in the mildle of the yellow; becanse, while here both the greenperceptive and the red-perceptive fibers are stimulated in a high degree, the violet-perceptive are also stimulated in some degree.

According to this view of the case the person who is red-blind, or in whon the red-preceptive fibers are wanting or paralyzed, has only two fundamental colors in the spectrum instead of three. Spectral red nevertheless is not invisible to him, becanse it feebly excites his greenpreceptive fibers, and hence appears as a saturated green of feeble luminosity ; saturated, because it scarcely at all excites the violetpreceptive fibers. The brightest part of the spectrum instead of being in the yellow is in the blue-green, because here both sets of sensitive fibers are stimulated. In the case of the green-blind, in whom the fibers preceptive of green are supposed to be wanting or paralyed, the only stimulation produced by spectral green is that of the red-precep. tive and of the violet-perceptive fibers; and where these are equally stimulated we obtain the white of the green-blind, which, to ordinary eyes, is a sort of rose color, a mixture of red and violet. In like manner the white of the red-blind is a mixture of green and violet, and if we consider the facts we shall see that spectral red, which somewhat feebly stimulates the green-perceptive fibers of the normal eye, and spectral green, which somewhat feebly stimulates the red-perceptive fibers of the normal and also of the green-blind oye, must appear to the greenblind to be one and the same color, differing only in luminosity, and that in an opposite sense to the preception of the red-blind. In other words, red and grean are undistinguishable from ench other as colors alike to the red-blind and to the green-blind; but to the former the red and to the latter the green appears, as compared with the other, to bo of feeble luminosity. In either case the two are only lighter and darker shades of the same color. The conditions of violet blindness are analogons, but the defect itself is very rare; and as it is of small industrial importance it has attracted but a small degree of attention.

Very extensive investigations, conducted during the last few years both in Europe and in America, have shown that those which may be called the common forms of color-blindness, the blindness to red and to green, exist in about 4 per cent. of the male population and in perhaps 1 per thousand of females. Among the rest there are slight differences of color-sense, partly due to differences of habit and training, but of little or no practical importance. One suoh difference, to which Lord Rayleigh was the flrst to direct attention, has referenco to yellow. The pure yellow of the spectrum may, as is generally known, be precisely matched by a mixtmo of spectral red with speetral green; but the proportions in which tho mixture shonld be made differ within eertain limits for different people. The difference mast, I think, depend upon
differences in the pigmentation of the yellow spot rather than upon any defect in the nervous apparatus of the colorsense. There is a very ingenious instrument, invented by Mr. Lovibond and called by him the "tintometer," which allows the color of any object to be accurately matched by combinations of colored glass, and to be expressed in terms of the combination. In using this instrument we not oaly find slight differences in the combinations required by different people, but also in the combinations required by the two eyes of the same person. Here again, I think the differences must be due either to differences in the pigmentation of the yellow spot, or possibly also to differences in the color of the internal lenses of the several eyes, the lens, as it is well known, being usually somewhat yellow after middle age. The differences are plainly manifest in comparing persons all of whom possess tri-chromatic vision, and are not sufficient in degree to be of any practical importance.
Taking the ordinary case of a red-blind or of a green-blind person, it is interesting to speculate upon the-appearance which the world must present to him. Being insensible to one of the fundamental colors of the spectrum, he must lose (roughly speaking) one-third of the luminosity of nature; unless, as is possible, the deficiency is made good to him by increased acuteness of perception to the colors which he sees. Whether le sees white as we see it, or as we see the mixtures of red and violet, or of green and violet, which they make to match with it, we can only conjecture, on account of the inadequacy of language to convey an accurate iden of sensation. We have all heard of the blind man who concluded, from the attempts made to describe searlet to him, that it was like the sound of a trumpet. If we take a heap of colored wools, and look at them first through a glass of peacock blue, by which the red rays are filtered out, and next through a purple glass, by which a large proportion of the green will be filtered out, we may presume that, under the first condition, the wools will ap. pearmuch as they would do to the red blind; and under the second, muchas they would do to the green blind. It will be observed that the appearances differ in the two conditions, but that in both, red and green are practically undstinguishable from each other, and appear as the same color, but of different luminosity.

Prior to reflection, and still more, prior to experience, we should be apt to conjecture that the existence of color-blindness in any individual could not remain concealed, either from himself or from those around him; but such a conjecture would be directly at variance with the truth. Just as it was reserved for Mariotte, in the reign of Charles II, to discover that there is, in the field of vision of every eye, a lacuma or blind spot, corresponding with the entrance of the optic nerve, so it was reserved for a still later generation to discover the existence of so common a defeet as color-blindness. The first recorded ease was deseribed to Dr. Priestley by Mr. Huddart, in 1.777, and was that of a man
named Harris, a shomaker at Maryport, Oumberland, who had also a color-blind brother, a mariner. Soon afterwards, the case of Dalton, the chemist, was fully described, and led to the discovery of other examples of a similar kind. The condition was still however looked upon as a very exceptional one; insomuch that the namo of "Jaltonism" was proposed for it, and is still generally used in France as a synony m for color blindness. Such use is oljectionable, not only because it is undesirable thus to perpetuate the memory of the physical infirmity of an eminent philosopher, but also because Dalton was red-blind, so that the name could only be correctly applied to his particular form of defect.

Color-blinduess often escapes detection on account of the use of color names by the color-blind in the same manner as that in which thoy hear them used by other people. Children learn from the talk of those around them, that it is proper to describe grass as green, and bricks or cherries as red; and they follow this usage, although the difference may appear to them so slight that their interpretation of either colorname may be simply as a lighter or darker shade of the other. When they make mistakes, they are laughed at, and thought careless, or to be merely using color names incorrectly ; and a common result is that they rather avoid such names, and shrink from committing themselves to statements about color. Dr, Joy Jefferies gives an interesting description of the almost unconscious devices practiced by the color-blind in this way. He says:
"The color-blind, who are quick-witted enough to discover early that something is wrong with their vision by the smiles of their listeners when they mention this or that object by color, are equally quick-witted in avoiding so doing. They lave found that there are names of certain attributes they can not comprehend, and hence must let alone. They learn also what we forget, that so many objects of every day life always have the same color, as red tiles or bricks, and the color names of these they use with freedom ; whilst they often, even uneonsciously, are cautious not to name the color of' a new object till they have heard it applied, after which it is a mere matter of memory stimulated by a consciousness of defect. I have often recalled to the color-blind their own acts and words, and surprised them by an exposure of the mental jugglery they employed to escape detection, and of which they wore almost unaware, so much had it become mattor of habit. Another im. portant point is, that as violet blindness is very rare, the vast majority of defective eyes are red or green blind. These persons see violet and. yellow as the normaleyed, and they naturolly apply these color names correctly. When therefore they fail in red or green, a casual observer attributes it to simple carelessness,-hence a very ready avoidance of detection. It loes not seem possible that any one who sees so much correctly, and whose ideas of color so correspond with on' own, can not be equally correet thronghont, if they will but take the pains to notice and learn."

When the color-blind are placed in positions which compel them to select colors for themselves and others, or when as sometimes happens, they are not sensitive with regard to their defect, but rather flad amusement in the astonishment which it produces among the colorseeing, the results which occasionally follow are apt to be curions. They have often been rendered still more curious, by having been the unconscious work of members of the Society of Friends. Color-blindness is a structural peculiarity, constituting what may be ealled a variety of the human race; and like other varieties, it is liable to be handed down to posterity. Hence, if the variety occurs in a person belonging to a community which is small by comparison with the nation, and among whose members there is frequent inter-marriage, it has an increased probability of being reproduced; and thus, while many of the best known of the early examples of color bindness, including that of Dalton himself, were fumished by the Society of Frients, the examina. tions of large numbers of scholars and others, conducted during the last few years lave shown that in this country, color blindness is more common among Jews than among the general population. The Jews have no peculiarities of costume; but the spectacle, which has more than once been witnessed, of a venerable Quaker who had clothed himself in bright green or vivid scarlet, could scarcely fail to excite the derision of the unreflecting. Time does not allow me to relate the many ervors of the color-blind which have been recorded; but there is an instance of a clerk in a Government office, whose duty it was to cheok certain entries, in relation to their subject-matter, with ink of one or of another color, and whose acenraey was dependent upon the order in which his ink bottles were ranged in front of him. This order having been accidentally disturbed, great confusion was produced by his mistakes, and it was a long time before these were satisfactorily accounted for. An official of the Prussian post-office, again, who was acenstoned to sell stamps of different values and colors, was frequently wrong in his eash, his ervors being as often against himself as in his favor, so as to extlude any suspicion of dishonesty. His seeming carelessness was at last explained by the discovery of his color-blindness, and he was relieved of a duty which it was impossible for him to discharge without falling into error.

The color mistakes of former years were however of little moment. when compared with those now liable to be committed by engine drivers and mariners. The avoidance of collisions at sea and on railways depends largely on tho power promptly to recognize the colors of sig. mals; and the colors most available for signaling purposes are red and green; or precisely those between which the sufferers from the two most common forms of color-blindness are mable with any certainty to diseriminate, About 13 years ago there was a serions railway aceident in Sweden, and in the investigation subsequent to this accident, there were some remarkable diserepancies in the evidence given with
regard to the color of the signals which had been displayed. Professor Holmgren, of the University of Upsala, had his attention called to this diserepancy, and he foumd, on further examination, that the witness whose assertions about the signals differed from those of other people was actually color blind. Prom this incident arose Professor Holmgren's great interest in the sulbject, and he did not rest until he had obtained the enactment of a law under which no one can be taken into the employment of a Swedish railway until his color-vision has been tested, and has been found to be sufficient for the duties he will be called upon to perform. The example thus set by Sweden has been followed, more or less, by other comntries, and especially, thanks to the untiring labors of Dr. Loy Jeffries, of Boston, by several of the United States; while at the same time much evidence has been collected to show the commection between railway and marine accidents and the defect.

It has been fomd, by very extensive and carefully conducted examinations of large bodies of men, soldiers, policemen, the workers in great industrial establishments, and so forth, as well as of children in many schools, that color-blindness exists in a noticeable degree, as I have already said, in abont 4 per cent. of the male inclustrial population in civilized countries, and in about one per thousand of females. Among the males of the more highly educated classes, taking Leton boys as an example, the color-blind are only between 2 and 3 per cent, and perheps nearer to 2 than to 3 . Whether a similar difference exists between females of different classes, we have no statisties to establish. The condition of color-blindness is absolutely ineurable, absolutely incapable of modification by training or exercise, in the case of the individual; although the comparative immunity of the female sex justifies the sug. gestion that it may possibly be due to training throughout successive generations, on accomt of the more habitnal ocenpation of the female eyes about color in relation to costume. However this may be, in the individual, as I have said, the defeet is unalterable; and if the difference between red and green is uncertain at 8 years of age, it will be equally uncertain at 80 . Hence the existence of color-blindness among those who have to control the movements of ships or of milway trains constitutes the real clanger to the public; and it is highly important that the color-blind, in their own interests as well as in those of others, should be excluded from employments the duties of which they are mult to discharge.

The attempts hitherto made in this country to exclude the colorblind from railway and marine employment have not been by any means successful. As far as the merchant nayy is eoncerned, so-called examinations havo been conducted by the board of trade, with results which can only be described as ludieronts. Qandidates have been "placked" in color at one examination, and permitted to pass at a subsequent ono; as if eorrect color-vision were something which conld be aequired.

Such candidates were eithor improperly rejected on the first oceasion, or improperly aceepted on the second. On English milways there has been no uniformity in the methods of testing ; except (inso far as I am acquainted with them) that they have been almost uniformly misleading, calculated to give rise to the imputation of color-blindness where it did not exist, and to leare it undiscovered where it did. In these circum. stances it is not surprising that great discontent shonld have arisen among rail way men in relation to the subject; and this discontent has led, indirectly, to the appointment of a committee by the Royal Society, with the sanction of the board of trade, for the purpose of investigating the whole question as completely as may be possible.

It is perhaps worth while, before proceeding to describe the manner in which the color sense of large bodies of men should be tested for industrial purposes, to say something as to the amount of danger which color-blinduess produces. A locomotive, as we all know, is under the charge of two men, the driver and the fireman. In a staff of 1,000 of each, allotted to 1,000 locomotives, we should expect, in the absence of any efficient method of examination, to find 40 color-blínd drivers and 40 color-blind firemen. The chances would be 1 in 25 that either the driver or the fireman on any particular engine wonld be color blind; they would be 1 in 625 that both would be color-blind. These figures appear to show a greater risk of accident than we find realized in actual working, and it is manifest that there are compensations to be taken into account. In the first place, the term "color-blind" is itself in some degree misleading ; for it must be remembered that the siguals to which the color-blind person is said to be "blind" are not invisible to him. Io the red-blind, the red light is a less luminous green; to the greenblind, the green light is a less hminous red. The danger arises because the apparent differences are not sufficiently characteristic to lead to cer. tain and prompt ilentiflention in all states of illumination and of atmos. phere. It must be admitted therefore that a color-blind diver may be at work for a long time without mistakes; and it is probable, knowing, as he must, that the differences between different signal lights appear to him to be only trivial, that he will exereise extreme caution. Then it must be remembered that lights never appear to an engine driver in unexpected places. Before being intrusted with a train he is taken over the line, and is shown the precise position of every light. If a light did not appear where it was due, he would naturally ask his flreman to aid in the lookont. It must bo also remembered that to over-run a danger signal does not of necessity imply a collision, A driver may over-run the signal, and after doing so may see a train or other obstruction on the line, and may stop in time to avoid an accident. In such a ease he would probably be reported and flued for over-running the sig. nitl; and if the same thing ocourred again, he would be dismissed for his assumed carelessness, probably with no suspicion of his dofect. Oolor-blind firemen are unquestionably thus driven ont of the service
by the eomplaints of their drivers; and nono but railway offeials know how many cases of over-rmming signals, followed ly disputes as to what the signals actually were, ocen in the course of a year's work. I have never heard of an instance in this country, in which, after a railway accident, the color vision of the driver concerned or of his fireman has been tested by an expert on the part either of the boad of trade or of the company, but a fireman in the United States has recently recovered heavy damages from the company for the loss of one of his legs in a collision which was proved to have been occasioned by the colorblindness of the driver. Looking at the whole question, I feel that the danger on railways is a real one, but that it is minimized by the several considerations to which I have referred, and that it is much smaller than the frequency of the defect might lead us to think likely.

At sea, the danger is much more formidable. The lights appear at all sorts of times and places, and there may be only one responsible person on the lookout. Mr. Bickerton, of Liverpool, has lately published accounts of three cases in which the color-blindness of officers of the mercantile marine, all of whom had passed the board of trade examination, was accidentally discovered by the eaptain being on deek when the officers in question gave wrong orders consequent upon mistaking the light shown by an approaching vessel. The loss of the Ville du Havre was almost certainly due to color-blindness; and a very fatal collision in American waters, some years ago, between the Isaac Bell. and the Lumberman, was traced, long after the ovent, to the colorblinduess of a pilot, who had been minustly aceused of being drunk at the time of the oceurrence. In how many instances color-blindness has been the unsuspected cause of wrecks and other ealamities at sea, it is impossible to do more than conjecture.

It is necessary then, alike in the public interest and in the interest of the color-blind, who have donbtless often suffered in the misfortunes which their defeots have produced, to detect them in time to prevent them from entering into the marine and railway services; and the next guestion is, how this detection shond be accomplished. We have to distinguish the color-blind from the eolor sighted ; hut we must be careful not to confound color-blindness with the much more dommon condition of color-ignorance.

It would surprise many people, more especially many ladies, to discover the extent to which sheer ignomane of eolor prevails among hoys and men of the laboring classes. Many who can see colors perfeetly, and who would nover be in the least danger of mistaking a railway signal, are quite unable to name colors or to describe them, and they aro sometimes unable to perceive for want of education of a faculty which they notwithstanding possess, anything like fine shades of difference. Mr. Gladstone once published a paper on the seanty and uncertain eolor-nomenchture of the Homeric poems, and he might have found very similar examples among his own contemporaries and in his own
conntry. I have lately seen a pattern card of colored silks issued by a Lyous manufacturer, which contains samples of two thousand different colors, each with its more or less appropriate name. There is here a larger color vocabulary than the entire vocabulary for the expression of all his knowledge and of all his ideas, which is possessed by an aver. age engine driver or fireman, and just as most of us would be igno. rant of the names of the immense majority of the colors displayed on that card, so hundreds of men and boys among the laboring classes, especially in large towns where the opportunities of edncation ly the colors of flowers and insects are very limited, are ignorant of the names of colors which persons of ordinary cultivation mention constantly in their daily talk and expect their children to piek up and to understand unconsciously. It is among people thas ignorant that the officials of the board of trade and of railways have been most successful in find. ing their supposed color-blind persons, and these persons who would never have been pronounced color-blind by an expert have been able, as soon as they have paid a little attention to the observation and naming of color, to pass an official examination trinmphantly. The sense of color presents many analogies to that of hearing. Some people can hear a higher or a lower note than others, the difference depending upon structure, and boing incapable of alteration. No one who cannot hear a note of a certain pitch can ever be trained to do so; but within the original auditory limits of each individual the sense of hearing may be greatly improved by eultivation. In like manner a person who is blind to red or green must remain so, but one whose color sense is merely undeveloped by want of cultivation may have its acuteness for fine differences very considerably increased.

In order to test color-vision for railway and marine purposes, the first suggestion which would occur to many people would be to employ as objects the flags and signal lanterns which are used in actual working. I have heard apparently sensible people use, with reference to such a procedure, the phrase upon which Faraday was wont to pour ridicule, and to say that the fitness of the suggested method "stands to reason." To be effectual, such a test must be applied in differentstates of atmos. phere, with colored glasses of various tints, with varions degrees of illumination, and with the objects at various distances; so that minch time would be required in order to exhaust all the conditions under which railway signals may present themselves. This being done, the examine must be either right or wrong each time. He has always an even chance of being right; and it wonld be an insolnhle problem to discover how many eorrect answers were due to accident, or how many incorrect ones.might be attributed to nervousness or to confusion of names.

We must remember that what is required is to detect a color-blind person against his will; and to ascertain, not whether he describes a given signal rightly or wrongly on a partientar oceasion, but whether
he can safely be trusted to distinguish correctly between signals on all occasions. We want, in short, to ascertain the state of his color-vision generally; and hence to infer his fitness or unfitness to discharge the duties of a particular occupation.

For the accomplishment of this object, we do not in the least want to know what the examinee calls colors, but only how he sees them, what colors appear to him to be alike and what appear to bo unlike; and the only way of attaining this knowledge with certainty is to cause him to make matches between colored objects, to put those together which appear to him to be essentially the same, and to separate those which appear to him to be essentially different. This principle of testing was first laid down by Seebeck, who required from examinees a complete arrangement of a large number of colored objects; but it has been greatly simplified and improved by Professor Holngren, who pointed out that such a complete arrangement was superfluous, and that the only thing required was to canse the examinee to make matches to certain test colors, and, for this purpose, to select from a heap which contained not only such matches but also the colors which the colorblind were liable to confuse with them.

After many trials, Holmgren finally selected skeins of Berlin wool as the material best suited for this purpose; and his set of wools comprises about 150 skeins. The advantages of his method over every other are that the wool is very cheap, very portable, and always to be obtained in every conceivable color and shade. The skeins are not lustrons, so that light reflected from the surfaces does not interfere with the accuracy of the observation, and they are very easily picked up and manipulated, much more easily than colored paper or colored glass. The person to be tested is placed before a table in good daylight, the table is covered by a white coth, and the skeins are thrown upon it in a loosely arranged heap. The examiner then selects a skein of pale green, much diluted with white, and throws it down by itself to the left of the heap. The examinee is directed to look at this pattern skein and at the heap, and to pick out from the latter and to place beside the pattern as many skeins as he can find which are of the same color, He is not to be particular about lighter or darker shades, and is not to compare narrowly, or to rummage much amongst the heap, but to select by his eyes, and to use his hands chiefly to change the position of the selected material.

In such circumstances a person with normal color sight will select the greens rapidly and without hesitation, will select nothing else, and will select with a certain roadiness and confidence easily recognized by an experienced examiner, and which may even be carried to the extent of neglecting the minute accuracy which a person who distrusts his own color sight will frequently endeavor to display. Some normal sighted people will complete their seletions by taking greens which incline to yellow, and greens which incline to blue, white others will
reject both; but this is a difference dopending sometimes upon imper. fect color education, sometimes upon the interpretation placed upon the directions of the examiner, but the person who so solects sees the green element in the yellow greens and in the blee greens, and is not color-blind, The completely color-blind, whether to red or to green, will proceed with almost as much speed and confldence as the color sighted; and will rapidly piek out a number of drabs, fawns, stone colors, pinks, or yollows. Between the foregoing classes we meet with a few people who declare the imperfention of their color sense by the extreme care with which they select, by thoir slowness, by their hesitation, and by thoir desire to compare this or that skein with the pattern more narrowly than the conditions of the trial permit. They may or may not ultimately add one or two more of the confusion colors to the green, but they have a manifest tendeney to do so, and a general uncertainty in their choice. One of the great advantages of Holmgren's mothod over every other is the way in which the examiner is able to judge, not only by the final choice of matehes, but also by the maner in which the choice is made, by the action of the hands, and by the ges. tures and general deportment of the examinee.

When confusion colors have beon selected, or when an unnatural slowness and hesitation have been shown in seleeting, the examinee must be regarded as either completely or incompletely color.blind. In order to determine which, and also to which color he is defective, he is subjected to the second test. For this, the wool is mixed again, and the pattern this time is a skoin of light purple-that is, of a mixture of red and violet, much diluted with whito. To match this, tho color-blind always selects deoper colors. If he puts only deoper purples, he is incompletely color-blind. If he takes blue or violet, either with or with. out purple, he is completely red blind. If he takes green or gray, or one alone, with or without purple, ho is completely green blind. If he takes red or orange, with or without purple, he is violet blind. If there bo any doubt, the oxamineo may bo subjected to a third test, whieh is not necessary for the satisfaction of an expert, but which sometimos strengthens tho proof in the eyes of a bystander. The pattern for this third test is a skein of bright red, to be used in the smme way as the greon and the puple. The red blind seleets for this datk greens and bowns, which are much darker than tho pattern; while the green blind soleds greens and browns which aro lighter than the pattern.

The method of examination thas deseribed is, I bolieve, absolutely trust-worthy. It requires no apparatns beyond tho bunde of skeins of wool, no armagements beyond a room with a good window, and a table with a white cloth. In examining large numbers of mon, they may be ald. mitted into the roon filty or so at a time, may all reeeive their instructions together, and may then make their selections one by one, all not yet examined watching the actions of those who como up in their tmen, and thus learning how to procoed. The time refluired for large nimbers
averages about a minate a person. I have heard and read of instances of color blind peoplo who had passed the wool test satisfactorily, and had afterwards been detected by other methods, but I confess that I do not believe in thom. I do not believe that in such cases the wool test was applied properly, or in accordance with Holmgren's very precise instructions; and I know that it is often applied in a way which can lead to nothing but orroneous results. Railvay foremen, for example, receive out of a store a small collection of colored wools selected on no principle, and they use it by pulling out a singlo thread, and by asking the examineo, "What color do you call that?" Men of greater scientifle pretensions than railway foremen have not always selected their puttern eolors aceurately, and have allowed those whom they examined and passed to make narrow comparisons between the skeins in all sorts of lights in a way which should of itself have afforded sufficient evidence of defect.

Althongh however the expert may bo fully satisfled by the wool test that the examinee is not capable of distinguishing with certainty betweon red and groen flags or lights in all the circumstances in which they can be displayed, it may still remain for him to satisfy the employer who is not an expert, the railway manager, or the shipowner, and to convince him that the color-blind person is unflt for certain kinds of employment. It may be equally necessary to convince other workmen that the examince has been fairly and rightly dealt with. Both these objects may be easily attained by the use of slight modifieations of the lights which are employed. Lanterns for this special purpose were contrived some years ago by Holmgren himself and by the late Pro. fessor Donders, of Utrecht, and what we substantially their contriv. ances have been brought forward within the last few months as novelties by gentlemen in this country who have re-invented thom. The principle of all is the same, namely, that light of varying intensity may be displayed through apertmes of varying magnitude and through colored glass of varying tints, so as to imitato the appearances of signal lamps at different distances and under different conditions of illumination, of weather, and of atmosphere. 'To the color-blind the difference between a red light and a green one is not a difference of color, but of laminos. ity, the eolor to which he is blind appearing the less luminous of the two. He may theroforo be correct in his gness as to which of the two is exhibited on any given ocoasion, and he is by no means certain to mistake one for the other when they are exhibited in immediate succession. His liability to error is chiefly conspichons when he sees ono light only and when the conditions which govern its luminosity depart in any degree from those to which he is most necustomed. With the lanterns of which I have spoken it is always possible to deceive a colorblind person by altering the laminosity of a light without altering its color. Ihis may be done by diminishing the light behind the ghass, by neresing the thickness of the red or green ghass, or by placing a piece
of neutral tint, more or less dark, in front of either. The most ineredulous employer may be convinced by expedients of this kind that the color-blind are not to be relied upon for the safe control of ships or of locomotives. With regard to the whole question thereare many points of great interest, both physical and physiological, which are still more or less uncertain, but the practical elements have, I think, been wellnigh exbansted, and the means of securing safety are fully in the hands of those who choose to master and to employ them. The lanterns in their various forms are useful for the purpose of thoronghly exposing the color-blind and for bringing home the character of their incapacity to unskilled speetators; but they are both enmbrous and superfluous for the detection of the defect, which may be accomplished with far greater ease and with equal certainty by the wool test alone.

I have already mentioned that the oxaminations which have boen conducted in the United States, thanks to the indefatigable labors of Dr. Joy Jefficies, have led to the discovery of an enormons and previously quite unsuspected amount of color ignorance, the condition which is frequently mistaken for color-blindness by the methocis of examination which are in favor with railway companies and with the board of trade ; and this color ignorance has been justly regarded as a blot on the Ameriean systom of mational education. It has therofore, in some of the States, led to the adoption of systematic color-teaching in the schools; and for this purpose Dr. Joy Jeffries has introduced a wall chart and colored cards, The childron are tanght, in the first instance, to match the colors in the chart with those of the cards distributed to them, and whon they aro tolerably expert at matehing they are further tanght the names of the colors. It must novertheless always be remembered that a knowledge of names does not necessarily imply a knowledge of the things designated, and that color vision stands in no definite relation to color nomenclature. Even this system of teaching may leave a color-blind pupil undetected.

TEOHNOLOGY AND OIVILIZATION.*

By F. Redmeatux.

From the present status of the world's culture, one can not fail to discern the significantinfluence of our scientific technology in qualifying us for gieater achiovements than the past centuries have yet witnessed, whether in comection with rapid transit by land or sea, tumneling mountains, piorcing the air, making the lightning our message-bearer from pole to pole or sending our voices across the land; or whether, indeed, from another point of view we bring into our service the mighty mechanical powers, or adapt and make use of those intangible contrivances usually unnoticed by the world at large.

Everywhere in modern life, about us, in us, with us, beside us, is folt the influence of scientifle art acting as an agent and as companion, whose ceaselegs service we never realize until for a moment it fails us.

Commonplace thongh this be, still it seems to me that in the cultured world and perhaps in the narower circles of seientifle men, this truth is too slightly valued. The value of selentifte technology in its true character as prodncer and promoter of eivilization, is too little recog. nized.

This may result from a confasion of the so-called technical with the mescientific; or on theother hand, from concealmont of its results under a proponderating mass of idealisin, its development being eramped by ambition for gain and trammeled by social evils, which go hand in hand with industrial labor. But I will not here consider this side of tho question, I would attempt a nearer approach to the imner sanctuary of techmology to certain weighty questions, which appear especially deserving of present notice, as:

What place, particnlarly in associate working, the teehnology of om day takes in civilimation? A place not so woll deflned, it appears to mo, as is that wo assign to less important socin, political, and scientifo events.

Again, a question occurs as to the chicf features of the method followed by technology to attain its ends, and concerning the plan which

[^111]must more or less underlie device and invention; a question which (especially for patent legislation) has long employed and must long continne to employ the scientist as well as the administrative practitioner.

If we will compare our civilization with that of other nations we must understandingly glance at the people and their pursuits, which we find upon the lowest stratum; for example, those who, lacking a knowledge of writing, that wondrous thought transmitter, have, of course, no care for science. In this comparison one will soon oncouter peoples whom a high culture has for centuries, yes, thousands of centuries, been a part. These are the peoples of enstern and southern Asia, the Ohinese, Japanese, people of India, the Persians, and Arablans. Noting without prejudice their eulture, we must concede them to be in a state of high development, indeed to have been highly developed, when mid. dle Europe still remained deep in barbarism. Bven then selence and art flourished among them, and is still advancing.

For 3,000 years the Indian Vedas have devontly proclaimed the Deity; 2,000 years ago the Indian poets produced their odyssey the "Mahabharata"-the great Bharata, the forerumner of many dramas, among them the tender" Sakintala," the charm of which is still potent since its sentiments found their origin in the heart of man. Philosophy flourished likewise, and the seience of language in so great degree that the Indian grammarians of to day ean look back upon an unbroken line of predecessors, the vista terminating in Panini, whom they reverence like a god. Mathematies, too, were fostered, and to day we write our numbors in Indian characters. In parts of India and in eastern Asia the commercial arts progregsed then as now. Persia, too, was laturelcrowned among the world's poets. Following the great Firdousi came the "Horaz" of Schiras, and in his footsteps Hafis sang his immortal songs, all of which have become a part of our literary treasure through the sesame of translation. And the Arabian literature, to which we have not jet had aceess in its entirety, how has it laid moder tribute the Gredian inheritanco, and so perfected astronomy that at the present time we name half the heavens after thom. How, under the patient and studious princes of the time of Oharles, did they foster the growth of arithmetical and still deeper seience! How too have they surpassed our knowledge of chemistry in various substances and essences!

What is then the spiritual difference which sunders their path from ours? Are we in certain arts still behind them? They aro brave sol. diers, gentle and industrious citizens, wise statesmen and seholars; honor and justice hold high rank among them. Where then, considered as men, lie the points of difference?

Or, on the other hand, do we question whether the spiritual boundaries lead to the good, and would we fain know whenee springs our superiority over them?

How is it possible, for example, that England with a few thousand of
her own troops, rules the two hundred millions of India; how was it possible for her to remain victor in opposition to their terrifie and fanatieal revolt in 1857? How does it happen that we, Duropeans or (not particularly to mention the European-settled America, that the Atlantic nations alone compass the earth with railroads, suround it with telegraph lines, traverse its water girdle with mighty ships, and that to all this the other five-sixths of the earth's inhabitants have not added a span-the same five-sixths which still, for the greater part, are grandly organized and highly cultivated?

There are different ways of explaining this astonishing fact, or rather, of at least attempting to determine it comprehensively. Klemm, the industrious Leipsie collector, who was a pre-historian long before the discovery of pile habitations, has propounded the distinction between "active" and "passive" peoples; and many to day follow him therein. To him the A tlantic nations are the active; all others, down to the utterly uncultivated, the passive. According to this theory we make history, they suffer it. Althongh this discrimination appears to have so much in its favor it does not hold. Nations can (as history teaches)-bo a long tim'e active, then passive, and later again active. Activity and passivity are not to nations indwelling characteristies, but ciremistances into which and out of which they can fall without changing their spiritual, essential position. One proof of reality the Klemm theory does not stand. Durope could, to morrow, unyoked from Asia, be made passive without losing the character which makes railroads, steamships and telegraphss belong to her as her spiritual possession. The Arabian, on the contrary, could destroy the products of scientifle technology as the pretended Omar the books, but would not be able to re-produce them, as has many times been done in case of the books.

Others have supposed, and still believe, that it is Christimity that establishes the distinction.

This however does not stand the test. Of course a considerable part. of the thinking whieh resulted in metamorphosed inventions and discoveries was done in the Christian empire, but by $n o$ means all. What an innovation was made by the art of printing, and yet we know that 1,000 years earlier the Chinese had found a way to this art. Gmpowder, too, that marks so decisive a stop in the progress of our eivilization, was used by the Arabians long before the time of the Freiburg monks. Then in mechanics wo flad those important power machines, the water wheels, aro very old and of Asiatic origin.

But passing from these examples to a genuine offspring of Burope, the steam-engine, watching its gradual development up to its actual use--tho time of the Renaissance-in Italy, Germany, France, and Angland, but never outside of Ohristendom, even this, we flud, does not encounter progress, but on the contrary, its adherents often oppose it up to the last.

We look further and do we not find to day Ohristians living in the

East, for example, in Armenia and in Abyssinia, entirely outside the contemplation of our victorious modern technology? In the past they have added nanght thereto and to day they are not its contributors.

It can not be the things themselves, the inventions, but the engendering thought which must have produced the change, the innovation. In fact we ean but aseribe this to a peculiar progress in thought precedence, a difflent, dangerous ascent to a higher, freor comprehension of nature.
'The spell which bound us was broken by our understanding when we found the forces of nature following in their operations no capricions will-a Godly will-but working according to steadfast, unchangeablo laws-the laws of nature; never otherwise.

> According to laws mighty, fixed, etormal, Must wo comploto onl hoing's circlo
breathe Goethe's words from out the terrors of nature's inexorable power. But according to "laws mighty, fixed, eternal" roll the worlds, the stars pursue their couse, a tile talls from the roof or a drop from its cloud height.

> Suns wanter up and down, Worlds go mid como again, And this mo wish cma altor.

In this grand poctical form is seized the same uplifting knowledge that not the bodily but the spiritual force incloses within itself the presentiment of God, that even the world's creation consists in the immutability of its laws. That it might win the knowledge, thought broke through the old barriers, but immediately drew from real life conclusions such as these, if wo may utter them quite free from secondary considerations.

If we bring lifeless bodies into such circumstances that their working of natural laws answers our purposes, wo may permit them instead of this labor to work for living beings.

This began to be carried out with intelligence, and thereby was ereated our present technology. Scientific techmology I mast name it. When the spirit entertained tho idea which sought to make natural laws a conseious power, scarcely any thing was known of these lawa and they must first be wooed. Throngh hard battle indeed most they be won, for the learned world believed itself to have them in its possession. The reformer had therefore not simply to make the diseovery, but to accomplish the gigantic task of overeoming antagonistic convictions and at the same time to support a spiritual eampaign up to the heights of freor knowledge, for this march found weighty opposition in the decrees of the chmeh, whien had demanded its sacrifice. The victory was won, and thorewith our present technology gained the commen. The opposing eurrent of the time had spent itself, comprehonding, porhaps, its injustice, for do not its flast representatives travel as gaily upon the railroad, tolephono, and telegraph as do othors? Only smadl
skirmishors exist as a reserve, and this more from stabbormess than conviction. At all events they do not in the least retard the chiof movement.

What had happened had the reaction of that time prevailed-for it was a reaction begun in Germany more than 100 years before, Coper. nicus having lain more than 90 years in the grave when Galileo was unwillingly compelled to wituess against him-what had happened in such an event is dimeult to conceive; and yet not so, for we may see it exemplified in the great Arabian nation. Among this people the reaction had, in trtith, conquered. Their Galileos, their Averrhoës, and numberless others, were defeated, together with their free convictions; with them their entire sect, and therewith the Arabian culture, whieh already had lifted the hand to grasp the palm of victory of free knowl. edge, was paralyzed by the fanatical victors, and paralyzed they still lie low, already half a thousand years. Allah aalam! "God alone knows," therefore shalt thon not desire to know! So sounds it since then for the pure Mohammedan; all investigation is ent off from him, forbidden and declared sinfil. A noble and refined disciple of the Prophet has given expression to the hope that the Moslem may yet be called to take up the lost leadership. Who may believe him? However, it appears certain that the overthrow of free thought in the Arabian langiage has become decisive for the remaining Asiatic culture. Sike a dam lies the spinitual-slain mass betweon them and us, and so has it come that wo alone have entered into the development to which the pictured progress of thought led the way. The powers of nature which she has tanght us to make useful are the mechanical, physical, and chemical; to pormit them to work for us requires a great outfit of mathematioal and natural seience. From this ontire equipment we exercise a portion us a privilege.

It seems necessary, in order to briefly distinguish the two directions of development, to call them by particular names. The Greeks named an artistic mechanism, an arrangement through which the unusual could bo conducted, a mangunon, which word goes back, according to some, to the name of the eminent race of magicians. All kinds of deflnite tangible things which were considered skillfully and wisely thought out wore so titled; among others, a catapult for projectiles for purposes of war. With this the word comes into the Middle Ages. Then, only in the seventeenth century, a great machine was invented for rolling and smoothing tho washing, and since this contrivanee bore a remarkable ontward resemblance to the catapult, it was also given its name, whereupon the word wandered further into the remaining European tongues, as overy honse-wife knows, or perhaps does not know, if she send her washing to a "manglo."

Agait, for our purpose, I would generalize that old word and name, on the one hand, that something by memes of which the forces of mature are known in her laws, manganism, and on the other, that which
seoms to stand as mature's defender, mysterionsly guarding her ways, naturism.

Amploying for the present these terms, we shall seo the peoples of the earth divided into manganistical and naturistical, and shall notico that, on account of their full understanding of their matorial equipment, the former have a powerful advantage over the latter. Indeed, we dare go much further and hesitate not to assert that to the manganistical nations belongs the domination of the earth, although now, as ever, it must be battled for. Still the observer may confidently predict the victory of the manganists and that resistance can but mean either gradual overthrow or destruction.

That unyielding determination makes possible the mprecedented stop from naturism to manganism is shown in our time, a time so rich in culture, by the example of Japan.

The chief men of this nation, having recognized the necessity, have also gained the political power for the purpose, and so transpires before our eyes the intelligent effort, towards which all their strength is directed, of systematically changing their seheme of instruction. Difleult as is the attempt its beginning promises success, consisting as it. does in nothing else than learning, learing, learning.

Vary gently in India the English have commenced to work towards manganistical education, and althongh all is yet in the begimning, great results aro possible.

It is mnecessury however to stray into distant lands to flud natiorism; in Europe it is at hand, and indeed in every human being lurks a portion of maturism. The first tonch with manganism must be through education, the surrender of the uncultured mass of intellect to kind nature, but subject to a firm control which shall so hold her in cheek as to prevent the ruin which wonld otherwise threaten in the full contact with fate.

In Spain manganism has doveloped but slightly. The Iberian Peninsula has not contributed to the great metamorphosing inventions; naturally the repression of thought advancement would oceur more readily there, as at that period the new discovered world held attention. The loss to Spain is, however, incalculable.

