
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1990

Transport interoperability using a virtual transport
layer
Ratinder Paul Singh Ahuja
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ahuja, Ratinder Paul Singh, "Transport interoperability using a virtual transport layer " (1990). Retrospective Theses and Dissertations.
9478.
https://lib.dr.iastate.edu/rtd/9478

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9478&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9478&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F9478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9478?utm_source=lib.dr.iastate.edu%2Frtd%2F9478&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

MICROFILMED 1991

www.manaraa.com

INFORMATION TO USERS

The most advanced technology has been used to photograph and

reproduce this manuscript from the microfihn master. UMI films the

text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any

type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly

to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, fvtl 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

www.manaraa.com

Order Number 9110480

Transport interoperability using a virtual transport layer

Ahuja, Ratinder Paul Singh, Ph.D.

Iowa State University, 1990

U M I
300N.ZeebRd.
Ann Aibor, Ml 48106

www.manaraa.com

www.manaraa.com

NOTE TO USERS

THE ORIGINAL DOCUMENT RECEIVED BY U.M.I. CONTAINED PAGES

WITH SLANTED AND POOR PRINT. PAGES WERE FILMED AS RECEIVED.

THIS REPRODUCTION IS THE BEST AVAILABLE COPY.

www.manaraa.com

www.manaraa.com

Transport interoperability using a virtual transport layer

by

Ratinder Paul Singh Ahuja

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Electrical Engineering and Computer Engineering
Major: Computer Engineering

Approved :

Members of the Committee:
IiYCfjifrg^f Major Work

For the CTraduate College

Iowa State University
Ames, Iowa

1990

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.
Signature was redacted for privacy.

www.manaraa.com

u

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Problem Statement 2

1.2 Why it Needs to be Solved 2

1.3 Transport Interoperability Approaches 3

1.3.1 Protocol Conversion Based Approach 3

1.3.2 Service Mapping Based Approach 10

1.3.4 Limitations of Current Approaches 15

1.4 Goal of the Research 15

1.4.1 The VTL Design Approach 16

1.5 Organization of the Dissertation 17

2 TRANSPORT SERVICES AND MECHANISMS 18

2.1 Introduction 18

2.2 ISO Transport Services Overview 19

2.2.1 Connection Mode Transport Layer Services 20

2.2.2 ISO Connection Oriented TP Mechanisms 22

2.2.3 ISO TP Procedures 26

2.2.4 Connectionless Mode Transport Services 26

2.2.5 ISO Connectionless TP Mechanisms 30

www.manaraa.com

lu

2.3 TCP Data Transport Mechanisms 31

2.3.1 DoD TCP Services 31

2.3.2 TCP Service Interaction Primitives 33

2.3.3 DoD TCP Procedures 39

2.4 TCP ISO TP4 Differences 40

2.5 Conclusion 41

3 THE VTL ARCHITECTURE 42

3.1 Introduction 42

3.2 Interoperability using the Virtual Transport 42

3.3 Gateway Architecture Design Issues 43

3.4 Addressing Mechanism 46

3.4.1 TCP/IP Addressing 46

3.4.2 ISO Network Layer Addressing 47

3.4.3 Addressing Across Heterogeneous Architectures 50

3.5 Conclusion 53

4 CONNECTION ESTABLISHMENT PHASE 55

4.1 Introduction 55

4.2 Connection Establishment Phase 56

4.2.1 Sequence of Events 56

4.2.2 Connection Establishment Procedures for TP4 and TCP 59

4.3 Usage Model of ISO Transport Service 62

4.4 VTL Design Issues 63

4.4.1 Transport Convergence Function Design 69

4.5 Rules for the TCFs During Connection Establishment 76

www.manaraa.com

iv

4.5.1 TCP Specification for TCP Gateways 80

4.5.2 TCP Specification for ISO TP4 Gateways 84

4.5.3 VTPDU Format 89

4.6 Conclusion 89

5 DATA TRANSFER PHASE 90

5.1 Introduction 90

5.2 TCP Mechanisms to Provide Data Transport 91

5.2.1 Sequence and Acknowledgement Numbers 91

5.2.2 Sequencing of Acknowledgements 91

5.2.3 Push and Urgent Data 92

5.3 TP4 Mechanisms to Provide Data Transport 92

5.3.1 Sequence and Acknowledgement Numbers 93

5.3.2 Sequencing of Acknowledgements 93

5.3.3 Expedited Data 95

5.4 VTL Design Issues for Data Transfer Phase 95

5.4.1 The Virtual Sequence Space 95

5.4.2 Acknowledgement Strategy 98

5.4.3 Expedited Data and Acknowledgements 101

5.4.4 Use of COTS for Error Recovery 102

5.5 VTL Specification for the Data Transfer Phase 106

5.5.1 Rules for the TCFs 106

5.5.2 Transport Convergence Function for TCP Gateways 109

5.5.3 Transport Convergence Function for TP4 Gateways 113

5.5.4 VTPDU Formats 118

www.manaraa.com

V

5.6 Conclusion 119

6 CONNECTION TERMINATION PHASE 120

6.1 Introduction... 120

6.2 TCP Connection Termination 121

6.2.1 Reset Generation and Processing 121

6.2.2 Graceful Connection Termination. 123

6.3 TP4 Connection Termination 125

6.3.1 Generation and Acceptance of DR TPDU 125

6.3.2 Data in Disconnect Request 126

6.3.3 Disconnect Reason 126

6.4 VTL Design Issues for the Connection Termination Phase 127

6.4.1 Usage Model of Transport Disconnect Service 128

6.4.2 Provision for Graceful and Non-Graceful Release 128

6.4.3 TCP Instance Disassociation 129

6.5 VTL Specification for the Connection Termination Phase 130

6.5.1 TCP State Transitions 131

6.5.2 Transport Convergence Function for TCP Gateways 133

6.5.3 Transport Convergence Function for TP4 Gateways 137

6.5.4 VTPDU Formats 140

6.6 Conclusion 141

7 CONCLUSIONS 142

7.1 Formal Methodology in Protocol Engineering 142

7.1.1 Concept and Specification Phase 142

7.1.2 Verification, Validation, Simulation and Modeling Phase 144

www.manaraa.com

vi

7.1.3 Implementation and System Integration 145

7.2 The VTL Design Effort in Retrospect 146

7.2.1 Comparison with Protocol Converters 147

7.2.2 Comparison with Service Bridges 147

7.2.3 Future Work 148

8 ACKNOWLEDGEMENT 149

9 BIBLIOGRAPHY 151

10 APPENDIX A. CONNECTION ESTABLISHMENT PHASE 156

11 APPENDIX B. DATA TRANSFER PHASE 182

12 APPENDIX C. CONNECTION TERMINATION PHASE 214

www.manaraa.com

vii

LIST OF TABLES

Table 1.1- Compatible Transport Service Primitives Between OSI TP4 and TCP 8

Table 2.1 - Summary of COTS primitives and parameters 21

Table 2.2 - Connection Oriented ISO-TP Sub-Functions 27

Table 2.3 - Summary of CL-TS primitives and parameters 29

Table 2.4 - Procedure For ISO CLTS 32

Table 2,5 - Summary of TCP Service Primitives and Parameters 35

Table 2.6 - Summary of TCP Service Responses and Parameters 37

Table 2.7 - Differences between the OSI TP4 and TCP 40

Table 6.1 - Reset Validation 122

Table 6.2 - Reset Generation 122

www.manaraa.com

viii

LIST OF FIGURES

Figure 1.1 - Model of Inputs, Outputs and the Protocols of an Entity 4

Figure 1.2 - Model of a Protocol Converter 5

Figure 1.3 - TCP-TP4 Interoperability Model Using a Protocol Converter 7

Figure 1.4 - Model of Service Mapping 11

Figure 1.5 - ISO TP Service on TCP 12

Figure 1.6 - TCP-ISO TP Interoperability using TS-Bridges and RFClOOô Protocol.... 13

Figure 1.7 - Internet using the Virtual Transport Layer 16

Figure 3.1 - VTL Gateway Architecture 44

Figure 3.2 - ISO NSAP Address Format 48

Figure 3.3 - Address Resolution (TCP Client ISO Server) 51

Figure 3.4 - Address Resolution (ISO Client TCP Server) 52

Figure 4.1 - TCP three way handshake 57

Figure 4.2 - ISO TP Connection Establishment 59

Figure 4.3 - Association of Modules 78

Figure 4.4 - Connection Establishment using the VTL 79

Figure 4.5 - Formal Specification of TCP_TCF 80

Figure 4.6 - Formal Specification of TP4 TCF 84

Figure 4.7 - Connection Request VTPDU 87

Figure 4.8 - Connection Confirm VTPDU 88

www.manaraa.com

ix

Figure 5.2 - Data VTPDU 115

Figure 5.3 - Expedited Data VTPDU 116

Figure 5.4 - Acknowledgement VTPDU 117

Figure 6.3 - TCF State Transitions 131

Figure 6.2 - TCF State Transitions for TCP Gateways 135

Figure 6.3 - TCF State Transitions for TP4 Gateways 138

Figure 6.4- Connection Termination VTPDU 139

Figure 7.1 - Protocol Engineering Methodology 143

Figure 7.2 - Grouping of Protocol Engineering Tasks 143

www.manaraa.com

1

1 INTRODUCTION

The need for internetworking comes from the fact that there is no one network type that

satisfies every computer communications requirement. The resources of interest to a user may

be distributed on various different networks. Due to irreconcilable differences in the network

technologies, it is impractical to consider merging them into a single network. What is needed

is the ability to interconnect various networks so that any two stations on any of the constituent

networks can communicate. An interconnected set of networks is referred to as an internet.

Standards and techniques exist to provide internetworking at various levels in the seven

layer OSI [1] model. These methods require either a common transport layer in the end

entities, with the internet providing services of the network layer, or protocol translators to map

higher level services from dissimilar networks. The first approach requires the transport layers

on the host to provide the end-to-end reliability, flow control and error control. The latter

approach requires building protocol translators or services bridges between each pair of

dissimilar network architectures that need to communicate. The focus of this research is to

provide a method for internetworking in which the end systems do not need the same transport

layer. The problem statement and the need to solve the problem is described in Sections 1.1

www.manaraa.com

2

and 1.2, respectively. Section 1.3 describes the current approaches to transport layer

interoperability and their limitations. The goals of the research are presented in Section 1.4.

1.1 Problem Statement

The problem to be solved is to provide internetworking at the transport layer for

applications that use dissimilar transport protocols. The solution should preserve the end-to-

end meaning of the transport service, and should simplify the task of communicating with any

number of different transport protocols by translating TPDUs to those of an intermediate

format This intermediate meta transport is referred to as the Virtual Transport Layer.

The problem can then be further sub-divided into two phases. The first phase involves

the design and specification of a virtual transport layer which is implemented using gateways.

The second phase involves designing protocol convergence functions in the gateways to

translate services and protocol data units from standard transport layers to those of the virtual

transport layer. At this stage, OSI and DoD transport layers will be considered.

1.2 Why it Needs to be Solved

The transport layer in a communication architecture provides for an end-to-end data

transfer in a reliable manner. A number of applications like NetBIOS [2] [3], RFC mechanisms

[4], X-Windows [5] and distributed data management systems require transport services from

the communication architecture. With programmatic interfaces like TLI [6] and XTI [7], and

www.manaraa.com

3

service mapping protocols such as RFC1006 [8], it is possible to write these applications to

work on different transport protocols with a minimum porting effort. It then becomes essential

to provide a means for such applications to interoperate, even if they employ the services of

different transport protocols.

1.3 Transport Interoperability Approaches

A survey of the research literature [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19]

[20] shows two popular methods to provide interoperability at the transport layer and higher

layers, namely Protocol Conversion and Service Mapping. These two methods as applied to

DoD TCP and ISO TP4 interoperability, are discussed in this section along with their

advantages and disadvantages.

1.3.1 Protocol Conversion Based Approach

Protocol translators interconnect heterogeneous networks at functionally similar, but

incompatible higher level protocols. They map one high-level abstraction into another. The

mapping can be implemented in a variety of ways such as software modules, dedicated

hardware, temporary storage, etc. The main reasons for having protocol converters to

interconnect heterogeneous networks are summarized in [12] and listed below:

- They increase connectivity.

www.manaraa.com

4

- They minimize the number of protocols to be supported and used.

- They are strategic components for the migration to OSI.

Protocol conversion concerns itself with protocol interactions that occur between peers

from different protocol suites that reside at the same logical layers in their respective protocol

hierarchies. Figure 1.1 shows two protocol entities El and E2 performing similar tasks but in

different protocol suites.

02

P2 Entity 1
Entity 2

E2

Figure 1.1 - Model of Inputs, Outputs and the Protocols of an Entity

Each entity En has its own set of definitions for the following:

1. The service In required ftom the entity below.

2. The service On offered to the entity above.

3. The protocol Pn used with its peers.

www.manaraa.com

5

The task is to connect the two entities to achieve a cross-over between the protocol stacks using

a mapping function, as depicted in Figure 1.2, which converts protocol interactions from one

stack to another. Any two protocols will have some functional differences, so that an attempt

to map between them will entail some loss of power and functionality in the end protocols. On

the other hand, since protocol conversion is done in real-time with no store/forward

characteristics, the end-to-end significance of service is maintained. A solution based on

conversion between a common subset of the DoD TCP and ISO TP4 is presented in [15] and

is discussed below.

f : PI <-> P2 Entity 1 Entity 2

Figure 1.2 - Model of a Protocol Converter

1.3.1.1 Protocol Conversion Between TCP and ISO TP4 The study in [16]

was motivated by NATOs intention to introduce ISO protocols in all new systems, while

maintaining effective interoperation with existing TCP based systems. Thus, if the same

applications can be ported onto the TCP stack and the TP4 stack, then the availability of a

conversion facility between TCP and ISO TP4 would allow such interoperation.

The similarity of the two transport protocols makes it possible to achieve

interoperability, with some restrictions to the set of services supported. An assessment of the

three phases of transport operation is made as follows:

www.manaraa.com

6

(a) Connection Establishment Phase: The ISO service is functionally more powerful

than the TCP service, since user data are available in the connection request.

(b) Data Transfer Phase: The ISO data transfer service is considered superior because

of the availability of expedited data. The TCP URGENT indication to the ULP does

not specify any range of octets that are urgent It merely indicates that some point in the

upcoming data stream has been marked urgent by the sending ULP. The URG flag is

turned off when the receive sequence number crosses the Urgent Data Pointer.

(c) Connection Termination: TCP offers graceful termination; all outstanding data are

transmitted successfully before the connection is terminated. ISO defines orderly

release in the Session Layer.

The complexity of the protocol converter is no worse than the complexity of either of

the two protocols. The task is non-trivial as is noted by the fact that the speciflcation of the

protocol converter in [IS] contains a description of 654 state/event combinations.

1.3.1.2 Proposed Complementing of TP4 To attain equivalence in the

connection release phase, this approach proposes to redefine the level of interoperation on the

TP4 side to include the session orderly release sublayer. Figure 1.3 illustrates the resulting

level of interoperation.

Table 1.1 shows the compatible set of services, with some restrictions with respect to

parameters that are conveyed.

www.manaraa.com

7

Transport
Client

Transport
Client TCP - TP4

Converter
S-OR TCP

TP4

N2 N2

Figure 1.3 - TCP-TP4 Interoperability Model Using a Protocol Converter

www.manaraa.com

8

Table 1.1 - Compatible Transport Service Primitives Between OSITP4 and TCP

Phase Smkfi Primitive Parameter

Connection TC Establishment T-CONNECT Called Address,
Establishment request Calling Address^

QOSb

Data Transfer Normal Data
Transfer

Connection
Release

Abrapt Release

T.CONNECr
indication

T_CONNECr
response

T_CONNECr
confirm

T_DATA
request

T.DATA
indication

T-DISCONNECT
request ^

T-DISCONNECT
indication

Called Address,
Calling Address,
QOS

QOS,
Responding Address

QOS,
Responding Address

TS User data®

TS User data

Disconnect Reason

^ Addresses are limited to fît within die TCP constraints on format and structure.
^ The number of effective choices for the quality of service is limited to what is available for

TCP.
^ The TCP PUSH function may be used for SDU seperation.

No reason parameter can be supported by TCP for the disconnect request primitive.

www.manaraa.com

9

1.3.1.3 Service Restrictions Due to mismatches in the semantics of the service

offered by the two transport mechanisms, the following major restrictions apply:

(a) No user data can be conveyed during TC establishment.

(b) No expedited data transfer.

(c) No URGENT signal in TCP.

(d) ISO session orderly release to be included by TP4.

(e) The use of the TCP PUSH function is restricted as it is now used to delimit TSDUs.

1.3.1.4 Advantages and Disadvantages Protocol conversion is effective if the

mismatches between the two target protocols are small. In the case of Transport Layer

protocol converters, TCP to TP4 in particular, the major advantages and disadvantages are

listed below.

APVANTAfiESî

(a) End-to-end significance of the service is maintained. This being one of the major

advantages (besides providing interoperability).

(b) Complexity of the protocol converter is no greater than any of the individual protocols.

(c) Only one more point of failure is introduced.

(d) With the increasing interest shown by the research community in formal methods of

synthesis [17] [18], verification and validation of protocol converters [19], the

www.manaraa.com

10

emergence of automatic tools may become available. With the availability of automatic

tools, protocol conversion would be an attractive solution.

PISAPYANTAfiES;

(a) One such protocol converter is required for each architecture that interoperation is

desired between. The complexity of the task, and lack of commercially available

automatic tools, make this a non-trivial problem.

(b) The end systems invariably have to sacrifice the use of some services to define a

common subset. As mentioned earlier, restrictions were placed on the use of certain

services and service parameters to come up with a protocol convertor between TCP and

TP4.

(c) A new point of failure is introduced in the connection path.

The next section discusses the approach of service mapping to solve the problem of

interoperability and migration to OSI applications.

1.3.2 Service Mapping Based Approach

This approach provides the services from one protocol suite at tiie same logical layer in

a different protocol suite. Figure 1.4 shows how one entity can be used to emulate the service

(02) of another entity.

www.manaraa.com

11

In particular, providing ISO transport services on top of TCP is considered a favorable

approach to introduce ISO applications to a wider set of users. This technique is popularly

known as RFC1006. The use of TCP/IP as the lower layers for data transport is based on the

following reasoning:

(a) The use of TCP/IP is wide spread, and technology in areas such as routing and

network management are mature as compared to ISO.

(b) The migration to OSI applications is economically feasible because the service mapping

approach is relatively simple to implement.

(c) Interoperability can be achieved by using TS-Service bridges [20] (described later in

this section).

À 02

f : 01 -> 02

Entity 1

Figure 1.4 • Model of Service Mapping

www.manaraa.com

12

1.3.2.1 OSI Transport Service on TCP RFC1006 specifies how to provide

ISO transport service on top of TCP. This is achieved by implementing TPO on top of

TCP/IP. This would allow ISO session, presentation and application entities to operate

without knowledge of the fact that they are running on a TCP/IP internet. Figure 1.5 shows

the model of operation. All aspects of the ISO transport service are supported except for the

quality of service parameter (QOS). Here TCP primarily serves the role of CONS [21], with

one fundamental difference: TCP manages a continuous stream of octets with no explicit

boundaries. The protocol is described in RFC983 [22] (which precedes RFC1006).

1.3.2.2 Transport Service Bridges Using the RFC1006 method to provide OSI

TS service on top of TCP/IP, it is possible to intemperate with the applications running on ISO

transport by using a transport service bridge (which is different from a protocol converter).

The service bridge operates on top of the ISO transport stack and TCP/RFC1006 stack, as

ISO Transport Service Interface

RFC1006 1

TCP
IP

Figure 1.5 - ISO TP Service on TCP.

www.manaraa.com

13

shown in Figure 1.6. Since the transport services are (almost) the same regardless of the

transport class, it is trivial to operate on top of a homogeneous service interface. The service

bridge simply "copies" service primitives from one TS-stack to another. For example, upon

receiving a connection indication from one TS-stack, the TS-bridge issues a connection request

to the other TS-stack.

OSITS

t
TP4
CIns

OSITS

SERVICE BRIDGE

TP4
CIns

r
RFC1006 M

TCP
IP

RFC1006

L I

RFC1006 1

Figure 1.6 - TCP-ISO TP Interoperability using TS-Bridges and RFC1006 Protocol

www.manaraa.com

14

1.3.2.3 Advantages and Disadvantages The advantages of service bridges are:

(a) The service bridge is a simple component as it needs to know nothing of the protocols

themselves. It deals with the relatively simple service primitives.

(b) Interoperability can be achieved on a wide basis if vendors of various architectures

provide OSI transport service on top of their transport service and then applications are

written using tiiis service interface. One such study for SNA is presented in [23].

The disadvantages of service bridges are:

(a) The service bridge does not provide a true end-to-end meaning to the service. For

example, the data acknowledgements, as seen by the end systems would be those

originating from the transport in the service bridge rather than from the peer end

system. There are in fact two connections, one from the source to the service bridge,

and one from the service bridge to the destination. As a result, critical information such

as credit allocations and flow control information does not have an end-to-end

significance. A similar problem exists with tiie addresses. The destination sees the

transport address of the bridge, and not the transport address of the originator.

(b) There is some performance degradation as checksums are re-calculated at the service

bridge. There is also an additional overhead of maintaining transport connections at the

service bridge.

(c) The service bridge must implement both the stacks up to the transport layer.

www.manaraa.com

15

1.3.4 Limitations of Current Approaches

As described above, both protocol convenors and service bridges impose some

restrictions on the end users. The major limitations of both the approaches can be summarized

as follows:

Protocol Converters: A unique protocol converter must be designed for each architecture

that interoperability is required. The task is non-trivial as it requires detailed knowledge of

both transport protocols.

Service Bridges: Service bridges lose the end-to-end significance of the transport service

due to the introduction of another fully operational transport protocol in the path. Thus,

acknowledgements and flow control information are not effective over the complete path of the

connection. Service bridges can also become a performance bottleneck.

1.4 Goal of the Research

Keeping in view the above mentioned interconnection problems, the goal of this

research is to provide an interconnection method at the transport level such that

interoperability can be offered to a transport architecture by designing a single gateway to the

Virtual Transport Layer (VTL). The conversion rules for the translators need to be specified so

that the design of the translators depends only on the nature of the local transport architecture,

making no assumption about tiie peer (same or different) transport is. The VTL architecture

www.manaraa.com

16

should also preserve the end-to-end significance of the transport service. An attempt will thus

be made to overcome the limitations of both protocol converters and service bridges.

EndSnlwl

T1

NW1

LLC

MAC

LAN

EMBL
ICF

(MS OOtS

NtMi
Snici

WAN

VIlGawgf

(cis|aTS

Nttmk
Swvic*

TtF.

IW<

lie

IK

EmlSwmiiî

T2

NW2

LLC

MAC

LAN

Figure 1.7 - Internet using the Virtual Transport Layer

1.4.1 The VTL Design Approach

The approach as described in this dissertation is based on translating the TPDUs into a

common intermediate format, and transferring it between gateways using a CLTS. The

intermediate format is identified as that belonging to a virtual transport layer, and the messages

are accordingly called virtual transport data units (VTPDUs). Components in the gateways

termed as transport convergence functions (TCFs) translate to and from VTPDUs to the local

www.manaraa.com

17

TPDUs. An end system sees its peer due to a compounding of the VTL and the actual end

transport entity.

The design effort formalizes the role of the VTL during the various phases of a

transport connection [24]: connection establishment, data transfer and connection termination.

TCFs for TCP and TP4 gateways have been formally specified using the ESTELL [25] formal

description technique. Figure 1.7 shows how the VTL architecture provides for transport layer

interoperability.

1.5 Organization of the Dissertation

Chapter 2 of this dissertation describes and compares the DOD TCP and the ISO

transport protocol suites. Chapter 3 describes the VTL architecture. Chapters 4 through 6

describe the design of gateways for DoD TCP and ISO TP4 protocols. The Appendixes

contain the ESTELL specification for the gateway components.

www.manaraa.com

18

2 TRANSPORT SERVICES AND MECHANISMS

2.1 Introduction

The Transport Layer is the highest layer in a communication model which is directly

involved with data communications. The network service provides routing and relaying across

real subnetworks. In contrast the transport service is concerned only with communication

between end systems and has no interest in the route actually taken by data. Its responsibility

is to provide session entities with a reliable, cost effective means of transferring data while

protecting them from the vagaries of the underlying network. An in-depth understanding of the

mechanisms by which ISO transport and the DoD TCP protocol suites provide the data

transport service is essential in order to understand interoperability issues. This chapter

summarizes the services and functions offered by the ISO set of transport protocols as

specified in ISO 8072 [26], ISO 8073 [27] [28], and ISO 8062 [29] and those offered by the

DoD TCP [30] [31].

Section 2.2 describes the services and primitives of the ISO connection oriented and

connectionless transports and the mechanisms by which their services are provided. The DoD

TCP protocol suite is described in similar terms in Section 2.3, and the major differences

between ISO TP4 and DoD TCP are listed in Section 2.4.

www.manaraa.com

19

2.2 ISO Transport Services Overview

The transport service (TS) provides transparent transfer of data between TS users. It

provides for the following;

(a) Transport Connection. Provides the means to establish a transport connection with

another TS user for the purpose of exchanging TSDUs.

(b) Transferring TSDUs. Provides the means of transferring TSDUs, which consist of an

integral number of octets in a transparent fashion.

(c) End-to-end Significance. The transport service provides for the transfer of data

between two TS users in end systems.

(d) Quality of Service fOOS) Selection. The Transport Layer is required to optimize the

use of available communication resources to provide the QOS required. QOS

parameters representing characteristics such as throughput, transit delay, residual error

and failure probability.

(e) Transparency of Transferred Information. The transport service hides from the users

the differences in the QOS provided by the network service. This difference in the

QOS arises from the use of a variety of communications media by the network layer to

provide the network service.

www.manaraa.com

20

(f) TS User Addressing. The transport service utilizes a system of addressing that is

mapped into the addressing scheme of the supporting network service. Transport-

Addresses can be used by TS users to refer unambiguously to transport service access

points (TSAPs).

There are two models of transport service, namely connection-mode and

connecdonless-mode. The characterisdcs of each are described next

2.2.1 Connection Mode Transport Layer Services

A connection oriented TS operation is characterized by three distinct phases: (1) T-

Connection establishment, (2) T-Data transfer and (3) T-Connection release. Information is

passed between a TS user and the TS provider by the service primitives, which may convey

parameters. The primitives, as listed in Table 2.1, are abstract representations of TSAP

interactions.

2.2.1.1 Quality of Transport Service The term quality of service (QOS) refers

to certain characteristics of a transport connection (TC) as observed between TC end points.

These parameters are attributes of the TS provider. Information about the QOS requirements of

the TS users may be used by the TS provider for the purpose of protocol

www.manaraa.com

21

Table 2.1 - Summary of COTS primitives and parameters

PHASE SERVICE PRIMITIVE PARAMETERS
TC_establishment TC_establishment T_CONNECT

request

TS_User_Data)
T_CONNECT
indication

Data Transfer Data_transfer

T_CONNECT
response
selection,

TS_User_Data)

T_CONNECT
confirmation

(Called/calling address,
Expedited data
selection,
QOS parameter set.

(as in connect request)

(Responding address
Expedited data

QOS parameter set,

(as in connect response)

T_DATA_request (TS_User_Data)

TJDATAJndication (as in data request)

TC release
Request

Expedited data
transfer
(User option)

TC_Release

indication

T_EXPIDITED_
DATA.
request/indication

T Disconnect.

T_Disconnect_
TS_User_Data)

(TS_User_data)

(TS user data)

(Reason,

selection. The QOS is normally negotiated between TS users and the TS provider on a per

connection basis. The QOS requested by the calling TS user may be lowered either by the

www.manaraa.com

22

called TS provider or by the called TS user. The negotiated QOS values then apply throughout

the lifetime of the TC. QOS parameters as defined in ISO document 8072 are listed below.

(a) TC establishment delay

(b) TC establishment failure probability

(c) Throughput

(d) Transit delay

(e) Residual error rate

(f) Transfer failure probability

(g) TC resilience

(h) TC release delay

(i) TC release failure probability

(j) TC protection

(k) TC priority

2.2.2 ISO Connection Oriented TP Meclianisms

This section describes the procedure required to provide the connection oriented

transport services as specified in ISO 8073. ISO 8073 specifies a set of rules expressed in

terms of procedures to be carried out by peer entities at the time of communication. Addendum

2 to ISO 8073 [28] specifies the procedures to be used when operating over CLNS. The

document formally specifies:

www.manaraa.com

23

(a) Five classes of procedures when operating over Connection-Oriented Network Service

(CONS):

CLASS 0: Simple class

CLASS 1: Basic error recovery class

CLASS 2: Multiplexing class

CLASS 3: Error recovery and multiplexing class

CLASS 4: Error detection and recovery class

(b) One class of procedures when operating over Connectionless Network (CLNS). Class

4 procedures are to be used for connection-oriented transfer between peer transport

entities over the connectionless network service.

(c) The means of negotiating the class of procedures to be used by the transport entities.

(d) The structure and encoding of the TPDUs.

The procedures are defined in terms of the interactions between peer TP entities through

the exchange of TPDUs, interactions between a TP entity and the TS user through TS

primitives, and the interactions between a TP entity and the NS provider through NS

primitives.

2.2.2.1 Classes and Options Over CONS The functions of the Transport

Layer have been organized into classes and options. A class defines a set of functions and

options define those functions within a class which may or may not be used. The use of

classes and options is negotiated during connection establishment. The choice made by the

transport entities depends upon the following:

www.manaraa.com

24

(a) TS-user requirements expressed via T-CONNECT.

(b) Quality /type of network services.

(c) User required service versus cost ratio acceptable to the TS-user.

The network services are classified in terms of quality with respect to error behavior in

relation to user requirements. The purpose is to provide a basis for the decision regarding

which class of transport protocol should be used in conjunction with the given network

connection.

TYPE A: Acceptable residual error rate and acceptable rate of signalled errors.

TYPE B: Acceptable residual error rate but unacceptable rate of signalled errors.

TYPE C: Unacceptable residual error rate and unacceptable rate of signalled

errors.

Each TP entity needs to be aware of the quality of service provided by the NS provider.

The characteristics of the various ISO TP classes are described next.

2.2.2.2 Class 0 Characteristics Class 0 is designed to have minimum

functionality. It provides only the functions needed for connection establishment with

negotiation, data transfer with segmenting and protocol error resetting. Class 0 provides flow

control based network service provided flow control and disconnection based on network

service disconnection. Class 0 has been designed to be used with type A network connections

(NC).

www.manaraa.com

25

2.2.2.3 Class 1 Characteristics Class 1 provides the functionality of Class 0

plus the ability to recover after a failure signalled by the Network Service. Class 1 allows data

transfer with flow control based on network service provided flow control, error recovery,

expedited data transfer and the ability to support consecutive transport connections on a

network connection. Class 1 is designed to be used with type B NCs.

2.2.2.4 Class 2 Characteristics Class 2 provides a way to multiplex several

transport connections onto a single network connection. TCs can be used with or without

explicit flow control. No error detection or recovery is provided. Class 2 is also designed

primarily for use with type A NCs.

2.2.2.5 Class 3 Characteristics Class 3 provides the functionality of class 2

plus the ability to recover after a failure signalled by the Network Layer without involving the

TS-User. It has been designed for use with type B NCs.

2.2.2.6 Class 4 Characteristics over CONS Class 4 allows operation both

over CO and CL network service. While operating over CONS, class 4 provides the

functionality of class 3, plus the ability to detect and recover from lost, duplicate, or out of

sequence TPDUs without involving the TS-user. Class 4 detects signalled and unsignalled

network failures and recovers from these failures by using time-out mechanisms. Damaged

TPDUs are detected by using a checksum mechanism. The detection of errors is made by use

of TPDU numbering, by time-out mechanisms and by additional procedures. Class 4 is

designed to operate over type C network connections.

www.manaraa.com

26

2.2.2.7 Classes and Options Over CLNS ISO specifies the use of only Class

4 for providing a connection oriented transport service over a CLNS. While operating over a

CLNS, class 4 provides flow control between peer transport entities. The resilience inherent in

class 4 allows operation over a low grade service available over a CLNS.

2.2.3 ISO TP Procedures

Table 2.2 lists the procedures by which ISO Transport protocols provide for data

transfer and their inclusion in a particular class. The detailed description is given in ISO 8073.

2.2.4 Connectionless Mode Transport Services

A deHning characteristic of transport connectionless mode transmission is the

independent nature of each invocation of the Transport Service. TSDUs are transmitted from a

source TSAP to a destination TSAP outside the context of a transport connection and without

any requirement to maintain any logical relationship among multiple TSDUs. The purpose of

connectionless transport is to allow the transfer of data between corresponding TS-Users on a

connectionless basis. This service provides for data transfer without the overhead of transport

connection. It is primarily intended to benefit those applications that require a one time, one

way transfer of data.

www.manaraa.com

27

Table 2.2 - Connection Oriented ISO-TP Sub-Functions

Suh-Function CLASS
fl 1 2 2 Û 4fclns)

Assignment to NC Y Y Y Y Y N

Connection Establishment Y Y Y Y Y Y

Connection Refusal Y Y Y Y Y Y

Association of TPDUs with a TC Y Y Y Y Y Y

TPDU Transfer Y Y Y Y Y Y

TPDU Numbering Normal N Y Ym Ym Ym Ym
Extended N N Yo Yo Yo Yo

Expedited Data Transfer NW normal N Ym Y Y Y Y
NW expedited N Yo N N N N

Retention until ack of TPDU

Segmentation and Reassembling Y Y Y Y Y Y

Concatenation and Separation N Y Y Y Y Y

Normal Release Implicit Y N N N N N
Explicit N Y Y Y Y Y

Error Release Y N Y N N N

Reassignment After Failure N Y N Y Y N

Resynchronization N Y N Y Y N

Multiplexing and Demultiplexing N N Y Y Y N

With Explicit Flow Control N N Ym Y Y Y
Without Explicit Flow Control Y Y Yo N N N

www.manaraa.com

28

Table 2.2 - (Cont.)

SUH-FUNTTIFTN CLASS
0 12 3 4 4(clns^

Use of Checksum N N N N Ym Ym
Non-use of Checksum Y Y Y Y Yo Yo

Frozen References N Y N Y Y Y

Retransmission on Timeout N N N N Y Y

Resequencing N N N N Y Y

Inactivity control N N N N Y Y

Treatment of Protocol Eirors Y Y Y Y Y Y

Splitting and Recombining N N N N Y N

N: Procedure not applicable

Y: Procedure always included in class

Ym: Negotiable Procedure whose implementation in equipment is mandatory

Yo; Negotiable Procedure whose implementation in equipment is optional.

Addendum 1 to ISO 8072 defines the connectionless mode transport service (CLTS).

The CLTS primitives are summarized in Table 2.3.

2.2.4.1 QOS for CLTS For CLTS, no negotiation of the QOS takes place. No

dynamic association is set up between the parties involved. Thus the TS user needs to have

www.manaraa.com

29

explicit knowledge of the characteristics of the service it can expect to be provided with each

invocation of the service. The QOS parameters identified for CLTS are listed below.

(a) Transit delay.

(b) Residual error rate.

(c) TC protection.

(d) TC priority.

Table 2.3 - Summary of CL-TS primitives and parameters

PRIMITYE
T_UNITDATA_Req

PARAMETERS
Source Address
Destination Address
QOS
TS-User-Data

T-UNrrDATA_ind Source Address
Destination Address
QOS
TS-User-Data

www.manaraa.com

30

2.2.5 ISO Connectionless TP Mechanisms

This section describes the procedure required to provide the connectionless transport

services (CLTS) as specified in ISO 8062. The functions in the transport layer bridge the gap

between the service available from the Network layer and the services to be offered to the

transport service users. The functions of CLTS are:

(a) Transmission of TPDUs.

(b) Network service selection.

(c) Address mapping: Determine the network address that will be used as the destination

address in an N-UNITDATA request (over CLNS) or the called address in N-

CONNECT request (over CONS).

(d) TPDU delimiting: Determine the beginning and end of a TSDU.

(e) Error Detection: Provide end-to-end error detection.

The procedures used to transfer data depend on the type of Network Service available,

namely CLNS or CONS. Table 2.4 lists the procedures used by ISO CLTS.

