Siwalik plant megafossil diversity in the Eastern Himalayas: A review

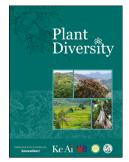
Mahasin Ali Khan, Sumana Mahato, Robert A. Spicer, Teresa E.V. Spicer, Ashif Ali, Taposhi Hazra, Subir Bera

PII: S2468-2659(22)00128-7

DOI: https://doi.org/10.1016/j.pld.2022.12.003

Reference: PLD 385

To appear in: Plant Diversity


- Received Date: 31 July 2022
- Revised Date: 5 December 2022

Accepted Date: 8 December 2022

Please cite this article as: Khan, M.A., Mahato, S., Spicer, R.A., Spicer, T.E.V., Ali, A., Hazra, T., Bera, S., Siwalik plant megafossil diversity in the Eastern Himalayas: A review, *Plant Diversity*, https://doi.org/10.1016/j.pld.2022.12.003.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

1 Siwalik Plant Megafossil Diversity in the Eastern Himalayas: A

2 **Review**

3 Mahasin Ali Khan^{1*+}, Sumana Mahato¹⁺, Robert A. Spicer^{2, 3}, Teresa E. V. Spicer², Ashif

4 Ali¹, Taposhi Hazra¹ and Subir Bera⁴

- ⁵ ¹Palaeobotany and Palynology Laboratory, Department of Botany, Sidho-Kanho-Birsha
- 6 University, Ranchi Road, Purulia-723104, India
- 7 ²CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden,
- 8 Chinese Academy of Sciences, Mengla 666303, P.R. China
- ⁹ ³School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes,
- 10 MK7 6AA, UK.
- ⁴Centre of Advanced Study, Department of Botany, University of Calcutta, 35, B.C. Road,
- 12 Kolkata-700019, India

13 ***Corresponding author, E-mail: khan.mahasinali@gmail.com**

- 14 + These authors contributed equally to this work.
- 15
- 16

1 Siwalik plant megafossil diversity in the Eastern Himalayas: A

2 review

3 Mahasin Ali Khan^{1*+}, Sumana Mahato¹⁺, Robert A. Spicer^{2, 3}, Teresa E.V. Spicer², Ashif

4 Ali¹, Taposhi Hazra¹, Subir Bera⁴

- ⁵ ¹Palaeobotany and Palynology Laboratory, Department of Botany, Sidho-Kanho-Birsha
- 6 University, Ranchi Road, Purulia 723104, India
- 7 ²CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden,
- 8 Chinese Academy of Sciences, Mengla 666303, P.R. China
- 9 ³School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes,
- 10 MK7 6AA, UK
- ⁴Centre of Advanced Study, Department of Botany, University of Calcutta, 35, B.C. Road,
- 12 Kolkata 700019, India

13 ***Corresponding author, E-mail: khan.mahasinali@gmail.com**

- 14 + These authors contributed equally to this work.
- 15
- 16
- 10
- 17
- 18
- 19
- 20
- 21
- 21
- 22

23 Abstract

24 The Eastern Himalayas are renowned for their high plant diversity. To understand how this 25 modern botanical richness formed, it is critical to investigate past plant biodiversity preserved as 26 fossils throughout the eastern Himalayan Siwalik succession (middle Miocene-early 27 Pleistocene). Here, we present a summary of plant diversity records that document Neogene 28 floristic and climate changes. We do this by compiling published records of megafossil plant 29 remains, because these offer better spatial and temporal resolution than do palynological records. 30 Analyses of the Siwalik floral assemblages based on the distribution of the nearest living relative 31 taxa suggest that a tropical wet evergreen forest was growing in a warm humid monsoonal 32 climate at the deposition time. This qualitative interpretation is also corroborated by published 33 CLAMP (Climate Leaf Analysis Multivariate Program) analyses. Here, we also reconstruct the 34 climate by applying a new common proxy WorldClim2 calibration. This allows the detection of 35 subtle climate differences between floral assemblages free of artefacts introduced by using 36 different methodologies and climate calibrations. An analysis of the Siwalik floras indicates that 37 there was a gradual change in floral composition. The lower Siwalik assemblages provide 38 evidence of a predominance of evergreen elements. An increase in deciduous elements in the 39 floral composition is noticed towards the close of the middle Siwalik and the beginning of the 40 upper Siwalik formation. This change reflects a climatic difference between Miocene and Plio-41 Pleistocene times. This review helps us to understand under what paleoenvironmental conditions 42 plant diversity occurred and evolved in the eastern Himalayas throughout the Cenozoic. 43

44 Keywords: Megafossils; Siwalik; Miocene–Pleistocene; Palaeovegetation; Palaeoenvironment;
45 Eastern Himalayas

46 **1. Introduction**

47 'Siwalik' sediments comprise a thick (about 7000 m) succession of Neogene predominantly 48 freshwater coarsely bedded sandstone, siltstone, clay, and conglomeratic molassic deposits 49 exposed along the length of the Himalayan foothills from the Potwar Plateau of Pakistan in the 50 west to Assam in the east (Parkash et al., 1980; Bora and Shukla, 2005; Chakrabarti, 2016). They 51 were deposited in a variety of fluvial environments, including piedmonts, outwash plains, 52 channels, floodplains, and oxbow lakes, although some record marine influence (Taral et al., 53 2019; Debnath et al., 2021). They have accumulated close to sea level in a long but narrow 54 foredeep to the south of the rising Himalayas since the middle Miocene time (Bora and Shukla, 55 2005; Chakrabarti, 2016). The Siwalik succession is generally subdivided into three subgroups, 56 namely the lower, middle, and upper Siwaliks, and their ages are assigned to middle Miocene, 57 late Pliocene–early Pliocene, and late Pliocene-early Pleistocene respectively (Pilgrim, 1910, 58 1913; Johnson et al., 1985; Ranga Rao et al., 1988; Valdiya, 2002). During the latest phase of the 59 rise of the Himalayas, in Pleistocene to Recent times, 'Siwalik' sediments were uplifted, folded, 60 and faulted to form a continuous mountain range of relatively low height ranging from 61 1000–1200 m a.s.l., 2400 km in length and 20–25 km in width. From west to east along their 62 length the Siwaliks have been divided into seven sectors: Jammu, Himachal, Uttarakhand, Nepal, 63 Darjeeling, Bhutan, and the Southeastern Himalaya, often referred to in the literature as the 64 Southeastern Himalaya (Karunakaran and Ranga Rao, 1976; Ranga Rao et al., 1979). Compared 65 to their outcrops in the western and central Himalayas, the eastern Himalayan Siwaliks occur as a 66 thinner and discontinuous belt. The Darjeeling, Bhutan, and Southeastern Himalaya Siwalik 67 sectors of the eastern Himalayas are the focus of the present review.

68	Although a rich vertebrate fauna has been reported from eastern Himalayan Siwalik
69	sediments (Medlicott, 1865; Pilgrim, 1910, 1913; Singh, 1975, 1983; Acharyya et al., 1987),
70	which has helped in establishing the stratigraphy, classification, and depositional environments
71	of the Siwalik Group of rocks, comparatively little systematic work has been carried out on the
72	plant fossils entombed in these beds. Here, we explore the floral composition within the different
73	units of the Siwalik succession in the eastern Himalayan sectors and trace how the climate and
74	floras have changed through time from the middle Miocene through the Pleistocene to the
75	present using a common proxy framework that allows direct climatic comparison between fossil
76	sites free of artefacts that might otherwise be introduced by using a range of proxies differently
77	calibrated.

The Siwalik floras offer considerable potential for studies of Neogene vegetation vis-à-vis 78 79 climate change, including monsoon signatures, elevation changes within the Himalayan and 80 Tibetan region, and plant biogeography since the middle Miocene (Prasad, 2008; Khan et al., 81 2014a, 2019a). The recovered fossil floras from the different eastern Siwalik sectors comprise 82 mainly leaves of woody dicot angiosperms (Mehrotra et al., 1999; Prasad et al., 1999, 2004; 83 Prasad and Tripathi, 2000; Prasad, 2008; Khan et al., 2014a; Srivastava et al., 2018). Here, we 84 review fossil floras recovered from the Darjeeling, Bhutan, and Southeastern Himalaya Siwalik 85 sectors of the eastern Himalayas and reconstruct the climate by applying a new common proxy 86 and calibration to all the currently available eastern Siwalik fossil floras. The use of a common 87 proxy with the same calibration has been lacking thus far as different authors tend to apply 88 different methodologies and the methodologies themselves have evolved over time. This mix of 89 approaches means detection and quantification of subtle changes in climate over time is hard to

90	achieve and ambiguous at best. By using a common analytical framework, we provide insights
91	into the monsoon evolution during Siwalik depositional period in the eastern Himalayas.
92	In the present assessment, we compile all palaeobotanical plant data from published
93	literature to document plant diversity in the eastern Himalayas throughout the Siwalik
94	succession. We consider only fossil taxa represented by megafossils (leaves, wood, fruits,
95	fruiting calyx, and seeds). Potential megafossils, especially leaves, cannot travel far from their
96	point of origin before fossilization and remain identifiable (Ferguson, 1985; Spicer and Wolfe,
97	1987; Spicer, 1991) and are destroyed when the sediments hosting them are reworked. Pollen
98	and spores (microfossils), however, can travel long distances up and down the slope prior to final
99	burial and still appear pristine, and can be reworked many times. Moreover, they often cannot be
100	identified to a fine enough taxonomic resolution using only a light microscope (Ferguson et al.,
101	2007). By focusing on megafossils we ensure that we are reconstructing vegetation local to the
102	fossil site, and so potentially are able to detect fine-scale changes in space and time.
103	We first briefly introduce the present-day floristic composition in the eastern Himalayas,
104	then present known fossil families, genera, and species to depict the diversity of Siwalik plants
105	and ecosystems, and then analyze the inferred floristic characters and changes. We also
106	summarize the Siwalik climate evolution in the eastern Himalayas. The present review aims to
107	facilitate access to the rich Siwalik palaeobotanical record of the eastern Himalayas. We also re-
108	examine the eastern Himalayan Siwalik Mio-Pleistocene climate and introduce new quantitative
109	proxy palaeo-humidity measurements in order to characterize better the eastern Himalayan
110	environment during a critical time of Himalayan uplift and associated evolution (Ding et al.,
111	2017; Bhatia et al., 2021, 2022).
112	

113 **2. Geological setting**

114 Pilgrim (1913) divided the Siwalik succession into three units, namely the lower (middle 115 Miocene), middle (late Miocene to early Pliocene), and upper (late Pliocene to early 116 Pleistocene). The Siwalik sediments are characterized by alternating sandstone and mudstone 117 facies, with the finer sediments very often containing abundant biota (Chakrabarti, 2016). In 118 general Siwalik sediments exhibit a coarsening trend over time, but even the youngest units 119 contain fine-grained beds that are fossiliferous. Here, we represent a generalized 120 lithostratigraphy of the Siwalik sediments exposed in the eastern Himalayas (Table 1; Figs. 1 and 121 2). In the Darjeeling area, this is based on Ganguly and Rao (1970), Acharya (1994), and Taral et 122 al. (2017); in Bhutan, we refer to Coutand et al. (2016), while in the Southeastern Himalaya we 123 rely on Anand-Prakesh and Singh (2000) and Singh (2007). The ages of the sedimentary 124 succession in different Siwalik sectors of the eastern Himalayas have been quantified by means of magnetostratigraphy (Chirouze et al., 2012, Coutand et al., 2016). Magnetostratigraphic 125 126 correlations indicate that the Bhutan Siwalik Group was deposited during the latest Miocene and 127 the Pleistocene, between ~7 million years ago (Ma) and ~1 Ma, and that the boundary between 128 lower and middle Siwaliks can be dated to ~6 Ma, the middle to upper Siwalik to 3.8 Ma, and the 129 top of the section as ~1 Ma (Coutand et al., 2016). In the Southeastern Himalaya, the Siwalik 130 Group was deposited between 13 and 2.5 Ma, with the transition between the lower and middle 131 Siwaliks dated at about 10.5 Ma and the middle to upper Siwalik transition at 2.6 Ma (Chirouze 132 et al., 2012). The boundary age differences exhibited among the different parts of the eastern 133 Himalayas could be due to temporal and locational changes in the various loci of deposition as 134 well as local erosion events.

135

136 **3. Modern floristic composition of the eastern Himalayas**

To contextualize megafossil records from the eastern Himalayas, it is useful to consider the
rich and diverse modern flora of the region. At elevations similar to those inferred for the source
vegetation of the Siwalik fossil assemblages, modern vegetation close to the fossil localities in
the eastern Himalayas is characterized as warm humid tropical (Champion and Seth, 1968;
Biswas et al., 1976; Grierson and Long, 1983; 1996; Kaul and Haridasan, 1987; Hazra et al.,
1996; Baishya et al., 2001).

143 The eastern Himalayas are considered 'crisis ecoregions' and 'biodiversity hotspots' 144 (Brooks et al., 2006). This region is also a meeting ground for the Indo-Malayan, Palearctic, and Sino-Japanese biogeographical realms, and has diverse biota as well as diverse ecological and 145 146 elevational gradients (CEPF, 2005, 2007). The complex topography and extreme elevational 147 gradients from less than 300 m (tropical lowlands) to more than 8,000 m (high mountains) have 148 led to the development of a variety of floristic as well as vegetation patterns. Climate-dependent 149 vegetation is largely determined by decreasing moisture and temperature with increasing 150 elevations (thermal and hygrometric terrestrial lapse rates), which vary through time, affording 151 opportunities for plant migrations, novel juxtapositions, and speciation. The Himalayan range to 152 the north acts as a barrier to the southwest monsoon from the Bay of Bengal, causing the 153 moisture regime to decrease westwards along the Siwaliks, and comparatively more rain is 154 received in the East. The complex mountain topography creates diverse bioclimatic zones, an 155 exceptionally rich biodiversity assemblage, and 'sky' island conditions for many species. 156 Broadly, vegetation in the eastern Himalayas can be categorized into tropical, sub-tropical, warm 157 temperate, cool temperate, sub-alpine, and alpine types in ascending order based on parameters

158	such as physiognomy, floral composition, habitat conditions, and physiography (WWF and
159	ICIMOD 2001).

160 Takhtajan (1969) regarded the eastern Himalayas as the 'cradle' of flowering plants. The 161 region is also well known for its botanically curious and rare species (e.g., Sapria himalayana 162 Griff., Rafflesiaceae). Nearly 50% of the total flowering plants recorded in India are from the 163 northeastern region. The genus *Rhododendron* (Ericaceae) is a remarkable taxon of showy 164 plants, with most confined to this region and a substantial number of endemic species (Pradhan 165 and Lachungpa, 1990). The eastern Himalayan region is rich in endemic floras and many species have value as medicinal or edible plants (Sundrival, 1999). 166 167 Several species, namely Shorea robusta C.F. Gaertn., Mesua ferrea L., Syzygium cumini 168 (L.) Skeels, Terminalia paniculata Roth., are dominant in northern tropical wet evergreen forests 169 (150 m altitude); Magnolia L., Terminalia elliptica Willd., and Bombax ceiba L. in northern sub-170 tropical semi-evergreen forests (150-230 m); Chukrasia tabularis A. Juss., Gmelina arborea 171 Roxb, Rhododendron arboretum Sm., Dalbergia sissoo Roxb. in North India moist deciduous 172 forests (230–300 m); Madhuca longifolia (J. Konig) J.F. Macbr., Gordonia chilaunia, 173 Terminalia elliptica, Gossypium L., Toona ciliata M. Roem. and Cinnamomum glaucescens 174 (Nees) Hand. Mazz. in Northern sub-tropical broad-leaved wet forests (300–1,650 m altitude); 175 Senegalia catechu (L. f.) P.J.H. Hurter & Mabb., Abies densa Griff., Tsuga canadensis Carrière, 176 Acer L. in northern montane wet temperature forests (1,650–3,000 m); Madhuca longifolia (J. 177 Konig) J.F. Macbr., Schima wallichii (DC.) Korth., Castanopsis indica (Roxb. ex Lindl.) A. DC., 178 Terminalia elliptica, Duabanga grandiflora Walp., Cassia fistula L., Annona muricata L. in east 179 Himalayan moist temperature forests (1,500–1,800 m) and Ficus religiosa L., Acer, 180 Exbucklandia populnea (R.Br. ex Griff.) R.W.Br., Ceiba pentandra (L.) Gaertn., Prunus

181	undulata Buch. Ham. ex D. Don, Castanopsis (D. Don) Spach, Rhododendron L., Salix L. in
182	sub-alpine forests (3,000–3,660 m) (Grierson and Long, 1983; Kaul and Haridasan, 1987; Hazra
183	et al., 1996; Baishya et al., 2001).
184	In and around the fossil localities the principal constituents of tropical moist semi-
185	evergreen to deciduous forests are Pongamia pinnata (L.) Pierre, Bauhinia purpurea L., Albizia
186	sp. L., Dalbergia sisso (Fabaceae); Duabanga grandiflora (D.C.) Walp., Lagerstroemia
187	parviflora Roxb. (Lythraceae); Terminalia catappa L., T. chebula Retz., T. miocarpa F. Muell.
188	(Combretaceae); Litsea sp. Lam., Cinnamomum bejolghota (Buch. Ham.) Sweet, Actinodaphne
189	angustifolia (Blume) Nees, A. obovata (Nees) Blume, Phoebe goalparensis Hutch. (Lauraceae);
190	Gynocardia odorata R.Br. (Achariaceae); Calophyllum polyanthum Wall. ex Choisy
191	(Calophyllaceae); Bombax malabaricum D.C. (Malvaceae); Macaranga denticulata (Blume)
192	Müll. Arg., Mallotus Lour. (Euphorbiaceae); Knema Lour. (Myristicaceae); Elaeocarpus
193	aristatus Roxb. (Elaeocarpaceae); Shorea robusta (Dipterocarpaceae); Gmelina arborea Roxb.
194	ex Sm., Vitex quinata (Lour.) F.N. Williams (Lamiaceae); Dillenia pentagyna Roxb.
195	(Dilleniaceae); Sterculia villosa Roxb. ex Sm., Grewia eriocarpa Juss., Grewia zizyphifolia
196	Baill. (Malvaceae); Garuga pinnata Roxb. (Burseraceae); Meliosma simplicifolia (Roxb.) Walp.
197	(Sabiaceae); Spondias axillaris Roxb. B.L. Burtt & A.W. Hill (Anacardiaceae).
198	
199	4. Research history of Palaeobotany in eastern Himalayan Siwalik
200	The eastern Himalayas hosts many Cenozoic sedimentary basins that have yielded Siwalik

- 201 deposits that bear micro and mega plant fossils (Chakrobarty et al., 2020). The Lower, Middle,
- and Upper Siwalik floral archives range from the middle Miocene to the early Pleistocene (Table
- 203 1). The first information about the occurrence of plant fossils in the eastern Himalaya Siwaliks