Greeco, once leading the world in arts and seiences, was at the time of the blossoming of scientifle tednology, so entangled in the result of her fall that the movement did not seize her. Now as a mation she seeks to raise herself ont of natmism in order to resmo the transmis. sion of the old spiritual activity, and we may watch with interest the experiment made upon the classical soil of this beautiful land. Without manganism the effort must fail.

Italy fumishes us with a striking illustration. For a long time devoted thoronghly to matmism, and also desirng her share in tho great scientific discoveries of the Renaissance, this highly gifted people more or less neglected manganism, but preserved her flowers of art, and has
therein sought and found her glory; this neglect hor new form of govemment has cansed her to recognize, as well as the necessity for its avoidance; consequently wo see the Italians exerting themselves with astonishing energy to spread among themselves manganistical indus. tries and qualities. That their rapid and significant progress in useful industries weakens their achievements in art industry can not bo doubted.

Like a shadow this fact flits over us, until it seems as if between the two directions must exist an opposition to which one will fall a sacriflec. But not so ; art and scientifie teehnology are not at variance; it only requires great effort for both to be developed; great firmness and spiritual insight into resthetical laws to counterbalance the disturbing grasp of the machine.

That both may develop side by side is shown by the present move. ment in Anstria and Germany.

Turning now to the consideration of the inner method of manganism, J. pass over an entire line of preparatory grades, but desire to note that which is common to different actions, but which seems to the outside world contradictory. Such generalizing shortens, but is necessary in order to mako elearer the influx of new appearances in the technical kinglom. For the purpose of making these certain, effieiont and intelligent, it may be permitted to employ a few simple examples:

Fig. 1.
The cog. wheel a, lig. 1, catching in the usual manner in tho eogs of the bar at 2 , is rotated at 1 in the stationary frame e, in which also at 3 , the eog.bar b slides, this bar, a very long one, being pulled down by a weight B.

Imagining the wheel a so tmmed as to raise the weight B, or in such mamer as to lower it, we have bofore us an effleient machine of a definite kind, viz, one of continuous direction of motion whether forward or back ward. We will call it, because of this continnons motion, a running work (laufwerke). As is well known, there are many running works; among them friction wheels, cog-wheels, beltings, turbines,
ete, in many difterent eombinations. Opposed to this mechanism is another of a different motion; of this Fig. 3 finnishes an example. The wheel a turns 1, in a fixed frame and has saw or similar shaped teeth in which, at 2, a ratchet catches. This ratchet hinders the wheel from following the pulling of the weight A at the margin of the wheel a. But if the wheel be turned as we wind a cord, 4 , on which hangs the weight, the ratehet permits the wheel to go forward but retards it again as soon as the compelling force subsides.

This artangement is known as "obstruction" (Gesperre.)
In the use just described we would call it obstructing work (Sperrwerk); its backward and forward motion varying, thas requiring it to be completely discriminated from running work (Laufwerke).

From the given groups of mechanisms, five others are possible.
If we next imagine the ratchet to be raised, through pressure upon the button at 5 , the obstraction being released, the weight A falls down, taking or drawing with it the wheel a. The resulting motion can be utilized in many ways: quickly, as through a push with a ram, slowly, gradually, as by a clock; also in the rumning work of the telegraph, changing always according to supply.

Through winding on spokes, the mechanical labor can always be nsefully changed. Instead of lifting a weight A, one can also place an olastic body, i, e., a spring in a condition of tension. We will therefore name the prodnced mechanism tension work (Spammerk). The crossbow was a spring tonsion work; there are millions of spring tonsion works in practical use in flint-locks.

We procure a thind mechanisin through a slight change of the management, namely, by allowing the ratehet that was previonsly released to be again caught. This then catches up tho wheel a and with it the fallen weight A. A sufficiently strong structure pre-supposed, one can also make the mechanism servo for catching up heavy masses, and we mame it accordingly eutch worl (Fang werke). The meehanisms used in mines and also in elevators for tho catehing of the propellers in case of rope-hrenk, are such catoh work. It one eonsiders that the wheel teeth can bo made so the as to be invisible, whereby the cirenmference of the wheel a will be smooth and the obstructing ratchet simply a frietion body, the obstruetion changes into a frietion obstruction, as ono pereeives in the brake of the railroad train. 'Ihe applications of eateh work are also very useful and monerons.

A fourth mechanism ono would secure ont of the groups in puestion, if one attached, but on a moving arm, perhaps a second similar ratehet to the nearer one, fastened to il, the last having a swinging motion. Ihrough this motion one ean then, intermittingly, move the wheel with the intention of lifting the weight, since the first ratchot always catehes the wheel when it begins to let the weight sink. The thus formed and driven mechanism is called leap work (Schaltwerk), Applications of the same are known and many. A fifth manner of eonversion of the
groups results, if one uses perhaps a narrow, corner-shaped sogmont of a wheel and forms with it an obstruction for the passage between the points 1 and 2 , in the fashion, I will say, of a door. Then through closing the obstruction at 2 , the passage can be retarded or stopped; through loosening, it will be opened. We will name the mechanism in this form, olosing vork (Schliesswerk). It exists in closing doors, windows, elosets, chests, in the form of locks, and so on in known and numerous changes. We see here the wide domains of the lock, which offers millions, yes millioufold variations of closing work.
The sixth, and perhaps from the standpoint of the mechanie the most remarkable change of the obstruction, is the cheoking or check work (Hemmwerk), as we will say. It exists if we set free the obstruction by light touches upon the button at 5 and immediately closing it again. If this occur regularly the progress of the wheel a may serve, among other purposes, for measuring time. In elocks this olecel work is largely used. The regular release of the obstruction takes place by means of an even.timed body, the pendulum. Variations of check work exist in many other machines.
Thus we see there are many examples of obstruction works (Gesperrwerken), as we may call them collectively, i. e., works in which the obstructing ratehet plays a part. But let us look still farther. It often oceurs that obstruction works are combined and the action of one trans. mitted to the other. A fine example is furnished by the set-trigger of target rifles. This trigger is nothing else than a little tension work, very easily loosened, in consequence of which the firmer held tension work of the eock is loosened, one thus working upon the other, Such a combination we may call a tension work of a higher order, or, in case of a similar combining of obstruction works we speak of an obstres. tion work of a higher order. An illustration is furnished by the motive work of a clock, where the weight and spring tension work (Gewichts-mid Fedderspannwerk) drives the obstruction work (das Hemmwerk), thas working in the second order. Clearly, we havehere a principle, for the transmission of motion can ocen between obstruction work and wheel work, and so on. For example, there is attached to the cheek work of the elock a cog. wheel work which moves the hands. Naming motive works in general, several examples of whieh we have noticed drive works ('Treibwerken), the wheel work of a clock must, lie a drive work of the third order, consisting of tension work, check work, and wheel-ruming work arranged the one over the other.

Having taken so broad a view in this field of observation, we turn to another quite different in aspect.

If we notice our machines in practical use we flad among them a number in which flaidity serves as force and motion transmitter, as the hydranlie press, the pump, spouting machines, water wheels, the turbines, ete. But not only liquid but gaseons flaids we similarly convert into gas motors, air machines, athd especially into steam-engines. Olose
observation shows that wo have subjeoted all those cases, in eonsequence of the suitable inclosing of the liquids in chamels, pipes, and vessels, to such a forced way of motion-I at one time proposed to name it "foreed-rumning"-that they are able to work in meohanisms as do firm bodies, but have this advancage of conforming themselves always to their surroundings.

If we introdnce something of this kind in our running work (Fig. 1), replacing the cog bar by a stream of water, then our rumning work becomes a water wheel, mediocre indeed, if the water is taken as the driving force. It becomes a dipping wheel or spray wheel when the wheel a is propelling and the water b is the propolled body.

The practice in machines leads to the same thought concerning obstruction work, The obstructing ratchets are named valves when either the wheel a or its substitute-a section of the wheel, eog bar, otc.have been converted to liquids. The valves are in ratity in overy way, try them or examine them as we will, the obstructing ratchets of the liquid. One observes immediately what a new, great, yes, even grand, enlargement has been gained by the putting into use of these drive works. Examples surround us, I should say erowd around us. Our common water-pump, with the butt of the valves and the sucking valve, is a water leap work prepared exactly in accordance with the seheme mentioned before, viz, of that leap work found in Fig. 2. Also in check work wo find fluids, liquids and gates taking the place of an ascending wheel or its substitute, as in water throwing machines and not less in steam-engines.

In fact, rogarding theso machines as drive works, they correspond to clocks which I have taken as illustrations of obstruetion works, the differenco being solely that in clocks a harmful resistance, in the other machines a useful resistance, is overcome. Had I more time I would prove their similarity in all points.

The valves, for instance, often single, but sometimes a combination of two or more in one machino, correspond to the so-called anchor of the clock check work, to the eccontric (musehelsohieber) of the steam engine, the pendulam of the clock being represented by the vibrating butt, ete.

Thas the great and powerful steam-engine legitimately and with perfect ease falls in the line, taking there its rightful place. And so must it be with seientifie perception which will have to do with trie, logical connection only (not with sensational), performing wonders. But in dealing with this principle wo must gain one more ascent in order to attain the full theoretieal horizon. Let us not regret the trifling exertion which must bring abundant reward.

Noting, from: the common standpoint, the source of power in our steam-ongine, we flad within the collected mass of stored-up steam an active, communicating atom force, which is an expansive power or tension work, The boiler, too, wi.h its vablves and contrivance for letting
off stoam, is but a tension work, differing feom that previously noticed in that it lodges in a physical manmer the oalled forth tonsion, making it, in truth, a physical tension work. This observation carries us further, draws us on, as it were, to the easual connection by which heat is communicated to the boiler water. This comecting link is the fire, the glowing, flaming coal which gave up chemically, in combustion, the energy stored therein. Thus fire is a chemical tension work made active through kindling, but holding latent, if we consider it in the form of coal, a hoali energy stored within by nature's slow process dur. ing millions of years and now eagerly yielded to our simple expedient.

Thus we have our stean-engine complete; in the boiler fire a liberated chemical tension work; in the boiler itself a physical tension work made active by the fire; in the engine proper, consisting of stop-cocks, cylinder, and piston-work, a mechanical check work, with motive power previously supplied; consequently, as a whole, a general drive work of the third order whereby we slight all secondary mechanisms of permitted masses.

But if instead of the simple steam engine with its alternate motion we consider a crankengine, we have attached to the check work, in the form of the crank motor, a rumning work, which we can and do use, in thonsands of forms; but the machine thus becomes in this, its mostused variety, a general drive-work of the fourth order.

Permit me to eall attention to still another example taken from steam industry upon the railroad.

In the locomotive just developed we have before us a drive work of the fourth order. Next come the drive wheels of the engine as running work, friction-wheel work (Reibrider werk), and joining this locomotive the train gliding over the rails, a self-moving second ruming work, making, as a whole, a drive work of the sixth order.

But let our train be of modern form and it will have a Westinghouse brake. The reason of the great favor in which this brake is held and of its great importance our theory explains as follows:

The brake itself is a cateh work formed from a frietion obstruction work which wo formerly set in motion with the hand.

Now we manage otherwise. We havo with Westinghonse in the form of tho air battery on the train, indeed on every car, a strong, readilsplaced tension work which wo can nt all times easily releaso through a stop cock in the form of an obstructing ratehet, which the brake contracts. Begiming from above, if we follow the brake apparatus, wo have before us: The little steam-engine, a cheek work; the air pressure pump, a leap work; the mentioned crank mechanism, a ched work; and the side brake itself, a cateh work; together a duive work and indeed a mechanism of the fifth order; and if we add thereto, as we must, stemboiler and fire, the whole results as a general drive work of the seventh order. Higher unmbers of orders certainly do not bew long to usual eontrivances.

We may now tum, withont anxiety lest we sacrifice clearness, to the side of the most modern of all technical novelties, the electro-mechanical. Here we recognize in the Galvanic battery, or chain, a ohemical running work, which expression can well be conceded, as it depends upon motion excitement, although it be atomical; the induced physical-electrical stream, the valves of which are the obstruction ratchet, the contact, polishing springs, etc., is used in various arts; in telegraphy it works in leap work of the seeond order, provides by relay for release and making fast again, and a mechanical runniugarrangement of writing work; it results, according to circumstances, from the third to the fourth order.

The usual sound-contrivances of the railroad work in the fifth order, chomically in current producers, physically leaping in the anchor pulling through which a mechanical teusion work, that is one bent by the hand, is released; the same drives a check work which again the little hammer tension work (Hammerspannwerke) springs, makes tant, and then releases.

Among chemical drive work, we notice that the tension works take a prominent place. Those placed here will be of the number so artis. tically prepared by chemists that they give up their tension, or expansive force, slowly or rapidly. Gunpowder is the most powerful teusion work, which the naturistical groping Middle Age set in the place of the mechanical tension work stretched by the hand of man out of netting, bows, and sinews in large and small throwing machines. The purpose remaining exactly the same, the kind of tension work was changed. The fuse releasing the new tension work was in itself a slow running, chemical tension work, entirely separated from the larger. Later we got so far as to take the two together in a single contrivance, at first in flint-locks, then in percussion locks. There one entered the third order. The percussion cap, a chemical tension work rather easily liberated, is set free by a mechanical tension work attached to the guncock. The ball is thrown by a tension work of the third order, as oceurs in the set-trigger in the fourth order.

Allow me to say a word concerning a petty example, the match. Not two generations have we possessed it, and previous to this brief period we manganists, in poiut of fire kindling, were very nearly on a par with the lowest naturists.

In a natural state, as we know, people, through laborionsly acquired skill, kindle a fire by rubbing together two pieces of wood; in other words, they set free that tension work, heat. The old Greeks used for the purpose the pyreion, the under piece of which, called the eschara, contained a bore, in whieh the rubbing piece, the trypanon or borer, was inserted and then turned by twisting the hands.

Ought not in some hidden eorner of the Grecian mountains the pyreion still to be found? It would be very serviceable to bring it to light.

The little fire chests containing flint, steel, tinder, and threads dipped
in sulphur, which in my earliest childhood I saw used in ms home, are examples which have kept their places in spite of the all-conquering mateh; it would be well to have specimens of these preserved in ethnographical museums.

Later came steel and flint, a physical tension work used for itself. With their help one kindled-and many still do it to day-the tinder, an easily freed tension work, especially prepared for the purpose and consisting at that time of burnt linen.

On the tinder as soon as it glimmered, was set free a chemical tension work rather difficult to release, the thread dipped in sulphur, and finally with this, a thin piece of wood, but not for a time a coal. For the kindling of the wood alone one used, in succession, four distinct tension works, one physical, stone and steel, and three chemical, tinder, sulphur, and wood.

We now see the match fully in the domain of the former developed principle. The little important fire tool was made by combining three, but soon after four tension works, and is a chemical tension work of the fourth order, formed from the tension works phosphorous, chloracid kali, sulphur, and wood. For the sulphur, as is known, was later substituted in many ways wax or paraffine. But the principle is very plainly recognized; each one of the tension works following one upon another, is more difficult to set free than its predecessor, but was freed definitely, and then through a very easy mechanical action upon the little tension work most highly sensitive, the hair-trigger, brought about the deliverance, as it were, of each of the four obstructions which had caused such trouble, demanding the entire force of one and frequently of two men. That the combination of the four tension works was so recently attained proves that the fundamental principle of the train of thought must have been quite difficult.

We have now, at last, the manganistical principle fully before us, in a common form as well as in the greatest, the examples embracing the most powerful forces, down to the finest and smallest, and we can de. clare that the method consists: In ihe cultivation depending upon a sci. entific knowledge of the laws of nature, and the resulting higher orders, and those standing side by side, of mechanical, physical, and chemical drive work.

If the foregoing is developed essentially with a consideration of mechanical technical aims, it permits itself to turn without any compulsion upon the precedency of chemical technology and may, therefore, be found to embrace in itself the entire problem. One has only, for example, to think of a chemical manufactory, etc., and how sulphuric acid enters as a physical and mechanical medinm in the colors. As in the above both of the others are side by side with the mechanical.

From the standpoint now gained, if we again consider scientific technology, we shall see how its results are closely bound with our life habits, indeed, with our entire culture. We may overlook the fact that
we are directly surrounded in our dwellings by thousands of obstruction works which have made our rooms safe, comfortable, and convenient for light, air, and warmth. We may overlook this because naturistical labor is able to produce similar, although less perfect, results. But let us notice other things whereby our dwellings have received their character. There is the gas light in the house, on the street, in the public building. We may thank for it a chemical tension work of the fourth order-fire, retort, gasometer, conduction by stop-cocks, passing by all intermediate works-all of them important, all ranifying through the city pipes. The water for house and street necessity, when taken from a river-water conduit, furnishes a drive work of at least the sixth order. Upon the railroad we move by drive work of a higher order, regulate the powerful service with another, b,y means of drive works permit freight to be carried on the rails from place to place, from land to land, from one part of the earth to another, a thousand-fold more than a person could carry. Throughout the earth by means of physical drive work we have the inessenger service, both written and spoken.

How fare we in war? In millions of chemical tension works, large and small, generally of higher order, we carry the driving force to the distant battlefield and there set it free by means of a high order of drive works.

Upon the ocean we are carried hundreds of miles from land, for weeiss and months, by means of teusion-work activity.

Rich productions, such as coal, we have gained from nature. The naturistical man early fomd upon the high mountain range the water course, that running work subordinated to tension work, and very likely the future will bring to light other products, such as petroleum, which we may say was discovered three deeades ago. This product is a highly elastic chemical tension work fitted to play its part under a clear. flame. In reality it is a combination of two or more chemical tension works, each under such slight restraint as to free itself invisibly.

We had, therefore, to submit, this product of nature to a process of separation, according to the manganistical principle, into groups of small parts easily liberated and on which the tension work was first transnissible and generally applicable. Police directions required that if the product were made an article of trade the obstruction (sperrung) should be a safe one; but how favorable has been the result. This fluid tension work discovered, as it were, "ready made" in nature for purpuses of illumination, has displaced those products which, by the aid of noticeable manganistical implements had previously been obtained from the seeds of plants. Let us turn to another phase of tension work. The conflagration is butan invisible liberating of a chemical tension work, as is well proved. The obstrnction ratchet is raised in opposition to our will with ever-increasing rapidity and the powerful, liberated tension work often overleaps our control, but we bring to bear upon it for the purpose of its capture, another drive work, formerly operated by main strength only, but now usually by chemical tension-
work under the application of drive works of a still higher order. We also turn a chemical tension work, the gas or chemical engine, as the Americans call it, which acts instantaneously upon the water being used. In the last case the drive work connected with the water is of a very low order; this furnishes an example of the manner in which drive works contest for the same intended motion and seek each to gain for itself the palm in lessening the number of clrive works, that is, the height of the order number. Everywhere it is the manganistical thonght, the manganistical principle whereby we in part preserve, in part make easier, in part defend our life, and whereby we also advance annihilatingly against others.

Our industries, fually, which produce as well the necessities as the manganistical mechanisms, what have they not brought about for culture advancement by means of this same manganistical principle? Here let us venture a little nearer by attempting to apply a measure.

Coal serves us as an essential assistant in manganistical labor. Thisis now obtained in an abundance of over $400,000,000$ tons, the greater part annually converted to industrial purposes. The surplus above $400,000,000$ tons suffices to cover heating necessities. So we have for each of the 300 working days of the year one and one-third million tons of coal, whieh are used for chemical, mechanical, and physical-technical purposes. If we sum up the entire labor arrived at therewith for the sake of the survey of dynamical execution, the results under this acceptation of uses of coal show $1 \frac{1}{4}$ kilograms for horse-power in a working day of 12 hours, i. e, $4 \frac{1}{2}$ tons per hour during the year, together with the horse. A horse-power, in round numbers, of $90,000,000$, statistical numbers and taxes, in fact, would in dynamics yield $20,000,000$. For every horsepower must be reckoned the working force of six strong men, which results in $540,000,000$ active man-power during a day of 12 hours. It is this powerful executive force which the $2000,000,000$ of Atlantic nations entiraly alone (since the other $1,250,000,000$ of naturists have added nothing to it) have accomplished by man through the mangan. istical principle! When we consider that every tenth one of the $1,250,000,000$ men exerts daily such labor as before contemplated, prob. ably a much too high estimate, there rosults an execution of 12i, 000,000 man-power. We Atlantic peoples, a sixth of the earth's inhabitants, perform by our manganistic labor more than four times as much as those can execute. The superiority of the manganist over the naturist is attained and reimbursed through usefinl labor, and thereby also reaches, taken only humanly, its right. This so much the more as our labor execution is transmitted to each of them. I speak of the great, entire development, and not perhaps of its still existing deficiencies, to the extension and under the extension of culture and civilization.

So, then, has scientific technology become the bearer of culture, the powerfal, tireless laborer in the service of civilization and cultivation of the races of men, and promises for a long future to add a line of greater results than is at present attained.

THE RAMSDEN DIVIDING ENGINE.*

By J. Elfreth Watkins, Uurator, Section of Transportation and Engineering, U.S. National Museum.

The circle is a figure that has always been found in nature.
Although this simple geometrical figure has been used in insesip. tions and for decoration from time immemorial, I have been able to discover only one very early reference to a pair of compasses, or dividers.

In referring to the graren images, the worship of which was forbidden by the Jewish law, the Prophet Isaiah, in chapter 44, verses 12, 13, old version, describes the manner in which these idols were constructed, as follows :
"The smith with the tongs both worketh in the coals and fashioneth it with hammers : - "" The carpenter stretcheth out his rule; he marketh it out with a line; he fitteth it with planes and he marketh it out with a compass and maketh it after the figure of man."

In the revised version the phrase is translated-
"The carpenter stretcheth out a line; he marketh it ont with a pencil; he shapeth it with planes and he marketh it out with the com. passes and shapeth it after the figure of a man."

The Hebrew word which is here translated "compass" or "com. passess," is mehugah, fron hug, a circle-mehug something to make a circle.

There can, therefore, be little doubt that an instrument for drawing circles and probably similar to what is now known as the "compasses" was used by the Hebrew mechanics. Even if we accept the theory of a deutero Isaiah, this instrument can certainly claim the respectable antiquity of the sixth century B. 0 .

The circle was associated with the measurement of time and the observation of the positions of the henvenly bodies many centuries before the Ohristian era.

> IIIE SUN-DIAL AND GNOMON.

The sun dial of Ahaz, is thas alluded to in Isaiah, ohapter 38, verse 8, old version, "Behold, I will bring again the shadow of the degrees, which is gone down in the sun-dial of Ahaz, ten degrees back ward. So the sun returned ten degrees by which degrees it was gone down."

[^112]By recent Biblical critics* this dial is supposed to have been an obelisk, whose shadow fell upon the steps of the palace of Ahaz, each step being called a degree.

It is liy no means improbable however that these degrees were marked on a plane of stone or metal.

The simple records made by the Ohaldean shepherds and herdsmen of the observations by which they determined the seasons and by which they were governed in the different operations of husbandry, led the early cultivators of science to devise instruments (doubtless crude in the beginning) by which they could obtain data for more accurately ascertaining the lengths of the solar and lunar periods.

Astrology and astronomy bore the closest relationship to each other at that remote period.
"In the valley of the Euphrates there were in those days observatoriest in most of the large cities, and professional astronomers regularly took observations of the heavens, copies of which were sent to the king, as cach movement or appearance in the heaven was supposed to portend some evil or good to the kingdom."

Among the first instruments of which there is record is the gnomon, \ddagger with which the Babylonians were familiar, and from whom Herodotus states (II, 109) "the Greeks learned the use of it, together with the pole." The comparison of the perpendicular height of the gnomon, with the length of its meridian shadow projeeted on a horizontal plane on the days of the summer und winter solstices, afforded the early astronomer an opportunity to calculate the difference of the sun's meridian altitudes on those days.

andiendi astrolinibes.

Ptolemy, in his "Almagest," written 145 A. D., describes an astrolabe or circnlar instrument for making celestial observations (which ho calls
 so that when it was suspended the divisions which we now call 0° and 180° would come to rest in the same horizontal plane.

A diametrical bar suspended in the center of the circle and turning on a pin was furnished with disks containing slits through which any heavenly body could be seen and its altitude determined in degrees or parts thereof.

Other astrolabes were constructed in carly times, consisting of two graduated circles set exactly at right angles.

[^113]
BABYLONIAN SYSTEM OF DIVIDING THE OIROLE.

In a paper upon "Babylonian Astronomy," by Sayce and Bosanquet (Monthly Notices Royal Astronomical Society, 1880, vol. xı, No. 3, ${ }^{\text {) , relat- }}$ ing to the tablets of the millennial period, from 2,000 в. o. to $1,000 \mathrm{~B}$. o., I find this statement: "The divisions which we find employed are 3, $12,120,240,480$ parts. It has been assumed that the division of the circle into 360 parts was made by this ancient people. There is however no authority in the inscriptions for this assumption. It seems to have been derived originally from Achilles Tatius, and the pre-conceived idea thus incroduced appears to have caused even those most conversant with the inseriptions to see the divisions of the circle into 360 in matters which do not involve it.

THE MODERN DIVISION AN OUTGROW'TH OF THE SEXAGESIMAL SYSTEM.
"It is hardly doubtful that the division of the circle as practiced by Ptclemy and in modern times was an outgrowth of the sexagesimal system, but the latter does not contain the former. The numeration of the inseriptions is by two methods, the sexagesimal and the decimal.
"The decimal method is in all respects comparable with our own and was used by preference in the Assyrian period.
"In it words and signs were used which were precisely equivalent to our "hundreds" and "thousands."
"In the sexagesimal method the reckoning was the same as in the decimal up to $60 ; 60$ was 1 soss. The counting went on by multiples of $60+$ number over, up to 1 ner $=600$. Then by ners + sosses + num. ber over, up to 1 saru $=3,000$.
"The numbers used are always taken in this way. There is no instance of counting by $60,360,3,600$. The fourdation of the number 360 was not, therefore, a natural step in the sexagesimal arithmetic of the iuscriptions.

TABLE'I FROM THE PALAOE OF STENNAOHERIB.
"The division of the circle into 480 parts is illustrated by a tablet from the palace of Sennacherib (668-626 1. о.) in the British Musenm, written in Accadian, which treats of the moon's position during a month. The numbers of them or many of them are unintelligible or cor. rupt. This is partly due to the fact that the tablet is a copy of an ancient one, probably the date before $2,000 \mathrm{~B} .0$. ; but there is amply sufficient left to show that there was a real division of 480 parts, the moon's mean daily motion being 16°, as it should be roughly, thiroughout the intelligible portions."

The numbers of the tablet are as follows:
[The word "degrees" is used to represent the units of the division of $\mathbf{8 0 . 1}$

Day of the moon.	Moon adrances.		Day of the moon.	Moon advances.	
	Degrees.	Degrees.		Degrees.	Degrees.
1.....................	5		16*...............		16
2..............	10		17..........................	208	32
3...........	20		18..........ร..............	102	48
4.	40		19..........................	176	64
5.	80	20.........................	160	80
6.	96		21.........................	144	98
7.	112		22.........................	128	112
8.	128		23........................	112	144
0.	144	24.........................	98	30
10.	160		25..........	80	50
11.	176		26.........................	32	12
12.	192		27..........................	23	20
13..	208		28.........................	15	43
14.	224		29..........................	$5{ }^{2} 8$	
15.	240				

*The sixteenth day, for 224° of advance, il becomes obsouro and retrogrades.
t The thirtieth day the moon is the god Anu.

S. 162 .
 OBVERSE

Flg. 1.-Babylomiay Plamibphebl.

FRAGMENT OF PLANISPHERE IN THE BRITISH MUSEUM.

Figure 1 represents a small fraginent of a planisphere in the British Museum (B .162). It contains two compartments, each of which is char-
acterized by the name of a month. The month Marchesvan is the eighth and Oislev the ninth. The ares have at their left-hand corners the numbers shown. (This is a "sky aspect." A "globe aspect" would be the reverse.)
"This remarkable fragment is sufficient to determine the following table, in which the year is supposed to be divided into 12 mean months:

No. of month.	Outer circle.	Inner olrele.
1	40	20
2	20	10
3	240	120
4	220	110
5	200	110
0	180	90
7	100	80
8	140	70
9	120	00
10	100	50
11	80	40
12	00	30

"To compare the longitudes of the planisphere with our own we have the following table, taking the numbers of the inner circle, $i . e$, the division of 120 :

The late George Smith proposed to read 150 for 140 , and 75 for 70 . Sayce and Bosanquet assert that "There is no foundation for this, ex. cept the pre-conceived idea that the circle ought to be divided into 360°. The numbers are imprinted on the clay with great clearness according to the sexagesimal notation." (Monthly Notices, R. A. S., 1880.)

REASONS FOR DIVIDING THE CIRCLE INTO 360 DEGREES.

On the other hand, we have the generally accepted statement that the Egyptians divided the circle into 360° from the sun's annual course or according to the number of days, dividing the year into 12 months, and each month into 30 days and allotting 10 to each day with in intercalary month every 6 years.

The Greeks divided each month into three periods of ten days each.
It will be remembered that the Jewish year contained only 354 days.
It is not definitely known how the astrolabes of Hipparchus (second century 13. o.) and Ptolemy (second century A. D.) were divided; prob. ably these graduated circles contained 360°. It is stated that the parallactical instrument used by Oopernicus (1473-1543), and by which he measured altitudes, had its limb divided by equal divisious that were the subtenses of $3^{\prime} 49^{\prime \prime} .137$ each. If an error of only $4^{\prime \prime} .1$ was made in measuring this instrument, and if $3^{\prime} .45^{\prime \prime}$ was the correct veading it would indicate that each quarter of the circle was divided into 1,440 , or each sixth of the circle into 960 equal parts.

Many writers beliove that the number 360 was selected from the fact that it admits of a great many aliquot parts, such as $2,3,4,5,6,8$, and 9.

It has occurred to me as not an unreasonable conjecture that the origin of the sexagesimal system may have resulted in some way from the fact that the circumference of the circle is divided into six equal parts by chords exactly equal to the radius in length. I do not romember to have seen this theory advanced by any previous writer.

The earliest records indicate tliat each day was divided into six parts.
In a recent paper on "Chaldean Astronomy," by Dr. Ohristopher Johnson, of Johns Hopkins University (p. 141), he asserts that "in the earliest tablets the day is divided (at least for astronomical purposes) into six watches-three day watches and three night watches." "In the later tablets, however, we find a division of the day into 12 kaspu or double hours, each kaspu being divided into 60 degrees or minutes."

There is mention of an inscription on a tablet in "Western Asiatic Inscriptions" (published by the British Museum, III 51, 1), a translation of which reads: "The sixth day of Nisan, day and the night were balanced there were 6 kaspu of day and 6 kaspu of night."

[^114]
DECIMAL DIVISION OF THE OIROLE ADVOOATED IN THE SIXTEENTH oENTURY.

Whatever may have been the origin of the division of the circle into 360° the system has been condemned from time to time by many eminent mathematicians, among them Stevinus (1548-1620), who, in his "Cosmography" (lib. I, def. 6), states that "the decinal division of the circle forhich he contends for) prevailed in Sceculo sapienti."

Henry Briggs (1556-1630), Oughtred (1574-1.660), and Sir Isaac Newton (1642-1727) constructed large tables of sines, the plan being to divide each degree into 100 minutes of 100 seconds each.

Dr. Charles Hutton, in the early part of this century, published extcnsive tables giving real lengths of arcs of various decimal degrees in terms of the radius. Some of the French mathematicians divided the quadrant into 100 degrees and then into decimals of degrees. Willian Orabtree, Cascoigne, t and Jeremiah Horrocks \ddagger (1319-1641) pro. jected tables with complete decimal divisions, the whole arc of the circle being divided into $1,000,000$ parts. (Philosophical Transactions, vol. XXVII, 1., 230.)

DEDIMAL SYSTEM FREQUENTLY USED BY I'HE HEBEEWS.

I have taken some pains to find, if possible, some trace of the employ. ment of a sexagesimal numerical system by the Hebrews in the meas. urement of straight lines.

In the description of the city and temple seen by Ezekiel in his vision and described in the fortieth and forty-second chapters, the measuring reed (qana) § of 6 great cubits, corresponding somewhat with our 10 foot rod, is mentioned in ten places.

The decimal system however was more frequently nsed than the sexa. gesimal in noting the dimensions of the walls and courts lescribed in these chapters. Thus the number 500 is found three times, 100 eleven times, 90 one time, 70 one time, 60 one time, 50 nine times, 30 two times, 25 five times, 20 six times, 10 three times, 5 seven times. It would seem reasonable to assume that in describing an imaginary structure the

[^115]dimensions given would be according to the method of enumeration in general use.

In noting measurements of length in other portions of the Scrip. tures three-score is used three times:

1 Kings, 6:2: "And the house which King Solomon built for the Lord, the length thereof was three-score cubits, and the breadth thereof twenty cubits, and the height thereof thirty cubits."

Ezra, 6:3: "Let the house be builded, the place where they offer sacrifices, and let the foundations thereof be strongly laid; the height thereof three-score cubits, and the breadth thereof three-score cubits."

Daniel, 3:1: "Nebuchadnezzar the king made an inage of gold, whose height was three-score cubits, and the breadth thereof six cubits."

The numbers 6 and 12 are used elsewhere as follows:
Ezekiel, 11:1, revised version: "And he brought me to the temple, and measured the posts, six cuoits broad on the one side and six cubits broad on the other side, which was the breadth of the tabernacle."

Ezekiel, 43.16, revised version: "And the altar hearth shall be twelve cubits long by twelve broad, square in the four sides thereof."

METHODS OF DIVIDING THE CIRLE BY IIAND.

The most ancient figure with graduated divisions of a circle discovered in England, was a quadrant, marked with Roman claracters, which was found on a chimney piece at Helmdon, in Northamptoushire, with the date MO133 (meaning A. D. 1133) marked upon it.

Different methods of dividing a metallic or wooden circle in to degrees and their subdivisons were successtully practiced by the early astronomers, notably by Tycho Brahe* (1546-1601), of Sweden; Johann Heveliust (1611-1687), of Dantzic, in Poland; Dr. Robert Hooke (16351703), while curator of experiments of the Royal Society; Ole Roemer (1644-1710), the Danish astronomer, of whom it is said that he may be considered "the inventor of nearly all our modern iustruments of precision," and many of whose ideas were adopted by astronomers a century later.

In attempting to engrave and divide correctly the circles used for mathematical purposes, all of these early laborers in the fleld of scionce were compelled to depend entirely upon manual skill.

The first notable example of the division of circular ares of which I have found record is the mural arc, of 8 feet radius, which George Graham graduated for the English National Observatory in 1725. The

[^116]manner in which it was accomplished is described substantially as follows (see p. 332, Smith's Optics, 1738):
"Two concentric arcs of radii 96.85 " and 95.8 " respectively were first described by the beam compass. On the inner of these arcs 90° was to be divided into degrees and twelfth parts of a degree, while the same on the outer was to be divided into 96 equal parts, and these again into sisteenth parts. The reason for adopting the latter was that 96 and 16 both being powers of 2 , the divisions will be got at by continual bisec. tion alone, which, in Graham's opinion, who first employed it, is the only accurate method, and would thus serve as a check upon the accu. racy of the divisions of the outer arc. With the same distance on the beam compass as was used to describe the inner arc, laid off from 0°, the point 60° was at once determined.
"With the points 0° and 60° as centers successively, and a distance on the beam compass very nearly bisecting the arc of 60°, two slight marks were made on the arc; the distance between these marks was carefully divided by the hand, aided by a lens, and this gives the point 30°. The chord of 60° laid off from the point 30° gave the point 90°, and the quadrant was now divided into three equal parts. Each of these parts was similarly bisected, and the resulting divisions again trisected, giving 18 parts of 5° each. Each of the quinquesected gave degrees, the twelfth parts of which were were arrived at by bisecting and trisecting as before. The outer are was divided by continual bisection alone, and a table was constructed by which the readings of the one arc could be converted into those of the other. After the dots indicating the required divisions were obtained, either straight strokes, all directed towards the center, were drawn through them by the divid. ing knife, or sometimes small ares were drawn through them by the beam compass having its fixed point somewhere on the line which was a tangent to the quadrantal are at the point where a division was to be marked."

In 1767 John Bird, an English mathematical-instrument maker, graduated a quadrant of 8 feet radius. His method was that of continual bisection, and is described in a pamphlet published by order of the commissioners of longitnde, 1707 , entitled "The Method of Dividing Astronomical Instruments," by John Bird, mathematical-instrument maker in the Strand.

The exact radius which he used was $95 \frac{938}{1000}$ inches. The radius laid off from the point 0° gave the point 60°. This are of 60° was carefully bisected, giving the point 30°, from which the radins, that had remained undisturbed on the original beam compasses, was laid off, giving the point 90°.

The chords of $30^{\circ}, 15^{\circ}, 10^{\circ} 20^{\prime} 4^{\circ} 40^{\prime}$, and $42^{\circ} 40^{\prime}$ were computed and carefully laid off, each on a separate pair of beam compasses. Bird used an exact scale of equal parts, which by the aid of a magnifying glass he was able to read to one one-thousandth of an inch.

Having marked the four points $0^{\circ}, 30^{\circ}, 60^{\circ}$, and 90°, the mode of pro. cedure was as follows: The chord of $15{ }^{\circ}$ laid off backward from 90° gave 75°. From 75° the chord of $10^{\circ} 20^{\prime}$ was laid off forward, giving $85^{\circ} 20^{\prime}$, and from 90° the chord of $4^{\circ} 40^{\prime}$ laid off backward gave the same point.
$85^{\circ} 20^{\prime}=5,120^{\prime}$ or 1,024 chords of 5^{\prime} each, and $1,024=2^{10}$ (2 carried to the tenth power), so that by continual bisections the ares of Σ^{\prime} were accurately marked.

In order to divide the circle beyond the $85^{\circ} 20^{\prime}$ into ares of 5^{\prime} each, an are of 40^{\prime} (or eight 5^{\prime} divisions) was laid off backwards to $84^{\circ} 40^{\prime}$, thus leaving an are of 320^{\prime} or 64 ares of 5^{\prime} each between these two points. These 5^{\prime} ares were laid off by continual bisections. Thus Bird was able to check accurately the original arcs of $15^{\circ}, 30^{\circ}, 60^{\circ}, 75^{\circ}$, and 90°.

ORIGIN OF ITHE DIVIDING ENGINE—CU'TTING ENGINES FOR OLOCK WHEELS.