2.2.5.1 Transfer over CLNS In the case of CLNS, no network connections

have to be maintained. Each TPDU is transmitted over a pre-existing association between a

pair of NSAPs. There is no indication given to transport entities about the ability of the

network entity to fulfill the service requirements given in the N-UNITDATA primitive.

www.manaraa.com

31

2.2.5.2 Transfer over CONS When operating over CONS, the transport entity

has to go through explicit connection management procedures. The duration for which a NC is

kept open is not defîned in the ISO document and is left as implementation dependent

2.3 TCP Data Transport Mechanisms

DoD Transmission Control Protocol is designed to provide reliable communication

between pairs of processes in logically distinct hosts on a network. TCP provides connection

oriented, reliable ordered, full duplexed and flow controlled data transfer. TCP

implementations are proliHc, and it was the forerunner of the ISO TP technology. Due to its

installed base and popularity, TCP is chosen as one of the transport architectures for which a

gateway to the Virtual Transport Layer will be designed. This section summarizes the services

and functions offered by the DoD transport mechanism as specified in MIL-STD-1779 (namely

the Transmission Control Protocol - TCP).

2.3.1 DoD TCP Services

TCP is designed to provide reliable communication between pairs of processes in

logically distinct hosts on networks. TCP will operate successfully in an environment where

loss, damage, misorder of data and network congestion can occur. It thus provides a

connection oriented data transfer that is reliable, ordered, full duplex and flow controlled. The

upper layer protocols (ULPs) can channel continuous streams of data through TCP. The

services provided by TCP are organized as follows:

www.manaraa.com

32

(a) Connection management service.

(b) Data transport service.

Table 2.4 - Procedure For ISO CLTS

PHASE PROCEDURE

Data Transfer Send Unit_Data (UD)
(Over CLNS)

Send Unit_Data (UD)

Receive Unit_Data

Data Transfer Establish Network Connection
(Over CONS) SendUD.TPDU

Receive UD_TPDU
Release Network Connection

Other Checksum

Discard TPDUs

(c) Multiplexing service.

(d) Error reporting service.

A description of the service is presented below. The mechanisms used to provide these

services are presented in the subsequent sections.

www.manaraa.com

33

(a) Connection Management: A TCP connection provides a communication channel

between a pair of ULPs. Connection management is subdivided into three phases:

connection establishment, connection maintenance and connection termination.

(b) Data Transport: TCP provides data transport over established connections between

ULP pairs. The data transport is full duplex, timely, ordered, labeled with security and

precedence levels, flow controlled, and error checked.

(c) Multiplexing Service: TCP provides services to multiplex pairs of processes within

upper layer protocols. A process within a ULP using TCP service shall be identified

with a Port Number. A port when concatenated with an Internet Address forms a

network-wide unique Socket.

(d) Error Reporting Service: TCP report service failure stemming from catastrophic

conditions in the internetwork environment for which TCP cannot compensate.

2.3.2 TCP Service Interaction Primitives

TCP interaction primitives are grouped into Service Request Primitives and Service

Response Primitives.

TCP service request primitives enable connection establishment, data transfer and

connection termination. Table 2.5 lists the parameters associated with the service requests.

The TCP specification describes the following request primitives:

(a) Unspecified Passive Open

www.manaraa.com

34

(b) Fully Specified Passive Open

(c) AcdveOpen

(d) Active Open With Data

(e) Send

(f) Allocate

(g) Close

(h) Abort

(i) Status

TCP service response primitives enable TCP to inform user of connection status, data

delivery, connection termination and error conditions. The TCP specification describes the

following response primitives.

(a) OpenE)

(b) Open Failure

(c) Open Success

(d) Delivery

(e) Closing

(f) Terminate

(g) Status Response

(h) Error

Table 2.6 lists the parameters associated with the service responses. The primitives are

categorized according to the phase or state of the connection.

www.manaraa.com

35

Table 2.5 - Summary of TCP Service Primitives and Parameters

SERVICE PRIMITIVE DESCRIPTION PARAMETERSL
CONNECTION
ESTABLISHMENT

Unspecified Passive Open

Fully Specified Passive
open

Active Open

Active Open with data

Respond to connection
attempts from an unnamed
ULP

Respond to connection
attempts from a fully named
ULP

Initiate a connection attempt
to a named ULP

Initiate a connection attempt
to a named ULP accompanied
by specified data.

Source Port
•ULP Timeout
*ULP Tîmeout.Action
•Precedence
*Security_Range

Source Port
Destination Port
Destination Address
•ULP Timeout
•ULP 'Iimeout_Action
•Precedence
•Security_Range

Source Port
Destination Port
Destination Address
•ULP Timeout
•ULP Hmeout_Action
•Precedence
•Security_Range

Source Port
Destination Port
Destination Address
•ULP Timeout
•ULP Timeout_Action
•Precedence
•Security_Range
Data
Data Length
PUSH flag
URGENT flag

® All parameters marked • are optional.

www.manaraa.com

36

Table 2.5 - (Cont.)

SKRVTCE PRIMITIVE DESCRIPTION PARAMETERS

DATA TRANSFER

Send

Allocate

CONNECTION
TERMINATION

Close

Abort

STATUS

Status

Data Transfer across the named
connection

Indicates the additional number
of octets the ULP is willing to
accept

Data transfer completed across
named connection

Named connection is to be
terminated immediately

Query for current status of named
connection

Local_Connection_
name
Data
Data Length
PUSH flag
URGENT flag
*ULP Timeout
*ULP Tîmeout_Action

Local_Connection_
Name
Data Length

Local_Connection_
Name

Local_Connection_
Name

Local_Connection_
Name

www.manaraa.com

37

Table 2.6 - Summary of TCP Service Responses and Parameters

SERVICE PRIMITIVE DESCRIPTION PARAMETERS

PHASE
CONNECTION
ESTABLISHMENT

Open ID

Open Failure

Open Success

PHASE
DATA TRANSFER

Deliver

PHASE
CONNECTION
TERMINATION

Closing

Terminate

Informs ULP of Local Connection
Name assigned by TCP

Informs ULP of failure of Active
Open Request

Informs ULP of completion
of one of the Open Service
Requests

Informs ULP of data arrival
across the named connection

Informs ULP of peer ULPs
CLOSE service request

Named connection has been
terminated as a result of
remote connection reset or
service failure

Local_Connection_
Name
Source Port
Destination Port
Destination Address

Local_Connection_
Name

Local_Connection_
Name

Local_Connection_
Name
Data
Data Length
URGENT flag

Local_Connection_
Name

Local_Connection_
Name

www.manaraa.com

38

Table 2.6 - (Cont.)

SRRVÏ<;K PRIMITIVE DESCRIPTION PARAMETERS

STATUS
Status Response Return cuirent status of named

connection

Error Infomis ULP of illegal service
requests, or of errors relating to
the environment

1. Local_Connection_
Name

2. Source port
3. Source Address
4. Destination Port
5. Destination

Address
6. Connection State
7. No. of octets that

can be accepted by
local ULP

8. No. of octets that
can be sent to
remote ULP

9. No. of octets
awaiting ack.

10. No. of octets
pending receipt by
the local ULP

11. Urgent State
12. Precedence
13. Security
14. ULP timeout

Local_Connection_
Name
Error Description

www.manaraa.com

39

2.3.3 DoD TCP Procedures

TCP mechanisms are motivated by TCP services as described in the previous section.

The mechanisms present in the TCP entity are listed below:

(a) Flow control windows

(b) Duplicate and out-of-order data detection

(c) Positive acknowledgements with retransmission

(d) Checksum

(e) Push

(f) Urgent

(g) ULP timeout

(h) ULP timeout action

(i) Security and precedence

(j) Security ranges.

(k) Multi-addressing

(1) Passive and active open requests

(m) Three way handshake for SYN exchange

(n) Open request matching

(o) Three way handshake for FIN exchange

(p) Resets

www.manaraa.com

40

The selection of mechanisms, as formally specified in the DoD TCP document, to

support a service is guided by design standards including simplicity, generality, flexibility and

efficiency.

Table 2.7 - Differences between the OSITP4 and TCP

Feature OSI TP4 TCP

Number Of TPDU types
Connection Collision
Addressing Format
Quality of Service
User Data in CR
Data Stream
Emergency Data
Piggybacking AK/data
Explicit Flow Control
Subsequence Numbers
Connection Release

10
2 Connections
Not defined
Open Ended
Permitted
Messages (PDUs)
Expedited
No
Negotiable
Permitted
Abrupt

1
1 Connection
32 bits
Specific (^tions
Not Permitted
Octets
Urgent
Yes
Not Negotiable
Not Permitted
Graceful

2.4 TCP ISO TP4 Differences

TP4 and TCP have numerous similarities, but also some differences. Both protocols

are designed for providing a reliable connection oriented, end-to-end service on top of an

unreliable network that can potentially lose, corrupt, delay or duplicate packets. The two

protocols are also alike in that both have a connection establishment phase, a data transfer

phase and a connection release phase (although some details differ). However the two

www.manaraa.com

41

protocols have some notable differences as listed in Table 2.7. Details are given in the

following chapters when the various interoperability issues are described.

2.5 Conclusion

This chapter described the provision of data transport by the ISO transport and the DoD

transmission control protocol suites. An understanding of the transport mechanisms and the

usage model of the service is essential while designing a transport interoperability architecture.

It becomes evident from the difference in the semantics of some of the services provided by

TCP and TP4, that a simple translation scheme between the two protocols will not allow

interoperability. A usage model of the services needs to be defined before a conversion on the

TPDU level can provide interoperability. Further it should be evident that the design of a

protocol convenor would require an intimate knowledge of both the protocol architectures.

The next chapter introduces the Virtual Transport Layer concept and an architecture to

support it.

www.manaraa.com

42

3 THE VTL ARCHITECTURE

3.1 Introduction

This chapter presents the Virtual Transport Layer (VTL) concept and describes how

interoperability at that transport layer is achieved. An architecture for the VTL gateways is also

proposed. The advantages and disadvantages of some of the current approaches that try to

provide transport layer interoperability were discussed in Chapter 1. Section 3.2 describes the

VTL approach and how our solution to the transport layer interoperability problem will attempt

to solve some of the issues not resolved by other methods. The gateway architecture is

described in Section 3.3. An addressing scheme is proposed in Section 3.4.

3.2 Interoperability using the Virtual Transport

The Virtual Transport Layer approach attempts to solve the transport interoperability

problem by mapping the end transport protocols and messages into those of an intermediate

meta transport. The mapping is done on both in syntax and semantics.

www.manaraa.com

43

The mapping of syntax of end transport messages is done by generating an equivalent

message, using a TPDU translator, which can be understood in the VT-Domain. These

messages are referred to as Virtual Transport Data Units (VTPDUs). The TPDU translator

component of the gateways is referred to as the transport convergence function (TCP).

TCFs in the gateways can participate in a peer protocol exchange. This may be needed

if the set of VTPDUs chosen can not provide a certain functionality requested by the end

transport, for error recovery, or management functions.

Figure 3.1 shows the proposed environment. The module identified as the transport

convergence function in the gateway architecture changes when interoperability with a new

transport is required. Thus it is possible to come up with design guidelines for die TCP to

provide interoperability for other transport protocols. The complexity of the TCFs in each

gateway is then limited to go between the end system transport and the virtual transport.

The VTPDUs are transferred to the destination gateway using a CLTS, thus leaving the

responsibility of providing the reliability to the end transports. This seems to be tiie logical

choice to go between TCP and TP4, and other such transport protocols that are designed to

operate over an unreliable network. For the TCFs to participate in a peer protocol exchange, a

reliable connection oriented path is provided by employing a connection oriented transport

service.

3.3 Gateway Architecture Design Issues

The design of the VTL architecture is guided by the requirements imposed during the

various phases of a transport connection, namely transport addressing, connection

www.manaraa.com

44

establishment, data transfer and connection termination. The design issues that need to be

resolved are enumerated below:

(1) Interoperability is provided by converting end system TPDUs to a common format at

each end system interface. The syntax and the semantics of these common message

objects (VTPDUs) needs to be defined.

Conncollon-
Ls«a
Traniport

VTPOU
Ganeralof/Analyger

Local
TPOU
Analyser/
Generator

Conntotion
Orlanlad
Tranaport

Transport Convergence Function

Figure 3.1 - VTL Gateway Architecture

www.manaraa.com

45

(2) Address resolution, when the target system has a different representation of the

transport address.

(3) The TCFs in the gateways need to provide the following functionality:

(a) Local TPDU syntax analyzer.

(b) Mapping functions and association control blocks to convert protocol specific

information such as sequence numbers, acknowledgements, credit allocation and

reference id's ftom the local format to the common format.

(c) VTPDU generator.

(d) The end-to-end reliability will be provided by the hosts themselves. Thus, packets

lost in the VT domain will be compensated for by the end systems timeouts and

subsequent retransmissions. To provide for reliability is a not a requirement.

(e) The TCFs can provide store and forward service if a simple syntactical conversion

between the the local format and common format is not possible. In this case the

TCP will also need to know the semantics of the TPDUs. Thus a minimal TPDU

semantic analyzer may be required.

(f) The TCFs can employ a peer protocol if the need arises and exchange PDUs over

an out of band transport connection.

The subsequent chapters of this dissertation describes the design of the VTL gateways.

The design effort is broken down into three steps, wherein the design is guided by the

requirements of the target transport architectures during the connection establishment phase.

www.manaraa.com

46

data transfer phase and the connection termination phase. The next section describes a method

by which addressing can be resolved in an heterogeneous network environment. Some

techniques have been discussed in [32].

3.4 Addressing Mechanism

Before describing the cross network connection establishment phase between the two

transport protocols described in the scope of this research, it is essential to discuss the

fundamental issue of cross domain addressing. An overview of the addressing mechanism

employed by DoD TCP/IP and ISO Network layer is presented.

3.4.1 TCP/IP Addressing

A transport end point is uniquely identified in the Internet by a "Socket". A socket is a

concatenation of a Transport Port and an Internet Address. The Internet Address (popularly

called IP Number) uniquely identifies a host machine in tiie Internet, and the Port is used to

identify a process in the machine.

PORT: 2 Byte (positive integer)

IP Address: 4 Bytes

The semantics associated with the IP address is as Follows :

IP Address: NetworkDD: HostID

www.manaraa.com

47

The NetworkID portion of the IP address indicates a unique network (i.e., some

organizational network which forms a part of the Internet), and the remaining portion of the IP

address points to a unique machine in that network. Thus routers and gateways look at the

NetwoikID portion of the destination IP address and consult their routing tables to determine

the outgoing link on which to send the packet. Thus in the Internet, the destination Network

ID is of significance until it reaches a gateway which is a host in the destination network. Then

the Host ID is used to determine the physical address of the target machine (using the ARP

method).

All IP addresses (if access is desired to the Internet) are provided by a central authority.

The Network Information Center (NIC) located at SRI International assumes that role. NIC

only assigns the network portion of the IP address and delegates responsibility for assigning

host addresses to the requesting organizations.

3.4.2 ISO Network Layer Addressing

Just as in the TCP/IP architecture, an ISO transport end point is uniquely identified by a

Transport Address. The Transport Address is a concatenation of a Transport Selector

(equivalent to a port) and an NSAP Address. The differences being:

(a) The T_SELECTOR is not of fixed size, but has a Length-Value format.

Implementation agreements limit it to a maximum of 32 Bytes.

(b) The NSAP address format is more elaborate as shown in Figure 3.2.

www.manaraa.com

48

IDP DSP

/

/

AFI IDI

IDP: Initial Domain Part
AFI: Authority and Format Identifier
IDI: Initial Domain identefier
DSP: Domain Specific Part

Figure 3.2 - ISO NSAP Address Format

A description of the various components is as follows;

AFI: The AFI specifies the Network Authority responsible for allocating values of the EDI. It

also determines the interpretation of the Initial Domain Identifier (IDI), both in syntax

and semantics. The AFI also indicates whether the DSP is formatted using decimal or

binary digits.

IDI; The Initial Domain Identifier specifies the network addressing domain from which values

of the DSP are allocated and the Network Authority responsible for allocating values of

the DSP from that domain.

DSP; The syntax and semantics of the Domain Specific Part is determined by the AFI.

www.manaraa.com

49

ISO Network Layer addressing is highly flexible and is designed to allow for

expansion. An example of an NSAP Address is:

Example 1

AH: 36

mi: 09115152927580

DSP; NULL

An API of 36 implies that the address is CCITT X.121 address, and the IDI consists of

a sequence of upto 14 digits allocated according to CCITT recommendation X.121. The DSP

is empty.

Example 2

AH: 47

IDI: 04

DSP: (Subnet : SNPA : dlsap : nsel)

An AH of 47 specifies the network authority as National Institute of Standards and

Technology (NIST). NIST maintains an experimental OSI network (called OSINET). The IDI

is an International Code Designator (ICD). The format of the DSP is as shown above. The

SNAP is the hardware address of the target machine. The DLSAP is the LLC SAP being used

and the NSEL is the Network Layer Protocol ID.

www.manaraa.com

50

3.4.3 Addressing Across Heterogeneous Architectures

The aim of this research effort is to allow a transport end point in any OSI domain to be

able to exchange service data units with a transport end point in the TCP/IP domain

transparently. To maintain complete transparency, it should be made to appear to the end

systems as if they are attempting to connect to another system in the same network architectural

domain.

Thus a name resolution invoked by a TCP client, for a target on an ISO transport,

should return a TCP /IP address. This implies that the end systems with which interoperability

is desired must get an IP Address from an Internet Naming Authority (even though they are

OSI nodes). This is being proposed due to the following reasons :

(1) In general it may not be possible to reuse an OSI TSAP address as a TCP Socket

because of a difference in the upper limit of the size.

(2) IP addresses have a specific meaning as far as routing is concerned. The semantics of

an IP address is fixed unlike that of an ISO NSAP address where the API specifies the

semantics and syntax. So a non conforment IP address my be confusing.

Figure 3.3 shows a TCP client making a name resolve request for a destination on a ISO TP4.

A proxy TCP address is returned as a response to the name request. The gateway connected to

the TCP/IP subnets then append an API to the source and destination address which specifies

that the NSAP address is an IP address with an NetworkID and a HostED. Upon reaching the

www.manaraa.com

51

TCP CLIENT

Poft to
P : ioo.tOA.1

DEST: (TMdvt) «O.TP.aERVSR
DMtP«ft: «0
Dwi IP : 200.100 .̂10

Virtual
Transport
Qattway

1

Apptnd ARn is IP
SofoelP: AF1n-l00.10.0.t DWPzAAn. 200.100 jO.IO

TCP subnet
ISO TP SERVER

Nt/̂ : 47 0001 0002 0003 0004

Name Server

Nmm»A#Ww:
B0.TP.8ERVCT
Virtual TCP Secfcat ritimtd

PMt:M
IP: 200.100 .̂10

ISQ^bnet

Virtual
Transport
Gateway

Soufo# Port : 20
IP Number : AFI-100.10.0.1

Vktua) Dm) Port : 60
1 P Numb# : AFIft-200.100.20.10

Mip OMt IP nuntMf to an N8AP mddfw#
M«p DMt Port to Dwt T.SEL
Soofc* T_5EL : 120
N8AP : AFIn'100.10.0.1

De3T:T.sa:7; 'ff •& 'R V g -R 'V
N8AP : 47-0001-0002-0003-0004

Figure 3.3 - Address Resolution (TCP Client ISO Server)

www.manaraa.com

52

ISO TP CLIENT

Sourca T_SEL : 7 ; 'C V T T 'N' T T
NSAP : 47 -0:01-002-003-004-005
CEBT: TCP SERVER (Poit: SO, IP: 200.100.10.1)
D«tT_8EL1i50
NSAP: AFIn • 200.100.10.1

Transport
Qalaway TCP SERVER

Port : 60
IP : 200.100.10.1

ISO subnet

Nam# RMOtvt:
TCP.SERVER
T8AP Addmi
RMunwd:
l:«o
AFh • 200.100.10.1

Nam* Servar

NSAP : 47 .0001 002 003 004-005

Virtual Sourc* Socket;
T_SEL • proxy Port No.
NSAP • proxy IP No.

SoutPwl; M PNurnlMt: (NSAP » a> Happing)
100.10,0.1

DEST: TCP SERVER (Port: 50, IP :
200.100.10.1)
OmI PORT:90
I P Nuntw : 200.100.10.1

Figure 3.4 - Address Resolution (ISO Client TCP Server)

www.manaraa.com

53

destination gateway, the destination port and the Host ID part can be used to map to the actual

OSI TSAP address of the target transport end point, or can be used as such if the target

happens to be on a TCP/IP subnet. Thus the gateways must maintain a data base between the

proxy TCP addresses and the actual ISO transport address.

On the other hand a OSI Transport client can use the target socket addresses after

prefixing the IP number with an API. This is acceptable because a TCP port can fit into a T-

Selector, and an IP number prefixed with an API can be unambiguously interpreted. This

implies that the name request, for a target on a TCP/IP network, returns a IP address with an

API appended to it as the NSAP address. The destination gateway, as shown in Pigure 3.4,

on recognizing that the API of the calling NSAP address specifies a non-TCP/IP host, replaces

the source TSAP address by a proxy socket address (as per the original assumption that all OSI

hosts get IP addresses from an Internet Naming Authority) If the API of the calling NSAP

address specifies a TCP/IP host, then no modification of the source TSAP address is done.

3.5 Conclusion

This chapter described the Virtual Transport Layer and a gateway architecture to

support the concept. The design guidelines for the gateways were formulated. The approach

maps the end host TPDUs to a common intermediate format. The gateways that connect the

various subnets are only aware of the nature of the transport protocol being used by the hosts

in the adjoining subnet. They do not attempt to determine the nature of the target transport

protocol. The gateway architecture specified employs a Connectionless Transport to transfer

www.manaraa.com

54

the intermediate format protocol data units between the gateways. The issue of transparent

addressing has also been dealt with. An end system sees its peer due to the joint participation

of the gateways and the actual target transport entity. The next chapters formally describes the

VTL and the gateways from TCP and ISO TP4 architectures.

www.manaraa.com

55

4 CONNECTION ESTABLISHMENT PHASE

4.1 Introduction

This chapter addresses the issues of connection management in an environment where

transport interoperability is provided by mapping host transport protocol data units to a

common format. The mapping is done with the objective of retaining the end-to-end

significance of primitives without the knowledge of the nature of the destination transport

protocol. The Virtual Transport concept was introduced in the previous chapter. For this

research effort, the target transports have been identified as the ISO transport class 4 and the

DoD TCP.

Section 4.2 specifies the services needed from the Virtual Transport to satisfy the

Connection Establishment Phase. A usage model of the transport services in order to facilitate

interconnection is presented in Section 4.3. An informal description of the role of the VTL

during connection establishment is described in Section 4.4. Section 4.5 presents a formal

specification of the gateway components for DoD TCP and ISO TP4. The specification is done

using the ESTELL FDT and is contained in Appendix A.

www.manaraa.com

56

4.2 Connection Establishment Phase

The connection establishment phase of both TCP and ISO TP4 is based on the three

way handshake principal [33], but there are some notable differences in the services provided.

These are explained below.

4.2.1 Sequence of Events

The TCP architecture is based on the concept of an active initiator and a passive

listener. The active initiator issues a Synchronize (SYN) Request segment The distinguishing

features of the SYN segment are:

(a) Source Port

(b) Destination Port

(c) Initial Sequence Number (ISN)

(d) Advertised Receive Window

(e) Maximum Receive Segment Size

(f) User Data

(g) And possibly Urgent Data

Detection of duplicate/invalid SYN segment is done as follows. The initiator generates

a SYN segment with an Initial Sequence Number. The listener records the sequence number of

www.manaraa.com

57

the incoming SYN segment and responds with another SYN carrying its ISN, along with an

ACK which acknowledges the SYN that it just received. At this point, the listener is not sure

about the validity of the received SYN segment. It could be a duplicate or delayed packet.

When the initiator gets a SYN segment with an ACK number supposingly acknowledging the

SYN it had sent, it checks to see if the ACK number falls inside the send window. If it does,

then the SYN and ACK are accepted as valid and an ACK is transmitted completing the three

way handshake. If the ACK is invalid, then the initiator responds with a RESET segment If

the listener receives a valid ACK to the SYN it had sent out, then it is assured of the validity of

the SYN it had received and the connection proceeds. Figure 4.1 shows the sequence.

ACTIVE OPEN LISTENER (PASSIVE OPEN)

In summary, a connection is established after exchanging SYN segments with ACKs to

validate them.

ISO TP4 uses a Connection Request (CR) TPDU to initiate a connection. A CR TPDU

carries the following important information:

SYN(x) —

(validate ACK)<~

ACK(y+l)

>

--SYN(y) ACK(x+l)

•>(validate ACK)

Figure 4.1 - TCP three way handshake

www.manaraa.com

58

(a) Credit Allocation

(b) Source Reference

(c) Destination Reference set to zero

(d) Class and options

(e) User Data

The ISO transport provides a service interface to the client. Invocation of the

connection request service primitive causes TP4 to generate a CR TPDU. A unique Source

Reference is generated. This reference ID along with the source and destination NSAP

addresses completely specify the initiating transport end point. In fact this property is used by

the remote TP entity to determine the validity of the received CR TPDU.

On the responder side, unlike TCP, there is no passive open. Instead a connection

indication is generated and given to the client The client responds with a connection response,

upon which the TP entity generates a Connection Confirm (CC) TPDU with the following

information:

(a) Credit

(b) Destination Reference ED

(c) Source Reference ID

(d) Class and Options

(e) User data.

The CC TPDU is than acknowledged by the initiator, as shown in Figure 4.2,

completing the three way handshake.

www.manaraa.com

59

INITIATOR RESPONDER

CR (Sic_Ref = x) > Validate CR

(Validate CQ < CC (Src_Ref=x;Dest_Ref=y)

ACK(Dest_Ref=y) >(validate ACK)

Figure 4.2 - ISO TP Connection Establishment

4.2.2 Connection Establishment Procedures for TP4 and TCP

Although both TCP and TP4 use three way handshake as a basis for reliable connection

establishment, there are some notable differences. This section highlights the differences in

philosophies behind the two protocols, so as to aid in the formal specification of the role and

design of the Transport Convergent Function (TCP).

4.2.2.1 Role of Responder In the case of TCP, the client who recognizes its

role as that of a responder does a Passive Open. This causes the TCP entity to enter a

www.manaraa.com

60

Listening State, waiting for a SYN segment to arrive. When the SYN does arrive, the state

transitions progress without the clients intervention until the connection is established.

ISO transports do not provide the facility to post a Listen. An incoming CR is

conveyed to the client as a connection indication event It is at the clients discretion to accept or

reject the connection.

4.2.2.1 Data in Connection Request Both protocol speciHcations allow data in

connection request, but the manner in which connection data are handled by the receiving

transport entity is different. In TCP, the listening TCP buffers the data until its SYN is

acknowledged (completion of the three way handshake). The reason for this is that the TCP

specification does not allow for informing the client of an incoming connection request. The

advantage of this approach is that it shields the client from receiving an invalid connection

indication, i.e., one originated by a peer client which for some reason is no longer active. The

successful completion of the three-way handshake F Iters out cases of duplicate and

delayed/stray SYN segments. There is no limit on the amount of data accompanying the SYN

segment, as long as it is smaller than the maximum segment size.

ISO transports, on the other hand, filter out only duplicate CR TPDUs before

generating a connection indication for the client, along with any data that accompanies the

connection request. This approach allows the client to reject connections if it so desires. The

data in connection indication can be used as a basis for accepting or rejecting the connection.

Data in a connection request^esponse are limited to 32 Bytes. This limit is imposed by the fact

that the CR TPDU is limited to 128 bytes. The 128 byte CR TPDU limit stems from the fact

www.manaraa.com

61

that it is forbidden to fragment a CR TPDU. Fragmentation may occur if the underlying layers

have smaller PDU sizes.

4.2.2.3 Simultaneous Connection Requests In TCP, the end systems

Transport Ports involved in the connection establishment are both identified in the SYN

segment. As a result a, SYN that is received when the TCP entity is in the SYN_SENT state

does not cause any ambiguity. The state machine is designed such that both entities cycle to the

ESTABLISHED state. A single connection is the net result.

In the case of ISO transports, the distinguishing feature of the CR TPDU is a unique

Source Reference ID (the Destination Reference ID is zero). Thus the TP entity cannot

associate a connection control block with the connection request that it receives and treats it as a

request for a new connection. It is left up to the client to recognize that it is receiving a

connection indication (by examining the called and calling T_Selectors) from a peer to which it

has sent a connection request. There is a potential of two different connections to be

established.

4.2.2.4 Other Differences The two protocols differ in unit of data. TCP is based

on octet boundaries, while ISO transports uses packets or frames. Thus sequence numbers,

acknowledgements and credit allocations reflect a byte count in the case of TCP and a packet

count in the case of ISO transports.

www.manaraa.com

62

4.3 Usage Model of ISO Transport Service

ISO 8073, the connection oriented transport protocol specification leaves the

interpretation of a number of options and parameters as user defined. This can pose a dilemma

for implementors and more so for the interoperability issue that is being addressed here. To

provide a consistent understanding of the specifications, NBS holds workshops that provide a

stable implementation agreements of OSI protocols [34]. A set of protocol agreements for ISO

transport have also been proposed. Some of the agreements which aid in defining the usage

model are listed below

(a) All implementations propose using the extended format (4 octets) for sequence

numbers in the connection request, but they must be able to accept a request to use

normal format (1 octet).

(b) ISO 8073 leaves the interpretation of the security parameter to be user defined. The

NBS agreement specifies that implementations should not send the security parameter

in the CR TPDU. If received in a CR, it should be ignored.

(c) All implementations must be able to operate with checksum if requested.

(d) Throughput, priority, and transit delay are optional in the ISO specification. NBS

agreements specifies not to use them in the CR TPDU and ignore them in the CC

TPDU.

(e) User data in CR and CC TPDU are optional. NBS agreements specify not to send data

in the CR, but implementation should be able to accept data in the CC TPDU.

www.manaraa.com

63

(f) Any unknown parameter in the CR TPDU is ignored.

The NBS agreement discourage the use of data in CR. This forbids the TP Clients to

import any significance to data in CR. This research effort will restrict itself to NBS compliant

ISO networks.

4.4 VTL Design Issues

This section presents the responsibilities that the VTL assumes in order to provide

interoperability between ISO TP4 and TCP during the connection establishment phase. The

aim will be to provide interoperability in a transparent and non-restrictive manner. Design

issues pertaining to connection establishment are listed below:

(a) Format of the Connection Request VTPDU.

(b) Transfer functions to map between credit allocations, sequence numbers,

acknowledgements.

(c) Conveying operational parameters such credit allocation, acknowledgments for the

remote TCP to interpret and attempt to map to those available in the local transport.

d) Usage model of services by end systems.

The sequence of events with the Virtual Transport in place can be informally

summarized as follows. A SYN segment (with or without data) is received by the VTL

www.manaraa.com

64

Gateway. The local PDU syntax analyzer component of the gateway recognizes the SYN

segment and commences translation of parameters to the common format as shown below;

TCP Parameters Common Format VTPDTJ Parameters

SYN > Connection Request Code

Initial Sequence Number > Local Reference

Acknowledgement Number > Remote Reference
(set to zero)

Advertised Window (Octets) > Credit Allocation (Number Of Packets)
(where a packet size is previously defined

for the gateway)

Source Port —> Source Identifier

Destination Port > Destination Identifier

User Data ~> Data

OPTIONS

Maximum Segment Size --> Maximum Packet Size

Checksum > Use_CheckSum Option

Precedence Level --> Default Precedence

Security Level > Unclassified
> Allow_Expdt_Data = TRUE
> Sequence Space = 4 Bytes

The SYN segment carries an ISN which will uniquely identify the connection through

its lifetime. ISO TPs have a similar identifier known as the Source Reference Id,

www.manaraa.com

65

Recomputation of the checksums at the TCFs for the VTL domain can be a configurable

parameter. If the checksum is used in the original PDU, then a flag is set which implies that a

checksum is being used by the end system.

Besides the parameters carried in the SYN segment, there are two IP parameters which

are of significance during the TCP connection establishment phase: namely Precedence and

Security. A three bit field, in a single octet (Type of Service) is used specify precedence, with

values ranging from 0 (normal precedence) to 7 (network control). Most hosts and gateways

ignore the type of service. For the purpose of this research effort, operation at Normal

Precedence is assumed.

IP Security information is carried as part of the IP Options field. RFC 1038 [35]

describes the DoD Basic and Extended IP security options. The use of this option requires that

a host be aware of the classification level or levels at which it is permitted to operate, and the

protection authorities responsible for its certification. The achievement of this is

implementation dependent. For the purpose of this research effort, a default or Unclassified

mode of operation will be assumed.

TCP has the concept of urgent data, and the specification (for the sake of completion)

allows for urgent data in the SYN segment' . The usage and resolution of the urgent

mechanism will be described during the data transfer phase. To convey the fact that such

emergency data are to be allowed, an options flag ALLOW_EXPDT_DATA is set in the

VTPDU.

' In practice, most TCP implementations do not send data or Urgent data in SYN Request This is so
because the sender may be transmitting into a closed window.

www.manaraa.com

66

ISO transports can use a 1 byte (normal format) or a 4 byte (extended format) sequence

number, where as it is always 4 bytes for TCP. This information is conveyed for remote

gateway to interpret.

The translation functions and the format of the VTPDU should be designed such that

there is no loss of any critical information when the destination gateways translate the VTPDU

back to the local format, regardless of the nature of the end tiiansports.

Thus the sequence:

TCP_SYN_REQ > VTL_CON_REQ > ISO_CON_REQ

OR

TCP_SYN_REQ -> VTL_CON_REQ -> TCP_SYN_REQ

should produce valid results. If some information cannot be conveyed by a simple translation

of messages, then the TCFs may have to engage in a peer protocol message exchange. The

guidelines for use of the TCFs and messages thus exchanged will be specified in the sections

that follow. The VTPDUs are transmitted using a CLTS between the gateways as was

described previously.

When the VTPDU reaches the destination gateway, the following transformations take

place to generate an equivalent TPDU. In this case we assume an ISO subnet as the adjoining

network (tiie gateway is aware of the nature of its adjoining network).

Common Format VTPDU Parameters ISO.TP4 Parameters

Connection Request Code —> CR code

Local Reference —> Source Reference

www.manaraa.com

67

Remote Reference Destination Reference

Credit Allocation > Credit

Source Identifier ™> CaUingTSAPID

Destination Identifier Called TSAP ID

Data >

OPTIONS

If > 32 bytes Reject
Else User Data

Maximum Packet Size Closest Valid TPDU Size

Precedence If Normal then ignore
Else Map to Priority

Security ——> If Normal then ignore
Else Map to Protection Parameter

Use_CheckSum ——> If True, set use Checksum Option

Allow_Expdt_Data If True, use Transport Expdt Data

Sequence Space — If 1 Bytes - Normal
Else Extended

Class: 4

The Source Reference carried by an ISO CR TPDU is meant to be a unique identifier selected

by the transport entity initiating the connection to identify the requested transport connection.

The Local Reference field of the VTPDU is mapped to the Source Reference field of the

TPDU.

ISO TP4 allows only 32 bytes of data in connection request. If the Connection Request

VTPDU carries more than that amount, the data are rejected. This model does not pose a

problem, as the sending TCP will retransmit the data if it is not suitably acknowledged. Also

TCP clients do not attach any special significance to data in the SYN_REQ (if at all they use it).

www.manaraa.com

68

After building a CR TPDU, a checksum is computed and CR is handed down to the IP

component for eventual delivery to the transport end point (the addressing issues were

discussed in the previous chapter).

The ISO TP client responds with a connection response which causes the TP entity to

generate a Connection Confirm (CC) TPDU. The CC TPDU is similar to the CR TPDU in

most respects. In the CC TPDU, the Destination Reference field now carries the reference ID

that was received in the CR. The Source Reference is selected by the transport entity initiating

the CC TPDU.

These two fields are mapped to the VTPDU as follows :

Destination Reference > Remote Reference

Source Reference > Local Reference

The Remote Reference in now the ISN that was generated by the TCP entity that did the active

open.

