

Stephan Kautsch, ABB Network Management Forum, October 9th 2013

Feed-in management of renewables Basis for predictive network control of distribution grids

© ABB Network Management Forum October 14, 2013 | Slide 1

Predictive network control Agenda

- Background
 - Use cases for feed-in management
 - Measures to avoid bottlenecks in the grid
- Experiences gained in Smart Grids projects
 - MeRegio and RiesLing
- Predictive network control
 - Solution concept
 - Phased introduction
- Summary
- Outlook

Background Use cases

 The Transmission System Operator (TSO) detects power surplus in his control area, not able to balance this using his possibilities.

→ Feed-in management on behalf of the TSO

- The Distribution System Operator (DSO) detects ideally some hours in advance a bottleneck in his grid, based on too high distributed generation.
 - \rightarrow Feed-in management on its own behalf

Background Measures to avoid bottlenecks in the grid

- Grid related measures (Smart Grids)
 - Voltage regulation
 - Shifting normal open points
- Reduction of feed-in of distributed generation
- Market related measures (Smart Markets)
 - Demand Side Management (DSM)
 - Grid capacity management

MeRegio - Minimum emission region Optimal local generation and consumption

Figure: In Freiamt exist 13.200 kW of renewable energy resources, generating 160% more than the required electricity

Z STAROOR

Supported by:

Federal Ministry of Economics and Technology

on the basis of a decision by the German Bundestag

Objectives

- Create a market place connecting 1,000 private and commercial energy customers with centralized and decentralized energy providers
- Minimize overall CO₂ emissions in a region

Customers & partners

EnBW, IBM, SAP, Systemplan, KIT

ABB's response – Smart grid scope

- Installation and operation of remote control and measurement equipment in secondary substations
- Enhanced SCADA system utilizing load and generation forecasts for predictive bottleneck and future voltage level calculations

Benefits

 Controllable local generation and consumption to allow highly efficient use of existing infrastructure and least effort for grid extensions

Smart Grids project: RiesLing Modular, intelligent secondary substation automation

Figure: Smart secondary substation in Wechingen

Objectives

 Development and implementation of monitoring and automation equipment in secondary substations for safe, reliable and economical operation of distribution grids

Customers & partners

EnBW ODR, EnBW REG, T-Systems

ABB's response – Smart grid scope

- ABB remote control and measuring equipment for power monitoring, voltage control and fault detection
- Predictive network control
- Secure, managed communication between station and control room based on Deutsche Telekom technology

Benefits

 Modular, scalable solutions for secure, economical and predictive distribution grid operation

Predictive network control Positioning

- Predictive network control as link between
 - Online network control
 - Long term grid expansion planning

Predictive network control Phase 1: Introduction of feed-in management

- DER Distributed Energy Resource
- TSO Transmission System Operator
- DSO Distribution System Operator
- EFR Europäische Funkrundsteuerung (Radio control)
- TRA Tonfrequenz Rundsteuer Anlage (Ribble control)

.

Predictive network control Phase 2: Integration with SAP for settlement

Predictive network control Phase 3: Introduction of Network Security Management

Predictive network control Phase 3: Introduction of Network Security Management

Network Security Management Data management

Summary

- Phased introduction depending on implementation of use cases
- Predictive network control to detect bottlenecks in the grid in an early stage
 - Sufficient time to use grid related measures
 - Pre-announcement >24h of feed-in power reduction measures
 - Expandable for market related measures like DSM

Outlook

Power and productivity