To the clock-maker, more than any other mechanic, we are indebted for the origin of the dividing engine.
"While the art of clock-making was in its rude state the dividing of a wheel into a number of parts and cutting a way notches of spaces was done by manual operation with a file. This was not only a tedious but a very imperfect way of obtaining a desired result, since the mequal lines in the size and shape of the tools prevented it from transmitting applied force in an equable manner.
"To facilitate the manual operation of cutting wheels by a file the sample platform was invented (described by Father Alexander in his book on clock-making), which was a circular plate of brass from 10 inches to a foot or more in diameter, with as many concentric circles thereon as the usual number of teeth in the wheels and pinions of clockwork required to be divided into corresponding parts of acircle. In the center of this platform was fixed a stem or fast arbor, around which an alidade, ruler, or iudex, with a straight edge pointing to the center, turned freely into any given point of a required circle, by means of which the divisions of any given circle were transferred to a wheel placed on the side stem unler the side index by a marking point. At length a little frame was mounted on the index, which was contrived to direct and confine the file in such a way as to cut the notches of a wheel placed over the index with less deviation from the truth than could be managed by mere manual dexterity. This addition, no doubt, led to the adoption of a circular file, or cutter, and of such other appendages as completed the construction of the simple cutting machine."*

It is asserted in "Ejtrennes Chronometriques" par M. Julian le Roy, "that Dr. Hooke was the first person who contrived, about 1675, such an arrangement as could merit the name of a cutting engine (machine a

[^117]fendre). The (loctor's invention, which, like many of his inventions, has proved to be of permanent and great utility in mechanics, consists of an entire transmutation of the old stationary platform, with its movable appendages, into a movable platform inserted into a strong metallic frame, with stationary and additional appendages; the machine thus converted into an engine or self-acting piece of mechanism consisted of a strong frame; the sliding supporting bars of the platform or plate with a horizontal screw of aljustment for distance from the circular file; the dividing plate with a revolving arbor to receive the wheel to be cut; and the alidade fixed to the great frame in the position of a tangent line to any of the dividing circles and applying its bent and rounded point to the punched marks of division on the circle succes. sively as the plate revolving in the act of cutting the successive teeth of a wheel."

In the year 1716, Henry Sully brought to England from France a cutting engine, made by M. de la Fandriere, which has been mentioned by Julien le Roy and described by Thiout in his "Traite d'Horlogerie."

In $1730, \mathrm{M}$. Tail mard made further improvements in the cutting engine, particu!arly by-introducing a tubed arbor instead of au arbor with a square hole, which had been used before.

After Taillemard, his apprentice Hulot continued to construct engines in a superior way in France, and was succeeded by his son, whose execution was deemed equal to that of his father's.

EARLY DIVIDING BNGINES.

Smeaton, in a paper entitled "The graduation of astronomical instruments," read before the Royal Society at Liondon, November 17, 1785, mentions an engine made in 1741, by Henry Hindley, of York, England, which indented the edge of any circle in such a way that a screw with fifteen threads acting at once would, by means of a micrometer, read off any given number of divisions, so as to answer the purpose of subdividing the circle.

It would appear that this engine was better adapted for cutting toothed wheels for clock-work than for graduating circles with exactness.

The Duc de Chaulnes, in a memoir to the Royal Academy of Science, at Paris, published 1765, referred to the difficulties in obtaining perfection of the screw and notches of tlis rack "so that they be rendered perfectly equal, notwithstanding the unequal density and hardness of different portions of the metal so racked." He calls his method "the explication of the new way of dividing."

It is said that he constructed an engive which he claimed to be his original invention, but unfortunately the want of "a perfect serew with intervals exactly proportioned to the effective radius of his quadrant, was a source of error that posterior contrivances were required to remedy."

Ramsden's machine for cutting the screws of his dividing engine accurately (which will be referred to below), reduced these errors to a minimum.

JESSE RAMSDEN's DIVIDING ENGINES.

Jesse Ramsden was the son of an innkeeper, and was born near Halifax, in Yorkshire, in 1735. While at school in his native county his fondness for mathematics was observed. Although he served as an apprentice to a cloth maker in Halifax for some time, yet at the age of twenty-four he had become skillful in making mathematical and philosophical instruments, and his success was so great that he was soon able to open an extensive establishment in London.

It is stated that Ramsden first had his attention called to the subject of dividing engines in 1760 , by the reward which was offered by the English board of longitude to John Bird for his method of dividing.

Ramsden was doubtless acquainted with what Hooke, the Duc de Chaulues, Hindley, and others had previously done, and before the spring of 1768 he completed his first engine, having in 1760 constructed a very superior sextant.

This first engine had an indented plate 30 inches in diameter, and was used to divide theodolites and other common instruments, and did so with sufficient accuracy, but it was not satisfactory to Mr. Ramsden, who, in 1774-75, constructed the engine, with a plate 45 inches in diameter, which is now in the U. S. National Museum. (See Plate I, from a recent photograph.)

This dividing engine, together with the cutting gear with which the screws of this machine was made, were sold by the heirs of Ramsden to Messrs. Knox and Shain, of Philadelphia, Pennsylvania, from whom Prof. Henry Morton, president of the Stevens Institute of Technology, Hoboken, New Jersey, purchased them about 10 years ago. Dr. Morton has recently deposited these machines in the U. S. National Museum.

The test of this, Ramsden's second engine, which divided a sextant for Mr. Bird's examination accurately, was so satisfactory "that the board of longitude, ever ready to remunerate any successful endeavor, and to promote the lunar method of determining longitude at sea," conferred a handsome reward on the inventor on condition that the engine should be at the service of instrument makers, and that Mr. Ramsden would publish an explanation of his method of making and using it. This he did in a quarto pamphlet in 1777 , the preface to which was prepared by Nevil Maskeline, astronomer royal, dated/Greenwich, November 28,1776 . In the following extract from it the reasons for publishing the pamphlet are given:
"Mr. Ramsden, mathematical instrument maker in Piccadilly, was paid the sum of $£ 615$, by certificate from the commissioners of longitude, upon delivering to them, upon oath, a full and complete written explana-

Ramsden Dividing Engine.
Deposited in the Nathon Mnsemm ly me. Hemy Morton. (From photoraph.)

Ramsden Dividing Engine.
(From orjginml lilhgraph in Ramsidens pulblioation.)
tion and description of his engine for dividing mathematical instruments (accompanied with proper drawings) and of the manuer of using the same, and also of the engine by which the endless screw, being a principal part of the said dividing engine, was made, and upon agreeing and entering into artieles with them for assigning over the right and property of the said engine to them for the use of the public, and engaging himself to give to the said commissioners and such other persons, being mathematical instrument makers, not exceeding ten, as shall be appointed by them luring the space of 2 years, from the 28th of October, 1775, to the 28th of October, 1777 , such instruction and information with regard to tho making and using of the said engine, as may be fully sufficient to enable any intelligent workman to construct and use other engines of the same kind, and also binding himself to divide all octants and sextants by the said engine which shall be brought to him by any mathematical instrument makers for that purpose at the rate of 3 shillings for each octant and at, the rate of 6 shillings for each brass sextant, with nonius divisions to half minutes, for so long a time as the said commissioners shall think proper to permit the said engine to remain in his possession. Of which sum of $£ 615$ paid to the said Mr . Ramsden, $£ 300$ was given him as a roward for the improvement made by him in the art of dividing instruments by means of the said dividing engine and for discovering the same, and the remaing $£ 315$ in consideration of his making over the property in the said engine to the commissioners of longitude, for the use of the public, and for the other considerations before mentioned.
"In order to render this instrument more extensively useful, the commissioners of longitude ordered the written explanations, with drawings, of the dividing engine to be prepared for publication, and it is now published accordingly."

Plate II is from a lithograph in Ramsden's publication, and illustrates the machine as originally coustructed.

Mr. Ramsden states in his pamphlet that " the teeth on the circum. ference of the wheel were cut by the following method:
"Having considered what number of tecth on the circumference would be, the most convenient, which in this engine is 2,160 , or 360 multiplied by $6, I$ made two screws of the same dimensions of tempered steel, in the manner hereafter described, the interval between the threads being such as I knew by calculation would come within the limits of what might be turned off the circuinference of the wheel. One of these screws, which was intended for ratching or cutting the teeth, was notched across the threads, so that the screw, when pressed against the edge of the wheel aud turned rouvd, cut in the manner of a saw. Then, having a segment of a circle a little greater than 60 degrees, of about the same radius with the wheel, and the circumference made true, from a very fine center, I described an arch near the edge, and set off the chord of 60 degrees on this arch. This segment was put in the place of the
wheel, the edge of it was ratched, and the number of revolutions and parts of the screw contained between the interval of the 60 degrees were counted. The radius was corrected in the proportion of 360 revolutions, which ought to have been in 60 degrees, to the number actually found, and the radius, so corrected, was taken in a pair of beam compasses while the wheel was on the lath, one foot of the compasses was put in the center and with the other a circle was described on the ring; then half the depth of the threads of the screw being taken in dividers was set from this circle outwards and another circle was described, cutting this point; a hollow was then turned on the edge of the wheel of the same curvature as that of the serew at the bottom of the threads; the bottom of this hollow was turned to the same radius or distance from the center of the wheel as the outward of the two circles before mentioned.
"The wheel was now taken off the lathe, the bell-metal piece (D) was screwed on as before directed, which after this ought not to be removed.
"From a very exact center a circle was described on the ring O, about four-tenths of an inch within where the bottom of the teeth would come. This circle was divided with the greatest exactness I was capable of, first into 5 parts and each of these into 3 . These parts were then bisected 4 times, that is to say, supposing the whole circumfer. ence of the wheel to contain 2,160 teeth, this being divided into 3 parts, each of them would contain 144, and this space bisected 4 timess would give 72, 36,18 , and 9 ; therefore each of the last divisions would contain 9 teeth. But, as I was apprehensive some error might arise from quinquesection and trisection, in order to examine the accuracy of the divisions I described another circle on the ring 0 , one-tenth inch within the former, and divided it by continual bisections, as $2,160,1,080,540$, $270,135,07 \frac{1}{2}$, and $33 \frac{3}{4}$; and, as the fixed wire (to be described presently) crossed both the circles, I could examine their agreement at every 135 revolutions (after ratching could examine it at every 333); but not finding any sensible difference between the two sets of divisions, I, for ratching, made choice of the former; and, as the coincidence of the fixed wire with an intersection could be more exactly determined than with a dot or division, I therefore made use of intersections in both circles before described.
"The arms of the frame were comected by a thin piece of brass of three-fourths of an inch broad, having a hole in the middle of four-tenths of an inch in diameter; across this hole a silver wire was fixed exactly in a line to the center of the wheel; the coincidence of this wire with the intersections was examined by a lens seven-tenths inch focus, fixed in a tube which was attached to one of the arms.
"Now a handle or winch being fixed on the end of the screw, the division marked 10 on the circle was set to its index, and, by means of a clamp and adjusting screw for that purpose, the intersection was set exactly to coincide with the fixed wire; the serew was then
carefully pressed against the circumference of the wheel by turning the finger-screw; then, removing the clamp, I turned the screw by its handle 9 revolutions, till the intersection marked 240 came nearly to the wire; then, unturning the finger-screw, I released the screw from the wheel and turned the wheel back till the intersection marked 2 exactly coincided with the wire, and by means of the clamp before mentioned, the division 10 on the circle being set to its index, the screw was pressed against the edge of the wheel by the finger-screw; the clamps were removed, and the screw turned 9 revolutions till the intersection marked 1 nearly coincided with the fixed wire; the screw was pressed, as before, the wheel was turned back till the intersection 3 coincided with the fixed wire; the division 10 on the circle being set to its index, the serew was pressed against the wheel as before, and the screw turned 9 revolutions till the intersection 2 nearly coincided with the fixed wire, and the screw was released; and I proceeded in this manner till the teeth were marked round the whole circumference of the wheel. This was repeated three times round, to make the impression of the screw deeper. I then ratched the wheel round continually in the same direction withont ever disengaging the screw, and in ratching the wheel about 300 times round the teeth were finished.
"Now it is evident, if the circumference of the wheel was even one tooth or ten minutes greater than the screw would require, this error would in the first instance be reduced to one-two-hundred-and-fortieth part of a revolution or two seconds and a half; and these errors or in. equalities of the teeth were equally distributed round the wheel at the distance of 9 teeth from each other. Now, as the screw in ratching had continually' hold of several teeth at the same time, and these constantly changing, the above-mentioned inequalities soon corrected themselves and the teeth were reduced to a perfect equality.
"The piece of brass which carries the wire was now taken away and the cutting screw was also removed and a plain one (hereafter described) put in its place. On one end of the screw is a small brass circle, having itsedge divided into 60 equal parts and numbered at every sixth division, as before mentioned. Un the other end of the screw is a ratchet- wheel having 60 teeth, covered by the hollowed circle, which carries two clicks that catch upon the opposite sides of the ratchet when the serew is to be moved forward.
"The cylinder turus on a strong steel arbor, which passes through and is firmly sorewed to the piece Y. This picce, for greater firmness, is attached to the serew-frame by braces; a spiral groove or thread is cut on the outside of the cylinder, which serves both for holding the string and also giving motion to the lever on its center by means of a steel tooth that works between the threads of the spiral. To the lever is attached a strong steel pin on which a brass socket turns. This socket passes throngh a slit in the piece, and may be tightened in any part of the slit by the finger-nnt. This piece serves to regulate the number of revolutions of the screw for each tread of the treadle.
"Several different arbors of tempered steel are truly gronad into tha socket in the center of the wheel. The upper parts of the arbors that stand above the plane are turned of various sizes, to suit the centers of different pieces of work to be divided.
"When any instrument is to be divided, the center of it is very exactly fitted on one of these arbors, and the instrument is fixed down to the plane of the dividing wheel by means of screws, which fit into holes made in the radii of the wheel for that purpose.
"The instruments being thus fitted on the plane of the wheel, the frame which carries the dividing point is connectedrat one end by finger serews with the frame which carries the endless screw; while the other end embraces that part of the steel arbor which stands above the instrument to be divided by an angular notch in a piece of hardened steel; by this means both ends of the frame are kept perfectly steady and free from any shake.
"The frame carrying the dividing point or tracer is made to slide on the frame which carries the endless screw to any distance from the center of the wheel as the radius of the instrument to be divided may require, and may be there fastened hy tightening two clamps, and the diviling point or tracer being connected with the clamps by the doublejointed frame admits a free and easy motion towards or from the center for cutting the divisions without any lateral shake."

FNGINE BY WHICH THE ENDLESS SOREW OF THE DIVIDING ENGINE WAS OUT.

The machine constructed by Ramsden for cutting the screw, and used to cut the 2,160 teeth in the circumference of the circle of his dividing engine, is of the greatest interest, for it is one of the earliest applications of the principle of changing the lateral speed of the tool in cutting a screw by differential wheels;-the method now used in the slide rest of a lathe.

Plate III is from a photograph of this machine deposited in the U.S. National Museum by Dr. Morton.

It has not been found practicable to letter the various parts of this machine to correspond with those referred to in Ramsden's description.

It is believed however that the reader will find more interest in following the original description in the words of the celebrated mechanician than in reading an explanation of the construction of the machine couched in modern terms.

Ramsden describes his machine thus:
A represents a triangular bar of steel, to which the triangular holes in the piece B and C are accurately fitted, and may be fixed on any part of the bar by the screws D.
E is a piece of steel whereon the screw is intended to be cut, which, after being hardened and tempered, has its pivots turned in the form of two frustrums of cones, as represented in the drawings of the dividing engine (foot-note Fig. 5). These pivots were very exactly

Machine by which the Endless Screw and the Teeth on the Plate of the Ramsden Dividing engine were cut. Deposited in the U. S. National Muscum by Dr. Menry Morton. (From photograph.)
fitted to the half holes F and T, which were kept together by the screws Z.
H represents a screw of untempered steel, having a pivot, I, which runs in the holo K. At the other end of the serew is a hollow center, which receives the hardened conical point of the steel pin M. When this point is sufficiently pressed against the serew to prevent its shaking the steel pin may be fixed by tightening the screws Y.
N is a cylindric nit, movable on the screw H, which, to prevent any shake, may be tightened by the serews (). This nut is connected with the saddle piece P by means of the intermediate universal joint W, through which the arbor of the screw H passes. A front view of this piece, with a section across the serew arbor is represented at X. This joint is conmected with the nut by means of two steel slips, S, which turn on pins between the cheeks I ' on the nut N. The other ends of these slips, S , tum in like manner on pins (a). One axis of this joint turns in a hole in the cock (b), which is fixed to the saddle piece, and the other turns in a hole, (d), made for that purpose in the same piece on which the cock (b) is fixed. By this means, when the serew is turned round, the saddle piece will slide uniformly along the triangular bar A.

Having measired the circumference of the dividing wheel, I found it would require a surew about one thread in a handred coarser than the guide serew H. The wheels on the guide screw arbor H, and that on the steel B, on which the screw was to be cat, were proportioned to each other to produce that effect by giving the wheel (L) 198 teeth and the whee (Q) 200 . These wheels communicated with each other by means of the intermediate cogwheel h, which also served to give the threads on the two screws the same direction.
K is a small triangular bar of well-tempered steel, which slites in a groove of the same form on the saddle piece P. The point of this var or cutter is formed to the shape of the thread intended to be cut on the endless screw. When the eutter is set to take proper hold of the intended screw it may be fixed by tightening the serows (e), which press the two pieces of brass, G, upon it.

The saddle piece P is confined on the bar A by means of the pieces (g), and may be made to slide witha proper degree of rightness by the screws (n).

RAMSDEN GRADUATES 'IUE (XREAT THEODOLITENOW AT GRHENWIOH.
In 1785 Mr . Ramsden was requested "to make an instrument for measuring horizontal angles with more precision than the ordinary theodolite." It was with this dividing engine that Ramsilen graduated this instrument known as "the great theodolite," still preserved at Greenwich, for the trigonometrical survey of Great Britain, deseribed in Vol. 80, Philosophical Transactions.

One of the first projects of the trigonometrical survey of Great Britain H. Mis. 120--47
was to measure the exact linear distance between the observatory at Greenwich and the observatory at Paris, which was satisfactorily accomplished under the direction of General Roy.

In Jantary, 1788 , Jesse Ramsden, who had twice before undertaken the task of constructing an astronomical circle, began the one which he completed August, 1789.

His death occurred in 1800, at, which time he was a member of the Royal Society, Fellow of the Imperial Academy of St. Petersburg, and wore a Copley medal.

THE DIVIDING JNGINES OF TROUGH'ION, SIMS AND OTILERS.
Eighteen years after the completion of Ransien's engine (1793), Edward Troughton completed a circular dividing engine, somewhat similar in detail, with a plate smaller than Ramsden's. And in 1843, William Sims, Troughton's successor, completed his engine, which has for nearly 50 years been in constant use at Oharlton, near London.

Sims claimed that the merit of this engine consisted in making the axis of the plate a hollow tube into which the axis of the circle to be divided could be slipped, not making it necessary to detach the plate while it was being graduated, and obviating the necessity of re-setting the circle on the axle, which is always liable to ereate error.

Reichenbach, in Germany, and Gambey, in Paris, and Adie, in Edinburgh, also constructed dividing engines of merit. Reichenbach's was for a long time unsurpassed in accuracy, Gambey's is now at Hotel Cluny, Paris.

The German method which admits of great accuracy under skillful management, is performed by copying from a large circle, originally divided with extreme precision; over this circle the copy to be made is fixed concentrically; the degrees and minntes are cut into the copy by the aid of the micrometer microseope fixed independently over the divided circle.

In 1818, Repsold erected a circle at Göttengen and in 1819 Reichen. bach evected one at Königsberg. Pistor and Martins of Berlin, constructed circles for Copenhagen, Albany, Leyden, Leipsic, Berlin, Washington Naval Observatory, and Dublin. Since the death of Martins, Repsold constructed circles for Strasburg, Bonn, Williamstown, Massachusetts, and Madison, Wisconsin; Troughton and Sims doing the work for Greenwich, Harvard, and Cambridge.

The Altazimuth, 8 feet in diameter, now (1890) at Palermo Observatory, was divided by hand by Ramselen

In 1806, Troughton constructed the first modern circle for the observa. tory at Blacklieath.

In the Philosophical Iransactions, for 1809, in a paper by Troughton on dividing instruments, p. 140, he states:
"I now subjoin a re-statement of the greatest errors of each of the
instruments that are brought into comparison by Sir George Shuckburg, after having reduced them all by one rule, viz:
"Allowing each of the two points which bound the most erroneous extent to divide tho apparent error equally between them.
"They are expressed in parts of an inch and follow each other in the order of their accuracy.
Sir George Shackburg's 5 -feet standard . 000105
General Roy's scate of 42 -inch standard. 000240
Sir George's equatorial, 94 -inch standard. 000273
The Greenwich quadrant, S feet standard . $00046 \overline{0}$
Mr. Aubert's standard, 5-feet standard. .000700
The Royal Society's standard,* 92 -inch standard. 000795
"For the justness of the above statement I consider my name pledged."
I an informed by recent travellers in Ohina and Japan that the circles for astronomical and other instruments are still divided by hand, unaided by machinery.

The dividing engine at the Coast Survey, Washington, made by Troughton, was made antomatic by Joseph Saxton about 1855; it was re-constructed about 10 years ago by Fauth \& Oo., of Washington, who have at their establishment a dividing engine for which they claim great accuracy.

Thus have the mechanicians for a century kept pace with the de. mands for aceurate instruments.

[^118]
A MEMOIR OF ELIAS LOOMIS.*

By II. A. Newton.

The President and Fellows of Yale College have requested that in this public place and manner, I should give an account of the life, scientific activity, and public services of our late colleague, Prof. Elias Loomis. It is a pleasure to perform the duty thas laid upon me. The hours of intercourse I have had with him, and his generous contidences, are precious treasures of my life. And I hope you will find it worth your while to have turned away from other thoughts for a single hour, to listen to the account of what, during near threo score years of mature life, our colleague was doing for science, and through science for man.

Elias Loomis was born in the little hamlet of Willington, Connecticut, August 7, 1811. His father, the Rev. Hubbell Loomis, was pastor in that country parish from 180.4 to 1828 . He was a man possessed of considerable scholarship, of positive convictions, and of a willingness to follow at all hazards wherever truth and duty, as he conceived them, might lead. He had studied at Union College, in the class of 1799, though apparently he did not finish the college course with his class. He is enrolled with that class in Union College, and he also received, in 1812, the honorary degree of Master of Arts from Yale Oollege. At a later date he went to Illinois, and there was instrumental in founding the institution which aftorwards became Shurtleff College.

Although the boy inherited from his father a mathematical taste, yet his love for the languages also was shown at a very early age. At an age at which many bright boys are still struggling with the reading of Euglish, he is reported to have been reading with ease the New Testament in the original Greek. He prepared for college almost entirely under the instruction of his father. He was, for a single winter only, at the Acalemy at Monson, Massachusetts. Owing in part to feeble health he was more disposed, in those early years, to keep to his books than to roam with other boys over the Willington hills. In later life

[^119]he frequently said that in his early days he never had a thought of asking what subjects he was most foud of, but studied what he was told to study.

At the age of 14 he was examined and was admitted to Yale College, but owing to feeble health he waited another year before actually entering a class. In college ho appears to have been about equally proficient in all of the studies, taking a good rank as a scholar, and maintaining it through his college course. President Porter remembers well the retiring demeanor of the young student, and his concise and often monosyllabic expressions, peculiarities which he retained through life. During his junior and senior years he roomed with Alfred L. Perkins, whose bequest was the first large endowment of the college library. He graduated in 1830.

A few weeks before graduation he left New Haven and entered a school, Mount Hope Institute, near Baltimore, to teach mathematics, and he remained there for a yearand a term. One of his classmates, the late Mr. Oone of Hartforl, said that Mr. Leomis had intended to spend his life in teaching, and that it surprised him when he heard that his purpose was abandoned, and that Mr. Loomis had gone, in the aritmont of 1831, to the Andover theological seminary with the distinct expectation of becoming a preacher. This new purpose was however again changed, when a year later, he was appointed tutor in Yale College. A vacancy in the tutorship in the May following (1833), and while not yet 22 years of age be returned to New Haven and entered upon the duties of the office. Here he remained for 3 years and ove term. In the spring of 1836 he reccived the appointment to the chair of mathematics and natural philosophy in Western Reserve Oollege, at Hudson, Ohio. He was allowed to spend the first year in Emrope. He was therefore during the larger part of the ycar 1836-'37 in Paris attending the lectures of Biot, Poisson, Arago, Dulong, Ponillet, and others. He did not visit Germany becanse of want of money. A long series of letters written by him at this time appeared in the Ohio Observer, and the contrast between England and France as he saw them, and the same places as seen by the tourist to day is decidedly interesting.

He purchased in London and Paris apparatus for his professorship and the outfit for a small observatory, and in the autumu of 1837 began his labors at Eudson. Here he remained for 7 years, maintaining with unflagging perseverance both his work in teaching and his scientific labors. In judging of this work at Hudson we must remember that he was not with perfect surroundings. He was without an assistant and without the counsel and encouragement of associates in his own branches of science. The financial troubles which culminated in this country in 1837 were peculiarly severe upon the young and struggling college. Money was almost unknown in business eircles in Ohio, trade being almost ontirely in barter. In this way principally was paid so much of the promised salary of $\$ 000$ per annum as was not in arrears. In one
of his letters he congratulates himself that all of his bills that were more than 2 years old had been paid. In another he says that there was not enough money in the college treasury to take him out of the state. When he left Hudson thecollege offered to pay at once the arrears of his stalary by deading to him some of its unimproved lands.

In 1844 he was offered, and he atecepted, the offlee of professor of mathematies and natural philosophy in the miversity of New York. In this new position he madertook the preparation of a series of text books in the mathematies, and for some years a large part of the time which he could spare from his regular college work was given to the preparation of these books.

When Professor Henry resigned his professorship at Princeton in order to aceept the office of Secretary of the Smithsonian Institution Professor Loomis was offered the vacant chair. He went to Princeton and remained there during 1 year, at the end of which he was induced to return again to his old place in the university of New York. Here he continued until 1860, when he was clected to the professorship in Yale Oollege made vacant by the death of Professor Olmsted. For the last 29 years of his life he here labored for the college and for science, parsing away on the 15 th of August, 1880.
Let us look now in succession at the different lines of his activity during these 56 years,- 4 here in the tutorship and in Lurope, 7 at Hudson, Ohio, 16 in New York City and Pinceton, and 29 in New Haven.

For the first year on returning from Andover to New Haven he was tutor in Latin, althongh it seems that he might, had he chosen it, have been tutor of mathematies. I believe that at the beginning his mind was not yet definitely turned toward the exact sciences. In his childhood he had taken specially to Greek. In college he was equally proficient in all of his studies. He is represented to have led his chass at Andover in Hebrew, and now on entering the tutorship he chose to teach the Latin language and literature. During the second year he taught mathematies and the third year natural philosophy. His later success in seientific work was, I believe, in no small measure due to his earlier broad and thorongh stuly of langnage.

I have made some inquiry in order to learn what it was that turned his attention and tastes toward sciene. One of his colleagnes in the tutorship, the Rev. Dr. Davenport, says that he recollects very dis. tinetly the first indication to his own mind that Tutor Lonmis was turning his thoughts in this direction. The great meteoric shower of 1833 came early in the period of his tutorship, and the views of Professor Twining and Professor Olmsted about the astronomical character and origin of these interesting and mysterions bodies were a common topic of conversation among scientific men in the college, especially whenever Professor Olmsted was present. The tutors were acenstomed to meet as a club from time to time in the tintors rooms in tum, and Dr. Davenport well recollects the oceasion when Tutor Loomis brought in
a globe and discussed before the elub the new theories about these bodies. Ul to this time Tutor Loomis had seemed to him to have given his thonghts and study to language rather than to science.

In Jannary, 1834, there were constituted in the Connecticnt Academy of Arts and Sciences twelve committees representing the several dopartments of knowledge, and Tutor Loomis was put on the committee on mathematies and natural philosophy. These are the only sigus of scientific taste or activity which 1 have detected earlier than the antumn of 1834, after he had been a year and a term in the tutorship. From this time on to the end of his life he gave his time and energies to several subjects that are enough distinct one from the other to make it convenient to disregard a strictly ehronological account of his labors and consider his work in each subject by itself.

A subject of which he early mulertook the investigation was terrestrial magnetism. We often use the rhetorical phrase "True as the needle to the pole," but looked at carefinly, the magnetic needle is anything but constant in direction. Like the weather vane on the stepple it is ever in motion, swinging lack and forth, in motions minute and slow it is true, but still always swinging. It has fitfully irregular motions; it has motions with a daily period; motions with an amual period; and motions whose oscillations require centuries for completion.

The daily motions of the magnetie needle were those which Tutor Loomis first stadied. At the beginning of the second year of his tutorship he set up by the north window of his room in North College a heavy wooden block, and on it the variation compass that belongs to the college. Here for over thirteen months he observel the position of the needle at hourly intervals in the daytime, his observations usually being for seventeen successive hours of each day.

The results of these observations, together with a special discussion of the extraom $\begin{gathered}\text { inary cases of disturbance, were published in the Amer. }\end{gathered}$ ican Journal of Science in 1836. No similar observations of the kind made in this country had at that time been published. So far as I am aware, none made before 1834 have since been published, except ten days' observations mate by Professor Bache in 1832. In fact I know of only one or two like series of homly observations made in Europe earlier than these by Tutor Loomis. He also at this time formed the purpose of collecting all the observations of magnetic declination that had been hitherto made in the United States and of constructing from them a magnetic chart of the country. Ho appealed successfully to the Oonnecticnt Acadeny of Arts and Sciences for its sympathy and aid. The work of collecting facts was so far advanced before leaving New Haven that when he had been a few months professor at Hudson he forwarded to the American Toumal of science a discussion of the observations thms far obtained, and with thrm a map of the United States, with the lines of equal deviation of the needle drawn upon it. 'Two
years later he published additional observations and a revised edition of this map.

These were the first published magnetic charts of the United States, and though the materials for their construction were not numerous, and in many cases those obtainable were not entirely trustworthy, yet 16 fears later, when a map was made by the United States Coast Survey from later and more numerous data, Professor Bache declared that between his own new map and that of Professor Loomis, when proper allowance had been made for the secular changes, the "agreement ous remarkable."

The northern end of a perfectly balanced magnetic needle turns downward, and the angle it makes with the horizon is called the magnetic dip. This angle is an important one, and is observed with aceuracy only by using an expensive instrument, and taking musual pains in observing. Hence only a few observations of this clement were found by Professor Loomis. From these however he ventured to put on his first magnetic map a few lines that exhibited the amount of the dip.

While he was in Europe hi purchased a first-class dipping needle for Western Reserve College, and at IIndson and the neighborhood in term time, and at other places in vacation, he made observations with this needle. Some of these observations were made before his second mag. netic chart was published, and upon this map were now given tolerably good positions of the lines of equal magnetic dip. But he continued his observations for several jears, determining the dip at over seventy stations, spread over thirteen States, each determination being the mean of from 160 to over 4,000 readings. These observations were published in several successive papers in the transactions of the American Philosophical Society at Philadelphia.

Various papers on terrestrial maguetism, in continuation of his earlier investigations, appeared in 1842, in 1844, in 1847, and in 1859, but movements in Germany, England, and Russia had meanwhilo been inangurated, which led to the establishment by governments of a seore of well-equipped magnetic observatories, and this subject passed largely ont of private hands.

Closely connected with terrestrial magnetism, and to be considered with it, is the aurora borealis. In the week that covered the end of August and the beginning of September, 1859, there occurred an exceedingly brilliant display of the northern lights. Believing that an exhaustive discussion of a single aurora promised to do more for the promotion of science than an imper fect study of an indefinite number of them, Professor Loomis undertook at once to collect and to collate acconnts of this display. A large number of such accounts were secured from North America, from Europe, from Asia, and from places in the Southern Hemisphere; especially all the reports from the Smithsonian observers and correspondents were placed in his hands by the secretary, Professor Henry.

These observations and the discussions of them were given to the public during the following 2 years in a series of nine papers in the American Journal of Science.

Few (if any) displays on record were so remarkable as was this one for brilliancy and for geographieal extent. Certainly about no aurora have there been collected so many facts. The display continned for a week. The luminous region entirely encireled the north pole of the earth. It extended on this continent on the $2 l$ of September as far south as Cuba and to an unknown distance to the north. In altitude the bases of the columns of light were about 50 miles above the carth's surface, and the streamers shot up at times to a height of 500 miles. Thus over a broad bett on both continents this large region above the lower atmosphere was flled with masses of luminons material. A display similar to this, and possibly of equal brilliancy, was at the same time witnessed in the Southern Homisphere.

The nine papers were mainly devoted to the statements of observers. Professor Loomis however went on to collect facts about other auroras; and to make inductions from the whole of the material thus brought together. He showed that there was good reason for believing that not only was this display represented by a corresponding one in the Sonthern Eemisphere, but that all remarkable displays in either hemisphere are accompanied by eorresponding ones in the other.

He showed also that all the principal phenomena of electricity were developed during the auroral display of 1859 ; that light was developed in passing from one conductor to another, that heat in poor conductors, that the pecular electric shock to the animal system, the excitement of magnetism in irons, the deflection of the magnetic needle, the decomposition of chemical solutions, each and all were produced during the auroral storm, and evidently by its agency. There were also in America effects upon the telegiaph that were entirely consistent with the assumption previously made by Walker for England, that currents of olectricity moved from northeast to sonthwest across the country. From the observations of the motion of anroral beams, he slowed that they also moved from north-northeast to sonth-southeast, there being thus a general correspondence in motion between the electrical currents and the motion of the beans.

When there is a special magnetic disturbance at any place, there is usually a similar one at all other neighboring places. But these dis. turbances do not occur at the several places at the same instant of time. Professor Loomis showed that in the United States they take place in succession as we go from northeast to southeast, the velocity of the wave of disturbance being over 100 miles per minnte. The waves of magnetic irregularities were thas connected with the electrical current and with the drifting motions of the streamers in the auroral display.

As incident to this discussion, he collected all arailable observations of auroras, and he deduced from them the anmual number of auroras
visible at each place of observation. These numbers, when written upon a chart of the Northeru Hemisphere, showed that antoras were by no means equally distributed over the earth's surface. It was found that the region in which they oceurred most frequently was a belt or zone of moderate breadth and of oval form, inclosing the North Pole of the earth, and also the North Magnetic Pole. It was therefore much farther south in the Western Homisphere than in the Eastern. Along the central line of this belt there are more than eighty anroras annually, but on going either north or south from the central line of that belt the number diminishes.

In 1870, Professor Loomis published a paper of importance relating to terrestrial magnetism, in which he showed its comection and that of the aurora with spots on the sun. That the spots on the sun liad periods of maximum and minimum development had long been known. Lamont had noticed a periodicity in the magnetic diurnal variations. Sabine and Wolf and Ganthier had noticed that the two periodicities were allied. The connection of the period of solar spots with conjunction and opposition of eertain planets had been shown by De La Rue and Stewart. Professor Loomis undertook an exhanstive examination of the facts that tended to confirm or refute the propositions that had been advanced. He confirmed and added to the conchasions of Messrs. De La Rue and Stewart. He also brought together stich facts as were relevant to the question, and he showed that the regular dinnal variation of the magnetic needle was entirely independent of the solar spots, but that those disturbances that were excessivesin amonnt were almost exactly proportional to the spotted surface of the sum. He also showed that great disturbances of the earth's magnetism are accompanied by unusual disturbances on the sun's surface on the very day of the storm.

Varlous forms of periodicity in the aurora havo frequently been sug. gested. Professor Loomis, from all available accounts of the aurora, was able to show that while in the center of the zone of greatest auroral frequency auroras might be visible nearly every night, and hence that periodicity could not easily be shown by means of numbers of auroras recorded in such places, yet that such periodicity was distinctly traceable at places where the average number seen was abou't twenty or twenty-five a year. The times of maxima and minima of the solar spots were seen to correspond in a remarkable manner with the maxima and minima in the frequeney of auroml displays in these middle latitudes. Also from the daily observations made by Messrs. Herrick and Bradley at New Daven during 17 years, he concluded that auroral displays in the middle latitudes of America are generally accompanied by an unusual disturbance of the sun's surface on the very day of the antom. The magnetism of the earth, the aurora borealis, and the spots on the sun, have thus all three a casual comection, and apparently that connection is closely related to the conjunctions and oppositions of certain planets.

Sbortly after the publication of this memoir, Professor Lovering published his extensive catalogue of auroras. A further discussion of the periodicity of the auroras was undertaken by Professor Loomis and published in 1873. In this he made use of all the aturoras recorded in Professor Lovering's catalogue. They conftrmed his previous conclasions, only slight modifications being required by the new facts presented, and by their more systematic collation.

In these papers, as in most of his papers upon other subjects, Professor Loomis was ever intent upon answering the questions: What are the laws of nature? What do the phenomena teach us? To estabish laws which had been already formulated by others, but which still needed confirmation, was to him equally important with the formnlation and proof of laws entirely new.

Let us now turn to another important line of Professor Loomis's work-astronomy. As I have said, he was early interested in the shooting stars. In October, 1834, he rad a paper before the Connecticut Academy of Arts and Sciences upon this subject, probably in substance that which was shortly afterward published in the American Journal of Science. The published paper is principally a re-statement of the observations made in Germany in 1823, by Brandes in concert with his pupils for determining the paths of the stars through the atmosphere, together with mothods of computation. From the results of Brandes's observations, however, he deduces an argument for the cosmic character of the shooting stars. One month aftor reading this paper to the Connecticut Acadeny he engaged in similar concerted observations with Professor 'fwining, who was then residing near West Point, New York. These were only moderately successful, but they were the first observations of the kind undertaken in Anierica.

During the senior year of his college course there arrived at New Haven the 5 inch telescope, given to the college by Mr. Sheldon Olark, constructed by Dolland. This instrument was much larger than any telescope then in the country. It was temporarily placed in the Atheneum tower, where it was mounted on castors and wheeled to the windows for use. This temporary abode it ocenpied however for over 30 years. In spite of its miserable location it was, in the decade following its installment, a power in the development of the study of astronomy in the college. The lives and works of Barnard, and Loomis, and Mason, and Herrick, and Lyman, and Ohauvenet, and Habbard, and of other graduates of the college prove this. What rich returus for Mr. Sheldon Clark's $\$ 1,200$ investment!