The rest of the parameters are analyzed and mapped into the connection confirm

VTPDU in a fashion similar to the mapping of the CR VTPDU to ISO CR TPDU. When the

CC VTPDU is received by the gateway, it is to be mapped back to a SYN_ACK. The

Acknowledgement Number is mapped from the value that is carried in the Remote Reference

field of the connection confirm VTPDU.

The TCP entity's reply to a valid SYN_ACK in the SYN_SENT state is to generate an

ACK to complete the three way handshake. The ACK carries the next expected sequence

number. The gateway generates a ACK VTPDU, which also conveys the next expected

sequence number. In the virtual transport domain, the sequence number (referred to as Virtual

Sequence Space) carries both an octet binding and a packet binding. The Virtual Sequence

www.manaraa.com

69

Space concept is described in greater detail in the Chapter 5 when the data transfer phase is

discussed.

The specification of the VTPDUS involved in the connection establishment and the

mapping rules for die gateways involved are presented in the following sections.

4.4.1 Transport Convergence Function Design

The preceding discussion informally described the process by which a connection is

established between transport end points using the Virtual Transport architecture. The protocol

specific TPDUs are mapped to a common format VTPDUs by the TCFs. Design guidelines for

the TCFs in the gateways can be stated as follows:

(a) The TCF is aware of the nature of the adjoining subnet of its gateway only and makes

no assumption about the remote end transport protocol.

(b) The VTPDU generated by the TCFs are consistent. This implies that a connection

request VTPDU generated from an ISO CR should have the same syntax and semantics

as that generated fiom a TCP SYN segment.

(c) The TCF attempts to maintain a minimal (if any) state information. This propagates

from the decision to make the end systems provide reliability.

www.manaraa.com

70

4.4.1.1 Mapping Initial Sequence Numbers Both TCP and ISO transports

generate a unique sequence number when birthing a new connection. This is known as the

Initial Sequence Number (ISN) for TCP and a Source/Destination Reference ID for ISO TPs.

In the ISO transport model, these reference IDs remain fixed (and unique) during the lifetime of

the connection. A separate sequence space is used during data transfer. TCP on the other hand

uses the ISN as a starting point for a sequence space during the lifetime of the connection.

The Virtual Transport uses fields termed Local Reference and Remote Reference to

carry the information that is conveyed by the ISN, ACK number, SEQ number and the

Reference IDs during connection establishment. As was mentioned in the previous section, the

sequence number in the VTL domain will carry an octet and packet count binding. Shown

below is a scenario where a TCP sends a SYN segment with an ISN=100. It expects a SYN

request from its peer, accompanied with an acknowledgement number of 101, positively

acknowledging the initiator's SYN. To complete the three way handshake, the initiator sends

an ACK segment with an acknowledgement number 2021 and a sequence number 101. TCP

ACK segments carry the value of the next sequence number expected, and the sequence

number that they carry indicate the number of the first octet in the segment. The corresponding

next expected packet number (Ns) field of the ISO ACK packet is 0.

SYN (100) —> (CR VTPDU) —> CR (SreRef=100)

SYN (2020), ACK(lOl) <— (CC VTPDU) <— CC (SrcRef=2020, DstRef=100)

ACK (2021) SEQ(lOl) —> (ACK VTPDU) —> ACK(DstRef=2020, Ns=0)

ISO Transports expect a unique source reference in CR TPDU. The responder then

uses that as the destination reference in the CC TPDU, while generating a unique source

www.manaraa.com

71

reference for itself. Thus the responders end of the connection is identified by the reference ID

2020 and the initiators end point is identified by the reference ID 100 throughout the lifetime of

the connection.

A one to one mapping of :

ISN in TCP SYN -> Local Reference in CR VTPDU > Src_ref in ISO CR

is acceptable, and so is

Src_Ref in ISO CC > Local Reference in CC VTPDU -> ISN in TCP S YN_ACK

but Dst_Ref in ISO CC > Remote Reference in CC VTPDU -> ACK Num in TCP
SYN_ACK

is not valid because TCP accepts an ACK as acceptable only if the ACK Number is ISN+1 (for

completion of three way handshake).

It would be a simple matter to generate the ACK Number by incrementing the value of

the remote reference if the TCP knew that this VTPDU was generated due to an ISO CC. This

approach is unacceptable, as it forces the TCFs to be aware of the nature of the remote

transport. Traditional protocol converters employ such a technique. Instead the TCFs make

decisions based on the knowledge of the transport protocol being employed in tiie attached

subnet.

To provide for a consistent interpretation for the local reference and remote reference

fields of die VTPDU, they will be kept constant during the connection establishment phase.

4.4.1.2 Handling of Error Conditions The TCFs play a passive role while

doing the translation to a VTPDU. They do not attempt to ascertain the validity of the TPDU

received from the local ti-ansport. This is done at the destination end systems. Thus

www.manaraa.com

72

delayed/duplicated packets are not detected by the TCFs, but are mapped to the equivalent

VTPDUs. The mapping functions should be such that the end transport entity can recognize

the delayed/duplicated packets and take the appropriate actions. Any Local TPDUs that the

TCFs cannot recognize or those that fail the checksum are discarded. The following discussion

describes how error conditions detected by TCP and TP4 are conveyed transparently by the

VTL.

(a) Reset Generation and Processing by TCP; During the connection

establishment phase, TCP detects and generates RESETS as follows:

1. In SYN SENT state: The TCP entity is now expecting an ACK for the SYN it

transmitted. If it gets an invalid ACK, a RESET is generated as shown below.

2. In SYN RECVD state: The TCP entity is now expecting an ACK to complete the three

way handshake. If an invalid ACK is received, a RESET is generated as follows:

state = CLOSE
SYN (100)

state = SYN_SENT
SYN(200)ACK(91) <•

>

invalid ACK
RESET(Seq=91) >

SYN (100) > LISTEN

SYN(200),ACK(101) <•

ACK (300) •> invalid ACK

SYN_RECVD

www.manaraa.com

73

RESET (Seq = 300) < Send Reset

3. In ESTABLISHED state: Detection of illegal sequence of events during the data

transfer phase also result in RESET generation. This case will be discussed when the

connection termination phase of the VTL is specified.

(b) Disconnects from ISO TP4: ISO TP4 generates disconnect requests when an

invalid condition is detected. The rules associated with are as follows :

1. State CLOSED: If an unacceptable CR TPDU is received, a DR is sent with source

reference set to zero.

CR (SrcRef = 1001, DstRef = 0) <
If invalid CR

I
I

DR (SrcRef=0, DstRef=1001) Reason Code

2. State WFCC: While in waiting for connection confirm state, if a CC is received which

cannot be associated with any existing transport end point^, a DR is transmitted. A DR

is also transmitted if an association is made but the CC is invalid for some other reason.

In this case, a Disconnect Indication is given to the Client

CR (SrcRef =1001, DstRef = 0) >

CC (SrcRef = 2001, DstRef = 900) <-
CC cannot be associated

I

2 This association is performed by attempting to match the three tuple <DST_REF in the received TPDU,
Source NSAP, Destination NSAP > with those of existing transport connections.

www.manaraa.com

74

DR (SrcRef=900, DstRef=2001)

CC (SrcRef = 2001, DstRef = 1001) <
Invalid CC

I
I

DR (SrcRef = 1001, DstRef=2001) Reason Code —>
Change state to Closing.

3. State AKWAIT and OPEN: A DR is sent when the retransmission count exceeds a

maximum value.

For both TCP and ISO TP4, the RESET or the DR should have valid sequence

number/reference IDs so that the receiving entities can recognize and act on them. In both the

transports, a connection is rejected during connection establishment if:

1. An unsolicited SYN_ACK/CC is received.

2. An Invalid ACK in TCP; or

3. An Invalid CR in ISO TP4 is received.

Some of the scenarios that can be envisioned are as follows:

1. Delaved CR received bv TP4

TCP ISO TP4

Delayed CR Form a closed connection

I
VTL CR(Local Ref=90) --> CR (SrcRef= 90)

SYN=2020, <--VTLCC(LocalRef=2020, <--CC (SrcRef=2020, DstRef=90)
ACK=90 RemoteRef=90)

Invalid ACK

www.manaraa.com

75

RST (Seq=90) - > VTL DR (LocalRef=90,
RemoteRef=2020) --> DR (SrcRef=90, DstRef=2020)

2. Delayed SYN received bv TCP

TCP ISO TP4

Delayed CR form a closed connection

I
SYN 90 <-- VTL CR(Local Ref=90)

SYN=2020, -> VTL CC(LocalRef=2020, > CC (SrcRef=2020, DstRef=90)
ACK=90 RemoteRef=90)

Unsolicited CC send DR

RST (Seq=90) <-- VTL DR (LocalRef=90,
RemoteRef=2020) < DR (SrcRef=90, DstRef=2020)

3. Detection of Duplicate CR: Duplicate detection is handled by the end systems. The VTL

merely converts the sequence numbers to the local format.

4.4.1.3 Usage of Checksum by the VTL VTPDUs generated by the TCFs are

covered by a checksum even if one of the end transports requires it and if the configuration

allows so. The usage of checksum often results in performance degradation, so it should be

possible to turn off checksum computations at the discretion of the system administration. The

connection request and the connection confirm VTPDUs always carry a checksum. A VTPDU

with a invalid checksum is rejected by the TCFs.

www.manaraa.com

76

4.5 Rules for the TCFs During Connection Establisliment

The previous section described the role played by the VTL and the TCFs during the

connection establishment phase. Although the TCFs are designed specifically for a particular

local transport, the mappings they perform are done with the aim of generating a Virtual

Transport PDU whose syntax is not uniquely influenced by the nature of the local transport.

The set of rules that the TCFs must follows to generate VTPDUs during the connection

establishment phase are listed below.

(a) The VTL uses Local and Remote Reference IDs which are mapped from the local

transports representation of the ISN.

(b) The value of the Local and Remote references remains fixed during the connection

establishment phase and are kept as state variables by the TCF instances.

(c) Credit allocations are normalized with respect to the VTL packet size.

(d) The maximum PDU size information that the VTPDUs may carry is the minimum of

the PDU size supported by the local transport and the PDU size that the gateway can

handle.

(e) A unique initial interaction, i.e., a TP4 CR or a VTL connection request causes the

TCP state to change from CLOSE to OPEN. The uniqueness of the initial interaction is

determined by comparing the calling and the called transport addresses with those

maintained by the active TCF instances. A unique end point identifier (end point ID) is

www.manaraa.com

77

associated with the TCF. This end point ID is carried by all VTPDUs to facilitate

associating the incoming VTPDU with the correct TCF instance.

(f) The Virtual Sequence Space has an octet binding as well as a packet count binding.

This concept is detailed in the next chapter.

(g) Each TCF module instance is uniquely identified by the calling and called transport end

point address. This property is used by the IP module and the CLTS module to pass

interactions to the correct TCF module. Figure 4.3 shows the association between IP

module, the TCFs and CLTS modules. An end point identifier is generated &om the

transport end point addresses and this value is exposed to the peer TCF. After the

connection establishment phase, all VTPDUs will carry this end point identifier instead

of transport addresses. This end point ID is used to index the correct instance of the

TCF. The actual transport addresses are then accessible.

(h) A TCF association is established when a unique initial interaction, i.e. a connection

request TPDU, is received either form the VTL domain or the local subnetwork.

(i) The connection request and the connection confirm VTPDUs are protected by a

checksum. Subsequent VTPDUs carry a checksum if one or both the end transport

entities requested it. When the TCFs generate a local TPDU, a checksum is computed

only if the local target transport entity had indicated its use.

(j) A connection termination TPDU from TCP or TP4 is mapped to a disconnect request

VTPDU. The details of the connection termination mechanism are given Chapter 6.

www.manaraa.com

78

The formal specifîcations of the TCFs for TCP and ISO TP4 gateways and the formats

of the VTPDUs used during connection establishment phase are described in the subsequent

section. Figure 4.4 shows the scenario where ISO and TCP clients interoperate transparently

with peer clients of either transport using the VTL during connection establishment.

TCP Module: IdanHlad By
owing T_AddnM$, Called
TJ^ddnêÊ

Module

.A

TPOU
Analyzer

TPOU

Generator

Mapping
Function»

Mapping
Function*

Vipdu
Generator

Vtpdu
Analyzer

ir

V/
/ %

I
I
t
t
I

»
\
\

\ \ \ i

CUTS MOOUl£ COTBfXXXLE

Figure 4.3 - Association of Modules

www.manaraa.com

79

TCP Initiator

SYN100

SYNSD20
fCKW

LocatlWkSW S.flEF.UctM

ISO Rupondir
m

. 8JÏF100

SEQtOI
ACX2K1

ACK-Rmm*
fW«1

WMf 8E0-1
Fkme» R»f>

ACK-I

ISO Initiator

CR
S.REFIOO LMafW-S.REF

• 0

cc
s.REFaoa

O.REfaRtfflOlifW

Uo<B«.REf
m«m«WW.O.REF

TImtr Bawd TP
Inltlitor

OF.I
EEOieO

loc«M.EK _
R«fflOttR«faO

. WW-S.REF omm

OJff.
fWflioMfRtf

NS.Q

ACKN64
DJCFaUB

Tlmr Biud TP

IS£04.eerirtf
CRF.1
GE0100

-i--I I
I

- i - . I I i I I I I
1 I I
I t I

. .L. _

I I I
-r -t I

Loeilrtf*
..KB)

AemoWW. 0RF.1 SO RSE02020
UnrOM

«KS

TCP Raipondir

SVN100

locWA#f.SYN
n#mOWfW m

ACK.1

UcWWWSEO RmoW.ASEO

. SEO.
ACK .

R#mo*AW*1

SYN2020
• A« 101

SC0101
ACK 2821

Figure 4.4 - Connection Establishment using the VTL

www.manaraa.com

80

4.5.1 TCP Specification for TCP Gateways

The role of the TCP, for a TCP gateway, during connection establishment is formally

specifîed in this section. Figure 4.5 depicts pictorially the modules that play a role in the

specification.

Module

I
TPDU TPDU
Analyser Generator

t
Mapping Mapping
Functions Functions

Vtpdu Vtpdu
Generator

CLTS MODUl£

Figure 4.5 - Formal Specification of TCP_TCF

www.manaraa.com

81

The TCP_TCF specification is done using the ESTELL FDT and is presented in

Appendix A. The rules that are formally specified are as follows:

(A) Connection Request:

1. A connection request VTPDU is generated from a TCP SYN segment. The Local

Reference field of the CR VTPDU assumes the values of the ISN as carried by the

SYN segment. The sequence space size of 4 is used for the VTPDU.

2. The packet size as carried by the VTPDUS is given by;

packet size = MIN (Max VTL Packet size, Max TCP Segment Size)

3. The credit allocation is computed from the TCP SYN request as:

4. A received VTL CR is mapped to a TCP SYN segment. The sequence number for the

TCP segment is: ISN = Local_Ref field of the VTL CR.

5. From a received VTL CR the window size and the maximum segment size is computed

as:

TcpWindow in octets = VtlCredit * VTL packet size

Max Segment Size = Max VTL packet size.

www.manaraa.com

82

(B) Connection Confirm;

1. A TCP SYN_ACK is mapped to a VTL connection confirm (CC) VTPDU. The ISN

value of the TCP segment is mapped to the Local Reference field of the VTPDU, and

the Remote Reference field of the VTPDU take the value: ACK-1.

2. The credit allocation, and the maximum packet size is computed as in the case of

connection request.

3. A VTL CC is mapped to a TCP SYN_ACK. The sequence number for the SYN_ACK

equals the Local_Ref field of the VTPDU, and the acknowledgement number equals the

value; Remote_Ref+l.

(C) Acknowledgements:

1. The VTL ACK carries both the next expected octet number and the next expected packet

number. The next expected sequence number is the same as the TCP ACK number and

the next expected packet number is 0. Acknowledgement generation is dealt with in

greater detail in the next chapter.

(D) General:

1. A RESET segment is mapped to/from a disconnect request VTPDU. The detail of the

connection termination mechanism is described in Chapter 6.

2. Reject any unknown segment from TCP or VTPDUs from the VTL.

www.manaraa.com

83

Each instance of the TCP is uniquely identified by the calling transport address and the called

transport address. Local variable that are maintained by a TCP instance are:

1. Local Reference derived from the ISN.

2. Remote Reference derived from the Local_Ref field of the VTL Connection Confirm

VTPDU.

3. Calling and Called Transport Addresses for association purposes. This is referred to as

the END_POINT_TYPE or the End Point Identifier in the specification.

4. The TCP changes state from CLOSE to OPEN when a unique SYN segment or a

unique VTL CR VTPDU is received. The uniqueness is determined by comparing the

called and calling addresses of the interaction with those maintained by the active

TCPs.

5. The inidal values of the next expected packet number is zero.

These rules for TCP TCPs are formally specified using the ESTELL PDT and are contained in

Appendix A.

www.manaraa.com

84

4.5.2 TCP Specification for ISO TP4 Gateways

The role of the TCF, for a TP4 gateway, during connection establishment is formally

specified in this section. Figure 4.6 below depicts pictorially the modules that play a role in the

specification.

TPDU
Analyser

TPDU

Generator

Vtpdu
Analvfiflr

Mapping
Functions

Mapping
Functions

Vtpdu
Generator

ISO IP
Module

CLTS MODULE

Figure 4.6 - Formal Specification of TP4 TCF

www.manaraa.com

85

The TP4 TCP specification is done using the ESTELL FDT. The rules that are

formally specified are:

(A) Connection Request:

1. A TP4 CR TPDU is mapped to a connection request VTPDU. The local reference field

of the VTPDU takes the value of the source reference. The TP4 credit allocation is

normalized to the VTL credit. VTL packet size is computed as MIN (Maximum VTL

packet size, Maximum TPDU size).

2. A VTL Connection Request is mapped to a CR TPDU, with the source reference equal

to the local reference filed. The TP4 credit is derived from the normalized VTL credit.

The maximum TP4 TPDU length is the nearest valid packet size less than or equal to

maximum packet size as carried by the VTPDU.

3. A TP4 CR or a VTL connection request causes a TCP state change from CLOSE to

OPEN. An end point identifier is also associated with the TCP at time.

(B) Connection Confirm

1. A TP4 CC TPDU is mapped to a VTL Connection Confirm VTPDU. The source

reference and the destination reference fields of the CC TPDU are mapped to the local

reference and the remote reference field of the VTPDU respectively. The credit and

maximum packet size are normalized as in the case of a CR TPDU.

www.manaraa.com

86

2. A VTL connection confirm is mapped to the TP4 CC TPDU. The local reference and

the remote reference fields of the connection confirm VTPDU are mapped to the source

reference and the destination reference fields of the CC TPDU.

3. If the data in VTL connection establishment primitives are greater than 32 bytes, the data

are discarded.

(C) Acknowledgments:

1. TP4 AKs are mapped to VTL acknowledgements. Since the VTL acknowledgements

carry an octet binding as well as a packet count, the octet binding carries the values of

Remote Reference + 1. The packet binding carries the value of the NS field in the AK

TPDU. The next expected packet number of a received VTL acknowledgement is

mapped to the NS filed of a TP4 AK TPDU.

(D) General:

1. Local variables stored are: LocalRef, RemoteRef, CallingTpAddress, CalledTpAddress,

local end point identifier and remote end point identifier.

2. A DR TPDU is mapped to/from a disconnect request VTPDU. The details of the

connection termination are described in Chapter 6.

The above mentioned rules for TP4 TCFs are formally specified using the ESTELL FDT and is

presented in Appendix A.

www.manaraa.com

87

C^heckSum Flag>

Bit 0 12 3 5 6

Data^^

^^^Pflorl ty

Version No.

Bit 7

Vtpdu Type 1 SaqSiz=p 1
VTLRemote End Point Id

VTL Remote EndPoint Id

Prio I, Sec ; E; Reserved

Local Reference Byte 1

Local Reference Byte p

Tp Called Name byte 1

Tp Called Name byte n

Tp Calling Name byte 1

Tp Calling Name byte m

VTL Local End Point ID

VTL Local End Point ID

Credit byte 1

Credit byte p

Max Packet Size byte 1

Max Packet Size byte 2

Data length byte 1

Data length byte p

User Data

Checksum byte 1

Checksum byte 2

BYTE No.

1

2

3

4

5

l+u

Figure 4.7 - Connecrion Request VTPDU

www.manaraa.com

88

QSheckSum Fli^

Bit 0 1 2 5 6

Version No.

Bit 7

Vtpdu Type ! SeqSlz=p ! ' ®

Dala^^

^2^

VTLRemote End Point Id

VTL Remote EndPoint Id

Prie Sec j ^E[Reserved

Local Reference Byte 1

Local Reference Byte p

Remote Reference Byte 1

Remote Reference Byte p

Tp Calling Name byte 1

Tp Calling Name byte m

VTL Local End Point ID

VTL Local End Point ID

Credit byte 1

Credit byte p

Max Packet Size byte 1

Max Packet Size byte 2

Data length byte 1

Data length byte p

User Data

Checksum byte 1

Checksum byte 2

BYTE No.

1

2

3

4

5

I

t+u

Figure 4.8 - Connection Confirm VTPDU

www.manaraa.com

I

89

4.5.3 VTPDU Format

At this stage the following VTPDUs have been identified:

(a) Connection Request VTPDU

(b) Connection Confirm VTPDU

(c) Acknowledgement VTPDU

(d) Disconnect Request VTPDU

The acknowledgement and the disconnect request VTPDUs are described in Chapters 5

and 6 respectively, when the data transfer phase and the connection termination phase are

formalized. Figures 4.7 and 4.8 show the connection request and the connection confirm

VTPDU, respectively. The data structures are formally described in the ESTELLL

specification presented in Appendix A.

Since the header overhead can affect performance, the need to optimize the headers is

apparent and will be kept in perspective during the later phases of the design.

4.6 Conclusion

This chapter described the design of the VTL to support transport connection

establishment. The role of the gateway components for DoD TCP and ISO TP4 were

formalized. The next chapter describes the provision of data transfer by the VTL.

www.manaraa.com

90

5 DATA TRANSFER PHASE

5.1 introduction

This chapter describes the data transfer mechanism employed by the VTL to provide

transparent interoperability between ISO TP4 and DoD TCP. It may be noted that the VTL

technique is general and open ended, implying that interoperability is possible with other

transport protocols as well. ISO TP4 and DoD TCP have been chosen to prove the concept

primarily because of their popularity and installed base. Interoperability is achieved by

translating the local TPDUs into a common format message object. This virtual TPDU is

transmitted to the destination gateway using a CLTS. The conversion is done by a sub-module

of the gateway, identified as the Transport Convergence Function (TCP), following a set of

rules. The gateway architecture and the conversion rules for the connection established phase

were formally specified in the previous chapters.

Section 5.2 and 5.3 discuss the methods employed by TCP and ISO TP4 to provide the

data transfer service. Section 5.4 describes the design issues and the rule set for the TCFs to

translate to and from the data VTPDU. Section 5.5 formally specifies the data transfer phase

for TCFs of ISO TP4 and TCP gateways, respectively.

www.manaraa.com

91

5.2 TCP Mechanisms to Provide Data Transport

A brief description of the some of the key features of the TCP data transfer mechanism

that have implications for the interoperability solution are presented below. The distinguishing

feature of the TCP data stream is that it is octet based.

5.2.1 Sequence and Acknowledgement Numbers

An outgoing TCP data segment carries a sequence number which binds the first data

octet of the segment to the data stream. The sequence numbers are used by the receiving entity

to generate ACK segments, update receive variables and windows, and to detect out of order

and duplicate segments. The acknowledgement number carried in the segment conveys the

sequence number of the next expected data octet. It confirms the reception of all data up to (but

not including) the ACK number. Acknowledgements can be piggy-backed with data and are

cumulative. Variations in the accept policy of the TCP entity can allow segments that straddle

the receive window, i.e., a portion of the segment may be outside the window, to be accepted

upto the octet which is in the receive window.

5.2.2 Sequencing of Aclcnowledgements

An ACK segment is accepted if the segment carrying it has a sequence number greater

than the previous sequence numbers, or the acknowledgement number carried by the segment

is higher than any previous acknowledgement number.

www.manaraa.com

92

5.2.3 Push and Urgent Data

Data on a TCP connection are conceptually a stream of octets. The TCP entities can

therefore buffer the data on both sending and receiving sides and transmit it at its convenience.

Thus the sending ULP has no way of knowing if the data have been sent or is retained by the

local or remote TCP entity while waiting for a more suitable segment or delivery size. The

push mechanism is provided to the ULPs such that a TCP entity segments and sends all

internally stored data within flow control limits and the receiving TCP must promptly deliver

the pushed data to the receiving ULP.

TCP provides a means to communicate to a receiving ULP that some point in the data

stream has been marked urgent. The urgent field in the segment is added to the sequence

number to compute the last octet of the urgent data. The urgent pointer field is interpreted if the

URG Flag is set. Note though that there is nothing which indicated the start of the urgent

information.

5.3 TP4 Mechanisms to Provide Data Transport

Unlike TCP, ISO TP4 uses "data packets" as the boundary in the data stream. Thus,

the sequence numbers track the number of data packets handled instead of number of bytes.

There are separate TPDUs to carry data and acknowledgements, so piggy backing is not

possible.

www.manaraa.com

93

5.3.1 Sequence and Acknowledgement Numbers

A Transport entity allocates a sequence number of 0 to the first data TPDU that is

transmitted. For subsequent data TPDUs, the sequence number is incremented by one. For

normal format sequence numbers, modulo 2**1 arithmetic is used, and for extended format

sequence numbers modulo 2**31 arithmetic is used. These sequence numbers are used by the

receiving entity to generate ACKs, reorder TPDUs and detect duplicate packets.

An in-sequence data TPDU is acknowledged, within a certain time, by an AK TPDU

which carries a sequence number of the next expected data TPDU. This is termed as Next

Receive (and abbreviated as NR). Acknowledgements can be cumulative.

5.3.2 Sequencing of Acknowledgements

Since ACKs carry a credit value, interpreting the ACKs in a wrong order could be

misleading to a transport entity. To prevent this, ACK TPDUs carry a subsequence number

field. The usage of this field gives an order to the ACK TPDUs. Sequence control for

transmission of ACK TPDUs is achieved as follows;

If (NR > NR used in previous ACK)
Sub_Seq No. = 0;

If (Credit >= Credit in previous ACK)
Sub_Seq No.(if used) = Previous Sub_Seq No.;

If (NR = NR in previous ACK and Credit < Credit in previous ACK)
Sub_Seq No. = Sub_Seq No. in previous ACK + 1;

Correspondingly, a received ACK is defined to be in order as follows:

www.manaraa.com

94

If (NR > NR in previous ACK)

OR

If((NR =NRin previous ACK) AND
(Sub_Seq No. > Sub_Seq No. in any previous ACK))

OR

If ((NR ssNRin previous ACK) AND
(Sub_Seq No. = Sub_Seq No. in any previous ACK) AND
(Credit > Credit in previous ACKs))

Thus, we see that a reduction is credit is signalled by sequencing the ACK that carried the

information. The usefulness of this feature can be shown in the following example.

If a transport entity advertises a credit of S and subsequently reduces it to 3 for the same

NR, then according to the rules specified above the later ACK carries a higher subsequence

number. Now suppose that the ACKs get misordered and the ACK carrying credit 3 reaches

the destination first, and then the ACK with credit 5. If sequencing of ACKs was not done,

then the transport entity will use 5 as it send window. To avoid this, a check is made to

determine if the ACK is in sequence. According to the rules above, this later ACK will be

invalid as it carries a higher credit, but has a lower subsequence number.

Thus the use of subsequence numbers eliminates any confusion when a credit reduction

is advertised by a transport entity.

www.manaraa.com

95

5.3.3 Expedited Data

Expedited data (ED) use a separate sequence space than that used by the normal data.

The receiving transport entity transmits an expedited acknowledgement (EA) TPDU with a

sequence number equal to the sequence number of the received ED TPDU. The sender of the

ED does not transmit any more data until it receives the corresponding EA. Also die semantics

of the ED service dictates that an ED TPDU will reach the destination no later than any Data

TPDU transmitted after the ED TPDU. Expedited data are limited to 16 bytes in size.

5.4 VTL Design Issues for Data Transfer Phase

The data transfer phase presents a set of issues pertaining to sequencing of data

packets, piggybacking acknowledgments, sequencing of acknowledgments and handling of

expedited data. Each of these is explained below.

5.4.1 The Virtual Sequence Space

As was seen in the case of ISO TP4 and DoD TCP, the sequence space was bound to

the packet count and an octet count respectively. The representation of the virtual sequence

number (VSN) should be such that it is possible for the TCFs to consistentiy generate the

corresponding sequence number for the local transport entity. Thus the VSN should somehow

convey both the octet count and the packet number of the data VTPDU. The virtual sequence

space can follow any of the following bindings;

www.manaraa.com

96

(a) Octet count based

(b) Packet number based

(c) Carry both packet number and octet count information

The choice of the nature of the virtual sequence space has ramiRcadons on the design of the

TCFs. A discussion of the TCF design issues depending on the nature of the virtual sequence

space follows.

5.4.1.1 Octet Based VSN This would be the best suited for TCP TCFs, as it

matches with the native sequence number representation. No extra mapping information would

be needed by the TCFs. On the other hand, TP4 TCFs would need a cumulative byte count

along with a history of recent packet number to octet count association. The mapping history

needs to be maintained to handle transmissions.

5.4.1.2 Packet Count Based VSN This approach favors the TP4 TCFs as it is

the native sequence number representation. For TCP TCFS however, to associate a packet

number with a TCP segment, a mapping table has to be maintained between the sequence

numbers carried by the segments and the corresponding packet number. The example below

shows the need for maintaining a mapping table, and why generating a packet number

dynamically will not suffice.

www.manaraa.com

97

TCP Seq No. VTL VSN.

100 0
200 1
300 2
200 —

Due to a retransmission, VSN of 1 cannot be
associated with this segment without maintaining
a history of previous sequence numbers and
corresponding VSNs.

Similarly while receiving data VTPDUs, the VSN has to converted to an octet based seq.

number. Assume packets of 100 octets, RemoteRef=99;

VTL VSN. TCP Seq No.

0 RemoteRef +1 = 100 ;
RecvCount = Data_Len = 100;

1 RemoteRef+l+RecvCount = 200;
RecvCount=RecvCount + Data =200;

2 RemoteRef+l+RecvCount = 300;
RecvCount = 300;

1 (retransmission) Seq = 200; RecvCount = 300;

3 RemoteRef + 1 + RecvCount = 400;
RecvCount = 400;

Thus we see that a table of recently used sequence numbers and packet numbers has to be

maintained.

5.4.1.3 Packet and Octet Count Based VSN In this case, the VSN conveys

both the octet count and the packet number. While doing so, the task of the receiving TCFs

(for both TCP and TP4) is simplified as the required sequence number is carried by the

www.manaraa.com

98

VTPDU. However, the transmitting TCF still has to maintain a mapping table to associate a

sequence number with a TPDU.

An ideal VSN representation would be one which can be mapped to and from the target

sequence space without a computational overhead, or the overhead of maintaining a mapping

table. Such a representation, although highly desirable, does not seem possible. At this stage,

an engineering decision is being made to use a packet and octet count based VSN. The

overhead is then restricted to the transmitting TCFs. The receiving TCFs merely use what ever

matches the local format

Even with this approach there are problems. Since there is no guaranty that the

gateways will receive packets in order. Thus, the TCFs may not be able to associate the correct

VSN with a TPDU. This is explained later in the section on error recovery.

5.4.2 Acknowledgement Strategy

The issues of prime concern are piggybacked acknowledgements, cumulative

acknowledgements and sequencing of acknowledgements.

5.4.2.1 Piggybacked vs Explicit Acknowledgements TCP uses

piggybacked acknowledgements, implying that the data segments also carry an

acknowledgement number. TP4 on the other hand uses explicit acknowledgements. If the

VTL uses piggybacked acknowledgements, then the TP4 gateways have to dismantle the ACK

VTPDU into a data TPDU (if there is any) and an acknowledgement TPDU. Lost TPDUs

www.manaraa.com

would be compensated for by eventual retransmissions. On the other hand, if distinct ACK

and data VTPDUs are employed, TCP gateways would have to break the TCP segments into

ACK and data VTPDUs.

5.4.2.2 Cumulative Acknowledgements Both TCP and TP4 can accept

cumulative acknowledgements. If a certain transport architecture requires explicit

acknowledgements for every data TPDU, then a strategy has to be adopted by the VTL and the

TCFs by which such acknowledgements are made available. This can be accomplished by

breaking up cumulative acknowledgements at either the transmitting or the receiving TCFs.

The implications of either decision are being left as area of further study, if and when

interoperability such a transport architecture is required. For the scope of this research,

cumulative acknowledgements do not raise an issue.

5.4.2.3 Sequencing of Acknowledgements As was explained in a previous

section, TP4 uses a subsequence number with acknowledgements as a safeguard against

interpreting out of sequence credit allocations. TCP does not have such a mechanism. If the

ACK VTPDUs are to carry a sequence number, then there are two options on how to generate

it. Either the TP4 sequence number can be used as such for TP4 gateways, while this

parameter is ignored at the TCP gateways. The other option is to always have a sequence

number for the ACK VTPDUs. In this case the sequence number is generated autonomously

by the gateways. This approach may be flawed as there is no guarantee that the gateways

themselves will receive acknowledgements in order. In view of this, the ACK VTPDUs will

www.manaraa.com

100

mirror the TP4 ACK subsequence number value. A virtual sequence space can be chosen for

the ACK VTPDUs, but at this stage TP4 subsequence number will be used as such.

5.4.2.4 Flow Control Confirmation Flow control confirmation (FCC) is a

mechanism of the TP4 protocol whereby acknowledgement messages containing critical flow

control information are confirmed using some optional fields of the TP4 AK TPDU. Critical

acknowledgement messages are those that open a closed flow control window, or reduce

credit. If this critical information is lost, then the resynchronization of the flow control relies

on the expiry of the window timer which is generally of relatively long duration. In order to

reduce delay in synchronizing the flow control, the receiving entity can repeatedly send, within

short intervals, AK TPDUs carrying a request for confirmation of flow control state. This

procedure is known as "Fast Retransmission of Acknowledgements". If the sender responds

with an AK TPDU carrying an FCC parameter, fast retransmission is halted. If no AK TPDU

carrying an FCC parameter is received, the fast retransmission halts after having reached a

maximum number of retransmissions and the window timer resumes control of AK TPDUs.

FCC is an optional mechanism and the data sender is not required to respond to a request for

confirmation of flow control state. ACK VTPDUs will cany the FCC information in the TP4

format The TCP gateways will ignore this parameter.

www.manaraa.com

101

5.4.3 Expedited Data and Acknowledgements

TCP uses the urgent mechanism to signal the ULP that some information in the data

stream has to handled in an expedited manner. An expedited data VTPDU can be used to

convey urgent data. The virtual sequence space will again comprise of an octet binding and a

packet number binding. The receiving TCP gateway generates a segment with the URG flag

set, and derives its sequence number from the virtual sequence space.

5.4.3.1 Interoperability Issue with TP4 Expedited Data There is a

fundamental difference in the manner in which TCP and TP4 offer this emergency data service.

TP4 uses a different packet and acknowledgement stream for expedited data. Data

transmission (both normal and expedited) are suspended until the expedited data packet is

acknowledged. TCP on the other hand embeds the urgent data in the regular data stream, and

does not expect any special acknowledgements. A foreseeable performance problem could be

where a TP4 entity sends expedited data which is encoded as urgent data for the TCP entity.

Since there is no way to solicit an immediate acknowledgement from a TCP entity, any further

data transfer from TP4 would be blocked until such time as the TCP entity deems fit to send an

ACK segment

Further the TCP urgent mechanism does not mark any octet as the starting of the urgent

information, instead the URG flag is marked true until the last octet of the urgent information is

transmitted. Thus if a portion of the data stream is to be mapped into TP4 expedited data, it has

to be packetized into 16 byte segments.

www.manaraa.com

102

Theoretically interoperability between TCP urgent data and TP4 expedited data can be

achieved, but in practice it is cumbersome. It may be favorable to restrict the usage of

Urgent/Expedited data.