204	dates back to 1969 when Pathak (1969) initially described a few fragmentary angiosperm leaves
205	from the middle Siwalik sediments of the Mahanadi section of Darjeeling. In subsequent years
206	other geologists and paleobotanists also noted the presence of plant remains in the Siwalik
207	sediments of the eastern Himalayas (Antal and Awasthi, 1993; Antal and Prasad, 1995, 1996a, b,
208	c, 1997, 1998). During the last few decades plant fossil localities have increased and valuable
209	contributions have been made to the knowledge of the Siwalik paleobotany of the eastern
210	Himalayas (Mehrotra et al., 1999; Prasad and Tripathi, 2000; Joshi and Mehrotra, 2003a, b,
211	2007; Mitra and Banerjee, 2004; Khan et al., 2007, 2008, 2009, 2011, 2014a, b, c, 2015a, b,
212	2016, 2017a, b, 2018a, b, 2019a, b; Tripathi et al., 2007; Srivastava and Mehrotra, 2009; Khan
213	and Bera, 2010, 2014a, b, 2016a, b, 2017; Prasad et al., 2015; Mehrotra et al., 2018; More et al.,
214	2018; Srivastava et al., 2018). Rich and varied assemblages of plant megafossil, including leaf
215	impressions, compressions, fruits, seeds, and woods, are now known and provide a sufficient
216	basis for tracking regional environmental changes through time and space. Qualitatively, the
217	present-day distribution of the taxonomically nearest living relatives (NLRs) of the Siwalik plant
218	fossils suggests the existence of a tropical evergreen type of forest throughout the eastern
219	Himalaya lowlands during the period of deposition. In recent years plant-based quantitative
220	techniques (CLAMP - Climate Leaf Analysis Multivariate Program and CoA - Coexistence
221	approach) have been used to derive past climate parameters (temperature, humidity, and
222	precipitation) and chart monsoon evolution (Khan et al., 2014a, 2019b; Srivastava et al., 2021;
223	Bhatia et al., 2022).
224	

5. Palaeofloristic composition

226	This review is based on Siwalik (middle Miocene-early Pleistocene) plant megafossil
227	assemblages recovered from the road and river exposures at different locations within the eastern
228	Himalayas. The fossiliferous localities in the Darjeeling Siwalik sector are those of Oodlabari,
229	Sevok road sections, and the Sevok bridge, Washbari, Gish, Lish, Churanthi, and Ramthi river
230	sections; in Bhutan the Lakshmi and Darranga river sections and in the easternmost Siwalik
231	sector, i.e., Southeastern Himalaya localities, the river cutting sections of the East Kameng
232	district, the Bhalukpong, East Pinjoli and South Pinjoli road cutting sections of the West Kameng
233	district, and the Naharlagun-Banderdewa, Nirjuli-Banderdewa, Itanagar-Banderdewa and
234	Chandernagar-Gohpur road sections of the Papumpare district (Fig. 2). Most leaf impressions
235	were preserved in grey shales. Here, we review 219 plant fossil taxa, of which 102 taxa are from
236	Darjeeling foothills, 9 taxa are from Bhutan and 108 fossil taxa are from the Southeastern
237	Himalaya. Most of the megafossil plant specimens were identified to the species level, but for a
238	few specimens, necessary morphological characters were not preserved. Khan et al. (2015a,
239	2016, 2017a, b) studied cuticular epidermal features of some compressed leaves from the
240	Southeastern sub-Himalaya and those are the most securely identified specimens.
241	There have been several contributions describing plant macrofossils from the eastern
242	Himalaya Siwaliks, but so far none has synthesized our knowledge of the past flora and
243	environment throughout Siwalik sedimentation. The recovered megaplant remains include
244	compressions and impressions of leaves, fruiting calyxes, fruits, seeds, petrified and carbonized
245	woods (Figs. 3–5). The Siwalik floral assemblage is rich both in fossil quality and quantity and
246	comprises 219 species belonging to 162 genera and 42 families (Tables 2 and S1–S5).
247	Angiosperms are grouped into 159 genera within 39 families, the most abundant being the
248	Fabaceae (represented by seventeen genera and twenty-four species), Dipterocarpaceae (four

249	genera and thirteen species), Annonaceae (eight genera and eleven species), Lauraceae (seven
250	genera and eleven species), Euphorbiaceae (six genera and seven species), Anacardiaceae (six
251	genera and six species), Flacourtiaceae (four genera and five species), Rubiaceae (four genera
252	and five species), Apocynaceae (four genera and four species) and Meliaceae (three genera and
253	four species) (Tables S4 and S5). The eastern Himalayan Siwalik fossil floras consist of a wide
254	variety of mostly woody plants listed in Tables S1-S3. Arborescent taxa dominate the
255	assemblage, grass, and ferns being in a minority. Additionally, some workers reported in-situ
256	occurrences of characteristic epiphyllous fungi on Siwalik leaf megafossils (Table S6). Reliable
257	identification of the fossils is crucial for reliable palaeoclimatic and palaeoecological
258	interpretation, thus, here some fossil specimens of uncertain affinities have been excluded from
259	the listed fossil floras. The fossil specimens are held in the repository of the Palaeobotany-
260	Palynology Section, Department of Botany, University of Calcutta.
0.01	

261

262 5.1. The Lower Siwalik flora (middle Miocene)

263 The Lower Siwalik assemblage recovered from sediments exposed near Gish, Ramthi, 264 Oodlabari, Sevok of Darjeeling, East and West Kameng of Southeastern Himalaya comprises 265 mainly angiosperm plant remains attributable to 91 species within 65 genera belonging to 32 266 families (Table S1; Antal and Awasthi, 1993; Antal et al., 1996; Antal and Prasad, 1996a; Joshi 267 and Mehrotra, 2007; Khan et al., 2008; Srivastava and Mehrotra, 2009; Khan and Bera, 2014a; 268 Khan et al., 2015). In this assemblage, 90 leaf fossils, one dicot fossil wood, one 269 Thelypteridaceae fern, and one gymnosperm taxon have been reported. Of these, 22 species are 270 new to the Siwalik palaeoflora and 19 have been identified as new to the Neogene flora of India. 271 For example, Khan and Bera (2017) described Pinus on the basis of seed remains from the Dafla

272 Formation exposed around the West Kameng district in the Southeastern Himalaya. This report 273 provides the first-ever fossil record of *Pinus* winged seeds from India. It is obvious from the list 274 of fossil taxa (Table S1) from the lower Siwalik eastern Himalaya assemblages that the family 275 Fabaceae, represented by eight genera (Entada Adans., Dalbergia L. f., Derris Lour., Millettia 276 Wight & Arn., Cynometra L., Bauhinia Plum. ex L., Albizia Durazz., Pongamia Adans., Acacia 277 Mill., and *Mastertia* L.), is the most dominant, followed by Lauraceae comprising four genera, 278 Flacourtiaceae comprising four genera, Dipterocarpaceae comprising two genera, Annonacaae 279 comprising two genera, Euphorbiaceae comprising of two genera and Combretaceae comprising 280 two. The dominance of Fabaceae and the presence of Dipterocarpaceae is very significant from 281 both palaeoecological and phytogeographical contexts.

282

283 5.2. The Middle Siwalik flora (late Miocene to Pliocene)

284 The Middle Siwalik assemblages recovered from sediments exposed from the fossil localities of 285 Bhutan, Darjeeling, and Southeastern Himalaya represent mainly angiosperm plant remains 286 currently comprising 81 species of 56 genera within 29 families (Table S2). Assignments are 287 based mainly on leaf impressions. In this assemblage, 67 leaf fossils, four dicot fossil wood 288 specimens, and one Thelypteridaceae fern have been described. They show closed affinity with 289 extant thermophilic taxa such as *Mitrephora* Hook. f. & Thomson, *Dipterocarpus* C.F. Gaertn., 290 Combretum Loef l., Millettia, Donax Lour. (Clinogyne grandis accepted name Donax 291 canniformis), Shorea, Meiogyne Miq., Fissistigma Griff., Gynocardia R. Br., Vatica L., and 292 Garcinia L. (Antal and Prasad, 1996a; Mehrotra et al., 1999; Prasad and Tripathi 2000; Tripathi 293 et al., 2007; Prasad et al., 2015; Khan et al., 2016, 2017a, 2019). Of these, 17 species are new to 294 the Siwalik flora and 15 have been identified as new to the Neogene flora of India.

295 Dipterocarpaceae, represented by 13 genera, is most dominant in the assemblage, followed by

296 Annonaceae comprising four genera, Lauraceae comprising four genera, Sterculiaceae

297 comprising two genera, and Calophyllaceae comprising two genera.

298

299 5.3. The Upper Siwalik flora (late Pliocene to early Pleistocene)

300 The upper part of the Siwalik assemblage recovered from sediments exposed near 301 Papumpare, East and West Kameng of Southeastern Himalaya is mainly represented by dicots 302 comprising 47 species of 31 genera belonging to 21 families (Table S3). Assignments are based 303 on both leaf impressions and compressions. An exception is that part of a compressed tree fern 304 axis with leaf and adventitious root scars in the unusual arrangement has been described from the 305 Plio-Pleistocene sediments of Southeastern Himalaya (Bera et al., 2014). This was the first 306 macroscopic record of a cyatheaceous fern from the Indian Cenozoic. Other specimens show 307 affinity with extant angiosperm taxa such as Dipterocarpus, Calophyllum L., Actinodaphne 308 Nees, Shorea, Mastixia Blume, Gynocardia, Millettia, Knema Lour., Macaranga Thouars, 309 Canarium L., Quercus L., Croton L., Gmelina L., Kayea Wall., Elaeocarpus L., and Pongamia 310 (Bera et al., 2004; Joshi and Mehrotra, 2007; Khan et al., 2011, 2015, 2016, 2017a, b; Khan and 311 Bera, 2014a; Srivastava et al., 2018; Mehrotra et al., 2018). Lauraceae, represented by four 312 genera, is the most dominant in this assemblage, followed by Fabaceae and Calophyllaceae 313 represented by two genera.

314

315 **6. Floristic changes throughout the Siwalik succession**

316 The nearest living relatives (NLR) method extrapolates the known climatic requirements of

317 modern taxa back to comparable and related taxa in the past and presupposes that fossil plants

318	and their modern relatives share similar physiological requirements for climate (Mosbrugger and
319	Utescher, 1997). The megafossil assemblages recovered from the Siwalik sediments of the
320	eastern Himalayas have yielded mainly angiosperm taxa (Tables S1-S3) that can be used
321	effectively to interpret palaeoclimate and palaeoflora because the nearest living relatives of these
322	fossil angiosperm taxa are known with high confidence. On the basis of NLRs, the Siwalik floral
323	assemblages of the eastern Himalayas consist of three major forest elements: evergreen
324	(58.60%), deciduous (26.82%), and others (14.39%) (Fig. 6a–d). In the eastern Himalayan
325	Lower Siwalik assemblage 63.73% of the taxa are evergreen, and deciduous elements make up
326	just 23.07% of the taxa (Fig. 6a). In the Middle Siwalik assemblage, 57.74% of the taxa are
327	evergreen and 25.35% of taxa are deciduous (Fig. 6b). In the Upper Siwalik 54.34% and 32.60%
328	are evergreen and deciduous respectively (Fig. 6c). With respect to the present-day distribution
329	pattern of NLR taxa this suggests that wet evergreen forests persisted throughout the period of
330	deposition (Tables S1-3; Fig. 6d). The predominance of evergreen elements in the assemblage
331	along with pteridophytes (ferns) indicates the prevalence of a tropical, warm, humid climate with
332	abundant rainfall in contrast to the relatively dry present-day climate in the area. An increase in
333	deciduous elements is evident towards the close of the Middle Siwalik and the beginning of the
334	Upper Siwalik (Fig. 6e). This change in the vegetation pattern must reflect a climatic change
335	between the lower part (Miocene) and upper part of Siwalik (Plio-Pleistocene) deposition, and
336	seems to indicate an increase in rainfall seasonality. We reconstruct the paleovegetation to better
337	understand the general evolutionary history of floristic patterns in eastern Himalaya during
338	Siwalik sedimentation (Fig. 7).
220	

339

7. Palaeoclimates reflected by the fossil floras

341	Investigations using different qualitative (NLR, cuticular studies) and quantitative (Co-
342	existence Approach and CLAMP) proxies have revealed the history of past climate, and in
343	particular the evolution of Indian summer monsoon (ISM), during the Siwalik sediments of the
344	eastern Himalayas (Khan and Bera, 2014a, b; Khan et al., 2014a, 2015, 2019a, b; Prasad et al.,
345	2015; Srivastava et al., 2021; Bhatia et al., 2022).
346	
347	7.1. A qualitative NLR approach
348	The principal basis of any study of the past is that known as 'uniformitarianism'. This,
349	principle, often summarized as 'the present is the key to the past', implies that the physical and
350	biological processes that operate in today's environment, as well as vegetation, must have
351	functioned in a similar way in the past (Thanukos, 2012). In the case of the NLR approaches
352	used to reconstruct past climates, this extrapolates the known climatic requirements of modern
353	taxa to presumed ancestral taxa in the past. Of the plant fossils recovered from the eastern
354	Himalayas that have nearest living relatives, several still exist in the area today. This suggests
355	some degree of climatic similarity between the past and now and the persistence of a tropical
356	warm and humid climate.

357

358 7.2. The Coexistent Approach (CoA)

CoA, developed by Mosbrugger and Utescher (1997), is based on the concept that the
climatic requirements of fossil species are similar to those of their NLRs and reconstructs the
paleoclimate parameters for a given fossil flora using climatic intervals in which all the NLRs of
the fossil flora could coexist coexist (Mosbrugger and Utescher, 1997; Mosbrugger, 1999;
Utescher et al., 2014). This is an improvement from many previous NLR analyses that have

364 tended to choose single, or at best, just a few taxa for the analysis. By adopting a whole-365 population approach, outliers due to misidentification or evolutionary innovation can be isolated 366 and removed from the analysis, thus, improving accuracy and precision. Prasad et al. (2015) first 367 reconstructed the eastern Siwalik palaeoclimate by applying this quantitative method to the 368 middle Siwalik flora of Darjeeling sub-Himalaya. They estimated different climatic variables, 369 such as mean annual temperature (MAT), warmest month mean temperature (WMMT), coldest 370 month mean temperature (CMMT), and mean annual precipitation (MAP) as 22–26.5 °C, 17.8– 371 20 °C, 25–30 °C, and 2650–3200 mm, respectively. However, their methodology differed from 372 that codified by Mosbrugger and Utescher (1997) and Utescher et al. (2014) and did not specify 373 the origins of their plant distribution data. Srivastava et al. (2021) subsequently reconstructed the 374 climate of the Upper Siwalik strata of Southeastern Himalaya quantitatively, based on the more 375 usual form of CoA specified by Mosbrugger and Utescher (1997) and Utescher et al. (2014), and 376 reported that during the late Pliocene–early Pleistocene, the temperature seasonality between 377 warm (27–28.1 °C) and cold months (22–23.6 °C) was less pronounced compared with present-378 day warm (27–27.7 °C) and cold (14.8–15.4 °C) month conditions. The reconstructed rainfall 379 data indicated a monsoonal type of climate having a strong wet/dry seasonality during the 380 deposition of the Upper Siwalik sediments. Recently, Bhatia et al. (2022) also applied this 381 methodology to two Siwalik floras recovered from the Lower (middle Miocene) and Middle (late 382 Miocene–Pliocene) Siwalik successions of Darjeeling in the eastern Himalayas. The 383 reconstructed climate data suggested a decrease in both winter temperature and precipitation 384 during the wettest months, and thus an overall drying, from the Lower to Middle part of the 385 Siwalik succession.

386

387

388 7.3. The CLAMP Approach

389 The principal leaf-based palaeoclimate proxy for assessing a range of climate variables is 390 known as CLAMP (Climate Leaf Analysis Multivariate Program; http://clamp.ibcas.ac.cn) 391 (Wolfe, 1993; Kovach and Spicer, 1996; Yang et al., 2011, 2015). CLAMP utilizes the universal 392 relationships that exist between leaf form in woody dicotyledonous plants and an array of climate 393 variables. On a global scale, aggregate leaf form in a stand of vegetation is more strongly 394 determined by climate than by taxonomic composition (Yang et al., 2015). Using a multivariate 395 statistical engine, CLAMP decodes these relationships and, by scoring fossil leaf traits the same 396 way as for living vegetation growing under known climatic regimes, estimates past conditions 397 (http://clamp.ibcas.ac.cn). Five fossil floras (one lower Siwalik mid-Miocene, one middle 398 Siwalik Pliocene, and one upper Siwalik Plio-Pleistocene flora of Southeastern Himalaya; one 399 lower Siwalik mid-Miocene flora of Darjeeling and one latest Miocene-Pliocene middle Siwalik 400 Group of Bhutan sub-Himalaya) ranging in age from the mid-Miocene to the early Pleistocene 401 from the eastern Siwalik near Bhutan, Darjeeling and in Southeastern Himalaya were also 402 subjected to a CLAMP analysis using a calibration data set that includes sites from India, 403 southern China, and Thailand and gridded climate data (Khan et al., 2014a, 2019b) (Tables S7– 404 S11). CLAMP climate retrodictions derived from the PhysgAsia2 calibration for all the fossil 405 sites of the eastern Himalayas are given in Tables 3–5. 406 The results of these analyses are also consistent with published quantitative climate data 407 (Khan et al., 2014a, 2019b) using CLAMP analysis (Wolfe, 1993; Teodoridis et al., 2011; Yang 408 et al., 2011) on fossil leaf morphotypes (i.e., not assigned taxonomic affiliation) from the eastern 409 Himalayas. Two lower Siwalik mid-Miocene floras of Darjeeling and Southeastern Himalaya

410	yielded almost the same values suggesting mean annual temperatures (MATs) of 25.4 and 25.3 \pm
411	2.8 °C (all uncertainties ± 2 sigma) with warm month mean temperatures (WMMTs) of 28.4 and
412	27.8 \pm 3.39 °C and cold month mean temperatures (CMMTs) of 17.9 and 21.3 \pm 4 °C.
413	Precipitation estimates have high uncertainties but suggest a weak monsoon with growing season
414	precipitations of 181 ± 91 cm for Bhutan, 242 ± 92 cm for Darjeeling, and 174 ± 92 cm for AP.
415	Leaves from the middle Siwalik (Pliocene) sediments of Southeastern Himalaya indicate a
416	lowering of the MAT to 23.7 °C, which appears to be largely a function of cooler winter months
417	(CMMT 16.9 °C). Southeastern Himalaya's early Pleistocene temperatures and rainfall were
418	similar to those of the mid-Miocene. Khan et al. (2019b) compared palaeoclimate estimates of
419	the latest Miocene–Pliocene Siwalik (ca. 6 to 3.8 Ma) flora of Bhutan with those of Siwalik
420	floras from the Miocene-Pleistocene of Southeastern Himalaya and the Miocene Siwalik flora of
421	Darjeeling. Because all the Siwalik floras of the eastern Himalayas spanning the mid-Miocene to
422	Pleistocene yield almost the same values, they suggested that overall, the eastern Himalayan
423	Siwalik climate appears to have been remarkably uniform over the past 15 million years. The
424	MAT result of the Bhutan Siwalik palaeoflora differs by just 0.6 °C from the Southeastern
425	Himalaya, and 1.2 °C from the Darjeeling palaeoflora. For all Siwalik fossil assemblages,
426	WMMTs, CMMTs, LGSs (length of the growing season), RH (mean annual relative humidity),
427	and SH (mean annual specific humidity) are similar and consistent (WMMTs around 28 $^\circ$ C,
428	CMMTs around 18 °C, LGSs around 12 months, RHs around 80% and SHs around 14 g/kg).
429	Hence, palaeoclimate estimates of the Southeastern Himalaya, Darjeeling, and Bhutan Siwalik
430	flora provide valuable insights into monsoon climatic evolution throughout the eastern
431	Himalayan Siwalik belt during late Cenozoic time and indicate that the Siwalik floras
432	experienced a persistent monsoonal tropical warm humid climate. Changes in the Monsoon

index suggest that in both the Bhutan and Southeastern sub-Himalaya, there has been little
change in the intensity of the monsoon since mid-Miocene time, while further west in the
Darjeeling area precipitation seasonality has increased since the mid-Miocene.