In 1835, the return of Halley's comet had been predicted, and its appearance was eagerly expected by astronomers and the public; Professor Olmsted and Tutor Loomis flrst in this country eanght sight of the stranger, and throughout its course they noted its physical appearauces. With such means as he had at command, Mr. Loomis observed the body's place, and computed from his observations the orbit.

The latitude and longitude of an observatory are constants to be early determined. These were measured by President Day for Yale College in 1811. In the summer of 1835, Tutor Loomis, with such instruments as the college possessed, a sextant and a small portable transit, made numerous observations of Polaris for latitude, and several moon culminations for longítude. From these he computed the latitude and longitude of the Atheneum tower. The longitude from Greenwieh, though obtained from a small number of observations, differs less than 2 seconds of time from our best determinations to day:

While in Europe in 1836-37, Professor Loomis, as I have said, bought for Western Reserve College the instruments for an observatory. These were a 4 -inch equatorial, a transit instrument, and an astronomical clock. Ou his return he erected, in 1837 , a small observatory at Hudson, and in September, 1838, begran to use the instruments. He had no assistant, and by day had a full allotment of college work. Two hundred and sixty moon culminations and sixteen ocentations observed for longitude, sixty-nine culminations of Polaris for latitude, along with observations on five comets sufficiently extended for a computation of their orbits; these attested his activity outside of his required duties. Some years later, when the corresponding European observations were made publie, he prepared an elaborate discassion of these longitude observations, and published in it Gould's Astronomical Journal. A sixth comet was observed by him at Hudson in 1850.

It may not seem a very large output of work in six years' time to have determined the location of the observatory, and to have observed five comets. But we must recollect that the telegraph had not then been invented, that the exact determination of the longitude of a single point, in the western country had a ${ }^{\text {a }}$ higher value then than it can have now, and that it could be obtained only by slow and tedious methods. These were moreover days of small things in astronomy in this comitry. At Yale College we had a telescope but not an observatory. At Williams. town an observatory hal been constructed, but it was used for instrue. tion, not for original work. At Washington Lieutenant Gilliss, and at Dorehester Mr. Bond, were commissioned ly the Government in 1838 to observe moon culminations in correspondence with the observers in the Wilkes exploring expedition for determining their longitude. These two prospective sets of observations, both of them under Government auspices and pay, were the only signs of systematic astronomical activity in the United States ontside of Audson, when in 1838 Professor Loomis began his observing there. In his inangural address he asks: "Where now is our American observatory? Where throughout this rich and powerful nation do you find a single spot where astronomical observations are regularly and systematically made? There is no such spot." When he left Hudson in 1844, the situation was not largely changed. Mr. Bond had removed his instruments and work to Cam. bridge. The Bigh School Observatory at Philadelphia had been erected
and Messrs. Walker and Kendall were using its instruments. Profes. sor Bartlett had built the observatory at West Point, and had begun to observe there. Lientenant Gilliss after years of excellent work in the little establishment on Capitol Hill had just finished the present Naval Observatory building at Washington, Professor Mitchell had begun to build the Cincinnati Observatory, and the Georgetown obser. vatory building had been erected. Professor Loomis's work at Hudson should be measured by what others were doing at the time, rather than by the larger performance of to day.

In the summer of 184 f , the year in which Professor Loomis came to New York, a new method in astronomy had its first beginnings. The telegraph line had just been built between Baltimore and Washington, and Captain Wilkes at Baltimore compared his chronometer by telegraph with one at Washington, and so determined the difference of longitude of the two places.

Professor Bach was now Superintendent of the Coast Survey, and he determined at ouce to use the new method for the purposes of the survey. To Mr. Sears C. Walker was committed the direction of the work, but scarcely less important were the services of Professor Loomis, who for three campaigus had charge of the end of the lines in Jersey City and New York. Their first partially successful efforts were made in 1846, but the practical difficulties were overcome and entire success was obtained by them in 1847 and 1848. In these years the differences of longitude of Washington, Philadelphia, New York, and Cambridge were thus determined with an accuracy fir greater than any previous similar determination whatsoever.

The next summer, that of 1849 , Professor Loomis assisted in a like work to connect Hudson, Ohio, with the easterii stations. His observations of moon culminations at Hualson were thas available equally with those made at Philadelphia, Washington, Dorchester, and Cambridge for determining the absolute longitudes of Atlantic stations from Greenwich. It was not until 1852, that Europeon astronomers began to use these telegraphic methods in measuring longitudes.

In 1850, l'rofessor Loomis published a volume on the "Recent prog. ress of astronomy, especially in the United States." A first and a second edition was soon exhansted, and in 1856 , the volume was entirely re.written and very much enlarged. Some of the topics in these volumes were the suljects of articles communicated from time to time to the public in the American Journal of Science, Harper's Magazine and other periodicals. Another important contribution to astronomy appeared in 1865, that is, his "Introduction to practical astronomy'" Eminent astronomers in England and America have expressed in the highest terms their praise of this book. Though it is now 35 years since its first appearance, and many treatises on the same subject, some elaborate and some elementary, have since been published, yet for an introduction to practical work I believe that a student will find this volume better than any other for his uses at the beginuing of his course.

The increase of our knowledge in astronony was, from first to last, all object of special interest to Professor Loomis. Before he left New York, the income from his text books enabled him to make to Yale College the generous offer of coming to New Haven and working in an observatory at his own charges, provided a suitable observatory should be constructed and equipped for him. Unfortunately, the college was not able, although it was greatly desirous of doing it, to avail itself of his genecous offer. Near the same time he joined with publie spirited eitizens of New York in an effort to establish an astronomical observatory in or near that eity, and for that purpose an act of incorporation was obtained from the New York State legislature. After eoming to New Haven, he always took the warmest interest in the plans of Mr. Winchester for the establishment of an observatory in connection with Yale University. His comsel and assistance have been instrmmental, more than the public conld know, in producing and preserving whatever of value has been developed in that observatory.

The science of meteorology has however been that in which Professor Loomis has made the most important contributions to human knowledge.

Shortly after his graluation in 1830, and before he entered upon the tutorship, there appeared the first of a long series of papers by Mr . Redfield, of New York Oity, upon the theory of storms. In the last year of his tutorship there appeared also the first of a like remarkable series of papers on the same subject by Prolessor Espy, of Philadelphia. Two rival theories were advocated by these two men, and these theories became the subject of no little discussion in scientifie meetings, and in scientific jourmals, for a long period of years. Professor Loomis had, from their very ineeption, taken a warm interest in these discussions, and the subject of meteorology, and in particular its central problem the theory of stoms, held in his thought and work the first place from that time to the day of his death.

In his visit to Durope (the year before he went to Hndson), he parchased a set of meteorologieal instruments, and for several years in Hudson he steadily performed the naturally irksome task of making twice each day a complete set of meteorological observations. A few weeks after he entered upon his professorship in Hudson a tormado passed 5 miles from that place, and he went ont inmediately to exam. ine the track and leam what facts he could that should bear upon the theory of the tornado. The results were valuable, but he was not alto. gether satisfied with them. They led him however to madertake the discussion of one of the large storms that covered the whole United States.

For this purpose he selected the storm whieh hat oecurred near the 20th of December, 1836. Sir John Herschel had recommended that hourly observations be taken by all meteorological observers on four term days in the vear, that is, observations for thirty-six successive
hours at each equinox and each solstice. This storm fell partly upon one of these term days. Professor Loomis set to work to collect all the meteorological observations made during the week of the storm that he could obtain from all parts of the United States, and from some stations in Canada. The discussion resulting therefrom was read in March, 1840, before the American Philosophical Society at Philadelphia.

Let us for a little while consider the amonnt of knowledge of the facts about storms in our possession in 1840, the date when this memoir was read and an abstract of it published in Philadelphia. Franklin had noted the motion of storms from sonthwest to northeast. He said :* "Our northeast storms in North America begin first in point of time in the southwest parts, that is to say, the air in Georgia, the farthest of ouir colonies to the southwest, begins to move sonthwesterly before the air of Oarolina, which is the next colony northeastward; the air of Oarolina has the same motion before the air of Virginia, which lies still more northeastward; and so on northeasterly through Pennsylvania, New York, New England, etc., quite to Newfomidnad." Redfield had traced several storms along the West India Islands northwesterly until about in the latitude of 30° their course was turned quite abruptly and they swept off northeasterly along the Allantic coast toward and even past Newfoundland. Espy found some storms moving easterly or south of east from the Mississippi to the Atlantic.

Brandes had amounced as a law that the wind in storms blows inward toward a center, but his law was an induction from a small number of observations. Dove had contended for a whirling motion. Redfield advanced facts to show that the winds blew in corcles anticlock wise around a center that advanced in the direction of the preva. lent winds, and with him agreed Reid, Piddington, and others. Espy, agreeing with Brandes, claimed that the observations in the various storms showed a centripetal motion of the winds toward a ce.ter if the region covered by the stom was round, and toward a central line if the storm region was longer in one direction than in another. Espy's conclusions were intimately connected with his theory that in the center of the storm there was an upward motion of the air, and that the condensation of vapor into rain furnished the energy needed for the continuation of the storm. The rival theories of Redlled and Espy were in sharp contest on several points, but the main contention was around this central question: Do the winds blow in circular whirls or do they blow in toward a center? New York State was collecting observations from the academies. The Auerican Plilosophical Society and the Franklin Institute, aided by an appropriation from the State of Pennsylvania, had united in an effort to learn the facts and the true theory of storms.

Under such circumstances the thorough discussion of a single violent storm was likely to add materially to our knowledge. The treatment

[^120]of this storm by Professor Loomis was probably more complete than that of any previous one, and the methods which he employed were better fitted to elicit the truth than any earlier methods. But the storm was a very large one, extending from the Gulf of Mexico to an unknown distance north, and having its center apparently to the north of all the observers. The results which he was able to secure did not sustain either of the two rival theories, but rather tended to prove some features in each of them. Prol'essor Loomis was not himself' satisfied with them, and he therefore wated for another storm that should be better fitted for examination.

In the month of Febmary, 1842, a second tormado passed over northeastern Ohio, and Professor Loomis with one of his colleagues again started ont for the examination of the track. The torimado passed over a piece of woods, and hence the positions of the prostrate trees showed clearly the motion of the wind in the passing tornado and threw mone light upon the character of this kind of storm. But the tornado was a single feature of a large storm that covered the whole conntry, and a second storm of great intensity was also experienced in the same month.

The diseussion of these two storms was now undertaken by him. The paper giving the results of that diseussion was sent to Professor Bache and read by him at the centennial meeting of the American Philosophieal Society in May, 1843, and created, as Professor Bache wrote, a great sensation. It was at the time important for the light which it threw upon the rival eontonding theories of Espy and of Redfield, but it was more important by far by reason of the new method of investigation then for the first time employed.

In the paper upon the storm of 1836, Professor Loomis hat made some advance upon previous methods of representing the facts about storms. But even the method he then used was entirely untitted to give answers to the questions which meteorologists were asking. Some of those questions were stated in circulans issued by the joint committee of the American Philosophical Society and the lranklin Institute: What are the phases of the great storms of rain and snow that traverse our continent; what their shape and size; in what direetion and with what velocity do their centers move along the surface of the earth; are they round or oblong or irregular in shape; do they move in different directions in different seasons of the year?

The graphic representation by Professor Luomis on the map of the United States of the storin of $\mathbf{1 8 3 6}$, had been a series of lines drawn joining the places where at a given hom tho barometer was at its low. est point. That line would, so far as the barometer was concened, mark for that hour the central line of the storm. The progress of the line from hour to hour on the map showed, quite imperfectly, how the storm had traveled. Some arrows added showed to the eje also certain facts abont the movements of the air.
H. Mis. $129-48$

Professor Espy adopted-and thereafter adbered to-a modification of this method of representing stom phenomena, and I think meteorologists will agree with me in my opinion that Professor Dspy's four reports from 1842 to 1854 , though they contained an immense accumulation of facts, were because of this radical defect of presentation almost useless to meteorological science.

In the discussion of the storms of 1842 , instead of the line of minimum depression of the barometer, Professor Loomis drew on the map a series of lines of equal barometric pressure, or rather of equal deviations from the normal average pressure for each place. A series of maps rep. resenting the storm at successive intervals of twelve hours were thas constructed, upon each of which was drawn a line through all places where the barometer stood at its normal or arerage height. A second line was drawn through all phaces where the barometer stoorl 0.2 of an inch below the normal, and other lines through points where the barometer was 0.4 below, 0.6 below, 0.8 below, etc.; also lines were drawn through those points where the barometer stood $0.2,0.4,0.6$, etc., above its normal height. The deviations of the barometric pressure from the normal were thus made prominent, and all other phenomena of the storm were regarded as related to those barometric lines. A series of colors represented respectively the places where the sky was clear, where the sky was overcast, and where rain or snow was falling. A series of lines represented the places at which the temperature was at the normal, or was 10 or 20 or 30 degrees above the normal, or below the normal. Arrows of profer direction and length represented the direction and the intensity of the winds at the different stations. These successive maps for the three or four days of the storm furnished to the eye all its plienomena in a simple and most effective manner.

You have no doubt, most of you, already recognized in this reseription the charts, which to day are so common, issued by the United States Sigual Service, and by weather-service bureans in other eountries. The method seems so natural, that it shonld ocen to any person who has the subject of a stom under consideration. Sut the greatest inventions are oft-times the simplest, and I am inclined to believe that the introduction of this single method of representing and discussing the phenomena of a storm was the greatest of the services which our colleague rendered to seience. This methorl is at the foundation of what is sometimes called "the new meteorology", and the paper which contains its first presentation stands forth, I am convinced, as the most important paper in the history of that seience. I regret that I can not aid my memory by quoting the exact worts, but I remember distinctly what seemed to me an almost despairing expression made many years ago by one who had high responsibility in the matter of meteorological work, as he looked out upon the confused mass of observations already made, and felt unable to say in what direction progress was to be expected. With this I contiast the bnoyant expressions of another officer
charged with like responsibility, as he showed me, one or two decades later (in 1869), charts constructed like those of ${ }^{-}$Professor Loomis, and said, "I care not for the mass of observations made in the usual form. What I want is the power and tbe material for making such charts as these." These two expressions of Sir George Airy and of LeVernier mark the progress and the direction of progress in meteorology developed by Professor Loomis's memoir.

What was his own judgment of the method at the time of its publication and its value in meteorology can be seen from his words at the close of the memoir, which I beg permission to quote:
"It appears to me that if the course of investigations adopted with respect to the two storms of February, 1842, was systematically pursued we should soon have some settled principles in meteorology. If we could be furnished with two meteorological charts of the United States daily for one year, charts showing the state of the barometer, thermometer, winds, sky, etc., for every part of the country it would settle forever the laws of storms. No false theory could stand against such an array of testimony. Such a set of maps would be worth more than all which has been hitherto done in meteorology. Moreover the subject would be well-nigh exhausted. But one year's observation wonld be needed. The storms of one year are probably but a repetition of those of the preceding. Instead then of the guerrilla warfare, which has been maintained for centuries with indifferent success, althongh at the expense of great self.devotion on the part of individual chiefs, is it not timo to embark in a general meteorological crusade? A well-arranged system of observations spread over the country would accomplish more in one year than observations at a few isolated posts, however accurate and complete, continued to the end of time. The United States are favorably situated for such an enterprise. Observations spread over a smaller territory would be inalequate, as they would not show the extent of any large storm. If we take a survey of the entire globe we shall search in vain for more than one equal area which could be occupied by the same number of trusty observers. In Europe there is opportunity for a like organization, but with this incumbrance, that it most needs embrace several nations of different languages and governments. The United States then afford decidedly the most hopeful field fu: such an enterprise. Shall we liesitate to embark in it; or shall wo. ope timidly along as in former years? There are but few questions of science which can be prosecuted in this country to the same advantage as in Europe. Here is one where the advantage is in our favor. Wonld it not be wise to devote our main strength to the reduction of this fortress? We need observers spread over the entire conntry at distances from each other not more than 50 miles. This would require five or six hundred observers for the United States. About half this number of registers are now kept in one shape or another, and the nmmber by suitable efforts might probably be doubled. Supervision is needed to in-
troduce uniformity throughout and to render some of the registers more complete. Is not such an enterprise worthy of the American Philosophical Society? The General Government has for more than 20 years done something and has lately manifested a disposition to do more for this object. If private zeal could be more gencrally enlisted the war might soon be ended and men would cease to ridicule the idea of our being able to predict an approaching storm."

This plan of a systematic meteorological campaign was cordially seconded by-Professors Bache and Peirce. At a somewhat later date the American Academy of Sciences, of Boston, appointed a committee, of which Professor Loomis was chairman, to urge upon the proper authorities the execution of the plan. The American Philosophical Societs, of Philadelphia, united its voice with that of the Academy. About this time Professor Henry was made Secretary of the Smithsonian Institution. He determined to make American meteorology one of the leading subjects of investigation to be aided by the Institution. At Professor Henry's request, Professor Loomis prepared a report upon the meteorology of the United States, in which he showed what ad. vantages society might expect from the study of the phenomena of storms; what had been done in this country towarl making the necos. sary observations and toward deducing from them general laws; and finally, what encouragement there was to a further prosecution of the same researches. He then presented in detail a practicable plan for securing the hoped for advantages injtheir fullest extent.

This plan looked to a mifying of all the work done by existing observers, a systematic supervision, a supplementing of it by new ob. servers at needed points, a securing of the coöperation of the British Government and the Hudson's Bay Oompany in the regions to the north of us, and finally a thorough disenssion of the observations collected. A siege of 3 years was contomplated. In the history of the several steps that finally led to the establishment of the United States Signal Service this report has an important place.

The scheme laid down by Professor Loomis was in part followed out by the Institution, but the fragmentary character of the observations, the want of systematic distribution of the places of the observers, and the imperfections of the barometers made the material collected difficult of discussion. Professor Loomis waited in hopes of some better system.

In 1854, Professor Loomis undertook a re-discussion of the storm of 1836, using the new methods introduced for treating the storms of 1842. A visit to Europe shortly after enabled fim to collect a large number of observations upon a storm or series of storms that ocenred in Europe abont a week later than that American storm. He had long been anxious to connect, if possible, these two storms, as he satid, "stepping across the Atlantic." The Emopean and the American storms how. ever not only proved to be distinct one from the other, but the discussion showed clearly that many of the laws of American storms were
radically different from those of the European storms. The results of the whole discussion were published in 1850, by the Smithsonian Institution.

Upon coming to New Haven, in 1860, he commenced the collection of all the meteorological observations that had been made in New Haven and the immediate vicinity, and succeeded in finding sets which, when brought together, made up a nearly continuous record through 86 years. The results of these observations formed the subject of a memoir published by the Oonnecticut Academy of Arts and Sciences in 1866.

It became part of his duties in college to deliver a course of lectures upon the subject of meteorology. In preparation for these he caused to be printed in very limited numbers the outlines of a treatise upon meteorology, to be used as the basis of his series of lectures. In 1868 he developed this outline into a treatise suited to use in college classes and in private study. This treatise, notwithstanding the rapid advances of the science during more than 20 years, is still indispensable to the student of meteorology.

The better system of observing for which Professor Loomis had been long waiting came when the United States Signal Service was established in 1871. The daily maps of the weather published by the Burean were constructed essentially after the plan which Professor Loomis had, 30 years before, invented for the treatment of the storms of 1842. As soon as these maps had been published for the two years 1872 and 1873, Professor Loomis commenced in earnest to deduce from them the lessons which they taught us respecting the nature and the phenomena of United States storms. To this investigation he gave nearly all his energies during the remaining 15 years of his life.

For several years he employed and paid for the services of assistants whose time was given to the preparation of material for use in his studies. The aggregate cost of this assistance was of itself a very large contribution to science. Beginning in April, 1874, he presented regularly at eighteen successive meetings of the National Aeademy of Sciences in April and in October of each year, a paper entitled "Contributions to Meteorology." These were at first based upon the publications of the Sigual Service alone, but as years weut by, like publications appeared in Europe that were useful for his work. These papers were published in July and Jannary following the Aeademy meeting, and they regularly formed the first and leading article in eighteen successive volumes of the American Journal of Science, Gradually one after another of his college duties were committed to others that he might give his whole strength to these investigations.

An attack of malaria interrupted the regularity of the series. His advancing years and diminishing strength warned him that the end of his investigations could not be far distant. The number of hours in which he could work each day was slowly diminishing. Five more papers followed at somewhat less regular intervals.

In 1884, he began a revision of the whole series of papers. They had been presented without much regard to systematic order in the subjects investigated, and new material had accumnlated from time to time, so that a thorongh, systematic revison seemed absolutely necessary.

In 1885, he presented to the Academy of Scieuces the first chapter of this revision, in which he discussed the areas of low pressure-their form, their size, their motions, and the phenomena attending them. Two years later, in 1887, the second chapter of the revision appeared, in which he discussed the areas of high pressure, their form, maguitude, direction, and velocity of movement, and their relation to areas of low pressure. Gradually his physical strength was failing, though his mind was as bright and clear as ever. To this work, the only work which he was now doing, he was able to give 2 or 3 hours a day. Anxiously he husbanded his strength, slowly and painfully preparing the diagrams and the table for the third chapter upon rain areas, the phenomena of rain-fall in its connection with areas of low pressure, and the varied phenomena of unusual rainfall. "I see," he said to a friend, " not the end of this subject, but where I must stop. I hope I shall have strength to finish this work, and then I shall be ready to die."

This third and finishing chapter was finally passed through the printer's hands, and some advance copies distributed to correspondents abroad in the summer months of 1889 . His work upon the theory of storms he felt was finished. As lie paid the bill of the printer, he said to him: "When I return at the close of the vacation I expeet to put into your hands for printing a new edition of the Loomis Genealogy." Before the close of the vacation he died.

These three chapters of his revised edition of "Contributions to Meteorology," constitute the full and ripe fruitage of his work in his favorite science. They will for a long time to come be the basis of facts by which writers in theoretical meteorology must test their formulas. They cover all the important points taken up in the twenty three earlier memoirs with one important exception,-the relation of monutain observations to those made on the plains below. The laws connecting these two are not yet clearly indicated; much remains to be learned about them, and they are of the utmost importance in theoretical meteorology. He felt most deeply the backward steps taken by the United States Signal Service when monntain observations and the publication of the International Bulletin were discontinued. "The National Academy of Sciences," he said, "ought at once to take up the subject and use all its influence to seeure the restoration of these two services.

Professor hoomis at varions times studied certain other questions in physics and astronomy that were more or less allied with the subjects to which he gave the principal part of his time, and he pablished the results of his studies. He mate a series of experiments on currents of electricity generated by a plate of zine buried in the earth. He examined the electrical phenomena in certain housos in

New York; the curions phenomena of optical moving figures; the vibrations sent out from waterfalls as the water flows over certain dams; the orbits of the satellites of Uranus; the temperature of the planets; the variations of light of the stars? Argus and Algol; and the comet of 1861.

The subject of fanily genculogy has a peculiar fascination to many minds. It would be an interesting study to determine practically by a collection of facts what are the elements in a man's character which lead him to engage in this pecniar study. Certain it is that men of most diverse disposition are led into it. I should not have thought it likely that Professor Loomis would have taken up the subject very serionsly. Others have expressed to me the same thought, and he himself says that he did not think it strange that others should be surprised at his devoting so much time to this subject, for he was surprised at it himself. He became interested in the subject early in life, and that interest remained unbroken to his last lays. For nearly forty years betore his first publication he collected from time time to materials for a list of the descendants of his aincestor, Joseph Loonis, who came from Braintree, England, in the year 1638, and settled in Windsor, Connecticut, in 1630 . In each oi his four visits to Europe he extended his inquiries to lis ancestor's earlier history in Lingland. The materials thas collected were put in type in 1870. He published a list containing 4,340 descendants of Joseph Loomis bearing the Loomis name. He regarded it as entirely provisional, printed to help himself in making further researches, and to excite interest in others of the name, who would thus be led to give additional information, or correction of errors.

Finding that to a dimited extentonly conld he hope by correspondence to gain the information lesired, he now undertook in his vacations to canvass the conntry by personal visits. He collected lists of names from every available source, from catalogues of every deseription, from eity directories, comnty directories, county maps, and county tax lists, and he compiled from these somrces lists of all the Loomis names he could find. Arranging these names by connties, he undertook to visit each family personally. In this way he made a pretty thorough eanvass of every part of New England and New York State, of nearly every part of New Jersey and Pennsylvania, of the northern part of Ohio, and of some of the western cities.

After five years of these researches he published the second edition of the "Loomis (xenealogy," in which were given 8,686 names of persons that bore the Loomis name, descendants of Joseph Loomis in the male branchos.

Five year later, in 1880, Professor Loomis printed in two additional volnmes a provisional list of 19,000 descembants of Joseph Loomis in the lemale bmaches. Large as was this list, he did not regard it as more than a listst ontline of a census of the descendants of the original
emigrant, and he hoped in the near future to publish an additional volume. For this he has left in mannscript many corrections and large additions that will be of use to the future Loomis genealogist.

Am I tarrying too long upon the vacation work of Professor Loomis? If so, I plead on this oceasien that mong these direct descendants of Joseph Loomis there wero enrolled more than two himdred graduates of Yale, College, and nearly one hundred more of ont graduates have married members of this numerous famils.

Professor Loomis was doubtless more widely known as the anthor of mathematical text-books than as a worker in new fields in seience. Shortly after coming to New York, he prepared a text-book in algebra. The market was ready for a good book of this kind, and the work prepared for it was a good one. It was followed the next year by a Geom. etry. This was an attempt, and if julged by its reception and sale it was a successfal attempt, to combine in a school book the rigid demonstrations of Enelid with the courses of thonght in Legendre and in modern science. The task is one of peenlian difficulty, as the oxistence and activities of the Duglish Society for the Improvement of Geometric Toaching now for near twenty yearsillustrates. Other books followed the Geometry from year to year, the whole forming a eonnected series from arithmetie upward, so that the list of his works finally numbered near twenty volmmes. His experience in teaching, his rare skill in language, his elear conception of what was important, and his umwearied painstaking, combined to produce text-books which met the wants of teachers. About 000,000 volumes have been sold, benefiting the schools and colleges, and bringing to the author a liberal and well-merited pecmiary retum.

We ought not to omit-on this academic occasion-to speak of the teacher. Uollege graluates who have been under his instruetion will probably retain a more positive impression of the personal traits and the charater of Professor Loomis than of most of their other teathers. His crisp sentonces, lucill thonght, exactness of language, and steadiness of requirement, more than made up for any apparent coldness and real reserve. These characteristies of his riper vears were peculiar to him from the begmning of his life as a teacher. Daring his tutorship he was thought to be strict as a disciplinarian, and this may have unfavorably affected his influence with somo members of the elass of 1837, of which he was tutor. It was not so with all of them. Some of you will recall what was said by a member of that class as he came to commencoment a few yours since, occupying at the time tho highost offee which a lawyer in the line of his profession ean in this conntry secure: "If I have been successfal in life," said Ohief.Justice Waite, "I owe that success to the influence of Prutor Loomis more than to any other canse whatever."

There was in Professor Lonmis so much of reserve, that to many porsons he seemed cold and withont interest in tho lives of others. But
this was mainly due to appearances only. The tear wonld at times come unbiden to his eye. His corresponlenee with his class-mates in the years immediately following graduation shows warm interest in all that concerned them. From Hudson he wrote often to Mr. Herrick, and eomplained much of isolation, but more especially of isolation from seientitic companions and books.

In 1840, he married Miss Julia E. Upson, of Talmadge, Olio, a lady about whom those who knew her have spoken to me only in terms of praise, and for whose memory Professor Loomis cherished a tender reverence. She died in 18j4, leaving two sons. From this time Professor Loomis lived in apartments, sumotnded by his books and devoted to his studios. His sons, after passing their school and college days, went to their own fields of work. During many years of his New Haven life he was unable to receive visitors in the evoning. He made very few new friends, and one after another of his old ones passed away. 'To his work he was able to give undivided bis time and lis strengtl. His mind did not seem to require the excitement of social intercourse for its full and healthful activity. Isolated though he was there was in him no trace whatever of selfish or imrobid feeling. In council his advice was always marked by his clear judgment of what was important, and at the same time what was practicable. Whatever lie himself had the right to decide was promptly deeided by a yes or no, and few persons cared to question the finality of his decision. But when his eolleagues, or others, had the right to decide he aceepted their decision withont questioning or subsequent murmur. Upon being told that his letters to Mr. Herrick had eome to the college library, and that hé could, if he chose, examine them and see whether there were among them any which he would prefer not to leavo in this quasi public place, he promptly replied: "No, I never wrote a letter which I should be ashamed to see published."

After coming to New York he had a generous income from his books, besides his salary as professor. The amount he saved from his income was carefully and prodently invested, and before his death the savings with their acomulations were a large estate; how large only he and his banker knew.

One of his eollege class mates told the that Mr. Loomis left college with the definitely expressed purpose that the world should be better for his living in it. The central moposition in his inangural address at Hudson in $18: 38$ was: "That it is essential to the best interests of society that there shonld be a certain class of men devoted exelusively to the cultivation of abstract science withont any regard to its practical applications; and consequently that such men instead of being thought a deal weight upon society, are to be maked among the greatest benefactors of their race." He chose this for his prineipal work for man, and he steadily kept to the chosen work. To establish an astronomical observatory had been through life a cherished object. He entered
into and aided heartily the plans of Mr. Winchester, both before and after Mr. Winchester asked his trustees to transfer his magniticent endowment to the university. Professor Loomis looked forward to a large institution in the future on the observatory site. To endow this public service, after making liberal provision for his two sons, he bequeathed his estate. The income from more than $\$ 300,000$ will eventually be available to continue the work of his life. With clear judgment of what was most important he limited the use of that income to the payment of salaries of persons whose time should be exclusively devoted to the making of observations for the promotion of the seience of as. tronomy, or to the reduction of astronomital observations, and to defraying the expenses of publication. He knew that if he provided observers, other benefactors would furnish buildings and instruments, and the costs of supervision and maintenance.

A university has an organic life, with its past and its future. The wealth of a university consists mainly in its men; not so much in those men who are its active members now, as in those who have lived themselves into its life in the past, and have made it a home of scholarship, of truth, and of devotion to duty; a place fit for the development of the nobler elements of character. The life and work of Elias Loomis form no mean portion of the wealth of Yale University.

publications of blias loomis.

1. On shootilig sturs. Am. Jomr. April, 1835. (1), vol. xxvin, pp. 95-104.
2. Hallog's comet (Olmsted and Loomis). Now Llavon Daily Herald, Soptember 1, Soptember 4, Soptember 28, and December 31, 1835.
3. Halley's comet (Olmsted aml Lomins). Am. Jonl. Outober, 18:35. (1), vol. Xxix, pp. $155,156$.
4. Observations on the comet of Halley, made nt Yalo Collegra. Am. Jonr, Jnly, 1830. (1), vol. $x \times x$, pp. 200-221.
5. Observations on the variation of the magnetie needle, made at Yalo College in 1834 and 1835. Am. Jonr. July, 1836. (1), vol. XXX, plp. W21-233. (Sturgeon's Ann. Electr., vol. 2, 11]. :70-282.)
6. Letters from Europe. (Thirty-six lotters.) Ohio Observer (1837).
7. Meteorie shower of Novomber 13. Cloveland Observer, Novomber, 1833.
8. Hourly meteorological observations for tho Decombor solstice of 1837, mado at Western Resorve College. Cleveland Observer, December 2is, $18: 37$.
9. Honrly meteorologieal observations for tho vermal rquinox of lizis, made at Wertarn Reserve Collego. Oleveland Observor, Marel, 18:38.
10. Observatons on a harrieane which passod ovor Stow, in Ohio, October 20, 1837. Ant, Jour. Jannury, 1838. (1), vol, xxxin, p1, 368-376.
11. Splondid meteor (May 18, 1838). Cleveland Olbserver, May 22, 1838.
12. Hourly meteorological obsorvations for the shmmer solstice of 1838, mado at Western Roservo Colloge. Clevoland Observer, J. 1 one 1 si38.
13. On the variation mul dip of the magnetie needle in milferent parts of the United Statos. Am, Jour. July, 1833. (1), vol. xxxiv, pp. P90-30!. (With n map.)
14. On the latitude nad longitude of Yale College observatory. Ain. Jonr. July, 1838. (1), vol. xxxiv, ll, 309-313.
15. Meteors of Angist !. Ulevoland Ohserver, Angust 11, 18:3.

16. Hourly meteorological observations for the autumual equinox of 1838 , made at Western Reservo College. Cleveland Ohserver, September, 18:38. (Professor Loomis also observed on the term days in December, 1838, and in March and June, 1839.)
17. On the meteor of May 18, 1838, and on shooting stars in general. Am. Jour., Jannaty, 1839. (1), vol. 11, f11. 22:3-233.
18. Meteorologien! table and register. Am. Johr., April, 1839: (1), vol. Xxxvi, pp. 163-165.
19. Observations to determine the magnetic dip at varions places in Ohio and Michi. gan. In a letter to Sears C. Walker, esq. Real Jine, 18:30. Am. Pbil. Soc. 'Trans., vol. 7, pp. 1-if. (Am. Phil Soc. Proc., vol, i, p. 116; Ant. Jonr. (1), vol. xxxviil, p. 397.)
20. Astronomical observations mude at Hadson Observatory, latitude $41^{\circ} 14^{\prime} 42^{\prime \prime} .6$ north, longitude $5^{\text {li }} 25^{\prime \prime \prime} 44^{\circ}$. 15 west, with some acconnt of the bildiug and instrumouts. (Latitude of observators; moon enlminations; ocenltations.) Read October, 1839. Am. Phil. Soc. 'Traus., vol. Vil, pp. 43-51. (Am, Phil. Soc. Proc., vol. I, pp. 120, 130.)
21. Additional observation of tho magnetic dip h the United States. Read October, 1839. Am. Phil. Soc. 'Praus., vol. Vu, pp. 101-111. (Au. Phil. Soc. Proc., vol. I, pp. 144-145.)
22. On the storm which was experienced throughont the Unifed States abont the 20th of December, 1836. Read March, 18:10. Am. Phil. Soc. 'Trans., vol. Vir, pp. 125-163. (With three phates.) (Am. Phil. Soc. Proc., vol. 1, pp. 190-192; Am. Jour. (1), vol. XL, 111. 34-37.)
23. Meteorologicnl sketches. (Eight papors.) Ohio Oluserver, 1840.
24. On the variation and dip of the magnetic needle in the United States. Am. Jomr., July, 1840: (1), vol. xxxix, pp. 41-50. (With a map.)
25. Observations to determine tho magnotic intensity at varions places in the United States, with some additional observations of the magnetic dip. Read Novem. ber, 1s40. Am. Plill. Soc. 'Irans., vol. Vili, pl. 61-7i. (Am. Phil. Suc. Proc., vol. 11, pp. 308-310.)
26. On the magnotic dip in the Unitod States. Am. Jonr., January, 1841 : (1), vol. Xi.. p1. 85-92. (Sturgeon's Ann. Eloctr., vol. vis, pp. 156-162.)
27. Meteorological observations mado at IIndson, Ohio, latitude $41^{\circ} 14^{\prime} 42^{\prime \prime} .6$ north, longitnde $5^{h} 255^{\mathrm{m}} 44^{\mathrm{A}}$. 15 west, charligg the years $18: 3 \mathrm{~N}, 1830$, and 1840. (Barometer; thermometer and liygrometer ; winds; rain.) Am.Jonr., October, 1841 : (1), vol. xLI, pl. 310-330.
28. Astronomical observations mule at Ifulson Obsorvatory, Iatitude $41^{\circ} 14^{\prime} 42^{\prime \prime}$. 0 north, lungitude $5^{11} 25^{\prime \prime \prime} 44^{8} .15$ west. (Latitude of observatory; moon culminations; occulfations; comet, 1840, II ; orbit of comet.) Road April, 1841. Am. Phil, Soc. 'Trans., vol. Viif, pp, 141-154.
29. On the dip and variation of tho magnetic needle in the United Stater. Am. Jour. April, 1842: (1), vol. xinin, pl. 93-116.
30. Encke's comet. Ohio Observer, April, 1842.
31. On a tormado which passed over Mayfield, Olio, Febrinary 4, 1542, with some notices of othor tomndoes. Am. Jomr., April, 184: : (1), vol. xumi, pp. 278-300. (With a map.)
32. Supplomentary obsorvatione on the storm which was oxperionced thronghont tho United States abont the 20th of December, 1836. Read May, 1842. Am. Phil. Suc. T'rans., vol. vili, pp. 305, 306.
33. Obsorvations on the magnetic dip in tho United States. Real May, 1842. Am. Phil. Soc. Trans., vol, vili, pp. 28i-304. (Am. Plil. Soc. Proc., vol. if, pp. 170178.)
34. Iceburgs in the Atlantic. Ohio Ohsorver, July 184. .
35. The comet. (Five papers, with orbit.) Ohio Ohserver, Mareh, 1843.
36. On two storms whioh were experienced thronghout thu United States in the month of Yobruary, 1842. Read May, 1843. Aill. Plil. Soc. 'Traus, vol. ix, pip. 161-184. (With 13 maps.) (Am. Phil. Soc. Proc., vol. II1, pp. iot-fil.)
37. On vibrating dams. Am. Jonr., October, 1813: (1), vol. xty, pu, 363-377. (Cuyahoga Falls; East Windsor; Springfield; Northampton; Gardiner ; Hartford.)
38. Meteorological journal kept at Western Reserve College. (Forty-seven papers.) March, 1840, to January, 1844. Ohio Ohserver.
39. Molern astronomy. New Englander, Jannary, 1844, vol. if, pp, 3-18.
40. Comparison of Ganss's theory of terrestrial magnetism with observation. Am. Jonr., October, 1844: (1), vol. xhvis, p1. 278-281.
41. Astronomicnl observations mado nt Hudson Observatory, latitude $41^{\circ} 14^{\prime \prime} 48^{\prime \prime} .6$ noith, and longitude $5^{11} 25{ }^{\prime \prime \prime} 44^{8} .15$ west.. Third series. Read November, 1844. Am. Phil. Soc. Trans., vol. x, pp. 1-15. (Astron. Nachr., No. 617, Ontober, 1844, vol. xxir, pp. 203-210. Roy. Astr. Soe., Month Notices, December, 1844.) Latitule of observatory; moon culminations; occultations; longitude of observatory ; Encke's comet; conet of 1843; Manvais's comet; Faye's comet.
42. Meteorological observations made at Hulson, Ohio, latitude $41^{\circ} 14^{\prime} 42^{\prime \prime}$. 6 north, longitude $55^{11} 95^{14} 44^{8.15}$ west, during the years $1841,1842,1843$, and 1844 , with π smmmary for 7 years. (Barometer; thermometer and hygrometer; winds; clouds; rain.) Am. Jour., Octover, 1845: (1), vol, xlix, pp. 2(i6-2883. (Astr. Nachr., vol. xxis, pp. 203-210.)
43. Physical constitution of the moon. Sideren Messonger, vol. 1, pp. 20-22. Soptember, 1846. (Am. Jour. (2), vol. if, pp. 432, 433.)
44. A treatise on algelra. 12mo, pp. 346. New York, 1846.