5.4.3.2 Expedited Acknowledgements TP4 uses an (EA) TPDU to

acknowledge an ED TPDU. No sequence number information is carried by the EA TPDU as

there can be only one outstanding unacknowledged ED TPDU at any time. TCP, however

does not have a separate EA mechanism and expects acknowledgement for urgent data along

with other acknowledgements. To accommodate the differing mechanisms, the VTL will use a

VSN for expedited acknowledgement VTPDUs. This can be interpreted by gateways which

need to generate an acknowledgment with a sequence number.

Another concern for the VTL is that TCP ACK segments may carry information

regarding urgent data. The TCP specification states that in case a TCP's send window is

closed and an urgent data request is made, then the TCP will send an empty ACK segment with

the new urgent information. The VTL must make provisions in acknowledgement VTPDU to

cany this optional information.

5.4.4 Use of COTS for Error Recovery

As was explained in the previous section, the TCFs may not be able to associate the

correct VSN with a packet The example below shows how this may happen.

www.manaraa.com

103

ICE ICE
Seq 1000 data=1000 octets > VSN {octet binding = 1000;

packet binding = 1 }
NextSeq expected = 2000

Seq 2000 data=1000 octets > VSN {octet binding = 2000;
packet binding = 2 }

NextSeq expected = 3000

Seq 3000 data=500 octets XXX lost

Seq 3500 data=500 octets XXX lost

Seq 4000 data=1000 octets > VSN {octet binding = 4000;
packet binding = ??)

NextSeq expected = 5000

Packet Binding cannot be provided until the lost packets are retransmitted.

I

Seq 3000 data=500 octets > VSN {octet binding = 3000;
packet binding = 3 }

NextSeq expected = 3500

Seq 3500 data=500 octets > VSN {octet binding = 2000;
packet binding = 4 }

NextSeq expected = 4000;

A similar scenario can be recreated for TP4 when it may not be possible to associate an octet

binding for the packets in VTL.

To overcome this problem, the following procedure is recommended. Whenever a

transmitting TCF loses synchronization of the binding, it shall continue to transmit VTPDUs

using what ever the native binding is. This is done with the hope that the remote end point

follows the local sequence space representation. This is continued until the transmitting TCF

www.manaraa.com

104

receives the missing (retransmitted) TPDU and can fill the gaps in its binding-map table. On

doing so the TCP conveys those values of VSNs that did not have all the binding information

required in a message object, using the Connection Oriented Transport service (COTS), to its

peer TCP module instance.

If the receiving TCP can use the partial VSN to generate the local sequence number,

then it will do so. Otherwise, the following procedures can be used to recover from this

temporary loss of VSN information. The simpler approach involves discarding the packets

which do not have the required VSN information. Recovery would then be due to subsequent

retransmissions. This approach will cause a performance degradation.

The alternative approach requires the receiving TCFs to buffer those received VTPDUs

which do not have the required component of the VSN. When the transmitting TCP is able to

fill in the missing values of the VSNs, it conveys the portion of the mapping table to its peer

TCP using the COTS. The receiving TCP will then be able to complete the VSN information

in the buffered VTPDUs, and hence generate the local sequence number. The example below

explains how recovery from loss of VSN synchronization is done.

ICE 1£E 1£JE m

SeqlOCX),
data=10()0 > VSN = (1000,1) > SendSeq = 1

next expected=20(X)

Seq2000,
data=1000 > VSN = (2000,2) > SendSeq = 2

next expected=3(X)0

SeqSOOO,

www.manaraa.com

105

data=500 —xxx Lost

SeqSSOO,
data=500 —xxx Lost

Seq4000,
data=1000 > VSN = (4000,?) > SendSeq = ? {buffer Vsn=4000)

next expected=3CX)0
Mark TTiis Table entry.

SeqSOOO,
data=1000 > VSN = (5000,?) > SendSeq = ? {buffer Vsn=5000)

next expected=3000

Seq6000,
data=10C)0 > VSN = (6000,?) > SendSeq = ? {buffer Vsn=6000}

next expected=3000
Retransmissions

I
I

SeqSOOO,
data=500 > VSN = (3000,3) > SendSeq = 3 >

next expected=3500

Seq3500,
data=500 > VSN = (3500,4) > SendSeq = 4 >

next expected=4000
matches with marked table entry.
next expected - 70(X)

< VSN Map Table message :
(4000.5)
(5000.6)
(6000.7) >Send to peer TCF over COTS

>
SendSeq = 5 >
SendSeq = 6 >
SendSeq = 7 >

Seq7000,
data=1000 > VSN = (7000,8) > SendSeq = 8 >

next expected=8000

www.manaraa.com

106

A similar recovery process can be visualized for the TP4 gateways. Thus, we see how

the chosen architecture aids recovery from transient errors in a transparent manner, and how

the connection oriented transport service (COTS) is used by the TCFs to exchange information.

5.5 VTL Specification for the Data Transfer Phase

5.5.1 Rules for the TCFs

Based on the above discussion, the following set of rules specify the data transfer

phase of the VTL. The rules cover issues regarding sequence space for data and

acknowledgement, provision for expedited data and recovery from loss of synchronization of

the sequence space.

(a) A virtual sequence space is employed by the VTL, which provides an octet count based

as well as a packet count based binding of the data stream.

(b) The data that an ACK VTPDU acknowledges is represented using the virtual sequence

number. The virtual acknowledgement number has an octet count and a packet count

binding. It refers to the next packet to be received and the next octet to be received. In

case some transport entity has an acceptance mechanism by which data TPDU can be

partially accepted and acknowledged, then the packet count component of the VSN will

not be incremented. This implies that if the sending entity follows a packet count

binding, then it will not receive acknowledgement for a partially received packet.

www.manaraa.com

107

(c) Data VTPDUs cany optional acknowledgement/credit information. If the end transport

entity uses piggybacked acknowledgements, then the TCFs should use this option

instead of generating a separate ACK VTPDU. ACK VTPDU will be used if the

transport entity uses separate ACK TPDUs.

(d) Acknowledgement VTPDUs carries an optional ACK sequence number which is used if

the end system attempts to sequence its ACK TPDU.

(e) Acknowledgement VTPDUs carry optional Flow Control Confirmation information.

This may be ignored by the TCFs if the local transport entity does not have a

mechanism by which FCC can be provided.

(f) Expedited Data (ED) VTPDUs are used to carry any emergency data. The virtual

sequence space for the ED VTPDUs carries an octet binding and packet count binding.

(g) Expedited Acknowledgements (EA) VTPDUs are used to acknowledge any ED. An

optional field in the EA VTPDU carries any information pertinent to ED.

(h) Credit information is normalized in terms of the maximum virtual packet size that was

negotiated during the connection establishment phase.

(i) In case the transmitting TCFs are unable to associate a complete VSN with a VTPDU,

due to some inability to generate the derived component of the VSN, then the VTPDU

is transmitted with whatever components of the VSN that can be generated.

(j) If a partial value of the VSN is sufficient for a receiving TCP to generate a local sequence

number, then it shall do so. Otherwise it will follow any of the following procedures.

www.manaraa.com

108

1. It can discard any VTPDUs which carry a partial value of the VSN. Recovery will

then be due to subsequent retransmissions by the originaring end system. This

simplicity will be attained at the cost of performance.

2. The receiving TCF buffers the VTPDUs till such time as a mapping information

message is received form the peer TCF. This should enable the TCF to associate a

sequence number with the buffered VTPDUs. Alternatively the VTPDUs are

buffered till such time as duplicate VTPDU with the complete VSN information is

received.

(k) Whenever a transmitting TCF is unable to derive the complete VSN due to missing

intermediate TPDUs, it shall maintain a table of incomplete VSN values. When the

missing information in the incomplete VSN table can be filled, a mapping information

message carrying a set of completed VSNs will be transmitted to the peer TCF.

(1) Service data unit boundaries, as indicated by use of the PUSH flag or an EOT flag, are

conveyed by die EOSDU flag in the data VTPDU.

Based on these rules, the role of the TCFs during the data transfer phase for TCP and ISO TP4

will be specified in the next section.

www.manaraa.com

109

5.5.2 Transport Convergence Function for TCP Gateways

As per the architecture definition, the TCF module of the gateways does the conversion

between local TPDUs and the VTPDUs. To do so it must follow a set of rules, which are

specified in this section for TCP gateways. The set of rules, as described below, can broadly

be classified as pertaining to those dealing with the virtual sequence space for data and

acknowledgements, generation of acknowledgements and urgent data.

A) Rules for mapping to and from the virtual sequence space:

1. Since the virtual sequence space consists of a byte count and a packet count, the TCF

has to maintain a packet number to an octet count mapping. The mapping history has to

be maintained for the transmitted data stream (to associate retransmissions with a virtual

sequence number) and for the received data stream to associate subsequent

acknowledgements from the local transport entity with a virtual sequence number.

2. The size of the mapping table containing octet count to packet number mapping is of

concern. Mapping of the sequence numbers in the transmitted data stream needs to be

maintained to associate the sequence number of a retransmitted segmented with the

virtual sequence number (VSN) with which it was originally associated. Ideally the

table entries should be dropped as acknowledgements are seen at the gateways, but as

this does not guaranty that the end system will get the acknowledgements, the table may

have to be maintained on a different criteria. One way of controlling the table size is to

keep it in proportion to the send window of the transport entity associated with it by the

TCF module. Thus a history of the last (2*Max_Send_Window) number of packets is

www.manaraa.com

110

maintained. The Max_Send Window variable is maintained by the TCF module, and is

updated when a credit allocation greater than any previous credit value is seen. Some

maximum limit can be imposed.

3. A table of VSNs of the received Data VTPDUs needs to be maintained so that a VSN

can be associated with the subsequent acknowledgements from the receiving TCP

entity. The table size is limited to twice the Max_Recv_Window.

4. If the TCF is unable to associate the packet count component of the VSN due to loss of

previous segments, it shall store that and subsequent the TCP sequence number in a

separate table. VTPDUs are transmitted with a partial value of the VSN. As

retransmission from the TCP entity allow for filling in the missing components of the

VSNs, a message containing the mapping information will be transmitted to the peer

TCF using the COTS interface.

5. If the TCF receives a VTPDU with a missing Octet Count component of the VSN it can

take one of the following actions:

(a) It can reject any VTPDUs that do not have the complete VSN. This approach

simplifies the TCF design, but at cost of performance.

(b) It should buffer the VTPDUs till it receives a mapping information message from

its peer TCF, or a duplicate VPTDU with the complete VSN.

B) Rules for generation of Acknowledgements:

www.manaraa.com

111

1. TCP segments carrying piggybacked acknowledgements will cause the TCFs to use the

piggy backed acknowledgement options of the Data VTPDU. Empty ACK segments

will cause the TCP to generate an ACK VTPDU.

2. TCP TCFs will ignore any ACK sequence information and Flow Control Confirmation

requests carried by the ACK VTPDUs.

3. A TCP entity may partially accept a segment if it straddles the receive window. In this

case the acknowledgement number value carried in the segment will reflect the octet up

to which data were accepted. While generating the Packet binding for such

acknowledgements, the Packet number used for the previous ACK VSN should be

used. The example below explains the scenario;

TCP TCF

SeqNum=1000 <•
DataLen = 1000

Data VTPDU
VSN : (1000,49)
DataLen =1000
{ expected corresponding Ack = 2000 }
{ next_expected Packet Num = 50)

AckNum=2000 > Ack VTPDU
VSN : (2000,50)

SeqNum=2000 <•
DataLen=1000

Data VTPDU
VSN : 2000,50
DataLen = 1000

AckNum=2500 •> {segment partially accepted)
{ expected AckNum was SCKX))

Ack VTPDU
VSN : (2500,50) { use previous value }

{ of packet number j

www.manaraa.com

112

C) Rules for handling Urgent data:

1. Urgent data is sent as an ED VTPDU. A separate virtual sequence space is employed for

ED VTPDUs. The octet binding is embedded in die original octet stream, but a separate

packet count is started. A flag in the mapping table indicates that the VSN is used to

cairy expedited data. The expedited data VTPDUs carry the total amount of expedited

data and the amount being carried in the current VTPDU.

2. The urgent pointer information is derived from the received ED VTPDU. If the PUSH

flag is set in the TCP segment, then the EOSDU flag is also set in the data or ED

VTPDU.

3. Any TCP ACK segments that are recognized as acknowledging an ED VTPDU (through

the VSN mapping table) are sent as EA VTPDUs. Any received EA VTPDUs are

encoded as TCP ACK segments.

4. Any urgent pointer information carried by an empty ACK segment is encoded as an

optional field in the ACK VTPDU.

5. The PUSH flag in the TCP segment is mapped to and from the EOSDU flag in the data

VTPDU

Based on the set of rules for the TCP gateways, an ESTELL specification of the role of

the TCP during the data transfer phase is presented in Appendix B.

www.manaraa.com

113

5.5.3 Transport Convergence Function for TP4 Gateways

The set of rules that the TCF component of the TP4 gateways are again classified as

those dealing with the virtual sequence space, acknowledgement generation and expedited data

handling.

A) Rules for mapping to and from the virtual sequence space:

1. The TCF has to maintain a total byte count variable depicting the total number of bytes

transmitted and associate it with the sequence number of the packets. This history is

needed to map to and from the VSN.

2. A history of the last (2*Max_Send_Window) number of packets is maintained. The

Max_Send_Window variable is maintained by the TCF module and is updated when a

credit allocation greater than any previous credit value is seen. Some maximum limit

can be imposed.

3. A table of VSNs of the received data VTPDUs needs to be maintained so that a VSN can

be associated with the subsequent acknowledgements from the receiving TP4 entity.

The table size is limited to twice the Max_Recv_Window.

4. If the TCF is unable to associate the octet count component of the VSN due to loss of

previous packets, it shall store that and subsequent TP4 packet numbers in a separate

table. VTPDUs are transmitted with a partial value of the VSN. As retransmission

from the TP4 entity allow for filling in the missing components of the VSNs, a

www.manaraa.com

114

message containing the mapping information will be transmitted to the peer TCP using

the COTS interface.

5. If the TCP receives a VTPDU with a missing packet count component of the VSN it can

take one of the following actions:

(a) It can reject any VTPDUs that do not have the complete VSN. This approach

simplifies the TCP design, but at cost of performance.

(b) It should buffer the VTPDUs until it receives a mapping information message from

its peer TCP or a duplicate VPTDU with the complete VSN.

B) Rules for generation of Acknowledgements:

1. TP4 ACK segments are mapped to ACK VTPDUs which carry a virtual

acknowledgement number. Since the virtual acknowledgement number indicates the

next packet number and the next octet number to be received, the TCP should maintain

a table of the VSNs and the number of octets of the received data VTPDUs.

2. The subsequence number, if carried by the TP4 ACK, is repeated as such in the ACK

VTPDU.

C) Rules for handling urgent data:

1. TP4 expedited data are sent as an ED VTPDU. A separate virtual sequence space is

employed for ED VTPDUs. The octet binding is embedded in the original octet stream,

but a separate packet count is started. A flag in the mapping table indicates that the

www.manaraa.com

115

VSN is used to carry expedited data. The expedited data VTPDU s carry the total

amount of expedited data and the amount being carried in the current VTPDU.

CgSheckSum Flag>

Bit 0 12 3 4 5 6

Priority

Version No.

Bit 7

Vtpdu Type 1 SeqSlz=p I 'c

VTLRemote End Point Id

VTL Remote EndPoint Id

PriO j Seô^ j Reserved

Binding Type

SendSeq Octet byte 1

SendSeq Octet byte p

SendSeq Packet byte 1

SendSeq Packet byte p

Data Options Flag

Next Recv VSN byte 1

Next Recv VSN byte n

Credit byte 1

Credit byte p

Data length byte 1

Data length byte p

User Data

Checksum

Checksum

BYTE No.

1

2

2+P-1

2+p

2+2p

I+U

Figure 5.2 - Data VTPDU

www.manaraa.com

116

QSheckSum Flàg>

Bit 0 12 S 6

Version No.
1 r

Vtpdu Type I SeqSiz=p !

(^^^^xpdl Data~^

Priority

VTLRemote End Point Id

VTL Remote EndPoint Id

Prio I Seù\ I

Binding Type

Octet Binding byte 1

Octet Binding byte p

Packet Binding byte 1

Packet Binding byte p

Total Expdt Length bytel

Total Expdt Length bytep

Data Options Flag

Next Recv VSN byte 1

Next Recv VSN byte n

Credit byte 1

Credit byte p

Data Length

Data Length = u

User Data

Checksum

Checksum

Bit 7

Reserved

BYTE No.

1

2

2+P-1

2+p

2+2p

I

I + U

Figure 5.3 - Expedited Data VTPDU

www.manaraa.com

117

(Ç^heckSum Flag>

Bit 0 12 5 6

Data^^

Version No.

Vtpdu Type ! SeqSIz^p I

Bit 7

VTLRemote End Point Id

VTL Remote EndPoint Id

Prie I Se6\ » Reserved

Binding Type

Next Recv Octet byte

llext Recv Octet byte p

Next Recv Packet byte 1

Next Recv Packet byte p

Credit byte 1

Credit byte p

Ack Options Flag

Urgent Data Size

Ack sequence byte 1

Ack sequence byte p

FCC byte 1

FCC byte 8

Checksum

Checksum

BYTE No.

1

2

2+p-l

2+p

2+2p

I

1+8

Figure 5.4 - Acknowledgement VTPDU

www.manaraa.com

118

TP4 expedited acknowledgements are sent as expedited acknowledgement VTPDUs

which carry the virtual acknowledgement number with a binding in the original octet

stream and the separate emergency data packet stream.

Any EA VTPDUs received are mapped back to TP4 EA TPDUs.

The EOT flag in the TCP segment is mapped to and from the EOSDU flag in the data

VTPDU.

Based on the set of rules for the TP4 gateways, an ESTELL specification of the role of

the TCP during the data transfer phase is presented in Appendix B.

5.5.4 VTPDU Formats

The VTPDUs to accommodate the data transfer phase of the design are:

(a) Data VTPDU

(b) Expedited Data VTPDU

2.

3.

4.

(c) Acknowledgement VTPDU

Figures 5.2 through 5.4 show the TPDU formats.

www.manaraa.com

119

5.6 Conclusion

This chapter described how the virtual transport protocol provides transport

interoperability during the data transfer phase. The usage of the connection oriented path

between the gateways, as provided by the architecture, was demonstrated. Some problems

with using TP4 expedited data when the peer transport is a TCP entity were exposed. The next

chapter covers the connection termination phase.

www.manaraa.com

120

6 CONNECTION TERMINATION PHASE

6.1 Introduction

This chapter describes the role of the VTL during the transport connection termination

phase. The philosophy behind the VTL approach and the design of the gateway architecture

was presented in the earlier chapters, and can be summarized as follows. Interoperability is

achieved by translating the local TPDUs into a common format message object. This virtual

TPDU is transmitted to the destination gateway using a CLTS. The conversion is done by a

sub-module of the gateway, identified as the Transport Convergence Function (TCP),

following a set of rules. The conversion rules for the connection established phase and the data

transfer phase were formally specified in the previous chapters and in Appendix A and B using

theESTELLFDT.

Sections 6.2 and 6.3 discuss the mechanisms employed by TCP and ISO TP4 to

provide the connection termination service. Section 6.4 describes the design issues and the

rule set for the TCFs to translate to and from the disconnect phase VTPDU and formally

specifies the role of the TCFs during the connection termination phase for ISO TP4 and TCP

gateways respectively.

www.manaraa.com

121

6.2 TCP Connection Termination

TCP provides for both "graceful" as well as "abrupt" closing of a connection. While

providing graceful release, the TCP entity will transmit (and retransmit) any data in its internal

queues till it is acknowledged. The connection is released only after a three way handshake of

FIN segments is complete. This guaranties that the connection is released only after both the

entities have finished transmitting any pending data. For non-graceful release, the RST

segment is used. This is generated when an ABORT primitive is received from the ULP, or

when an error condition is encountered. The initiating TCP transmits a RST segment and

changes state to CLOSED. The receiving TCP does a Reset_Self procedure and also changes

state to CLOSED. Some feature of the two connection termination procedures are described

next.

6.2.1 Reset Generation and Processing

Resets are used to abruptly close established connections, refuse connection attempts

and respond to segments not intended for the current incarnation of the connection. A Reset is

validated differentiy depending on the state of the TCP entity. Table 6.1 shows how the RST

segment is validated.

Resets are used both for abrupt closing of the connection on the ULPs ABORT request,

and also when the TCP entity detects certain error conditions. A valid sequence number for the

RST segment is necessary in order for the receiving TCP entity to accept it.

www.manaraa.com

122

Table 6.1 - Reset Validation

CURRENT STATE RST VALIDATION PROCEDURE

SYN-SENT Ack Field should acknowledge the SYN.
Change state to CLOSED

LISTEN Ignore

SYN-RECVD Seq_Num must be in the Recv_Window.
If previous state was LISTEN, return to
LISTEN, else CLOSED.

Any Other State Seq_Num must be in Recv_Window.
Abort connection, goto CLOSED state.

Correspondingly, a Reset is generated as shown in Table 6.2.

Table 6.2 - Reset Generation

CURRENT STATE RST GKNRATfON PROCEDURE

CLOSED RST is sent in response to any received
segment.
If TCP_Seg Carries an ACK then
Seq_Num of Rst = Ack_Num of

Recvd_Seg
Else

Seq.Num of Rst = 0 and
Ack_Num = Seq_Num+Length of

Recvd_Seg

LISTEN, SYN-SENT
or SYN-RECVD RST is sent if the received segment:

1. Carries unacceptable ACK.
2. Unacceptable Security.

The Seq_Num for the Rst_Seg is:

www.manaraa.com

123

Table 6.2 - (Cont.)

CURRENT STATE RST GENRATfON PROCEDURE

If Recvd_Seg Carries an ACK then
Seq_Num of Rst = Ack_Num of

Recvd. seg.
Else

Seq_Num of Rst = 0 and
Ack_Num = Seq_Num+Length of

Recvd_Seg
State does not change.

ESTAB, FIN-WAITl,
FIN-WAIT2, CLOSE-WAIT,
CLOSING, LAST-ACK,
TIME-WATT RST is sent if any unacceptable segment

is received.
Seq. Num of Rst = Ack Num of recvd. seg.

State changes to CLOSED.

6.2.2 Graceful Connection Termination

A Close_Request from the ULP indicates that the user has completed its data transfer.

The TCP entity reliably transmits any outstanding data before starting the connection

termination procedure. This implies that it is acceptable to make several Send_Requests

followed by a Close.Request and expect all the data to be sent to the destination ULP. A ULP

should continue to accept data after sending a Close_Request. A three-way handshake of FIN

segments is used to provide this graceful close as shown below.

www.manaraa.com

124

TCP 1 TCP 2

ESTAB ESTAB

Close From Ulp

FIN WAIT
> <Seq 2500, Ack = 1000> FIN > I

FIN WAIT 2
for FIN from
peer TCP)

<— <Seq 1000, Ack = 3000> ACK < CLOSE WAIT
(wait for Close Req from ((wait

local ULP)

(Data transfer can be done)

Close From ULP
< — <Seq 2000, Ack 3000> FIN <•

> < Seq 3000, Ack 2001> ACK •
LAST ACK

•> I
CLOSED TIME WATT

(Wait2MSL)
I

CLOSED

As seen in the sequence of events above, ULP of TCP 1 gives a Close_Request which

causes TCP 1 to generate a FIN segment after all previous data have been acknowledged. TCP

2 does not send a FIN segment till it receives a Close_Request from its ULP. Thus TCP 1

goes into the FIN WAIT2 state where it is waiting for a FIN from TCP2. Data can be received

in this state. When ULP 2 gives a close request, TCP 2 sends a FIN segment. Now the only

remaining interaction is an ACK from TCPl to finish the three way handshake. The FIN

segments may get encoded to carry data, ACKs, urgent and push information.

www.manaraa.com

125

6.3 TP4 Connection Termination

Unlike TCP, ISO TP4 does not provide a graceful close. That service is provided by

the Session Layer. A Disconnect Request from the user results in generation of a DR TPDU.

Any data queued up in the transport entity are discarded once a user makes a Disconnect

Request. This is equivalent to the ABORT service in TCP. Further if a TP4 entity receives a

DR TPDU from a peer, it gives a Disconnect Indication to the User, replies to the peer TP4

with a Disconnect Confirm (DC) TPDU, and closes the connection. The user cannot stop the

generation of the Disconnect Confirm. Thus during connection termination there is no three

way handshake between the ISO transport entities and the transport service user. The DC

TPDU is not acknowledged or retransmitted.

6.3.1 Generation and Acceptance of DR TPDU

To initiate a Connection Release, a transport entity does the following :

(1) If a CC has been sent or received, it shall :

(a) Send a DR TPDU with the correct SRC and DST Reference.

(b) Discard all subsequently received TPDUs other than a DC or a DR.

(c) Consider the connection released on receipt of a DR or a DC.

(2) If a CC has not been received in reply to a previously sent CR, then either send the

DR with a zero DST REF or wait for a CC and then send the DR.

On reception of a DR TPDU the following action are taken:

www.manaraa.com

126

(1) If a CR has been sent, and a CC has not been received then consider the connection to

be refused.

(a) If a DR has been sent for the same connection, consider die connection closed.

(b) In any other state, send a DC TPDU and consider the connection closed.

6.3.2 Data in Disconnect Request

TP4 allows for up to 64 bytes of user data in the DR TPDU. There is no guaranty of

delivery of data in disconnect request NIST agreements do not recommend sending data with

the disconnect request (DR). This prevents users from importing any significance to data in the

DR TPDU. For purpose of this research, NIST compliant transport entities will be assumed.

6.3.3 Disconnect Reason

The DR TPDU carries a one byte disconnect reason code. The various codes are:

- Normal disconnect initiated by Session entity

- Remote Transport entity congestion at connect request time

- Connection negotiation failed

- Duplicate source reference detected for same pair of NSAPs

- Mismatched references

www.manaraa.com

127

- Protocol error

- Reference overflow

- Connection request refused on this network connection

- Header or parameter length invalid

- Reason Not specified

- Congestion at TSAP

- Session entity not attached to TSAP

- Address unknown

Besides the mandatory Reason Code field, ISO transport also allows a variable length

field to convey any other information related to the clearing of the connection.

6.4 VTL Design Issues for the Connection Termination Phase

One of the prime concerns for the connection termination phase is the usage model of

the disconnect service as provided by the transport entities. This refers to usage of Graceful

Release or Abrupt Release. The other issues of concern are the provision for a three way

handshake during connection release, and the mechanism for disassociation of the TCFs and

the transport end points. These issues are described below.

www.manaraa.com

128

6.4.1 Usage Model of Transport Disconnect Service

As described in the preceding sections, TCP allows for both graceful as well as a non-

graceful release of the transport connection, where as TP4 allows for only an abrupt connection

terminadon. The abrupt connection termination implies diat any data that may be queued in the

transport entity is discarded when a Disconnect Request is seen. An external interoperability

architecture cannot bridge this gap in the semantics of the disconnect service.

To attain transport interoperability, it then becomes necessary to write applications such

that they provide the graceful release function on a higher level and restrict the semantics of the

disconnect service to that of a non-graceful release.

The other issue regarding the usage model of the disconnect service is data in the

Disconnect Request. Since TP4 does not guaranty the reliable delivery of such data, the users

of the service should not import any significance with this data.

6.4.2 Provision for Gracefui and Non-Graceful Release

Applications that could potentially operate on diverse transport architectures should use

a non graceful transport disconnect. To support this, the VTL should provide a VTPDU that

can convey the correct semantics of the disconnect. Since the VTL design philosophy is to

provide for an open ended solution to transport interoperability, support for a three-way

handshake during connection termination needs to be provided. It is the end users

responsibility to use the right disconnect service.

www.manaraa.com

129

Since TCP FIN segments can carry data along with PUSH or URG information, the

VTL must provide support for such scenarios.

6.4.3 TCF Instance Disassociation

At some stage it would be required to recognize that a TCF module instance is no

longer associated with an active connection, and the resources allocated with that TCF instance

can be freed. This situation can be recognized in case the TCFs handle a unique terminal

interaction such as a TP4 DC TPDU or a TCP RST segment. In case a three-way handshake

variant of the connection termination service is being used, then the TCF needs to track the

Disconnect_Request/Disconnect_Confirm/Acknowledgement sequence before it can be

disassociated. This would require the TCF to maintain some state information during the

connection termination phase. An alternative approach would be to do the disassociation after a

period of inactivity on a particular connection. This approach is complicated by the fact that it

may not be possible to statically come up with the optimal time-out value.

An Inactivity Timeout is required however to compensate for the case when one or both

the transport end points experience an unusual termination. In this case the TCFs may never

see a terminal interaction/sequence, and the disassociation would need to be done on the expiry

of an Inactivity Timer,

www.manaraa.com

130

6.5 VTL Specification for tlie Connection Termination Phiase

Based on the various issues described above, the role of the VTL during the connection

termination phase is specified below.

(a) The VTL connection termination VTPDU will carry a Virtual Sequence Number. This

is required in case the the target transport entity expects the connection release TPDUs

to be in the receive window.

(b) VTL provides a Reset Request and Reset Confirm VTPDU whose semantics are those

of a non-graceful release.

(c) VTL also provides for a three way handshake during the connection termination phase.

This is accomplished by using the Disconnect Request (DISCON_REQ), Disconnect

Confirm (DISCON_CNF) and a subsequent Acknowledgement.

(d) The TCP disassociation should take place after a Reset Confirm VTPDU is

received/generated, or when the inactivity timer expires.

(e) In case the three-way handshake variant of the connection release is being used, the the

TCFs should go through the state transitions necessary to recognize the completion of

the connection release three way handshake. Figure 6.1 shows the transitions that the

TCP needs to go through before it can be disassociated.

(f) A disconnect reason code will be carried by the disconnect VTPDU. The TP4

disconnect reasons will be used for this purpose.

www.manaraa.com

131

(g) The DISCON_REQ / DISCON_CNF VTPDUs can carry data, piggybacked

acknowledgements, and opdons to indicate urgent data or pushed data.

Vn.GR
ClOGED OPEN

Vn. RESET CONRPM

Inactivity

JlrmoU VTLi

WACK

Inactivity
Tirmout

KEY : VTL; Virtual Transport Lsyar

CR : Connection Re^mt

OR : Ditconnact Raquwt

DC : Oitconnad Confirm

ACK : AcfcnowUdgtmant

• : Any VTPDU axcWng

VTL OR and VTL DC

WDC : Wait For OiMonnact
Cortfrm

WLACKrWiit For Last ACK

Figure 6.3 - TCF State Transitions

6.5.1 TCF State Transitions

Figure 6,3 shows the state transitions of a TCF instance. A TCF is associated with a

connection when a unique initial interaction (a VTL Connection Request) is generated/received.

A VTL connection request is generated when an end system request for a new connection is

www.manaraa.com

132

seen by the TCFs. The end system transport entity guaranties the uniqueness of this request

for connection by providing a "birth identifier", in form of an Initial Sequence Number or a

Reference Number, in the TPDU. This is sufficient for the TCP to form an association with

the requested connection. Once in the OPEN state, all TPDU/VTPDUs pertaining to the

remainder of the connection establishment phase and the data transfer phase are translated.

If the "non-graceful" variant of the connection termination is employed, then the VTL

Reset Confirm VTPDU takes the form of the unique terminal interaction for the TCPs. At this

stage, the TCP can be disassociated from the connection. A disassociation can also be affected

if the Inactivity Timer expires. This is a safeguard against one or both of the end systems

terminating the connection prematurely.

Provision for a "graceful" connection termination warrants maintaining extra state

information. This is so because, unlike the non-graceful release procedure, it is the Disconnect

Request - Disconnect Confirm - Acknowledgement sequence which is unique, and the

transition to the CLOSED state cannot be affected by any single VTPDU. The transition from

OPEN to WAIT_DISCONNECT_CONFIRM takes place when a Disconnect Request VTPDU

is received/generated. Data transfer can still take place in this state. A Disconnect Confirm

VTPDU causes a state change to WAIT_LAST_ACK. This state signifies the last step in the

completion of the three-way handshake. Any other TPDUs/VTPDUs are also handled in this

state.

www.manaraa.com

133

6.5.2 Transport Convergence Function for TCP Gateways

TCP allows for both the graceful and non-graceful termination of the connection. In

case of non-graceful termination, a RST segment is transmitted and the connection is

considered closed. Nothing is expected to acknowledge this RST segment. For graceful

termination, FIN segments are exchanged and acknowledged by both the peers. It is assumed

that the TCP application is responsible for using the correct variant of the disconnect service.

The TCF does not have the intelligence or the information necessary to use a disconnect

procedure different than the one dictated by the semantics of the TCP segment being used. The

role of the TCF for TCP gateways during the connection termination phase is formally

specified in this section. As shown in Figure 6.2, additional state information is required to

support the three-way handshake during connection termination. A description of the states is

given below.

WVTLDC: (Wait for VTL Disconnect Confirm) This state is reached from OPEN when a FIN

is received from the local TCP entity. In this case the connection termination has been

initiated by the local TCP entity.

WFIN: (Wait for FIN) This state is reached from OPEN when a Disconnect Request VTPDU

is received and mapped into a FIN for the local TCP.

WLVTLACK: (Wait for Last VTL Ack) This state is reached when a FIN is received in the

WFIN state and is mapped to a Disconnect Confirm VTPDU. From this state a

transition to CLOSE is made when the corresponding VTL ACK is received.

www.manaraa.com

134

WLACK: (Wait for Last ACK from TCP) This state is reached when a Disconnect Confirm

VTPDU is received in the WVTLDC state. The Disconnect Confirm VTPDU is

mapped to a FIN for the local TCP. The corresponding ACK from the TCP causes

state change to CLOSE.

To support the graceful release variant of the disconnection complicates the design and

subsequent verification of the TCP.

The design issues for the TCP TCP, as listed below, can be categorized as those related

to handling RST segments, mapping to and from the virtual sequence number, and providing

for the three-way handshake procedure.

(A) Non-Graceful Release

(1) A TCP segment carrying with the RST flag set is mapped to a RESET_REQUEST

VTPDU. State change to CLOSED is affected by any of the following events.

(2) A RESET_CONFIRM VTPDU or an inactivity time out causes state change to

CLOSED.

(3) A RESET_REQUEST VTPDU is mapped to a Reset TCP segment. Since the TCP

does not respond to a RST segment, the TCFs generate the corresponding

RESET_CONFIRM VTPDU and change state to CLOSED.

www.manaraa.com

135

Inactivity
Timeout

inactivity
•nm«outxlS</ CLOSED

yriACK/ACK

WLVRACK WLACK

WFIN

DR/FIN
OPEN

KEY

VTL : Virtual Transport Layer
OR ; Connection Request
SYN ; TCP Syn Request
DR ; Disconnect Request
DC ; Disconnect Confirm

FIN ;TCP FIN Segment
RST_REQ : Reset Request
Rst_CNF : Rest Confirm
ACK : Acknowledgement
• : Any VTPDU or TCP segment

WFIN :WaH for TCP FIN
WLVTLACK : Wall for Last VTL
ACK
WVTLDC ; Wall (or VTL DC
WLACK : Wait for Last TCP Ack

Figure 6.2 - TCP State Transitions for TCP Gateways

(B) Graceful Release

(1) In the OPEN state, a DISCONNECT_REQUEST VTPDU causes a state change to

WFIN. The DISCONNECT_REQUEST VTPDU is mapped to a FIN segment.

www.manaraa.com

136

(2) FIN segment are handled according to the state of the TCF as described below.

(2.1) In the OPEN state, if a FIN segment is mapped to a DISCONNECT

REQUEST VTPDU, and the state is changed to WVTLDC.

(2.2) In the WFIN state, a FIN segment is mapped to a DISCONNECT

CONFIRM VTPDU, and state is changed to WLVTLACK

(3) In the WVTLDC state, a DISCONNECT_CONFIRM VTPDU causes a state

change to WLACK. the DIS CONNECT_CONFIRM VTPDU is mapped to a FIN

segment. Any other VTPDUs and TCP segments are translated as per the rule

specified in the Data transfer phase of the specification.

(4) In the WLACK, a TCP ACK corresponding to the FIN causes state change to

CLOSE.

(5) In the WLVTLACK, a VTL ACK corresponding to a DISCONNECT CONFIRM

causes state change to CLOSE.

(6) An Inactivity Timer is maintained, in all active states, whose expiry causes a state

transition to the CLOSE state.