436

437 7.3.1. New insights into the thermal and hydrological regime of the eastern Himalayan Siwalik 438 Here, we re-analyze the five well-documented fossil leaf assemblages from across the 439 eastern Himalayas spanning Siwalik time (middle Miocene to early Pleistocene). All have been 440 previously analyzed for the eleven standard CLAMP climate variables (mean annual temperature 441 - MAT; warm month mean temperature - WMMT; cold month mean temperature - CMMT; 442 length of the growing season -LGS; growing season precipitation -GSP; mean monthly 443 growing season precipitation – MMGSP; precipitation during the three consecutive wettest 444 months -3WET; precipitation during the three consecutive driest months -3DRY; mean annual 445 relative humidity – RH. ANN; mean annual specific humidity – SH.ANN; and mean annual 446 moist enthalpy – ENTH), calibrated using modern gridded climate data at 10' spatial resolution 447 (HiResGridMetAsia2) and physiognomic PhysgAsia2 calibration (Table S12). Here, fossil leaf 448 assemblages are subjected to a CLAMP analysis using a new high spatial resolution 30" (~1 449 km²) WorldClim2 gridded climate data (Fick and Hijmans 2017; http://worldclim.org/version2) 450 (Table S13) with 15 new climate variables (Tables 2–4; Figs. 8 and S1–S4). However, we use 451 the same modern vegetation trait scores as used previously (PhysgAsia2) (Table S12). This 452 calibration data set interpolates average meteorological observations between 1970 and 2000 onto a spatial grid approximating 1 km². CLAMP climate retrodictions for all the fossil sites of 453 454 the eastern Himalayas are given in Tables 3–5.

455	One advantage of using WorldClim2 for calibration is that numerous environmental
456	variables have been mapped onto the same grid, so for CLAMP, the range of environmental
457	signals decoded from leaf form can be extended. The new temperature-related environmental
458	variables that correlate strongly with leaf form are (1) the compensated thermicity index –
459	THERM (sum of mean annual temperature, minimum temperature of the coldest month, the
460	maximum temperature of the coldest month, $\times 10$, with compensations for better global
461	comparability), (2) growing degree days above 0 $^{\circ}C$ – GDD_0 (sum of mean monthly
462	temperature for months with mean temperature >0 °C multiplied by the number of days this
463	occurs), (3) growing degree days above 5 $^{\circ}C$ – GDD_5 (Sum of mean monthly temperature for
464	months with mean temperature >5 °C multiplied by the number of days this occurs), (4)
465	minimum temperature of the warmest month -MIN_T_W (lowest daily temperature during the
466	warmest month) and (5) maximum temperature of the coldest month $-MAX_T_C$ (warmest
467	daily temperature during the coldest month). The new humidity-related variables are (6) mean
468	annual vapour pressure deficit – VPD.ANN, (7) mean summer vapour pressure deficit –
469	VPD.SUM (average vapour pressure deficit during the three summer months), (8) mean winter
470	vapour pressure deficit – VPD.WIN (average vapour pressure deficit during the three winter
471	months), (9) mean spring vapour pressure deficit – VPD.SPR (average vapour pressure deficit
472	during the three spring months), (10) mean autumn vapour pressure deficit – VPD.AUT (average
473	vapour pressure deficit during the three autumn months), (11) mean annual potential
474	evapotranspiration – PET.ANN (the ability of the atmosphere to remove water through
475	evapotranspiration, given unlimited water supply no limits on plant water supply averaged
476	over the year), (12) mean monthly potential evapotranspiration during the warmest quarter –

477 PET.WARM and (13) mean monthly potential evapotranspiration during the coldest quarter –
478 PET. COLD.

479 Tables 3–5 present results obtained for the fossil assemblages using the new WorldClim2 480 CLAMP calibration, as well as (for comparison) previously obtained results (in parentheses) that 481 used low spatial resolution HiResGridMetAsia2CLAMP calibration. Figs. 8 and S1-S4 illustrate 482 the CLAMP regression models for each of the climate variables to show not only the relative 483 position on the regression of the Siwalik fossil locations but also the scatter of the modern 484 training data and thus the precision of the CLAMP predictions. As used in earlier CLAMP 485 analyses, all regression models are derived from the leaf physiognomy/climate relationships in 486 four-dimensional space (Spicer and Herman, 2010). CLAMP scoresheets for all eastern 487 Himalayan Siwalik fossil assemblages are given in the Tables S7–S11. The new WorldClim2-488 based climate training set (WorldClim2_3br) and the accompanying modern leaf physiognomic 489 (PhysgAsia2) data files are given in the Tables S12 and S13. 490 The new calibration and range of climate variables allow us to explore new insights into 491 the hydrological regime. We examine not only precipitation but humidity in terms of specific 492 humidity (SH), relative humidity (RH), vapour pressure deficit (VPD), and potential 493 evapotranspiration (PET). Both VPD and PET are investigated in respect of annual average 494 values and seasonal variations. 495 Using leaf form (physiognomy) we reconstruct middle Miocene–early Pleistocene thermal 496 and hydrological regimes at five locations in the eastern Himalayas. The new high spatial 497 resolution (~ 1 km) WorldClim2 calibration yields result similar to previous analyses, but also

498 provides more detailed insights into the hydrological regime through the return of annual and

499 seasonal vapour pressure deficit (VPD), potential evapotranspiration (PET) estimates, as well as

new thermal overviews through measures of thermicity and growing degree days. The new
results confirm the overall warmth of the region. Palaeo-rainfall estimates have large
uncertainties due to moisture not being limiting in the context of the Siwalik assemblages and
because fossils are usually preserved in water-lain deposits, suggesting the parent plants were
growing in or near year-round wet soils. The new measures of VPD and PET show the persistent
high humidity to which the leaves were exposed and adapted, but with notably lower humidity
during the summers at all the eastern Himalayan locations.

507

508 7.4. Cuticular approach

No proxy is perfect, so a multiproxy approach is always desirable. The examination of fossil leaf 509 510 cuticles found on compressed leaves can also afford an estimation of past climate. Several 511 cuticular characters indicate a warm, humid tropical climate with non-limiting rainfall, including 512 thin cuticles, undulate to sinuous epidermal lateral walls, non-papillate or smooth leaf external 513 surfaces, few epidermal hairs, unspecialized stomata, and subsidiary cells, all of which are 514 commonly found in the Siwalik assemblages (Khan et al., 2015a). The hypostomatic nature of 515 many Siwalik stomata also reflects heavy precipitation, humidity, and shade. Cuticular micromorphological features have also helped to confirm the identification of some leaf compressions 516 517 to the species level, and are clearly indicative of mesophytic ecological conditions that reflect a 518 tropical climate with high precipitation (Khan et al., 2015a, 2016, 2017a, b). 519 Some workers (Mitra and Banerjee, 2000; Mitra et al., 2002; Das et al., 2007; Mandal et 520 al., 2009, 2011; Vishnu et al., 2017, 2019; Bera et al., 2018, 2019, 2022a, b; Khan et al., 2018b, 521 2019c) reported in-situ occurrences on leaf megafossils of characteristic epiphyllous fungi such

522 as Meliolinites (fossil Meliolaceae) (comparable to the modern genus Meliola Fr.), Phomites

523	(comparable to the modern genus Phoma Sacc.), Palaeocercospora (comparable to the modern
524	genus Cercospora Fresen. ex Fuckel), Palaeocolletotrichum (comparable to the modern genus
525	Colletotrichum Corda), Palaeoasterina (comparable to the modern genus Asterina Lév.) and
526	Vizellopsidites (comparable to modern genus Vizella Sacc.) on the cuticular surfaces of fossilized
527	leaf cuticle fragments of the different angiosperm taxa recovered from the Siwalik sediments
528	(middle Miocene to early Pleistocene) of Darjeeling, Bhutan, and Southeastern Himalaya (Table
529	S6). They described fossil fungi on the basis of vegetative and reproductive structures. The
530	Siwalik host leaves harboring the fossil fungi so far identified are Shorea, Dipterocarpus
531	(Dipterocarpaceae), Breonia A. Rich. ex D.C. (Rubiaceae), Dysoxylum Blume (Meliaceae),
532	Combretum (Combretaceae), Xylopia L. (Annonaceae), Amherstia Wall. (Fabaceae),
533	Actinodaphne Nees, Lindera Thunb, Persea (Lauraceae), Macaranga Thouars (Euphorbiaceae),
534	Lauraceae, and Poaceae. Based on earlier records, it is also evident that Lauraceae has been a
535	common host for meliolaceous fungi since the early Cenozoic (Khan et al., 2019c). The reported
536	appreciable numbers of foliicolous fungal remains indicate the prevalence of a warm, humid,
537	climate favored by the high rate of precipitation in the eastern Himalayas during the Plio-
538	Pleistocene (Das et al., 2007; Bera et al., 2018, 2019, 2022a, b; Khan et al., 2018b; 2019c;
539	Mandal et al., 2009, 2011; Mitra and Banerjee, 2000; Mitra et al., 2002; Vishnu et al., 2017,
540	2019). These climatic data are also consistent with published climatic data obtained from the
541	study of the macroscopic plant remains using qualitative and quantitative methods. Thus, for the
542	eastern Himalayan Siwalik, all approaches (CLAMP, NLR, CoA, and cuticle) give broadly
543	similar palaeoclimate outcomes. The <i>in-situ</i> evidence of epiphyllous fungal remains on host leaf
544	cuticles also indicate the possible existence of a host-ectoparasite relationship in the ancient

- 545 warm and humid tropical evergreen forest of this area during Siwalik sedimentation (Vishnu et
- 546 al., 2017, 2019; Bera et al., 2018, 2019, 2022a, b; Khan et al., 2018b, 2019c).
- 547

548 8. Comparisons

549 8.1. Comparisons with other Siwalik floras

550 To reveal the degree of resemblance to other Siwalik floras (western and central), we make 551 the following comparisons.

552

553 8.1.1. Western Siwalik flora

554 This includes the floras of Jammu and Kashmir, Uttarakhand, and Himachal Pradesh and

comprises a large number of fossil woods and leaves (Sahni, 1964 a, b, Lakhanpal, 1965, 1967;

556 Verma, 1968; Lakhanpal and Awasthi, 1992; Prasad, 1994, 2006; Prasad et al., 1997; Shashi et

al., 2006, 2008; Srivastava et al., 2015). The NLRs of common fossil taxa are *Millettia*, *Ziziphus*

558 Mill, Pongamia, Dalbergia, Diospyros, Fissistigma, Bambusa Schreb., Dipterocarpus,

559 Lagerstroemia, Marantochloa Brongn. ex Gris, Calophyllum, Shorea, Gynocardia, Grewia,

560 Cynometra, Persea, Sterculia, Mallotus, Terminalia, and Hopea Roxb. This indicates that these

taxa were widely distributed in both eastern and western Siwalik strata and flourished under a

562 generally equitable climate, at least in terms of temperature.

563

564 8.1.2. Central (Nepal) Siwalik flora

565 Plant megafossils (mainly fossil leaves) are known from various localities in Nepal such as

566 Koilabas, Arung Khola, Surai Khola, Tinau Khola, Babai and Surkhet Valleys, Mahendra

567 Highway, Arjun Khola, and Sindhuli (Prakash and Prasad, 1984; Prasad, 1990, 1994b; Prasad et

568 al., 1997, 1999; Tripathi et al., 2002; Dwivedi et al., 2006; Prasad and Dwivedi, 2007).

- 569 Comparison of the eastern Himalaya fossil floras with those of the central Siwalik fossil flora
- 570 assemblages shows that most NLRs of the fossil genera Mesua L., Mangifera L., Bouea Meisn.,
- 571 Garcinia, Albizia, Cassia L., Millettia, Ziziphus, Pongamia, Dalbergia, Diospyros, Fissistigma,
- 572 Bambusa, Dipterocarpus, Lagerstroemia, Marantochloa, Calophyllum, Shorea, Gynocardia,
- 573 Grewia, Cynometra, Persea, Sterculia, Melilotus, Cinnamomum Schaeff., Mitrephora Hook. f. &
- 574 Thomson, Hopea, Polyalthia Blume, Uvaria L., Sabia Colebr., Miliusa Lesch. ex A. D.C.,

575 Swintonia Griff., Euphorbia L., Entada, Combretum, Dillenia, Randia L., and Flacourtia Comm.

- 576 ex L. 'Hér. are common to both regions.
- 577
- 578 8.2. Comparisons among Siwalik CLAMP data
- 579 8.2.1. Methodology

580 The CLAMP methodology, its limitations, and its evolution are detailed in Spicer et al., 581 (2021), but in summary, CLAMP reconstructs past climate based on an array of macroscopic leaf 582 traits preserved in leaf megafossils. Organic remains are not required and CLAMP can be 583 applied to mere leaf impressions provided that the leaves retain sufficient trait data across a 584 minimum of 20 taxa or morphotypes in any one fossil assemblage. Also, leaf identification is not 585 required, only an ability to distinguish one taxon (morphotype) from another. Morphotype 586 partitioning is based not only on the CLAMP traits (31 trait states encompassing leaf lobing, 587 margin features size, apex, base forms, and overall shape, but also venation and other 588 taxonomically useful features.

To calibrate CLAMP, a database of trait spectra from modern vegetation stands growing
under a wide range of known climate conditions provides a multidimensional framework for

591 identifying correlations between leaf trait combinations and individual climate variables such as 592 temperature and moisture metrics. This physiognomic data set is accompanied by a suite of 593 climate data derived in most cases from gridded observations. There are several such modern 594 gridded data sets available at different spatial resolutions (e.g., New et al., 1999, 2002; Harris et 595 al., 2014; Fick and Hijmans, 2017) and each are slightly different, largely as a function of 596 interpolation artifacts and different observation periods, and so return slightly different 597 retrodictions of past climate. This is shown in Tables 3 and 4 where WorldClim2 calibration 598 results are compared with those based on New et al. (2002), shown in parentheses. These climate 599 calibration anomalies apply to any climate proxy, so it is important when comparing proxy-600 reconstructed past climates that uncertainties introduced by using different types of climate 601 calibration data are fully appreciated. Here we use a common proxy CLAMP calibration 602 combining the PhysgAsia2 leaf trait data set (Spicer et al., 2020) with the WorldClim2 climate 603 data gridded at ~1 km resolution (Fick and Hijmans, 2017). The trait/climate relationships are 604 decoded using the multivariate statistical engine known as Canonical Correspondence Analysis 605 (ter Braak, 1996; http://clamp.ibcas.ac.cn). 606 Recently, fossil leaf assemblages from the lower (middle Miocene) and middle (late 607 Miocene-Pliocene) Siwalik sediments exposed in Nepal were subjected to a CLAMP analysis by

Bhatia et al. (2021) using the new high spatial resolution ($\sim 1 \text{ km}^2$) WorldClim2 gridded climate

data and PhysgAsia2 calibration. Their analysis indicates a mean annual temperature (MAT) of

610 22.2 ± 2.3 °C and 24.7 ± 2.3 °C for the Lower Siwalik and Middle Siwalik assemblages,

611 respectively. Cold month mean temperatures (CMMTs) were 14.7 and 19 ± 3.5 °C and warm

month mean temperatures (WMMTs) were 28.3 and 28.5 ± 3 °C for the Lower and Middle

613 Siwalik assemblages, respectively, showing warming of the cold months being mostly

614 responsible for a slight increase in the MAT over that time interval. Here, we compare

615 palaeoclimate estimates of the middle Miocene to Plio-Pleistocene Siwalik flora from the eastern

616 Himalayas with those of previously investigated Siwalik middle Miocene-Pliocene floras of

617 Nepal.

618 Tables 3-5 summarize the CLAMP results for the eastern Himalaya Siwaliks. Table 3 619 focuses on temperature-related metrics while Table 4 provides an overview of rainfall-related 620 metrics and Table 5 presents humidity-related metrics. All middle Miocene (Lower Siwalik of 621 Southeastern Himalaya and Darjeeling) thermal metrics are identical within 1 sigma uncertainty, 622 showing frost-free year-round growth in a climate where the CMMT is >18 °C and thus 'tropical'. 623 The CMMT of the Lower Siwalik of Nepal is somewhat lower at 14 °C and just on the margins 624 of the 1 sigma uncertainty difference from the eastern Himalaya value reported here. This 625 marginal difference is also evident in the cooler (21°C for Nepal versus 24.3 and 26.4 °C for Darjeeling and Southeastern Himalaya, respectively) maximum temperature of the coldest month 626 627 metric, but again it is debatable whether these differences can be regarded as real. For the Middle 628 Siwalik assemblages (late Miocene to Pliocene of Southeastern Himalaya and Bhutan) a similar 629 pattern is evident with all thermal metrics showing no discernible differences between 630 assemblages (Table 5). These values are also more or less identical to those from the Middle 631 Siwalik of Nepal reported by Bhatia et al. (2021). There is only one Upper Siwalik (late Pliocene 632 to Pleistocene) assemblage reported here from the eastern Himalayas and that is from the 633 Southeastern Himalaya section. This also shows thermal metrics apparently unchanged from 634 those of earlier times.

Regarding rainfall-related metrics (Table 4), the Lower Siwalik assemblages of Darjeeling
and Southeastern Himalaya are identical within uncertainty except for precipitation during the

three consecutive driest months, which indicates Darjeeling was markedly wetter than
Southeastern Himalaya. This difference is independent of which meteorological data set is used
for calibration. The Middle Siwalik sites similarly are indistinguishable from one another, this
time across all moisture metrics. The Darjeeling Lower Siwalik assemblage appears to be
notably wetter than the other sites, particularly in respect of precipitation during the three
consecutive driest months, but apart from that, all assemblages appear very similar in terms of
their reconstructed climate metrics.

644 It is often assumed that rainfall is an important environmental constraint on plant growth, 645 but this need not be the case. What is critical is soil moisture combined with transpirational 646 stresses imposed by atmospheric humidity and wind strength. In situations where leaf fossils are 647 preserved (i.e., near water bodies), soil moisture reflects the proximity to that water body, not 648 necessarily local rainfall, and because of this, the soil moisture in these situations is rarely 649 limiting. It follows that a more useful measure of atmospheric conditions can be found in the 650 way that leaf traits code for humidity metrics, especially vapour pressure deficit (VPD) and 651 potential evapotranspiration (PET) (Spicer et al., 2019, 2020). VPD is a measure of the ease by 652 which a plant can lose moisture to the atmosphere, with low VPDs found when the air is near 653 saturation and there is strong resistance to transpiration, whereas at high VPDs there is no 654 atmospheric constraint on transpirational water loss from the plant. Unlike relative humidity 655 (RH), VPD has a nearly straight-line relationship to the rate of evapotranspiration, and plant 656 distribution (Huffaker, 1942) and leaf physiognomy (Spicer et al., 2019) are more reflective of 657 VPD than RH. PET is similar but is a measure of the ability of the atmosphere to remove water 658 through evapotranspirational processes provided the water supply to the roots is not limiting. 659 Unlike with VPD, atmospheric dynamics (convection and wind) play a role in determining PET.

660 Table 5 suggests very similar values of humidity metrics among the different assemblages 661 through time. That is to say, there are no discernable step changes in climate features from the 662 mid-Miocene to the Pleistocene. However, there are some important seasonal differences in VPD 663 and PET metrics consistent across all assemblages, with summer being consistently more humid 664 than spring, as with the modern SAM, but Darjeeling shows less seasonal variation in VPD than 665 at Bhutan or Southeastern Himalaya. This reflects the relatively wet dry season in Darjeeling as 666 indicated by rainfall metrics (Table 4). Similarly, the cold month (winter) PET value is more 667 than 1 standard deviation lower than the other cold month PET values, suggesting a markedly 668 wetter dry season.

Because all the Siwalik floras of the eastern Himalayas and Central Himalayas yield almost 669 670 the same values, we suggest that overall, the eastern and central Himalayan Siwalik climate 671 appears to have remained remarkably uniform from the mid-Miocene to Pleistocene. However, while the modern temperature regime for the eastern Himalayan Siwaliks exhibits cooler winters 672 673 than evident from the fossil data, the overall temperature regime is similar over time. The most 674 marked differences are in the precipitation regime, with the modern being wetter with a greater 675 seasonality in rainfall (wetter wet seasons and drier dry seasons) (Table S14). However, because 676 uncertainties are also quite large for these metrics, the differences between the past and present 677 may not be genuinely significant. It is unlikely that this consistency over time is representative 678 of the whole SAM region, but it does have important implications for ecosystem evolution in the 679 eastern Himalayas at low elevations, as discussed below.

680

681 9. Plant-arthropod associations from Siwalik forests

682	Fossil leaf impressions and compressions from the Siwalik sedimentary strata of the
683	eastern Himalayas provide evidence of a variety of plant-insect interactions that have operated
684	throughout the evolution of monsoon-influenced forests since middle Miocene times (Khan et
685	al., 2014b, 2015b). Five functional feeding groups (FFGs) were identified in this study, namely
686	leaf mining, hole feeding, skeletonizing, galling, and margin feeding. Furthermore, these
687	morphotraces are similar to those found in leaves of extant plant species such as Millettia,
688	Canarium L., Glochidion J.R. Forst. & G. Forst., Callicarpa L., Chonemorpha G. Don,
689	Actinodaphne, Persea, Woodfordia Salisb., Shorea, Artocarpus J.R. Forst. & G. Forst., Albizia,
690	Lagerstroemia and others, suggesting similar interactions have existed in the eastern Himalaya
691	region for at least 15 million years. On the basis of comparison with extant taxa, possible leaf
692	feeders could have belonged to the insect orders Orthoptera, Coleoptera, Lepidoptera, and
693	Diptera, and those plant-arthropod relationships were established by the mid-Miocene and
694	continue to the present, shaping both the present-day flora and fauna. Khan et al. (2014b, 2015b)
695	also compared insect herbivory evident in the Darjeeling Lower Siwalik flora to that of the
696	similarly aged Southeastern Lower Siwalik flora, as well as two younger floras from that area
697	and noted a similar range of FFGs and damage types among all four fossil floras of the eastern
698	Himalayas. They concluded that compared to biotic factors climate had little influence on
699	determining the evolution of plant-insect interactions in the eastern Himalayan region.

700

701 **10. Phytogeographic patterns**

The Siwalik plant fossils date from the late Neogene time (middle Miocene to early
Pleistocene), and close relatives of the fossil forms still exist in the tropical forests of India and
Southeast Asia today. This allows direct tracking of changes in phytogeographic distributions of

705	these taxa over time. The present-day distributions of NLRs of 219 fossil taxa recovered from the
706	Siwalik sediments (Mio-Pleistocene) of the eastern Himalayas indicate that today they grow in a
707	variety of locations all over India and other adjoining countries (Fig. 9). In India, they are
708	distributed in the northeastern (14.75%) and southern regions (4.35%). In this Siwalik
709	assemblage, the NLRs of 49.04% taxa (Shorea roxburghii G. Don, Uvaria hirsuta A. St. Hil.,
710	Dipterocarpus tuberculatus Roxb., D. turbinatus Roxb., Ventilago calyculata Tul., Syzygium
711	cuminii (Gamble) Tenjarla & Kashyapa, Homonoia riparia Lour., Xanthophyllum flavescens
712	Roxb., Mitrephora maingayi Hook. f. & Thomson, Hopea wightiana Roxb., Bauhinia accrescens
713	Killip & J.F. Macbr., Randia wallichii Hook. f., R. densiflora Lou., Fissistigma bicolor Merr.,
714	Bombax malabaricum D.C., Sterculia parviflora Roxb., Buchanania sessilifolia Blume,
715	Cynometra iripa Kostel., Calophyllum polyanthum Wall. ex Choisy, Glochidion zeylanicum
716	(Gaertn.) A. Juss., Pongamia pinnata (L.) Merr. occur both in India and the Malaya Peninsula
717	and 22.7% taxa (Pterospermum yunnanense H.H. Hsue, Parashorea buchananii (C.E.C. Fisch.)
718	Symington, Flacourtia inermis Wall., Fordia albiflora (Prain) Dasuki & Schot, Paranephelium
719	macrophyllum King, Diospyros argentea Griff.) are found to generally grow in Malaya. This
720	clearly indicates a free exchange of floral elements during the late Neogene across Southeastern
721	Asia (Fig. 10).

The late Neogene floral assemblages covering the eastern Himalayas and Southeast Asian
countries (Sumatra, Borneo, Indonesia, Vietnam, Malaysia, and Java) not only reflect great
diversity with respect to the angiosperm families and variety of taxa but also uniformity and
similarity in floristic composition. Thus, the late Neogene may be regarded as the time of
maximum proliferation and diversification of tropical vegetation, particularly in the evergreen
forests in Southeast Asia (Bande and Prakash, 1986; Awasthi and Mehrotra, 1990, 1997; Guleria,

728 1992). This floral spread was not unidirectional but suggests cross-migration between the regions 729 as some Southeast Asian taxa must have migrated from the Indian landmass due to the 730 widespread distribution of similar edaphic and climatic factors. Evidence of many southeast 731 Asian elements recovered from the Siwalik exposures of the eastern Himalayas suggest 732 migration into the Indian subcontinent and intermixing and merging with the existing eastern 733 Himalayan flora before expanding further westwards along the entire Himalayan lowlands. 734 Hence, the late Neogene period may be considered an important time in the evolution and 735 speciation of flowering plants in India and Southeast Asia through the introduction and 736 proliferation of new floral elements and the opportunity for subsequent interbreeding. 737

738 **11. Disappearance of some plant taxa**

739 Gradual changes in climate and monsoon amplification across Asia during the Neogene 740 (Su et al., 2013; Tang et al., 2013, 2015) have been attributed to a general global cooling (Zachos 741 et al., 2001, 2008), closure of the Tethys, loss of littoral environments along the Himalayan front 742 (Lakhanpal, 1970) and rapid uplift of the Himalayas (Chatterjee and Scotese, 1999; Ding et al., 743 2017; Molnar et al., 2010; Boos and Kuang, 2010; Farnsworth et al., 2019). These factors are all 744 likely to have played an important role in altering and diversifying floral patterns (Huggett, 745 2004; Morley, 2000; Mosbrugger et al., 2005). Some plant taxa were able to adapt to the changed 746 circumstances or already had wide environmental tolerances. These have continued to flourish to 747 the present-day in the areas surrounding the fossil localities, whereas others that could not adapt 748 to the new environment either suffered local extinction or shifted to suitable areas with more 749 favourable eco-climatic conditions.

750	Based on the present-day distribution of NLRs of the eastern Himalayan Siwalik plant
751	fossil species, we categorize the Siwalik species into three main groups: extant local species
752	(65%), extant but locally extinct species (12%), and extant but regionally extinct species (23%)
753	(Fig. 9b). Extant local species have their NLRs (for example, Guatteria australis A. St. Hil.,
754	Dipterocarpus tuberculatus Roxb., D. turbinatus C.F. Gaertn., Syzygium cuminii (Gamble)
755	Tenjarla & Kashyapa, Tarennoidea wallichii (Hook. f.) Tirveng. & Sastre, Fissistigma bicolor
756	Merr., Bombax ceiba L., Sterculia parviflora Roxb., Cynometra iripa Kostel., Calophyllum
757	polyanthum Wall. ex Choisy, Glochidion zeylanicum (Gaertn.) A. Juss., Pongamia pinnata (L.)
758	Merr.) growing today in or near the fossil localities. Extant but locally extinct species (for
759	example, Mastixia arborea (Wight) C.B. Clarke, Shorea tumbuggaia Roxb., Persea parviflora
760	(Meisn.) Harid. & R.R. Rao, Callerya cinerea (Benth.) Schot, Phyllanthus daltonii Müll. Arg.,
761	Calophyllum inophyllum L., Lindera bifaria Hosseus, Premna bengalensis C.B. Clarke etc.)
762	grow in other parts of India, but do not occur in the present-day near the fossil localities.
763	However, extant but regionally extinct NLRs (Millettia extensa (Benth.) Benth. ex Baker,
764	Dysoxylum costulatum Blume, Rourea caudata Planch., Sloanea dasycarpa Hemsl., Shorea
765	leprosula Miq., S. obtusa Wall. ex Blume etc.) have disappeared from India and now grow in
766	other parts of the world. Given the apparent constancy of the climate in this region, we presume
767	that significant changes in biotic interactions might be a reason for the disappearance of taxa
768	from the present-day vegetation, including human activity. However, these taxa are presently
769	growing in other regions of India, including the northeast region and south India, due to the
770	availability of suitable conditions. If climate changes are involved, then they are subtler than can
771	be detected by the CLAMP proxy given the existing statistical uncertainties.

772 The upper Paleocene record of *Calophyllum* in India (Bhattacharyya, 1967; Ambwani, 773 1992) suggests India is the centre of origin of this genus. Subsequently, this genus gradually 774 became a ubiquitous component of the Neogene Siwalik forests of India and moved into other 775 adjoining Southeast Asian regions, Polynesia, and the east coast of Africa as evidenced by later 776 records outside India (Khan et al., 2017a). Khan et al. (2017a) suggested that distinct, but 777 modest, elevation changes in northeastern India, possibly related to Himalayan orogeny since the 778 Miocene, might have caused the disappearance of *Calophyllum inophyllum* from the entire 779 eastern Himalayas.

Based on fossil records Khan et al. (2016) suggested that *Shorea* was a common forest
element in the Neogene (Miocene time) Siwalik forests of the eastern Himalayas. They also
reviewed the historical phytogeography and highlighted the phytogeographic implications of this
genus.

784 Several other low-elevation eastern Himalaya taxa have undergone range shifts since 785 the mid-Miocene. According to Khan and Bera (2007), Dysoxylum costulatum probably migrated 786 to the Malaya region after the Miocene. Khan and Bera (2017) suggested that *Pinus* was an 787 important component of tropical-subtropical evergreen forest in the West Kameng district of 788 Southeastern Himalaya during the Miocene but this conifer taxon subsequently declined from the 789 local vegetation. At present, Rourea caudata (Connaraceae) does not grow in India and is 790 confined to the tropical evergreen forest of southeast Asian regions (China and Myanmar) where 791 conditions are more suitable. Khan and Bera (2016) suggested that this species of Connaraceae 792 probably migrated to these Southeast Asian regions after lower Siwalik sedimentation (middle-793 upper Miocene).

794	Khan et al. (2017b) reported the occurrence of the extant species Mastixia arborea (family
795	Cornaceae) from the middle Miocene to early Pleistocene Siwalik sediments of Southeastern
796	Himalaya. This report provided the first-ever fossil record of Mastixioids from India, as well as
797	Asia. At present, M. arborea does not grow in the eastern Himalayas but is endemic to the
798	tropical evergreen forests of the Western Ghats. They suggested that its extinction from the
799	entire eastern Himalaya and probable movement to the Western Ghats is likely due to climate
800	change (Siwalik forests experienced a weaker monsoon, i.e., less rainfall seasonality than now)
801	in the area, related to the Himalayan Orogeny during Miocene-Pleistocene times. They also
802	suggested that its disappearance from present-day vegetation proximal to the fossil locality may
803	be related to the gradual intensification of rainfall seasonality since the late Miocene. Such
804	intensification is not evident in the CLAMP data. Similarly, More et al. (2018) reported Sloanea
805	dasycarpa of Elaeocarpaceae from the Geabdat Sandstone Formation, Pliocene of Darjeeling
806	foothills. They suggested that after the Pliocene the species might have migrated from the
807	Darjeeling Himalayan region to adjoining southeast Asia (China, Myanmar, and Vietnam), the
808	area of the present-day distribution of modern Sloanea, due to possible increasing aridity and
809	rainfall seasonality, but again this is not evident in the data presented here.

810

811 **12. Conclusion**

812 This is the first thorough review of the eastern Himalayan Siwalik flora. Based on our
813 overview of published palaeobotanical data from the Siwalik sediments, the following key points
814 emerge:

815 (1) The eastern Himalaya has a rich Siwalik plant fossil record spanning the mid-Miocene to
816 the Pleistocene, which, over the past two decades, has been investigated extensively with

an increasing number of fossil taxa being reported. These fossil taxa are important for
answering outstanding questions on plant diversity and floral evolution in this region.
(2) Plant species from the Cenozoic of the eastern Himalayas are diverse. To date,
approximately 219 fossil species belonging to 162 genera of 42 families have been
documented. They cover ferns, gymnosperms, and angiosperms, of which angiosperms
are by far the most diverse, including 216 fossil species grouped into 159 genera of 39
families. In the fossil angiosperms, Fabaceae, Dipterocarpaceae, Lauraceae, Annonaceae,
Euphorbiaceae, Calophyllaceae, Anacardiaceae, Apocynaceae, Rubiaceae, and
Lythraceae are among the most diverse families; and Shorea, Dipterocarpus,
Calophyllum, Millettia, Glochidion, Actinodaphne, Combretum, Bauhinia,
Lagerstroemia, Uvaria, Rinorea Aubl., Sterculia, Ficus L., Terminalia, and Persea are
among the most species-rich genera.
(3) Most of the families and genera represented in the fossil record are still part of the
modern natural vegetation in the eastern Himalayas, but some taxa have disappeared.
Thus far, fourteen taxa are known to have become extinct in the eastern Himalayas,
namely Mastixia arborea, Shorea tumbuggaia, S. leprosula, S. obtusa, Persea parviflora,
Callerya cinerea, Phyllanthus daltonii, Calophyllum inophyllum, Lindera bifaria,
Premna bengalensis, Millettia extensa, Dysoxylum costulatum, Rourea caudata, and
Sloanea dasycarpa. In addition, phytogeographic exchanges of Siwalik elements of the
eastern Himalayas with southeast Asia also occur.
(4) A gradual change in floral composition through the Siwalik succession is apparent. Floras
changed significantly from the middle Miocene to the early Pleistocene through to today,
but invoking climate change as the explanation is problematic as no distinctive

840	(statistically significant) shift in climate metrics can be detected in foliar adaptations. If
841	the climate contributed to these changes, it was through very subtle changes that affected
842	overall taxon fitness, most likely intensification of rainfall seasonality.
843	(5) Here, we introduce new quantitative proxy palaeo-humidity measurements and explore
844	new insights into the hydrological regime. Eastern Himalayan Siwalik forests
845	experienced a monsoonal tropical warm humid climate. Tropical Siwalik forests of the
846	eastern Himalaya prior to the Quaternary have a weaker monsoon (less rainfall
847	seasonality) than now.
848	
849	
850	Acknowledgments
851	MK and SM gratefully acknowledge the Department of Botany, Sidho-Kanho-Birsha University
852	for providing infrastructural facilities to accomplish this work. SB acknowledges the Centre of
853	Advanced Study (Phase-VII), the Department of Botany, the University of Calcutta for providing
854	necessary facilities. We also thank Prof. Paul Valdes, Bristol University, U.K., for providing the
855	modern WorldClim2 climate data for the fossil localities. RAS and TEVS were supported by
856	NERC/NSFC BETR Project NE/P013805/1.
857	
858	Disclosure statement
859	No potential conflict of interest was reported by the authors.
860	
861	Appendix A. Supplementary data
862	Supplementary data to this article can be found online at:

863 **References**

- Acharya, S.K., 1994. The Cenozoic foreland basin and tectonics of the eastern Sub-Himalaya:
 problem and prospects. Himal. Geol. 15, 3–21.
- 866 Acharyya, S.K., Bhatt, D.K., Sen, M.K., 1987. Earliest Miocene Planktonic foraminifera from

Kalijhora area, Tista River section, Darjeeling sub-Himalaya. Indian Min. 41, 31–37.

868 Ambwani, K., 1992. Leaf impressions belonging to the Tertiary age of northeast India.

869 Phytomorphology 41, 139–146.

Anand-Prakash, Singh, T., 2000. Nature, composition, rank (maturation) and depositional
environment of Siwalik coals from Arunachal Himalaya. Mycol. Prog. 21, 17–29.

872 Antal, J.S., Awasthi, N., 1993. Fossil flora from the Himalayan foot-hills of Darjeeling district,

- West Bengal and its palaeoecological and phytogeographical significance. Palaeobotanist
 42, 14–60.
- Antal, J.S., Prasad, M., 1995. Fossil leaf of *Clinogyne* Salisb. from the Siwalik sediments of
 Darjeeling district, West Bengal. Geophytology 24, 2412–43.
- 877 Antal, J.S., Prasad, M., 1996a. Some more leaf-impressions from the Himalayan foothills of

878 Darjeeling district, West Bengal, India. Palaeobotanist 43, 1–9.

- Antal, J.S., Prasad, M., 1996b. Dipterocarpaceous fossil leaves from Grish River section in
 Himalayan foot hills near Oodlabari, Darjeeling district, West Bengal. Palaeobotanist 43,
 73–77.
- Antal, J.S., Prasad, M., 1996c. Leaf-impressions of *Polyalthia* Bl. in the Siwalik sediments of
 Darjeeling district, West Bengal. Geophytology 26, 125–127.
- Antal, J.S., Prasad, M., 1997. Angiospermous fossil leaves from the Siwalik sediments (MiddleMiocene) of Darjeeling district, West Bengal. Palaeobotanist 46, 95–104.

- Antal, J.S., Prasad, M., 1998. Morphotaxonomic study of some more fossil leaves from the lower
 Siwalik sediments of West Bengal, India. Palaeobotanist 47, 86–98.
- Awasthi, N., Mehrotra, R.C., 1990. Some fossil woods from Tipam sandstone of Assam and
 Nagaland. Palaeobotanist 38, 277–234.
- Awasthi, N., Mehrotra, R.C., 1997. Some fossil dicotyledonous woods from the Neogene of
 Arunachal Pradesh, India. Palaeontogra. Abt. B 245, 109–121.
- Baishya, A.K., Haque, S., Bora, P.J., et al., 2001. Flora of Arunachal Pradesh an overview.
 Arunachal Floral News 19, 1–24.
- Bande, M., Prakash, U., 1986. The Tertiary flora of Southeast Asia with remarks on its
- palaeoenvironment and phytogeography of the Indo-Malayan region. Rev. Paleobot.
 Palynol. 49, 203–233.
- Bera, S., A. De., B. De. 2004. First record of *Elaecarpus* Linn. fruits from the upper siwalik
 sediments (Kimin formation) of Arunachal Pradesh, India. J. Geol. Soc. India. 64, 350–
 352.
- Bera, M., Khan, M.A., Bera, S., 2018. Two new species of *Phomites* Fritel from the phyllosphere
 of Siwalik. J. Mycopathol. Res. 56, 11–14.
- Bera, M., Khan, M.A., Bera, S., 2019. A new foliicolous melioloid fungus from the Pliocene of
 eastern Himalaya. Mycol. Prog. 18, 921–931.
- Bera, M., Khan, M.A., Acharya, K., et al., 2022a. In situ occurrence of *Phomites* Fritel in the
- 905 Phyllosphere of ancient Siwalik forests of eastern Himalaya during the Mio-Pleistocene.
- 906 In: M. Rai et al. (eds.). *Phoma*: Diversity, Taxonomy, Bioactivities, and Nanotechnology,
- 907 https://doi.org/10.1007/978-3-030-81218-8_18

908	Bera, M., Khan, M.A., Hazra, T., et al., 2022b. A novel fossil-species of Meliolinites Selkirk
909	(fossil Meliolaceae) and its life cycle stages associated with an angiosperm fossil leaf from
910	the Siwalik (Mio-Pliocene) of Bhutan sub-Himalaya. Fungal Biol. 126, 576–586.
911	Bera, S., Gupta, S., Khan, M.A., et al., 2014. First megafossil evidence of Cyatheaceous tree fern
912	from the Indian Cenozoic. J. Earth. Sys. Sci. 123,1433–1438.
913	Bhattacharyya, B., 1967. Tertiary plant fossils from Cherrapunji and Laitryngew in Khasi and
914	Jainta hills, Assam. Q. J. Geol. Min. Metall. Soc. India. 39, 131–134.
915	Bhatia H., Srivastava G., Spicer R.A., et al., 2021. Leaf physiognomy records the Miocene
916	intensification of the south Asia monsoon. Glob. Planet. Change 196, 103365.
917	Bhatia, H., Srivastava, G., Adhikari, P., et al., 2022. Asian monsoon and vegetation shift:
918	evidence from the Siwalik succession of India. Geol. Mag. 159, 1397–1414.
919	Biswas, S.K., Ahuja, A.D., Saproo, M.K., et al., 1976. Geology of Himalayan foot-hills, Bhutan.
920	In: Cyclostyled Paper Presented at the Himalayan Geology Seminar, New Delhi.
921	Bora, D.S., Shukla, U.K., 2005. Petrofacies implication for the lower Siwalik foreland basin
922	evolution, Kumaun Himalaya, India. Spec. Pub. Palaeontol. Soc. India 2, 163–179.
923	Boos, W.R., Kuang, Z., 2010. Dominant control of the South Asian monsoon by orographic
924	insulation versus plateau heating. Nature 463, 218–222.
925	Brooks, T.M., Mittermeier, R.A., da Fonseca, G.A.B., et al., 2006. Global biodiversity
926	conservation priorities. Science 313, 58–61.
927	CEPF., 2005. Ecosystem Profile: Indo-Burman hotspot, eastern Himalayan region. Kathmandu:
928	WWF, US-Asian Programme /CEPF
929	CEPF., 2007. Ecosystem profile: Indo-Burma hotspot, Indo-China region. UK: Critical

930 ecosystem partnership fund, Birdlife International.

- 931 Chakrabarti, B.K., 2016. Geology of the Himalayan belt deformation, metamorphism,
- 932 stratigraphy. Elsevier, pp. 12–46.
- 933 Champion, H.G. Seth, S.K., 1968. A revised survey of the forest types in India. Manager of
 934 Publication, Delhi.
- 935 Chakraborty, T., Taral, S., More, S., et al., 2020. Cenozoic Himalayan foreland basin: An
- 936 overview and regional perspective of the evolving sedimentary succession. Geodynamics
 937 of the Indian Plate. pp. 395–437
- Chatterjee, S., Scotese, C.R., 1999. The breakup of Gondwana and the evolution and
 biogeography of Indian plate. Proc. Natl. Acad. Sci. India 65A, 397–425.
- 940 Chirouze, F., Dupont-Nivet, G., Huyghe, P., et al., 2012. Magnetostratigraphy of the Neogene
- 941 Siwalik group in the far eastern Himalaya: Kameng section, Arunachal Pradesh, India. J.
 942 Asian. Earth. Sci. 44, 117–135.
- 943 Coutand, I., Barrier, L., Govin, G., et al., 2016. Late Miocene-Pleistocene evolution of India-
- 944 Eurasia convergence partitioning between the Bhutan Himalaya and the Shillong Plateau:
- 945 new evidences from foreland basin deposits along the Dungsam Chu section, eastern
- 946 Bhutan. Tectonics 35, 2963–2994.
- Das P., Khan, M.A., De, B., et al., 2007. Evidence of exoparasitic relationship between Asterina
- 948 (Asterinaceae) and *Chonemorpha* (Apocynaceae) from the upper Siwalik (Kimin
- 949 Formation) sediments of Arunachal sub-Himalaya, India. J. Mycopathol. Res. 45, 225–
 950 230.
- 951 Debnath, A., Taral, S., Mullick S., et al., 2021. The Neogene Siwalik succession of the
- 952 Arunachal Himalaya: A revised lithostratigraphic classification and its implication for the
- 953 regional paleogeography. J. Geol. Soc. India. 97, 339–350.

- Ding, L., Spicer, R. A., Yang, J., et al., 2017. Quantifying the rise of the Himalaya orogen and
 implications for the south Asian monsoon. Geology 45, 215–218.
- 956 Dwivedi, H.D., Prasad, M., Tripathi, P.P., 2006. Angiospermous fossil leaves from the lower
- 957 Siwalik sediments of Koilabas area, western Nepal and their significance. J. Appl. Biol.
- 958 Sci. 32, 135–142.
- Farnsworth, A., Lunt, D.J., Robinson, S.A., et al., 2019. Past east Asian monsoon evolution
 controlled by paleogeography, not CO₂. Sci. Adv. 5, eaax1697.
- 961 Ferguson, DK., Zetter, R., Paudayal, K.N., 2007. The need for the SEM in palaeopalynology.
- 962 Comptes Rendus Palevol. 6, 423–430.
- Fick, S.E., Hijmans, R.J., 2017. WorldClim2: new 1-km spatial resolution climate surfaces for
 global land surfaces. Int. J. Climatol. 37, 4302–4315.
- 965 Grierson, A.J.C., Long, D.G., 1983. Flora of Bhutan. Vol. 1. Royal botanical garden, Edinburgh.
- Ganguly, S., Rao, D.P., 1970. Stratigraphy and structure of the Tertiary foothills of eastern
- 967 Himalaya. Darjeeling district. West Bengal Quart. J. Geol. Min. Metal. Soc. India 42,
 968 185–195.
- 969 Guleria, J.S., 1992. Neogene vegetation of peninsular India. Palaeobotanist 40, 285–311.
- Harris, I., Jones, P.D., Osborn, T.J., et al., 2014. Updated high-resolution grids of monthly
 climatic observations the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642.
- Hazra P.K., Verma, D.M., Giri, G.S., 1996. Materials for the flora of Arunachal Pradesh, vol 1
 Bot. Sur. India. Calcutta.
- 974 Huffaker, C.B., 1942. Vegetational correlations with vapour pressure deficit and relative
- 975 humidity. Am. Midl. Nat. 28, 486–500.
- 976 Huggett, R.J., 2004. Fundamentals of Biogeography. Routledge, New York, USA.

977	Johnson, N.M., Stix, J., Tauxe, L., et al., 1985. Paleomagnetic chronology, fluvial processes, and
978	tectonic implications of the Siwalik deposits near Chinji village, Pakistan. J. Geol. 93,
979	27–40.
980	Joshi, A., Mehrotra, R.C., 2003. A thelypteridaceous fossil fern from the lower Siwalik of the
981	east Kameng district, Arunachal Pradesh, India. J. Geol. Soc. India 61, 483–486.
982	Joshi, A., Mehrotra, R.C., De, A., 2003a. A fossil wood from the Upper Siwalik sediments of
983	West Kameng District, Arunachal Pradesh, India. Proc. Fourth South Asia Geological
984	Congress (GEOSAS - IV), The Director General Geol. Surv. India, Kolkata, pp. 312–315.
985	Joshi, A., Tewari, R., Mehrotra, R.C., et al., 2003b. Plant remains from the Upper Siwalik
986	sediments of West Kameng District, Arunachal Pradesh, India. J. Geol. Soc. India 61, 319-
987	324.
988	Joshi, A., Mehrotra, R.C., 2007. Mega remains from the Siwalik sediments of west and east
989	Kameng Districts, Arunachal Pradesh. J. Geol. Soc. India 69, 1256–1266.
990	Karunakaran, C., Ranga Rao, A., 1976. Status of exploration for the Hydrocarbons in the
991	Himalayan region-contributions to the stratigraphy and structure. In: International
992	Himalayan Geological Seminar India. Section III, O. N. G. C, pp. 1–72.
993	Kaul, R.N., Haridasan, K., 1987. Forest type of Arunachal Pradesh- a preliminary study. J. Econ.
994	Taxon. Bot. 9, 379–389.
995	Khan, M.A., Bera, S., 2007. Dysoxylum miocostulatum sp. nova fossil leaflet of Meliaceae
996	from the lower Siwalik sediments of west Kameng district, Arunachal Pradesh, eastern
997	India. Indian. J. Geol. 79, 63–68.
998	Khan, M.A., Bera, S., 2010. Record of fossil fruit wing of Shorea Roxb. from the Neogene of
999	Arunachal Pradesh. Curr. Sci. 98, 1573–1574.

1000	Khan, M.A., Bera, S., 2012. Glochidion palaeogamblei sp. nov. – a new fossil leaf of
1001	Euphorbiaceae from the Pliocene sediments of Arunachal Pradesh, eastern India and its
1002	palaeoclimatic significance. Diversity and conservation of plants and traditional
1003	knowledge Bishen Singh Mahendra Pal Singh, Dehradun, pp. 149–154.
1004	Khan, M.A., Bera, S., 2014a. On some Fabaceous fruits from the Siwalik sediments (Middle
1005	Miocene–Lower Pleistocene) of eastern Himalaya. J. Geol. Soc. India 83, 165–174.
1006	Khan, M.A., Bera, S., 2014b. New lauraceous species from the Siwalik Forest of Arunachal
1007	Pradesh, eastern Himalaya, and their palaeoclimatic and palaeogeographic implications.
1008	Turk. J. Bot. 38, 453–464.
1009	Khan, M. A., Bera, S., 2016b. Occurrence of Persea Mill. from the Siwalik Forest of Darjeeling,
1010	eastern Himalaya: paleoclimatic and paleogeographic implications. J. Earth Sci. 27, 882-
1011	889.
1012	Khan, M. A., Bera, S., 2016b. Occurrence of Persea Mill. From the Siwalik Forest of Darjeeling,
1013	eastern Himalaya: paleoclimatic and paleogeographic implications. J. Earth Sci. 27, 882–
1014	889.
1015	Khan, M. A., Bera, S., 2017. First discovery of fossil winged seeds of <i>Pinus</i> L. (family Pinaceae)
1016	from the Indian Cenozoic and its paleobiogeographic significance. J. Earth Sci. 126, 1–
1017	11.
1018	Khan, M.A., De, B., Bera, S., 2007. A fossil fern-leaflet of family Thelypteridaceae from the
1019	Middle Siwalik sediments of West Kameng district, Arunachal Pradesh. J. Bot. Soc.

- 1020 Bengal 61, 65–69.
- 1021 Khan, M.A., De, B., Bera, S., 2008. Fossil leaves resembling modern *Terminalia chebula*1022 Retzius from the lower Siwalik sediments of Arunachal Pradesh, India. Pleione 2, 38–41.

- Khan, M.A., De, B., Bera, S., 2009. Leaf-impressions of *Calophyllum* L. from the middle
 Siwalik sediments of Arunachal sub-Himalaya, India. Pleione 3, 101–106.
- 1025 Khan, M.A., Ghosh, R., Bera, S., et al., 2011. Floral diversity during Plio-Pleistocene Siwalik
- 1026 sedimentation (Kimin Formation) in Arunachal Pradesh, India, and its palaeoclimatic
- 1027 significance. Palaeodivers. Palaeoenvir. 91, 237–255.
- 1028 Khan, M.A., Spicer, R.A., Bera, S., et al., 2014a. Miocene to Pleistocene floras and climate of 1029 the eastern Himalayan Siwaliks, and new palaeoelevation estimates for the Namling-
- 1030 Oiyug Basin, Tibet. Glob. Planet. Change 113, 1–10.
- 1031 Khan, M.A., Spicer, R.A., Spicer, T. E.V., et al., 2014b. Fossil evidence of insect folivory in the
- 1032 eastern Himalayan Neogene Siwalik forests. Palaeogeogra. Palaeoclimatol. Palaeoecol.
 1033 410, 264–277.
- 1034 Khan, M.A., Spicer, T.E.V., Spicer, R.A., et al., 2014c. Occurrence of *Gynocardia odorata*
- 1035 Robert Brown (Achariaceae, formerly Flacourtiaceae) from the Plio-Pleistocene
- sediments of Arunachal Pradesh, northeast India and its palaeoclimatic and
- 1037 phytogeographic significance. Rev. Palaeobot. Palynol. 211, 1–9.
- 1038 Khan, M.A., Bera, S., Ghosh, R., et al., 2015a. Leaf cuticular morphology of some angiosperm
- 1039 taxa from the Siwalik sediments (middle Miocene to lower Pleistocene) of Arunachal
- 1040 Pradesh, eastern Himalaya: Systematic and palaeoclimatic implications. Rev. Palaeobot.
- 1041 Palynol. 214, 9–26.
- 1042 Khan, M.A., Bera, S., Spicer, R.A., et al., 2015b. Plant–arthropod associations from the Siwalik
- 1043 forests (middle Miocene) of Darjeeling sub-Himalaya, India. Palaeogeogr.
- 1044 Palaeoclimatol. Palaeoecol. 438, 191–202.

- 1045 Khan, M.A., Spicer, R.A., Spicer, T.E.V., et al., 2016. Occurrence of *Shorea* Roxburgh ex C.F.
- Gaertner (Dipterocarpaceae) in the Neogene Siwalik forests of eastern Himalaya and its
 Biogeography during the Cenozic of Southeast Asia. Rev. Palaeobot. Palynol. 233, 236–
 254.
- 1049 Khan, M.A., Spicer, R.A., Spicer, T. E. V., et al., 2017a. Evidence for diversification of
- 1050 *Calophyllum* L. (Calophyllaceae) in the Neogene Siwalik forests of eastern Himalaya.
 1051 Plant Syst. Evol. 303, 371–386.
- 1052 Khan, M.A., Spicer, R.A., Spicer, T.E.V., et al., 2017b. First occurrence of Mastixioid
- 1053 (Cornaceae) fossil in India and its biogeographic implication. Rev. Palaeobot. Palynol.
 1054 247, 83–96.
- 1055 Khan M.A., Bera, M., Spicer, R.A., et al., 2018a. Evidence of simultaneous occurrence of tylosis
 1056 formation and fungal interaction in a late Cenozoic angiosperm from the eastern
 1057 Himalaya. Rev. Palaeobot. Palynol. 259, 171–184.
- 1058 Khan M.A., Bera, M., Bera, S., 2018b. *Vizellopsidites siwalika*, a new fossil epiphyllous fungus
- 1059 from the Plio-Pleistocene of Arunachal Pradesh, eastern Himalaya. Nova Hedwigia 107,
 1060 543–555.
- 1061 Khan, M. A., Bera, M., Spicer, R.A., et al., 2019a. Floral diversity and environment during the
 1062 middle Siwalik sedimentation (Pliocene) in the Arunachal sub-Himalaya. Paleobiodivers.
 1063 Paleoenviron. 99, 401–424.
- 1064 Khan, M. A., Bera, M., Spicer, R. A., et al., 2019b. Palaeoclimatic estimates for a latest
- 1065 Miocene-Pliocene flora from the Siwalik group of Bhutan: evidence for the development
- 1066 of the south Asian monsoon in the eastern Himalaya. Palaeogeogra. Palaeoclimatol.
- 1067 Palaeoecol. 514, 326–335.

1068	Khan, M.A.	Bera, M.	Bera, S.	, 2019c. A	new meliolaceos	foliicolous	fungus from	the Plio-
1000		, Dora, 1,11	, Dora, N.	,	new menoraceos	10111001040	rangas nom	

- 1069 Pleistocene of Arunachal Pradesh, eastern Himalaya. Rev. Palaeobot. Palynol. 268, 55-1070 64.
- 1071 Kovach, W.L., Spicer, R.A., 1996. Canonical correspondence analysis of leaf physiognomy: a
- 1072 contribution to the development of a new palaeoclimatological tool. Palaeoclimates 2, 1073 125-38.
- 1074 Kumar, G., 1997. Geology of the Arunachal Pradesh. Geological Society of India, Bangalore.
- 1075 Lakhanpal, R.N., 1965. Occurrence of Zizyphus in the Siwaliks near Jawalamukhi. Curr. Sci. 34, 1076 666–667.
- Lakhanpal, R.N., 1967. Fossil Rhamnaceae from the lower Siwalik beds near Jawalamukhi, 1077
- Himachal Pradesh. Publication of Centre of Advance Study in Geology, Panjab 1078 1079 University, Chandigarh 3, 23–26.
- 1080 Lakhanpal, R.N., 1970. Tertiary floras of India and their bearing on the historical geology of the 1081 region. Taxon 19, 675–694.
- 1082 Lakhanpal, R.N., Awasthi, N., 1992. New species of *Fissistigma* and *Terminalia* from the
- 1083 Siwalik sediments of Balugoloa, Himachal Pradesh. Geophytology 21, 49–52.

- Mandal, A., Samajpati, N., Bera, S., 2009. In situ occurrence of epiphyllous fungus Phomites 1085 Fritel from the lower Siwalik sediments of Darjeeling foothills. J. Bot. Soc. Bengal 63, 1086 37–40.
- 1087 Mandal, A., Samajpati, N., Bera, S., 2011. A new species of *Meliolinites* (fossil Meliolales) from
- 1088 the Neogene sediments of sub-Himalayan West Bengal, India. Nova Hedwigia 92, 435– 1089 440.

- 1090 Medlicott, H.B., 1865. The coal of Assam, results of a brief visit to the coalfields that province in
- 1091 1865; with geological note on Assam and the hills to the south of it. Memoirs of Geol.
 1092 Sur. India 4, 388–442.
- 1093 Mehrotra, R.C., 2000a. Study of plant megafossils from the Tura Formation of Nangwabibra,

1094 Garo Hills, Meghalaya. Palaeobotanist 49, 225–237.

- Mehrotra, R.C., 2000b. Two new fossils fruits from the Oligocene sediments of Makum
 coalfield, Assam, India. Curr. Sci. 79, 1482–1483.
- 1097 Mehrotra R.C., Awasthi N., Dutta S.K., 1999. Study of fossil wood from the upper Tertiary
- 1098 sediments (Siwalik) of Arunachal Pradesh, India and its implication in palaeoecological
- and phytogeographical interpretations. Rev. Palaeobot. Palynol. 107, 223–247.
- 1100 Mehrotra, R.C., Srivastava, G., Srikarni, C., 2018. *Lagerstroemia* L. wood from the Kimin
- Formation (upper Siwalik) of Arunachal Pradesh and its climatic and phytogeographic
 significance. J. Geol. Soc. India 91, 695–699.
- 1103 Mitra, S., Banerjee, M., 2000. On the occurrence of epiphyllous Deuteromycetous fossil fungi
- 1104 Palaeocercospora siwalikensis gen. et. sp. nov. and Palaeocolletotrichum graminioides
- 1105 gen. et. sp. nov. from Neogene sediments of Darjeeling foothills, Eastern Himalaya. J.

1106 Mycopathol. Res. 37, 7–11.

1107 Mitra, S., Banerjee, M., 2004. Fossil fruit *Derrisocarpon miocenicum* gen. et. sp. nov. and leaflet

- 1108 Derrisophyllum Siwalicum gen. et. sp. nov. cf. Derris trifoliata Lour. of Fabaceae from
- 1109 Siwalik sediments of Darjeeling foothills, eastern Himalaya, India with remarks on site of
- 1110 origin and distribution of the genus. Phytomorphology 54, 253–263.

1111	Mitra S., Bera, S., Banerjee, M., 2002. On a new epiphyllous fungus Palaeoasterina siwalika
1112	gen. et. sp. nov. from the Siwalik (middle Miocene) sediments of Darjeeling foothills,
1113	India with remarks on environment. Phytomorphology 52, 285–292.
1114	Molnar, P., Boos, W.R., Battisti, D.S., 2010. Orographic controls on climate and paleoclimate of
1115	Asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci.
1116	38, 77–102.
1117	Morley, R.J., 2000. Origin and evolution of tropical rain forests. Chichester, UK, p. 27.
1118	More, S., Rit, R., Khan, M.A., et al., 2018. Record of Leaf and Pollen cf. Sloanea
1119	(Elaeocarpaceae) from the Middle Siwalik of Darjeeling sub-Himalaya, India and its
1120	Palaeobiogeographic Implications. J. Geol. Soc. India 91, 301–306.
1121	Mosbrugger, V., Utescher, T., 1997. The coexistence approach—a method for quantitative
1122	reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr.
1123	Palaeoclimatol. Palaeoecol. 134, 61–86.
1124	Mosbrugger, V., 1999. The nearest living relative method. In fossil plants and spores: Modern
1125	techniques (eds TP Jones and NP Rowe). Bath: Geol. Soc. London, pp. 261–265.
1126	Mosbrugger, V., Utescher, T., Dilcher, D.L., 2005. Cenozoic continental climatic evolution of
1127	Central Europe. Proc. Natl. Acad. Sci. U.S.A. 102, 14964–14969.
1128	New, M., Hulme, M., Jones, P., 1999. Representing Twentieth-Century Space–Time Climate
1129	Variability. Part I: Development of a 1961–90 Mean Monthly Terrestrial Climatology. J.
1130	Clim. 12, 829–856.
1131	New, M., Lister, D., Hulme, M., et al., 2002. A high-resolution data set of surface climate over

1132 global land areas. Clim. Res. 21, 1–15.

1133 Pathak, N.R., 1969. Megafossils from the foothills of Darjeeling district, India. J. Bot. Soc.

1134 Bengal, Calcutta, pp. 379–386.

- Parkash, B., Sharma, R.P., Roy, A.K., 1980. The Siwalik group (Molasse) sediments shed by
 collision of continental plates. Sediment. Geol. 25, 127–159.
- 1137 Pilgrim, G.E., 1910. Preliminary note on a revised classification of the Tertiary freshwater
- deposits of India. Records of the geological survey of India, vol XL, Part 3, pp. 185–205.
- 1139 Pilgrim, G.E., 1913. The correlation of the Siwaliks with mammal horizons of Europe. Rec.

1140 Geol. Sur. India 43, 264–326.

1141 Pradhan, U.C., Lachungpa, S.T., 1990. Sikkim-Himalayan *Rhododendron*. Primulaceae Books,

1142 Kalimpong, Darjeeling, p. 130.

- Prasad, M., 1990. Fossil flora from the Siwalik sediments of Koilabas, Nepal. Geohydrology 19,
 79–105.
- Prasad, M., 1994a. Siwalik (middle-Miocene) leaf impressions from the foot hills of the
 Himalaya, India. Ter. Res.15, 53–90.
- 1147 Prasad, M., 1994b. Plant megafossils from the Siwalik sediments of Koilabas, central Himalaya,
- 1148 Nepal and their impact on palaeoenvironment. Palaeobotanist 42, 126–156.
- 1149 Prasad, M., 2006. Plant fossils from Siwalik sediments of Himachal Pradesh and their
- 1150 palaeoclimatic significance. Phytomorphology 56, 9–22.
- Prasad, M., 2008. Angiospermous fossil leaves from the Siwalik foreland and their paleoclimatic
 implication. Paleobotanist 57, 177–215.
- 1153 Prakash, U., Prasad, M., 1984. Wood of *Bauhinia* from the lower Siwalik beds of Uttar Pradesh,
- 1154 India. Paleobotanist 32, 140–145.

- 1155 Prasad, M., Kannaujia, A.K., Alok, Singh, S.K., 2015. Plant megaflora from the Siwalik (upper
- 1156 Miocene) of Darjeeling district, West Bengal, India and its palaeoclimatic and
- 1157 phytogeographic significance. Palaeobotanist 64, 13–94.
- 1158 Prasad, M., Dwivedi, H.D., 2007. Systematic study of the leaf impressions from the Churia
- 1159 Formation of Koilabas area, Nepal and their significance. Palaeobotanist 56, 39–54.
- 1160 Prasad, M., Antal, J.S., Tiwari, V.D., 1997. Investigation on plant fossil from Seria Naka in the
- 1161Himalayan foot hills of Uttar Pradesh, India. Paleobotanist 46, 13–30.
- Prasad, M., Antal, J.S., Tripathi, P.P., et al., 1999. Further contribution to the Siwalik flora from
 the Koilabas area, western Nepal. Palaeobotanist 48, 49–95.
- Prasad, M., Tripathi, P.P., 2000. Plant megafossils from the Siwalik sediments of Bhutan and
 their climatic significance. Biol. Mem. 26, 6–19.
- 1166 Prasad, M., Ghosh, R., Tripathi, P.P., 2004. Floristic and climate during the Siwalik (middle
- Miocene) near Kathgodam in the Himalayan foothills of Uttaranchal, India. J. Palaeontol.
 Soc. India. 49, 35–93.
- 1169 Ranga Rao, A., Venkatechala, B.S., Sastri, V.V., 1979. Neogene/Quaternary boundary and the
- Siwalik. In: Sastri, V.V.e.a. (Ed.), Field Conference on Neogene–Quaternary Boundary,
 India.
- 1172 Ranga Rao, A., Agarwal, R.P., Sharma, U.N., et al., 1988. Magnetic polarity stratigraphy and
- 1173 vertebrate palaeontology of the upper Siwalik subgroup of Jammu Hills, India. J. Geol.
- 1174 Soc. India 31, 361–385.
- Sahni, B., 1964a. Revision of Indian Fossil Plants-Monocotyledons. Monograph 1. Birbal Sahni
 Institute of Palaeobotany, Lucknow.

- 1177 Sahni, B., 1964b. Revision of Indian Fossil Plants-part III. Monocotyledons. Monograph 1.
- 1178 Birbal Sahni Institute of Palaeobotany, Lucknow.
- 1179 Shashi, Pandey, S.M., Tripathi, P.P., 2006. Fossil leaf impressions from Siwalik sediments of
- 1180 Himalayan foot hills of Uttaranchal, India and their significance. Palaeobotanist 55, 77–
- 1181 87.
- Shashi, Pandey, S.M., Tripathi, P.P., 2008. Siwalik (middle Miocene) leaf impressions from
 Tanakpur area, Uttaranchal and their bearing on climate. Geophytology 37, 99–108.
- 1184 Singh, G., 1975. On the discovery of first vertebrate fossil from the Upper Tertiary of Subansiri
- district, Arunachal Pradesh. Indian Min. 29, 65–67.
- Singh, T., 1983. On the stratigraphic correlation of upper Tertiary of Arunachal Pradesh. Geol.
 Sur. India Mis. Publ. 43, 82–84.
- 1188 Singh, T., 2007. Geology of Itanagar capital complex, Arunachal Himalaya, with special

reference to neotectonics. J. Geol. Soc. India 70, 339–352.

- 1190 Singh, T., Prakash, U., 1980. Leaf-impressions from the Siwalik sediments of Arunachal
- 1191 Pradesh. Geohydrology 10, 104–107.
- 1192 Spicer, R. A., 1991. Plant Taphonomic Processes. In: Allison, P.A., Briggs, D.E.G., Taphonomy:
- 1193Releasing the Data Locked in the Fossil Record. Plenum Press, New York, pp. 71–113.
- 1194 Spicer, R.A., Herman, A.B., 2010. The Late Cretaceous environment of the Arctic: a quantitative
- reassessment using plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 295, 423–42.
- 1196 Spicer, R.A., Valdes, P.J., Hughes, A.C., et al., 2019. New insights into the thermal regime and
- 1197 hydrodynamics of the early Late Cretaceous Arctic. Geol. Mag. 157, 1729–1749.
- 1198 Spicer, R.A., Wolfe, J.A., 1987. Plant taphonomy of late Holocene deposits in Trinity (Clair
- 1199 Engle) Lake, northern California. Paleobiology13, 227–245.

- 1200 Spicer, R.A., Yang, J., Spicer, T.E.V., et al., 2021. Woody dicot leaf traits as a palaeoclimate
- 1201 proxy: 100 years of development and application. Palaeogeogr. Palaeoclimatol.

1202 Palaeoecol. 562, 110138

- Srivastava, R., Mehrotra, R.C., 2009. Plant fossils from Dafla Formation, west Kameng district,
 Arunachal Pradesh. Palaeobotanist 58, 33–49.
- 1205 Srivastava, G., Gaur, R., Mehrotra, R.C., 2015. *Lagerstroemia* L. from the middle Miocene
- Siwalik deposits, northern India: Implication for Cenozoic range shifts of the genus and
 the family Lythraceae. J. Earth. Syst. Sci. 124, 227–239.
- 1208 Srivastava, G., Mehrotra, R.C., Sirkarni, C., 2018. Fossil wood flora from the Siwalik group of
- Arunachal Pradesh, India and its climatic and phytogeographic significance. J. Earth.
 Syst. Sci. 127, 1–22.
- 1211 Srivastava, G., Farnsworth, A., Bhatia, H., et al., 2021. Climate and vegetation change during the
- 1212 upper Siwalik—a study based on the palaeobotanical record of the eastern Himalaya.
- 1213 Paleobiodivers. Paleoenviron. 101, 103–121.
- 1214 Sundriyal, M., 1999. 'Distribution, Propagation and Nutritive Value of Some Wild Edible Plants
- 1215 in the Sikkim Himalaya.' PhD Thesis, High Altitude Plant Physiology Research Centre,
- 1216 HNB Garjhwal University, Srinagar (Garhwal) and GB Pant Institute of Himalayan
- 1217 Environment and Development, Sikkim Unit, Sikkim, India
- 1218 Su, T., Liu, Y.S., Jacques, F.M.B., et al., 2013. The intensification of the east Asian winter
- 1219 monsoon contributed to the disappearance of *Cedrus* (Pinaceae) in southwestern China.
- 1220 Quat. Res. 80, 316–325.
- 1221 Takhtajan, A. 1969 Flowering Plants: Origin and Dispersal. Edinburgh: Oliver & Body.

- Tang, Q., Zhang, X., Yang, X., et al., 2013. Cold winter extremes in northern continents linked
 to Arctic Sea ice loss. Environ. Res. Lett. 8, 014036.
- Tang, H., Eronen, J. T., Kaakinen, A., et al., 2015. Strong winter monsoon wind causes surface
 cooling over India and China in the Late Miocene. Clim. Past 11. 63–93.
- 1226 Taral, S., Kar, N., Chakrobarty, T., 2017. Wave-generated structures in the Siwalik rocks of Tista
- valley, eastern Himalaya: Implication for regional palaeogeography. Curr. Sci. 113, 887–
 901.
- 1229 Taral, S., Chakraborty, T., Huyghe, P., et al., 2019. Shallow marine to fluviatransition in the
- 1230 Siwalik succession of the Kameng River section, Arunachal Himalaya and its implication
- 1231 for foreland basin evolution. J. Asian. Earth. Sci. 184: 103980.
- Teodoridis, V., Kovar-Eder, J., Marek, P., et al., 2011. The integrated plant record vegetation
 analysis: Internet platform and online application. Acta Musei Nationalis Pragae, Series
- 1234 B–Historia Naturalis. 67, 159–164.
- 1235 ter Braak, C.J.F., 1986. Canonical correspondence analysis: a new eigenvector technique for
- 1236 multivariate direct gradient analysis. Ecology 67, 1167–1179.
- 1237 Thanukos, Anna 2012. "Uniformitarianism: Charles Lyell" University of California Museum of
 1238 Paleontology. *Retrieved 23 July 2012*.
- Tripathi, P.P., Pandey, P., Mishra, R.K., 2007. Leaf impressions from the Siwalik beds of southeastern Bhutan and their climatic significance. Plant Archives 7, 169–173.
- 1241 Tripathi, P.P., Pandey, S.M., Prasad, M., 2002. Angiospermous leaf impressions from Siwalik
- sediments of Himalayan foot hills near Jarva, U.P. and their bearing on palaeoclimate.
- 1243 Biol. Mem. 28, 79–90.

- 1244 Utescher, T., Bruch, A. A., Erdei, B., et al., 2014. The Coexistence Approach Theoretical
- background and practical considerations of using plant fossils for climate quantification,
 Palaeogeogr. Palaeoclimatol. Palaeoecol. 410, 58–73.
- 1247 Yang, J., Spicer, R.A., Spicer, T.E.V., Li. C.S., 2011. 'CLAMP online': a new web-based
- 1248 palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North
- 1249 America. Palaeobiol. Palaeoenvir. 91, 163–183.
- Yang, J., Spicer, R.A., Spicer, T.E.V., et al., 2015. Leaf form-climate relationships on the global
 stage: an ensemble of characters. Glob. Ecol. Biogeogr. 10, 1113–1125.
- 1252 WWF ICIMOD, 2001. Ecoregion-based conservation in the eastern Himalaya: identifying
- important areas for biodiversity conservation. Kathmandu: WWF-Nepal.
- Wolfe, J.A., 1993. A method of obtaining climatic parameters from leaf assemblages. Geol. Soc.
 Am. Bull. 2040, 1–73.
- Valdiya, K.S., 2002. Emergence and evolution of Himalaya: reconstructing history in the light of
 recent studies. Prog. Phys. Geogr. 26, 360–399.
- 1258 Varma, C.P., 1968. On a collection of leaf-impressions from Hardwar, Uttar Pradesh. J.
- 1259 Palaeontol. Soc. India 5-9, 92–88.
- 1260 Vishnu (née Mandal) A., Khan, M.A., Bera, M., et al., 2017. Fossil Asterinaceae in the
- phyllosphere of the eastern Himalayan Neogene Siwalik Forest and their palaeoecological
 significance. Bot. J. Linn. Soc. 185, 147–167.
- 1263 Vishnu, A., Khan, M.A., Bera, M., et al., 2019. Occurrence of *Phoma* Sacc. in the phyllosphere
- 1264 of Neogene Siwalik Forest of Arunachal sub-Himalaya and its palaeoecological
- implications. Fungal Biol. 123, 18–28.

- 1266 Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse
- 1267 warming and carbon-cycle dynamics. Nature 451, 279–283.
- Zachos J.C., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global
 climate 65 Ma to present. Science 292, 686–693.
- 1270

1271 **Table captions**

- 1272 **Table 1.** A generalised lithostratigraphy of Siwalik sediments in the eastern Himalayas (*modified*
- 1273 *after* Khan et al., 2014a, 2019b; Taral et al., 2017).
- 1274 **Table 2.** A checklist of megafossil plant remains of Siwalik of the eastern Himalayas.
- 1275 **Table 3.** Summary of temperature-related CLAMP-derived metrics for Siwalik leaf assemblages
- 1276 from the eastern Himalayas. Values obtained by a CLAMP calibration based on PhysgAsia2 trait
- 1277 scores and WorldClim2 climate data as well as HiResGridMetAsia2 (in parentheses) gridded
- 1278 climate data. MAT mean annual temperature; WMMT warm month mean temperature;
- 1279 CMMT cold month mean temperature; MIN_T_W minimum temperature of the warmest
- 1280 month; MAX_T_C maximum temperature of the coldest month; THERM. compensated
- 1281 thermicity index: sum of mean annual temp., min. temp. of coldest month, max. temp. of coldest
- 1282 month, $\times 10$, with compensations for better comparability across the globe; GDD_0 sum of
- 1283 mean monthly temperature for months with mean temperature greater than 0 °C multiplied by
- 1284 number of days; GDD_5 sum of mean monthly temperature for months with mean temperature
- 1285 greater than 5 °C multiplied by number of days and LGS length of the growing season when
- 1286 mean temperatures are above 10 °C
- 1287 **Table 4.** Summary of precipitation and moist enthalpy CLAMP-derived metrics for Siwalik leaf
- 1288 assemblages from the eastern Himalayas. Values obtained by a CLAMP calibration based on

1289	PhysgAsia2 trait scores and WorldClim2 climate data as well as HiResGridMetAsia2 gridded
1290	climate data, in parentheses. GSP – precipitation during the growing season; MMGSP – mean
1291	monthly precipitation during the growing season; 3WET – precipitation during the three
1292	consecutive wettest months; 3DRY – precipitation during the three consecutive driest months;
1293	ENTH – annual mean moist enthalpy.
1294	Table 5. Summary of humidity CLAMP-derived metrics for Siwalik leaf assemblages from the
1295	eastern Himalayas. Values obtained by a CLAMP calibration based on PhysgAsia2 trait scores
1296	and WorldClim2 climate data as well as HiResGridMetAsia2 (in parentheses) gridded climate
1297	data. RH. ANNUAL – annual mean relative humidity; SH. ANNUAL – annual mean specific
1298	humidity; VPD.ANN – annual mean vapour pressure deficit; VPD.SUM – mean VPD for the
1299	summer quarter; VPD.WIN – mean VPD for the winter quarter; VPD.SPR – mean VPD for the
1300	spring quarter; VPD-AUT – mean VPD for the autumn quarter; PET.ANN – annual mean
1301	potential evapotranspiration; PET.WARM – mean potential evapotranspiration for the warmest
1302	quarter; PET.COLD – mean potential evapotranspiration for the coldest quarter.

1303

1304 **Figure captions**

1305 Figure 1. Maps showing the seven sectors of the Siwalik belt (modified after Karunakaran and

1306 Ranga Rao, 1976) showing the locations of the present study areas

1307 Figure 2. a-c. Fossiliferous Siwalik exposures of the eastern Himalayas (a: Darjeeling; b:

1308 Bhutan; c: Southeastern Himalaya)

1309 **Figure 3.** (a) A fossil leaflet of *Dysoxylum miocostulatum* Khan and Bera (2007) from Lower

1310 Siwalik sediments of Southeastern Himalaya (CUH/PPL/P26) (Scale bar = 1 cm); (b, c) Winged

1311 seeds of *Pinus arunachalensis* Khan and Bera (2017) from Lower Siwalik sediments of

1312	Southeastern Himalaya (CUH/PPL/P/f/61a, b) (Scale bar = 1 cm); (d) A fossil leaf <i>Quercus</i> cf.
1313	lamellosa Khan et al. (2011) from Upper Siwalik sediments of Southeastern Himalaya
1314	(CUH/PPL/IB7/46) (Scale bar = 1 cm); (e) <i>Dysoxylum raptiensis</i> Khan et al. (2015a) from Upper
1315	Siwalik sediments of Southeastern Himalaya (CUH/PPL/IB7/17) – abaxial cuticle showing
1316	stomata and epidermal cells (Scale bar = $10 \mu m$); (f) Fossil leaf of <i>Shorea mioobtusa</i> Khan et al.
1317	(2016) from Lower Siwalik sediments of Southeastern Himalaya (CUH/PPL/ P 83) (Scale Bar =
1318	1 cm); (g) Dipterocarpus koilabasensis Khan et al. (2015a) from Upper Siwalik sediments of
1319	Southeastern Himalaya (CUH/PPL/IB7/3) - abaxial cuticle, hyphae with opposite and pointed
1320	appressoria of epiphyllous fungi <i>Asterina</i> sp. (Scale bar = $10 \mu m$); (h) <i>Calophylloxylon</i>
1321	eoinophyllum Khan et al. (2017a) from Upper Siwalik sediments of Southeastern Himalaya
1322	(CUH/PPL/IB7/W1A) - transverse section (T.S.) showing diffuse vessel distribution and solitary
1323	arrangement, and parenchyma bands (Scale bar = $10 \mu m$); (i) Fossil fruit wing of <i>Shorea</i>
1324	mioassamica Khan and Bera (2010) from Lower Siwalik sediments of Southeastern Himalaya
1325	(CUH/PPL/P14) (Scale bar = 1 cm)
1326	Figure 4. (a) A fossil leaf of Actinodaphne palaeoangustifolia Khan et al. (2011) from Upper
1327	Siwalik sediments of Southeastern Himalaya (CUH/PPL/IB7/40) (Scale bar = 1 cm); (b) A fossil
1328	leaf of Calophyllum suraikholaensis Khan et al. (2009) from Middle Siwalik sediments of
1329	Southeastern Himalaya (CUH/PPL/B1) (Scale bar = 1 cm); (c) Light micrographs of <i>Gmelina</i>
1330	siwalika Khan et al. (2018a) from Upper Siwalik sediments of Southeastern Himalaya
1331	(CUH/PPL/C ₃ /44) - tangential longitudinal sections of the secondary xylem showing 2–3 seriate
1332	ray cells (Scale bar = 50 μ m); (d) <i>Gynocardia arunachalensis</i> Khan et al. (2014c) from Upper
1333	Siwalik sediments of Southeastern Himalaya (CUH/PPL/IB7/f/61a) - fossil seed showing thick,
1334	leathery seed coat (Scale bar =1 cm); (e) Fossil leaf of <i>Glochidion siwalikum</i> Khan et al. (2019a)

- 1335 from Middle Siwalik sediments of Southeastern Himalaya (CUH/PPL/B/64A) (Scale bar = 1
- 1336 cm); (f) Cyathea siwalika Bera et al. (2014) from Upper Siwalik sediments of Southeastern
- 1337 Himalaya (CUH/PPL/IB7/TF/1) Cyatheoid arrangement of vascular bundles within the leaf
- 1338 scar (scale bar = 1 cm); (g) *Calophyllum suraikholaensis* Khan et al. (2015a) from Upper Siwalik
- 1339 sediments of Southeastern Himalaya (CUH/PPL/IB7/19) lower cuticle showing paracytic
- 1340 stomata and epidermal cells (Scale bar = $10 \mu m$).
- 1341 **Figure 5.** (a) A fossil leaf of *Persea preglaucescens* Khan and Bera (2014) from Middle Siwalik
- sediments of Southeastern Himalaya (CUH/PPL/B/19) (Scale bar = 1 cm); (b) A well-preserved
- 1343 wing-like persistent calyx lobe of *Shorea bhalukpongensis* Khan et al. (2016) from Middle
- 1344 Siwalik sediments of Southeastern Himalaya (CUH/PPL/B/f/19) showing characteristic parallel
- 1345 primary veins (green arrows) (Scale bar = 1 cm); (c) Light micrographs of *Meliolinites*
- 1346 *neogenicus* Khan et al. (2019c) from Upper Siwalik sediments of Southeastern Himalaya
- 1347 (CUH/PPL/IB7/36/AS₁) Hypha of *M. neogenicus* showing capitate appressoria with head cells
- and stalk cells (Scale Bar = $20 \mu m$); (d) *Dysoxylum raptiensis* Khan et al. (2015a) from Upper
- 1349 Siwalik sediments of Southeastern Himalaya (CUH/PPL/IB7/17) SEM of the abaxial cuticle,
- 1350 inner surface, paracytic stomata (Scale bar = $10 \mu m$); (e) Fossil leaf of *Shorea* Khan et al.
- 1351 (2019b) from Middle Siwalik sediments of Bhutan (CUH/PPL/BH/12A) (Scale bar = 1 cm); (f)
- 1352 Fossil fruit of *Dalbergia prelatifolia* Khan and Bera (2014) from Lower Siwalik sediments of
- 1353 Darjeeling foothill (CUH/PPL/SV/f/1) (Scale bar = 1 cm); (g) Fossil fruit of *Elaeocarpus*
- 1354 prelancaefolius Bera et al. (2004) from Upper Siwalik sediments of Southeastern Himalaya
- 1355 (CUH/PPL/IB7/5/ F_1) (Scale bar = 1 cm); (h) Zig-zag type leaf mining on the fossil leaf of
- 1356 *Terminalia panandhroensis* (Lakhanpal and Guleria) Khan et al. (2014b) from Middle Siwalik
- 1357 sediments of Southeastern Himalaya (CUH/PPL/ B/54) (Scale bar = 1 cm); (i) Scanning electron

- 1358 micrographs of *Gmelina siwalika* Khan et al. (2018a) from Upper Siwalik sediments of
- 1359 Southeastern Himalaya (CUH/PPL/C₃/44) transverse section of the secondary xylem showing
- 1360 vessel with a prominent tylosis (Scale bar = $50 \mu m$); (j) *Dysoxylum raptiensis* Khan et al. (2015a)
- 1361 from Upper Siwalik sediments of Southeastern Himalaya (CUH/PPL/IB7/17) adaxial cuticle
- 1362 with characteristic frass-trail (Scale bar = $10 \,\mu\text{m}$)
- 1363 **Figure 6.** (a) Diagrammatic representation of different types of forest elements of the lower
- 1364 Siwalik flora of the eastern Himalayas (E = Evergreen, D = Deciduous, O = Others); (b)
- 1365 Diagrammatic representation of different types of forest elements of middle Siwalik flora of the
- 1366 eastern Himalayas (E = Evergreen, D = Deciduous, O = Others); (c) Diagrammatic
- 1367 representation of different types of forest elements of upper Siwalik flora of the eastern
- 1368 Himalayas (E = Evergreen, D = Deciduous, O = Others); (d) Diagrammatic representation of
- 1369 different types of forest elements of entire Siwalik flora of the eastern Himalayas (E =
- 1370 Evergreen, D = Deciduous, O = Others); (e) Schematic sketch of the floristic pattern changes
- 1371 throughout the Siwalik sediments in the eastern Himalayas.
- Figure 7. Reconstruction of the palaeovegetation during Siwalik sedimentation of the easternHimalayas.
- **Figure 8.** CLAMP WorldClim2 regression models for (a) mean annual temperature (MAT) and
- 1375 (b) cold month mean temperature (CMMT). The position of the eastern Himalayan fossil flora
- 1376 along the second-order polynomial regression relating the MAT and CMMT vector scores for
- 1377 modern vegetation against the observed MATs and CMMTs for those sites is shown as a red-
- 1378 rimmed circle with a yellow center, with uncertainty bars (1 s.d.) reflecting the scatter of the
- 1379 residuals about the regression line. Modern vegetation sites are coded for the climate their leaves
- 1380 are adapted to, as shown in Fig. 7a. The vector score represents the relative position of the sites,

- 1381 modern and fossil, along with a vector representing the primary trend of the climate variable in
- 1382 axes 1–4 space. See the CLAMP website (<u>http://clamp.ibcas.ac.cn</u>) for details.
- **Figure 9.** (a) Diagrammatic representation of Siwalik flora of the eastern Himalayas represented
- 1384 in the present-day flora of different geographical regions (NE = Northeast India; SI = South
- 1385 India; IM = India and Malaya Peninsula; M = Malaya; C = Cosmopolitan; O = Others); (b)
- 1386 Diagrammatic representation of the Siwalik flora of the eastern Himalayas in three different
- 1387 categories (EL = Extant local taxa; ELE = Extant but locally extinct taxa; ERE = extant but
- 1388 regionally extinct taxa).
- **Figure 10.** Map showing hypothetical migratory routes of Siwalik and Southeast Asian tropical
- elements.

Group	oup Sub - Generalized Siwalik Lithology Age			Formation				
-	group		Darjeeling	Bhutan	Southeastern Himalaya	Darjeeling	Bhutan	Southeastern Himalaya
S	Upper Siwalik	Loosely packed, friable very course-grained grey sandstones with high limonitisation in places and intercalated with	Pliocene	Pliocene- Pleistocene	Late Pliocene- early Pleistocene	Murti boulder bed	Formation III	Kimin Formation
I		claystones and shales. Frequent boulder beds with a sandy matrix also occur in this formation. Remains of wood,			Š			
W		leaves and fruits have been recorded			100			
	Middle	Generally weakly indurated,	Late	Late	Pliocene	Parbu grit	Formation II	Subansiri Formation
A	Siwalik	medium to coarse-grained sandstones with salt and pepper texture. Calcareous concretions of various shapes and sizes occur in the sandstones, occasionally associated with	Miocene- Pliocene	Miocene- Pliocene		Geabdat sandstone		
L	Lower Siwalik	grey shales with plant fossils Well-indurated medium to fine- grained generally well-sorted	Middle Miocene	late Miocene	Late Miocene		Formation I	Dafla Formation
I		sandstones, subordinate micaceous sandstones, bluish nodular silty shale, claystone, and small lenses of coal; plant fossils occur frequently			Middle Miocene	Gish Clay/ Chunabati formation		
K								

Table 2

FERNS	Homonoia mioriparia Antal and Prasad (L;				
Thelypterideaceae	D)				
Thelypteridaceophyllum tertiarum (Joshi and	Macaranga denticulate Khan et al. (L; SEH)				
Mehrotra) Khan et al. (L; SEH)	<i>M. siwalika</i> Antal and Awasthi (L; D)				
Cyatheaceae	Mallotus kalimpongensis Antal and Awasthi				
Cyathea Siwalika Bera et al. (L; SEH)	(L; D)				
GYMNOSPERM	Fabaceae				
Pinaceae	Acacia miocatechuoides Khan and Bera (F;				
Pinus daflaensis Khan and Bera (L; SEH)	SEH)				
ANGIOSPERMS	Albizia palaeolebbek Antal and Awasthi (L;				
Monocots	D)				
Marantaceae	Albizinium arunachalensis Mehrotra et al. (W; D) Bauhinia ramthiensis Antal and Awasthi (L; D) Pauhinium palacomalahariaum Antal at al				
Clinogyne ovatus Antal and Prasad (L; D)					
C. lishensis Antal and Prasad (L; D)					
Poaceae					
Bambusa sp. Antal and Awasthi (L; D)	Bauhinium palaeomalabaricum Antal et al.				
B. siwalika (Joshi and Mehrotra) Khan et al.	(L; D)				
(L; SEH)	<i>B. siwalika</i> Khan et al. (L; SEH)				
Arecaceae	<i>Callerya precinerea</i> Khan et al. (L; SEH) <i>Cassinium borooahii</i> Mehrotra et al. (L;				
Amesoneuron Joshi and Mehrotra (L; SEH)	SEH)				
ANGIOSPERMS 🤍	,				
Dicots	<i>Cynometra palaeoiripa</i> Prasad et al. (L; D)				
Achariaceae	 <i>C. tertiara</i> Antal and Awasthi (L; D) <i>Cynometroxylon</i> sp. cf. <i>C. holdenii</i> Mehrotra et al. 1999 (W; D) <i>C. holdenii</i> Mehrotra et al. (W; D) <i>Dalbergia prelatifolia</i> Khan and Bera (F; D) <i>D. rimosa</i> Khan et al. (L; SEH) 				
Gynocardia butwalensis Prasad et al. (L; D)					
G. arunachalensis Khan et al. (L; SEH)					
G. mioodorata (Prasad et al.) Khan et al. (L;					
SEH)					
Anacardiaceae					
Bouea premacrophylla Antal and Awasthi	<i>Derrisocarpon miocenicum</i> Mitra and Banerjee (F; D)				
(L; D)	Derrisophyllum siwalicum Mitra and				
Buchanania palaeosessilifolia Prasad et al.	Banerjee (L; D)				
(L; D)					

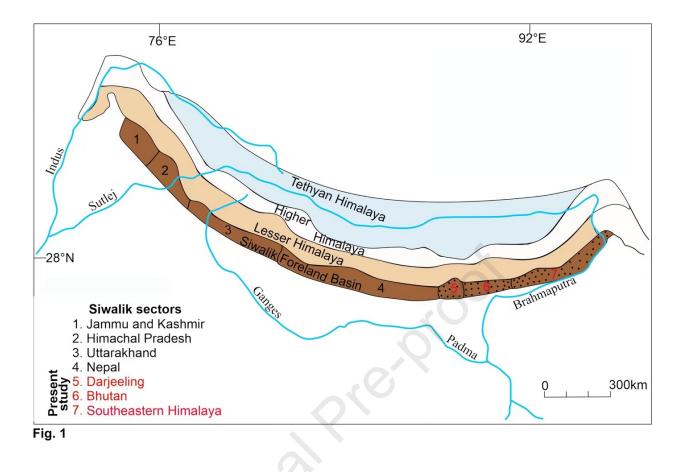
Dracontomelum Mangiferum Khan et al. (L;	Entada palaeoscandens Antal and Awasthi
SEH)	(F; D)
Glutoxylon burmense Mehrotra et al. (W;	Milletia extensa Khan et al. (L; SEH)
SEH)	M. koilabasensis (Prasad and Tripathi)
Mangifera someshwarica Khan et al. (L;	Srivastava and Mehrotra (L; SEH, B)
SEH)	M. miosericea Prasad et al. (L; D)
Nothopegia eutravancorica Antal and	M. oodlabariensis Antal and Prasad (L; D)
Awasthi (L; D)	M. prakashii Prasad et al. (L; D)
Sorindeia subansiriensis Khan et al. (L;	M. purniyagiriensis Prasad et al. (L; D)
SEH)	M. sevokensis Prasad et al. (L; D)
Annonaceae	M. siwalika Khan et al. (L; SEH)
Artabotrys siwalicus Prasad et al. (L; D)	Mastertia neoassamica Khan and Bera (F;
Cerbera miocenica Prasad et al. (L; D)	SEH)
Fissistigma palaeobicolor Joshi and	Pongamia siwalika Antal and Awasthi Khan
Mehrotra (L; SEH)	et al. (L; D, SEH)
<i>F. senii</i> Prasad et al. (L; SEH)	P. kathgodamensis Khan et al. (L; SEH)
Meiogyne sevokensis Prasad et al (L; D)	Pahudioxylon bankurensis Mehrotra et al.
Mitrephora siwalika (Antal and Awasthi)	(W; D)
Prasad and Tripathi (L; D, B)	P. indicum Srivastava et al. (W; SEH)
Polyalthia palaeosiamiarum Antal and	Spatholobus siwalicus Prasad et al. (L; D)
Prasad (L; D)	Fagaceae
Polyalthioxylon arunachalensis Srivastava et	Quercus sp. Khan et al. (L; SEH)
al. (W; SEH)	Quercus lamellosa Khan et al. (L; SEH)
Pseuduvaria mioreticulata Prasad et al. (L;	Flacourtiaceae
D)	Alsodeia palaeoechinocarpa Antal and
Uvaria ghishia Antal and Prasad (L; D)	Prasad (L; D)
U. neograndiflora Khan et al. (L; SEH)	A. palaeoracemosa Antal and Prasad (L; D)
U. siwalica Prasad et al. (L; SEH)	A. palaeozeylanicum Antal and Awasthi (L;
Apocynaceae	D)
Alstonia mioscholaris Antal and Awasthi (L;	Casearia pretomentosa Antal and Awasthi
D)	(L; D)
Chonemorpha miocenica (Prasad et al. Khan	Flacourtia tertiara Antal and Prasad (L; D)
et al. (L; D, SEH)	Hydnocarpus palaeokurzii Antal and

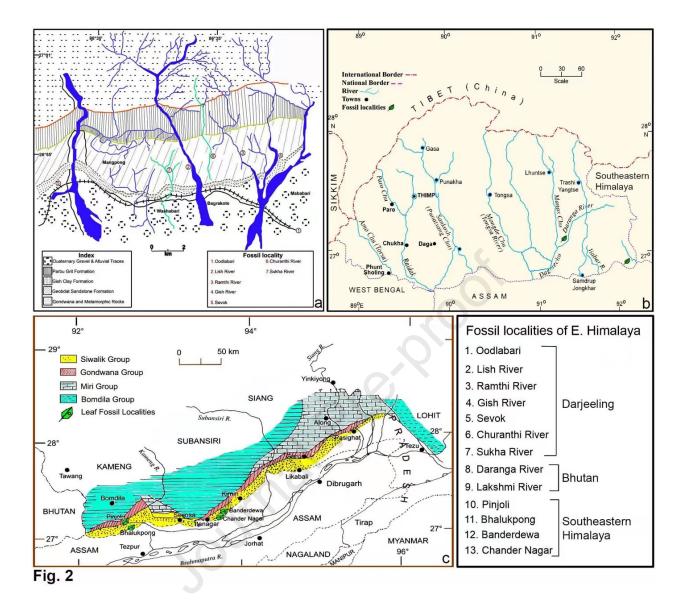
Tabernaemontana precoronaria Srivastava	Awasthi (L; D)					
and Mehrotra (L; SEH)	H. ghishiensis Prasad et al. (L; D)					
Asteraceae	Lamiaceae					
Vernonia palaeoarborea Antal and Awasthi	Premna pliobengalensis Khan et al. (L; SEH)					
(L; D)	Gmelina siwalika Khan et al. (L; SEH)					
Burseraceae	Lauraceae					
Bursera preserrata Antal and Awasthi (L; D)	Actinodaphne palaeoangustifolia (Antal and					
B. serratoides Antal and Awasthi (F; D)	Awasthi) Khan et al. (L; D; SEH)					
Canarium bengalense Khan et al. (L; SEH)	A. palaeomalabarica Srivastava and					
Calophyllaceae	Mehrotra (L; SEH)					
Calophylloxylon cuddalorense Srivastava et	A. palaeoobovata Khan et al. (L; SEH)					
al., (W; SEH)	Beilschmiedia plioroxburghiana Khan et al.					
C. eoinophyllum Khan et al. (W; SEH)	(L; SEH)					
C. suraikholaensis (Antal and Awasthi) Joshi	Cinnamomum sp. Antal and Awasthi (L; D)					
and Mehrotra; Khan et al. (L; D, SEH)	C. palaeobejolghota Khan and Bera (L; D)					
<i>C. siwalikum</i> Khan et al. (L; D)	Litsea preglabrata Srivastava and Mehrotra					
Celastraceae	(L; SEH)					
Lophopetalumoxylon indicum Srivastava and	L. salicifolia Khan et al. (L; SEH)					
Mehrotra (L; SEH)	Lindera neobifaria Khan and Bera (L; SEH)					
Salacia miocenica Srivastava and Mehrotra	L. pulcherrima Khan et al. (L; SEH)					
(L; SEH)	Persea miogamblei Khan and Bera (L; D)					
Clusiaceae	P. mioparviflora Khan and Bera (L; SEH)					
Garcinia eocambogia Prasad et al. (L; D)	P. neovillosa Khan and Bera (L; D)					
Kayeoxylon assamicum Srivastava et al. (W;	P. preglaucescens Khan and Bera (L; SEH)					
SEH)	Lythraceae					
Combretaceae	Lagerstroemia sp. Tripathi et al. (L; B)					
Combretum sahnii (Antal and Awasthi) Khan	L. jamraniensis Khan et al. (L; SEH)					
et al. (L; D, SEH)	L. deomaliensis Srivastava et al. (L; SEH)					
C. miocenicum Prasad and Tripathi (L; B)	L. deomaliensis Mehrotra et al. (W; SEH)					
C. prechinense Khan et al. (L; SEH)	Malvaceae					
Lagerstroemia patelii Antal and Awasthi (L;	Bombax palaeomalabaricum Prasad et al. (L;					
D)	D)					
Terminalia miobelerica Antal and Prasad (L;	Grewia ghishia Antal and Awasthi (L; D)					