46 On Biela's conet. Am. Jour., November, 1846 : (2), vol. n, pp. 435 -433.
47. The planet Neptune. Am. Review, Augnst, 1847: vol. vi, pp. 145-155,
48. On the determimation of differences of longitude made in the United States by means of the electric telegriph, and on projected observations for investigatIng the laws of the great North American storms. (Letter to LientenantColmel Sabine.) Phil. Mag., Angust, 1847, 311 series, vol. xxxi, pp. 338-340.
49. Notice of some recent additions to onr knowledge of the magnetism of the United States and its vicinity. Am. Jour., Soptomber, 1847: (2), vol. Iv, pp. 192-198.
50. Elements of geometry and conio sections. 8vo, pp. 222. Now York, 1847.
51. Notice of a water-spout. Am. Jour., November, 1547: (2), vol. iv, ple. 362-364.

Fi. Report on the meteorology of the United States, submitted to the Seoretary of the Sinithsonian Instilution. Sen. Doe. No. 23, 30th Congress, first session, pp. 193-207. Orilered printed Jamary, 1848.
63. Historical notice of the discovery of the planet Neptune. Am. Jour., Mareh, 1848: (2), vol. v, pp. 187-205.
54. Note respectinir Halley's comet, Am. Jour., May, 1848 : (2), vol. v, pp. 370-372.
55. The relations of Neptune to Uranus. Am. Jonr., May, 1848: (2), vol, v, pp. 435-437.
56. Elements of plane and spherienl trigonometry, with their applications to monsuration, surveying, and navigation. 8 vo., plp. vi, 148. Now York, 1848.
67. Tables of logarithms of numbers and of lines and tangents for every 10 seconds of the quadrant, with other useful tables. 8vo., pp. xvi, 150. New York, 1848
58. On the determination of the difference of longitude by means of the magnotic tolegraph. Roy. Soc. Proc., vol, v, pp. 787-709. 1849.
59. Experiments on the electricity of a plate of zine huried in the earth. Am. Jour., January, 1850: (2), vol. 1x, pp. 1-11. (Am. Assoc. l'roc., 1849, pp. 196-200.) (Bibl, Univ., Archives, vol, xim, pp. 26i-231.,
60. On the longitnde of Hudson (Ohio) Olservatory. Astron. Jour., Nos. 8 and 9. May, 1850.
61. On the proper height of lightuing rods. Am, Jour. (2), vol. x, pp. 320-321. (Read Angust, 1850.) (Am. Assoc. Proc., 1850, pp. 38-43.)
62. On the electrical phenomena of cortain houses. Am. Jonr. (2), vol, x, pp, 321-32:3. (Read Allgust, 1850.) (Am. Assoc. Proc., 1850, 111. 12-15. Edin. New Plil. Jour., vol. 50, p1, 225-227.)
63. On optical moving figuros. Am. Assoc. Proc., 1850, pp. 292-295.
64. 'Ihe recent progress of astronomy, espechally in the United states. 8vo., 1. 257. New York, 1850.
65. Elements of analytical geometry and of tho difterential and integral calculus. 8 vo., pp. 278. New York, 1851.
66. On Kirkwood's law of the rotation of the primary planets. Am. Jour., Marel, 1851: (2), vol. x1, pp. 217-223.
67. Observations on the first comet of 1850, made nt Ifudson, Ohio. Gunde's Astr. Jour., March, 1851, vol. I, pp. 179, 180.
68. On the apparent motion of figures of certain colors. Am. Assoc. Proc., 1851, 111. 78-81.
69. On the distribution of rain for the month of Seplember. Am. Assoc. Proc., 1859, p1. 145-149. (Annual Sei. Dise., pp. 389-391, 1852.)
70. The elements of algobia, designed for liegianers. 12mo., 111. 260. New York, 1851.
71. On the satellites of Uranus. Am. Jour., November, 1852 : (2), vol, xiv, pp. 405-4:0.
72. Notice of the hailstorm which passed over New York City on the 1st of July, 1558. Am. Assoc. Proc., 1853, pp. 50-79. (Am. Jour. (2), vol, xvir, pp. 35-55. Anmals of Science, vol. i, pp. 209-215.)
73. Does the moon exert a sensible intluence nuon the elouds A A Assoc. Proc., 185.3, 1p. 80-83.
74. On the measuroment of heights by the barometer. Am. Assoc. Proo., 1853, pl. 169-171.
75. Comparison of the British Association Catalogue of Stars with the Greenwieh 'Iwelve-year Catalogue. Gould's Astron. Jonr., May, 1854, vol. 111, pp, 177-182.
76. On the resistance oxperienced by botios filling through the atmosphere. Am. Jour., July, 1854: (2), vol, 17, pp. 67-70.
77. On the satellites of Uranins. Am. Assoc. Proc., 18in, pp. 5e-55.
78. 'The zone of small planets botweon Mars and Jupitor. (Lecture.) Smithsonian Report, 1854, pl. 137-146. (Harper's New Month. Mag., Fehruary, 1855, vol. x, pp. 343-353.)
79. An introduction to practical astronomy, with a collection of astronomical tables. $8 \mathrm{vo}, \mathrm{p} .497$. New York, 185%.
80. On the temperatime of the planets and on some of the conchasions resulting from this temperatire. Am. Assoc. Proc., 1855, pl. 74-80.
81. On the storm which was experieneed thronghont the United States about the 20 th of December, 1836. Am. Assoc. Proc., 1855, 111. 176-183.
8\%. Astronomical observations in the United States. Harper's New Month. Mag., June, 1856 , vol, xit, pp. 2552.
83. A treatiso on arithmetic, theoretical and practical. 12mo, p. 352. Now York, 1806.
84. The recent progrossin astronomy, especially in the United States. Third celition; mostly re-writton and mach onlarged. 8vo, p. 396. Now York, 1850.
85. On the relative acematy of the difforent methods of dotermining geographieal longitude. Brit. Assoc. Rep., August, 1857: (2), pp. 25, 26.
86. On certain electrical phonomena in the United States. Brit. Assoc. Rep., Angust, 1857, ply. 32-35. (Fogg. Annalen, 1857, vol. c, pp. 599-(0013.)
87. Elements of natural philosophy, designed for academies and high sehools, with three hundred mud sixty illustrations. 12mo, pp, 344. Now York, 1858.
88. On the electrical phenomena observed in certatin honses in New York, Am. Assoc. 1'roe., 1858, pp. 33-38. (Am. Jour. (2), vol, xxvi, pp. 58-62.)
89. On the varieties of the magnotic noedlo at Hutson, Ohio. Am. Jour, Mareh, 1859), (2), vol. Xxviri, pl. 167-169.
90. Ohservations of the magnotic dip in tho United States. Read Angust, 1859. Am. Phil. Soc. 'Trans., vol. x1, ple. 181-186.
91. On certain storms in Europe and America, Decomber, 1836. Smith Cont. (accepted for publication Angust, 1859), vol. xi, pp. 26, and 13 colored charts.
92. The great anroral exhibition of Augusl 28 to Soptember, 1859. Am. Jour. November, 1850 : (2), vol. xxvin, pp. 385-408.
93. On the Enropean storm of Decomber 25, 1836. Am. Assoc. Proc., 18i9. pl. 281233.
94. Notices of the meteor of November 15, 1880. Am. Jonr., Jantary, Mareh, and May, 1860 : (2), vol, xxix, 1p. 137, 138, 298-300, and 447.
95. Tho great auroral exhibition of Augnst 28 to September 4, 1859-second article. Am. Jour., Jantary, 1860: (2), vol. xxix, jp. Q2-97.
16. The great ancoral exhibition of Angust 29 to September 4, 1859 -third article. Am. Jour., February, 1860: (2), vol. xxix, 11. 240-2(i6.
97. The great anroral exhibition of Angust 23 to Sopfember 4, 1859-fourth article. Am. Jour., May, 1860: (2), vol, xxix, pu. 386-399.
98. The great auroral exhlbition of Augnst 28 to September 4,1859 , and the geographical distribution of anroras and thunderstorms-fifth article. Am. Jour., July, 1860: (2), vol. $\mathrm{xxx}, \mathrm{pp} .79-100$.
99. The great anroral exhibition of Angost 28 to September 4, 1850-sixtharticle. (Solected from the Smithsonian papers). Am. Jonl., Novembor, 1860: (2), vol. xxx, pl. 339-361.
100. The great amoral exhibition of Angost 88 to September 4, 1850-seventh articlo. Am. Jour., May, 1861: (2), vol. xxxif, pp. 71-84.
101. The great comet of 1861. Am. Jour., Soptember, 1 s61: (2), vol. xxxit, pp. 252256.
102. On the great anroral exhibition of Angnst 28 to September 4, 1859 , and anroras generally-eighth article. Am. Jour., September, $1861:(2)$, vol. xxxif, pp. 318335.
103. On electrical currents cirenlating near the earth's surface and thoir connection with the phenomena of the anrora-polaris. Ninth artiele. Am. Jour., July, 1862: (2), vol, xxxiv, pp. 34-45. (On the action of electrical currents and the motion of allsoral boanis.)
104. Remarks upon the article of Prof. J. IV. Everett. (On reducing observations of tomperature.) Am. Jomr., Jantiary, 1863: (2), vol. xxxv, pp, 31-34.
10.5. 'Tho elements of arithmetic, desigued for ehildren. $16 \mathrm{mo}, \mathrm{pl} .166$. Now York, 1863.
106. On vilurating waterfalls. Am. Jonr., November, 1863 : (2), vol, xxxvi, pp, 352365. (South Naticle; Holyoke; Lawrence.)
107. A treatise on astronomy. 8vo, pp. 338. Now York, 1865.
108. The atirom borealis or polar light, its phenomena and laws. Smithson Rep., 136\%, pp. 208-24s. (Archives Sci. Phye, Nat., vol. xxxi, pp. 273-285, 1868.) Rewritten and published with illustrations in Marper's New Month. Mag., June, 1869, vol. xxxix, pp. 1-21.
109. On the physical condition of the sun's surface and the motion of the solare spots. Am. Assoc. Proc., 1×60, pl. 1-j.
110. On the period of Algol. Am. Assoc. Proc., 1866, pp. 5-7.
111. Notices of amroms extracted from the moteorological jourmal of Rev. Ezra Stiles, S. 'I. D., formerly president of Yale College, to which are added notices of a few other almoma recorded ly other observers at New Haven, Conn. Trans. Comi. Acad., vol. i, pl. 155-172.
112. On the mean temperature and on the factuations of temperature at New Haven, Conn., latitnde $41^{\circ} 18^{\prime}$ north, longitnde $72^{\circ} 55^{\prime}$ west of Greenwich (E. Loomis aml II. A. Newton). Trans, Conn. Acal., vol. 1, pp. 104-240. (Threo plates.)
113. A treatiso on metcorology, with a collection of meteorological tables. 8vo, pp . 305. Now York, 1 cib8.
114. Shooting stars, dotonating meteors and acolites. Harper's Now Month. Mag., June, 1868, vol. xxxvir, 111. 34-50.
115. A treatiso on algehm, rovised edition. Svo, 1p, 381 . Now York, 1868.
116. Inflience ot the moon upon the weather. Am. Assoc: Proc., 1868, 111. 118-122.
117. On the period of $1 /$ Argus. Roy. Ast. Soc., Month. Not., April, 1869, vol. xxix, 111. 298, 299.
 $145,146$.
119. Meteorology and astronomy, for acatemies and high schools. $1:$ mo. Now York, 1869.
120. Elentents of astronomy, designed for atademios and high sehools. 12mo, lp. 2od. New York, 180\%).
121. 'The descendents of Joseph Laomis, who came from Braintree, England, in the year 1638, and settled in Windsor, Conn., in 1639. 8vo, ple e! 2. New Havon, 1 Sio.
10:. Recent amoral display in the Linited states. An. Jonr., July, $1870:(2)$, vol, L , 111. 1.16, 147.
123. Comparison of the mom daty range of the magnotic deelination, with the namber of amoras observed each year, and the extent of the black spots on tho
 (Archives Sci. Phys. Nat., vol. 40, p1. 30;3-30s.)
124. Recent anroral displays in the United States. Am. Jour., April, 1871: (3), vol. 1, 1. 309.
125. Recent amomal displays in the United States. dm. Jour., May, 1872: (3): vol. 111, 1. 389.
 187\%.
127. Instances of remarkably low temporature observed at New Haven, Comm. Am. Jour., \backslash pril, 1873: (3), vol, v, p1. 23s-239.
128. Comparison of the mean daily range of the magnotie dechation and the number of anrous observed bach year, with the extent of the back spots on tho surface of the sum. Am. Jomi., April, 1:73: (3), vol. v, pp. 243-260. (Palormo, Mem.-Spettr. Ital., vol. 2, pp, 103, 124.)
129. Results derlved from an oxamimation of tho United States woather maps for 1872 ami 1873 . Read in N. A.S., April, 1874. Am. Jomi. (3), vol. vill, llp. 1-15), (With two plates.) (Infleneo of rainfall ypon tho contse of storms; fintle. ence of the wind's velocity mon the progress of storms; relation botween the velueity of the wind and the veloeity of a storm's progress; to detemine whether a storm is inereasing or diminishing in intensity; form of the isobarie curves; chassiftation of storms; where do the storms which seam to come from the far West originate?
130. Elements of the dillerential and integral calenlus, revised edition. 8vo, pp. 309. New York, 18is.
131. Resilts derived from an examination of tho United States weather maps for 1872 and 1873. Read in N. A. S., November, 1874. Am. Jour. (3), vol. IX, pl. 1-14. (With phate.) (Direction athe velocity of the wind within ureas of maximum pressure ; consequences of the outwad how ot air from an aren of high barometer; monthly minimmo of tomperatme; long continmed periods of cold Weather ; storms of Jannay $(5-5,1874$; comnection between the veloelty of the wind and the distance between the isobans in the neighborhood of a storm center.)
132. Results derivol from an examination of the United States weather maps for 1872 , 1873, and 1874 -thiml pajece. Road in N. A.S., April, 1875. Amer. Jomr. (3), vol. x, pp. 1-14. (With phate.) (Directions of storm paths; dimmal inequality in the progress of stoms; inlluence of rainfall upon the conse of stoms; ininfluence of a noighboting area of high barometer upon the progress of a storm; form of the isobatic enrves; weat amd sulden ehanges of temperatime; stom of Jamary 15, 1875, at Denver, (oolo.)
133. Tho descondants of Joseph Loonis, who eano from Braintroe, Enghand, in tho yoar 1635, and settled in Wintsor, Comn., in 1639, socond edition, rovised and enlaged. Svo, pp. 611. New Haven, 1875.
134. Key to troatise on algobm. 12mo, 111. 219. New York, 1875.

135, Contributions to meteorology, behg resnits derived from nin oximination of the United Statos weathor maps and from other sonmes-fourth paper. Remd in N. A. ;s. November, 1875. (With plate.) Am. Junr. (3) vol, xi, pl. 1-17. (Movoment of areas of high barometer; monthly minimn of temperathro; inflaence of winds on the temperature, moisture, and peessure of the atmosphere; dinrmal haequility in tho minfall; compnison of storm paths in Amerion and Enropo; osellations of the barometer in diflement latithes; storms traced neross tho Athatic Ocean; velocity of ocean sturms; storms of Jannary 29 to Febrmury 8, 1870, on the Allantic Ocean; application of Fervell's formmia; stationary storms.)
136. Contributions to meteorologs, beting resnlts dertred from an examination of the observations of the lhited States Sigme Sorviee and from other someces-lifth paper. Road in N. A. S. April, 1876. All. Jour. (3), vol. xh, pp. 1-16. (Vith two plates.) (Low temperatme of December, 1872; form of areas of maximmon und minimmu pressare; relation of mala-fill to variations of barometrie prossure; stationary storms near the coast of Nowfoundand; course num velocity of stomins in tropient regions.)
137. Elements of geometry, conlesections, and plane trigonomotry. Revised edition, with uppenlix. $8 v 0$, pi. 413 . New York, 1876.
138. Contributions to metborology, being results derived from an examination of tho olservations of the United States Signal Service and from othor sombes-sixth paper. Read in N. A.S. Oetoher, 1876, Am. Jour. (3), vol. Xift, pp. 1-1!). (With threo plates.) (Period of masmal heat in Jine, 18ỉ3; min mrens, their form, movements, distribntion, ete, maffill of 2 inches at stations sonfle of lathude 330°; rith-fill of 2 inchere at stations north of latitnde 36°.
139. Contributions to meteorologes, being resills derived from an examination ut the obsorvations of the Uniteal Shates Signal Service mat from othor sombessoventh pmper. Read in N. A. S. April, 1877. Am, Jomr, (3), vol, xiv, pp. 1-2t. (With theo plates.) (Rain aroas, thoir form, dimonsions, movomonts, distribution, efe. ; areas of low pressure withont rath.)
140. Koy to oloments of algobm. Now York, 187%.
141. Contribution to meteorology, being results derived from an examination of tho observations of tho United States Signal Sorvico and from other somede- eighth
 two plates.) ('Tho origin and development of storms; violent winds; barometric gradionit.)
142. Contribintions to moteorology, hong results dorived from an exmintition of the observations of tho United States Signal serviee and from other somedes-ninth paper. Read in N. A.S. April, 18ics. Ambomb. (3), vol. xvi, ple 1-2l. (Wibl threoplates.) (Low bamoter at Jortamd, Oregon; low barometoral San faneisco; atoas of high barometor ; temperature of leoland and Yiemme compareal.) (Tho abovo nine papers woro translated by M. H. Brocatid lito Fronch, and wero puhlished as No. 50 (2) of Motgno's Actunlites Scientiligue, Paris, 1880, with tho titlo Memoires do M6t eorghogio Dymmigue.)
143. A collection ot algebrale probloms and examples for tho nse of eolloges and high sehools in examinations and elass instmalion. 800, pp. 208. New York, 1878.
144. Contributions to motoorology, being rosilas derived from nu oxmminatom of the observations of tho lenitan States Signal Service and trom other somees-tenth paper. Read in N. $\Lambda . S$. Novomber, 1878. Λ m. Jour, (3), vol. s vi, pp. 1-2ら. (With two plates.) (Stoms of the Athatie Oeman; fluothations of the binometor on Mount Washington mad Piko's I'eak; high winds on Monnt Washington; high winds on Pike's Penk.)
145. Contributions to meteorology, being resnlts dorived from an examination of the observations of the United States Signal Service and other sources-eleventh paper. Read in N. A. S. April, 1879, Ami, Jour. (3), vol. xvirl, pp. 1-16. (With two plates.) (The winds on Mount Washington eompared with the, winds near the level of the sea; abnormal storm paths.)
146. Anthony D. Stanley, professor of mathematios. In Yale College, a skotoh of its history, ote., vol. 1, 1p. 254-256. 1879.
147. Comneotient Aoadeny of Arts and Soiences. Ibid., pp. 329-337.
148. Contributions to meteorology, being the rosilts derivod from an oxamination of the observations of the United States Signal Sorvice and from other sourcestwolfth paper. Read in N. A. S. October, 1879. Am. Jour. (3), vol. xix, pp. 89109. (With three plates.) (Mem preesure of the atmosphere over the United States at different seasons of the year; comparison of barometric minima in Europe and Amerioa; barometrio minima advancing with unusual velocity.
149. Contributions to meteorology, being results derived from an examination of the observations of the United States Signal Servioe and from other sources-thirteenth paper. Read in N, A, S. April, 1880. Am. Jour. (3), vol, xx, pp. 1-21. (With two plates.) (Great and sudden ehanges of temperature; barometric minima across the Rooky Mountains; mean montlity range of the barometer.)
150. The descendants (by the female branches) of Joseph Loomie, who came from Braintree, England, in the year 1638 and settled in Windsor, Conn., in 1639. 2 vols., 8vo, pp. 1132. New Haven, 1880.
151. Contributions to meteorology, being results derived from mexamination of the observations of the United States Sigoal Service and from other somrees-fourteenth paper. Read in N. A. S. November, 1880. Am. Jour. (3), vol. xxi, pp. 120. (With three plates.) (Course and velooity of storm conters in tropical regions; Amerion storms advancing in a sontheasterly direction; American storms advancing northerly and oasterly; course of larrioanes originating marar the Bay of Bongal, Chima Son, ete.; rain-fnll in tropical eyclonos; storms in the middle latitudes advancing in a westorly direction; storms advanoing westorly over Europe and the Athantie Ocean.)
152. Contributions to metcorology, heing results derived from an exnmination of the observations of the United States Signal Sorvice and from other somroes-fifteonth paper. Read in N. A. S. April, 1:81. Am. Jour. (3), vol. xxil, pp. 1-18. (With one plate.) (Rednetion to ssa-level of barometric observations made at olovated stations; height of the Sigual Servico stations.)
153. Contributions to metcorology, being results derived from an oxamination of the observations of the United States Signal Serviee and from other sources-sixtomth paper, Read in N. A. S. November, 1881. Am. Jomr. (3), vol. xxm, pp. 125. (With a map.) (Mean ammal rain-fall for difterent countries of the globe; enser of oxcossivo rain-fall; oases of toficient rati-fall.)
154. Contributions to meteorology, being rosults derived from in examination of tho observations of the United States Signal Service and from other sotrees-sovonteonth papor. Rend in N. A. S. April, 1882. Ain. Joir. (3), vol. xxiv, pp. 1-22. (With three plates.) (Rolation of min arens to areas of low pressure.)
155. Contributions to meteorology-oighteonth. Read in N. A. S. November, 1882. Am. Jour. (3), vol, xxy, pl. 1-18. (With a map.) (Memannal rain-fall for difforent comentries of tho globe ; rolation of min areas to arens of low pressure.)
156. Contribution to meteorology-ninoteenth paper. Read in N. A. S. April, 1883. Am. Jour. (3), vol. xxvi, pp. 442-461. (With three plates.) (The barometrio gradient in great storms.)
157. Contributions to metrorology---twentieth papor. Read in N. A. S. April, 1884, Am. Jour. (3), vol, xxvii, ple, 1-17 and 81-93, (With two plates.) (Reduction barometrie observations to sea-level.)
H. M18. 129——49
158. Letter addressed to the Chief of the Burean of Statistios in regard to the prinoipal sources of the ralufall of different sections of the United States. Report on the internal commerce of the Unitod States. Submitted May, 1886. Appendix No. 6, p, 208. Washlugton, February, 1885.
159. Contributions to metoorology-twenty-first papor. Read in N, A. S. April, 1855. Am. Jour. (3), vol, $x \times x, p p, 1-16$. (With a plate.) (Direction and velocity of movement of areas of low pressure.)
1iju. Contributions to metoorology. Nat. Acad. Sol. Mem., vol. 14, part 2, pp. 1-66. (Areas of low pressure, their form, magnitude, direotion, and velocity of movement; also published as Contributions to meteorology, revised edition. 4to, pp. 1-67, plates 1-86. Now Haven, 1885.)
161. Contributions to meteorology-twenty-second paper. Am. Jour, April, 1887 : (3), vol. xxxiri, pp. 247-262. (With a plate.) (Areas of high pressure, their magnitude, und direction of movement; relation of areas of high pressure to areas of low prossure.)
162. Contributions to meteorology. Nat. Acad. Soi, Mem., vol, iv, part 2 pp, 1-77 (with 16 plates). (Areas of of bigh pressure, their form, maguitude, ditection, and velocity of movemont; relation of areas of high pressure to arreas of low pressure; also published as Contributlons to moteorology, ohapter ii, revised odition. 4to, pp. 67-142, plates 17-32. Now Mavon, 1887.
163. Contributions to meteorology-twenty-third paper. Read in N. A. S. Novenibor, 1888. Am. Jour. (3), vol. XXXVII, pp, 243-256. (Relation of rain areas to aroas of high and low pressure.)
164. Contributions to meteorology. Nat. Acad, Soi. Mom,, vol. v, part 1. (Moan annual rain-fall for difierent eountries of the globe; conditions favorable to rain-fall; conditions unfavorable to rainfall; examination of individual cases of rain-fall in the United St:tes, in Enrope, over the Atlantio Ocean; areas of low pressure without rain; also publishod as Contributions to meteorology, ohaptor III, revised edition. 4to, pp. 143-232, plates 33-51. Now Havon, 1889.

A MEMOIR OF WILLIAM KITOHEN PARKER, F. R. S.*

William Kitchen Parker was born at Dogsthorpe, near Peterborough, June 23, 1823, and died suddenly, of syncope of the heart, July 3, 1890. He was visiting his second son, Prof. W. N. Parker, of Oardiff, and whilst eheerfully talking of late discovories and future work in his favorite biological pursuits, ho ceased to broath. Accustomed to outdoor life, he was a true lover of nature from the first; the forms, habits, and songs of birds, especinlly, he knew at an early age. Village sehooling at Dogsthorpe and Werrington, and a short period at Peterborongh Grammar School prepared him for an apprenticeship at 15 years of age to Mr. Woodroffe, chemist and druggist at Stamford; and 3 years afterwards he was apprenticed to Mr. Costal, medical practitioner, at MarketOverton. At Stamford he studied botany oarnestly, and used to persuade a fellow apprentice to leave his bed in early momings to go afield in seareh of plants. Both when living at his father's farm and in his holidays afterwards he kept many pet animals and dissected whatever he could get, inchuding a donkey and many birds. Of the latter he prepared skeletons, and of these he made many large drawings at MarketOverton, which of late years he had some thought of publishing as an atlas of the osteology of birds. In 1844-'46 he studied at King's Oollege, London, and became student-demonstrator to Dr: Todd and Mr. (now Sir William) Bowman there. He also attended at Charing Oross Hospital in 1846 and 1847, and, having qualitied as L. S. A., he commenced practico in 1849 at Tachbrook street, Pimlico, and soon afterwards married Miss Elizabeth Jetfery. Mis wife's patient calmness moder all difficulties and trials was a truo blessing to a man of Mr. Parker's excitable temperament, and her unselfish life and widespread inflnence for good are well known in and beyond the family circle. Unfortunately he was left a widower abont four months ago. Lis family consists of three danghters and fone sons. Of the latter, ono is professor of zoölogy and compantive anatomy in the University of Otago, New Kealand; the second is professor of hiology in the University College at Cardiff; South Wales; the thild is an able draftsman and lithographer, and the fourth has lately taken his diplomas of L. R. 0, p. and m. R. ©. s.

Mr. Parker had a good father, courteous and gentle by nature, conscientions, and earnest in business, who had worked hard to be able to

[^121]give even his youngest son, Mr. W. K. Parker, "a start in life." From his placid and thoughtful mother he probably inherited much of his love of reading and his talent for learning.

Always energetic, in spite of constant ill health, Mr. Parker enthusiastically carried on his medical work and his natural history studies, especially in the microscopic structure of animal and vogetable tissues. Polyzoa and Foraminifera, collected on a visit to Bognor, an' 'rom among sponge sand and Indian sea-shells, especially attracted an atteution. Having sorted, mounted, and drawn numbers of these miorozoa, he was induced, about 1856, by his friends W. Orawford Williamson and 'T. Rupert Jones, to work at the Foraminifera systematically. His paper on the Miliolitide of the Indian Seas (Trans. Micros. Soc., 1858), and a joint paper (with T. R. Jones) on the Foraminifera of the Norwegian coast (Annals $N . H ., 1857$) resulted; and the latter formed the basis of a memoir on the Arctic and North Atlantic Foraminifera (Phil. Trans., 1865). With T. Rupert Jones, and afterwards with W. B. Oarpenter and H. B. Brady, Mr. Parker, down to 1873, described and illus. trated many groups and species of Foraminifera, recent and fossil (see O. D. Sherborn's "Biography of Foraminifera" for these papers and memoirs), thereby establishing more accurately a-natural classification of these microzoa, determining their bathymetrical conditions, and therefore their value in geology. That he did not neglect anatomical research is shown by memoirs in the Proceedings and Transactions of the Zoölogical Society on the osteology (chiefly cranial) and systematic position of Balrnicops (1860), Pterocles (1862), Palamedea (1863), Gallinaceous Birds and Tinamous (1802 and 1866), Kagu (1864 and 1869), Ostriches (1864), Mieroglossa (1865), Common Fowl (1869), Del (Nature, 1871), skull of Frog (1871), of Orow (1872), Salmon, Tit, Sparrow Havik, Thrushes, Sturgeon, and Pig (1873). In the mean timo the Ray Society had brought out his valuable "Monograph on the structure and development of the Shoulder Girdle and Sternum in the Vertebrata" (1868); and his Presidential addrosses to the Rnyral Microscopical Society (1872, 1873), and notes on the Arehropteryx (1864), and the fossil Bird bones from the Kobbug Oave, Malta (1865 and 1860), had beon published. Subsequently the Royal Society's Transuctions contained his abundantly illustrated memoirs on the skull of the Batrachia (1878 and 1880), of the Urodelous Amphibia (1877), the Common Snake (1878), Sturgeon (1882), Lopidosteus (1882), Edentatia (1886), Insectivora (1886), and his elaborate memoir on the development of the wing of the Common Fowl (1888). In the "Reports of the Ohallenger" is his memoir on the Green Turtle (1880); and those on Tarsipes (Dundee, 1889), and the Duck and the Auk (Dublin, 1890), are his last works.

In former times a skull was taken as little more than a dry, symmet. rical, bony structure; or if it were the cartilaginous brain case of a shark, it was to most a mere dried muscum specimen. When however the gradations of the elements of the skull, from embryonic beginnings, were traced until their mutual relations and thoir homologues in other
vertebrates were established, light was thrown on the wonderful completeness of organic uniformity and singleness of design. How such studies can be carried on both by minnte dissection and the modern art of parallel slicing, and not by one method alone, is to be gathered from his teaching.

Mr. Parker was elected a Fellow of the Royal Society in 1865, and in the year following he received a royal medal for his comprehensive, exact, and useful researches in the developmental osteology, or embryonal morphology, of vertebrates. Some few years afterwards the Royal Society gave him an annual grant to aid in the prosecution of his studies; and, when that was discontinued, a pension from the Orown was graciously and appropriately awarded to him. A generous friend, belonging to a well-known Wesleyan family, more than once presented $£ 100$ towards the cost of some of the numerous plates illustrating his grand memoirs in the philosophical transactions.

In 1873, he received the diploma as member of the Royal Oollege of Surgeons, and was appointed Hunterian professor, Professor Flower being invalided for a time; and afterwards both held the professorship conjointly. His earnestness and wide views were well appreciated, opening up the modern aspect of comparative anatomy, and showing that both in man and the lower vertebrates the wonderful structural development of their bony framework should be studied in a strictly morphological rather than a teleological method, and that its stages and resultant forms could be regarded only in the Darwinian aspect.

These lectures, given in abstract in the medical journals, became the basis of his "Morphology of the Skull," in writing which, from his dictation and notes, Mr. G. T. Bettany kindly assisted him; and again, in a semi-popular book, "Cn Mammalian Descent," another friond (Miss Arabella Buckley, now Mrs. Fisher) similarly helped him. In the latter work his own usual style frequently predominates, full of metaphor and quaint allusions, originating in his inaginative and indeed poetic mind, fully impregnated with ideas and expressions frequent in his favorite and much-read books-Shakespearo, Bacon, Milton, some of the old divines, and above all the old English Bible.

Separating himself from the trammels of foregone conclusions and from the formulated but imperfect misleading conceptions of some of his predecessors in biology, whom he left for the teaching of Rathke, Gegenbanr, and Huxley, Prof. W. K. Parker earnestly inculcated the necessity of singlesighted researeh, and the following up of any unbiased elucidations, to whatever natural conclusion they may lead. Simple and firm in Ohristian faith, resolute in scientific research, he felt free from dread of any real collision between science and religion. He insisted that "our proper work is not that of straining our too feeblo faculties at system building, but humble and pationt attention to what nature herself teaches, comparing actual things with actual" (Proc. Zoöl. Soc., 1804); and in his "Shonlder girdle, etc." page 2 , he writes: "Ihen, in the times to come, whon we have 'prepared our
work withont, and made it fit for ourselves in the fleld,' we sliall be able to build it 'system of anatomy' which shall tiuly represent nature and not be a mere reflection of the mind of one of her talented observers."

Again, at page 225, in illustration of some results of his work, he says: "The first instance I have given of the shoulder girdle (in the skate) may be compared to a clay model in its first stage or to the heavy oaken furniture of our forefathers, that 'stood pond'rous and fixed by its own massy weight.' As we ascend the vertebrate scale the mass becomes more elegant, more subdivided, and more metamorphosed until, in the birl class and among the mammals, these parts form the framework of limbs than which nothing can be imagined more agile or more apt. So, also, as it regards the sternum; at first a mere outerop. ping of the feebly developed costal arches in the amphibia, it becomes the keystone of perfect arches in the true reptile; then the fulcrum of the exquisitely constructed organs of flight in the bird; and, lastly, forms the mobile front wall of the heaving chest of the highest vertebrate.

Prof. W. K, Parker was a fellow of the Royal, Linnean, Zoölogical, and Royal Microscopical Societies; honorary member of King's Oollege, London, the Philosophical Society of Oambridge, and the Medical Ohirugical Society. He was also a member of the Imperial Society of Naturalists of Moscow, and corresponding member of the Imperial Geological Instituto of Vienna, and the Acadeny of Natural Sciences of Philadelphia. In 1885 he received from the Royal Oollege of Physicians the Bayly meilal, "Ob physiologiam feliciter excultam."

In eonversations shortly before his death he often spoke of looking forward throughout his life-time (alas! how quickly shortened!) to continued application of all the energy he conld devote to his useful workat oncea consolation to him and a dity.

He has well expressed his own view of biological pursuits at page 303 of the "Morphology of the skull:" "Thestnily of animal morphology leads to continually grouder and more reverent views of ereation and of a Oreator. Dach fresh alvace shows us further fields for conquest, and at the same thme deepens the conviction that while results and secondary operations may be diseovered by human intelligence, ' no man can flad ont the work that Goil maketh from the beginning to the entl.' We live as in a twilight of knowledge, charged with revelations of ordor and beanty ; wo steadfastly look for a perfect light, which shall reveal perfect order and beanty."

An unwordly seeker after truth, and loved by all who know him for his uprightiness, molesty, unselfishness, and generosity to follow-workers, always helping young inguirers with specimens and information, ho was suddenly lost to sight as a fiend and father, but remains in the minds of fellow-workers, of those whom he so freely tanght, and of his stricken relatives, as a great and good man, whose benefleont influenee will ever be felt in a wide.spreading and advancing science and among thoughtful and appreciative men in all time.

INDEX.