(7) The sequence and acknowledgement numbers carried by the TCP segments are

mapped to corresponding virtual sequence numbers.

(8) Any disconnect reason code carried by the disconnect or the reset VTPDUs is

discarded.

www.manaraa.com

137

Based on the set of rules for the TCP gateways, an ESTELL specification of the role of

the TCP during the data transfer phase is presented Appendix C.

6.5.3 Transport Convergence Function for TP4 Gateways

TP4 provides for non-graceful connection termination. The TP4 DR/DC TPDUs are

mapped to RESET_REQUEST/REQUEST_CONFIRM VTPDUs. Since the disconnect

VTPDUs carry a virtual sequence number and the corresponding TP4 TPDUs do not, the

TCFs have to derive the VSN when generating the VTPDUs. The role of the TCP for TCP

gateways during the connection termination phase is formally specified in this section. The

design issues are listed below.

(a) A TP4 DR TPDU is mapped to a RESET_REQUEST VTPDU and a DC TPDU is

mapped to a RESET_CONPIRMATION VTPDU. A state change is affected as

follows;

(1) A TP4 DC TPDU causes state change to CLOSED.

(2) A VTL RESET_CONFIRM VTPDU causes state change to CLOSED.

(3) An inactivity time out causes state change to CLOSED.

(b) A DISCONNECT_REQUEST VTPDU, which is used to initiate the three-way

handshake is mapped to a DR TPDU. The subsequent DC from the TP4 entity is

www.manaraa.com

138

KEY

OPEN

VTL ; Virtual Transport Layer
CR : Connection Request
CC : Connection Confirm
DR : Disconnect Request
DC : Disconnect Confirm

RST_REQ : Reset Request
Rst CNF : Rest Confirm

Figure 6J - TCF State Transitions for TP4 Gateways

www.manaraa.com

139

dCheckSum Flag>

B I O 1 2 a 4 5 6

Expdt Data

Pclorlty •

S»curllir

Version No.
BU 7

Vtpdu Type | SoqSiz-p

VTLRemole End Point Id

VTL Remote EndPoint Id
La_

Prlo I SeV I Riurvtd
-7*-

Binding Type

SendSeq Octet bytel

SendSeq Octet byte p

SendSeq Packet byte 1

SendSeq Packet byte p

DIscon Reason

DIscon Reason

DIscon Options Flag

NextRecv Octet bytel

NextRecv Octet byte p

NextRecv Packet byte 1

NextRecv Packet byte p

Credit byte 1

Credit byte p

Total Expdt Length bytel

Total Expdt Length byte p

Data length byte 1

Data length byte p

User Data

Checksum

Checksum

Figure 6.4 - Connection Termination VTPDU

www.manaraa.com

140

mapped to a RESET_CONFIRM VTPDU and the state is changed to CLOSED. No attempt is

made to participate in a three-way handshake during connection release.

(c) If the amount of data in the RESET_REQUEST/RESET_CONFIRM VTPDUs is

greater than 64 bytes, the data are rejected.

(d) The TCFs must provide a virtual sequence number for the RESET VTPDUs. This

needs to be derived from the mapping tables maintained by the TCP as the ISO TP

DR/DC TPDUs do not carry a sequence number.

These rules are formally specified using the ESTELL FDT in Appendix C. Since a three-way

handshake for the disconnection is not supported, no additional state information is needed.

Figure 6.3 shows the TP4 TCP state transitions.

6.5.4 VTPDU Formats

The VTPDUs required for the connection termination phase are:

(1) Disconnect VTPDU. The VTPDU code identifies:

(a) Reset Request

(b) Reset Confirm

(c) Disconnect Request

(d) Disconnect Confirm

www.manaraa.com

141

Figure 6,4 shows the format.

6.6 Conclusion

This chapter described how the virtual transport mechanisms provide transport

interoperability during the connection termination phase. The usage model of the disconnect

service for TCP clients has to be restricted to that of a non-graceful release in order to

interoperate with a TP4 client. The VTL provides support for a three-way handshake during

the connection termination phase at the cost of the TCFs having to maintain additional state

information. The next chapter concludes the dissertation and compares the VTL approach with

existing methods for transport interconnection.

www.manaraa.com

142

7 CONCLUSIONS

7.1 Formal Methodology in Protocol Engineering

This chapter describes briefly the various stages that a protocol design effort goes

through and the current status of the VTL design effort in that perspective. Figure 7.1 shows

the various stages involved in the design of a Communication Protocol. Although an order has

been associated with the cycle, but it is possible to conceive of other valid design sequences.

Steps 1 through 4 can be considered as the core of the effort during whgich the new protocol is

being formalized. Figure 7.2 provides a conceptual view of the grouping of the various steps

of Figure 7.1. A brief description of the various stage is presented next.

7.1.1 Concept and Specification Piiase

In general the design phase commences with the realization of the limitations of

currently employed solutions, and how those limitations can be removed. A key concept is

proposed, at this stage, describing the philosophy of the new approach and how it may

overcome the experienced limitations of traditional approaches.

www.manaraa.com

143

Concepts - PrakxJ Enog. Toolt

Product

Figure 7.1 - Protocol Engineering Methodology

VmhkWom/VËIdaëon

OE8ION

Figure 7.2 - Grouping of Protocol Engineering Tasks

www.manaraa.com

144

This initial effort normally draws heavily from past experiences and detailed study of

existing approaches. From this new concept, a textual (informal) description of the proposed

protocol is derived. As the concept matures, a formal specification using a formal description

technique (FDT) is produced.A formal specification is absolutely necessary as this

communicates unambiguously the procedures and mechanisms of the protocol. The choice of

the FDT and the availability of related tools can be critical for the subsequent stages of the

protocol engineering effort

An abstract system architecture that hosts the protocol is also presented at this stage.

The envisioned modules and their interactions are identified. The finishing of this stage

represents the first breakpoint in the process.

7.1.2 Verification, Validation, Simulation and iVIodeiing Piiase

After a formal specification of the protocol is available the next task is one of

ascertaining the fact that the proposed approach is correct, complete, and to provide

performance figures. Depending on the state set of the protocol, the input/output sequences for

each state, the FDT used and the availability of related tools, the effort involved can be

anywhere from a few man-weeks to a few man-years. For example trying to verify a

specification done using state tables manually would be a far more time consuming task than if

the specification were done using a FDT like ESTELL, LOTOUS or SDL on an automated

protocol development environment [36].

www.manaraa.com

145

At any rate, the errors exposed at this stage would require correcting the specification.

Methods of protocol verification/validation is fertile research area by itself. For the protocol

design effort it would be favorable to use existing tools.

If applicable simulation and/or analytical modeling is also done at this stage to get

quantitative performance figures for the protocol. If bottlenecks can be identified they are

exposed to the protocol designer. Again availability of computer aided tools can generate

simulation models from the FDT.

7.1.3 Implementation and System Integration

This stage involves coding, either manually from the FDT or by an FDT compiler, and

the hardware/software integration with the target platform. System dependent constructs like

buffer/memory management, timers, access methods (APIs) to the protocol entity, etc., are

resolved at this stage.

Looking at the TCP/IP protocol suit, the effort began almost a decade ago with some of

the concepts being proposed in the mid 1970s. The DoD TCP specification was published in

1983. Research on TCP/IP protocols has continued till this day, with numerous contributions

in the form of performance improvements, internetworking, and implementation techniques.

www.manaraa.com

146

7.2 The VTL Design Effort in Retrospect

As per the protocol engineering cycle described above, the design of the VTL is guided

by the need to provide interoperability at the transport layer in a manner which would overcome

the limitations of current approaches. The philosophy behind the approach and an architecture

to support the concept were formalized. An interoperability architecture, employing the VTL

concept, for DoD TCP and ISO TP4 was formally specified using the ESTELL FDT. The

salient feature of the VTL concept are as follows:

(a) Provides interoperability between transports that can operate on unreliable (Class C)

networks.

(b) Connectionless in nature. The end systems provide the reliability; the VTL concept

provides the transparency and interoperability regardless of the target transport entity as

long as they satisfy the property in (a). In some cases a usage model for a particular

end system transport service has to be defined in order to provide interoperability. This

is necessary when the semantic gap between the service primitives of the end transports

cannot be bridged by an external interconnection architecture.

(c) The VTL concept requires the transport convergence functions (TCFs) in the gateways

to maintain only two states namely OPEN and CLOSE (when the non-graceful variant

of the connection release is used).

(d) The TCFs have to deal with a finite set of well defined external interactions. One set of

the interactions are in the form of TPDUs from the local transport entity. The other set

is in the form of the VTL VTPDUs. The VTPDUs are also formally specified.

www.manaraa.com

147

(e) The design was done such that complexity of the next phase, namely the

validation/verification task, would be minimized. This manifests in the decision to

operate the TCFs on a connectionless transport, thereby shielding it from the vagaries

of the network layer management. A set VTPDUs were formalized so that the

interactions in the VTL domain are limited and well known in syntax and semantics.

The specification was done using the ESTELL FDT. With the availability of an

automated development environment generation of the verification/validation test

sequences should reduce to an engineering task.

7.2.1 Comparison with Protocol Converters

The approach is different than those taken by protocol converters. Protocol converters

translate directiy between the end system PDUs and thus need one such device for every

architecture that interoperability is desired with. In the VTL tiie translation is done to a

common message format. Now only one translating element is needed to allow interoperability

with any other architecture.

7.2.2 Comparison with Service Bridges

Interoperability using Service Bridges requires the end systems to actually establish a

connection to the bridge. As a result the end-to-end meaning of the transport service is lost.

Thus acknowledgments, credit allocations, and flow control information that the transport

www.manaraa.com

148

entity receives are from the service bridge. So if there is congestion in one of segments of the

connection, that information (in terms of reduced credit) never reaches the end systems on the

other segments. This is because there are no service primitives or parameters that convey such

protocol specific information. Service bridges are also a performance bottleneck as they must

maintain multiple transport connections with the end systems.

The VTL does not establish a connection between the gateways themselves or the

gateways and the end systems. The information to be exchanged by the transport entities is

conveyed end-to-end by mapping to a common representation of parameters. The

connectionless nature of the VTL does not introduce the extra overhead that is associated with

maintaining a connection.

7.2.3 Future Work

The scope of this research effort limits itself to the concept and specification phase.

Future work can comprise of verification/validation and subsequent implementation of the

VTL. The concept can be used to providing interoperability with other transports like those

employed by DNA, XTP or the XNS protocol architectures. This would require designing

TCTs for those transport protocols, and identifying a usage model of the transport services as

dictated by the rules that the VTL prescribes for the various phases of a transport connection

lifetime.

www.manaraa.com

149

8 ACKNOWLEDGEMENT

I am thankful to my major professors Dr. Douglas Jacobson and Dr. James Davis,

with whom I have been associated for the past four years as a graduate student at Iowa State

University, for suggesting this challenging research topic. Over the years they have been

instrumental in instilling in me the problem solving capabilities that are the mark of an engineer.

Their technical excellence and foresight has served as a guiding light for my own goals and

ambitions, I also extend my gratitude to my committee members: Dr. Arthur Pohm, Dr.

Jonny Wong and Dr. Dave Martin who, at various stages of my student life at ISU, have

contributed invaluably to my knowledge and experience. Thanks are due to Pam Myers who

once again made sure that all my paper work was done in time.

I am grateful to my father, Er. Satinder Paul Singh Ahuja and my mother Mrs.

Jaswinder Kaur Ahuja for giving my the opportunity, freedom and peace of mind to pursue

higher studies. I am also grateful to my uncle. Dr. S. P. Singh, who has served as a role

model for me.

Thanks to the wonderful people at Touch Communications Inc., Campbell, California,

where I am currently employed, for their support and for providing an invigorating work

environment. In particular I am grateful to Lori Logan who unselfishly sacrificed her

www.manaraa.com

150

Macintosh so I could write my dissertation in the comfort of my office. I am further indebted

to her for painstakingly applying her meticulous, caring and artistic disposition to correct my

dissertation in content, form and style. But for her kindness, it would not have been possible

for me to deposit my dissertation in time or in a presentable format I owe an intellectual debt

to Tony Vuong, Uppili Srinivasan, Ted Gauthier and Lori Logan for discussing with me the

intricacies of communication protocols and architectures. Tapping into their collective

knowledge, experience, pragmatic insight and their precious time expedited my research effort.

A special thanks to Tony and Uppili for their patience, constant encouragement and mentorship

both on and off the job. Thanks are also due to Randall Allsup who showed me how to

operate Microsoft Word and Cynthia Jordan who graciously made it possible for me to return

to Iowa in order to defend my Ph.D. dissertation.

I am grateful to the training, conditioning and the philosophies imparted to me by the

fine martial art Tae Kwon Do (of which I am, and aim to remain, a student) and by my

honorable teachers Master Yong Chin Pak (at ISU), Master Scott Coker and Master Garry

Nakahama (in California). It was this conditioning that made it possible for me to go through

the ordeal of a doctoral program.

Lastly I would like to thank dear friends and peers Vivek and Sonia Mehra, Shelly

Coldiron, Don Carr, Dan Jhonson, William Denniger, Muhammad Shafiq, Mansoor Sarwar,

Sunil Gaitonde and others for their support, encouragement and friendship.

www.manaraa.com

151

9 BIBLIOGRAPHY

[1] Zimmerman, H. "OSI Reference Model of Architecture for Open Systems

Interconnection." IEEE Transactions on Communications, Com-28, No. 4 (April

1980), 425-432.

[2] Network Working Group. "Protocol Standard for a NetBIOS Service on a TCP/UDP

Transport: Concepts and Methods." Request For Comment 1001, (March 1987).

[3] MAP/TOP Users Group Technical Report. "Specification of NetBIOS Interface and

Name Service by Lower Layer OSI Protocols." (September 1989).

[4] C Language RFC Tool. NETWISE, Boulder, Colorado, 1989.

[5] Nye, A. Xlib Frogramming Manual. Volume One. O'Reilly & Associates, Inc.,

Sebastapol, CA, 1990.

[6] Unix System V Network Programmers Guide. Prentice Hall Inc., Englewood Cliffs,

New Jersey, 1987.

www.manaraa.com

152

[7] XlOpen Portability Guide, Networking Services, X/Open Company, Ltd. Prentice

Hall, Englewood Cliffs, New Jersey, 1988.

[8] Rose, M. T. and Cass, D. E. "OSI Transport Services on top of the TCP." Request

for Comment 1006, DDN Network Information Center, SRI International, May 1987.

[9] Piscitello, D. M. "Itemetworking in an OSI Environment" 15

(May 1986), 118-136.

[10] Weissberger, A. J. "What the New Internetworking Standards Provide." Data

Communications, 16 (Feburary 1987), 141-156.

[11] Benhamou, E., Lefebvre, V. and Liu, V. "Practical Consideration in Building Large

Internetworks." Proceedings of the IEEE, 12 Conferenece on Local Computer

Networks, (October 1987), 23-39.

[12] Fluckiger, Francois. "Gateways and Converters in Computer Networks." Computer

Networks and ISDN Systems, 16, Nos. 1 & 2 (September 1988), 55-59.

[13] Clyne, Les. "LAN/WAN Internetworking." Computer Networks and ISDN Systems,

16, Nos. 1 & 2 (September 1988), 34-39.

[14] Tillman, M. A. and Yen, D, "SNA and OSI: Three Strategies for Interconnection"

Communications of the ACM, 33, No. 2 (Feburary 1990), 214-224.

[15] Groenbaek, I. "Conversion between the TCP and ISO Transport Protocols as a

Method of Achieving Interoperability between Data Communication Systems." IEEE

Journal On Selected Areas In Communications, SAC-4, No. 2 (March 1986), 288-296.

www.manaraa.com

153

[16] Groenbaek, I. "The TCP and ISO transport service - A brief description and

comparison." SHAPE Techincal Center, Tech. Memo TM-726 (NATO) Unclassified

Report, February 1984.

[17] Okumura, K. "A formal Protocol Conversion Method." SIGCOM'86 Symposium.

Communication Architectures and Protocols, 16, No. 3 (August 1986), 30-37.

[18] Yao, Y. W. et al. "A Modular Approach to Constructing Protocol Converters."

Proceedings, IEEE INFOCOM'90 (June 1990), 572-572.

[19] Lam, S. S. "Protocol Conversion - Correctness Problem." SIGCOM'86

Symposium. Communication Architectures and Protocols, 16, No. 3 (August 1986),

19-29.

[20] Rose, M. T. " Transport Level Bridges from TCP/IP to OSl/ISO." Connections, 2,

No. 1 (January 1988), 2-5.

[21] ISO 8348 Information processing systems - Data communications - Network service

definition.

[22] Cass, D. and Rose, M. "ISO Transport Services on Top of the TCP." Request for

Comment 983. DDN Network Information Center, SRI International, April 1986.

[23] Shukuya, S. et al. "Study of OSI Subsets from the SNA LU-6.2 Functional

Viewpoint." Papers presented at 30th Meeting of Japan Information processing

Society, Tokyo, March 1985.

www.manaraa.com

154

[24] Staling, William. "A primer; Understanding Transport Protocols." jx^Networking

Software. Eds. Colin B. Ungaro, Data Communications Book Series. McGraw-Hill

Information Systems Company, New York, New York, 1987, 29-37.

[25] ISO 9074. Information processing systems - Open Systems Interconnection ESTELLE

-A Formal Description Technique Based on an Extended State transition Model,

(1987).

[26] ISO 8072. Information processing systems - Open Systems Interconnection -

Transport service definition, (1986).

[27] ISO 8073. Information processing systems - Open Systems Interconnection -

Connection oriented transport protocol specification, (1986).

[28] ISO 8073 DAD 2. Information processing systems - Open Systems Interconnection -

Connection oriented transport protocol specification Addendum 2: Class four operation

over connectionless network service, (1987).

[29] ISO 8602. Information processing systems - Open Systems Interconnection - Protocol

for providing the connectionless-mode transport service, (1987).

[30] Postel, J. "Transmission Control Protocol." Request For Comment 793. Information

Science Institute, University of Southern California, (Spetember 1981).

[31] MIL-STD-1778. Military StandardTransmission Control Protocol, (1983).

www.manaraa.com

155

[32] Zatti, Stefano and Janson, Philippe. "Interconnecting OSI and Non-Osi Networks

using an Integrated Directory service." Computer Networks and ISDN Systems, 15,

No 4 (September 1988), 269-283.

[33] Sunshine, C. A. and Dalai, Y. K. "Connection Management in Transport

Protocols." Computer Networks, 6, No. 2 (February 1978), 454-473.

[34] Stable Implementation Agreements for Open Systems Interconnection Protocols.

Version 1 Edition 3. August 1988.

[35] Johns, M. St. "Draft Revised IP Security Option." Request For Comment 1038.

DDN Network Information Center, SRI International, April 1986.

[36] Sidhu, Deepinder P. and Blumer, Thomas P. "Semi-automatic Implementation of OSI

Protocols." Computer Networks and ISDN Systems, 18 (1989/90), 221-283.

www.manaraa.com

156

10 APPENDIX A. CONNECTION
ESTABLISHMENT PHASE

TCP TCP Connection Establishment Phase

Specification TCP_TCF activity;

Const

low = 0;
high = (2**32) -1;
MAX_NAME_LENGTH = 32;
MAX_DATA = any integer;
MAX_VTL_PACKET = any integer;

Type

END_POINT_TÏPE = .,.; { The end point ia uniquely identified
by the tuple ;
<Calling T-Rddress. Called T-ftddresa I

VTPDU_CODE_TYPE = (VTL_CR, VTIi_CC, VTL_ACK) ;
LOCAL_REF_TÏPE = low..high;
REMOTE_REF_TYPE = low..high;
SEQ_TYPE = low..high;
OCTET = 0..255;
TWO_BYTES = 0..2**16-1;
FOUR_BYTES =0..2**32-1;
CREDIT_TYPE « 0..255;
NAME LENGTH TYPE = 1..MAX NAME LENGTH;

(implementation specific)
{ system specific }

www.manaraa.com

157

DATA_LENGTH_TYPE = O..MAX_DATA;
BOOLEAN = 0..1;
TRUE = 1;
FALSE = 0;

TCP PORT TYPE = (external)

IP_ADDRESS_TÏPE = ..; { external)

SOCKET_TYPE =
record

Port : TCP_PORT_TYPE;
IPaddr : IP_ADDRESS_TYPE;

end;

TP_NAME_TYPE =
record

len : MAX_LENGTH_TYPE;
value ; array[1..MAX_NAME_LEN] of OCTET;

end;

NW_ADDRESS_TYPE =
record

Afi = AFI_TYPE;
IpAddr = IP_ADDRESS_TYPE;

end;

TP_ADDRESS_TYPE =
record

Tp_name : TP_NAME_TYPE;
Nw Address : NW ADDRESS TYPE;

end;

DATA_TYPE
record

len : DATA_LENGTH_TYPE;
data : array[1..MAX_DATA] of OCTETS;

end;

VTPDU HEADER TYPE =
record

VersionNo
VtpduCode

VERSION_TYPE;
VTPDU_CODE_TYPE;
1_BIT;
END_POINT_TYPE;
array[1..2] of 1_BIT;
array[1..2] of 1_BIT;
array [1..4] of 1_BIT

Use_CheckSum
RemoteVTLendPt
Priority
Security
Reserved

end,

www.manaraa.com

158

CONREQ_VTPDU_TYPE =
record

VtpduHeader
SeqSpaceSlze
Allow_Expdt
Local_Refrence
Remote_Refrence
CallingTP
CalledTP
LocalVTLendPt
Credit
MaxPacketSize
Data
Checksum

end;

VTPDU_HEADER_TYPE;
array[1..3] of

LOCAL_REF_TYPE ;
REMOTE_REF_TYPE ;
TP_ADDRESS_TYPE ;
TP_ADDRESS_TYPE;
END_POINT_TYPE;
CREDIT_TYPE;
0..MAX_DATA;
DATA_TYPE;
TWO BYTES;

CONCNF_VTPDU_TYPE =
record

VtpduHeader
SeqSpaceSize
Allow_Expdt
Local_Refrence
Remote_Refrence
CallingTP
LocalVTLendPt
Credit
MaxPacketSize
Data
Checksum

end;

VTPDU_HEADER_TYPE;
array[1..3] of 1_BIT;
1_BIT;
LOCAL_REF_TYPE;
REMOTE_REF_TYPE;
TP_ADDRESS_TYPE;
END_POINT_TYPE;
CREDIT_TYPE;
0..MAX_DATA;
DATA_TYPE;
TWO BYTES;

ACK VTPDU TYPE { Defined in Appendix 2}

RST REQ VTPDU TYPE (Defined in Appendix 3}

ar

CrVtpdu
CcVtpdu
AckVtpdu
RejVtpdu
TcpSeg

CONREQ_VTPDU_TYPE;
CONCONF_VTPDU_TYPE;
ACK_VTPDU_TYPE;
RS T_REQ_VTPDU_TYPE;
TCP SEMENT TYPE;

Channel DeCinitiOnff fax nnmmHnination with fche TCP Module \

www.manaraa.com

159

Channel IP_Acce3S_Point (From_IP, To_IP) ;

by From_IP : ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,
Length : SEGMENT_LENGTH_TYPE,
Security ; SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE)

by To_IP : SendTPDUrequest (TcpSeg : TCP_SEGMENT_TYPE,
Security ; SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE) ;

ReceiveTPDUrequest ;

Channel CLTS_Acces3_Point (From_TCF, To_TCF) ;

by From_TCF : ReceiveTCFdataRequest;
SendTCFdataRequest { Vtpdu : VTPDU_TYPE);

by To_TCF : ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE);

{ Module Header Pefinitaiona)

Module InternetProtocol_Type process ;

ip IPtoTCF : IP_Access_Point (From_IP) ;

end;

Module TCF_Type activity
(End_Point_Id : END_POINT_TYPE) (parameter to TCF }

ip (list of Interaction points)
TcfToIp : IP_Access_Point (To_IP) individual queue;
TcfToClts : CLTS_Acce3S_Point (From_TCF) individual queue ;

end;

Module CLTS_Type process;

ip CltsToTcf : CLTS_ACCESS_POINT (To_TCF)

end;

{ Body Definitions for Modules }

Body InternetProtocol_Body for InternetProtocol_Type; external;

Body Clts_Body for CLTS_Type; external;

www.manaraa.com

160

Body TCF_Body for TCF_Type;

var

LocalRef
RemoteRef
CallingTep
CalledTep
LocalVTL_endPt
RemoteVTL endPt

LOCAL_REF_TYPE ;
REMOTE_REF_TYPE;
TP_ADDRES S_TYPE ;
TP_ADDRESS_TYPE:
END_POINT_TYPE;
END POINT TYPE:

State
CLOSE, OPEN; { state set of TCF)

{ Functions and procedures used in the module body)

function TcfGetVtpdu (Vtpdu Type : VTPDU TYPE) : VTPDU TYPE;
primitive ;

function TcfGetTcpSeg (Seg_Type:TCP_SEG_TYPE):TCP_SEGMENT_TYPE;
primitive ;

procedure

primitive ;

CopyCalledTPname (CalledSocket : SOCKET_TYPE,
var VtpName : TP_NAME_TYPE);

procedure CopyCallingTPname (CallingSocket : SOCKET_TYPE,
var VtpName : TP_NAME_TYPE);

primitive ;

procedure CorrputeVTLCheckSum(var Vtpdu : VTPDU_TYPE) ;
primitive ;

procedure ComputeTCPCheckSum (var TcpSeg : TCP_SEGMENT_TYPE) ;
primitive ;

www.manaraa.com

161

function VerifyTCPCheckSuni(TcpSeg : TCP_SEGMENT_TYPE): boolean;
primitive ; ~

procedure CopyUserData (TcpData : array[1..length] of OCTET,
var VtpduData : DATA_TïPE,
DataLength : DATA_LENGTH_TYPE) ; primitive

function IsSynReq (TcpSeg ; TCP_SEGMENT_TYPE) ; boolean;

begin
IsSynReq : = TcpSeg.Flags.SYN;

end;

function IsSynAck (TcpSeg : TCP_SEGMENT_TYPE) : boolean;

begin
IsSynAck := (TcpSeg.Flags.SYN and TcpSeg.Flags.ACK);

end;

function IsAck (TcpSeg : TCP_SEGMENT_TYPE) : boolean;

begin
IsAck := TcpSeg.Flags.Ack ;

end;

procedure MapISNtoLocalRef (Isn : SEQ_TYPE,
var LocalRef : LOCAL_REF_TYPE);

begin
LocalRef := Isn;

end;

procedure StoreLocalRef (Isn : SEQ_TYPE,
var LocalRef : LOCAL_REF_TYPE);

begin
LocalRef := Isn;

end;

www.manaraa.com

162

procedure StoreRemoteRef (Remote_Ref ; REMOTE_REF_TYPE,
var RemoteRef : REMOTE_REF_TYPE);

begin
RemoteRef = Remote_Ref;

end;

procedure MapLocalRefToSYN (Isn : SEQ_TYPE,
var LocalRef : LOCAL_REF_TYPE);

begin
Isn := LocalRef;

end;

procedure MapRemoteRefToAck (RemoteRef : REMOTE_REF_TYPE,
var Ack : SEQ_TYPE);

begin
Ack := RemoteRef +1;

end;

procedure MapCreditToTCP (var TcpCredit : TCP_CREDIT_TYPE ,
Vtpdu : CON_VTPDU_TYPE);

begin
{ TCP credit is expressed in number of octets }
{ VTL carries Credit information as number of)
{ packets, each of MaxVTLpacketSize. }

TcpCredit = Vtpdu.Credit * Vtpdu.Options.MaxVTLpacketSize;
end;

procedure MapCreditToVTL (TcpSeg : TCP_SEGMENT_TYPE ,
var VtpduCredit : VTL_CREDIT_TYPE)

begin
(Tcp exposes credit in units of octets that the entity is
{ willing to receive. In the VTL domain, the unit of data
{ transfer is number of Packets. Thus the equivalent TCP

. , . . TcpWindow . .
{ windowm size xs Max Vt£ PacketSize Packets

end;

VtpduCredit = INT(- TcpSeq.TcpWindow
MAX VTL PACKET SIZE

www.manaraa.com

163

procedure MapTcpSegmentSize (TcpSeg : TCP_SEGMENT_TYPE ,
var VtpduSize : DATA_LENGTH_TYPE);

begin

end;
VtpduSize = MIN (TcpSeg.Options.MaxSeg, MAX_VTL_PACKET_SIZE)

procedure BuildCONREQvtpdu (TcpSeg ;
Security :
Precedence
DataLength
var Vtpdu :

begin

TCP_SEGMENT_TYPE,
SECURITY_TYPE,
: PRECEDENCE_TYPE,
: DATA_LENGTH_TyPE,
CON VTPDU SIZE);

end;

CopyCallingTPname (TcpSeg.SourcePort, Vtpdu.CallingTPname);
CopyCalledTPname (TcpSeg.DestinationPort, Vtpdu.CalledTPname)
Vtpdu.VTLlocalEndpt = LocalVTL_endPt;
Vtpdu.Priority = DEFAULT_PRECEDENCE;
Vtpdu.Security = DEFAULT_SECURITY;
Vtpdu.Use_CheckSum = TRUE;
Vtpdu.Allow_Expdt = TRUE;
Vtpdu.SeqSpaceSize = 4;
CopyUserData(TcpSeg.Data, Vtpdu.Data, DataLenght);
ComputeVTLCheckSum(Vtpdu) ;

procedure BuildCONCNFvtpdu (TcpSeg : TCP_SEGMENT_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
DataLength : DATA_LENGTH_TYPE,
var Vtpdu : CON_VTPDU_SIZE);

begin
CopyCallingTPname (TcpSeg.SourcePort, Vtpdu.CallingTPname);
Vtpdu.VTLlocalEndpt = LocalVTL_endPt;
Vtpdu.VTLremoteEndpt = RemoteVTL_endPt;
Vtpdu.Priority = DEFAULT_PRECEDENCE;
Vtpdu.Security = DEFAULT_SECURITY;
Vtpdu.Use_CheckSum = TRUE;
Vtpdu.Allow_Expdt - TRUE;
Vtpdu.SeqSpaceSize =4;
CopyUserData(TcpSeg.Data, Vtpdu.Data, DataLenght);
ComputeVTLCheckSum(Vtpdu);

end;

www.manaraa.com

164

procedure BuildACKvtpdu (TcpSeg ; TCP_SEGMENT_TYPE,
Security ; SECURITY_TYPE,
Precedence : PRECEDBNCE_TYPE,
DataLength : DATA_LENGTH_TYPE,
var Vtpdu : CON_VTPDU_SIZE);

extern; (In appendix 2)

procedure BuildRSTvtpdu { TcpSeg : TCP_SEGMENT_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
DataLength : DATA_LENGTH_TYPE,
var Vtpdu : CON_VTPDU_SIZE);

extern; { In appendix 3)

procedure BuildTcpSeg (var TcpSeg : TCP_SEGMENT_TYPE ,
Vtpdu : CON_VTPDU_TYPE);

begin
CopyCallingTPname (TcpSeg.SourcePort, Vtpdu.CallingTPname);
CopyCalledTPname (TcpSeg.DestinationPort, Vtpdu.CalledTPname);
TcpSeg.Options.MaxSegmentSize = Vtpdu.Options.MaxVTLpacketSize
CopyUserData(TcpSeg.Data, Vtpdu.Data, Vtpdu.Data.DataLen);
ComputeTCPCheckSum(TcpSeg);

end;

Initialize

to CLOSE
begin

LcoalRef =0;
RemoteRef = 0;
CallingTep = {0);
CalledTep = {0};
LocalVTL_endPt = 0;
RemoteVTL_endPt = 0;

end;

{ transition part of TCP activity }

t rana

{ transition due to Interactions from IP)

www.manaraa.com

165

from CLOSE to OPEN

when IPtoTCF.ReceiveTPDUindication (TcpSeg : TCP_SEGMBNT_TYPE,
length : SEGMENT_LENGTH_TYPE,
Security : SECURITï_TYPE,
Precedence : PRECEDENCE_TYPE)

provided (IsSynReq(TcpSeg) = TRUE and
VerifyTCPChecks\ain (TcpSeg))

begin
CrVtpdu = TcfGetVtpdu(VTL_CR);
MapISNtoLocalRef (TcpSeg.Seq, CrVtpdu.LocalRef);
StoreLocalRef(TcpSeg.Seq, LocalRef);
MapCredit (TcpSeg.Credit, CrVtpdu.Credit);
BuildCONREQVtpdu (TcpSeg, Security, Precedence, CrVtpdu);
output TcfToClts.SendTCFdataRequest(CrVtpdu);

end;

from OPEN to same

when IPtoTCF.ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,
length : SEGMENT_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE)

provided (IsSynAck(TcpSeg) = TRUE and
VerifyTCPChecksum(TcpSeg))

begin
CcVtpdu = TcfGetVtpdu(VTL_CC);
MapISNtoLocalTRef (TcpSeg.Seq, CcVtpdu.LocalRef);
StoreLocalRef(TcpSeg.Seq, LocalRef);
MapACKtoRemoteRef-(TcpSeg.Ack, CcVtpdu.RemoteRef);
MapCredit (TcpSeg.Credit, CcVtpdu.Credit);
BuildCONCNFVtpdu (TcpSeg, Security, Precedence, CcVtpdu);
output TcfToClts.SendTCFdataRequest(CcVtpdu) ;

end;

from OPEN to same

when IPtoTCF.ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,
length : SEGMENT_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE TYPE)

provided (IsAck(TcpSeg) = TRUE and
VerifyTCPChecksum(TcpSeg))

begin
AckVtpdu = TcfGetVtpdu(VTL_ACK) ;

www.manaraa.com

166

MapSeqToLocalRef(TcpSeg.Seq, AckVtpdu.LocalRef);
MapAckToRemoteRef(Tcp.Ack, AckVtpdu.RemoteRef);
BuildACKVtpdu (TcpSeg, Security, Precedence, AckVtpdu);
output TcfToClts.SendTCFdataRequest(AckVtpdu) ;

end;

from EITHER to CLOSE

when IPtoTCF.ReceiveTPDUindication (TcpSeg ; TCP_SEGMENT_TYPE,
length : SEGMENT_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE TYPE)

provided (isRst(TcpSeg) = TRUE and
VerifyTCPChecksum(TcpSeg))

begin
RejVtpdu = TcfGetVtpdu(VTL_RST);
RejVtpdu.LocalRef := LocalRef;
BuildACKVtpdu (TcpSeg, Security, Precedence, AckVtpdu);
output TcfToClts.SendTCFdataRequest(RejVtpdu);

end;

{ transition due to Interactions from CLTS }

from CLOSE to OPEN

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (IsVTLcr(Vtpdu) = TRUE and
VerifyVTLChecksum(Vtpdu))

begin
TcpSeg = TcfGetTcpSeg(SYN);
MapLocalRefToSyn (CrVtpdu.LocalRef, TcpSeg.Seq);
StoreRemoteRef (CrVtpdu.LocaRef, RemoteRef);
RemoteVTL_endPt - Vtpdu.VTLlocalEndPt;
MapCreditToTcp (TcpSeg.Credit, CrVtpdu.Credit);
BuildTcpSeg (TcpSeg, CrVtpdu);
output TcfToIp.SendTPDUrequest(TcpSeg, NORMAL_SECURITY

DEFAULT_PRECEDENCE);
end;

from OPEN to same

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

www.manaraa.com

167

provided (IsVTLcc (Vtpdu) = TRUE and
VerifyVTLChecksum(TcpSeg))

begin
TcpSeg = TcfGetTcpSeg(SYNACK);
MapLocalRefToSyn (CcVtpdu.LocalRef, TcpSeg.Seq);
MapRemoteRefToAck (CcVtpdu.RemoteRef, TcpSef.Ack);
RemoteVTL_endPt = Vtpdu.VTLlocalEndPt;
MapCreditToTcp (TcpSeg.Credit, CcVtpdu.Credit);
BuildTcpSeg (TcpSeg, CcVtpdu);
output TcfToIp.SendTPDUrequest(TcpSeg, NORMAL_SECURITY

DEFAULT_PRECEDENCE);
end;

from OPEN to same

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (IsVTLack(Vtpdu) = TRUE and
VerifyVTLChecksum(TcpSeg))

begin
TcpSeg = TcfGetTcpSeg(ACK);
MapLocalRefToSeq (AckVtpdu.LocalRef, TcpSeg.Seq);
MapRemoteRefToAck (AckVtpdu.RemoteRef, TcpSef.Ack);
MapCreditToTcp (TcpSeg.Credit, AckVtpdu.Credit);
BuildTcpSeg (TcpSeg, AckVtpdu);
output TcfToIp.SendTPDUrequest(TcpSeg, NORMAL_SECURITY

DEFAULT_PRECEDENCE);

end;

from EITHER to CLOSE

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (IsVTLrst (Vtpdu) = TRUE and
VerifyVTLChecksum(TcpSeg))

begin
TcpSeg = TcfGetTcpSeg(RST);
MapLocalRefToSeq (RstVtpdu.LocalRef, TcpSeg.Seq);
BuildTcpSeg (TcpSeg, RstVtpdu);
output TcfToIp.SendTPDUrequest(TcpSeg, NORMAL_SECURITY

DEFAULT_PRECEDENCE);

end;

end; (end of TCP TCP BODY)

(Module-Yaglable-declaration-part &£ apeeifieation }

www.manaraa.com

168

modvar

InternetProtocol : InternetProtocol_Type;
TCP_TCF : array[END_POINT_TYPE] of TCF_Type;
CLTS : CLTS_TYPE;

{ Initialization—Eart—Q£ apecification)

Initialize

begin { module Initialization }

Inlt InternetProtocol with InternetProtocol_Body
Inlt CLTS with CLTS_Body;

all end point : END POINT TYPE do
begin

Inlt TCP_TCF with TCF_Body(end_point) ;

{ connect Interaction points }

connect InternetProtocol.IptoTCF to
TCP_TCF.TcfToIP [end_j)oint] ;

connect TCP_TCF[end_point].TcfToCLTS to
CLTS.CltsTpTcf;

end;

end. { end of specification)

www.manaraa.com

169

TCP TCP Connection Establishment Phase

Specification TP4_TCF activity;

Const

low =0;
high = (2**32) -1;
MAX_NAME_LENGTH = 32;
MAX_DATA = any integer; { implementation specific)
MAX_VTL_PACKET = any integer; { system aaecifir.)

Type

END_POINT_TYPE = . . . ; { The end point is unicmelv ident-.if iari \

{ bv the 3 tuple <SrcRefId. DestRefld. Msap>l
TP4_CR = .
TP4_CC = .
TP4_AK = .
TP4_TPDU_TYPE = (TP4_CR, TP4_CC, TP4_AK);
VTPDU_CODE_TYPE = { VTL_CR, VTL_CC, VTL_ACK);
LOCAL_REF_TYPE = low..high;
REMOTE_REF_TYPE = low..high;
SEQ_TYPE = low..high;
OCTET = 0..255;
1_BIT = .. ;
TWO_BYTES = 0..2**16-1;
FOUR_BYTES = 0..2**32-1;
CRED1T_TYPE = 0..255;
NAME_LENGTH_TYPE = 1..MAX_NAME_LENGTH;
DATA_LENGTH_TYPE = O..MAX_DATA;
BOOLEAN = 0..1;
TRUE = 1;
FALSE = 0;

NSAP_ADDRESS_TYPE = ..; { external as specified by ISO IP)

TSEL_TYPE = ..; (external; as specified by ISO TP }

TSAP_ADDRESS_TYPE
record

Tselector : TSEL_TYPE;
NsapAddress ; NSAP_ADDRESS_TYPE;

end

www.manaraa.com

170

DATA_TYPE
record

len : DATA_LENGTH_TYPE;
data : array[1..MAX_DATA] of OCTETS;

end;

VTPDU_HEADER_TYPE =
record

VersionNo
VtpduCode
Use_CheckSuin
RemoteVTLendPt
Priority
Security
Reserved

end;

: VERSION_TYPE;
: VTPDU_CODE_TYPE;
: 1_BIT;
: END_POINT_TYPE;
: array[l,.2] of 1_BIT;
: array[1..2] of 1_BIT;
: array [1..4] of 1_BIT;

CONREQ_VTPDU_TYPE =
record

VtpduHeader
SeqSpaceSize
Allow_Expdt
Local_Refrence
Reniote_Refrence
CallingTP
CalledTP
LocalVTLendPt
Credit
MaxPacketSize
Data
Checksum

end;

VTPDU_HEADER_TYPE;
array[1..3] of 1_BIT;
1_BIT;
LOCAL_REF_TYP E;
REMOTE_REF_TYPE;
TP_ADDRESS_TYPE;
TP_ADDRESS_TYPE;
END_POINT_TYPE;
CREDIT_TYPE;
0..MAXIDATA;
DATA_TYPE;
TWO BYTES;

CONCNF_VTPDU_TYPE =
record

VtpduHeader
SeqSpaceSize
Allow_Expdt
Local_Refrence
Remote_Ref rence
CallingTP
LocalVTLendPt
Credit
MaxPacketSize
Data
Checksum

end;

VTPDU_HEADER_TYPE;
array[1..3] of 1_BIT;
1_BIT;
LOCAL_REF_TYPE;
REMOTE_REF_TYPE;
TP_ADDRESS_TYPE;
END_POINT_TYPE;
CREDIT_TYPE;
0..MAX_DATA;
DATA_TYPE;
TWO BYTES;

ACK VTPDU TYPE (Defined in Appendix 2)

www.manaraa.com

171

RST_REQ VTPDU_TYPE (Defined in Appendix 3)

var

CrVtpdu
CcVtpdu
AckVtpdu
Rejvtpdu

CONREQ_VTPDU_TÏPE;
CONCONF_VTPDU_TYPE
ACK VTPDU TYPE;
RST REQ VTPDU TYPE

Tp4CR
Tp4CC
Tp4AK

ISO_TP 4_CR_TYPE;
IS0_TP4_CC_TYPE;
ISO TP4 AK TYPE

{ Channel Pefinifciona fog communication Tfith the TCF Module }

Channel IP_Acces3_Point (From_IP, To_IP) ;

by From_IP : ReceiveTPDUindication (Tp4Tpdu : TP4_TPDU_TYPE);

Channel CLTS_Acce3s_Point (From_TCF, To_TCF) ;

by Froin_TCF : ReceiveTCFdataRequest;
SendTCFdataRequest (Vtpdu : VTPDU_TYPE);

by To_TCF ; ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE);

(Module Header Pefinitaiona)

Module InternetProtocol_Type process ;

ip IPtoTCF : IP_Acce33_Point (From_IP) ;

end;

Module TCF_Type activity
(End_Point_Id : END_POINT_TYPE) (parameter to TCF }

ip (list of interaction points)

by To_lP SendTPDUreque3t (Tp4Tpdu : TP4_TPDU_TYPE);

ReceiveTPDUreque3t ;

www.manaraa.com

172

TcfToIp : IP_Acce33_Point (To_IP) Individual queue;
TcfToClts : CLTS_Acces3_Point (From_TCF) Individual queue

end;

Module CIiTS_Type process ;

Ip CltsToTcf : CLTS_ACCESS_POINT (To_TCF)

end;

(Body Definitions for Modules }

Body InternetProtocol_Body for InternetProtocol_Type; external;

Body Clts_Body for CLTS_Type; external;

Body TCF_Body for TCF_Type;

var

LocalRef
RemoteRef
CallingTSAPaddress
CalledTSAPaddress
LocalVTL_endPt
RemoteVTL endPt

LOCAL_REF_TYPE;
REMOTE_REF_TYPE;
TSAP_ADDRES S_TYPE;
TSAP_ADDRESS_TYPE ;
END_POINT_TYPE ;
END POINT TYPE;

{The following variables define the behaviour of the local
transport}

LocalSeqSlze
UseLocalCheckSum
UseLocalExpedt

ONE_BYTE;
boolean;
boolean;

state
EITHER = (CLOSE, OPEN); { State set of TCF }

{ Functions and procedures used In the mnodule body }

function TcfGetVtpdu (Vtpdu_Type : VTPDU_TYPE) : VTPDU_TYPE;
primitive ;

function TcfGetTp4Pdu (Tpdu Type : ISO TPDU TYPE) : ISO TPDU TYPE
primitive ;

www.manaraa.com

173

function IsNormalFormat (Tp4ConReq : IS0_TP4_CR_TyPS) : boolean;
primitive ;

procedure CopyCalledTPname (CalledTSAPaddress : TSAP_ADDRESS_TYPE
var VtpName : TP_NAME_TYPE);

primitive ;

procedure CopyCallingTPname (CallingTSAPaddtess:TSAP_ADDRESS_TYPE
var VtpName : TP_NAME_TYPE);

primitive ;

procedure ComputeVTLCheckSum{ var Vtpdu : VTPDU_TYPE) ;
primitive ;

procedure ComputeTP4CheckSum(var Tp4Tpdu : ISO_TPDU_TYPE);
primitive ;

function VerifyVTLCheckSum(Vtpdu : VTPDU_TYPE): boolean;
primitive ;

function VerifyTP4CheckSum(Tp4Pdu : ISO_TPDU_TYPE): boolean;
primitive ;

procedure

primitive

CopyUserData (ConData : array[1..length] of OCTET,
var VtpduData : DATA_TYPE,
DataLength : DATA_LENGTH_TYPE);

procedure MapSrcRefToLocalRef (SrcRef : TP4_REFRENCE_TYPE,,
var LocalRef : LOCAL_REF_TYPE);

begin
LocalRef := SrcRef;

end;

procedure StoreLocalRef < SrcRef : TP4_REFRENCE_TYPE,,
var LocalRef : LOCAL_REF_TYPE);

begin
LocalRef := SrcRef;

end;

www.manaraa.com

174

procedure StoreRemoteRef (Remote_Rai: : REMOTE_REF_TYPE,
var RemoteRef : REMOTE_REF_TYPE);

begin
RemoteRef := Remote_Ref;

end;

procedure MapLocalRefToSrcRef (var SrcRef : TP4_REFRENCE_TYPE,
LocalRef : LOCAL_REF_TYPE);

primitive;

{ A local mapping is done to compensate for the size)
(difference between the VTL refrence field size (4 bytes))
(and the ISO TP4 Refrence_ID which is 2 Bytes

procedure MapRemoteRefToDstRef (RemoteRef : REMOTE_REF_TYPE,
var DestRef : TP4_REFRENCE_TYPE)

begin
DstRef := RemoteRef;

end;

procedure MapCreditToTP4 (var TP4Credit : TP4_CREDIT_TYPE ,
Vtpdu : CON_VTPDU_TYPE);

begin

Tp4Credit = Vtpdu.Credit;
end;

procedure MapCreditToVTL (Tp4Credit : TP4_CREDIT_TYPE ,
var VtlCredit : VTL_CREDIT_TYPE);

begin
VtlCredit = Tp4Credit;

end;

procedure MapTp4TpduSize (Tp4TpduSize : DATA_LENGTH_TYPE ,
var VtpduSize : DATA_LENGTH_TYPE);

begin
VtpduSize = MIN (Tp4TpduSize, MAX_VTL_PACKET_SIZE);

www.manaraa.com

175

end;

procedure BuildCONREQvtpdu (Tp4Tpdu : ISO_TPDU_TYPE,
DataLength ; DATA_LENGTH_TYPE,
var Vtpdu : CON_VTPDU_SIZE);

begin
CopyCallingTPname (Tp4Tpdu.CallingTsapAddr, Vtpdu.CallingTPname);
CopyCalledTPname (Tp4Tpdu.CalledTsapAddr, Vtpdu.CalledTPname);
Vtpdu.VTLlooalEndpt = LocalVTL_endPt;
Vtpdu.Priority = DEFAULT_PRECEDENCE;
Vtpdu.Security = DEFAULT_SECURITY;
If(Tp4Tpdu.options.Use_CheckSum = TRUE) {

Vtpdu.Options.Use_CheckSum = TRUE;
) else {

Vtpdu.Options.Use_CheckSum = FALSE;
}

if(Tp4Tpdu.Options.Expdt_data = TRUE){
Vtpdu.Options.Allow_Expdt = TRUE;

} else {
Vtpdu.Options.Allow_Expdt = TRUE;

}

if(Tp4Tpdu.Options.NormalFormat = TRUE) {
Vtpdu.Options.SeqSpaceSize =2;

) else {
Vtpdu.Options.SeqSpaceSize =4;

)

CopyUserData(TcpSeg.Data, Vtpdu.Data, DataLenght);
ComputeVTLCheckSum(Vtpdu);

end;

procedure BuildCONCNFvtpdu (Tp4Tpdu : ISO_TPDU_TïPE,
Security : SECURITY_TïPE,
Precedence : PRECEDENCE_TYPE,
DataLength : DATA_LENGTH_TYPE,
var Vtpdu : CON_VTPDU_SIZE);

begin
CopyCallingTPname (Tp4Tpdu.CallingTsapAddr, Vtpdu.CallingTPname);
Vtpdu.VTLlocalEndpt = LocalVTL_endPt;
Vtpdu.VTLremoteEndpt = RemoteVTL_endPt;
Vtpdu.Priority = DEFAULT_PRECEDENCE;
Vtpdu.Security = DEFAULT_SECURITY;
If(Tp4Tpdu.options.Use_CheckSum •» TRUE) {

Vtpdu.Options.Use_CheckSum » TRUE;

www.manaraa.com

176

} else (
Vtpdu.Options.U3e_CheckSum = FALSE;

}

if(Tp4Tpdu.Options.Expdt_data = TRUE){
Vtpdu.Options.Allow_Expdt = TRUE;

) else {
Vtpdu.Options.Allow_Expdt = TRUE;

}

if {Tp4Tpdu. Options. NomalFomat = TRUE) {
Vtpdu.Options.SeqSpaceSize =2;

} else {
Vtpdu.Options.SeqSpaceSize =4;

)

CopyUserData(TcpSeg.Data, Vtpdu.Data, DataLenght);
ComputeVTLCheckSum (Vtpdu);

end;

procedure

extern;

BuildACKvtpdu (Tp4Tpdu : ISO_TPDU_TYPE,
var Vtpdu : CON_VTPDU_SIZE);

{ in appendix 2 }

procedure BuildRSTvtpdu (Tp4Tpdu ; ISO_TPDU_TYPE,
var Vtpdu : CON_VTPDU_SIZE);

extern; { in appendix 3)

procedure

begin

BuildTp4Tpdu (var Tp4Tpdu : TP4_TPDU_TYPE ,
Vtpdu : CON_VTPDU_TYPE);

CopyCallingTPname (Tp4Tpdu.CallingTsapAdr, Vtpdu.CallingTPname)
CopyCalledTPname (Tp4Tpdu.CalledTsapAdr, Vtpdu.CalledTPname);
Tp4Tpdu.Options.MaxTpduSize = Vtpdu.Options.MaxVTLpacketSize;

If(Vtpdu.options.U3e_CheckSum = TRUE) (
Tp4Tpdu.Options.UseCheckSum » TRUE;

} else {
Tp4Tpdu.Options.UseCheckSum = FALSE;

}

if(Vtpdu.Options.Expdt_data = TRUE){
Tp4Tpdu.Options.Allow_Expdt - TRUE;

) else {

www.manaraa.com

177

Tp4Tpdu.Options.Allow_Expdt = TRUE;
)

if(Vtpdu.Options.SeqSpaceSize =2) {
Tp4Tpdu.Options.NormalFormat = TRUE;

) else {
Tp4Tpdu.Options.NormalFormat = FALSE;

}

CopyUserData(Tp4Tpdu.Data, Vtpdu.Data, Vtpdu.Data.DataLen);

If (UseliOcalCheckSum) {
ComputeTP4CheckSuin(Tp4Tpdu) ;

)
end;

Initialize

to CLOSE
begin

LcoalRef =0;
RemoteRef =0;
CallingTSAPaddress = (0);
CalledTSAPaddress = (0);
LocalVTL_endPt =• 0;
RemoteVTL_endPt = 0;
UseLocalCheckSum = TRUE ;
LocalSeqSize =4;
UseLocalExpdt = FALSE;

end;

{ transition part of TCF activity }

trans

{ transitions due to interactions from IP module }

from CLOSE to OPEN

when IPtoTCF.ReceiveTPDUindication (Tp4Tpdu : TP4_TPDU_TYPE)

provided (IsConReq(Tp4Tpdu) = TRUE and
VerifyTp4CheckSuin(Tp4Tpdu = TRUE))

begin
CrVtpdu = TcfGetVtpdu(VTL_CR);
MapSrcRefToLocalRef (Tp4Tpdu.SrcRef, CrVtpdu.LocalRef)

www.manaraa.com

178

StoreLocalRef(Tp4Tpdu.SrcRef, LocalREf);
{ Lcoal variable for module)

CrVtpdu.RemoteRef = 0;
MapCredit (Tp4Tpdu.Credit, CrVtpdu.Credit);
BuildCONREQVtpdu (Tp4Tpdu, CrVtpdu);
output TcfToClts.SendTCFdataRequest(CrVtpdu);

end;

from OPEN to same

when IPtoTCF.ReceiveTPDUindication (Tp4Tpdu : TP4_TPDU_TYPE)

provided (IsConCnf (Tp4Tpdu) = TRUE and
VerifyTp4CheckSum(Tp4Tpdu = TRUE))

begin
CcVtpdu = TcfGetVtpdu(VTL_CC);
MapSrcRefToLocalTRef {Tp4Tpdu.SrcRef, CcVtpdu.LocalRef);
MapDestRefToRemoteRef (Tp4Tpdu.DestRef, CcVtpdu.RemoteRef) ;
StoreRemoteRef(CcVtpdu.RemoteRef, RemoteRef);
MapCredit (Tp4Tpdu.Credit, CcVtpdu.Credit);

if(Tp4Tpdu.Options.UseCheckSum = TRUE){
UseLocalCheckSum := TRUE;

)

if(Tp4Tpdu.Options.NormalFormat = TRUE){
LocaSeqSize = 2;

} else {
LocaSeqSize =4;

)

If(Tp4Tpdu.Options.UseExpdt = TRUE) {
UseLocalExpdt = TRUE;

} else {
UseLocalExpdt = FALSE;

)

BuildCONCNFVtpdu (Tp4Tpdu, CcVtpdu);
output TcfToClts.SendTCFdataRequest(CcVtpdu);

end;

from OPEN to SAME

when IPtoTCF.ReceiveTPDUindication (Tp4Tpdu : TP4 TPDU TYPE)

provided (IsAck(Tp4Tpdu) = TRUE and
VerifyTp4CheckSum(Tp4Tpdu = TRUE))

begin
AckVtpdu = TcfGetVtpdu(VTL_ACK);

www.manaraa.com

179

AckVtpdu. LocalRef =• Localref;
MapDestRefToRemoteRef(Tp4Tpdu.De3tRef, AckVtpdu.RemoteRef)
BuildACKVtpdu (Tp4Tpdu, AckVtpdu);
output TcfToClts.SendTCFdataRequest(AckVtpdu);

end;

from EITHER to CLOSE

when IPtoTCF.ReceiveTPDUindication (Tp4Tpdu : TP4_TPDU_TYPE)

provided (IsDR(Tp4Tpdu) = TRUE and
VerifyTp4CheckSuin(Tp4Tpdu = TRUE))

begin
RstVtpdu = TcfGetVtpdu(VTL_RST);
MapDestRefToRemoteRef(Tp4Tpdu.DestRef, RstVtpdu.RemoteRef)
MapSrcRefToLocaRef(Tp4Tpdu.SrcRef, RstVtpdu.LocaRef);
BuildRSTVtpdu (Tp4Tpdu, RstVtpdu);
output TcfToClts.SendTCFdataRequest(RstVtpdu);

end;

{ Transitions due Interactions from CLTS }

from CLOSE to OPEN

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (IsVTLcr(Vtpdu) = TRUE and
VerifyVTLCheckSum(Vtpdu = TRUE))

begin
Tp4Vtpdu = TcfGetTp4Tpdu (CR);
MapLocalRefToSrcRef (CrVtpdu.LocalRef, Tp4Tpdu.SrcRef);
StoreReraoteRef(CrVtpdu.LocalRef, Remoteref);
Tp4Tpdu.DestRef =0;
MapCreditToTp4 (Tp4Tpdu.Credit, CrVtpdu.Credit);
BuildTcpSeg (Tp4Tpdu, CrVtpdu);
output TcfToIp.SendTPDUrequest(Tp4Tpdu);

end;

from OPEN to same

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (IsVTLcc(Vtpdu) = TRUE and
VerifyVTLCheckSum(Vtpdu = TRUE))

begin
Tp4Tpdu = TcfGetTp4Tpdu(CC);

www.manaraa.com

180

MapLocalRefToSrcRef (CcVtpdu.LocalRef, Tp4Tpdu.SrcRef);
MapRemoteRefToDestRef (CcVtpdu.RemoteRef, Tp4Tpdu.DestRef)
MapCreditToTp4 (Tp4Tpdu.Credit, CcVtpdu.Credit);

if(Vtpdu.U3e_CheckSum = TRUE){
UseLocalCheckSum := TRUE;

}

LocalSeqSize =• Vtpdu. SeqSpaceSize;

If(UseExpdt = TRUE) {
UseLocalExpdt = TRUE;

) else {
UseLocalExpdt = FALSE;

)

BuildTp4Tpdu (Tp4Tpdu, CrVtpdu);
output TcfToIp.SendTPDUrequest(Tp4Tpdu);

end;

from OPEN to same

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided { IsVTLack (Vtpdu) = TRUE and
VerifyVTLCheckSum(Vtpdu = TRUE))

begin
Tp4Tpdu = TcfGetTp4Tpdu(AK);
MapRemoteRefToDestRef (AckVtpdu.RemoteRef, Tp4Tpdu.DestRef);
MapCreditToTp4 (Tp4Tpdu.Credit, AckVtpdu.Credit);
BuildTp4Tpdu (Tp4Tpdu, AckVtpdu);
output TcfToIp.SendTPDUrequest(Tp4Tpdu);

end;

from EITHER to CLOSE

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (IsVTLrst (Vtpdu) = TRUE and
VerifyVTLCheckSum(Vtpdu = TRUE))

begin
Tp4Tpdu = TcfGetTp4Tpdu(DR);
MapRemoteRefToDestRef (RstVtpdu.RemoteRef, Tp4Tpdu.DestRef);
MapLocalRefToSrcRef (RstVtpdu.LocalRef, Tp4Tpdu.SrcRef);
BuildTp4Tpdu (Tp4Tpdu, RstVtpdu);
output TcfToIp.SendTPDUrequest(Tp4Tpdu);

end;

end; { end of TP4 TCP BODY)

www.manaraa.com

181

{ Modulfl-vagiable-declagatiQn-gagt a£ «peeifieation

modvax

InternetProtocol ; InternetProtocol_Type;
IS0_TP4_TCF : array[END_POINT_TYPE] of TCF_Type;
CLTS : CLTS_TYPE;

{ Initialization Razt Q£ apecificatioa)

Initialize

begin { module Initialization }

init InternetProtocol with InternetProtocol_Body;
init CLTS with CLTS_Body;

all end_point : END_POINT_TYPE do
begin

init IS0_TP4_TCF with TCF_Body(end_point);

(connect interaction points)

connect InternetProtocol.IptoTCF to
ISO_TP4_TCF.TcfToIP[end_point];

connect IS0_TP4_TCF[end_point].TcfToCLTS to
CLTS.CltsTpTcf;

end;

end. { end of specification }

www.manaraa.com

182

11 APPENDIX B. DATA TRANSFER PHASE

TCP_TCF Data Transfer Phase Specification

type

VSN_TYPE =
record

BindingType
OctetBinding
PacketBinding

end

OCTET_BINDING = 0x01;
PACKET_BINDING =• 0x02;

MSG_HEADER_TYPE =
record

VersionNo
RemoteVTLendPt
MsgCode

end;

TCF_VSNMSG_TYPE -
record

MsgHdr
NumVsnRec
VsnRecord

end;

ONE_BYTE;
FOUR_BYTES;
TWO BYTES;

VERSION_TYPE;
END_POINT_TYPE;
MSG CODE TYPE;

MSG_HEADER_TYPE;
ONE_BYTE;
array[l..NumRec] of VSN TYPE;

www.manaraa.com

183

VsnRecord
end;

: array[1..NumRec] of VSN_TYPE;

PIGGYBACK_ACK_TYPE =
record

NextRecvVSN
Credit

end;

DATA_OPTIONS_TyPE =
record

OptionsFlags
PiggyBackAck

end;

VSN_TYPE;
CREDIT TYPE;

ONE_BYTE;
PIGGYBACK ACK TYPE;

{ The encoding of the OptionsFlag in the data options is as :)

PIGGYBACK ACK = 0x01;

VTPDU_HEADER_TYPE =
record

VersionNo
VtpduCode
Use_CheckSuni
RemoteVTLendPt
Priority
Security
Reserved

end;

VERSION_TYPE;
VTPDU_CODE_TYPE;
1_BIT;
END_POINT_TYPE;
array[1..2] of 1_BIT;
array[1..2] of 1_BIT;
array [1..4] of 1_BIT;

DATA_TPDU_TYPE =
record

VtpduHdr
SendVSN
OptionsFlags
DataOptions
Data
Checksum

end;

VTPDU_HEADER_TYPE;
VSN_TYPE;
ONE_BYTE;
DATA_OPTIONS_TYPE;
DATA_TYPE;
TWO BYTES;

{ ACK_OPTIONS is a variant record, with Mask field describing which)
(of the options are carried in the VTPDU 1

ACK_OPTIONS_TYPE =
record

OptionsMask
UrgentDataSize
AckSequence
Fcclnfo

ONE_BYTE;
TWO_BYTES;
TWO_BYTES;
array[1..8] of ONE_OCTET;

www.manaraa.com

184

end;

{ The encoding of the ACK OptionsMask is as

URG_DATA_LENGTH = 0x01;
ACK_SEQ = 0x02;
FCC_REQ = 0x04;
EXPDT ACK = 0x08;

DATA_ACK_VTPDU_TYPE =
record

VtpduHdr
NextRecv
Credit
AckOptions
Checksum

end;

VTPDU_HEADER_TYPE;
VSN_TYPE;
CREDIT_TYPE;
ACK_OP TIONS_TYPE;
TWO BYTES;

EXPEDITED_DATA_TPDU_TYPE
record

VtpduHdr
ExpdtSendSeq
TotalEDlen
DataOptions
Data
Checksum

end;

VTPDU_HEADER_TYPE;
VSN_TYPE;
DATA_LENGTH_TYP E;
DATA_OPTIONS_TYPE;
DATA_TYPE;
TWO BYTES;

RST_REQ_VTPDU_TYPE = ...; { defined in appendix 3)

{ TCP Sequence number to VSN mapping table element

SEND MAP TABLE ELEMENT TYPE
record

Vsn
DataLength
PacketType

VSN_TYPE;
DATA_LENGTH_TYP E ;
1_BIT; { Set to 1 if mapping is }

end; { done to/from EXPDT VTPDU }

RECV MAP TABLE ELEMENT TYPE =
record

Vsn
DataLength
ExpectedAck
PacketType

VSN_TYPE;
DATA_LENGTH_TYPE ;
TCP_SEQNUM_TYPE; (= octet binding + length)
1_BIT; { Set to 1 if mapping is }

www.manaraa.com

185

end, { done to/from EXPDT VTPDU)

var

DataVtpdu
DataAckVtpdu
ExpdtDataVtpdu
ExpdtAckVtpdu
RejVtpdu
TcpSeg
MappinglnfoMsg
SendLlstElement
RecvListElement

DATA_VTPDU_TYPE ;
DATA_ACK_VTPDU_TYPE ;
EXPEDITED_DATA_VTPDU_TYPE;
EXPEDITED_ACK_VTPDU_TYPE;
RST_REQ_VTPDU_TYPE;
TCP_SEMENT_TyPE ;
TCF_MSG_TYPE;
SEND_MAP_TABLE_ELEMENT_TYPE;
RECV MAP TABLE ELEMENT TYPE;

{ Channel Definitions fox communication with fche TCP Module \

Channel IP_Acce3S_Point (From_IP, To_IP);

by From_IP : ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,

Channel CLTS_Acce3S_Point (From_TCF, To_TCF) ;

by From_TCF : ReceiveTCFdataRequest;
SendTCFdataRequest (Vtpdu : VTPDU_TYPE);

by To_TCF : ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE);

Channel C0TS_Acces3_Point (Froin_TCF, To_TCF) ;

by From_TCF : ReceiveTCFMsgRequest;
SendTCFMsgRequest (TcfMsg : TCF_MESSAGE_TYPE);

by To_TCF : ReceiveTCFMsglndication (TcfMsg ; TCF_MESSAGE_TYPE);

Length : SEGMENT_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence ; PRECEDENCE TYPE)

by To_IP : SendTPDUrequest (TcpSeg : TCP_SEGMENT_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE) ;

ReceiveTPDUrequest ;

{ Module Header Definitaiona }

www.manaraa.com

186

Module InternetProtoool_Type process ;

Ip IPtoTCF ; IP_Acces3_Point (From_IP) ;

end;

Module TCF_Type activity
(End_Point_Id : END_POINT_TYPE) { parameter to TCF)

Ip { list of Interaction points }
TcfToIp : IP_Acces3_Point (To_IP) Individual queue;
TcfToClts ; CLTS_Access_Point (From_TCF) Individual queue ;
TcfToCots : C0TS_Acces3_Point { From_TCF) Individual queue ;

end;

Module CLTS_Type process;

Ip CltsToTcf : CLTS_ACCESS_POINT (To_TCF)

end;

Module COTS_Type process;

Ip CotsToTcf : COTS_ACCESS_POINT (To_TCF)

end;

J Body Dsfinitiona for Module* \

Body InternetProtocol_Body for InternetProtocol_Type; external;

Body Clt3_Body for CLTS_Type; external;

Body Cot3_Body for COTS_Type; external;

Body TCF_Body for TCF_Type

var

SendMapLlst : ..; { Actual data structure is left as)
{ implementation dependent)

SendMapListlndex : ... ;

PartialVsnlndex : ... ;

RecvMapList : ..; { Actual data structure is left as)

www.manaraa.com

187

(implementation dependent)

SendPacketSize : DATA_LENGTH_TYPE;

RecvPacketSize : DATA_LENGTH_TYPE;

SendSeqNum : TCP_SEQNUM_TYPE; { current TCP send seq }

Next_SendSeqNum : TCP_SEQNUM_TYPE: { The next expected send
seq that will be carried by the TCP
segment = SendSeqNum + seg.length)

SendPacketNum : integer;

PreviousNextRecvVSN : VSN_TYPE;

PreviousCreditValue : CREDIT_TYPE;

RecvSeqNum : TCP_SEQNUM_TYPE;

Next_RecvSeqNum : TCP_SEQNUM_TYPE;

RecvPacketNum : integer;

{ Functions and procedures used in the module body)

function TcfGetVtpdu (Vtpdu_Type : VTPDU_TYPE) : VTPDU_TYPE;
primitive ;

function TcfGetTcpSeg (Seg_Type : TCP_SEG_TYPE) : TCP_SEGMENT_TYPE
primitive ;

function IsUrg (Seg_Type : TCP_SEG_TYPE) : boolean;
primitive ;

procedure
primitive

procedure
primitive

procedure

ClearSendMapList();

ClearRecvMapList();

UpdateSendMapList(VtlSeq : VSN_TYPE,
SegLength ; DATA_LENGTH_TYPE,
ExpdtFlag ; char);

www.manaraa.com

188

primitive
{ allocate a SendListElement and add to head of FIFO send queue)

procedure UpdateRecvMapList(Vtpdu : VTPDU_TYPE,
SegLength : DATA_LENGTH,
ExpdtFlag : char);

primitive

{ If (Vsn < Next_RecvV3n) Then it is a retransmission.
check the Recvmaplist to see if the octet binding was
present. If not then free the buffers in the recv buffer
list. Fill in the Octet binding info in the RecvMapList)

{ Else Allocate a RecvListElement and add to head of FIFO
recv (jueue)

procedure
primitive ;

SetlncompleteVsnlndex(PartialVsnlndex);

procedure
primitive

SetPiggyBackOption(DataVtpdu);

function
primitive ;

BufferVtpduPolicy0 : boolean;

procedure
primitive ;

BufferVtpdus(DataVtpdu : DATA VTPDU TYPE);

function
primitive ;

IsOctetBinding(Vsn : VSN_TYPE) : boolean;

function IsMissingSeg(TcpSeqNum : SEQ_NUM_TYPE,
Vsn : VSN TYPE) : boolean ;

{

primitive ;

check the SendMapList for this TcpSeqNum;
check if VSN entry is incomplete

return true if it is
else return false

procedure

primitive

UpdateVsnlnfo(TcpSeq, Vsn, SegLength, ExpdtFlag);

{ Update the VSN map table with the missing packet number
portion.)

www.manaraa.com

189

function BuildMapInfo (TcpSeq : TCP_SEQ_TyPE,
Vsn : VSN_TYPE) : TCF_MESSAGE_TYPE,

begin
{ the VSN Map Message has the

Remote_End_Point_Id,
Number of VSNs, < VSNl,

)
return (MapMsg);

end;

procedure MapSeqToVSN (TcpSeqNum : SEQ_NUM_TYPE,
SegLength : DATA_LENGTH_TYPE,
var VtlSeq : VSN_TYPE,
ExpdtFlag : char);

begin

var PacketNum;

if (TcpSeqNum = Next_SendSeqNum) then
begin

(This is the next in secjuence segment }
VtlSeq.VsnType := (OCTET_BINDING logical OR

PACKET_BINDING);
VtlSeq.OctetBinding ;= TcpSeqNum;
Next_SendSeqNum = TcpSeqNum + SegLength;
if(ExpdtFlag = TRUE) Then

PacketNum := SendExpdtNum := SendExpdtNum +1;
else

PacketNum := SendPacketNum := SendPacketNum + 1;
VtlSeq.PacketBinding := PacketNum;
UpdateSendMapList(VtlSeq, SegLength, ExpdtFlag);

end;

if (TcpSeqNum < Next_SendSeqNum) then
begin

{ A retransmission; get the VSN from the SendMapList)

VsnFromSendMap(VtlSeq, SegLength, ExpdtFlag);
end;

following format ;

VSNp>

end;

www.manaraa.com

190

procedure

begin

end;

MapRecvVSNtoSeq(var TcpSeqNum : SEQ_NUM_TYPE,
VtlSeq : VSN TYPE)

TcpSeqNum := VtlSeq;

procedure MapAckToVACK (TcpAckNum : SEQ_NUM_TÏPE,
var VtlAck : VSN TYPE);

begin
{ Check the receive map list for a VSN which matches this}
{ TcpAckNum, Get the packet number from this List element)
{ fill the VtlAck as :

VtlAck.BindingType = OCTET_BINDING Logical OR
PACKET_BINIDING;

VtlAck.OctetBinding = TcpAckNum;
VtlAck.PacketBinding = PacketNum; }

(If a match is not found then :
VtlAck.BindingType = OCTET_BINDING;
VtlAck.OctetBinding = TcpAckNum; }

end;

procedure

begin

end;

SetPiggyBackOption(var DataVtpdu : DATA_VTPDU_TYPE)

DataVtpdu.DataOptions.OptionsFlag := 0x01;

procedure

begin

end;

MapVACKtoAck(var TcpAckNum : SEQ_NUM_TYPE,
VtlAck : VSN TYPE);

TcpAckNum = VtlAck.OctetBinding;

procedure FillVtpduHdr (Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var VtpduHdr ; VTPDU_HEADER_TYPE)

begin
VtpduHdr.VersionNo := 1;
VtpduHdr.Use_CheckSum := 1;
VtpduHdr.RemoteVTLendPt := RemoteVTL_endPt;

www.manaraa.com

191

VtpduHdr.Priority := DEFAULT_PRECEDENCE;
VtpduHdr.Security := DEFAULT_SECURITY;

end;

procedure BuildDATAVtpdu (TcpSeg : TCP_SEG_TÏPE,
Length : DATA_LENGTH_TYPE,
Security : SECURITÏ_TYPE,
Precedence : PRECEDENCE_TYPE,
var DataVtpdu : DATA VTPDU TYPE)

begin
FillVTPDUhdr(DataVtpdu.VtpduHdr, Security, Precedence);
DataVtpdu.VtpduHdr.VtpduCode := DATA_VTPDU;
CopyUserData(TcpSeg.Data, Vtpdu.Data, Lenght);
ComputeVTLCheckSum(Vtpdu);

end;

procedure BuildEDATAVtpdu (TcpSeg : TCP_SEG_TYPE,
Length : DATA_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence ; PRECEDENCE_TYPE,
var EDataVtpdu : EXPEDITED_DATA_VTPDU_TYPE)

begin
FillVTPDUhdr(EDataVtpdu.VtpduHdr, Security, Precedence);
EDataVtpdu.VtpduHdr.VtpduCode := EDATA_VTPDU;
EDataVtpdu.TotalEDlen := TcpSeg.UrgPtr;
CopyUserData(TcpSeg.Data, Vtpdu.Data, Lenght);
ComputeVTLCheckSum(Vtpdu);

end;

procedure BuildACKVtpdu (TcpSeg : TCP_SEG_TYPE,
Length : DATA_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var AckVtpdu : EXPEDITED_DATA_VTPDU_TYPE)

begin
FillVTPDUhdr(EDataVtpdu.VtpduHdr, Security, Precedence);
EDataVtpdu.VtpduHdr.VtpduCode := DATA_ACK_VTPDU;
if(IsUrg(TcpSeg) = TRUE) then
begin

AckVtpdu.AckOpt ionsMask := URG_DATA_LENGTH;
AckVtpdu.AckOptions.UrgentDataSize := TcpSeg.UrgPtr;

end;
ComputeVTLCheckSum(Vtpdu);

www.manaraa.com

192

end;

trans

to CLOSE
begin

{ Add this part to the initialization }
{ Clear recv and send map table }

ClearSendMapList();
ClearRecvMapList();

end

{ transition due to interactions from IP)

from OPEN to same

when IPtoTCF.ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,
length : SEGMENT_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE)

{ A TCP segment can carry the following information : }
(

1. Data
2. Ack
3. PUSH
4. URG

}

{ A DATA VTPDU is generated if length > 0 and URG flag is not set
Any ACK information is piggybacked with data }

provided ((length > 0) and NOT IsUrg(TcpSeg)
and NOT IsRst(TcpSeg)
and VerifyTCPChecksum(TcpSeg))

begin

DataVtpdu TcfGetVtpdu(VTL_DT);
ExpdtFlag := FALSE;
{ Use the Seq Number to get the VSN)
If(TcpSeg.SeqNum > Next_SendSeqNum) then
begin

{ If this condition happens, then some of the)
(intermediate segments are lost. It not possible)
{ to associate a packet count in the VSN)
VtlSeq.VsnType := OCTET_BINDING;

www.manaraa.com

193

VtlSeq.OctetBinding := TcpSeqNuin;
UpdateSendMapList(VtlSeq, SegLength, ExpdtFlag);
SetlncompleteVsnlndex(PartialVsnlndex);

end;
else if (IsMissingSeg(TcpSeq, Vsn) = TRUE) then

begin
(build a map information message and send to peer)
{ TCF over COTS interaction point 1
UpdateVsnlnfo(TcpSeq, Vsn, SegLength, ExpdtFlag);
MapInfoMsg = BuildMapInfo(TcpSeq, Vsn);
output TcfToCots.SendTCFMsgRequest(MapInfoMsg);

end;
else MapSeqToVSN (TcpSeg.SeqNum, DataVtpdu.SendVSN);
if(IsAck(TcpSeg) = TRUE) then

begin
SetPiggyBackOption(DataVtpdu);
MapAckToVACK (TcpSeg.Acknum, DataVtpdu);
MapCredit (TcpSeg.Credit, DataVtpdu);

end;
BuildDATAVtpdu (TcpSeg, length. Security,

Precedence, AckVtpdu);
output TcfToClts.SendTCFdataRequest(DataVtpdu) ;

end;

{ An Expedited DATA VTPDU is generated if length > 0 and URG flag)
{ is set. Any ACK information is piggybacked)

provided ((length > 0) and IsUrg(TcpSeg)
and NOT isRst(TcpSeg)
and VerifyTCPChecksum(TcpSeg))

begin

EDataVtpdu = TcfGetVtpdu(VTL_DT);
ExpdtFlag := TRUE;
{ Use the Seq Number to get the VSN >
If(TcpSeg.SeqNum > Next_SendSeqNum) then
begin

{ If this condition happens, then some of the)
{ intermediate segments are lost. It not possible }
(to associate a packet count in the VSN)
VtlSeq.VsnType :=• OCTET_BINDING;
VtlSeq.OctetBinding := TcpSeqNum;
UpdateSendMapList(VtlSeq, SegLength, ExpdtFlag);
SetlncompleteVsnlndex(PartialVsnlndex);

end;
else if (IsMissingSeg(TcpSeq, Vsn) = TRUE) then

begin
{ build a map information message and send to peer }
(TCF over COTS interaction point)
UpdateVsnlnfo(TcpSeq, Vsn, SegLength, ExpdtFlag);
MapInfoMsg = BuildMapInfo(TcpSeq, Vsn);

www.manaraa.com

194

output TcfToCots.SendTCFMsgRec[uest(MapInfoMsg) ;
end;

{ Use the Seq Number to get the Expedited Data VSN }
else MapSeqToVSN (TcpSeg,SeqNum, EDataVtpdu.ExpdtSendVSN,

ExpdtFlag);
if(IsAck(TcpSeg) - TRUE) then

begin
SetPiggyBackOption(EDataVtpdu);
MapAckToVACK (TcpSeg.Acknum, EDataVtpdu);
MapCredit (TcpSeg.Credit, EDataVtpdu);

end;
BuildEDATAVtpdu (TcpSeg, length. Security,

Precedence, EDataVtpdu);
output TcfToClts.SendTCFdataRequest(EDataVtpdu);

end;

{ An empty ACK Segment is mapped to an ACK VTPDU)

provided ((length = 0) and IsAck(TcpSeg)
and NOT IsRst(TcpSeg)
and VerifyTCPChecksum(TcpSeg))

begin

end;

AckVtpdu = TcfGetVtpdu(VTL_ACK);
(Use the AckNum in the TCP seg to get the VSN }
MapAckToVACK(TcpSeg.Acknum, AckVtpdu);
MapCredit (TcpSeg.Credit, DataVtpdu.Credit);
BuildACKVtpdu (TcpSeg, length. Security,

Precedence, AckVtpdu);
output TcfToClts.SendTCFdataRequest(AckVtpdu);

******* transition due to interactions from CLTS ******** }

{ The finite set of VTPDUs that can be received are
1. Data with or without PiggyBack ACK info.
2. Expedited Data VTPDU with or without Piggy back info
3. An ACK VTPDU

from OPEN to same

when CltsTcTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (IsVTLdata (Vtpdu) = TRUE and
Veri fyVTLChecksum(Vtpdu) = TRUE)

begin
TcpSeg " TcfGetTcpSegO ;
ExpdtFlag : » FALSE

www.manaraa.com

195

{ If the required VSN binding is available then :)
if(IsOctetBinding(Vtpdu.SendVSN) = TRUE) then
begin

UpdateRecvMapList(Vtpdu, SegLength, ExpdtFlag);
{ The encoding of the VSN is such that the)
{ Octet binding is present, i.e. does not }
{ have to be derived)

MapRecvVSNtoSeq(TcpSeg.SeqNum, Vtpdu.SendVSN);
If(PiggyBackAck(Vtpdu) = TRUE and
(IsOctetBinding(Vtpdu.NextRecvVSN) = TRUE)) then
begin

MapVACKtoAck(TcpSeg.AckNum, Vtpdu.NextRecvVSN);
RecordVACK(Vtpdu.NextRecvVSN,

PreviousNextRecvVSN);
MapCreditToTcp (TcpSeg.Credit, Vtpdu);
RecordCredit (Vtpdu, PreviousCreditValue);

end
else
begin

MapVACKtoAck(TcpSeg.AckNum,
PreviousNextRecvVSN);

MapCreditToTcp(TcpSeg.Credit,
PreviousCreditValue);

end

BuildTcpSeg (TcpSeg, Vtpdu);
output TcfToIp.SendTPDUrequest(TcpSeg,
NORMAL_SECURITÏ, DEFAULT_PRECEDENCE);

end; (if OctetBinding)
else
begin

if (BufferVtpduPolicy0 = TRUE) then
(Buffer VTPDUs with incomplete VSNs }

BufferVtpdus(Vtpdu);
else (discard the VTPDU)

end;
end;

(Expedited VTPDU is mapped to a TCP segment with URG flag set)

provided (IsVTLexpdtdata (Vtpdu) = TRUE and
VerifyVTLChecksum(Vtpdu))

begin
TcpSeg = TcfGetTcpSegO ;
MapURGptr(TcpSeg, Vtpdu);
ExpdtFlag :» FALSE
(If the required VSN binding is available then :)
if(IsOctetBinding(Vtpdu.SendVSN) = TRUE) then
begin

UpdateRecvMapList(Vtpdu, SegLength, ExpdtFlag);
{ The encoding of the VSN is such that the)

www.manaraa.com

196

{ Octet binding is present, i.e. does not }
(have to be derived)

MapRecvVSNtoSeq(TcpSeg.SeqNum, Vtpdu.SendVSN);
If(PiggyBackAck(Vtpdu) = TRUE and
(IsOctetBinding(Vtpdu.NextRecvVSN) = TRUE)) then
begin

MapVACKtoAck(TcpSeg.AckNum, Vtpdu.NextRecvVSN)
RecordVACK(Vtpdu.NextRecvVSN,

PreviousNextRecvVSN);
MapCreditToTcp (TcpSeg.Credit, Vtpdu);
RecordCredit (Vtpdu, PreviousCreditValue);

end
else
begin

MapVACKtoAck(TcpSeg.AckNum,
PreviousNextRecvVSN);

MapCreditToTcp(TcpSeg.Credit,
PreviousCreditValue);

end

BuildTcpSeg (TcpSog, Vtpdu);
output TcfToIp.SendTPDUrequest(TcpSeg,
NORMAL_SECURITY, DEFAULT_PRECEDENCE) ;

end; { if OctetBinding)
else
begin

if (BufferVtpduPolicy() = TRUE) then
(Buffer VTPDUs with incomplete VSNs)

BufferVtpdus(Vtpdu);
else (discard the VTPDU)

end;

end;

provided (IsVTLack (Vtpdu) = TRUE and
VerifyVTLChecksum(Vtpdu) = TRUE)

begin
TcpSeg = TcfGetTcpSegO ;
MapVSNtoSeq(TcpSeg.SeqNum, Vtpdu.SendVSN);
MapVACKtoAck(TcpSeg.AckNum, Vtpdu.NextRecvVSN);
MapCreditToTcp (TcpSeg.Credit, Vtpdu);
BuildTcpSeg (TcpSeg, Vtpdu);
output TcfToIp.SendTPDUrequest(TcpSeg, NORMAL_SECURITY

DEFAULT_PRECEDENCE);
end;

transition due to Interactions from COTS ******** }

www.manaraa.com

197

{ Peer TCF messages arive over the Connection Oriented Transport)
(between the gateways)

{ the message types are :

1. VSN Mapping Information

)

from OPEN to same

when CotsToTcf.ReceiveTCFMsglndication (TcfMsg : TCF_MSG_TYPE)

provided (IsVsnMap(TcfMsg) = TRUE)

begin
{ The mapping information can be used if the }
{ received VTPDUs with missing Octet binding)
{ were buffered)
{ If so then - The RecvMapList is updated)
(- The corresponding VTPDUs from }
{ the recv buffer are mapped to }
(local TPDUs 1

If (BufferPolicy0 = TRUE) then
begin

FillMissingVsn(TcfMsg);
do
Vtpdu = GetBufferedVtpdu();
TcpSeg = GetTcpSegO;
GenerateTcpSeg(TcpSeg, Vtpdu);
output TcfToIp.SendTPDUrequest(TcpSeg,

NORMAI._SECURITY, DEFAULT_PRECEDENCE)
while (MoreVtpdus();

end;
end;

end; { of TCP TCF body }

www.manaraa.com

198

TP4_TCF Data Transfer Phase Specification

type

VSN_TYPE =
record

BindingType
OctetBinding
PacketBinding

end

OCTET_BINDING = 0x01;
PACKET_BINDING = 0x02;

PIGGYBACK_ACK_TyPE =
record

NextRecvVSN
Credit

end;

DATA_OPTIONS_TYPE =
record

OptionsFlaga
PiggyBackAck

end;

ONE_BYTE;
FOUR_BYTES;
TWO BYTES;

VSN_TYPE;
CREDIT TYPE;

ONE_BYTE;
PIGGYBACK ACK TYPE;

{ The encoding of the OptionsFlag in the data options is as

PIGGYBACK ACK = 0x01;

VTPDU_HEADER_TYPE =
record

VersionNo
VtpduCode
U3e_CheckSum
RemoteVTLendPt
Priority
Security
Reserved

end;

VERSION_TYPE;
VTPDU_CODE_TYPE;
1_BIT;
END_POINT_TYPE;
array[1..2] of 1_BIT;
array[1..2] of 1_BIT;
array [1..4] of 1 BIT;

DATA_TPDU_TYPE =
record

VtpduHdr : VTPDU_HEADER_TYPE;
SendVSN : VSN TYPE;

www.manaraa.com

199

OptionsFlags
DataOptions
Data
Checksum

end;

: ONE_BYTE;
: DATA_OPTIONS_TYPE;
: DATA_TYPE;
: TWO BYTES;

{ ACK_OPTIONS is a variant record, with Mask field describing which }
{ of the options are carried in the VTPDU)

ACK_OPTIONS_TYPE =
record

OptionsMask : ONE_BYTE;
UrgentDataSize ; TWO_BYTES;
AckSec[uence : TWO_BYTES;
Fcclnfo : array[1..8]

end;
of ONE OCTET;

{ The encoding of the ACK OptionsMask is as

= 0x01;
= 0x02;
= 0x04;
= 0x08;

DATA_ACK_VTPDU_TYPE =
record

VtpduHdr
NextRecv
Credit
AckOptions
Checksum

end;

URG_DATA_LENGTH
ACK_SEQ
FCC_REQ
EXPDT ACK

VTPDU_HEADER_TYPE;
VSN_TYPE;
CREDIT_TYPE;
ACK_OPTIONS_TYPE;
TWO BYTES;

EXPEDITED_DATA_TPDU_TYPE
record

VtpduHdr
ExpdtSendSeq
TotalEDlen
DataOptions
Data
Checksum

end;

VTPDU_HEADER_TYPE;
VSN_TYPE;
DATA_LENGTH_TYPE;
DATA_OPTIONS_TYPE;
DATA_TYPE;
TWO BYTES;

RST_REQ_VTPDU_TyPE = ...; { defined in appendix 3)

www.manaraa.com

200

{ TP4 Sequence number to VSN mapping table element

SEND MAP TABLE ELEMENT TYPE
record

Van
DataLength
PacketType

VSN_TYPE;
DATA_LENGTH_TYPE;
1_BIT; { Set to 1 if mapping is)

end; { done to/from EXPDT VTPDU)

RECV MAP TABLE ELEMENT TYPE
record

end;

Vsn
DataLength
ExpectedAck
PacketType

VSN_TYPE;
DATA_LENGTH_TYPE;
TP4_SEQ_TYPE; { packet binding + 1)
1_BIT; { Set to 1 if mapping is)

{ done to/from EXPDT VTPDU)

var

DataVtpdu
DataAckVtpdu
ExpdtDataVtpdu
ExpdtAckVtpdu
RejVtpdu

DATA_VTPDU_TYPE;
DATA_ACK_VTPDU_TYPE;
EXPEDITED_DATA_VTPDU_TYPE;
EXP EDITED_ACK_VTPDU_TYP E;
RST REQ VTPDU TYPE;

Tp4Data
Tp4EData
Tp4AK
Tp4EA

I SO_TP 4_DT_TYPE ;
ISO_TP 4_ED_TYPE;
IS0_TP4_AK_TYPE;
ISO TP4 EA TYPE;

MappinglnfoMsg
SendListElement
RecvListElement

TCF_MSG_TYPE;
SEND_MAP_TABLE_ELEMENT_TYPE;
RECV MAP TABLE ELEMENT TYPE;

(ChannelPeginAtlOna—for communication with the TCF Module)

Channel IP_Acces8_Point (From_IP, To_IP);

by From_IP ; ReceiveTPDUindication (Tp4Tpdu : TP4_TPDU_TYPE);

by To_IP : SendTPDUrequest (Tp4Tpdu : TP4_TPDU_TYPE);

ReceiveTPDUrequest ;

Channel CLTS_Access_Point (From_TCF, To_TCF) ;

by From_TCF : ReceiveTCFdataRequest ;

www.manaraa.com

201

SendTCFdataRequest (Vtpdu : VTPDU_TYPE);

by To_TCF : ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE);

Channel C0TS_Acces3_Point (Froin_TCF, To_TCF) ;

by From_TCF : ReceiveTCFMsgRequest;
SendTCFMsgRequest (TcfMsg : TCF_MESSAGE_TYPE);

by To_TCF ; ReceiveTCFMsglndication (TcfMsg : TCF_MESSAGE_TYPE)

{ Module Header Definitions)

Module InternetProtocol_Type process ;

Ip IPtoTCF : IP_Acces3_Point (From_IP) ;

end;

Module TCF_Type activity
(End_Point_Id : END_POINT_TYPE) { parameter to TCF)

ip { list of interaction points)
TcfToIp : IP_Acces3_Point (To_IP) individual queue;
TcfToClts : CLTS_Access_Point (From_TCF)

individual queue ;
TcfToCots ; COTS_Access_Point (From_TCF)

individual queue
end;

Module CLTS_Type process;

ip CltsTcTcf : CLTS_ACCESS_POINT (To_TCF)

end;

Module COTS_Type process;

ip CotsToTcf : COTS_ACCESS_POINT (To_TCF)

end;

I Body Definitions for Modules \

www.manaraa.com

202

Body InternetProtocol_Body for InternetProtocol_Type; external;

Body Clt3_Body for CLTS_Type; external;

Body Cot3_Body for COTS_Type; external;

Body TCF_Body for TCF_Type

var

SendMapLlst : ..; { Actual data structure is left as }
(implementation dependent)

SendMapListlndex : ... ;

PartialVsnlndex : ... ; { points to List Element having
incomplete information)

RecvMapList : ..; (Actual data structure is left as)
{ implementation dependent }

SendPacketSize : DATA_LENGTH_TYPE;

RecvPacketSizë : DATA_LENGTH_TYPE;

SendPacketNum : TP4_SEQ_TYPE; (current TP4 send seq)

Next_SendPacketNum : TP4_SEQ_TYPE; (The next expected send seq that
will be carried by the TP4 TPDU)

NextSendSeqNum : FOUR_BYTES;

RecvSeqNum : FOUR_BYTES;

Next_RecvSeqNum : FOUR_BYTES;

RecvPacketNum : TP4 SEQ TYPE;

{ Functions and procedures used in the module body)

function TcfGetVtpdu {Vtpdu_Type : VTPDU_TYPE) : VTPDU_TYPE;
primitive ;

function TcfGetTp4TPDU (TpduType : TP4_TPDU_C0DE) ; TP4_TPDU_TYPE;
primitive ;

procedure ClearSendMapList {) ;

www.manaraa.com

203

primitive ;

procedure ClearRecvMapList () ;
primitive ;

procedure UpdateSendMapList (VtlSeq : VSN_TïPE,
Length : DATA_LENGTH_TYPE,
ExpdtFlag : char);

{ allocate a SendListElement and add to head of FIFO send queue)
primitive ;

procedure UpdateRecvMapList (Vtpdu : VTPDU_TYPE,
ExpdtFlag ; char);

{ If (Vsn < Next_RecvVsn) Then it is a retransmission.
check the Recvmaplist to see if the packet binding was
present. If not then free the buffers in the recv buffer
list. Fill in the packet binding info in the RecvMapList)

{ Else Allocate a RecvListElement and add to head of FIFO
recv queue }

primitive ;

procedure SetlncompleteVsnlndex(var PartialVsnlndex);
primitive ;

function
primitive

procedure
primitive

function
primitive

function

BufferVtpduPolicy0 : boolean;

BufferVtpdus(DataVtpdu : DATA VTPDU TYPE);

IsPacketBinding(Vsn : VSN_TYPE) : boolean;

IsMi33ingSeg(Tp4Seq : TP4_SEQ_TYPE,
Vsn : VSN TYPE) : boolean ;

{
check the SendMapList for this Tp4SeqNum;
check if VSN entry is incomplete

return true if it is
else return false

primitive ;

www.manaraa.com

204

procedure UpdateVsnlnfo(Tp4Seq, Vsn, Length, ExpdtFlag);

{ Update the VSN map table with the missing octet number
portion.)

primitive ;

function BuildMapInfo (Tp4Seq : TP4_SEQ_TYPE,
Vsn : VSN_TYPE) : TCF_MESSAGE_TÏPE,

begin
{ the VSN Map Message has the following format :

Remote_End_Point_Id,
Number of VSNs, < VSNl, VSNp>

}
return (MapMsg);

end;

procedure MapSeqToVSN (Tp4PacketNum : SEQ_NUM_TYPE,
Length : DATA_LENGTH_TYPE,
var VtlSeq ; VSN_TYPE,
ExpdtFlag : char);

begin

var PacketNum;

if (Tp4PacketNum = Next_SendPacketNum) then
begin

(This is the next in sequence packet}
VtlSeq.VsnType := (OCTET_BINDING Bit OR

PACKET_BINDING);
VtlSeq. PacketBinding :«• Tp4PacketNum;
VtlSeq.OctetBinding := NextSendSeq;
UpdateSendMapList(VtlSeq, SegLength, ExpdtFlag);
NextSendSeq := NextSendSeq + Length;

end;
if (Tp4PacketNum < Next_SendPacketNum) then
begin

{ A retransmission; get the VSN from the SendMapList)

VsnFromSendMap(VtlSeq, Length, ExpdtFlag);
end;

end;

www.manaraa.com

205

procedure

begin

end;

MapRecvVSNtoSeq(var Tp4PacketNum : TP4_SEQ_TYPE,
VtlSeq : VSN_TYPE)

Tp4PacketNuin := VtlSeq.PacketBinding;

procedure MapAckToVACK (TcpAckNum : TP4_SEQ_TYPE,
var VtlAck : VSN TYPE);

begin
{ Check the receive map list for a VSN which matches this)
{ Tp4AckNum, Get the octet number from this List element)
{ fill the VtlAck as :

VtlAck.BindingType := OCTET_BINDING Bit OR
PACKET_BINIDING;

VtlAck.OctetBinding := RecvListElement.Vsn.OctetBinding
RecvListElement.DataLength;

VtlAck.PacketBinding := Tp4AckNum; }
{ If a match is not found then :

VtlAck.BindingType = PACKET_BINDING;
VtlAck.PacketBinding = Tp4AckNum; }

end;

procedure

begin

end;

MapVACKtoAck(var Tp4AckNum : TP4_SEQ_TYPE,
VtlAck : VSN TYPE);

Tp4AckNum = VtlAck.PacketBinding;

procedure FillVtpduHdr (Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var VtpduHdr : VTPDU HEADER TYPE)

begin

end;

VtpduHdr.VersionNo := 1;
VtpduHdr.Use_CheckSum := 1;
VtpduHdr.RemoteVTLendPt := RemoteVTL_endPt;
VtpduHdr.Priority := DEFAULT_PRECEDENCE;
VtpduHdr.Security :« DEFAULT_SECURITY;

procedure BuildDATAVtpdu (Tp4Data : IS0_TP4_DT_TYPE,
Length : DATA_LENGTH_TYPE,
Security : SECURITY_TYPE,

www.manaraa.com

206

Precedence : PRECEDENCE_TYPE,
var DataVtpdu : DATA_VTPDU_TYPE)

begin
FillVTPDUhdr{DataVtpdu.VtpduHdr, Security, Precedence);
DataVtpdu.VtpduHdr.VtpduCode ;= DATA_VTPDU;
CopyUserData(Tp4Data.Data, Vtpdu.Data, Lenght);
ComputeVTLCheckSuin(Vtpdu) ;

end;

procedure BuildEDATAVtpdu (Tp4EData : IS0_TP4_ED_TYPE,
Length : DATA_LENGTH_TÏPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var EDataVtpdu : EXPEDITED_DATA_VTPDU_TYPE)

begin
FillVTPDUhdr(EDataVtpdu.VtpduHdr, Security, Precedence);
EDataVtpdu.VtpduHdr.VtpduCode := EDATA_VTPDU;
EDataVtpdu.TotalEDlen := Length;
CopyUserData(TcpSeg.Data, Vtpdu.Data, Lenght);
ComputeVTLCheckSum(Vtpdu) ;

end;

procedure BuildACKVtpdu (Tp4Ack : ISO_TP4_AK_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var Ackvtpdu : EXPEDITED_DATA_VTPDU_TYPE)

begin
FillVTPDUhdr(EDataVtpdu.VtpduHdr, Security, Precedence);
EDataVtpdu.VtpduHdr.VtpduCode := DATA_ACK_VTPDU;
(If FCC information is present in the Tp4Ack, then fill in the
optional fields of the AckVtpdu }

CoraputeVTLCheckSum(Vtpdu);

end;

procedure BuildEACKVtpdu (Tp4EAck : IS0_TP4_EA_TYPE,
Length : DATA_LENGTH_TYPE,
Security ; SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var Ackvtpdu ; EXPEDITED_DATA_VTPDU_TYPE)

begin
FillVTPDUhdr(EDataVtpdu.VtpduHdr, Security, Precedence);

www.manaraa.com

207

EDataVtpdu.VtpduHdr.VtpduCode := EDATA_ACK_VTPDU;
{ Mark Expedited Ack option in the ACK VTPDU)
ComputeVTLCheckSum(Vtpdu);

end;

trans

to CLOSE
begin

(Add this part to the initialization)
{ Clear recv and send map table }

ClearSendMapList{);
ClearRecvMapList();

end

{ transition due to interactions from IP)

from OPEN to same

when IPtoTCF.ReceiveTPDUindication (Tp4Tpdu : IS0_TP4_TPDU_TïPE)

{ A TP4 TPDU can carry the following information :)
(

1. Data
2. Ack
3. Expdt Data
4. Expdt Ack
5. RST

provided (IsData(Tp4Tpdu) and VerifyTp4Checksum(TcpSeg))
begin

DataVtpdu := TcfGetVtpdu(VTL_DT);
ExpdtFlag :•= FALSE;
{ Use the Packet Number to get the VSN)
If(Tp4Tpdu.PacketNum > Next_SendPacketNum) then
begin

{ If this condition happens, then son\e of the)
{ intermediate packets are lost. lA^ot possible)
{ to associate a octet count in the VSN }
VtlSeq.VsnType := PACKET_BINDING;
VtlSeq.PacketBinding := Tp4Tpdu.PacketNum;
UpdateSendMapLiSt(VtlSeq, Tp4Tpdu.DataLength,

ExpdtFlag);
SetlncompleteVsnlndex(PartialVsnlndex);

end;

www.manaraa.com

208

else if (l3MissingSeg(Tp4Tpdu.PacketNuin, Vsn) = TRUE) then
begin
(build a map information message and send to peer)
{ TCF over COTS interaction point }
UpdateVsnlnfo(Tp4Tpdu.PacketNum, Vsn, DataLength,

ExpdtFlag);
MapInfoMsg = BuildMapInfo(Tp4Tpdu.PacketNum, Vsn);
output TcfToCots.SendTCFMsgRequest(MapInfoMsg);

end;
else MapSeqToVSN (Tp4tpdu.PacketNum, DataVtpdu.SendVSN,

ExpdtFlag);
BuildDATAVtpdu (TcpSeg, length. Security,

Precedence, DataVtpdu);
output TcfToClts.SendTCFdataRequest(DataVtpdu);

end;

provided (IsEData(Tp4Tpdu) and VerifyTp4Checksum(TcpSeg))
begin

EDataVtpdu = TcfGetVtpdu(VTL_DT);
ExpdtFlag := TRUE;
{ Use the Packet Number to get the VSN J
If(Tp4Tpdu.PacketNum > Next_SendPacketNum) then
begin

{ If this condition happens, then some of the }
{ intermediate packets are lost. It not possible)
{ to associate a octet count in the VSN }
VtlSeq.VsnType := PACKET_BINDING;
VtlSeq.PacketBinding := Tp4Tpdu.PacketNum;
UpdateSendMapList(VtlSeq, Tp4Tpdu.DataLength,

ExpdtFlag);
SetlncompleteVsnlndex(PartialVsnlndex);

end;
else if (IsMissingSeg(Tp4Tpdu.PacketNum, Vsn) = TRUE) then

begin
(build a map information message and send to peer }
{ TCF over COTS interaction point }
UpdateVsnlnfo(Tp4Tpdu.PacketNum, Vsn, DataLength,

ExpdtFlag);
MapInfoMsg = BuildMapInfo(Tp4Tpdu.PacketNum, Vsn);
output TcfToCots.SendTCFMsgRequest(MapInfoMsg);

end;
else MapSeqToVSN (Tp4tpdu.PacketNum, DataVtpdu.SendVSN,

ExpdtFlag);
BuildEDATAVtpdu (TcpSeg, length. Security,

Precedence, DataVtpdu);
output TcfToClts.SendTCFdataRequest(DataVtpdu) ;

end;

provided (IsAck(Tp4Tpdu) and VerifyTp4Checksum(TcpSeg))

www.manaraa.com

209

begin

AckVtpdu = TcfGetVtpdu(VTL_ACK);
{Use the NextSend in the Tp4 Ack to get the VSN)
MapAckToVACK(Tp4Tp, AckVtpdu);
MapCredit (Tp4Tpdu.Credit, AckVtpdu.Credit);
BuildACKVtpdu {Tp4Tpdu, Security,

Precedence, AckVtpdu);
output TcfToClts.SendTCFdataRequest(AckVtpdu) ;

end;

provided (IsEAck(Tp4Tpdu) and VerifyTp4Checksum(TcpSeg))
begin

AckVtpdu = TcfGetVtpdu(VTL_ACK);
{Use the NextSend in the Tp4 Ack to get the VSN }
MapAckToVACK(Tp4Tpdu, AckVtpdu);
MapCredit (Tp4Tpdu.Credit, AckVtpdu.Credit);
BuildEACKVtpdu (Tp4Tpdu, Security,

Precedence, AckVtpdu);
output TcfToClts.SendTCFdataRequest(AckVtpdu);

end;

******* transition due to interactions from CLTS ******** }

{ The finite set of VTPDUs that can be received are
1. Data with or without PiggyBack ACK info.
2. Expedited Data VTPDU with or without Piggyback info.
3. An ACK VTPDU with or without the Expedited Option

from OPEN to same

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu ; VTPDU_TYPE)

provided (IsVTLdata (Vtpdu) = TRUE and
VerifyVTLChecksum(Vtpdu) = TRUE)

begin
Tp4Data := TcfGetTp4Tpdu(DT);
ExpdtFlag := FALSE;
{ If the required VSN binding is available then :)
if(IsPacketBinding(Vtpdu.SendVSN) = TRUE) then
begin

UpdateRecvMapList(Vtpdu, ExpdtFlag);
{ The encoding of the VSN is such that the)
{ Packet binding is present, i.e. does not)

www.manaraa.com

210

{ have to be derived)
MapRecvVSNtoSeq(Tp4Data.SendSeq, Vtpdu.SendVSN);

If(PiggyBackAck(Vtpdu) = TRUE and
(IsPacketBinding(Vtpdu.NextRecvVSN) = TRUE)) then
begin

If(IsExpdtAck(Vtpdu) then
begin

Tp4EAk := TcfGetTp4Tpdu(EA);
MapVACKtoAok(Tp4EAk.NextRecv,

Vtpdu.NextRecvVSN);
BuildTp4EAKTPDU (Tp4EAk, Vtpdu);
output TcfToIp.SendTPDUrequest(TpE4Ak) ;

end;
else { normal data ACK }
begin

Tp4Ak := TcfGetTp4Tpdu(AK);
MapVACKtoAck(Tp4Ak.NextRecv,

Vtpdu.NextRecvVSN);
MapCreditToTp4 (Tp4Ak.Credit,Vtpdu);
BuildTp4EAKTPDU (Tp4EAk, Vtpdu);
output TcfToIp.SendTPDUrequest(Tp4Ak);

end;
end; (piggyback ACK }
BuildTp4DTPDU (Tp4Data, Vtpdu);
output TcfToIp.SendTPDUrequest(Tp4Data);

end; { if OctetBinding)
else
begin

if (BufferVtpduPolicy() = TRUE) then
(Buffer VTPDUs with incomplete VSNs)

BufferVtpdus(Vtpdu);
{ see if the piggy back ACK, if preset, has packet binding }

If(PiggyBackAck(Vtpdu) = TRUE and
(IsPacketBinding(Vtpdu.NextRecvVSN) = TRUE)) then
begin

If(IsExpdtAck(Vtpdu) then
begin

Tp4EAk := TcfGetTp4Tpdu(EA);
MapVACKtoAck(Tp4EAk,NextRecv,

Vtpdu.NextRecvVSN);
BuildTp4EAKTPDU (Tp4EAk, Vtpdu);
output TcfToIp.SendTPDUrequest(TpE4Ak) ;

end;
else { normal data ACK J
begin

Tp4Ak := TcfGetTp4Tpdu(AK);
MapVACKtoAck(Tp4Ak.NextRecv,

Vtpdu.NextRecvVSN);
MapCreditToTp4 (Tp4Ak.Credit,Vtpdu);
BuildTp4EAKTPDU (Tp4EAk, Vtpdu);
output TcfToIp.SendTPDUrequest(Tp4Ak) ;

end;

www.manaraa.com

211

end; (piggybacked ACK)
else (discard the VTPDU)

end;
end;

(Expedited VTPDU is mapped to a TP4 Expedited Data TPDU }

provided (IsVTLexpdtdata (Vtpdu) = TRUE and
VerifyVTLChecksum(Vtpdu))

begin
Tp4EData := TcfGetTp4Tpdu(ED);
ExpdtFlag := TRUE;
{ If the required VSN binding is available then :)
if(IsPacketBinding(Vtpdu.SendVSN) = TRUE) then
begin

UpdateRecvMapList(Vtpdu, ExpdtFlag);
{ The encoding of the VSN is such that the)
{ Packet binding is present, i.e. does not }
{ have to be derived)

MapRecvVSNtoSeq(Tp4EData.SendSeq, Vtpdu.SendVSN);
If(PiggyBackAck(Vtpdu) = TRUE and
(IsPacketBinding(Vtpdu.NextRecvVSN) = TRUE)) then
begin

If (IsExpdtAck(Vtpdu) then
begin

Tp4EAk := TcfGetTp4Tpdu(EA);
MapVACKtoAck(Tp4EAk.NextRecv,

Vtpdu.NextRecvVSN);
BuildTp4EAKTPDU (Tp4EAk, Vtpdu);
output TcfToIp.SendTPDUrequest(TpE4Ak) ;

end;
else { normal data ACK }
begin

Tp4Ak := TcfGetTp4Tpdu(AK);
MapVACKtoAck(Tp4Ak.NextRecv,

Vtpdu.NextRecvVSN);
MapCreditToTp4 (Tp4Ak.Credit,Vtpdu);
BuildTp4EAKTPDU (Tp4EAk, Vtpdu);
output TcfToIp.SendTPDUrequest(Tp4Ak) ;

end;
end; { piggybacked ACK }
BuildTp4DTPDU (Tp4Data, Vtpdu);
output TcfToIp,SendTPDUrequest(Tp4EData);

end; { if OctetBinding }
else
begin

if (BufferVtpduPolicy() = TRUE) then
{ Buffer VTPDUa with incomplete VSNs)

BufferVtpdus(Vtpdu);
{ see if the piggy back ACK, if preset, has packet binding }

If(PiggyBackAck(Vtpdu) = TRUE and

www.manaraa.com

212

(IsPacketBincling(Vtpdu.NextRecvVSN) = TRUE)) then
begin

If(IsExpdtAck(Vtpdu) then
begin

Tp4EAk := TcfGetTp4Tpdu(EA);
MapVACKtoAck(Tp4EAk.NextRecv,

Vtpdu.NextRecvVSN);
BuildTp4EAKTPDU (Tp4EAk, Vtpdu);
output TcfToIp.SendTPDUrequest(TpE4Ak)

end;
else { normal data ACK }
begin

Tp4Ak := TcfGetTp4Tpdu(AK);
MapVACKtoAck(Tp4Ak.NextRecv,

Vtpdu.NextRecvVSN) ;
MapCreditToTp4 (Tp4Ak.Credit,Vtpdu);
BuildTp4EAKTPDU (Tp4EAk, Vtpdu);
output TcfToIp.SendTPDUrequest(Tp4Ak);

end;
end; (piggybacked ACK)
else { discard the VTPDU)

end;

end;

provided (IsVTLack (Vtpdu) •= TRUE and
VerifyVTLChecksum(Vtpdu) = TRUE)

begin
if(IsPacketBinding(Vtpdu.NextRecvVSN) = TRUE)) then
begin

If(IsExpdtAck(Vtpdu) then
begin

Tp4EAk := TcfGetTp4Tpdu(EA);
MapVACKtoAck(Tp4EAk.NextRecv,

Vtpdu.NextRecvVSN) ;
BuildTp4EAKTPDU (Tp4EAk, Vtpdu);
output TcfToIp.SendTPDUrequest(TpE4Ak) ;

end;
else { normal data ACK }
begin

Tp4Ak := TcfGetTp4Tpdu(AK);
MapVACKtoAck(Tp4Ak.NextRecv,

Vtpdu.NextRecvVSN);
MapCreditToTp4 (Tp4Ak.Credit,Vtpdu);
BuildTp4EAKTPDU (Tp4EAk, Vtpdu);
output TcfToIp.SendTPDUrequest(Tp4Ak) ;

end;
end;

www.manaraa.com

213

(******* transition due to Interactions from COTS

{ Peer TCF messages arive over the Connectio Oriented Transport)
{ between the gateways }

{ the message types are :
1. VSN Mapping Information

)

from. OPEN to same

when CotsToTcf.ReceiveTCFMsglndication (TcfMsg ; TCF_MSG_TYPE)

provided (IsVsnMap(TcfMsg) = TRUE)

begin
{ The mapping information can be used if the)
(received VTPDUs with missing packet binding)
(were buffered)
{ If so then - The RecvMapList is updated)
{ - The corresponding VTPDUs from)
{ the recv buffer are mapped to }
{ local TPDUs 1

If (BufferPolicy0 = TRUE) then
begin

FillMissingVsn(TcfMsg);
do
Vtpdu = GetBufferedVtpdu();
Tp4Tpdu = GenerateTp4Tpdu(Vtpdu);
output TcfToIp.SendTPDUrecpaest(Tp4Tpdu);

while (MoreVtpdus());
end;

end;

end; (end of TP4 TCF body)

www.manaraa.com

214

12 APPENDIX C. CONNECTION TERMINATION
PHASE

TCP_TCF Data Transfer Phase Specification

type

DISC_DATA_OPTIONS_TYPE =
record

OptionsFlag
PiggyBackAck
TotalEDlen

end;

ONE_BYTE;
PIGGY_BACK_ACK_TYP E;
DATA LENGTH TYPE;

{ The encoding of the Options Flag is as :)

PIGGYBACK_ACK
EXPDTJDATA
PUSH DATA

0x01;
0x02;
0x04;

DISCONNECT_VTPDU_TYPE =
record

VtpduHdr
SendVSN
Reason
DataOptions
Data
Checksum

end;

VTPDU_HEADER_TYP E;
VSN_TYPE;
TWO_BYTES;
DISC_DATA_OPTIONS_TYPE;
DATA_TYPE;
TWO BYTES;

RESET_REQUEST_VTPDU_TYPE
RESET CONFIRM VTPDU TYPE

DISCONNECT_TPDU_TYPE;
DISCONNECT TPDU TYPE;

www.manaraa.com

I

215

RESET_CONFIRM_VTPDU_TYPE : DISCONNECT_TPDU_TYPE;

DISCONNECT_REQUEST_VTPDU_TYPE : DISCONNECT_TPDU_TYPE;
DISCONNECT_CONFIRM_VTPDU_TYPE : DISCONNECT TPDU TYPE;

var

DataVtpdu
DataAckVtpdu
ExpdtDataVtpdu
ExpdtAckVtpdu

RstReqVtpdu
RstCnfVtpdu
DiscReqVtpdu
DiscCnfVtpdu

DATA_VTPDU_TYPE ;
DATA_ACK_VTPDU_TYPE;
EXPEDITED_DATA_VTPDU_TYPE;
EXPEDITED_ACK_VTPDU_TYPE;

RESET_REQUEST_VTPDU_TYPE;
RESET_CONFIRM_VTPDU_TYPE;
DISCONNECT_REQUEST_VTPDU_TYPE;
DISCONNECT CONFIRM VTPDU TYPE;

TcpSeg TCP SEMENT TYPE;

MappinglnfoMsg
SendListElement
RecvLlstElement

TCF_MSG_TYPE;
SEND_MAP_TABLE_ELEMENT_TYPE;
RECV MAP^TABLE ELEMENT TYPE;

(Channel Definitlona—Sax communication with the tcp Modui*. \

Channel IP_Access_Point (From_IP, To_IP) ;

by From_IP : ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,
Length : SEGMENT_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE);

by To_IP : SendTPDUrequest (TcpSeg : TCP_SEGMENT_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE) ;

ReceiveTPDUrequest ;

Channel CLTS_Access_Point (From_TCF, To_TCF) ;

by From_TCF : ReceiveTCFdataRequest;
SendTCFdataRequest (Vtpdu : VTPDU_TYPE);

by To_TCF : ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE);

Channel COTS_Access_Point (From TCF, To TCF);

www.manaraa.com

216

by From_TCF : ReceiveTCFMsgRequest;
SendTCFMsgRequest (TcfMsg : TCF_MESSAGE_TYPE);

by To_TCF : ReceiveTCFMsglndication (TcfMsg : TCF_MESSAGE_TYPE)

< Module Header Definitions)

Module InternetProtocol_Type process ;

ip IPtoTCF ; IP_Access_Point (From_IP) ;

end;

Module TCF_Type activity
(End_Point_Id : END_POINT_TYPE) { parameter to TCF }

ip { list of interaction points)
TcfToIp : IP_Access_Point (To_IP) individual queue;
TcfToClts : CLTS_Access_Point (Froni_TCF) individual queue
TcfToCots : COTS_Access_Point (Froin_TCF) individual queue

end;

Module CLTS_Type process;

ip CitsToTcf : CLTS_ACCESS_POINT (To_TCF)

end;

Module COTS_Type process;

ip CotsToTcf : COTS_ACCESS_POINT (To_TCF)

end;

J Body Definitions fer Modules L

Body InternetProtocol_Body for InternetProtocol_Type; external;

Body Clts_Body for CLTS_Type; external;

Body Cots_Body for COTS_Type; external;

www.manaraa.com

217

var

state

ANY : {CLOSE, OPEN, WVTLDC, WFIN, WLACK, WLVTLACK);

ACTIVE_STATE : (OPEN, WVTLDC, WFIN, WLACK, WLVTLACK);

{ Where
WVTLDC ; Wait for DISCONNECT_CONFIRM VTPDU
WFIN : Wait for TCP FIN
WLACK : Wait for TCP Last Ack
WLVTLACK : Wait for VTL last Ack

)

(Functions and procedures used in the module body }

{ Support functions and procedures are as }
{ specified in the Connection Establishment)
{ phase and Data Transfer phase }

procedure BuildDATAVtpdu (TcpSeg : TCP_SEG_TYPE,
Length : DATA_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var DataVtpdu : DATA_VTPDU_TYPE)

begin
FillVTPDUhdr(DataVtpdu.VtpduHdr, Security, Precedence);
DataVtpdu.VtpduHdr.VtpduCode := DATA_VTPDU;
CopyUserData(TcpSeg.Data, Vtpdu.Data, Lenght);
ComputeVTLCheckSum(Vtpdu);

end;

procedure BuildEDATAVtpdu (TcpSeg : TCP_SEG_TYPE,
Length : DATA_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var EDataVtpdu:EXPEDITED_DATA_VTPDU_TYPE)

begin
FillVTPDUhdr(EDataVtpdu.VtpduHdr, Security, Precedence);
EDataVtpdu.VtpduHdr.VtpduCode ;= EDATA_VTPDU;
EDataVtpdu.TotalEDlen := TcpSeg.UrgPtr;
CopyUserData(TcpSeg.Data, Vtpdu.Data, Lenght);
ComputeVTLCheckSum(Vtpdu);

www.manaraa.com

218

end;

procedure BuildACKVtpdu (TcpSeg : TCP_SEG_TYPE,
Length : DATA_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var AckVtpdu : EXPEDITED_DATA_VTPDU_TYPE)

begin
FillVTPDUhdr(EDataVtpdu.VtpduHdr, Security, Precedence);
EDataVtpdu.VtpduHdr.VtpduCode := DATA_ACK_VTPDU;
if(IsUrg(TcpSeg) = TRUE) then
begin

AckVtpdu.AckOptionsMask := URG_DATA_LENGTH;
AckVtpdu.AckOptions.UrgentDataSize := TcpSeg.UrgPtr;

end;
ComputeVTLCheckSum(Vtpdu);

end;

trans

to CLOSE
begin

end

(transition due to interactions from IP }

from ACTIVE_STATE to same

when IPtoTCF.ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,
length : SEGMENT_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE TYPE)

provided (IsRst(TcpSeg)
and VerifyTCPChecksum(TcpSeg))

begin

{ A RST segment doesnot carry any data, however it can }
{ can carry Ack Num }

RstReqVtpdu :•» TcfGetVtpdu (VTL_RST_REQ) ;
ExpdtFlag :=» FALSE;

www.manaraa.com

219

MapSeqToVSN (TcpSeg.SeqNum, RstReqVtpdu.SendVSN);
if(IsAck(TcpSeg) = TRUE) then

begin
SetPiggyBackOption(RstReqVtpdu);
MapAckToVACK (TcpSeg.Ackniun, RstReqVtpdu);
MapCredit (TcpSeg.Credit, RstReqVtpdu);

end;
BuildRstReqVtpdu (TcpSeg, length. Security,

Precedence, RstReqVtpdu);
output TcfToClts.SendTCFdataRequest(RstReqVtpdu);

end;

from OPEN to WVTLDC

when IPtoTCF.ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,
length : SEGMENT_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE TYPE)

provided (IsFin(TcpSeg)
and VerifyTCPChecksum(TcpSeg))

(A FIN segment is mapped to a DiscReqVtpdu and state is changed to }
(WVTLDC - Wait For VTL Disconnect Confirm. }
{ A FIN segment may carry normal, URG or PUSHed data)

begin

DiscReqVtpdu ;= TcfGetVtpdu(VTL_DISC_REQ);

if (IsUrg(TcpSeg)) then
begin

ExpdtFlag := TRUE;
SetExpdtOption(DiscReqVtpdu);

end

if (IsPush(TcpSeg)) then SetPushOption(DiscReqVtpdu);

{ Use the Seq Number to get the VSN }
If(TcpSeg.SeqNum > Next_SendSeqNum) then
begin

{ If this condition happens, then some of the)
{ intermediate segments are lost. It not possible }
{ to associate a packet count in the VSN)
VtlSeq.VsnType := OCTET_BINDING;
VtlSeq.OctetBinding := TcpSeqNum;
UpdateSendMapList(VtlSeq, SegLength, ExpdtFlag);
SetlncompleteVsnlndex(PartialVsnlndex);

end;
else if (IsMissingSeg(TcpSeq, Vsn) = TRUE) then

begin

www.manaraa.com

220

{ TCF over COTS interaction point)
UpdateVsnlnfo(TcpSeq, Van, SegLength, ExpdtFlag);
MapInfoMsg = BuildMapInfo(TcpSeq, Vsn);
output TcfToCots.SendTCFMsgRequest(MapInfoMsg);

end;
(Use the Seq Number to get the Expedited Data VSN }
else MapSeqToVSN (TcpSeg.SeqNum, DiscReqVtpdu.SendVSN,

ExpdtFlag);
if(IsAck(TcpSeg) = TRUE) then

begin
SetPiggyBackOption(DiscReqVtpduVtpdu);
MapAckToVACK (TcpSeg.Acknum, DiscReqVtpdu);
MapCredit (TcpSeg.Credit, DiscReqVtpdu);

end;
BuildDiscReqVtpdu (TcpSeg, length. Security,

Precedence, DiscReqVtpdu);
output TcfToClts.SendTCFdataRequest(DiscReqVtpdu);

end;

from WVTLDC to same

when IPtoTCF.ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,
length : SEGMENT_LENGTH_TYPE,
Security : SECURITÏ_TYPE,
Precedence : PRECEDENCE_TYPE)

provided (MOT isRst(TcpSeg)
and VerifyTCPChecksum(TcpSeg))

begin

(In the WVTLDC state, any segment from the TCP is mapped to the
corresponding VTPDU as specified for the data transfer phase)

end;

from WFIN to same

when IPtoTCF,ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,
length : SEGMENT_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE TYPE)

provided (NOT isFin(TcpSeg)
and NOT IsRst(TcpSeg)
and VerifyTCPChecksum(TcpSeg))

begin

{ WFIN - Wait for FIN is reached when a DISCON_REQ VTPDU is received}

www.manaraa.com

221

{ The TCF waits for corresponding FIN to arrive from the local TCP
{ In the WFIN state, any segment from the TCP is mapped to the
{ corresponding VTPDU as specified for the data transfer phase

end;

from WFIN to WLVTLACK

when IPtoTCF.ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,
length ; SEGMENT_LENGTH_TYPE,
Security : SECURITÏ_TYPE,
Precedence : PRECEDENCE_TYPE)

provided (IsFin(TcpSeg)
and VerifyTCPChecksum(TcpSeg))

{ The FIN segment may carry normal, URG or PUSHed data)

begin

DiscReqVtpdu := TcfGetVtpdu(VTL_DISC_REQ);

if (IsUrg(TcpSeg)) then
begin

ExpdtFlag := TRUE;
SetExpdtOption(DiscReqVtpdu);

end

if (IsPush(TcpSeg)) then SetPushOption(DiscReqVtpdu);

{ Use the Seq Number to get the VSN }
If(TcpSeg.SeqNum > Next_SendSeqNum) then
begin

{ If this condition happens, then some of the)
(intermediate segments are lost. It is not }
{ possible to associate a packet count in the
VSN }

VtlSeq.VsnType := OCTET_BINDING;
VtlSeq.OctetBinding := TcpSeqNum;
UpdateSendMapList(VtlSeq, SegLength, ExpdtFlag);
SetlncompleteVsnlndex(PartialVsnlndex);

end;
else if (IsMissingSeg(TcpSeq, Van) = TRUE) then

begin
{ build a map information message and send to peer)
{ TCF over COTS interaction point }
UpdateVsnlnfo(TcpSeq, Vsn, SegLength, ExpdtFlag);
MapInfoMsg = BuildMapInfo(TcpSeq, Vsn);
output TcfToCots.SendTCFMsgRequest(MapInfoMsg);

end;
(Use the Seq Number to get the Expedited Data VSN)

www.manaraa.com

222

MapCredit (TcpSeg.Credit, DiscReqVtpdu);
end;

BuildDiscReqVtpdu (TcpSeg, length. Security,
Precedence, DiscReqVtpdu);

output TcfToClts.SendTCFdataRequest(DiscReqVtpdu);
end;

from WLVTLACK to same

when IPtoTCF.ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TïPE,
length : SEGMENT_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE TYPE)

provided (NOT IsRst(TcpSeg)
and VerifyTCPChecksum(TcpSeg))

begin

{ In the WLVTLACK State, any segment from the TCP is mapped to the
corresponding VTPDU as specified for the data transfer phase }

end;

from WLACK to same

when IPtoTCF.ReceiveTPDUindication (TcpSeg ; TCP_SEGMENT_TYPE,
length ; SEGMENT_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE

provided (NOT IsRst(TcpSeg)
and NOT IslastAck(TcpSeg)
and VerifyTCPChecksum(TcpSeg))

begin

{ The WLACK state is reached when a Discon Cnf VTPDU is received)
{ Any TCP segments are handled as specified in the data transfer }
{ phase }

end;

from WLACK to CLOSE

when IPtoTCF.ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,
length : SEGMENT_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE TYPE

www.manaraa.com

223

from WLACK to CLOSE

when IPtoTCF.ReceiveTPDUindication (TcpSeg : TCP_SEGMENT_TYPE,
length : SEGMENT_LENGTH_TYPE,
Security : SECURITY_TyPE,
Precedence : PRECEDENCE_TYPE)

provided (IsRst(TcpSeg)
or IslastAck(TcpSeg)
and VerifyTCPChecksum(TcpSeg))

begin

{ The ACK corresponding to the FIN segment derived from a Discon)
(Confirm VTPDU causes a state change to closed, and subsequent)
{ disassociation)

end;

transition due to interactions from CLTS ******** }

{ The finite set of VTPDUs that can be received are
1. Reset_Request VTPDU.
2. Reset_Confirm VTPDU
3. Disconnect_Reqpaest VTPDU
4. Disconnect_Confirm VTPDU
5. other VTPDUs as specified in the data

transfer phase.
)

from ACTIVE_STATE to CLOSE

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (IsResetReq(Vtpdu) = TRUE and
VerifyVTLChecksum(Vtpdu) = TRUE)

begin

{ A Reset Request in any active state is mapped to a TCP RST }
{ Since the TCP does not reply to a RST, the Reset Confirm }
{ is generated and trasnmitted }

RstReqVtpdu = Vtpdu;
TcpSeg = TcfGetTcpSeg0 ;
SetTcpFin(TcpSeg) ;

www.manaraa.com

224

if(IsExpdtOption(RstReqVtpdu.DataOptions)) then
begin

MapURGptr(TcpSeg, Vtpdu);
ExpdtFlag := TRUE ;

end;
else ExpdtFlag := FLASE ;

IsPushOption(RstReqVtpdu.DataOptions) then
{Set PSH Flag in TCP Segment);

{ If the required VSN binding is available then :)
if(IsOctetBinding(Vtpdu.SendVSN) = TRUE) then
begin

UpdateRecvMapList(Vtpdu, SegLength, ExpdtFlag);
{ The encoding of the VSN is such that the)
{ Octet binding is present, i.e. does not)
(have to be derived)

MapRecvVSNtoSeq(TcpSeg.SeqNum, Vtpdu.SendVSN);
end;
else
begin

(If Octet binding is missing then use local)
(knowledge of next expected sequence number)
TcpSeg.SeqNum := Next_RecvSeqNum;

end;
If(PiggyBackAck(Vtpdu) = TRUE and
(IsOctetBinding(Vtpdu.NextRecvVSN) = TRUE)) then

begin
MapVACKtoAck(TcpSeg.AckNum, Vtpdu.NextRecvVSN);
RecordVACK(Vtpdu.NextRecvVSN,

PreviousNextRecvVSN);
MapCreditToTcp (TcpSeg.Credit, Vtpdu);
RecordCredit (Vtpdu, PreviousCreditValue);

end
else (No piggybacked Ack Num }

begin
MapVACKtoAck(TcpSeg.AckNum,

PreviousNextRecvVSN);
MapCreditToTcp(TcpSeg.Credit,

PreviousCreditValue);
end

BuildTcpSeg (TcpSeg, Vtpdu);
output TcfToIp.SendTPDUrequest(TcpSeg,
NORMAL_SECURITY, DEFAULT_PRECEDENCE);

{ Build a Disconnect Confirm VTPDu)

BuildDiscCnfVtpdu (DiscCnfVtpdu);
output TcfToClts.SendTCFdataRequest(DiscCnfVtpdu);

www.manaraa.com

225

from ACTIVE_STATE to CLOSE

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TÏPE)

provided (IsResetCnf (Vtpdu) = TRUE and
VerifyVTLChecksiun (Vtpdu) = TRUE)

begin

{ A Reset Confirm in any active state is used to close the }
{ TCF association. Nothing is output }

end;

from OPEN to WFIN

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (IsDisconReq (Vtpdu) = TRUE and
VerifyVTLChecksum(Vtpdu) = TRUE)

begin

{ A Disconnect Request results in generation of a FIN segment)
{ and state is changed to WFIN - Wait for corresponding FIN }

RstReqVtpdu = Vtpdu;
TcpSeg =• TcfGetTcpSeg () ;
SetTcpFin(TcpSeg);

if (IsExpdtOption(RstReqVtpdu.DataOptions)) then
begin

MapURGptr(TcpSeg, Vtpdu);
ExpdtFlag := TRUE ;

end;
else ExpdtFlag ;= FALSE ;

if(IsPushOption(RstReqVtpdu.DataOptions)) then
begin

{Set PSH Flag in TCP Segment);
end;

{ If the required VSN binding is available then :}
if(IsOctetBinding(Vtpdu.SendVSN) = TRUE) then
begin

UpdateRecvMapList(Vtpdu, SegLength, ExpdtFlag);
{ The encoding of the VSN is such that the)
{ Octet binding is present, i.e. does not)

www.manaraa.com

226

(have to be derived)
MapRecvVSNtoSeq(TcpSeg.SeqNuin, Vtpdu.SendVSN) ;

If(PiggyBackAck(Vtpdu) = TRUE and
(IsOctetBinding(Vtpdu.NextRecvVSN) = TRUE)) then
begin

MapVACKtoAck(TcpSeg.AckNum, Vtpdu.NextRecvVSN)
RecordVACK(Vtpdu.NextRecvVSN,

PreviousNextRecvVSN);
MapCreditToTcp (TcpSeg.Credit, Vtpdu);
RecordCredit (Vtpdu, PreviousCreditValue);

end
else
begin

MapVACKtoAck(TcpSeg.AckNum,
PreviousNextRecvVSN);

MapCreditToTcp(TcpSeg.Credit,
PreviousCreditValue);

end

BuildTcpSeg (TcpSeg, Vtpdu);
output TcfToIp.SendTPDUrecjuest (TcpSeg,
NORMAL_SECURITY, DEFAULT_PRECEDENCE);

end; { if OctetBinding)
else
begin

if (BufferVtpduPolicy() = TRUE) then
{ Buffer VTPDUs with incomplete VSNs }

BufferVtpdus(Vtpdu);
else { discard the VTPDU)

end;

end;

from WFIN to same

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (NOT IsReset(Vtpdu) = TRUE and
VerifyVTLChecksum(Vtpdu) = TRUE)

begin

{ In WFIN state, any received VTPDUs are handled as specified)
(in data tansfer phase }

end;

from WVTLDC to WLACK

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

www.manaraa.com

227

provided (IsDlsconCnf (Vtpdu) = TRUE and
VerifyVTLChecksuin(Vtpdu) = TRUE)

begin

{ A Disconnect Confirm results in generation of a FIN segment)
{ and state is changed to WLACK - Wait for corresponding ACK)

RstCnfVtpdu = Vtpdu;
TcpSeg = TcfGetTcpSegO ;
SetTcpFin(TcpSeg);

if (IsExpdtOption(RstReqVtpdu.DataOptions)) then
begin

MapURGptr(TcpSeg, Vtpdu);
ExpdtFlag := TRUE ;

end;
else ExpdtFlag := FALSE ;

if(IsPushOption(RstReqVtpdu.DataOptions)) then
begin

{Set PSH Flag in TCP Segment);
end;

{ If the required VSN binding is available then :)
if(IsOctetBinding(Vtpdu.SendVSN) = TRUE) then
begin

UpdateRecvMapList(Vtpdu, SegLength, ExpdtFlag);
{ The encoding of the VSN is such that the)
{ Octet binding is present, i.e. does not)
(have to be derived)

MapRecvVSNtoSeq(TcpSeg.SeqNum, Vtpdu.SendVSN);
If(PiggyBackAck(Vtpdu) = TRUE and
(IsOctetBinding(Vtpdu.NextRecvVSN) = TRUE)) then
begin

MapVACKtoAck(TcpSeg.AckNum, Vtpdu.NextRecvVSN);
RecordVACK(Vtpdu.NextRecvVSN,

PreviousNextRecvVSN);
MapCreditToTcp (TcpSeg.Credit, Vtpdu);
RecordCredit (Vtpdu, PreviousCreditValue);

end
else
begin

MapVACKtoAck(TcpSeg.AckNum,
PreviousNextRecvVSN);

MapCreditToTcp(TcpSeg.Credit,
PreviousCreditValue);

end

BuildTcpSeg (TcpSeg, Vtpdu);

www.manaraa.com

228

output TcfToIp.SendTPDUrequest(TcpSeg,
NORMAL_SECURITY, DEFAULT_PRECEDENCE) ;

end; { if OotetBinding)
else
begin

if (BufferVtpduPolicy0 = TRUE) then
(Buffer VTPDUs with incomplete VSNs)

BufferVtpdus(Vtpdu);
else { discard the VTPDU)

end;

end;

from WLACK to same

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (MOT IsReset (Vtpdu) and
VerifyVTLChecksum(Vtpdu) = TRUE)

begin

{ In WLACK state, any received VTPDUs are handled as specified)
{ in data tansfer phase }

end;

from WLVTLACK to CLOSE

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (IsReset(Vtpdu) = TRUE
OR IsLastVtlAck(Vtpdu) = TRUE
and VerifyVTLChecksum(Vtpdu) = TRUE)

begin

{ An Ack corresponding to a previously sent Disconnect Confirm }
{ results in the corresponding TCP ACK and a change to CLOSE)

TcpSeg = TcfGetTcpSegO ;
MapVSNtoSeq(TcpSeg.SeqNum, Vtpdu.SendVSN);
MapVACKtoAck(TcpSeg.AckNum, Vtpdu.NextRecvVSN);
MapCreditToTcp (TcpSeg.Credit, Vtpdu);
BuildTcpSeg (TcpSeg, vtpdu);
output TcfToIp.SendTPDUrequest(TcpSeg, NORMAL_SECURITY

DEFAULT_PRECEDENCE);

www.manaraa.com

229

end;

end; { of TCP TCF body)

TP4_TCF Specification For Connection Termination

type

DISC_DATA_OPTIONS_TYPE =
record

OptionsFlag : ONE_BYTE;
PiggyBackAck : PIGGY_BACK_ACK_TYPE;
TotalEDlen : DATA LENGTH TYPE;

end;

{ The encoding of the Options Flag is as :)

PIGGYBACK_ACK = 0x01;
EXPDT_DATA = 0x02;
PUSH DATA = 0x04;

DISCONNECT_VTPDU_TYPE =
record

VtpduHdr
SendVSN
Reason
DataOptions
Data
Checksum

end;

VTPDU_HEADER_TYPE;
VSN_TYPE;
TWO_BYTES;
DISC_DATA_OPTIONS_TYPE
DATA_TYPE;
TWO BYTES;

RESET_REQUEST_VTPDU_TYPE : DISCONNECT_TPDU_TYPE;
RESET_CONFIRM_VTPDU_TYPE : DISCONNECT_TPDU_TYPE;"

DISCONNECT_REQUEST_VTPDU_TYPE : DISCONNECT_TPDU_TYPE;
DISCONNECT CONFIRM VTPDU TYPE : DISCONNECT TPDU TYPE;

var

Datavtpdu : DATA_VTPDU_TYPE;
DataAckVtpdu : DATA_ACK_VTPDU_TYPE;

www.manaraa.com

230

ExpdtDataVtpdu
ExpdtAckVtpdu

RstReqVtpdu
RstCnfVtpdu
DiscReqVtpdu
DiscCnfVtpdu

Tp4Data
Tp4EData
Tp4AK
Tp4EA

MappinglnfoMsg
SendLi stElement
RecvListElement

EXPEDITED_DATA_VTPDU_TYPE;
EXPEDITED_ACK_VTPDU_TYPE;

RESET_REQUEST_VTPDU_TYPE;
RESET_CONFIRM_VTPDU_TYPE;
DISCONNECT_REQUEST_VTPDU_TYPE;
DISCONNECT_CONFIRM_VTPDU_TYPE;

ISO_TP 4_DT_TYPE;
I SO_TP 4_ED_TYPE ;
ISO_TP 4_AK_TYPE ;
IS0_TP4_EA_TYPE;

TCF_MSG_TYPE;
SEND_MAP_TABLE_ELEMENT_TYPE;
RECV MAP TABLE ELEMENT TYPE;

(Channel Definitions ggj; communication with the TCP Module 1

Channel IP_Access_Point (Froni_IP, To_IP) ;

by From_IP : ReceiveTPDUindication (Tp4Tpdu : TP4_TPDU_TYPE);

by To_IP : SendTPDUrequest (Tp4Tpdu : TP4_TPDU_TYPE);

ReceiveTPDUrequest ;

Channel CLTS_Access_Point (Fron_TCF, To_TCF) ;

by From_TCF : ReceiveTCFdataRequest;
SendTCFdataRequest (Vtpdu : VTPDU_TYPE);

by To_TCF : ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE);

Channel C0TS_Acce33_Point (From_TCF, To_TCF) ;

by From_TCF : ReceiveTCFMsgRequest;
SendTCFMsgRequest (TcfMsg : TCF_MESSAGE_TYPE);

by To_TCF : ReceiveTCFMsglndication (TcfMsg : TCF_MESSAGE_TYPE)

(Module Header Definitions)

Module InternetProtocol_Type process ;

www.manaraa.com

231

Ip IPtoTCF ; IP_Acces3_Point (From_IP) ;

end;

Module TCF_Type activity
(End_Point_Id : END_POINT_TYPE) { parameter to TCF)

ip { list of interaction points)
TcfToIp : IP_Access_Point (To_IP) individual queue;
TcfToClts : CLTS_Access_Point (From_TCF) individual queue ;
TcfToCot3 ; C0TS_Acce3S_Point (From_TCF) individual queue ;

end;

Module CLTS_Type process;

ip CltsToTcf : CLTS_ACCESS_POINT (To_TCF)

end;

Module COTS_Type process;

ip CotsToTcf : COTS_ACCESS_POINT (To_TCF)

end;

i Body Pefinitiona for Modules I

Body InternetProtocol_Body for InternetProtocol_Type; external;

Body Clts_Body for CLTS_Type; external;

Body Cots_Body for COTS_Type; external;

Body TCF_Body for TCF_Type

state

ANY : (CLOSE, OPEN);

ACnVE_STATE: (OPEN);

var

www.manaraa.com

232

{ Functions and procedures used in the module body)

{ Suppurt functions and proceduers are as }
{ specified in the Connection Establishment }
{ phase and Data Transfer phase)

procedure BuildDATAVtpdu (Tp4Data : IS0_TP4_DT_TYPE,,
Length : DATA_LENGTH_TÏPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var DataVtpdu : DATA_VTPDU_TYPE)

begin
FillVTPDUhdr(DataVtpdu.VtpduHdr, Security, Precedence);
DataVtpdu.VtpduHdr.VtpduCode := DATA_VTPDU;
CopyUserData(Tp4Data.Data, Vtpdu.Data, Lenght);
ComputeVTLCheckSum(Vtpdu);

end;

procedure BuildEDATAVtpdu (Tp4EData : IS0_TP4_ED_TYPE,
Length : DATA_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var EDataVtpdu : EXPEDITED_DATA_VTPDU_TYPE)

begin
FillVTPDUhdr(EDataVtpdu.VtpduHdr, Security, Precedence);
EDataVtpdu.VtpduHdr.VtpduCode := EDATA_VTPDU;
EDataVtpdu.TotalEDlen ;= Length;
CopyUserData(TcpSeg.Data, Vtpdu.Data, Lenght);
ComputeVTLCheckSum(Vtpdu);

end;

procedure BuildACKVtpdu (Tp4Ack : IS0_TP4_AK_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var Ackvtpdu : EXPEDITED_DATA_VTPDU_TYPE)

begin
FillVTPDUhdr(EDataVtpdu.VtpduHdr, Security, Precedence);
EDataVtpdu.VtpduHdr.VtpduCode := DATA_ACK_VTPDU;
(If FCC information is present in the Tp4Ack, then fill in the
optional fields of the AckVtpdu)

ComputeVTLCheckSum(Vtpdu);

www.manaraa.com

233

end;

procedure BuildEACKVtpdu (Tp4EAck : IS0_TP4_EA_TYPE,
Length : DATA_LENGTH_TYPE,
Security : SECURITY_TYPE,
Precedence : PRECEDENCE_TYPE,
var Ackvtpdu : EXPEDITED_DATA_VTPDU_TYPE)

begin
FillVTPDUhdr(EDataVtpdu.VtpduHdr, Security, Precedence);
EDataVtpdu.VtpduHdr.VtpduCode := EDATA_ACK_VTPDU;
{ Mark Expedited Ack option in the ACK VTPDU }
ComputeVTLCheckSum(Vtpdu);

end;

trans

to CLOSE
begin

end

{ transition due to Interactions from IP)

{ A TP4 TPDU can carry the following information during the }
(connection termination phase

1. DR
2. DC

>

from OPEN to same

when IPtoTCF.ReceiveTPDUindication (Tp4Tpdu : IS0_TP4_TPDU_TYPE)

provided (IsDr(Tp4Tpdu) and VerifyTp4Checksum(Tp4Tpdu))
begin

RstReqVtpdu ;= TcfGetVtpdu(VTL_RST_CNF);
{ Since the DR VTPDU does not carry a sequence number)
{ The VSN in the RstReq is generated from localy kept }
(information. A reason code if used is also included)
{ vtpdu)

VtlSeq.VsnType := PACKET_BINDING BIT OR
OCTET BINDING;

www.manaraa.com

234

VtlSeq.PacketBinding :=• Next_SendPacketNum;
VtlSeq.OctetBinding :» NextSendSeqNum;
SetVsn(RstReqVtpdu, VtlSeq);
BuildRstVtpdu (T4Tpdu, RstReqVtpdu);
output TcfToClts.SendTCFdataRequest(RstReqVtpdu) ;

end;

from OPEN to CLOSE

when IPtoTCF.ReceiveTPDUindication (Tp4Tpdu : IS0_TP4_TPDU_TYPE)

provided (IsDc (Tp4Tpdu) and VerifyTp4Checksum(Tp4Tpdu))
begin

RstCnfVtpdu := TcfGetVtpdu(VTL_RST_REQ);
{ Since the DC VTPDU does not carry a sequence number }
{ The VSN in the RstCnf is generated from localy kept)
{ information }

VtlSeq.VsnType ;= PACKET_BINDXNG BIT OR
OCTET_BINDING;

VtlSeq.PacketBinding := Next_SendPacketNum;
VtlSeq.OctetBinding := NextSendSeqNum;
SetVsn(RstReqVtpdu, VtlSeq);
BuildRstReqVtpdu (T4Tpdu, RstCnfVtpdu);
output TcfToClts.SendTCFdataRequest(RstCnfVtpdu);

end;

******* transition due to interactions from CLTS ********)

{ The finite set of VTPDUs that can be received during
connection termination are :

1. Reset_Request VTPDU.
2. Reset_Confirm VTPDU.
3. Disconnect_Recjuest VTPDU
4. VTPUDs used for Data Transfer

from OPEN to same

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (IsVTLRstReq(Vtpdu) = TRUE and
VerifyVTLChecksum(Vtpdu) = TRUE)

begin

{ A ResetReq VTPDU is mapped to a DR TPDU)
{ If the VTPDU carries more than 64 bytes }
(of data, then the data is discarded. A)

www.manaraa.com

235

{ reason code if present is used as such)

Tp4Dr ;= TcfGetTp4Tpdu(DR);
BuildDrTpdu(Tp4Dr, Vtpdu);
output TcfToIp.SendTPDUrequest(Tp4Dr);

end;

from OPEN to CLOSE

when CltsToTcf.ReceiveTCFdatalndication (Vtpdu : VTPDU_TYPE)

provided (IsVTLRstCnf (Vtpdu) = TRUE and
VerifyVTLChecksum(Vtpdu) = TRUE)

begin

{ A ResetCnf VTPDU is mapped to a DC TPDU }

Tp4Dc := TcfGetTp4Tpdu(DC);
BuildDrTpdu(Tp4Dc, Vtpdu);
output TcfToIp.SendTPDUrequest(Tp4Dc);

end;

end; (end of TP4 TCF body)

	1990
	Transport interoperability using a virtual transport layer
	Ratinder Paul Singh Ahuja
	Recommended Citation

	tmp.1415998177.pdf.0_mcH