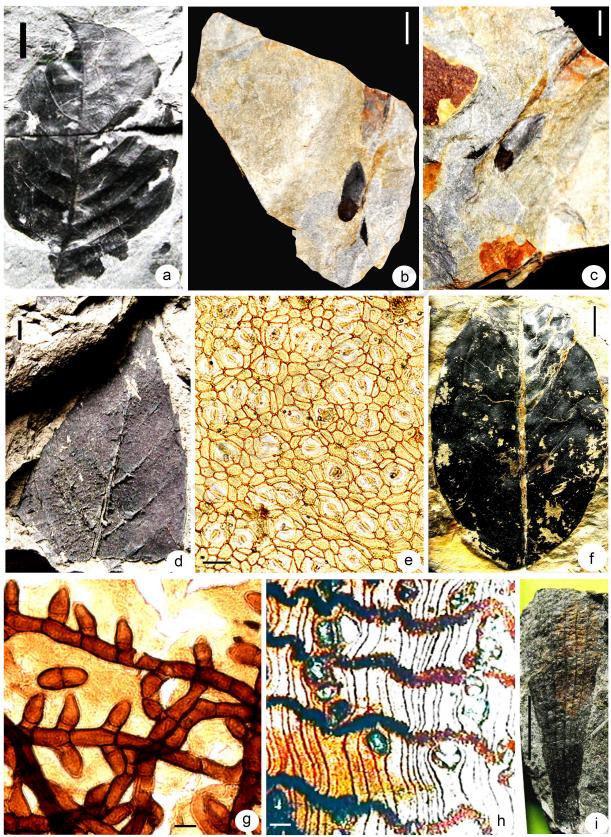
D)	G. tistaensis Antal and Prasad (L; D)					
T. palaeocatappa Joshi et al. (L; SEH)	Pterospermum siwalicum Antal and Prasad					
T. palaeochebula Khan et al. (L; SEH)	(L; D)					
Terminalioxylon belericum Mehrotra et al.	P. palaeoheynianum Antal and Awasthi (L;					
(W; SEH)	D)					
Connaraceae	Sterculia miocolorata Prasad et al. (L; D)					
Rourea miocaudata Khan and Bera (L; SEH)	S. siwalica Prasad et al. (L; D)					
Cornaceae	S. mioparviflora (L; D)					
Mastixia asiatica Khan et al. (F; SEH)	Melastomaceae					
M. siwalika Khan et al. (L; SEH)	Memecylon arunachalensis Srivastava and					
Dilleniaceae	Mehrotra (L; SEH)					
Dillenia palaeoindica Antal and Awasthi (L;	Meliaceae					
D)	Beddomia palaeoindica Antal and Prasad (L;					
Dipterocarpaceae	D)					
Dipterocarpus siwalicus (Prasad and	Dysoxylum miocostulatum Khan and Bera (L;					
Tripathi) Antal and Prasad; Joshi and	SEH)					
Mehrotra, Khan et al. (L; B, D, SEH)	D. raptiensis Khan et al. (L; SEH)					
D. koilabasensis Khan et al. (L; SEH)	Toona siwalika Prasad and Tripathi (L; B)					
Dipterocarpoxylon parabaudii Tripathi et al.	Moraceae					
(W; B)	Ficus retusoides Antal and Awasthi (L; D)					
Hopea kathgodamensis Antal and Prasad (L;	F. oodlabariensis Antal and Awasthi (L; D)					
D)	<i>F. precunea</i> Prasad et al. (L; D)					
H. siwalika Antal and Awasthi (L; D)	Myristicaceae					
Hopenium kalagarhensis Tripathi et al. (L;	Knema glaucescens Khan et al. (L; SEH)					
B)	Myrtaceae					
Hopeoxylon speciosum Mehrotra et al. (W;	Syzygium palaeocuminii Antal and Prasad (L;					
SEH)	D)					
H. eosiamensis Srivastava et al. (W, SEH)	Oleaceae					
Shorea miocenica Antal and Prasad (L; D,	Chionanthus siwalicus Prasad et al. (L; D)					
SEH)	Rhamnaceae					
S. bengalensis Antal and Prasad (L; D)	Rhamnus siwalicus Prasad et al. (L; D)					
S. bhalukpongensis Khan et al (FC; SEH)	Ventilago tistaensis Antal and Prasad (L; D)					
S. chandernagarensis Khan et al (FC; SEH)	Ziziphus palaeoapetala Antal and Prasad (L;					

S. mioassamica Khan and Bera (FC; SEH)	D)
S. mioobtusa Khan and Bera (F; A)	Rubiaceae
S. neoassamica Joshi and Mehrotra (L; SEH)	Callicarpa siwalika Antal and Awasthi (L;
S. nepalensis Khan et al (L; SEH)	D)
S. palaeoridleyana Joshi and Mehrotra (L;	Gardenia precoronaria Prasad et al (L; D)
SEH)	Neolamarckia paleocadamba Khan et al. (L;
S. pinjoliensis Khan and Bera (FC; SEH)	SEH)
S. pliotumbuggaia Khan et al (L; SEH)	Randia miowallichii (Antal and Awasthi)
S. siwalika (Antal and Awasthi) Khan et al.	Srivastava and Mehrotra (L; D, SEH)
(L; D, SEH)	R. lishensis Prasad et al. (L; D)
Shoreoxylon evidens Mehrotra et al. (W;	Rutaceae
SEH)	Toddalia miocenica Prasad et al. (L; D)
Vatica siwalica Prasad et al. (L; D)	Sapindaceae
V. prenitida Prasad et al. (L; D)	Euphoria longanoides Antal and Awasthi (L;
Ebenaceae	D)
Diospyros palaeoargentea Prasad et al. (L;	Cupania oodlabariensis Prasad et al. (L; D)
D)	Euphorioxylon deccanense Mehrotra et al.
D. koilabasensis Antal and Awasthi (L; D)	(W; SEH)
Ebenoxylon miocenicum Antal et al. (W; D)	Filicium koilabasensis Prasad et al. (L; D)
E. siwalicus Srivastava et al. (W; SEH)	Paranephelium miocenica Prasad et al. (L;
Elaeocarpaceae	D)
Elaeocarpus prelanceaefolius Bera et al. (F;	Sabia eopaniculata Prasad et al. (L; D)
SEH)	Vitaceae
Sloanea pliodasycarpa More et al. (L; D)	Vitis siwalicus Prasad et al. (L; D)
Euphorbiaceae	Xanthophyllaceae
Croton caudatus Khan et al. (L; SEH)	Xanthophyllum mioflavescens Antal and
Dicotylophyllum breyniodes Srivastava and	Prasad (L; D)
Mehrotra (L; SEH)	
Glochidion palaeohirsutum Antal and Prasad	
(L; D)	Abbreviations
G. siwalikum Khan et al. (L. SEH)	L: Leaf; F: Fruit; W: Wood; B: Bhutan; D:
G. palaeogamblei Khan et al. (L. SEH)	Darjeeling; SEH: Southeastern Himalaya

Table 3.

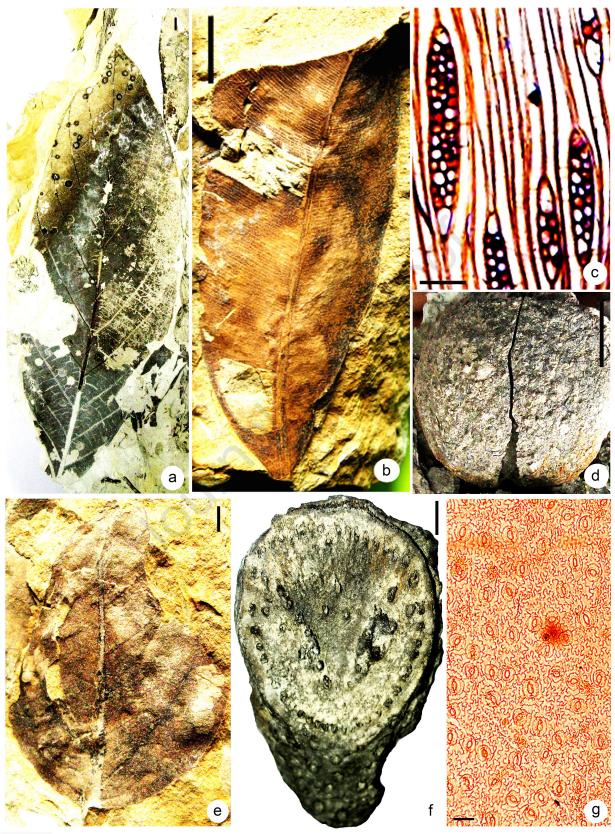

Locality	Siwalik	Age (Formation)	MAT	WMMT	CMMT	MIN_T_W	MAX_T_C	THERM.	GDD_0	GDD_5	LGS
	Strata		(°C)	(°C)	(°C)	(°C)	(°C)	(°C)			(months)
Darjeeling	Lower	Middle Miocene	24.2	28.2	18.7	22.6	24.3	602	107.9	107.2	12.8
	Siwalik	(Gish Clay	(25.37)	(28.35)	(17.88)						(12.95)
		Formation)				4					
Southeastern	Upper	Late Pliocene to	25	28 (28.05)	20.3	22.8	25.9	646	111.1	108.9	12.7
Himalaya	Siwalik	early Pleistocene	(25.38)		(20.86)						(12.58)
		(Kimin Formation)			.0						
Southeastern	Middle	Pliocene	23.3	27.3	0	23.1	23.6	588	102	101.5	12 (12.1)
Himalaya	Siwalik	(Subansiri	(23.67)	(28.14)	18.3						
		Formation)			(16.92)						
Southeastern	Lower	Middle Miocene	25.2	28.0	20.7	22.9	26.4	653	111.4	109.1	12.7
Himalaya	Siwalik	(Dafla Formation)	(25.29)	(27.84)	(21.29)						(12.48)
Bhutan	Middle	Late Miocene to	24.3	27.3	20 (18.9)	23.1	25.4	626	106.2	104.9	12.3
	Siwalik	Pliocene	(24.1)	(27.8)							(12.1)
		(Formation II)									
Standard deviat	ion	1	±2.4	±2.9	±3.6	±2.9	±3.5	±75	±11.7	±10.4	±1.1


Table 4.

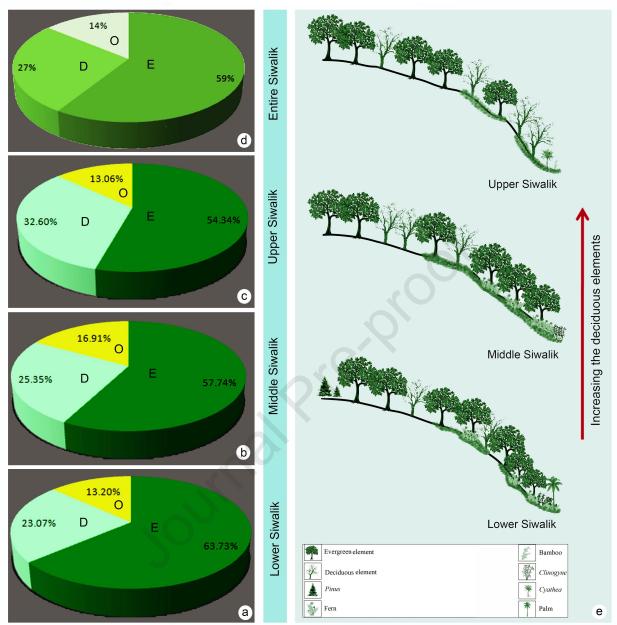

Locality	Siwalik	Age (Formation)	GSP	MMGSP	3WET	3DRY (cm)	ENTH
	Strata		(cm)	(cm)	(cm)		(kJ/kg)
Darjeeling	Lower	Middle Miocene	235.3	21.8	119.1	24.9 (28.86)	353.3
	Siwalik	(Gish Clay	(242.33)	(24.5)	(111.73)		(354.1)
		Formation)					
Southeastern	Upper	Late Pliocene to	208.7	18 (15.87)	107.7	10.7 (8.97)	358.3
Himalaya	Siwalik	early Pleistocene	(189.86)		(101.64)		(356.1)
		(Kimin Formation)					
Southeastern	Middle	Pliocene	200.5	17.5	0	13.3 (13.78)	352.8
Himalaya	Siwalik	(Subansiri	(198.12)	(17.9)	102.2		(351.3)
		Formation)		0	(99.41)		
Southeastern	Lower	Middle Miocene	198.3	16.5	101.5	9.1 (7.34)	358.3
Himalaya	Siwalik	(Dafla Formation)	(174.13)	(13.97)	(96.15)		(355.8)
Bhutan	Middle	Late Miocene to	189.9	15.8	97.4 (95.7)	10.2 (10.6)	356.5
	Siwalik	Pliocene	(189.9)	(15.4)			(353.3)
		(Formation II)					
Standard deviation			±64.3	±6.5	±40	±9.8	±8
		2021.	1				1

Locality	Siwalik	Age	RH.	RH. Journal Pre-proof						PET.ANN	PET.WAR	PET.COLD
	Strata	(Formation)	ANNUAL	ANNUAL	(hPa)	(hPa)	(hPa)	(hPa)	AUT	(mm)/10	M (mm)	(mm)
			(%)	(g/kg)					(hPa)			
Darjeeling	Lower Siwalik	Middle Miocene (Gish Clay	77.2 (80.99)	14.5 (14.46)	6.5	4.5	6.2	8.8	6	137.7	127.6	85.8
		Formation)										
Southeastern Himalaya	Upper Siwalik	Late Pliocene to early Pleistocene (Kimin Formation)	81.3 (82.37)	15.5 (14.97)	7.6	4	7.1	11.5	5.4	148.6	133	107.8
Southeastern Himalaya	Middle Siwalik	Pliocene (Subansiri Formation)	80 (78.84)	14.5 (14.01)	6.7	4	6.5	10.2	5.1	141.3	131.2	95.3
Southeastern Himalaya	Lower Siwalik	Middle Miocene (Dafla Formation)	80.4 (81.15)	15.5 (14.91)	8.0	4.8	7.2	11.8	5.8	151.6	139.2	110.1
Bhutan	Middle Siwalik	Late Miocene to Pliocene (Formation II)	81.7 (80.2)	15.2 (14.4)	3	3.6	6.8	10.9	4.9	147.5	134.6	106.5
Standard deviation			±10.2	±1.8	±2.4	±3.5	±1.5	±4	±2	±16.2	±24.5	±13.8

Table 5



Journal Pression



Journal Pression

Fig. 5

Journal Pression

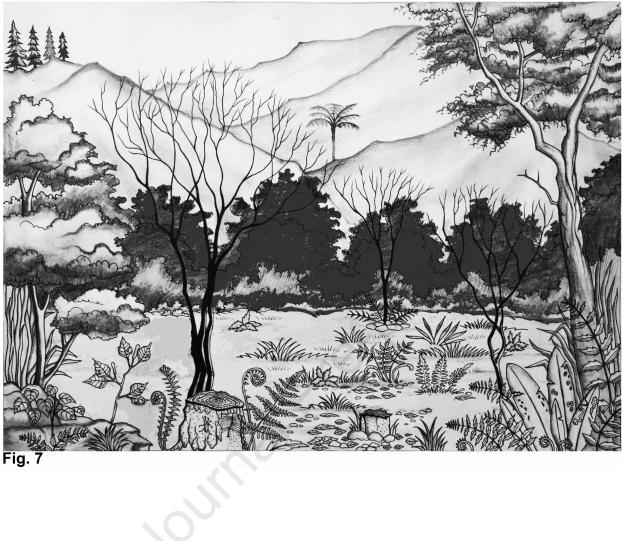
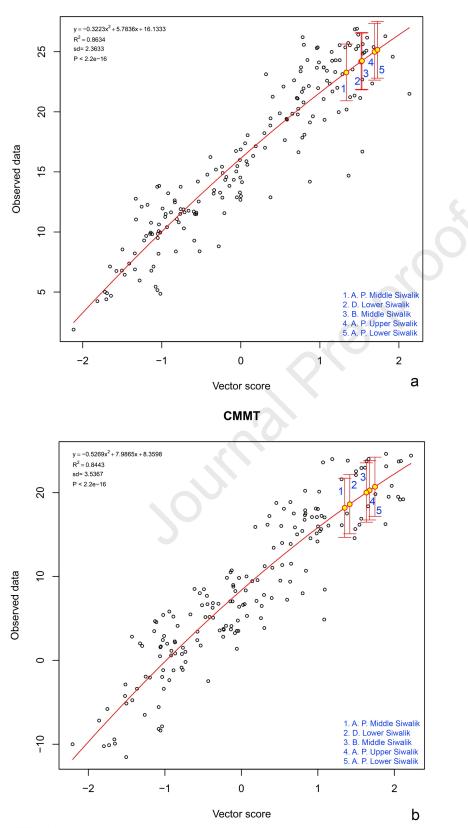



Fig. 7

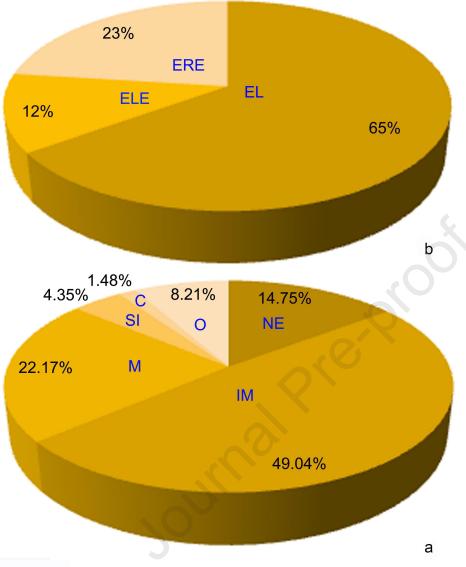


Fig. 12

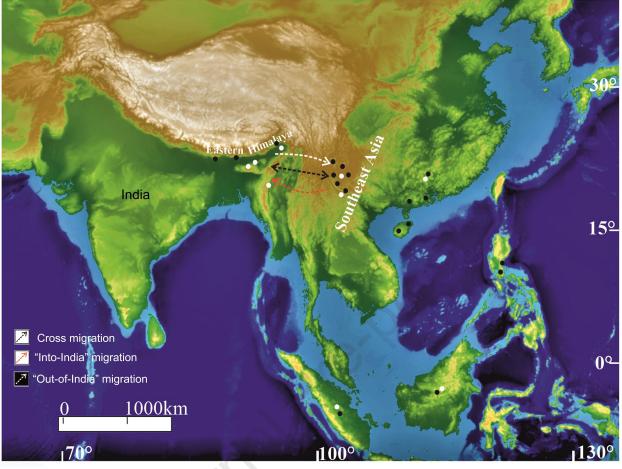


Fig. 13

Highlights

- First thorough review of the eastern Himalayan Siwalik floras
- A gradual change in floral composition through the Siwalik succession
- Monsoonal tropical, warm and humid climatic conditions prevailed during the deposition
- Siwalik forests experienced a weaker monsoon (less rainfall seasonality) than now
- Phytogeographic exchanges of Siwalik elements with Southeast Asia

.h Southeas

The authors declare that they have no competing interests.