A.
Aaron, E. M., acknowledgments due for specimens
Page 14
offer by, to make collections for Museum 33
Abbott, Dr. W. A., collections made by 14
Aboriginal map of old Cherokee country, preparation of 49
pottery, statistics of accessions 27
Academy of Sclences met in lecture hall of Museum 31
Accessions, important, to the library 75-77
statistics of $27,28,80,81$
to the library, statement of 19
Accipter cooper:i in Zoological Park 64
Accounts examined by executive committeo xvii
Account of progress. (See Progress reports.)
Acknowledgments due to employes of exchange bureau 60
foreign agents of exchange bureau 60
offlcers and sailors of United States steamer Pen- sacola 33
recorded by exchange burean 55, 56
Acting manager of Zoological Park, report of 64
Acts of Congress. (See Congress, acts of.)
Adder in Zoülogical Park 64
Additions to the library 75
Advance of selence in the last hall century. By Thomas H. Huxley 79-81
Africa, collections made in, by William Harvey Brown 14
explorations in, by Talcott Williams 13
Age of bronze in Egypt. By Oscar Montollus 499
Agents of exchange bureau, acknowledgment due 60
Agricultural Department, contributions received from 20
exchanges of 60
Aquila chrysaettus in Zoological Park 64
Alabama, explorations in, by Buroat of Ethnology 49
Alhan Steamship Company, acknowledgments due 61
Allen, George A., mamers and customs of the Mohawks 615
Allen, Dr. Harrison, collection of bats for study 30
lecture on clinical study of the brain 21
paper on clinical study of the skull 15, 80
Alligator mississipiensis in Zoological Park 6!
American aboriginal pottery, statistics oi accessions 27
bison, extermination of 34, 35
paper on, by William 'I'. Hornaday 30, 81
in Zoological Park 64
Page.
Amenlean Board of Commissioners for Foreign Mlssions, arknowlales- monts due ili
Colonization Society, noknowledgments due: iil
alk in Zodlogieal Park 14
Ephemeris, exthanges of 13)
Historical Association, ammal report of the 1i)
collections of 83
ostablished by law 21
meetings of 22
publicatlons of 22
Institute of Mining Engineers, mot in lecture hall of Musemu 31
Anatomy, statisties of aceessions 27
Anehor Stoamship [ine, acknowledgments due 01
Anchor stones. By B. F. Snyder 80, 81
Anciont art of Chiriqui, Colombla. Paper by W. H. Holmes [5, 82
bowlder quarrles, exoavations into 47
mounds in Iowa and Wisconsin. By Clement I. Webster 80, 81
Johnson Comity, Iowa. By Clement L. Webster 80, 81
and oarthworks in Floyd and Cemo Counties, Iowa. By Clement L. Webster 80, 81
works in Michigan and Ohio, exploration of 47
of the Cherokee examined 77. 48, 49
Angell, Hon. James 13, a regent x, xi
Angora goat in Zoßlogical Park 64
Animal products, statistics of accessions 27
Animals In National Zoblogrical Park (i.)
Annual fucreaso in tho Museum collections, tables of 8. 9
meoting of Board of Regents 2
report of Amorican Mistorical Association 15
Board of Regrents , iv, 81, 82
Bureat of Ethmology (i). i4, 82
National Musemm 2), 80
Secretary for 1800 1
Smithsonian Institution for 1887 and 1888 1i, 79
for 1890, contonts of v
oxtra copies ordered to be printed ii
submitted to Congross iii
Antaretie explorations. By G. S. Grimth 29:3
Anthropologry, miscollaneous pupers on 80, 81
Pre-historle, statisties of aecessions 27
Progress in for 1800. By' Otis 'I'. Mason 80, 81
Aroheoology 351
Bibliography of anthropology 0.58
Biologieal 5.34
Ethnology 641
Gencral anthropology 529
Glossology 646
Mán and nature 5057
Psychology 6)36
Roligion and folk lore 556
Sochology 50.5
Technology 546
Antiquities of Mexico. By f. B. Evans
Page. 80, 81
Antiquity of matn. By Johm Buans
Apparatus, astronomical and physical, standard serew threads for
in astro-physical observatory 11
Appendix to Secretary's report 47
report for 1890 $9: 3$
Appraisement of land for Zoological Park 38
Appropriation of annal income, resolution of Board of Regents xii
Approprlations. (See also Congress, appropriations by.)
Arra ararannea in Zoologleal Park 84
rh(ormetera in Zonlogieal Park 64
mucuo in Zodogieal Park (i)
Archeological objects, purchase of, money grant for 21
researehes in vicinity of Washingtom 42
Architect of Capital, examination of Museum building 10
supervision of fire-proofing of Smithsonian building 10
Architecture of Tusayan and Abola, report on 53
Arctomys monax in Zoblogical Park 64
Argentine Republic, a party to Brussels Convention 58
consul-general for, acknowledgment due 61
transmissions of exchanges to 59, 62, 83
Arietidæ, genesis of, paper on, by Alpheus Hyatt 14.79
Army Medical Museum, exchanges of 60
offleers, co-operation of 29
Artificial deformation of children, by Dr. J. H. Porter 80
Arts and industries, statistics of accessions 27
of the mound builders, papers on, by W. H. Holmes 51
Aryans, the primitive home of the, by A. H. Saye 475
Aseent of man, by Frank Baker 447
Assignment of rooms for seiontific work 21
Assistant seeretary, report of, bilbiography of Museum publications in 30
Assistance to students 30
Association of Amorican Agricultural Colleges and lixperiments ittations met in lecture hall of Minsem 31
Astronomers, neerology of 172
Astronomieal apportus, standard of serew threads for 13
bibliography, by W. (\%. Winloek 171. 17is
instruments, report on 167
Journal, subseription to 21
societies, report on 169
Astronomy, progress in, in 1886, by William (. Winloek 79, 81
progress of, for 1889, 1890, by Willime (\% Winlock 121
astronomers, neerology of 172
astronomical eonstants 123
bibliogruphy 171.173
instriments 1167
societios 169
photography 135
comets $1: 18$
colipses $1: 0$
meteors 1.13
motion of the stan's 135
nebulse 121
Page.
Astronomy, progress of, observatories 169
photography, astronomical 135
photometry 130
planets 144,150
solar parallax 159
solar spectrum 154
solar systom 151
star catalognes 12 '
stellar parallax $1: 8$
stellar spectra 133
transit of Venns 159
variable and colored stars 131
Astro-physical investigations, building for apparatus 10
observatory, establishment of xii, 10
scope of work explained 12
Atlas Steamship Company, aeknowledgments due 61
Austria, exchange transmissions to 5!), 62, 63
"Avifauna Italica," presented by author 78
13.
Baden, exchange transmissions to 59, 63
Bailoy, H. B., \& Co., acknowlederments due 61
Buird, Professor, statue of 20
Baker, Dr. Frank, appointed ating mamarer of National Zooblogical Park $32,41,74$
appointed honorary curator, Depurtment of Compara- tive Anatomy 32
The Aseent of Man 447
Baltazai, X., Consul-General, acknowledgments due 61
Barber \& Co., acknowledgments due 01
Barker, George $\mathrm{r}^{\text {a }}$, ioport on progress in physies for 1886 80, 81
Barn owl in /oological Park (8.
Baseanion constrifotor in Zoölogicul Park 6.4
Busel, University of, sends complete sets of publications 6, 77
Basement under National Museum, cost of ()
Basket work of North Americam aborigines, by Otis I'. Mason 81
Batrachia of North Ameria, papor on, by Prof. E. D. Cope 29
Butreohians, statistios of meeessions 27
Buts studied by Dr. Eturison Allen 30
Bavaria, oxchange transmissions to 59, (3;
Bean, Dr. Tarleton H., Dr'. G. Brown Goode and, paper by 30
Bears in Zoological Park 64
Beek, Senator, denth of, a loss to the Institution 41
Bolgium, a party to Brussels Convention 58
exchange transmissions to 50, 02,63
Bell, Dr. Aloxander Geaham, domation to astro-physical obsorvitory 3. 12
Bequest of James Hamilton, mount of 2
Dr. Jerome H. Kidder. $3,11,12$
resolutions by Romrd of Regents xiii
Simeon Trabel, amount of 2
Smithson, amount of 2
Berber manuscript obtained by Talcott Wllliams
Page. 13Bern, University of, sends complete set of publications
77
Bernadon, Ensign J. B., lecture in Museum lectime hall 31
Bibliographical catalogue of the deseribed transformations of North America's Lepidoptera, by Henry Edwards 29, 30
Bibliography of Anthropology, by Otis T. Mason 558
Museum publications in, roport of assistant secretary 30
Muskhogean languages 52
the National Museum, its officers, and others 82
Biographical momoir of Arnold Guyot, by James D. Dana 80
Birds in Zoölogical Park 64
statistics of accessions 27
eggs and nests, statisties of accessions 27
skeletons studied by Dr. R. W. Shufeldt 30
Bison Americanus in Zoölogical Park 64
Amcrican, extermination of 34,35
paper on, by William T. Hormaday 30, 81
Bixby, Thomas E., \& Co., acknowledgments due 61
Blacktailed deer in Zoölogical Park 64
Blaine, Hon. James G., member ex officio of the establishment ix
Blood corpuscles, morphology of the, hy Charles Sedgwiek Minot 129)
Board of Regents, action of, relation to death of Hon. Samnel S. Cox 2
annual meeting of 2
report for 1887, Purt I 81
Pa't II 82
annual roport for 1890 i,iv
Journal of Proccedings of xi
recommended additional Museum building 4
resolutions by xi, xii, xili, xiv, xv, xvi, $2,16,18,44$(See, also. Executive Committeo and Regents.)vacancies in, filled by Congressional resolntion.xli
Board on geographieal names, Smithsonian represented at 25
Boas, Franz, paper on the Central Eskimo it $8: 8$
Bodleian Library, books sent by 77
Boehmer, George II. Roport on exchanges for 188 79
Bolivia, consul-general for, acknowledgments due 61
exchange transmissions to 59, 12
Bolometer in astro-physical observatory 11
Bolton, H. Carrington, leport on progress in chemistry for 1886 80, 81
represented Institution at installation of Dr. Low, of Colimbia College 25
Bonds, proceods of sale, deposited in United States 'Treasury 2
Bomn, University of, sends eomplete set of publieations 77
Borland, R. R., aeknowledgments due 61
Bors, C., Consul-Generul, acknowledgments due (81
Betanical eollections mude by Feleott Williams 13
Garden, exchanges of (6)
tropienl, Wm. M. Trent 389
Botany of National Zoislogical Park 68
Botassi, D. W., Consul-General, acknowledgments due. (31
Boulton, Bliss \& Dallett, acknowledgmonts due (i1
Boxes of speeimens received by Museum 28
Boys, C. V., quartz fiber's 315
Page.
Brady, J. H., collections received from 32
Brain, clinical study of the, leoture on 21
Branta canadensis in Zoologloal Park 64
Brazil, a party to Brussols Convention 58
exchange transmissions to 63
British Government, publications presented by 78
Bronze age in Egypt, by Oscar Montelins 499
Bronzes, statistics of accessions 27
Brown, Vornon H., \& Co., acknowledgments duo 61
Brown, William Harvey, collections received from 14,32
Brussels exchange treaty 18, 57
Bubo virginianus in Zoollogical Park 64
Buenos Ayres, exchange transmissions to 63
Buffalo, extermination of 34, 35
Building, additional required for Museum 4.26
Sketch plans presented 4
Senate action 4
Letter of Secretary to chairman Senate Committee on Public Buildings -5
Building-stone, hand-book on, by George P. Merrill 30, 80
Bullay, H. J., acknowledgments due 61
Bulletins of National Museum 15, 29
Bullfrogs in Zoblogical Park 64
Burcau of Education, exchanges of ${ }^{6} 0$
Engineers, U. S. Army, exchanges of 60
Ethoology, accounts examined by executive committee xix
Congressional appropriation for, disbin'sed by Smith- sonian Institution xli, 3
estimates for 4
exchanges of xii, 60
explorations made by 14
report of director $43,47,82$
Sccretary on 42
sixth annual report of 15, 54, 82
Fine Arts, Congressional bill for the establishment of 22
International Exchanges. (See International Exchanges.) the Mint, exchanges of ${ }^{6} 0$
Statistics, exchanges of (30
Buteo linoatus in Zoological Park 6.4
Butterworth, Hon. Benjamin, a regent $x_{1} \times 1$
letter to, relativo to money advanced on ac- count of exchanges 18
c.
Cabinet offlcers forming the "establishment" 1
members ex officio of the establishment ix
Cacatur galerita in Zoological Park 64
Calderon, Consul-Genēral C., acknowledgments due 61
Caldo, Consul-Genoral A. G., acknowledgments due 61
Californta, Indian vocabularies collected in 49
linguistic work in 49
Call, Hon. Wilkinson, introduced bill for the establishment of a Bureau of Fine Arts 22
Page.
Cameron, R. W. \& Co., acknowledgmonts due 01
Canada, exchange transmissions to 59) 65,63
Cape Flattery, Indians of, paper on, by J. G. Swan 15
Capra hirous angoronsis in Zoological Park 64
Capron collection of Japanese works of art, proposed purehase of 23
Capuchin monkeys in Zoölogical Park 64
Cariacus columbiamus in Zoological Park 64
mucrotis in Zoölogical Park 64
virgitiamus in Zoölogical Park 64
Carter, R. Burdonell, color vision and color blindness. 687
Casa Blanco, model of, made by C. Mindoleff 63
Grande, Arizona, report on, by V. Mindeleff 53
Arizona, visited 43,48
Cases shipped by Exchange Bureau (5), 56
Casey, Capt. T. L., studied Colooptera 30
Catalogue entries of National Museum $28,80,81$
Catlin Indian Gallery, by Thomas Donaldson 81
statistics of accessions 27
Cavia aperea in Zoological Park 64
Cebus fatuellus in Zoölogical Park 64
hypoleucus in Zoological Park 64
(Cegiha, English dictionary prepared by Dr. Dorsey 50,51
Cenozoie fossils, statisties of accossions 28
Census Bureau, exchanges of 60
Contral Eskimo, paper by Franz Boas 54, 82, 82
Cercopithecus callibrichus in Zoological Park 64
Cervus cancidensis in Zoological Park 64
Cetacoans, Nutural History of, contributions to, by F. W. True 30
Chaco ruins, model of, made by (.. Mindeleff 63
Challengor Roports presented to Institution 78
"The Cheapest Form of Light" 11
Check list of Smithsonian publications 81
Chemical Problems of To-day, by Victor Meyor 361
Chemistry, Progross report for 1880, by F1. Carrington Bolton 80,81
Cherokec country, aboriginal map of the, preparation of 4)
works oxamined $47,48,49$
Chickens in Zoblogical Park 0.4
Chilo, exchange transmissions to 51, 62, 63
China, exchange transmissions to 50, 62
Chiriqui, Colombia, anciont art of. Paper by W. H. Holmes 54, 82
Cibola, architecture of, report on, by V. Mindeleff 6.3
Clark, Miss M. S., investigations made by 6
Clarke, F. W., report on Prof. Morley's researches $8: 3$
the meteorite collection in National Musemm 80
Clarko's nut-cracker in Zoological Park 64
Clinical study of the brain, lecturo on 21
skull, paper on, by Di. Harison Allen 15,80
Cluss \& Schulzo, claims of, for plans for now Musemm building xiv
Coast and Geodetic Survey, coopperation of 28
exchanges of 80
pendulum experiments by 21
Coins, statistics of aceessions 27
Coleoptera studied by Capt. 'I. L. Casey 30Page.
Collections of American Historical Association to be deposited in Smith- sonian building 22
Museum, increase of 26
Color-blindness, color-vision and, By R. Burdenell Carter 687
Color-vision and color-blindness. By R. Burdenell Carter 687
Colombia, consul-general for, acknowledgments due 61
exchange transmissions to $59,62,63$
Commissioners for establishment of Zoological Park, report of 38,39
Committee on the International Standards for Iron and Stecl, rooms occupied by 21
rosolutions relative to services of Hon. S. S. Cox 43,44
Compagnie Générale Transatlantique, acknowledgments due 61
Comparative anatomy, statistics of accessions 27
Comptroller of the Currency, exchanges of 60
Condition of the Smithsonian fund $2,3, x y i i$
Congress, action of, desired for printing annual reports 16
relative to new Muscum building 4
Congress, acts by -
Organization of Zoölogical Park 39
Purchase of Capron collection 23
World's Columbian Exposition 23
(See also, Congress, appropiliations by.)
Congress, appropriations by, for-
Claims allowed by First Comptroller of Treasury xli
Deficioncy claims xli
Exehanges for Geological Survey xli
Furniture and fixtures, National Museum xl
Disbursement of 3
Fireproofing Smithsonian bullding 10
Heating and lighting Museum building xxvili, xxix, xxxii, xl
Triternational exchanges .xix, xxxil, xl, 17,56
National Museum xxi, xxvi, xxviii, xxix, xxxil, xl
National Zöological Park xxxi, xxxii, xl, 37
North American othnology xix, xxxii, x
Postage for National Museum xxvili, xxxil, xl
Preservation of collections xxi, xxix, xxxii, xi
Printing for Museum xxix, xxxii, $x l$
Purchase of collection of prehistoric copper implements xli
Reimbursement to Institution on account of Fish Commission $x \| i$
Smithsonian building, repuirs to xl
Congress asked to rofund money advanced for exchanges 16, 18
bills for establishment of bureau of fine arts 22
for extending hours for visiting Museum 32
to provide electric plant for buildings. 32
rosolutions by, appointing rogents xli, 2
to print extra copies of report i_{i}
of Orlentalists, P. Haupt's ropor't on 85
Consuls of foreign powers, acknowledgments due. 61
Contents of anmual roport for 1800 ∇
Contributions to Knowledge 14,79
Museum collections 26
North American Ethnology 50, 51
the natimal history of the Cetacem, a review of the family Delphinidie, by Fredorick W. True 30
Contribution toward a monograph on Noctuide, by John B. Smith 30age.
Co-operation of departments of Government
Cope, Prof. E. D., the Batrachia of North Amorica 29
Cope, Prof. Edward D., paper on Reptilia 15
Coppée, Dr. Henry, a regent x, xi
member of the executive committe $\mathrm{x}, \mathrm{xxxiii}$
resolution of, relative to resignation of Dr. Noah Por-terxi
Corea, lecture on, in Museum lecture hall 31
Cornell University, books sent by 78
Corona, structure of the, by David lP. Todd 79
Correspondence, how conducted 25
of exchange burean, recording of 62
Correspondents of exchange bureau 57
Cortis, R. J., acknowledgments due 61
Cost of exchanges to Smithsonian Institution 17, 18
improving grounds for Zoölogieal Park 40
improvements of Museum building 10
Costanoan vocabularios colleoted by J. C'urtin 49
Costa Rica, exchango transmissions to 69, 62
Conurtus carolinensis in Zoölogical Park 64
Cox, Hon. Samuel S., death of, aetion of Board of Regrents respecting xv, 2
descent of 44
obituary notice of 43
Cox, Mrs., presented portuait of her husband 2
Cradles of the Ameriean aborlgines, by Otis I. Mason 80
Gruin, Hon. W. H., introduced bill for oxtonding hours for visiting the Museum 32
to provide electrio plant for Musemm and Smithsonian buildings 32
Criminal anthropology, by Thomas Wilson 617
Cuba, exchange transmissions to 59, 62
Cullom, Hon. Shelby M., a legent x, xi
motion of, proposing change in time of moeting of Board of Regents XY
Cunard Steamship Line, ucknowledgments due 61
Curator of exchinges, report of 55, (i2
Curators of National Muscum, reports.of 82
papers by 30
Curtin, Jeremiah, explorations by 40
field studios of 14
Oymooitta Stollori macrolopha in Zoblogical Pa:l 6.4
Cynomys ludovicicomus in Koological Park 64
D.
Dakota, necount of sun-dance, puper by J. Owon Dorsey 50
mound explorations in 47
d'Almeirim, Baron, ucknowledgments due 61
Dana, bdward S., report on progress in minemblogy for 18 sif 80, 81
Dana, Jumes D., bibliographical memohr of Arnold Guyot 80
Darton, Nelson H., progress in North American geology in 1833 7) 81
De Varigny, Homry, tomperature and llfe 407
Dean, Bashford, recoived flshes for study 30
Page.
Deer in Zoxlogrical Park 64
Delphinides, review of the family, a paper by F. W. True 30
Denmark, consul-general for, acknowledgments due 61
exchange transmissions to (59, 62, 63
Dennison, Thomas, acknowledgments due 61
Department of Agriculture, oxchanges of (00
Labor, exchanges of 60
living animals merged with Zoological Jurk 33
State, exchanges of 6
the Interior, exchanges of 60
Dopartments of Government, co-operation of 28
Deposits from savings, amount of 2
Descriptive papers published by Musoum 30. 81
Determination of standurd of length, investigations for 21
Devens, Judge Charles, appointed rogent 2, xli
provented from accepting appointment as regent. 2
Dewey, Fred P., paper by 30
resignation of 32
Dha-du-ghe Society of the Ponea Tribe, by J. Owen Dorsey ᄃ0
Diameter standards to be adopted 13
Dicoltyle tajacu in Zoölogical Park 64
Dictionary of Indian tribal names 50
Didelphys virginiana in Zoölogical Park 64
Diplomatic officers of the United States co-operation of 28
Disbursement of Congressional appropuiations 3
Disbursemonts by exchange bureau 57
Distinct characters of work of astro-physical obsorvatory 12
Distribution of duplicate specimons 29
oxohanges 69
District Commissioners, oxchanges of 60
Domestic entries made by exchunge bureat 5i), 56
individuals corresponding with exchange burcau (i), 56
packages sent by exchange burean bi, 56
socities corresponding with oxchange bureat (3). 56
Donaldson, Thomas. the George Catlin Indian Gullery 81
Dorpat, University of, sends the completo set of pablieations 77
Dorsey, Rev. J. Owen, articles written by 50
the Degihalanguage 50, 51
ethnologion researehos of n)
paper on Osago traditions it. 82
Dongras, Hon. J. W., Commissionoi fou establishment of Zoblogioal Jark, roport of 39
Dow in Zoblogical Park 6.4
Duplicate specimens, distribution of 20
Dutch Guiana, transmissions of exchanges to 59, 62
H.
Wagles in Zoologtual Park 64
Earth, mathematical theorios of tho, by Robert s. Woodward 183
physieal structure of the, by Henry Hemnessy 201
Barthworks in Lowa, hy Clement L., Webster 80.81
Economic geology, statistics of accessions 28
Ecuador, consul-goneral for, acknowledgments due 61
INDEX.785
Page.
Ecuador, exchange transmissions to 59, 62
Edwards, Henry, bibliographical catalogue on the transformations of the North American Lepidoptera 29,30
Lells, Myron, the Twana, Chemakun, and Klallam Indians of Washing- ton Territory 80, 81
Efficiency of exchange service 68
Dggs, statistics of accessions 27
Egypt, exchange transmissions to 59, 62
the age of bronze in, by Oscar Montelias 499
Ehnikan vocabularies collected by J. Curtin 49
Electric plant for Smithsonian and Museum buildings 32
Elephant mound, model of, made by C. Mindeleff 53
Elk in Zoïlogical Park 64
Elliott, Honry W., colleotions undertaken by 14
facilities afforded 28
offored to make collections for Museum 33
Fndowmonts to Smithsonian Institution 3
Engineer Burcau, U. S. Army, exchanges of 60
Engineoring, statisties of accessions 27
Entries made by exchange bureat 55,56
Erethizon dorsatus in Zooblogical Park (i4
Einst, Col. O. H., U. S. Army, thanks given to 11
Eskimo bows, a study, by John Murdoch 81
the central, paper by Franz Boes 54, 82
Esprlella, Consul-Gzneral Justo R. de la, acknowledgments due 61
Establishment of the Smithsonian Institution explained 1
Estimate for exchanges 18
Estimates for 1890, 1801 4
Ethno-Conehology, by Robort E. C. Stourns 81
Ethnographic collections made by Talcott Williams 13
Ethnologie researohes among the North American Indians 42, 47
Ethnological researeh, Congressional appropriation for, disbursed by Smithsonian Institution 3
estimates for 4
Ethnologioal specimons from Tulatip Reservation 29
Ethnology (see Bureau of Ethnology) 15
Etowah mound, model of, made by C. Mindeleff 53
Brans, S. B., antiquitios of Mexico 80, 81
Evans, John, antiquity of man 467
Examination of accounts by Executive Committee -xvil
Excavations, aroherological 42, 47
Exchange acounts oxamined by Weective Committeo $x \mid x$
bureau, oxchanges of 60
list of library, work on 20
progress of work 19
of oftloial doomments 16
trouty of Brassels 67
Exchanges, Congressional appropriation for, disbursed by Smithsonian In- stitution 3
Congressional approprintion for xix
cost of, to Sinithsonian Institution 17, 18
astimate for 4,18
II, Mis, 1!0-ion
I'age.
Exchanges, moneys advanced for, by Institution 16, 17, 18
paid for, by Congressional appropriations 17
of the Geological Survey, Congressional appropriation for xli
outline history of 16
repayments by bureaus 17
report on, for 1887, by George H. Boehmer 79
Secretary's report on 16
(See also International Exchanges.)
Executive Committee of Board of Regents x
examined accounts xvii
examine vonchers 3, 4
report of xvii
Exhibition space in National Museum, table of 9
Expenditures of Smithsonian Institution xviii
Expenditures for international exchanges. xix
North American Ethnology xix, xx, xxi
National Museum $x x i i, x x i i, x x i v, x x y, x x v i$
furniture and fixtures xxvi, xxix, xxx
heating, lighting, ete xxviii, xxix, xxx
postage xxix
preservation of collections xxix
printing xxix
National Zölogical Park xxxi
of Smithsonian Institution, 1890 3
Expenses of exchange bureau 56
Explorations 13
promoted by National Muscum 32
of mounds by Bureau of Ethnology 42, 47
Extermination of the American bison. 34,35
paper on, by William T. Hornaday 30, 81
Extension of library contemplated 20
hours for visiting the Museum 31
F.
Facilities for study in the Musoum 21
F'alco sparvorius in Zoblogical Park 64
Forrot in Zoblogical Park 64
Fez, pottery collections made by Taleott Williams 13
Felis concolor in Zoological Park 64
Fiold work of Buroau of Ethnology 47
Finances of the Institution 2
Fine arts, Bureau of, proposed establighment of 22
Fire-proofing of Smithsonian building continued 10
First Mesa, modol of, made by C Mindeleff 53
Fish Commission, exchanges of 60
Fishories, statistles of accessions 27
Fishes, statisties of accossions 27
studied by Mr. Bashford Dean 30
Fisk, Rev. G. H. R., collections received from 32
"Flora of British India," presented to the Institution 78
Florio-Rubattlino Line, acknowledgments duo 61
Plugel, D. Felix, acknowledgments due 60
Flying squirrels in Zoblogical Park Page. 64
Foods, statistics of accesions 27
Foreign entries made by oxchange bureau 55, 56
individuals corersponding with exchango bureau 55, 56
societios corresponding with exchange bureau 55, 56
Forest trees in National Zoological Park 65
Forget, A., acknowledgments duo 61
Formulas, medical, of Indians, collected 4248,51
Fossil plants, statistics of accessions 28
Fossils, statistics of accessions 27, 28
Foxes in Zoölogical Park 64
France, exchange transmissions to $59,62,63$
Free entries granted by Treasury Department 28
freight granted Smithsonian Institution 60
Freiburg, University of, sends completo set of publications 77
Freight paid by exchange bureau 57
repayments for, receipts from xvili
Fronch Government, publications presented by 78
Frye, Mr., collections received from 32
Fuller, Molville W., chancellor of the Board of Regents x, xi
member ex officio of tho establishment ix
Funch, Edye \& Co., aeknowledgments duo 61
Funds of Smithsonian Institution, condition of 2, 3
Furniture and flxtures, U. S. National Museum : Congressional appropriation for xxvi, xxix, xxxli, xl
Exponditures xxvi, xxix, xxx, xl
G.
(rallus bankiva in Zoölogical Park 64
Galvanometer in astro-physical observatory 11
Gatsohet, Alberts. Klamath grammar 50,51
Gecso in Zoblogical Park 64
Geikio, Jamos. Glacial (feology 221
Gem collection of Natlonal Museum. - I3y George F. Kumz 80
Genoral Appendix to Report for 1890 03
fleld studios of Bureat of Ethnology 47
Genesis of tho Arietide, paper on, by Prof. Alphens Hyatt 14,79
Gontes in Slouan camping eireles. Papor by J. Owon Dorsey 50
Gentilo systom of Siletz tiibes. Paper by J. Owon Dorsey 50
Geodeticoperations in Russia, history of. By Col. B. Witkowski and Prof. J. Howard Goro 305
Geographieal names, bourd of, Smithsonian represented at 25
Goography, Progress report for 1886. By Willian Libbey, jr 80,81
Geological Congress committee mot in lecture hall of Museum 31
Survey, colleetions made by 20
exchanges of 60
Congressional appropriation for xli
Geology, North Amorican, Progress reportfor 1886. I3y Nelson H. Inaton - 70, 81of National Zoiblogical Park72
statisties of accessions 28
Georgla, explorations in, by Buroau of Ethnologis 49
mounds in, explored 47
Germany, exehange trinsmissions to 60, 62, 63
Page.
Germany, parliamentary publications of, presentod to Institution 78
steps towards joining Brussels Convention 58
Gibson, Hon. Randall L., a regent x, xi
Giessen; University of, sends complote set of publications 77
Gift to Muscum library 31
Giglioli, Prof., books presented by 78
Gilbert, G. K. History of the Niagara River 231
Gill, de Lancey W., in charge of illustrations 54
Gill, Thoodore. Report on progress in Zoölogy for 1886 80,81
Glacial Goology. By Prof. James Geikio 221
Golden eagle in Zoological Park 64
Goode, Dr. G. Brown. Annual report of National Museum for 1881 82
appointed member of government board for World's Columbian Exposition 23
assistant secretary of the Institution ix, 82
and Dr. Tarleton H. Bean, paper by 30
Gopher in Zoblogical Park 64
Gore, Prof, G., collection of books presented by 78
Gore, Prof. J. Howard, Col. B. Witkowski and. History of Geodetic Opera- tions in Russia 305
Göttingen, University of, sends complete set of publications 77
Government board for World's Columbian Exposition 23
Departmonts, co-operation of 28
ropayment to 67
should pay for Smithsonian building xii
Governmental exchànges, statement of 60
publications, exchango of 16
Grace, W. R., \& Co., acknowledgments due 61
Grants in aid of physical scionce 20
Graphic arts, statistics of accessions 27
Graves in Iowa. By Clement L. Webster 80.81
Great Britain, exchange of official documents 58
transmissions to 59, 62, 63
hydrographit roports presented by 78
Groat Elophant mound, model of, mado by C. Mindelefif 53
Gront Etowah mound, model of, made by C. Mindelenf 53
Grcece, consul-genernl for, acknowledgments due (11
exchange trarfmissions to 59, 62, 63
Greifswald, University of, sends complete set of publications 77
Grifflth, G. S. Antaretic explorations 293
Grubb siderostat in astro-physical observatory 11
Guatemala, consul-goneral for, ueknowledgements due 61
exohango transmissions to 69, 62
Guinea pig in zoblogical Purk 64
Guyot, Arnold, Biographien Memoir of. By Jumes D. Dana 80
Guyot's Meteorologleal and Physical Tables, new edition of 14
II.
Habel bequest, amount of 2
Hati, exchange transmissions to 69, 62, 63
Helicectus lencocephethes in Zoilogrical Park 64
Hallo, University of, send complete set of publications
Page.
77
Hamburg-American Packet Company, acknowledgments due 61
Hamilton boquest, amount of 2
Hand-book of building and ornamental stones, by George P. Merrill 30, 80
geological collections, by George P. Merrill 30, 80
Hannover Royal Library, presentation to Institution 78
Harrison, Benjamin, member ex officio of the establishment ix
Haupt, P., report on International Congress of Orientalists 85, 92
Hawks in Zoölogical Park 64
Heating, lighting, ete., National Muscum Congressional appropriation for xxviii, xxix, xxxii, x1expenditures xxviii, xxix, xxx
Helsingfors, University of, sends complete set of publications 77
Henderson \& Brother, acknowledgments due 61
Hennessy, Henry, on the physical structure of the earth 201
Hensel, Bruckmann \& Lorbacher, acknowledgments due 61
Henshaw, H. W., office-work of 50
Heredity, Weismann's theory of, by George J. Romanes 433
Heron in Zoilogical Park 64
Heterodon plutyrhimus in Zoölogical Park 64
Hewitt, J. N. B., engaged in collating Iroquoian proper names 52
field studies of 14, 49
linguistic work of 52
Hillers, J. K., in charge of photographic work of Bureau of Ethmology 64
Historical relies, statisties of accessions 27
History of geodetic operations in Russia, by Col. B. Witkowski and Prof. J. Howard Gore 305
the Niagara River, by G. K. Gilbert 231
Hitchcock, Romyn, paper on Japanese roligion and burials 30
Hoffman, Dr. W. J., field studies of 14, 48
otfice work of 61
Hogre Allmanna Lilroverk, Vesteras, books sent by 78
Holmes, W. H., field studies of 14, 47
paper on ancient art of Chiriqui 54, 82
papors on arts of the mound builders i)
paper on study of textile art 54, 82
Holub, Dr. Fmil, books presented by 78
Hooker, Sir J. D., books presented by 78
Hornaday, William I', appointed honorary eurator, department of living animals 32
how to collect mammal skins 80
resignation of 32, 41
the extermhation of the Ameriean bison 30, 81
Horned owl in Zoological Park 14
Horiny sponges, Lendenfeldt's monograph on, prosented to Institution 78
Houdan chickens in Zoological lapk 64
House of Representatives, netion of, with regard to fireproofing of part of Smithsonian buildider 10
exchanges of (i)
How to collect mammal skins, by Willian 'I. Hornaday 80
Human beast of burden, by Otis 'I'. Mason 81
Humming birds, paper on, by Robert Redgway 30
Ïungarian Acadomy, books presented by 78
Page.
Hungary, exchange transmissions to 59, 63
Hurgonje, C. S., presented photographs from Makka 78
Huxley, Thomas H, advance of scienco in the last half century 79, 81
Hyatt, Alpheus, paper on the genesis of the Arietide 14, 79
Hydrographic Office, exchanges of 60
publications presented to Institution 78
I.
" Iconographie des Coquilles Vivantes," presented to Museum library 31
Iddings, J. P', acknowledgments due for specimens 14
offered to make collections for Museum 33
Illustrations in annual report for 1890 , list of vili
Immediate exchange, Congressional aid requested 58
of parliamentary docoments, money required for 19
Income of Smithsonian Institution, 1890 3
Increase of the library 75
library, plan for 20
Museum collections 26
Index to the literature of thermodynamies, by Alfred Tuckerman 14,81
India, oxchange transmissions to 59, 62,63
Indian Bureau, oxchanges of 60
gallery, the George Catlin, by Thomas Donaldson 81
government, publications presented by 78
graves in Floyd and Chickasaw Counties, Iowa, by (lement L. Webster 80, 81
materia medica, collection of plants used in $42,48,61$
medieline practice studied $42,47,48,50,51$
mumny, by James Lisle 80, 81
mythology, collection of $42,48,50,51$
personal names, monograph on, by J. Owen Dorsey 50
tribal names, dictlonary of 60
vocabularies collected by J. Curtin 49
Indians of Cape Flattery, by J. G. Swan, new edition of 15
Washington Torvitory, by Myron Eells. 80, 81
Individuals corresponding with exchange bureat 55, 60
Inman Steamship Company, aoknowledgments due 61
Instrumonts in astrophysical observatory 11
Instructions in taxidermy and photoguaphy 21,30
Interior Departinent exchanges of 60
International conference at ancient Troy, Smithsonian representative ap- pointed for 25
Congress of Oriontalists, P. Haupt's peport on 85
exchangos, bureat of, report on, by Curator (6)
Exchange accounts examined by excentive committee xix
Congressional appropriation for xix, xxxili, x l
oxchanges, Congrossional approprtation for, disbursed by Institution 3
correspondents 57
distribution. 60
ofllcioncy of service 58
estimates for 4
of offlehal doouments 67
expenditures for xix

INDEX.

Page.
International exchanges, expense 56
reccipts 56
disbursements 57
governmental 60
of official documents 57
report of Seeretary on 16
transactions of 55, 56
transmissions 62, 63
transportation companies 61
Winlock, William C., curator 82
(See Exchanges) 16
standards for iron and steel, committee on, met in Smith- sonian building 21
Invertebrates, marine, statistics of accessions 27
Investigations begun by the Secretary 11
of mounds, results of 42, 47
Invoices written by exchange bureau 55, 56
Iron, standard for commítee on, used in Smithsonian building 21
Iroquoian proper names collected and rocorded 52
Iroquois, religious doctrines of, recorded 49, 50
Italy, a party to Brussels Convention 58
exchange transmissions to 59, 62, 63
the primitive races of, by Cannon Isaac Taylor 489
J.
Japan, exchange transmissions to 59, 62, 63
Japanese religion and burlals, paper by Romyn Hitcheook 30^{-}
works of art, Capron collection of, proposed purchase of 23
Jay in Zoblogical Park 64
Jemez tribe studled by Mrs. Stevenson 54
Jena, University of, sends complete set of publications 77
Jolnt resolutions of Congress appointing regents 2
Journal of Proceedings of Board of Regents xi
K.
Kansa genealogical tables prepared by J. Owon Dorsay 万0
Keltie, J. Scott, Stanloy and the map of Africa 277
Kidder, Dr. Jerome H., bequest of 3
to astro-physical observatory 11,12
of, resolutions by board of regents xiil
Kiel, University of, sonds complete set of publications 77
Kiener"s "Iconographie des Coquilles Vivantes" presented to Museum library 31
Klamath grammar, prepared by A. S. Gatschot 61
Kolliker, Prof. Albert, books presented by 78
Koenlg's Researchos on Musical Harmony, by Sylvanus P Thompson 335
Konigsberg, University of, sends complete set of publlentions 77
Kunz, George F . The gem eollection of National Mussum 80
I.
Labels for Musoum collection 31
Laboratorles space in National Musoum, table of 0
Page.
Land Offlce, exchanges of 60
solected for Zoological Park 37
Langley, S. P., report for 1889 82
annual report for 1890 1
appointed one of the commissioners of Rook Creek Park 41
commissioner for establishment of Zoological Park, report of 39
letter to Congress submitting annual report iii
Hon. Leland Stanford, relative to new Museum building 6, 7
a member of committee on resolutions lelative to S. S. (\% 43
Secretary of the Institution ix
Iectures in lecture hall of National Museum 31
Saturday lectures 31
Anthropological lectures, by Thomas Wilson 31
National Geographic Socioty 31
Leeture on clinical study of the brain, by Dr. Harrison Allen 21
hall of Musuem used for meetings of scientific bodies 21
Ledger accounts kept by exchange bureau 55, 50
Lee \& Shepard requested use of stereotype plates 24
Leech, Hon. E. O., acknowledgments due 26
Legations of forcign powers, acknowledgments due 61
Legislation required for Smithsonian Institution xv
Leipzig, University of, sends complete set of publications 77
Lendenfeldt's monograph of horny sponges presented to library 78
Longth, standard of, investigations for determining 21
Lopidoptera, North American, bibiiographical catalogne of the transfor- mations of, by Henry Edwards 29, 30
Letter of Secretary transmitting annual roport for 1890 1
from Secretary submitting annual repor't iii
of Secretary to Hon. Leland Stanford rolative to new Museum build- ing 5
Letters received by exchange bureau 55, 56
writton by exchange bureau 55, 56
Libbey, Prof. William, propares new edition of Guyot's tables 15
progress in groography for 1881 80, 81
Liberia, exchange transmissions to 59, 82
Library of Congress, exchanges of ${ }^{6} 10$
transfer of books from 19
National Museum 31
Library of Smithsonian Institution 75
Accossions to, statement of 19
Contemplated extension of 20
Exchange list of, work on 20
Important additions 75. 77
Increase of 75
plan for 20
Roorganization of, carried on 20
Roport of librarian 75, 78
Secretary's report on 19
Sorials addod 75
Universities sonding complote sets of thelr publications 77
Lick obsorvatory, grant to, for photographic apparatus 21
photographs of the moon to be made by 21
Page.
Life-Saving Service, co-operation of 28
Light-House Bon'd, eo-operation of 28
exchanges of 60
Linguistie map of North America 50
studies by Bureau of Ethnology 42. $47,50,51,52,53$
work of director of Bureau of Ethnology 50
performed by J. N. B. Hewitt 52
Lisle, James, paper on lndian mummy 80, 81
List of acecssions te the National Museum 80
illustrations in annual report for 1890 viii
Smithsonian publications, by William J. Rhees 15
Literature of themodynamics, index to, by Alfred Tuckerman 14,81
Lithology, statistics of accessions 28
Living animals, statistics of accessions 28
transferred to Zoological Park 33
Lodge. Hon. Henry Cabot. appointed a regent $x, x i, 2$
member of committee on resolutions relative to services of the Hon. S. S. Cox 43
London Board of Trade, book sent by 78
Loomis, Wlias, memoirs of, by H. Λ. Newton 741
Low. Dr.. installation of, Smithsonian represented at 25
M.
MeCormick, J. C., paper on mounds in Jefferson County. Tennessee 80, 81
Mac Owen, P., collections received from 32
Mac Ritchie, David, books presented by 78
Mucaens cynomolyus in Zoological Purk 64
Maears in Zoblogical Park 64
Mallery. Garriek, study of sign language 50
Mammal skins, how to eollect, by Wm. 'T. Homaday 80
Mammals in Zoblogieal Park 64
Mammals, statistics of accessions 27
Man, aseent of, by Dr. Frank Baker 447
antiquity of, by Johm Evans 467
Manltoba, mound explorations in 47
Mumners and customs of the Mohawks, by George A. Allon 615
Mante\%, Consul-General Jose, acknowledgments due 01
Map, aboriginal, of old Cheroke country, preparation of 49
linguistic. of North America 50
of Zoological Park 38
Marburg, University of, sends complete set of publications 77
Marcon, Sules Bolknal, report on Paleontology for 1886 79, 81
Marine Hospital, exchanges of 80
Marino invertebrates, statisties of aceessions. 27
Mariposan vocabularies collected by J. Curtin 49
Mason, Otis 'I', Basket-work of North American aborigines 81
Bibliography of Anthropology 558
Cradlos of tho American aborigines 80
Progrese of Anthropology in 1890 627
Repolt on progress in anthropology for 1886 80,81
represents Institution at Board on Geographical Names 25
The human beast of burden 81
Page.
Materia medica, Indian, plants used in, collection of 42, 48, 51
statistics of accessions 27
Mathematical theories of the earth, by Robert S. Woodard 183
Maya codices, aid to study of, paper by Prof. Cyrus 'Thomas 54, 82
Measures and valuing, by J. Owen Dorsey 50
Medals, statistics of accessions 27
Medical formulas of Indians, collected $42,48,51$
Medicine man, practice of $42,43,48,51$
practice of Indian studies $42,47,48,50,51$
Zunis studied by Mrs. Ste venson 50
Mediterranean, the, physical and historical, by Sir R. Lambert Playfair 259
Meeting, annual, of Board of Regents xi, 2
change in time of xv
Meetings held in lecture hall of National Museum 31
Academy of Sciences 31
American Historical Association 24
American Institute of Mining Enginecers 31
Association of American Agricultural Colleges 31
Geological Congress Committee 31
National Geograhic Society 31
Meigs, Gen. Montgomery C., a regent x, xi
member of the executive committee.......x, xxxiii resolution relative to compensation for plans for new Museum building xiv
Mecce, photographs from, presented to Institution 78
Meldola, Prof. Raphael. The photographic image 377
Meleagris gallopavo in Zoological Park 64
Members ex otticio of the establishment ix
Memoir of Arnold Guyot, by James D. Dana 80
Elias Loomis, by H. A. Newton. 741
William Kitchen Parker 771
Memoirs relating to the solar corona 14, 79
withdrawn from Library of Congross 19
Memorial meeting of National Aeademy of Sciences in Museum 31
Menomond delogation, assistance given by 61
Merchant S. L. Company, acknowledgments due 61
Merrill, George P., appointed ourator, Department of Geology 32
hand-book on building and ornamental stones In National Mu- soum 30, 80
hand-book of geological collections 30, 80
Mosozoic fossils, statistics of acecssions 27
Metallurgy, statistics of necossions 28
Meteorite collection in National Museum, by F. W. Clanke 80
Moteorological and Physical Tables, Guyot's, now edition of 14
Mexico, antiquities of, by S. B. Byans 80, 81
consul-general for, acknowledgments due 61
exchange transmissions to 59, 62, 63
Meyer, Vietor. The chemical problems of to-day 361
Michelson, Prof. Albert A., aid to, in luvestigations 21
Michigan, anclent works in, examined 47
Middleton, James D., explored ancient works 47
explorations made by-... 14
Midéwiwin, the Grand Medicine Socloty of the Ojibwas 48

INDEX.

Page.
Page.
Miller, George, an Omaha, assistance given by 51
Miller, Hon. W. H. H., member ex officio of the establishment ix
Mindeleff, Cosmos, modeling of ruins 53
Mindeleff, Victor, fleld studies of 14
report on architecture of Tusayan and Cibola 53
visit to Casa Grande, Ariz 48
Minerology, progress report for 1886, by Edward S. Dana 80, 81
Minerals, statistics of accessions 28
Minot, Charles Sedgwick. Morphology of the blood corpuscles 429
Mint Buraau, exchanges of 60
Miscellaneous collections 14
papers on anthropology 80, 81
Missouri River, examination of ancient remains 47
Mitchell, Hon. Charles G., member ex officio of the establishment ix
Mitchell, S. Weir, and T. Reichert, researehes upon the venoms of poison- ous serpents. 79
Modelling of ruins, by Bureau of Ethnology 53, 54
Modern pottery, statisties of accessions 27
Mohawks, manners and customs of the, by George A. Allen 615
Moksary's monographic chrysididarum presented to Institution 78
Mollusks, statistics of accessions 27
Money paid by Congressional appropriations for oxchanges 17
for lands of Zodlogical Park 37
Monkeys in Zoological Park 64
Monograph on Indian personal names, by J. Owen Dorsey 60
of noctuide, contributions to, by John B. Smith 30
Montelias, Oscar. The age of bronze in Drypt 499
Moon, photographs of, to be made by Liek Observatory 21
Mooney, James, explorations made by $14,47,48,49$
investigations of Chorokee tribes 61
Morley's Researchos, F. W. Clarke's report on 83
Morocoo, othographic collections made in, by Taleot Williams 13
Morphology of the blood eorpusoles, by Charles Sedgwiek Minot 429
Morrill, Hon. Justin S., a rogent x, xi
introduced bill for fireproofing of portions of Smithsonian building 10
resolution relative to bequest of Dr. Kidder xiii
Morton, Hon, Levi P., a regent x
momber ex ofticio of the establishment ix
Mound explorations of Burean of Ethnolory. 42, 47
investigations, results of 42, 47
Mounds in Iowa, by Clement L. Webster 80, 81
Jefferson County, Temesseo, by f. O. Mecormiek 80, 81
Wisconsin, by Clement L., Wobster 80, 81
of the Western Praries, by Clement L. Webster 80, 81
models of, made by C. Mindeleff 63
Mount Kilemanjaro, collections made in region of 14
Mule door in Zologion Park 64
Mummy cave, model of, made by C. Mindeleff 63
Muñozy Esprielha, acknowledgments due 61
Murdoch, John, librarian 20
situdy on Eskimo bows 81
Murray, Ferris \& Co., acknowledginents due 01
Museum bullding, componsation for, lesolntion by Board of Regents rage.
xiv
plans for oxhibited to Bownd of Regronts xill(See National Musoum.)
Musteal harmony, Konlg's resoarohes on, by syvanus ए. 'Thompson 335
instrmments, statistios of aceessions 27
Maskhogean latgages, biblioginphy of 62
Mythology, Indian, eollection of 42. 48,50,51
of Zanits studled by Miss. Stovenson 60
Myths of the Onondagas colleoted by S. N. B. Hewitt 49
N.
National Aeademy, exchanges of 60
met in lecture hall of Musoum 21
Oivil Service Reform Association, books presented by 77
Geographie Socioty, lectures in Museum lecture hall 31
met in lecture hall of Museum 31
National Museum
accounts examined by oxecutive committeo xxi, xxix
additional building requibed for 4, 26
annual inerease in the colleetions 8, 9
assistance to students 30
casement required 9
catalogre entries 28
Congressional appropriations for x
Congressional appropriation for, disbursed by Smithsonian Institu- tion 3
cosporation of Government Departments 28
departmont of living animals 33
display at Wordd's Columbian Exposition, diflechties attending 23
distribution of dupheate specimens 29
estimatess for 4
exchanges of 60
expenditures ix
explorations 32
oxtension of hours for visitors 31
ineroase of eolleotions 23, 27, 28
labols 31
liberary 31
meotings and lechures 31
persomnel 32
publications 15, 29
roport for 1887 82
report of Seerotary 26
apoolal besemrehes 30)
visitor's 31
Natiomal Zodlogical Pank, aceounts examined by executive committe xxx!
animals in 6.4Congressional act relative to orqanization,eteix, 39
Dr', Frank Baker, atethig manager 41, 74
Page
National Zoological Park, Congrossional approprlation xxxi, xxxix, 37
disbursed by Smithsonian Institution 3
expendituros xxx
forest treos in 65
geology of 72
laying out of grounds 40
map of park 38
moneys puid for land 37
ornithology of 66
roport of acting manager 13, 74
commissionors 38, 39
Seeretary on 34
resignation of Mr. W. T. Hornaday 41
seloction of land 37
transfer to Regents of Institution 39
Natural history of the Cetaceans, contrlbutions to, by F. W. 'Trio 30
Nautical Almanac, exchanges of (30)
Naval architecture, statistics of accessions 27
Observatory, exchanges of 60
offlcers, collections mado by 29
Navarro, Consul-General J. N., aeknowledgments dhe 61
Navigazione Generalo Italiano, acknowledgments due 61
Navy Department, exchanges of 610
Neerology: Hon. S. S. Cox 43
of astronomers 172
Nests, sta+istics of accessions 27
Netherlands, oxchange transmissions to 50, 63
Nothorlands-Amorican Stomm Navigation Company, acknowledgmonts due 61
New Jersoy Stato roports presented to Institution 78
Now South Walos, oxchango trimsmissions to 69, 63
Nowton, IT. A. Memoir of Ehins Loomis 7.41
Now York and Brazil Mail Stemmship Company, aoknowledgments due 61
Mexico Steamship Company, neknowledgments due 01
Now Zoaland, exchango transmissions to 619, 83
Niagara River, history of. By (1. K. Gilbert 231
Nicarngua, exchange transmissions to 59, 6is
Night horon in Zoblogieal Park 6.
Noblo, Hon. John W., commissioner for ostablishment of Zoilogital Park, report of $3!$
Nootuide, contributions to monograph on, by John B. Smith 30
North Ameriea, lingulstie map of 60
North Amorican othology accounts oxamined by executive committoo xix
Congressiomul appropritation forxix, xxxil, xexpenditures$x x, x x i$
estimates for 1
geology, progress roport for 1888. By Nelson IL, Darton (i), 81
lopidoptera, bibliographical cataloguo of the trunsforma- tions of, by Henry Edwards 20, 30
palcontology, progress report for 1880. By J. B. Marcou 79,81
North Carolina, padent works in, examined 17.18. 49
North German Cloyd, acknowledgments due. (i)
Norway, consul-gonoral tor, acknowledgments due 61
exchonge tranemissions to 59, 63
Pago.
Number of packages recolvod by bureau of international exchanges 55, 56
Nut-craoker in Zoological Park 64
Nyctiocorax novius in Zoblogical Park. 64
o.
Obarrio, Consul-Genoral Melchor, acknowledgments duo 61
Observatory, astro-physical, establishment of xii
Oolriohs \& Co., aoknowledgments duo 61
Office of Indian Affairs, oxchanges oí 60
work of Buroau of Ethnology 60
Officers forming the establishment 1
of the Institution ix
Offices, spuce in National Musuem, table of 9
Offloial dcouments, international exchange of 57
Ohio, anclent works in, examined 47
Ojibwas, grand medioine socioty of the 48
Olmstead, Frederiek Law, inspection of grounds for Zo"logrical lark 40
Omaha clothing, paper on, by J. Owen Dorsoy 50
dwollings, by J. Owen Dorsey 50
folklore, paper by J. Owon Dorsey 50
genealogieal tablos, revised by J. Owon Dorsoy 50
Onondaga myths collected by J. N. B. Hewitt 49
system of relationships studied 49
Opossum in Zoslogical Park 64
Orcuitt, C. IR., acknowledgments duo for speoimens 14
offored to mako collections for Museum 33
Ordnance Bureal, U S. Army, oxehanges of 60
Oriental antiquitios, statistics of aecosslons 27
Oriontalists, International Congress of, P. Haupt's report on 85
Ornamental stones, handbook on, by Georgo P. Merrill 30, 80
Ornithology of National Zoological Park 66
Osago traditions, paper on, by Rov. J. Owon Dorsey 54, 82
Osteology, statistics of accessions 27
Ontline history of the exchanges 16
Ovis montane in Zoological Patk 64
Owls in Zoological Palk 84
1 .
Pacifle Mail Stommahip Company, toknowledgments due 61
Packages of specimons recelved by Museum 28
Paoking easos for exchange burean 54
Paints and dyos, statistios of accessions 27
Palahuihan vocabulades collected by J. Curtin 4!
Paleontology, North Americun, progress report for 1886, by J. B. Mareou 79, 81
Paloozoic fossils, statisties of aceossions 27
Panama Railroad Company, aeknowledgments das 61
Panther in Zoblogical Park 04
Paper money, statistics of accessions 27
Papors writton by curators of Maseum. 30
Paraguay, consul-general for, acknowledements duo 81
exchange transmission to 59, 83
a party to Brussels convention 68Pago.
Parkor, Willam Kitohen, momoir of 771.
Parliamontary documonts, fmmediato oxchange of 19
publications prosontod to institution 78
Paroquot in Zoological Park 64
Patents, Commissionor of, member ce ofleio of the ostablishment ix
Patent Offleo, oxehanges of 60
Peccary in Zoological 1'ark 64
Penasco Blanco, ruin of, modolled by Cosmos Mindoloff 68
Pondulum experiments carried on by Coust Survey 21
Porkins, Fredorick S., collection of, Congressional act for purchaso of xli
Permanent funds of the Institution in the U. S. Troastry 2
Perry, Ed., \& Co., acknowledgments she 61
Porsonnel of Museum 32
Porri, exchange transmissions to [09, 63
Phelps Brothors \& Co., acknowlodgmonts due 61
Physical apparatus in astro-physion obsorvatory 11
standards for 13
statistics of aceessions 27
geology, statisties of aceossions 28
rescarch begun by secretary 11
seioneo, grants in aid of 20
strueture of the carth, by ITenry Homessy 201
Physies, progross report for 1886, by Georgo F . Barlere 80, 81
Photographio image, by Prof. Raphael Moldola. 377
Photographe from Mekka presonted to Institution 78
made by Burean of Ethnology 53, 64
of the moon to bo made by Liek Obsorvatory 21
Photography, conditional instruetion in 21, 30
Picicormes columbianus in Zoological Park 84
Plotography, investigations in $42.47,50$
Pilling, James C., bibliographieal work of 62
Pim, Forwood \& Co., neknowledgmonts duo 61
Piney Branch of Roek Croek, arohnoological examination of 47
Pioneer Itino of steamers, aoknowledgments due 61
Plan for increasing tho libery 20
Plans for new Museum building prosented 4
Plants, statistics of accossions 28
usod in Indian materia medlen, collection of 12. 18, 51
Playfair, Sir R. Iambort, the Mediterranem, physieal and historical 250
Poisonous serpents, venoms of, researohes upon, by Sir Woh Mitehell and I. Retohent 79
Polynosia, exchango tranmmissions to 69, 63
Pomares, Consul-Gonoral Mariano, aoknowledgmonts duo 61
Ponka and Omaha songs, by J. Owon Dorsey 60
genoalogical tables revised by J. Owen Donsoy n0
Porcelain, statisties of accessions 27
Poreuphe in Zoological Park 64
Porter, Dr. J. H., artilleial doformation of ohildren 80
Porter, Dr, Noah, resignation of, as regrent xi
rosolition of Thomed of Ragents respeceting 2
Portuguose eonsul-frenoral, Now York, neknowledgments due 01
Portugal, a party to Brassels convontion 58
exchange transmissions to 59, 03
page.
Postage for uxchange buroat 67for Nathonal Masomm:
Congressional appropriation for $x \times 1 i l, x x x l i, x 1$
lixpondituros xxix
Pottory eolleotions mado in Afriea by Tralcott Williams 13
statisties of accossions 27
Eowoll, J. W., alrootor, Bmean of Ethmology 42
roport of Buroang of Ethnology $43,47,54,82$
Praiple doge In Zoological Park 64
Prohistoric anthropology, statistics of acoessions 27
eopper implements, Congressional appropriation for purchate of xli
rbees of Italy, by Canon Isate Taylor 489
Presorvation of collections, U. S. National Museum:
Congressional appropriations for xxi, sxix, xaxll, xl
Expenditures for xxil, xxili, xxir, xxv, xxvi, xxix
Presorvation of Museum specimens from inseots, ote 81
Prestdent of the United States, member ax ofticio of tho establishmemt ix
Primitive home of the Aryans, by A. H. Suyce 475
urn burial, by Dr. J. F. Snyder. (i0)!
Printing for exchango buroau 57
Printing for National Musomm:
Congressional appropriation xxix, xxsii, xl
Expendituros. xxix
Printing of umual reports, Congressional ation deslerd 16
axtm coples of roport ordered by Congress ii
Proceedings of Amorlem Historidal Association printed 20
Bomrd of Rogents, jombinl of $\times 1$
the National Muscum 15, 2!
Prootor, Hon. Redllold, mombor ex oflcio.of the ostablishmont ix
Procyen lotor in Zoblogical Park
Progress of Anthropology in 1880 , by Qtis ' I . Mason 627
in 1880, by Otis 'I' Mason 81
Progress of Astronomy for 1880, 1800, by Willtam O. Winlock 121
for 1880, by William O. Winlook 711, 81
Chomlstive in 1896; by H. Carrington Bolton 30, 81
 (30), 81
North Amoriom geology In 1886, by Nolson If. Durton 7! 9.81
Minembory in 1886, by Edward S. Danu 80, 81
North American paleontology in 1880, by J. 13. Mareou 71).81
Physies In 1880, by Geonge I. Banker 80, 81
Vulcanology and Soismology in 1880, hy (: C'. Rookwood, jr 711. 81
Zodlogy in 1880, by 'Iheodore (xill 80, 81
Protection of animals by Govermment 3i), 313
P'insia, axchange timamissions to ()!
Puble J'intor, exchanges of (3)
Publications. 1.
Amorican Historleal Association (i)
Buremu of Ethnology (i)
('opo, Roptilia 15
l'ublications in reading room 1!
J'ublleatlons, sales of, receipts from xvili
Nutional Musoum (1i, 20.82

INDEX.
l'age.
Publications of Smithsonian Institution, list of 81
Smithsonian ammal reports 15
Smithsonian Contributions to Knowlodge 14, 79
Smithsoulan Miscollaneous Collections 14
Publications, Smithsonian, llst of, by William J. Rheos 15
Pueblo architecture, reports on 53
Indians, study of 43, 48, 50
Pueblos, models of, made by C. Mindeleff 63, 54
Purehase of archæologieal objects, grant for 21
Putoriusjuro in Zoblogical Park 64
Q.
Quarry sites, excavations into 42, 48
Quartermaster Department, assistance rendored by 29
Quartz fibers, by C. V. Boys 315
Queensland, exchange transmissions to 59, 63
R.
Raccoon in Zoological Park 64
Ramsden dividing engine, by J. Elfreth Watkins 721
Rana catesbiana, Zoblogical Park 64
Roading room of library, periodicals in 19
Recelpts of exchange buroan 56
Smithsonian Institution xvii
Recent plants, statistics of accessions 28
Recording exehange corrospondenco, now system of 62
Red Star Line, acknowledgments due. 01
regents of the Institution ix, x
appointed by Sponker of Housc of Reprosentatives xi, 2
cha:ges in x
joumal of proceedings of the board xi
meeting of xi
resolutions passed by board xi, xil, xili, xiv, xv(See, also, Bourd of Regents.)
Reichort, TI., S. Weir Mitoholl and, researches upon the vonoms of poison- ous sorpents. 79
Relighons practicos of North American Tudians studed 47, 50
Reorganization of library carried on 20
Repraments from burcaus on account of exchanges 17
for freight, receipts from xvili
to exehango buroan 57
Report, Ammal of the Ataerionn Historical Association 15
Board of Regents for 1890 i, iv
the Burean of Bthnology $15,54,82$
extra copies of i
of acting managor of National \%oological Parls 04
assistant secretary in charge of National Museum. 29, 82
assistant scorotary, bibllography of Museum, publications in 30
commissioners on Zoblogical Park 38, 39
curator of oxchanges 55, 02
curators of National Museum 82
executive committee of Board of Regents xvii
librarian 75
H. Mis, 129 51
Pago.
Report of Maj. J. W. Powoll on Bureau of Ethnology 43, 47, 82
Secretary for 1889 82
1890 to Board of Regonts 1
appendix to 47
Bureau of Ethnology 42
International exohanges 10
Library 19
National Museum 26
National Zoblogical Park 34
on International Congress of Oriontalists 85
progress in anthropology for 1886, by Otis T. Mason 80, 81
of anthropology for 1890 , by O. T. Mason astronomy for 1880, by William C. Winlock 79, 81
1889, 1890, by William C. Winlock 121
chemistry for 1880, by H. Carrington Bolton 80, 81
geology for 1880, by Nelson H. Darton: 79, 81
geography for 1886, by William Libbey, jr 80, 81
minoralogy for 1880, by Edward S. Dana 80, 81
physles for 1880, by George F. Barkor 80, 81
seismology for 1886, by C. G. Rookwood, jr 79, 81
paleontology for 1886, by Jules Bolknap Marcon 79, 81
vulcanology for 1880, by C. G. Rock wood, jr 79, 81
zoology for 1880, by Theodore Gill 80, 81
Professor Morloy's researches 83
Smithsonian exchanges for 1887, by George II. Boohmer 79
steam tumsportation, by J. Flfroth Watkins 80
Reprosentative rolations of Institution 25
Reprosontatives of foreign govermments, neknowledgmonts due 01
Roptilla, papor on, by Prof. Edward D. Copo 15
Reptilos in Zoblogical Park 13.
statistics of accessions 27
Ressearehes 10
hy curators of Museum 30
othnologic, among the North Amerlean Indians 42,47
upon the vonoms of poisonous serpents, by s. Weir Mitchell and TT, Roichort 79
Rosiduary legaoy of Smithson, amount of 2
Rosignation of Dr. Noah Portor xi
Resistance box ordored for astro-physical observatory 11
Rosolutions by Congress. (Seo Congress, resolutions by.)
Resolntions by Board of Rogents:
Appropriating amual income xil
Bequest of Dr', Jorome II. Kiddor xili
Compensation to Cluss \& Sohultzo xiv
Death of Ton. Samuel S. Cox 2,44
Meotings of Board xv
Ropayment of monoy advanced for exehanges xii, 16, 18
Resignation of Dr. Noah Portor xi,2
Reuleaux, F., teohnology and civilization 705
Roview of the Family Dolphlnide, by F. W. True 30
Rovenue marine, cooperation of 28
Reynolds, Henry L., assisted in work on mound oxplorations 52
explorations mado by 14
mound oxplorations by 47
Page.
Rhoos, William J., chiof clork of the Institution ix
list of Smithsonian publications 15
Ridgway, Robort, paper on humming bleds 30
Rio Salado, ruins on, roport on, by Victor Mindeleff 53
Rook Creok, archeological examination of 47
solected for Zoblogical Park 37
Rookhill, W. W., oxplorations in Thibot 13
Rockwood, C. G., jri, report on progress in vulcanology and seismology in 1886 79, 81
Romanes, George J., Welsmann's theory of heredity 433
Rooky Mountain sheop in Zoßlogical Park 64
Rooms for sciontific work, assignmont of 21
Royal Academy of Budapest presented publications 78
Soclety of London, books prosented by 78
Ruins modelled by Cosmos Mindeleff 53, 54
report on, by Victor Mindeloff 53
Ruiz, Consul-Goneral D. It., acknowledgments duo 61
Rush, Dr. W. H., U. S. Navy, acknowledgments duo for specimens 14
offered to make collections 33
Russia, oxchango transmissions to 50, 63
history of goodetic oporations in, by Col. B. Witkowski and Prof. J. Howard Gore 305
hydrographio publications prosented by Government of 78
Salarios paid by exohange buroau 67
Sales of publications, rocolpts from xvili
San Salvador, consul-goneral for, aeknowledgnents duo 01
oxolange trinsmissions to b9
Gaturday lectures in Musoum leotme hall 31
Gavannah Rivor, Georgia, mound on the, explored 47
Suxony, exchange transmissions to 50
Sayce, Prof. A. H., the primitive home of the Aryans 475
Schliemann, Dr. Henry, requested ropresentation at international con- ference at ancient Troy 25
Schumachor, A., \& Co., neknowledgments duo 61
Scientifle worls, assignment of rooms for 21
Sciumes carolinensis in Zoologieal Pank 64
hudsonius in Koblogical Park 64
Sciuropterus volucella in Zoblogioal Park 64
Sorew threads, standards to be adopted 13
Secrotary communicatod to National Academy invostigations upon tho choapert form of light 11
Secrotary's lottor submitting ammal roport ill
Seoretary of Smithsonian Institution amember of commititee on resolutions rolative to tho late S. S. Cox 43
roport for 1880 82
Sccrotary's report, uppondix to 47
on Bureat of Bthmology 42
international exchangos 16
library 19
National Museum 26
National Zoological Park 34
Secretary of Interior, courtesy of 29
Scoly, II. A., grant for purchaso of arohwological objects 21
Page.
Seismology, progress report for 1880, by C. G. Rookwood, jr 79,81
Sonate, action of, with regard to appropriation for flroproofing of part of Smithsonian building 10
bill relative to new Museum building 4
Sorials added to the library 75
Sorpents, poisonous, venoms of, researohes upon, by S. Woir Mitchell and T. Reiohort 70
Servia, exohango transmissions to 63
a party to Brussols convention 58
Shipaulovi pueblo, model of, made by C. Mindeleff 53
Shufoldt, Dr. R. W., studied bird skeletons 30
Sia, tribe of Pueblo Indians, study of 43, 54
Siderostat in astro-physioal observatory 11
Sign language, investigations in 47, 50
Signal Office, oxchanges of 60
Siletz tribes, gentile system of. Paper by J. Owon Dorsey 50
Sixth annual report of the Bureau of Ethnology $15,54,82$
Sketch of plans for new Musoum building presented 4
Skull, clinieal study of the, paper on, by Dr. Harrison Allon. 15,80
Smith, John B., contribution toward a monograph of tho inseots of tho lepidopterous family Noctuide of tomperato North America 30
Smithson bequest, amount of 2
Smithsonian fund, condition of. xvii
accounts examined by exeontive committoo xvil
ammual reports for 1887 and 1888 15, 79
buiding, continuation of flroproofing 10
should be paid for by Government xil
Contributions to Knowledge 14, 79
vol, xxvi 79
exchanges, reports on, for 1887, by Georgo H. Boohmer 79
Institution, exohanges of 60
Secretary's report for 1890 1
Miscellaneous Colleotions 14
publications, check list of 81
list of, by William J. Rhees 15
Srakes in Zoblogical Park 04
Sryder, B. F., on anchor stones 80, 81
Snyder, Dr. J, F., a primitive urn burial 609
Socleties corresponding with exchange biroan 50, 56
Solar corom, momolis rolating to 14, 70
South Anstralia, oxohange tramsmissions to 60, 63
Sonth Carolim, eap!orations in 47
Spain, eonsul-genoral for, acknowledgments duo 81
exchange transmissions to 59, 63
a party to Brussels convention 58
Sparrow hawk in Zodlogical Park 04
Speoial rescurches by curntors of Musoum 30
Specimens, packages of, recolved by Museum 28
preservation of, from inseets, ote 81
Spectrobolometer in astro-physical obsorvatory 11
Spermophilus tredecimlincillus in Zodlogieal Park 84
Sponges, horny, Lendenfokd's monograph on, presented to Institution 78
Squirrols in Zoological Park 64
Page.
Standard diameters of tubing to be adopted 13
of longth, investigations for determining 21
sorew threads to ba adopted 13
to bo ordored for Smithsonian Institution 13
(Seo Committoe on the international standardsfor iron and steel).
Stanford, Hon. Leland, lotter to, relative to now Musoum building 4, 5
Stanley and the map of Africa. By J. Scott Koltio 277
State Department, co-operation of 28
exchanges of 60
Stetement of goverumental exchangos 60
Stationery fol exohango bureall 57
Statistical bureau, exchanges of 60
Statistics of accessions $27,28,80,81$
Statue of Prof. Baird 20
Steam tronsportation, report on, by J. Elfroth Watkins 80
Stearns, Robert E. C., othno-conehology 81
Steel, standards for, committeo on, mot in Smithsonian building 21
Stercotype plates stored in Smithsonian building 24
Stevenson, Mrs. 'T'. E., fiold studies of 14, 50
Stewert, Consul-Generi ! Alex. I., aeknowledgments due 61
Storage space in National Musoum, table of 9
Strassburg, University of, sends complete set of publications 77
Strix pratincola in Zooblogical Park 64
Structure of the corona. By David P. Todd 79
Subscription to Astronomical Journal 21
Suisun vocubularies colleeted by J. Curtin 49°
Sun-danco, Dakota account of. Papor by J. Owen Dorsey 50
Surgeon-General, exchanges of 60
Survoy of land for Zoblogical Park 40
Swan, J. G.; papor on the Indians of Capo Flattery, new edition 15
Swedon, consul-gencral for, acknowledgments duo 81
oxchange transmissions to 50, 83
parliamontary publications of, presonted to Institution 78
Switzorland, exchange transmissions to 69, 03
a party to Brussels convontion 68
Syrniim nebulosum in Zölogical Park 64
II.
'Tables, Guyot's motoorological and physicial, now odition of 14
showing annual haoronse in Musoum eollections 8.9
T'asmania, exchange transmissions to 59, 63
I'axidormy, conditional instruotion in 21,30
Iraylor, Canon Isamo. The prinitivo races in Italy 480
I'cohnology and civilization. By F. Rouloaux 705
'Tomporeture and lifo. By Hon'y de, Varigny 407
Tonnessee, explorations in, by Burean of Bthnology 49
Testudo clephentopus in Zoological Park 84
nigrita in Zoologleal Pank 04
TCoton folklore. Paper by J. Owon Dorsoy 60
Totuan, pottory colleotions mado in, by Jaleott Williams 13
Towa, puoblo of, model of, mido by C. Mindoloff 63
Toxtlle ari, study of. Papor by W. H. Trohnes 54, 82
'l'extiles, statistics of accessions. 27
Thaw colleotion of physical apparatus in astro-physical obselvatory
Page.
11Thermodynamice, index to literature of, by Alfred Tuckerman
14,81Thibet, explorations in, by W. W. Rockhill
13
Thomas, Cyrus, explorations by 14
paper on aid to study of Maya Codices 54, 82
superintendonco of mound explorations 47
work on mound oxplorations 62
Thompson, Sylvanus P. Koonig's researches on musical harmony 335
Throwing-sticks in National Museum. By Otis'I. Mason 81
Todd, David P. On the structure of the corona 79
"Tonor lecture," by Dr. Harrison Allen 15,80
fund, leeture printed by 21
Toriello, Consul-Goneral Enriquo, acknowlodgments duo 61
Tortolse in Zoollogical Park 64
Tracy, Hon. Bonjamin F., momber ex officio of the establishment ix
Transaotions of bureau of international oxchanges 55, 56
withdrawn from Library of Congress 19
Transfor of transactions from Library of Congress 19
'Iransformations of North American Lepidoptera, bibliographical cata- loguo of, by Honry Edwards 29, 30
Transparenoies made by Burean of Ethnology 53,54
Transportation bills, exchange bureau 67
companios, acknowlodgments dıo 00
statistics of aceessions 27
I'roasury Dopurtmont, exchanges of 60
freo ontríes granted by 28
'I'renty of Brussols 57
Treub, M. A tropical botanioal gardon 389
'Tropical botanical gardon. By M. Troub. 389
Truo, F. W., continues as acting eurator, dopartment of comparative anatomy 32
contribution to the natural history of the Cotaceans, a roviow of the fambly Delphinido 30
Trubingen, Univorsity of, sends comploto set of publications. 77
'Iubing for apparatus, standard diamotors for 13
Tuokomman, Alfeed, index to literature of thomodynamies 14,81
T'ulalip Roservation, Washington, ethnologleal specimons fiom 2!)
'Turkey, consul-genoral fol', acknowledgments duo 61
oxchango trangmissions to 69, 83
'T'urkeys in Zoblogical Parlk 04
'Jurtle dovo in Koological Park 64
'I'usayan, arohitecture of, roport on, by V. Mindolon' 63
'IWana, Chemakum, and Klallam Indhans of Washington. J3y Myron Eolls 80,81
U.
United Statos of America a party to Brussels convontion 58
consuls, co-operation of 28
ministors, co-oporation of 28
U. S. S. Pensucola, offcors and sailors of, acknowledgments duo 33
Univorsities sonding complete sets to library 77
Upsala, University of, books sent by 77
Page.
Uin burial, primitive, by Dr. J. 'I'. Suyder 609
Urocyon virginianus in Zoblogical Park 64
Uisus americanus in Zoblogical Park 64
horribitis in Zooblogical Park 64
Uruguay, consul-genoral for, acknowiedgments due 61
exchange transmissions to 69, 63
a party to Brussels convention 58
Utreeht, Universily of, sends completo set of publicatious 77
V.
Vacancies in Board of Regents, Congressional resolutions respecting xll
Vandon Toorn, W. H., acknowledgments due 61
Vateble, H. A., \& Co., acknowledgmonts due 61
Venezuela, exchange transmissions to. 59, 63
Venoms of poisonotis serpents, rescarches upon. By S. Woir Mitehell and T. Reichert 79
Vermont State reports presented to Institution 78
Vertobrate fossils, statistics of accessions 27
Vestoras Högre Alimänna Lliroverk, book sent by 78
Vietoria, exchange transmissions to 59, 03
Vice-President of the United States member ex offlcio of the establisment. ix
Vincont, Frank, jr., collection of books presented by 78
Virginia deer in Zoological Park 64
Visitors to National Miseum 31
Vocabularics collocted by J. Curtin 40
Mrs. Stevenson 50
Voorheos, Hon. Daniel W., proposed bill for purohase of Capron collection. 23
Vonchers examined by Executive Committeo -3,4
Vulcanology, progress report for 1880, by C. G. Rockwood, jr 79, 81
Vulpes fulluus Zoblogical Park 64
velox in Zoulogical Park 04
W.
Wagner Free Instituto of Science presented Kiener's "Iconographio des Coquillers Vivantes" 31
Waldstein, Dr. Charlos, represented Institution at Intornational Confor- once at anciont 'Troy 25
Walpi, moilol of, made by C. Mindoleff. 53
Wanamaker, Hon. Johm, mombor ax oflcio of tho ostablishment ix
War Dopartment, oxchanges of 60
Washington, 'I'erritory, ethnological specimons from 20
Indians of. By Myron Tolls 80, 81
Waterco River, South Caroina, mounds on the, explorod 47
Watkins, x. Elfreth, report on steam transportation 80
the Ramsden dividing engine 721
Webster, Clement L., Mounds of tho Western Prairles 80,81
on anciont mounds in Iowa 80,81
Johnson County, Iowa 80, 81
Indian graves in Floyd and Chickasaw eounties, lowa 80,81
Wost Indios, oxohange transmissions to 59
Weight of paokuges recoivod by burean of exchanges 65, 50
Welsmann's theory of heredity, by George J. Romanes 433
Weitspekan vocabuiaries collected by J. Curtin 49
Page.
Wolling, Dr. James C., mernber of committce on resolutions rolative to services of the Hon. S. S. Cox 43
a regent $x, x i, x l i, 2$
member of the executive committeo $\mathrm{x}, \mathrm{xxxili}$
resolution on approprlation of annual ineome xii
resolution on money advanced for exehanges xii
Wesley, William, \& Son, acknowledgements due 60
Wheeler, Hon. Joseph, appointed regent xi, 2
a regent x, x_{i}
member of committee on resolutions relative to the Hon. S. S. Cox 43
motion relative death of Hon. S. S. Cox $\mathrm{xy}, \mathrm{xvi}$
White, Hon. Andrew D., a regent x, xi
White Cross Line, acknowledgment due 61
White-headed oaglo in Zoblogioal Park 64
Williams, Talcott, explorations in Africa 13
Wilson \& Asmus, acknowledgments due 61
Wilson, Thomas, oriminal anthropology 017
lectures in Musoum lecture hall 31
Windom, Hon. William, member ex officio of the ostablishment ix
Winlock, William C., appointed honorary ourator of section of physieal apparatus 32
progress in astronomy in 1880 79, 81
report on progress of astronomy for 1889,1800 121
roport on international exchanges 65, 62
Winnobago folk-lore notob, paper by J. Owen Dorsey 50
Wisconsin, ancient mounds in, by Clement L. Wobster 80, 81
Wlshoshkan vocabularies colleeted by J. Curtin 49
Withowski, Col. B., and Prof. J. Howard Goro, history of geodetic opera- tions in Russia 305
Woodohuck in Koological Park 04
Woodward, Robert S., mathomatical theories of the earth 143
Work of astro-physicul observatory oxplained 12
performed in the library 75
Work-shops, excavations into 42,48
Work-shop siace in National Museum, table of 9
World's Columbian Exposition, Congressional act relativo to 23
Fair, Congressional not respecting xxxy
Wright, Peter, \& Sons, acknowledgments due 61
Wartomberg, exchange transmissions to 69, 03
Whabiug, University of, sonds complote sot of publications 77
\mathbf{Y}.
Vear-books, collection of, in oxohango bureai 62
Yuki vocubularies collected by J. Curtin 49
Y.
Zenaiduramacroura in Zoblogical Park 04
Zodlogical Park, condition of, explained by Secretary to Regents xiv
(See National Zoological Park.)
Commission, rooms occupted by 21
Zodlogy, progress roport for 1880, by Theodore Gill 80, 81
Zuñi Indians studiod by Mrs. Stevonson 60
Zuriuh, University of, sends complete set of publications 77

[^0]: * In addition to the abovo $\$ 17,683.77$ paid for salaries under general expenses, $81,850,04$ were puil for services, viz, $\$ 1,500$ from the building accoant, and $\$ 350.04$ from tho library account.

[^1]: *Note.-The payments of salaries for parts of months in Jauuary, March, July, August, October, and December are made on the basis of 31 days, and for the other months (except February) at 30 days.

[^2]: "Act of Congross approved April 30, 1890. t Title 1xxili, sec. 6579, of the Revised Statutes.

[^3]: *A full necount of these prodnctions will be given in the second part of the Annual - Report of the Smithsonian lnstitution for the year. 1880-\%.

[^4]: "The publicationes now doposited in the reading.room are as follows: Tho "Handlingar" of the Royal Swedish Academy; Transaotlons of the Royal Society of Lidinburgh; Transaotions of tho Roval Irish Aoademy; "Skrifter" of the Royal Danish Soclety of Bulences; "Denkeolititten" of the Imporial Acailemy of Sciences, Vienna: Memofrs of the St. Petersburg Academy; "Atti" of the two Aosdemies of the idisal" at Rome, the royal and the pontitical; Nova Aota Academiw Cwsareas Loopolding.

[^5]: Oaroline Germanica Nature Curlosornm; "Abhandlungen" of the Borlin Aeademy; "Nova Acta" of the Acalemy of Upsala. In addition to theso the Phifosophical . Transactions of the Royinl Societis, and the "Comptes-Rendus" of the Fronol Acs"demy of Soiences hisve been deposited in the oflice of the editor,

[^6]: 'These numbers have reference ouly to speeimens received through the Musenin, and do not Inolude specimens recelved for the Natlonal Herbarium through the Department of Agrioulture.
 ${ }^{2}$ Coliections ombined in October, 1889, under Department of Geology. The apparent deorease of mere than 60 per cest. of the estimated total for 1889 ls accounted for (1) by the rejection of several thousands of speolmens from the colleotlon, and (2) by the fact that no estimate of the speoimens In the reserve and dupllcate series is inoluded. Of the total fur 1890 , about 16,000 speolinens consist ohiefly of petrographical material stored away for study and comparisou tn the drawers of table caser.
 ${ }^{3}$ Transferred to the National Zoological Park.

[^7]: *Printed in the report for $18 \$ 6$ and also separately.
 +Printed in the report for 1887 and also separately.

[^8]: "tho following llat shows the tracte in dotail and tho amount ovontually to bo paid for enoll :

[^9]: Mr. S. P. Langley, Secretary of Smithsonian Institution.

[^10]: *In the London Aoademy of Novemher 1, 1890, it is staterl that the congreas was attended by 459 Eliropeans, 16 Americans, 13 Asiatic, and 5 Afrionu scholars. This calculation is evidently based on the supposition that the Swedish and Norwegian subsoribers were all present.

[^11]: " In Arable.
 \dagger The Congress was organized in five sections; the first of which was divided into two sulb-seotions.

 1. Semitio and Islam.
 a Languages and litoraturos of Islam.
 b Semitic languages, other than Arabic; cuneiform texts and inscriptions, etc.
 2. Aryan.
 3. African, inoluding Egyptology.
 4. Central Asia and the Far East.
 5. Malay and Polynesia.
[^12]: * From Holtzendorft and Virchow's Sammlung gemeinverständlioher wisse nschaftheher* l'ortrilye, Heft 67. Hamburg : Verlagsanstalt, oto: Ro-printed from The Monisl, danuary, 1891, vol. i, No. 2. pp. 197-228.

 H, Mis, $129-7$

[^13]: * Usually geometers mentlon only two postulates (Nos. 1 and 2). But slnco to geometry proper it is indifferent whether only the eye, or additional apecial mechanical linstruments are neoesbary, the anthor has regarded it moro correct in point of method to assume five postulates.

[^14]: Note.-The conclusions III and IV appear to be contradiotory to that expreseed in 1. The electrical theory announced by Dr. Hygius in the Bakerian lecture for 1885 seems to reconcile the conclusions I, III, and IV.

[^15]: * Erronsously given as 1888 in the Review of Astronomy for 1887-'88.

[^16]: *Vice-presidential address before the section of Mathematics and Astronomy of the American Association for the Advancement of soience at the Toronto meeting, Augüt, 18\%9. (From the Proceedings Am. A8soe. $\lambda d v$. Soi., vol. xxxvi11.)

[^17]: "Todhunter, Hislory of the Theories of Attraction and the Figure of the Earth. London, 1873, vol. I, art. 195.

[^18]: * Inoyolopedla Metropolitana.
 \dagger Astronomische Naohriohten No. 438, 1841.
 \ddagger Comparison of Standards of Length, made at the ordnance office, Southampton, England, by Capt. A. R. Clarke, R.E. Publıshed by order of the secretary of state for war, 1866.

[^19]: * Clarke, Col. A. R., Geodesy, Oxford, 1880, p. 319.
 f"l'onte l'Astronomie repose sur l'invariablite de l'axe de rotation de la T'erre íla surface du sphoroide torrestre et sur l'uniformitó de cetto rotation." Mécanique Célesto (Parid, 1882), 'Tome v. p, 22.

[^20]: *Stokes, G. G., Mathematical and Physical Papors, Cambridge University Press, 1880, vol. 11 .
 \dagger Geodesy, Chap. xiv.
 | Helmert, Dr. F. R., Dio Mathemalischen und Physikalisohen Theorieon der Höheren (icodlisie, Loipzig, 1880, 1884, in Toil.
 § Méanique Céleste, Tome v, Livro xi.

[^21]: * "Enfin il (Newton) regarde la terre commo homogène, ce qui est oontraireaux observations, qui prouvent incontestablement que les densites des couohes du spheroîde terrestre oroissent de la surface an centre." Mécanique Céleste, Tome v, p. 9.
 f"La régularito aveo laquelle la variation observée des longueurs du pendule is secondes suit la loi du carré da sinus do la latitude pronve que ces conohes sont dis. poseos rógulierement antour du centres do gravito de la terre et que leur forme est a peu près elliptique et de róvolution." Ibid., p. 17.

[^22]: * Mémoire sur l'état inténieur du globe terrestre, par M. Edounr才 Rocho; Momoires de Jasection des sciences de l'Académio des Scionoes ot Lettres de Montpellier, 1880-1884 Tomex.
 \dagger Ibid.

[^23]: * Protogéo, ou do la formation ot des róvolutions du globe, par Loibitz, ouvrage tradnito - - - avoc bio introdnction of des notes par le Dr. Bortrand do SaintGormain, Paris, 1859.

[^24]: * "La question des temperaturos torrestres nous a toujours pari" un des plus grands objets des etudes cosmologiques, ot nous l'avions principalement on voe on établissant In thoorio mathómatique de lu chatomr:" Annales de Chimie et de Physique, 1824, tome XXVII, p. 150.
 †Théorie Mathématique de la Chelcur, Paris, 1835.

[^25]: *Théorie Mathénatique de la Chaleur, Supplomont de, Paris, 1837.
 f"Telle est, dans mon opinion', la cause vérituble do l'angmentation do tompóraturo qui a lieu sur chaque verticale a mosure que l'on s'abaisse an- dessous do la surface du globe."-Théorie Mathónatique de la Chaleur, supplément de, p. 16.

[^26]: *Transactions of the Royal Socict! of E'dinburifh, 1862. I'homson and 'Tait's Natural Philosophy, vol. x, Part 2, Appendix 1).

[^27]: * Recont Advances in Pliysical Soionco, Loondon, 1876.

[^28]: * Geological Reform (The Annivorsnry Address to the Geologioal Socioty for 1860).
 \dagger Roado, T. Mellard, Origin of Mountain Ranges, London, 1886.
 I On the Distribntion of Strain in the Earth's Crust rusulting from Secular Cooling with speoial reference to the growth of continents and the fromation of monntain chains. By Charles Davison, with a note by G. H. Darwin. Pbilosophical Transaotions, vol. 178 (1887), A, pp. 231-249.
 $\$$ Ibid.
 || Fisher, Rev. Osmond, Physics of tho Earth's Crust, second edition, London, 1889, Chapter vili.

[^29]: ${ }^{*}$ Notably, Rov. Osmond Fishor. See his Physics of the Earth's Crust, ohapter viii.
 \dagger Appondix to the Ninth Bridgewater Treatise (by C. Babbage), second edition, London, 1838.
 \ddagger Dutton, Capt. C.E. On, some of the Greater Problems of Physical Geology, Bulletin Philosophical Society of Washington, vol. xi, pp. 51-64.

[^30]: * Essal sur la Constitution ot l'origine du systeme solaire, par M. Edonard Rocho. Mémoires de l'Aoadémie des Sciences el Lettres de Montpellier, 'Ionio vin, 1873.
 \dagger On the Precession of a Viscous Spheroid and on the remote History of the Earth, I'hil. Trans., Part II, 1879. On the secular changes in the Elements of the Orbit of a Satollito rovolving about a tidally distorted Planet, Phil. Trans., Part if, 1880. On the Tidal Friction of a Planet attended by soveral Satellites, and on the Evolition of the Solar System, Phil. Irane,, Part II, 1881.
 § Sur l'éruilibre d'une masse fluide animé d'un monvement do rotation. Acta Mathematica, vol. 7, 1885.
 SOn figures of Equilibrium of Rotating Masses of Fluid, Phil. Trans., vol. 178, 1887.
 || On tho Mechanical Conditions of a Swatm of Moteorites and on Theories of Cosmogony, Phil. Trane., vol. 180, 1889.

[^31]: * From tho K. IL. D. Philosophical Magazine, September and October, 1886, vol. xxII, 11. 233-251 and 328-331.
 |"Lithologieal Studies." Memoirs of Harvard College Musemm, vol, 1, 1). 3, and American Nuturalist, Juno, 1884, p. 587.

[^32]: * l'hilosophical Magazine for October, 1878, p. 265.

[^33]: " "Flilesige Körper sind aber mit einer weit starkoren Compressibilitat begabt, also starro Körper. "
 \dagger Phil. Irans. 1820, p. 541.

[^34]: "See Philobophtoal Transactions for 1861 and 1862.
 t Expansions of metals and glass for 10 O., according to Dulong anid Pellt, at diberent temperatures T.

[^35]: *Proceedinge of R. I, A., 2 d sories, vol. in, Scienco.

[^36]: * See the subjoinod representation of a seetion of the shell and nucleus.

[^37]: * A revidion of the numerionl data from recent astronomical results leads me to conclude that the precession for the solid spherold would be a little less, and about $55^{\prime \prime}$ instoad of 57". This I propose to provo in a short paper, entitled "Note on the anmal' precession oalonlated on the hypothesls of the earth's solidity." This note [appended to this article] leaves the general conelusions of the present paper unaltered.

[^38]: *Monthly Notices of the Royal Astronomical Society, Decomber, 1878, p, 140.

[^39]: "Seo Colonel Clarke's paper in the Philosophical Magazine for August, 1878, where he maintains that recent geodetionl results tend to increase the value of the Earth's elliptieity and to make the measured value approach to that obtained from pendulum observations,

[^40]: "Presidential address before the Geologioal Section of the Brilish Absociation Adv. Sci. at Neworstle, September, 1889. (Report of the British A8800iation, 1880, vol, hax, 111. 552-564.)

[^41]: *Zeitsohrift d, deutsoh. geolog. Ges, Bl, xxxvil, p. 177.

[^42]: "Abhandl. z. geolog. Speoialharto v. Preuseen, eto, Bd. vir, Hert 1: Zeitsohr. d. deutsoh. yeoloy. Ge8ellsoh., 1885, p. 904 ; 1886, p. 367.
 \dagger Hygienisolie Tonoyr'aphie von Strasshury i. F., 1885.
 \mid Alhandl. x. geolog. Speotulkarte v. ELbas8-Lothingen, Ba, vir, Heft 2.
 § Laspeyres: Lיrliuterinugon z. geolog. Specialkarte u. l'reuessn, eto., Blatt Gröhzig, Zörvig and Petersberg.

 If Wahnschaffis: Op, eit, and Zellschr. Id. deutsch. yeolog. Ges., 1886, p. 367.
 H. Mis. 129——15

[^43]: *Falsan ; La Période ylaoiaire, p. 81.

[^44]: "Pohlig: Sitzungel. d. Niederhelnisohen Ge8chlsohaft zil Bonn, 1884: Zeiladhr.a. deutgoh. geolog. Geg., 1887, p. 798. For a very full nooonnt of tho dhwial Buropean and Northom Asiatlo mammallan famas by Woldveh, beo Mém, de l'dead. deo Soienceo do

[^45]: "This essay containe the aubstance of a locturo road to the Amorionn Assooiation for tho Advancoment of Soioneo at its Toronto meotling, Augurt, 1889. (From the Sixth Annnal Report of the Commissioners of tho Stato Resorvation at Nagara, 1888-'89. 'Xranemitted to the legiblaturo Jmmary 22, 1890, pp. 61-84.)

[^46]: * A part of its courbe uppoars as a broken line on the maps in Figa, 3 and 4.

[^47]: " C. Sohnla, jr. I'ravols on an Inland Voyago - - - in tho yoars 1807 and 1808, Now York, $1810,11.85$.
 Do WIt Clinton, Discourso boforo the Now York Historieal Soeioty, 1811, p. 58.
 Fimois Hall. 'I'raols in Canada and tho United States in 1816 and 1817, Boston, 1818, p. 119.
 I'ravols in North America in the yoms 1841-42. Now York, 1845, vol. 2, pp. 86, 87.
 I Smadford Floming. Notes on tho Davenport gravol drift. Canadian Joumal, now sorles, vol, 6, pp. 247-253.
 § Geologieal Sarvoy of Camala, roport to $1803, \mathrm{pp}$. 014, 015.
 || Natural History of Now York. Geologs, Purt IV, pl. 348-354,
 If Commmionted to tho Philosophioal Socioty of Washington, to bo prabliahed in vol, 11 of tho Bulletin of tho Socioty.

[^48]: * Proceedings Am. A8800. ddv. Sci., 37th Meeting (Cleveland), pp, 198-109.

[^49]: lakeonheited. Ice mbeot eromefingiod.

[^50]: * Travels in North America. By Cbarles Lyell. New Yorlr, 1845. Vol. 1i, pp. 77-80. Natural History of Now Yoik. Geology, Part I v. Hy James Hall, pp. 389-390.

[^51]: * Natural History of New York, Geology, Part Iv, pp. 402, 403.
 t Solionce, vol. viII, 1886, p. 205.

[^52]: * Tho south side of this chart is placed uppermost (in violation of the conventional rule) कn that it may accurd with the bird's-eye views.

[^53]: "I am indelited for this suggestion to Mr. W J McGee.

[^54]: * Vice-presidential address Lefore the Geographical Section of the British Association Ally. Soi. meeting at Leels, Soptomber, 1890. (From Nature, September 11, 1890, vol. XLII, pp. 480-4ト5.)

[^55]: *'Fom The Contemporary Review, January, 18!0, vol. LVII, pp. 126-140.

[^56]: *An address on "The Objects of Antaretio Exploration," delivered at the anmual meeting of the Bunkers' Institnte of Australia, at Melbonrne, on Wednealay, August 27. (1'rom Nabure, Oetober 16, 1890, vol. XIII, pp. 601-604.)

[^57]: " 1 verst equala 3,600 Eugllah feet.
 H. Mis. $129-20$

[^58]: *Leoture dolivored at tho Royal Insiltution, on Frilay, Jine 14, 1R89. (From Nature, July 11, 1880, nud October 16, 1890, vols. Xı., pp. 247-251, and Xin, pp. (i04-608.)

[^59]: * Dr. Lodge has been able, by an olaborato arrangoment of screens, to make this attraction just evident to an audienco.--C, V, 13.

[^60]: " Lecture delivered on Suptember 8, 1890, at the Leeds meeting of the British Assooiation.

[^61]: *Road to tho Physion Sosinty of Iomion, May 16, 1800. (From Nature, January 1, 8, and 15, 1891, vol. xıur, pp. 109-203, 224-207, and 240-253.)

[^62]: *These aplendid forks, with their resonators, aloug with other important pieces of Dr. Koenig's apparatus, have since been acquired by the Science and Art Depart. ment for the Soience Collection at South Kensington.

[^63]: *An address delivered at Ileilelberg at the first general session of the sixty-second meeting of the Association of German Naturalists and Physicians, September 18, 1889.
 \dagger From the Deulsohe Rundschau, November, 1889. (Re-printed from the Journal of the American Chemical Society, September, 1889, vol. XI, pp. 101-120.)

[^64]: * Friday evening lecture delivered at the Royal Institution, on May 16, 1890. (From Nature July 10, 1890, vol. xın, pp. 246-250.)

[^65]: * "An Account of a Method of Copying Paintings upon Glass, and of making Profiles by the Agenoy of Light upon Nitrate of Silver. Invented by T. Wedgwood, Esq. With Observations by H. Davy:" Journ. Royal Institution, 1802, p. 170.

[^66]: * For these and other details relating to Fox Talbot's work, necessarily excluded for want of time, I am indebted to his son, Mr. C. H. Talbot, of Lacock Abbey.
 \dagger Photog. Journ. and Trans. Photog. Soo. June 15, 1874.,

[^67]: "I have gone so far as to test this idoa oxperimontally in a proliminary way, the result being, as might lisve bonn antioiphtod, negative. Silvor chlorido, woll darkoned by loug exposure, was extracted with a hot saturatod solution of potassium chloride, and the dissolved portion, after procipitation by water, compared with the ordinary ehlorido by exposare to light. Not the slighteat difference was obsorvable eithor in the rate of coloration or in the colors of the products. Perbaps it may be thought worth while to repeat the experiment, using a mothod analogoun to the "method of fractionation" of Crookes.
 † "Researchos on Light," 2d ed., 1854, p. 80.

[^68]: * Somo dry silver chloride which Mr. Crookes has been good onough to soal up for me in a high vacumm darkens on oxposure quite as rapidly as the dry salt in air. It soon regains its orlginal color when kopt in the dark. It behaves, in fact, just as the chloride is known to bohave when sealod up in ohlorine, although its color is of course much more intense after exposure than is the case with the chloride in chlorine.
 \dagger These results were arrived at in threg ways. In one oase hydrogen was passed through silver oitrate suspended In hot water, and the product extracted with oitric acid. "The result of treating the residue with ehloro hrydie acid, and then dissolving tho silver by dilute nitrio acid, was a rose-tinted ohloride of silvor." In another experiment the dry eitrate was heated in a stream of hydrogen at $212^{\circ} \mathrm{F}$., and the product, which was partly soluble in water, gave a brown residue, which furuished "a

[^69]: *The couneotion between the two phenomena was suggested daring a course of leotures delivererl by mo two years ago ("Chemistry of Photography"" p. 191). I have sincelearnt that the same conolnsion had been arrived at independently by Mr, C. H. Bottamley, of the Yorkshire College, Leeds.

[^70]: *Translated from the Revue des Deux Mondes. January 1, 1890, vol. Xcvir, pp. 102-183.

[^71]: \therefore [The literal translation of the word Buitenzorg is without (beyond) oare.]
 HFr: lus Bogoriensis, the scientilio name of the garden, is derived from Bogor, the native name of Buitonzorg.

[^72]: *Translated from tho Revue des Deux Mondes, May 1, 1889 ; vol, xoin, pp, 176-201.

[^73]: *From the Amorican Naturalist, November, 1890, vol, xxiv, pp, 1020-1023.

[^74]: * From The Contamporary Renlew, May, 1890, vol. ıVII, pl), 680-609. H. Mis. 129——28

[^75]: * Stuce this paper was sent to press, Professor Weismam has published in Nature (February 6, 1890: vol. xir, pp. 317-323) an claborate answer to a orticism of his theory by Professor Yines (Octoler 24, 1889: vol. xi, pp. 621-626). In the course of this answer Professor Weismann says thiat he does attribute ine origh of sexual roproduction to natural selection. This dirootly contradiots what he says in his essays, and for the reasous givou in the text, appears to me an illogionl doparture from his previously logieal attitude. Therewith append quotations in order to revoal the contradiction :
 "But when I maintain that the menning of sexual reproduetion is to render possible the transformation of the higher organisms by moans of natural seleotion, such a statement is not equivalent to the assertion that sexual reprodnotion origimaly onme into existence in order to aebieve this ond. The effoets whith are now produced by sexunl reproduction did not constitute the causes whioh led to its first appoarance, Sexual roproduction camo into existence before it could lead to hereditary individial variability (i. o., to tho possibillty of natural soleotion). Its first appearanco must, therofore, lave had some other eauso [than natural seleetion]; but the nature of this oanse can hardly be determined with any degree of certalinty or preoision from the facts with whioh wo are at present acquainted."-("Essay on the Signifioance of Sexual Roproduction in the Theory of Natural Selection : English Translation," pp. 281282.)
 "I am still of opinion that the origin of sexial reproduotion depends on the advantage whioh it affords to the operation of uatural selection. . . - Sexual reprodnotion has arisen by and for natiral selection as the sole means by which individual variathons can be united and combined in every possible proportion." - Nature, Vol. xla, p. 322.)

 How such opposite statements can be reconoiled I do not myself perceive.-G. J. R., Fobruary 17, 1890.

[^76]: *Address of the Vice-president before the section of Anthropology, of the Amerioan Association for the Advancement of Scienee, at the Indianapolis meeting, August 20, 1890, (From Proceedings Am, A8800. Adv, Sol, vol. xxxix, [pp, 351-373.)

[^77]: * Compare Milton:

 > "A oreature who not prone Aud brute as other ercatures, but ondued With sanctity of reason, might erect His stature, and upright with front serene Govern the rest, self-knowing."
 > Paradise Lost: VII, 506-510.

[^78]: * Since tho nbove vas yritten, my attention bas been called to the following romarkable passage in the works of Dr. Erasmus Darwin. It ocents in his "Jomple of Nature, ' Canto il, foot-note to lino 122.
 "It has been supposed by some that manklud were formerly quadrupeds as well as hermaphrodites; and that some parts of the lody are not yet so convenient to all ereot posture as to a horizontal one; as the fundus of the bladder in an crect posture is not exactly over the Insertion of the urethea; whence it is seldom completely evacuated, and thus renders mankind more subject to the stono than if he had preserved his horizontality." (The preface to this poem is dated Janiary 1, 1802.)

[^79]: * Presidential address bofore the Anthropological Section of the British Association Aiv. Sei, mooting at Leeds, Septembor, 1890. (From Nature, Soptember 18, 1890, Fol, XLAI, pp, 507-510.)

[^80]: "See A. Arcelin, "L'Homme Tertiaire," Paris, 20 rue de la Chaise, 1889.
 I Trais. Herts. Nat. Hist. Soo., vol, I, p. 145; "Address to the Anthrop. Inst.," 1883, Authrop Journ., vol. Xn, p. 565.

[^81]: *From The Contemporary Review, July, 1889, vol. JVi, pp. 106-119.

[^82]: *Bról, "Mélanges de Mythologie et de Líuguistique" (1878), pp. 187-215. Do Harlez, "Introdnotion a l"Élude de l'Avesta" nl. cx cii, sq4. Compare Darmesteter's Introduction to the Kond-Avesta, pt. 1, in "Ihe Sacred Books of the East."

[^83]: *According to Eustathios (in Dion, v, 694).

[^84]: * "Qunsioflicina gentium ant corto velut vagina nationum:" Jordaues, De Getarum sive Gothorum origine, ed. Closs, c. 4.

[^85]: * From I'ke Contemporary Review, August, 1890, vol. IVIH, 1!. 201-270.

[^86]: * The cophalie index gives tho proportion of the breadth of the hoad to the lenglh, and is obtained by dividing the breadth by the longth from front to back, and then multiplying by 100.

[^87]: "'lamblatod from I'Anthropologio, January, 1800, vol, i, p. 25.
 | Porrott mat Chipioz: Mistolre de l'art l'anliquite, vol. x, Epyplo, p. 820. Areolin: Influonce ligypticnne pendant l'age du bronze, in tho Materiaux pour l'histoire do l'homme, 1869, p. 372. In making deop drills in Egypt "a copper knifo" wat discovored at a depth of 24 feot (Mook, Agyptens vormetallisohe zoit, D. 6). 'Tho British Musoum possessed a fow axes of bronzo with desurintions fiom the timo of the sixth dynasty, or about the middle of the third milloniam before the Chriatian orn A Guide to the Lidyptian Roome (in tho British miseum), 1. 48.
 \ddagger Jopsins, Les Mctanx dans les Insoriptions Loyphlicnnes, translated from tho Corman by W. Berend, Parie, 1887, p. 67,

[^88]:
 +Wilkinson: "Manmers and Customis of thos Anciont Egyptians," 1st edilon, vol. 111, pp. 250, 251.
 \$ Evine: "Ansiont Stono Limplomenta of Groat Britati," p. 6 .
 §Rosellini:Monumenti dell' bgitloo della Nubia (Monumonll olnili m, x wivi.) One of these ohisols is not blilbh, ns has been indicated (Rhind: Thebes, Ifs Iombe and their I'enante, 1. 222), but rodalsh brown.

[^89]: "Wilkhanon: "Mannois and Customs of" tho Anciont Egyptimns, vol, uif," In. 249, 252, and 263.

[^90]: "Vyse, "Pyramids of Qisoh," 1,11 . 275, 270. Transaotions of the sacond session of the International Congress of Ovientaliati, hold in London, 1874, pp. 300-399.
 \dagger Maspero, (íuide du Visiteur au Musce de Boulag (Paris, 1884), p. Xiéo

[^91]: "Vyso says ("Yyramids of Gizeh," $1, p, 4$) that tho month of tho atmosphorio camal in question is found partly onlarged before ho bogan his labors thero.
 f'tho soxuples I have expressed in rosjoet to the discovery of iron in the great pyranid are not now presented for the first time ; compare the work of Rhind, pub. lished in 1862, 'Thobes, its 'Tombs and thoir 'lonants, p. 227.
 \ddagger Lepsins, Les Metainx, 1,54 .
 SIn the offelal gulde, printed in 18j0, for the uso of the visitors to tho British Mnsoum (A Gutde to the Eigyptian Room8, p, 40) wo rond: "It is doubtful if the uso of Iron was known at a vory remote period." In the same way people oxprossed thonselves later, in 1884. Soo Journal of the Anthropologionl Institute of Great Britain and Ireland, session of Matol 25, 1884. Compare, also, Perrot and Ohiploz, Histoive de l'Art, etc., vol, 1 (printod 1882), pl. 753, 754, and 830.

[^92]: "Day: Prohistorlo Vie of Iron and Steel, p. 14. Compare Journal of the Anthropological Insiltute, , March 25, 1883. The anthonticity of this discovory is quostioned liy Rhind (Thebes, p. 228). An fron chisel was found under an obelisk at Karnak, which shonld dato from tho olghteenth dynasty (Arcolin, in tho Materiaux, 1869, p. 377), but the detormination of tho age of the obisol is porhaps questionable. If it wore oven correct, the diseovery navertholess is postorion to tho beginning of the Nuw Empiro.

[^93]: "Lopsins : Les motaux,pp, b2 and following, 1 Ho says (p. 63) that tho fron has not ret beon found represented muler his natmo. I'orrot nud Ohiploz: Ilistolre de l'art, vol, 1, p. 753; Chabne: Sur lo nom de for chez les anoiens Rayptiens in tho Comptes rendus do l'Aondomio dos Insoriptions (Janumry 23, 1874), Brugsoli: HieroglyphisohDemotisolies Wörterbuch, vol, v, p. 413, and following.

[^94]: *Tho disoovery is deseribed ly Mariotto in Notice des prinolpailx monuments dlu musés d'antiquités égyptiennes a Boulaq. (Seconl edition, Alexanlria, 1468, pl. 257207), and by Masporo in his Guide du visiteur au Musee de lBoulaq, Parls, 1884, 1p. 77-83 and 320. Compare Pertot and Chiploa, IIstotre de l'dit vol, 1, p. 297, and Eman, Agyptien, p. 612. 'Tho discovery is ropresented in the Revue dol'drohiteolure, 1860.

[^95]: *Sitzungsberiohte dor königl. Preussichen Aoademie Ier W'issenchaften zu Berlin, 1888, vol, Xxxiv, p, 770.
 \dagger Bronzes with the name of Thoutmos III, on that of Hatsohopsitu are doposited in the Boulaq museum (an ax, n chisel, two blades of asaw, etc.) ; Masporo, Guide, oto., pi. 297-299) ; the British Musenm (three axes and a eouple of saws); a Guide to the Eg!ptian rooms, p. 42; the musenm at Loyden (Lwo axes, one saw, oto., Leemans Mon, Legypt du Irusee de Leide, pl. 80, flg, 3 and pl. 90 , figs, 157, 159, Chabas, ILudes sur l'antiquite historique, pp: 76-79; tho colleotion of the Duke of Northmberland at Aluwiok Caslle (ax, two ehisels, a drill, a saw-blado) Biroli, Catalogue of the Colleotion of Egypilian Autiquities at Alnuiok Casile, p. 200, pli, 13.
 \ddagger Birah, Catalogue, p . 200. The same inscriptions arn duplioated also upon tho bronzes that belong to tho oolloction at Alnwiok Castlo.
 \int The colobrated Swedish Egyptologlat, M. Plehl, whose attention 1 called to the importance of this question before one of his visits to Agypt, had tho kiniluess to writo me that a considorable numbes of arme nud bronze instruments, presorved inthe Bonlaq musenm, had ovidently been long fin use, as is domonstrated hy the finot that they were used and re-sharpened again and ugaill.
 $\|$ Champollion Monuments de l'Egypt, pl. 203-264. Rusollini, Momumenti (ivili, pl. 121; Lepalıs Les Meteux, 1. 117, and pl. 11, 1lg. 2-7.

[^96]: *The lyries of Homer npenk somotimes of lron, but these songs were probably not composed until long after the epool of the Irojan war, and cortalily they were not written in the condition in which wo now have Hom. They oanhot then bo In testimony of the knowledge of iron in Groece at the time of Aghmemmon or of Ulyssos.

[^97]: - The figures whioh here reprosont tho oljocts presurved in the misemm at boulat aro oxoonted alier photographs which, through the kind instrmmentally of M. Pioh and M, Bragech Boy, were oxeon ted for me. The desoription of tho sumptnons arme in the tomb of A'hhotop are taken from tho Gulde du Fisilour au Musée do Boulaq, by Masporo, pp. 79-83. Comparo Emman, Edypten, p. 612.
 1 Fig. 12 is designed from Fig, boi in the flrst volime of Porrot and Chipiez, ouvr. cif., whors it is oxactly indioated as ropresonting a pin.

[^98]: * According to Erman (Agypten, p, 612) the middle of this facet is covered with blue enamel of the very deopest slinde.
 f In Materiaux pour l'Hist de l'Homme, 1869, pl, 10, Fig, 3, an Hgytian axo is reprosonted whioh, necording to p. 378, shonla have straight bordors, but the designs of the plate referred to aro not suffolontly exact to draw any bonolusions. I havo written to the musemm at Bonlaq, where the flgured axe slrould havo boen deposited, to inquire about it, but have rocoived 10 roply.

 I Intermediate forms botween figures $3: 2$ and 33 ure reprodiseed from tho monuments at Thebes, in tho Mamuers and Gustoms of the Anoient Eifyptians, by Wilkinson (flrst odition), vol. 1, j, 325. Comp, Lepsins, Denkmaler aks Agypton und dethopion. Vol, 11, Pl. 132.
 §Axe blades of preoisely the same form an in Fig. 33 (without a handle), aro doposited one at the Louvre and the other in the collection of Mr, Green woll at Durham. In theso two, as in the original of Fig. 33 , tho borders around the two semicireular aperturos are in slightreliof. Similar axes to those of Fig. 33 may be sech among the reproduotlous of tho tivolfth dynasty. Lopsilus, les Métaux, vol, I1, P1, 132 iand Wilkinson, Manners and Cisstoms, vol, I, D. 325, Nigs. 5 and 6.

[^99]: "A slmilar celt in lironze, the phifons of whith do not extend as far as those in Fig, 40, is deposited in, tho Loyden ünsoum. Leoman's Monumonts Efyptiens du. Muséa de Leide, PI, 80, Fig. 6. Chubas, Etude stur l'antiyuite historique, p. 76.
 t 'The hilt is lialf hom, half ivory (Prisse d'Avomes Momuments Foynt, Pl, 46, Chabas, Eludes sur l'antiquite historique, 1. (12). Tho work quoted by Prisso d'Avonnes as well as many other books of importance for thise ossay, is not, at Stookholm,
 ITho original of Fig. 9 is doposted in tho British Masenm. The handle is prolonged into a narrow tongno whioh orosses tho hilt. (Komblor Hore ferales Pl, 8, Fig. 3, p. 156.) Thore another ponimed is montioned doposited in the British Museum, "a bronzo or silvor hitt whioh unitos tho pommol of ivory to tho blade." On the ocoasion of a session of the Institute of Areheologlonl Corrospondences at Rome, on the 28th of Fobruary, 1870, I saw w magnifionet poniurd of tho same typeas Fig. 9. It belonged to Mr. Alox. Castellini, who had reedived it from Marlotta. Tho poniard, with tho two nsigul holes, was of cedar wood, ontirely covered with gold. The lower part of the hilt was of silver, ormamented with gold rivets, aymmotrionlly placed, Along the middle of the blado was a simple line in reliof, the greater part of whito had slinrpedges.
 §The origlinal of Fig . 10 oonstilutes a portion of the colleotion of Mr. Greonwell at Durham. I owe the design of the later and of other Bgyptian bronzes doposited m the same collootion to my friond Mr. Sven Soderberg, of Latid.

[^100]: * Rosellini, Monmmenti Clvili, P1, 121.
 \dagger Evaus. The anoient luronze implomenta of (ireat Britali,, p. 203.
 \ddagger Bastian and Voss. Des Bronzesohwerter Ley K, Museums zu Berlin, D', xvi, Fig. 32.

[^101]: *Porrot and Chipiez, Onvr. oit, vol, 1, Fig, 173. Comp. Wilklason, Mannera and Customs, p. 201. The points are often painted rod, and oonsequently were of bronze. (Lepsins, Les Mélaux), Pl, II, Fige, 4 and 12.
 t The onginal of lig. 41 belongs to the museum at Boulaq. The rent is not only to be soon upoll tho sooket part, which is below the ummencomont of the blade, but alvo above it. A slmilar lance polnt of Theban bronze forms a part of tho eolleotion of Mr. (treenwell at Durlinu. Compare, Mémoires de la Sociefé royale des Anliquaires du Vorv, 1873-'74, p. 128, Flg. 3.
 †'The Louvre possesses an Egyptlan lanoe polnt of bionzo, the blade of whoh is not so narrow as that in Fig. 41, not of an equal wiath. Still wider is a lanoe point which belongs to thes Berlh Museum (Wilkinson, Mammers and Gustoms, vol, $1, p$. 312, Fig. 34a), A lance polit with a blade of unusuial longth, wide at bottom, but narrow at the top, is represented in the work last eited, vol, i, D. 406 .
 Н. Mie. $129 — 33$

[^102]: "Lepsilus. Los Méteanx, Pl, 1n. Fig. 19, of the same plate provos that bronze knives were also used for shaving off tho lair.
 \dagger Lepslus Les Méteaux, Pl, 11, Fig, 13 (sickle), Flg, 20 (mirror), anilig. 22 (harp),
 $\ddagger \mathrm{D}^{\prime}$ Athanasi. Account of lesearches, 1. 183,
 § In more recent Egyptian bronzes wo often meet with lend, nuil perhaps zline. Bibra. Dle Bronzen der allen und altesten Volker, , p U4.
 \# Blbra, Die Bronzen, p, 04.
 If Birtish Museum. A guide to the Egypllan rooms (Lunilon 18i!), 11. 40.
 ** Manners and Oustoms, vol, III. 'l'ho speolal abaiy'ses upon whioh this datum is based are not however, quated.

[^103]: * Ermau. Agypiten, p. 613.

[^104]: *'The flgures findioate the relation between the objects and their natural nize. It issometimes very diffualt to distinguish whether the hundles are of wood or bono.

[^105]: *Popular Soionce Montlily, 1877, vol. 1I, 1. 573, at seq.

[^106]: *Tho Palenquo tablot, p. 49. \quad Antiquitios of Southern Indians, p. 190.

[^107]: * A roport on the Socond Intemational Congross of Criminal Anthropology, hold at, Parin, August, 1309. By 'Imomas Wingon, ha. D., emrator of prohistorlo anthropology of the U. S. National Masemm, nppouten as dolognto from the Simithsoninn Iustitution to the said Congreas.

[^108]: *The legislatures of Massathusetts and Now Jersey have lately adopted a system of conditional liberation.

[^109]: *Translation by Mr. Spearman.

[^110]: May $15,1 \infty 00$, vol, xair, pl, $5 n-(61$.

[^111]: * 'I'ranslated from Prometherus (Berlin), 1890, vol, i, 1pp, 625, 641, and 6i6i, 11. Mis. 190_-45
 $705{ }^{\circ}$

[^112]: - Deposited in tho U. S. National Musomm by Dr. Ionry Morton, president, Stevens Instituto of 'Technology, Hobokon, New Jorsey.
 A. Mis. $129-46$

[^113]: "Compare Isaiah 38: 8, revised version: "I will cause the shadow on the steps, which is gono down on the dial of Ahaz with the sun, to return backward ten steps, so the sun returned ten steps on the dial whereon it was gone down."
 \dagger George Smith, "Assyrian Discoverles," p. 408.
 \ddagger Vitruvius, who wrote in the first contury B. C., gives in Book m, chap. 6, directions for using the gnomon to uscertain the nortle and south line in laying out the streets of a city, thms indicating that the Romans were not faniliar with the magnetic needlo.

[^114]: *"I am of opinion that the numbers inder the month of Marchesvan, 140° and 70° are errors in the Assyrian copy and should be 150 " and 750 ." (George Smith's "Assyrian Discoverles," p. 407.)

[^115]: * The decimal method is in all respeets comparable with our own and was used by preferenco th the Assyrian period. In it words and signt were used whieh were precisely equivalent to one "hnudreds" and "thonsands." (Sayee and Bosanquot, vol. 40, Monthlý Nolices, Royal Astronomical Sooiely.)
 \dagger Ginscoigne is said to have invented a micrometer about 1640.
 \ddagger Horrocks observed the first transit of Vonus that was carefully noticed November 24, o. s. 1639 , that predioted by Kepler in 1631 being invisible in Europo.
 § Ezekiol 40: 3, revised version: "And he brought mo thither, and behold there was a man, whose appearance was like the appearance of brass, with a line of flax in his hand, and a measuring reed." Same ohapter, verse 5: "And behold, a wall on the outside of the house round abont, and in the man's hand a moasuring reed of 6 oubits long of a cubit and an haudbreadtheach; so he measured the thickness of the bnilding one reed; mal the height one reed."

[^116]: * An electro replica of Tycho Brahe's quadrant, irron the original in the britieh Museum, is deposited in the Smithsonian Institution. Triangular diagonals are not found in this instrmment. ''ycho Brahe's instruments had the advantage of long radil, which rendercd any inequalities that might occur in hils divisions of less value than instruments of short radii; the smallest subdivisious into which he professed to mark his spaces wore 10^{\prime} each.
 \dagger The errors of Hevelius' large sextant for 6^{\prime} radius used about 1650 , amounted to $15^{\prime \prime}$ or $20^{\prime \prime}$.

[^117]: "See Rees' Encyclopiedia, vol. II: "Cutting engines."

[^118]: * This is the same which Mr. Bird used in divin!ing lis 8-leet mural quadrant and was presented to the Royal Socioty by Mr. Bird's oxecutors.

[^119]: * A memorial address. delivered in Osborn Hall (Yale College, Now Haven, Connecticut), April 11, 1890. (From the American Journal of Science, June, 889, vol. xxxix, pp. 427-455.)

[^120]: *Letter to Aloxander Small, May 10, 1760.

[^121]:

