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PREFACE

This volume contains the proceedings of the Third International Alloy Conference (IAC-3)
that was held in Estoril Sol, Lisbon, Portugal, June 3D-July 5, 2002. Like its predecessors, and
anticipated for those planned for the future, the conference brought together experimental and
theoretical/computational scienti sts involved in the study of alloys taken to mean (solid)
materials composed of more than one chemical species.

The study of alloys involves two main but interrelated areas of science: First, the
determination of the electronic states in a material and the effect of these states on properties,
and second the thermodynamic behavior of the materials as it arises in the study of phase
transformation and phase evolution in time. Properti es like formation energy , electronic
transport, magnetism, and mechanical behavior are intimately tied into the nature of electronic
states. Kinetics of transformation , phase evolution and aging are the subject of thermodynamics.
Both kinds of properties, however, are interconnected in that information extracted from one
study is often applicable to the other.

The papers presented in the conference span the spectrum of activity in the science of
alloys. The theoretical presentations ranged in content from fundament al studies of electronic
structure, to first-principles calculations of phase diagrams, to the effects of charge transfer, to
the temperature dependence of short-range order parameters. They encompassed the study of
mechanical properties, the properties of dislocations, of phase evolution, and computer
simulations . Experimental studies were presented based on a variety of state of the art
experimental techniques, from TEM to synchrotron diffraction . The phenomena studied varied
from the precipitation of nitrides in steel, to the wetting of interfaces between two different
crystal structures, to the ordering of vacancies in carbides. And the materials whose properties
were measured ranged from Transition metals, to the Lanthanides, to the Actinide series of
compounds and alloys.

The third conference in the series confirmed, as if there were any doubt, the richness and
complex ity of phenomena that is embodied in the physics of alloys. An incredible amount of
effort combining experimental and theoretical aspects is continuously expended in the attempt to
understand this physics and it in a productive way in engineering applications . This intensive
effort points toward the importance of understanding and predicting alloy properties but also to
the challenging nature of the task.

There is good reason for hoping that significant progress is in the making, however. Recent
developmen ts in the theory of studying correlations in fluctuating systems have emerge with a
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fresh air of unifying power that encompasses both alloys and the Coulomb interaction in solids.
We are looking forward to the next International Alloy Conference to hear more about these
developments and to record them for the scientific community . Interface between ab initio and
phenomenological modeling of alloy properties , with predictive tools to help the design of new
materials with engineering requirements is another topic that is taking momentum and will
certainly be discussed more at the next lAC.

In organizing the IAC-3, we are grateful to our sponsors both for financial assistance and
for organizational aid. The U. S. Army Research Office Physics Division, the Material s
Research Institute at Lawrence Livermore National Laboratory, the U.S. Office of Naval
Research Materials Division , and the United Engineering Foundation , our main and official
sponsors were forthcoming with generous financial contributions. The UEF also provided the
logistics and the administrative components of bringing together a significant number of alloy
scientists to a magnificent place in Portugal. As organizers we can only express our deep
appreciation to them for these efforts.

At last but certainly not least, the staff at Kluwer/Plenum contributed their expertise along
with a great exercise of patience in the production of this volume. Because of their efforts the
volumes in the series now begin to take the form of a unified work, a feature that will be
augmented, as more volumes become available. We thank them and hope that well continue our
fruitful collaboration for a long time into the future.

P. E. A. Turchi
A. Gonis
K. Rajan
A. Meike
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PRECIPITATION OF DISORDERED Ni-X SOLID SOLUTION PHASES IN OFF
STOICHIOMETRIC ORDERED Ni3X ALLOYS

Y. Mal , J. Joshi - and A.J. Ardell!

!Department of Materials Science and Engineering
University of California, Los Angeles, CA 90095- 1595, USA

2Aaj Accumulators Pvt. Ltd., W-54 M.l.D .C.
Shiroli. Tal. Hatkanagale, India 416 122

INTRODUCTION

The coarsening beha vior of coherent y precipitates (Ni-X solid solution, X = AI, Ge or
Ga) in a matrix of the off-stoichiometric y' phase (Ni3X) is currently under investigation in
binary Ni-Al, Ni-Ge and Ni-Ga alloys. Of parti cular intere st are the evo lution of the pre
cipitate micro structure (morphology and spati al correlations), the scaling behavior of the
particle size distributions and the kinetics of coarsening and its dependence on volume
fraction . Since the compositions and temperatures of greatest interest are very close to the
(y + y')/y' phase boundary, hereafter called the y solvus, we need to locate it as accurately as
possible in each alloy. The y solvus is retrograde in binary Ni-AI, Ni-Ge and possibly Ni
Ga alloys, but is not known with precision for any of the 3 alloys . In Ni-A I alloys there is a
minimum retrog rade solubility of - 22 at. % somewhere between 1000 and 1200 °C, but
there is considerable scatter in the published datat -s, as shown in Fig .l . The uncertainty is
unacceptably large for our purposes.

Depending on composition, either isothermal aging or continuous cooling of hy
postoichiometric Ni3X prod uces precipitates of the y phase . Cornwell and Purdy> stated
that the y precipitates in binary Ni-AI alloys were plate-shaped and coherent. However, Liu
et al.6 reported that the prec ipitate particles in a quaternary alloy were initi ally spheric al
and evolved with aging time to cuboidal shapes , becoming plate-like only at longer aging
times. In the reverse system, i.e. y' precipitates in y matrix, the y' precipitates evolve in
shape from spheres to cuboids to nearly perfe ct cubes", and can become concave cuboids
(cuboids with concave interfaces) at large sizes if the volume fraction is small enough «
0.04 or so)8.9. Plate-shap ed y' precipitates usually form as a result of coa lescence? One
immediate question of interest is why the morphological evolution of y' in y should be dif
ferent from that of y in y'. After all, the interfacial free energy is independent of which is
the minority or majority phase , and so are the elastic self- and interaction energies. To be
sure, the lattice and elastic-constant mismatch es are reversed in sign, but they are identical

3



in magnitude. Since elastic energies are proportional to the square of the lattice and elastic
constant mismatches, their signs should not matter.

Other important issues involve compar isons of the kinetics of coarsening of the two
phases in each other, and how the coarsening kinetics of y in y' depend on volume fraction;
the dependence is anomalous for the reverse system tv. In this paper we present some of the
preliminary results of our researc h. Most of the results to date are on Ni-AI alloys, and the
majority of the paper concentrates on these. Nevertheless some information has also been
obtained on precip itation in Ni3Ge and Ni3Ga alloys, and these results are also briefl y
mentioned.

1400

1300

1200

1100

U Y+ y'
e.... 1000
I-

900

800

700

600
0.21 0.22 0.23 0.24 0.25

XA1

Figure 1. Illust rating the uncert aint y in the precise posi tion of the y so lvus (the bou ndary between the y + y'
and y' region s in the Ni-Al phase dia gram ). The curves are drawn to illustrate the extremes of the range of
data reported in the literature. Data of: • Janssen ' ; .. Verhoeven et a1.2; • Jia (c ited by Okamoto- ); • Wata
nabe et a1.4.

EXPE RIMENTAL PROCEDURES

Binary Ni-AI alloys containing 22.0, 22.2, 22.4, 22.6, 22.8 and 23.0 at. % AI were
purchased from the Alloy Preparation Facility of the Ames Laboratory, Ames, IA. The al
loys were arc-melted and chill cast into water-cooled Cu crucibles and delivered to us in
the form of rods appro ximately 12 mm in diameter. Weight losses durin g meltin g and
casting of the alloys were at most 0.025%, indicating that the compositions were indeed the
compositions of the alloys received. The alloys were annealed in a vacuum of 3 x 10-5 torr
at 1200 DC for up to 72 h in order to improve homogeneity. The compositions of the alloys
were further verified using energy-dispersive x-ray spectro scopy (EDS) and inducti vely
coupled plasma spectroscopy. We believe that the compositions reported are accurate to
within ± 0.03 at. %.

Binary Ni-Ge alloys containing 22.0, 22.5, and 23.0 at. % Ge and binary Ni-Ga alloys
containin g 22.0, 22.5, and 23.0 at. % Ga were also purcha sed from the Ames Laboratory ,
where they were annea led in vacuum at 1000 DC for 100 h prior to shipping. Weight losses
during melting and casting of these alloys were small enough to be considered negligib le,
so the reported compositions are taken as the true compo sitions.

Slices were made using electric-spark discharge machining, and after polishing were
"solution treated" in an inert argon atmosphere at 1100 ± I DC for 1.5 h (Ni-AI alloys) or
1000 ± I DC for 0.75 h (Ni-Ge and Ni-Ga alloys) and quenched into refrigerated brine.
These slices were aged at various temp eratures and times in a vertica l tube furnace, in
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which the temperature fluctuated by less than ±0.5 "C. Specimens were cored from the
aged slices and electrolytically polished for examination by transmission electron micros
copy (TEM) using a lEaL model 100CX TEMSCAN operating at 100 kY.

Particle sizes and shapes were evaluated from dark-field images taken using a {IOO}
superlattice reflection from thin foils in [00 I] orientation. Other diffracting conditions were
tried, but this one produced the best contrast. The sizes and shapes of the y precipitates
were evaluated using image-analysis software. For non-equiaxed y precipitates, the "ra
dius" , r, was defined as (a + b + c + d)/8, where a, b, C and d are the sides of the circum
scribed polygon.

RESULTS AND DISCUSSION

Dissolution Experiments

Accurate knowledge of the y solvus is a requirement for determining how the coars
ening kinetics ofy in y' depend on volume fraction. Simply solution-treating the alloys and
aging them for various times within the expected 2-phase region of the phase diagram
proved to be insufficient to establish the y solvus. This is exemplified in Fig . 2, which
shows the results of two experiments on aging the 22.6 % alloy, one at 650 °C for 240 h
and the other at 700°C for 120 h. Precip itates can be seen clearly in Fig. 2a, but none are
present in Fig. 2b. These results would ordinarily lead us to conclude that the solvus tem
perature for the alloy containing 22 .6 % Al is between 650 and 700 °C. However, if the
22.6 % Al alloy is aged first at 650 DC to produce small coherent y precipitates, and subse
quently re-aged at successively higher temperatures, we obtain completely different results .
These are exemplified by the micrographs in Fig. 3. Here we observe y precipitates in
specimens re-aged to temperatures as high as 755 DC (Fig . 3c), and it is evident that com
plete dissolution of the y precipitates is observed only after re-aging at 765 °C (Fig . 3d) .
The y solvus for the alloy containing 22.6 % AI clearl y lies between 755 and 765 DC, which
is more than 50°C higher than indicated by the microstructures shown in Fig. 2.

(a)

.'

:

:
• 200 nm •

(b)

Figure 2. The microstructures in the alloy containing 22.6 % Al after solut ion-tre ating and aging under the
following conditions: (a) 650 °C for 240 h (b) 700 °C for 120 h.

The reason that dissolution experiments are needed to accurately determine the y
solvus is simply that nucleation of the y phase from supersaturated y' is much slower than
nucleation of y' from supersaturated yJ I. The principle involved is simple. There is a large
energetic barrier to nucleation of the y phase but no barrier to their dissolution. In addition
to dissolution experiments, additional work was done to determine the concentration of Al
in the matrix of the alloys containing 22.0 and 22.2 % AI, wherein dendrites of the y phase
were never eliminated by annealingu. This work produced the y solvus shown in Fig. 4.
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Figure 3. The microstructures in the alloy containing 22.6 % AI after solution-treating and aging under the
following conditions: (a) 650 °C for 96 h plus 730 °C for 1.5 h; (b) 650 °C for 144 h plus 740 °C for 27 h; (c)
650 °C for 240 h plus 755 °C for 18 h; (d) 650 °C for 240 h plus 765 °C for 18 h.
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Figure 4. The y solvus (solid curve) determined from the dissolution experiments of Ma et al.12. The symbol
lC represents the solvus resulting from the dissolution experiments. The other plotting symbols are identical to
those in Fig. I.

Coa rsening kinetics

Representative precipitate microstructu res during precipitation of the y phase in the
22.0 at. % AI alloy aged at 700 °C are shown in Fig. 5. The very small number of y pre
cipitates seen after aging for 8 h is indicative of the difficulty of their nucleation . The mor
phology of the y precipitates evolves from spherical to cuboida l even when they are very
small « 50 nrn in diameter), as evidenced by the presence of flat interfaces after only 48 h
of aging; the flat interfaces are parallel to (00 I). Many plate-shaped precipitates are evident
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after 96 h of aging despite their small size. It is not evide nt at this stage of the researc h
whether the plate shape results from the breaking of equiaxe d symmetry, as predicted theo
retica llyl -, or whether adjacent y precipitates coalesce readily , since there is no issue in
volving anti-phase ordering relationships, as there is for the coalescence of y' precipitates '<.
Measurem ents of the sizes of the precipitates in Fig . 5 and plotting them according to the
expected rate law for coarsening15,16 i.e. (r)3 'X kt , where k is the rate constant for coarsen
ing and t is the aging time, leads to the results shown in Fig. 6. The linearity is quite good,
indicating that the y precip itates evidently grow by diffusion -contro lled coarsen ing.

~.' ,. .. . ...~. :...,

8 24 48

.;, ., .... ...,
"

96

Figure 5. Evolution of precipitates in the 22.0 at % AI alloy at 700 °C. The number under each figure indi
cates the aging time in h.
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Figur e 6. The kinetics of coarsening at 700 °C of the y precipita tes in the y' matrix of the 22.0 % AI alloy,
plotted as the cube of the average radius, (r), vs. aging time, t.

Figure 7 illustrates the relative rates of precipitation of y in y' and y' in y observed in a
dendritic region of the alloy containing 22.0 % Al aged for 48 h at 700°C. It is quite evi
dent that the precipi tation of y in y' is much slower than the precipi tation of y' in y. This is
most likely due to the faster coarsening kinetics of y' in y, but the slower nucleation kinetics
ofy in y' undoubtedly contribute as well. According to Calderon et al.!", k can be expressed
by the equation
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8DaVm{3
k= ,

" ( )29Gma Xf3e-Xae

(1)

where D is the coefficient of diffusion of solute in the matrix, Vmf3 is the average volume
per atomic site in the precipitate (~) phase, Xae is the equilibrium solubility of the solute in
the matrix (a) phase, X{3e is the equilibrium solubility of the solute in the dispersed phase
and G;~a is the second derivative of the molar free energy of mixing of the matrix phase
with respect to composition, evaluated at Xae.

\...
.' .- . '\- ...!:'" : ~ " . . '

t,-:*>:: _"
. _ • • 0 v
~:'". .. \'

Figure 7. A dark- field TEM micrograph showing the precipitation of y (dark) in y' (bright) and y' (bright) in y
(dark) in a dendritic region of the 22.0 at % Al alloy aged at 700 °C for 48 h.

During coarsening it is necessary not only to tran sport solute atoms to growing pre
cipitates and awa y from shrinking ones, but also to transport solvent atoms away from
growing precipitates and towards shrinking ones . Assuming that the concentration of va
cancies is in equilibrium everywhere during diffu sion, it is more appropriate to describe
diffu sion in terms of the chemical diffusion coefficient, D , which can be written as

(2)

where D~ and D; are the tracer diffusion coefficients of the solvent (A) and solute (B) a t
oms in the matrix with solute concentration X , R is the gas constant, T is the absolute tem
perature and Sis Manning's vacancy flow factor! s, given by the general equation

(3)

where .fo is the correlation coefficient. Applying equations (2) and (3) separately to the y
and y' phases, and substituting them into eq. (1) allows us to express the ratio of the rate
constants for the coarsening of y' in y and vice versa as
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where the subscripts refer to the phase , which acts as the matrix (e.g. ky is the rate constant
for coarsening ofy' precipitates in the y phase of equilibrium composition X ye)' The molar
volumes of solute have been taken as equal in eq. (4) .

To compare kylky' calcul ated using eq. (4) with experim ental measurement, we ana
lyze data on coarsening at 700 °C. The calculations make use of diffusion coefficients es
timated from the sources summarized in Table I. For the calcul ation of kylk

r
'we used fo =

0.781 for diffusi on in the y phase andfo = 0.689 for diffu sion in the y' phase 9. The chemi
cal diffusion coeffi cients are 1.016 x 10-18 m-/s and 8.030 x 10-2l m2/s for the y and y'
phases. respe ctively. Exper imentally, the slope of the strai ght line fitted to the data in Fig. 6
yields the value ky' = 8.49 x 10-3 nrnr/s. From analysis of data on the coarsening of y' pre
cipitates-? at 700 "C we obtain ky = 4.23 x 10-2 nm-/s. The ratio kylky' from experiment is
thus "'5; the value calculated theoretically is 77. Possible reasons for the discrepancy are
not evident, but the assumed value of DNi.y ~ D~ll.l10 in Table I is an obvious candidate.

Table 1. Trace r diffu sion coefficients in the y and y' phases.

D (m2/s)

D* = 7 I 10-4 {-276,600}
AI .y . x exp RT

* D~I .yDN · --l ,y - 10

* {-375,400}
D AI ,y' = 0.372 exp RT

DN* , = 3.31 x 10-4 exp { - 302,200}
l,y RT

The Ni-Ge and Ni-Ga alloy systems

D at 700 -c (m- /s)

1.01 x 10-18

1.01 x 10-19

2.63 x 10-21

1.99 x 10-20

Ref.

20

21

2 1

Precipitates of the Ni-Ge solid solution have been observed in the Ni3Ge matri x in all
3 Ni-Ge alloys. Figure 8 shows the micr ostructures in the 22.0 % Ge alloy aged at 700 "C.
The morphology chan ged from cuboidal to plate-lik e at a fairly short ag ing time . Observa
tions of precipitates in dend ritic regions of the 22.0 % Ge alloy indicate that precipitation
of the Ni-Ge solid solution in Ni3Ge is much slower than in the reverse system, similar to
what is observed in Ni-AI alloys. Dissoluti on experiments are in progre ss to accurately es
tabli sh the y solvus in the Ni-Ge system.

(a)
".-

(b)

- ,

Figure 8. Precipitates of the Ni-Gc solid solution in Nij Ge, observed in an alloy containing 22.0 at. % Ge
aged for (a) 8 h and (b) 48 h at 700 °C.
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Aging experiments have also been conducted on the Ni-Ga alloys at temperatures in
the range 600 to 800 "C. So far we have not observed the precipitation of the solid solution
phase , which indicates that the y solvus in this alloy system does not have the necessary
negative slope in the Ni-Ga phase diagram .

SUMMARY

Nucleation of the solid solution y phase from the ordered y' phase (Ni3AI) is quite dif
ficult. Undercooling the 22.6 at.% Al alloy by more than 50 °C to a temperature (700°C) at
which diffusion is reasonably rapid fails to produce observable y precipitates, even after
aging for 120 h. The phase boundary can be best found through the use of dissolution ex
periments, which take advantage of the absence of a barrier to the dissolution ofy phase.

The y precipitates are equiaxed when small, then non-equiaxed as they grow and
eventually become plate-like shaped. The y precipitates transform into plates far more
readily than y' precipitates, which is attributed to the absence of anti-phase boundaries in
the y phase . Despite the non-equiaxed shapes, (r)3 depends approximately linearly on aging
time t. The experiments show that the kinetics of coarsening of y precipitates is much
slower than that in the reverse system . This is consistent with behavior expected from dif
fusion in the two phases.

The Ni3Ge phase behaves similarly to Ni3AI in that it can be aged to produce disor
dered precipitates of the Ni-Ge solid solution from Ni3Ge matrix. We do not yet know if
this is also true for Ni3Ga, but preliminary experiments suggest that it is not.
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INTRODUCTION

Plutonium is probably the most intriguing metal in the whole periodic table. For
instance, the Pu phase diagram at atmospheric pressure has six stable allotropes, some
with very complex open structures (a and ~ : monoclinic) and others with close-packed
structures (y tetragonal and 8,8' , E : cubic). No other element displays this complexity of
polymorphism. Moreover, the phase transitions are accompanied by large volume changes,
with a 25% difference between the cubic (fcc) 8 phase and the room temperature
monoclinic a phase. In contrast to this phase, which is brittle, the face-centered cubic 8
phase is ductile, a property that makes it convenient for engineering applications. Many
other physical properties are puzzling like specific heat coefficients or electrical resistivity.
The origin of these peculiar properties of metallic plutonium has generally been attributed
to the fact that it marks the boundary between the itinerant and the localized 5f electron
systems. From thorium through neptunium, the atomic volume displays the parabolic
decrease typical of transition metals as the number of bonding electrons increases. Then
the volume of the actinides jumps up sharply from neptunium to americium, ascribed to
the localization of the 5felectrons. From a physical point of view the actinide series could
be divided in two sub-series with very different characteristics. Plutonium is exactly
located at the center of this discontinuity. The character of the 5f electrons varies from
nearly pure metallic (delocalization) in a-Pu, to varying degrees of localization in the
elevated-temperature phases.

The 8 phase of pure plutonium is stable from 593 K to 736 K. Small additions of
group IIIB metals (AI, Ga, In or TI) can stabilize this phase at room temperature but the
low-temperature limit of the impurity solubility is not well known. The Pu-Ga phase
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diagram by Chetobarev et al.' indicates an eutectoid decomposition of the high
temperature 8-phase into the a-Pu and PU3Ga. By contrast Ellinger et al.2 report no such
decomposition . Similar problems are reported for plutonium-aluminium alloys.

Moreover physics concerning plutonium and its alloys involves predicting its
properties under long-term aging in both weapons and storage' environnement4

. The
knowledge of all plutonium properties is a major challenge and first-principles studies of
pure plutonium, alloys, and finite temperature simulations are needed.

In a first part this paper reports on a study of the electronic structure of pure
plutonium for three of its localized phases (8, 8' and E) and a finite temperature
description of the related phase diagram in a second part. A third part deals with the
calculation of solubility limit ofaluminium in 8 plutonium.

BAND-STRUCTURE CALCULATION RESULTS

The density-functional theory and its local-density approximation (DFT-LDA), which
sucessfully describes light actinides underpredicts the 8-phase volume by about 35 %. 8
Pu is not the only material for which LDA fails to reproduce the ground-state properties;
Mott insulators, like 3d transition metal oxides, and a great variety of materials whose
electronic structure contains partially filled valence d or f shells are not correctly
described. The failure of the standard LDA approach has led to attempts to go beyond
LDAso7 for plutonium. It is well established that this deficiency is linked to the strong on
site repulsion U between electrons in the localized d or f states. In fact, correlation effects
arise when U exceeds or equals the mean conduction bandwith W. Recently the so-called
LDA+U approach'' has been applied to the problem of 8_PU9011

• In these calculations the
Hubbard U is treated as an adjustable parameter to fit the calculations to the
experimentally observed volume for 8-Pu. Bouchet et al.10 have shown that this method
stabilizes the fcc 8-phase versus the bee one (Bain's paths), reproduces the correct order
ofelastic constants (C' >0 and negative Cauchy pressure) and improves the relative values
of these constants. At the same time, Wang and Sun'2 obtained a correct equilibrium
volume by using Generalized Gradient Approximation (GGA) and by considering an
antiferromagnetic alignment of spins.

In order to have a general point of view of the effect of different approximations , we
performed band-structure calculations for 8, 8' and E-PU phases within LDA, GGA and
LDA+U in non-magnetic and antiferromagnetic (AF) configurations . The electronic
structures and total energies are calculated using the accurate all-electron full-potential
linearized augmented plane-wave (FPLAPW) method ( WIEN2k' 3) with the von Barth
functional and Perdew-Wang 91 for GGA calculations. The relativistic Dirac equation is
solved self-consistently for core states and the scalar relativistic one for valence states.
Spin-orbit coupling is included, and 6p local orbitals are used for a better treatment of 6p1/2
and 6p3/2states. For LDA+U calculations the atomic value of3.13 eV for U has been used.

For 8-Pu, although in the non-magnetic case GGA does not really improve
equilibrium properties (volume and bulk modulus), the AF configuration leads to an
equilibrium volume close to the experimental one. On the contrary a ferromagnetic order

12



gives a too large volume. Nevertheless, in both cases, ferro and AF, GGA leads to a net
magnetic moment of about 2 IlBper atom in contradiction with experiments. LDA+U also
leads to correct equilibrium properties, but moreover, in AF as well as ferromagnetic
configuration a perfect cancellation of spin and orbital moment per atom is obtained. This
result is in better agreement with scarce experimental data. For a given cristallographic
structure, in all cases the more stable state is always obtained for an antiferromagnetic
alignment of spins. The main results for AF configurations are displayed in table I. These
results open two main questions : (i) why does GGA give such differences between non
magnetic and AF configurations, (ii) do an antiferromagnetic or a more complex magnetic
order really exist for the localized phases of plutonium ? According to our results and
scarce experimental features, a more probable magnetic configuration for plutonium may
be spin-glass like. New calculations in a disordered local moment framework should be a
next step toward a better knowledge of plutonium physics.

Table I . Results of calculations

Experiment
LDA (T=O K)

850K 750K 650 K

Phase BCC BCT FCC BCC BCT FCC
Vo(A;/atom) 24.29 24.79 24 .9 \ \6 .54 \9 .94 20.02

Bulk modulus GPa 21 (a) 27 (a) 29 (a) 70 70.5 71

Magnetic order PM PM PM AFM AFM AFM

Mag. Mom.! atom (I1Ii) 0 0 0 0.38 1.95 1.89

Cohesive Energy (eV) 3.7 (b) 3.8 (b) 3.8 (b) 6.509 6.284 6.269

EFcc -!Osr-r(eV) -15meV
EBCf -EBCc<eV) - 240 meV

Phase order FCC ~ BCT ~ Be e Bee ~ BCT ~ FCC

a) J.A. Cometet a/., JNM, 28,
303, (1968)

b) M. I. Baskes, PRB. 62,
15532, (2000)

GGA(T= 0 K) LDA+U (T= 0 K)
U= 3.13 eV

BCC BCT FCC BCC BCT FCC

22.6 1 24.20 24.42 23.95 24 24.05

40 54 55 52 68 66

AFM AFM AFM AFM AFM AFM

2.03 2.23 2.29 0 0 0

4.90 4.977 4.981 5.26 5.29 5.3

4meV IOmeV

79 meV 59meV

FCC ~ BCT ~ Bee FCC ~ BeT ~ Bee
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PHASE DIAGRAM

Since we are treating high-temperature properties of 8-Pu, 8'-Pu and E-PU from
calculations at OK, a reliable thermodynamic model is needed. As Pu-3.6 at. % Ga alloy
behaves like a Debye solid at ambiant pressure and low temperature", we chose to use the
Debye model for plutonium instead of a classical mean-field approach. We first briefly
summarize this model.

If we can calculate the Helmholtz free energy as an explicit function of volume and
temperature, all other thermodynamic parameters can be derived. The free energy can be
written as:

Ec(V)is the cohesive energy at OK derived from ab initio GGA and LDA+U

antiferromagnetic calculations. For this analysis, binding curves are fitted to an
exponential function mathematically equivalent to a Morse function' j. Fioo(V,T) is the
vibrational energy calculated in the framework of Debye model :

with aD the Debye temperature related to bulk modulus. Fel (V,T) is the thermal electronic

contribution :

wherefis the Fermi distribution. Fmag(V,T) is the magnetic free energy'?

where Ms is the total spin magnetic moment and L is the 5forbital moment.
From the Helmoltz free energy versus volume curves, equilibrium lines between the

three phases (8-Pu, 8'-Pu and E-PU ) are calculated and the phase diagram plotted. The
corresponding GGA and LDA+U phase diagrams are reported in figures 2 and 3 and
could be compared to the experimental pressure-temperature diagram drawn in figure 1.
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Figure l : Part of the phase diagram of plutonium
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Figure 2. Phase diagram within GGA Figure 3. Phase diagram within LDA+U (U=3.13 eVj

Although the general shape of the diagram is reproduced within GGA, the absolute
values of pressures and temperatures are dramatically too high. The main explanation
comes from the large energy differences obtained between the three phases. LDA+U leads
to a better phase diagram (only O-Pu/E-PU equilibrium calculated up to now) although the
reproduction of the experimental diagram is not perfect.

SOLUBILITY LIMIT OF o-PLUTONIUM

As discussed in the introduction, the understanding of equilibrium between Ga and
PU3Ga or Al and PU3AI with temperature is one of the main goal in the study of plutonium
alloys. Given the crystal structure of an ordered compound, one can calculate its
equilibrium properties and the more stable structure between a few possible different
crystal forms at 0 K. However, it is necessary to treat solid solutions and to know the
evolution of the structural stability as a function of temperature. In this study, the basic
tool to determine such properties is based on a generalized three-dimensional Ising model.
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The problem consists in the ab initio determination of the 3D Ising model parameters'" and
the study of this model at finite temperature.

The total energy of a disordered alloy AxBI -x can be described in terms of a
convergent series of concentration-independent multisite interactions. For a given spin
configuration (J. the total energy is expressed by :

r max

E,~, (r) = LJr(r);;

with Jir) is the concentation-independent multisite interaction associated with the
multisite correlation

;r=17- LO"n a; .ur;
r In;1 I 2 r

crn equals + I or -I when the site is occupated by an atom A or B and N, is the number of
y-type clusters. Then, for a finite number of total energies associated with specific ordered
structures :

where $ is the empty cluster.
The parameters entering the Ising model are derived from first-principles

calculations of total energies for a limited set of periodic crystal structures17. The
following structures were considered : pure Pu and Al (AI fcc), PU3AI and Al-Pu (Ll
simple cubic), PU3AI and AljPu (DOl2 centered tetragonal), PuAl (Ll., tetragonal and PuAI
(Ll , trigonal). We took into account interaction parameters for empty cluster Jo.], point
Ji .i , first-neighbor pair hI , second neighbor pair h,2 , three-body cluster hI, and four
body cluster J4. 1 terms.

All calculations have been performed within LDA+U with the same value of U as
used for pure o-Pu (3.13 eV~ in the framework of the full-potential linear-muffin-tin
orbital (FP-LMTO) methodl8

, 9 with von Barth-Hedin exchange-correlation potential and
spin-orbit coupling. We only present preliminary results where the antiferromagnetic
configuration was not yet taken into account.
The results of formation energies

E f = E min
- (xE Pu

min + (1- x)EA
mm

/' )
PU" All_x P""AIt_x

are reported in table 2 and plotted in figure 4.
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Table 2 . Formation Energies in mR yd/atom

Structure
LI,
DO"
LIo
LI,
LI,
DO"

Composition
Pu,A)
Pu,AI
PuAl
PuAI
PuAl,
PuAh

AIcompositIOnJ(

LDA LDA +U
-9.5 -31.2
-23 -37.9
1.4 -46.7

-)4.5 -24.8
-9.1 -35.7
1.8 -22.4

0,2 0,4 0,6 0,8

.'. .; i~30 • L11 I
' <; / L12

0022 »<.>".
• u o

·50

Figure 4. Formation Energies versus AI composition for fcc-based Pu-AI alloy

All the compounds are more stable within LOA+U than within LOA especially for
PuAl 3 (0 022) and PuAl (L l a) which were instable within LOA. For this last compound,
LOA stabilizes a tetragonal structure for c/a=1.l7 in disagre ement with experiment
although LOA +U leads to the correct structure. Both LOA and LOA+U suggest PuAl 3
(0 022) to be the most stabl e structure instead of Lh As the energy difference is small, an
ant iferrom agnetic configuration could reverse the stability . This last point will be checked
with further calculations.

From these energies, interactions parameters J1 could be computed and the energy
for a given disordered compos ition XPu could be written:

with p = (xPu -XA1) .
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The temperature is then introduced from a simple configuration-entrop y term :

S = -R(xln x + (1- x)ln(l- x))

It is then possible to draw the free energy of the disordered PuAl alloy as a function of
composition for different temperatures, and to compare its equilibrium with the PuAh
(DOll) compound. At each temperature a tangent line is drawn between the curve and
PuAh (D022) point and the solubility limit is calculated. We found a value of 13 at.% very
close to the experimental data (13.6 at.%). For high plutonium concentrations, the curve
shape indicates that plutonium is not soluble in aluminium. The resulting part of the
temperature-compo sition phase diagram is reported in figure 5.

Al composition x

Figure 5. Temperature-composition phase diagram ofPuAJ alloy

CONCLUSION

The treatment of the strong correlations between 5/ electron s leads to a major
improvement in the calculated equilibrium properties of 0, 0' and E-PU phases, especially
when an antiferromagnetic spin order is taken into account. Beyond these pure phases ,
LDA+U is also able to describe ordered compounds and their formation energies.
Moreover LDA+U could reproduce the main features of the phase diagram of plutonium
and the solubility of aluminium in plutonium. This body of results suggests that LDA+U is
fairly appropriate to describe energetic properties of correlated plutonium. Concerning
phase diagrams , more accurate result s require an improved treatment of vibrational
properties of plutonium. This will be done by the calculation of phonon spectra in the
framework of Projected Augmented Wave+U method (PAW+U, Abinit code) .
Nevertheless it is clear that the low energy properties governed by band features near the
Fermi level are not described by LDA+U . These deficienci es would be removed by ab
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initio Dynamical Mean Field Theory (DMFT2o) which would be able to describe subtle
many-body effects such as the formation of local moments and their quenching via a
possible Kondo-like effect.
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INTRODUCTION

Spinels belong to the ceramic oxide family and have a wide range of applications
in geophysics [16], magnetism [26] and irradiat ed environments [44, 45]. The gen
era l formula of a 2-3 spinel is AB204, where A is a divalent cation (such as Mg2+,
Zn2+, Cd2+, etc ) and B a tr ivalent cat ion (such as AI3+, Ga3+, In3+, etc). Among
the spinels fam ily, MgAl20 4 is often considered as a model of spinel structure where
the oxygen atoms form a close-packed pseudo face cente red-cubic sublattice. Among
all the 96 possible interst ices of the anions lat ti ce, 64 are tet ra hedra l (IV) and 32 are
octahedra l (VI). In a so-called normal arrangement , one over 8 tetrahedra l sites is occu
pied by divalent cations, whereas tri valent cat ions occupy half of octahedral sites [30].
Barth and Posnjak [3] have outl ined that the normal arrangement cannot reproduce
the intensity of X-ray diffract ion pattern of some spinels. So, they have suggested an
arrangement where equivalent positi ons are occupied by different atoms according the

following genera l formula [BIV(AB)VI 04 ]' However , it is now well known that spinels

can accommoda te cationic disorder [27, 11]. An inversion parameter, usually lab elled
x, has been introduced to quantify the numb er of t rivalent B ions (here AI3+) locat ed
in tetrahedral int ersti ces.

The MgAl204 spinel can then be described by the following formula

(Mg(l_xlAlx)IV [MgxAl(2_x)t
I

0 4,
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where x ranges from °(normal spinel), to 1 (fully inverse spinel) . It has been shown
that cat ionic disorder is act ivated by either pressure [13] or part icle irra diat ions such
as neutrons, elect rons or Ne+ ions [29, 31]. However, the usual and probably easiest
way to act ivate disorder by cat ionic exchange in both natural or synthetic spinel, is to
heat the st udied specimen [7]. Successive heat pulses can also be app lied on samples
to synthesize directly disordered spinels [28] .

It is now commonly admit ted that most of spinels belong to Fd3m (227) space group .
However , experimental observations report ed by many groups [8, 9, 14, 28, 35] suggest a
lower symm et ry space group for some of these st ructures. In particular , Sclunocker and
Waldner [28] have out lined that in an inverse spinel, domains of reduced symmet ry are
respons ible for observed extra Bragg reflections. Thi s suggests a possible connect ion
between the inversion parameter x and the space group of the st ructure, whereas Haas
has claimed that cat ion disorder does not induce natural change in st ructure symmet ry
[10].

Up to now, most of the reported experimental studies on spinels deal with th e
determinati on of x with respect to temperat ure. Elect ron spin resonance (ESR) on a
natural MgAI204 spinel for temperat ures lower than 1278 K [27] and high-resolution
27Al nuclear magnetic resonance (NMR) on quenched natural or synthet ic samples
[41, 19, 17] have been int ensively developed to investigate such behavior. Several other
techniques have been reported such as Raman spectroscopy [4], neutron diffraction [23,
25] which allow in situ measurements and X-ray diffraction [42, 2]. Because of various
different experimenta l techniques and samples preparations, discrepancies appear in
the reported data.

To complete st ructura l analysis and avoid experimental difficulties, some theoret ical
invest igat ions have been carried out to st udy disorder effect on spinel stability. Wei and
Zhang [40] have selected 18 members among 2-3 and 4-2 spinels to evaluate the most
st ab le form between normal and inverse configura tions. They have also calculated at ab
initio level, st ructural parameters such as the lattice constant (a) , the average internal
oxygen posit ion (u) and band gaps in bot h configurations. Most of these spinels are
found to be more stable in normal structure except for MgGa20 4, MgIn204 in the
2-3 family and GeMg204 and all Si spinels in the 4-2 group. Moreover , band gaps are
found to be smaller in the inverse configurat ion. To explore cationic disorder cont inuous
variat ions, Warren et al. [37, 38] have invest igated disordered spinel thermodynamic
propert ies with tempe rature. In their approach, short ranged one-site cluster potent ials
have been parameterized from a small numb er of disordered configurat ions within the
Density Funct ional Th eory (DFT ) in both Local Density (LDA) and General Gradient
Approximati on (GGA). Th ese potentials have been applied in Monte Carlo simulat ions
to predict disordering thermodynamics state variables.

Alternatively, the evaluat ion of volume thermal expansion and specific heat of
alumina-magnesium systems with temperat ure have been evalua ted using both molec
ular dynamics and experimentally derived interat omic potent ials [20]. In spite of a
well reproduced heat capac ity curve, the predicted thermal expansion appears to be
significantly lower at high temperat ure than experimentally observed.

It is import ant to observe that most of experimenta l and theoretical investigations
are concentrated on spinels cations behavior with temperature. But to our knowledge,
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it seems that no complete study has been previously carried out to evaluate th e varia
tion of both struct ura l and thermodynamical spinel properties with cationic disorder.

In th is study, ab ini tio calculations have been performed to evalua te firstly, the in
fluence of cationic disorder on internal energy variat ion (U) and excess of heat capacity
evolution and secondly, the relative density behavior. The cationic disorder parameter
versus tempera ture curve is deduced as a by product , according to an effective ther
modynamic model using both a regular solution and a quadr atic form of the internal
energy [22]. Results are compared to available experimental dat a.

CALCULATION METHODOLOGY

To approximate the cont inuous variat ion of x , a 56 atoms supercell is generated.
Among all the cations , N Mg and Al ions are randomly exchanged, with N ranging
from 0 to 8, so the inversion parameter x, is defined as Jif . Because it is computer
t ime demanding, only 5 different supercells for each cationic arr angement are selected
to average cell energy and structura l behavior of the disordered cryst al.

Simulati ons are performed using th e ABINIT [1] code within Density Functional
Theory (DFT ) and Local Density Approxim ation (LDA) . The valence electrons are
described by pseudopotent ials developed on a plane waves basis set. The genera t ion of
th e cat ions pseudopotenti als follows th e scheme prop osed by Haman [12], whereas the
oxygen follows the Troullier and Martins scheme [36]. The particular choice of these
pseudopot enti al schemes is det ailed elsewhere [34]. During calculat ions, symmetries
are turned off to impose P I space group .

In a previous study, Warr en et al. [37] have selected a finite 2x2 x2 Monkhorst-Pack
set of irreducible k-points for all their configurat ions. However , because the variat ion
of geomet ry indu ced by disorder has an import ant influence on th e genera t ion of an
optimum k-points grid, different configurat ions must be tr eat ed with the same accuracy.
Thus, only the first Brillouin zone cent re point was considered in this study to integrate
th e DFT derived prop erti es.

For each disorder rate x and each configurat ion, cell vector s and atomic positions are
relaxed after severa l self-consistent cycles. The simulation stops when all the forces and
resulting stresses are close to a desired precision. As DFT calculat ions are performed at
OK, an effective thermodynamic model , firstly introduced by Necl [21] and popu larized
by O'Neill and Navrotsky [22] is used to determine the equilibrium inversion parameter
for a given temperature. The main quantity in this model is th e Gibbs free entha lpy
excess induced by disorder (boG) . boG usually includes a quadr ati c internal energy
(boU ), a well defined form of configurat ion entropy (boSe), and a work of external
pressure via PboV product are found . As calculat ions have been carried out without
external applied pressure, no ext ra work induced by pressure is necessary. Then, th e
Gibbs free enth alpy per molecule can be expressed by equa tion 1.

with

boU

boG = boU - T boSe (1)

(2)
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where ke is the Boltzmann constant. The constants a and (3 are deduced from ab initio
calculat ions and the equilibrium condition &~xG = 0 is numerically solved to determine
the value of the mean equilibrium cat ionic distribution for a given temperature. Fur
thermore, using the derived equilibrium curve into the configurat ional entropy, the heat
capacity excess induced by disorder is given as

(4)

RESULTS AND DI SCUSSION

Variation of internal Energy

The averaged energy differences ,6,U(x ) = U(x '" 0) - U(x = 0), expressed in
eV/ molecule, are calculated as shown in Figure 1 and compared with result s from
Warr en et al. [37]. Discrepan cies between the two calculations could have their origin
in different spannings of the configurational space. Our calculated mean-squared error
on ,6,U clearly shows tha t a single calculation per inversion parameter is not probably
sufficient to take into account the configurational space variety. As the internal energy
differences are small, the convergence of forces on atoms and t he resulting stress on
the cell have been carefully monitored during calculat ions.

• Averaged internal energyvariation evaluated in DFT-LOA (this study)
- - Quadratic fit of the averaged b,U ab initiocalculated (this study)

0040 x Internal energy variation evaluatedfromWarren et at. within DFT-LOA

x

~O.30

~
;5 0.20
<]

0.10

0.4 0.6 0.8

x

1.0

Figure 1: Averaged internal energy variat ion with cat ionic disorder expressed in
eV/ molecule calculated with in LDA (0) and compared to LDA Warren et al. results
(x) [37].
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A quadr ati c fit of fl.U(x) provides both averaged values a and (3 and mean-squared
errors fl.a and fI.(3 . These values are compared with available experimental dat a as
shown in Ta ble 1. In their analysis of cat ionic distribution , O'Neill and Navrotsky
[22] have shown that a and (3 parameters should be approximately of equal magnitude
and opposite in sign. The main suggested reason of this sign difference was induced
by th e ionic character of th e bindings in spinels. As shown by Thibaudeau et at.
[34] in the normal spinel, the Born effect ive charges on atoms are very close to the
full ionic charges. So, at least for low disorder rate, there is no obvious reason th at
the ionic char acter is deeply altere d with in the exchange of ions. As shown in Table
1, this st udy and some of the reported dat a [37, 17,23] fulfill the opposite sign criterion.

D er ivat ion of equilibrium curve and hea t capacity

Reference a fl.a (3 fI.(3 Method
Th eory Thi s study 0.48 0.08 -0 .25 0.06 DFT-LDA

Warr en et at. [37] 0.60 -0.22 DFT-LDA
Millard et at. [19] 0.26 0.06 0.06 0.10 RMN 27Al
Maekawa et at. [17] 0.36 0.06 -0 .33 0.06 RMN 27Al

Exp . Peterson et at. [23] 0.32 0.01 -0.10 0.0 3 neutron diffraction
Redfern et at. [25] 0.34 0.01 0.05 0.02 neutron diffraction
Andreozzi et at. [2] 0.24 0.02 0.14 0.05 X-ray diffraction

Table 1: Comparison of experiment al and ab initio calculated a and (3 parameters and
mean-squared erro rs .

Variati ons of th e disorder rate with tempera ture are deduced from the equilibrium
condition on th e Gibbs free entha lpy. The derived curve is compared to most of avail
able experimental dat a as shown in Figure 2. It seems th at the mean-squared errors
induced by fl.a and fI.(3 on cationic disorder curve was never rep ort ed previously. How
ever Figure 2. shows that significant differences between internal energy parameters
are not sufficient to predict accurate variations of x versus temperature. This curve
also shows that the uncert ainties fl.a and fI.(3 can give an insight into conclusions be
tween different experimental and theoretic al works. Because the experimental exte nt
of tempera tures is limited , an accurate determination of the internal energy variation
appears to be more difficult for the quadratic coefficient (3 than for a.

In spinels, several thermodynamic observables exhibit rapid variat ions with tem
perature which suggest possible second-order phase tr ansit ion. A discontinuity in cell
edge and thermal expansion coefficient has been observed by several groups [42, 33],
but Kashii et at. [15] using NMR technique have reported, on the basis of kinetic con
siderations , that the cat ionic equilibrium disorder reaction is a first-order transition. In
this st udy, the second derivati ve calculation of the free energy fl.G with respect to the
temperature was performed. Once the equilibrium variat ion of x versus tempera ture
is known, the determination of configurational entro py and its first derivative drop
naturally according to Eq.(4). As shown in Figure 3, fl.Cp exhibits a peak which is
charac terist ic of a continuous phase transit ion. The harm onic par t of heat capacity at
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Figure 2: Evoluti on of disorder rate x obtained by resolution of equa tion 1 compared to
neutron scat tering experiments [25](x), [23](+ ), X-ray measurements [42](6 ), [2](.),
and 27Al NMR experiments [19](0 ), [41](*).

constant pressure is the main contribution to the tot al capacity in spinels. However,
the increase at maximum of heat capacity induced by disorder is about 15 J/ mol.K
and should be experimentally observed.

This maximum value suggest s a definition of a crit ical temp erature for this sys
tem. However , an another crit ical temperature is usually introduced to describe order
disorder transitions [24]. It s determination is st rongly connected to th e Bragg-Williams
model. In this model, the solut ion of

(0;1:>; ) = 0,
Q Q=O.T=T,

where Q is an order parameter, gives th e required temp erature Te . In the case of
2-3 spinels, it is possible to define an order parameter Q = 1 - 1x connected to
the cat ionic occupation, which varies from 1 (maximum order ) to 0 (random disor
der ). Solving equa t ion 5 with the Gibbs free energy form int roduced previously, gives
T; = -~ where kB stands for the Boltzmann constant . Using our derived ab 'initio
values, T; :::::: 860/(. This temperature is in fair agreement with the previously reported
experimental values of 870 K < t: :::;970 K [42], r; :::::: 950 K [39], t:» 930 K [33]. As
T; is positive defined , the sign of (3 is expected to be negati ve or zero.

Density with disorder behavior

Discrepancies have been report ed on the density behavior with the cat ionic disorder.
Indeed, it is difficult to determine th e volume variat ion induced only by disorder on
quenched samples. Wood et al. [41] have carried out 27Al NMR experiments on
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Figur e 3: heat capac ity indu ced by disorder curve as a funct ion of temperature

quenched synthetic spinels and found a cell volume increase of 0.03 %for an increase of
x from 0.21 to 0.39. An X-ray st udy performed on a quenched single-crystal has shown
a decrease of cell para meters when the disorder increases [42]. Using a descriptio n
based on ionic radii, O'Neill and Navrotsky [22] have predicted a decrease of volume
with disord er for all the 2-3 spinels with cation s of similar size to Mg2+ and Fe3+.

Ab initio calculations performed in thi s study valida te density increases with cationic
exchange. T hey are compared with recent X-ray measurements on quenched single-
crystal [2] on Figure 4. Conclusive agreement is found for the range of temperature
experimentally observed .

Infrared vibrational spectra of disordered spinel

Maradudin and coworkers [18] have demonst rated that the macroscopic low-frequen
cy static dielectric permi t t ivity tensor Eij(W ) which gives the infrared spectra main
contribution , is a sum of both an ionic par t and a limit value of a pure electro nic
cont ribut ion. According to Gonze and Lee [6], one has

where 1 ::::: i, j ::::: 3 and 0 0 is the cell volume, ZK ,ii' are the Born effective tensors,
E'0 is the electronic cont ributio n to the dielectric permi ttivity te nsor. T his tensor is
given by the knowledge of the mixed derivat ive of the total electronic energy over th e
macroscopic elect ric field. Here w~ represent the dynamical matri x eigenvalues and
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Figure 4: Density evolut ion with x ab initio calculate d (0), compared with X-ray
measur ements (6) [2]

Um q the corresponding eigenvectors with the following normalization

(7)

where M k are the ato mic masses.
Powerful techniques have been developed a few years ago to calculate vibrat ional

properties of exte nded systems through density functional per turbation theory (DFPT).
Thi s technique has been applied successfully to evaluate all vibrational modes at th e
zone centre for normal cubic MgAl204 spinel [34]. The Born effect ive charges have
also been evaluated within DFPT and compared to a set of new exper iments on syn
th et ic spinels [34]. The agreement was found sat isfactory , demonstr atin g that the ionic
character was preserved in thi s spinel even on synthet ic and probably small disordered
compound.

Many groups have repor ted extra infrared modes for synthet ic MgAh04 spinels
[43, 34] and highly non-symmetric peaks in the Raman spectra for quenched samples
[5]. The precise origin of these ext ra modes is unclear [43] but ext ra Ram an mode near
727 em" ! was clear ly assigned to th e symmetric AI-O stretching vibration of Al04
groups created by the redistribution of some aluminum ions from oct ahedral to tetra
hedral sites . However , to explore the possibility that infrared modes originate from
cat ionic disorder , dynamical matrix eigenvectors and eigenvalues have been calculated
within DFPT for several inversions parameters and averaged on different configurations.
The imaginary parts of the low-frequency dielectri c tens or components are reported in
Figure 5. Lifetime is requir ed for each mode such as its corresponding damping over
its frequency is a constant for a given temperature [32]. As room tempera ture is high
enough to neglect anharmonic residual quantum effect for low temperatures , assum-
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ing dampings linear behavior wit h temperature is a natural approximat ion. Assuming
constant int eracti ons of phonons is a crude approximation. However an examination of
both LO and TO dampings and frequencies measured for two sets of synthet ic spinels
provides a linear regression coefficient of 0.8. This value is high enough to consider the
prop ortion between dampings and frequencies constant . The corres pon ding value of
th is const ant was fitted using previously measured dampings and frequencies [34] . For
simplicity, we assume that anharmonicity is sufficient ly small for low inversion parame
ter such as this constant rema ins unchanged. Using these approximatio ns, the inte nsity
of all the T 1u norm al spinel infrare d modes decreases when the inversion parameter in
creases as shown in Figur e 5. The resultin g widths become broader and severa l modes
near 800 cm- 1 and 180 ern" ! become intense. These extra modes have been previously
observed in different synt het ic spinels and then could have their origin in the defective
nature of t he spinel lat tice.

CONCLUSION

Structural and thermody namic properties of disordered MgAl204 spinel are calcu
lated by DF T with plane-wave basis set and pseudopotentials. Several configurations
are considered to average each property to take account of configurational variety.
The evolution of int ern al energy is calculated as a funct ion of cationic disorder rat e,
variat ions of disorder rate with tempera ture are determined using an effective th ermo
dynamic model. By taking into account the mean-squared errors obtained on a and (3
parameters, an original approach of the cat ionic equilibrium curve is introduced. Fur
thermore , the excess of heat capacity shows a typical behavior which is the sign of a
continuous transition and a critical temperature is also evalua ted for a perfect random
crystal. In additio n, it has been shown that th e density of the ma teri al increases with
increas ing disord er. Finally, infrared spect ra calculation of selecte d inversion param
eters have been carried out within DFPT and have shown extra modes which could
originate in thi s par ticular defective nature of the spinel lattice.
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1. INTRODUCTION

Molten silica and its mixtures with various other oxides are of central inter
est in geosciences, silicates that have formed from such melts in the earth
crust are very relevant materials. Such melts are also very important for the
glass and ceramics industry, and although both of these materials are in their
crystalline and amorphous forms in use for many centuries, the understand
ing of their structure-property relationship on an atomistic level still poses
challenging scientific problems. In recent years, important progress has been
made possible by atomistic molecular dynamics simulations , and a selection
of problems by this method will be presented below.
One characteristic feature of pure SiOz is that it can crystallize in many poly
morphs (cs-quartz, ~--quartz, tridymite, ~-cristobalite are the low pressure
phases, coesite and stishovite follow at higher pressures, etc. [1]). Never
theless the precise nature of some of the structures [2] and the character
of the transitions between them [3, 4] has remained under debate until re
cently [5, 6]. Of course, the phase diagrams become even much more com
plicated when mixtures of SiOz with other oxides (Na-O , A1z03, etc.) are
considered [7, 8].
There is also great interest in a detailed atomistic understanding of the struc
ture of glassy SiOz and its mixtures with other oxides, and of the fluids
from which these amorphous materials are formed by appropriate cooling
schedules [9, 10].
Although some crude feature of the basic "continuous random network" model
of glassy SiOz have been known for a long time [11], namely each Si-atom
sits in the center of a (slightly irregular) tetrahedron, while the oxygen atoms
are at the comers of the tetrahedron, each oxygen being shared by two neigh
boring tetrahedra, the medium range order sustained by such a structure still
is a subject of study [12, 13, 14, 15, 16]. Considering mixtures with other
oxides, one either expects that the network is locally broken (such as in the
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case of the network modifier Na20, which causes dangling Si-O bonds to
exist in the network) or the additional ions are bound into the network, lo
cally disturbing its coordination (as happens in the case of AI203). However,
the extent to which these ions (Na+, Al+++, etc.) are randomly distributed
throughout the network, or whether "chemical clustering" occurs, has been a
longstanding issue, difficult to clarify by experiments (e.g. [17, 18, 19]).

2. MODELS AND SIMULATION DETAILS

In a molecular dynamics simulation [20], the statistical mechanics of con
densed matter is reduced to averages along trajectories through the phase
space of the chosen model system, generating these trajectories simply from
Newton's equations of motion, using simple effective potentials for the inter
actions between the atoms. Thus, quantum mechanical effects are neglected
from the outset, and since in the considered systems the character of the
bonding varies from ionic to covalent, it is not a priori clear that a sufficiently
realistic description will be possible. In fact, early attempts to simulate molten
Si02 were clearly hampered not only by too limited computer resources but
also by too inaccurate potentials [21]. Significant progress was possible due
to the so-called "BKS potential" [22] for Si02, later generalized by Kramer
et al. [23] to zeolites containing Na and AI. This potential is based on a pa
rameterisation of quantum---ehemical calculations of small silica(-te) clusters,
and the parameters were optimized to correctly reproduce some properties
of bulk crystalline materials. Although some limitations of this potential to
reproduce very small scale structures are well documented [14, 16, 24, 25],
it describes the properties of both the crystalline materials [6, 26, 27] and the
glasses and melts [12,13,15,28,29,30,31 ,32,33,34,35,36,37,38,39,40]
surprisingly well.
This BKS-potential uses pseudo-Coulomb interactions between the ions and
a Buckingham potential to describe the short range part,

()
qaq~ 2 Ca~

<j>a~ r = -r-e +Aa~exp(-BaV) ---;:6 '

where a, ~ E [Si, 0 , Na, AI], r being the distance between an ion of species a
and an ion of species ~. The values of the parameters Aa~ , Ba~, Ca~ are given
in [22, 23]. The effective charges proposed for Si and 0 are [22] qsi = 2.4,
qo = 1.2, whereas for sodium and aluminium effective charges qNa = 1.0,
qAl = 1.9 were proposed [23]. While for pure Si02 charge neutrality is ful
filled, since qs; = - 2qo; this is not the case for the mixtures studied in
the present work, (Na20)x(Si02), =2,3,5 (abbreviated as NSx in the fol
lowing), as well as for (AI203)2(Si02). Therefore the above potential was



(2)

(3)

slightly modified, introducing distant dependent charges qa(r) for Na and Al
as follows,

( )
_ { qNa{1 +In[CNa(~a - r)z+ I]}, r < ~a

qNa r - _
qNa,r ~ ~a,

where the choice qNa= 0.6 ensures charge neutrality, while with ~a = 4.9 A,
CNa = 0.926 A-z the charge qNa(r) smoothly increases from qNa = 0.6 for
r = rNa to the above qn« = 1.0 which is reached for r = 1.7 A. Similarly, for
Al a somewhat different functional form of qAl(r) was found advantageous ,
namely

{
- {I I [C (rAI-r)2 ]} [ .dAL]

( ) qAl + n All+( )2 + I exp-~) , r < rAIqAt r = _ r AI-r r -rAI

qAI,r ~ rAI .

Here qAl = 1.8 ensures charge neutrality, while rAI = 6 A, CAl = 0.0653 A- z,

dAI = 2 AZ ensure that qAl = 1.9 for r = 1.25 A, where the original potential
for the AI-O interaction [23] has an inflection point. It is clear that the choices
Eqs. (2), (3) are ad hoc-modifications that lack any quantum-chemistry jus
tification, but they have the merit that for small distances the forces resulting
from the original potential [23] are almost perfectly reproduced, and at the
same time overall charge neutrality, a necessary condition for the stability of
the system, is restored.
In the simulations, a total number of atoms N = 8064,8016,8064,8016 were
used for NS2, NS3, NS5 and SiOz, respectively, while for (AIz03)2(SiOz)
1408 atoms were used. All simulations were done at constant density, which
was chosen as p = 2.37 g/cm3 for NSx and SiOz, while for (Alz03)2(SiOz)
a density of p = 2.60 g/cm3 (the experimental value at T = 300 K [41])
was chosen. The resulting linear dimensions of the cubic simulation box was
about 48 A for NSx and 26.347 A for (Alz03)2(SiOz). We applied periodic
boundary conditions as usual, and treated the long range Coulomb interac
tions with the Ewald summation technique. The velocity Verlet algorithm
with a time step Of = 1.6 fs was used. While (Alz03)2(SiOz) could only be
equilibrated for T ~ 2300 K, NSx could be equilibrated for T ~ 2100 K, and
pure molten SiOz for T ~ 2750 K. In the case of NS2, also T = 1900 K
could be equilibrated . In order to study glasses at T = 300 K, we used the
respective fluid around the lowest temperature that still could be equilibrated
(note that typically 4.5 million time steps were necessary, corresponding to a
real time on.5 ns) and then cooled the system rapidly down (with a cooling
rate of 1.16 x 1012 K/s). The temperature of the system was always controlled
by coupling it to a stochastic heat bath, i.e. by substituting periodically the
velocities of the particles with the ones from a Maxwell-Boltzmann distri
bution with the correct temperature. After the system was equilibrated at the
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target temperature, the run was continued in the microcanonical ensemble
(i.e. the heat bath was switched off, so energy and momentum was con
served). In order to improve the statistics, 2 independent runs were performed
for SiOz and all the NSx systems, and 5 independent runs for the (smaller!)
(Alz03)2(SiOz). All these simulations were carried out on CRAY T3E/900
supercomputers, using MPI to parallelize the simulation code (for applying a
parallelization of the force calculations), using 32-64 processors in parallel.
The MD simulations of crystalline SiOz , however, were carried out in the
constant stress ensemble using [6] the Parrinello-Rahman method [42]. The
standard system size used was N = 1080 atoms (the typical linear dimensions
of the orthorhombic simulation box then is A = 25 A, B = 26 A, C = 22.I A,
with A, B, C parallel to the crystallographic axes a, b, c respectively). Initial
conditions were chosen according to the ideal structures of a-quartz and ~

quartz, respectively. Temperatures were chosen in the range from zero to T =
1700 K. Unlike the case of fluid and amorphous SiOz, the short range (non
Coulombic) part of the BKS potential was not cut off at rcutoff = 5.5 Abut at
rcutoff = 9.5 A. In order to speed up to the calculations, interactions and forces
were tabulated on a grid with a resolution of 5 x 10-4 A. Near the a-~ phase
transition, also particle numbers N = 2160 and N = 4320 were used (with
A,B,C = 30.0 A, 34.7 A, 27.6 Aand 40.0 A, 43.3 A, and 33.2 A, respec
tively), to check for finite size effects. Note that classical molecular dynamics
methods are very unsatisfactory for crystals below the Debye temperature
eD, of course: the specific heat of a crystal treated by classical statistical
mechanics would approach for T -+0 a nonzero constant (Dulong-Petit law)
rather than vanish according to the Debye law; similarly, also the temperature
derivatives of the lattice parameters and the elastic constants are all non
vanishing. Therefore for T ~ 1000 K also quantum-mechanical simulations
(with the path integral molecular dynamics technique [43], PIMD) were also
performed [27] (note that eD for a-SiOz when extracted from the specific
heat depends on temperature, eD(T = 300 K) :::::: 103 K [44]).

3. CRYSTALLINE QUARTZ AND ~-CRISTOBALITE

The analysis of the simulations of crystalline SiOz has focused on a study
of the lattice parameters and their temperatures dependence, on the elastic
constants (which can be gotten from the Parrinello-Rahman fluctuation re
lations [45]), and quantities characterizing the local aspects of the structure
(probability distributions to find an atom a distance r away from its equilib
rium position, partial radial pair distributions, average bond angles and their
distributions, etc.). Of particular interest is also the global order parameter <I>

of the phase transition between a-quartz and ~-quartz, which measures the
rotation of the (distorted) tetrahedra about the [100] axis,



IN'
<P = N* E <Pi",

I~ = l

(4)

where the sum over i* is confined to a sublattice of the l3-<luartz structure
taken by Si-atoms, such that one can envisage the formation of n-quartz
from l3-<luartz via a rotation of (rigid) units about the [100] axis by an angle
<Pi" . Since in reality the Si01- tetrahedra are not rigid, we have used for <Pi"
the (averaged) deviation of the four Si-G bonds in the y- z plane from the
value in the ideal B-quartz structure [6].
While the lattice parameters a, c exhibit a temperature dependence that re
sembles the experiment [46] qualitatively, there is no perfect agreement: at
T = 150 K, experiment yields a,c ~ 4.905 A, 5.401 Awhile classical MD
yields 4.956 A, 5.461 Aand PIMD yields 4.965 A, 5.470 A; at 300 K, the
corresponding numbers are 4.915 A, 5.406 A; 4.996 A, 5.495 A; 4.974 A,
5.476 A; and at 1000 K, 5.000 A, 5.459 A; 5.031 A, 5.527 A; 5.031 A,
5.531 A, respectively. Thus, there is a discrepancy between simulation and
experiment of about 0.06 A for the a-axis and and 0.07 A for the c- axis
which shows that the BKS potential is not perfect, although these deviations
are smaller than for most other potentials for Si02 discussed in the litera
ture [6, 27]. The same conclusion emerges for ~-cristobalite [27]. What is
most disturbing is the fact that the ratio cia when analyzed as a function of
temperature in the simulation is perfectly smooth at the transition from {X- to
l3-<luartz, implying that the transition is second order, while the experiment
reveals a small jump (~ (cia) ~ 0.0222). Also the location of this transition
comes out at Ttr = 740 ± 5 K, while the experiment yields Ttr = 845 K [27].
Carrying out a finite-size scaling analysis [47] we were able to locate the
transition temperature of our model precisely [6], and rule out the possibility
that the smooth behavior of ci a near Ttr is an artefact of finite size effects.
Apart from these small discrepancies in the character and location of the
transition, there is a very good overall agreement in the temperature depen
dence of elastic constants (see Figs. 3a,b of Ref. [6]), and the local structure
in ~-<J.uartz for T > 1;r could be clarified. The widely accepted view that
~-<J.uartz consists of a superposition of microdomains of u-quartz (with dif
ferent domain orientations) could be refuted by an analysis of partial radial
distribution functions: e.g., 8sio(r) has a double peak for T < Ttr but a sin
gle peak for T > Ttr near r = 6.3 A[6]. However, it is important to realize
that the system is very anharmonic, and the ideal ~-<J.uartz positions do not
correspond to the positions around which the oxygen atoms actually fluctuate
most of the time: both in ~-<J.uartz and in ~-cristobalite the Si- O distance b ay

in the "average structure" is somewhat smaller than the distance bmax where
the probability distribution p(b) has its peak. The value bmax ~ 1.6 A from
the simulations [6, 27] deduced for ~-cristobalite agrees well with recent
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Figure 1. Static neutron structure factor of SiOz at room temperature (T = 300 K) plotted
versus wave-vector q. The full curve is the molecular dynamics simulati on from [13], using
the experimental neutron scattering lengths for Si and 0 atoms, while the symbols are the
neutron scattering data of [49]. From Horbach and Kob [13].

conclusions from experiments of Dove et al. [2] (bav ~ 1.55 Ain the ideal ~
cristobalite structure). These conclusions are corroborated by a study of the
bond angle 8S iOSi: rather than the ideal value 8Si OSi =: 159.20

, it was found
that 8SiOSi ~ 1550 at Ttr and decreases down to about 1530 at T =: 1700 K.
This result is again in good agreement with experiments [48].

4. MOLTEN AND AMORPHOUS QUARTZ

Since due to the dramatic increase of the structural relaxation time of molten
SiOz from the ps-scale at very high temperatures to 103 sec at the glass transi
tion temperature Tg =: 1450 K (defined from the empirical convention [9, 10]
that the viscosity TJ(T =: Tg ) =: 1013 Poise) the temperatures where SiOz can
be equilibrated by MD are rather high, T ~ 2750 K, as mentioned above.
Thus a priori it is not clear to what extent results valid for temperatures of
experimental interest (such as glass at T =: 300 K, where the structure of
the fluid at the experimental Tg was frozen in) can be obtained. Therefore
it is very satisfying that very good agreement is obtained both with respect
to the static structure (Fig. 1) [13, 49] and with respect to self-diffusion
constants [13, 50, 51] and viscosity [13, 52] (Figs. 2, 3). Also the temper-



10-4

Cii'
",-- 10-6

E
'£10-8

o
10-10

10-12

10-14

10-16

10-18

10-20

iiiiii 0 0 (EA=4.66eV)
-Si (EA=5.18eV)

1450K

1381K---': ,
-----:--,:

1303K , : ,
~~

Mikkelsen (0, EA=4 .7eV)

/'
Brebac (Si, EA=6eV)

t.s 2.5 3.5 4.5 5.5 6.5 7.5
104/T [K-1j

Figure 2. Plot of the self-diffu sion constant D of silicon atoms (Si) and oxygen atoms (0)
in molten Si02 as a function of inverse temperature. The symbols in the upper left part
are the results from molecular dynamics simulations and the data in the lower right part
stems from experiments [50, 511. The thin straight lines show simple Arrhenius behavior
(D oc exp( -EA/(kBT») with various choices of the activation energy EA, as indicated in
the figure. The vertical broken lines indicate the experimental glass transition temperature,
Tg = 1450 K, as well as values for Tg that one obtains if one extrapolates the data from the
simulations to low temperatures and then estimates Tg from the experimental value of the 0
diffusion constant (Do(T = T;im) = 10- 16 cm2/sec :} T; im= 1381 K) or the Si diffusion

constant, respectively (DSi(T = T;im) =5.1O- 19cm2/sec:} T;im = 1303 K). From Horbach
and Kob [131.

ature dependence of the specific heat [31] is in very good agreement with
the corresponding experimental data, as well as the results for the longi
tudinal and transverse sound velocities (Fig. 4) [35, 53] and the thermal
conductivity, which was found to be nearly independent of temperature, A.::::::
2.4 W/(Km) in the range 3000 K ::; T ::; 4700 K [36], while corresponding
experiments imply 2 ::; A. ::; 3 W/(Km) if T ~ 1000 K [41]. Of course, the
simulations of molten and glassy Si02 were not only done with the inten
tion to reproduce just as many experimental data as possible, but also in
order to go beyond experiment, e.g. by a careful test of the mode coupling
theory of the glass transition (which needs to be done at such high temper
atures [13, 33, 54] that experiments can no longer be performed, since the
critical temperature is Tc :::::: 3330 K), or by elucidating the behavior of the
so-called "Bose peak:" [35], and the frequency-dependent specific heat in
the high-frequency domain [36], the atomistic structure at the free surface
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Figure 3. Molecular dynamics results for the viscosity of the BKS model for SiOz plotted
vs. inverse temperature. The dashed straight line indicates an Arrhenius lit with an activation
energy EA= 5. 19 eV. Experimental data [52] are compatible with this value but would suggest
a slightly different pre--exponential factor. Note that for SiOz the analysis of other correlation
functions at very high temperature suggests a critical temperature of mode coupling theory
Te = 3330 K and TJ (T = Tel ~ 8 Poise. The insert shows the failure of Stokes-Einstein
relations. From Horbach and Kob [13].

of SiOz (against vacuum [15, 16]), etc. However, these topics are out of the
focus of the present paper.

5. STRUCTURE AND DYNAMICS OF SODIUM SILICATE MELTS

As has been emphasized above for the NSx systems, we have used an ad
hoc-modification of the potential due to Kramer et al. [23] to ensure charge
neutrality. Therefore it is appropriate again to test the accuracy of the descrip
tion by comparing the neutron structure factor to corresponding experimental
data [55] (Fig. 5). We see that the overall agreement between simulation and
experiment is good. For q > 2.3 A-I , which corresponds to length scales of
next-nearest Si--Oand Na-O neighbors, the largest discrepancy is at the peak
located at q = 2.8 A-I. Rather well reproduced is the "first sharp diffraction
peak" at q = 1.7 A-I , which is a prominent feature in pure SiOz as well
(Fig. 1), and arises from the tetrahedral network structure (the length scale
which corresponds to it, i.e. (2rc)/1.7 A-I = 3.7 A, is approximately the
spatial extent of two connected Si04 tetrahedra). As expected, this structure
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while the experiment was done for Pexp = 2.2 g/cm " , From Horb ach et at. (35) .

is partly present in NSx also. The simulation also shows a weak "prepeak"
at q = 0.95 A-I , related to a super-structure which is formed by the Na and
Si atoms (the length (21t)/0.95 A- I = 6.6 A is twice the mean distance of
the nearest Na-Na or Na-Si neighbors, as an analysis of the corresponding
partial radial distribution functions shows). While this feature was not seen
in the experiment of Misawa et al. [55], it is now clear that the discrepancy
between the simulation and the experiment was due to lack of resolution in
the experiment: a more recent experiment [18] gave a very clear evidence for
this prepeak, at the wave number predicted by the simulation. Of course, the
simulation can again go beyond experiment by recording all 6 partial structure
factors

Sa~(q) = Ie;: /E~ eXP(i(j.rij)) , a, ~ E Si,Na,O (5)
\ ,=1 ;=1 T

where la~ = 1 for a = p, la~ = 1/2 for a f:. p, and the sum over i extends
only over the atoms of species a, the sum over j only over atoms of species ~,
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Figure5. Static structure factor of sodium disilicate sue" (q) at room temperature (T = 300 K)
plotted versus wave vector q. The full curve is the molecular dynamics simulation of Ref. [32),
where the experimental neutron scattering lengths for Si, 0 and Na atoms were used, so
there is no adjustable parameter whatsoever. The broken curve represents the corresponding
experimental data of Misawa et al. [55). From Ref. [32).

rij being the distance between atoms i and j. Then the structure factor shown
in Fig. 5 (and similarly in Fig. 1) results as

(6)

As an example, Fig. 6 shows two of the Sap(q) (more details are given else
where [40,56]). Note that the first sharp diffraction peak (at q = 1.7 A-I)
in NSx is mostly due to Si-O and 0-0 correlations, and thus in the Si-Si
correlations it shows up only as a mild shoulder, unlike SiOz where there is
a clear peak. This already reflects that the rigid network of SiO:- tetrahedra
present in pure SiOz to some extent is broken up in NSx, due to the presence
of the network modifier. But the "prepeak" at q = 0.95 A-I now can be very
clearly recognized.
The local structure of the modified network can be characterized further by
computing partial pair distribution functions gap(r) . We now can count all
~-atoms as nearest neighbors of an a-atom which are closer in distance from
a selected a-atom than the location rmin of the first minimum of gap(r). In
this way, one can characterize the corresponding coordination number z for
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each atom (or the corresponding distribution P(z), when all atoms of type
a in a considered configuration are studied.) Fig. 7 shows that for a =0,
~ =Si in pure Si02 at T = 300 K every 0 has two Si neighbors, as expected
for any perfect network where every si01- tetrahedron shares a comer with
another tetrahedron. In contrast, for NSx P(z = 2) < I, and there is a non
negligible fraction of (z = I) and (z = 0). While the latter 0 atoms do not
contribute to the network at all, they are still bound to Na, the case z = 1
in part can be attributed to "dangling bonds" in the Si-Oi-network of the
glass. This interpretation is corroborated by P(z) when one considers 0-0
neighborhoods: while in pure Si02 there is a single peak at z= 6 (each oxygen
which is at a corner shared by two tetrahedra has 2 x 3 other comers of the
same tetrahedra in its neighborhood), we find a second peak at z = 3 for NSx,
due to "dangling bonds". These dangling bonds are also responsible for the
presence of large rings in the networks (the ring length n of closed loops in the
network is defined by starting from an O-atom and seeking the shortest path
leading back to the considered atom via O-Si and Si-O bonds, using each
bond no more than once). Fig. 8 shows that for NSx P(n) gains weight at
n=l, i.e. oxygen atoms which are not part of rings at all, and P(n) gains more
and more weight for large n the larger the Na content of the structure . While
experimental information on P(z) in principle can be gotten from methods
such as EXAFS, information on medium order as it is contained in the ring
statistics can be inferred from experiments at best rather indirectly.
Following the mean squared displacements of the various types of atoms with
time over large enough times, such that the atoms have travelled many inter
atomic distances and the Einstein relation can be applied, ([i\a(t) - ri ,a(O)]2) =
6Dat , for t -t 00, the self-diffusion constants Da of the various types of ions
can be obtained (Fig. 9). Again the fact that the network of Si04 tetrahedra
is broken up more and more the more Na ions are added is evident , since
the apparent activation energies for Si and 0 diffusion do depend on Na
concentration. Particularly interesting is the result, that the Na diffusion is
orders of magnitude faster at low temperatures: it turns out that this fast
diffusion occurs on time-scales where the remaining Si02 network is still
frozen. This fast motions of the Na+ ions move in channels embedded in the
Si02 matrix [37,39]; the characteristic distance between the channels is the
structural feature reflected in the prepeak at q ~ 0.95 A-I in the structure
factor (Figs. 5,6). The lifetime of these channels is given by the structural
relaxation time of the (highly viscous) Si02 matrix [39]. This interpretation
was demonstrated by dividing the simulation box into small cells (of linear
dimension of about I A), and studying the probability that a cell that does not
contain a Na atom at time t = 0 is not visited by a Na atom until time t. The
geometrical structure of these sodium-free regions is a kind of percolating
"Swiss cheese" structure surrounding the (also percolating) Na-rich channels.
The simulations [39] allowed a detailed analysis of this "Swiss cheese" struc-

47



C7 0.2
~

Cii
C/)

0.1

- - - - T=4700K
- - - T=2300K
- T=300K

I
0.3

C7
~ 0.2

C/)

0 .1

b) -- - T=4700K
-- - T=2300K
- T=300K

8.06.00 .0 2.0 4.0
q [A-1

]

Figure 10. Partial structure factors SSiSi(q), (a), and SAIAI(q ), (b), of (Alz03)2(SiOz) at the
three temperatures T = 4700 K, T = 2300 K and T = 300 K plotted vs. q. Vertical lines
highlight peaks at q = 0.5 A-I , 1.8 A-I (a) and 1.6 A-I (b). From Winkler et al. [56] .

ture and its relaxation, and hence showed how these very different mobilities
seen in Fig. 9 can arise via a micro-segregation , without chemical clustering
of compact Na-rich regions.

6. ALUMINIUMDISILICATE

Also for (Ah03)2(SiOz) we have checked by a comparison with experimental
data (in this case only the total X-ray structure factor is available [57]) that
the structure predicted from the simulation is reasonably well in agreement
with the experiment. Again, we obtain a much more detailed information
than is accessible experimentally by a study of the partial pair distribut ion
function s and structure factors (Fig. 10) [56]. At large q, the structure factor
SSiSi(q) resembles that of pure Si02 and of NSx, cf. Figs. 1,5; in particular,
the peak at q = 2.8 A-I reflects the Si-O nearest neighbor distance . However,
the "first sharp diffraction peak" which occurs at q = 1.8 A-I as for pure Si02
and NSx in SSiSi(q), now shows up at the slightly shifted position in SAIAI(q),
namely q = 1.6 A-I . From the analysis of the distribution of coordination
numbers P(z), Fig. II, we can attribute this feature to the presence of AI04

tetrahedra in the structure. A very interesting effect is also the pronounced
prepeak at q ~ 0.5 A- J (actually, due to the finite size of the simulation box
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this is close to our resolution limit for small q! ). This peak shows up in all
partial structure factors apart from Soo(q) : while the oxygens are still rather
randomly distributed in the structure, there clearly is a micro-segregation of
AI- rich and Si-rich regions, and the characteristic length scale is larger than
in the NSx systems. In view of the fact that in the phase diagram one expects
a liquid-liquid phase separation in supercooled Si02-AI203 mixtures below
Te :::::: 1920 K, we tentatively interpret this peak at q :::::: 0.5 A- I as a precursor
to this phase separation that would occur in metastable equilibrium at T <
Te . Of course, MD time scales of nanoseconds are probably not sufficient to
fully equilibrate the chemical clusters forming at T 2: Te, and alternative more
powerful simulation methods are clearly required.
When one studies P(z) for the various ions, one finds that the introduction of
AI in the Si02 network does not lead to a breaking-up of the network as in
NSx, but rather the topological characteristics of the network change: many
oxygens now have either 3 AI or 3 Si neighbors, unlike pure Si02 where each
o always had 2 Si neighbors ("bridging oxygen"). The "tricluster" oxygens
with z = 3 for Si(AI) neighborhoods of oxygens have the further effect that
z =2 and z =3 occurs frequently in the Si-Si and AI-AI neighborhoods: this
happens because Si and AI can substitute each other to some extent in the role
as network former. When one does not distinguish between Si and Al as the
neighboring atom at the appropriate distance (both pair distributions gSisi(r)
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and gAIAJ(r) have their nearest neighbor peak at about 3.1 A[56]), the peak
of P(z) is not as broad as in Fig. 11 and occurs at z :::05-6 rather than at Z = 3.
This different role of Al as an atom that can be incorporated into the Si02
network to some extent shows also up in a diffusion behavior that is very
different from the one in the NSx system: while the diffusion constants of Si
and 0 are again much larger than in Si02 (Fig. 12), since the Al-containing
network is much less rigid than pure Si02, the diffusion constant of Al is
very similar to that of 0 : it is the lifetime of the covalent bonds between Si
and 0 that controls also the mobility of the Al ions, and although part of
the Al is probably segregated in clusters (leading to the prepeak in Fig. 10)
these clusters presumably are more compact and hence do not give rise to
percolating channels that would allow enhanced Al diffusion.

7. CONCLUDING REMARKS

By the examples presented here, evidence was given that computer simula
tions (based on classical and quantum Molecular Dynamics and Monte Carlo
methods) can give a very useful and detailed information on the structure,



dynamics, and thermodynamic properties of solid and liquid silica and its
mixtures with various oxides. These simulations can complement experiment
in various ways, e.g. data can be obtained at high temperatures and pres
sures which are not accessible experimentally, and quantities can be estimated
which are not available in the experiment (partial structure factors, ring statis
tics in SiOz, etc.). Of course, these advantages in principle are by no means
restricted to the systems studied here, but apply also to broad classes of other
systems, e.g. metallic alloys.
But one important caveat needs to be made: one must keep in mind the
limitations of the method, due to the use of effective potentials (with pair
and perhaps triplet interactions, etc.) and due to the small size of the sim
ulation box and the restricted time range that is accessible (typically less
than 100 ns in the case of MD). In fact, long wavelength phenomena such
as spinodal decomposition in mixtures [58] so far can only be simulated
with phenomenological coarse-grained meso-scale models, and it remains a
challenge to quantitatively bridge the gap between such mesoscopic studies of
slow long wavelength phenomena, and the atomistic simulations as described
here. Similarly, one needs to bridge the gap between the atomistic simulations
and the more accurate "ab initio" methods [14, 16,24,25,59] as well. While
the Car-Parrinello method [59] is in principle very superior since it does not
need a classical effective potential as an input, the limitation in size (about
100 atoms) and time scales (10 ps) that are accessible would not allow to
address many of the questions treated in the present work. But clearly it is of
great value to use this approach to validate classical potentials and, if possible,
improve them.
With respect to mixtures of SiOz with other oxides, there is still a lack of
experimental data (in particular on dynamic properties) with which our results
can be directly compared (with the notable exception of Ref. [18].) It is hoped
that the present work will hence stimulate also further experimental efforts.
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INTRODUCTION

In order to monitor the mechanical properties in relation to the microstructure,
the knowledge of the precipitation state at the end ofa thermo-mechanical treatment is of
prime importance. In this purpose, Arcelor develops models that allow for the prediction
of the influence of the process parameters on the state of precipitation. The model
Multiprec i, developed at IRSID is one of them I . It predicts the precipitation kinetics of
mono- and di-atomic particles in ferrite and austenite as a function of the time
temperature history. It is based on the classical theor ies for diffusive phase
transformation and treats simultaneously the nucleation, growth and ripening phenomena.
The state of precipitation that is predicted includes the part icle 'size distribution , their
number and volume fraction. From these values, the effect of the precipitates on the
mechanical propert ies can be calculated .

The recurrence of nitrogen in solid solution in steels implies that the
precipitation kinetics of the carbonitrides that form from the metallic elements in solid
solution be understood and modelled . One of the main difficultie s of this task is the
accounting of tri-atomic particles having a variable CIN ratio. This paper proposes a
simple and fast computer model that treats the precipitation of the vanadium carbonitride
V(C,N). This case is chosen here to exemplify the principles a new version of the
Multipreci model which is designed to be valid for M(C,N)-type precipitate s, M=V, Nb
orTi.

2 THE MULTIPRECI MODEL

2.1 V(C,N) versus VC

It is an experimental fact that nitrogen present in austenite solid solution in
addition to carbon during the precipitation of vanadium results in the formation of
vanadium carbonitrides. The ratio of CIN in the precipitates depends on the alloy
composition and the thermal cycle. A comprehensive model of vanadium precipitation
kinetics must take this fact into account, and therefore solve the following points:

• Composition of the nuclei
• Nucleation rate
• Growth rate
• Time evolution of the particle composition
• Gibbs-Thomson effect and ripening
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In chapter 2 and 3, we provide analytical equations and a procedure to solve them to
answer the above-mentioned questions.

2.2 Physica l assumpt ions

The assumptions of the model are classica l for this kind of problem:
• The precipitates are spherical particles.
• The thermodynamics ofV(C,N) is an ideal solid solution ofVC and VN.
• Nucleatio n occurs homogeneously according to the classical theory.
• Growth is limited by the diffusion of vanadium in the volume of the matr ix.
• Ripening is driven by the Gibbs-Thomson effect.

2.3 The class model

The kinetic equations of nucleation and growth are used to compute the time
evolution of the size histogram of the particles . The size histogram is represented by the
number per unit volume and the particle composition of each class of size. This approach
has been chosen to render the size-composition corre lation that is commonly observed
during controlled cooling experiments: the larger particles have higher nitrogen content
than the smaller. We will see in the following that this approach has also the advantage of
treating in a simple way non trivial ripening effects of varying compositio n particles.

Each class of size is characterised by its radius R and its composit ion y. At each
time step of the calculation, nucleation is rendered by the creation of a new class of
radius R' and compositio n Yg- During the same time-step, growth modifies the radius of
each existing class of particles. The growth rate takes into account the Gibbs-Thomson
effect. As a result, Oswald ripening occurs by dissolution of the smallest particle to the
advantage of the largest ones (see Figure I).

II
Nucleation

instantI b instant t '>t
~

roo --,I IIII , .
Radius R'

I
Growth

L II--
I III , ,

I~
Ripening

1
R' R'

; - ......-.
!j III III ,,

Figure I, Schematic s of the treatment of the classes of SIze . rendermg nucleation , growth and ripening .



3 EQUATIONS OF THE MODEL

3.1 The model Fe-V-C-N steel

The generic case of vanadium precipitation in a model Fe-V-C-N steel is used
here to exemplify the approach used in the Multipreci model. The steel has the following
composition (Table I):

V 2150 2.36 lO.j

C 1900 8.87 10"
N 150 6.0104

Table I. Composition ofthe steel, in weight ppm and atomic fraction.
wt ppm at. fract

The steel is composed of a metallic alloying element, V, and two interstitial
elements C and N, the balance being a majority of Fe atoms. The ratio of the interstitial
atoms is CIN '" 15. The ratio of substitutional over interstitial atoms is V/(C+N) '" 0.25.
This ratio being less than I, the maximum quantity of precipitated vanadium is not
limited by the amount of interstitial elements in the steel, but by the total amount of
vanadium.

3.2 Thermodynamics

(I)

The equilibrium at a given temperature in austenite is the state towards which
the system evolves from its initial, out of equilibrium state. It is useful to compute this
state as a reference for the precipitation kinetics.

The equilibrium between the austenite matrix and the carbonitr ide VCyNl-y is
described by the mass action law:

),1 e I e ( eJ .RT~nav + y nae + 1-y)lnaN =/j,GVC,N,., '

In this equation, a7 is the activity of the element i (i=V, C, N) at equilibrium. In the case

of infinite dilution, the activity is proportional to the atomic fraction at equilibrium X i
e

(Henry state of reference). This assessment is true for V and N but remains a

simplification for C. /j,G~hCA_y is the Gibbs energy of formation of the carbonitride and

is a function of its composition y. VC and VN are both of the fcc NaCI type crystal
structure of very similar molar volume (see Table ?). We thus consider the carbonitride as
an ideal mix ofVC and VN, and following Hillert-Staffansorr' , we can write

/j,G~C,Nl_y = y/j,G~c + (1- y)/j,G~N + RT[y Iny + (1- y)ln(1 - y)] (2)

where /j,G~c and /j,G~ are the Gibbs energy of formation of respectively VC and VN.

Theses two thermodynamic functions are related to the solubility products for the
individual VC or VN in equilibrium with the matrix by the relations
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{
In(X~ .xr ) = llG~c / RT

In(X~.x~) =llG;w/ RT
(3)

By substituting Equation (2) into (1), it is easily shown that the equilibrium equations
are3,4 :

{
YKVC =xt.x;
(1- y)K f'N =X~.x~

(4)

where Kvc and KVN are the solubility products of respectively YC and VN, This set of
equations will be used later in this chapter for the derivation of the nucleation and growth
rates, Relations (4) in association with the conservation equations of the alloying
elements alloy for the calculation of the equilibrium concentration of V, C and N in solid
solution, as well as the composition y of the carbonitride . The values of the solubility
products can be found in the literature, and we have chosen the data selected by
Gladman' (Table 2 and Figure 3):

Table 2. Logaritbm of the solubility products of VC and VN in austenite (Tin K, compos itions in wt%).
Solubility product

Log(%V.%C)

Log(%V.%N)

6,72 --9500/T

3,02 - 7840/T

From Figure 2, it can be seen that the solubility product of VN is more than a
hundred times smaller than that of YC, In other words, vanadium nitride is much more
thermodynamically stable than vanadium carbide in austenite, This will have important
consequences on the kinetics of nucleation and growth, as will be demonstrated later,

Solubility product VC I VN
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1

0.0007 0.0008 0.0009 0.001

1.8 03
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Figure 2. Arrbenius plot oftbe solubility product ofVC and VN in austenite from Table 2 (T in K, compositions
in wt"1o). Tbe ratio KvclKVN is plotted in dasbed line.

The results of the calculation of the equilibrium state as a function of
temperature are summarised in Figure 3, The temperature for complete dissolution is
I ISO°C. Below this temperature , when the temperature decreases:



(5)

• Nitrogen precipitation increases.
• The proportion of carbon in the precipitates increases .
• Under 900°C, the full precipitation of nitrogen is achieved .

We note that the total precipitation of vanadium cannot be achieved in austenite
(T > 800°C).

2500 I
~;"ci;~~d V;;;;~~ium- -~-~

2150

I~2000 --1825 oVN

I 1500 --

-~
.e

1005
&1000 r>

500
500 - · -D ZOO

_._0_
maxi soo-c 900'C 10OO'C 1100'C

Figure 3. Equilibrium state of precipitation as a function of temperature calculated for the steel in Table I, with
data ofTable 2.

3.3 Nucleation

Neglecting the mechanical energy term, the Gibbs energy for the formation of a
spherical embryo of vanadium carbonitride from the elements in solid solution is
classically expressed as the sum of a volume and an interface term:

4 3 2
!J.G=!J.g-JrR +r4JrR

3

In this equation, !J.g is the driving energy for nucleation per unit volume, R is the radius
of the embryo. r is its interface energy with the matrix and is supposed to be isotropic.
The expression of the driving energy !J.g is a clue to the derivation of the size and
composition of the critical nucleus. To find its expression we proceed as follows.

3.3./ Driving energyfor nucleation

In the simple case of a binary compound of formula AyBt_y , the driving energy
for nucleation writes

(6)

In the case of the VCyNt•y compound, Equation (6) can be generalised. The chemical

potentials Pi are developed as a function of the molar fractions in solid solution Xi'"'
according to the regular matrix solid solution assumption, and the equilibrium fractions

X: are introduced. This leads to the expression'?":
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RT[(X~' J (X;:' J (X;:J]I'1g= - -- In - e- + yln - e-· +(I - y) ln - e-VVCN Xv Xc XN
(7)

where VVCN is the molar volume of the vanadium carbonitride. Taking into account that
the molar volume of VC and VN are almost identical, VVCN is considered here to be
independent of the composition y (see Table 3).

3.3.2 Composition ofthe critical nucleus

Using Equations (4), the unknown equilibrium compositions in the solid solution
in Equation (7) are replaced by the solubility products Kvc and KVN :

(8)

I'1g is here a function ofy . We state that the nuclei that appear in the matrix are those that
produce the maximum variation of Gibbs energy during their formation. The composition
of the critical nucleus is then the value of y that minimises the driving energy (8) for
nucleat ion. The expression is found to be

(9)

This equation shows that the composition Y8 of the critical nucleus does not
depend on the vanadium concentration in solid solution, and depends exclusively on

• the temperature , via the ratio K vc /K VN '

• the composition in C and N of the solid solution, via the ratio X i'" / X~' .
Notice that formula (9) relates in a linear way the ratio CrN in the critical nucleus to the
ratio CrN in solid solution:

(XC/XNL ieu, = (KVN / Kvc)(Xc/XNLatrix (10)
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Figure 4 show the composition of the nucleus VCygNI-ygas a function of the ratio

Xl:' /X~' , for three temperatures. It appears that for a given Xl" /X~' ratio, a decrease

in temperature leads to an enrichment in carbon of the carbonitride. On the other hand, if
carbon and nitrogen in solid solution are of equal order of magnitude, the nucleus will be
very rich in nitrogen, similar to a pure vanadium nitride. In part icular, for the ratio
CrN :; 15 character istic of our reference steel, the composition of the carbonitride is
VCo 1No.9• The explanation for this is as follows: as we have seen previously, the nitride
VN is much more stable thermodynami cally than the carbide VC. Then it is the
nucleation of VN that reduces most the total Gibbs energy. This is rendered by the ratio
Kvc /KVN » 1 present in Equation (9). The counterbalance of this effect of relative

stability is possible if the carbon concentration in solid solution is increased relatively to
nitrogen concentration. Hence at 800°C, nuclei of equimolar composition will appear if



the carbon concentration in solid solution is approximately 110 times that of nitrogen (see
Figure 4).

Nucleus composition
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Figure 4_Compositiony, ofthe nucleus VC,.N, _,. as a function of the ratio Xi'" /X;: •
for threetemperatures.

(I I)

3.3.3 Radius ofthe critical nucleus

Given the composition of the critical nucleus, its radius has to be calculated. The
Gibbs energy for the formation of an embryo, t1G (Equation I), reaches a maximum

value t1G * for a particular value of R, the critical radius R' = - 2y/ t1g( y,, ). R*

corresponds to a nucleus that is in equilibr ium with the matrix, taking into account the
radius-dependent Gibbs-Thomson effect. For a precipitate to be able to grow effectively,

it has to have a radius R' slightly higher than R* such that t1G(R')= t1G' - knT , where kB

is the Boltzmann constant. R' is the solution of the following equation:

R,3+ 3y R,2=[iL_ 3kBT J .
t1g 3 t1g3 47rt1g

The approximate solution

(12)

proves to be precise enough in practice.
In the Multipreci model, we treat the nucleation stage at each time step as

follows: a new class is introduced in the histogram of size of radius K and composition y,
according to Equations (9) and ( 12). The number of precipitates N of size R' is given by
the classical non stationary nucleation rate equation :
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(\3)

where No is the number of substitutional sites per volume in austenite, F the absorption
frequency of a vanadium atom by the critical nucleus, Z is the Zeldovitch constant and T

is the incubation time. Note that the incorporation of the Zeldovitch constant in this
equation is consistent with the choice of K as the radius of the precipitates introduced by
nucleation.

3.4 Growth

For each individual class of particle of radius R, the growth rate has to be
established as a function of the composition of the solid solution. Carbon and nitrogen,
being interstitial elements, are very fast diffusing species compared to vanadium. As a
result the growth of a precipitate is limited by the diffusion of vanadium form the matrix
towards the precipitate . A gradient in vanadium concentration builds around the
precipitate while the concentration profiles of carbon and nitrogen are almost flat (see
Figure 5).

x

mV-
--,m'i

. _nm_[

x ss
V

R
Figure 5. Schematics of the concentration profiles around a growmg prectpitate. The C and N concentration

profiles remain almost flat.

To a very good approximation, the quasi-stationary approximation for the diffusion
profiles can be applied. From the mass balance at the precipitate / matrix interface the
classical Zener equation for the grow rate is derived. For vanadium, the equation is

(14)dR = Dv
dt R

xt' - X~

VI'e Xi
-- - V
VVCN

During an isothermal precipitation treatment, the composition of vanadium in solid

solution xt' decreases, and consequently the growth rate decreases. In the meantime,

the composition of vanadium at the interface X~ evolves. Note that Equation (\4) is also

valid for dissolution, a feature that is used for the modelling of the Oswald ripening
phenomenon (see § 3.5).
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(15)

Growth occurs by accretion of success ive shells of carbonitr ides. Each shell has
its specific compositionYe' The calculat ion of the shell compo sition is done together with
the calculation of the matrix composition in the vicinity of the interface by the
simultaneous resolution of the local equilibr ium and a flux-compatibility condition :

• The local equilibrium of the shell with the surrounding matrix writes,
according to Equation (4),

{
YKVC =X~ .x~:

(1- y )KVN = X~.x~

• The compositi on of the precipitating shell has to be compatible with the flux
of precipitating species. This can be written in a simplified way as Jc =yJv
and I N = ( l-y)Jv. According to the quasi-stat ionary assumption, this leads to

{D(Xi x ·u ) D(Xi x ·u )c c - c =y v v - V

DN (X~ - X;:)=(1- y) Dv (x~ -xt')
( 16)

At each time interval, the resolution of the set of equations (15-16) gives the

composition Ye of the shell and the concentrations X~ , X~ and X;. at the interface.

From the cond ition Dc»Dv and ~>Dv, a very good approximation of the shell
composition can be achieved , that is:

(17)

It appears that, at each time interval, the composition of the shell is the same as that of the
critical nucleus (ye= yg), and is only driven by the composition in carbon and nitrogen of
the solid solution . This can be understood by the following reasoning. Notice first that the
composition of the shell is independent on the diffusion coeffic ients of carbon and
nitrogen (Equation 17). This non trivial result is due to the fact that C and N, being
interstitial elements, are very fast diffusing species compared to V. As a result , the
characteristic time for C and N diffusion towards the precip itate is much smaller than for
V. In other words, C and N have enough time to equilibrate with one another around the
particle during the precipitation of vanadium. They do so such that the Gibbs energy of
the interfaci al region be minimum. This minimisation criterion is exactly the one that Jed
to the expression of the crit ical nucleus, implying that y, = Yg.

3.5 Ostwald ripening

Ostwald ripening is the process by which the smallest precipitates dissolve to the
profit of the bigger ones. This phenomenon is particularly important when the system
reaches the equilibrium precip itate fraction, but it is to be noted that ripening occurs at
every stage of the precipitat ion process, even when the matrix is stiII supersaturated, as
will be demonstrated by the numerical results later. The ripening will automatically be
dealt with by the class treatment as soon as the growth rate is written in a proper way as a
function of the precipitate size. We proceed as follow.

63



The incorporation of the interface energy in the total energy of formation of a
precipitation of radius R introduces an additional curvature-dependent term to the
chemical potential of the precipitate, equal to ZyVVCN / R . We introduce this term in the

right-hand side of equation (I) and perform the calculation of the equations of local
equilibrium of the shell with the surrounding matrix as in paragraph 3.Z. This leads to a
similar set of equilibrium equations as Equations (4), where the solubility products of VC
and VN have to be replaced by the radius dependent functions KvcCR) and KVN(R) :

j
() ZrVVCN

Kvc R = Kvc exp( RRgT )

K (R)= K exp(ZrVVCN)
VN VN RRT

g

(18)
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In Equations (18), the usual solubility products are just multiplied by a factor of
exp(ZrVVCN / R RgT) where Rg is the gas constant. To treat the ripening phenomenon, the

radius-dependant solubility products are simply substituted to KVN and Kvc in equations
(15) and (16). The resolution of this modified system of equation allows for the

incorporation of the Gibbs-Thomson effect on the concentrations X ~ , X ~ and X L. at the

interface. the interface compositions are affected in such a way that for supercritical

precipitates (R>R*) the condition X~' - X~ > 0 applies. According to Equation (14),

those precipitates grow. On the contrary, the undercritical precipitates dissolve since for

them xt' - X~ is negative. This treatment renders in a natural way the ripening

phenomenon without any additional hypothesis.
In addition, it can be easily shown that the composition of the shell at a given

time does not depend on the size of the precipitate , and is still given by Equation (17) .

4 RESULTS OF THE MODEL

4.1 Calculation procedure

The model is programmed in Fortran language. In addition to the physical
constants , an initial state of precipitation can be introduced . The model computes the
histogram of size at each time along any thermal cycle, including stages of reheating and
cooling. The calculation proceeds iteratively: at each time step, nucleation introduces a
new class of size in the histogram and the new radius of every existing class is computed.
The mass balance in the system gives the new composition of the solid solution, before
the next calculation loop (see Figure 6). The calculations presented in this chapter run in
less than one minute on a PC computer.
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Figure 6. Organ igram of the iterative calcula tion procedure in Multipreci.

4.2 Entry data

The Multipreci model is applied here to isothermal treatments of the model alloy
presented above. The entry data of the model are summarised in Tableau 3:

Table 3. Values of the entry data ofthe calculations.

Xv 2.36 10'\
Symbol Value

Vanadium nominal atomic fraction
Carbon nominal atomic fraction Xc 8.8710"
Nitrogen nominal atomic fraction
Carbon di ffusion coefficient [cm'/s]

XN 6.010'"
Dc 0.1 exp(- 137500/R,T)

Nitrogen diffusion coefficient (cm'/s]
Vanadium diffusion coefficient (cm' /s]

0. 0.9 1 exp(- 168600IR,T)
Dv 0.25 exp(-264200IR,T)
y 0.5 J.m"

VVCN 10.65 cm' .mor '
Interface energy
Molar volume of VCN
Molar volume of austenite V" 7.11 cm' .mor'
Solubility product of VN Log(KVN) 3.02 - 7840/T

Solubility product of VC Log(Kvc! 6.72-9500/T

4.3 Isotherms of 800°C and 900°C

The isotherm at 800°C illustrate the various step of precipitate formation
through the stages of nucleation, growth and ripening. Those stages are in fact non fully
differentiated as discussed in detail in the following sections. The isotherm as 900°C is
used to illustrate the non trivial ripening stage that occurs will composition-varying
particles .

4.3.1 Isotherm 01800°(;

As can be seen in Figure 7a, the nucleation rate of the particles increases rapidly
during the first 5s of transitory nucleation stage. The precipitates that form are nitrogen
reach VCo.1No9 (Figure 7g). It can be shown that the presence of nitrogen increases
considerably the nucleation rate of the precipitates, since the driving energy for the
nucleation of VCo.1No9 is much higher than that of VC (Cf. paragraph 3.2). During the

65



nucleation stage, nitrogen and vanadium are consumed from the matrix , which decreases
the driving energy and trends to slow down the nucleation rate. The initial critical radius
of nucleation is about 0.3nm (Figure 7c). After - 20s, the composition of the solid
solution reaches a value where the nucleation rate is practically zero : nucleation stops .

From this point, the number of particles begins to decrease (Figure 7e). A
transitory ripening stage occurs, during which the critical radius has not yet reached the
average radius (Figure 7c). After - 35s, almost all nitrogen initially in solid solution as
been consumed from the matrix and growth now proceeds by precipitation of carbon and
vanadium in the form of VC shells (Figure 71). As a result, the average carbon
composition of the precipitates grows slowly.

A time I = 500s, the critical radius has reached the mean radius of the particles
and ripening develops in a quasi-steady state manner, leading to an endless growth of the
mean radius of the particles and a steady decrease of their total number per unit volume
(Figures 7c, d). The composition of the precipitates reach es its equilibrium value of
y = 70% after 106s of annealing. In the meantime, the volume fraction of the precipitates
has increased towards its equilibrium value of 0.3%.

Figure 7b shows the time evolution of the size histogram. Nucleation builds up
the histogram initially around small radii. The whole distribution shifts to the right by
growth . After a while, ripening is visible in the decrease of the total number of particles
and the shift of the mean radius. Notice that the shape of the histogram is none of the
usually measured log-normal distribution , nor the theoretical LSW distribution. This fact
is extensively discussed in (8) and will be published in the future.
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Figure7. Results of the calculations at a temperature of 800ae.The entrydata are in Table3.

Figure 8 is a schematic representation of the evolution of the successive shell
accretions that form the precipitates. Starting from a nitrogen rich core, the successive
shells are richer and richer in carbon. The overall composition of the particle is that of a
carbonitride V(C,N). During the growth of the precipitates, their composition is likely to
homogenise somewhat by internal interdiffusion of carbon and nitrogen. This
phenomenon is not taken into account in the model, but it is supposed to have a effect on
the kinetics of growth and the final state of precipitation.

Figure8. Schematic representation of the accretion sequencethat formsa V(C,N)precipitate.

4.3.2 Isotherm of900°C

At 900°C, precipitation occurs in three steps: the first step, corresponding to
time t < 200s, is the nucleation and growth of nitrogen-rich particles (see Figure 9). A
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stasis period follows (200s < t < 500s), during which the size histogram evolves at
constant total number and mean radius of the particles. After 500s, a non usual ripening
phenomenon is at work: indeed, the total number of particles decreases while the mean
radius increases, as a results of the growth of the big particles to the expense of the
smallest. However, this occurs while in the meantime the mean composition of the
particles evolves from y = 6% to 50%, and while the volume fraction increases from
0.1% towards its equilibrium value of 0.165%. This leads to a deviation form the usual
time-scaling laws of If act and N"Iact.
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Figure 9. Resul ts of the calculations at a temperature of900·C. The entry data are in Table 3.

4.4 TIT diagram

The Multipreci program allows for rapid calculation of Time Temperature
Transformation (TTT) diagrams for different sets of alloy composition. For the alloy
under study in this paper, the TTT diagram is represented in Figure 10. The percentages
in the legend refer to the maximum quantity of interstitials that can possibly precipitate
according to the alloy concentration (i.e. 150ppm Nand 505ppm C here). The diagram
exhibits the usual C-shape curves, the maximum of precipitation rate being around
850·C. It is clear that the precipitation of the interstitial elements occurs in two
successive stages: a fast precipitation of nitrogen under the form of nitride particles,
followed by a longer precipitation of carbon that transforms the initial nitrides VN into
carbonitrides V(C,N).
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Figure 10. TIT diagram of the isothermal kinetics of precipitation afN and C with V.

4.5 CCT diagram

Diagrams of the Transformation kinetics during Continuous Cooling (CCT) are
of high practical interest. A CCT diagram for the alloy under study is shown on Figure
II . The cooling rates range from -0.0 I to -I O°C/s in the temperature interval from 950 to
800°C. As expected, the beginning of transformation (I O%N precipitated) occurs at a
lower temperature when the cooling rate is higher. Under such conditions of continuous
cooling, carbon precipitation is not expected to occurs in the temperature range 950
800°C, unless the cooling rate is very slow « -0.0 I°Cls).
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Figure II. CCT diagram of the kinetics of precipitation afC and N with V during continuous cooling.

5 CONCLUSION

The model presented here proposes a methodology that solves the difficulty of
dealing with tri-atomic and composition-varying precipitates . This approach allows for
the simple account of nucleation, growth and ripening of M(C,N)-type carbonitrides . The
application of the model to a Fe-V-C-N alloy illustrates the prominent role of nitrogen in
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the precipitation sequence and kinetics. This approach will be extended in the future to
the case of(M,M')(C,N) mix carbonitrides (M,M' = V,Nb,Ti).
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CURRENT AND FUTURE APPLICAnONS
OF CALPHAD TECHNOLOGY

Larry Kaufman
140 Clark Road, Brookline MA 02445-5848,USA. E-mail : larrykaufman @rcn.com

1. INTRODUCTION
During the past year the author has had the opportunity of participating in two

international conferences held in the U.S. devoted to exploring recent examples of methods
for predicting multiphase equilibria in diverse materials. The first of these, held at the 130th

TMS meeting in New Orleans was organized by Zi-Kui Liu entitled "Computational
Thermodynamics and Materials Design", Kaufman' . The second, organized by Patrice
Turchi was "CALPHAD and Alloy Thermodynamics" held in Seattle at the 131st TMS
meeting, Kaufman 2.Most of the papers presented at these meetings have been published. In
May of2002 CALPHAD XXXI held near Stockholm provided additional examples of rapid
progress in this field . Finally , the second issue of the volume 26 (2002) of the CALPHAD
Journal contains descriptions of the variety of software available for apply ing the modern
methods of "Computational Thermodynamics" (CT) to practical problems encountered in
dealing with commercial materials. The author has chosen several examples of recent work
on Nb alloys, Kaufman :', giant magneto-resistance, Bamberger et a14

, metallic glasses 5,6,7,

lithium batteries, Thackeray et a1. 8
, Kaufman", zirconia cerami cs, Jacobson'", Arroyave et

al.!', and multi-component rhenium alloys Erymenko et a1.12
, Velikanova et a1. 13 for

discussion in order to note current problems that require attention and to foster future
progress in this field. At the above-mentioned conferences Kaufman 1,2 reviewed progress in
this field since 1966 and compared the limited capability for making useful predictions of
phase equilibria in commercial processes and multi-component alloys which were used in
1966 in contrast with the current practice where CT methods are used with success in such
systems . This was attributed to the development of CALPHAD THERMODYNAMICS
(CT) that aims to describe all possible phases in a system over wide ranges of temperatures,
pressures and compositions to an extent that is uncommon in classical thermodynamics. The
latter feature presents many opportunities for future applications as well as some problems
that require attention. The inclusion of this feature grew naturally in CT from the realization
that commercial processing always endeavors to increase the rate of production to become
more profitable. By contrast, thermodynamic measurements are performed under
equilibrium conditions, Thus since CT applies the results of scientific measurements and
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observations, which are made under conditions where equilibrium prevails, to commercial
practice where non-equilibrium or quasi-equilibrium persists, the CT framework must be
broader in scope than that used in classical thermodynamics. The success achieved by
pursuing this track is due to the explicit definition of the stability of unstable and metastable
phases and the functional descriptions of the compositional, temperature and pressure
dependences of the Gibbs energies and entropies of such phases. This feature has permitted
many workers worldwide to understand and apply this framework to many important
problems. These investigators have been able to communicate their results to others who are
active in this field . The ready availability of fast, powerful PC's and efficient software
programs for performing such calculations contributed to this progress. Another important
outcome of this effort has been the interface that has been established between the
CALPHAD descriptions of stable, metastable and unstable phases and derived by ab initio
methods. While good agreement has been attained between these methods in many instances
some differences still exist. The discussion below will review the current applications of CT
to several systems as well as CALPHAD and ab initio lattice stabilities.

2. RECENT APPLICAIONS OF CALPHAD TECHNOLOGY
As noted earlier, Kaufrnarr', the principle driving force for the recent growth of

"Computational Thermodynamics" (CT) has been the availability of powerful PC computers,
databases and a language that is generally accepted within the community so that
independent workers, worldwide, can correspond and contribute to progress in this field.
Figures 1 and 2 are examples taken from a Niobium database currently under development,
Kaufman", that can be used for a wide variety of practical and scientific investigations. The
thermodynamic calculations were applied to multi-component alloys to calculate equilibrium
and Scheil simulation of the freezing of alloys in order to illustrate how the method can be
used in practice to anticipate segregation during the casting of niobium alloys. In addition, it
was shown how the formation of a ternary miscibility gap in the Nb-Cr-Mo system could be
predicted merely by using the data available for binary edge components. The database
presented covers the Nb-AI-Cr-Ti system. However it is quite possible to expand the
description to many other elements since many more Nb-based binary databases exist in the
literature and in commercial databases.

Interest is growing in extension of solid solubility in alloys exhibiting miscibility gaps.
Bamberger et al." Systems such as Co-Cu, Cu-Fe, and Co-Cu-Fe are of special interest,
because one or more of the elements is ferromagnetic and are known to exhibit "Giant
Magneto Resistance" corresponding to a large drop in the electrical resistivity when a
magnetic field is applied. Previous work has shown that supercooling of Cu-Fe, Co-Cu or
Co-Cu-Fe alloys can result in metastable separation of the melt into two liquids. Because
there is limited experimental data for the ternary system calculations were first carried out
using the binary description as is illustrated in Figure 3. Under these conditions an isolated
ternary gap is computed at 1450 "C. By contrast, experimental studies of this system using
levitation melting techniques showed that a single-phase liquid is formed at 1450 °C in this
system. Accordingly, small ternary interaction parameters were added to the liquid in order
to suppress the miscibility gap as shown in Figure 3. Subsequent measurement of the
melting points over a wide range of ternary compositions were made and found to compare
favorably with the calculations as shown in Figure 3, when a similar correction was applied
to the fcc phase.
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Figure 1. Calculated binary
phase components of the Nb
Ti-Cr system (Ref. 3). The
liquid phase is designa ted by
L.
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Figure 2. Calculated isothermal sections in the Nb-Ti-Cr (Ref. 3). Single-phase regions are
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Fig ure 3. Ca lcu la ted and
experiment al result s for the Co
Cu-Fe system (Ref. 4). Small
corrections were made to the
liquid (L) and fcc phases . The
calculated and measured melting
points agree well as shown in the
table.

The discovery of metallic glasses in 1988 by He et al.' , based on Al-transition metal
rare earth metal metalli c glasses with high specific strengths (ratio of fracture strength to
density) has generated substantial scientific and technical interest. Accordingly a database,
AlGl5r4 comprising Al-Fe-Gd -Ni-Y has been construct ed and applied in elucidating the
phase relations in Al-Gd-Fe and Al-Gd-Ni alloys experimentally, Hackenberg et al.", Ferro et
al.", and Gao et al.' These results were compared with observations made on melt spun and
devitrified ribbons in continuous-heating DSC scans and by isothermal annealing. X-Ray
diffraction and TEM were used to verify the wholly amorphous state of the as-spun ribbons
and to track the devitrification process. Figure 4 shows the calculated binary phase diagram
components of the AI-Gd-Ni system computed from the AlGl5r4 database. This database
was then used to calculate the Al-Gd-Fe system, Hackenberg et al.6

, and Al-Gd-Ni, Ferro et
al.", Gao et al.' , ternary systems. The latter shows three ternary compounds based on the
compilation of Ferro et al." Figure 5 shows ternary sections for the Al-Gd-Ni ternary system
calculated from the AIGI5r4 database. The Al-Ni-Gd ternary has been identified as a good
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glass forming system extending over a wide range of composition, Gao et a1.7
, ideal for

experimental studies of primary crystallization. This study of the AI-rich corner was
performed by conducting an extensive study of seventeen alloys at 250°C which were
compared with calculations of the driving force for nucleation of crystalline phases
originating from the undercooled liquid with good results . The latter temperature was chosen
because it is very close to the primary crystallization peaks for all the alloys , and still
sufficiently removed in tempera ture from the second crystall ization peaks. These studies
illustrate how coupling CT and experimental studies of a complex problem can enhance the
level of scientific understanding and increase the efficacy of both aspects of the investigation .
The ternary section s in Figure 5 were calculated from the edge binary components in Figure
4 by first fixing the stability of the M2Rand M17R2 phases in accordance with the compilation
due to Ferro et.al", Once these phases were defined the remaining ternary phases that appear
in Figure 5 (i.e., AI,MR, A17M7R2, and A1 16M3R) were constrained by the results presented in,
Ferro et.al", Calculated melting points for these phases were consistent with the observed
results7

• Moreover, the description of the edge binary compounds Al7R2and M2Rthat appear
in the other ternary components of the AI-Fe-Gd-Ni- Y database Hackenberg et al." are all
characterized by thermodynamic parameters that are similar in magnitude.

The development of the AIGlr4 database was initiated about 12 months BEFORE the
detailed experimental work was started with good descriptions of the AI-Fe and AI-Ni
binaries . A number of iterations (i.e., AIGlrl, AIGlr2, and AIGlr3) were made before most
of the actual experimental data had been evaluated. Thus the experimental study had the
benefit of the detailed descriptions afforded by the AIGlr4 database as a guide. The general
agreement between the predictions and the experiments was quite good . However it is likely
that an even better database, i.e. AIGlr5 will result once all of the experimental results , Gao
et a1.7

, are fully analyzed.

Figure 4. Calculated AI-Gd-Ni
binary components (Refs. 5-7)
based on the AIGI5r4 database
developed for the AI-Fe-Gd-Ni
Y quinary system .

L
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Figure 5. Calculated Isothermal Sections in the AI-Gd-Ni System based on the AIGI5r4
database (Refs. 5-7).

Lithium-ion batteries, preferred for their high energy and power, also present several
challenges. Thackeray et al." reviewed recent development and enumerated some of the
problems that state-of-the-art batteries can pose in large-scale applications. Extensive
scientific and practical studies are being conducted world wide to find alternative anode
materi als to replace the current materials that are a carbon anode and a LiCoOz cathode.
Alloys or intermetallic compounds are attractive alternatives to graphite because they can be
tailored to operate between 0 and I volt above the potenti al of metalli c lithium . Many
compounds in binary lithium syste ms (with AI, Si, Sn, Sb, and Pb) have already been
investiga ted and rejected due to severe crys tallographic changes during charging and
discharging. Thackeray et al.", have suggested that intermetallic structures that could
accommodate Li with a minimal change could mitigate this problem and have suggested a
number of interesting examples including Cu6SnS and InSb. Investigation of the performance
of such anodes is a complex probl em requi ring the solution of many proces sing and
performance evaluation steps. Consequently a CT analysis of the potential multi-component
candid ate systems could be quite valuable as a screening tool and/o r companion to
experimental synthesis of such materials. To illustrate this procedure a database for the Li
In-Sb system was constructed and employed, Kaufman", to compute the binaries and room
temperature isotherm in Figure 6. Two ternary compounds, Li6InSb3 and Li3InSbz, Thackeray
et al.", were included . The results are shown in Figures 6-8. Figure 6 shows the isopleth
trace from Li to InSb while Figure 8 identifies the phases that are present along the trace
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starting at Li and heading toward InSb. The voltage difference between Li and any point on
the trace is calculated by applying Faraday's Law to the chemical potential of Li that is
computed at that point. Figure 8 shows a series of steps starting near Li, where the difference
in voltage is zero, as the trace in Figure 6 crosses the three-phase Li+InLi 7+ Li3Sb field. In
this phase field the chemical potential of Li is constant. Each time a phase boundary is
crossed and the identity of the coexisting phases change the chemical potential of Li changes.
This results in the steps shown in Figure 8 as the Li concentration drops along the isopleth.
The calculations suggest that this behavior persists until the Li concentration crosses into the
ternary field where the ternary intermetallic phases form . From that point the voltage
difference remains constant near 0.9 volts. Figure 7 shows a Phase Fraction vs. Temperature
curve for an alloy with 0.32 mole fractions of Sb and 0.55 Li (balance In). This corresponds
to a composition between the ternary compounds. Figure 7 suggests that at low temperatures
a mixture of the compounds is stable but that above 510 °C Li3InSb2 decomposes to form
Liquid, Li2Sb, and Li6InSb3• Once the temperature exceeds 520 °C the latter compound
forms Liquid and Li3Sb. These CT calculations show how this approach can be applied to
the synthesis of anode materials for Li-ion batter ies. Yet another area within this field is
application of this method to analysis and design of cathode compositions. Accord ing to
Thackeray et al.", the preferred cathode material is based on LiCo02• A fully lithiated
graphite electrode, LiC6, provides a high specific capacity and a very high volumet ric
capacity based on the low density of LiC6• The Li,CiLi 1.,Co02 cells operate at 4.2-3.5 V.A
CT description of the "LrCor)," phase in the Li-C- .50 system should be performed in order
to explore methods for increasing the stability of this phase and reducing the propensity for
catastrophic battery failures. For example, Mn oxides are much more stable than their Co
and Ni counterparts and should be investigated as a safety enhancement.

In+lnSb+Li3InSb2

Liquid(L)

Figure 6. Calculated Binary Component s of the Li-In-Sb System and the room-temperature
isotherm (Refs. 8,9).
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The description of a three-sublatice oxide phase that cou ld be applied to treat a Li
(Co,Mn,Ni)02 phase could result in the kind of behavior previous ly illustrated for the Hf-N
and W-Hf-N sytems, Kaufman', which is shown in Figure 9. In the binary phase diagrams
disp layed as a function of pressure between 0.0 1 and 80 atmosphere the melting point
increases by 1000 "C. This extremely large increase is the result of the fact that the stability
of the HfN phase (with respect to the gas) is strongly dependent on compos ition. Thus, small
changes in the composition of the nitride can have profound effects on its melting point as a
function of pressure. This behavior carries over into the ternary in Figure 9 with substantial
changes in the configuration of the condensed and gaseous phases. The analysis of the ZrOr
.5y p 3-.5YbP 3 system' displayed in Figure 10 has been extended to include 5Nd20 3and
.5Sc20 3.J acobson et al." Figure 11 shows isotherma l sections and phase fractio n versus
temperature curves for compositions of commercial interest in the Zr02-.5Y203-.5SC203
system. The essential feature of this oxide database is the treatment of the Zr02-.5RE203
cubic solid solution as one where a miscibility gap separates the Zr02-rich and the .5ReP3
rich phases . This in turn is considered to be .5(Zr20 4 - Y203) where there is a continuous
replacement of oxygen atoms by vacancies as the yttrium concentration increases .
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This defini tion constrains the two cubic phases that are treated as end members of a
miscibility gap . The other feature of this model that is required to perform the calcu lations is
the estimation of the "lattice stab ility parameters" for all of the crystal structures of the end
members in direct ana logy to the values for the lattice stabilities established for the metallic
structures. Recently a detailed analysis of the Zr-O system was performed, Arroyave et al. 11,

for the Zr-O system as shown in Figu res 12 and 13 as a direc t ana logue to the Hf-N case
shown in Figure 9. It is anticipated that this detailed form ulation of the Zr-O system" can be
appl ied to other meta l-oxygen system s and used to reconsider the Zr02- .5REz03 systems as
Zr-Re-O affording a greater level of accurac y and utility.
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Figure 12. Experimental and
calc ulated Zr -O phase diag ram
(Ref. 11).
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The fina l example for discussion is shown in Figure 14 that repeats the earlier results of
calculations for the W-Re-C system at 2200 "C and 2300 "C as compared with experimental
resu lts at 2000 "C, Kaufman' . The important feature of these ca lculations was the unusual
find ing that the close packed hexagonal phase runs continuously from the well know n W2C
phase to the stable close packed hexagonal Re. The W2C phase is described by a two
sublattice model for the hcp lattice of W atoms with an interstitial lattice containing C atoms
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and vacancies. Extensive experimenta l studies have shown that as Re is added, the Re atoms
substitute for the W atoms in a continuous fashion until pure Re is reached. The cia ratio as
well as the c and a parameters observed by X-rays is a continuous funct ion of composit ion.
Recent experimental studies of the Mo-Re -C system, Erymenko et al.12

, Velikanova et al. ':',
shows the same behavior as the hcp M02C phase merges continuously into Re as shown in
the lower right panel of Figure 14. What is more surprising is that a fcc MoC,_x exhibits
nearly the same behavior as it extends nearly 75% of the way acros s the diagram toward Re.
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Figure 14. Calculated and experime ntal phase diagrams for the C-Re-W (Ref. I) and C-Re
Mo (Refs. 12,13) systems.

This can only mean that the difference in stability between hcp and fcc is small. Much
smaller than is suggested by ab initio calculations. At the outset of this discussion attention
was drawn to the fact that the CT frame work required the definition of the stability of
unstable and metastable phases in addition to stable phases . Clearly the definition of the
stabil ity of the former phases is difficult if not impossible if conventional methods are used
exclusively. It is for this reason that the interface between CT and ab initio calculations is so
important. In a recent review of this subjec t, Grimva ll" noted that substantial differences
exist between the CT and ab initio results for a number of cases (the ab initio results are 3-6
times larger) and that in many cases the higher energy phase is mechanically unstable.
Hence there is no Gibb s energy, G = H - TS, for the unstable phase. Grimvall 14 surveys
some of the instabilities as predicted in ab initio calculations, and an examp le of how the
Gibbs ene rgy varies when an instability is approached through changing alloy composition.
Surprisingly, Grimvall" argues that the ab initio calculations and CALPHAD approaches can
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be reconciled, with no essential changes in the CALPHAD method. Recently, Chen and
Sundman", modeled the thermodynamic properties of bee, fcc, liquid, and amorphous phases
using all the data available.
The results for the Gibbs energy difference between fcc and bee iron between 0 and 1800 K
agree closely with those of Kaufman et al.16.17

• The energy difference at absolute zero is
580OJ/moi versus 5440 in the earlier work. By comparison there are three recent ab initio
calculations for Fe performed using the FLAPW method. The results for the energy
differences at absolute zero are 9754 llmol by Herper et al." , 19560 llmol by Cho et al.",
and 18250 llmol by Singh et al." . The most recent calculations suggest that differences
between the earlier studies 19.20 and Herper et al.18is the treatment of the fcc phase within the
"generalized gradient approximation (GGA) applied to the full-potential linearized
augmented plane wave (FLAPW) method of density functional theory". A close reading of
Herper et al.18shows how the stability differences can be substantially changed depending on
the variety of methods employed to perform the calculation. Indeed the fourfold differences
between Cho et al.", Singh et al." and the Kaufman et al.16.17thermo-chemical values derived
in the 1960's are reduced to a twofold difference by Herper et al." It is of further interest to
note that the "Two-Gamma States" detailed in the early thermo-chemical analyses Kaufman
et al.16.17

, describing metastable fcc iron over a wide range of temperature (0-1200 K, 0-130
kbars) has been included in the recent calculations, i.e., as a low-moment, low volume fcc
(AFM-I) Herper et al.", anti-ferromagnetic fcc iron and a high moment, high volume
(FM/HS)18fcc iron. Moreover the volumes of these structures are remarkably close. Thus at
absolute zero the volume in crrr'zgat or crrr' per mol of atoms for bee Fe is 7.061, while the
low and high spin (volume) fcc forms are 6.695 and 7.216, respectively, Kaufman et al.16.17.
The corresponding volumes calculated by Herper et al.18 are 6.892 for the bee phase and
6.441 and 7.244 for the low and high spin/volume forms of the fcc phase. The experimental
result for bee iron at absolute zero and one atmosphere is 7.046 according to Herper et al.18
Nevertheless the ab initio calculations are still about twice the CALPHAD results . It is
essential that the CTlab initio interface be clarified. From the CALPHAD side this has
already been initiated via an awareness and a willingness to incorporate ab initio results into
CALPHAD databases where possible. From the ab initio side it is necessary to make
comparisons of the calculated bee/fcc (and bcc/hcp) equilibria in those systems where the
greatest discrepancies exist. The Cr-Ni case is detailed in Figure 10 of Kaufman' . The latter
discloses that a six-fold discrepancy (-3kllmol versus -17kllmol) exists between the
calculated TB-CPA iso-strucural ab initio enthalpy of the fcc phase at Cr67Ni33 and the value
estimated by requiring that the lattice stability difference beteen bee and fcc Cr is 37 kllmol
at absolute zero. The latter value (37kllmol) is the ab initio value . The CALPHAD value is
7 kllmo!! It is clear that the TB-CPA calculations performed for the lattice stabilities and
iso-structural energies nearly 20 years ago for the fcc (and bee) phase in this system can
certainly be improved upon. They should be! The point is that the proponents of ab initio
calculations of these lattice stabilities and heats of formation of phases who insist that the
entropy of metastable/unstable cannot be defined and that the Gibbs energy is not defined
should examine their current calculations of lattice stabilit ies and iso-structural enthalpies at
absolute zero to see if they are consistent with the binary phase diagrams. This should be
done for the binary systems that are formed when elements in the (Nb/Mo) group are alloyed
with elements in the (RulRh/Pd) group .
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INTRODUCTION

Diluted magnet ic III-V semiconduct ors (DMS) such as Gal _xMnxAs alloys repre
sent a new class of promi sing materials with pot ent ial applications in spin elect ronics' .
The sa mples are usually prepared by molecular beam epitaxy (MBE) on GaAs sub
st rates at t emperatures ran ging from 200 °C to 300 °C. Higher t emperatures or a
Mn conte nt higher t ha n 7 at .% can lead to precipi t ation of MnA s. According to the
measurcm ent sv" of Hall resisti vities in st rong magnetic fields th e conductivity is of
p-typ e. Extended X-r ay absorption fine st ruct ure (EXAFS) st udies have shown that
Mn is substitution ally incorporated into t he Ga sublatt ice" and acts as acceptor. These
materials are highly compensated , i.e., the experimentally observed number of holes
in t he valence band is considerably smaller t ha n th e concent ration of Mn impuriti es.
This indicates the presence of other lat t ice defect s acting as donors.

The most pr obabl e candidat e for such a compensa t ion are As antisit es, but also
other possibil iti es (e.g., Mn int erstitials'v"] are conceiva ble. The highest Cur ie temper
at ure report edv? for Gal _xMnxAs alloys is 110 K, while for Gal _xMnxN alloys it is
348 K8 .

It is ofte n assumed t hat t he defects are randomly distributed , however , experi
ment s? suggest that impuriti es can diffuse rapidly at 250 °C, which is a typi cal growt h
and annealing temperature for Gal _xMnxAs samples prepared by MBA . In such a case,
t he spat ia l distribution of impuriti es is not random any more, but it becomes (at least
partially) correlate d!". These corre lat ions can substant ially modify t he tr ansport and
magneti c pr op erties of t he DMSs.
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Here we investi gate the spatial distribut ion of impuri ties in t he DMSs from first
principles. Based on ab ini tio elect ronic str ucture calculat ions, we determine th e tot al
energies of disordered alloys as a function of their chemical composit ion. In a next ste p,
by using the generalized perturbation meth od (GP M), we evaluate effective interatomic
interactions between impurit ies by taking into account also the electrostatic interac
tions. Fin ally, by employing the meth ods of stat ist ical physics, namely, by using the
lineari zed version of the concent ration wave method we determine the ordering temper
at ure Tord and th e k-vector of the transit ion from th e disordered to the ordered state.
For tempera tures above the Tord we finally calculate the Warr en-Cowley short-range
order parameters which yield information about th e spa t ial correlations of impurities.
As an illustratio n, we present the results for Gal _xMnxAs alloys.

METHODOLOGY

Electronic st r uc t ure

The elect ronic st ructure is determi ned using the ab init io all-elect ron scalar
relat ivist ic t ight-binding linear muffin-tin orbital (TB-LMTO) method in the
atomic-sphere approximati on (ASA)ll . Th e underlying latt ice, zincblende st ructure,
refers to an fcc Bravais latt ice with a basis which contains a cat ion site (at a(O , 0, 0)),
an anion sit e (at a(~ ,~ , ~ )) , and two interstitial sites occupied by empty spheres (at
a ( ~ ,~ , ~ ) and a(~ , ~ , ~)) which in turn are necessary for a correct descrip tion of open
lattices12,13.

Th e anion sublattice is occupied only by As atoms, while th e cat ion sublattice
is occupied by Ga and Mn ato ms, and also by As ant isite defects. We consider only
substitutional disorder on th e cat ion sublattice which in turn is describ ed within the
coherent potential approximat ion (CPA)13,1l. We thus neglect local environment effects
and lat tice relaxations.

In addit ion to subst it utio na l randomness, the DMSs are characterized also by
some degree of magnetic disorder14,15 which we tr eat in terms of th e disordered local
moment (DLM) meth od ll ,16 that can be naturally incorporated in the CPA: the Mn
ato ms have collinear, but random spin-up (Mnt) and spin-down (Mn~) orientations.
It is worthwhile to ment ion that for total energy calculat ions it is not necessary to
consider all possible 2S + 1 proj ections of th e atomic spin: it is sufficient to carry out
the calculat ions for only two ext remal values, namely ±S16. Th e corresponding con
centra t ions xt and x~ fulfill th e condit ion x = x t + x~ . Th e degree of magnet ic disorder
is th en characterized by th e parameter r = xt / x , 0 :s r :s ~ . For example, a GaAs
mixed crystal wit h Mn- and As-atoms on the Ga-sublattice, with respective concen
trations x , y , is treated as a mult icompo nent alloy (Gal - x_yMn(l_r)xMn;xAsy) As . In
th e saturated ferromagnetic (FM) state , r = 0, i.e., all magnetic moments are pointi ng
in t he directio n of a global magnetizatio n. The paramagnet ic (PM) state, r = ~ ' is
characte rized by complete disorder of spin-directions. Besides th e FM and PM states'?
a partial ferromagnet ic (pFM) state, 0 < r < ~' is possible in which spin orientations
are partially disordered .
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Ising Hamiltonian

A particular configuration of a homogeneous disord ered multicomp onent alloy
can be cha racterized by a set of occupation indices {1J~} , where 1J~ = 1 if th e sit e R
is occupied by an atom of type Q, and 1J~ = °ot herwise. Configurational averag ing
of occupation indices ( 1J~) = cQ yields the concent rat ions co. The energy of such
configuration can be expressed in the form of an effective Hamiltonian of Ising typ e,

Q Q 1 QQ' Q Q'
H = Eo + LDR 1JR + - L LVR R , 1JR1JR' + ... ,

RQ 2 RR' QQ'
(1)

whose par am eters are the configura t iona lly independent part of the alloy intern al en
ergy Eo, th e on-site energies D~ , th e int eratomic pair int eraction s v:1;i: ,and genera lly,
int erat omic inte rac t ions of higher order. In homogeneous alloys, th e first two term s in
(1) do not depend on the alloy configurat ion and will th erefore be omitted in th e fol
lowing. For mat ters of simplicity we limit ourselves to pair int eractions only, although
in principle triplets, quadruplets, etc ., can be included.

The pair int eracti ons v:1;i: in DMSs consist of two cont ribut ions,

QQ' - QQ ' QQ '
VR R ' - VR R , + ¢ R R ' , (2)

where the v~~, result from a mapping of th e band part of th e tot al energy onto the
Ising Hami ltonian (1) and th e ¢~~, refer to th e elect rostatic int eraction energy of a
given pair of atoms Q,Q' located at sites R , R'

2 Q Q'
,"QQ' _ e qeffqeff
'l' R R' - IR- R'I ' (3)

where q3r = qQ - (q) is t he effective net cha rge of atomic species Q defined as a
difference of the net charge qQ of ato mic species Q and the averaged charge (q). T he
band term cont ribut ion is calculated using th e Generalized Perturbat ion Methodll •18

(4)

where z = E + iO, EF is th e CPA Fermi energy, Emin is a suitably chosen energy
below the valence energy spectrum, 9 R R'( Z) corresponds to th e block of th e average d
auxiliary Gr een function between sites R and R ' , and t~(z) is the t-m atri x for at omic
species Q .

It is advantageous to eliminate one of the atomic species, say Ga, (fur ther denoted
with a sup erscript 0) using th e t ra nsforma t ion 1J2t = 1- 2:Q1J~ which convert s Eq. (1)
int o the form

_ , 1 ""'" ""'"' - QQ' Q Q'H - Eo + -2 LJ LJ VR R ' 1JR1JR"
RR' QQ'

where th e primed sum denotes summat ion over Q =1= 0, Q' =1= 0, and

- QQ' _ QQ' 00 QO OQ'
VR R ' - VR R ' + VR R ' - VR R ' - VR R ' .

(5)

(6)
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Method of linearized concentration waves

The ordering temperature Tord and the type of t he ord ered st ruct ure that appears
below Tord can be st udied in terms of th e concentrat ion-wave method 19,18 Here we
employ its lineari zed versiorr" extended to a qu at ernary alloy since we consider possible
ord ering of four atomic species (Ga, Mn t , Mn t , As) on the fcc cat ion sublat t ice. The
free energy in a mean field approxima tion (i.e., assuming a Bragg-William s form of the
ent ropy) is expressed in terms of local concent ra t ions c~

(7)

where kB is the Bolt zmann constant, T is t emperature, and Fo is the free energy in the
absence of concent ra ti on waves ( c~ = cQ for all R ). St ar t ing from the disord ered state ,
the free energy can be expanded up to quadratic t erms in concent ra t ion fluctuati ons
oc~ = c~ - cQ,

(8)

with the term s linear in oc~ vanishing because LROc~ = 0 for all Q and LR'Q' v~ii: cQ'
is a constant for all R and Q. The equa t ion (8) can be rewritten in terms of a lat ti ce
Fourier t ransform as

(9)

or , in a matrix not ation, as

where [V( k) ]QQ' = V QQ'(k ), and the matrix C is defined as [C]QQ' = cQoQQ" In
Eq . (10) the concent ra t ion fluctuat ions ocQ(k) are expressed in terms of a vector Y
and the order parameter E(k) as ocQ(k) = y Q(k)E(k) . At sufficiently high temperatures
t!,F is positive definite, because the hermitian matrix V(k) + kBT C-l has only positive
eigenvalues and thus the high temperature state is completely disordered (E(k ) = 0 for
all k ). With decreasing temperature it can become indefinite at Tord because of a
vani shing eigenvalue for a crit ica l vector k o which then determines the period of the
concent ra t ion wave. The components y Q(k ) of such a critical eigenvect or det ermine
the amplitude of the concent ra t ion wave for each alloy component Q. We remark that
the minimization of t!,F, and t hus the eigenvalue problem , are , for each k , subjec t to
a subsidiar y condit ion LQ yQ(k) = O.

Shor t range order parameters

The Warren-Cowley short-range order par ameters

(11)
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can be used to visualize the ord ering tendencies of impurities in the DMSs. The matri x
of th e Warren-Cowley par ameters can be approxima tely calculated by means of th e
Krivoglaz-Clapp-Moss (KCM) formul a in the recipro cal space

O'(k) = - D [M + ,BV(k) ]-l DT
,

where ,B = (kBT) - l , t he matrix M is defined as

1 1
[M ]QQ' = dl+ 0Q,Q' cQ'

(12)

(13)

and th e matrix D is introdu ced to ensure a correct normalizati on of 0' for R = R '
which follows from the definiti on (11). Note that in cont rast to Taggart /", we use
a symmetric norm alization . An inverse lattice Four ier t ra nsform yields the Warr en
Cowley param eters in th e real space

O'~[, = -i:- ( d3k [O'(k)] QQ' exp[- ik( R - R ' )] .
" BZ J (BZ)

RESULTS AND DISCUSSION

Computational procedure

(14)

We neglect cha nges of the latti ce constant due to th e varying composit ion and
assume th e lattice constant a = 5.652 A. We use equal radii of the Wigner-Seitz spheres
for all ato mic species and for th e empty spheres (Rws = 2.63 bohr) , a set -up, which
leads to a considera ble charge t ransfer among the alloy const it uents (Tab. 1), and the
Vosko-Wilk-Nusair par ameterization of th e exchange and corre lation energy'".

Table 1. The valence, averaged number of valence elect rons N~, net cha rges qQ, and
effect ive cha rges of atoms q3r in the (Gao.9325Mn6.040625Mn~.009375 Aso.0175)As alloy.

site
catio n

anion
interstit ial 1
int erst iti al 2

atomic species valence
Ga 3
Mn t 7
Mn.} 7
As 5
As 5
empty 0
eln pty 0

2.34628
6.34350
6.35124
4.18989
4.22693
0.77633
0.65310

-0.65372
- 0.65650
- 0.64876
-0.81011
-0.77307

0.77633
0.65310

q~
0.00280
0.00002
0.00776

-0.15358
0.00000
0.00000
0.00000

The energy int egrati on is performed along a conto ur in the complex energy plane,
and the k-space integ ration over the irreducible wedge of the Brillouin zone using
usually 280 points. We have verified that 1638 points lead to very similar results, the
difference in the Etat being less than 2 J.LRy.

The computation of th e lattice Fourier t ra nsform of th e v~[, is trivia l, but that
of th e ¢>~[, has to be done by employing the Ewald summatio n technique-" which leads
to a formula

(k+K)'
'" exp(i kR) _ 41r '" exp[- 4<7' 1 '" ('kR)erfc(a IR I) 2
L..J -----''-,-'::---,--'- - - L..J + L..J exp 2 - -

R ;to IR I n o K [k + KI2
R ;to IR I 1r '

(15)
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where 0 0 is a volum e of an elementary cell and th e optimal value for (J is (J = y7r/0~/3 .

Alloy formation energy

We have calculated the total energy for alloys with conduct ivity of p-type, 0 S;
y S; x / 2, 0 S; x S; 0.08, within steps of ~x = 0.01, ~y = 0.0025. In ord er to find
th e ground state , we varied th e ra t io r in steps of ~r = 0.025 for each composit ion
(x ,y) and evaluated th e total energy. The local moments m (Mnt) and m (Mnt ) have
opposi te signs and are nearl y of the same value (about 4 MB), i.e., depend only weakly
on the compositi on. As a result , t he magnet ization in th e pFM state, m ~ xt m(Mnt )+
xt m(Mnt ), is st rongly reducecl'" as compared to th e FM state. The magnet ization is
zero in th e PM region due to a complete orient ational disorder of local moment s.

The calculated total energies (per elementary cell) enable us to investigate the
stability of (Gal_x_yMnxAsy)As alloys with respect to segrega t ion int o alloys wit h
ext rema l chemical composit ion. Let us first consider segrega t ion int o an alloy without
As-antisit es (Ga l_xMnx)As and an alloy with the highest possible concent ration of
As-antisit es which is st ill not overcompensated, (Ga l_3x/2MnxAsx/2)As,

x - 2y
~E2 (X , y) E[(Gal_x_yMnxAsy)As] - --E [(Gal_xMnx)As]

x
2y
- E [(Gal_3x/2MnxAsx/2)As]. (16)
x

Th e results are given in Fig . 1 and clearly show th e stabilizing effect of th e As ant isites.

50 r---,----,-----.------r-----,

x=0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.040.030.020.01

-50

-200 '--__'--__'--__'--__'---l

0.00

>:a:
2-
>;
x
N
~ -100

o

-150

YAs

Figure 1. The energy difference t:l. E2 (x,y) for (Gal _x_yMnxAsy)As alloys, see Eq. (16).

Let us next consider th e segregat ion into three different compounds, nam ely,
GaAs , and two alloys, (Gal-xoMnxo)As and (Gal - 3xo/2Mnxo Asxo/2)As, where xo
0.08, i.e., the highest concent rat ion for which we have data availab le. Then

xo - x
~E3(X , y) = E [( Gal_x_yMnxAsy)As] - --E [GaAs]

xo
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x - 2y
--E[(Gal_xoMnxo)As]

Xo
2y
- E [(Gal-3xo/2MnxoAsxo/2)As] .
Xo

(17)

(18)

The results are shown in Fig. 2. Besides the energy lowering by the As-antisites , the
regions of instability are visible, par ti cularly close to the lines y = 0 and y = x /2 .

6Eb ,Y) [ fLRy]

zoO

Figure 2. The energy difference t:l. E3 (x, y) for (Gal_x_yMnxAsy)As alloys, see Eq. (17).

Impurity formation energy

T he format ion energy E A of a subst it utional impurity Ax , i.e., the energy needed
to replace a host atom X by an atom A, is the reacti on energy for the substit ut ion

reference solid + A --+ solid wit h one addit ional impurity + X.

The formation energies of impurities and their composi tio na l dependence can be easily
obtained24 from t he concent rat ion dep endence of the total energy E( XA , ...) of t he alloy

E A( ) 8E(XA , ...) {} {A}XA , ..· = 8 + Eat X - Eat .
XA

The last two term s are the total energ ies of free atoms X and A. The addit ional constant
Eat {X } - Eat {A} is not important for the concent ration- depe ndent effects we have in
mind.
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Figure 3. Dependence of the As ant isite formation energy on the concentrat ion x of Mn

acceptors and on the concentration y of the antisite defects. The formation energy for x =
0.04 is used as a reference.

Fig. 3 shows the form ati on energy of the As antisite defect as a function of
x( Mn) . The curves correspond to various concent rations of the ant isite defects. T he
form at ion energy for x = 0.04 is used as a reference. The format ion energy EAs is in
all cases decreasing funct ion of x . It is reduced approximately by 0.01 Ry, if the Mn
concent ra tio n increases by a few atomic percent. T his means that the numb er of the
ant isite defects can be considera bly enhanced in the presence of Mn. Th is effect may
cont rib ut e to the self-compensa tion behavior of (Ga ,Mn)As alloys.

Similarly, also the format ion energy of the subst it ut ional Mn (F ig. 4) decreases
wit h an increasin g concent ra tion y of As antisites. The changes of the format ion energy
E Mn(y) are again of order of 0.01 Ry. This means that th e presence of As ant isites
(and probabl y also of other donors-") is impo rtant for an improved solubility of Mn in
III- V mat erials.

T he decreasing charac ter of both EMn(y) and EAS(x ) indicat es a tendency to
correlat ion between these two impurities. T he correlation is symmet rical because the
slope of both EMn (y) and EAS(x ) equals to the second (mixed) derivative of the total
energy with respect to x and y. This qua nt ity is negative in the present case of
preferential co-doping and it would be posit ive, if the two impur it ies tend to segregate.

Orderin g t emperatu re

We made detailed calculat ions for an part ially ferromagneti c alloy of a ty pical
compo sition (Gao .9325Mn~ .o40625Mn~.oo9375Aso .o175 )As . We have found Tord = 797.94
K. The ordering vector is ko = 0.1455661(1,1 ,1 ), which corresponds to a formation
of domain s of cubic form 'with sides approximate ly equa l to 22 lat ti ce constants a of
the origina l zincblende st ructure , i.e., approximately 124 A. The cente rs of domai ns are
incident with lat ti ce points of a simple cubic latt ice wit h a latt ice constant of 124 A. The
eigenvecto r Y (ko) gives the following amplit udes: Y (Ga) = -0.787, Y(Mn t ) = 0.604,
Y (Mn.( ) = 0.102, and Y (As) = 0.081. Consequent ly, domains of two ty pes are formed:
in the first ty pe the concent ration of impurit ies Mn and As is increased, while in the
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Figure 4. Changes flEMn of formation energy of substitutional Mn in (Gal_x_yMnxAsy)As
alloys due to the As antisit e defects.

second ty pe the impurity concent rations are diminished.
It is interesting to est imate sepa ra tely the role of the electrostatic int eractions

eP~~' and t he int eratomic pair interacti ons v~~ , see Eq. (2) . If only electrostat ic
interactions were considered, we find Tord = 150.34 K and an ordering vecto r ko =
~(2 , 0.892, 0), while the amplit udes amount to Y (Ga) = 0.697, Y(Mn t) = 0.0003,
Y(Mn~ ) = 0.019, and Y (As) = - 0.717. This low value of the orderin g temp erature is a
consequence of small net cha rges . Th e impuri ti es order On an fcc lat t ice according to the
sign of their charges. On the ot her hand , if only pa ir interactions v~~ are cons idered ,
we find Tord = 820.00 K and ko = ~(O , 0, 0), which corresponds to segregation. The
amplit udes Y (Ga) = - 0.790, Y(Mn t ) = 0.599, Y(Mn~) = 0.100, and Y (As) = 0.091
then show that the preferred mode of segregation is into a pure Ga As and the rest
wit h a high impurity concent ration. Quite obviously, t he Coulomb interacti ons, even
though they are weak , play an important role because they can change qua litatively
the ordering behavior of the syste m.

Warren-Cowley paramet er s

The Warren-Cowley paramet ers provide more det ailed information about th e mu
t ual corre lat ion of impurities; th ey also can be dir ect ly used in calculat ions of transport
and magnetic properties.

The resu lts for th e Warr en-Cowley par ameters, summarized in Tab . 2, show th at
Mn t ato ms have always a tend ency to attrac t each ot her , while Mn atoms of opp osit e
orientation of spin repel each ot her. In th e first coordina t ion sphere all impur it ies
repel each ot her with th e except ion of MnL Mnt and MnLAs pairs. The attraction of
M n --M n! and As-As pair s in the second and third coordina t ion spheres is remarkable.

Separ ate estima tes of th e role played by the elect rostatic and band-term inter
actions as above show that if only elect rostatic interac tions ar e includ ed, due to the
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weakness of net charges, the a's are close to zero. Th e band-term interactions, on th e
ot her hand, yield very similar results to those when bot h types of interactions are in
cluded. This result is to be expected because weak long-range forces should not change
th e short ran ge order considerably.

Table 2. Warren-Cowley short-range order paramete rs for impuri ties In the
(Gao.9325Mn~.o40625Mn~ .oo9375Aso.o175) As alloy at T = 1400 K.

neighbor Mnt-Mnt Mn.J--Mn.J- As-As Mnt -Mn.J- Mnt -As Mn.J--As
(OB) - 0.480 0.603 0.835 0.958 0.457 - 0.709
(001) - 0.148 - 0.204 - 0.230 0.069 0.041 - 0.019
(H I) - 0.166 -0.111 - 0.115 0.084 - 0.038 0.020
(011) - 0.122 0.086 0.229 0.090 0.133 - 0.190
(O B ) - 0.030 - 0.019 0.066 0.026 0.013 -0.012
(111) - 0.074 -0.Q1 8 0.081 0.010 - 0.016 - 0.010

CONCLUSIONS

We have studied the phase stability and the possible ordering in ferromagnet ic
semiconduct ing alloys (Ga, Mn)As on an ab initio level. The main conclusions of our
study can be summarized as follows:
(i) Th e alloys are thermodynamically unstable with respect to segregation into related
compounds or alloys with ext remal chemical composition.
(ii) Th e As-antisites have a stabilizing effect and make the incorp oration of Mn atoms
energet ically favorabl e.
(iii) At a crit ical temperature of about 800 K domains of two types, namely, with an
enhanced and with a lowered concent rat ion of impur it ies, may appear. Th e expected
form of th ese domains is a cube with side length of approx imately 120-130 A, arranged
to form a simple cubic lat tice.
(iv) At short dist ances, the Warr en-Cowley parameters indicate mutual at traction of
Mnr-Mnr and Mn--As pairs, and repulsion of all other pair s of impur it ies.
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VACANCY ORDERING AND NON-STOICHIOMETRY
IN TiC1- xOx and TiN1- xDx

Gus L. W. Hart ,1Barry M. Klein.iand Shanadeen Begay"

1. INTRODUCTION

Nearly two centuries ago, Dalton discovered that most compound materials occur in pre
cise integer stoichiometry.[1] As pointed out by Lewis,[2] the existence of this integer ratio
of the const ituent atoms in a compound (or even in elemental solids) results from the fact
that atoms bonded in a solid tend to donate, accept, or share an integer number of electrons
with their neighbors . Although deviations from precise stoichiometry (due to intrinsic va
cancies or interstitials) are known to exist, such deviations are small and are entropically
stabilized and thus will disappear as T -+ O. However, there exist several classes of bi
nary compounds for which the existence of vacancies actually reduces the free energy,
even at low temperatures , and for which the deviations can be astonishly large, 50% or
more. Categorizing these materials by their properties and behavior, vacancy ordering and
complexes, homogeneity range etc., one can mention three classes of these "intrinsically"
non-stoichiometric materials: (i) transition metal oxides (such as VO or TiO), (ii) transi
tion metal nitrides and carbides (such as HfC, NbN, etc.), and (iii) early transition metal
chalcogen ides[3] (such as ScS or ZrSe) . All three groups have been studied extensively
but the first two groups have garnered more interest because of the broad range of their
technological applications .[4]

In this paper we focus on two materials in the second group, namely TiC and TiN. Both
of these materials , along with the others in their class, have been studied extensively (see,
e.g., Refs. [4-8] and references therein); they are of particular interest for their industrial
application s as well as for their basic science appeal owing to there unusual properties (e.g.,
hardness and high melting temperatures) . The materials in this class are characterized by
strong mechanical properties and high melting temperatures . Titanium carbide , for exam-
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3Barry M. Klein, Department of Physics, University of Califomia, Davis CA 95616 , brnk1ein@ucdavis.edu
3Shanadeen Begay, Nonhem Arizona University, Flagstaff AZ 86011-6010, scb8@dana.ucc.nau.edu
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pie, is a major component in cemented carbides and is widely used for surface coatings.
We have studied how the electronic structure of the TiC and TiN systems stabilizes such

a large range of non-stoichiometry (0 ::; x ~ 50%), leading to the predicted low temper
ature, vacancy-ordered structures . Although the low temperature structures are not likely
to be realized experimentally due to the sluggish diffusion, understanding the ordering ten
dencies gives insight into the chemical mechanisms responsible for the non-stoichiometry
and how the mechanical properties are affected by the existence of vacancies.

Since the vacancy configuration, that is the crystal structures, for these materials are
not known experimentally and the vacancy concentration-dependent behavior is difficult to
guess based on past experience, we cannot resort to the prevalent but unreliable approach
of assuming a limited set of "intuitive" trial structures and then performing first-principles
calculations to determine the lowest energy structure in the trial set. The limitation of
this approach is particularly acute in vacancy-ordering compounds where the ground state
structures tend to have relatively large unit cells and low crystallographic symmetry. Many
times in the literature, conclusions have been draw from first-principles calculations of
high-symmetry, small-unit-cell structures. Though convenient from the point of view of
computational cost, these structures often turn out to have energies that are far above that
of the true ground states and thus do not represent the true "chemistry" responsible for the
formation and ordering of vacancies in the compound . This approach of selective sampling
is driven by the high computational cost of these calculations and the prohibitive cost of
exploring the all possible configurations.

Performing calculations for a material when the thermodynamic states are actually not
known and for which large-unit-cell structures are common presents a formidable prob
lem for the conventional first-principles approach. The difficulty arises both from the
size of unit cells that must be treated and the literally more-than-astronomical number of
configurations that must be considered. For this reason, we have used a cluster expan
sion (CE) method[9-14] in which first principles, total-energy calculations for a relatively
small database of ordered superstructures is mapped onto a 3D Ising model. Once this CE
Hamiltonian has been successfully constructed, efficient and accurate ground state search
techniques (simulated annealing, direct enumeration, genetic algorithms, parallel temper
ing) can be applied, without guessing, to identify the minimum-energy configurations and
Monte Carlo simulations can be used to study finite-temperature effects. Once the low en
ergy structures are determined, we analyze their electronic structure using the LDAIGGA
pseudopotential approach. Thus we have a significant advantage over the conventional ap
proach of rounding up a few suspect structures because we analyze those structures that
are actually energetically stable, without limiting ourselves to small unit cells or artificially
high symmetry structures.

2. THE CLUSTER EXPANSION

2.1. General Formalism

The cluster expansion (CE) expresses the excess energy of any lattice configuration a (a
particular occupation of the N lattice sites by A or B atoms) as

N,

fj.HcE(a) = Jo +L DIll/(a)JI (I)
I

where J I is the effective atom-atom interaction for cluster type f (pair, triangle, tetrahe
dron, etc.), NI is the number of clusters of type f in configuration a, DI is the number of



clusters of type f per lattice site, and ITt are the averaged spin products] 15) for configura
tion a . In the case of TiCINI_xDx, the up and down "spins" represent the carbon/nitrogen
atom and its vacancy. Because it is present on every anion site and does not constitute
a configurational degree of freedom, the titanium atom is not explicitly included in the
expansion (but it is included, of course, in the LDA calculations of the total energy.)

Sanchez , Ducastelle , and Gratias showed[9) that a single set of interactions can exactly
reproduce the directly calculated total energies of all possible configurations a. Of course,
this is only true for the untruncated expansion (N] = 2N) so the validity of the truncated
expansion naturally depends on the vanishing nature of higher order terms. The J's are
determined by fitting the expansion llHcda) to the excess total energies llHwA(a) of a
set of N" "input structures" calculated by first-principles methods. We use the pseudopo
tential planewave method,[l6) as implemented in the VASP[17, 18) code. In each case,
we relax both cell-external and cell-internal degrees offreedom to obtain llHwA(a) . The
interactions were chosen by first eliminating from the fit several of the input structures and
choosing the interactions that result in an accurate fit to the structure s retained as well as
accurate predictions for the eliminated structures . The process is repeated using different
sets of eliminated structures to ensure a set of interactions that work well generally.' The
process of determining a good fit is discussed in detail in Ref. [13) .

2.2. Ground State Searches

The most common way to find the thermodynamically stable ground states of alloy systems
modeled via cluster expansion approaches is Monte Carlo-based searches (i.e., simulated
annealing) .[20, 21) Although simulated annealing has been quite successful for simple in
termetallic and semiconductor alloys,[22-26) such an approach does not guarantee that
the states found are global minima of the energy functional (they may not be true ground
states) .

In our studies, we have found that, although the simulated annealing (SA) approach
to ground state searches is useful in many cases, there are cases (non-stoichiometric sys
tems in particular) where a complementary search technique is helpful, or in some cases,
essential. The SA approach suffers from three problems. (1) Critical slowing down: When
the simulation suffers from this problem, the necessary computer time to reach an answer
becomes prohibitive. This problem seems to be particularly acute for the cases (such as the
refractory carbide and nitride compounds) where the ordered states have relatively large
unit cells . (2) Failure to converge: In some cases, the low energy states at a given concen
tration (including the ground state) are so closely spaced (in energy) that the SA approach
fails to converge. (3) False ground states: Occasionally we have found ground states with
SA that appear to be robust, when in fact, a direct enumeration of ground states (restricted
to a limited cell size, of course) will tum up a ground state lower in energy than that found
by the SA approach.

The most robust solution to these obstacles is to perform the ground state searches by
direct, exhaustive enumeration, that is, a direct brute-force determination of all possible
configurations . Formally, however, such an approach is impossible (for very large unit
cells) because there are a prohibitive number of states to enumerate . Direct enumeration is,
however, very useful when applied to relative small unit cell sizes (about 16 to 20 atoms)

4The fit is optimized by requiring the "maximum smoothness criteria (Eqs . 24-26 of Ref. [19]). The panune
ters t and Aare simultaneously optimized to yield both a good fit for fitted structures and accurate predictions for
"eliminated"structures.
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Figure 1: Cluster expansion fits for TiC (top) and TiN (bottom). CE-predicted values are
very close to the LDA values, indicating an accurate fit. The solid lines show the ground
state hull and the solid points show the ground states. The ground states are discussed in
Sec. 3.

and we have appl ied this method in this work. We have enumerated all possible config
urations for unit cell sizes :$ 20 atoms/cell using the meth od of Ferreira et al.[27] There
are more than 3 mill ion unique configurations for the fcc lattice in this size range . Results
of ground state searches using this direct enumeration method are shown in the follo wing
section.

2.3. Cluster Expansion Fits for TiC1_xOx and TiN l _xOx

Figure I demon strates the accuracy of the fits we developed for the case of TiC I -xOx and
TiN1_xO x using the procedure discussed in Sec . 2.1. Ult imately, we included about 30
first-principles energies in the fitting. The CE fitting parameters were checked not only for
fittin g accuracy (how well the energies of the input structures are reproduced) but also for
their accuracy in prediction (how accurately the energies of structures not included in the
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Figure 3: Ground state search results (via direct enumeration) for TiN. In this case the
ground states cover a broader vacancy concentration range than for TiC. Also, the formation
enthalpies are about 25% lower than for the case of TiC.

fit are predicted by the CE). When a fit is accurate both for fining and for predictions, we
refer to that fit as robust. As mentioned above, an in-depth discussion of how to determine
the optimum interaction energies (i.e., the fitting parameters) is given in Ref. [13].

The results displayed in Fig. 2 show that the input energies (calculated via first prin
ciples) are reproduced very accurately by the CE; in most cases, the error is only a few
percent. These robust fits were obtained with ~17 pair and 7 three-body and four-body
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Figure 4: Ground state structures for TiC. Only the occupation of the carbon sites is shown
(black occupied, white unoccupied); the titanium atoms are not shown. Note that the pic
tures are not visualizations of a cubic supercell but rather stacked (Ill) planes of the FCC
lattice. Note the common motif of (112) rows of vacancies in each (Ill) plane and that
planes are generally stacked so that rows of alternating vacancies are formed in the (110)
direction .

interactions . Typical fitting and prediction errors (rms) for TiC and TiN are ~4 meV/atom,
whereas the average t::.H is approximately -150 and -200 meV/atom for TiC and TiN,
respectively. In the simulations discussed below, we used a final fit that included all of the
input structures .

3. RESULTS AND DISCUSSION

Figure 2 shows a ground state search (via direct enumeration) of the ordered vacancy states
for the case of TiC. Our search finds five ground states (stable vacancy-ordered configura
tions). The most stable structure occurs at x = 1/3. However, the lowest energy configu
ration at x = 1/2 is so near the ground state hull that it may actually be realized if effects
not included in our model (such as vibrational entropy) are properly taken into account.
Consequently, the homogeneity range for TiC1_xDx may actually be 0-50% rather than
0-33%.

Figure 3 shows the saine information as Fig. 2 except for TiN. The most stable structure
again occurs at a vacancy concentration of x = 1/3 but the ground state at x = 1/2
is almost as low in energy. In all. twelve ground states are predicted by the CEoThe
predicted homogeneity range ofTiN1_xDx is much larger in this case . This is in qualitative
agreement with experimental obs~rvations which show a homogeneity range of 0 $ x :s
52% for TiC and 0 $ x :s 62% for TiN.[3] In fact, for the class of transition-metal carbide



Figure 5: Ground state structures for TiN. See the caption for Fig. 4 for labeling of states
and a description of the common motifs observed. TiN yields more ground state structures
than TiC, due in part to the larger homogeneity range.

and nitride binary compounds that exhibit intrinsic non-stoichiometry, it is always the case
that the nitride has a larger homogeneity range than the corresponding carbide .

The most striking result of the ground state searches is the common motifs that are ob
served. The motifs are the same for both TiC and TiN and exist across a large concentration
range in each system. In Figures 4 and 5, the ground states are visualized as a stacking of
(111) planes of the FCC lattice . Within the (Ill) planes. vacancies are arranged in (112)
rows (i.e., adjacent vacancies are on third nearest neighbor sites) . Also , the rows are often
stacked so that, in the (110) direction, vacancies occur on every other site (fourth nearest
neighbor distance) . The motif of (112) vacancy rows persists even for low vacancy con
centrations, i.e., configurations which do not maximize the inter-vacancy distance are the
rule. This implies that vacancy-vacancy interations at some distance beyond first nearest
neighbors become attractive.
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Square-planar coordination

Figure 6: Titanium octahedra in TiC and TiN. In the NaCI structure , titanium atoms (large
gray spheres) are surrounded by six carbon (or nitrogen) atoms (black spheres) . If two
vacancies (white spheres) are present, only two arrangements are possible : vacancies on
opposite corners (trans-divacant) or vacancies as nearest neighbors (cis-divacant). If the
octahedron is trans-divacant, then the titanium atom in the center will be square-planar
coordinated by the remaining non-metal atoms.

The structure at x = 1/3 is identical for both TiC and TiN. This structure is known
as "SC2S3."[28] (ScS is also a non-stoichiometric binary system, albeit with vacancies on
the metal, rather than non-metal, site.) The SC2S3 structure has a large unit cell (12 Sc
sites and 12 SID sites) and occurs very commonly in the early transition-metal chalogenide
binary compounds (which are also intrinsically non-stoichiometri c).[3] This is intriguing :
despite the chemical differences between ScS and TiCIN and the fact that vacancies occur
on the opposite sublattice (metal vs. non-metal), TiC and TiN display a set of vacancy
ordered configurations very similar to ScS and other transition-metal chalogenide binary
compounds . Indeed, at several concentrations, the configurations are identical.

We also note that in most cases, the size of the unit cells of the ground states are rel
atively large (12-16 CIN sites/cellularger than the unit cells of interrnetallic compounds
(typically 4-8 sites/cell). And the unit cells have relatively low symmetry.

Owing to the NaCI structure, each atom in these binary compounds is six-fold coordi
nated with its nearest neighbors (which are of the opposite atomic type) . One can imagine
a octahedron around the titanium atoms where carbon (or nitrogen) atoms sit on the six
corners of the octahedron , as shown in the top of Fig. 6. If the vacancy concentration is
x :::; 1/3 then the average number of vacancies per octahedron will be :::; 2. Similarly, for
x ::; 1/6 the number of vacancies per octahedra will be::; 1. If we examine the predicted
ground state structures from the point of view of this picture of the octahedra around the
metal atoms, we uncover two noteworthy facts: (i) generally, these structures minimize the
number of vacancies per octahedra for a given concentration, e.g., at x = 1/3 each and
every octahedron has exactly two vacancies, and (ii) when an octahedron has two vacan
cies present, the vacancies are never present on opposite corners of the octahedra, rather
the two vacancies are always nearest neighbors .



Random
Annealing

Fully ordered

Figure 7: Simulated annealing simulation of TiC at x = 1/4. Only the titanium atoms
in divacant octahedra are shown; carbon atoms and other titanium atoms are not shown.
Titanium atoms in "cis-divacant" octahedra are shown in gray and those in "trans-divacant"
octahedra are shown in black. Note that trans-divacant Ti octahedra disappear well before
significant long-range order is observed.

The first observation implies that vacancies are repulsive for first and second nearest
neighbor distances but the second observation shows that afirst-nearest-neighbor coordi
nation of the vacancies is far more energetically favorable than a second-nearest -neighbor
coordination. For the case of ScS, Burdett pointed out[29] that when scandium vacancies
are on opposite comers of the octahedron ("trans-divacant" arrangement) the sulfur atom
becomes square-planar coordinated (see Fig. 6), a situation never observed in solid state
chemistry. Without a single exception, all of the vacancy-ordered structures presented here
(as well as those of ScS in Ref. [30]) have this so-called "cis-divacant" arrangement for all
double vacancy octahedra .

Using the CE Hamiltonian in Monte Carlo simulations, we found that the trans-divacant
octahedra naturally occurring in a random arrangement of vacancies are quickly replaced
by cis-divacant octahedra . In fact, most of the trans-divacant octahedra are eliminated well
before the structure acquires significant long range order, as shown in Fig. 7.

In a previous study of non-stoichiometry in ScS, [30] an analysis of the charge densities
and partial densities of states for a series of low-energy structures with increas ing vacancy
concentration revealed very clearly the mechanism of intrinsic non-stoichiometry in that
system. Despite the very obvious similarities of the ground states in these two systems
compared to those of ScS, the details of the mechanism for non-stoichiometry appears
to be different. An analysis of the partial densities of states(not shown here) for non
stoichiometric TiC and TiN did not reveal a mechanism for vacancy formation similar to
that found for ScS-a somewhat puzzling result given the fact that the ground states in ScS
are so closely related to those in TiCIN . At this point, we have not been able to determine
the electronic mechanism that drives the formation of vacancies in TiC and TiN. This topic
is a focus of our current research and will be discussed in a future publication .

4. SUMMARY

Using a database of first-principles calculated formation enthalpies, we constructed cluster
expansions[9-14] for the vacancy systems TiC and TiN. The ground state hulls predicted by
the cluster expansion are consistent with the experimentally known homogeneity ranges[3]
for these two compounds. Using a direct enumeration method,[27] we determined the
(T = 0) ground state structures and found that they are very similar in these two systems.
A common feature of the ground states is that vacancies prefer to arrange themselves in
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(112) rows , almost independent of the vacancy concentration. In all of the ground states,
vacancies completely avoid any arrangement that would lead to square planar coordination
of the titanium atoms, even if this results in nearest-neighbor vacancies. Surprisingly, the
ground states we discovered and their common structural motifs are very similar (often
identical) to those discovered in the ScS system.[30] However, an analysis of the charge
density and densities-of-states for TiC and TiN did not indicate a mechanism for vacancy
formation similar to that found for ScS despite the very obvious structural similarities of
the stable configurations in all three systems. The precise electronic mechanism driving the
formation of vacancies is still unclear and is the subject of ongoing research.
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INTRODUCTION

Phase transitions have traditionally been classified according to Ehrenfest [I] by the
lowest order of the derivative of free energy, with respect to an intrinsic parameter like
temperature or pressure, that becomes discontinuous at the transition. Higher-order phase
transformations where no jump in composition or specific volume takes place can therefore
be expected to occur in a more smooth, continuous manner than first-order transitions. In
Fig . I [2] the schematic equilibrium phase diagrams are shown for systems where on
quenching from a higher temperature in case a) a higher order transition b) a first order
transition takes place. In the first case qualitatively the same transition will be made in
every part of the sample volume irrespective of the depth of the quench and independent of
the exact stoichiometry, provided we are in the equilibrium region of the new phase. In the
second case where we quench into a two-phase region - which entails a first-order
transition - according to classical ideas one of two poss ible phase-separation scenarios can
be encountered: Either even very small composition fluctuations result in a reduction of
free energy and grow therefore spontaneously or the fluctuations must overcome an energy
barrier by creating a part of the new phase with a critical minimum size. Typical for the
two cases are respectively long-wavelength, small-amplitude fluctuations ("homophase
fluctuations") or short-range, high-amplitude, particle-like fluctuations ("heterophasc
fluctuations")' as shown in Fig. 2 [2] . Which of the two qualitatively different mechanisms
will be operative is thought to depend on the properties of the Gibbs free energy per
volume g(c) as a function of composition: If the second derivative at the given composition
is negative, then phase separation should happen spontaneously and is called spinodal
decomposition, the line in the phase diagram where rig! Bc2= 0 being termed a spinodal.

I We remind that in the context of the present study, any phase transformation via nucleation is called
"heterogeneous" and must not be confused with the more specific term "heterogeneous nucleation" which
means nucleation at a pre-exisiting heterogene ity of the matrix phase like a grain boundary , an inclusion or a
defect.
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Figure 1. Schematic phase diagrams for the cases of a) a higher order phase transition b) a first-order phase
transition [2].

Figure 2. First order phase transition : a) homophase fluctuation, b) heterophase fluctuation [2].

Otherwise an energy barrier has to be overcome by nucleation. A recent review paper [3J
discusses several reasons why this clear distinction cannot be made in most real systems.
First of all, in order to define a smooth local composition an average has to be taken over a
finite volume (coarse graining) . The shape of g(c) can be shown to depend sensitively on
the ratio of coarse-grain ing length to characteristic length of concentration change [4J (Fig.
3). The same flattening-out of the free energy curve is observed if in a calculation by the
cluster variation method (CVM) cluster size is increased ever more until it finally reaches
the whole crystal volume [5J. It follows that a spinodal curve cannot be defined in an

112



unambiguous way, with the asymptotic and unrealistic exception of a system with infinitely
weak and at the same time infinitely far-reaching interactions for which the mean-field
approximation becomes exact. On the contrary, in practice we require for the concept of a
local free energy to be meaningful that the effective interaction distance between atoms
should not be large as compared to the coarse-graining length, which in tum is required to
be small compared to typical lengths characterizi ng the fluctuation. Furthermore, it must
be kept in mind that using g(c) means transferring an equilibrium concept valid for
macroscopic systems to very small parts of a system not in equilibrium. So it is hardly
surprising that in real systems the distinction between the two scenarios ofphase separation
cannot be made as clearly as in the ideal picture and that the boundary is uncertain and in
addition shifted owing to kinetic effects and elastic interaction of coherent precipitates. In
fact there is a rather gradual than a sharp transition from one mode of phase separation to
the other.

4Ieo..
2

Figure 3. Coarse-grained free energy as a function of composition (<1>=(c-ccri,)Ic,n,) for various coarse
graining lengths L [4].

The classical spinodal decomposition theory by Cahn and Hilliard [6-9, see also
10, II] takes the free energy to be a functional of local composition with gradient
dependent terms. This is in itself a problematic concept, as we have seen. The neglect of
higher order gradient terms and the linearization required to enable analytic solutions
severely restrict the scope of the classical spinodal decomposition theory. Its prediction of
a stationary wavelength of composition fluctuations, for instance, is not confirmed in
scattering experiments [3]. Any realistic description [12] requires nonlinear and higher
order terms and therefore numerical solution. Some special systems, mostly liquid or
composed of polymers, can be specified, though, where pure spinodal decomposition can
be observed and its behaviour rendered by theoretical calculations [3,13]. In all continuum
theories of spinodal decomposition diffusion fluxes are set proportional to the gradient of
chemical potential difference. This implies that a diffusion mechanism be at work which
guarantees a sufficiently smooth flux of material down this gradient. (That this condition is
not always met and the consequences resulting thereof will be the central message of this
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paper) . For all these reasons more direct Monte Carlo methods working at the atomistic
level and taking account of elastic interaction and individual atom jump probabilities have
been favoured recently [14,15] .

An early alternative to the Cahn-Hilliard concept was the model of Hillert [16,17]
who ascribed composition values to parallel lattice planes , keeping the discrete nature of
the lattice in the direction normal to them. Configurational energies are computed from the
mean-field atomic environment in the so-called zeroth approximation. Dependent on
atomic pair interaction potentials, a behaviour of spinodal decomposition via unstable long
wavelength fluctuations, a nucleation process or an ordering process is obtained . In the
latter case the wavelength of the composition fluctuation is equal to twice the lattice
spacing . From the experimental point of view, this amounts to homogeneous long-range
ordering. Though the Hillert method is attractive due to its ability of describing continuous
ordering and spinodal decomposition within one concept, it is obviously limited for
practical purposes by its one-dimensional formulation and simplified atomic interaction.
Cook et al. [18] later published a discrete version of the continuous Cahn-Hilliard model,
defining a local composition as an ensemble average of the occupation of a particular
lattice site and extending the possibilities of the Hillert model to 3D. The restrictive
assumptions of defining the free energy via a local composition and the principal limitation
of the method to small deviations from the initially uniform composition remain, however.

A crucial but difficult question is how to identify the experimental signature of a
spinodal or homogeneous higher-order phase transition as set against a heterogeneous one
involving the nucleation of particles. There is at the moment no technique capable of
continuously observing a complete sequence of decomposition. TEM and light
microscopical observations reveal characteristic structures far into the transformation like
the well-known 'tweed' contrast often erroneously taken to be indicative of spinodal
decomposition [13,19,20] . A dispersion of 'particles' on the other hand can, but need not
be the result of a foregoing nucleat ion process. Simulation calculations reveal that in late
stages of spinodal decomposition both a particle-like distribution and a network-like
interconnected structure may appear, depending on overall composition [3,13] . It seems
that a coarsening mechanism is always at work in an advanced stage of the phase
separation, in the spinodal as well as in the nucleation scenario . Whereas real-space
inspection thus shows the state of the system more or less post factum , various scattering
methods (SAXS, SANS, light scattering for optically transparent systems) respond to
critical dimensions in the early phases of the phase-separation [13]. Electrical resisitivity,
in being extremely sensitive to small changes of order parameter, enables a fine resolution
in time of the transition kinetics [21,22] from which spatial ranges can be inferred, as will
beome evident from our experimental results . However, it is questionable anyhow that
there are two clearly distinguishable regimes of decomposition, starting from either
metastable or unstable regions with sharp boundary in between. In fact, at the atomic scale
only one type of mechanism is involved, that is diffusion by atom jumps to neighbouring
vacancies.

Whereas a first-order phase transition mayor may not start continuously from a
uniform composition we should expect a truly homogeneous transformation when in a
transition from a one-phase region to another one-phase region composition and crystal
structure are conserved and some order parameter (long-range order, magnetization)
changes continuously. Such a higher-order transition is usually expected to proceed
simultaneously and homogeneously within the whole sample volume, with the possible
disturbance of a domain structure of the ordered phase resulting from symmetry breaking.
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ORDER-ORDER TRANSITIONS BY VACANCY-MEDIATED DIFFUSION

In intermetallic compounds which show long range order up to the melting point no
domain structure appears. A transition between two states of nearly perfect, but slightly
different, long range order corresponding to equilibrium at different temperatures should
be an ideal model of a homogeneous kinetic process. In a recent paper [23] long-range
order kinetics of a B2-ordered Fe-48at%AI alloy was studied by residual resistometry
(REST), a well-established method that has been shown to be extremely sensitive to
changes in the degree of order. It has successfully been applied to get information on atom
jump processes in ordered alloys [21,22,24]. Changes of LRO parameter in the range of 10
3 that escape detection by any diffraction method can easily be resolved by REST.
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Figure 4. Normalized isochronal resistivity curve for Fe-44.8at"IoAl (run 4) with local and global equilibrium
curves .

The specimen was subjected to four isochronal annealing sequences after different
thermal pre-treatment. In all cases the initial state was one of reduced long-range order.
Fig. 4 shows the typical qualitative behaviour for one of these isochronal curves (after 3h
homogenisation at 1223 K and quenching from 773K): Just below 500K vacancies become
mobile and the order increases as resisitivity decreases. Above 7l0K a strong increase of
order is observed as the resistivity falls towards the equilibrium curve (drawn-out in Fig.
4). At still higher temperatures kinetics is fast enough for thermodynamical equilibrium to
be established within the isochronal time interval, and the equilibrium degree of order
decreases with rising temperature, as thermodynamics requires. It is in an intermediate
temperature interval of 530-7 l0K that truly remarkable behaviour occurs : Resistivity
increases slightly (long-range order is diminished). Keeping to small isochronal time
intervals, this part of the curve can be run backwards in a reversible way. For long enough
waiting times (e.g. isothermal long-time annealing), however, resistivity moves down
towards the overall equilibrium curve even in this special temperature range.

The key to understanding this counter-intuitive behaviour can be found in vacancy
mediated atom kinetics : In FeAl changes of the atomic configuration take place by a
vacancy mechanism. We know from literature that in FeAl the formation energy of
vacancies is rather low - 0.7eV [25,26,27], the migration energy however is quite high
- 1.5eV [28,29]. This means on the one hand that vacancies, once created, have difficulty
reaching sinks and therefore tend to remain in the crystal for a long time, on the other hand
they can move only in restricted regions during short time intervals.
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Changes in order parameter can take place only in regions visited by vacancies . As
these regions for low temperatures and short times are small and disconnected, long range
order is at first enhanced and brought to the equilibrium value only in these small parts of
the specimen volume . When the temperature is then increased, the equilibrium state of
order is adjusted to its new, smaller value within these restricted regions of the sample .
Therefore the overall resistivity increases in a certain temperature interval. It is quite
plausible to expect that an increase of local order is observed when the global degree of
LRO throughout the sample is lower than that corresponding to the actual annealing
temperature. It is however not self-evident that an increase of temperature will lead to
lower values of local order although the global degree of LRO is still below equilibrium. A
vacancy as it travels around in a confined region of space in the crystal may create or
destroy antisites, investing or gaining energy, respectively. Let us define as I a state where
the vacancy sits adjacent to an atom on its regular sublattice, as 2 a state where they have
exchanged positions, so that the vacancy now sits next to an antisite atom. The transition
rate for this exchange will be given by an appropriate Boltzmann factor

E' -E
I' =r exp(---')

+ 0 knT
(I)

with E' denoting an energy barrier between states I and 2 . The backward process,
returning the antisite atom to its regular sublattice, is assumed to follow an analogous
transition probability

E' -Er = F exp( _ - - -' ) .
- 0 knT

(2)

Let f, and f2 be the average populations of regular and antisite atoms in the region of crystal
under consideration. In equilibrium detailed balance requires

(3)

so that the relative density of antisites now becomes

(4)

which is an expression corresponding to what we can derive from equilibrium
thermodynamics. The regular position is associated with lower energy than the antisite, so
E2 > EI . For very low temperatures, the fraction f2/fl therefore becomes effectively zero
(perfect order). It increases rapidly with temperature, approaching I asymptotically for
very high temperatures. Kinetically speaking, this means: As the temperature rises the
vacancy becomes ever less selective where to jump, the Boltzmann factor becomes less
sensitive to the height of the barrier, the transition rates I', and L approaching each other.
In conclusion we expect for the present case that at low enough temperatures a 'quasi
equilibrium curve' of local order results (dashed line in fig. 4), which with increasing
annealing time shifts more and more into the (true) equilibrium line of LRO (full line in
fig. 4).

It must be kept in mind that this very simple model loses validity as we depart from
perfect order, the real barriers depending on the order parameter. But it helps to visualize
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how a change of order is brought about, even by a single vacancy making jumps in a
restricted volume.

A strong decrease is observed only when the random walk regions of the vacancies
begin to impinge on one another and thus reach a percolation limit. As we have seen, this
can be achieved by increasing the mobility of vacancies (higher temperature) or by
increasing the waiting time. To illustrate this concept, in fig.5 a 2D numerical simulation of
vacancy motion is shown concomitant to the isochronal curve. Regions of the crystal that
have been visited by a vacancy appear in black. As they become interconnected , long-range
order increases in the whole crystal volume, tending towards the overall equilibrium curve.

We believe this example to be representative of a quite general principle with
important implications for a large class of configurational changes in solids: Often the
kinetics of a phase transformation is described as continuous or "hornophase" by means of
a generalized diffusion theory, such as the Cahn-Hilliard theory for spinodal
decomposition . The tacit assumption is always that a sufficiently large number of mobile
diffusion-mediating defects is available in any small volume element considered in order to
allow a continuum description. Whereas this requirement may always be well fulfilled in

I
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Figure 5. Regions visited by vacancies (shown in black) adjacent to corresponding points on the isochronal
resistivity curve.

interstitial alloys with a great number of very mobile defects, in the case of a vacancy
mechanism it crucially depends on the number and mobility of the vacancies and the time
interval considered. lfthe number of vacancies is small and/or they move sluggishly and/or
we do not observe for a long enough time, any changes in the configuration will take place
only in localized regions visited by the vacancies . The resulting picture is therefore a
heterogeneous one resembling nucleation ofparticles rather than the spontaneous growth of
long spatial concentration waves. The kinetic model in this case should center around the
moving vacancies .
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A SIMPLE MODEL

Just to make an order-of-magnitude estimate of the conditions under which a
heterogeneous nature is introduced in a phase transforination by the limited mobility of
vacancies , we propose a very simple model.
The heterogeneous regime persists at least as long as the average random walk regions of
the vacancies do not overlap. Assuming an isotropic random walk, they begin to impinge
upon one another at time timp when

(5)

1 being the average distance of vacancies and D, their diffusivity. Let the vacancies be
equally distributed in space. Their average distance is then connected to the lattice spacing
a by the vacancy concentration c,

For the diffusivity of the vacancies we assume the usual Arrhenius law
H

D, = (Z / 6) a2vexp(- -m)
kT

(6)

(7)

with coordination number Z, a j ump frequency v and vacancy migration enthalpy Hm.
Solving for the impingement time timp we get

H
exp( -'!!-)

t , = kT
Imp 4 Z V ell2/3

(8)

Fig. 6 is a graphical representation of this formula as a contour plot of Ig Iimp versus
HmikT and 19 c. , In this approximation, the jump frequency v has been set so that Z v
amounted to 1014

, Z=8 being used for a body centered cubic crystal structure. As can be
easily verified from eqn. (8) equal impingement times are repesented by straight lines in
Fig. 6, covering five orders of magnitude. However, this plot may serve only for crude

estimates since not all atoms necessarily are visited in a sphere of radius I around a
vacancy and that in addition in a realistic model crystal the vacancies do not perform a true
random walk, let alone an isotropic one. Instead the jump probabilities are influenced
strongly by the local atomic configuration. Quenching for instance from a completel y
disordered state into a region of long-range order the vacancies will be preferenti ally
involved in jumps which increase order, and will be drawn to disordered regions , avoiding
regions where order has already been established. To get a more realistic view on vacancy
motion a Monte Carlo study will be undertaken .

It is nonetheless instructiv e to apply this graph to our FeAl data. Assuming Hm= 1.5
eV and a vacancy concentration of cv=10·5 not varying with temperature (which are
reasonable assumptions for FeAl [27,30]) the position s indicated by the black circles in the
diagram (Fig. 6) are reached . At 500K the migration regions of the vacancies would take
several hours to touch and are therefore well-separated, giving a heterogeneous character to
the ordering process. At 700K a continuous transform ation may be safely assumed for the
isochronal waiting time, the impingement time being well below one second. These
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Figure 6. Time needed for the impingement of random walk regions of the vacancies as a function of
enthalpy of migration and logarithm of vacancy density.

temperatures can be identified in Fig. 4 with the local ordering regime and the steep
decrease ofresisitivity associated with global ordering.

CONCLUSIONS AND SUGGESTED FUTURE APPROACHES

As has been demonstrated very clearly by the experimental results on order-order
transformations in B2-ordered FeAl, the sample volume the vacancies visit during their
walk through the lattice plays an essential role in diffusion controlled, vacancy mediated
phase transformations . The simple model given above explains very well our findings that
in a certain temperature range and for usual observation times changes in the LRO
parameter occur in a restricted sample volume only, resulting in a heterogeneous,
metastable state with a lower average degree of order than corresponding to
thermodynamic equilibrium.

A similar reason may explain the findings of Miyazaki et al. concerning the A2-7B2
phase transition in FeAl [31]. With their interesting composition gradient method they find
a two phase field giving evidence of a first-order phase transformation where a higher
order transformation is generally accepted. It could well be that the B2-ordered particles
found in this case result from the restricted vacancy motion and correspond to already
transformed regions, leaving the rest of the material still in the untransformed state of A2.

A mechanism of local ordering has in fact been described by previous authors. Allen
and Cahn [32] have made an extensive analysis of phase transition/ordering phenomena in
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the FeAl system. In a region of the phase diagram where continuous ordering was expected
distinct ordered particles were observed experimentally . These were surmised to have been
created by single vacancies traveling around at the rim of the ordered regions, in keeping
with the results of an earlier computer simulation by Beeler [33]. A very careful distinction
of the thermodynamical preconditions and the underlying causes of local ordering has
however to be made. More recent and more refined Monte-Carlo simulations by Athenes et
al [34] deal with ordering in a B2 model alloy in the two-phase region below a tricritical
point'. As is to be expected in such a system, different morphologies of precipitation were
reported according to alloy composition . A part of the temporal sequence of
decomposition , however, can be expected to proceed in a homogeneous way: In the area
between the two conditional spinodals continuous ordering precedes spinodal
decomposition. When in this case certain interaction energies were varied in the
simulation, a preferred exchange of vacancies with either A or B atoms led to either
localized or homogeneous ordering, a behaviour that could very well explain the
observations by Cahn and Allen [32]. It has likewise been demonstrated in Monte-Carlo
simulations that changing the vacancy interaction energies can alter the mechanism of
precipitate coarsening [35,36]: If the energies are chosen so that the vacancies move
preferentially within the matrix phase then Lifhitz-Slyozov-Wagner [37,38] type
coarsening prevails. If they prefer to stay within the particles these move as a whole and
coagulation predominates. Certainly the possible influence of bias effects of this kind has
to be considered when applying criteria of vacancy concentration, mobility, and
observation time as we propose. A detailed study of vacancy motion in anisotropic, single
and two phase settings with different degrees of atomic order is therefore mandatory.

In conclusion, it is quite difficult, both from a theoretical and an experimental
viewpoint, to establish the conditions for a homogeneous first-order phase transformation.
A homogeneous character is, however, natural to higher-order transforma-tions . It is all the
more remarkable that in our example of an order-order transition, which should meet the
requirements for homogeneity in an exemplary way, a heterogeneous structure is
introduced by restricted vacancy motion. The possibility of such behaviour should
therefore always be kept in mind when dealing with vacancy-mediated diffusive phase
transformations.
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ABSTRACT

The elaborated in [R. V. Chepulskii , Analytical method for calculation of the phase

diagram of a two-component lattice gas, Solid State Commun. 115:497 (2000)] analytical

method for calculat ion of the phase diagrams of alloys with pair atomic interactions is gen

eralized to the case of many-body atomic interactions of arbitrary orders and effective radii

of action . The method is developed within the ring approximation in the context of a modi

fied thermodynamic perturbation theory with the use of the inverse effective number of at

oms interacting with one fixed atom as a small parameter of expansion. By a comparison

with the results of the Monte Carlo simulation, the high numerical accuracy of the general

ized method is demonstrated in a wide concentration interval.

123



INTRODUCTION

In Ref. I the new analytical method for calculation of the phase diagrams of alloys (or

more generally of a two-component lattice gas') with arbitrary complex crystal lattice and

any long-range order in atomic distribution was developed. The method was elaborated

within the ring approximation in the context of a modified thermodynamic perturbation

theory with the use of the inverse effective number of atoms interacting with one fixed atom

as a small parameter of expansion' :'. The numerical accuracy of the method proved to be

high in a wide temperature-concentration interval and turns higher with increase of the ef

fective radius of atomic interactions. The consideration of the lattice gas with arbitrarily

long-range atomic interactions is possible within the method, because the interaction's pa

rameters appear in the corresponding expressions only through the Fourier transforms of the

interatomic potentials. It should be noted the much comparative generality and simplicity of

the method in comparison with, e.g., the most widely used Monte Carlo' and cluster

variation methods",

However, the developed method can be applied in case of alloys with only pair atomic

interactions. The aim of the present letter is to generalize the method to the case of alloys

with many-body atomic interactions of arbitrary orders and effective radii of action.

THEORY

Let us consider a two-component A-B alloy (within the lattice gas model) whose

primitive unit cell consists of v crystal lattice sites. Taking into account the many-body

atomic interactions of arbitrary orders and radii of action, the Hamiltonian H of it can be

written in the following form'

(1)

124



In (I): N is the number of primitive unit cells of the crystal lattice, Vo is the energy per unit

cell of the lattice gas in which all Nv sites are occupied by B-type atoms, vt~Ih.R2 ;...;in,Rn

is the mixing potential of n-th order (n=1,2,..., Nv),

{
I, if the site (i,R) is occupied by an A - type atom

C R = ,
I, 0, otherwise

(2)

the summations on the indices i lh, ...,in and on the radius-vectors R"R2 ,...,Rn are carried

over all v sublattices and N primitive unit cells of the crystal lattice, respectively.

Following to the procedure described in Refs. 3 and 4, the expression for the free en

ergyf per one primitive unit cell of the system in question may be presented in such form":

(3)

where

Jl~ and Jl? are the chemical potentials of A- and B-type atoms situated at the i-th sublat

tice, respectively, T is the absolute temperature, ks is the Boltzmann constant , the sign (...)

means the statistical average over all states with given values of the LRO parameters, 8 il .i2

and I) R"R2 are the Kronecker deltas,

(7)

and is equal to the probability of finding an A-type atom at the site belonging to the i-th

sublattice. Note that the quantities Piare independent from the radius-vector R of primitive

unit cells due to the translational invariance of these cells. The values of the chemical po-
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tentials /-It , /-If and, therefore [see (6)], the values of /-I ,(i=1,2 ,..., v) must satisfy the fol

lowing relationships

of 10/-1, = 0, (8)

which follow from the general thermodynamic ones.

According to the general approach of the thermodynamic perturbation theory ,3,4,9.12 the

expression (4) for t:>.f can be expanded in a cumulant series in powers of the inverse tem

perature. Following to the Brout's approach.v" let us select the contributions to the cumu

lant expansion from the summands proportional, respectively, to zeroth and first powers of

the quantity z-' with z being equal to the effective number of atoms interacting with one

fixed atom:

(9)

where

(10)

, , N

I
V- 2 I I P;,' P;, ...P;,<p I -sm = _ 'n

R[-Rm n! . . , t!
1=0 11.12 •...•1/

(11)

Introducing the Fourier transforms of the mixing potentials

- (n)
V'\ .k\ h .k 2;···;'n- l .kn- l ;in

(12)

and performing a number of matrix transformations , one can obtain"

_ 1" ( )2 ~ 1 " - (n) kBT Lt:>.f - -2 L./-I' P, + L. - L. Vi D" O" i D" Pi, P'2... P, +-- Indet A k ,. n! "·2. .···.n-" . n n 2N
I n=2 '1 ,'2 'n k

(13)

where the summation on k is carried over all the points specified by the cyclic boundary

conditions in the corresponding first Brillouin zone and the designation detAk means the

determinant of the matrix Ak with the following elements
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Substituting (13) into (3), we obtain the following expression for the free energy

I ring = I MF - ~ I ll ifi(l- fi )+ kBT I Indet A k ,
2 i 2N k

where IMF corresponds to the mean-field approximation

+kBTI[ fi In fi + (1- fi )In(l- fi )]
i

or writing the series explicitl y

+kBTI[ fi In fi + (1- fi ) ln(l - fi )].
i

(14)

(15)

(16)

(17)

(18)

Using (8), we derive the following equations for determination of the quantities Ili

(i=1,2,...,v)

N-'I [Ak]: l = I,
k

(19)

where the designation [Ak ] ~ I means the i-th diagonal element of the matrix inverse to Ak•

Note that in a particular case of the disordered alloy with a Bravais crystal lattice,

when P; = c = N A I (v N) for any I=I ,2,...,v (c is the concentration of the A-type atoms, NA

is the total number of these atoms in the considered system), the obtained expression (16)

for the free energ y correspond to those for the grand thermod ynamic potential derived

within the ring approximation in Ref. 4. We shall also call the approximation obtained

127



above as the ring one. Note that such name of the approximation is in accordance with the

topology of the diagrams being taken into account within the ring approximation in the

context of the corresponding diagram technique", Neglecting the nonpair atomic interac

tions in the expression (16), we arrive to those obtained in Ref. 1.

(b ) v'" = 0 .1y( 2)
s~ l s~ l

.-<
\I
Ul

N

> 1.0<,
E-i

I ( a )
en

~

-- --e -- -- Me
Ring

• •
0.5

0 .0 0.2 0 .4 0.6 0 .8 1.0
c

Figu re I. The values of the order-disorder phase transformat ion temperatures calculated within the ring ap

proximation (16) (Ring) as well as by the Monte Carlo simulation (MC) in case of the f.c.c. crystal lattice

with VPI = 0, vs~1 > 0, Vs~J = -05vs~1 and (a) vs~1 = 0 (lower case), (b) v};l = O.lVs~1 (upper case). V,(II )
is the value of the n-th order mixing potential for the s-th coordination shell' of the f.c.c. crystal lattice. All

the other mixing potentials except the denoted ones are equal to zero. The MC data were obtained in accor

dance with the procedure described in Ref. 3. The superstructures designations see e.g. in Ref. 13.
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NUMERICAL RESULTS AND CO NCLUSIONS

Using the expressions derived above, one can calculate the complete phase diagram of

a two-component alloy with an arbitrary crystal structure and with many-body atomic inter

actions of arbitrary orders and effective radii of action':", As an example and with the aim to

study the numerical accuracy of the ring approximation, we considered the model case ap-

propriate to the face-centred cubic (f.c.c.) crystal lattice with

(I) _ (2) 0 V( 2) _ _ (2) V(3) _ (2) (n) . h I f h h d
Vi - 0, Vs=l > , s=2 - O.5Vs= I' s=1 - O.IVs=1 (Vs IS t e va ue .0 t e not or er

mixing potential for the s-th coordination shell' of the f.c.c. crystal lattice; all the other

mixing potentials except the denoted ones are equal to zero). In Fig. I, we present the val

ues of the order-disorder phase transformation temperatures calculated by the Monte Carlo

simulation as well as within the ring approximation (from the condition of the equality of

the free energies of the disordered and corresponding ordered states). In this figure, with the

aim of comparison, we also included the data from Ref. I corresponding to the same case

but without triplet atomic interactions. Note that in Fig. I, we do not include the two-phase

regions. This will be done elsewhere",

Accepting the results of the Monte Carlo simulation as a standard, on the basis of the

data presented in Fig. I, one may conclude the following. In the both considered cases, the

ring approximation yields the adequate results at the entire concentration interval. There is

some decrease of the numerical accuracy of the ring approximation when the triplet atomic

interactions are taken into account.
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MODELLING OF PHASE SEPARATION IN
IRON-BASED TERNARY ALLOYS

Yoshiyuki Sait o!

1 INTRODUCTION

Control of atomic sca le modulated structures associated with phase separation is
considered to be one of th e most important factors for th e design of nano materials .
Phase separa t ion behavior of tern ary alloys [4, 5] is different from that of binar y
alloys 11 , 2, 3J. According to a num erical simulat ion of phas e sepa ration in Fe-Cr
Mo tern ary alloys given by Honjo and Saito [5], a periodic microstructure including
high Cr and Mo was form ed by phase separa tion in an Fe-40at. %Cr-3at.%Mo alloy
and th e Mo rich regions were formed inside the Cr rich region. However a little
decrease in the amplit ude of Mo concent ra t ion at the peak positions of Cr. .

This paper deals with kinetics of phase separat ion in ternary alloys , especially
asymptot ic behavior of a minor element such as Mo in the above alloy associated
wit h t he decomp osition of a major element . A theory on asymptotic behavior of
t he minor element in Fe-based tern ary alloy was pro posed . And then Numerical
simulation models based on t he Ca lm-Hilliard equat ion [l , 2] have been applied
to the investigation of phase separation in Fe-C r-Mo tern ar y alloys. Simul at ed
asympto tic behavior of Mo or Cr asscociated with decomp osition of Cr or Mo is
compared with th at predicted by t he theory.

2 MODEL

2.1 The Cahn-Hilliard Equation for Multicomponent System

The free energy of inhomegenous syste m of N-component syst em for a cubic lattice,
F , is given by

F = 1f dv

(2.1) 1[h (CI, "" CN ) + ~ ~ t lKiOiJ+ (1 - O,J)L ij ]V'CiV'Cj] dV

where f is the local free energy per unit volum e, h is the local free energy per
unit volum e of a solute of uniform composit ion (CI" ",CN ), e;(x , t ) is the time
dependent concent ra t ion, 0,.1 is t he Kronecker 's delta and K , and L i j are given

1 Y.Sai to, Department of Materials Scienc e and Engi neering, Waseda University, Okub o
Shinjuku- ku, Tokyo 169-8555
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by

(2.2)

(2.3)

K,

The subscript zero indicat es the value of the parameter in a solution of uniform
composit ion. It is well known that t he chemical pot enitial in inhomogeneous syst em
is proportional to the functio na l der ivati ve of the free energ y.

(2.4)
5J

J1.i(X ,t) = ,
UCi

Accoording to Onsager the curre nt density of the i element, J i (x , t ), is proportional
to t he grad ient of the chemical potenti al.

(2.5) J i(x , t ) = lvIiV J1.i (X, t )

where M, is the moblity of th e i element. Inserti on of eqs .(2.4) and (2.5) into a
cont inuity equa tio n

(2.6) ac;~, t ) + V . J i(x, t ) = 0

we obtain th e Ca lm-Hilliard equatio n [1].

(2.7)

2.2

aCi [ ( afJ 2 L 2 )]- = V M V - - KV C - LV Cat ' aci" 'J J
J" i

The Cahn-Hilliard Equation for a Ternary Alloy

Hereafter we consider one-diment iona l case for simplicity. If t he mobili ty of elements
are not dependent on t heir positions in the space, the Cahn-Hillira d equat ion for a
Fe-X-Y tern ary alloy is given by

(2.8)

(2.9)

acx
at
aey
at

where cx(x , t) and cy {x, t ) are concent rat ion fields of Y and Y elements, respec
t ively. Equ ations (2.8) and (2.9) yield

acx
at

+
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8cy
at

+

(2.11)

With use of the regular solutio n model, t he local free energy is written as

/l Ix( l - ex - cy) + Ix cx + Iv cv + f!Fexcx( l - ex - cy)

+ f!Feycy( l - ex - cv ) + f!XY Cxcy

(2.12) + RT [(l - ex - cy) In(l - Cx - cy) + ex ln cx + Cy Incv]

where R is the gas const ant , T is t he abso lute temperat ure, f!FeX , f!FeY and f!XY
are interaction parameters and [x , [v and f z are the molar free energies of pure
X, pure Y and pure Y, respect ively. From eq.(2 .12) it follows that

(2.13)

(2.14)

(2.15)

82/l
8c3c

82/l
8c~

82 f l

8cx8cy

-2f!FeX + RT (~ + 1 )
ex 1 - ex - Cy

-2f!FeY + RT (~ + 1 )
Cy 1 - ex - Cy

1
= f!XY - f!FeX - f!FeY + RT:-

1---- ex - Cy

Functio ns Gx and Gy are difined as

(
8cx 8cy 8c3c ac~ iJ4cx 84c,.) _ [82/l 82cx 82/l 82cy

Gx t ,x,cx, cx , fu ' fu ' 8x2 ' 8x2 ' 8x4 ' 8x4 = Mx 8c3c 8x2 + 8cx8cy 8x2

8
3 /l . iJcx 8cy 8

3 /l ( 8CX) 2 8
3 /l ( 8cy) 2 K 84cx L 8

4CY ]+2 - - - - - - -+ - - -- + - - x - - - Xy - -
848CY 8x 8x 8cl 8x 8c X82Cy 8x 8x4 8x4

(2.16)

(
8cx 8cy 82cx 82cy 84cx 84cy ) [ 82/l 82cx 82/l 82cy

Gy t , x ,cx , cx , fu ' fu ' 8x2 ' 8x2 ' 8x4 ' 8x4 ;: My 8cx8cy 8x2 + 8c~ 8x2

+2~8cx8cy +~ (8CX )2 +8
3/l ( 8cy) 2 _ LY X84CX _ K y8

4CY ]
8cx8c~ 8x 8x 848cy 8x 8c~ 8x 8x4 8x4

(2.17)

These funct ion satisfy the following cond it ions:

(
8cy 82cy 84cx 84cy )

Gx t ,xp,cx ,cx,O,fu'O, 8x2 ' 8x4 ' 8x4

M [ 8
2 /l 8

2c
y 8

3/l ( 8cy) 2
y 8cx8cy 8x 2 + 8cx8c~ fu

(2.18)
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(2.19)

At a peak position p(xp , t)

(2.20)

Applying the mean value theorem of differential calculus for compound fuct ion [6, 7],
we obtain th e following equat ion for an intermediate value <: in the open interval
(82cx j 8x2,O)

(2.21)

dcy
ili(xp,t )

(2.22)
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(2.24)

2.3 Asymptotic Behavior of the Y element Associated with
Decomposition of the X elements in a Fe-X-Y Ternary
Alloy

We dea l with the case in which the concent ra tion of the X element in a Fe-X-Y
ternary alloy, ex and the concent rat ion of the Y element, Cy satisfy the following
conditions

02h &2h
(2.23) ex > cx, -;-;) < 0, -& 2 > 0

()C~I: c }'

Let us consider the variation in the concent rat ion of t he Y element when phase
decomp osit ion of the X eleme nt proceeds. Dur ing the ph ase decomp osition of t he X
element , t he amplit ude of ex incr eases until it reaches the equilib ruim concent ration.
T he second term on t he right han d side of eq.(2.22), My(02h/oc~ )(02CY /ox2), acts
for averagi ng the value of Cy because a diffusion constant D y == My (02ftloc~ ) is
posit ive. At the int ial stage the value of (ocy /OX)2 is much smaller t han that of
1&2CX/ ox21nea r the peaks of Cx. Once a peak or a bot tom of Cy is formed du e
to the cont ribut ion of t he first term, (02h /ocxoCY)(02CX /OX2) , then we obtain
ocy / ox = O. So t he contribut ions of th e second and third terms to t he value of
Cy is very small. T he four th order derivat ive te rms are attributed to t he inte rfacial
energies of the Y or Z rich regions in the X matrix. T he cont ribution of these terms
to t he value of Cy at the peak to p of th e X element is assumed to be smaller than
that of the first t erm. T hen at a peak of Cx , eq .(2.22) can be approxima ted by

OCy &2 h 02cX
-0 (xp,t )", My -o 0 ~

t ex Cy uX

From eq.(2.24) it is indicat ed that the behavior of the Y elements at a peak
positi on of t he X element depends on t he sign of 02h /ocxocy . If 02h / ocx ocy > 0,
then we have
(2.25) dCY~~p , t ) < 0

From eq.(2 .25) it follows that the concent ra t ion profile of t he Z at a peak pos it ion
of ex decreases wit h t ime. W hile"&2h /&cx&cy < 0, t hen we have

(2.26)
dcy(xp, t) 0

dt >

(2.27)

Equ ation (2.26) indicates t hat peaks of Cy will be formed at the sa me posi tions of
the peak to ps of Cx . T he wavelength of the concent rat ion profile of t he Y eleme nt
will be equal to that of the X element . This is a ph ase sep aration induced modulated
struct ure . From eq.(2.15) it follows that

d ( Oh ) RT (dCX dCY)
dt OCXocy = (1 - Cx - cy )2 dt + dt

If dcx / dt > 0 and dcv / dt > 0 t hen

(2.28) d ( &II ) 0dt ocXo cy >
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The sign of {)fd{)cx8cy may change from negative to positive in lower temp eartures
at which th e equilibrium concenration of the X element is high. This indicates that
bifur cation of peaks will occur at the later stage of phase decomposition.

From th e analyses describ ed above the aysmpto ptic behavior of the minor ele
ment, Y, in a Fe-X-Y tern ary alloy along a t ra jecto ry of a peak top of the ma jor
element , X, formed by phase sepa ration is classified into three groups.

Groupl (82h /8cx {)cy > 0): Th e concet ra t ion of th e Y element along the trajec
tory of t he peak to p of th e Y decreases wit h time.

Group2({)2h /8cx iJcy < 0, O :S t < 00): Peaks of the concent ration of the Y
element formed at t he same positions of t he peaks top s of the Y. On ce a peak is
formed the amplitut e of th e concentratio n increases wit h time.

Group3(82h / {)cx {)cy < 0, O:S t < to, {)2h / 8cx {)cy > 0, to < t < 00): At
t he initial stage, peaks of th e concent ration of the Y element formed at the same
positions of the peaks tops of th e Y. Bifur cati on of pea ks occur s at the lat er stage.

Although experimental verifications are left as future problem , numerical simu
lations of phase separat ion in Fe-Cr-Cu and Fe-Cr- Mo tern ary alloys based on the
Calm-Hilliard equat ion demonstrated th e validity of the present ana lyses [8, 9J.

The present meth od of ana lyzing a peak top behavior of the solut ion of the Cahn
Hilliard equat ion for a Fe-X-Y te rnary alloy can be exte nded to n-d iment iona l case.
Suppose that, at a poti on x = x'' and a time tl > 0, a function a(x ) = cx (x , tl )
has a peak to p which is cha rac te rized by 8cx/ax ;(xO, tl ), i = 1,2, .. · , n and the
negati ve definite ness of th e Hessian (a 2ux (x" , t l)/aX;aXj). According to the general
discussions on the solutions of genera l nonlin ear equat ions[lO, 11], there exist an
implicit function g(t) , t E [tl , t! ), x'' = g(tl) such that acx(g(t ),t )/ ax; = 0,
a2cx(g(t) ,t)/ax; < 0, i = 1,2 , .. · , n . Using the mean value theorem, we can
est imate th e value of cy( x , t) along thi s t ra jectory g(t ) of a peak top. Thus we can
show that the present classification of asymptotic behavior of the minor element,
Y, in a Fe-X-Y tern ar y alloy along the trajecto ry of a peak top of X, g(t) , formally
valid in n-dimentional case . However in 3 or higher dimentions, it is difficult to
visua lize a t rajectory of a peak to p in th e space- ti me syste m. Application of the
present method to three diment ional case is left to t he future problem .

3 COMPUTER SIMULATION OF PHASE SEP
ARATION IN FE-CR-MO TERNARY ALLOYS

3.1 Conditions of numerical simulations

Num erical simulati ons based on the Ca hn-Hilliard Equa t ion were performed for Fe
Cr-Mo tern ar y alloys. Table 1 shows the condit ions used for simulat ion.



Ta ble 1 Conditio ns of simulations

number alloy temp.( K)
1 Fe-40at%Cr-5at%Mo 800
2 Fe-5at%Cr-40at%Mo 800
3 Fe-40at%Cr-5at%Mo 1025
4 Fe-30at%Cr-30at %Mo 750

T he mobilities and the gradient energy coefficients for Fe-Cr-Mo tern ary alloys are

(3.1)

(3.2)

(3.3)

M Cr

L c rMo

Cj . DCr M Cl . D Mo
211Fec r - 4RT ' Mo = 211FeMo - 4RT

1 2 1 2
2" . ao . llFec " K Mo = 2" . ao . llFeMo

1 2
LMoCr = 2" .ao(ll crMo - llFeCr - ll FeMo)

where ao is t he lattice constant, DC r is th e diffusion coefficient of Cr in Fe-50at%Cr
steel and D M 0 is the diffusion coefficient of Mo in Fe-50at%Mo steel. The following
values for DCr and DM o were used for simulation [12].

(3.4)

(3.5)

(
246000)

DCr = 0.1gexp -~

(
264000)

D Mo = 0.2g exp -~

The constant Cl is an adjustable parameter which modifies t ime scale in order
t hat good agreement between calculated and observed phase separation kinet ics
is obtained[5]. The constant 0.01 for C j was used in the present simulation . T he
interaction parameters are [131

llFeCr = 18.6kJ/mol , llFeMo = 18.2k J / m ol , llcrMo = 8.0kJ/mol

(3.6)

3.2 Bifurcation of peaks of the minor element associated with
decomposition of the major element in Fe-based ternary
alloys

Figure 1 shows t he varia tion in the concentration profiles of Cr in an Fe-40at %Cr
5at%Mo alloy at 800K together with that of Mo. T he form ation of Cr rich regions
by phase separation is clearly seen in this figure. A mod ulated struct ure of Mo wit h
similar wavelength to th at of Cr is observed. However t he concentration of Mo at
the peak of Cr concentration is found to be decreasing wit h time. T he variation in
t he concentration profiles of Mo and Cr in an Fe-40at%Mo-5at%Cr alloy at 800K
is shown in Fig.2. Th e formations of Mo rich regions and a mod ulated st ruct ure of
Cr are observed in this figure. T he bifurcation of peaks of Cr occurs also in this
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Figure 1: Vari at ion of Cr and Mo profiles in an Fe-40at%Cr-5at%Mo alloy at 800K
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Figure 3: Var iation of Cr and Mo profiles in an Fe-40at%Cr-5a t% Mo alloy at 1025K

alloy at the lat er stage. The behavior of Cr in t his alloy is qu ite similar to that in
the Fe-40at%Cr-5at %Mo alloy.

The mechanism of bifurcation form ation of peaks can be expl ained by the theory
described in the previous section. The sign of (p fI / {)CCr {)CMo cha nges from nega t ive
to positive at 800K at which the .equilibrium concent ra t ion of Cr is high . This
indicates that bifurcation of peaks of the concent ration of Mo will occur at th e later
stage of phase decompos itio n.

T he vari ation in concent ration profiles of Cr and Mo in an Fe-40at%Cr-5 at %Mo
alloy at l025K is shown in Fig.3. The concent ration of Mo at a peak position of Cr
increases with ti me. T he equilibrium concent ration of Cr at a high temperatur e is
smaller tha n that at a lower temperature. In this condit ion the value of RT/{l 
CCr - CMo ) is sma ller th an the absolute value of n Cr M o - n F eC r - n FeM o' So the
value of {)2 fI/{)cx{)cy is negative at the later stage. Thus the bifurcation of peaks
will not occur in this case .
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Figure 4: Vari ation of Cr and Mo profiles in an Fe-30at %Cr-30at %Mo alloy at 750K

3.3 Phase separation in an Fe-30at%Cr-30at%Mo alloy

Next let us consider the case in which both ex and Cy ar e within the spinodal region
of an Fe-X-Y ternar y phase diagram. In t his case

(3.7) ex:::::: Cy,
82 f l
-8 2 < 0,

Cx

It is expected that X and Y elements decomp ose separ at ely. By repeating the above
ana lyses, we may predict t hat the amplitude of Cy increases at a peak posit ion of
the X element and th at the am plitude of X element also increases at the peak
position of the Y element. T he modulat ed structure of the Y element is expected
to be similar to that of th e X element . As a result t he wavelengt h of the modulated
st ructure is predicted to be shorte r th an those of Fe-X and Fe-Y binary alloys.

Figure 4 shows the variation in concent ration profiles of Cr and Mo in an Fe
30at%Cr-30at% Mo alloy. The concent ration profile of Cr is quite similar to that of
Mo. The wavelength of the modulat ed st ructure is smaller than those of Fe-Cr and
Fe-Me binary alloys.
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3.4 Concentration dep endence of atom ic mobilities

In our analyses of asymptotic behav ior of a minor element in an Fe-X-Y ternary
alloy, t he atomic mob ilit ies Mx and My are assum ed to be not depend ent on their
position in the space. We neglected t he concent rat ion dependence of atomic mobil
it ies. Now let us consider the case that the mobilit ies Mx and My are functions of
ex and ey . In th is case the Calm-Hilliard equation for an Fe-X-Y ternary alloy is
given by

(3.8)

(3.9)

8cx
at

+

+

(3.10)

(3.11)

The terms aMx/ax and aMy /a x are rewritten as

aMx aMx 8cx aMx aey-- =---- +----
ax aex ax aey ax

aMy aMy aex aMy aey
-- =----+----

ax aex ax aey ax

At a peak position of the X element, the above equations yield

(3.12)

(3.13)

aMx
~
aMy
~

aMx 8cy----
aey ax
aMyaey
aey fiX

At the initi al stage of phase separat ion aey / ax is very sma ll. Once a peak or a
bottom of Y element is form ed th e term aey /a x becomes zero. It follows t ha t
t he asymptotic behav ior of the Y element at a peak top of t he X element can be
ap prox imated by eq.(2 .24) also in th e case that the mobilit ies of X and Y elements
are concentratio n dependent .

4 SUMMARY
Asymptotic behavior of a minor element Y in a Fe-X-Y tern ary system associated
wit h phase decomposit ion of the major element , X, was invest igated by using a
model based on t he Ca hn Hillirad equat ion for multicomp onent syst ems . Numerical
simu lat ions of phase separation in Fe-Cr-Mo ternary alloys were perform ed with use
of the Cahn-Hilliard equa t ion. The following results are obtained.

(1) The aysm ptoptic behavior of the minor element, Y, in a Fe-X-Y ternar y alloy
along a tr ajectory of a peak to p of th e major element, X, is classified into three
groups according to the sign of the second derivative of the chemical free energy !l
with respect to th e concent ra tio n of X, ex and t he concent ra t ion of Y, cy .
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(2) If 02 h /ocX ocy > 0, th e value of Cy along th e trajectory of the peak top of
Y decreases with time .

(3) Wh en 02h /ocxocy < 0 at 0 :S t < 00 , peak s of Cy formed at the peak tops
of Y. Once a peak is formed , the amplitute of the peak increases with time.

(4) For the case that 02 h /ocxocy < 0 at 0 :S t < to and 02h /ocxocy > 0
at to < t < 00 , peaks of Cy formed at th e peak tops of Y at the initial stage.
Bifurcation of peaks occurs at th e lat er stage.

(5) Bifurcation of peaks of Mo along th e peak tops of Cr concentration occurs
in an Fe-40at%Cr-5at%Mo alloy at SOOK. Bifur cation of peaks of Cr is also shown
in an Fe-40at%Mo-5at%Cr alloy at SOOK . In these cases , the sign of the second
derivative of the chemical free energy fJ with respect to the concent rat ion of Cr ,
CC,' , and th e concentration of Mo, cMo, 0 2 h /OCCrOCMo, changes from negative to
positive at the lat er stage.

(6) In an Fe-40at%Cr-5at%Mo alloy, peaks of th e concent rat ion of Mo form
along the peak tops of Cr at 1025K. Once a peak is formed the amplitude of the
concent ra t ion increases with time.

(7) For the case in which both Cer and CMo are within the spinodal region of
an Fe-Cr-Mo ternary phase diagram, the amplitude of Mo increases at the peak
positions of Cr and the amplitude of Cr also increases at the peak positions of
Mo. The wavelength of the modulated structure is shorter than those of Fe-Cr and
Fe-Mo binary alloys.

(8) Simulated asymptotic behavior of Mo and Cr in Fe-Cr-Mo ternary alloys is
in good agreement with that predicted by the theory.
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INTRODUCTION

Monte-Carlo calculations on simple Ising models using the Metropolis algorithm are
known to produce thermodynamic equilibrium states with a minimum of effort.I They have
been used for many years to study the order-disorder transformations , phase boundaries,
and the nature of critical points in substitutional solid-solution alloys. Although these
calculations produce a supercell with the A and B atoms distributed on the sites of a Bravais
lattice, this information has rarely been used to calculate the Warren-Cowley short-range
order parameters (SROP). The SROP are interesting because they give a detailed picture of
the short-range ordered state. We use periodically reproduced supercells from Monte Carlo
calculations to study temperature and concentration dependence of SROP in Ising models
with first and second nearest-neighbor interactions.

The SROP are defined bi a(rn )=1- x(rn)with

x(rJ= PA(rJ = PB(rJ
cA cB

The probability that anA atom will be found on a site separated by the vector r
n

from a site

that definitely has a B atom on it can be calculated from the distribution of atoms in a
supercell using the equation

()_ NAB(rJ N AB(rJ
PA\rn - () () ,

NBB\rn +NAB\rn cBN
where N AB(rJ is the number of AB pairs in the supercell separated by r., and NBB(rJ is

the number of BB pairs. The probability that a B atom will be found on a site separated by
the vector rn from a site that definitely has an A atom on it is calculated similarly

G)= NAB(rJ NAB(rJ
PB r

n NAA(rJ+NAB(rJ cA N ·

Therefore, the most convenient definition to use for calculating the SROP in a supercell is

x(rJ= NAn<rJ .
CAcBN
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The probabilities obtained from experiments on samples containing 1023 atoms have the
symmetry property PA(rn )=PA(rm ) when the vectors r, and r m connect to the same nearest

neighbor shell. This will not be true for SROP calculated from a supercell of finite size
because of statistical fluctuations, but it can be achieved by averaging

. 1 (X(l) = i ~ NAS r.}
CAcBNllnn Ir.~;,

where r: and »: are the radius of the lith 1111 shell and the number of sites in it.

If the number of AB pairs connected by the vector r, is zero, a(rJ is equal to 1, and

this corresponds to clustering. Negative values of a(rJ correspond to ordering. If the

number of AB pairs is equal to the average value in a random alloy, CACeN, then a (rJ= O.

The SROP are of interest to physicists for a number of reasons . We now consider some of
them.

USES FOR SROP

Diffuse Scattering From Supercells

The diffraction of a beam of x-rays by a perfect crystal produces outgoing beams only
in a discrete set of Bragg peaks. Any imperfection of the crystal leads to diffuse scattering
away from the Bragg peaks. Warren and Cowley first defined the SROP to describe the
diffuse scattering caused by a lack oflong-range order in a binary substitutional alloy made
up of A and B atoms. Their definition applies to infinite crystals, and must be modified for
supercells . Consider a supercell containing NA A atoms and NB B atoms, with NA+
NB=N, distributed on the sites of a periodic Bravais lattice . It is periodically reproduced to
fill all space. The edges of the supercell are the vectors Lae .; Lae., and Lae., where the e,
are a set of orthogonal unit vectors, a is a lattice constant , and L is a large integer. It is
assumed, as in Warren's book," that the sample is large enough to contain an infinite
number of supercells but small enough to be described by small crystal theory . The
direction of the incoming wave is described by the unit vector So, the outgoing wave is in

the direction s, and the scattering vector is k = 2Jr(s - so), where A is the wavelength of
A

the radiation. Scattering from a supercell is just like scattering from a unit cell that contains
N atoms . The only allowed outgoing waves have k-vectors

2Jr~ 2Jrn 2Jm
k = e +.:::::3. e +.=.:..:l eLa 1 La 2 La 3 '

where the 11; are integers that range from 0 to L-l .
The scattering factor for the supercell can be written

<I>(k) * <I>(k)
N

where
N N N

M) ~ i'·, ~ ()ei•.r . ~ ( ) i'·r.",k = LJf,e '= /"LJlIA Ii ' + /sLJlIB r i e ' .
i _ I i-I i - I

In this expression,.fA and Is are the scattering parameters for A and B atoms, 11irJ is 1 if

there is an A atom on site i and 0 otherwise , and liB (rj )=1-11A(rj ) . Another way to write

<I>(k) is
N N N

Mk) !'~ () ih, F' ~ () i'·r , (f)~ i' ·r,
''\ = ALJ llA r, e +JBLJlIBr, e + LJe ,

i -I i -I i-I
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where

(J)= cAIA+ cJ s, I~ = IA -(j) =CSUA - Is), and I~ = Is - (J) =-dh - Is) '
Manipulating the equations leads to I(k)=I(kk,agg +I(k)"o, in which I(k)Sra88 is the

scattering from the average atoms.
The positions of the atoms relative to the origin of the supercell are

Ii = p ;a l + p~a2 + p;a3, where p; are integers and a j are the basis vectors of the Bravais

lattice. It can be shown that l(k)sra88 is nonzero only at Bragg peaks for which the integers

in the k-vector satisfy
2m Zxn 2Jl" .

k .a == e . a + =:::.:l. e . a + e . a =2Jl x [integer]} u >> La 2 } La 3 }

for} equal 1,2, and 3.The diffuse scattering term is given by
N

I(k)sro=cAcs(h - IS ~a{rJe'··r.,
n- I

where the a(rJ are the Warren-Cowley SROP defined for a supercell above.

Another quantity of considerable interest is the diffuse scattering parameter

a(k)= l(k)sro 2 =i a{ry··r.,
CACS (JA - Is) n- I

which is the Fourier transform of the SROP. It can be shown that a(k) can be calculated

very easily for a supercell using the functions
N N

() "" {U.·r "" ( \ _ik·r.tP k =csLJn AliF ' - cALJns r,F ' .
i- I i_ I

and the e9uation

a(k)= tPtk)*tP(k)
NcAcs

This equation can be checked by showing that it leads to the above expression containing
the SROP.

The diffuse scattering parameter a(k) contains the information included in an infinite

number of SROP. These equations will be used to calculate the diffraction from supercells
generated by Monte Carlo calculations in the following .

Coulomb Energy

The Coulomb energy in alloys has been discussed in considerable detail.' The SROP
appear in the definition of the Coulomb energy of isomorphous alloys, which are alloy
models for which every A atom has the same charge liAand every B atom has the charge
lis' The charges in the supercell may be written liA= cst'J. and lis = - cAt'J. . These definitions
guarantee that liA -qs = t'J. , a quantity that calculations show is approximately independent
of concentration. It also ensures charge neutrality, cAqA + cslis = O.

The Coulomb energy per atom in a supercell is
1 N

Uc= N ~M(lrj - ril)q,qj'
i-I
)-1

where M(lrj - iii) is the Madelung matrix" that includes the effect of the charges in the

infinity of periodically reproduced supercells and satisfies the conditions
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M(1r; - r;I) = M(O) = O. As the size of the supercell approaches infinity,
1

M(1r; - r;\)~-,_ I·tt f j

Using qi = nA(r,)qA + nB(r;)qB' it can be shown that
N

u; = cAc~2L a(rJMarnl) .
n- \

The Coulomb potential at a site i is
N

V. = L M(lrj- r;l)qj .
i -I

The average potential for an A site is
_ 1 N N

V.CA=-LV. = cBt-.L M(~nl)a (n),
NCA iCA n_\

while for a B site,
_ 1 N N

V.CB= - L v. = -CAt-.L M(~nl)a(n).
NCBiC A n-l

It follows that the Coulomb energy can be written
Uc = cAqAV.CA+ cBqBV.CB
These expressions for the Coulomb energy and the potentials are exact.

As will be discussed in more detail below, the a(rn) are all zero for an infinitely large
random supercell. For this case, the average potentials on a site and the Coulomb energy
are zero. This is another proof that the Coulomb energy and Madelung potentials for an
isomorphous model of a random alloy are zero.5

Parameterized Energy

The Hamiltonian for an Ising Model of an alloy may be written
N N

H = L VOrJ -r,I)S,SJ -vLSi'
i - I i - I
J- I

where V~ri-ril)=V(O)=O . The "spins" S, are 1 if there is anA atom on site i, and -1 if

there is a B atom there, and v is the chemical potential. When this Hamiltonian is used,
positive values of the potentials V(r) correspond to antiferromagnetic or ordering

interactions. It follows that the total energy for a given configuration of atoms is
N

E= LV(lr"IIN-4NAB(r..)]-v(NA-NB)·
n - \

Using the definitions in the introduction, the energy per atom may be written,
E N N

- = 4CACBL V(lr.l)a<rn ) + (cA- catL V(lrnl) -(cA- cB)v·
N n= l n_l

Since V~rnl) is the same for all r, with magnitudes equal to the radius of a given nearest-

neighbor shell r:n , this expression can be changed to a sum over nearest-neighbor shells,
E N_ N_

- = 4ch Ln~nv(r:n)a(r:n) +(cA- cSLn~nV(r:J - (cA- cB)v.
N i- I i-I

The energy may be manipulated into another form,

E=N(~ varnI) +t) -NA2(2~varnl)+V) +4~varnI)NAA(rJ ,

148



or,

E = N(~ n~n V(r~J + v)l- NA 2(2~ n~n V(r~n) + v)l +4~ n;'" V(rn~)'
\ 1- 1 \ 1- 1 1-1

where

n;'" = Ir.~tAA(rJ

This is the version used by Kanamori in his studies of the ground state configurations of
alloys at T=06 The first term is the energy of a pure metal with all B atoms. The second
term is the number of A atoms times the energy that is used to insert one A atom. The last
term is the interaction of pairs of A atoms.

The Meaning of Randomness in Terms ofSROP

An ideal random substitutional alloy is made up of an infinite number of atoms
distributed on the sites of a periodic Bravais lattice. The probability of finding an A atom
on a lattice site is defined to be CA and the probability of finding a B atom is CB = 1- CA . A
finite subset of the ideal lattice containing N atoms will be called RN . The probability for
finding a given number nAof A atoms in RN is given by the binomial distribution,

PI ) N! nA (N - nA )w, = ( )CA CB
nA ' N-nA

For large N, the binomial distribution is approximated by the normal distribution,
1 (x-~)'

P(x)= ~ e a

v 2Jro
It follows that the probability of finding x in the range - 0.67450 s (x- p.)s 0.67450 is

0.50, while the probability for finding it in the range - 3.00 s (x- p.)s 3.00 is 0.9973. In

the calculation of p{nJ, the mean is p. = NCA and the standard deviation (STD) is

0= JcACBN . It should be noted that the probability CA is the concentration only when the
crystal is infinite in size. If we sample a region RN containing a million atoms, the
probability for measuring CA in the range 0.4985 s cA S 0.5015 is 0.9973. In probability
theory," a quantity like CA is theoretical , not experimental.
. From the introduction it is seen that the SROP for the ilh nearest neighbor shell can be
written

ni

a(i)=l-~ ,
cAcsnp

where n~ = Nn~n is the number of pairs in the region RN, and n:Wis the number of AB pairs

separated by r~ncounted in RN . The number of AB pairs is also described by a Binomial

distribution or, for large N, a normal distribution with mean p. = cAcBn~ and the SID

0= CACBR, .8 It follows that a(i) is described by a normal distribution with mean p.= 0

and the SID 0 = 1/R,.For cosmetic reasons, supercells SN are often used that differ

from the regions RN in that the fraction of A atoms nA/N is forced to be precisely equal to
CA. This can be achieved by invoking additional interchanges of A and B atoms on random
sites after a random number generator has been used to distribute the atoms on the sites. It
has been shown" that the statistics of the SROP discussed in the preceding paragraph is not
significantly affected by this process.

Leaving aside the unimportant dependence of n~n on the size of the region, the SID

for all the a(i) will approach zero uniformly like 1/.JN. It is in this sense, and only in this
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sense, that the statement can be made that the a(i) are zero for a region of a random alloy
when N ~ 00. The reason that we emphasize this fact is that some confusion about this
point has been expressed in the literature.

It has been proposed" that one can create a supercell that is more random than random
by arranging the atoms of the first few nearest-neighbor shells so that n~ = cAcBn~ and

thus the corresponding a(i) are zero. Supercells SNwith 8s N s 16 and the first few a(i)
zero, called special quasi-random structures (SQS), have been used in quantum mechanical
calculations on "random" alloys using the density functional theory and the local density
approximation (OFT-LOA). The attraction of the idea stems from the fact that OFT-LOA
calculations use an amount of computer time that scales as a power of N. There are a
number of difficulties with the SQS concept. The probability of finding a region RN in a

random alloy that fits the SQS description is P = c:'c1N
-

n
, ) , the same as for any other

completely specified arrangement containing nA A atoms. The chance of finding such a
structure periodically reproduced to fill all space is zero. Even the claim that the atomic
arrangements in the first few nearest neighbor shells are similar to the ones in a random
alloy is incorrect . Not to belabor the point, the argument that one can create a random
distribution by rearranging atoms so that the a(i) are zero is equivalent, according to
probability theory, to the following. Suppose a random sequence of N l's and O's are
needed. The sequence can be prepared by flipping a coin or using a (pseudo-) random
number generator. The test of the fairness of the coin flips or the quality of the random
number generator is that the ratio AN) = (Iintegers)1 N must approach 1/2 as N
approaches infinity. A helpful person can point out that rJ..N) can be made exactly equal to
1/2 for any even N by intervening in the random process. According to this view, it would
follow that the most efficient random sequence is 0101010101... because, for any region of
length 2, the ratio ,1...2) has the "correct" value .

An argument for the SQS idea is based on the expression for the parameterized
energy in terms of the SROP in the previous subsection." If it is assumed that the Ising
model expression for the energy can be used and that only the first three interaction
parameters V, are necessary, then the energy of a completely random alloy can be
calculated using a supercell in which the magnitudes of the a(i) for i less than 4 are zero
and the others are irrelevant. In the first place, people who do Monte Carlo calculations do
not claim that the Ising model is anything more than a model. First principles theory
provides some guidance for the choice of the v" but fundamentally they are fitting
parameters that are used to approximate very complicated interactions. This causes no
problem in Monte Carlo applications, but the argument cannot be translated into a first
principles environment. Secondly, there is charge transfer in metallic alloys that leads to
Coulomb energies and Madelung potentials similar to the ones discussed in the subsection
Coulomb Energy. In quantum mechanical calculations on condensed matter, sophisticated
techniques such as the Ewald method'" and fast multipole methods" have been developed
to deal with them. It has been argued that the first few Vi are capable of modeling these
long-range Coulomb effects,"but it is clear that this can only be done very approximately.
Even if this argument is accepted, the a(i) in Table I illustrate another difficulty. These
SROP are calculated for arrangements of 16 A and 16 B atoms on the sites of an fcc
Bravais lattice in a 32 atom supercell. It is obvious from this table that the price one must
pay for the zero values of a(I), a(2), and a(3) is an unnaturally large value for a(4) and
other SROP. Of course, a(8) must be 1 because the atom sees its periodically reproduced
self on the eighth nn shell. The quantity that appears in the sum for the Ising energy in the
subsection Parameterized Energy is Y,a(i). Even if the Vi become smaller as i increases,

they will become important when they are multiplied by the large a(i).
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Table I. The SROP for some 32 atom supercells based on the fcc Bravais lattice.
The 16A and B sites are arranged to minimize the first three SROP

0 0 0 -114 0 -1/4 0 1
0 0 0 -113 0 0 0 1
0 0 0 -116 0 -112 0 1
0 0 0 -1/12 0 -3/4 0 1

Useful information about alloys can be found using supercells containing as few as
two atoms ,12 but the only standard that can be used for the correctness of a calculation on a
random alloy is the degree to which it approximates the result that would be obtained from
an infinitely large supercell . Finite-size effects should be given the same serious
consideration in alloy calculations as they are in any other statistical study .1

CALCULATION OF SROP AND a(k)

We use the formulas from the preceding sections to study the short-range ordered
states in some typical disordered alloys . Our Monte Carlo calculations start from a code
written for the simple cubic lattice by Loren P. Meissner':' to illustrate the use of array
intrinsic functions in fortran 90 and 95. It treats the 2 interpenetrating cubic lattices in bee
or the 4 interpenetrating lattices in fcc as blocks . We use the Ising Hamiltonian,

N

H = -"i~ s,s}- Vz~v ,- v,Ls,
<t1 rt1 1- 1

where s, = ±1/ 2 if there is an A or B atom on the site . The notation (i, j) means the sum is

over nearest neighbors, while [i,j] indicates next-nearest neighbors. The chemical potential
v plays the role of an applied field in the magnetic interpretation of this Hamiltonian. It
should be noted that this is a different Hamiltonian from the one used in the subsection
Parameterized Energy . For this Hamiltonian, an interaction is antiferromagnetic or
clustering when V; sO. The expression

. 1 (a(l) = 1 , ~ NAB rJ
cAcBNnnn l ,~

is used to calculate the SROP for the supercell . The diffuse scattering intensity function
a(k) is calculated by the method described in the introduction.

The ordering of binary alloys on an fcc Bravais lattice is particularly interesting
because of the geometrical frustration of the Hamiltonian. For the bee case, the transition
temperatures T, for ordering (antiferro-magnetism) or clustering (ferromagnetism) are
essentially the same, while for the fcc case they differ by a factor of 5. We focus on fcc
alloys with V. = -1.0 in the following.

The concentrations of a series of alloys based on the fcc Bravais lattice are shown as a
function of temperature for a series of chemical potentials v in Fig . 1. For all these alloys,
V. = -1.0 and V, = 0.0. It can be seen that any concentration can be obtained with a suitable
choice of v as long as the temperatures are above the order-disorder phase boundaries.
There are only three ground state ordered structures for the case of nearest-neighbor anti
ferromagnetic interactions; the Llo or CuAuI structure for the 50% alloy, the LI2 or Cu3Au

structure at 75%, and the pure metal at 100%6 As the temperature approaches zero, the
Monte Carlo program will search out one of these structures because they are the only
thermodynamically stable ones . To agree with those that appear in other publications, 14 the
transition temperatures must be multiplied by four and the chemical potentials by two. The
reason for this is that most authors use s, = ±1 rather than s, = ±l / 2 .
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effect of changing chemical potential
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Figure 1. The concentrations as a function of temperature for various values of the chemical potential v for
AB alloys and the case that It, =- 1.0 with It, =O.O. The legend explaining the values of the chemical
potentials is shown to the right of the drawing. The parabolas sketched in to the plot indicate the order
disorder transition temperatures.

disordered AS alloy, T = 0.45, V1 = -1.0,V2 = 0.0
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Figure 2. The intensity function a(k) in the k; - k; plane for the 50% AB alloy with It, =-1.0 and It, =o. O.

The temperature is indicated in the drawing, and is just above the order-disorder transition temperature.
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disordered AB alloy, T=0.76, Vl = -1.0, V2=0.2
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Figure 3. The intensity function a(k) in the k; - k; plane for the 50% AB alloy with V, =- 1.0and V, =0.2 .

The temperature is indicated in the drawing, and is just above the order-disorder transition temperature .

disordered AB alloy, T = 0.36. Vl = -1.0, V2 = -0.2
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Figure 4. The intensity function a(k) in the k, - k; plane for the SOUIo AB alloy with V, = - 1.0and

V, = - 02 . The temperature is indicated in the drawing, and is just above the order-disorder transition

temperature.
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In Figs. 2, 3, and 4 we show the diffuse scattering intensity a(k) in the kx, ky plane
for 50% AB alloys for the cases that V't = -1 .0 with It; = 0.0 , It; = 0.2, and It; = -0.2 . The
chemical potential is zero. Since the atoms are distributed on the sites of an fcc Bravais
lattice, the peaks in I(k)B,"88 are at the k-points (0,0,0), (0,2,0), (2,2,0), etc. The

temperatures in all cases are just above the order-disorder transition temperatures, which
are approximately 0.44 for It; = 0.0, 0.75 for It; = 0.2, and 0.35 for It; = -0.2 . For the
cases where the second nearest-neighbor interactions are 0.0 or 0.2, the diffuse scattering
peaks are at (0,1,0), (1,1,0), etc. The diffuse scattering intensity for V't = -1.0 and
It; = -0.2 has peaks at the points (1,1/2,0), (1/2,1,0). All of these patterns are in keeping
with the predictions for c(k] from the Clapp-Moss diagram .IS

Ground state configurations for alloys based on the fcc lattice were predicted by
Kanamori" and Allen and Cahn," and the corresponding SROP are given in a table by
Hata.17 From Figs. 5 and 6, the first 8 SROP for the cases that V2 is 0.0 or 0.2 have the
values -1/3, 1, -1/3, 1, -1/3, 1, -1/3, and 1 at low temperatures. This pattern corresponds to
the ordered LI o structure . The SROP for It; = -0. 2 are shown in Fig. 7. For technical
reasons the Monte Carlo calculations were initiated in the LIo state, but, as soon as the
temperature reaches a point at which the system can find thermodynamic equilibrium after
a reasonable number of Monte Carlo sweeps, the first 8 SROP become -1/3,1/3, 1/3, -1/3, 
1/3, -1, 1/3, and 1. This pattern is consistent with the N2M2 structure.

AB alloy, Vl =-1.0, V2 =0.0
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Figure 5. The first 8 SROP as a function of temperature for the AB alloy with \II = -1.0 and V, = O.O. The

concentration is 50%.
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AB alloy, Vl = -1.0, V2 = 0.2
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Figure 6. The first 8 SROP as a function of temperature for the AB alloy with V, = - 1.0 and V, = O.2. The
concentration is 50"/0.
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Figure 7.The first 8 SROP as a function of temperature for the AB alloy with V, =- 1.0and V, =- 02 . The

concentration is 50"/0.

Calculations have been carried out for the chemical potential v = 4.0 , so that the
concentration is 75%. The results are similar to the 50% alloy described above. For
~ = -I.O and V, = 0.0 or V, = 0.2, the peaks in a(k) are at (0,1,0), (1,1,0), etc. From the
pattern of SROP coefficients, it is seen that the ground state structure is Ll -, The diffuse
scattering intensity for ~ = -I.Oand V, = -0.2 has peaks at the points (1,1/2,0), (112,1,0),
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Figure 9. The difference C A - cB for the four interpenetrating cubic sublattices for the 62.5% AB alloy is

shown as a function of temperature for the case that It; = -1.0 and V, = O.O. The concentration CA is also
shown.

etc., and it is seen from the pattern of the SROP that the ground state structure is DOn .
These ground state structures agree with the predictions.v"

All of these calculations indicate that the short-range ordered state shown by the
o(k) and the SROP for temperatures above the order-disorder transformation are closely
related to the ground state structures. Remnants of the correlations that exist in the ground
states will persist into the short-range ordered states as described, for example, by Hata. t 7

The SROP for concentrations in the neighborhood of 62.5%, which corresponds to
the chemical potential v = 2.0 , are shown in Fig. 8. The order parameter CA - cB for the
four interpenetrating sublattices are shown in Fig. 9, and it is clear that there is an order
disorder transformation with Tc ""0.26 . There is little evidence for this transformation in
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the SROP . For temperatures as low as 0.1, they do not attain the values of 1 and -1/3 that
they have for the 50% and 75% alloys. There is a triple point in the phase diagram near this
concentration. More carefu l calculations'" locate the triple point at Tip = 0.25 at a chemical

potential of V Ip = 1.8. The evidence is that below the transition temperature, the state is a

mixture of'Ll., and Ll -, It would be expected that the short-range ordered state at a slightly
higher temperature would also contain remnants of both of these ordered structures.

CONCLUSIONS

In the subsection The Meaning of Randomness in Terms of SROP , the Warren
Cowley analysis is used to rectify some misconceptions about disorder in alloys that have
appeared in the literature." The expressions for the Coulomb potentials and Coulomb
energy in isomorphous alloys in terms of the SROP derived in the subsection Coulomb
Energy provide another way to demonstrate that those functions are zero for an
isomorphous random alloy, a question of some importance in alloy theory.' It is very easy
to calculate the diffuse scattering intensity parameter a(k) using the method described
here. The Krivoglaz-Clapp-Moss approximation, " the gamma expansion method," the
inverse Monte-Carlo method," the Cowley method." etc. are used to used to relate
effective pair interactions such as VI and Vz to a(k) . Since excellent MC calculations can
be done with an inexpensive PC, it seems to us that it is no longer necessary to employ
these approximate methods.

The calculations in the preceding section indicate that the correlations in the low
temperature ordered state are carried over into the short -range ordered state at higher
temperature. This is similar to the conclusion reached from high-resolution electron
diffraction studies .I? It should be noted, however, that our Monte Carlo calculations
generate thermod ynamic equilibrium states. The electron diffraction experiments as well as
the dynamic Monte Carlo method used to explain them focus on non-equilibrium states .I?
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INTRODUCTION

Ni-based alloys such as Ni-V, Ni-Cr, Ni-Mo, Ni-W are called '1 1/20 alloys ' because
of their characteristic order-disorder transformation.' >' In the early stage of ordering, all the
alloys form the short-range order (SRO) that is commonly identified by diffuse intensity
maxima at hkl =1 1/2 0 and equivalent positions, in addition to the fcc fundamental lattice
reflections. In the later stage of ordering, on the other hand, various types of long-range
order (LRO) structures develop from the 1 1/2 0 type SRO, depending on the alloy system
and composition. Figure 1 illus trates the LRO structures of Ni-based 11/20 alloys : (a) ~B
type Dla, (b) A3B type D022 and (c) A2B type Pt2Mo structures and their schematic
diffraction patterns (d). One can see the common features in the (420) stacking of the fcc
lattices . Along the (420) stacking, certain numbers of Ni atom-planes are sandwiched
between atom-planes composed of an alloying element. The numbers of the sandwiched Ni
atom-planes are four for Dla, three for D022 and two for Pt2Mo structure, respectively. Dla

is the LRO structure of Ni-Mo and Ni-W alloys, D022 is of Ni-V and Ni-Cr, and Pt2MO is
of Ni-V, Ni-Cr and Ni-Mo alloys.

The ordering behavior in Ni-based 1 1/2 0 alloys was investigated by many research
groups. However, a general understanding of the ordering mechan ism in the alloys was not
necessarily reached , since experimental methods and theoretical backgrounds are different
among the research groups or the alloy systems to be investigated. For the general
understanding of the ordering mechanism, the dependence of alloying elements on the
ordering behavior in Ni-based 1 1/2 0 alloys was studied. Caudron et al.,4 for example,
studied the SRO in Ni-V and Ni-Cr alloys by in-situ neutron diffraction . They evaluated
effective pairwise atomic interactions by the inverse cluster variation method and discussed
the difference in phase stability using the evaluated effective interactions. Vlasova et al.,5
Yamamoto et al.,6 Martin and Williams7.8 and Arya et al.9 studied the ordering in ternary
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Ni-Mo-X (X =V, Ta, AI, W, Cr) alloys by transmission electron microscopy (TEM) and
the first-principles calculations. They discussed influences of the alloying elements on the
ordering behavior in terms of the effective atomic interactions, electronic structures of the
ordered compounds and so on. In these previous studies, however, the ordering behavior
was interpreted based on the mean-field approximation even for the SRO and imperfectly
ordered states. Thus , the following points about the atomistic ordering process are not clear:
(i) Do Ni-based 11/20 alloys form similar SRO structures in atomic level? (ii) How do the
various LRO structures develop from the 1 1/2 0 type SRO state? (iii) What governs the
SRO-LRO transition process in Ni-based 1 1/20 alloys?

The main purpose of the present study is to clarify these points (i), (ii) and (iii)
described above. For attaining the purpose, the ordering processes in Ni--Mo and Ni-V
alloys that show the different LRO structures with each other were investigated by TEM
observation and Monte Carlo simulation using the kinetic Ising model. It has been
demonstrated that the combination of TEM observation and the kinetic Monte Carlo
simulation is a powerful method for studying the ordering processes in the Ni-Mo alloys.'?"
13 The obtained results for Ni-Mo and Ni-V are compared with each other, and the
atomistic ordering mechanism that can be commonly applicable for Ni-based 1 1/2 0 alloys
is discussed . The physical meaning of the effective pairwise atomic interaction parameters
for the Monte Carlo simulation is rationalized in terms of the concentration of free electrons
in the alloys.
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Figure 1. (001) cross-sectional views of D1, (a), D0 22 (b) and Pt2Mo (c) structures and their schematic
diffraction patterns (d).
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TRANSMISSION ELECTRON MICROSCOPY OBSERVAnON

Ordering Processes in Ni-Mo

Figure 2 shows (001) electron diffraction patterns of N4Mo and Ni3Mo alloys in the
isothermal annealing at 873 K. The as-quenched specimens from the solid-solution

(a)

(b)

(c)

(d)

Figure 2. (001) electron diffraction palterns of Ni.M o (left column) and Ni3Mo alloys (right column). As
quenched from 1273 K (1423 K for Ni3Mo) (a), and annealed subsequently at 873 K for 7.2 (b), 86.4 (c) and
172.8 ks (d).
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temperatures in (a) exhibit the intensity maxima at hkl =1 1/20 and equivalent positions, as
reported by many research groups previously. In addition, a ring-shaped diffuse scattering
connecting the 1 1/2 0 type intensity maxima is observed for Ni-Mo . As the long-range
ordering proceeds from (b) to (d), the 1 1/2 0 type intensity maxima shift to the other
positions, such as hk/ = 4/5 2/5 0 for Ni4Mo and hk/ = 4/5 2/5 0 and 4/3 2/3 0 for NbMo.
These intensity maxima correspond to the superiattice reflections of Dl a and Pt2Mo
structures respectively, as illustrated schematically in Figure l(d).

Kulkarni et al. 14 obtained a metastable fcc solid-solution with Ni-Mo composition by
the rapid solidification processing (RSP), and studied the ordering process in the Ni2Mo
solid-solution specimen. They reported that the 1 1/2 0 type intensity maxima and the ring
shaped diffuse scattering first appear , as observed for Ni3Mo in Figure l(a). The SRO state
transforms into the Pt2Mo type LRO state after subsequent annealing .

Ordering Processes in Ni-V

The SRO in fcc-based Ni-V alloy was extensively studied by neutron diffraction and
the first-principles calculations rather than TEM . One of the main reasons is that D022 type
LRO develops rapidly during quenching from the solid-solution temperatures.P: 16

According to the in-situ neutron diffraction by Caudron et a/.,4 NbV and NhV alloys show
the 1 1/2 0 type intensity maxima at the solid-solution temperatures. In the TEM
observations of NbV and Ni-29 at% V alloys'?' 16 quenched from the solid-solution
temperatures, the DOn type ordering was recognized. The DOn-ordered state in the Ni-29
at% V alloy" transformed into the two-phase LRO state of (D022+Pt2Mo).

(a)

NizV
(b) (c)

(d) (e)

Figure 3. (001) electr on diffraction patlerns of Ni2V alloy . As-quenched from 1373 K (a), and annealed
subsequently at 843 K for 1.8 (b), 3.6 (c). 10.8 (d) and 43.2 ks (e) .
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In the present study, TEM observation of the ordering process in Ni-V alloy was
carried out, since the fcc solid-solution can be obtained by quenching.l / Figure 3 shows
(001) electron diffraction patterns in the isothermal annealing at 843 K, where the
homogeneous ordering process through the 1 1/2 0 type SRO state was observed. It is
confirmed from Figure 3(a) that the as-quenched specimen is of a disordered state. After
annealing at 843 K, the ring-shaped diffuse scattering and the 1 1/2 0 type intensity maxima
appear, as shown in (b) and (c). In addition , faint D022 type superlattice reflections at hkl =
110 and 100 are also seen. Another DOn type superlattice reflect ion at hkl =1 1/2 0 may be
superimposed on the SRO diffuse intensity maxima. The D022 type ordering develops from
the SRO state, as seen in (d), although the matrix composition is the stoichiometric Ni2V.
As the Pt2Mo type superlattice reflections become intense in the later stage of ordering in
(e), the D022 type superlattice reflections turn to decrease in intensity . Sundararaman'" also
found such a peculiar ordering process in Ni-V alloy.

MONTE CARLO SIMULATION

Simulation Procedure

In order to study the changes in local atomic arrangement during the ordering in Ni
Mo and Ni-V alloys, Monte Carlo simulation using the kinetic Ising model was carried out.
An A1.xBx alloy system consisting of 20[1oo]x20[olO] x20[ool] fcc unit cells with the periodic
boundary condition was considered . The internal energy of the system was given by

E=-}:V(n)(}:o,oi) '
n nNN

(1)

where o is the site-occupation operator defined by 0A =+ 1 and 0B =- 1, and nNN denot ing
summation over the nth nearest neighbor pairs of i-j. V(n) is the effective pairwise atomic
interaction parameter for nth coordination shells defined in a conventional way as

(2)

where E;j{n) is the effective pairwise atomic interaction energy between i and j atoms . The
system prefers unlike-atom pairs of the nth coordination shells if V(n) is negative, and like
atom pairs if it is positive.

In the Monte Carlo simulation, the constituent A- and B-atoms were randomly

Table 1. Effective pairwise atomic interaction parameters V(n) for Monte Carlo simulat ion.

V(n)

V(l )Imn. <Jill>
V(2)<2IK'>/ IV(l)1
V(3)<2IJ>/ W(l)1
V(4)<220>/ W(l)1
V(5)<31o>/ W(l)1
V(6)<222>/ IV(l)1
V(7)<321 >/ W(l)1
V(8)<4IKl> / W(l)1
V(9)<331l> / IV(l)1
V(9)<4J I> / IV(l)1

kBT/ WO)I

< 0 (ordering)
0.2
0.1

- 0.4
0.1
o
o
o
o
o
1.0

Ni .Mo - Ni-Mo
< 0 (ordering)

0.4
0.1

-0.4
0.1
0.15
0.01

-0.05
o
o
1.0

< 0 (ordering)
0.41
0.1

- 0.35
- 0.1

0.2
0.01

- 0.1
0.02

- 0.02
1.0
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(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figure 4. Temporal changes of (001) Fourier power spectra of atomic arrangements obtained by the kinetic
Monte Carlo simulation. Monte Carlo steps (MCS) from (a) to (d) are 20, 50, 500, 3000 MCS for Ni 4Mo, 40,
200,700,3000 MCS for Ni,Mo, 20,100,600,3000 MCS for Ni ,Mo, 10, 100, 1500, 10000 MCS for Ni ,V,
10, 100, 1500,30000 MCS for Ni ' .3V (Ni-30 at% V), and 10, 100, 1000 , 10000 MCS for Ni ,V, respectively.
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distributed on the fcc lattice sites . Two neighboring atoms were chosen at random, and
attempted to be exchanged in position with each other, according to the Kawasaki spin-flip
dynamics .l" The exchange probability between the neighboring atoms was given by

W = exp(- M / kB1) / [1 + exp(- M / kB1)] = [1 - tanh(M / 2kB1)] / 2 (3)

where M is the energy gain caused by the exchange, and kB and T are the Boltzmann's

Figure 5. Temporal changes of (001) cross-sectional views of the simulated atomic arrangements for Ni-Mo
alloys at 50 (a), 100 (b), 500 (c) and 3000 MCS (d).
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constant and the absolute temperature, respectively. If W is larger than a random number R
between 0 and 1, the neighboring atoms are exchanged with each other. The time for atomic
exchange is measured in units of Monte Carlo step (MCS), one MCS corresponds to 32000
(20x20x20x4) attempts to exchange neighboring atoms, namely one attempt of exchanging
per one atom .

In order to reproduce the ordering processes by the Monte Carlo simulation, the values
of V(n) should be optimized. The optimization procedure for V(n) is based on the ground
state analysis for fcc binary alloys as a function of the pairwise atomic interactions by
Kanamori and Kakehashi.zo According to their theory, Dla, DOn and Pt-Mo structures
appear as the ground state structures when V(n)'s up to the fourth coordination shells (n = 4)
are set at appropriate values. Thus, we first determined the ranges of V(n) up to n =4 that
can produce Dl a, DOll and Pt-Mo structures as the ground states in the composition range
between AtB and A lB. Appropriate values of V(n) with which the simulation could
reproduce well the temporal changes in diffraction pattern of the Ni-Mo and Ni-V alloys
were searched within the range of V(n) determined above . However, it was found that V(n)
with n > 4 must be taken into account for reproducing the experimental results of the
ordering processes in the wide composition range . Without setting V(n) with n > 4, Dl a,

DOll and Pt-Mo type microdomains cannot grow into LRO domains at off-stoichiometric
compositions. Then, the optimizing procedure was carried out again with taking account of
V(n) with n > 4. The values of V(n) up to n = 9 were finally evaluated as listed in Table 1.
The roles of V(n)'s with n > 4 will be discussed later. The value for T used in the Monte
Carlo simulation was approximately to a half the critical temperature of Pt-Mo structure
estimated by the Bragg-Williams' approximation.

D022

(100) D022
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o ,:.:,
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Figure 6. D022 structure and its derivatives of two-dimensional (lOOjD022 and (001 jD0 22•
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(d)

Simulation Results

Figure 4 shows temporal changes in (001) Fourier power spectra of atomic
arrangements obtained by Monte Carlo simulation, Each spectrum is illustrated after
averaging over three spectra of (100), (010) and (001) reciprocal lattice planes, and the
fundamental 000, 200, 200 and 220 reflections located at the four corners in each spectrum
are omitted. One can see that the simulated diffraction intensity distributions reproduce well
the temporal changes in experimental diffraction pattern of the Ni-Mo and Ni-V alloys
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Figure 7. Temporal changes of (001) cross-sectional views of the simulated atomic arrangements for Ni-V
alloys at 10 (a), 100 (b), 1000(c) and 10000 MCS (30000 MCS for Ni 2V) (d) ,
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described in the previous section (e.g. Figures 2 and 3).
Figure 5 demonstrates temporal changes in (001) cross-sectional views of the

simulated atomic arrangements for the Ni-Mo alloys. In each cross-sectional view
composed of two neighboring (002) atomic planes, black points correspond to Mo atoms . In
order to help identification of ordered structures formed in the matrix, sub-unit cells of D1a

(slanting large square), D022 (fat rhombus-shaped (100)D022 and small square-shaped
(001)D022, illustrated in Figure 6) and Pt2Mo (slant ing lean rhombus) structures are
depicted by solid lines.

For Ni4Mo composition, microclusters of D1., D022 and Pt2Mo types are formed
together in the early stage of ordering in (a) and (b). It is known that such a mixed state of
D1. , D022 ad Pt2Mo type clusters exhibit the diffuse intensity maxima at hkl =1 1/20. 1

, 1ll-13,
21 As the ordering proceeds, only DI. type clusters develop into LRO domains in (c) and (d) .
For Ni3Mo composition, D1., D022 and Pt2Mo type clusters are firstly formed in the same
way as for Ni4Mo composition, although the fractions of D022 and Pt2MO type clusters are
larger than those for Ni4Mo, as recognized in (a) and (b). It is noted that the number of
(001)D022 (small square) type clusters is much smaller than that of (lOO)D022 (fat rhombus)
type clusters. This suggests that the D022 type atomic arrangement tends to grow two
dimensionally to form the (100)D022 type clusters." In the later stage of ordering, most
D022 type clusters shrink , and DI. and Pt2Mo type clusters grow into large domains to form
the two-phase LRO state . In the case of Ni2Mo composition, the fraction of D1. type
clusters is small . Pt2Mo type LRO domains develop monotonously with shrinking of D I.
and D022 type clusters. Areas P and Q in (d) correspond to DI. and Pt2Mo type domain s
with c-axes parallel to the (001) plane , respectively.

The mixed state of DI., D022 and Pt2Mo type clusters in the SRO states of Ni-Mo and
other I 1/2 0 alloys has been experimentally observed by high-resolution transmission
electron microscopy (HRTEM).l, I . 13, 22 Hata el al. 13 revealed that the fract ions of DI .,
D022 and Pt2Mo type clusters in Ni-Mo alloy depend on the alloy composition and heat
treatment, in a good agreement with the present Monte Carlo simulation in Figure 5.

(001) cross-sectional views of the simulated atomic arrangements for the Ni-V alloys
are demonstrated in Figure 7, hence black points in the cross-sectional views corresponding
to V atoms. For Ni3V composition, D022 type ordering is dominant during the ordering
process. Neverth eless, D1. and Pt2Mo type clusters are formed together with the D022 type
clusters in the early stages of ordering in (a) and (b) . It should be noted that the square
shaped (001)D022 type clusters are often formed with the (100)D022 clusters. This suggests
that the D022 type atomic arrangements grow three-dimensionally for the Ni-V system . For
Ni2.3V (Ni-30 at% V) composition, D1. type clusters are still generated with D022 and
Pt2Mo type clusters, and the Pt2Mo type domains come to grow in the later stage of
ordering with increasing V content. Even for NizV composition, D022 type domains grow
first from the mixed state of D1., D022 and Pt2Mo type clusters in (a), (b) and (c), although
Pt2Mo type domain s grow in the later stage with shrinking the D022 type domains. Areas Q
in (d) correspond to Pt2Mo type domains with c-axes parallel to the (001) plane .

From the results of Monte Carlo simulation, it is suggested that the I 1/2 0 type SRO
state is commonly described as a mixed state of D1. , D022 and Pt2Mo type microclusters,

Table 2. Warren-Cowley parameters of ordered structures in their perfectly ordered states .

Structure

D1,
Pt2Mo

DO"
(l00)DO"
(OOl)DO"
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a(1)
- 0.250
-0.250
- 0.333
- 0.333
- 0.333

a(2)
0.167
0.000
0.556
0.333
1.000

a(3)
0.167
0.250
0.111
0.333

- 0.333

a(4)
-0.250
-0.250

0.111
- 0.333

1.000

a(5)
- 0.042

0.000
-0.333
- 0.333
-0.333

a(6)
-0.250

0.250
- 0.333

a(7)
0.167

-0.250
0.111
0.333
0.333

-0.167 - 0.250 - 0.250
0.000 1.000 0.250
1.000 - 0.333 - 0.333
1.000 - 0.333 - 0.333
1.000 - 0.333 - 0.333



and the SRO-LRO transition proceeds by the selected growth of the stable LRO structures
from the mixed stat e of the microclusters.

DISCUSSION

Mechanism of Atomistic Ordering Processes

The ordering processes in the Ni-Mo and Ni-V alloy s reproduced by Monte Carl o
simulation are discussed based on the pairwise interaction model .r'' Tabl e 2 shows Warren

Cowl ey parameters a(n) of the ordered stru ctures in their perfectly ordered states . The

parameter a(n) is defin ed bi '

a(n)=l-PAB/XB, (5)

wh ere PAB is a conditional probability for find ing a B-at om at a latti ce point in the nth
coordination shell of an A-atom, and XB is the atomic fract ion of B-atoms. (100)D022 and
(001)D022 in Table 2 refer to two-dimensionally extending atomic arrangements of two
adjoining (200) and (002) planes of D0 22 struc ture respectively , as illustrated in Figure 6.
All the structures have the foll ow ing tendencies of a(n) except for the thre e-d imensional
D0 22 and (001)D0 22,

a(l), a( 4), a(5) :s 0, (6a)

a(2), a(3) 2: O. (6b)

0 .362
N i-M~

I

N i- V• •
0 .360 -• I

• -• ,
0.358

<1 •
a • 6 Ni-CrNi -Woo

L /nm 0 .356 l- -

• ••
0 •0 .354 l- • 6 -

• •
6

0 .352 0 ..
.~ 6 -6

··6 6

0 .350
0 10 20 30 40 50
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Figure 8. fcc lattice parameters of Ni sol id-solutions.'·
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It is noted that the D022 type atomic configuration keeps a negative value of a(4) if the
rhombus-shaped (100)D022 type clusters extend two-dimensionally. Such a two
dimensional growth of the D022 type atomic configuration ma y be one of the reasons for the
fact that the 1000022 and 1100022 superlattice reflections are forbidden in the ordering
process of Ni-Mo alloy. The common tendencies of a(n) suggest that the formation
probabilities of Dla, D022 and Pt2Mo type atomic configurations in the SRO states are
nearly even to each other. In other words, it can be rationalized that the formation of the
mixed state of DI a, D022 and Pt2Mo type microclusters is the fundamental features of the
I 1/2 0 type SRO.

The roles of V(n) in the SRO-LRO transition process are also interpreted using a(n) in
Table 2. In the case of the Ni-Mo type ordering, the positive V(5) and negative V(8)
contribute to producing like- and unlike-atom pairs in the fifth and eighth coordination
shells, resp ectively. As a result, D022 type ordering tak ing the negative a(5) and positive

a(8) is prevent ed, while Dla or Pt2Mo type ordering that takes a(5) - 0 and a(8) :s 0
develops selectively . For the Ni-V type ordering, let us compare the values of V(n) for the
Ni-Mo (Dl a+ Pt2Mo) alloy with those for the Ni-V (D022 + Pt2Mo) alloy, listed in Table 1.
If all the Mo atoms in the Ni-Mo alloy are substituted with V atoms, V(4)/1V(1)1 increases as

- 0.4 -- - 0.35, and V(5)/1V(1)1 decreases as + 0.1 -- - 0.1. Th e changes of V(4)/IV(I)1 and
V(5)/1V(1)1 contribute to D022 type ordering, since

a(4)D1 a, a(4)Pt2Mo « a(4)0022,

a(5)Dla, a(5)Pt2Mo » a(5)D022.

(7a)

(7b)

On the other hand, the increases in V(6)/IV(l)1 (+ 0.15 -- + 0.2) and V(9<330>)lIV(I)1
(0 -- + 0.1) and the decrease in V(8)/IV(I)1 (- 0.05 -- - 0.1) contribute to Pt2Mo type
ordering, since

a(6)D1a, a(6)0022« a(6)PI2Mo,

a(8)0022 » a(8)Pt2Mo, a(8)D1 a.

(Sa)

(8b)

(8c)

Caudron et al.4 also reported that the role of V(9<330» is crucial for the Pt2Mo type ordering.
From the relationships between V(n) and a(n) described above, it may be rationalized that

the characteristic ordering sequence in Ni2V, 11/20 type SRO -- D022 type LRO -- Pt2Mo
type LRO, is due to the different tendencies of the long-range pair correlations among Dla,
D022 and Pt2Mo structures. As mentioned previously.t" Dl a, D022 and Pt2Mo structures
appear as the ground state structures when the pairwise atomic interactions up to the fourth
coordinat ion shells are taken into account. The present Monte Carlo simulation, however,

Table 3. Fitting parameters for the Fr iedel oscillation expressed in Eq . (9) .

Alloy

Ni3Mo

Ni2Mo

Ni3V
Ni2V

Lattice parameter '
L lnm
0.363
0.366
0.357
0.359

Fermi wavelength
kF I nm"

14.97
14.84
14.85
14.78

Amplitude
A

0.9553
0.9556
0.85 77
0.8585

Phase factor
<p I rad

- 2.589
- 2.588
- 2.351
- 2.356

' Estimated from Figure 8.20
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suggests that the SRO-LRO transition process in 1 1/2 0 alloys depends strongly on the
pairwise atomic interactions in larger distances than the fourth coordination distance. In this
connection, Caudron et al.4 suggested that the influence of the long-range pairwise
interactions may be interpreted as the influence of many-body interactions. The influences
of the many-body interactions on the order-disorder transformation in Ni-V alloy was
recently studied by Chepulskii .i" 25

Dependence of V(n) on Alloying Elements

The physical meaning of the effective pairwise interaction parameters V(n) evaluated
from the kinetic Monte Carlo simulation is discussed. Figure 8 shows the fcc lattice
constants L of Ni solid-solutions." The Ni-Mo and Ni-W alloys that form a Dl a type LRO
have larger lattice constants than those of Ni-V and Ni-Cr alloys without forming the Dl a

type LRO. This suggests that the lattice spacing is one of the important factors to determine
the LRO structures in the Ni-based 1 1/20 alloys . In the periodic table, the four elements, V
(Period 4; Group v, Outer electron configuration 3d34s\ Cr (4; VIa; 3J4s), Mo (5; VIa;
4J5s) and W (6; VIa; 5~6s\ that form 1 1/20 alloys with Ni (4; VII; 3Jl4i), are adjacent
to each other . Kulkarn i and Banerjee" pointed out that the differences in outer electron
configuration may give large influences on the phase stability in the Ni-based 1 1/20 alloys.
They estimated the number of free electrons per atom ela for various Ni-based alloys, in
accordance with the scheme proposed by Sinha.i" The values of eta for pure metals were
given as ela = IO for Ni, 5 for V, and 6 for Cr, Mo and W. If Ni forms an Niy¥ type alloy
with V or Mo, ela decreases to 8.75 (= IO x 0.75 + 5 x 0.25) for Ni3V or 9 (= IO x 0.75 +
6 x 0.25) for Ni3Mo. From the estimation of ela, they assumed the condition, ela "" 9, for
stabilizing a phase mixture of Dla and Pt2MO structures in Niy¥ alloy.

In order to take the influences of the lattice spacing and the number of free electrons
into account, the values of V(n)IV(l) were plotted as a function of interatomic distance r ,
and compared with a simple Friedel oscillation expressed bl9

•
3o

. . . -0 . .. Ni2V

. . . . • . . . . Ni3V
--0-- Ni2Mo

--- Ni
3

Mo

9
8 <330>

9
<4 11>

0.80.70 .60.40.3
.2 .0 L...J.LJ.-..J.....1.....JL...J.--'--'-.l.-l----'---'--'-L...J.----'-..J.....1.....JL...J.--'--'-.L..JL...J.--'--'-.l.-l-J

0.2 0.5

r lnm
Figure 9. V(r)/V(rn : ,) as a function of interatomic dislance (plots) and its fitting based on the Friedel
oscillation (curves) expressed by Eq. (9) . The fitting parameters used in Eq. (9) are listed in Table 3.
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V(r) / V(rn = I) =A cos(2kf + ¢) / (r / L)3, (9)

where A, kf and ¢ are the amplitude , the Fermi wavenumber and the phase factor,
respectively . As listed in Table 3, the values of these fitting parameters were determined for
each alloy system, and the lattice parametersL were estimated from Figure 8.26 The result in
Figure 9 shows that V(n)/V(l) is fitted well to the Friedel oscillation, although the values of
V(n) were evaluated by only reproducing the temporal changes in experimental diffraction
pattern during the ordering processes . Such an applicability of the Friedel oscillation to the
effective pairwise interactions in transition-metal alloys was also shown by Schweika and
Haubold31

•
32 and Zou and Carlsson.r" 34 Using the values of k f estimated from the fitting of

V(n)/V(l) , e/a can be calculated from the following equations assuming the spherical Fermi
surface"

k f = (371N / V)1 /3 = (371'4(e /a) / L 3)113,

(e/a) =L3k
f
3 / 1271,

(lOa)

(lOb)

where N and V are the total number of free electrons and the volume of the unit cell,
respectively. Figure 10 compares the values of e/a calculated from Eq. (lOb) with the values
of ela reported by Kulkarni and Banerjee." Although there are large differences in e/a due
to the two different ways of estimating , the same tendency of e/a is shown ; that is, larger for
Ni-Mo than for Ni-V. This means that the different sets of V(n) evaluated from the kinetic
Monte Carlo simulation can derive qualitative ly the differences in ela between the Ni-Mo
and Ni-V alloys. Therefore , it is suggested that for Ni-based 1 1/20 alloys, the dependence

e/a

(K&B)

9.5

9.0

8.5

Ni-Mo (K & B)

N<_V(K&",~

3.0

2.5

2.0
e/a

(Eq. (lOb»

8.0

7.5
20

••

25 30

at% (Mo, V)

N i-Mo (Eq. (lOb))

••
Ni-V (Eq. (lOb))

35

1.5

1.0
40

Figure 10. Numbers of free electrons per atom ela for Ni-Mo and Ni-V alloys, estimated by Kulkarni and
Banerjee (open symbols)" and Eq . (lOb) (solid symbols).
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of V(n) on alloying elements can be rationalized in terms of the concentration of free
electrons in the alloys .

CONCLUSIONS

In the present study, the ordering processes in fcc-based Ni-Mo and Ni-V alloys were
investigated by TEM observation and the kinetic Monte Carlo simulation to clarify the
atomistic ordering mechanism in Ni-based 1 1/2 0 alloys . The following conclusions were
drawn.

1. It was experimentally confirmed that the ordering processes are described as I 1/2 0
type SRO ~ Dla and/or Pt-Mo type LRO for the Ni-Mo alloy, and 1 1/2 0 type
SRO ~ DOzz and/or Pt-Mo type LRO for the Ni-V alloy. The DOzz type ordering
occurs before the development of Pt-Mo type LRO even in the stoichiometric NizV
alloy.

2. The SRO structure in Ni-based 1 1/20 alloy is commonly described as a mixed state
of Dl a, DOzz and Pt-Mo type microclusters. The formation of the mixed
microclusters is due to the similar short-rage atomic arrangements of Dla, DOzz and
Pt-Mo structures. The fractions of Dl a, DOzz and Pt-Mo type microclusters change
with the alloy system and composition.

3. The SRO-LRO transition proceeds by the selected growth of Dl a, DOzz and Pt-Mo
type microclusters into LRO domains, depending on the alloy system and
composition. The selection of the LRO structures is largely influenced by the
effective pairwise atomic interactions in larger distances than the fourth
coordination distance. The dependence of the effective pairwise interactions on
alloying elements in Ni-based 1 1/2 0 alloys can be rationalized in terms of the
concentration of free electrons in the alloys.
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INTRODUCTION

Long-range ordered intennetallic compounds have been in the centre of interest in
materials science since decades due to their promising technological properties as, for
example, high corrosion resistance and high-temperature mechanical strength.

Recently, the interest has turned to intennetallics with the tetragonal Llj-ordered
structure . Some of them are ferromagnetic at ambient temperature and display a very
marked mechanical and magnetic anisotropy with the tetragonal c-axis being the easy axis
of magnetization. This high anisotropy might be used as a way to stabilise a preferent ial
orientation of magnetic domains with the easy axis of magnetization perpendicular to the
surface. It is hoped that this way the storage density for magnetic media will be
significanly increased opening a new dimension in high-density magnetic and magneto
optic recording . A further increase in storage density is expected if these materials can be
stabilised in the form of magnetic nanostructures or thin films.

In spite of the great technical importance there is only very limited detailed
knowledge on the basic physical properties which are essential for materials design and
processing. These are especially kinetic properties such as the atomistic diffusion
mechanism. It controls the state of order and its variation with temperature and at the same
time yields criteria for the thennomechanical stability of the alloy. For this reason
knowledge on atomic diffusion is vital when one ventures to design a high-performance
material with specified technological properties .

FePd together with FePt and CoPt belongs to these magnet ically and mechanically
highly anisotropic intennetallics. The microstructural evolution during ordering in FePd
has already been investigated intensively by TEM [1,2], although for very limited thermal
treatment. We therefore decided to start a careful investigation of the evolution and
dissolution of LRO during an isochronal annealing treatment.
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To study the evolution of LRO for different thermo-mechanical starting conditions
the method of monitoring residual electrical resistivity (REST) was used. This method
because of its ultra high resolution for structural changes has proved to be a very
advantageous tool for the analysis of order-disorder transformation, in particular the so
called 'order-order' relaxations [3,4,5]. In this case, the relaxation to a new degree ofLRO
after a small change of temperature is observed, always remaining in a still highly ordered
state. The present work reports on the establishment and dissolution of LRO in nearly
stoichiometric FePd as measured by means of REST for two initial states, plastically
deformed by cold-rolling and undeformed (completely recrystallized).

EXPERIMENTAL

The composition of the sample material alloyed by the Department of Materials
Science and Engineering, University of Pittsburgh was determined by wet-chemical
analysis (lnstitut fur Geochemie, University of Vienna) as 52o/o±O.5% Fe and 48%±0.5%
Pd, a composition marginally within the u-Fe/Ll s-Fel'd two-phase field (figure I). Yet,
neither during the detailed TEM investigations [1,2,6,7] nor during our resistivity
measurements (total annealing time: several thousand hours) a beginning decomposition
process never showed up. For details of preparation and measurement we refer to a
forthcoming paper [8].

Measurements were carried out during a series of isochronal annealing treatments
(~T=20K, ~t=20min) at rising and falling temperatures. A first run was made on the as
deformed samples cold rolled to a thicknes reduction of about 60% followed by a run after
a recrystallization treatment of 2h at 1163K with subsequent slow cooling to 1060K and a

I073K

873K

673K

50 60 70

Percent Palladium

Figure l. Corresponding part of the FePd phase diagram [10]. The alloy composition is given by dashed line.
The inserts show the structural units for the disordered, the chemically and the magnetically ordered states,
respectively.
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water quench to room temperature, defining thus the undeformed state. For didactic
reasons in the following the latter results will be reported first.

RESULTS

Undeformed sta te

Figure 2 gives the relative change of resistivity of the undeformed sample as a
function of temperature .

Below 630K the resistivity during the isochronal step-heating procedure remains
constant (range I in figure 2). Above 630K the resistivity decreases drastically by about
33% until a minimum is reached at 830K (range II). The resistivity then first increases
slightly (range III, =10%11 OOK) and above 920K (starting temperature of range IV)
drastically up to the order-disorder transition temperature at 963K (=32%1100K). Above
TOlD the resistivity continues to increase with about 10%/1OOK (range V).

Following the step-wise increase of temperature (forward isochrone) up to 1053K
the temperature was then step-wise decreased (reverse isochrone) . A decrease of resistivity
with an almost constant slope (=7%11 OOK) is followed at about 900K by a steep decrease
down to 833K. A marked hysteresis is observed. At lower temperatures the resistivity
changes with a decreasing rate (:S10%1100K).

In a subsequent second isochronal run (not shown here) the results of the first run
were qualitatively reproduced .
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Figure 2. Relative change of resistivity during isochronal annealing (tlt=20min, tlT=20K) as a function of
temperature of an undeformed (recrystallized) sample after quenching from 1060K. ( "-) increasing
temperature, ( \7) decreasing temperature; full line: calculated values, see text.
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Deformed state

The isochronal annealing treatment of the deformed samples started at 473Kjust after
sample preparation without any additional heat treatment (figure 3).

In contrast to the recrystallized sample the resistivity decrease starts at much lower
temperatures , probably already slightly above room temperature (dashed line; no range I is
observed). After a drastic decrease a minimum is reached at 790K (range II). Similar to the
results of the recrystallized sample this steep decrease is followed by a slight and almost
constant increase of resistivity with a slope of about 10%/1OOK in range III. Above 910K a
steep increase is observed (range IV) which is followed by a linear increase of about
10%/1OOK at the beginning of range V. As a difference to the results of the recrystallized
sample the relative change in resistivity in range V shows a very small increase with
temperature above 990K.

During the subsequent cooling treatment a similar hysteresis is observed as in the
recrystallized case. Below 740K the atomic mobity is essentially reduced and the changes
ofresistivity freeze at about 700K.
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Figure 3. Relative change of resistivity during isochronal annealing (dt=20min , dT=20K) as a function of
temperature of a cold-rolled sample (=60% thickness reduction). ( .A.) increasing temperature, ( T) decreasing
temperature, (.6.) increasing temperature. The resistivity change of the undeformed sample is given for a
comparison (dashed line).

In a second run the temperature was again step-wise increased. From about 660K up
to T OlD the results of the previous run were qualitativley reproduced. In contrast to the first
run the resistivity continued to increase above 990K almost similar to the recrystallized
case (=1O%/100K).
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DISCUSSION

Undeformed state

The initial state of the sample when starting isochronal annealing is the as-quenched
disordered state. In temperature range I the concentration and/or mobility of vacancies are
not sufficient to enable the establishment of LRO and resistivity therefore remains constant
reflecting the value of the disordered state. With increasing temperature the increasing
mobility and number of vacancies allows the ordering process to start and a corresponding
decrease in electrical resistivity is observed above a temperature of 634K (beginning of
range II).

In range II resistivity decreases steeply (establishment of LRO) until a temperature
is reached where the isochronal annealing time (20 min) is long enough for the sample to
reach the equilibrium state of order (minimum of resistivity change).

At still higher temperatures (range III) the degree of order that corresponds to the
current annealing temperature as an equilibrium value is adjusted within the isochronal
time interval. With increasing temperature, therefore, an increase of resistivity now reflects
a decrease ofLRO. This part of the curve is interpreted as an equilibrium curve.

In range IV disordered material starts to nucleate in the ordered matrix . The passing
of the two phase region is observed as a steep increase in resistivity .

Above 975K (range V) the resistivity continues to increase with a constant slope of
about 10%/100K. This may be an effect of remaining short-range order. A similar
behaviour was found earlier for Ll 1 ordering in off-stoichiometric CU30Pt70 [9].

Stepwise decreasing the temperature a marked hysteresis of nearly lOOK is observed.
At the beginning of the first order order-disorder phase transition [10] ordered nuclei of a
critical size have to be formed which can then grow and coarsen. Therefore a certain
undercooling is necessary which is observed as a thermal hysteresis in the isochronal
annealing curve.

This usual interpretation of the isochronal curve is corroborated by translating
quantitatively resistivity changes into changes of LRO parameter II by applying the theory
of Rossiter [11]. Taking a Rossiter parameter A = 0.5 the curves of figure 4 result. The
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Figure 4. LRO-parameter 1] of the undeformed specimen as a function of temperature as calculated by using
the theory ofRossiter [11] using A=O.5. ( "'), full line: increasing temperature, ( T), dashed line: decreasing
temperature.
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LRO parameter 11 approaches an equilibrium curve in accordance with the Bragg-Williams
model (dashed line).

We also tried to model the isochronal curve by just taking a single exponential
relaxation process for isothermal ordering. Earlier investigations have shown that such a
simple model of ordering kinetics originally developed for simulating the changes of SRO
in concentrated solid solutions in certain cases can be applied to LRO systems (see [12,13]
for more details). A total ordering activation energy of 3.1eV (Hr I.5eV, Hm=1.6eV) as
determined by a preliminary isothermal temperature treatment and a dislocation density
(vacancy sinks) of Ixl07 em" were used. This way the full line in figure 2 was calculated,
being in very good correspondence with the measured points. Minor differences probably
arise from a slight deviation of the order relaxation process from single-exponential
kinetics.

Deformed state versus undeformed state

Several differences between the isochronal runs in the deformed state were found as
compared to the recrystallized state.

The initial resistivity value in the as-deformed state is about 5% higher than that of
the recrystallized sample. This difference in initial resistivity is mainly due to dislocations
produced by the cold rolling deformation of about 60% reduction in thickness.

Differently from the undeformed state the resistivity in the initially cold-rolled state
begins to decrease already slightly above room temperature. We ascribe this to the high
concentration of vacancies produced during the process of rolling at room temperature.

Figure 5. Dark-field TEM images of undefonned FePd aged at 773K for 3h (left) and for 61 h (right) [1].

The qualitative behaviour of resistivity in the ranges II, III, IV is very similar in both cases
but the minimum resistivity value is both lower and is reached at lower temperatures
(earlier in the isochronal annealing program) so that the equilibrium curve of the deformed
samples is shifted by about 6-7% to lower resistivity values as compared to the
recrystallized samples. As well known from TEM investigations [1,2] the resulting
microstructures after ordering in the undeformed and in the deformed state, respectively,
are considerably different. It was found that in the undeformed material the formation of
order is correlated with a 'tweed' contrast for the early stages and the formation of a typical
polytwinned structure for later stages (figure 5). Mean field computer simulations [14]
meanwhile gave evidence that both effects are due to the transformation-induced elastic
strain fields within the sample (figure 6). When ordering starts from a plastically deformed
(cold-rolled) state, however, a completely different microstructure is found. In this case the
polytwinned structure is missing and it seems that at least in certain parts of the sample one
variant of ordered domain is predominantly formed by a process of ' massive ordering'
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(figure 7) by the moving grain boundary. Corresponding to the lower defect density and the
higher degree of LRO lower values of resistivity are observed in the deformed case.

The influence of compressive strain and magnetic fields on ordering of FePd single
crystals has been carefully investigated by K. Tanaka et al. [15]. Ordering was studied by
X-ray diffraction during slow cooling and isothermal annealing at certain temperatures,
respectively, under the influence of different values of external fields. A strong correlation

Figure 6. Mean-field model calcula tions of ordering kinetics taking into account transformation-induced
elastic strain energy for different normalised times: t=1 (left) and t=50 (right) (14].

Fig ure 7. TEM images of deformed FePd (80% thickness reduction) aged at 798K for SOh (left) and at 698K
for l 7h (right) [2].

, 10

Mll nd lCFieldlT

g
•i
1l so.g
•'; eu

I au
<

20

~

1
g
~ 100

! 90
< ..

Figure 8. Volume fraction of different variants ofordered domains for increain g compressive stress (left) and
increasing magnet ic field (right) [I S].

181



of the degree of LRO with the different thermal treatments and the value of the
externalfield was found. As figure 8 shows, slow cooling (lK/min) under the influence of
IOMPa compressive stress is enough to get a single variant of the three possible ordered
domains which means 100% ordered phase. This means that the ordering process under the
application of external fields, e.g. mechanical stress, leads to a prevalence of one
favourably oriented variant of ordered domains over the other two possible variants. In our
case effects of texture and internal stresses generated by plastic deformation may in a
similar way result in a highly preferred variant of ordered domains. A detailed
investigation by TEM is planned.

CONCLUSIONS

(i) The typical behavior of long-range ordered alloys with a first order LRO phase
transition is found for both the deformed and the undeformed FePd alloys: a
corresponding temperature hysteresis and the crossing of a two-phase region are
definitely observed.

(ii) The undeformed and the deformed alloys differ by showing their corresponding
equilibrium curves in different ranges of resistivity. This is in correspondence with
the completely different microstructures when ordering takes place in the
undeformed or the deformed samples, respectively.

(iii) It was shown that after a controlled plastic deformation a 'combined reaction' [16]
of recrystallization and ordering takes place, leading to a marked preference of one
variant of ordered domains. Thus a state with a considerably higher degree of order
than in undeformed alloys is achieved. This is a good example that by proper choice
of parameters it is possible to produce specific desired microstructures and to
design attractive materials for proper technical application.
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Ordering Process analyzed by Phase Field Method,
CVMandPPM

M. Ohno and T. Mohri

Division of Materials Science and Engineering,
Graduate School of Engineering, Hokkaido University,
Kita-13 Nishi-B,Kita-ku, Sapporo, Japan

1. INTRODUCTION

Phase Field Method(hereafter PFM) has been attracting broad attentions as a powerful
tool to describe inhomogeneous evolution process in microstructure. The PFM is a
continuum model traced back to celebrated Cahn-Hilliard' and Allen-Cahn2 equations. A
key to the success of the PFM is the efficient parameterization of a microstructure
through field variable(s) which constitute a free energy functional. Within the PFM, an
interfacial boundary is not a specific entity to be separately described, but is merely an
inhomogeneous localization of the field variables. The shape of the free energy
determines final equilibrium state and the transition path. Therefore, by suitably defining
both a free energy and field variable(s), one is capable of describing kinetic evolution of
various microstructures, e.g., dendrite growth;' spinodal decomposition," nucleation and
growth," crystal grain growth" and the evolution of anti-phase domain structure. ' The
latter is the main concern of this article.

The field variable in the PFM is a continuum quantity in the sense that atomic
information is averaged out over discrete lattice points. Hence, most PFM calculations
provide no direct information of the atomic configuration both in the equilibr ium and
non-equilibrium states. In reality, however, microstructural evolution process is driven by
configurational kinetics through atomic movements, and detailed information fed from an
atomistic scale is essent ial for a rigorous description of the time evolution of a
microstructure. It is, therefore, desirable to combine PFM with an atomistic theory in a
coherent manner.

Cluster Variation Method(CVM)8.lo has been recognized as one of the most reliable
theoretical tools to derive thermodynamic properties under a given set of atomic
interaction energies on a discrete lattice. A key to the CVM is that the wide range of
atomic correlations is explicitly taken into account in the free energy functional. A set of
cluster probabilities or correlation functions in the free energy functional are employed as
variational parameters by which the free energy is minimized to obtain the equilibrium
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state, while the optimized cluster probabilities describe the equilibrium atomic
configuration on a discrete lattice.

Path Probability Method(PPM) 11 is a natural extension of the CVM to the time domain
and , therefore, inherits various advantageous features of the CVM. Unique to the PPM is
that the free energy and/or its derivative are not explicitly dealt in the constitutive
equations, which enables one to extend the applicability to far-from-equilibrium regime.
Furthermore, it has been amply demonstrated that the derived quantities by the PPM in
the long time limit coincide exactly with the equilibrium ones independently obta ined by
the CVM . Hence, the combination of the CVM and PPM provides a unique theoretical
tool in predicting and analyzing thermodynamic properties of a given alloy both in
equilibrium and non-equilibrium states .12

•
14

In the CVM(PPM), the level of the approximation is determined by the largest cluster
involved in the free energy(path probability function) . Generally, the larger the basic
cluster is, the better results one can expect. On the other hand, however, the number of
variables becomes intractable with increasing the size of the basic cluster. Hence, even in
the highest approximation employed so far, the extension of the basic cluster is limited
only to a few atomic distances, and most of the CVM and PPM calculations assume the
homogeneous distribution of the cluster probabilities in the microstructural scale .

In order to describe both the atomistic and microstructural processes, it is natural to
hybr idize PFM with CVM and PPM within a single theoretical framework. However, this
is not a trivial task , since both time and spatial scales dealt within the two approaches are
quite different. In particular, a rapid quantities derived from PPM are anticipated to be
averaged out in the time scale of PFM . As a first step toward such a rigorous calculation,
we attempted to hybridize PFM and CVM . The hybridized calculations were applied to
disorder-B2 ls and disorder-Ll j '? transitions at a fixed composition of 1:1 stoichiometry.
Atomistic cooperative ordering processes through Long-Range-Order parameters(LRO)
and Short-Range-Order parameters(SRO) and evolution/devolution process of anti-phase
domain boundary in microstructural scale studied in the authors' group are reviewed in
the present article.

The stability of the system against a small fluctuation of order parameters is
determined by the second order derivative of the free energy functional. The spontaneous
loss of the stability takes place at the temperature at which the second order derivative
vanishes. The locus of this particular temperature(spinodal ordering temperature! ")
coincides with the phase boundary for the second order transition, while the deviation is
manifested for the first order transition. Hence, for a disorder-B2 transition which is a
typical example of the second order transition, the disordered phase is unstable against a
configurational fluctuation below the transition temperature and the system
spontaneously transforms from the disordered to B2 ordered phases. In microstructural
scale, anti-phase domain structure results from gradual amplification of B2 ordering
wave. On the other hand, for a disorder-LI 0 transition which is of the first order, the
system requires the fluctuation at temperatures just below the transition temperature.
Then anti-phase domain is formed by the nucleation and growth mechanism. These
different ordering behavior were successfully described by the hybridized calculation of
the CVM and PFM .

However, the results for these two types of transition were separately discussed and
published.P:" The main objective of the present paper is, therefore, to provide a detailed
comparison of ordering processes for a disorder-B2 transition and a disorder-Ll ,
transition. Our focus is placed on both the atomistic and microstructural ordering



(I)

behavior. The organization of the present paper is as follows. In the following two
sections, the essential formulas of CVM, PPM and PFM are summarized. In the fourth
section, time evolution of atomic configuration is focused, and we compare the PPM and
PFM kinetics for disorder-B2 and disorder-Ll , transitions . In the final section, the
microstructural evolution processes are described by the hybridized calculation of the
CVM and PFM, and characteristic microstructural features of B2 and LI0 ordered phases
are discussed.

2. ATOMISTIC THEORY

2.1 Cluster Variation Method(CVM)

As was described in the introduction, the key of the CVM is the fact that the wide
range of atomic correlations is explicitly taken into account in the free energy functional.
The level of the approximation constitutes a hierarchy structure and is determined by the
basic cluster that is the largest one explicitly considered in the free energy functional.
Generally, the choice of the basic clusters is made by the trade-off between the accuracy
and computational burden. The tetrahedron approximation is known as a minimum
meaningful approximation for a fcc-based system and the entropy formula for a LI0

structure is given as

S =N .k .{"" f..M 1 oa 4 oP I oP PP 1 PP )
B L,..IJI,j ny, + Yij nY'j +Y'j nYij

'J

1." f..a I a PI P)- 2"" aoPp I aoPp}
- £.J~I nXI +x/ nXI ~Wljkl nW(ik{ ,

2 i lj kJ

where N is the total number of lattice points, kB the Boltzmann constant, x,a , Y':}' and

W;:fP are cluster probabilities of finding an atomic configuration specified by subscript(s)

on point , pair and tetrahedron clusters, respectively, and a and {3 in the superscript
distinguish the sub-lattices necessary for the description of the LI o ordered phase . In the
conventional description, +I and - '1 are assigned to i, j, k and I to specify A and B atoms,
respectively.

According to the ground state analysis.!" the LI o ordered phase can be stabilized
merely by the nearest neighbor pair interactions. Then, for the sake of simplicity, the
internal energy, E, of the present study is limited to the nearest pair interaction and is
written as

E=~ .(() .N ·LeLm" 'Y'" (2)2 j} If '}'6 1/ ,

where (() is the coordination number, e ij the pair interaction energy between the nearest
neighbor i-j pair, rand 8 indicate either a or {3. The coefficient, mrO, is equivalent to the

multiplicity and is given as m'" = mPP = 1/6 and map=4/6 for the Ll o phase. Based on

Eqs.(I) and (2), the Helmholtz free energy is symbolically written as
FL~ =E - r -S =FLJr,{e,J{x;}{v: Hw;:fP }J. (3)

The cluster probabilities employed in Eq.(3) are mutually dependent through the
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normalization cond itions and reduction relat ionships. Hence, it is convenient to repl ace
the clus ter probabilities by correlation functio ns, g,}, that form a set of independent
variab les to describe atomic configurations and are defined as

~, = ((JI.(J, oo .(J p oo ) , (4)

where the subscript, I, of the corr elation function ind icates a cluster and (Jp is a spin
operator which takes +1 or -I depending upon A and B atoms at a latti ce poi nt p,
respectively, and ( ) denotes an averaging over all the lattice point. The relations

between a cluster probability and cor relatio n functions are readily grasped by the
following examp les,

and

xr=6+~tYz,y:= 6+ i ·~: + j ' ~ 16 +ij . ~;")fz ' ,
(5)

(6)

(8)

(7)

w;:fP= { I+ (i+ jH,a + (k+/HIP + ij . ~:. +(ik +il + jk+jlH~ +kl ·~:P

+(yk + ijl).~;aP + (ikl+ jkl). ~~P +ijkl .~~ }'z' .
Then the free energy given in Eq.(3) are rewritten in terms of correlation functions.

F - F IT L };;. ;;P ;;aa ;;.p ;; PP ;;.ap ;;app ;;.appJ
£10 - L l0 l ' t:1f '='1 '''I ' ''2 ' ~ 2 '\n ,1;,3 ,~) '''4 •

Note that the distinction of the sub -lattices van ishes for a diso rdered phase and the
number of cor relation functions is reduced to four. One can determine an equilibrium
state by minimizi ng the free energy ofEq.(8) with respect to correlat ion functions .

The phase diagram calculated within the tetrahedron approximation for Ll 0 ordered
system is demonstrated in Fig.l .16 The temperature axis is normalized with respect to the
nearest neighbor effective pair interaction energy, v = fe + e-- - Z·e - \/4 . The tran sition

2 ~II I I 111

temperature at I: I stoichiometry calculated by the present study is 1.893. The dashed line
indicates the locus of the spinodal ordering temperature at which the secon d derivative of
the free energy with respect to order parame ters vanishes, and the system becomes
unstable agains t the configurational fluctuation below this tempe rature . Throughout this
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fi gure 1. The phase diagram for disorder -L l e transi tion." Temperature axis is normalized with respect to V2·

Solid lines indicate phase boundary and Dashed lines represents the locus of the spinodal ordering tempera ture.



study, the focus of the kinetic calculat ions for a disorder-Ll 0 transition is placed on 1:1
stoichiometric composition at which the system is quenched from temperature 2.0 down
to 1.8 followed by the annealing operation. It is noted that at T' = 1.8, the system is
metastable state and the ordering process is expected to be nucleation-growth type. Due
to the symmetry at I:1 stoichiometry, the number of independent variables is reduced to

five through the relations ~: =~," , ~;a = ~:p and ~;ap =~:"P , and the free energy of

LI 0 ordered phase is rewritten as
FL!. =FLJT,{eiJ~," ,~;a ,~;p'~JaaP,~:aPP], (9)

where ~Ia serves as the LRO and other correlat ion functions are Short-Range-Order

parameter(SRO).
Contrary to the f cc-based system for which frustration is manifested, a simp Ie pair

approximation has been proved to provide fairly reasonable results for a bee-based
system. And we formulate the entropy of B2 ordered phase within the pair approximation
and the internal energy of the system is limited to the nearest neighbor pair interaction.
Also, by considering the symmetry of 1:1 stoich iometry, we reduce the number of
independ ent variabl es of free energy and, then, the free energy of B2 phase is
symbolically written as

(10)

where~," serves as the LRO.
The phase diagram calculated within the pair approximation for B2 ordered system is

shown in Fig.2.1s The temperature axis is normalized with respect to the nearest neighbor
effective pair interaction energy, v2 = ell+e,,-2e

l t
, and the transit ion temperature is

1.739 at 1:1 stoichiometry. The absence of two-phase field region indicates that the
transition is of the second order. We focus on the ordering process for the disorder-B2
transition at 1:1 stoichiometric composition during the annealing operation at T' = 1.0
following the quenching from T'=2.0.

It should be noted that the independent variables in Eqs.(9) and (10) are averaged
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Solid line indicates phase boundary.

191



quantities over a space occupied by N's lattice points, hence the free energies given by
Eqs.(9) and (10) are applicable only to a uniform system which is equivalent to a local
system in the description of a microstructure within the PFM.

2.2 Path Probability Method(PPM)

As was already described, PPM inherits many features of the CVM. As a counter part
of cluster probabilities of the CVM, the path variables are defined for the PPM. The path
variable correlates the cluster probabilities at time t and t+M. Instead of providing a
general formula, examples are given for point path variables as follows,

x.(t)== X,/t,t+M)+ X,i t,t+ t1t ) , (II)

and
x,V+t1t)== XI,IV,t+ t1t)+ Xr"V,t+t1t), (12)
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where X',JV,t+ t1t) is the point path variable of describing the configurational trans ition

on a lattice point(a point cluster) from i at time ttoj at t+D.t.
By employing path variables, a Path Probability Function, P, which corresponds to a

free energy of the CVM, is written as the product of three terms, Ph P2 and P3 • Each term
for disorder-Ll , transition is given in the following logarithmic expression.

In p. == (N/2) {(¥l~r +Xr.1+ X:'r + X;J 1n(0' M)
+ (¥l~l +X;'r+X~, +X;r> In(I-O. M)J, (13)

Inp,==-M/(2kBT), (14)

and

In P, == N .{L (Y;t~ InYif~~ + 4Y;ii', In Y;J~' + y;/eIn y:.e )
IJkl

- } L (¥'~J InX'~J +XrJ InXrJ )-2L w,J:;':" PInWif~;;:OOP} , (15)
lj IJ~~

where Y:" and Wvo,,;;!.,p are the path variables for a pair and tetrahedron clusters,

respectively, 0 the spin flipping' probability per unit time which corresponds to the
diffusivity in an alloy system and M is the change ofthe internal energy during t1t .

For the disorder-B2 transit ion, in order to keep the consistency between the CVM and
PPM calculations, the pair approximat ion is employed and, P3, is given as

InP, == N ' {~L (¥i~J InX'~J +X,j InXrJ)-4LYif~ InYif~' } ' (16)
i IJItf

P, and P2, on the other hand, are common irrespective of the approximation and given by
Eqs.(l3) and (14), respectively. It is worth repeating that the free energy and/or its
derivative are not explicitly considered in the path probability function.

The formulation of the path probability function entirely depends on the kineti cs
assumed in the study. The vacancy-mediated kinetics or the exchange kinetics(Kawasaki
dynamics 19) requires a large number of path variables which make numerical operations
intractable. The spin flipping kinetics(Glauber dynarnics'") generally does not conserve
the species with time, however the conservation is assured at I :1 stoichiometric
composition without imposing any additional constraints. In this regard, the spin system



approximates an alloy system. Therefore , in order to avoid numerical complications with
larger number of path variables resulted from the vacancy-mediated or exchange kinetics,
the present study is confined to the spin flipping kinetics at I :I stoichiometry.

The most probable path of time evolution is determined by maximizing path
probabilit y function with respect to a set of path variables, which corresponds to the
minimization condition of the free energy in the CVM. By optimizing the path variables
for each time step, the cluster probability at time I+M is uniquely determined with the
knowledge of cluster probabilities at time I . Such a relation is exemplified for the point
cluster in the following,

XIV + M)= x,V)+ Xr.,V,1 + /).1)-X,.rV,1+ /).f) , (17)

which is deduced from Eqs.(I I) and (12). Hence, once the initial equil ibrium state is
obtained by the CVM calculation, non-equil ibrium time evolution process is pursued by
the PPM towards the new equilibrium state. Moreover, it has been demonstrated that the
final equilibrium state predicted by the PPM at 1 -t 00 agrees with the one independently
calculated by the CVM.

3. HYBRIDIZED CALCULATION OF PHASE FIELD METHOD AND CLUSTER
VARIATION METHOD

Within the PFM, microstructure is characterized by a spatial distribution of field
variables such as concentration, order parameter etc., and the driving force for temporal
evolution of microstructure is described as the gradient of the free energy with respect to
field variables. The free energy of an inhomogeneous system is generally constituted by
bulk free energy, interfacial energy and elastic-strain energy contributions. The present
calculation neglects an elast ic-strain energy contribution to microstructural evolution
process, and the chemical energy of inhomogeneous system is given as, I

F;"",Pip,b]}]= f{/'oc,,[f/>J,I]}]+~/(,(V<p,~ ,I])' }dV , (18)

where <Pi is a field variable which is a function of spatial coordinate , r, and time, I, and V
is a volume of the specimen, tc, is' the gradient energy coefficient and is assumed not to
depend on an annealing temperature and the field var iables. The first term of the
integrand, .!ioeol, is the local free energy density function for a uniform system and the
second term corresponds to the interfacial energy.

The temporal and spatial variations of the field variable describe time evolution
process of inhomogeneous system and the local free energy density determine s the
kinetic path. Hence , the key to the PFM calculation is the definit ions of both the field
variables and the local free energ y density. In the present study, the CVM free
energy(Eqs.9 and 10) is adopted as the local free energy density and the field variable
{¢;} in Eq.(l8) is replaced by correlation functions defined in the previous section. Then,
Eq.(18) is rewritten as

F",j{;J,I]}]= f{FcvM [{;J,I]}]+ ~/(,(Vs,b]), }dV , (19)

where Fe VM denotes either Fe,o of Eq.(9) or FB1 of Eq.(l 0). It should be stressed that in

the CVM free energy, g il do not depend on posit ion and F:. 'o in Eq.(9) and F
B

, in
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Eq.(lO) are the free energies for a uniform system, while in Eq.(l9) FevMV<LI' or F
B
,)

explicitly depends on r through the dependency of gil.
Non-conserved correlation functions constitute field variables and their temporal

evolutions are described by the following Time-Dependent Ginzburg-Landau(TDGL)
equation,

(20)

where ~/ ~,t] is a noise term which is necessary to trigger the fist order transition and L,

is the relaxation coefficients for ~;. In the present calculation, L; is assumed not to depend
on annealing temperature and other field variables . It is noteworthy that kinetic evolution
of TDGL Eq.(20) is based on the principle that the evolution/devolution rate of a field
variable is proportional to the gradient of the free energy, which may be rationalized only
in the near-equilibrium regime. The substitution ofEq.(l9) into Eq.(20) yields

~= -D .(aF;r;v [1{J',t'])] 'yo'!' [, t']~+!'/[, t'] (21)at ' a~,~',t'] 1(, ':>,1'", ') ,:> , 1'", ,

where, in order to generalize the treatment , dimensionless parameters are introduced by
normalizing time and spatial coordinates and other parameters as follows,

t' =N ,v, .L, .t, r' =r· ~(N .v,)/(21(.), L; =L,IL" F;" , =Fe", /(N.v,)
and

1(; =1(, /1(, .
Here, Lb and I(b represent the relaxation coefficient and grad ient energy coefficient for a
basic cluster, respectively.

The PFM is formally constructed by both the Cahn-Hilliard equation for conserved
variables such as a concentration and the TDGL equation for non-conserved variables,
and both the evolution equations are coupled through the local free energy density
function. Generally, the inhomogeneity of concentration is anticipated to influence the
entire ordering kinetics through the coupling of g i}.21 Our main interest in the present
study, however, is configurational evolution manifested by LRO and SRO at a fixed
composition of 1:1 stoichiometry. -Therefore, in order to save computation time, Cahn
Hilliard's diffusion equation is not explicitly considered in the present study. This is
regarded as the first approximation to more realistic alloy kinetics .

4. ORDERING PROCESSES DESCRIBED BY PPM AND CVM

As was described, the PPM does not explicitly deal with free energy or its derivative,
which is in marked contrast with other kinetic theories including PFM . In order to
compare the ordering process calculated by PFM with the one by PPM, we neglect
interfacial energy terms in Eq.(21) in the PFM and focus on a uniform system .

4.1 B2 ordering process in a uniform system

Within the PPM, the kinetics is entirely dominated by spin flipping probability once
the initial equilibrium state is specified by the CVM, and the relaxation behavior of
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correlation functions are uniquely determined . In Fig.3, the relaxation curve of LRO
during B2 ordering process at T'=1.0 following quenching operation from T'=2.0 is
represented by the dashed line, which is calculated with 0'=2.5, the normalized spin

flipping probability defined as 0' = OI(N ,v, .L,). Within the PFM, the ordering

behavior depends on the relaxation coefficient(s) . When 1.2 is assigned to L,' which is
the only kinetic factor of the PFM calculation for B2 ordering process, the relaxation
curve indicated by the solid line is obtained. In this calculation, the noise term in Eq.(21)
is omitted since the ordering process for second order transition spontaneously proceeds
without fluctuation. One can confirm that, in both cases, the disordered phase transforms
to the ordered phase without fluctuation and attains the same steady state value of LRO in
the long time limit which is confirmed to be the equilibrium one at T'=1.0 independently
calculated by the CYM. Despite the difference in the underlying kinetics principles, both
the PFM and PPM provide nearly isomorphic relaxation curve under well-tuned kinetic
coefficient factors, O'and {L/}. This fact implies the existence of a scaling property
between two models.

In order to gain more detailed information into ordering process , a kinetic path is
calculated. Shown in FigA is the kinetic path traced in the thermodynamic configuration

space spanned by LRO(;,· ) and SRO(;;"). Dashed lines represent the contour lines of
the free energy of B2 phase at T'=I.O calculated by the CYM. Thick and thin solid lines
indicate the kinetic paths obtained by the PFM and PPM, respectively, and arrows
designate the direction of transition. One can see that the kinetic path of PFM exactly
traces the steepest descent direction, which is the natural consequence of the fact that the
PFM relaxation process is driven by the gradient of the free energy. However, a slight
deviation from the steepest descent direction is observed in the kinetic path of the PPM,
which may be ascribed to the different kinetic principle adopted in the PPM.

4.2 Ll0 ordering process in a uniform system

For LI o ordering process, the system requires the fluctuation to transform from the
metastable disordered to the stable ordered phases. In the PFM, the fluctuat ions are
represented by the noise term of Eq.(21) which generates triggered correlation functions
in a local system, while the fluctuations are not explicitly incorporated in the
conventional PPM formula. In order to introduce fluctuation, arbitrary values of LRO,
; ,. , are assigned in both models, and initial values of other correlation functions are

determined so that the free energy is minimized, aF".fa;,I ~~ = 0 , which is a constrained

minimization. It is noted interfacial energy fluctuation is excluded in the present study.
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The relaxation curves ofLRO calculated by the PFM and PPM are represented by solid
and dashed lines in Fig.5,16 respectively, when the system is quenched from T'=2.0 to 1.8
and annealed at T'=I.8 . One can see that, in both PFM and PPM, with sufficient
fluctuation(thick solid and thick dashed lines) which is represented by a large deviation of
LRO from null value at /' =0, the system transforms to the ordered phase. The steady state
values of LRO in both models are confirmed to be the equilibrium one at T'=I.8
independently obtained by the CVM. The existence of a critical amount of fluctuation
suggested by the present results implies a nucleation-growth type ordering process as
opposed to B2 ordering process.

In Fig.6,16 the kinetic paths which correspond to the thick solid and dashed lines in

Fig.5 are traced in the thermodynamic configurat ion space spanned by LRO(~,a ) and

~:a/l~ , one of SRO's . Dashed lines indicates the contour lines of the free energy of Ll.,

phase at T'=I.8 calculated by the CVM. One sees that there exists saddle point

configuration in the vicinity of (~Ia ,~:a/l~)= (0.3,0 .25) . The initia l imposition of the

fluctuation is indicated by the deviation of LRO from null value at the starting point of
the kinetic path. It is seen that both the kinetic path nearly coincide.

As was amply described, the principle of the PFM is that the temporal evolution rate of
a field variable is proport ional to the grad ient of the free energy and this may be
rationalized only in the near-equilibrium regime. One the other hand, the free energy is
not exp licitly considered in the PPM formula , which enable s one to extend the
applicability to far-from-equilibrium regime. In the previous study," it was shown that
the discrepancy between ordering behavior of the PPM and PFM is manifested in far
from equilibrium regime. However, it is emphasized that both models yield nearly
identical transition process when the transit ion slowly proceeds in near-equilibrium
regime.
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5. ORDERING PROCESS IN A NON-UNIFORM SYSTEM

The main advantage of the PFM is the capability of dealing with inhomogeneous
system. We firstly focus on a simple one-dimensional system and gain basic insight into
the evolution process both for the disoder-B2 and for the disorder-Ll , transitions. Then,
the microstructural features of B2 ordered and LI0 ordered alloys are studied by a two
dimensional calculation.

5.t Evolution process in one-dimensional inhomogeneous system

As was demonstrated in Figs.3 and 5, disorder -B2 order ing process spontaneously
proceed s without fluctuation , while for disorder-Ll , transition, the system requir es
fluctuation to transform to ordered state. Shown in Fig.7 is a one-dimensional profile of
LRO at several times during the disorder-B2 ordering process . The vertical axis

represents the square value of LRO, S,o' , and the horizontal axis is the normalized spatial

coordinates, x' = x ~(N .v, )/(2/(,) . At 1'=0, a positive(negative) small value is assigned

as an initial value of LRO to each grid point for x' ~ 10 (x' > 10), while the value of

SRO, S;P, at each point is the equilibrium value at T' =2.0 calculated by the CVM. It is

seen that the system spontaneously transforms from disordered to ordered phase, which is
characterized by the gradual enhancement of LRO, and ordered domains are separated by
an anti-phase boundary(APB) at 1'=15.

For the disorder-Ll , transition, the ordering reaction is triggered by the fluctuation,
which implies that the ordering trans ition proceeds by the nuclea tion and growth
mechanism. The evolution process of inhomogeneous system during annealing operation
at T'=1.8 is demonstrated in Fig.8. The init ial system is constructed by uniformly
assigning equilibrium values of LRO and SRO at T' =2.0 calculated by the CVM to each
point. Additionally, a nuclei of ordered particle is generated in the vicinity of x'=250.
One sees that ordering process proceeds by the lateral motion of the ordered domain
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Figu re 7. The time evolution process for disorder-B2 transition in inhomogeneous.
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boundary. This evolution behavior is in marked difference with the one for disorder-B2
transition.

5.2 Microstructural features for 82 and Llo ordered systems

We employ a two-dimensional space divided by 100_100 's grid points . In the
calculation for disorder-B2 ordering process, the initial condition is given by assigning
positive or negative small random values to LRO, ~,a ,at each grid point. Then, the initial

value of SRO, ~;P , is determined by a constrained optimization, aF8 2 ;a~;p ~r = 0 , for

each grid point.
The microstructural evolution process for disorder-B2 transition during annealing

operation at T' =I.O is shown in Fig.9. In these figures, the microstructure is visualized by

gray levels representing different values of ~,"2 which corresponds to a dark-field image

of transmission electron micrograph. Dark and bright regions indicate a disordered phase
or APB and an ordered phase, respectively. One observes that the small ordered domains
are formed from the disordered matrix in the early period and an entire system transforms
to the ordered phase separated by APB's . The resultant microstructural feature is in fairly
good agreement with disorder-B2 transition observed, for instance, in a
Fe(bccLFeAl(B2i for which anisotropy of an elastic energy is known as insignificant.

Shown in Fig.IO is a series of snapshots of microstructures during disorde r-Ll ,
ordering process. In this calculation, the noise term ofEq.(21) is operated to nucleate Ll o
ordered phase. Despite the different ordering modes, the microstructural feature in the
later period shown in Fig.1O(d) is quite akin to the one for the disorder-B2 transition
shown in Fig.9(d) . When an anisotropic elastic effect is neglected, a basic feature of
morphology of anti-phase boundaries is mainly determined by the number of variants of
ordered domain.22

,23 Although there are six types of ordered variants for a Ll 0 ordered
phase, only two types of ordered domain are distinguished by the free energy of the
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Figure 10. Microstructural evolution process for ~i sordcr.~l o transit ion at T·= 1.8. (a ) r' =:; 0, (b) (=3000 ,
(e) ( =6000, (d) ( =10000. x' indicates the normalized spatial scale.

Fig ur e 11. Competitive ordering process between six LI oordere d domain s at T"=1.6.2-I (a) r' = O. (b) 1'= 10000.
(e) ( =12000, (d) ( =20000. x' indicates the normalized spatial scale.

present study given by Eq.(9). This is the reason that the microstructur al feature shown in
Fig.IO(d) are similar to the one for disorder-B2 trans ition in which two types of ordered
domain exist.

A competitive ordering process between six Ll o ordered domains can be descr ibed by
the present approach with a modification on the CVM free energy." In order to specify
six Llo ordered variants, the f cc lattice is divided into four simple cubic sub-lattices, and
the resultant four lattice sites on a tetrahedron cluster are designated as a, {3, y and 8.
Then the free energy of'L l., ordered phase is symbolically written as

F;.~ = FL., LT,~ij }S," ,S/,S,' ,S;"' ,S;',S;" ,S:" ,S,"" ,S;"" ,S,aIl"' ], (22)

where three correlat ion function s for point cluster are correlated to LRO's for three types
of orientatio nal variant, 1];. The relations between correlation functions and LRO' s are
given as



(23)

(24)

1), = ~," + g,P Y2,

1), = ~,P +gt)/2,
1), =~t +g," Y2 . (25)

The mic rostructural evolution process is calculated by substituting Eq .(22) into TDGL
Eq.(21) and the results are presented in Fig .11.24 The microstructure is visualized by gray

levels representing different values of 1)=1),' +1),' +1),' . In this calculation, the system is

annealed at T'= 1.6. One sees that a triple junction of APB 's is formed in the later period.
This is one of characteristic features of the anti-phase domain structure in Ll 0 ordered
alloy and is in marked difference with those shown in Figs .9 and 10.

The ordering kinetics depends crucially on the order of transition, i.e., the stability of
the system against configurational fluctuation, as demonstrated in Figs.3, 5, 7 and 8. On
the other hand, it is shown that the microstructural feature is mainly determined by the
number of ordered variants rather than the stability of a system. It is noted that both the
stability of a system and the number of the ordered variants originate from the atomistic
nature of a given alloy such as atomic interaction energy, atomic correlation and the
crystal symmetry. One realizes that the present result obtained by the hybridized
calculation of the CVM and PPM explicitly reflects the atomistic nature of the system.

Within the present method, the atomistic information provided by the CVM is reflected
in the evolution kinetics of microstructure. It has been also demonstrated that atomic
configuration in a local system during microstructural evolution process can be
synthesized. 16 However, atomistic kinetic information such as an elemental diffusion path
and atomic mobility are not explicitly dealt in the present calculation. The significance of
such information has been amr1 y stressed in experimental studies for order-order
relaxation behavior of LRO,zS.2 This problem is resolved only when the PPM is
hybridized with PFM . We bel ieve that this is one of the most important task s for the
further progress in a unified calculation from atomistic to microstructural level s.
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PHASE DISTRIBUTION AND TRANSFORMATION DYNAMICS USING IN-SITU
SYNCHROTRON DIFFRACTION METHODS

Joe Wong

Lawrence Livermore National Laboratory, University of Califomia,
PO Box 808, Livermore CA 94551, USA

INTRODUCTION

Novel site-specific and fast diffraction techniques utilizing intense synchrotron
radiation have recently been developed and applied to map the phases and solid-state
transformation in systems undergoing steep thermal gradients at high temperature. In the
case of fusion welds, these in-situ probes yield kinetics and microstructural evolution data
not previously obtained with conventional ex-situ, post-mortem methods. Thus far, the
synchrotron data provide not only some of the crucial experimental information for
understanding the phase dynamics and microstructural development in these technological
systems, but also realistic inputs for simulations as well as validating various kinetic
models of phase transformation in welding metallurgy. The experimental progress to date
in these synchrotron studies will be reviewed in this paper. Recent time-resolved
diffraction results on chemical dynamics of the ferrite ~ austenite transformation in
carbon-manganese steel welds will also be presented.

SYNCHROTRON RADIATION

Synchrotron radiation is emitted as the major loss mechanism from charged particles
such as electrons and positrons, in circular motion at relativistic energies. The properties of
synchrotron light emitted from electrons with velocities near that of light are drastically
different from the classical dipole radiation' and demonstrate its importance as a novel and
powerful light source" Synchrotron radiation was experimentally discovered by Elder et
al.3 using the General Electric 70 MeV betatron and studied theoretically by Schwinger'.
The properties of synchrotron radiation may be summarized" as follows: ~i) broad spectral
distribution tunable from IR to the x-ray region; (ii) higher intensity, > 10 times that of an
x-ray tube; (iii) plane polarized, with the electric vector in the orbital plane of the
circulating particles; (iv) high natural collimation, which is important for small specimens
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and (v) sharply pulsed time structure. A detailed historical account of the discovery has
been given by Pollock.5

The spectral distribution of synchrotron radiation from the Stanford Positron-Electron
Accumulation Ring (SPEAR)4is shown in Fig. I with the electron beam energy E, from 1.5
to 4.5 GeV as the parameter. As can be seen, the radiation is an intense continuous
distribution extending from the infrared into the hard x-ray regime of the electromagnetic
spectrum. Compared with the bremsstrahlung output of a 12kW standard x-ray tube,
synchrotron radiation is higher in intensity by a factor of 106 or more. This reduces the
measurement time for a typical diffraction measurement from hours to seconds or less.
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Figure 1. Spectral distribution of synchrotron radiation from the SPEAR storage ring with a radius of
curvature of12.7 m. After Doniach et al [4].

FUSION WELDS

During fusion welding, rapid thermal cycling induces solid state phase transformations
both on heating and on cooling, and causes melting and solidification in those parts of the
weld where the liquidus temperature has been exceeded. From a practical standpoint, solid
state phase transformations play an important role in welding related problems such as sub
solidus cracking, cold cracking and distortion caused by residual stresses'". Solution and
understanding of these problems will greatly be facilitated by the development of
experimental methods capable of determining phase transformation behavior in steep
thermal gradients and at the high cooling rates that occur during welding in the so-called
heat-affected zone (HAZ) and fusion zone (FZ). Until a few years ago" no direct method
existed for investigating solid state phase transformations that are taking place in fusion
welds.

In this paper, we briefly describe a couple of novel synchrotron-based diffraction
techniques that have been developed and applied successfully to investigate the phase
distribution, transformation kinetics and chemical dynamics in the fusion welds of a
number of metallurgical systems. These include a commercially pure titanium, AfSf 1005
carbon-manganese steel and 2205 duplex stainless steel.
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SYNCHROTRON DIFFRACTION METHODS

Space-Resolved X-ray Diffraction, SRXRD

The high intensity provided by synchrotron radiation emitted from a multi-pole wiggler
insertion device was used to advantage to produce a sub-millimeter probe to record
diffraction patterns as a function of position in the weld during welding to follow the
phases and map their location in the HAZ or the FZ. The measurements were first
performed on the 3I-pole wiggler beam line, BL 10-2JO

at Stanford Synchrotron Radiation Laboratory (SSRL) with SPEAR operating at an
electron energy of 3.0 GeY and an injection current of - 100 rnA. The synchrotron white
beam was first focused by a toroidal mirror to the source size of - Imm vertical x 2mm
horizontal, and monochromatized downstream with a double Si(lll) crystal. The focused
monochromatic beam was then passed through a tungsten pinhole to render a sub
millimeter beam on the sample at an incident angle of - 25°. A photon energy of 12.0 keY
(A. = 0.1033 om) was chosen to maximize the number of Bragg peaks in a selected
28 window to facilitate phase identification, and to be far enough in energy above the Ti
and Fe-edges to minimize the background contribution due to Ti or Fe K-fluorescence
from the sample (K-edge: Ti = 4.966 keY, Fe = 7.112 keY) 11.

SRXRD patterns were measured during welding by positioning the beam at a pre
determined location with respect to the welding electrode. A 50 mm, 2048-element position
sensitive silicon photodiode array detector was used to record the diffraction patterns. The
detector together with the associated ST121 data acquisition system was manufactured by

ScmX·ray
Photodiode
"'~y

200 .... . ;.'[....

Synchrotron Beam //'"1

Diffraction
Pattern

10 cmdia. Metal Bar

Figure 2. Schematics of the SRXRD setup for in-situ phase mapping and real time observat ion of phase
transformation in fusion welds[13].

Princeton Instruments (now Roper Scientific)12, and was used to store and display the x-ray
diffraction data in real time. By incrementally jogging the weld to new locations in 200 urn
intervals, a series of space-resolved x-ray diffraction patterns was collected along a lineal
scan direction perpendicular to and away from the centerline of the weld. A schematic of
the SRXRD setup is shown in Figure 2. Details of the apparatus has been described in
detail elsewhere' .

Fig.3 is a plot of an experimental SRXRD run of a carbon-manganese fusion weld at
1.9 kW. The starting position was 2.0 mm from the center of weld. The data were collected
using a 10 keY photon beam, a pinhole of 180f.!m, jog size 200f.!m/step and an integration

205



time of 20s/scan. It can be seen that in the first 8 jogs, no Bragg peaks were recorded
indicative of the liquid state. The 8(110) reflection appeared at jog #9. This was followed
by 11 frames of pure y(fcc). Beyond which, y and a coexisted for another 9 frames. At
frame 29 and beyond, only a persisted as the x-ray now probed the base metal.

i
::l
o
.!!.

.~ 19500

".'!l
"- 13000

6500

700 1400

50

Bragg angle, (pixel #)

Figure 3. An experimental SRXRD scan recording the sequence of phase transformation from the liquid --+
8(bcc) --+y(fcc) --+o(bcc) as a function of position in a carbon-manganese fusion weld at 1.9 kW.

Time-Resolved X-ray Diffraction, TRXRD.

The TRXRD procedure consists of first positioning the x-ray beam at a pre-determined
location in the fusion zone (FZ) or heat affected zone (HAZ) using the electrode position as
center of the liquid pool. Experimentally, a time resolution of 100 ms in conjunction with a
260 urn pinhole used for phase was adequate to capture the a~y phase transformation
upon heating and the y~a transformation upon cooling in the HAZ plain carbon steel
welds. For phase transformations in the FZ, a 50 ms time resolution using a 730 urn pinhole
was used to incorporate more grains into the diffraction beam14 The TRXRD technique
was originally develo~ed for chemical dynamics study of high temperature solid
combustion reactions':" 6

PHASE MAPPING

Commercially Pure Titanium.

In commercially pure grade 2 titanium, the allotropic transformation from a hcp a

phase to a bee l3-phase occurs at - 9 l 50 C. Transitions from a I3-Ti bee pattern at high
temperature inside the HAZ, to a a+l3-mixed zone, and eventually to the u-Ti hcp pattern
have been recorded in real time. In addition to phase transformations, the material
undergoes annealing and re-crystallization in the cooler region and outside of the HAZ.
SRXRD data obtained from different starting positions with respect to the weld center may

206



be classified into five principal diffraction patterns . Examp les for each of the principal
patterns are displayed in FigA together with one for the a +/3-coexistence region .

(101)

(102)

fjJl-~----+---." cet pattem

(002)
~ 1.0

]

~

l
z 0.0 1i=:~~==T==4'==,.==={ a pattern

35 40 45 50 55

Di"ra ction angle 29, (deg.)

Figure 4. Principal diffraction pattern s observed in var ious locations in the HAZ of comm erciall y pure Ti
fusion weld . Intensity is normali zed to unity for the highest peak in each patteml l S].

In Fig.5 the completed phase map presenting the locations of four principal diffraction
patterns plus /3L with respect to the HAZ of the weld is shown. Twenty one individual
scans, each having 40 XSRXRD patterns , are displayed together with two calcu lated weld
isotherms . For scans presented by two bars side-by-side , the left bar represents the presence
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Fig ure 5. Complete phase map of a I. 9 kW fusion weld of commercially pure titan ium and calculated
transformat ion isotherms [18].

of a-Ti and the right bar for /3-Ti. Each bar again is subdivided into regions with different
shadings to indicate the different types of diffrac tion patterns that were present: (aAR) is the
annealed and recrystallized u-Ti ; (aRO) denotes a recrystall ized u-Ti phase which exhibits
large diffrac tion domains; (aST) is the back transformed u -Ti that forms from the region of
the HAZ that once contained /3-Ti; (/3 ) is the /3-Ti phase; (/3L) is the /3-Ti that coexists with
a-Ti in low amounts predominantly together with a ST. The a pattern is not shown in this
phase map since the SRXRD data were not recorded far enough in to the cold region of the
HAZ. The principal diffraction patterns and associated microstructure have been described
in detail elsewhere' I:" .
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AISI 1005 Carbon-Manganese Steel.

In Fig. 6 the completed phase map and the distribution of the n-Fe, y-Fe, a-Fe, and
liquid phases in the HAZ is shown. The coexistence ofy-Fe with u-Fe , or y-Fe with a-Fe,
was identified at numerous SRXRD locations as evidenced by simultaneous recording of
the fcc and bee diffraction patterns. These regions indicate either a phase is in the process
of transforming or that two phases are coexisting in a two-phase region of the HAZ.
Superimposed on Fig. 6 are three major weld isothermal boundaries calculated using an
analytical heat flow model described elsewhere[19]. The calculated isotherm at 1529°C
represents the liquid weld pool boundary, which extends 4.4 mm from the weld centerline,
and was made to equal to the actual weld pool width by adjusting the heat source
distribution parameter", The y/(y+a) boundary is represented by the 882°C isotherm, and
the Fe3C/(a+y) eutectoid is represented by the no°c isotherm. These calculated boundaries
represent the locations where phase transformations would occur under equilibrium
conditions.

,: J1JI~Cltq1 ~
g 7 HI I I I II

h -IHI --jl I I
>= • r I lic511 II II 11"1 II I ~I I

• 11111 II I•• Ir II II II ", I I I
• V I~trtmrllII II yIl Ii 1 I I I\!

I I I~ n I II I I r',
, II IV ~n~ U 11\~ I: " II I I: i! DU liquid D~ IJ \ l L

... Welding Direction 1529"C 882"C 72t1'C

-3 ·2 ·10 1 2 3 .. 5 , 7
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Figure 6. SRXRD map showing the locations of the a-Fe, y-Fe, o-Fe and liquid phases present in the AISI
1005 steel fusion weld at 1.9 kW. The calculated weld isotherms are superimposed on to the critical phase
transformation temperatures . Notations - a : gray filled ; y: dotted line; 0: black filled; liquid: thick line[19].

However, since the kinetics of the phase transformations require a finite time to take
place, the location where the phase transformation is finally completed is displaced behind
the calculated isotherms. Thus, the calculated isotherms represent the point where the
phase transformations can begin to occur; the locations where the transformations are
complete can be determined by SRXRD measurements. The difference between the
calculated isotherms (start locations) and the SRXRD completion locations is related to the
kinetics of a given phase transformation.

2205 Duplex Stainless Steel .

A detailed map of the locations of the austenite and ferrite phases in the HAZ of this
duplex steel weld is shown in Fig. 7. The map is based on a combination of the SRXRD
data and the calculated weld pool temperature profiles[20]. Three primary phase regions
are observed: a liquid phase, a single phase a-Fe (bee), and a two phase a-Fe (bee) + y-Fe
(fcc) region. Superimposed on these phase regions are the calculated liquidus isotherm at
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1443"C. The liquidus line corresponds closely with the locations where the liquid phase has
been observed, thus validating the temperatures calculated using the turbulent heat transfer
and fluid flow model. Adjacent to the liquid phase, a single- phase ferrite region is
observed. This single
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Figure 7. Complete SRXRD phase map of 2205 duplex stainless steel weld at 1.8 kW and calculated
liquidus[20]

phase region denotes a complete transformation of austenite in the duplex ferrite/austenite
microstructure to ferrite . As the distance from the weld centerline increases , two phase
ferrite /austenite regions are observed adjacent to the single phase ferrite regions and extend
in all directions to the base metal region . Details of this phase map has recently been
described 20.

PHASE DYNAMICS

AISI 1005 carbon-manganese steel may be considered as a pseudo-binary Fe-C system
containing 0.05 wt% of carbon . With increasing temperature, the system undergoes the
following transformations:a(bcc)~y(fcc)~8(bcc)~liquid. The phase distribut ion and
microstructural evolution in the vicinity of this fusion weld has studied using SRXRD l 9

Nature of the solidification product from the liquid pool, and chemical dynamics associated
with the a~y transformation in a positive thermal gradient (heating) and the y~a

transformation in negative thermal gradient (cooling) have also been recently elucidated in
detail with a time resolution down to 50 ms". With an experimental weld pool width of 8.5
mm, and by positioning the x-ray beam at a position 5 mm and another at 3 mm from the
electrode, one can now probe the dynamics of phase transform-ation in the HAZ and FZ of
the steel weld respectively. The results are summarized as follows .

Phase Transformation in the HAZ.

Fig. 8 shows a series ofTRXRD patterns recorded in the HAZ at a location 5 mm away
from the center ofliquid pool. The data were recorded with a time resolution of lOOms. For
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clarity of presentation, only every 15th of the 600 TRXRD patterns were shown in the
pseudo 3D plot given in Fig. 8(a). As the arc was turned on and off, diffraction patterns
were continuously recorded to follow the annealing and phase transformation in real time in
both the heating and cooling cycles. Frame-by-frame qualitative analysis of the TRXRD
data yielded a real time sequence of events in the HAZ schematically given in Fig. 8(b). In
this plot, t = 0 corresponds to the start ofTRXRD measurement at room temperature. At t =

1.0s,
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Figure 8. (a) TRXRD patterns recorded in the HAZ of a 1.9 kW carbon- manganese steel spot weld at a
position 5 mm from the we! center with 100 ms time resolution. For clarity, only every 15th of the 600 frames
is plotted . (b) Temperature-time schematics depicting the recorded TRXRD events shown in (a). After [14].

the arc was turned on and heating began. Annealing of the bee a-phase took place in the
next 7.1s. At t = 8.1 s, the fcc y-phase first appeared, marking the start of the a~y

transformation. This transformation was completed within I. I s, and at t = 9.2s, only y-Fe
existed and persisted for the whole length of time the arc was on.

At t = 25.0s, the arc was turned off. The y-phase cooled and at t = 25.7s, the first back
transformed u-Fe was observed, signifying the start of the reverse y~a transformation. At
t = 26.1s, all y-Fe disappeared, denoting completion of the y~a. transformation. From
then, only u-Fe existed and cooled with time. It is interesting to note that the a~y

transformation upon heating takes about twice as long as the y~a transformation upon
cooling.

Phase Transformation in the FZ

In Fig. 9(a), the TRXRD patterns recorded in the FZ at a position 3 mm away from the
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center of the liquid pool are shown. The data were recorded using a time resolution of 50
ms14

• Again, for graphic clarity, only every 15th of the 600 TRXRD patterns were shown in
the pseudo 3D plot given in Fig. 7(a). Frame-by-frame qualitative analysis of the TRXRD
data yielded the following real time sequence of events in the FZ schematically given in
Fig.9(b).
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Figure 9. (a) TRXRD patterns recorded in the FZ of a 1.9kW carbon-manganese steel weld at a position 3
mm from the weld center with a 50 ms time resolution. For clarity, only every 15th of the 600 frames is
plotted. (b) Temperature-time schematic depicting the recorded TRXRD events shown in (a).

Again, t = 0 corresponds to the start ofTRXRD measurement at room temperature. At t
= 1.20s, the arc was turned on and heating began. Annealing of the bee a-phase took place
in the next 1.30s, which was much shorter than that (7.1s) in the HAZ. At t = 2.50 s, the
fcc y-phase first appeared, marking the start of the a-+y transformation in the FZ on
heating. Similar to that in the HAZ, this transformation was completed within 1.10 s, and at
t = 3.60, only y-Fe existed and persisted for an interval of 1O.50s. At t = 14.lOs, all y
disappeared and no diffraction peaks were observed signifying the system melted

At 17.35s, the arc was turned off The y-phase reappeared and cooled. At = 18.10s, the
first back transformed u-Fe was observed, signifying the start of the y-+a transformation.
At t = 18.65s, all y-Fe disappeared, denoting completion of the y-+a transformation. From
then, only u-Fe existed and cooled with time. It is interesting to note that, also in the FZ,
the a-+y transformation upon heating takes about twice as long as the y-+a transformation
upon cooling
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Profile analysis" of the major Bragg reflections recorded in these TRXRD patterns
reveals similarities and differences in the microstructural evolution with time in the HAZ
and in the FZ. The latter undergoes melting and solidification in addition to solid state
transformations. With increasing temperature, the cell constant of the a-phase prior to and
during the a-+y transformation and that of the y-phase just after the same transformation
exhib it a decrease . This unusual lattice contraction with temperature rise may be attributed
to dynam ical processes involving diffusion of impurities or alloying elements. In the FZ,
the y-Fe that forms has a preferential (200)-texture upon solidification of the liquid,
whereas upon cooling in the HAZ, the y-Fe retains largely a (1 I I)-texture induced in the
a-+y transformation on heating. Upon cooling in the HAZ, the width of the y(III)
reflection increases initially, indicat ive of micro-strain develop ing in the fcc lattice , but
decreases as expected with reduction of thermal disorder upon further cooling all the way to
the completion of the y-+a transformation. In the FZ, however, the micro-strain in the y
phase increases steadily upon solidification , and more rapidly in the entire duration of
the y-+a transformation on further cooling . The final microstructure of the FZ is likely to
consist of a single a-phase dispersed in two morphological entities, whereas in the HAZ,
the a-phase persists in one morphological entity in the final microstructure".

CONCLUDING REMARKS

The synchrotron SRXRD and TRXRD methods have produced for the first time both
real space and real time data on the phases, their location and transformation time in the
HAZ and FZ of fusion welds. Profile analysis of the Bragg reflections associated with
various occurring phases yielded detailed information on their microstructure in terms of
annealing, re-crystallization, grain growth, texturing as well as micro-strain with the grains.
These in-situ crystallographic and microstructural data must be taken into account for
realistic and meaningful modeling of transformation kinetics in fusion welds" and serve as
test-beds for evaluating various models for phase transformation in these technologically
important systems.
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1. INTR ODUCTION

Pr ecipitat ion kinet ics in alloys, like spinodal decomposition, nucleation and growth ,
or phase ordering, are now often studied at an atomistic scale using Monte Carlo
simulat ions. So as to be able to reproduce the different kinetic behaviors during these
trans formations, one needs to adopt a realist ic description of the diffusion. Therefore it
is better to use a vacancy-diffusion mechanism than a direct atom exchange mechanism.
It is then possible to explain why different kinet ic pathways are observed . For instance,
the vacancy diffusion mechanism can predict the importance of monomer diffusion with
respect to the diffusion of small clusters [1- 4J, Thi s leads to a difference in t he cluster
size distri but ion dur ing precipitation [2] and determin es th e coarsening mechanism
(evapora tion-condensat ion or coagulat ion) [3,4J. One can predict too the slowdown of
precipitation kinet ics by vacancy t rapping due to the addit ion of a third component
impuri ty [1]. Finally, different interactions of solute atoms with vacancy lead to a
difference of precipitate / matrix interface morphology dur ing th e kinetic pathway, th e
interface being diffuse for a repulsion between vacancy and solute atoms and sharp for
an att rac t ion [4J.

One drawback of kinetic Monte Carlo simulat ions using vacancy-diffusion mecha-
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nism is th at t hey limit th emselves to pair interacti ons to describ e configura tional energy
of alloys. Multi site interacti ons includin g more than two latti ce sites are necessary if
one want s to fully reproduce th e th ermodynamics of a system [5,6]. Th ese interactions
reflect dependence of bonds with their local environment and as a consequence break
the symmetry imposed by pair interactions on phase diagram . It is interestin g to notice
that in Calphad approach [7) one naturally considers such interactions by describing for
mati on energy of solid solut ions with Redlich-Kister polynomials, and th at coefficients
of these polynomials can be mapp ed onto an Ising model to give effective interactions
includ ing more th an two latti ce sites [8, 9). Moreover these int eractions allow one to
underst and sha pes of precipitates in alloys [10] and can lead to a prediction of coher
ent interface energy in really good agreement with ab-initio calculat ions performed on
supercells [11]. Nevertheless, to study kinetics in Monte Carlo simulat ions with such
interactions, one usually uses a direct atom exchange mechanism [12], and thu s looses
all kineti c effects due to vacancy-diffusion mechanism .

We incorporate th ese multisite interactions in a kinetic model using a vacancy
diffusion mechanism to study precipit ation kineti cs of Al-Zr in Al-Zr solid solution. For
small supersa tura t ion in zirconium of th e aluminum solid solut ion, it has been experi
ment ally observed t hat AbZr precipit ates are in th e metast able L12 structure [13- 15].
Th ese precipitat es are found to have mainly spherical shape (diameter ~ 10 - 20 nm),
as well as rod-like shape [13]. For supersat uration higher th an t he perit ectic concentra
t ion, nucleation is homogeneous and precipitates are coherent with th e matrix [13,141.
With prolonged heat t reatment , if the temperature is high enough, th e metast able L12

st ructure can transform to the stable one D023 . Using a phase field meth od , Pr oville
and Fin el [16) modelled th ese two steps of th e precipitation, i.e. the transient nucle
at ion of th e L12 st ructure and th e tr ansformat ion to the D023 st ructure. In thi s work,
we only focus on th e precipitati on first stage , where AbZr precipitates have th e L12

st ructure and are coherent with th e matrix.
We first use ab-ini tio calculat ions to fit a genera lized Ising model describing thermo

dynamics of Al-Zr system. We then extend description of th e configura tional energy of
th e binary Al-Zr to the one of the terna ry Al-Zr-Vacancy system and adopt a vacancy
atom exchange mechanism to describe kinetics. This atomistic model is used in Monte
Carlo simulat ions to study diffusion in th e AI-Zr solid solut ion as well as precipit ation
kineti cs of AhZ r. We mainly focus our study on detecting any influence of multisite
int eract ions on kinetics.

2. THERMODYNAMICS OF AI-Zr BINARY

2.1. Ab inito calculations

We use th e full-potentiallinear-muffin-tin-orbital (FP-LMTO) method [17- 19) to
calculate format ion energies of different compounds in the Al-Zr binary syste m, all
based on a fcc lattice. Details of ab init io calculat ion can be found in appendix A. Th ey
are th e same as in our previous work [20], except the fact tha t we use the genera lized
gradie nt approximat ion (GGA) instead of the local density approximat ion (LDA) for
the exchange-correlation funct ional.

Th e use of GGA for the exchange correlat ion energy leads to a slight ly better
description of the Al-Zr syste m. Th e approximation does not fail to predict phase



stabi lity of pure Zr [21] as LOA does: if one does not include generalized-gradient
corrections , the st able structure at 0 K for Zr is found to be the w one (hexagonal with
3 atoms per unit cell) and not th e hcp structure .

Another change depending on th e approximation used for th e exchange-correlation
functional is that formation enthalpies obt ained with GGA for th e different Al-Zr com
pounds are a lit t le bit lower (a few percent ) th an with LOA. For the 0023 st ructure of
AljZr (table 1), GGA predicts a formation energy which perfectly reproduces th e one
measured by calorimetry [221 : including generalized-gradient correct ions has improved
th e agreement . Th e energy of transformation from th e L12 to th e 0023 st ructure,
!':,.E = -23 meV/atom, agrees really well too with th e experimental one measured
by Desh et al. [23], but thi s was already true with LOA. Gradient corrections have
improved th e agreement for th e equilibrium volumes too: with the LOA, they were
too low compared to th e available experimenta l ones. Consid ering th e values of the
relaxed equilibrium parameters, shap e of th e unit cell and atomic positions, no change
is observed accordin g to the approximat ion used, both LDA and GGA being in good
agreement with measured par amet ers.

-0.478
-0.524

!':,.E

(eV/ atom)
16.89
16.12

GGA"
LOAb

Table 1: Calculated equilibrium volumes Va , d [a ratios (c' = c/ 2 for the 0022 phase
and c' = c/4 for the 0023 phase) , atomic disp lacements (normalized by a), and energies
of formation for Al3Zr compared to experimental data .

Va d / a Atomic
(A3/atom) displacements

0022 GGA" 17.40 1.138
LOAb 16.60 1.141

0023 GGA" 17.16 1.080 <lAI = + 0.0013
6zr = -0.0239

LOAb 16.35 1.087 <lAl = -0.0021
<lZr = - 0.0273

Exp." 17.25 1.0775 6AI = + 0.0004
6zr = -0.0272

Exp."

"FP-LMT O calculat ions (pr esent work)
bFP -LMTO calculat ions [20]
CNeut ron diffraction [24)
dCalorimet ry [22)

- 0.471
-0.525

- 0.502

- 0.548

-0.502 ± 0.014

2.2 . C luster expansion of t he form a tion energy

In order to express th e formation energy of any Al-Zr compound based on a perfect
fcc lat tice , we make a cluster expansion [25] of our FP -LMTO calculat ions to fit a
generali zed Ising model. Thi s allows us to obtain th e energy of any configuration of
the fcc lat t ice.
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Considering a binary alloy of N sites on a rigid lat tice, its configura tion can be
described through an Ising model by the vector a = {a },a2, .. . , aN} where the pseudo
spin configurat ion variable a ; is equal to ± I if an A or B atom occupies the site i. Any
st ructure is then defined by its density matrix p", pS(u ) being the probabi lity of finding
the st ructure s in the configura t ion a .

With any cluster of n lattice points Q = {i], iz, . . . , in} we associate the mult isite
correlat ion funct ion

(~ = Tr pSII a; = 2~ I > S(u )II a.,
iEo a iEo

(1)

where the sum has to be performed over the 2N possible configurations of the lat t ice.
Clusters related by a translati on or a symmetry operation of th e point group of th e

st ructure have the same correlation functions. Denoting by D", the numb er of such
equivalent clusters per lat tice sit e, or degeneracy, th e energy, like any other configura
tional function , can be expanded in the form [25]

(2)
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where the sum has to be performed over all non equivalent clusters and the clust er
interaction J", is independent of th e st ructure.

The cluster expansion as defined by equat ion 2 cannot be used direct ly: a t runcated
approximation of th e sum has to be used. The truncati on is made with respect to the
numb er of points contained in a cluster , t hus assuming that order effects on energy are
limit ed to a small set of lat tice points. It is truncat ed too with respect to distance
between sites. Long range interactions are import ant mostly if one wants to fully
reprodu ce elastic effects [26J.

We use in the expansion of the energy six different clusters: the empty clust er {O},
the point cluster {I }, the pairs of first and second nearest neighbors {2,I} and {2,2}, the
t riangle of first nearest neighbors {3,I }, and the tetrahedron of first nearest neighbors
{4,I }. T he corresponding cluster interact ions are obt ained by making a least square fit
of compound energies calculated wit h FP-LMTO. All 17 used compounds are lying on a
perfect fcc lat tice: energies are calculated without any relaxati on of the volume, of the
shape of the unit cell, or of the atomic positions. Th e lat t ice parameter used is the one
which minimizes the cohesive energy of pure AI, a = aAl = 4.044 A.We choose to fit the
cluster expansion for the equilibrium lat t ice parameter of Al because we are interested in
describin g thermodynamics of the Al rich solid solut ion as well as of Al3 Zr precipitates
in the Lh st ructure. These precipitat es have an equilibrium lat t ice parameter close to
th e one of pure AI, a = 4.073 Aas obtained from FP-LMTO calculat ions with GGA,
and during the nucleati on stage they are coherent with the Al matrix. Consequent ly,
such an expansion should be able to give a reasonable thermodynamic descripti on of
the different configura t ions reached durin g th is precipit ati on st age where precipitates
are coherent.

Coefficients of th e cluster expansion of the energy are given in table 3. Comparing
the values of th e many-body interactions, we see t hat th e main cont ribution to the
energy arises from the pair interactions and th at th e 3- and 4-point cluster contribut ions
are only correct ions. Signs of pair interactions reflect th e tendency of Al and Zr atoms to



Table 2: Formation energy relati ve to pure fcc elements for Al-Zr compounds lying on
a perfect fcc latt ice (a = aAI = 4.044 A) obtained from a direct FP-LMTO calculat ions
and from its cluster expansion.

Pearson Struct ure E Jorm (eV/ atom)
symbol type F P-LMTO CE

Al (fcc) cF4 Cu O. O.
Al4Zr (Dl.) tIl0 MoNi4 - 0.421 - 0.491
AbZr (Lh) cP4 CU3Au -0.728 -0.671
Ab Zr (D0 22) tI8 Al3Ti -0.617 - 0.643
Al3Zr (D0 23) tIl6 AbZr - 0.690 - 0.657
Ah Zr (/3) tI6 MoSi2 - 0.513 -0.482
AIZr (Ll o) tP4 AuCu - 0.803 -0.780
AIZr (LId hR32 CuPt - 0.448 -0.466
AIZr (CH40) tI8 NbP - 0.643 - 0.723
AIZr (D4) cF32 ?a - 0.489 - 0.414
AIZr (Z2) tP8 ?a - 0.345 -0.333
Zr2Al ({3) t I6 MoSi2 -0.443 -0.482
Zr3Al (LI2) cP4 CU3Au - 0.640 -0.603
Zr3Al (D022) tI8 Ab T i - 0.570 - 0.574
Zr3Al (D0 23) tIl6 Ab Zr - 0.603 -0.589
Zr4Al (Dl.) tIl0 MoNi4 - 0.390 - 0.437
Zr (fcc) cF4 Cu O. O.

aDescription ofstructuresD4 and Z2 can be found in Ref. [6J

Table 3: Cluster expans ion of th e formation energy.

Cluster Do.
i;

(eV/atom)
{O} 1 - 4.853
{I} 1 0.933

{2,1} 6 97.5 x 10- 3

{2,2} 3 - 28.4 x 10- 3

{3,1} 8 4.2 x 10- 3

{4,1} 2 13.1 x 10- 3

form heteroatomic first nearest neighbor pairs and homoat omic second nearest neighbor
pairs.

In table 2, we compare th e formation energies of th e different compounds direct ly ob
tai ned from FP-LMT O calculat ions wit h th e ones given by their cluste r expansion. The
st andard deviat ion equals 41 mev / atom and th e maximal difference is 79 meV/ atom.
T his could have been improved by includin g more clust ers in t he expans ion of th e en
ergy or by using a mixed-space clust er expansion [26]. Nevert heless, this would not
have changed th e main characteristics of th e Al-Zr system, i.e. the short range order
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tendency given by pair interactions, as well as th e dependence on local environment of
the interact ions given by 3- and 4-point cluster interactions. In order to be able to build
a realisti c kinetic model and to run Monte Carlo simulat ions in a reasonable amount
of time, we have to keep th e thermodynamic description of Al-Zr system as simple as
it can be. Th erefore we do not try to improve expansion convergence and we focus our
work on the influence of the 3- and 4-point cluster interactions on the thermodynamic
and kinet ic properties.

2.3. Pha se di a gram

T(K)
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Figure 1: Al rich part of th e phase diagram corresponding to the equilibrium between the fcc solid
solut ion and the L12 st ructure given by our set of parameters (tab le 3). (a) Compa rison of the phase
diagra ms obtained with pair, triangle, and tetr ahedron interact ions (solid line) and the one obta ined
with only pair interact ions (dotted line). (b) Compa rison with t he predicted metastable solubility
limit [201 (dashed line).

We use th e cluster-var iation meth od (CVM) [27] in the t et rahedron-oct ahedron
(T O) approximat ion [28, 29) to st udy th e equilibrium between the fcc Al-rich solid
solut ion and th e L12 st ruct ure (Fig. 1) corresponding to energy parameters of table 3.
At low tempera ture, the 2 sublattices of th e L12 st ructure remain highly ordered, as
at the exper imenta l peritect ic melt ing temperature (T ~ 934 K) the Zr concent rat ions
of the two sublat tices are respect ively 100. and 1.8 at .%. TUrning out th e energy
coefficients of the first nearest neighbor tr iangle and tet rahedron (J3 = J4 = 0), we
see that th ese many-body interact ions have a th ermodynamic influence only at high
temperature (Fig. 1 (a)) , as for temperatures below 1000 K th e phase diagram remains
unchanged with or witho ut th ese interactions.

In figure 1 (b), we compa re th e Zr solubility limit in the fcc solid solut ion corre
sponding to the present work energy parameters with our previous esti mat ion of this
met astab le solubility limit [20]. We should point out that the solubility limit obta ined
with the paramete rs given by ta ble 3 corresponds to a coherent equilibrium between the
fcc solid solut ion and the L12 st ructure as the energy coefficients of th e expansion have
been calculated for a perfect fcc lattice at the parameter of pur e AI. Thi s leads to a



destabilization of th e ordered phase and thi s is th e main reason why we obtain a higher
solubility th an the est imated one corresponding to the equilibrium between incoherent
phases. Anoth er reason is th at we use the cluster expansion to compute AhZr cohesive
energy, and thus get a small error on this energy, whereas in our previous study we
directly used the value given by FP-LMTO calculat ion.

3. KINETIC MODEL

In order to be able to build an atomisti c kinetic model , we have to generalize our
th ermodynamic description of th e Al-Zr binary system to th e one of th e Al-Zr-Vacancy
ternary system. To do so, we recast first th e spin-like formalism of th e cluster expansion
into th e more convenient one of the lattice gas formulati on using occup ation numbers
[5J. Thi s will allow us to obt ain effective int eractions for the different configurat ions of
th e tetrahedron of first nearest neighbors and of th e pair of second nearest neighbors .
Atom-vacancy interactions can th en be introduced quit e easily.

3.1. Effective interactions

Inst ead of using the pseudo-spin variables (In as we did in chap 2.2., thi s will be
easier for th e following to work with occupation numb ers p~ , p~ being equal to 1 if an
atom of typ e i occupies th e site n and to 0 oth erwise. In a binary alloy, occupat ion
numb ers and pseudo-spin variable at site n are related by

A 1 + (In
v; = --2- ' and

B 1 - (In
v; = --2- (3)

For th e Al-Zr binary system, we included in our truncat ed cluster expansion of
the energy first nearest neighbor interactions up to th e pair, t riangle, and tetrahedron
clusters and a second nearest neighbor pair int eraction . Thus, using the occupation
numb ers p~ , th e expression of the energy becomes

1 '" (1) i . k I 1 '" (2) i .
E = 4N. L... €ijklPnrYmPpPq+ 2N. L... €ij Prlr.,

n ,m ,p,q T ,S

i ,j ,k ,l i,j

(4)

where th e first sum runs over all sites (n,m ,p,q) forming a first nearest neighbor
tetrahedron and all th eir different configurat ions (i ,j, k, I), and th e second sum over all
sit es (r, s) forming a second nearest neighbor pair and all their different configurations
(i , j). N. is th e number of lattice sites, €i}kl the effect ive energy of a first nearest

neighbor tetrahedron in the configuration (i ,j,k, I), and €i~) th e effect ive energy of a
second nearest neighbor pair in th e configuration (i , j) .

Writing th e energy with these effective interaction s increases th e number of depen
dent variables. Therefore several choices of t hese effect ive energies correspond to th e
same clust er expansion, then to th e same th ermodynamic and kinetic prop erti es. If we
make th e assumption that second nearest neighbor interactions do not cont ribute to th e
cohesive energy of pur e elements, i.e . €71= 0 and €~1 = 0, we obt ain as many effec
tive interactions as parameters in th e truncat ed clust er expansion. Such an assumption
does not have any physical influence and it just guarantees that homo-atomic effect ive
int eraction s, €~1AA and €71, do not depend on the on th e nature of B atom. Effective
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energies of th e first nearest neighbor tetrahedron in its different configurati ons are then
relat ed to the cluster expansion coefficients by t he equati ons

(5)

(6)

and th e second nearest neighbor pair interaction by t he equation

(2 ) 2
EAB = - "3 D 2,2J2,2 .

For Al-Zr binary syst em, tetrahedron effective interactions corresponding to th e clust er
expansion of chap. 2.2. can be found in table 4: two sets are given depending if hand
J4 are ta ken from the cluster expansion of table 3 or are supposed equal to zero. For
both sets E~1 = + 0.057 eV.

3.2. D ecomposition of effective interactions

As we wrote before, severa l sets of effective interact ions produ ce th e same clust er
expansion. In th e following, we generat e t he set of inte rac tions useful for our kinetic
model for which we have to count bonds we break for vacancy-at om exchange.

Different cont ribut ions are included in th e effective energy Eml' One part of the
energy is due to th e bonding corresponding to th e six different pairs of atoms contained
in th e tetr ahedron , each of these pairs belonging to two different tetrahedrons. Th en one
has to add correctio ns due to order on the four tri angles contained in th e tetrahedron
and anot her correction due to order on th e tetrahedron itself. This decomposition leads
to t he relation

(1)
Eij kl

~ ( (1) + (1) + (1) + (1) + (1) + (1) )2 Eij Eik Eil Ej k Ejl Ekl

(
-::{ 1) -::(1) -::(1) -::(1) ) -::(1)+ Eij k + Eijl + Eikl + Ej kl + Eij kl , (7)

where E;J! is the effective energy of the first nearest neighbor pair in th e configura t ion

(i , j ) and ~~k and ~~kl the correct ions to add to pair energy due to order on tr iangles
and on th e tetr ahedron

Using th e previous breakdown of th e tetrahedron effective energy, th e expression 4
of th e energy becomes

1 " (1) i ' 1" -::(1) i . k
E = 2N

s
L... Eij P nrlm + 3N

s
L... Eijkp:,p'm P p

n ,m n ,m ,p
i,i i ,j ,k
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1 " -::(1) i . k I 1" (2) i .
+4N

s
L... EijklP nrlmPp Pq + 2N

s
L... Eij P r IY. ·

n ,m ,p ,q r ,B
i ,j ,k ,l i,i

(8)



(9c)

(9a)

(9b)

(9d)

(lOc)

(lOa)

(lOb)

As this is just another mathematical way to rewrite th e clust er expansion 2 of the
energy, th e following relati ons holds :

~ ( (I) + 2 (I ) + ( I» )DoJo+ D2,2J2,2 = 2 f AA f A B f B B

+~L + 3~~B + 3~kB +€}ikB
1 ( -::{I) -::{ I) -::{ I) -::{I) -::{ I» )+8 f AAAA + 4 f AAAB + 6fAAB B + 4 f AB B B + f B B B B

3 (
(I) _ (I» )

fAA f B B

+3 (~~A +~~B -~kB - €}ikB)
1 (-::{ I) -::{ I) -::{I) -::{I) )+2 EAAAA + 2 EAAA B - 2EAB B B - EB B B B

~ ( (I ) _ 2 (I) + (I» )2 EAA EAB EBB

+3 (~~A - t1~B - ~kB +€}ikB)
3 ( -::{I) -::{ I ) -::{ I» )+4 EAAAA - 2 EA AB B + EB B B B

~~A - 3~~B + 3~kB - €}ikB
1 ( -::{ I) -::{ I) -::{ I) -::{ I» )+2 EA AAA - 2 EAAAB + 2EA B B B - EB B B B

1 ( -::{I) -::{ I ) -::{ I ) -::{I) -::{ I» )D4,IJ4,1 = 8 EA AAA - 4 f AAAB + 6 f AA B B - 4 EAB B B + EB B B B (so)

As we want Ej}k to be th e energetic correction s due to order on tri angles, th e con

tribution to J2,1 of ~~A' ~~B ' . . . must equal zero (second term in right hand side
of eq. 9c). For th e same reason , th e cont ribut ion to J2,1 and J3,1 of ~~AA' ~~AB '

must equal zero (last term in right hand side of eq. 9c and 9d) . We requir e
too th at tri angle and tetrahedron order correct ions do not cont ribute to th e cohesive
energy of pure elements , as we did for second nearest neighbor pair interactions . Thus,
~~A = €}ik B = 0 and ~~AA = €}ikBB = O. With th ese restrictions, all par amet ers
entering in th e expression 8 of the energy are well det ermin ed.

The first nearest neighbor pair effect ive energies are thus

1
6' (DoJo+ DIJI + D2,IJ2,1 + D2,2 J2,2+ D3,IJ3,1 + D4,IJ4,1 )

1
6' (DoJo - D2,IJ2,1 + D2,2J2,2 + D4,IJ4,1)

1
6' (DoJo - D IJ I + D2,l h l + D2,2 h 2 - D3,IJ3,1 + D4,l h ,Jl ,

the order corrections on first nearest neighbor tri angle

-::{ I) -::{ I) 1
EAAB = - EAB B = -6'D3,IJ3,1,

and the order correction s on first nearest neighbor tetrahedron

~~AB = ~kBB = - D 4,IJ4 ,1

~~BB = O.

(11)

(12a)

(12b)
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Inverting the system 5, one can easily express all t hese quantities from th e effective
tet rah edron energies Eijkl too.

3 .3. Interactions with va canc y

Within th e previous formalism, we can easily int roduce atom-vacancy interactions.
T hese interact ions are a simp le way to take into account the elect ronic relaxations
aro und the vacancy. With out them, the vacancy format ion energy E{or in a pur e metal
would necessaril y equal the cohesive energy (E{or = 0.69 eV [30] and Ecoh = 3.36 eV
for fcc AI).

We only cons ider first-nearest neighbor interactio ns with vaca ncies and we do not
includ e any order correction on tri angle and tetrahedron configurat ions containing at
least one vacancy, i.e. ~;~ = ~;kv = 0 where i , j , and k are any of the spec ies AI, Zr,
and V. Th e vaca ncy format ion energy in a pure metal A is th en given by

(13)
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The interaction E~lv is dedu ced from the experimental value of the vacancy forma

tion energy in pure AI. For th e interaction E~;V' we assume tha t th e vacancy formation
energy in the fcc st ruct ure is the same as in the hcp one, these two st ru ct ures being
quite similar . The only experimental inform ation we have concern ing this energy is
E{or > 1.5 eV [30]. We thus use the ab-init io value calculated by Le Bacq et al. [31],
E{or = 2.07 eV. This value is calculate d at the equilibrium volume of Zr and cannot be

used dir ectly to obtai n E~;V as th is interact ion shou ld corres pond in our mode l to the
equilibrium lat tice paramet er of pur e AI. We have to use inst ead the vaca ncy form at ion
ent ha lpy

H{or = E{or+POn~or , (14)

where on~or = -1.164 A3 is the vacancy formati on volum e in pure Zr [30], and P is
th e pressur e to impose to Zr to obtain a lat tice paramet er equal to the one of AI. P is
calculated from the bulk modulus B = 91 GP a of fcc Zr and the equilibrium volumes
of AI and Zr, n~l = 16.53 A3 and n~r = 23.36 A3

, t hese three quantities being
obtained from our FP-LMT O calculatio ns. This gives us th e value H{or = 1.88 eV for
the vacancy form ation ent ha lpy in pure Zr at the lattice parameter of pure AI.

We use th e experimental value of the divacancy binding energy Erv = 0.2 eV [30]

in ord er to compute a vacancy-vacancy inte rac t ion, E~~ = E~v - E~lA I + 2E~lv . If we
do not include this interact ion and set it equa l to zero inste ad , we obtain the wrong
sign for th e divacancy binding energy, divacancies being thus more stable than two
monovacancies. This does not affect our Mont e Carlo simulat ions as we only include
one vacancy in the simulat ion box, bu t this will have an influence if we want to bu ild
a mean field approximation of our diffusion model.

We thu s man aged to add vaca ncy cont ribu t ions to our thermodyna mic description
of th e Al-Zr binary system . Using t he breakdown 7 of th e first near est neighb or tetr ahe
dr on interact ion , we can obtain the effect ive energies corresponding to the 15 different
configurat ions a tetrahedron can have in the ternary syste m. These effective energ ies
are presented in table 4 for th e cases where energy correct ion due to order on first
nearest neighbor t riangle and tetrahedro n are assumed different from zero or not (J3
and J4 given by table 3 or Js = J4 = 0).



Table 4: Effective energies of th e first nearest neighbor tetrahedron for Al-Zr-V terna ry
system. Th e set with order correct ion corresponds to th e values J3 and J4 given by th e
cluster expansion of table 3 and the set without order correct ion assumes J3 = h = o.

Configura t ion Effect ive energy (eV)
with order with out order
correction correct ion

Al Al Al Al
Al Al Al Zr
Al Al Zr Zr
Al Zr Zr Zr
Zr Zr Zr Zr
AI AIAIV
Al Al Zr V
Al Zr Zr V
Zr Zr Zr V
AlAI VV
Al Zr V V
Zr Zr V V
AIVVV
Zr V V V
VVVV

-1.680
-2.257
- 2.554
- 2.707
-2.647
-1.174
- 1.567
- 1.748
-1.751
-0.518
- 0.758
-0.804
+ 0.288
+ 0.194
+ 1.243

-1.680
-2.214
-2.554
-2.698
- 2.647
-1.174
- 1.561
-1.754
-1.751
-0.518
- 0.758
-0.804
+ 0.288
+ 0.194
+ 1.243

With th is set of th ermodynamic parameters, we calculate the bindin g energy be
tween a Zr solute atom and a vacancy in AI,

Ebin ( (1) (1) (1) (1» )
ZrV = 2 EAIAIA IAI + EAIA IZrV - EAl AIA1Zr - EA1AIAlV . (15)

Th e value obt ained , E~~v = +0 .369 eV, agrees with th e experimental observation that
there is no attraction between Zr solute atoms and vacancies in Al [30,32] .

3.4. Migration barriers

Diffusion occurs via vacancy jumps toward s one of its twelve first nearest neighbors.
Th e vacancy exchange frequency with a neighbor of type A (A = AI or Zr) is given by

(
Eacl)

f A- V = VAexp -k:r' (16)

where vA is an at tempt frequency and the act ivat ion energy EAcl is the energy change
required to move the A atom from its initi al stable position to th e saddle point position .
It is computed as th e difference between th e cont ribution <f of the jumping atom to th e
saddle point energy and th e cont ributions of the vacancy and of th e jumping at om to the
initial energy of th e stable position. Thi s last contribution is obtained by considering
all bonds which are broken by the jump, i.e. all pai r interact ions the vacancy and th e
jumping atoms are forming as well as all order correct ions on tri angles and tetrahedrons
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containing th e jumping atom,

E ae! _ sp " (I ) ,, (I ) " -::{I) ,, -::{I) "(2)
A - eA - L., EV j - L., EA j - L., EAj k - L., EAj kl - L., EAi'

j jiV j k jkl j

(17)

Th e attempt frequency V A and the contribution <[ofthe jumping at om to th e saddle
point energy can depend on th e configura t ion [2]. Nevertheless, we do not have enough
information to see if such a dependence holds in the case of AI-Zr alloys. We thus
assume th at these parameters depend only on the nature of th e jumping atom, which
gives us four pur ely kinetic parameters to adjust .

Th e contributi on of Al to th e saddle point energy, e1; , is deduced from the exper
imental value of th e vacancy migrati on energy in pur e AI, E ;;i9 = 0.61 eV [30], and
the attempt frequency vA l from th e experimental Al self-diffusion coefficient , D AI" =

Doexp (-Q/ kBT) , th e self-diffusion act ivat ion energy Q being the sum of the vacancy
formation and migration energies in pure Al and Do = 1.73 X 10- 5 m2. s- 1 [33].

To calculate VZ r and ei~ , we use the experimental value! of the diffusion coefficient of
Zr impurity in AI, Dzr" = 728 x 10- 4 exp (- 2.51 eV/kBT) m2 .s- 1 [33,34]. Th e kinetic
paramete rs can be deduced from t his experimenta l dat a by using the five frequency
model for solute diffusion in fcc lattices [35], if we make th e assumption th at th ere is no
correlat ion effect. We check afte rwards t hat such an assumption is valid : at T = 500 K
the correlat ion factor is [ z -: = 1 and at T = 1000 K f Zr" = 0.875. Correlati on effects
are thu s becoming more important at higher temperature but th ey can be neglected in
th e ran ge of t emperature used in the fittin g procedure.

Table 5: Kinetic parameters for a thermodynamic description of AI-Zr binary with
and withou t energy corrections due to order on first nearest neighbor tri angle and
tetr ahedron.

with order
correct ion

- 8.219 eV
- 11.286 eV

1.36 x 1014 Hz
4.48 X 1017 Hz

with out order
correction

- 8.219 eV
- 10.942 eV

1.36 x 1014 Hz
4.48 X 1017 Hz
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So as to stu dy th e influence on kinetics of energy correct ions due to order on tri angles
and tetr ahedrons, we fit another set of kinet ic parameters correspondi ng to a th ermo
dynamic description of AI-Zr binary with only pair interactions (i.e. Js = J4 = 0, or
equivalent ly Ei]k = Ei]kl = 0). Thi s other set of kinetic parameters present ed in table 5
reproduces as well coefficients for Al self-diffusion and for Zr impurity diffusion, the only
difference being that th ese kinetic parameters correspond to a simpler th ermodynamic
descrip tion of AI-Zr binary.

I Diffusion coefficient measured in the temperature range between 800 and 910 K.



4. DIFFUSION IN SOLID SOLUTION

Diffusion in Al-Zr solid solutions can be fully charact erized by the t racer correlat ion
coefficients fAI and Is- and by th e phenomenological Onsager coefficients L AIA/, L AIZT>
and L z rz r. These coefficients link fluxes of diffusing species, J Al and J ZT> to th eir
chemical pot enti al grad ients [36,37] through the relations

- LAlAlV'/l~dkBT - L A1ZrV'/l~r/kBT

-LAiZr V'/l~dkBT - LZrzrV'/l~r /kBT. (18)

Chemical pot ent ials ente ring t hese equatio ns are relative to t he vacancy chemical po
tential, /lAI = /lAI - /lv and /lz r = ti z . - /lv . We use to express diffusion fluxes the
Onsager reciprocit y condit ion, L AiZr = L ZrAI'

Th ese coefficients can be used in finite-difference diffusion code so as to study" in
dustr ial" processes where diffusion is involved (precipitation, solidification , homogeniza
t ion, . .. ) [38J. One way to obtain t hese coefficients is to adapt Calphad meth odology
to kinetics, i.e. to guess an expression for L AB describing its variation wit h temper
at ure and composition of the alloy and to adjust the model parameters on a large
kinetic database [39,40] . On the other hand one can use an ato mistic model as the
one described in chap. 3. to obtai n th e phenomenological coefficients [8, 9,41]. If one
carefully applies the same mean field approximation for thermo dynamics and kinetics
it is possible to get th e whole Onsager matrix and not only diagonal terms and to catch
all correlation effects [42] . Such an approach compared to th e previous one does not
need a huge experimental database. Moreover, as it is based on a realistic description
of diffusion at th e atomic scale, it appea rs safer to extrapolate kineti c quantities out of
the range (composit ion or temperature) used in the fitting procedure.

In thi s st udy, we do not use any mean -field app roximation to calculat e phenomeno
logical coefficients , but obtain them directly from kinet ic Monte Carlo simulations by
using genera lizatio n of the Einstein formula for tracer diffusion due to Allnat t [37,43]

(19)A,B = Al , Zr,
L _ (~RA .~RB)

AB - 6fl.t '

where the brackets indicate a thermodynamic ensemble average and ~RA is the sum
of total displacement ~ri of all ato ms i of type A dur ing time fl.t ,

(20)

We use residence time algorithm to run kinetic Monte Carlo calculat ions. Th e
simulat ion box contains 125000 lat tice sites, one of this site being occupied by a vacancy.
Sum of total displacements ~RAI and ~Rzr in equation 19 are compute d for a time
interval corresponding to ~ 106 vacancy jum ps, and th eir thermodynamic averages are
obtained th rough simulatio ns of 109 vacancy jumps. Such a big numb er of jumps is
necessary to converge thermodynam ic averages enter ing in th e calculat ion of L A1Zr and
L ZrZT> whereas L A1Ai converges more quickly. Th is is due to the difference of diffusion
coefficients between Al and Zr.

Results of calculat ions are presented in figure 2 for two different temperatures,
T = 1000 K and T = 900 K, and different Zr concentration from 0 to 8 at.%. For the
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Figure 2: Onsager coefficients L AIA I and l.z -z- . Squares and solid lines correspond to T = 1000 K
and circles and dashed lines to T = 900 K. T he verti cal lines indicate the corresponding solubility
limit obtained from CVM calculat ions. Full symbols correspond to th e set of parameters with order
corrections on triangles and tetr ahedrons and open symbols to the set wit hout order corrections.

off-diagonal coefficient L A IZ r of Onsager matrix, dispersion is to o imp ort ant to get a
precise value of thermodynamic average''. We interpret thi s as an indicati on that thi s
coefficient can be neglected in thi s range of temperature and concent ra t ion.

Onsager coefficients are calculated for Zr concent rat ion corres ponding to th e st able
as well as to th e metast able solid solution, th e limit being given by the CVM calculat ions
of chap. 2.2.. For calculations in the metast able solid solut ion, thermodynamic averages
are computed during th e incubati on stag e of precipit ation kinetics when no stable
precipit at e is present in th e simulat ion box (chap. 5.). L A IAI behavior deviat es only
slight ly from its linear ext rapolat ion from th e stable solid soluti on, but for Lz-z- it

2L AIZ r = a± 10- 12 m2. s- 1 at T = 1000 K and LAIZr = a± 10- 13 m2 s- 1 at T = 900 K
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seems that no extrapolat ion from the stable to the metastable solid solutio n is possible.
So as to see the influence of tr iangles and tetrahedrons interactions, we ran simu

lati ons with only pair interact ions considering the corresponding kinetic paramete rs of
table 5. One can direct ly see on figure 2 that these two sets of parameters reproduce
the same expe rimental data, i.c. the self-diffusion coefficient

(21)

where fo = 0.78145 for a fcc lat tice, and the Zr impurity diffusion coefficient

(22)

Order correctio ns mainly affect Lzrzr . Thi s coefficient is slightl y lower when one
considers energy corrections due to order on triangles and tet rahedrons. The differ
ence increas es with Zr concent rat ion and thus in the metastable solid solution: these
order corrections lead to a slight slowdown of Zr diffusion. The two thermodynamic
models are equivalent at these temperatures (cf. phase diagram on Fig. 1 (a)) . As a
consequence kinetic behaviors obtained from them are really close.
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Figure 3: Onsager coefficients LAIAI , l-z-z-, and LAlZ r calculated at T = 3000 K. Fu ll symbo ls and
so lid lines correspond to the set of paramete rs with order correct ions on triangles and tetrahedrons
and open symbols and dashed lines to the set wit hout order corr ections .

At higher tempe ratures, triangle and tetrah edron int eractions change the phase di
agram (Fig. 1 (a)) . T his th ermodynamic influence leads to a kinetic change too: at
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T = 3000 K, Onsager coefficients are lower when considering th ese multi site interac
tions (Fig . 3). One should notice th at correlation effects cannot be neglected at this
temperature as L A1Z r is far from being null. Thu s one is not allowed anymore to as
sume Onsager matrix as diagonal. With t riangle and tetrahedron int eractions, Al-Zr
precipit at e is more stable, which means that order effects are st ronger. The kinetic
corrolary of thi s th ermod ynamic influence is th at th ey slow down diffusion.

5. KINETICS OF PRECIPITATION

Pr ecipitation kinetics have been obtained by Monte Carlo simulat ions for four differ
ent supersaturations of the solid solut ion (C~r = 5, 6, 7, and 8 at .%) at T = 1000 K. At
thi s temperature, th e equilibrium concentration is C~~ = 2.1 at .%. Th e simulat ion box
contains 125000 lattice sites and its sta rt ing configuration is a complete ly disordered
(random) solid solut ion.

5 .1. Short range order parameters

0 2
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Figure 4: Evolution of second nearest neighbor short range order of Zr ato ms, Q~r ' at T = 1000 K
and four different nominal concentrat ions C~r' Full and dot ted lines are respectively for the set of
parameters with and without order corrections on triangles and tetrahedrons .

Th e quantities of interest to follow th e globa l evolut ion of precipit ati on durin g the
simulatio n are Warr en-Cowley short range order (SRO) parameters [5]. SRO parame
ters for first-n earest neighbors evolve too quickly to give any really significant informa
tion on precipitati on state. During simulation first st eps, Zr atoms surro und th emselves
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(23)

with AI. Once this local equilibrium for first nearest neighborhood is reached, the corre
sponding SRO parameters do not evolve anymore . On the other hand , SRO parameters
for second nearest neighbors slowly evolve until the end of the simulatio n. For Zr ato ms,
it is defined as

2 _ (p~r)Zr,2 - C~r
a Zr - 1- Co '

Zr

where (p~r)Zr,2 stands for the average of occupation numbers p~r on all second nearest
neighbors of Zr atoms. For a randomly distri buted configuration of the alloy (initia l
configuration) a~r = 0, whereas for the L12 st ruct ure a~r = 1. Looking at fig. 4, one
sees that a~r evolves more quickly with the set of parameters with only pair interactions
than with tr iangle and tetrahedron interact ions. At first glance, this is in agreement
with th e slight difference on L zrzr measur ed in the metastable solid solution at th is
temperature (Fig. 2) for the two set of parameters. So as to see if th e difference of
precipit at ion kinetics can be understood only in terms of a difference of diffusion speed
or is due to another factor , we measure the nucleat ion rat e in our simulat ions and
interpret it with classical th eory of nucleation [1,44,45].

5.2 . Precipitate cr it ica l siz e

We first need to give us a crite rion to decide which atoms are belonging to L12

precipitat es. As stable precipit ates are almost perfectly stoichiometric at T = 1000 K
(chap. 2.3.), we only look at Zr ato ms and consider for each Zr ato m in L12 precipit at e
that three Al ato ms are belonging to the same precipit at e. Zr atoms are counted as
belonging to L12 precipitates if all their twelve first nearest neighbors are Al atoms and
at least half of t heir six nearest neighbors are Zr atoms. Moreover , we impose th at at
least one Zr atom in a precipit ate has its six second nearest neighbors being Zr, i. e. has
a first and second nearest neighborh ood in perfect agreement with the L12 structure.

Classical theory of nucleation predicts there is a crit ical radius, or equivalent ly a
crit ical number i* of atoms, below which precipit at es are unst able and will re-disolve
into the solid solut ion and above which precipit ates will grow. i * is obtai ned by con
sidering the competition between the interface free energy a and th e nucleati on free
energy per at om !:J.Cn

,

i* = 2; (~;n)3 (24)

Cluste rs of size i < i* are considered to be local variations of the solid solut ion compo
sit ion and thus are not counted as L12 precipit ates.

5.3 . Nucleation fr ee energy

Th e nucleation free energy per atom entering equation 24 is given by [44, 45]

where J.!AI(CZr) and J.!Zr(CZr) are th e chemical potentials ofrespectively Al and Zr com
ponents in th e solid solut ion of concent ra tion Cz-, Cz~ is th e equilibrium concentration
of the solid solution, and C~r th e nominal concentration. The factors 3/4 and 1/ 4
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Figure 5: Nucleat ion free energy t!.Gn at T = 1000 K for different concentration of t he solid solut ion.
Square symbols correspond to GVM-TO calculat ion and the line to t he idea l soluti on ap proximation
(eq. 26). Full and open symbols are respect ively for the set of para meters with and wit hout order
corrections on triangles and tetrahedrons.

arises from the stoichiometry of the precipitat ing phase Ab Zr. Usually the nucleation
free energy is approximated by

h Cn 3k T l 1- C~~ 1k Tl C~~
L.> = 4' B og _ Co + 4' B og CO

1 Zr Zr

which is obtained by considering in equation 25 the expressions of the chemical pote n
t ials for an ideal solution. As at T = 1000 K we obt ained the same solubility limit ,
C~~ = 2.1 at .%, wit h or without t riangle and tet rahedron interac t ions (cf. phase dia
gram on fig. 1), the app roximation 26 cannot be used to see if these interactions have
any influence on th e nucleatio n free energy. Th erefore we use GVM-T O to calculate
chemical potentials entering expression 25. Looking at figure 5, one should notice that
the idea l solution approximat ion would have lead to an overest imation of !:lCn , the
error being ~ 10% for the maximal supersaturat ion considered . With GVM-T O, we
do not obta in any change in the value of the nucleation free energy depending we are
considering or not order correct ions for first nearest neighbor triangle and tetrahedron.
T hus slowdown of precipit ation kinet ics with these correct ions cannot be explained by
a decreasing of the nucleat ion free energy.

5.4 . Interfa ce fr ee energy

To determine t he precipitat e critical size i* using expression 24, we need to know
the value of the interface free energy (J too. We calculate this energy at 0 K for
different orientations of th e interface. We therefore do not consider any configura tional
entropy and simply obt ain the interface energy by count ing the numb er by area unit
of wrong "bonds" compared to pur e Al and AbZr in L12 st ructure. For (100) and
(110) interfaces there is an ambiguity in calculat ing such an energy as two different



with a2
(T100 = 57.0 meV.

planes, one pure Al and th e other one of sto ichiomet ry AI1/2Zrl /2, can be considered as
int erface. Considering L12 precipit ates as sto ichiomet ric will gua rantee that to any type
of th e two possible int erfaces is associated a parallel int erface of the other type. Th us
for (100) and (110) interfaces, we consider th e average of these two different inter face
energies to be meaningful for the param eter (T entering in classical the ory of nucleati on.
For (111) int erface, as only one inte rface of stoichiometr y AI3/4Zrl/4 is possible, we do
not obta in such an ambiguity. The energies corresponding to these different interfaces
are

1 1 2E~1- E~~ - E~1
(Tl OO = J2(T110 = yi3(T111 = 2a2 '

Th ese inter face energies only depend on second nearest neighbor interaction s and there
fore are the same with or without order corrections on first nearest neighbor triangle
and tetrahedron. To determine the crit ical size of precipitates with equat ion 24 we use
an inte rface free energy slight ly higher than (TIOO, a2

(T = 64.1 meV. With thi s interface
free energy, nucleat ion rate obtained from Monte Carlo simulat ions are in better agree
ment th an with (TIOO (Fig. 7). As precipitat es observed in Monte Carlo simulat ions do
not exhibit sharp interfaces, this is quit e natural to have to use an energy higher th an
th e minim al calculated one.

5.5. Nucleation rate

Critica l size for precipit ates obtai ned from th ese nucleati on and interface free ener
gies are respectively i" = 187, 104, 76, and 57 atoms for the different nominal concen
t rat ions cgr = 5, 6, 7, and 8 at .%. We use these critical sizes to determ ine the numb er
Np of supercritical precipitates contai ned in th e simulat ion boxes, th eir average size
(i)p' as well as the concent ration of the solid solution CZ r . The var iat ion with t ime of
th ese quantities are shown on fig. 6 for the simulat ion box of nominal concentration
cgr = 8 at.% . After an incubation tim e, one observes a nucleati on stage where th e
numb er of precipit ates increases linearly until it reaches a maximum. We th en enter
into th e growth stage: the number of precipitat es does not vary and their size is in
creasing. At last , dur ing the coarsening stage, precipitates are st ill growing but their
number is decreasing. For this concent ration, one clearly sees th at precipit ati on kinet
ics is fast er with only pair interactions as the numb er of precipit at es is increasing more
rapidl y. Moreover precipitates have a bigger size than with t riangle and te tr ahedron
order correctio ns.

Th e steady-state nucleation rate pI is measur ed during the nucleati on sta ge, when
the numb er of precipit ates is varying quite linearly with ti me. Slowdown of precipit ati on
kinetics with tri angle and tet rahedron order correct ions can be seen on the steady-state
nucleati on rate (Fig. 7): without th ese correct ions p I is about two t imes higher than
when these correct ions are included .

In classical theory of nucleation, the stea dy-sta te nucleation rat e is given by the
expression [44],

J st N. Zf3* ac: ( )= 0 exp - kT ' 27

where No is t he numb er of nucleat ion sites, i. e. th e numb er of lat ti ce sites (No = 125000
for Monte Carlo simulat ions), f:>.C* is th e nucleati on barr ier and correspo nds to the free
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Figure 6: Kineti cs of precipit ation for a nominal Zr concentration C~r = 8 at. %: evolut ion wit h
t ime of t he number Np of precipitates in t he simulatio n box, of precipitates average size < i > p , and of
Zr concent ration in th e solid solut ion. Full and dotted lines are respectively for th e set of par ameters
with and with out order correct ions on t riangles and tetrahedrons.

energy of a precipitate of crit ical size i*,

t::.G* = ~ (a
2u)

3
3 t::.Gn2 '

Z is th e Zeldovit ch fact or and describes size fluctuat ions of precipitat es around i*,

(29)

and f3* is th e condensat ion rate for clusters of criti cal size i*. Assuming th e limit ing
step of th e adsorption is the long range diffusion of Zr atoms in th e solid solution, th e
condensat ion ra te is [44)

f3* = 8 a
2a

D z r C O (30)
tt t::.Gn a2 Z r '

Zr diffusion coefficient is obtained from our measure of Onsager coefficients in th e
metastable solid solut ion (chap . 4.). Assumin g that vacancies are at equilibrium (/1v =
0), its expression is [35- 37)
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Figure 7: Evolution of t he steady-state nucleation rate i » wit h the nominal concentrat ion for
T = 1000 K. Full and open symbols are respect ively for the set of parameters with and with out order
correct ions on triangles and tetr ahedrons. The full line corresponds to th e nucleation rate predicted by
classical th eory of nucleation with a2u = 64.1 meV and th e dotted line with a2u = a2u lOO = 57.0 meV.
J" is normali zed by th e number of lat t ice sites in th e simulat ion box, No = 125000.

We obtain the thermodynamic factor {)j.1.Zr /{)C~r using CVM-T O calculat ions. This
factor is th e same with or without order correct ions on tri angles and tetrahedrons.
Th erefore, the only difference these corrections induce on Zr diffusion arises from L z rz r .

In classical the ory of nucleation, the diffusion coefficient entering in the expression 30
of the condensa tion rate is only a scaling factor for time and does not have any other
influence on kinetics. As a consequence the steady-state nucleation rate varies linearly
wit h Zr diffusion coefficient as it clear ly appears when combining equat ions 30 and 27.
Th us small variat ions of l- z-z, with the set of par ameters used do not allow to explain
the difference of the nucleat ion rate: with order corrections, l- z-z- is far from being
half th e value it is with only pair interactions (Fig. 2). Thus slowdown of precipitation
kinetics is not due to a slowdown of Zr diffusion.

One possible explanat ion would be a difference of the interface free energy (T . pt
is really sensitive to this parameter and one only needs a small decrease of (T to obta in
a higher nucleat ion rate (see on fig. 7 the decrease of J" when a2

(T is going from 57.0
to 64.1 meV). Such a decrease would explain too why precipitat es have a bigger size
with only pair interact ions. At T = 0 K, we obt ain the same interface energy for all
directions considered with the two sets of parameters , but at finite temperature the
configura t ional entropy could lead to a difference of interface free energy. Nevert heless,
thi s needs to be confirmed, by CVM calculat ions or using th e Cahn-Hilliard meth od [46)
for inst ance. Another possible explanat ion to underst and the different kinetic pathw ays
would be a different mobility of small clust ers with the two sets of parameters . But
this would be quite surprising, as we do not expect small clust ers to be really mobile
because of the repulsion between vacancy and Zr solute atoms.
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6. C ONCLUSIONS

We built an atomistic kinet ic model for Al-Zr binary system using ab-init io calcu
lat ions as well as experimenta l data. So as to be as realist ic as it should be at this
atomic scale, this model describes diffusion th rough vacancy jumps. T hanks to ab
init io calculations we could improve usual th ermodynamic descriptions based on pair
interactions and incorporat e multisite inte ractions for clusters containing more than
two latt ice points so as to consider dependence of bonds with th eir local environment .

At temperat ures lower than 1000 K, these energetic corrections due to local order
do not modify thermodyna mics: the phase diagram does not change when one does not
consider these order correct ions. For higher temperatures t hey lead to a stabilization
of the ordered st ructure Lh

Concerning diffusion in the solid solut ion, these order correct ions on first nearest
neighbor t riangle and tet rahedron do not really change the Onsager mat rix, and thus
diffusion cha racterist ics. Th ey just lead to a slight slowdown of Zr diffusion in the
metast able solid solut ion. When looking at higher temperatures, the slowdown of Zr
diffusion is more important .

For precipitat ion, kinetics are slower with these interacti ons. Th e slowdown is too
important to be relat ed to the small decrease of Zr diffusion in the metast able solid
solut ion at the same temperature. One possibility would be a change of configurat ional
entropy cont ribution to interface free energy.
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A D ETAILS OF AB-INITIO CALCULATIONS

Ab initio calculati ons were carr ied out using a full-potent iallinear-muffin-tin-orbital
(FP-LMT O) meth od [17- 19J in the version developed by Methfessel and Van Schilf
gaa rde [47]. Th e basis used contained 22 energy independent muffin-tin -orbitals (MTO)
per Al and Zr site: three I( values for the orbitals s and p and two I( values for the or
bitals d where the corresponding kinetic energies were 1(2 = 0.01 Ry (spd) , 1.0 Ry (spd),
and 2.3 Ry (sp). A second panel wit h a basis composed of 22 energy independent MTO
with the same kinet ic energies was used to make a correct tr eatm ent of the 4p semicore
st ates of Zr. The same uniform mesh of points was used to make th e integrati ons in
th e Brillouin zone for valence and semicore states. Th e radii of t he muffin-tin spheres
were chosen to have a compactness of 47.6% for Al sites and 54.1% for Zr sites. Inside
the muffin-t in spheres, the potenti al is expanded in spherical harmonics up to I = 6
and in the interst iti al region spherical Hankel functions of kinetic energies 1(2 = 1 Ry
and 3.0 Ry were fit ted up to I = 6. Th e calculations were performed in the generalized



gradient approximat ion (GGA) [48,49J and the parameterization used was the one of
Perdew et al. [50].
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ABSTRACT

The interdiffusion at 1293 "C between two multicomponent Ni-base superalloys,
Rene-Nd and Rene-No, was assessed by measuring the composition vs. distance curves
and by comparing the measured curves to predictions obtained using a diffusion mobility
database recently published by Campbell et al. (Acta Mat.50 (2002) 775-792) . Although
the diffu sion database was constructed primarily from binary diffusion data , the
extrapolation to the multicomponent systems gave good results in the prediction of the
measured composition vs. distance curves . In addition, the location of the Kirkendall
porosity on the Rene-Nd side of the diffu sion couple was successfully predicted. This
initial success points to the suitability of the general approach to the development of
diffusion databases and to the desirability for additional database refinements including
possible efforts from the first principles community.

INTRODUCTION

Diffu sion data is needed for quantitative predictions of many materials processing
and phase transformation models. In the area of superalloy s alone, examples are
abundant. The calculation of solid diffu sion during solidification is required to predict
microsegregation and the amount and type of second phase particles. Diffusion data is
also required to predict incipient melting temperatures during reheating for solution
treatment and to determine "( size distributions during aging or cooling . The prediction of
the phase sequence during transient liquid phase bonding and during the processing and
exposure of thermal barrier coating s also requires multicomponent diffu sion calculations.

Recently, there has been some effort to develop multicomponent diffusion mobility
databases for the FCC phase of Ni based alloys!" using the formali sm put forth by
Agren4

•
5 and Andersson and Agren6

• These databases are developed to reproduce
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measured tracer, intrinsic and chemical diffusion data in binary and ternary systems and
to permit extrapolation to higher order systems. The development and utilization of a
mobility database relies on the pre-existence of a separate thermodynamic database for
the phases of interest. The thermodynamic database provides the necessary
thermodynam ic factors to convert from chemical potential gradients to concentration
gradients.

A brief summary of the diffusion formalism of Agren4
,5 and Andersson and Agren"

as applied to a disordered substitutional solid solution is useful. Diffusion is assumed to
occur by a vacancy exchange mechanism, in which the equilibrium vacancy
concentration is maintained . The partial molar volumes of the substitutional species are
assumed to be equal. For a given phase, the fl ux of species i in the r-direction in volume
fixed frame of reference is given by

n-l _ Bc
Ji=LD;_i

i . 1 0=
(I )

where Cj is the concentration ofspeciesj, species n is the dependent (solvent) species , and
15; is the interdiffusion coefficient. The interdiffusion coefficient , also known as the
chemical diffusivity, can be expressed as the difference between the intrinsic
diffus ivities.

(2)

The intrinsic diffusivities, Dij, are defined in terms ofthe atomic mobility, Mp. as

(3)

where the partial derivat ive of the chemical potential, j.Jp, with respect to the mole
fraction, Xi, defines the thermodynamic factors, which can be calculated usinf an
appropriate multicomponent thermodynamic database , such as those by Saunders and
Kattner 8 It should be noted that the thermodynamic factors must be evaluated in the
form !1kCXj, X2, ... x.) where n is the dependent species.

The atomic mobility , Mp , of species p in a given phase is both composition and
temperature dependent.

(
b.Q' )M =0 _I_ exp -_P

P P RT RT
(4)

where 0 p represents the effects of the atomic jump distance (squared) and the jump
frequency and has the units of m2/s. The variable b.Q; is the diffusion activation energy
of specie p in a given phase with units of (J/mol) . The variable R is the gas constant is
and the temperature , T, is in Kelvin. As b.Q; and 0 p can be combined into one
parameter, it is customary' to let 0 p equal I and only treat the temperature and
composition dependence of b.Q;. Agren and co_workers3

,6,9-12 expressed the
composition and temperature dependence of each b.Q; in terms of a Redlich-Kister13

polynomial , as seen in eqn (5),

b.Q; = LxiQ! + LLxqxiL kAi'li(xq-xJ, (5)
j qj>q k
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where theQ/ and the kA,qj are linear functions of temperature. The expansion of the
composition dependence in terms of a Redlich-Kister13 polynomial is similar to the
CALPHAD approach14

,15 used in the development of the thermodynamic databases. Note
for a given diffusing species, i, that if all Q/ s are equal and At equals zero, then tJ.Q;
and the corresponding Mp are not concentration dependent.

Optimized mobility functions2 were obtained using the PARROT16 optimization
code to evaluate the composition and temperature dependence of tJ.Q; using the available
experimental diffusion tracer, intrinsic, and chemical diffusivity data. The experimental
data were weighted giving preference to the tracer diffusivity, D;, data, which are
independent of concentration, as seen by equation (6)

(6)

The current approach requires defining metastable end-member diffusion mobilities, such
as the self-diffusion in fcc-W. Determination of these end-member quantities follows
approaches similar to those used to determine the lattice stabilities of the metastable
thermodynamic quantities of the elementsI4

,15. This determination of diffusion activation
energies for metastable end-member phases enables the extrapolation to higher order
systems where diffusion data may be limited. Presently, the only available check on
these assessed values is the application of a diffusion correlation, which states the
following for pure FCC metalsI7

-Q '" 17 (7)
RTM

where Q is the diffusion activation energy, TM is the melting temperature. For Ni-W the
activation energy, Q, for fcc-W was optimized to be -3 11420 J/mol and the metastable
fcc melting temperature is 2229 K. This gives an acceptable ratio equal to 16.8. First
principles calculations of these metastable quantities would be useful.

To examine the validity of this diffusion mobility database, diffusion simulations are
compared to results from an experimental multicomponent diffusion couple profile.

EXPERIMENTAL AND COMPUTATIONAL PROCEDURES

Rene-Nd and Rene-Nfi, first-generation and second-generation superalloys
respectively, were chosen as the two sides of the diffusion couple. The sample geometry
of each half of the diffusion couple consisted ofa 2.25 cm square with a thickness of6.35
mm. The diffusion couples were pre-bonded at 1277 °C under a load of 180 N for 2 h.
After bonding, the diffusion couples were diffusion heat-treated at 1293 °C for 10 hand
100 h in a vacuum furnace and gas-cooled. The 1293 °C temperature was chosen to
ensure that both superalloys would be in the single phase y region. The diffusion couples
were characterized using scanning electron microscopy and microprobe analysis using
standard ZAF correction and elemental standards. Gas cooling of the diffusion couples
from 1293 °C produced coarse y' precipitates (see Figure I.) which resulted in significant
scatter in the experimental composition profiles. This scatter is due to the chance of
measuring the composition of either the y or y' phase, while performing the line scan.
Therefore, the diffusion couples were re-heated for I hr at 1293 °C and water quenched to
reduce the experimental scatter. The compositions of initial Rene-Nd and Rene-No were
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determined by an average of ten microprobe measurements obtained near the ends of the
diffusion couples . The values are given in Table 1

Table I. Alloy Percent Mass Fraction Compositions. Balance Ni.

Alloy Al Co Cr !If Mo Nb Ta Ti Re W

Rene-N4 4.2 3 7.79 10.29 -- 148 0.47 4 64 3.46 -- 6.38

Rene-N5 6.18 7.72 7.48 01 5 1.4 -- 7.13 -- 285 6 38

Figure I. High and low magnification back scatter images of 10 h Rene-N'i/Rene-Na diffusion couple gas
cooled from 1293 'C showing the precipitation of y'. This coarse structure was eliminated with a post
diffusion heat-treatment that included a rapid quench.

The experimental diffusion couples were simulated using the 1-0 finite-difference
diffusion code, mCTRA'18

, in conjunction with the thermodynamic database, Ni-Data7
,

and the Ni diffusion mobility database of Campbell et ae. The simulation considered only
single phase y with a planar interface between Rene-Nd and Rene-No. A 200-point
geometric grid, which consisted of a higher density of grid points at the center , was used
to describe the 6.35 mm couple . The calculations were done with concentration
dependent diffusion coefficient matrices as described in eqns. (1-5). The matrices i5: ' for
the initial compositions are shown in Tables 2 and 3.

. The use of any commercial product does not constitute an endorsement by the National
Institute Standards and Technology.



Table 2.lnterdiffusion Coefficients for Rene-Nd (xlO-14m2/s) at 1293 °C

Al Co Cr Mo Nb Ta Ti W
AI + 119.5 + 13.93 +34 .83 +34 .34 +42.43 +5 1.50 +49.5 1 +53.22
Co -11.37 +17.00 -8.25 -5.67 -5.55 -1.83 -7.10 -9.69
Cr -4.26 -5.3 7 + 13.67 -3.21 +8.93 +9.91 +8.25 +2.49
Mo -8.33 -0.280 -0.426 +7.57 -0.55 -0.36 -0.17 -0.45
Nb +0.3 1 +0.25 +0.66 +0.27 +24.05 +0.74 +0.85 +0.31
Ta -0.68 +0.33 +0.53 0.24 +0.26 +0.76 +0.50 +0.23
Ti +1.63 +1.35 +4.94 +4.94 +6.25 +6.57 +23.62 +5.41
W -1.81 -0.62 -0.55 -0.60 -1.22 -0.83 -0.70 +3 .40

Table 3. Interdiffusion Coefficients for Rene-N5 (xlO-14m2/s) at 1293 °C

AI Co Cr Hf Mo Re Ta W
Al +93.16 + 13.92 +33 .46 -6.51 +33.42 +25.44 +48.63 +50.87
Co -6.51 +27.22 -8.56 -27.64 +4.95 -5.11 +3 .87 -9.21
Cr +4.51 -4.23 +21.02 -6.25 -0.22 -0.78 + 13.8 1 +6.89
Hf +0.86 +0.07 + 1.70 +262.1 + 1.52 +0.87 +2.37 + 1.84
Mo -0.35 -0.30 -0.30 -1.91 +7.71 -0.25 -0.13 -0. 19
Re -0.75 -0.32 -0.36 -2.59 -0.25 +0.08 -0.51 -0.32
Ta -0.03 +0.33 +0.98 -4.17 +0.64 +0.86 +7.75 +0.87
W -1.18 -0.57 -0.54 -4.51 -0.39 -0.11 -0.76 +0.59

RESULTS

The experimental diffusion couples were compared to the diffusion simulations
using both the composition profiles and the location of the porosity.

To compare the experimental composition profiles with the calculated profiles, the
experimental Matano interface was determined by an averaging process. For three of the
elements with large concentration differences (Cr, Re, and Ti), the Matano interface was
independently located. With respect to the average position, the coordinates for Cr, Re,
and Ti profiles for the 100 h treatment were -IS 11m, -111m and +17 urn, respectively.
These variations are small compared to the large diffusion distances.

Figure 2 shows the agreement between the experimental and calculated diffusion
profiles after 10 h and 100 h at 1293 °C. In general, the calculations are in good
agreement with the experiments; however, there are some discrepancies especially in the
Cr and Re profiles. In the Rene-Nd, the Cr diffuses more slowly than predicted and the
Re diffuses more rapidly than predicted. To further evaluate the results, individual
profiles are plotted as a function of distance over the square root of time (z/vt), as seen in
Figure 3. (Note the composition differences in the Co, Mo, and Hfprofiles are within the
experimental error of the measurements and thus, the profiles are not evaluated.) For the
given length scale and times of 10 h and 100 h for the AI, Cr, Ta, Ti, Re and W profiles
the simulated profiles are independent of time.

The overall agreement is confirmed by a simple error analysis for the six profiles in
Figure 3 at 100 h. This simple error analysis, shown in Table 4, consists of calculating
the difference between the simulated and experimental value at each grid point, summing
the differences, and then averaging over the sum of the differences by the total number of
grid points. The W profile for 100 h had the smallest average error (1.8 %) and the Re
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profile for 100 h had the largest average (5.8 %). These errors are within the
experimental scatter. Both 10 h and 100 h exper imental Ta profiles show non-monotonic
behavior, which is also observed in the calculated profiles but not to the same magnitude.

Table 4. Error Analysis of 100 h composition profiles
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Figure 2. Calculated and experimental composition profil es for Rene-Nd/R ene-Nf diffusion couples after
10 h and 100 h at 1293 "C.
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Figu re 3. Composition profiles plotted as function of distance (urn) divided by the square root of time (s).

The location of porosity formed in the experimental couples can also be compared
to diffusion simulations. In the lattice-fixed frame of reference, the sum of the net atom
fluxes equals the vacancy flux . The negative gradient of the vacancy flux give the
number of sinks (sources) necessary to maintain local equilibrium. The expected location
ofKirkendal porosity is given by the position of the largest negative value ofthe
gradient, as demonstrated by Hoglund and Agren'". Figure 4(a) shows this calculation
for the Rene-Nd/Rene-Nf couple. The locat ion of maximum porosity is predicted to be
at 65 urn to the left of the Matano interface on the Rene-Nd side of the couple. Porosity
is observ ed on the Rene-Nd side of the interface of the experimental couple as shown in
Figure 4(b). Thus, the diffusion simulation and experiment are in qualitative agreement.
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CONCLUSIONS

Experimental diffusion data obtained by isothermal anneals of diffusion couples
made of Rene-Ns and Rene-Nf in the single phase y region were compared to
calculations using a multicomponent diffusion mobility database. The results compare
favorably. The calculations also correctly predict the location of Kirkendall porosity. This
initial success points to the suitability of the general approach and the desirability of
further database refinements.
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Abstract

Curvature effects are shown to dist inguish carbo n nanot ubes from graphit ic
car bon in qua lita t ive ways. In par t icular , bonding geomet ries and magnetic
moments are found to be sensit ively dependent on curvat ure. Fur th erm ore,
our work also reveals t hat use of full orbital basis set is necessary for realisti c
calculat ions of quantum conductance of carbon nanotubes.

1 Introduction

Since th e discovery of carbon nanotubes by Iijima.ll] a rich variety of carbon nan
otube morph ologies have been experimentally observed. The carbon nanotubes
consist of rolled-up graph ene sheet with various chiralities. The unusual electronic
properti es of single wall carbon nanotubes (SWCN) show great promise in their po
tential for use in molecular elect ronic devices. Drawing on the similar ities between
graphite and SWCN, many authors have attempte d to extrapolate known result s
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for graphite for use in the case of SWCNs. In th is work we investi gat e th e use
fulness and limit ati ons of such ext ra polation. We also show that use of full basis
set enables obt aining structura l relaxat ion and quantum conductiv ity calculat ions
using the same Hamil tonian , thereby providing consiste ncy in predicting physical
prop ert ies of real nano-syst ems using theoretical simulatio ns.

One of the most efficient and, conseque ntly, very popular calculat ional scheme
for studying the electronic and tr ansport prop erties of SWCNs is the use of tight
binding (TB) Hamiltonian with only one rr-electron orbital (or pz) per atom. This
approximatio n has been shown to accurately reproduce the band structure of the
graphene layer and/or th at of gra phite near the Fermi energy, EF . Th is approxi
mati on also successfully reprodu ces th e band structure of the infinit e SWCNs near
EF. Following this success, it was argued th at the effect of the a-bond and, th ere
fore, the use of an enlarged basis functions set is of no practical significance when
calculating physical quant ities for SWCNs. However, careful ab initio calculations
and semi-empirical ones employing the TB approximati on have revealed that the
one n-orbital approximation is not sufficient enough if accurate results are desired .
This is because the curvature of the carbon nanotube wall affects the C-C hopping
int egral. As a result, curvature effects are found to be responsible for gap opening
at EF in achiral met allic SWCNs. [2]Th e importance of the s and pre-hybridization
was also emphasized by Choi et al,[3] who att ributed the splitting of th e ·rr and rr*
bands to this re-hybridizati on . Furthermore, it was also found th at th e a - rr repre
sentat ion is very important for describing SWCNs with point defects (i.e. SWCNs
exhibiting bent parts, vacancies, adsorbed gases on th eir walls etc) .[3, 4J

In addition to th e basis-set problem, it should be noted that band st ructure re
sults (as well as result s derived from th ese, e.g., tr ansport da ta) are usually obt ained
by considering tubes of infinite length. The infinite-tube results, however , are quite
different from th ose obtained for tubes of finite length.[5, 6, 7J Taking into account
th at realistic calculat ions have to be performed for tubes of finite length and that ab
initio methods are not easily applicable to systems consisting of a moderate number
of atoms ("" 1000 atoms are necessary for simulat ions of finite tubes), it can be seen
th at a pract ical calculat ion would require use of semi-empirical meth ods such as the
TB.

It should also be noted th at full symmet ry unconstr ained st ruc tural relaxation
is essential before the theoretic al determination of any physical properties. In quan
tum mechanical simulatio ns, use of a Hamil tonian with only one rr-elect ron orbital
is unt enable for dynamical relaxations even for graphite . Most authors attempt
to circumvent this problem by using classical many body potenti als for obtaining
relaxation while st ill making use of th e z- -electron orbital approximation for conduc
tivity calcul ati ons. Use of two completely different methods for the same syste m,
can introduce inconsistency in th e pr ediction of physical properties.



In th is report we show that graphene (or graphite) result s cann ot be simply
extrapolated and applied to curved systems such as SWCNs, C60, other fullerenes
and fullerites etc . Furthermore, it will be shown that th e t ight-binding Hamiltonian
using th e full basis set can be efficiently incorp orat ed into computa tional schemes
like th e surface Green 's funct ion mat ching (SGFM) meth od to obtain transport
prop erties of ideal and defected SWCNs while also providing accurate structura l
relaxation for the same syst ems.

2 Tight-Binding Molecular Dynamics Methodology

In thi s section we give brief overviews of our the oret ical simulations met hods.
Th e details of our tight-binding molecular dynamics scheme can be found in

Refs. [8J . Here we give a br ief overview.
The total energy U is written in its general form as a sum of several terms, [8]

U = Uel + Urep + Uo,

where Uel is the sum of the one-electron energies En for the occupied states:

(1)

(2)

In the tig ht-binding scheme En is obtained by solving the characteristic equation:

(3)

where H is the Hamiltonian of the system.
The Hellmann-Feynman theorem for obtaining th e electronic part of the force is

given by[8],

oEn = c nt oHcn. (4)
ox . ox

Th e tot al energy expression also derives cont ributio ns from ion-ion repulsion inter
actions. Thi s is approximated by a sum of pairwis e repul sive terms and included
in Urep • This sum also conta ins th e corrections arising from th e double counting of
electron-electron interact ions in Ued8]. Uo is a constant that merely shifts the zero of
energy. The contribut ion to the total force from Urep is ra ther st raightforward. One
can then easily do molecular dynamics simu lat ions by numerically solving Newton 's
equat ion,

rflx oU
m dt 2 = Fx = ox

to obtain x as a function of time .

(5)
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Figure 1: The two stable bind ing sit es for a single Ni on graphite; (a) hole sit e and
(b) at op site .

3 Interaction of Transition Metal Atoms with graphite,
C60 and SWCNs

In thi s sect ion we will demonstrat e how curvature affects the bonding prop ert ies of
TMAs on low dimension carbon surfaces.

3 .1 Interaction of Ni and V with graphite

In the present work, the grap hite is simulated by a portion of a graphene sheet
consisting of 128 carbon atoms. Thi s size was found to be sufficient for ensuri ng
convergence of the results with th e clust er size. The relaxation of th e transition
metal atom on the graphene layer is simulated with our TBMD computationa l
method . Three distinct sit es were considered for a single transition metal atom
(Ni or V) on graphite, nanotube wall and on a C60 molecule. Th ese consist of a Ni
ato m (i) directl y above a C atom (at op site), (ii) above th e center of an hexagon
(hole sit e) and , (iii) over a C-C bond (bridge site ).

At the atop site, the Ni at om indu ces a significant relaxa t ion in the gra phene
layer th at moves the C-atom (lying just beneath the Ni ato m) below the graphene



(b)

Figure 2: The two stable binding sites for a single Ni on carbon nanotube wall; (a)
atop site and (b) bridge site.

plane. The Ni atom bonds in addition to the C atom beneath it and to th e three
next nearest C-atoms (Fig . la) . At this position, the Ni atom looses 0.98 e of charge
to the carbon atoms and also exhibits a magneti c moment of 0.3 /loB .

At the hole sit e (Fig. Ib), the Ni forms six bonds with the six neare st carbon
atoms on relaxation. The strong Ni-C int eraction s results in considerable distortions
in the planar structure beneath th e Ni at om. Th e Ni atom exhibits a magnetic
moment of 0.29/loB and looses char ge to the carbon atoms (approximately 0.44 e).
The hole site was found energetically more st able th an th e atop sit e.

Similarly, it was found that the adsorption of V was accompanied by a consid
erable distortion of the graphene sheet, espe cially for C atoms in the neighborhood
of the V atom. As in the case of th e Ni atom, the hole sit e was found th e most
stable. Th e total energies for the fully relaxed geometri es were obtained using ab
initio calculations and show the ordering ; Eho1e < Eatop . At each adsorption site, the
V atom exhibits a magnetic moment and there is appreciable charge tr ansfer to or
from the graphite atoms. However, our results do not support the high spin st ates
for V on graphite reported recently.[9, lOJ Thi s disagreement may be attributed to
surface relaxation effects which have been completely omitted in references [9J and

[lOJ.
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Th ere was no bonding found for both Ni and V on the C-C bridge site of graphite .

3.2 Interaction of Ni and V with C60 and SWCNs

In the case of inte raction of Ni with the C6Q and the SWCN, only the atop and bridge
sites were found to be stable on molecular dynamics relaxation. Th e hole site (i.e.
above th e center of a hexagonal ring of car bon at oms) is found to be unstable for Ni
on the nanotube wall. Instead , a Ni atom, initially placed at a hole site, moves and
relaxes on an atop site . This is in st riking cont rast to th e case of the interaction of
Ni with graphi te where the hole site was found to be th e most stable.

At the atop site (Fig. 2a) the Ni at om forms three Ni-C bonds (1.79, 1.95, 1.95
.4) and gains electronic charge ('" 0.05 e) from th e carbon at oms while displaying a
magneti c moment of 0.15j.tB.

The Ni atom relaxed at th e bridge site (Fig. 2b) forms bonds of length 1.76 .4
each with the carb on atoms. There is a gain of electronic charge of magnitude 0.179
e. The magnetic moment on th e Ni atom is O.lOj.tB. Th e atop site is energet ically
more favorable by 9.1 eV over the bridge site.

For V on a C60 or on a SWCN, we find that V binds at hole, at op, and bridge
sit es, while the total energies for thes e sites satisfy the relation Ehole < E atop <
E bridge . Note th at for Ni, the hole site was found to be unstable , while the atop
site was the most stable on C6o.[11] The only similarity here is that th e bridge site
now becomes stable for both V and Ni as a result of re-hybridizat ion due to the
sub strate-curvature. It is also worth noting that our results for V on both graphite
and C60 indicat e th e preference for V to act as an TJ6 ligand in cont rad ist inction
with Ni which acts as an TJ2 or TJ3 ligand [11, 12}, in agreement with th e experimental
findings for both Ni and V int eracting with C6Q.[13, 14, 15, 16, 17J The V atom on
th e C60 exhibits a net charge and magnetic moment that depend on th e adsorption
sit e.

Th e qualitatively different behavior found in the case of V and Ni in th eir inter
actions with graphite and the C6Q can be at tributed mainly to the different occupan
cies of the adsorbat e d-orbitals. Another fact or contribut ing to this is the variat ion
of the hybridizati on st rength between th e adsorbate d-orbitals and the p.-orbitals
of gra phite (the z-axis is perpendi cular to the surface) . While the occup ancy of
th e d-orbital s depends on the adsorbate at om and is affected by int er-atomic and
intra-at omic charge transfer effects , the hybridiz at ion st rengt h depends on the point
group symmetry of the adsorpt ion site (i.e., C 6v for hole; C3v for atop, and C 2v for
bridge sites) , the surface relaxation near the adsorbate , and th e adsorbate-subst ra te
dist ance. Presence of all th ese factors make a meaningful quantitat ive deduction of
the contribution of each single factor to the interaction between a 3d-element and



th e graphite (or the C60) seem qui te difficult .
The bond ing differences found for Ni and V on a SWCN, lead us to believe that

these may also manifest as the differences in the contact resistances when these
transit ion metal atoms attach themselves to SWCN waIls.[18)

4 Quantum Conductivity of SWCNs

In this sect ion we describ e a state-of-the-art formal ism to efficient ly calculate th e
quantum conductivity of SWCNs and present results using this formalism and com
par e th em with available experiments . We also show th at inclusion of full basis set
enables st ructural relaxati on and quantum conductivity calculatio ns using the same
Hamiltonian, providing a consist ent app roach for th e tr eatm ent of SWCNs.

4 .1 The Surface Green's Function Matching Method

Thi s is an Embedding techniqu e based on th e work of Inglesfield[19) as extended by
Fisher.[20] We consider th e case of a finite length SWCN connected at both ends
to semi-infinite met allic leads. Within an embedding scheme, these metallic leads
take the place of a host lattice in which th e nanotube is assumed to be embedded.
We th en construct a boundary surface S which separat es th e embedded syst em
(tube) from th e host lattice (leads) . According to Inglesfield-Fisher scheme, [19,
20, 21] the effect of th e host lattice can be efficiently incorporated into the bar e
tube Hamiltonian through th e Green's function of the free host crys tal Green 's
function satisfying Dirichlet 's condit ion on th e boundary surface S. In particular , if
G(rj , r2; E) is the Green 's function of th e host satis fying the Dirichlet 's boundary
condit ion on S, then the host- tube interac t ion, Es (r I, r2;E) , (r j, r2, defined on S ),
can be evaluated from the following formula:

(6)

where a/an denotes the derivative norm al to S.
Here Es (r j, r2;E ) is the electron self-energy (SE) term th at describes the lead

tube int eraction if G(r , r ' : E) is taken to be the Green's function for the unp erturbed
lead (s). Th e probl em of const ruct ing th e lead-tube interaction, therefore, becomes
a problem of const ructing th e Green functio n of a semi-infinite metal-lead satisfying
th e Dirichlet 's condition on the lead-tube interface . Thi s state-of-t he-ar t embedding
scheme, thus, allows a realist ic descript ion of th e lead-tube inte raction.

In ord er to utili ze the Inglesfield-Fisher[19, 20, 21) embedding approach to cal
culate th e tube-lead interact ion in the present situat ion (SWCN of finite length
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Figure 3: A carbon nanotube Y-ju nction consisting of a (14,0) tube branching into
two (7,0) tubes with an acute angle between th em. Th e struct ure contai ns 704
carbo n atoms with six heptagons clustered in the middl e and no pentagons. The
dark-colored atoms are th ose participat ing in the metal-tube interaction.

connected at both ends to two semi-infinite met al leads), we take each met al lead
as a semi-infinite met al and calculate its Green's function utilizing the recently pro
posed method of Sanvito et al.[22] From this Green 's funct ion, we then calculate
the tube-lead interac t ion according to Eqn . 6. This is repeated for the other lead
as well.

According to the embedding scheme employed here, the SE given is a local
energy-dependent inte raction act ing only along the boundary surface S. Thi s means
th at Es(E ) will affect only the TB parameters of those tube atoms that lie on the
boundary surface S. By repeat ing the same procedure, as described above, for every
metal-lead, we can const ruc t th e SE's that will act on all t ube-atoms th at are in
contact with all met al-leads.

We let EL = Edrs, r ' s ; E , \Ib), and ER = ER(rs , r ' s ; E ,Vb), with r s, r ' s ta ken
on the boundary surfacers), be the self-energies due to the left and right metal-t ube
inte ractions, respecti vely, und er th e bias-voltage Vb. In terms of EL and ER , the
Green's function , Ge, of the conduct ing tube is obtained as follows[24, 25, 26J:

(7)
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Having evaluated Ce, th e tr ansmi ssion funct ion T (E) can now be obtained from
the following equati on [241 :

(8)

where
(9)

Having obta ined T (E,vb), we proceed with the evaluation of the cur rent-voltage,
I-V, characterist ic of the tube ut ilizing the following formula for calculat ing th e
curre nt:[24)

2e roo
I (Vb) = h }- 00 T (E , Vb) [h(J.LL) - h (J.LR)] dE , (10)

where J.Li = EF - eV;; i=L,R, where VL and VR are appli ed volt ages on th e left and
the right met al leads, respect ively, e>Ois the electron charge, EF th e Fermi energy
of the free tube and fE (J.L) t he Fermi distribution . In th e following we put Vb=VL-VR
to be the bias-voltage.

Due to the lack of self-consiste ncy, the bias-voltage Vb cannot be tr eat ed as an
independent parameter of the syst em; th e distribution of the voltage drop along th e
tube and th e actual values of VL and VR relativ e to the Fermi energy are not strict ly
defined. Following Tian et al,[27] we int roduce a division par ameter TJ and set

(11)

(12)

By pu tting TJ = 0.5 we achieve a symmet ric division of Vb between the two contacts
and we use this feature in all our subseq uent applications in the present work.

In th e tight-bind ing formulatio n used in the present work both the Hamiltonian
and the Green 's functions are each taken to be NatNorbXNatNorb matrices, where
Nat is the numb er of atoms in the embedding subspace and Norb is the number
of orbitals on each atom. Contrary to most previous works on quantum transpo rt
which use only one 7r-electron orbital per ato m, we use Norb=4 for semiconductor
atoms that includes I-s and 3-p orbitals. Additionally, we use Norb=9 for tra nsition
metal atoms (taken to be the mat erial of the leads) th at includes I-s , 3-p and 5-d
orbi tals. The use of all these orbitals is necessary in order to allow for the cor
rect description of the inter-atomic inte ractions in semiconductor, tr ansit ion metal
and their hetero-syst ems[l1 , 12, 28, 29J. Furthermore, the Hamil tonian used for
performing conductivity calculatio ns is the same Hamil tonian used for performin g
molecular dynamics relaxa tion of all systems on which conduct ivity calculat ions are
to be performed. .
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Figure 4: Th e calculated I-V cur ves for the Y-juncti on shown in Fig . 3 showing
asymmetric behavior and rectificati on. The curr ent directions and th e voltages on
the three arm s are also indicated in Fig . 3. Th e voltage configurat ion for thi s plot
has been set to V2=V3=0.OV, making it a two termin al device for enabling direct
comparison with expe riment.

4.2 Applications of the Quantum Conductivity Method

Very recently, experimentalists have succeeded in developing templ ate-based chem
ical vapor deposit ion (CVD) ,[30] and pyrolysis of organometallic precursor with
nickelocene and th iophene techniqu esjdl] th at allows for th e reproducible and high
yield fabr icat ion of carbon nanotube Y-jun ct ions.[30, 31] Th e conductance measur e
ments on th ese Y-jun ctions have shown intr insic rectifying I-V behavior at room
temperature.[31, 321

Motivated by th ese experimental works we have applied our quantum conduct iv
ity formalism in Sec. 4.1 to a Y-junction consist ing of a (14,0) tube branching into
two (7,0) tubes with an acute angle bet ween th em (shown in Fig. 3), closely resem
bling the Y-jun ctions produced in experiments [30, 31, 32J. The Y-junction shown
in Fig. 3 was fully relaxed using our t ight-binding molecular dyn amics scheme. T he
dark colored car bon atoms in Fig. 3 are in cont act with th e metal leads. All leads
are taken to be from Ni metal and the Ni-C interaction is fully incorp orated into
our tight-binding Hamil tonian used in our previous works .[33]

The I-V charac teristics for the Y-jun ct ion in Fig. 3 have been calculated using

260



our form alism[18, 341. In Fig. 4, we show the calculated curre nts in the three arms
of the V-junctions as a funct ion of th e bias voltage VI. Th e curre nt direct ions and
the voltages on the three arms are indicated in Fig. 3. T he curr ent is take n to
be positive when flowing towards the junction and negat ive ot herwise. The voltage
configurat ion for this plot has been set to V2= V3=0.OV. This setup makes the
V-junction a two termina l device for the investigation of recti fying behavior and
allows direct compar ison with the experimental results report ed by Papadopoulos
et. al.,[32J. As seen in the figure, there is a substantial increase in the current for
negative values of the bias voltage VI, while for positive values of VI the current is
negligible. The I-V characterist ics, thus , display a dist inct asymmet ry and rect ifying
behavior . This is in excellent agreement with the experimentally measur ed I-V
curve of Papadopoulos et. al.,[32J for th eir CVD grown V-jun ct ions establishing th e
validity of our formalism..

5 Summary

In summary, using tight -binding molecular dynamics simulat ions, we have demon
stra ted qualitative differences in the physical prop erti es of carbon nanotubes and
graphit ic carbon. Furthermore, we have presented an efficient Gr een' s function for
malism for calculating th e quantum conducta nce of SWCNs. Our work reveals that
use of full orbital basis set is necessary for realist ic calculat ions of quantum conduc
ta nce of carbon nanotubes. Fur th ermore, our approach allows us to use th e same
Hamiltonian to calculate quantum conductivity as well as to perform struc tura l
relaxation .
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THE BEHAVIOR OF SOLID SOLUTIONS IN GEOLOGICAL TRANSPORT
PROCESSES: THE QUANTIZATION OF ROCK COMPOSITIONS BY FLUID
ROCK INTERACTION

Bernard ouv'

IEcole nationale superieure des mines de Saint-Etienne
158 Cours Fauriel, 42023 Saint-Etienne cedex 2, France

INTRODUCTION: REACTIVE TRANSFER PROCESSES, ASSUMPTIONS FOR
MODELLING

Most of the minerals found in rocks are solid solutions that are partly similar to
alloys. In the present paper, we will not discuss the prevision of the thermodynamic
properties of solid solutions by means of physical calculations at atomic scale. We will
rather assume that these properties are known, and focus on their links with the behavior of
solid solutions at the rock scale. We will particularly study the chemical transformation of
rocks induced by aqueous fluids in disequilibrium with the rocks and flowing through their
porosity. In geological literature, one speaks of metasomatic processes to characterize the
evolution of open geological systems, in the thermodynamic sense, i.e. involving exchange
of matter with an external medium: the composition of the rock is modified. In materials
science, this would correspond to a coupling of corrosion with advection. An interesting
phenomenon may be observed: the transformation may be organized in zones or steps
separated by sharp contacts ("metasomatic zoning", Korzhinskii, 1970). Thereby, a
quantization effect happens in the sense that all the compositions are not equally likely:
some compositions may be selected by the process and others may be excluded. The
overall transformation is due to the coupling between chemical exchange and matter
transport. Through the transformation fronts, one observes sharp changes in the
mineralogical and chemical composition of the rocks (Fig. I). Within the various zones,
one can often observe continuous variations of the composition of the minerals and the
rocks. In the present paper, we will put these continuous and discontinuous variations of
the composition of the rocks in relation to the "detente"- and shock- waves of the
hyperbolic problems that are used to model the geological problems.

The model system will be composed of two phases: a solid phase, assimilated to one
solid solution of specified type, with a given number of independent degrees of freedom;
and an aqueous liquid phase containing various species. Under conditions of high
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temperature and slow fluid migration that we will consider here, the hypothesis of local
equilibrium will be taken, so that transport becomes the limiting process and kinetics are
not considered .

Figure I. The transformat ion of starting rock A, here a limestone composed mostly of calcite CaCO" by the
action of an aqueous fluid rich in Si, Fe, Mn and so on, often displays a series of zones B, C, D and so on,
with different nature and chemica l composition of solid solution minerals. Size of such systems is decimetr ic
to hectometr ic.

CONSTRUCTION OF TH E SOLID SOLUTION
EQUILIBRIUM FUNCTION ("ISOTHERM")

AQUEOUS FLUID

The first step to model a problem is to derive the isotherm function ruling the
equilibrium partition of the chemical components between the aqueous fluid and the solid.
In our approach, the solid is made up either of a binary solid solution (one independent
degree of freedom) or a three-component solid solution (two degrees of freedom) . The
isotherm function may be obtained from solid- and fluid- solution models: one writes the
equality of the chemical potentials of each component in the fluid and in the solid. The
thermodynamic prope rties of the solid and the liquid solutions are then needed . However,
the equilibrium data are often known in terms of dissociation constants for end-members of
solid solutions in equilibrium with bulk solution; we prefer to use these data rather than
those on the properties of each species in solution separately. In that case, only the ratios of
the dissociation constan ts matter . The thermodynamic validity of this approach is based on
experimental works showing that , when writing the chemical exchange of two compo nents
between two minerals and one aqueous solution, the ratio of the activities of the species in
solution is nearly equal to the ratio of the concentrations. This result makes it possible to
get rid of the question of the activity coefficients of the species in the aqueous solution. It
also allows to avoid the complete discussion of speciation , insofar as one can show that,
under additional assumptions, the preceding ratios of concentrations can be written by
making use of the dominant species (the chlorinated complexes CaCh , MnCh, and FeCh if
we discuss for example the case of a three-end-member garnet solid solution (Ca, Mn,
Fe)3AhSi30 12 reacting with aqueous so-called hydrothermal solutions under the conditions
of high temperature (450°C- 700°C) and high pressure (I to 2 Kbarj), This thus
corresponds directly to the ratio of the total concentrations of the elements concerned with
the exchanges with the solids, and which we need to compute for the isotherms. The
isotherm function allows us to reduce the number of unknowns and to gather all the
chemical equilibrium information. At high temperature, because of the properties of the
solid solution parameters , the isotherms read like Langmuir isotherms and the exchange
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process becomes similar to the adsorption process. Such an approach has been followed for
the three end-members grossular (Ca), spessartite (Mn), almandine (Fe) garnet solid
solution. The following equations allow to compute the isotherms functions; one first
considers the exchange equilibria:

talm + MnCl2 = 1spe + FeCl2

t gro + MnCl2 = 1spe +CaCl2

t alm +CaCl2 =tgro+FeC/2

(KFeIMn)

(KCaIMn)

(KFeICa)

(I )

(2)

(3)

with aim = almandin, spe = spessartite, gro = grossular and Kill, is the equilibrium constant

for the exchange reaction between i et iO' The equilibrium constants have been measured

experimentally (Gavrieli et aI., 1996; Bartholomew, 1989). They can be written as :

(4)

where Yi and xi are the activity coefficient and the molar fraction of component i in the

solid phase respectively, and C( is the concentration in the aqueous fluid, with gt = garnet.
The equilibrium constants are linked by

From equations (4) and (5), one deduces :

(5)

C~n _ C{e

xf;nyt:n - KFeIMnxf.~rf~
(6)

For sake of simplification, let us call KMn, Kc. et KFe the equilibrium constants KMnlMn

= I , KcaIMn et KFelMn respectively. One then obtains the general form of the exchange
isotherm written with molar fractions:

f C( K,xty/'
X , ==" Cf = " Kxg'y g, = F,(x ,')

L..J l "-.J Il l, ,
i = Ca, Fe, Mn (7)

If we assimilate the mineral to a regular solid solution and take for the excess energy
that given by Grover (1977), the activity coefficients read as:

-n-
y, =e 1°' (8)

with
w123

(9)a=--
nRT

where W123 is the principal parameter of the polynomial development of the solid solution
and n is the the number ofexchange sites.
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TRANSPORT OF MATTER

The second step is the writing of the mass balance of the chemical components
between the solid and the fluid during its movement within the porosity of the rock. The
balance is given by equation

where

0 , [(1- ¢)C;' + r/£/] + Div(¢VC /) = 0 i= Mn, Ca, Fe (10)

(II)

is the flux of chemical component i.. One will consider that the flux of the components is
reduced to a convection flux due to the fluid movement (no diffusion); this is justified by
the scale (metric to plurimetric) on which the phenomenon is displayed (Guy, 1988, 1993).
The porosity of the rock is q> and the velocity of the fluid in the pores is v. Equation (10)
can be simplified by making the following assumptions: monodirectional flow along the
axis Ox; homogenized Darcy velocity qiv constant; local chemical equilibrium reached in
each point, due to high temperature of the system and slow percolation velocity; solid rock
of constant and very low porosity because of the compaction.

One also makes the hypothesis that IC! =A =Cst because of the chromatographic
,

exchange between the components fulfilling the electroneutrality. Under these assumptions
and with the isotherm data obtained in the first step, we obtain an hyperbolic system of
chromatographic type in the case of a three-component solid solution and with the change
of variables r = ¢VA.t, the preceding system reads as (Sedqui, 1998; Sedqui and Guy,
2001):

(12)

with B = Vo/n where Vo is the average molar volume of the solid solution; the molar
fraction and the concentration in the solid phase are related by C'i = x'/Vo. Flx/) are the
isotherm functions given by equations (7).

For our problem, for the relevant value of solid solution parameters, the eigenvalues
Ak of the hyperbolic system are real and distinct. The system obtained is then strictly
hyperbolic. Moreover, the Ak are positive. This means that the propagation of the reactional
front is made in the same direction as the movement of the fluid, as it is rational from the
physical point ofview.

EVOLUTION WAVES AND NUMERICAL SIMULATIONS

The theory of hyperbolic systems makes it possible to solve the problem known as
the Riemann Problem (R.P.) where one seeks to connect two constant states (see also
Glueckauf, 1949). It corresponds to the transformation of an homogeneous rock which is
the downstream medium (first constant state) by a fluid of constant composition (upstream
medium, second constant state). Because the fluid circulates from the left to the right, the
downstream medium is said on the right ("a droite", d) and the upstream medium is said on
the left ("a gauche", g» . The theory shows that the solution of the R.P. is made of 3
constant states: in addition to the two states (g) and (d), another constant state
(intermediate, i) appears, which is connected to (g) and (d) by shocks, "detentes" or contact
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discontinuities. The restnction of the evolution along curves in the composition space
results from the condition known as the coherence condition; this one is a consequence of
the mass balance governed by the equality of the ratios tiC f

/ tiC' for all the components
(where c' and C' are the concentrations in fluid and solid phases and ti is an infinitesimal
or finite variation). The character given to a portion of curve ("detente" or shock) depends
on the relative position in space (upstream or downstream) of the states to connect to the
point pivot (d) or (g) and on the velocities of these states along the curves.

The first step to construct the solution of the R.P. consists in determining the curves
of the k-waves (k = I, 2) containing (g) and (d). The following step consists in connecting
the states (g) and (d) by portions of wave curves; this allows to determine all the
intermediate states; the various cases are determined according to the relative situation of
(d) compared to (g). According to the rule: "wave-I then wave-2 " and of the nature (shock
or "detente") of the wave, one represents on figures I, the possible evolution curves; they
must respect the law of increasing velocity along the "detentes" or, in case of shock, the
Lax condition (Lax, 1973). The intermediate constant state is determined by the
intersection of the two portions of wave-curves. In the general case, one observes a
separate plateau of composition between the two extreme states, connected to them either
by two shocks, or by two "detentes", or a shock and a "detente", or a "detente" and a shock
(Fig. 2, Fig. 3).

F.

Left point

a

Right point

b

Connection between a left
point and a right point

c
Figure 2. Rules for the use of the evolution curves in the composition triangles . For a given composition E in
the triangle , and for k = 1,2, one can determine the port ions of curves which connect E to other compositions
by drawing only the acceptable parts , either by a continuous evolution (relaxation or "detentes", full line) or
by shocks (dotted line). a. Case where one connects point E to other points located on its right (downstream) .
Such a point is called a left point. b. Case when point E is connected to other points located on its left
(upstream). Such a point is called a right point. c. When one wants to connect a left point to a right point, one
uses the results given in (a) and (b) together with the condition that a l-wave is followed by a 2-wave (path A
and not path B). This makes an intermed iate state appear (Sedqui and Guy, 200 I; with permission from
Elsevier).

All these results are based on the mass-balance equation. The study shows the
influence of the problem parameters on the shape of the evolution path in the composition
triangles. On the first hand, the solid solution parameters have an influence on the path
curvature. Depending on the parameter values, the path is composed of straight line
portions like in the case of Langmuir isotherm or is more or less curved. On the second
hand, equilibrium constants influence the path orientation. Orientations themselves are
responsible for the value of the intermediate composition plateaus. At last the
hydrogeological parameters essentially modify the front velocity. Evolution paths in
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composition triangles are drawn depending on the initial condition s (starting rock and inlet
fluid composition). The results of the numerical simulation may be compared with the data
on natural spatial evolution of compositions for natural minerals (e.g. Einaudi and Burt,
1982; Guy, 1988; Le Guyader, 1982; Shimazaki, 1977). Other behaviours, such as a
localised enrichment ofone component with respect to the others, may be understood in the
same frame and may provide a model for natural mineral concentrations. In the inverse
problem, the hierarchy of the equilibrium constants may be predicted from observed
compositional data . The method presented in this paper is general and may apply to many
types ofsolid - fluid exchanges.
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Figure 3. Representat ion in both the composition space (left) and the (composition, space) coordinates (right)
of the evolution of solid solution composition for different types of initia l and boundary conditions , giving
rise to different types of Riemann problems. The two independent composition variables are termed u and v.
The constant states of the Riemann problems are called uB, v" and u'', vd respectively for each case. Shock,
detente waves appear, so as intermediate plateaus. The J-waves and 2-waves are labelled by I and 2
respectively.

QUANTIZATION OF FLUID AND ROCK COMPOSITIONS

The theory allows to discuss more precisely why aspects of quant ization (in the way
we described them at the beginning of the paper) may occur. In the scalar case (Fig. 4) the
theory (e.g. Guy, 1993) shows that the velocity of a given compo sition is proportional to
the slope of isotherm for corre sponding compo sition. The isotherm reads as cf = f\cs) ·so

that this velocity may be written as v(co) = dx / dt c = Co = f '(co). Depending on the
boundary conditions, there may be a problem if v(q) > v(cO), while cO is downstream to

cj , So a condition must rule the overall succession of the velocities, taking into account the

boundary conditions: this condition is provided by the 2d principle of thermodynamics; it is
a concavity condition P" < 0 or > 0 where f'" is the envelope of the isotherm function
containing the extreme (boundary points); the larger velocities go before the lower
velocities so that shocks may appear . A quantization may be met with the possible
appearance of a series of discrete zones of different compositions.In the case of systems
(Fig. 5), the isotherm functions read as cft = fi(Csj); the jacobian matrix is Fij = iJcfi/iJcsj-
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The eigen vectors are noted as rk. The theory shows that the system of compositions is in
eigen states, i.e. the compositions that will be obtained (observed) along the waves are
eigen states; along these waves, Riemann invariants (specific combinations of
compositions) are also conserved. The Ak are the eigen values of "operator" F. The theory

shows that the velocity of the generalized compositions are given by dx / dt (c l , c2...) = Ak
along the eigen vector rk . Similar to the scalar case, one must state that the velocities do
not decrease from upstream to downstream: thus shocks may appear. As a general
consequence, this gives rise to a quantization condition, that must take into account the
boundary conditions: 'YAk. fk has a constant sign along the path (generalization of
concavity condition).

p~
c

Figure 4. Quantization and probabilit ies of compositions, scalar case. In a) the composition profile c(x) (solid
solution composition as a function of space at a given time) is represented . There is a sharp front
(corresponding compositions have zero probability) and a continuous evolution, wherein the spatial spreading
of a specific composition 2, lying between composit ions I and 3 is represented; its probability p is
proportional to f " (c), i.e. the difference of the neighbouring velocities. In b) and c) the applicat ion of this
rule is given for a continuous isotherm; the envelope f' between the extreme points is shown. The probability
distribution is given in c). In d) and e) the same method is applied for a discontinuous isotherm (isotherm is
given in d) and probability distribution in e)); Guy, 1993, with permission from Eur. J. Mineral.

FURTHER PROBABILISTIC ASPECTS

In our problem the probabilityaspects are related to the preceding spatial quantization
(refer again to Fig. 4 and 5, and to Fig. 6). The probability to frnd a specific rock
composition Co on the field is proportional to the ratio of the surface covered by Co to the
total surface of outcrop of transformed rocks (Fig. 6). The spatial spreading of a
composition (i.e. the proportion of the composition with respect to the whole of the
transformed rocks) is proportional to the difference of the velocities of the compositions
before and after it. This statement allows to compute the probability density p of co; in the
scalar case: p is proportional to f "(CO). In the case of systems, p is proportional to 'YAk.fk

(scalar product with eigen vector; it is the co-ordinate of 'YAk along rk).

As a summary, in our problem, there is a spatial quantization whenever there is a
differential movement and a non-linear interaction between a moving entity (here fluid)
and matter; this is not a property of solid (nor fluid) matter by itself: it is a collective or
cooperative effect. The thermodynamic properties of the solid solution are most important
to predict the overall structure. The quantization condition is derived from the second
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principle of thermodynamics. The overall condition combines the condition ruling the
compositions that can be observed (use of eigen vectors and eigen values in order to
compute the probability distributions) and the fitting within the general evolution taking
into account the boundary conditions. Quantization is related to a choice of scale (no
diffusion, chemical equilibrium); at smaller scale intermediate compositions might be
observed.

c

a

Figure 5. Quant izat ion and probabilities of compos itions, case of systems. In a) the compositi on evolution in
space at a given time is shown for the two indepe ndent concentrat ions c, and c, : c,( x) and c,( x) show a sharp
change in composition and a continuous evolut ion . The reasoning is the same as in the sca lar case : the
probabi lity of a composition pair (c ., c,) is proportional to the grad ient of velocity taken a long the evolution
curve; thi s is propo rti onal to VAk.fk (scalar product with eigen vector; it is the co-or dina te of VAk along fk) . The

correspo nding evolution in com position tr iangle is given in b) and the probability distribution in c). Shar p
changes or fronts correspond to zero probability.

c~
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Figure 6. Quant ization of the informat ion on the system as seen from a given locali ty. We suppose that,
because in our case of eros ion, informat ion comes from different point s of the geological site with equal
probabili ty. The a prior i average composition of eroded rocks is c = PI Cl + P2c2 + ... where comp osition Ci

has probability Pi. If one piece is collected, it will be but one of the possible states i; it will have one among
the possible discrete compos itions i with probab ility p;,.

APPLICATION TO MATERIALS SCIENCE?

In order the preceding theory would be applied to a problem in materials science, we
would need to have in the same time low transport velocities (in order local equilibrium be
achieved), large systems and a combination between kinetics factors, diffusion and fluid
velocity parameters such that advection effects (sharp fronts) dominate over diffusion
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effects (smoothing). The following parameters would for instance meet these requirements:

v of the order ofcm/s, D = 10-6 cm2ts; k (chemical kinetics parameter) = 10-6 moVm2ts, s

(reactive surface) = 106 m2tm3, typical concentration c = 103 mol/m'i so that x(Peclet

number = 1) = 10-4 em ; x(Darnkohler number = I) = 10m. This may be met but seldom in
some industrial systems; in earth sciences , one may think of the solidification of earth inner
core where molten metal may migrate within solid alloy.

I thank the organizers, especially T. Goni, T. Mohri and P. Turchi for allowing me to
participate to the conference. I thank A. Sedqui for his help.
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INTRODUCTION

Th e diluted III- V magneti c semiconductors (DMS) represent a new material with
potential technological applications in the so-called spint ronics by incorporating ferro
magneti c elements into semiconductor devices' : Th e physics of th e DMS is interestin g
because of th e interpl ay between the hole-mediated ferromagnetism and disorder in th e
tetr ahedrally bond ed semiconducto r compounds. It is now genera lly accepted th at th e
ferromagneti c coupling in III- V DMS containing Mn impurities is mediat ed by holes in
valence bands of th e host semiconductor. Mn at oms subst itut ing three-valent cati ons
in th e host act as acceptors which create holes in the valence band . Th e Fermi en
ergy is then pinn ed inside the valence band for th e finite concentration of Mn atoms.
The ferromagneti c coupling of Mn atoms is explained by the fact that th e period of
RKKY oscillat ions exceeds the typical distance of Mn atoms in th e low concent ra tion
case because of th e small size of the corresponding hole Fermi surface. It was demon
strated recentl y! that th e Curie temperature exceeding 100 K can be achieved in the
zincblende-type (Ga,Mn)As alloy as well as in th e diam ond-based GeMn system". The
DMS with Cur ie temperatures of th e order of room temperature are needed for practi
cal applications and the theoretical study of th e Curie tempera ture for realistic mod els
is thus of a great importance.

Th eoreti cal approaches to th e DMS can be divided into two groups, namel y th e
mod el studies and th e studies based on the spin-density funct ional th eory (DFT) . The
mod el studies mostly employ th e kinetic-exchange (KE) model in th e connect ion with
a cont inuum approximat ion for the distribution of Mn at oms and other defectss-" th at
yields a disorder-free problem, although recentl y th is model was refined to includ e th e
disord er via the supercell method in the framework of Monte Carlo simulations".

The DFT studies represent a natural step towards a more detailed, param eter-free
understanding of th e prop ert ies of the DMS. One possibility is to employ th e supercell
approach":", in which big cells are needed to simulate experimentally observed low con
centrations of magn eti c at oms and other impurities. Alternatively, one can employ th e
Green function meth ods combined with th e coherent pot enti al approximat ion (CPA)
in the framework of the Korrin ga-Kohn-Rostoker (KKR) method" or the tight-binding
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linear muffin-tin orbital method (TB-LMTO) as in the present case. The CPA-based
approaches allow to tre at any alloy composition which is advantageous for the DMS
with low concent rat ions of various impurities.

The evalua t ion of th e Curie temperature on ab initio level is still a cha llenging
task, in particular for complex alloy syst ems like the DMS. Recentl y, we have calculated
Heisenberg exchange parameters in a real space for bulk ferromagnets as well as for
low-dimensional systems such as ultrathin films and employed them to est imate their
magnon spectra and Curi e temp eratures in a good agreement with available experimen
tal data' "!" , The success of this two ste p process, which consists in a mapping of the
complicated itinerant electron system onto an effect ive Heisenberg mod el (EHM) and
consequent application of statistical mechanical methods to it ll ,12 , rely upon th e fact
that it provid es an almost exact description of low-lying magnetic excitations which
influence th e Curie temperature significantly. Th e validity of thi s approach, based on
th e adiabatic approximation, is justified for magnetic atoms with large exchange split
tings, like e.g. Mn-at orns. In th e present pap er we employ this approach for random
syst em , in particular for DMS.

The DMS containing Mn atoms are highly compensated, i.e., th e experimentally
found number of holes in th e valence band is st rongly redu ced as compared to th e Mn
concentration thus suggesting th e presence of ot her lattice defects . The As-antisit es,
nam ely th e As atoms on the Ga-sublattice, which add two electrons into th e valence
band and comp ensate two holes, are found to be the most common defects. Alterna
ti vely, the int erstiti al Mn atoms act ing as doubl e donors have th e sam e effect? as the
As-antisites. T he defect manipulation can influence the numb er of holes. It was shown
recently" that th e optically indu ced transition of As-antisites into an As int erstitial-Ga
vacan cy pair (so-called EL2 defect) redu ces the hole compensat ion thus st rengthening
the ferromagnet ic coupling. We will demonstrat e that a similar effect can be achieved
also by a sui table doping, e.g. , by adding Zn-impurities int o GaMnAs.

A recent experiment'> has demonstrated th at the magnetization and the Curi e
temperature of th e DMS depend on th e temp erature and duration of ann ealin g. T his
effect can be und erstood by assuming that Mn moments are not completely aligned
in th e ground state . Recent theoretical studies confirm thi s assumption. The st ability
of th e ferromagneti c state in th e KE model was studied inS suggestin g th at th e non
collinea r ferromagnetism is common in th e DMS. A new magnetic state stabilized by th e
As-anti site s and characterized by a partial disorder in orient ations of local Mn-magnet ic
mom ents was found recently also in first-principl es studies of th e GaMnA s alloys':' . It
is also int eresting to investigate doping of GaAs with transition metals other th an Mn.
We will consider here the case of neighbors of Mn in th e Periodic Table , namely Fe and
Cr for which recent studies using supercell approach are available'v-". All thi s indicates
a great importance of th e influence of various defects on the elect ronic structure and
Curie temperature of th e DMS and calls for the first-principle, parameter-free study
which is th e subj ect of th e present pap er.

ELECTRONIC STRUCTURE

We have det erm ined the elect ronic structure of th e DMS in th e framework of
the first principles all-electron scalar-relat ivistic tight-binding linear muffin-tin orbital
(TB-LMTO) method in th e atomic-sphere approximation. We introduce emp ty sph eres
into int erstitial positions of th e zinc-blende GaAs semiconductor for a good spa ce
filling", We have thus four fcc sublattices shifted along th e [LlIj-direction by 0/4,
where 0 is th e lattice constant and occupied in turn by Ga, As, and two (different)
empty sph eres. The substi t ut ional disord er due to Mn-atorns, As-antisites, and oth er
defects is treated in th e CPA applied to a system consist ing of several sublattices.
Th e CPA correct ly reproduces concentration tr ends and can also treat syst ems with
sma ll but finite concentrations of defects typic al for the DMS, but it neglect s th e local
environment effects and possible la ttice relaxations. We have verified that we can
neglect a weak dependence of the sample volume on defect concent rat ions and th e
lattice constant of th e pure GaAs (0 = 5.653 .4) was used in all calculat ions. We used
equa l Wigner-Seit z radii for all atoms and empty spheres. The charge selfconsistency
is treated in the framew ork of the LSDA using Vosko-Wilk-Nusair par ametrization for
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the exchange-correlation potent ial. The details of the meth od can be found in a book' ".

0 .04

»
.::

0 .030
<:::
0:...
+':::
'"o 0.02:::
0
u
I

'"~ 0 .01

0 .00

o 0 0 0o 0 0 0
000g @~amag~
0 0- ""
oo

•
0.02 0 .04 0.06 0.0 8

Mn - concent r at ion x

Figure 1: Three phases in the magnetic phase diagram of (Ga l _x_yMnxAsy)As. Th e dashed line
separates the 11- and p-type samples.

As explained in th e Introduction, the DMS are characterized also by some degree
of the magnetic disorder'<'' . We tr eat this disorder in the framework of the disordered
local moment (DLM) model14•l8,l9 which is the simplest way of including the disorder in
spin orient ations. Th e DLM can be naturally treated in the framework of the CPA: the
Mn at oms have collinear but random spin-up (Mrrt) and spin-down (Mn-) orientations.
Corresponding concentra tions x+ and x - fulfill the condit ion x = x+ + x - , and the
amount of the degree of magnet ic disorder is characterized by the order parameter
r = x - [x , For example, the GaAs mixed crystal with prescribed concent ra t ions x , y
of Mn- and As-atoms on the Ga-sublat tice is formally t reated as a multicomponent
(Gal -x_yMn0_r )x Mn;xAsy)As alloy with varying order parameter r , 0 :s: r :s: 0.5 . In
the saturated ferro magnetic (FM) state, r = 0, all magnet ic moments are pointin g in
the direct ion of the global magnetization. The paramagnetic (PM) state, r = 0.5, is
characterized by a complete disorder of spin-direct ions. To obtain the order parameter
r corresponding to the ground state, we varied for each composit ion (x,y) the rat io r
in steps ~r = 0.025 and evaluated the corresponding total energy. St rictl y speaking,
one should determine selfconsistently the orientat ion of each magnetic moment in the
syste m, which in practice can be done using a supercell approa ch. This is possible for
a simple KE models bu t numerically prohibi t ive in the framework of the DFT . On the
other hand , t he basic physics is already present in the DLM model adopted here.

Magnetic phase diagram

Th e magnet ic phase diagram (Fig. 1) at T = 0 is calculat ed for th e whole range
of concent rat ions (x, y) in st eps of ~x = om and ~y = 0.0025. It should be noted th at
in addition to th e FM and PM phases" mentioned above there is an addit ional phase,
the par t ial ferromagnetic (pFM) state, in which some degree of disorder in the spin
orientations is present . Th e exist ence of such a new phase was predicted inl4 for a
specific case of x = 0.04 and here we have extended thi s st udy to the whole plane of
the physically relevant concent ra t ions (x ,y). In the region where the numb er of holes
is redu ced by As-a ntis ites (y > 0) this phase separates the FM from the PM phase. On
the p-typ e side of the phase diagram (y :s: x / 2) the magnet ization is zero in the PM
region due to a complete orientat ional disorder of local moments. Above the diagonal
y = x / 2, even at the highest concent rations of donors, we did not find any indicati on
for the elect ron-induced ferromagnet ism. Further details can be read off from Fig. 2,
in which for a fixed Mn concent ration of x = 0.05 the total energy with respect to the
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alloy (G3<l ,95- yMnO.05Asy)As and a set of concentrat ions y of As-an tisites. The lines serve as a guide
for eye.

ground state is displayed as a funct ion of the order par am eter r . For less th an 1%
of As-an ti sit es t he ground st at e is a saturated ferromagnet , for more tha n 2.25% of
As-antisit es a paramagnet , and a partial ferromagnet inbetween. We have also tested
th e robu stness of thi s result with respect to the chan ge of the sample volume. Empty
symbol s in Fig . 2 denote results obtained for y=0 .0l5 assuming th e experimental lat t ice
const ant of (Gao.95Mnoo5)As alloy (a = 5.672 A) and demonstrate that the ground state
is not cha nged by thi s choice. Th is is important result as th e total energy change du e
to th e cha nge of th e sample volum e is about 0.6 mRy, much higher as comp ared to th e
relative energy differences between various phases in Fig . 2.

D ensi t ies of states and Bloch spectral functions

(1)

In Fig . 3 we compare calculated total and local Mn-densities of stat es (DOS)
for the case of a single Mn-impurity in GaAs (evaluat ed as a low concent rat ion limit
x= O.OOOl) and for the (Gao.95Mnoo5)As alloy.

The total DOS for a single-impurity case is just the DOS of th e pure GaAs host
crystal. The local Mn-DOS exhibits , in agreement with th e experiment?", a majority
t 2-bound st at e just ab ove th e top of the valence band. The effect of the finit e con
cent ra t ion of Mn-impurit ies is: (i) the shift of the Fermi energy inside th e valence
band and creation of holes there, and (ii) th e smearing out of th e DOS features. The
minority valence band is complete ly filled for (Gao 95Mnoo5 )As and thi s alloy is thus
a semimetallic DMS. In random alloys is the bandstructure substi tuted by th e notion
of th e Bloch spectra l functions (BSF) which provide a det ailed description of alloy
elect ronic states. The BSF corresponding to a given subl attice B is defined as

A'B(k ,E) = - .!-Im trL G'BB(k , E + io) ,
7T

where G'BB(k , z) is the configurationally averaged Green function on a given sub lattice
B , trj, denot es th e t race over angular moment a L = (Rm) , and k is the vector in th e
Bri llouin zone.

The BSF for (Gao.95Mno.o5)As alloys at k = I' are present ed in Fig. 4a and are
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Figure 3: Spin-resolved total Mn-densities of states and local Mn-densit.ies of stat.es on the Ga
subiattice: (a) a single Mn-impurity in GaAs, and (b) CGao.95Mnoo5)As alloy. The Fermi level
coincides wit.h t.he energy zero.

compared with t he BSF of t he pure GaAs . The BSF of GaAs is a set of delt a-peaks
at corresponding band energies broadened by a small imaginary part o. The rwpeak
at E=O and t he I'j -peak rep resent th e top of th e valence ba nd and t he bottom of the
conduction band in GaAs , resp ectively. T he effect of disorder is dramatic at t he to p
of t he valence band. It should be not ed that th e Mn-impur ity in GaAs represent s the
so-ca lled sp lit-band limit of t he alloy th eory!" as th e d-Ievels of Ga and Mn are very
different . We obse rve non- Iorentzian behavior of the majo rity r t 5-p eak and also of the
mi nority rj -peak. There is also a non-zero spectral density in the energy region of
majority Mn-states (see Fig. 3). On th e contrary, th e rwpeak in th e conduction band
has a nearl y lorent zian behavior indi cating th e weak influence of disorder in this energy
region .

T he calculat ed DOS in (Gao.94Mno.o5Aso.odAs in t he presence of As-a ntis ites are
shown in Fig. 5. T he following conclusions can be drawn : (i) As-antisites reduc e the
number of holes in the GaMnAs valence band and shi ft t he Fermi energy towa rds th e
top of the valence band. T he minority valence bands remain fully occupied (semimetal
lie behavior) ; (ii) the unoccupied impurity s-states of the As-antisite ar e found in the
gap while occupied imp urity p-states form a broad resonance peak in the valence band
(see Fig. 5b) . Corresponding BSF are pres ent ed in Fig. 4b . Both t he majority and
minority conduction rj -states are strongly modified by disorder (a bound state) resu lt 
ing in the two-peak form of the BSF particularly well pro nounced for majority states.
Also majority valence rwstates are strongly influenced by disorder due to Mn- and As
impurities, particularly in t he energy region close to the top of the valence band . T hese
results clearly demonstrate th e fact that for a detailed st udy of electronic properties of
the DMS ar e approximations adopted in a phenom eno logica l KE model, in particular
a complet e neglect of t he disorder and the use of the virtual-crystal approximation,
not justified. On t he other, some quantities like, e.g., the magnetic moment , which
is obtained by int egrating t he BSF over t he k-space and t he energy, can be desribed
reasonably well in the framework of th e KE-model.

M agnetic moments

Calc ulated total and local Mn-magnet ic moments a re presented in Fig . 6 for
(Gao.95_yMno.o5Asy)Asas a function of th e concentrat ion of As-a nt isites. The transition
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between the FM and pFM states is marked by a drop of both to tal and local Mn
moments for y > 0.01. Th e local moments mM n+ and mMn - have opposit e signs and
nearly the same values of the order 4 ILB only weakly dependin g on th e composit ion
thu s justifying , a posteri ori, th e applicability of th e DLM picture in the present case.
As a result , th e magnetization in the pF M state , m "" x+m Mn+ + x - m Mn - , is st rongly
reduced as compared to the FM state!",

HEISENBERG HAMILTONIAN

A particularl y simple and yet accurate approach for th e evalua t ion of th e Curie
temperature on an ab initio level consists in a mapping of the it inerant spin-polarized
electron system onto an effective classical Heisenberg model (EHM)9,1l

H = - L Ji j e, . ej ,

i#j

(2)

(3)

and subsequent appli cation of statistical mechani csv!". Here, ei and ej are unit vec
tors of th e local magnetic moments at sites i and i , and th e Ji j denot e th e effective
exchange int eractions between a respective pair of atoms carrying magneti c moments.
For applicat ions to th e DMS, we have to generalize to disordered systems the th eory
developed in9,1l ,12 , The Heisenberg parameters are obtained in terms of th e magnetic
force th eoremt --" by (i) directly evaluating the change of energy associated with a con
strained rot ation of the spin-polarizat ion axes in atomic cells i and j in th e fram ework
of th e CPA, and (ii) using the vert ex-cancellation th eorem22,23. Th e summation in
Eq, (2) is restricted to pairs of magnetic ato ms 10.1, 10.1'. The resul ts is

ItI'M' = 4~ Im l trL [ott (z ) g:¥,M't(Z)6;""(E ) g.f{' ,Mt(z) ] dz ,

where trj, denotes the trace over angular momenta L = (lm ), energy integration is
performed in th e upp er half of th e complex energy plan e over a contour C start ing
below the bot tom of th e valence band and ending at th e Fermi energy, Jtt (z) = PiM,t (z ) 
PiM,t (Z), and pt f,U (z ) are the L-diagonal potential funct ions (0' =t,.J.) corresponding to
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(4)

th e magneti c atom M . It should be noted that the quant ity W(z) is proportional to the
exchange splitting of a given magnet ic atorn'". The quant it ies gt! ,M't (z) and g:1' ,Mt(z)
refer to site off-diagonal blocks of th e condit ionally averaged Green funct ion, namely
the average of the Green function over all configurations with an at om of th e type M
fixed at the site i and an atom of th e type M' fixed at th e site j. Such a quant ity can
be evalua ted in the framework of the CPA17 . We neglect for simplicity small indu ced
moments on non-magnet ic atoms and then the non-vanishing exchange interact ions
are only among substi tutional Mn-atoms on th e Ga-sublat t ice, namely M =M'=Mn. A
detailed derivat ion will be the subject of another paper.

The low-concentration limit of Eq. (3) gives the RKKY-type expression for ex
change interact ions between two magnetic impur ities in a non-magnetic host , namely

J~KKY = 4~Im [trL { c; :mp (z ) g;jPt (z)C;~mp (z ) g}';Pt (z ) } dz .

Here, g;j P·" (z ) is the Green function of two Mn-impurities embedded in the GaAs host
and evalua ted at sites i ,j where impurities are located. The convent ional RKKY
expression is obt ained afte r substitut ion of the impurity Green function by th e host
GaAs Green function. Th e effect of neglected scatte rings on impurities is two-fold:
it introduces a phase fact or and modifies the amplitude of oscillat ions as compare d
to th e RKKY formula": It should be noted tha t Ji~fn,Mn is closely relat ed to the
non-interact ing local t ransversa l suscept ibility

(5)

evaluated in th e real space.

Curie tem peratu r e

For matters of simplicity we employ the mean-field approximation (MFA) to
determine th e Cur ie tempera ture from the EHM. The Curie temperature T; in th e FM
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state is given by
k T M F A = 2x '" JMn,Mn

B e 3 ~Ol '
i# O

(6)

where x is the concentration of Mn atoms, and kB is the Boltzmann constant . It should
be noted that the MFA overestimates the Cur ie temperature as compared to more
sophisticated approximations, like the random-phase approximation (RPA)9,1O . T he
RPA theory of the Curie temperature of th e DMS in the fram ework of the KE model
has appeared recent ly" and the next ste p will be its first-pri nciples imp lementation.

In practice, a more straightforward approach to determine the Curie temperature
in the MFA is to evaluate the on-sit e effect ive exchange parameter for the magnet ic
atoms M, J iM . In the framewo rk of th e T B-LMTO approach ll,9

Jr = - 4~ 1mtrr, Ie [W(z) (g':!,t( z) - g':!,t (z) ) +W(z)g~1,t (z ) W(z)g':!,t( z) ] dz . (7)

The quantit ies g~f,~ (z) refer to site -diagonal blocks of the condit ionally averag ed Gr een
funct ion, nam ely, the average of the Green functio n over all configurations wit h the
M-atom fixed at the site i l7 , and ot her quantit ies were already defined . T he mean -field
value of t he Curi e tempe rature is (M=Mn here)

(8)

A contour map of the MFA-Curie temp eratures as a function of the chemical
composition (x , y) as presented in Fig . 7 exhibits several imp ortant features: (i) with
out donors T; increases wit h x and reaches room temperat ure at approximately x = 0 .05 .
For higher Mn-concent rat ions T; saturates which in turn indicat es that the effective ex
change interactions decrease for heavy Mn doping ; (ii) the Curie temperature rapidly
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decreases with increasing concent ration of donors. Detailed results are presented in
Fig. 8 and show that for y = 0.01 is T; reduced by approximately 100 K-150 Kover
th e whole range of Mn-concentrat ions. For this concent rat ion of As-antisit es again a
flat maximum develops at x '" 0.1 ; th e results for x ::; 0.05 are in a reasonable agreement
with th e experiment". Th ese resul ts also agree qualit atively with th e Zener model de
scription of th e DMS in the framework of the Kls-mod elt' : (iii) for a more quant it ative
analysis we have insert ed the experimental points into Fig. 7. For each expe rimental
point with a given Mn-content x we have est imated th e concent rat ion y of As-ant isitcs
necessary to produ ce a good fit of th eoret ical results, Eq. (6) to the experimental data' .
Points obtained in thi s way follow approximately a straight line, i.e., th e numb er of
As-antisit es increases proportionally with the concent ration of Mn-atoms, We have
calculated T; assuming thi s kind of linear correlat ion between x and u, and th e corre
sponding results" are presented in Fig. 8. As can be seen from thi s figure a pron ounced
maximum at approximate ly x = 0.05 is formed and T; decreases for a higher Mn-doping.
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Figur e 7: Contour plot of the Curi e t emperature as a fun ction of the compos it ion (x ,y) assuming the
fer rom agn eti c gro und state . T he symbols refer to experimental values ", th e dasb ed line represents a
least- squ ar e fit to t hese dat a.

T he concentra t ion dependence of T; results from an int erplay of two effects : (i) an
increase of Tc with increasing concent rat ion of local Mn-mom ents (see Eq. (6)); and (ii)
a non-trivial behavior of th e leadin g J Mn,Mn 's as a function of the chemical composition
(x,y) . Generally, we observe a decrease of the nearest-neighbor J j"n,Mn wit h increasing
concent ra t ions of both Mn- and As-defects , as illustra ted in Fig. 9. Th e decrease of
JMn,Mn with the increasing concent ration of Mn atoms can be und erstood from a simple
RKKY mod el: the amplit ude of oscillat ions is inversely propor t ional to the volume of
th e carrie r Fermi sphere which increases with th e Mn-content . Th e decrease of Jj"n,Mn
with th e increasing concentration of Mn atoms was also obtained in!6 in the framework
of th e supercell approach. Th e leadin g J~1n,Mn are ferrom agneti c in alloys with out
donors , bu t may change th eir sign for a highly compensa ted system. The dependence
of J Mn,Mn on x and y cannot be scaled to a single function of x - 2y as it should be
in the simpl est scheme of th e hole-mediat ed magnetism . Also th e dependence on the
quantity x + 2y , which can be roughl y related to th e stre ngt h of the disorder scattering
and, in turn , to th e mean-free path is not universal. Th is is a strong indication th at
th e degree of compensation, i.e., the numb er of holes available in th e valence band , and
th e carrier mean-fr ee path are not sufficient to describe th e exchange mechanism. A
material-specific reconst ruc tion of the electro nic structure around the gap region might
thus have an imp ortant impact on the magnetic state of III-V DMS.
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Exchange interactions

Exchange interact ions represent onc of th c basic cha racterist ics of the magnetic st at e
and th erefore deserve a more detailed study. We have calculated excha nge interact ions
J;'1n,Mll for a given shell s as a funct ion of the shell distan ce and studied th e effect of
var ious imp uri ti es on their values. In Fig . 10 we compare exchange inte ractions for thc
case of two-isolat ed Mn-impur ities (RK KY-limit, Eq. (4)) and the case of th e finite
Mn-concentration x = 0.03 assuming the same numb er of holes in both cases. In the
RKKY limit , Eq . (4), we used selfconsiste nt potentials for th e single-impur ity case (sce
Fig. 3) and just rigidly shifted the Fermi energy to accommodate the same number of
holes as for the (G<l{,.97 Mno.o3)As alloy. T he lcading first near est-neighbor interaction is
ferromagnet ic in the two-impurity case but for ot her neighbors the interaction cha nges
its sign in an oscillatory man ner. T his picture is changed for a finit e concentration
of Mn-impurities: the couplings remain ferromagnet ic up to large distances between
impuri ties and this is a clear indication of the ferrom agneti sm in DMS. It should be
noted that for sma ll distances shown in the figure t he effect of the alloy damping is
weak, and, in addition, the disorder can change th e phase of oscillations . A mor e
detailed st udy of th e dependence of exchange interactions on th e dist ance between
Mn-atoms is needed .
In Fig. 11 we demonstrat e the dram atic effect of As-ant isites on excha nge interactions.
The first near est-n eighb or int eraction is reduced by nearly an order of magnitude as
compared to the case with out ant isites while the reduct ion of ot her interact ions is
less pron oun ced. T he Curie temperature drops from 289 K for the case wit hout As
ant isites to 126 K for the case with As-antis ites . T he reduction of Jf:1",Mn has few
reasons as it can be seen from Eq. (3): (i) the most important is the cha nge of the
numb er of carriers which ente rs the expression (3) via th e value of th e Fermi energy
(see Figs. 9 and 11); (ii) th e disorder due to various impur it ies influences t he quanti ty
gtf,M'U and, in par t icular , its values close to th c Fermi energy whose contribut ion to
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t he integral (3) is lar gest. One can judge on changes of ilf'M'u only indirect ly, e.g., via
the values of th e BSF (see Fig. 4) which characterize the st rengt h of the disorder in
an alloy; and (iii) the quanti ty otf , prop ortional to the exchange splitting, is generally
only weakly influenced by alloying wit h non-magneti c impuriti es but the alloying with
ot her magnetic elements and/or the inclus ion of elect ron correlations beyond the LSDA
can influence it non-negligibly. T he values of J;)ln,Mn are thus the result of a complex
interplay of above mechanisms.

Defect manipulation

In this section we consider the influence of EL2-defects and of the Zn-doping of the
Cur ie temperature of the DMS.

Upon illumination of the sample, the As-ant isite und ergoes a st ructura l t ra n
sit ion into a pair form ed by an intersti ti al As and a vacancy on the Ga-subl at ti ce
(photoquenched EL2-defect ). This defect was studied by Sanvito" using the supercell
approach. Because of technical reasons (the size of the supercell) he considered only
th e case of equa l concent rations of Mn-atoms and As-anti sites (x = 11 "" 0 .03) which
corresponds to the less int erestin g case of n-doped sample. Here we present th e CPA
results for th e case of p-doped sample with x = 0.05 and varying concent rations 11 of
As-anti sit es assuming th at th e posit ions of As-interstials and vacancies are random.
The calculated Curie temperature of (Ga;:,.95_yMn5Asy)As with 11 = 0.005 increase s from
220 K for As-antisites to 238 K for the case of EL2-defects of th e same concent ra t ion.
The increase of the Curie temp erature for 11 = om is larger , namely 126 K and 190 K
for As-antisit es and EL2-d efects, respectively. We have also found enhancement of th e
ferr omagneti c exchange couplings for the case of EL2-defects. The opt ically induced
transit ions of As-ant isites int o EL2-defects thu s reduce the hole compensation and al
low the tuning of th e hole concent ration wit hout changing the chemical composit ion",
T his mechani sm , however, cannot be used to obtain higher Cur ie temperatures because
the temperature of regeneration of ant isites is of the order 100 K6.

An alte rnative way how to reduce the hole compensation by As-a nt isites is cha ng
ing of the chemical composit ion of the sample by doping. T he zinc, which acts as an
acceptor in Ga As, is one of possible candidates: it brings one hole into the valence
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F igur e 10: Exchange interact ion J~n ,Mn as a funct ion of the shell dist an ce: th e ferromagnetic
(Gao.97Mno.03)As alloy (filled circles) and two Mn-irnpurities embedded in the GaAs host (empty
circles) with th e Fermi energy shifted inside th e valenc e band to accommoda te the sa me number of
holes as in th e alloy case.

band of GaA s when subst it uted for Ga and recently a high concent ra t ion of Zn-defects
of th e ord er 2 x 102o/ cm3 was prep ared in thin layers of GaAs27 . Zinc influen ces the
low-lying part of th e GaAs valence band and it has therefore only weak influence on
Mn-stat es and As-st ates close to the Fermi level. Consequently, its main effect is to
reduce th e hole compensa t ion due to As-antisites. Calculat ed Curie temp eratures of
(Ga l_x_y_zMnxAsyZnz)As (see Table 1) confirm this conclusion.

Tabl e 1: Curie temperatures [K] of the ferrom agnetic GaAs alloy with different concent ra t ions of Mn
at oms (x), As-an ti sit es (y), and Zn-dopants (z).

(Ga l_x_y_zMn,AsyZnz)As
x = 0.05 x = 0.05 x = 0.05 x = 0.03 x = 0.05 x = 0.05
y = 0.0 y = 0.005 y = 0.01 y = 0.0 y = 0.005 y = 0.01
z = 0.0 z = 0.01 z = 0.02 z = 0.02 z = 0.0 z = 0.01
289 286 282 250 221 217

It should be noted t hat Zn-dopants fully compensate the effect of As-ant isit es if z = 2y .
This is illustrated by first three column s in Table 1) corresponding to alloys wit h x = 0.05
which have th e sam e numb er of holes n h = 0.05 but different concentrations y and z,
and which obey th e above condition. Ind eed, calculated Cur ie temp eratures agree very
well in all t hree cases. T he effect is the same if t he condit ion z = 2y is not obeyed bu t
the number of holes is st ill the same, nam ely nh = 0.04 (see last two columns) . Finally,
the column four illustrates the case with x = 0.05, without antisit es but dop ed with
Zn atoms so that the hole concent ra t ion is nh = 0.05 like for (Gao9s Mnoos)As. T he
calculated Curie temperature is smaller in the case with th e smaller Mn content .
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magneti c semiconductor alloys (Gao.95_yi'vlnO.05Asy)As: y = 0.0 (filled circles) and y = 0.01 (empty
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O t h er m a gn etic impuri ties

We shall study the effect of dop ing th e GaAs host by magnet ic atoms which are
left (Cr) and right (Fe) neighbors of Mn in the Periodic Table. In particular, dop ing by
Cr atoms is interest ing as recently it was observed that thin films of CrAs grown on the
GaAs substrate are ferromagnetic with the estimated Curie temperature higher than
400 K 28. It was assumed th at CrAs films adopt the zinc-blende (zb) st ructure and the
full-potent ial ab initio calculations performed for the hypothet ical zb-CrAs have shown
that CrAs is a semimeta llic ferromagnet with a total moment of 3 MB in agreement
with the experiment . In Fig , 12a we present calculated total and local Cr-densities of
states (DOS) for zb-Cr As assuming the lat t ice constant of Ca.As. Our results for the
DOS and the calcu lated total spin moment of 3 I'B agree well wit h'" as well as with
recent full-potential KKR calculations of Galanakis" . This is an important test of our
approach which adopts th e atomic-sphere approximation.
The leading exchange interactions J;" c, are ferromagnetic and are smaller as compared
to J~n,Mn wit hout antisites (see Fig. 11). Exchange interactions J:" c, are quickly
damped as a function of the shell distance, Fig . 12b, even if there is no disorder in
the system and Cr at oms fully occupy one sublatt ices. The explanation for such an
exponent ial damping of exchange interact ions was given in'' and the reason is the
semimet allic character of the ordered CrAs, nam ely th e fact that the Fermi level lies in
th e gap of minority states thus giving rise to th e imaginary critical Fermi wave vector
which causes expo nent ial damping of exchange interactions. Cr atoms also ind uce
non-negligib le exchange interactions between Cr and As pairs and Cr and neighboring
interstitial sites . Th e energy difference between the DLM state and the ground FM
state is as large as 14 mRy per formula unit thus indicating a high Curi e temperature
in a qualitative agreement with the exper iment" .
Calculated DOSs for the GaAs with 5% of Cr impurities without and with As-antisit es
are presented in Fig. 13 and they should be compare d wit h corresponding results for
GaMnAs alloy, Figs. (3) and (5). The differences can be summarized as follows: (i)
the Ferm i energy is located within the impur ity subband with a strong admixture of
Cr-states. Th e Cr-impurity level is abo ut 0.5 eV above the top of the valence band as
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as a funct ion of th e shell distan ce.

compared wit h the value of 0.1 eV for th e Mn-impurity. T he total spin moment per
Cr at om is 3 fi B ; (ii) the difference between the DLM- and FM-s tates decreases with
increasing As-concentrat ion much more slowly as compa red to the case of Mn-dopa nts ;
(iii) th e effect of As-antisites is also different because the effect of comp ensation by
As-antisites is weaker. T he Fermi level is shifted toward s the condu ct ion band as
expected bu t even for 3% of As-anti sit es, when it reaches the bottom of the minority
conduct ion band , it is st ill located in the Cr-rnajority band peak as in the case with out
antisites. T his is in an agreement with th e point (ii) ab ove; and (iv) calculated Curi e
temperatures in the MFA are 433 K and 454 K for the (Ga095-yCrO.05Asy)As alloy
and y = 0.0 and y = 0.01, respectively. This is in agreement with behavior of the
corres ponding excha nge inte ractions (see Fig . 14) which are quite simil ar. T he Curie
temp erature decreases if the concent ration of As-ant isites fur th er increas es, nam ely the
calcula ted values of r:-1FA for y = 0.02 and y =0.03 are 389 K and 214 K, respectively.

T he system (Gao.95Feo.o5)As is a metal (th e Fermi level lies within the valence
majority and minority bands) and its ground state is the DLM. This result is in an
agree ment with conclusions of the pap er!" that the zb-FeAs is an ant iferro mag net . T he
difference between magnetic properti es of GaCrAs and GaFe As can be understood from
th e behavior of Jf r.Cr and Jf r.Cr, Fig. 14. T he leading near est-neighbor exchange inter
act ions in GaCrAs are ferromagneti c as cont rasted with dominating antiferr omagnetic
near est-neifbhbor exchange interactions found in GaFeAs. It should be noted that the
leading lfr. r are much larger as compared to J~n , Mn (see Fig. 11).

CONCLUSIONS

We have invest igat ed from first prin ciples the effect of As-antisit es and ot her
defects on the elect ronic and magnet ic properti es of (Ga ,Mn)As alloys. Th e Cur ie
temperatures were est ima ted from the effective Heisenberg Hami ltonian const ruc ted
from th e selfconsiste nt elect ronic st ructure calculations within the local density ap
proxim ation and in the fram ework of the coherent potential ap proxim at ion to t rea t the
effect of disorder. T he most imp ortant results are: (i) the existence of an additional
phase with pa rt ially ordered local magnetic moments which separates the FM and PM
states in the magnet ic phase diagram. This phase is stabilized by As-ant isites and
has a reduced magneti zat ion; (ii) a st rong reduction of th e Curie temperature with in-
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creasing concentration of th e As-antisites; (iii) th e exchange int eract ions between Mn
atoms are reduced with increasing concent ra tions of both Mn- and As-impurities. Th e
first nearest-neighbor interactions Jrn ,Mn are ferromagneti c but become ant iferro mag
netic in a high ly compensated sample; (iv) a comparison of calculated and measured
concentration dependences of th e Curie temp erature ind icat es a correlat ion between
concent rat ions of Mn-impurities and As-antisites, namely an increase of th e donor
concentratio n with an increase of the Mn-content . Thi s conclusion is supported by a
recent evalua t ion of t he formation energy of As-antisit e defects in GaAs30 ; (v) dop
ing of (Ga ,Mn)As alloys with Zn-acceptors compensates the effect of As-antisit es and
increases the Curi e temperature; and (vi) GaAs with Cr-impurit ies is semimetallic fer
romagnet with the total spin moment of 3 /' B per Cr atom. Cr-impurities seem to
strengthen the tendency toward s the ferrom agneti sm and the system is less sensit ive
to compensat ing effects of As-antisit es. On th e oth er hand, Fe doping gives rise to th e
metal with dominating ant iferrornagnetic couplings.
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VARIATION OF ELASTIC SHEAR CONSTANTS IN
TRANSITION METAL ALLOYS

Goran Grimvall
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Sweden

INTRODUCTION

The body centred cubic (bee) and the face centred cubic (fcc) lattice structures are the
most common structures among the elements. With few exceptions only one, or none, of
these structures is available for experimental studie s for a given element at ambient
pressure. Ab initio electron structure calculations can be performed for any lattice
configuration. Thus they offer a possibility to investigate systematically how physical
properties depend on the crystal structure. The present paper focuses on the elastic shear
constants C' = (CII - Cl z)/2 and C44 for elements in the 3rd

, 4th and Slh row in the Periodic
Table. This information is of particular interest because it is common among the transition
metals that only one of the bee and fcc structures exists as a stable, or possible metastable,
phase. The other structure then is dynamically (mechanically) unstable, i.e., the stability
requirement

C' = (C II - C12)12 > 0,

C44 > 0,

(Ia)

(Ib)

is violated. The inequalities (Ia) and (Ib) are the long-wavelength formulations of the
condition that the phonon frequencies a:i..q,s) of a dynamically stable solid structure must all
be real;

al-(q,s) > O. (2)

Here we are interested in cubic structures. In the long-wavelength limit q ~ 0 and for
the longitudinal (s=L) and the two transverse (s=T" Tz) phonon branches, we can write ill =
vq, where v is the sound velocity . If p is the mass density, pv: in the three high-symmetry
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crystallographic directions [hkl] is expressed in the elastic constants ClI , CI2 and C44 as in
Table 1.

Dynamical instabilities have profound consequences for, e.g., the modelling of alloy
phase diagrams as a function of composition because then the vibrational entropy S, and
hence the Gibbs energy G = U - TS, is not a meaningful thermodynamic quantity (Grimvall
1998,2002).

Table 1: pv' in the crystallographic directions [hkl]

Mode

L

[100] [110]

(CII + c12 + 2C44)/2

(CII - Cd/2

[111]

(C II - c12 + C44)/3

(C II - c12 + C44)/3

LATTICE ENERGIES AND BAIN PATHS

Consider a bee lattice structure , with lattice parameter a (see the central part with
short-dashed sides in Fig. I) . Through a tetragonal strain, one of the lattice parameters is
changed by a factor cia = 2112

, resulting in an fcc structure. An electron-structure calculation
giving the total energy Ueoh(cla) can be performed for a lattice , with cia varying from I (i.e.,
a bee structure) to 21

/2 (fcc). The deformation path is referred to as a Bain path (cf. Milstein
et al. (1994) and references there) . Figure 2 shows the relative cohesive energy for such a
Bain path connecting bee and fcc tungsten, with data taken from Einarsdotter et al. (1997).
The elastic constants C for the bee and fcc structures are directly related to the volume V
per atom and the curvature of Ucoh along the Bain path, taken at the corresponding cia.
Considering small variations iKcla) and 8V in the cubic structures with bulk modulus B, the
corresponding variation oUroh is (Kraft et al. 1993)

oUeoh _ !!f.8V)2 ~iKcla»)2
V - 2~ V + 3 ~ cia .

For a volume-conserving Bain path, 8V = 0, the elastic constant C is obtained from the
curvature of Ucoh at the bee and fcc structures, respectively .

•

/
/

a
Figure l.The fcc lattice structure can be obtained by a strain of a bee lattice structure .
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Figure 2. The energy along a Bain path connecting the bee and fcc structure s of tungsten .

Similarly, other deformations of a lattice can give other elastic constants, or
combinations of them. The deformation in Fig. 1, leading to Eq. (3), is the most common
version of a Bain path. In the volume-conserving approximation, the volume of the system
is kept constant, while cia is varied. A more accurate calculation allows also the volume to
vary, so that the energy is minimised for each cia.

COHESIVE ENERGIES AND LATTICE INSTABILITIES

During the 1980's a major controversy arose when ab initio cohesive energy
calculations for transition metals were confronted with semiempirical data obtained from a
so called CALPHAD approach, in which Gibbs energies are constructed to reproduce and
predict alloy phase diagrams. The issue is often illustrated with reference to a plot such as
in Fig. 3, where the results for the enthalpy difference at 0 K from ab initio calculations
(solid line) are shown together with semiempirical data (points).

ab initio theory -.
60

50

40

a 30

i 20
10

JJ 0

=7 -10

.§ -20
:r:

-30

-40

-50 l...-.J............L.....L..---'---L---lL-'--..L.....L.-'----'

Sr Y Zr Nb Mo Tc Ru Rh Pd Ag

Figure 3. The enthalpy difference between the bee and fcc lattice structures, as it appeared in the significant
discrepancy between 'semiempirical' data (points) and the results of ab initio electro n structure calculation s in
the 1980' s. After Grimvall (1999).

297



The difference between the ab initio and semiempirical results is much too large to be
ignored. The problem was found to have an unexpected but simple solution, as has been
described in historical accounts by Grimvall (1998, 2002). Take, as an example, the Pt-W
alloy system. Pure Pt has the fcc lattice structure and pure W the bee structure. The
CALPHAD method assumed that a Gibbs energy function can be assigned to Pt-W alloys
of all compositions, having a bee as well as an fcc structure . Pure Pt has the fcc structure.
However, ab initio calculations show that pure W is dynamically unstable in the fcc lattice
(cf. Fig. 2). Therefore, the Gibbs energy is not a thermodynamically well-defined quantity
for W-rich fcc Pt-W alloys. It has been argued (Grimvall 1998,2002) that the CALPHAD
method is still a very valuable approach to the prediction of alloy phase diagrams , but in its
common form it may not give correct cohesive energies of dynamically unstable structures.
(Theoretically one may define these energies by requiring that the atoms form a static
structure.)

A problem in the CALPHAD prediction of phase diagrams is that one cannot tell if an
assumed non-observed phase is metastable (i.e., thermodynamically unstable but with a
well-defined Gibbs energy), or if it is dynamically unstable. Intuitively, and with reference
to Fig. 2 and Eq. 3, one may assume that if the energy difference between the static fcc and
bee structures is large, the phase with the lowest energy will have a large C . This has been
confirmed in ab initio calculations by Wills et al. (1992) for some transition metal elements
and by Craievich et al. (1997) for disordered Ni-Cr alloys. Furthermore, the phase having
the higher energy may tend to be dynamically unstable (i.e., have negative C). As a
consequence, large and positive values of C' for either the bee or the fcc structure will tend
to correlate with large and negative values for C' of the other structure. That trend will now
be studied.

SELECTION OF DATA

The survey in this section refers to solid phases at ambient pressure. Information
about the structure of the thermodynamically stable phases is taken from Young (1991). For
those phases, the values of the elastic constants used in Table 2 and Fig. 4 are taken from
the Landolt-Bomstein compilation of experimental data, by Every and McCurdy (1992).
The survey below also gives references to works where C' and C.. are obtained in electronic
structure calculations of the ab initio type. It is only recently that elastic constants have
been calculated for bee or fcc structures, when such phases are not observed
experimentally. Therefore data are missing for many elements. Much work has been
focussed on the tetragonal Bain path, from which C, but not C.. , is obtained. Often those C'
refer to the approximate volume-conserving path. Furthermore, papers dealing with Bain
paths usually only give the result as a graph of the energy versus the deformation, without
any explicit values for the elastic constants , e.g., in Wills (1992) and in the papers by Sob et
al. In the latter case, numbers derived from a fit to the Bain paths have been provided by
Sob in private correspondence, and are quoted in Table 1. In some cases the shear elastic
constants are small and just barely positive or negative . When it has not been possible to
obtain a more precise numerical value, those elastic constants are given in Table 2 as ;:: 0
and :s; 0, respectively.

Potassium, rubidium, cesium. All three element s have the bee structure. Sliwko et al.
(1996) obtained C for K and Rb from a calculation of the tetragonal Bain path . Jianjun Xie
et al. (2000) calculated C' and C•• for Cs. Grimvall and Ebbsjo (1975) found fcc K to be
dynamically stable.

Calcium, strontium, barium . Calcium and strontium have fcc structures that transform
to the bee structure at 721 K and 830 K, respectively . Barium has the bee structure at all
temperatures. Sliwko et al. (1996) obtained C' for Ca and Sr from a calculation of the
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tetragonal Bain path. Moriarty (1973) obtained C44 > 0 for Ca. The fcc data for Ba in Table
1 are subjective estimations based on a comparison with the experimental data for fcc Ca
and Sr.

Scandium. yttrium. lanthanum. Scandium and yttrium have the hcp structure, with a
transition to bee structure at 1608 K and 1752 K, respectively. Lanthanum is hcp at low
temperature s, transforms to fcc at 550 K and to bee at 1134 K. From measurements of the
phonon spectrum by neutron scattering, Petry at al. (1993) obtained C' and c.. for bee Sc at
1673 K, and similarly Giithoff et al. (1993) obtained C' and C44 for bee La at 1673 K. Bain
path calculations by Wills et al. (1992) show that C' for bee La is slightly negative.
Calculations by Craievich et al. (1997) for bee Sc give C =O. Calculations by Persson et al.
(2000) give C = -10 GPa, C44 = 30 GPa for bee Sc, and C = - 5 GPa, C44 = 10 GPa for bee
La.

Titanium. zirconium. hafnium. All three metals have an hcp structure, which is
followed by a bee structure above 1155 K, 1136 K and 2030 K, respectively. At low
tempera tures, the bee structure is thought to be dynamical unstable (C < 0); cf. e.g.,
calculations by Craievich et al. (1994) and Sliwko et al. (1996) for Ti and by Wills et al.
(1992) for Hf. The nature of the bee stabilisation at high temperatures is controversial.
Aguayo et al. (2002) calculated C and C•• for fcc Ti, Zr and Hf. Sliwko et al. (1996)
obtained C' for fcc Ti from a Bain path calculation. Calculations by Persson et al. (2000)
give C = -10 GPa, C44 = 20 GPa for bee Ti, and C = -20 GPa, C44 = 40 GPa for bee Zr.

Vanadium. niobium . tantalum . All three metals have the bee structure. A Bain path
calculation by Sliwko et al. (1996) gave C < 0 for fcc V. Analogous calculations by Wills
et al. (1992) and by Soderlind and Moriarty (1998) gave C < 0 for fcc Ta. Mrovec et al.
(1999) calculated C = -152 GPa and C44 = - 57 GPa for fcc Nb, and Wang and Sob
(private communication 2002) obtained C = -102 GPa for fcc Ta. Bain path calculations
by Craievich et al. (1994) gave C < 0 for fcc V, Nb and Ta.

Chromium. molybdenum. tungsten. All three metals have the bee structure. Their fcc
phases are dynamically unstable, as shown by the negative values of C' obtained in
calculations by Craievich et al. (1994) for Cr, Mo and W, by Einarsdotter et al. (1977) and
Sob et al. (1997) for W, and by Mrovec et al. (1999) for Mo. The two latter works also give
C44 for fcc Mo and W. While Einarsdotter et al. (1997) and Sob et al. (1997) essentially
agree on C for fcc W (-159 GPa and -142 GPa), they differ significantly for C44 (- 128 GPa
and -60 GPa). In Table 2 the value C44 = -100 GPa is chosen.

Manganese. technetium. rhenium . Manganese has the bee structure up to about 1000
K, followed by simple cubic, fcc and again bee structures. Technetium and rhenium have
the hcp structure at all temperatures. Bain path calculations by Wills et al. (1992) for Re
and by Craievich et al. (1994) for Mn, Tc and Re gave C' > 0 for the fcc structure and C <
ofor the bee structure. From the calculated phonon spectrum of fcc and bee Re by Persson
et al. (1999) and Bain path by Craievich et al. (1994), C and C44 are crudely estimated here.

Iron. ruthenium . osmium. Iron has the bee structure up to 1173 K, followed by fcc
structure and then a return to bee structure at 1660 K. ClI, CI2 and C44 do not change much
on the transition from bee to fcc structure (Every and McCurdy, 1992). Ruthenium and
osmium have the hcp structure at all temperatures. Bain path calculations by Craievich et
al. (1994) for Fe (non-magnetic), Ru and Os gave C > 0 for the fcc structure and C' < 0 for
the bee structure. C for fcc and bee Os in Table 2 are estimated here from the Bain path
calculation by Wills et al. (1992) and Craievich et al. (1994), after comparison with Ir (see
below), and are uncertain.

Cobalt. rhodium. iridium. Cobalt has the hcp structure up to 695 K, followed by the
fcc structure. Rhodium and iridium have the hcp structure at all temperatures. Liu and
Singh (1993) calculated C for bee Co. Sob et al. (1997) calculated C =- 383 GPa and C44 =
217 GPa for bee Ir. The result that C < 0 for Ir is in agreement with Bain path calculations
by Wills (1992) and Craievich et al. (1994). The entries for fcc Ir in Table 2 are from Every
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and McCurdy (1992). Bain path calculations by Craievich et al. (1994) for Co (non
magnetic ), Rh and If gave C > 0 for the fcc structure and C < 0 for the bee structure.

Nickel, palladium, platinum. All three metals have the fcc structure. Craievich et al.
(1994) calcul ated C for bee Ni and obtained a negative value. The Bain path calculat ion by
Will s et al. (1992) for bee Pt shows that C '" O.

Copper, silver, gold. All three metals have the fcc structure. Calculations show very
small values for C in the bee lattice, with C being negative for Cu (MUlier et al., 1999; Sob
2002, private communication), barely positive for Ag (Magyari-Kope et al. 2002), and
approximately zero for Au (Will s et al. 1992). Magyari-Kope et al. (2002) also calculated
C44 for Ag. That result is used in the present subjective estimate of C44 for bee Au in Table
2.

Zinc, cadmium, mercury. Zinc and cadmium have the hcp structure with a cia axis
ratio that is significantly higher than the ideal value . Mercury has a low-temperature
tetragonal structure followed by a rhomboh edral structure. MUlier et al. (1999) found C to
be slightly negati ve in fcc Zn, while Magyari-Kope et a!. (2002) obtained a slightly positive
value. Magyari-Kope et a!. (2002) calcul ated both C and C•• for bee and fcc Zn.

Gallium, indium, thallium. Gallium has an orthorhombic structure and indium a
tetragonal structure. Thalli um has the hcp structure, followed by a bee structure at high
temperatures. Nothing seems to be known about elastic constants in metastable or
dynamically unstable bee and fcc phases for Ga and In.

Germanium, tin, lead. Germanium has the diamond-type structure. Tin has a low
temperature diamond-type structure followed by a tetragonal structure. Lead has the fcc
structure. Nothing seems to be known about elastic constants in metastable or dynamically
unstable bee and fcc phases for these metals. It can be remarked, for a comparison with Ge,
that Ekman et a!. (2000) found bee and fcc Si to be metallic and with C < O.

Table 2: Elastic constants C =(CII - C12)12 and C44 in the 5th row in the Period ic Table.
Upright numbers refer to experiments. Numbers in italics are mostly from ab initio electron
structure calculations. Parenthe ses denote that a subjective evaluation of available
information is made in the present paper. For C44 in bee Hf, Os and Pt, and in fcc Os, not
enough seems to be known to motivate an estimate. See the text for references and
discussion on entries in the table.

Element structure bcc bee fcc fcc
atO K C (GPa) C44 (GPa) C (GPa) C•• (GPa)

Cs bee 0.2 1.5 0.2 1.9
Ba bcc 3 10 (3) (10)
La fcc I 10 7 18
Hf hcp (::;0) 28 67
Ta bee 53 83 -102 19
W bee 160 160 (-150) (-100)
Re hcp (-75) (100) (100) (115)

Os hcp (-400) (200)
If fcc -383 (217) 170 263
Pt fcc (~O) 48 77
Au fcc (~O) (50) 15 42
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RESULTS AND DISCUSSION

Looking at Table 2, we see a clear difference between on one hand the elements in the
beginning (Cs, Ba, La, Hi) and the end (Pt, Au) of the 5th row of the Periodic Table, and on
the other hand the intermediate transition metal series (Ta, W, Re, Os, Ir). Disregarding the
results from ab initio calculations that C' is slightly negative at 0 K for La and Hf (with a
stabilisation due to temperature effects), and very small (or perhaps even negative) for bee
Pt and Au, we note that in the first group both the bee and the fcc structures are
dynamically stable. In contrast, the stability condition on C' for Ta, W, Re, Os and Ir is
strongly violated in either the bee or the fcc structure. This is also shown in Fig. 4. That
figure includes C for the 4th-row alloys Zr-Nb and Nb-Mo bee alloys (Every and McCurdy,
1992), plotted as a function of the number of electrons per atom. (There seem to be no
experimental data for elastic constants of the corresponding 5th_row alloys.)

We note in Table 2 that while there are many examples where C' < 0, there is only one
entry with C44 < O.This can be related to the fact that C•• < 0 implies a more severe lattice
instability than C < O. In the former case, the lattice is unstable under a shear for both the
[100] and the [110] modes; see Table I. The only case with C44 < 0 in Table I is fcc
tungsten, for which also C < O. Then the fcc lattice is unstable under all shear modes; cf.
Table I.

300 r---------------------,
c' = (c" - c'2 )/2

200

100

-100

-200

-300

-400

• fee
o bee
+ Zr·Nb·Mo. bee

Cs Sa La HI Ta W Re Os Ir PI Au

Figure 4. The elastic shear constant C for some 5th_row elements in bee and fcc lattice structures. See the
text for details. Also shown (crosses) are experimental C for Zr-Nb and Nb-Mo bee alloys.

The elastic constants for the 3rd and 4th rows in the Periodic Table show a pattern very
similar to that of the 5th row elements, but magnetism plays an important role for the 3rd

row elements . For instance, bee Fe is stable in both the bee and fcc structures, while Os
(which is in the same column as Fe in the Periodic Table) has a strongly negative C in the
bee structure. For the 4th row elements, which are all non-magnetic , the available data are
not as complete as for the 5th row.
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A comment should be made regarding elastic anisotropy. It is usually expressed by the
Zener parameter Az;

Az = 2 C.J(C II - C12) = C./C. (4)

A physically more relevant anisotropy parameter, AE, was introduced by Every (Every
1980, Grimvall 1999);

(5)

For an elastically isotropic system, Az = 1 and AE = O. When C tends to zero, Az diverges
while AE is well defined. The bee phase of pure Zr is dynamically stable only at high
temperatures. It is of interest to consider the Zr-Nb-Mo binary random solid solution series,
for which there are measured elastic constants in the bee structure, from Zro.8Nbo.2 to pure
Mo (Every and McCurdy 1992). Figure 5 shows a smooth variation in the two anisotropy
parameters, with no precursor effect in AE as one approaches pure Zr for which C ""0 in the
bee phase and hence Az diverges. Similar plots are given by Magyari Kope et al. (2002) for
fcc and bee Ag-Zn alloys. As we noted above, there are elastic shear instabilities in those
systems.

Returning to the relation between lattice instabilities and CALPHAD calculations, we
note the similarity between Figs. 3 and 4. The discrepancies between the semi-empirical
CALPHAD enthalpy differences Hoc, - HIm and the corresponding values calculated ab
initio are large only in the cases where either the bee or the fcc structure is dynamically
unstable.

The main part of Figure 4 refers to data for pure elements. It is so regular that one
expects it to be relevant also for, e.g., binary (thermodynamically stable or hypothetical)
alloys connecting two adjacent elements. There are few extensive sets of data for transition
metal alloys with components from the same row in the Periodic Table, apart from systems
where magnetism may strongly affect the composition-dependence of the elastic constants.
However, for the 4th_row Zr-Nb and Nb-Mo bee alloys there are detailed experimental data
for all three elastic constants. The results for C, marked with plus-signs in Fig. 4, fit well
the general trend for the 5d elements.

3

2

o

Nb Mo

Figure 5. The Zener and Every anisotropy parameters, Az and AE• for random binary Zr-Nb-Mo alloys in a
sequence of increasing number of electrons per atom. and in the bee lattice structure.
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The temperature dependence of phonon frequencies usually has the form of a rather
small and gradual decrease related to thermal expansion. However, in some cases of interest
here the temperature dependence is anomalous and has drastic consequences. A good
example is provided by Ti, Zr and Hf. They are thought to be dynamically unstable in the
bee lattice at low temperatures, but the bee phase is not only dynamically stabilised, but
also becomes the thermodynamically most stable phase with increasing temperature or
dilute alloying with certain elements. The question of the precise origin of this temperature
dependence has not yet been settled. A plausible mechanism is a change in the electron
structure near the Fermi level, induced by increasing vibrational amplitude of the atoms, or
by alloying. Features in the electronic spectrum near the Fermi level seem to be decisive
also for the elastic constants of Nb-Mo alloys, possibly related to electronic topological
transitions, cf. Bruno et al. (1994). A closer inspection of the Nb-Mo curve in Fig. 4 reveals
significant changes in slope around 20 % Nb. Similar anomalous features are seen in C.4
(Every and McCurdy, 1992). At these compositions there is also an anomalous temperature
dependence, which is particularly pronounced for C44 (Every and McCurdy, 1992).

In conclusion, when data for elastic shear constants of metals obtained from
experiments are combined with data from ab initio electron structure calculations, a striking
and regular pattern emerges. For the elements in the middle of the transition metal series in
the Periodic Table, the shear constants C =(Cll - C12)12 in assumed bee and fcc lattice
structures co-vary in such a way that a large and positive value of C in the bee structure
implies a large and negative value in the fcc structure, and vice versa. Of the two stability
criteria on the elastic shear constants in cubic structures, i.e., C > 0 and C44 > 0, violating
the latter means a more severe instability. Among the transition metals, it has so far been
noted only for the Cr, Mo, W column in the Periodic Table.
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1. INTRODUCTION

The electronic structure (ES) of materials, which in the general sense determines all
their physical properties, can be obtained accurately from ab initio (first-principles) ES
calculations, i.e. from fundamental quantum theory. Here the atomic numbers of
constituent atoms and, usually, some structural information are employed as the only input
data. Such calculations are routinely performed within the framework of the density
functional theory in which the complicated many-body interaction of all electrons is
replaced by an equivalent but simpler problem of a single electron moving in an effective
potential. For a given material, the calculated total energies are used to obtain equilibrium
lattice parameters, elastic moduli, relative stabilities of competing crystal structures,
energies associated with point and planar defects, etc. In addition , we also obtain
information about electronic densities of states and charge densities that enables us to
attain a deeper insight and learn which aspects of the problem are important.

Recently, theoretical calculations of strength of materials became possible using ab
initio ES calculations. In most engineering applications, the strength of materials is limited
by the presence of internal defects . If there were no defects, then , for example, the tensile
strength could be several orders of magnitude higher and its value would be comparable
with that of the Young modulus . Therefore, the strength of ideal (defect-free) crystals sets
up an upper limit of attainable stresses, and may be called the ideal strength . While it may
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not be possible to achieve the ideal strength in practice, it is not possible to exceed it. The
ideal strength has already been approached in situations that are technologically relevant.
These include the low-temperature deformation of inherently strong materials, such as
diamond , Si, Ge and some of the transition-metal carbonitrides, deformation of whiskers ,
nanoindentation of materials with low defect densities, hardened thin films and coatings
etc. Its knowledge is useful for estimation of the ideal work of fracture , stresses needed for
homogeneous nucleation of dislocations and for modeling of crack propagation. Therefore,
the determination of the ideal (theoretical) strength is of principal interest in many
applications. Understanding its source and characteristics can help to identify those aspects
of mechanical behavior that are fundamental consequences of crystal structure and
bonding.

Until now, most calculations of the theoretical strength of materials have been based
on empirical or semiempirical interatomic potentials (for a review see e.g. Ref. 1 and the
references therein ; ideal shear strengths for all basic cubic structures calculated by means
of semiempirical potentials may be found in Ref. 2). However, these interatomic potentials
are fitted to the properties of the equilibrium ground state and, therefore, it is not
guaranteed that they are applicable when the material is loaded close to its theoretical
strength limit, very far from the equilibrium state .

In contrast, this is not a problem for ab initio ES calculations. Nevertheless, most of
the ES calculations were directed towards finding the equilibrium state of a given material
that corresponds to the minimum of the total energy or towards analysis of relatively small
deviations from that state. On the other hand, theoretical strength is related to the
maximum force that may be applied to the material without perturbing its stability. It is
usually connected with an inflexion point on the dependence of the total energy on
deformation parameters.

The first paper dealing with the ideal tensile strength from the first principles was that
of Esposito et a1.3

. However, those authors have not performed relaxations of dimensions
of the loaded crystal in the directions perpendicular to the loading axis. Paxton et al.4 and
Xu and Moriarty' calculated shear strength for unrelaxed shear deformation. Other ab
initio calculations of properties of the systems far from equilibrium have also been made,
such as exploration of the structural stability, but the results were not employed to evaluate
the strength'"!".

Our group at the Institute of Physics of Materials in Brno performed the first ab initio
simulation of a tensile test (including the relaxation in perpendicular directions to the
loading axis) and obtained the theoretical tensile strength in tungsten 11. The results
compared very well with experiments performed on tungsten whiskers by Mikhailovskii et
al. l Z Further, we calculated ideal tensile strength in NiAI l 3 and CUI4

• These results found a
very good response in the international solid state physics and materials science
community and established a basis for further calculations of ideal tensile strength. Li and
Wang computed the ideal tensile strength in AIl5 and in SiC I6

. The group at the University
of California at Berkeley calculated ideal shear strength in Al and Cu 17

, performed a
thorough theoretical analysis of the problem of strength and elastic stability'" and, among
others, verified our values of ideal tensile strength for tungsten 19.

From 1997, ab initio calculations of theoretical strength under isotropic triaxial
(hydrostatic) tension (i.e., negative hydrostatic pressure) also appearZO

-
Z5

• As the symmetry
of the structure does not change during this deformation, simpler ab initio approaches may
be applied .

Very recently, we have simulated a tensile test in prospective high-temperature
materials , namely in transition metal disilicides MoSiz and WSiz with the Cl h structure.
This study included calculation of the tensile strength for [001] loading and analysis of
bonds and their changes during the tesr". Theoretical tensile strength of iron in the loading
direction [001] was determined in Refs. 27 and 28; in Ref. 29, we compared those results
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to each other and calculated the tensile strength of iron for uniaxial loading in the [Ill]
direction . Theoretical tensile strength of C, Si and Ge for uniaxial loading in the [001]
direction was calculated in Ref. 30. Tables summarizing ab initio values of theoretical
tensile strength s for various materials are given in Refs . 29, 31 and 32; Ref. 32 includes
also ab initio values of shear strengths and some semiempirical results . An extensive
review of the semiempirical and ab initio calculated values of uniaxial and isotropic
triaxial tensile strengths as well as of shear strengths calculated up to 1999 can be found in
Ref. 33.

There are more general problems of stability of materials and of phase transformations
that are closely related to the tensile tests described above. Namely, the tensile test may be
considered as a special case of so-called displacive phase transformation path6

•
8

. These
paths are well known in studies of martensitic transformations. Such transformations playa
major role in the theory of phase transitions. They proceed by means of cooperative
displacements of atoms away from their lattice sites that alter crystal symmetry without
changing the atomic order or composition. A microscopic understanding of the
mechanisms of these transformations is vital since they occur prominently in many
materials .

Displacive phase transformations are also of interest in studies of epitaxial thin films.
Pseudomorphic epitaxy of a cubic or tetragonal (001) film typically results in a strained
tetragonal structure. In this case , there is a stress in the (001) plane keeping the structure of
the film and of the substrate coherent, and the stress perpendicular to this plane vanishes . A
tetragonal phase arises that may be stable or metastable'", Similarly, an epitaxial film
grown on the (111) plane of a cubic substrate exhibits a trigonal deformation of its lattice,
which may be considered as a uniaxial deformation along the [111] axis. In this context it
is interesting to consider the trigonal deformation path, which comprises the bee, fcc and
simple cubic structures as special cases 34

-
36

,8. We have also proposed the bee to hcp
transformation path , which we investigated in iron37 and in intermetallic compounds TiAI
and NiA138

. Very recently, we have studied the tetragonal bee-fcc transformation path in
iron and have shown how these results may be used to predict the lattice constants and
magnetic order of iron overlayers on various metallic substrates39

,4o , This research is
closely connected with the studies of iron stability performed in Refs. 41-46.

Another area of importance of the local stability of non-equilibrium phases and phase
transformation paths is the structure of extended defects in solids . It was found in recent
studies that atomic configurations in grain boundary (GB) regions, or at other interfaces,
may contain certain metastable structures, different from the ground-state structures. For
example, the 9R (u-Sm) structure was theoretically predicted and verified by high
resolution electron microscopy (HREM) at GBs in silver and copper47

.48. Similarly, the bee
structure was found at certain grain boundaries in copper?". We have showrr'" that the bee
Cu at grain boundaries is stabilized by external constraints exerted by the surrounding fcc
grains.

Occurrence of such phases at interfaces is even more likely in more complex non
cubic alloys . For example, new structural features of TiAI , which crystallizes in tetragonal
LI o structure, have been discovered recently. Abe et al.5 1 found a B19-type hcp-based
structure in a Ti-48at. %AI alloy quenched from the disordered phase, and Banerjee et al.52

observed a series of structural transitions in the form of changes in the stacking sequence
of the close-packed atomic planes in the Ti and AI layers in TilAl multilayered thin films .

Consequently, in order to explore adequately extended defects both in pure metals and
alloys , in particular in intermetallics, detailed information about possible metastable
structures, as well as lattice transformations connecting them , is needed . Armed with this
knowledge one can predict whether an interface may be associated with a metastable
structure and assess thus its stability and ability to transform to other structures (for
example during deformation or due to changes in stoichiometry).
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The purpose of the present paper is to study lattice configurations found in the course
of tetragonal and trigonal displacive transformation (deformation) paths. These
configurations are produced by large homogeneous distortions that transform the initial
(ground-state) structure into new (higher -energy) structures with different symmetries.
Such investigations are closely linked with theoretical strength and phase transformations
and constitute a basis for future analyses of various configurations of extended defects in
metallic materials. As specific examples, we study iron and the intermetallic compound
Ni3Al. Iron exists in both bee and fcc modifications and has many magnetic phases,
especially in thin films . Notably, fcc iron films exhibit a large variety of structural and
magnetic properties that depend delicately on the thickness of the iron layer and
preparation conditionsi' . Ni3Al is the most important strengthening constituent of
commercial nickel-based superalloys used extensively as structural materials for elevated
temperatures applications. This phase is responsible for the high-temperature strength and
creep resistance of the superalloys. Ni)AI and a number of other intermetallic compounds
with the Liz structure exhibit so called anomalous yield behavior, when their yield strength
increases rather than decreases with increasing temperature. This behavior is not the result
of a change in long-range order with temperature since the (Bragg) long-range parameter,
S, is almost constant in Ni3Al up to 1000 DC. There is now near-universal agreement that
the anomaly results from the special properties of screw dislocation cores and the
anisotropy in antiphase boundary energies; a review and comparison of various models are
presented in Ref. 54. Single crystals of Ni3AI are ductile , but pure polycrystalline Ni3Al is
very brittle at room temperature because of intergranular fracture . Both iron and Ni3AI
exhibit magnetic ordering; therefore, we also study the changes of the magnetic state of
these materials during deformation.

2. DISPLACIVE PHASE TRANSFORMATION PATHS

We consider two simple transformation paths connecting cubic structures. They are
the bee-fcc transformation path via tetragonal deformation corresponding to extension
along the [001] axis (the usual Bain's path) and the trigonal deformation path that
corresponds to uniaxial deformation along the [Ill] axis (Figs. 1 and 2).

bee:
e/a=1

t[001]

fee:
e/a=1J2

Figure 1: High-symmetry structures obtained along the tetragonal deformation path. The c and a are the
length scales along the [001] and [100] directions , respectively. The original bee cell is indicated by filled
circles and heavy solid lines.
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In the case of tetragonal deformation path, we start with the bee structure considered
as a tetragonal one with the ratio cia = 1, where c is measured along the [001] direction and
a along a [100] direction . When cia is varied, we arrive at body-centered tetragonal
structures. There is one exception: for cia =--./2 the structure becomes fcc (Fig. I) .

Similarly, we may consider the bee structure as trigonal with the ratio of cia = 1,
where c is measured along the [Ill] direction and a along a direction perpendicular to
[Ill] . If cia t I, the structure becomes trigonal except for cia =2, when we attain the
simple cubic (sc) structure, and cia =4, which again corresponds to the fcc structure (see
Fig . 2).

When studying the behavior of the total energy along the deformation paths, one
usually assumes that the atomic volume is constant. Then both deformation paths discussed
above may be fully parameterized by the ratio cia.

fee:
e/a=4

!HI~11 ]~~..-r

/' bee:
e/a=1

Figure 2: High-symmetry structures obtained along the trigonal deformation path. The c and a are the length
scales along the [Ill] direction and along a direction perpendicular to [Ill] , respectively.

Analogous deformation paths may be devised for intennetallic compounds with B2,
Liz or D03 structures 8

.
55

• In the LIz (Cu3Au) structure, the atoms are at the fcc positions
with the (002) planes occupied alternatively by Cu atoms and by Cu and Au atoms in the
same ratio. We may consider this structure as tetragonal or trigonal with the ratio cia =1.
Now, performing a tetragonal deformation, the cubic symmetry of the LIz configuration is
lost and becomes tetragonal, even for cia =--./2/2, when atoms are at the bee-like positions,
but because we have two kinds of atoms, the structure does not attain the cubic symmetry.
When we perform the trigonal deformation, the structure becomes trigonal except for the
case of cia = 0.5, when we encounter a simple-cubic-based structure that, indeed, has a
cubic symmetry. For cia =0.25, the atoms adopt the bee-like positions, but the symmetry
of the structure remains trigonal. All these structures will be characterized in more details
in a subsequent publicatiorr'j . (Note different "normalization" of the ratio cia for the LIz
structure. Here we ascribed the value of cia = 1 to the fcc-based configuration.
Consequently, as it may be seen from Figs . 1 and 2, the bee-based configuration, obtained
by the tetragonal deformation, corresponds to cia = --./2/2, and the sc- and bee-based
structures, obtained by the trigonal deformation, correspond to cia =0.5 and cia =0.25,
respectively.)

Craievich et al." have shown that some energy extrema on constant-volume
transformation paths are dictated by the symmetry. Namely, most of the structures
encountered along the transformation paths between some higher-symmetry structures, say
between bee and fcc at the Bain's path, have a symmetry that is lower than cubic. At those
points of the transformation path where the symmetry of the structure is higher, the
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derivative of the total energy with respect to the parameter describing the path must be
zero. These are the so-called symmetry-dictated extrema. However, other extrem a may
occur that are not dictated by the symmetry and reflect properties of the specific material.
The same is true for the transformation paths corresponding to uniaxial loading lO,56.
Configurations corresponding to energy minima at the transformation paths represent
stable or metastable structures and may mimic atomic arrangements that could be
encountered when investigating thin films lO and extended defects such as interfaces or
dislocat ions'v". For iron and Ni3Al, we will discuss these configurations below,

3. TENSILE TEST SIMULATION

To simulate a uniaxial tensile test, we start by determining the structure and total
energy of the material in the ground state . Then , in the second step, we apply an elongation
along the loading axis by a fixed amount E that is equivalent to application of a certain
tensile stress cr. For each value of E, we minimize the total energy by relaxing the stresses
crl and cr2 in the directions perpendicular to the loading axis, The stress o is given by

c aE I aE
a=--=--- ,

vac Aco as (1)

where E is the total energy per repeat cell, V is the volume of the repeat cell , c is the
dimension of the repeat cell in the direction of loading , A (equal to Vic ratio) is the area of
the basis of the repeat cell in the plane perpendicular to the loading axis, and Co is the
value of c in the undeformed state .

We are also interested in tensile strength at isotropic triaxial (hydrostatic) tension , In
this case, we start again with the material in its ground-state structure, but the dimension of
the crystal is gradually increased homogeneously in all directions. The hydrostatic stress o
is then calculated using the formula o = dE/dV.

The inflexion point in the dependence of the total energy on elongation yields the
maximum of the tensile stress; if any other instability (violation of some stability
condition, soft phonon modes, magneti c spin arrangement etc.) does not occur prior to
reaching the inflex ion point, it also corresponds to the theoretical tensile strength , crlh,

4. METHODS OF CALCULATION

The atomic configurations corresponding to the deformed structures have usually a
lower symmetry and, at the strength limit , they are very far from the ground state ,
Therefore, to get reliable structural energy differences , we must use a full-potential method
for the calculations, Here we use the full-potential linearized augmented plane wave
(FLAPW) code WIEN97 described in detail in Ref. 57. In the FLAPW method, no
assumptions are made about the potential or charge density and the muffin-tin geometry is
used only when constructing the basis functions. The total energy functional is evaluated
for the full charge density and no spheroidization is introduced, The calculations are
performed self-consistently, including all electrons present in the material. The exchange
correlation energy is evaluated within the generalized-gradient approximation (GGA)58.
This is important especially for iron , since the local density approximation does not render
the ground state of iron correctly. The muffin-tin radius of iron atoms of 1.90 au is kept
constant for all calculations. The number of k-point s in the whole Brillouin zone is equal to
6000 and the product of the muffin-tin radius and the maximum reciprocal space vector,
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RMT kmax, is set to 10. The maximum I value for the waves inside the atomic spheres, Imax.
and the largest reciprocal vector in the charge Fourier expansion, Gmax, is equal to 12 and
15, respectively. In the case of Ni3AI, the muffin-tin radii of both Ni and Al atoms are
equal to 2.0 au, number of k-points in the whole Brillouin zone is 400 0, and the product
RMT kmax =8. The values of Imax and Gmax are 12 and 10, respectively.

s.RESULTS AND DISCUSSION

5.1. Iron

5.1.1. Total energies and magnetic states of tetragonally and trigonally deformed
iron. We have calculated the total energy and magnetic moment of iron deformed along
the tetragonal and trigonal paths at constant atomic volumes ranging from VN exp =0.84 to
VN exp = 1.05 , where Vexp is the experimental equilibrium atomic volume of the
ferromagnetic bee iron corresponding to the lattice constant abcc =5.408 au. As shown in
Figs. 3 and 4, we include non-magnetic (NM), ferromagnetic (FM) and two
antiferromagnetic states, namely the single-layer antiferromagnetic state (AFM l) , in which
the (00 1) or (11 1) planes have alternating magnetic moments (ItIt ... ), and the double
layer antiferromagneti c state (AFMD), where the pairs of (00 1) or ( I ll) planes have
alternating magnetic moment s (I I tt ... ).The total energ y of iron is plotted as a function
of volume and the cia ratio in Figs. 5 and 6. We show only those states the energies of
which are the lowest for a given configuration. In Fig. 5, we can clearly see the
"horseshoes" dividing the plane into the AFMl, AFMD and FM regions whereas the area
of Fig. 6 is dominated by the FM states. The global minimum of energy is in the FM region
at cia = 1, VN exp = 0.985, which corresponds to the bee structure. The calculated
equilibrium volume is about 1.5 % lower than the experiment al value, which may be
considered as a very good agreement.

NM FM AFM1 AFMD

Figure 3. Non-magnetic (NM), ferromagnetic (FM), antiferromagnetic single-layer (AFM 1) and
antiferromagnetic double layer (AFMD) states of iron included in calculations of total energy profiles along
tetragonal deformation paths.
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Figure 4. Non-magnetic (NM), ferromagnetic (FM), antiferromagnetic single-layer (AFMI ) and
antiferromagnetic double layer (AFMD) states of iron included in calculations of total energy profiles along
trigonal deforma tion paths. (Note that these figures do not display all the (J II) planes in the lattices shown).

The ground-state energy minimum is dict ated by the symmetry . Any energy profile at
the consta nt volume, obtained from Figs. 5 and 6, also exhibits the minimum at cia = l.

Let us discuss the tetragon al case first (Fig . 5). Apart of the large FM area, there are
AFMD and AFMl region s in the neighborhood of the fcc structure, which corresponds to
the line cia =-a.Note that the lattice symmetry of the fcc iron with the AFMl and AFMD
spin ordering is tetragonal and, therefore, we do not find any extremum of the total energy
of these state s (dict ated by symmetry) at cla= -a. In accordance with Ref. 42, we found
that the fcc iron with the AFMl or AFMD spin ordering is unstable with respect to the
tetragonal deformation. A more detailed discussion of the tetr agonal case is presented in
Refs. 39 and 40 . In those papers, we also showed how the contour plot presented in Fig. 5
may be used to predict the lattice parameters and magne tic states of iron overlayers at
(001) substrates.

1.

o.
0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80

cia
Figu re 5. Total energy (per atom) of iron as a function of the tetragonal cia ratio and volume relative to the
energy of the FM bee equilibrium state calculated within the GGA. Only states with the minimum energy are
shown. The contour interval is equal to 20 meV. Thick lines show the FM/AFM D and AFMD/AFM I phase
boundaries. The cross corresponds to the global, symmetry-dictated minimum (ground state). The path
representing the simulation of the tensile test for loading along the [DOl] direction is denoted by full circles;
the highest circle marked by an arrow corresponds to the maximum stress obtai ned in the simulation of the
tensile test.
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The AFMD structure with the tetragonal symmetry may be considered as a close
approxi mation of the spin-spiral state with q =(2n/a) (0, 0, 0.6), found as the ground state
of the fcc iron59

. It will be the topic of future studies to ascertain how the non-collinearity
of magnetic moments changes the borders between various magnetic phases in the (cia,
VlVcxp) plane. We surmise that the region of non-collinear magnetism will not be too
different from the AFMD region shown in Fig. 5.

The AFM l and AFMD states with the trigonal symmetry (Fig. 4) have most ly higher
energy than the FM states and, conseq uently , they are nearly invis ible in Fig. 6, except for
the lower right comer. However, two regions of the FM states may be found in Fig. 6:
FM(HS), the high-spin states (with magnetic moment higher than about 2 IlB) and FM(LS),
the low-spin states (with magnetic moment lower than about 1.2 IlB). There is a sharp
discontinuity in the magnetic moment at the border FM(HS)/FM(LS). Nonetheless, the
total energy remains surprising ly smooth. The triangles in Fig . 6 denote local energy
minima of fcc FM states and the square marks the point where the volume dependencies of
the total energies of the fcc FM(HS) and FM(LS) states, displayed in Fig. 7, intersect.
From Fig. 7 we see that the square represe nts a "sharp" saddle point in Fig. 6.

1.0
li..

1.0

~
~ 0.9
:>

0.9

2.50 3.00 3.50 4.00 4.50

cIa
Figure 6. Total energy (per atom) of iron as a function of the trigonal cia ratio and volume relative to the
energy of the FM bcc equilibrium state, calculated within the GGA. Only states with the minimum energy are
shown . The contour interval is equal to 50 meV. Thick lines show the FM(HS)/NM, FM(HS)IFM(LS),
FM(LS)/NM and FM(LS)/AFM I phase boundar ies. The cross corresponds to the globa l symmetry-dictated
minimum (ground state), the triangles show the local minima of the total energy of the fcc states in the
FM(HS) and FM(LS) region at VN"p = 1.037 and 0.911, respective ly. The square at VN"p =0.955 denotes
the crossing point of the dependencie s of the total energy of the FM(HS) and FM(LS) fcc states on volume,
presented in Fig. 7. As Fig. 7 shows, this square represents a "sharp" saddle point. The path representing
simulation of the tensile test for loading along the [III] direction is denoted by full circles; the state
corresponding to the maximum stress attained in the tensile test simulation (VN"p = 1.114, cia = 1.356) lies
outside the area of the figure.

All total energy profi les at a constan t volume V> 0.955 Vcxp exhibit three symmetry
dictated extrema: a minimum at cia =1 (bee structure), a maxim um at cia =2 (sc structure)
and a minimum at cia = 4 (fcc structure). The reason is that both FM and NM structures
exhibit a higher (cubic) symmetry at those values of cia. The profile of the total energy at
the cons tant volume V = Vcxp, obtained from Fig. 6, is shown in Fig. 8. It is qualitatively
similar to the total energy profiles of trigonally deformed Ta60

.
61 or Ir8 and eu50 (the
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ground-state structure of Ir and Cu is fcc and, therefore the fcc minimum for those metals
is lower than the bee minimum).

0.25
.--.. FM 0
E NM o0-ttl 0.20-->
~

0
W

~ 0.15 ! ,/
FM (LS) FM (HS)

0.10
0.85 0.90 0.95 1.05

V/Vexp

Figure 7. Tota l energies of the fcc PM and NM states of iron as functions of volume relative to the total
energy of the PM bee ground state. The triangles denote local energy minima (for their exact position see the
descriptio n of Fig. 6), and the square corresponds to the intersection of the FM(HS) and FM(LS) curves .

1.0

.--.. FM (HS) 0
E 0.8
0-ttl--> 0.6
~

0
w 0.4

W
0.2

0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cIa

Figure 8. The profile of the total energy of trigonally deformed iron at VlVoxp = I (cf. with Fig. 6). All energy
extrema (at cia = 1, 2 and 4) are dictated by symmetry .

5.1.2. Uniaxial and isotropic triaxial tensile tests. In accorda nce with methodology
describe d in Sec. 3, we performed the simulation of a tensi le test in iron for uniaxia l
loading along the [001] and [111] directions, respectively, as well as for isotropic triaxial
loading corresponding to the negati ve hydrostatic pressure . The corresponding total
energies as functions of relative elongatio n E are displayed in Fig. 9(a) . In case of the
isotropic triaxial loading, E corresponds to a relative extension of the bee lattice parameter

It is seen from Fig. 9(a) that the total energy profiles have a parabolic, convex
character in the neighborhood of the ferromagnetic (PM), symmetry-dictated, minimum
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that corresponds to the bee structure (ground state). With increasing value of € the curves
reach (due to non-linear effects) their inflexion points (marked by vertical lines in
Fig . 9(a» and become concave. The inflexion point for [001] uniaxial loading occurs (most
likely incidentally) for nearly the same elongation of € = 0.15 as for the isotropic triaxial
loading . In the case of the [001] tensile test, this elonga tion corresponds to the lattice
parameter in the direction of loading equa l to 6.20 au (accompanied by relaxa tion in [100]
and [010] directions in which the lattice constant decreases to 5.12 au) and, in the case of
isotropic triaxial strain , to the bee structure with the lattice constan t of 6.20 au.

1.5 (a) •
E •
.8 •
'" 1.0 •:>
~

0 fccur
tlJ 0.5

• triaxial

sr [111]

• [00 1J

--~.

1.8 (c) • • triaxial
•• v [111]

1.6 • [001]• •C"

~ .' fcc sc
1.4 /l 1>
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Figure 9. Tota l energy per atom measured with respect to the energy of the equilibri um state (a), tensile
stress (b) , relative atomic volume ratio measured with respect to the equilibrium volume V,q (c), and
magnetic moment per atom I' (d) of FM iron loaded triaxially (full squares) and uniaxially along the [001 ]
(full circles) and [I I I] (empty triang les) directio ns vs. elongat ion e. The relative elongation s reflects the
changes of the lattice parame ter at= for isotropic triaxia l loading and, in the case of uniaxia l tensile tests , the
increase/decrease of the crystal dimension in the directions of loading . The thin vertical lines mark the states
exhibiting maximum stress (i.e. theoretical tensile strength) . Incidentally, the maximum stresses for [001]
uniaxial and isotropic triaxia l loading are reached at nearly the same stra in e.

The tensile stresses calculated according to formulas given in Sec. 3 are shown in Fig .
9(b). The inflexio n points on the tota l energy profiles correspond to maxim um stresses
which the material may accommoda te if its structure type does not change during the
deformation. They are equal to a[OOt l

max = 12.7 GPa (this value was reported in our
previous work27 and is not very differen t from 14.2 GPa found in Ref. 28), a[ttl J

rnax = 27.3
GPa and a[triaxiallrnax = 27.9 GPa for uniaxial tensile test along the [00 1] and [I l l ] direction
and for isotropic triaxial loading, respectively. These values represent the theoretical
tensi le strengths provided other instabilities (soft phonon modes, etc.) do not come forth
before reaching the inflexion point. In the case of iron with its large variety of magnetic
phases, another instability may origina te from transitions between those phases . However,
as it is seen from Figs. 5 and 6, no such transition appears during tensile tests along [001]
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and [Ill] directions (all states involved up to the maximum stress lie in the FM region) . A
similar situation arises for isotropic triaxial deformationf' . Other conditions of stabi1it/z,63

will be analyzed in a subsequent publication, but our preliminary calculations indicate that
they will not be violated . It should be noted that the theoretical strength for loading in the
[Ill] direction, equal to 27.3 GPa, is nearly the same as that obtained for isotropic triaxial
loading , 27.9 GPa. At present , we do not have any plausible explanation of this fact.

In Fig . 9(a), it is seen that there are also other extrema of the total energy dictated by
symmetry - maxima corresponding to the fcc and sc structures when simulating tensile
tests with loading along the [001] and [Ill] directions, respectively. These extrema are
denoted by arrows in Fig. 9(a). Their presence dictates that the corresponding dependence
of the energy on elongation must bend, which imposes certain limitat ions on the maximum
stress 11. In the cases when there is no symmetry-dictated maximum (e.g. in the uniaxial
tensile test along the [001] direction of NiAI with the B2 structure in the ground state.") ,
the maximum stress is usually higher .

Since the structural energy difference E scEbcc is about five times higher than the
difference Efcc-Ebcc (755 meV/atom compared to 155 meV/atom), the E vs. e curve for the
[111] loading must rise much higher , albeit for larger strains , than that for the [001]
loading (see Fig . 9(a)) . Consequently, for the tensile test in the [I ll] direction the inflexion
point occurs at a higher strain and for a higher stress than in the test with loading in the
[001] direction . Thus , similarly as for W II

, a marked anisotropy of ideal tensile strengths
for the [001] and [Ill] loading directions may be understood in terms of structural energy
differences of nearby higher-symmetry structures found at the deformation path.

Relative changes of atomic volume and the dependences of the magnetic moment of
FM iron per atom are shown as functions of elongation in Figs . 9(c) and 9(d) , respectively.
In the neighborhood of the ground state structure the atomic volume increases with
increasing elongation but it exhibits a more complex behavior at larger deformations. For
isotrop ic triaxial loading, the magnetic moment shows monotonous increase with
increasing volume (in agreement with Herper et al.64

) while in tensile tests it exhibits local
extrema at points corresponding to both higher-symmetry structures (maxima for fcc and
simple cubic) as well as at some other points along the paths .

5.2. Intermetallic compound Ni}AI

In contrast with iron, in the case of Ni3AI we start with the fcc-based Liz structure
and, therefore , as mentioned in Sec. 2, we renormalize the ratio cia by ascribing the value
of cia =1 to the Liz structure . As a result , the cia for the tetragon al path is by a factor of
'1/2 smaller and for the trigonal path by a factor of 4 smaller than in the case of iron.

Using the GGA, the minimum of the total energy is obtained for the ferromagnetic
state with the lattice constant equal to 3.561 A(6.729 au) and magnetic moment of 0.80 JlB
per formula unit. The lattice constant agrees very well with the experimental value'" of
3.568 A (6.743 au) whereas the experimental magnetic moment, 0.23 JlB per formula unit,
is much lower. When including the spin-orbital coupling, Xu et al.66 obtained a value of
0.46 JlB per formula unit, which is closer to the experimental value. At present, we are
verifying this conclusion .

Figure 10 shows the total energy of Ni3AI as a function of cia for the trigonal
deform ation at the experimental lattice volume . This dependence displays a symmetry
dictated minimum at cia = 1 (the ground-state, LIz structure) and a symmetry-dictated
maximum at cia = 0.5 (a sc-based structure exhibiting cubic symmetry). A subsidiary
minimum occurs at cia '" 0.27, which is not dictated by the symmetry. In the structure
obtained for cia =0.25, the atoms are at the bee-like position s, but the symmetry of this
structure remains trigonal.
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Figure 10. Total energy of Ni3AI (per formula unit, f.u.) as a function of cia for the trigonal deformation at
the experimental lattice volume. The insert shows the deta ils in the neighborhood of the ground state.

There is a very small energy difference between the FM and NM state of the Liz
structure - only 21.3 meV/formula unit (see the insert in Fig. 10). Thi s is consistent with
the results of Xu et al.66 (0 .2-0.5 mRy/f.u.) and Min et al.67

( - I mRy/f.u.).
It is seen from Figs. 10 and 11 that the region of existence of FM state is limited. For

c/a z: 0.75, the magnetic moment is equ al to zero (Fig. 11) and the compound is in a non
spin-polarized state.

Fig. 12 displays the total energy of Ni3AI as a function of the volu me and cia for the
trigonal deform ation. Again, we show only those states the energies of which are the
lowest for a give n config uration. The total energ y profile presented in Fig. 10 is contained
in Fig. 12 as a profile for VlVexp = I. A nearly vertical border divides the area of Fig. 12
into FM and NM regions. All energ y profil es corresponding to a constant volume exhibit
the symmetry-dictated maximum at cia = 0.5. In the contour plot (Fig. 12), there is a saddle
point for cia =0.5 and VlVexp - 1.2 (outside the area of the figure). The minimum at cia ;::
0.27, VlVexp ;:: 1.01 is not dictated by symmetry.

Fig. 13 shows the total energy of Ni3Al as a function of the volume and cia for the
tetragonal defo rmation. Here NM regions extend to both sides of the FM ground state .
However, there are no energy ex trema and saddle points in those NM regions. It is
interes ting that the transition from the FM to NM state during both the trigona l and
tetragonal deformation is essentially continuous , without any discontinuities in magnetic
moment (see e.g. Fig . 11). Xu et al.66 have shown that the energy gain in Ni3A1 associated
with magnet ism is about an order of magnitude smaller than that due to the structural
differences. Our ca lculatio ns show that the NM Ni3Al in the Liz struc ture is stab le with
respect to tetragonal and trigonal deformations (the shear modu li C ' and C44 are nearly
the same for the NM and FM states) . Therefore, magnetism does not appear to play an
important role in the control of phase stability. This is in sharp contrast with iron, where
the onset of ferromagnetism stabilizes the bee struc ture and NM bee states are not stable
with respect to tetragonal deform ation 39.40.
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Figure 11. Magnet ic moment of Ni3Al as a function of cia for the trigonal deformation at the experimental
lattice volume .
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Figure 12. Tota l energy (per formula unit) of Ni3AI as a function of volume and cia ratio, characteri zing the
trigonal defor mation, calculate d within the GGA. The energy is measured relative to the energy of the
equilibrium FM Li z state (the minimum at cia = I). Only states with the minimum energy are shown. The
contour interval is 20 mRy. Thick line shows the NMlFM phase boundary. The ground-state minimum at cia
= I and the saddle point at cia = 0.5 (outside the figure area) are dictated by symme try.
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Figure 13. Total energy (per formula unit) of Ni3AI as a function of volume and cia ratio, characterizing the
tetragonal deformation, calculated within the GGA. The energy is measured relative to the energy of the
equilibrium FM Ll 2 state (the minimum at cia = I). Only states with the minimum energy are shown. The
contour interval is 3 mRy. Thick lines show the NMIFM phase boundaries. The only symmetry-dictated
extremum is at cia = I.

Now, we can also simulate a tensile test in Ni3Al to get theoretical tensile strengths for
uniaxial loading along the [001) and [Ill) directions. These calculations are presently
carried out.

6. AD INITIO CALCULATED VALUES OF THEORETICAL TENSILE
STRENGTH

For the sake of completeness, we summarize in the Table 1 all ab initio calculated
values of the theoretical tensile strength (including relaxation in directions perpendicular to
the loading axis and, if applicable, of internal structure parameters) that have been
calculated until now. Most of them correspond to the inflexion point on the strain
dependence of the total energy . As for the strength of W for [110) loading, the material
probably breaks down due to some other instability before reaching the inflexion point and,
therefore, the true theoretical tensile strength will be lower than that given in the Table.
The situation is most likely the same in the case of Cu where the experimental ideal
strengths are about an order of magnitude lower than the calculated ones I4

•
68

.

Semiempirical calculations'" indeed suggest that, for the [001) direction, the tetragonal
shear modulus becomes zero well before reaching the inflexion point. It may be expected
that similar instabilities will occur for the [110) and [Ill) orientations. This will be the
subject of further investigations.
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Table 1. Theoretical tensile strengths crlh calculated ab initio (results discussed in this paper
are marked by asterisk).

material

Fe

Fe

Fe

W

W

W

W

Al

Al

Cu

Cu

Cu

NiAI

NiAI

i3-SiC

i3-SiC

MoSi 2

WSi2

C

Si

Ge

7. CONCLUSIONS

structure

A2

A2

A2

A2

A2

A2

A2

Al

Al

Al

Al

Al

B2

B2

B3 (3C)

B3 (3C)

C1h

A4
A4

A4

direction

[111]

[001]

[001]

[001]

[001]

[111]

[110]

[001]

[111]

[001]

[110]

[111]

[001]

[111]

[001]

[111]

[001]

[001]

[001]

[001]

[001]

crlh (GPa)
27.329.*

12.727.29.*

28.911

29.519

54.3"

12.115

We analyzed the energetics of iron and the intermetallic compound Ni3Al subjected to
tetragonal and trigonal deformation by means of full-potential ab initio electronic structure
calculations and found borders between various phases with different spin polarizations.
Whereas in iron the magnetic effects are vital for understanding the deformation behavior
and a variety of magneti c orderings occurs, it transpires that in Ni3AI magnetism is not
very important in phase stability considerations . The L12 ground state is ferrom agnetic , but
the energy difference between the FM and NM state is quit e small , about 21 meV/formula
unit. It is interesting that during tetragonal deformation, iron transforms to AFMD and
AFM1 states (Fig. 5), whereas during trigonal deformation, it is mostly ferromagnetic
(Fig . 6).

For iron , we analyzed uniaxial tensile tests and discussed the anisotropy of the
theoretical tensile strength , namel y 12.7 GPa for [001] and 27.3 GPa for the [111] direction
of loading. This marked anisotropy may be understood in terms of the symmetry-dictated
extrema that are present along the deformation paths . Also the isotropic triaxial
(hydrostatic) tension was analyzed and theoreti cal tensile strength of iron for this mode of
loading was found to be 27.9 GPa, very close to the value for uniaxial [111] loading.

It shou ld be noted that the calculated dependence of the total energy on parameters of
the transformation paths provides useful information when constructing semi-empirical
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interatomic potentials that may be used for computer simulation of atomic configurations
of various extended defects for which the first-principles calculations are intractable. An
example is bond-order potentials (BOPs)69 for which we have shown6o.7o recently how such
first-principles results may be employed in their construction and testing.

Stability of higher-energy structures is also an important issue in the theoretical basis
of the CALPHAD (CALculation of PHAse Diagrams) method7l. Grimvall72

•
73 concludes

that when either the bee or fcc structure of a metal is dynamically unstable, i.e. unstable ,
for example, with respect to the tetragonal or trigonal deformat ion, then there are large
discrepancies between the semiempirical enthalpy differences Hocc-Hfcc obtained from the
CALPHAD method and ab initio results. However, as we can see from Refs. 6, 8 and 74,
this is the case in most transition metals. In ab initio calculations, the dynamical instability
is suppressed since we impose a rigid lattice (in reality, this might be stabilized by some
external constraints), and the energy and enthalpy of such structure have well defined
physical meaning . However, it appears that it is not certain how such values may be
compared with those obtained from semiempirical CALPHAD method .
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REJUVENATION OF DEFORMATION-DAMAGED
MATERIAL BY MAGNETIC ANNEALING
- A NEW APPROACH TOGRAIN BOUNDARY ENGINEERING-

Tadao Watanabe, Shuichi Nishizawa and Sadahiro Tsurekawa

Laboratory of Materials Design and Interface Engineering
Department ofMachine Intelligence and Systems Engineering
Graduate School of Engineering, Tohoku University
Aramaki-Aza-Aoba 01, Sendai 980-8579, Japan

1. INTRODUCTION

The nucleation and growth of cavities and microcracks at grain boundaries
cause different types of brittleness, such as creep embrittlement at high temperature,
stress corros ion cracking in reactive environment and under stress, oxidation embrit
dement in air, radiation embrittlement by irradiation, occurring in engineering
polycrystalline materials in service. For example, high temperature creep fracture
often becomes an important source of materials embrittlement, leading to serious
accidents occurrinRin power station, aircraft engine, chemical plants operating at
high temperatures .3. In addition the segregation of detrimental elements to grain
boundary promotes intergranular fracture, leading to segregation-induced brittleness"
5. High temperature intergranular fracture is of particular importance and has been
extensively studied so far in order to control the occurrence of intergranular fracture,
by using existing disciplines, and more recently by grain boundary engineering pro
posed by one of the present authors at the beginning of 1980's6-8. However even now
there exist many unsolved problems of materials design and development : one of
long standing problems and dilemmas is that the material becomes more brittle when
the strength is increased by some means. So strengthening of material does not al
ways bring advantage and benefit of materials design and engineering. We need to
develop structural materials with higher strength and higher fracture resistance, ie.
higher fracture toughness. We have already proved that grain boundary engineer ing
based on grain boundary design and control can provide us a solution of the di
lemma", on the basis of basic studies of the effects of grain boundary character and
structure on intergranular sliding and fracture at high temperature'".
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In this paper we want to propose another possibility of grain boundary engi
neering which is a new approach to rejuvenation of damaged materials, in other
words, how we material scientists and engineers can save 'dying material' by healing
mortal damage existing in the material already served for many years. In particular
this paper first introduce our most recent finding of the rejuvenation effect of mag
netic annealing on damaged ferromagnetic polycrystalline material deformed at high
temperature. This work associated with a new approach to grain boundary engineer
ing may give the field of materials science and engineering a new potential, particu
larly to high temperature materials used for nuclear reactor and jet craft engine used
in much more severe operating conditions than ordinary one, in order to improve the
efficiency of an operating machine system. The application of a magnetic field has
been already attempted by the present authors and coworkers in annealing of de
formed materials'! and sintering of powder compacts' f 13.

2. EXPERIMENTAL PROCEDURE

2.1. Specimen Preparation and Grain Boundary Microstructure Analysis

The material used in this work was an iron-2.9at.%cobalt alloy which was pre
pared by vacuum melting (6.5xlO-4 Torr) electrolytic iron (99.9% pure) and cobalt
pellet (99.5% pure) in alumina crucible. The ingot was hot-forged to plate IOmm
thick and then hot rolled at about 973K into lmm thick sheet. Tensile specimens
which had 5mm wide and 13 mm long gage part were machined from the sheet and
were annealed at ll23K for 3 in vacuum (2xlO,5 Torr). The average grain size was
59.3)lm.
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328

Figure 1 Grain boundary microstructure in Fe-2.9at%Co polycrystalline speci-
men annealed at 1173Kfor 3h.



The statistical analyses of grain orientation distribution, grain boundary
misorientation distribution and grain boundary character distribution (GBCD) in the
annealed specimens were carried out by the orientation imaging microscopy (OIM)
at accelerating voltage 20kV. The optical micrograph of annealed specimen surface
and the result of OIM analyses are given in Fig. I. The distribution of grain orienta
tions in the specimens was not ideally random but localized between <100> and
<101> to some extent, particularly for Z direction parallel to the rolling direction of
sheet, as indicated in Fig. I(b). Accordingly the grain boundary misorientation dis
tribution showed some deviation from the distribution for a random polycrystal indi
cated by the theoretical curve. It was found that the annealed specimen had the fre
quency of high energy random boundaries ( 68% ) lower than the theoretical value
(86%) for random polycrystal, and the total frequency of low angle boundaries and
low L'(3~29) coincidence boundaries was 32%, both types of which are known to be
low energy type and more fracture-resistant.

2.2. High Temperature Deformation Test

In order to introduce intergranular cavities or microcracks, the annealed ten
sile specimens were deformed up to a given amount of plastic strain of E:=0.03, 0.06
and 0.1 at a strain rate of 3xI0-4/s at 1023K below the Curie temperature Tc
( 1083K) of the alloy in argon. Figure 2 shows a typical stress-strain curve obtained
from high temperature tensile test carried out for the alloy in the above mentioned
condition. The total elongation without interruption test was about 50%. The high
temperature deformation test was interrupted at different amounts of strain (0.03,
0.06, 0.1) for each specimen to be used for magnetic annealing and then the speci
men was immediately cooled down. There was no significant difference among the
stress-strain curves for the specimens deformed under the same condition.

Test temperature 1023K

Strain rate 3X10-4 S · 1

10

(Ferromagnetic region )

20

Elongation(%)

30 40 50

11
Fractere

60

0.5OA0.30.20.1
0'---------------------1

o
True strain, E:

Figure2 Stress-strain curve obtained at 1023Kat a strain rate of3 xlO-4s· l .

2.3. Magnetic Annealing

After received high temperature deformation, the gauge part of the specimen
( - 5xl3xlmm) was cut out with a spark machine and prepared as the deformed
sample for magnetic annealing. A helium free superconducting magnet-installed heat
treatment system (made by Sumitomo Heavy Machine Corporation, the maximum
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magnetic field strength=6T) was used for magnetic annealing in this work. A
schematic illustration of the system is shown in Fig. 3. Molybdenum sheet heating
element was used for the furnace. A
specially designed locking port was
attached in order to insert the sample
into the center of the magnetic field
operating at high temperature within a
few minutes without breaking high
vacuum. The maximum annealing
temperature of this system was 1773K
in vacuum. A specially designed car
bon holder was used in which the de
formed sheet sample was put for
magnetic annealing. Mica sheets were
inserted between the sample and the
carbon holder to avoid carburization
at sample surface due to a contact
with the carbon holder. Magnetic an
nealing was carried out at 1023K be
low the Curie temperature Tc (1083K)
in a direct current magnetic field
whose strength was chosen as 0, 3T,
6T, in vacuum of 2x10-5Torr for
maximum annealing time of 50 hr.

Turbo molecular pump

::m1MWf-A---- Nb-TI coli

Sampl e holder

Figure 3. Schematic illustration of super
conducting magnetic field heat treatment
svstem.
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2.4. Quantitative Evaluation of Cavitation and Rejuvenation

To make quantitative evaluation of cavitation by high temperature deformation
and rejuvenati on by magnetic annealing, two types of measurements were made; one
was micrographic analysis of the size and the area of intergranular cavities by using
SEM micrographs. The mean cavity area was determined for more than 200
intergranular cavities. The area density of cavities was studied as a function of the
cavity area, and the aspect ratio between short and long diameter. The other method
of evaluation was by measurement of the density by the Archimedes method. Careful
measurements of the density were made for annealed and deformed specimens, and
also for the specimens deformed and subsequently annealed in a magnetic field, tak
ing particular care to avoid penetration of water into cavitated boundaries from the
surface by putting paraffin film on the surface.

3. CAVITATION BY HIGH TEMPERATURE DEFORMATION

3.1. Effect of Grain Boundary Microstructure on Intergranular Cavitation

From SEM microscopic observations on cavitation in the deformed specimens
whose grain boundary microstructure had been analyzed by the DIM technique be
fore high temperature deformation test, it was found that cavitation occurred prefer
entially at random boundaries, particularly at triple junctions at which two or three
random boundaries met, as shown in Fig. 4. Most cavities (88o/eY-'94%) are associated
with more than one random boundaries. Moreover there was the tendency that cavi-
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Figure 4. SEM micrographsshowingcavities at grain boundaries.

ties formed more preferentially at grain boundaries aligned perpendicularly to the
tensile axis. The propensity to preferential cavitation at random boundaries in high
temperature creep deformation in alpha iron-alloys was reported very early by one of
the present authors!" and it was also confirmed that low angle boundary and low};
coincidence boundaries are very resistant to grain boundary sliding and fracture. In
fact, this is the effect of grain boundary character/structure on high temperature in
tergranular fracture. So the importance of the grain boundary character distribution
(GBCD) and the grain boundary connectivity was pointed outs. A schematic illustra
tion of structure-dependent intergranular fracture controlled by sliding or vacancy
condensation mechanism is shown in Fig. 5.
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Figure 5. Schematic representation of mechanism of structure-dependent inter
granular fracture in polycrystalsat high temperatures.

3.2. Effects of the Plastic Strain on Cavitation and the Density

Figures 6 and 7 show the effect of the amount of plastic strain on the mean
cavity area and the relative bulk density of deformed specimens, respectively. It ap
pears that cavitation proceeds rather slowly at early stage of deformation up to a cer
tain level of plastic strain, then the rate of cavitation goes up, leading to the final
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rupture . A similar change of the density
during creep deformation in oxygen-free
copper polycrystals was reported very
early by Bottner and Robertson14

• They
found that the density decreased almost
continuously at the primary and secon
dary creep stage then showed a rapidly
increasing rate of the decrease of the
density after the on-set of the tertiary
creep stage . As shown in Fig. 7, a rapid
decrease of the density occurred beyond
the strain 0.2-0.3, which almost corre
sponds to the value of creep strain at
which the on-set of tertiary creep oc
curred in alpha iron and iron 3at%cobalt
alloy at 1023K at stress 14MPa, on the
effect of ferromagnetism on creep de
formation". It is reasona ble to think
that a rapid decrease of the density may
occur due to the interlinkage of isolated
cavities on random boundaries , result
ing in the format ion of a long intergar
nular crack over the length of several
grain boundaries . Again this may be
controlled by the grain boundary char
acter distribution and the grain bound
ary connectivity, as schematically
shown in Fig. 5.

4. REJUVENATIO N BY MAGNETIC ANNEALING

4.1. Ob servati ons of Cavities after Magnetic Annealing

Direct observations of cavities in the specimen deformed and subsequently
annealed in a magnetic field were made by scanning electron microscop y (SEM).
The changes of the area density and of the morphology of intergranular cavities after
magnetic annealing were carefully studied . Figures 8(a) and 8(b) show SEM micro
graphs of cavitated boundary in as deformed specimen and in the specimen deformed
and annealed in a magnetic field. It is evident that many isolated cavities exist along
grain boundary in as-deformed specimen, while after magnetic annealing, a lower
density ofcavities were observed mostly at triple junctions.

From, SEM micrograph analyses, the mean cavity area was determined for the
specimens deformed up to different strain levels and subsequently annealed in a
magnetic field with different field strengths . It was found that the mean cavitated
area decreased rapidly then reached certain level with increas ing magnetic field
strength, almost irrespective of the amount of plastic strain before magnetic annea l
ing, as shown in Fig. 9.
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Figure 8. SEM micrographs showing cavities before annealing and after SOh an
nealing at I023K in a magnetic field (H=6T) .
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Figure 9. Magnetic field dependence of mean cavity area in the specimens de
formed to different plastic strains and annealed at I023K for SOh.

4.2. The Degree of Rejuvenation

In order to evaluate the effect of magnetic field strength on rejuvenation, we
define a new parameter which can simply describe the degree of rejuvenation, D.R.,
as follows .

D.R. = (Dmag - Dp) I (Do - D p) xlOO (I)
where Dmag is the density of the specimen deformed and magnetically annealed, Dp

the dens ity of as-deformed specimen, Do the density of annealed specimen before
deformation.

Figure 10 shows clear ly that the degree of rejuvenation, (D.R. ) increases with
increasing annealing time and tends to saturate for the specimens deformed up to the
true strain 0.1 and subsequently annealed in a magnetic field. However it is interest
ing to see that the degree of rejuvenation tends to go up first and then go down with
annealing time for the specimens ordinarily annealed without a magnetic field. The
reason why longer ordinary annealing is less effective than shorter annealing, is not
clear. On the other hand by magnetic annealing the degree of rejuvenation always
increases with increasing annealing time although it tends to saturate.
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Figure 11. Magnetic field dependence of the degree of rejuvenation, D,R" for the
specimens deformed to different strains and annealed at 1023K.
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Figure 12. "Rejuvenation diagram"
for high-temperature deformed and
magnetically annealed ferromagnetic
iron alloy,

Figure II shows the magnetic field
dependence of the degree of rejuvenation
D.R. observed for the specimens magneti
cally annealed for 50 hr. We see that the
degree of rejuvenation is higher at higher
magnetic field, in other words, the effect
of magnetic annealing on rejuvenation of '5

~damaged material is more effective at en
~higher magnetic field, almost irrespective

of the amount of plastic strain which may
determine the density of cavities in de
formed material.

Figure 12 shows schematically the
effects of magnetic field strength and an-
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nealing time on the degree of rejuvenation in 3D diagram, termed "Rejuvenation
Diagram". This diagram clearly shows that a higher magnetic field and longer an
nealing time are desirable condition of magnetic annealing which can produce more
significant rejuvenation, at least in damaged iron-cobalt alloy used in this work.

5. MECHANISM OF REJUVENAT ION BY MAGNETIC ANNEALING

This work has revealed that magnetic annealing is very effective in rejuvena
tion of damaged material particularly containing intergranular cavities introduced by
high temperature deformation. Now we consider possible mechanism of rejuvenation
effect by magnetic annealing observed in the iron-cobalt alloy in connection with our
recent work on the effect of the application of magnetic field on sintering process of
iron powder compact.

Quite recently we found that the application of a direct current (de) magnetic
field ( maximum field strength 15KOe ) could drastically enhance sintering process,
particularly at early stage ofsintering, in iron powder compactI2. 13. Sintering process
involves the densification controlled by diffusional mechanism to eliminate pores
existing in the space between contacted particles. So it is not difficult to consider that
there is some similarity between sintering and densification by the elimination of
pores and rejuvenation by elimination of cavities by magnetic annealing. In sinter
ing the migration of grain boundary is important to the densification by elimination
of remaining pores or voids. In fact it was recently found that the application of a
magnetic field could enhance grain boundary migration which is known to play an
important role in elimination of pores during sintering , in iron-silicon alloy" and
bismuth" bicrystals.
On the other hand when a ferromagnetic polycrystal is kept in a magnetic field, the
presence of grain boundaries is considered to generate free poles distributing alonfgrain boundary because of anisotropic magnetizationin in neighbouring grains! .
The occurrence of such local magnetic free poles along the grain boundary may af
fect grain boundary properties such as grain boundary energy and grain boundary
diffusion associated with the elimination of cavities by diffusional process in our
case. However the detail of possible mechanism of rejuvenation by magnetic anneal
ing studied in this work has not been fully understood and we need more basic
knowledge about effects of magnetic field on metallurgical phenomena, particularly
there is very few literature on the effect of such high magnetic field used in this work
on grain boundary related phenomena.

6. CONCLUSION

A new approach to grain boundary engineering has been extended to unsolved
engineering materials problem, that is "rejuvenation of damaged materials". The
application of a high magnetic field during annealing of deformed ferromagnetic iron
cobalt alloy was found to enhance the elimination of intergranular cavities introduced
by high temperature deformation and the restoration of the density. Relative density
decreased slowly with increasing plastic strain up to certain level then rapidly de
creased leading to the final fracture. The formation and interlinkage of intergranular
cavities are very likely controlled by the grain boundary character distribution
(aBeD) and the grain boundary connectivity. Intergranular cavities are mostly asso-
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ciated with random boundarie s. It was also found that the degree of rejuvenation in
creased with increasing the magnetic field strength and annea ling time.
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ABSTRACT

An implementat ion of the coherent potent ial approxima tion (CPA) is car ried out
with in the frameworks of th e exact muffin-tin orbitals (EMTO ) t heory. Dur ing the
self-consiste nt iterat ions the Poisson equation is solved using th e spherical cell ap
proximation, and th e charge t ransfer between alloy components is t rea ted with in th e
screened impurity model. Th e total energy is calculated using the full charge density
(FC D) techniqu e. The FCD-EMTO- CPA meth od is suitable for accura te determin ation
of the electro nic st ruct ure and total energy of complete ly random alloys with a substi
tu t ional disorder on any kind of underlying crystal lattice. The accuracy of the meth od
is demonstrated through test calculat ions performed on face centered cubic (fcc), bod y
centered cubic (bee), and hexagonal close packed (hcp) Cu-Zn binary alloys.

INTRODUCTION

One of the most successful app roximations for calculat ions of th e electronic struct ure
and total energy of rand om subst it utio na l alloys is the coherent poten tial approximation
(CPA) l . It is based on the assumpt ion that the alloy may be replaced by an ordered ef
fective medium , th e parameters of which must be determined self-consistent ly. Th e CPA
was origina lly int roduced by Seven? for th e electro nic structure probl em and by Taylor3

for phonons in random alloys. Combined with the multipl e scattering th eory", the CPA
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became parti cularly popular and suitable for many pract ical applica tions. Based on th e
local density functional theory (DFT)5, Winter and Stocks" have shown that the Kohn
Sham potential for alloy components can be calculated self-consiste ntly, and Johnson
et al.7,B have derived th e CPA-DFT expression for th e total energy of a random alloys.
Recently, this expression was modified to include correc tl y the elect rostatic cont ribu
ti on to th e total energy in random alloys due to th e charge tr ansfer effects'"":'. The
CPA has been used for calculati ons of bulk elect ronic st ruc ture, ground state thermo
dynami c properti es, phase stabilities, magneti c propert ies, surface electronic structure,
segregation, and many other cha racte rist ics of alloys!". In th ese applications , as well as
from a compa rison with other theoretical meth ods for th e calculations of the elect ronic
propert ies of random alloys-"?", th e reliability of the CPA was well established.

At th e same ti me, the CPA, being a single site approximation to th e impurity
problem, has limi ted applicability. For example, one cannot t reat dir ectl y within the
CPA alloys with short-ra nge orde r. Also, syst ems with a large size mismatch between
the alloy components are difficul t to describ e because of the local lat tice relaxations.
However , certain limitations of th e CPA are not directly related to th e approximation
itself. Rather , t hey originate from additional approxima t ions introduced by particular
implementations . Th e most common elect ronic str uct ure calcula tions methods used for
th e impl ement ations of th e CPA are th e Korringa-Kohn-Rostoker (KKR)1,4 and th e
linear muffin-tin orbital (LMT O)17 methods. Th e shap e approximation for th e one
elect ron density and pot enti al , used in these meth ods, are insufficient for th e accurate
descrip tion of the behav ior of the total energy up on, e.g., anisot ropic lat ti ce distortions.
Thus, one cannot calculate, for example, elastic constants in rand om alloys or relax cia
ratio in alloys with a tetragonal or hexagonal symmetry. In additi on, th e LMTO meth od
(without correct ion term s) may not give a prop er description of th e open str uctures or
structural energy differences between st ructures with different packing fracti on , to th e
ext ent that the energy difference between th e bee and f cc st ructures of Cu has a wrong
sign!".

Recently, we have showu'? that t he accuracy of the CPA is greatly imp roved via an
impl ement ation within the basis set of the so-called exact muffin-tin orbitals (EMTO).
The EMT O th eory has been develop ed by And ersen2o- 22. We have shown tha t the
EMTO-CPA meth od , combined with th e full charge density (FC D) forrnalism/", allows
one to calculate the energy of a random alloy with the same accuracy, as that of mod ern
full-p otential methods in th e case of pure elements or ordered compounds. In this paper
we present a detail ed description of the FCD-EMTO-CPA method.

OVERVIEW OF THE EMTO THEORY

Th e basic idea of th e EMTO meth od is illust rated in Fig. 1. In the EMTO
theory20-22 the one-elect ron Kohn-Sham equation is solved within the muffin-tin ap
proxima t ion for the effect ive potential

v(r) ~ vmt(r ) == Vo + L [vR(rR) - vo].
R

(1)

R run s over th e lattice sites and r R == r - R . vR(rR) are spherical poten ti als and t hey
become equal to Vo out side potential spheres of radii SR, shown by lar ge unfilled circles
in Fig. 1. It has been shown that for accur ate repr esentati on of t he full potenti al
v(r) th e potential spheres should overlap21,24. vR(rR), Vo in Eq, (1), as well as SR are
det ermined by minimizing (a) the deviation between v(r ) and vmt(r) and (b) th e errors
coming from the overlap region.
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Figure 1. Basic idea of th e exact muffin-tin orbita ls meth od. T he effective one-electron
potential is constructed in the muffin-t in approximat ion, Eq. (1), i.e, it is spherical inside
potential spheres of radii s R', shown by large unfilled circles, and it is flat and equa l to th e
muffin-tin zero vo outside th e sphere. Th e energy dependent EMTO 's are const ructed from the
screened spherical waves, ,pRd"'j , r), Eq. (3), shown with gray line, with boundary condit ions
given in conjunct ion with non overlapping hard spheres with radii aR . The hard sph eres are
shown with filled circles. Inside the potential spheres the low I (l ~ lmax) projections of th e
EMTO's onto th e spherical harmonics Yd f) are subst ituted by the partial waves, ¢ Rl(€j , rR ),

Eq. (4), shown with a thi ck black line. Th e mat ching between them is realized by backward s
ext rapolated free-electron solutions 'PRl(€, r R), th in black line, which joins continuously and
differentiable onto the partial waves at the boundary of th e pot enti al sphere, and continuously
but not differentiab le onto the screened spherical waves at the boundary of th e hard sphere.
Th e full nonsph erical charge density, Eqs , (7) and (14), and th e full pot ential are constructed
inside the Wigner-Seit z cells, shown by hexagons. At th e last iteration they are used for the
total energy calculat ions in the framework of th e full charge densi ty meth od .

The one -electron wave fun ctions, Wj , are expa nded in t erms of th e exact muffin-tin
orbitals (E MTO's)2o,24,25, ifiRL, i.e.

Wj(r ) = L ifiRd €j , rR) VRL,j '
RL

(2)

T he energy dependent EMT O's are defined for each sit e R and for each L == (I, m) with
I :S Imax (usually Imax = 3). They are construct ed from the screened spherical wa ves ,

,pRd "'j, r) (the gray lin e in Fig. 1) , which are solut ions of the wave equat ion

(3)

for "'] = €j - Vo, with boundary condi t ions given in conjunc tion wit h non overlapping
hard sphe res with radii aR20 (shown with filled circles in Fi g. 1). These boundary
conditions require t hat t he screened sphe rica l waves behave like a pure real spher ica l
harmonic YdfR) on their own a-spheres, whi le th e Yu (i'R') projections on all the other
hard spheres vanish. Inside the potential sphe res t he low I (l ~ Imax) projections of t he
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EMTO's onto the spherical harmonics are substitute d by the partial waves, rPm(€j, TR )
(t hick black line in Fig. 1), defined as the regular solut ions of the radial Schriidinger
equa tion for potent ial VR(TR) and energy €j

(4)

Because th e screened spherical waves 'l/JRd fi, j, r ) have pure 1m-character at the hard
spheres, the matching between th em and the par tial waves rPm(€j, TR) YdfR) is realized
by the backwards ext ra polate d free-electron solutio ns/" , 'Pm(€,TR)Yd f R) (t hin black
line in Fig. 1), which joins cont inuously and differentiable onto the par tial waves at
the boundary of the potential sphere, and continuously but not differentiable onto the
screened spherical waves at the bound ary of the hard sphere, int rodu cing a kink.

Th e expansion coefficients VRL,j and the one-elect ron energies €j in Eq. (2) are
determined from t he condit ion that \l1 j (r ) should be a solut ion of the Kohn-Sham
equatio n in the ent ire space. Thi s condition leads to th e kink cancellation equa tion

L aR' [SR'L'RL(fi, j ,k) - OR'ROL'L DRl(€j )] VRL,j(k ) = 0,
RL

(5)

where I' , I 'S Im ax ' S R'L'RL are the elements of the slope matTi:r?°, and they represent
th e expansion coefficients of 'l/JRd fi, j , r ) around site R'. With prop erly chosen energy
independent bound ary conditions and for fi,J below the bottom of the a-spheres con
tinuum, SR'L'RL have short range and week energy dependence/", In Eq. (5) DRl (€j )
is the logarithmic derivative of 'PRl (€,TR) at TR = aR25,24 . For periodic syste ms the
slope matrix and the expansion coefficients depend on the Bloch vector k from the first
Brillouin zone, and the summation in Eq. (5) runs therefore only over lat tice vectors
R that belong to a unit cell. In pract ice, Eq. (5) is solved using the Green function
forma lism.

Th e to tal electron density is given in terms of th e wave functions

fj ~ f. F

n (r) = L l\l1j(rW,
j

(6)

where the summation includes the states below the Fermi level €F . Using the two
cente r expa nsions of the EMTO's20,24 the multicenter expans ion (6) can be t ransformed
to one-cente r form

n(r) = L nR(rR) = L nRd TR)yd fR)'
R RL

(7)

Here the densiti es nR(rR) are defined inside the Wigner-Seitz cell at R, shown by
hexagons in Fig. 1. Th e partial components nRdTR) are expressed in terms of th e
EMTO's and the EMTO path operator-".

For self-consistent calculat ions one constructs the overlapping poten ti al (1) from th e
to ta l charge density (7). This procedur e, within th e EMTO, assumes'" the calculat ion
of the full-potent ial and the const ruction of the opt imized overlapping muffin-tin wells.
The former ste p, using the one-cente r formalism for the charge density and potential ,
is very demanding and converges very slowly in the corners of the unit cell. However,
within the spherical cell approximation (SCA)24,25 the overlap ping potential depends
only on the spherical par t of the full-potential and this can be computed efficient ly and
with high accuracy. Th e SCA represents two approximat ions: (i) for the calculation of
th e Madelung contribut ion to th e elect rostat ic potential around site R the Wigner-Seitz
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cell cente red at R' is subst it uted by a spherical cell of radiu s WR' and volume equal to
the volume of the cell (ii) the potential inside th e sphere is fixed to the spherical part of
the full-potential, viz. vR(rR) = tr Jv( r)dfR, and, thus, the express ion for Va reduces
t024

Va = L l w R

r~ vR(rR) drR/ L [(w1 - s1)/3] . (8)
R SR R

The solutio n of t he Poisson equation within the SCA for the spherical part of the full
potential is described in Refs.24,25 . Fina lly, the self-consiste nt total charge density is
used to compute the total energy. The K\1TO kinetic energy is obtained from the
one-elect ron equations/" , and it is exact for the opti mized overlap ping potential. The
Coulomb and exchange -correlation part of the energy functional are evaluated without
shape approximation to the potential or density inside the Wigner-Seitz cells. De
tails abo ut the total energy calculation technique for ordered syste ms are discussed in
Refs.23,24 .

EMTO-CPA METHOD: THE AVERAGE ONE-ELECTRON GREEN
FUNCTION

We consider a substitutional alloy with a fixed underlying lat tice, like the f cc,
bee, or any other more complicate d crystal lat t ice. We denote unit cell sites of the
underlying lattice like U, U', etc. On each site U we have Nu alloy components i with
concent rations ch and spherica l potentials vh(ru) with i = 1, 2, ... , Ni). In real ran
dom alloys the potent ials vk( rR) at each lat t ice site R th at belong to sublattice U are
somewhat different due to different local environment . Moreover, vh(ru) is not an av
erage of the potent ials vk (rR), because the one-electro n potential is not a self-averaging
quanti ty, but it is calculate d from the average Green function, which has a property of
the self-averagi ng. Thus, we make an approximation intro ducing the potential vh(ru).
However, this approximation is quite accurate!".

Th e radial Schr6dinger equations are solved for each sort of atoms and from the
matching conditions at the s-spheres of the i-th component, of rad ii sh, and a-spheres
we set up the backwards extrapolated free-electron solutions and the corresponding
logari thmic derivati ves Dh/.

In order to solve the mult iple-scattering problem for the alloy, one replaces the orig
inal random alloy by an ordered lat t ice of effective scatterers, or the so-called effective
medium . The effective medium is described by a site U (but not a sort i) dependent
(complex) coherent potential. Therefore, the effective medium has the symmet ry of the
underlying crystal lattice. In the single site app roximation the properties of these effec
tive ato ms have to be determined self-consisten tly by the condit ion that the scattering
of electro ns of real ato ms embedded in the effective medium vanish on the average . For
a disordered binary alloy AcB I _ c this idea is schematically illust rated in Fig. 2.

In the EMTO formalism th e coherent potential is int roduced via the site-diagonal
logarithmic derivative DUUUL(z) of the effective scatterers, and, therefore, the coherent
Green funct ion or the path operator is given bylg

L au, [Su'u uuLu(lI: ,k) - Ou,uu DU'UU'LU(Z) ] guuLUUL(Z, k) = OU'UOUL, (9)
UIfLIf

where l , l' , l" ::; im ax . The (restricted) average of the on-site (UU) elements of the Green
function for alloy component i, ghLUU ' is calculated as an impurity Green funct ion of
the i-th alloy compo nent embedded in the effective medium (see Fig. 2). In the single
site approximation, it is obtained from the real space Dyson equation as a single site
perturbation on the coherent potential

343



c

Figure 2. Schematic illustration of the basic idea of the coherent potential approximation
for a disordered binary alloy AcE I - c. The original random alloy is replaced by an ordered
lat tice of effect ive scatt erers (top panel) , or the so-called effect ive medium. The properties of
the effective atoms (gray circles) are det ermined self-consistently. The restricted averages of
the on- site elements of the Green function for alloy components A (white circle) and B (black
circle) , gA and g8 , respectively, are calculated considering them as impur it ies embedded in th e
effective medium (bottom panel) . This is done by solving th e corresponding Dyson equat ions,
given at the bottom of the figure. The condition of vanishing on th e average of scattering
of electrons off th e alloy components leads to the relation between the Green function of the
effective medium 9 and th e Green functions of alloy components, given at the top of the figure.

ghLUL'(Z) ?JULUu(Z) +
+ I: ?JULUL"(Z) [DhIU( Z)OL"L'U - DULuUL"'(Z)] giJL"'UL' (z). (10)

L"L'"

The condition of vanishing on the average scattering leads to the following relation
between the site diagonal part of the k-integrated cohe rent Green function ?JULUL'(Z)
and the Green functions of alloy components within the CPA

(11)

Equations (9),(10) and (11) are solved self-consistently for D( z),?J(z,k) and gi(Z) . The
total number of states below the Fermi level ,
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N( CF) = -2
1

. i < G(z) > dz,
Jr1, fF

(12)



is obtained from the average Green function

< G(z) > == r 2: gu'uUL(z ,k) Suw'u(z, k)d k
JHZ U'UUL

~ i ~ [ i . i ( Dhl(Z) 1)]L.. cu L.. gUWL(Z) DUI(z) + Di (z) - ~ ,
Ui L Ul Z Ul

(13)

where th e over dot stands for the energy derivat ive, and I, I' ::; Im ax . Th e site off
diagonal elements of the coherent Green funct ion gU'L'udz, k) are calcu lat ed from Eq.
(9) with the self-consistent logarithmic derivative Duuudz) of the effective scatterers.
Th e energy integra l from Eq , (12) is performed on a complex contour that cuts the real
axis below the bottom of the valence band and at CF . The gi(z)Di(z) term from the
right hand side of Eq. (13) may include the unphysical poles of Di(z) , which, however ,
are canceled by the last te rm , where ei denote the real zeros of the logarithmic derivat ive
functio n.

Th e first term from the right hand side of Eq. (13) assures th e proper normaliza
tion of the one-electron states for the optimized overlapping potential. In fact, within
th e single site approx imation for t he impurity Green functio n, Eq. (12) gives t he exact
number of states at the Fermi leveJl9,24.

EMTO-CPA METHOD: THE FULL CHARGE DENSITY

Th e full charge density of each alloy component is represented separately in one
center form!", viz. Eq. (7). The partial compo nents nkL(rR) of the average density
nk( rR) on a sit e R belonging to the sublattice U are determined from the rest ricted av
erage of th e on-site element of the Green funct ion for the i-th alloy component ghwu
given by Eq. (10) via the densit y mat rix 'D of the alloy component."

{

i ( ) +~ (El.ui:2 1)gUU UL Z au Du /(z) Du /(z ) - z-eu /

'Dku L(Z) == L..u"U' fHZ guuu"L" (Z,k )Su"L"ud" ,k )dk
LU"L"UIfIL I/I fBZ S UU U"L" (K., k) X

xgu"u'ulII £1/1 (z , k )Su11f LflfUL(K" k)dk

as

if I , I' ::; u:
if I' < Im ax and I > Im ax

if I' , I > Im ax

where er"u are the real harmonic Gau nt coefficients. The Zkl(z ,rR) functions denot e
the Ydf R ) projections of th e exact muffin-ti n orbitals2o,24, i.e.

{

N1( z)¢kL(z, rR) if I ::; i.: and rn < SR
Zm( z, rR) = ~ill (z , rR) if I ::; Im ax and rn > SR ,

-jl(" rR) if I > Im ax for all r n
(15)

where jl(" rR) are the spherica l Bessel funct ions" . In Eq. (15) N1( z) represe nts the
normalization function of the partial waves. This is dete rmined from the matching
conditions at th e a and s-spheres25,24 . Note that in Eq. (14) , due to the one-center
form, the I" and I' summations include the higher terms as well. In applications the
higher ZkJ(z, rR) funct ions are t runcated at I;:'ax = 8 - 1224.
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EMTO-CPA METHOD: THE POISSON EQUATION

In the case of an alloy we define an overlapping muffin-tin potential v:"t(r), Eq.
(1), for each alloy component i at sublatt ice U of the und erlying crystal lat ti ce, and
assume th at th e potent ial for this element is the same at any site R that belongs to
the sublatt ice U . Remember that we denote the spherically symmet ric par t of the total
potent ial vi(r ) as vk (rR). It is calculated from th e restricted average Green function
for th e i-th alloy component, Eq. (10), considered according to th e main idea of th e
CPA, Fig. 2, as an impurity embedded in the effect ive medium. We employ t he SCA to
solve the Poisson equation for vk (rR). The spherical potential due to the charges inside
of th e potent ial sphere (t he electro nic, ni, and prot onic, Zi, charge s) is given by24

(16)

where La == (0,0 ). The net charges from the outside of the pot enti al sphere are ta ken
int o account by the average Madelung potent ial , whose spherically symmet ric par t is

M 1" M QSCA
VR = - ~ RLoR'L' R'L"

W R' L'
(17)

where M RLR, L' are the elements of the Madelung matri x, th e sum runs over the unit
cell vectors of the und erlying lattice, w is the average atomic radius, and Q!J/i A ar e th e
average multipole moment s calculated within the spherical cells,

(18)

Th e site ind ependent norm alization constant l5SCA appears because the int egral from
(18) is performed over th e spherical cell rather th an over th e uni t cell and it is deter
mined from the condi tion of charge neutrality L RQ!J/i : = O.

Within the SCA a correction to th e Mad elung potenti al (17) has to be considered'".
T he average numb er of elect rons inside the s-spheres at R,

(19)

is usually different from th e average number of elect rons inside the cell, Q!J/i : +LickZk.
In other words, th e potential spheres ar e not charge neutral. The above difference
cont ribu tes with a constant shift , D.v!Jt A, to th e sph erical pot ential. In the EMTO
CPA meth od this ext ra or missing charge is redistr ibuted equally on the NNN nearest
neighb or cells, i.e. we make the approximation

(20)

h D.Q - 1 (QSCA+ " i Zi QS~w ere R NN = NNN RLo w i CR R - R '

Since th e impurity problem in both the C A and th e Poisson equat ions is t reated
within the single sit e approximation, th e Coulomb system of a particular alloy compo
nent may contain a non-zero net charge. Th e effect of the charge misfit on th e spherical
potenti al is taken into accoun t using th e screened impurity modelll ,13 , i.e. an addit ional
shift of

346



ll. CPA,i _ 2ac (Qi,S QS)VR - - ---:;- R - R ' (21)

(23)

is added to th e spherica l part of the full-po tent ial around site R. Here a c ~ 0.6 and Q~s

and Q'R are defined in (19). Note in th e case of ordered systems we have ll.v~PA,i = o.
Th e total pot enti al within th e potential sphere of the i-th alloy component is

obtained as the sum of Eqs, (16), (17), (20), (21) and the spherical symm etri c exchange
correlation potent ial , nam ely

Fina lly, the interstit ial potential in the case of EMTO-CPA is obta ined as the average
int erstitial pot ent ial calculated from vk(rR)

Vo = ~ ck l~k r~ vk (rR)drR/~ ck [(wi~- si~) /3] .
Ri SR Ri

EMTO-CPA METHOD: THE TOTAL ENERGY

The to tal energy of the rand om alloy is calculated as

Etat = T [n] + ~~ ci (FjintraR [nkl + E~cR[nkJ) + Finter [Q] -
R i

~ ci aC (Q~s - Qk/, (24)
i W

where T is th e total kinet ic energy, FintraR and E~cR are the electrostati c and exchange
correlation energies due to th e charges from th e Wigner-Seit z cell at R, and Finter is
the average Madelung energy. Th e last term from (24) is th e SIM correct ion to the
electrostat ic energy ll ,13 . The individual energy funct ionals are evaluated using the Full
Charge Density meth od in combination wit h the sha pe function technique23,24 . Th e
total kinetic energy is det ermined from the one-electro n equations ,

where th e first term from the right hand side is the sum of th e average one-elect ron
energies and < G(z) > is given by Eq. (13). Th e Madelung energy is th e average
interacti on energy between the Wigner-Seitz cells and it involves the average mult ipole
moments

(26)

Explicit expressions for FjintraR[nk l and Finter[Q] can be found in Refs.23,24. E~cR [nR] is
calculated within the local density (LDA) or a gradient level approximation<P'' .

APPLICATION: CUl _xZnx ALLOY

In this sect ion we demonstrate the application of the FCD-EMTO-CPA meth od
in the descrip ti on of thermodynamic proper t ies of CUl_xZnx rand om alloy. We have
applied the method for th e calculat ion of the mixing enthalpies of a , {3, {3', e, and
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1]-phases of th e Cu-Zn syste m, covering almost the whole phase diagram". T he ran
dom alloys were considered as complete ly random, i.e, we neglected any short-ra nge
order effects in th e system, while the (3' - phase was considered as fully ordered phase
with B2 (CsCI) st ruct ure an d exact sto ichiomet ry. T he a phase has f cc st ruct ure and
at low tem pera tures it is st able for x ;S 0.38. T he (3-CuZn with th e bee (A2) st ruct ure
is stable at high te mperatures for 0.4 ;S x ;S 0.55. At low te mperatures it und ergoes
disorder to order phase tra nsit ion into th e (3'-phase at a temperature of about 730
K. T he c phase is stable from x ~ 0.78 to 0.86 and it has hcp (A3) st ruct ure with
cia f::o 1.56. The Zn solid solution, the so-called 1]-Brass, exte nds to 3 at . % Cu, and
it has hcp st ructure wit h anomalously large cia rat io, 1.80 < cia ;S 1.85632

,33 .

Due to the richness of the phase diagram , the Cu-Zn syste m has become a classical
subject for the th eory of rand om alloys. It is a Hume-Rothery syste m, where the
phase stability is det ermined by the so-called elect ron concent ra t lon'" . Th e mixing
ent halpies of this syste m were mainly st udied wit hin the CPA for the o-CuZn alloys.
The first calculations in the framework of the local density approximat ion and the CPA
were carried out by Johnson et alJ ,B. T hen, Johnson and Pinski have shown th at the
agreement with experiment is improved by including th e elect rostat ic cont ributio n to
the tot al energy of a ra ndom alloy!". Abrikosov et al.34 have calculated the mixing
energies in f cc Cu-Zn alloys including th e short-range order effects, and have shown
th at th e lat ter gives a substant ial cont ributio n to th e alloy tot al energy. This was
confirmed by Faulkner et al.35 and by Muller and Zunger'" . The lat ter aut hors have
also shown th at th e local latt ice relaxation s account for some lowering of the mixing
entha lpy of a rando m alloy. On th e other hand, much less calculations were done for
th e bcc, and especially for th e hcp phases.

Th e latter may be explained by the fact that the cia ratio in th e hcp Cu-Zn alloys
shows an anoma lous behavior, with very stro ng concent ration dependence, as well as
with a discontinuity at about 8 at . % Cu dissolved into Zn32,37 . Th e impl ementati ons
of the CPA within th e KKR or LMTO basis sets are not suitable for the t reatment of
this problem. Using the FCD-EMTO- CPA meth od we are able to calculate th eoretical
cia axial ra tios of the hcp st ructures and the corresponding equilibrium atomic radii!".
Therefore, we are able to calculate th e mixing energy for all the phases mentioned ab ove
in the complete int erval of concentrations.

In all our calculat ions the exchange-correlat ion term was treat ed wit hin th e local
density approx ima t ionv'-" . Th e EMTO basis set included s , p,d and f orbi tals and th e
one-elect ron equations were solved within the scalar relativisti c and frozen core approx
imations. The Green function was calculated for 16 complex energy points distributed
exponent ially on a semi-circular conto ur. Th e equilibrium total energy of alloys were
det ermined at th e theoret ical equilibrium volumes, which were calculated for each phase
considered. T he k-space integ ra l were well converged for all und erlying lattices. T he
cia axial ratios of hcp structures were calculated by 2-dimensional total energy min
imizations . The ato mic volum es for the Cu-rich f cc alloys and for th e Zn-rich hcp
alloys, as well as the concent ration dependent cia ratios, used in th e present work may
be found in Ref.19 •

Calculated mixing ent halpies of a, (3, (3', e, and 1]-phases of the Cu-Zn syste m are
shown in Fig. 3. As standa rd states we used the pure f cc Cu and hcp Zn with th eoret
ically determined cia ra tio 1.82, which compares well with experimental cia = 1.85633 .

One can see tha t calculations correct ly reproduce the principal features of the Cu-Zn
phase diagrarrr" . Considering th e random alloys alone we observe that for the Cu-rich
alloys the fcc st ructure is stable. When Cu concent ration increases, the f cc alloys are
almost degenerat e with the hcp alloys, followed by the region where bcc alloys are more
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Fi gure 3. Calculated mixing enthalpies of completely random f cc (circles, full line), bee
(squares, dashed line), and hep (triangles, dot-dashed line) Cu-Zn alloys, as well as the ordered
B2 CuZn compound (diamond). The pure f cc Cu and hep Zn with theoret ically determined
c]a ratio 1.82 are used as standard states, and the so-called ground sta te lines (long-dashed
lines) connect them to the B2 CuZn compound.

stable. For the Zn-rich alloys th e hcp st ructure is more stable. T he j3' - phase (B2)
is the most stable phase, and as a matter of fact t he energies of all t he completely ran
dom alloys considered in this study are ab ove the ground-state line (t he long-dashed
line in Fig . 3). Of course , in reali ty the energy of a rand om alloy will be lowered by
the short -ra nge order that is known to be present in the systerrr'".

Th e most interesting behavior of the mixing entha lpy is observed in Zn-rich hcp
alloys. One can clearly see a pron oun ced bump on the curve around 90 at.% of Zn,
ind icating the existence of two hcp based alloys, which are stable from ~ 75 to 85 at.
% Zn and from ~ 95 to 100 at. % Zn, respectively. T hese concent ra t ion int ervals
essent ially coincides with th e stability fields of the € and 7)-phases31. Our calculations
show directl y th at at low Cu concent rations the 7)- phase, with large cia rat io!", is t he
ground state structure of the copp er-zinc alloy. Wi th increasing Cu concentration a
second tot al energy minimum in the volume versus axial rat io plane starts to develop.
For th e case of CUO.07ZnO.93 alloy this was demonstr ated explicit ly in Fig. 3 of Ref.19 . For
th e Zn concentration ;S 90 at . % th e second energy minimum becomes stable relati ve to
the first one, and th e syste m st abilizes in hcp str uct ure with cia ;S 1.6, corresponding
to the €-phase . The t ransit ion between two phases occurs discont inuously at around
90 at. % of Zn. The existence of the disconti nuity was predict ed from the analysis of
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experimental data by Massalski et alY .
As compared to the experimentally derived mixing enthalpies'" ; th e calculated val

ues show the same t rends, but have somewhat higher values. This is a direct conse
quence of th e limitati ons of th e CPA, which does not allow one to calculate directl y
the to tal energies of alloys with a short -range order, and also neglect th e effects due to
local lat tice relaxations. For example, our calculate d value of th e mixing entha lpy for
the complete ly rand om f cc CU60 Zn40 alloy is -4.8 mRy/ atom, or about -1530 cal/mole.
The experimental mixing enthalpy for th e alloy with 38 at . % Zn is -1969 cal/rnole'" ,
or -6.26 mRy/atom. The exper imenta l values are given for temperature 773 K. At
this te mperature the short -range order decreases the mixing entha lpy of the alloy by 1
mRy/ at om34, and the local lat tice relaxat ions add about -0.5 mlty/ atonr" . Therefore,
including these effect we would receive the theoret ical value -6.3 mliy/ atom, or -2000
cal/mole, in perfect agreement with experiment .

Note, that though the short- range order effects, as well as the local lat t ice relax
at ions, can not be directly t reated by t he CPA, th ey may be considered by means of
complimentary CPA-based methods. For exampl e, the screened generalized perturba
tion method l'' allows one to calculate quite accurately th e short-range order parameters
in rand om alloys, while the effect of lat tice relaxat ion can be included by means of sim
ple mode ls?". Moreover, the FCD-EMTO- CPA meth od is a suitable start ing poin t for
th e development of more powerful methods within th e alloy th eory, which go beyond
the single site approximation, like the locally self-consistent Green function (LSGF)
meth od.". In thi s case one will be able to tr eat directly alloys with short-ra nge order'?
and with local lattice relaxations".

CONCLUSIONS

We have presented and tested an ab ini tio total energy meth od for random al
loys. Th e meth od is based on the exact muffin-tin orbitals theory in conjunct ion with
th e fu ll charge densit y technique and the coherent potential approximation. Th e E~ITO

kinet ic energy, determined with in the single site and the spherical cell approxi mations,
is combined with the Coulomb and exchange-corre lat ion energ ies calculated from the
total charge density of the alloy components using the shape function technique. The
FCD-EMTO-CPA meth od has been applied for the st udy of the thermodynam ic prop
erties of the coppe r-zinc syste m in complete inte rval of concent rations. The overall good
agreement between the calculate d and measured mixing entha lpies is obtained in the
calculatio ns, and th e main features of the Cu-Zn phase diagram are well reprodu ced.
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CHARGE DISTRIBUTIONS IN METALLIC ALLOYS: A CHARGE EXCESS
F UNCTIONAL THEORY APPROACH

Ezio Bruno

Dipartimento di Fis ica and Unit a INF M , Universit a di Messina , Sal ita Speron e
31,98166 Messina, It aly. E-mail: bruno@dsmeOl.unim e.it.

1. INTRODUCTION

In the last decad e, t he availability of lar ge parallel com put ing resources and th e developm ent
of orde r N algorithms [1, 2] mad e feasible ab ini t io electronic st ruct ure calculations in extended
metalli c sys te ms. A new, surprising, result in th e t heory of met allic alloys has been obtained
by Faulkner , Wan g a nd Stocks, who have a nalysed densit y function al th eor y calculatio ns
for unit cells contai ning hundred to thousand atoms a nd designed to simulate binar y alloys
wit h subst it ut ional disord er . T hey discovered [3, 4] t ha t th e net charge at each crys ta l site ,
qi , is related to Vi , that part of elect rost at ic pot ential at th e same site th at is du e to th e
int eracti ons wit h all th e other cha rges in th e syste m, through a simple linear law

aiqi +Vi = k, (1)

For a specified configuration of th e bina ry alloy A CA Be B , th e coefficients ai a nd k; in Eq. (1)
take th e values a A a nd k A if th e i-t h site is occupi ed by a A ato m or aH and k B oth erwi se.
Moreover, th e sets of coefficients ext racted from d ifferent sa mples co rresponding to th e same
mean concentrat ion show up littl e differen ces . In the following, th ese linear relations sha ll be
referred to as th e qV laws. Th e a bove new findings ca n be conside red empirical in th e sense
th at, alt hough obtained from ab init io ca lculat ions, th ey have not yet been form ally deri ved .

In spite of the simplicity of'Eq . (1), for each of th e alloying species, th e local cha rge excesses
take any value wit hin a certain interval. T he corresponding distribution , even for th e random
alloy model, a ppears complex a nd ca nnot be reproduced , wit hout a prolifera tion of adjust able
parameters , in term s of th e numb er of unlike neighbours of each site [5, 6]. On th e other hand ,
accura te calcul ations of th e alloy to tal energies a nd phase equilibria must necessa rily keep
into account such a distribution . Recently, it has been shown th at three coefficients of th e
qV laws for a binary alloy ca n be calculated wit hin a single site th eory, nam ely a Coherent
Potent ial App roximation includ ing local fields (CPA+LF) [7]. Mo re precisely, th e coefficients
a4 and ae can be viewed as th e responses of impurity sites occupied by A or B atoms to
local ext ernal fields , while th e third pa ram et er can be viewed as th e difference bet ween th e
elect ro negat ivities of th e A a nd R impurit ies embedded in th e ' mea n field alloy ' defined by
th e alloy CPA Gr een's fun ction.
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th e local In t he present pap er , I shall demonst rate th at t he dist ribution of charge s ca n
be obtained fro m a varia t ional principle, wit hout a ny need of so phist icated elect ro nic st ruc
ture calculat ions for s upercells. For t his purpose I shall fo rmulate a Ginzb urg-La ndau th eory
in which cha rge excesses, qi, play th e role of t he order pa ra meter field . Hereaft er th is phe
nom enological a pproach is referred t o as th e 'charge excess funct ional ' (C EF) t heory. As it
will be seen below, th e CEF is complete ly det ermined by only three concent ra tio n depend ent ,
material specific, par a met ers . These par am et ers ca n be calculat ed by th e CPA+ LF th eory
or ext racted from order N calculati ons . Given t he atomic posit ions with in a s upercell, t he
CEF scheme det erm ines th e cha rge excesses a t eac h site , and, hence , th e elect rost a t ic energy,
with a n excellent acc uracy. Moreover, th e above procedure, using a single set of par am et ers,
ca n be ap plied to a ny ordered , par ti ally ord ered or disordered co nfigur ati on corres ponding
to t he sa me mean alloy concent ra t ion. Furt hermore, CEF calc ulations requ ire really modest
computat ional efforts : 20 seconds CP U tim e on a 1 G lIz Pentium In prOCf'BSOr for a 1000
atoms sample. T his is a pa rt icular ly int erest ing feature as it opens new perspect ives. In pr in
ciple, one could ta ke adva ntage from these perform an ces a nd det ermine, in a par am et er free
t heory, t he equ ilibri um values of t he sho rt ra nge ord er par a met er for metallic alloys wit h a n
accura cy unpr ecedented for thi s kind of calcula t ion. My group is current ly developing a new
comp uter simulatio n technique, based on th e joint use of C EF and Met ropolis ' Monte Ca rlo
t hat should allow th e st udy of phase equilibria in met allic alloys .

T he following of th is paper is a rra nged as follows. In Sect ion Il , I sha ll present t he CEF
th eory a nd its general solut ion for th e site cha rge excesses . In Secti on TIT , t he meth od will
be a pplied to bcc C UO.50ZnO.50 alloys a nd it.s acc uracy will be test ed t.hrou gh a comp ariso n
with order N Locally Self-consistent Mul t iple Scatt.ering (LSMS ) t heo ry calc ulations [8]. T he
compa rison will also show th at th e CEF describes th e distribution of cha rges in met allic alloys
wit h a s nrprisingly good accuracy, when t he material s pecific pa ram et ers a re obt ained fro m
order N calculat ions, while fairly goo d results a re obt a ined using th e par am et ers obt ained
from th e a bove gen eralisa tion of t he C PA th eory. T he final Section IV is devoted to a th orough
a na lysis of t he CEF meth od a nd of its possible exte nsions a nd a pplicat ions to th e st udy of
phase tran sition s a nd ordering phenomen a in t he met allic st.a t e.

2 . A CHARGE EXCESS FUNCTIONAL FORMALISM FOR CHARGE TRANS
FERS IN METALLIC ALLOYS

2.1. The model

Th e bina ry alloy ACA BeB , CA + CB = 1, sha ll be st udied by th e mea ns of s upercells cont.aining
N 'at.oms ' wit h period ic bou ndar y conditio ns . Each site of th e cell ca n be occupied by a A
or a B atom. If th e chemical occupatio ns a re not. considered , t he lattice descr ibed by t.he
sit es wit hin th e supercell a nd th eir period ic replicas is a simple lattice , wit h one a to m per
unit cell. Below, it shall referred to as th e 'geome tri cal la ttice ' . In order to have a th eory
flexible enoug h to deal on eq ual foot ing both with o rde red a nd disord ered alloys , in prin ciple ,
one s hould consider all t he ( CA N;;(~ B N) ! different 'alloy configura t ions' th at. belong to t he
statis tic al ense mble s pecified by a given mola r fraction , CA . Eac h co nfigurat.ion is descr ibed
by t.he set of 'occupa t ion numbers' ,

X " = { 1 if th e i~ th sit e is occupi ed by a 0 atom
, 0 otherwise (2)

T he a rrays X A a nd x »describe complete ly a n alloy configura t ion wit h a ce rtain redunda ncy,
since, fo r a ny i, it holds X i

A + Xp = 1. Below, th e convention is used th at Latin indice s, i ,
j , . . ., ident ify t he sites in th e supe rcell, a nd G reek indices, 0 , f3 , . . ., th e chemical species ,
A or B. Mo reover , whe never th eir ra nges a re not indicated , t he sums over t he Latin ind ices
run from 1 to N, while t he G reek indices t ake only t.he values A and B.

A volume Wi is associated wit h each crysta l sit e. In t he following it will be ass umed t.hat all
t he ato mic volumes s um up to t he supe rcell volume. Th ere is some a rbit ra riety in th e way in
which t hese volumes ca n be chosen : th ey could bf' b uilt. using t he Wigner-S eit z con st ruction
(and possibly a pproxima ted by spheres , as in t he case of t he Atom ic Sphere Ap proxi ma t ion) ,
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or th ey co uld be non-overlappin g muffin-tin spheres to which an a pprop ria te fraction of th e
interstiti al volume is added .

Each site in th e supercel l is occupied by a nucleus of charge Zi, a nd , for each site , a cha rge
excess can be defined as follows:

qi =;' dfp( r') - z,
w"

(3)

where p(1') is th e elect ro nic density. T he a bove charge excesses sa t isfy a global electroneu
trality condition

(4)

(6)

Diffe rent models for orde red a nd disord ered alloys will be discussed below. Th e random
alloy mod el can be defined by say ing the t he occup a tions of different sites a re not stat istically
co rrelated , i.e.

(5)

or, equivalent ly, by ass uming eq ual stat ist ical weights for all t he a lloy configurat ions in a
fixed concent ration ensemble. This , evidently, corres ponds to th e T -> 00 limit for th e alloy
site occupations. Real alloys, of course , should be st udied at finit e tem pera t ures a nd , in ord er
to describe how mu ch t hey a re ordere d , it is customa ry to int rod uce th e short ra nge order
pa ramet ers [9],

Also a charge correlati on functi on can be defined as

(7)

Of course, even for rand om alloys , the excess charges a re correlated , i.e. g (fi j) t= o.

2.2. The charge excess functional

With in th e muffin-tin or the atomic sphere a pproximat ion, th e electrost atic ene rgy of th e
sys te m can be wri tten as t he sum of site-diagonal term s plus a Ma delung term [10, 4]. I shall
concent rate on th e lat ter ,

(8)

Th e Madelung matrix elements Mij in Eq. (8) are defined [11] as

1
lv1ij = L -_--- (9)

R Ir ij + RI

where fij are t he translations from th e i-t h to th e j -t h site wit hin th e supercell and R a re
th e superla ttice translation vect ors.

Equ at ion (8) defines also th e Ma delung pot enti al at th e i-t h site ,

Vi = 2 L 1\Jij qj (10)
j

Everywhere in th is pap er ato mic unit s a re used in which e2 = 2.
T he starti ng point of t he mod el is th e assumption th at linear laws hold a nd relate t he

charge excess at t he i-th site qi , a nd th e Madelung pot ent ial at th e sa me site ' Ii . As discussed
above, t his is a n evide nce from basically exac t orde r N calcu lations, alt hough also th e single
site CPA +LF model [7] is able to provide a realistic esti ma te of th e coefficients ente ring in
th e linear laws. Th erefore, I sha ll ass ume th at , for some specified configura tion, t he following
equati ons a re sa tis fied,

aiqi + 2 L Mijq j = a.b, = k,
j

(11)
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where a; a nd bi, th e coefficients of the linear laws, ar e ass umed to depend only on the
occupation of th e i-th site in th e configuration given and th en to take th e values aA a nd
bA or an a nd b» depend ing on th e chemical occupation of th e i-th site . Moreov er , it is
required th at th e global electroneutrality condition , Eq . (4), must be sa t isfied .

If all th e mater ial s pecific coefficients , aa a nd ba , were specified by th e mean alloy concen
trations, one would have a set of N+ 1 equa tions , Eqs. (11) a nd (4) , and N unknown quantities
to be det erm ined , th e qi . In general, the determinant of thi s set of equ ations is not singula r
a nd , hence, the problem would be overd et ermined . This is not in contrast wit h the results of
order N calculations: in Refs . [3 , 4] it is found th at all th e four constants ar e determined [or
a give n configuration, while differ ent configurations corresponding to th e sam e mean alloy
concentration ar e characterised by slight ly different sets of constants . Actu ally, in Ref. [3],
th e compa rison between result s for disordered a nd ord ered alloy configurations shows that ,
for ordered alloys , the constants aa have value s very close to those found for random alloys
at th e sa me mean concent ration, while larger discrepanc ies a re found for th e const ants ba .

As discussed in Ref. [7], a n useful hint for solving the problem comes from th e th e CPA + LF
model. T his th eory views th e qu antities a., as th e respon ses of the impurity sit es, embedded
in th e CPA 'm ean' alloy, to a local field. IIence, in th e CPA+LF mod el, th e same quantiti es
depend only on the mean alloy concent ra tions. On th e other hand , in th e sa me theory, th e
zero-field charges, bA and b» , are related one to the oth er through th e CPA 'elect ronega t ivity'
condition. These fact s suggest th at, in different configurations corresponding to th e sa me alloy
concentrati on , th e consta nts ba ar e probabl y rcnormaliscd by th e global const ra int, Eq . (4),
while much smaller effects , if a ny, a re expect ed for aa.

To make further progr esses, conside r th e following function al of th e site cha rge excesses ,

(12)

where th e Lagrange multiplier It has been introduced to impose th e global elect roneut rality
constraint. By functional mimimiz ation with resp ect to the order par ameter field {q;}, a nd
to th e multiplier It, th e following set of Eul er-Lagrange equa t io ns is obtained ,

ai(qi - b;) + 2I: Mijqj = It
J

(13)

(14)

Equat io n (14) evidently coincides with th e elect ro neutrality condition, Eq. (4). On t he other
hand , Eq . (1:3 ) reduc es to Eq, (11) only when J1 = O. When It t= 0, one can think that
the renorrnal izatlon of constants , a.b, --+ a.b, + It occurs in Eq . (11) in order to ensure th e
global elect ro neut rality constraint to be sa t isfied. If the probl em of determining th e site
cha rge excesses is redefined as a min imum principle for th e Gin zburg-Landau functional n,
the four constants aa , ba, obtained for a given alloy configuration ca n be used also for ot her
configura t ions, since th ey will be properly renormalised : in oth er words, th e inform ation
obtained from a specific configuration is transferable to other configurat ions belonging to th e
sa me fixed concentration ensemble.

T he minimum prin ciple for n lead s to a scheme in which th e constants aa, related wit h th e
response to the exte rna l pot enti al , are not affected by th e elect roneut ra lity cons t ra int. Now,
since n has th e dimension of a n energy and contains th e elect rost atic energy, I:ij lV!ijqiqj,
one can think th at the minimum of th e funct ional

(15)

cor responds th e total elect ronic energ y of th e alloy configur ation , except but an addict ive
consta nt. Th e quadratic term s in Eq. (15) ca n be conside red as ener gy cont ributions asso
ciated with local charge rea rran gements. Mor eover, th e qu antity u; int roduced simply as a
Lagrange multiplier, can be int erpreted as a chemical pot ential rul ing the cha rge transfers in
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meta llic alloys . It is evident ly relat ed with t he usual elect ronic chemical potential, lief, th at
in th e ensemble rep resentable version of th e density func t io nal th eo ry [12], appropriate for
random alloys , ente rs in th e funct ional through th e const raint,

.I dr p(f) = L: Zi
t

2 .3 . Explicit d etermination of the char ge transfers

(16)

In th e previous subsect ion, th e fun cti onal r!([q],Jl) , hereafter refer red to as th e grand po
tent ial , has been int roduced. Once minimised wit h respect to its var ia bles, it provides th e
solutio n for th e cha rge distribution a nd t he chemical pot enti al in t he configurati on consid
ered , while th e fou r constants ente ring in its definition , aco b", ca n be considered as t he
cha racte ristic pa ram eters for a specific alloy syste m at some specified concentrati on . In fact s ,
th e co nstants b" ca n be evalua ted for any alloy configurat ion corresponding to t he give n mea n
alloy concent ra t ion, while th e arbit ra riety introdu ced in th is way is removed since th ey will
enter in determining t he cha rge distribu tion only through th e combina t ions aAbA + Ii a nd
aBbB + Jl, as discussed in t he previous subsect ion. Below I shall elaborate t he explicit solution
of t he pro blem. For th is purpose, however, an a ppropriate for malism is necessar y.

Below I sha ll use a tensor not at ion a nd denote th e set of all th e site cha rges, qi , simply as
q . Analogously t he set s of th e Madelung pot entials, Vi , a nd th e site occ upations, Xi , sha ll be
denot ed as V a nd X " . T hus, e.g., V =2 M . q should be read as Vi = 2 Lj !\ifi jqj . Moreover,
I int rod uce t he vector

(17)

a nd t he tensor I' wit h matrix elements

(18)

where Ji j is th e Kroenecker delt a . With t his nota t ion , Eqs. (13) a nd (14) can be rewritten as

(I' + 2M ) . q = f + Jl(X A + X B
)

(X A + X R
) . q = 0

(19)

(20)

Th en , th e solut ion for t he cha rge distribu tion can be writ ten in term s of A = (r+2M )- 1,
as follows

(21)

T he chemical pot ential can be determined by multiplying Eq . (21) on t he left by (XA +XB)
a nd using Eq . (20) , e.g .,

(22)

where, th e quan tit ies
/I" i3= X " . A . X i3 (23)

have been int rodu ced. Since t he matri ces r i j a nd M i j a re real and symmetric, it follows t ha t
also /l i j is real a nd sy mmet ric a nd , hence ,

(24)

By substit ut ion of Eqs, (22) a nd (24) in Eq . (21), r find th e final result of t his sect ion,

(25)

where

(26)
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T ABLE 1. Ma te ria l specific parameters of the CEF, (l C u ! n z « and k C n - a z n , for a bee CUo,5 0 Z n O.50 a lloy.
The first set of param eters , indicated as LStvIS! has been extracted from t he qV data obtained by th e 'exact '
LSMS ca lcula tions in Ref.[8] for a 1021 atom s supe rccll that simulate a random alloy. The para me ters in the
second set hav e been ca lcula ted us ing th e CPA + LF model of Rcf. (7J. All the quanti ties are in a tomi c uni ts .

LSM S C PA+LI'

a e u 1.8·1281 1.22787

az . 1.82159 1.21890

k c « - k z« 0.28957 0.14035

T ABL E 2. CEI' and CEI' -C PA calcula t ions (see the text for expla natio ns) for th e sa me bee CUO5O ZnO50
sa mple as in Tab le I are compared with the 'exact ' LSMS resul t s of Ref. [8]. (q}c u and (V )cu are , respectively ,
the mean values of th e charges and the Madelung po tentials a t the Cu sites , a c « and f7 Z n the standa rd devia
tions of th e charge d istributions for Cu and Zn. EA1AD/ N is t he Medelung ene rgy per atom and 'erro rs ' st an d
for t he mean squa re deviations b etween CEI' (or CEI'-CPA ) charges an d LSMS charges. All t he quant iti es ,
unl ess ot herwise stated , are in atomic un its .

CEI' CEF-C PA LSMS

(q}c u 0.0 99787 0.090 619 0.09978 3

(V) c u -0 .038197 0.039881 0.038 188

a c -. 0.02 '>07 0.0.1082 0.02'>23

o z « 0.02801 0.03412 0.02814

EMAV/N (mRy) -2 .'>52 -2..153 -2.557
'errors' 2.7 10- 6 1.5 10-4

Eq. (25) clar ifies th at, in th e general solut ion of t he CEF for the charge distribution , bA a nd
bB ente r on ly via the difference k A - kB = a,jb,j - o st! » , while th e depend ence on th e alloy
config urat ion is conveyed by th e quantity y .

Th e formulation of the char ge excess functional, Eq , (12), a nd th e solut ion for th e local
cha rges , Eq , (25) ar e well defined both for ordered and disordered alloys. Thi s has bee n
possib le becau se of th e introduction of th e chemi cal potenti al rz : due to th is , only three of th e
four constants th at cha racte rise th e qV linear laws ente r in the final solut ion, Eq , (25). Th ese
three quantities together wit h y , det erm ined by the actua l alloy configura t ion, a re equivalent
to th e origi nal set of four const ants .

In t he next Sect ion , t he charge excess functional formalism will be a pplied to CUO.50ZnO.50
alloys on a geomet rical bee lattice.

3 . CHARGE DISTRIBUTIONS IN BCC C uZ n ALLOYS

3. 1. Testing the CEF mo del

As discussed above , Eq s, (25-26) compl etel y determine t he distrib ution of cha rge excesses for
a given alloy configuration . Th e three mat erial specific par am eters contained in th e CEF can
be extracted from ord er N as well as from CPA+LF calculat ions . In thi s section I shall com
pare the charge excesses obtained by th e CE F with ord er N Locally Self-consist ent Multiple
Sca ttering (LSMS) th eory calculat ions [8].

I have selected a specific configura t ion of a supercell containin g 1024 atoms a nd designed to
simulate a CUO.50ZnO.50 random alloy on a bcc geomet rica l lattice for which LSMS calculat ions
were availa ble [8]. Unless otherwise state d, th e CEF calculat ions reported in t he present pap er
have been performed on th e sa me configuration. As reported in Tabl e I, t wo dist inct set s
for th e three CEF par am eters (in t his case ac « , az" a nd kc « - kz n) have been used. Th e
par am et ers in th e first set have been ext rac ted from linear fits of th e qV data in Ref. [8],
tho se in th e seco nd have been ca lculated by th e CPA+ LF mod el, as describ ed in Ref. [7].
Accordingly, two different set.s of CEF calculations have been exec uted that sha ll be referred
below to as : CEF , for the first set, or CE F-CPA, for th e second .

The differences betwe en LSMS and CEF calcul ations ar e really small, as it is a ppa rent
from Table II : 5 parts over 105 for th e mean values of th e cha rges and of the Mad elung po-
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Figure I. Cu (light histogra m) and Zn (dark histogram ) cha rge excesses dist ributions for the bcc CUo .5oZ I1{) .50

1021 a toms sam ple of Ta ble I. From top to bo tto m: LSMS results (Ref.[8]) , CEF a nd C EF-C PA ca lcula tions.
Atomic units arc used .

tentials,2 part s over 104 for the Madelung energies , less th an I per cent for the widt hs of the
cha rge distribut ions, T he d istribut ions , reported in Fig, (1), appea r very similar. In order to
have a more precise assessment of t he acc uracy of th e CE F resul ts , I have compa red directly
the cha rge excesses at each latt ice site. In Fig. (2) , th e differences 6.q; = qf F: V - qf SMS
a re plotted. T he absolute values of th e 6. qj a re always smaller th an 0.005 elect rons and no
co rrelation is visible between th e size of th ese 'errors' and t he chemica l occupation of th e
site , Interest ingly, t he mean squa re deviat ion between the two set of cha rges, reported in
Ta ble I, is of t he ord er of 10- 6 , i.e. its size is comparable with the numerica l errors in LSMS
calcula tions, T he main source of th e ti ny differences found is tha t all t he CE F charges, by
cOlls truct ion, lie on the two st raight lines corresponding to the qF laws for each of the alloying
species, while t he same laws hold only approxima tely for LSMS calc ulat ions. Tests about the
tra nsjera bilits) of the CE F par ameters ext racted from one sa mple to th e ot her samples a re
current ly being perfor med , P reliminar y resu lts already ava ilable [13] suggest t hat , when using
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Figure 2. Left frame: !:!J. q i = q f B F _ ql·SMS; right frame: f:::J. ql. = q f HP - C P A _ qf S M S , where q f E F , q f EF - C PA

and qf SMS arc, respectively, the site charge excesses at the i-t h site as obtained by CEF , CEF-CPA or
LSMS (Rd.[8]) calcula t ions for t he bee CUO .50Zno.5o 1021 at oms sa mple of Ta ble I. In abscissa : site identifiers .
Open circles: Zn sites ; triangles: Cu sites . Atomic units are used.

parameters ext racted from one sample, t he CEF is able to reprod uce t he cha rge dist rib ut ion
in oth er sam ples mai ntaining t he abov e menti oned accu racy, even when CE F parameters
ext racted from ra ndom sa mples a re used in o rdered , par t ially ordered or segrega t.ed sam
ples and vice versa . T his tmnsfembility of t he CEF par amet ers is a very rema rka ble resul t:
eviden t ly t he renorrnalization of t.he consta nt s ment ioned in t.he previo us sect ion is able t.o
deal wit h very different. sa mples a nd, more importan t , th is impl ies t.hat. t.he CE F th eory is
genera lly a pplicable t.o metallic alloys , no matters whet her t hey a re orde red, disordered or
segrega ted. Furt hermo re , t he accuracy obtained for t he Madelung energy demonst rates th at
t he t heory is able to describe very ca refully t he elect rostat ic cont ributions to th e energet ics
of ordering phenomena.

T he applicat ion of t he C EF t heory using paramet ers fro m CPA+ LF calc ulat ions has a
particular int erest since t he CPA+ LF mode l is not based on a specific alloy configuration
a nd , t he refore , does not requ ire ex pensive calculations on supe rcells . In t his case , as it ca n be
seen in Ta ble I a nd Figs. (1-2) , t he agreement wit h LSMS calculat ion is st ill fairl y good: t.he
CEF-CPA understima tes t he mea n cha rges abou t 10 pe r cent a nd overesti mat.es th e widt hs
of t he cha rge dist ribu t.ions about. 25 per cent . T hese errors somehow compensate giving a
Ma delu ng energy co rrect. wit.hin 4 per cent . T he compa rison wit h LSMS for t he charges at.
each sites , as displayed in Fig . (2) , shows up small sys te matic errors wit.h different signs on Cu
and Zn sit.es. The histograms of t he cha rge dist ribut.ions present a smal] overlap aro und q = 0,
as it. is visible in Fig. (1) . Also in th is case , as a bove, prelimina ry test s (1 3] shows th at t he
par ame ters obt ai ned from t he CPA+LF t heory a re transferable, in t he sense t hat t he size of
t.he discrepa ncies between CEF-C PA a nd LSMS results a ppea r inde pende nt on t he a mount of
short ran ge ord er in t he alloy configura t ions conside red . To ma intai n t he sa me perform ances ,
even in th e cas es of ord ered or seg regated sa mples, is a very remar kab le success for a t heory,
th e CPA , or iginally propo sed for ra ndom alloys. To my knowledge, t his is the first ti me t hat
a single sit e t.heory, free of adj ust able pa ram ete rs , is able to reprod uce t he charge dist.ribut ion
in metallic alloys . Better result.s have been obtai ned by t he Polymorphous CPA (PCPA) [14]
t hat , alt ho ugh based on t.he CPA t heo ry, at simila rity of 'exact ' LSMS calculations, uses
supercells a nd , hence, many different. sit.e potent ials.

An important quantity, t ha t is partic ularl y releva nt for its role in t.he energet ics of metallic
alloys [6], is t he cha rge correlation functio n g( fij) . In F ig. (3) , I plot. g(i'iJ ) , as obt.ained from
LSMS, CEF a nd CE F-C PA calculat ions, again for t.he 1024 ato ms CUO.50ZnO.50 ra ndom alloy
sa mple of Ref. [8]. As it is a pparent , th e agreement bet.ween LSMS a nd CEF calcu lations is
excellent , a nd very good also for th e C EF-CPA . T he test is par ticula rly interest.ing since non
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Figur e 3. Norma lised charge corr elat ion fun ct ion (qO q) ) /(q)~,u for the 1024 atoms be e CUO 50Zno 50 random
alloy sa mple (sec Table I). Open circles: LSMS calculations (R ef.[8]) , crosses: CEF calculations , filled circles:
CEF-CPA calculations. In the inset , a detail of the same curve is plot ted. The shell idcntifyer , i , is reported
in abscissa . Lines joint the points.

correlated cha rge models would give g( fi j ) = 0 for rij > O. It could be th erefore quite surpris
ing to observe that , at least in th e cas e at hand, the correl ations a re slight ly overestimated
by the CEF-CPA model.

3.2. Charge excesses versus local environments

Th e importance of local environments in determ ining th e charge transfers in met allic alloys
has been highlighted for the first time by Magri et al. [5]. Th eir model simply assum es the
cha rge excesses to be proportional to th e numb er of unlike nearest neighbours. When th e
development of ord er N calculation allowed a deeper investigation of the problem [3, 4],
it was readily clear th at such a simple model was not able to describe th e details of th e
charge distributions. Later on, however , Wolverton et al. [6] generalised Magri 's model by
introducing addition al term s proportional to th e numb er of neighbour in outer shells and
achieved appreciable improvements especially for fcc lattices.

Th e computat ional flexibility of the CEF method and th e fact th at it seems able to
reproduce almost perfectly LSMS results allow to check th e basic assumptions of th e class
of th eories to which the models of Refs. [5, 6] belong. For thi s purpose I have evalu at ed th e
charge distributions in 40 CU050ZnO.50 bcc random alloy sa mples, each contain ing 432 atoms.
T he CEF parameters have been ext racted from th e LSMS calculat ions of Ref. [8] (see Table
I) . T he data obtained ar e analysed in Fig. (4) . In th e top frame th e individual charge excesses
a re plotted vs, the number of nearest neighb ours, Ill' Th e existe nce of correlation between
th e charge excesses, q, both with the site occupation and Ill , is evide nt. However , as it is
appa rent, th e excesses of cha rge for atoms of th e same chemical species and th e same numb er
of unlike nearest neighbou rs ca n take any value in intervals whose typical widt hs is about
0.0 5 elect rons, moreover intervals corresponding to different values for III present appreciable
overlaps. The same observations have already been mad e in Ref. [3], th e main difference is that
I have considered a much larg er number of configurations and used sa mple all corresponding
to th e same stoichiomet ry. T he conclusion, however remains the sa me: III is not sufficient to
charact erise th e distribution of q. In ord er to check how much th e considerat ion of the number
of neighbours in th e second or in the th ird shell, 112 and 113 , can improve, I have selecte d all
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Figu re 4. Top frame: char ge excesses , o, vs. the number of unlike nearest neighbours , n i l for bee C Uo.50Zno,50
random alloys. Middle fra me: q vs. the number of unlike neighbo urs in the seco nd sh ell , n a only for th e Zn
a toms that have 1 unlike neighbo urs in t he first she ll. Lower frame : q vs. the number of unlike neighbours in
th e th i rd she ll, n 3 I only for the Zn atoms that have 4 an d 3 unlik e neighbours in th e firs t two shells. Ope n
circles and triangles identify, respect ively, Zn and Cu sites . T he da ta plot ted have been obt ained from CE F
ca lcula tions on 40 random alloy samples each cont aining 432 atoms on a geometrical bee lattice. The CE F
parameters used are listed in Table I. Atomic units are used .

th e Zn atoms with nt = 4 and plotted the ir cha rges vs . n2 (F ig. (4) , middle frame ) and all the
Zn site with nt = 4 and wit h n 2 = 3, the corresponding charges are plotted in the lower frame
of th e sa me Fig . (4). Although the qual it ative picture is not cha nged, it is clear th at , if the
occup ation of th e neighbours in the first three shells is known , th e uncertainty on th e charg e
is red uced about one ord er of magnitude with resp ect to what can be obtained by considering
nt only. In any case, trying to improv e Mag ri's model by includin g more and more shells and
more and more adjustable par am eters, in my view, appears misleading in th at it obscures
th e simple fact th at a single number , th e value of th e Madelung field, is able to reduc e t he
uncert ainty to an amount compara ble wit h numerical errors in ord er N calculat ions.

4. DISCUSSION

I like to conclud e thi s pap er by makin g, in a quite spa rse ord er, some comments about several
int eresting as pects of the C EF model and discussing about possible future applications of t he
th eory.

i) A Coarse graining over the electronic degrees of freedom. The CEF operates a
coarse gra in ing over th e elect ronic degrees of freedom , th at a re reduced to on e 101' each atom ,
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th e local excess of cha rge, without any appreciable loss of accumcy for t he total energy. Thi s is
a consequ ence of the fact that , with in theories like th e CPA +LF [7] or the PCPA [14] a ny site
dia gonal property is a un ique fun ction of the Madelung potential, l'i , a nd the nuclear charge
at t he same site, Zi . As not iced in [7J thi s uniqueness is due to the mathematical sim plicity
of th e CPA proj ectors a nd, t herefore, probably does not hold for more exact approaches,
whe re some resid ual depend ence on th e site nearest neighbo urs environment is expected for .
Nevert heless , th e fact th at. t.he CPA t heor y accur ately accounts for th e spectral propert ies of
met allic alloys [15] and t.he quant.it.at.ive agreement. wit.h LSMS calculat.ions found in Refs . [7,
14] suggest. t.hat the errors introduced by neglecti ng t he nea rest. neighbours influence a re
probabl y not much lar ger t.han numerical errors in ord er N elect.ronic st ruct ure calculations .
Th e previo us sente nces requ ire some cla rification: when referrin g t.o t.he near est. neighbou rs
environment, I mean t he effects of t he environment not. already conveyed by Vi. T he sit.e
Madelung potent.ial, in fact , alr ead y contains much infor mat ion about. th e occupations of
near a nd far sites , each weighted as appropriate. Altho ugh t he contex t was very different, I
like to recall th at. a coarse gra ining over quantum degr ees of freedom has precedents in t.he
concepts of chemical valence a nd, more quantitatively, in that of elect ronegati vity .

ii ) The CEF a nd t he lo cal enviro nments . Pre vio us at.t empts to build t heories
dealing with cha rge t ra nsfers in met allic alloys, as, for instance the model of Magri et a l. [5]
or the charge-correlate d CPA of J ohn son a nd P inski [16], have been focused on th e number
of unlike neighbou rs of each site . Subseq uent exte nsions [6] includ ed conside rat io n for th e
occupat.ions of out.er shells. T he qV linea r relations suggest t hat t he convergence of such
schemes in th e number of shells is slow, being bas ically rela ted to t he r- 1 decay of t.he
Coulombian int eracti on. Th e CE F mode l is more effective in th at it. accounts for th ese long
ran ged int eractions. Thi s not wit.hstanding, t.he models of Refs . [.5, 6Jsuggest. rout.es to possible
fut.ure refinements of th e CEF theory: improvements could be obtained , for instance, by
including local fields in th e cha rge cor relat ed CPA mod el of Ref. [16].

iii ) Co m p utat io nal p e rfor m ances o f the CEF theory. Mode rn ab init io orde r N
calculatio n req uire a numb er of operations directl y proportional to t he number of atoms in
t.he supercell, N, unfort unate ly wit h huge praefactor s. To fix th e ideas , consider t.he case of
LSMS ca lculat ions: t.he number of operat.ions req uired is given by

(27)

where nt. = (l m ax + 1)2 is t.he size of th e single site sca t te ring matrices , n L I Z t.he numb er
of atoms in t he local int eraction zone, n e and n i t t.he number of points in t he energy mesh
and t he numb er of it.erations t.ha t a re necessar y to solve th e Kohn-Sham eq uation. T he
a bove est ima t.e for t.he praefactor is q uit e opt imist ic and co rres pond to ass uming 1m ax = 3 ,
nt.iz = 24, »e = n it = 10. Th e CEF requires n C EF = N 3 opera t.ions when using convent.iona l
linear algebra algori t hms . Accordingly, for a typ ical size of th e superce ll, N = 1000, th e CEF
is 3 t.o4 ord ers of magnit ude faster t han LSMS . Of co urse , order N matrix inversion algorit hms
ca n be used for t.he CEF also, t his would give nCEF = nLzN, i.e . 5 o rders of magnitu de
faster t ha n LSMS , regardless of th e size of th e supercell.

iv ) A CEF-Monte Car lo mixed sc heme. Th e very rem arkabl e speed up in electron ic
st ruct ure ca lculat.ions th at can be obtai ned using th e CEF has a qualitative relevance beca use
it. open s unexplored possibilities. T he minimum value of th e CEF funct ional for a given
alloy configura t ion, X, can be viewed as t he total electronic energy corresponding to t hat
configu ration. T herefore, t he same min imum value can be regarded as a functio nal of the
alloy con fiqura tion . say:

(28)

If lat t ice vibr at.ions a nd deformations ar e not conside red, X is complete ly equivalent to th e
whole set of t he atomic position s. If th e validity of t he Born -O ppenh eimer approxima tion and
of a class ica l a pproximation for t.he ato mic degrees of freedom a re ass umed , t hen E,, (X; c)
ca n be rega rded as a classical Ham ilto nian for th e alloy in st udy. Probabl y th e functio nal de
pend ence of Eet(X; c) on t.he a to mic degr ees of freedom , X, is too much complicated for exact ,
even though a pproximate, stat ist ical st.udies .My gro up is cur rent.ly developing a mixed CEF
Mo nte Carlo scheme in which a Metropolis Monte Ca rlo algor ithm is used to ob tain ensemble
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avera ges for th e classical Hamiltonia n Ed(X ;c). Th e goal here is being able to det ermin e ab
initio, within a non perturbatice method , the th ermodynami cs , the phas e eq uilibria and the
atomic cor relat ion functions for met allic a lloys . At the sa me tim e, t akin g adv antage of th e
uniqueness of th e site properties wit hin CPA bas ed a pproaches , such a scheme should allow
for a ca reful determination of th e elect ronic prop erties along th e lines of th e LSMS-CPA of
Ref. [17J.

v) Improving the CEF-CPA. In Sect ion III , th e dist ributions of th e site char ge
excesses in a random alloy sys te m have been st udied . Th e validity of th e qV laws impl ies
th at also th e values of th e Made lung field , V, at different sites can be describ ed by two
distributions d,,(V). With resp ect to the se, a ra ndo m alloy syste m can be viewed as a charge
glass. In fact, th e consequ ences of th e q a nd V polydispel'sivityon the energetics of random
alloys a re simila r to those of th e polydisp ersivity of th e bond lengths in ordin ar y glasses. It
is easy to see th at th ese distribution sa t isfy th e following sum rules:

1: dV (la(V ) = 1

l
eo

L C" dV V d,,(V) = 0
o -(Xl

On th e ot her hand , th e st a ndard CPA th eory is based on th e implicit assumption th at

(29)

(30)

i.e., th e CPA conside rs random alloys are as chargc monodispcrsc sys te ms. Th erefore, the
CEF-CPA scheme presents th e incon sist ency th at, while t he param eters entering in t he CEF
ar e calculated by assuming th e distribution in Eq. (30) , th e output distributions a re typical of
charge glas ses. As it is well known , appreciable improvements over the standard CPA th eor y
can be achieved by th e SIM-CPA [18] or th e sc reened CPA [16] models . Both th eories a re
based on th e prescription dA(V) = 5(V - VA) , dH(V ) = 5(V - VB ) , where th e V" ar e chosen
in order to mimic th e mcan effect of th e cha rge correlat ions, in such a way th at th e sum rules
are obeyed . Alth ough these ar e st ill monod isperse th eories , displacing th e cent re of mass of
th e distributions allows for subst antial improvements. Th e best CPA-based model to date
available, th e PCPA of Ujfa lussy et al. [14] is a truly polijd ispers c th eory in which the V
distributions a re defined self-consiste nt ly by th e supercell used . As a t heory based on specific
supercells, however, th e PCPA ca nnot (at least , wit hout much lab our) make predictions
on th e atomic correlations. We ar e current ly develop ing an alt erna t ive a pproach that could
maintain the ad vantages of th e CEF -Monte Ca rlo scheme wit hout paying th e price of having
non consiste nt charge distributions. Th e idea is sim ple: a n a pproxima t io n very simila r to the
PCPA theory can evaluate the polymorphous mod el defined by th e V distributions obta ined
as a n output of th e CEF-Monte Ca rlo, rather those defined by a specified supercell. In thi s
way a new set of improved coefficients for th e CE F ca n be obtain ed. T hus, by iterating the
above modified PCPA and th e CEF-Monte Ca rlo, unt il converge nce is obtai ned for th e V
d istributions , one would obtain a completely ab initio non perturbat ive quantum th eor y of
metalli c a lloys a ble to evalua te , at th e sa me tim e, elect ronic a nd ato mist ic properties.
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LO CAL C H A R G E DISTRIBUTIONS IN METALLIC ALLOYS: A LOCAL FIELD
COHERENT POTENTIAL APPROXIMATION THEORY

Ezio Bru no, Leon Zinga les and Anto nio Milici

Dipa rt imento di F isica a nd Unita INFM, Universit.a di Messina , Salita Sperone
31, 98166 Messina , Italy

1. INTRODUCTION

In t he las t decade o rder N elect ronic st ruct ure calc ulations [1, 2] mad e poss ible th e st udy of
la rge supercells containing fro m 100 to 1000 ato ms. Namely Fa ulkner , Wang a nd Stoc ks [2, 3]
have shown that simple linear laws, t he so called 'qV ' relat ions, link th e local charge excesses
and th e local Madelu ng potentials in metallic alloys . T hese qV linear laws have been obtai ned
from th e numeric al analysis of da ta prod uced by Locally Self-co nsistent Multiple Scattering
(LSMS ) [1] calcu lations, while th eir form al de rivation wit hin t he density functional t heory
has not yet been obtained . As a matter of fact , the a bove laws ca n be conside red to hold
at least wit hin t he approximations underlying LSMS calc ulations, i.e. t he Local Density and
t he muffin-ti n a pproximations.

Tn t his pap er we sha ll develo p a new version of Co here nt Potent ial Appr oximation theory
(CPA) . We a pply a local external field and st udy t he response of t he mean field CPA alloy.
Because of t he fluctu at ion-dissipat ion t heorem, th e response to t he external field must be
equal to t he inte rnal field ca used by electrostatic interactions. T his new t heoretical scheme,
avoidi ng t he conside rati on of speci fic supercells , will enable us to ex plo re a broad ra nge of
fields and clarify certain as pects of t he mentioned qV relations.

We sha ll find t ha t , in a q uite broad ra nge of ap plied fields , <1> , t he integ rated cha rge excess
at a given site, q, sca les linearl y wit h t he field, in agreement wit h th e findings of Refs [2, 3].
However, remarkably, in t he same ran ge of <I> values, the charge density at a give n point
does not obey a linear sca ling. Our resul ts for t he CuPd and C uZn alloy syste ms compa re
favourabl y both wit h th e LSMS and convent ional superlat t ice mult ipie scat tering th eor y
ca lculations , as well as with t he available ex perimenta l data . Our t heory , when a pplied to
ra ndom alloys, is computat ionally inexpensive in comparison wit h ot her ap proac hes a nd can,
in princi ple, be used , in conj unct ion with statistical met hods, to descr ibe ord ering phenomena
in meta llic alloys.

In th e next sect ion 2, we sha ll discuss abo ut charge tr a nsfers in mult iple scat t ering t heory
calc ulations a nd CPA t heory , while in sect ion 3 we shall desc ribe th e a bove new version of
t he CPA t heory t hat incorporates local fields (C PA+ LF) a nd apply it to the st udy of fcc
CuPd an d fcc and bee C uZn alloys. Tn th e conclusion we shall summa rize t he most impor tant
features of our work.
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2. CHARGE TRANSFERS IN METALLIC ALLOYS.

2.1. Charge transfers fr om LSMS calculations.

Faulkn er , Wang a nd Stocks [2, 3] have a nalysed t he distribu t ion of cha rges in binary metallic
alloys as obtaine d from LSMS calc ulat ions . Th ey have stud ied la rge supercells wit h period ic
boundar y condition s containin g hun dr eds of atoms a nd designed to simula te subst it utional
disord er. LSMS calcu lations a re based on th e local densit y a pproxi ma tion to th e densit y
fun ctional th eor y [4, .5] a nd th e muffin-tin a pp roximat ion for t he crystal potential ; thu s th e
results of th eir a nalysis hold with in t he sa me a pproximations. Below we sha ll summa rize a nd
comment th e conclusions obtained in Refs. [2, 3] th at a re relevant for our present concerns:

i) For a given alloy conjigumtion, t he site cha rges qi and th e Madelung potent ials V;
obtained from LSMS calculations for binar y alloys lie on two stmight lines of eq ua tio ns:

a iqi + Vi = k, (1)

where t he qu antities a i a nd k i take th e values a .4 a nd k A if th e i-t h si te is occupi ed by an A
atom a nd aH a nd s» if it is occ upied by B. T he size of the devi ati ons from linea rity a ppea rs
comparable wit h th e numerical accu racy of LSMS calculations.

T he Made lung po tentials V; ente ring in Eq. (1) ar e determined by th e charges at all th e
crystal sites through th e relationsh ip :

(2)

(3)

where th e factor 2 comes from using atomic units . T he Ma delung matrix element.s, lHi j , a re
defined [6] as

1
.'Vli j = L ----

11 Ir i j + RI
in term s of th e translation vectors from t he i-t h to th e j-th site, i'ij , and t he supercell la t t ice

vectors R.
ii) For different alloy configurat ions corresponding to the same mola r [ractions, t he four

consta nts a A , kA, aH and k H in Eq. (1) take different. values. Thi s notwit hs tanding, th e
variat ions of the same consta nts when conside ring differ ent sam ples at th e same concent ra tion
a ppea r much smaller th an t.heir va riation wit h the concent ration.

iii) Th e sit.e cha rge excess corresponding to eac h chemical species in a random alloy co n
figur ation take any possible value in some inte rval qmin :; qi :; qmax '

Fa ulkner, Wan g a nd Stocks [2, 3] have st ressed th at. t he existe nce of a linear relation is
not a trivial conseq uence of classical elect rostat.ics. In fact , Eq , (1) is not verified at a generic
Kohn -Sharn iteration for the cha rge density in LSMS calcul ations , while it is found to hold
only when converge nce is achieved . Thus th e linea rity of th e qV laws should be int.erpr et.ed
as a consequence of th e sc reening phenomena th at occur in meta ls. As shown by Pin ski [7],
linear qV laws ca n be obtained also by T homas-Ferm i den sit y functional calc ulations. Th is
circumstance st rongly suggests that t he linearity of th e qV relations has little to do wit h
th e specific form of t he densit y functional used in t he calculati on. Th e conclusions dr awn in
Refs . [2, 3] and sum ma rized a bove are indirect ly supported by photoemission experiments [8,
9]. Mor eove r, elect ronic struct ure calcul ations based on th e Locally Self-consistent Gr een 's
Fun ct ion method (LSGF ) and t he a tomic sphere a pproximation for t.he crystal potenti al have
also confirmed t he linea rity of th e qV relations [10, 11, 12].

It sho uld be clear th at th e definition of cha rge excess is based on th e quite a rt ificial
partition of th e crystal volume into "atomic" sites. Thi s part it ion is accom plished using t.he
muffin-tin a pproxima t ion in Refs . [2, 3] or t.he atomic sphere a pproxima t ion in Refs . [10,
11, 12]. Of course other procedures a re possible, but. even in th e case in which no spherica l
approximation is made , as it co uld be for full pot enti al calculations (th at unfo rtunately a re
not yet available), th e way in which th e " atomic cells" a re chosen would remai n a rbit ra ry.
However , different partitions of th e crys t al volum e always lead to linear laws . Thi s has been
shown, e.g., in Ref. [11] by cha nging t he ratio r between t.he atomi c radii associated wit h each
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Figu re 1. Schematic illustration of th e CPA theory. Dark sites a re occupied by the C PA coherent sca t
terer described by the single site scatteri ng matrix t e . Th e central impurity sites. labelled by A and TIl arc
characterised by the single site mat rices t A and t B .

chemical species [13]. To s umma rize: at least. when a sphe rical a pproximat ion is used , th e
functional form of Eq . (1) is maintained while , of course, the ac t ua l values of the coefficients
depend on th e particular partition used .

As it is evident., the presenc e of t he cha rge transfers lead s to energy correct ions that
can be important. in the physics of met allic alloys . The simple funct iona l form in Eq , (1)
allows an easy route for including such corrections [14]. An alterna t ive way for accounting
th e elect rost a tic energy co nt ribution du e to cha rge t.ransfers has been proposed by Gonis et.
al [13, 15]. It consists in choosing t.he dim ensions of th e atomic s pheres for each alloying
species in such a way t.o hav e zero charge transfers and, hence , ze ro cont ribut.ion to t.he total
energy. Of course , such a proc edure could cau se large over lap volumes (for simple lat t ices th e
overlap volume is minimum when equ al at omic s pheres a re used ) a nd , hen ce, lar ge errors in
density functional t.heory calc ulatio ns,

Although, in prin ciple, th e qu an titi es a i, ki in Eq . (1) ca n be influenced by t he local
environment.s, it. is clear that the consideratum of the si te chem ical occupation only is suffi cie nt
to det ermin e the sam e quantities within an acc uracy comparable wit h th e num erical er ro rs
in LSMS calculations . This circumstance , as a matter of fact , suggests th at. a single site
th eory [16] as th e CPA could be sufficient t.o det ermi ne the above a i , k i. In section 3 thi s
sug gestion shall be a nalysed .

2.2. Charge t ransfers in the CPA theory.

For many yea rs the CPA th eor y [17J has been used for calc ulat ing th e elect ro nic properties of
random metallic alloys . In fact , the CPA has allowed for very car eful st.udies of spect ral prop
erties [10], Ferm i s urfaces [18], phase equilibria [19] and magn etic phenomena [20] in metallic
alloys . Moreover , in spite of it s simplicity, th e th eory has achi eved rem arkable successes in
th e ca lculat ion of properties related with Fermi liquid effects, such as spin [21] and conce n
tration waves [22]. However , for th e purpose of th e pre sent work two as pects of t he t.heory a re
particularly relevant: its elega nt. formulation in terms of multiple scattering th eory [2:3, 24]
a nd th e fact t hat it constitutes the natural first. st ep for perturbat.ive st udies.

As it is well known [25], t he CPA do es not include the energeti c cont.ribut. ions t.hat. derive
from cha rge transfers in metallic alloys . In spite of t his, th e CPA is useful for underst anding
so me physical properties related with th ese charge transfers. We will t.ry to ex plain below th e
reason s for thi s a ppa rent par adox .

The CPA t.heory (we sha ll use t.he multiple scat te ring th eory formalism [23, 26] for a
random bin ary alloy Ae A BeB ) consists of solving for tc t.he so called CPA equation ,

(4)

The three Green 's function s in Eq . (4) , GA(tA,te ), GR(tR ,te ) and Gc(te ), refer to th e
three different problems sketc hed in Fig. 1. In fact , Gc(te) is the Green 's funct ion for a n
infinit e crystal whose sit.es a re all occupied by effect ive scat tc rcrs characterised by th e single
sit.e sca t t.ering matrix tc . On th e other hand , GA(R)(tA(R), tel is t.he Gr een 's funct ion for a
single impurit y 'a tom' descr ibed by th e single-site scat te ring matrix tA(B) and embedded in
an infinite cryst al wit h all th e ot her sites characterised by th e single-site scat te ring matri x
tc .
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Wh ile t he homogeneous effective crystal , t he 'coherent ' mediu m of th e CPA t heory , let us
ca ll it C, is elect roneutral, th e two impurity G reen's functions lead to net charge excesses , q~

a nd q'k , in th e sites occ upied by th e A and fl impu rities . On behalf of Eq. (4), th ese char ge
excesses sa tis fy th e condi tion,

cAq~ +CB'l'k = ° (5)

In C t here is no charge transfers fro m one site to th e oth ers a nd , thu s, Eq .(5) ca nnot be
inte rpreted as a n ordi na ry elect roneutrality condi t ion. However q~(B) ca n be considered as
th e cha rge th at th e im purity A(B) att racts from th e mean medium C, in t he sense th at th ere
is a n indirect cha rge transfe r fro m A to B, through t he mea n medium C. T he last ca n be
reint erpret ed as a reference syste m a nd plays a role similar to th at of th e Hydrogen atom for
molecules , in th e form ulation of th e electronegativity t heory by Paulin g [27].

In sum mary: we co uld say t ha t t he CPA 'cha rge transfers ' q~( H) reflect t he difference of
elect ronega t ivity bet ween A a nd fl . Of course th e CPA th eor y, being a single site a nd a mean
field th eor y, ca nnot account for th e complex cha rge relaxation phenomen a t ha t a re ex pecte d
to make non equi valent sites occup ied by sa me species a nd surrounded by different local
chemica l environments . In ord er to have a picture in which sit es occupied by t he atoms of
t he sa me kind ar e no longer eq uivalent , it is necessary to renounce to a single-site picture.
Non single-site formulations of t he CPA t heory have been proposed seve ra l t imes in th e
literature . Here we menti on t he charge-corre lated CPA by Johnson a nd Pin ski [28] a nd t he
Polymorphous Cohere nt Potential Approximation (P CPA) by Ujfalussy et al [29]. In thi s
pap er , we shall develop a differen t a pproac h by introducing a n external loca l field in a single
site CPA pict ure; th is will allow to mainta in all th e mathemati cal simplicity of a single-site
th eory, never thel ess th e presence of ext ern al fields will be su fficient to lead to polymorphous
site potenti als.

3. RESPONSE TO LOCAL FIELDS OF THE 'C P A ALLOY ' .

3.1. The local field CPA (CPA+LF) model

In t his sec t ion, we develop a new version of CPA t heory by introducing a n exte rnal local
field <1>. It will formally enter in the th eory as a par am eter th at ca n be varied at will. We
sha ll focus on th e response of th e system due to t he resulti ng rearrangement of th e charge
dist ribution .

We imagi ne an A impurity ato m in a ot herwise homogeneou s crys ta l wit h all t he ot her
sites occupi ed by C scatterers. We s uppose t ha t th e single site sca t te ring matrix of th e CPA
medium , tc , and its Fermi energy, E"" have bee n de termined by t he C PA th eory for th e
binar y alloy ACA BcB' T he local exte rnal field, <1> , takes a constant value wit hin th e impuri ty
site volume a nd is zero elsewhere [30]. Thi s sit ua tion is picto rially rep resented in Fig . 2. To
simplify our discussion we shall solve th e problem using t he Atomic Sphere Approximation
(ASA). However , t he following conside rations hold for any cellular meth od , a nd, wit h mino r
mod ifications, also for th e muffin-ti n a pproximation.

We shall refer to t he impu rity A in th e presence of t he exte rna l field <1> as to (A, <p). Wh en
<P = 0, t he site G reen's function associated wit h it , G~ (t~ , te), redu ces to th e usual CPA
Gr een 's funct ion, GA(tA, tc ). Wh en <P ef 0, G~ (t~ , tc ) ca n be read ily obtained using th e
mult iple sca t te ring th eor y impur ity formula [26]:

where

L[Zl(E, f) T 1 ,LU Zl ,(E,F') - Zl(EJvl ,(E,F')ow]
lJ,I/

(6)

T1 = D~Te = [1+ rc ( (t~ ) -l - tc")r rc (7)

In Eqs . (6) a nd (7) , E is th e energy, tc a nd rc a re th e CPA single site scattering matrix
a nd sca t te ring-pat h o pera tor, as determ ined by a standard CPA calculat ion, i.e. <P = 0, for
t he a lloy at hand . Th e single site scatter ing matrix corres ponding to (A, <p), t~ , is to be
determined from t he site pot enti al VJ (i,) + <P , D~ is th e CPA proj ect or relative to the
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••
••Figure 2. Schematic illustration of t he C PA+LF method . As in Fig. 1, dark sites arc occupied by th e C PA

coherent sca t t er er described by t c . In the central site , occupied by A, act s also a const ant field 4-.

same sit.e pot.enti al , zt(E, r) a nd .It (E, r) are two ort hogo nal solut ions of t.he Schroed inger
eq uat ion for t he sa me potent ial , t he first of which is regular at r = O. In our not ation
L = (I, m.) labels th e angular momentum qu antu m numbers and, for sake of simplicity, we
omit th e energy dependence of all t.he scattering matri ces. A com plet.e account of the notati on
ca n be found in Ref. [26].

T he cha rge density correspondi ng to (A , <1» is obt.ained integrati ng Eq . (6) over the energy
up to t he Ferm i level,

1 {f E" }p~ ( r) = - - Tm dE G~ ( E,r,r' = i'j
1r -00

(8)

T he corresponding site pot ent ial , VJ(i") , ca n be reconstructed by solving the appropriate
Poisson eq uat ion and add ing the excha nge-cor relat ion contribution [31, 32]. Unless <I> = 0,
it will be different from th e site potential obta ined from t he zero field C PA t heo ry, VA(r) =
VJ=O (i') , d ue to t he cha rge relaxat ions expected to screen in part. t he external field . In a
numerical implementat ion of the theory, Eqs, (6-8) and t he pot enti al reconstruction need to
be ite ra ted sta rt ing from a convenient initial guess, unt il convergence is achieved for ' Il (i')
or , eq uivalently, for p~ ( i') . Hereafter we shall refer to t he a bove model as to th e Local Field
CPA (CPA+LF).

Once convergence is obtained for t he cha rge density, th e net cha rge on the sit e A ca n be
obtained by integ rating over t he a to mic sphere volume a nd subt racti ng th e nuclear cha rge,
ZA,

(9)

It is important to realise th at , while t he above self-consistent det ermin ation of V,f(i') or
p~ (i') a llows for full charge rela xat.ion at. t.he imp urity sit.e, th e CPA+ LF does not modify
t.he prop ert.ies of t he CPA medi um C: t.hese remain specified by t.he qua nt it ies to and Ep
det.ermined a t zero external field. T he resul t.ing lack of self-consistency in t.he CPA+LF is not
a se rious dr awback if one is int.erested , as in th e present. case, to th e investi gation of t rends
and general as pects of t.he screening phenomena .

3.2. GPA + LF results for GuZn and GuP d alloys: the site charges

We have imp lement ed the CPA+ LF t heory wit hin our well test.ed KKR-C PA code [33]. If tc
and TC from a previous sta nda rd KKR-CPA calcula tion a re stored on a convenient energy
mesh, the ext ra computational efforts required by th e CPA +LF ca lculation a re negligib le.

In t.his pap er we discuss results for fcc CuPd a nd for bee and fcc CuZn random alloys at
several concent rat ions. In all th e cases we have used t he Local Density a pproxima tion (LDA)
for the exchange-correlation pot enti a l [4], th e ASA a pproximat ion for the site pot ent ials
and the angular momentum expa nsions have been truncated a t 1.\I AX = 3. \Ve use a fully
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Figure 3. Site cha rge excesses qa (a = Cu.Zn) vs. th e exte rn al field , <P, from CPA+LF calcu lations for
Cuo.50Zno .50 bee ran dom alloys. Circles an d diamonds , res pectively, indicate e n and Zn impurities .

relativistic t rea tment for core elect rons a nd a sca la r relativisti c a pproximatio n for valence
elect rons. For all th e alloy syste ms considere d in thi s paper, t he latt ice par am et ers have been
kept fixed on var ying t he concent ration. In particular , we set a = 5.5 a .u. a nd a = 6.9 a. u.
for bcc a nd fcc C uZn, and a = 7.1 a .u. for fcc C uPd . With thi s choice , th e ato mic volumes
in fcc and bcc C uZn alloys differ only about 1.3 per cent.

As we sha ll discuss in th e next subsection, the charge relaxat ion occu rring a t t he impu rity
site in presence of th e external field phenomena are quite complex. Nevertheless, th e CPA+ LF
mod el gives a simple linear relation bet ween th e pot ent ial <I> a nd t he corres pondi ng site
charges. In Fig . 3 we report q", (n =Cu, Zn) vs. <I> for a CUO.50ZnO.50 bcc rand om alloy. As it
is evident , th e data ca n be fitted very well by two st raig ht lines, o ne for each atomic species (
with correlations th at differ from one by less th an one part over a million) . Int erestingly, t he
slopes of th e two lines are different by a relatively small but st at ist ically relevant a mount,
slight ly less th an 2 per cent..

We notice th at in F ig. :~ we have conside red also <I> values conside ra bly la rger that th ose
observed in LSMS calculat ion or likely to occur in real sys te ms; so accor di ng to o ur data
th e linea r relatio ns seem to be valid in a quite broad field ran ge. We have fitt ed t he q", vs.
<I> curves at each mola r fract ion for fcc CucPd 1- c , fcc C UcZnl_c and bee C uPd u. , ra ndom
alloys, at a number of alloy concent ratio ns, using th e linea r relationships

(10)

However , at <I> = 0, our CPA+LF model sa t isfies th e CPA 'electronegativity ' condition,
Eq . (5), a nd we have:

cA q~ +CM~ = 0 (11)

Henceforth , q~ a nd q~ a re not independ ent qu an t ities a nd we have chosen as th e par am et ers
of our fit only th e three quan tit ies RA, RB a nd

(12)

T he results of t hese fit s a re reported in Ta ble 1. Th e trends found for t he fitt ing par ameters
vs. th e alloy molar fracti ons a re show n in Fig . 4. T he de pendence on th e concentration is
a pprecia ble for all th e fitt ing par ameters, as ex pected on th e basis of th e a rguments in sect ion
2. Remarka bly, t he dependences on th e alloy system a nd on th e concent ra t ion a ppear at least
as much importan t as t ha t on t he atomic species . T hus, for instance, for a given alloy syste m
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TARL E I. F it paramet ers for t he q vs. <1> relationsh ips fro m CPA+LF calcul at ions in fcc
Cu cPd l_c, bcc CUchnl - c and fcc CUcZnl _" random alloys [34] . The 'electronegativity dif-
ference' , 6., a nd the respon se coefficients , R", ar e defined in Eqs, (10) and (12), RMS is th e
root mean squ ar e deviation . The 'reno rmalized ' response coefficients, it " a re defined in Eq. ( 14).
On the right we report 6. a nd R", from th e LSlvlS calc ulat ions of Refs . [2, 3].

Alloys Ll. n- , R Pd( Z n ) RMS x lO' Re tt Rpd( z n ) I Ll. Rcu R Pd ( Zn)

fcc CucPd 1_ <: 0 .10 0.183 1.093 1.156 1.8 0.762 0 .792 0 .238 0.833 0.8 43

0. 25 0.175 1.124 1.187 2.1 0.776 0 .806 0 .229 0.838 0 .851

0.50 0.160 1.18 4 1.244 1.9 0.805 0 .832 0 .219 0.843 0.8S 1

0 .7:5 0 .I S0 1.243 1.288 2.4 0 .831 0 .851 0 .212 0 .838 0.8S3

0 .90 0 .148 1.267 1.30 7 4.4 0.842 0 .860 0 .21 1 0 .836 0.8S3

b ee CucZnl _ c, 0 .10 0 .109 1.206 1.232 10 0 .800 0 .812 0 . ]'5S 0 .S36 0.S81

0 .25 0. 114 1.237 1.25S 10 0.814 0 .822 0 .159 0 .526 0.SS4

O.SO 0.116 1.237 1.2S 1 6 .9 0 .8 14 0.820 0 .156 0 .S4S O.S']9

0 .75 0 .116 1.247 1.2S5 S.O 0.819 0 .822 O.I SS 0.S67 0.S64

0 .90 0 .116 1.248 1.2S4 3.2 0.819 0 .822 0 .IS8 0.S82 0. S77

fcc CucZnl_c 0 .10 0 .106 1.202 1.223 8 .2 0 .80S 0 .81 S 0 .14S 0 .S7S 0.628

0 .2S 0 .111 1.220 1.237 8. 1 0 .813 0 .821 0 .I S0 0 .580 0.618

O.SO 0116 1.222 1.241 5.5 0.8 14 0 .822 0 .151 0 .600 0.622

0 .75 0 .117 1.247 1.2S6 S.2 0.8 2S 0 .829 0 .150 0 .61 5 0.632

0 .90 0. 118 1.249 1.256 3.3 0 .826 0 .829 0 .152 0.616 0.630

and concent rat ion, th ere ar e relati vely small differences between th e values of R corresponding
to sit es occupi ed by different a toms. On the ot her hand , we find much larger var iations for
RCti through out th e alloy sys te ms co nsidere d . It is interest ing to observe th at t he trend s for
the slopes, RCti a nd Rz«, and for 6. ar e very simila r in both fcc a nd bee Cu Zn alloys . We
not ice also th at 6. , a measure of th e electronegativity difference between the alloying species,
exhib its , at least for CuPd alloys, non negligible vari ations vs. th e concentration . In the model
of Ref. [25], th e sa me quant ity is assum ed independ ent on th e concent ra t ion. As we see from
Tabl e 1, th e values for 6. from our t heo ry a re systematically smaller th a n th ose from LSMS.
Thi s fact has not to do with t he presence of exte rna l fields and it is a feature of the standard
CPA t heory alrea dy discussed in th e literature [35]. Thi s notwith standing, th e CPA is able
to ca tch th e qualitative trends of 6. vs. t he concent ra t ion for all the syste ms consider ed .
Alt hough the CPA+LF mode l gives for q vs. <1> th e same linear fu nctional form as th at
obtained for q vs. V from LSMS calculat ions, the differences between th e two different sets
of calc ulations forbid , at this st age, a dir ect compari son of th e fit coefficients . In fact , as we
have alread y st ressed , our CPA +LF mod el does not acco unt for char ge relaxations outside
th e impurity site volum e. By its construction , the CPA medium C is ab le to screen th e
impurity charge at <1> = 0, i.e. q~ . We ca n think that thi s amount of cha rge is sc reened by
the infinit.e volume of C. Th e introduction of t he local field at th e impu rity sit e causes a
local excess of cha rge, q",(<1» - q~ , wit h resp ect to th e st a ndard CPA. In order to have globa l
elect roneut raJity in th e CPA+ LF th eory, it is necessa ry to int roduce , somewhere outside t.he
impurity site , a n opposi te amount of cha rge, q~ - q,,(<1». Here it will be accomplished using
th e ar guments of th e scree ned impurity model (SIM-C PA) mod el by Abr ikosov et al. [36].
We suppose th at th e excess (with respect to th e st anda rd CPA) char ge at th e impurity site ,
q",(<1» - q::, is completely screened at some dist an ce, p, of the order th e near est neighbours
dist anc e, r l . Accordingly, in th e mean , eac h of th e n nearest neighbours of th e impurity
cell has a net charg e excess (q~ - q",(<1» )/n . Thi s , in turn , ind uces an ext ra field <1> 1 =
n(2 / p)(q~ - q" (<1» )/n = 2(q~ - q",(<1» )/ P on th e impurity site, Th e total field at t.he impurit.y
site is th en the sum of th e exte rnal field <1> a nd of th e above extra term , in formu lae ,

(13)
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Figure 4. Fit coefficients of t he linear law q vs. <!> from CPA+LF calcu lat ions for fcc CuPd and fcc an d
bee CuZn alloys plot ted vs. t he Cu concent . Upper frame : respo nse coefficients R.« , (Q refers to t he alloying
species); lower fra me: 'elect ronega rivity differ ence ' , .6.. T he various alloy systems are indicated by labe ls.

T hen, by solving for 4> t he las t equa t ion a nd subst it ut ing in Eq. (10), we find

R" 0 -
q,,(4)) = q~ - 1 +2R,,1p 17" = q" - R"17"

The coefficients H" can be compared d irect ly wit h t he slo pes of t he q17 relat ions from LSMS
calc ulations. However , t he comparison , report ed in Table 1, requi res a cavea t : we have as
sumed p = r" i.e. a complete screening at th e distan ce of t he near est neigh bours .

Actually, t he screening length s in met als a re of t he order of th is dist ance [37], bu t ou r
est ima te is too crude to expect for a very good q uantita t ive ag reement wit h LSMS calculations
in which th e cha rge relaxat ion is allowed at all t.he lengt h scales . However, t.he agreement.
found is quite satisfactory, wit hin 10 per cent, for CuPd alloys, while larger discrepancies are
fou nd for CuZn. Again , t he t rends for H" vs . th e concent ra t ion ar e qualit atively reprodu ced .

3. 3. C P A + L F results for C u Zn a n d Cu P d a lloys : the char ge r el axation

We have already said , in spite of t he qV linea r laws, t he relaxa tion phenom ena occurring in
presence of an exte rna l field are complicated . T he CPA+ LF model allows for t he dete rmina
t ion of th e resp onse t.o a n external pot ent ial field by the electrons inside t.he at.omic sphere
A.

374



More specifically, t he difference

(15)

can be interpret ed as th e sum of the external field, <I> and th e inte rna l scree ning field inside
th e atomic sp here . Some typical trend s for th is qua ntity are shown in Fig. 5. T here we report
~V:(i') , (0 = C u,Zn) , for a n bee CUO.5UZnU.50 random alloy, th at we have selected as a
typical case . At th e Wigner-Seit z radius, rws ~ 2.71 a .u ., th e internal field is a ble to screen
about one half of th e externa l field, both for Cu a nd Zn im purities , while the screening is
almost complete for a bout r < 1 a .u.. Appa rent ly, th e effect of th e screening is far from being
just a const ant shift of th e local chemical potential : if th at was th e case, in F ig . 5 we would
have just equally spaced hori zont al lines . What we observe is much more compli cated . For
inst anc e we observ e th at th e screenin g for small r is grea te r in Cu th an in Zn. Th e complex
nature of t he sc reening phenom ena is further confirmed by a look at th e electronic densit ies.
In F ig. 6 we plot the excess cha rge density ind uced by th e external field

(16)

both for Cu and Zn sites , aga in for rand om bee CUO.50ZnO.50.

r (a.u . )

Figu re 6. Calc ulated excess charge densit y,
41l"r2 L1p:(r) (a = Cu , Zn) (see Eq. 16) in Cuo.50ZnO.50
bee ra ndom alloys. The lab els indicate the values of
the externa l field, 4>.
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r = O.
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Th e largest effects come from the large r region , where th e elect ron density decreases on in
creas ing <I> (everywh ere in thi s pap er the expressions "e lect ronic densit y" or "c ha rge density"
are used indifferently wit h the meaning of " elect ron numb er density" , i.e. th e cha rge factor,
- c, is not included ). In th e innermost part of th e atomic spheres , t he vari ations of th e char ge
density some times may have opposite sign wit h respect to t hat observed close to the cell
boundary. We have consid ered also th e qu antity,

(17)

th at , in th e limit <I> --+ 0 redu ces to t he logarithmic deri vat ive of p~(r ) a nd that , on th e basis
of a formal scatterin g th eor y analysis [3il] is expected to have a weak dependence on <1> . As
we ca n see from Fig. 7, where we plot b~(r) for a bcc CUO.50ZnO.50 random alloy th e resid ual
de pendence on <I> is a bout a few per cent in a relatively small r interval not far from rws
and less th en 1 per cent in most of the atomic sphere. Moreover th is feat ure appears to be
more or less pronounced depending on th e sys te m considered, for this reason we plot in Fig. 8
b~(r) for a fcc CUo.50Pdo.5o random alloy. Alt hough the informa t ion contained in Figs . 7 and
Fig . 8 can be valuable for the purpose of improving th e initial guesses for th e cha rge densiti es ,
however the depend ence of b~(7' ) on r a ppea rs st ill quite complicated.
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Figure 7. Th e 'logarithmi c derivative' with resp ect
to th e exte rnal field {Eq . 17) , b~ (r ) [o e Cu .Zn] in
CUo..5 0Zno.50 bee random alloys . The cont inuous and
the dotted lines refer, respectively, to ~ = - 0.25 and
1> = - 0.25 , the lowest and the highest 1> values con
sidered.
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Figure 8. Th e 'logarith mic derivative ' with resp ect
to the extern al field [Eq, 17) , b~ (r) (o=Cu,Pd) in
C UO .50 Pdo .so fcc random alloys. Th e continuous and
the dotte d lines refer, respectively, to ep = - 0.25 and
1> = 0.25.



4. CONCLUSIONS

Th e most important result of thi s work is th e reproduction of th e linear laws between local
char ge excesses and local electrost ati c fields , in good quantit ative agreement wit h ord er N
electronic struct ure calculations [2,3]. Thi s is very remark abl e if one considers the single si te
nature of our CPA+LF model, th at, hence, requires really modest computation al efforts. Th e
only non first -principles input of our theory has been the inclusion of a screening length th at
we have fixed t o th e nearest neighbours distance. Work is in progr ess to build a new, com
plet ely ab initio, version. Th e simple mathematical st ruct ure of our model has allowed the
investigation of a ran ge of fields much broader th an that access ible by ord er N calcul ations .
On thi s basis, we ca n conclude th at. t.he above linear relations have little to do with t.he size
of th e external field . On the other hand , our st udy shows th at , in th e sa me rang e of fields,
non linear trends a re clearl y obser vable for other site prop erties , includ ing th e charge density
p(r ) (see, e.g. Figs . 6, 7, 8) .
As we have already noti ced, th e CPA+LF t.heory fixes the reference medium, the CPA alloy,
or, in a more mathematical langu age, th e sys te m Gr een 's function th at dep ends only on th e
mean molar fractions . Thu s , for a given concentration, any site physical observable depends
only on the CPA projectors and th e site wavefunctions (see Eqs, (6) and (7)), which , in turn ,
ar e completely determined by th e nuclear charge on the impurity site a nd the coupling poten
tial entering in th e correspond ing Sch roedinger-Kohn-Sharn eq uat ion. Thus, in th e CPA +LF
th eory , any site property is a unique function of th e chemica l species a nd of cI>. A question
aris es: co uld th is uniqu eness be maintained in the more realisti c multipl e sca ttering theory
tr eatment? We arg ue that , also in th is case, th ere is a well defined syste m Gr een 's function
a nd , in principle 'site proj ectors ' D i , could be defined relating th e sit.e diagonal part at. the
site i to th e sys tem Gr een 's function . The excellent. performance of th e CPA th eory about
th e spect ral prop erties of man y alloy sys tems [10], th e present results and those of Ref. [29]
suggest th at th ese generalized projectors should be very close to their CPA counterparts,
Dc" but, in prin ciple, t hey should also be affect ed by the chemical environment of t he first
few neighbours shells of i-th site. Th ese effect s , if t hey ar e impor t a nt , could be st udied , for
instanc e by including local fields in th e cha rge-correlated CPA schem e by Johnson a nd Pin 
ski [28]. Of course, all the abov e doe s not solve the probl em of a formal derivation of the qV
laws wit hin th e dens ity function al scheme, it simply offers a not too difficul t mathematical
ground in which , we hope, such a derivation could be obtained .
A further ad vantage of the CPA +LF model is th at , in conj unct ion with th e Ch ar ge Excess
Function al theory [14], it is a ble to give a good description of th e cha rge distribution in ex
cellent agreement with ord er N calculat ions. Thi s, and the flexibilit y of th e scheme, that does
not require th e use of specific supercells a nd is th en a ble to deal on the sa me foot.ing with
ord ered or disord ered configurations , suggest th at it constitutes a first st ep to ward s an ab
init io non perturbative theory of ord erin g phenomena in metallic alloys .
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ON THE DEVELOPMENT OF ALLOY THEORY

A. Conis and P. E. A. Turchi
Lawrence Livermore Nati onal Laboratory

P. O. Box 808, L-371
Chemis try and Materials Science

Liv erm ore, CA 94551

A numb er of conditions are present ed for assessing th e integrity and viability
of a th eoreti cal const ruct in th e physical science in genera l, and in th e realm of alloy
physics in particular. T hese conditions are obtained from mathematical , logical, and
experimental requirement s, and are discussed in connection with a number of form al
schemes currentl y in use for underst and ing and interpreting alloy phenom ena. Both
older methodologies and mor e recent at tempts at t he constru ction of a satisfactory
theory of alloys are considered .

INT RODUCTI ON

Alloy th eory is aimed at unde rst anding the physical, chemical, and mechanic al prop erties
of alloys, that is to say materials that conta in a toms of more th an one species. The most
common und erst anding of th e term mate rials in th e present cont ext confines it to solids,
although liquid alloys must also be included in general (and oft en are .) T he part of the
th eory that is based on th e electronic st ructure of an alloy is concerned with identify ing
the elect ronic origins of th ese prop er ties. T he mod ern version of thi s th eory can be traced
at least to the early 1930's, in th e book by Mott and Jon es [IJ. Based on the formal
methodology of th e at th e tim e still newly discovered quantum mechani cs, th e book made
a serious att em pt at understanding th e properties of alloys through the introduction of
insightful , and init ially seemingly successful, models describin g some fund am ental alloy
properties at th e electronic level. One of these models is worth recalling.
In the so-called rigid-band model (R BM), it is assumed that the elect ronic spect rum, de
scribing the dist ribution of elect ronic state s in energy of th e alloy is the concentration
weight ed average of the spect ra of the pur e constituents form ed separate ly by th e species
pre sent in th e alloy. The mod el involves a not too unreasonab le supposition , one th at
seemed to be consiste nt with experimental data, at least in it s initi al applications . How
ever , it s downfall cam e when it was shown experim entally th at real syste ms in general do
not subscribe to this mod el, except possibly in some limit ing cases , We will mak e more
references to the RBM mostly for th e purposes of illustrating variou s concepts as th ey ari se
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in th e discussion . It will emer ge from that discussion that th e RB M lacked many of th e
requir ement s of a sat isfactory th eory bu t thi s should not be taken as appro bation for th e
concept ual effort th at led to its introduction . Faced with puzzling phenomena in th e physics
of alloys, one is compelled to begin by testin g ou t any conjecture th at may seem reason
able. And the RBM is eminently reasonable (if ultimately not correc t) . However, we are
no longer in th e 1930's and the nature of th eory in natural philosoph y has been clari fied
subst an tially since th at time. So, we will attempt to illustrat e th e features of such a theory,
as pertaining to alloys, an d will use the RBM or other, mor e recently developed concept s,
to carry through this illustration .
Oth er models were subsequent ly introduced, each ultimat ely judged against exper iment al
result s. Most were discarded when th ey too led to predictions inconsiste nt with data ,
or math ematical requir ement s. As th eory becam e mor e and mor e sophist ica ted, fairly
rigorou s form alisms were developed for st udying the elect ronic origins of alloy behavior. It
is somewhat disconcerting tha t afte r all thi s grea t effort th ere exists today no single fully
sat isfacto ry alloy t heory , at least in the sense of th e term to be explained in th e following
pa rag raphs. But th e effor t has not been in vain . At least it has led to the development of a
set of criteria that a satisfactory alloy th eory should satisfy. Some of th ese are of a gener al
sort, generic to the nature of theorie s in mod ern science [2], while others are mor e specific
pertaining more closely to alloys and their prop ert ies [3]. Our purpose here is to list t hese
criteria and make some comme nts abo ut how well th ey are satisfied by some of the better
known approaches to alloy th eory, including both meth odologies of long standing as well as
more recent ones.
T he physics of alloys is a vast field whose various aspects are far too nume rous for anything
like a comple te considerat ion to be attempte d here. A proper alloy theory must lend it self
read ily to the study of a num ber of general areas of alloy physics, such as the ener geti cs of
alloy formation, th e spect ra of alloys , t he effects of short -ra nge ord er on alloy properti es,
transport , both elect ronic and mass, magnetism , and many ot hers. It must yield results that
are easily and accurately int erpr etable in terms of experimental information thus allowing
the possibilit y of a deep underst anding of alloy phenom ena. It must also be easily coupled
and work in unison wit h oth er well developed concept ual fram eworks relevant to the st udy
of alloys, such as th erm odynamics an d statisti cal mecha nics. A th eory that is founded
on experimental observation and th e analysis of da t a , that possesses th ese features, and
also satisfies th e necessary mathematical conditions discussed below has a good cha nce of
providing a reliable understanding of alloy physics.

' CRIT ERIA FOR A SATISFACTORY ALLOY THEORY

In thi s section , we list a numb er of condit ions to be met by a fully satisfactory scienti fic
th eory. Th e first five of these , stated expli citly, are of quite a genera l kind pert aining to
physical theory in any dom ain . Other conditions, subsidiary to the main ones and pert aining
to alloy th eory in particular are also mentioned but quit e ofte n th ey are the bypr oduct of
th e general ones. In the sections that follow, we will use these condit ions as crite ria against
which to judge th e viability and integrity of some commonl y used metho dologies to study
alloy phenom ena.
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A. General Cond it ions

General Condition 1
The first condition is related to the mathematical character of modern phys ics. Thi s term
implies th e usage of mathemati cs as a way of offering convincing arguments abou t the
relevan t aspects of the physica l world th at are of concern to the theory. T he th eory does not
require an epistemological identification of each of it s elements with a par t of nature. But it
does require that mathem ati cal formalism be employed in ju st ifying a priori methodologies
an d pro cedures and th eir predict ions about alloy phenom ena. In thi s regard , (and only as
an illustration ), one does not have any mathematical basis for propo sing the RBM. And
had the model been found to be a sound representation of alloy physics, a mathematical
justificat ion a priori would have been in orde r. It follows tha t even a model foun d to be
successful by mea ns of it s applicat ion must ulti mately be given a solid mathematical basis
in order to be convincing .
T he ability to t race a theory to its mathematical found a tions can be used to dist inguish
an ab ini tio or first -principles theory from other ty pes . In the context of alloy theory,
for example, a th eory remains first- pr inciples as long as any approximations made as one
proceeds from a formally exact expression of the Schrodinger equation are well understood
in mat hemati cal t erm s. Alt ern atively, the introduct ion of param et ers (obtained t hro ugh fit s
to experimental data or the considera tion of cer tain limi ts in the math emat ical express ions
of the theory) in designing a model system break th e smooth running of the mathematics.
T heories so const ructed may indeed provide a viable phenomenological descript ion of natural
pheno mena but they cannot claim a priori ju stificat ion of t heir conte nt.
G eneral Condition 2
In additio n to the mathematical requirement just ment ioned, a theory must satisfy the
princip le of consistency. T his exceeds th e mathematical requirements above and implies the
logical consistency of the argu ment s based on the theory and leading to th e inte rp retation
of the result s obtained in it. T he emphasis here is on the word logical. Logic must be
not too much below the surface when one make s an argument about differen t sets of da ta
corr espon ding to different prop erties of the sa me physical system . Logical inference must
be at th e forefront when invokin g a given set of mechanisms to explain an ever-widening
set of phenomena . T his requirement demands that an alloy theory must be of sufficient
generality to be brought to bear on a set (actually an exhaustive set as sta ted below) of
physical pro perties.
One of th e requirements placed on a theory is that it satisfies the cond ition that logician s
and mathematicians call modus ponens. Somewhat crudely, th is mea ns that one should be
able to trace the discussion back to its original and scient ifically justified ass umpt ions from
any point in the discussion . T his conditio n is designed to eliminat e the use of arbit ra ry
assumptions in setting up the "first -principles" or starting base of the theory. T he need
for a starting point that is it self logically justifiable is something th at is possibly easier
seen by counte rexamples. T he first involves the beleaguered RBM. T he point is that there
is no justification in the assumption th at t he alloy spect ra are the concentration-weighte d
average of the mat erials const itu t ing the alloy. And it can get much worse.
In certain more recent ap proaches [15J to alloy theory, one st udies struct ures tha t are so
const ructe d as to reproduce the first few moments of the spa tial corre lat ion funct ions of the
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real system. T here is no logical j ust ification, however , that such st ructures reflect any of
th e physical properties of th e real mat erial , in par t icular the nature of th e electronic states .
Further discus sion on this poin t is given in a subsequent section .
G e neral C ond it io n 3
Th e third condition involves th e principle of unambiguous comm unicat ion. Th e theory, in
its mathematical and non-m ath ematical aspects alike, must allow for th e (sufficient ly) un
ambiguous communicati on of both the experimental results and th eoretical finding s. To th e
extent possible, th ere must be an unamb iguou s definition of variables and concepts gener
ated by or involved in th e theory. Thi s condit ion can be also considered as th e condition of
definitions, whereby terms are defined and understood in a par ticul ar and constant man ner
thro ughout any discour se based on th e theory.
General Condition 4
Th e four th , and possibly th e most evident, of the condit ions characterizing modern scientific
th eory, an d hence a theory of alloys, is the principle of experim enta l rigor. In short , a
viable th eory is demonstrably physical. It must be of a nature tha t allows confrontation
wit h experimental data and hence provides a mean s for its possible falsification. Th is is, of
course, t he reason that no physical t heory can ever be pro ved correct , bu t can be refuted by
a single disagreement with an expe riment . However , once a falsifiable th eory is proposed,
this condition of physicality, as this requirement can also be called , can be used to shar pen
it s credibility.
Accor ding to this principle, a theory must corres pond, agree wit h, and , wit hin it s limits,
exhaust t he experi mental data for which it aims to account, even if th e da ta itself is subject
to inter pretat ion . T his condit ion hinges greatly on the concept of measurable qua ntities,
and the ext ent to which one has a clear under standing of what is being meas ured . However,
regardless of the efficacy of experimental procedur es, a theory must ma ke ju stifiable st a te
ment s, justifiable a priori, about dat a in its purview. The RBM, for exa mple, is severely
limited in this regard , as th ere seems to be no ju stifiable way of applying it to phenomena
oth er t han thos e involving spect ra .
Th e last point is a cruci al one. It is not so much that the th eory must provid e an accura te
prediction of expe rime ntal findings. As desirable as this may be, th e physical aspects of the
th eory are to be judged on the basis of their corre spond ence to th e phy sics of alloys a priori,
and to th e generality of phenom ena covered by th e theoret ical const ruct . One must know
why a th eory is expected to work and why it is expected to yield (a ccura te) prediction s before
testing th e accurac y of th ese predict ions. It is to be not ed that agr eement with experiment
alone does not provide proof of validity of a concept ual construct, nor does it necessari ly
lead to deep understanding of alloy phenomena . For this reason , th eories that are directed
at the matching of a set of data - by mean s of adjustable pa rameters, say - run the risk of
diminishing the viability of the most crucial ste p in the verification of a t heoretical model;
namely comparison wit h experiment. Fur thermore, th eories that "predict" a rest ricted set
of data , while possibly leading to inaccurate result s or have nothing to say wit h rega rd to
related data sets are to be viewed wit h skept icism.
Th erefore, one must cauti on agai nst placing undue trust on "theory" th at has been man ip
ulat ed to fit certain aspects of an admitted ly more general probl em. T he rigid-band mo del
provides a prime example of th is situa tion. Th e model gave init ial resu lts that seemed to
describe a restri cted set of experimental data on th e densities of states (D OS's) rat her well
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until further investig ation revealed th e lack of agreement with even DOS da ta, as well as a
bro ade r spectrum of alloy physics. It would have been inappropriat e and ultimat ely useless
to attemp t to fix the problem by means of adjustable par amet ers of one sort or another ,
and quite rightl y th e model, in so far as it provides a bro ad pictu re of alloy physics , has
been pu t to rest.
A corollary of th e last condit ion is that th e theory should give results tha t are physically
meaningful, such as non-negative spec tra (DOSs), in both rea l and moment um space. It
can be shown that negative spectra fail to satisfy causa lity and are sufficient to disquali fy a
cert ain formal construct as a viable th eory of alloys. In addit ion, th e methodology should
yield result s t hat are analyt ic in a mathematical sense and satisfy fund ament al sum rules.
For example, one set of such sum rules involves th e int egral over energy of th e par tial DOSs
associat ed with different alloy species.
General Condit ion 5.
T he theory must satisfy th e prin ciple of conceptua l mi nimalism, in the sense that it must
cover as large a dom ain of physical experience as possible wit h th e sma llest possible numb er
of conceptu al elements . Form al approaches that are consistent with this prin ciple allow the
determin ation of a large number of physical param eters and th e explana tion of variou s sets of
data through comp utati ons based on a small number of formal quantities (like th e electronic
self-energy) . The conceptu al effort expa nded in redu cing th e study of the ph enomena to th at
of a sma ll number of element s can yield immense reward s in term s of a deep und erst andi ng
of the phenom ena under consideration.

B. Subsidiary conditions

We now turn to a set of cond itions th at are mor e closely geared to the dom ain of alloy
physics th an th e general considerat ions enum erated above. As already mentioned, th ese
condi tions are not necessarily independent of tho se just enumera ted. Rather, th ey are
specific applicat ions of th e general conditions whose form is decided through th e specific
issues pert aining to alloys.
Subs id iary Condition 1.
Th e theory should be uniqu e in th e sense that it can be deri ved wit hin various formalisms
and independent points of view. Possibly the mos t important aspect in thi s reg ard is th e
ability to derive the th eory within both th e real and recipro cal spaces defined by th e lattice
of th e system und er st udy.
T he impor tan ce of th is condition can hardl y be overstat ed . Correlat ions are defined with
reference to real space, and a real-space derivati on would ensure th at th e spa tial relation
ships among the fluctuating "sit es" are taken prop erly into account. On th e other hand,
th e symmet ry of th e syst em , in particular its translational symmetry, are most efficient ly
reflect ed in reciprocal space, and a derivation in such a space would tend to preserve th e
symmet ry of th e averaged syste m. Th is lead s to the following , relat ed , condit ion:
S ubsid ia ry Condition 2.
The theory should preserve all relevant symmet ries such as the transla tional periodici ty
of th e und erlying lat tice . In the case of rand om alloys, th e symmet ry to be preserved is
th at of th e configurationall y averaged system. In liquids, and material s with topological
disord er , symmet ry must be defined in terms of alternative qua nti ties, e.g., in terms of pai r
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distribution functions .
Th e necessity of thi s condition should be strongly coupled with the cond it ion of physical
ity mentioned above. A self-energy that vanishes everywhere preserves the translat ional
invari ance of a lattice, but it s evident lack of physical meanin g renders it unacceptable.
Subsidiary Condition 3.
Th e th eory should become exact in all physical limit s, such as the limit in which th e
concentration of a species in the alloy approaches zero (or one) , or as th e difference in the
scat tering strength characterizing th e different alloy constituents vanishes.
Subsidiary Condition 4 .
Th e th eory should be applicable to different descriptions of the alloy Hamil ton ian , such as
that of phenomenological tight -bindin g (T B) theory, or ab ini tio methods relying on the
direct solution of the single-particle Schriidinger equa tion for the alloy potent ial. T his con
dition guara ntees that the met hodology can be appli ed to realist ic descriptions of mat erials,
and not just to par ticular model systems .
Subsidiary Condition 5.
In th e case of disord ered syste ms, it should describe the various kinds of disord er likely to be
encou ntered within various description s of th e Hamiltonian, such as diagon al, off-diagonal,
and to pological disorder.
Subsidiary Condition 6.
The theory should allow the t reatment of short-range order , and lend it self to physically
meaningful applications of thermod ynamics and st atistical mechanics in th e st udy of alloys.
Thi s condition can be fulfilled only when, in th e construction of th e self-energy, specific
alloy configur at ions in real space are taken int o account.
Subsidiary Condition 7.
Th e theory should allow the calculation of one- and two-part icle prop er ties wit hin an equal
footing , thus allowing the reliable calcula tion of energet ics, spectr a , and transport prop erties
in alloys.
Subsidiary Condition 8.
Th e theory should reproduce fund ament al microscopic properties as accurately as possible.
Th e moment s of th e density of states th at are exactly repro duced by a theory, for example,
as compared to tho se of mod el calculations provides one such measur e.
Subsidiary Condition 9.
T he theory should be able to accommodat e various physical constraints imposed on a sys
tem, such as the so-called Goldsto ne sum rule in disordered magnetic alloys.
Subsidiary Condition 10 .
Th e methodology should allow a tr eatment of the embedding problem , th at is to say, th e
study of a finite cluster of impurities embedded in a host lattice. Of particular importance
in th is contex t are th e values of th e Hamilt onian parameters that describe the coupling of
the impurity clust er to the host medium.
It is impo rtant to not e th at th e embedding problem must be solved before a self-energy
is determined. In general, a self-energy th at possesses site non-diagonal terms precludes
the treatment of impurit ies embedded in the effective medium defined by thi s self-energy
because th e couplin g of the impurity to th e medium is not well defined.
Th ere is one more condition rela ted to computational efficiency. Namely, the method should
be compu t ation ally pract ical. Although one can hardly argue against comput ationa l effi-
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ciency, it must be realized th at in and of it self comp uta t ional ease does not valida te a th eory.
However, one mu st realize th at th is is a double-edged sword. Although a conceptually per

f ect theory that is comput at ionally impossible is of no use, a theory tha t is computationally
feasible, even easy to implement , equally lacks usefulness if it is conceptually flawed.
We now use th ese conditions to judge the efficacy an d reliability of various theories, some
of which are older while others are mor e recent ly proposed to study the physical propert ies
of alloys. We begin with a brief overview of some of the older methodologies.

BRIEF REVIEW OF P REVIOUS THEORIES

Our discussion will be focused primarily on so-called self-consistent t heories in which the
elect ronic self-energy, and hence th e Green function , is det erm ined by mean s of a condi tion
on the scat te ring properties of an electro n or a lat tice wave propagating through the system.
In spite of their historical significance, some of the non-self-consist en t met hods, such as th e
virt ual-crystal ap proxim ation and th e average t-matrix approximation, the emb edded clus
ter method , or certain mor e recent ly developed meth odologies will be reviewed only briefly.
T he int erest ed rea der can refer to previous publi cat ions [3] where lengthier discussions may
be found . Also, we will not concern our selves with numerical t echn iques designed to give
"exac t" result s through applica tion to large (but finite) collections of atoms. We are inte r
este d in self-consiste nt methods th at provide a self-energy thu s reducing the study of alloys
to a small set of quantities (t o only one, th e self-energy, in thi s case.)

A. Th e coherent pot ential app roximation

Possibl y th e best known and most widely used self-consistent alloy th eory is base d on
th e coherent-potent ial appr oxima tion (CPA) [4,5J developed for th e st udy of disordered
(rand om) alloys. Th e properti es of th e CPA are by now well und erstood , and have been
discussed in a number of pub lications [6] and book s [7J.
The CPA is a single-site th eory that , in spite of its relati ve simplicity, pro vides a remark ably
accurate tool for det ermining th e physical prop erties of real mat erial s. And it holds up
exceedingly well when judged against t he conditions outlined above.
Within th e CPA , th e real disord ered ma terial is replaced by a uniform effecti ve medium
tha t is det ermined in a self-consis tent way th rough the requirement th at th e addit ional
sca t te ring resu lt ing from emb edd ing a real atom of t he alloy into this medium vanishes
when averag ed over the components of the alloy. T his eminently physical requi rement is
att end ed to by a great numb er of further desirable prop erti es.
Th e CPA yields result s such as self-energies and Green funct ions th at possess th e prope r
analytic proper ties and satisfy causality an d th e sum rules on th e total and compon ent
densiti es of states. The CPA yields quantities th at preserve the symmetry of the und erly
ing lattice, it has th e correct limiting prop erties when the concent ra tion or th e sca t tering
st rengt h approaches zero, and can be applied to Hamiltonians of th e TB kind as well as to
th ose derived within a first-principl es framework . It has been extended to apply to alloys
with both diagonal and off-diagonal disorder , and can be used to calculate tran sport proper
ties, where it is shown to satisfy all fundamental sum rules, like th e relevant Ward identities
(part icle conservation) (for review see [7].) It gives correctly the first seven moment s of th e
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density of states as eas ily verified through direct numerical calcul ation on mod el syst ems,
and it can be derived within a great number of different form al frameworks attesting to it s
uniqu e qualities. In particular, it can be derived within both a real-spac e and a reciprocal
space formalism. Finally, it allows th e tr eatment of impurities embedded in th e CPA host
medium , and even the treatment of impurity clusters, although not necessaril y in a self
consistent way. Also, th e formalism of the CPA can be used to provide a fairl y accurate
treatment of th e effects of short -ra nge ord er , and there are a numb er of calcula tions [8J of
th e soft X-ray sca t te ring amplitude that attest to this prop erty.
However, in spite of it s many desirable prope rties th e CPA does have a number of short 
comings. Although it yields result s with the prop er analyt ic properties, it fails to sat isfy
th e Lifshit z condit ion on the tails of the density of states. Wh ereas genera l and exact argu
ments [3J require th e DOS to decay exp onentially outs ide th e band region , the CPA DOSs
exhibit a logarithmic singularity at th e band edge. T he form alism of th e CPA has not been
satisfactorily extended to th e case of topological disorder , and th e CPA Green function s
fail to satisfy th e Goldst one sum rules for latt ice vibra tions wit h off-diagon al disorder, (and
certain systems with magneti c disord er. ) Furthermore, t he form alism cont ains no hint on
how it can be exte nded beyond the rest rictions of statis tical fluct uations confined to a single
site .
This restri ction is possibly th e most vexing and disturbing shortcoming of the CPA. Th e
method is based on a single-site mean -field th eory and cannot account for th e effects of long
ra nge int er-sit e statistical fluctu ations in a disord ered system. Thus, th e density of state s
obtained within th e CPA is oblivious to local environment effects on the sca ttering from a
given site in th e material. T he site pot ent ial encountered by an electron or wave propagatin g
through th e mat erial is bound to depend in a non-trivial way on th e occupation of nearby
sites by atoms of specific alloy species. Thi s effect is completely ignor ed in th e CPA in
which all atoms of a given kind are tr eat ed as being identical t hroughout th e system. The
treatment of stat istical fluctu at ions, whether short or long ran ge, ha s provided an incredible
int ellectu al challenge to alloy th eorist s over th e last t hir ty years or so. T his challenge is as
present today as it was when it was firs t put forward at the tim e of th e introduction of th e
CPA.
To treat th e effect s of st at ist ical correlations on alloy properties, one invariably needs to go
beyond th e single-site approximation [3]. A numb er of non- self-consist ent clust er th eories
were introduced for th is purpose that allowed the tr eatment of a finite cluster of a toms em
bedded in a medium det ermined in some way - usually through th e self-consistent condition
of the CPA [3J. These methodologies, however, do not yield an improved self-energy and
are not of further int erest to us in th is review.
Self-consistent clust er th eories were also proposed in the at tempts to improve on th e CPA
in the treatment of statist ical fluctuations. In spite of int ense and concent rated effort , it
can be safely state d that no methodology has been found th at improves significantly and
uniformly over th e CPA when judged against the entire set of crit eria mentioned in th e
previous section . Improvement s were indeed obt ained in specific areas, but usually at the
expense of various physical requir ement s. A discussion of many of th ese exte nsions, both
th e self-consiste nt and non- self-consistent variety can be found in publi shed work [3J, along
with references to original pap ers.
However, one of th ese exte nsions, th e molecular coherent pot enti al approxima tion (MCPA )
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[9] is of particular int erest and we will provide a brief review.

B. Th e molecular coherent potent ial approximation

Th e molecular CPA, or MCPA, was introduced by Tsukada [9] along lines identical to those
of the single-site CPA. In this case, however , the material is divided into non-overla pping
cluste rs and a cluster-diagonal self-energy is obtained through the condition that the addi
tional scattering introduced when a real cluster is embedded in th e MCPA medium vanishes
on averaging over all clust er configurations at the concentration of the alloy.
It can be shown th at the MCPA is a physical theory th at retains many of th e desirab le
properties of the single-site CPA, such as analyticity and the satisfaction of fundament al
sum rules. It gives correctly more moments of the DOS th an the single site CPA, the
number increasing as the size of the cluster tr eated increases. However , the MCPA leads to
an effective medium that is a "superst ructure" with cluster periodicity, and thus violate s
the requirement th at the average d medium must be t ran slat ionally invar iant.
This violation is not only concept ually unacceptable but has realistic ramifications. A
supe rst ructure with cluster ra th er than point periodicity can lead to inaccuracies in th e
determ inat ion of phonon spect ra, and of tr ansport coefficients . T his is because the reciprocal
space corresponding to t he clust er periodic system contains zone bound aries th at cause
unphysical momentum reflections in th e consideration of phon on and transport properties.
Fur th ermore, in th e MCPA the edges of the DOSs contain a logarith mic singularity, as in
th e CPA, because the MCPA, tre ating statistical fluctu ations in a compac t cluster, cannot
account for th e long-range fluctuation s that cause the exponential decay of band edges .
After this admittedly brief review of the CPA and its molecular extension , we tu rn to recent
developments.

A CLUSTER EXTENSION OF DMFT

Attempts to provide a treatment of electron correlatio ns in the elect ronic struct ure calcu
lation of solids have led to th e rediscovery of the single-site CPA [IOJ and also given rise to
clust er generali zations of it [11, 12J. The CPA and th e MCPA have been reviewed above,
but a part icular cluster extension has recently been int roduced by Jarrell [11, 13J th at needs
special at tention .

A. The dynamical clust er approxi matio n

Jarrell's methodology [11, 13J, referre d to as the dynami cal clust er approxima tion (DCA) , is
quite novel as it leads to analytic self-energies that are k depen dent while preserving lattice
periodicity.
The seminal element of the methodology is to replace the exact disordered material by a
fictitious cluster of finite size whose sites are assumed to possess the disorder cha rac ter istics
of the real material. It is to be und ersto od that the sites of th e cluster, Rj , can indeed
possess coordinat es tha t correspond to sites in the real lat t ice. T heir ficti t ious nature arises
from th e fact that the inter-site Green fun ctions for this cluste r are considera bly warped and
deviate substant ially from the corresponding Green funct ions of the averag ed system. Now,
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this cluster is t reated exactly and hence leads to a self-energy that has all t he required
analyt ic pro per ties and preserves the real-space periodicity of the averaged lat ti ce. The
replacement of the original infinite system by one of finite size is carried ou t through an
ingenious construct of coarse graining the recipro cal space of the rea l system.
Let the first Brillouin zone of the reciprocal latti ce of a given rea l lat tice be divided into
a number of finite regions, M K , whose "cente rs" , denot ed by K , for m a cluster structure
whose group point symmetry is th e same as that of the real lat t ice. Correspon ding to these
points in reciproc al space, one also defines a cluster of point s in direct configuration spac e
by means of the relation ,

(1)

(2)

T he las t expression has profo und consequences wit h respect to the topological int er
relationships of the sites of the cluster. It is to be noted that all sit es RI are now topologi
cally equi valent in contrast to the sites of a cluster embedded in an (infinite) medium . Even
if t he site s R I correspo nd to sites in th e original lattice, the condition defining their connec
tion to a finite reciprocal space warps the cluster into a tra nslationally invariant structure .
For example, on a linear chain, a clust er of n sites is t urne d into a ring of n sit es. The
reade r can be convinced of th is effect in higher-dimensional systems; on a square lattice,
th e cluster is tu rne d into a to rro us in three dimensions while in three-dimensional system
one obtains a torrous in four dimen sions. This topological distortion is a consequence of th e
last condition on t he site s of th e cluster and th eir reciprocal space. (In an infinit e medium,
such a condit ion also holds but the summation is over all t he point s in the Brillouin zone .)
Math emati cal quantit ies wit h a dependence on reciprocal space are now coarse-grai ned over
each region M K, an d th e result assigned to K , t he center of the region . Of particular interest
are th e Gree n functio n and the self-energy. A Green funct ion , G(K ,w) , is defined for each
K by summing G(k ,w) over all k in the region M K,

G (K ,w) = L G(k,w) ,
k EMK

where w is an energy parameter. Thi s definition now leads naturally to a Gre en function
GIJ(w) defined over th e sites I an d J of a finit e cluster obtained as the recipro cal st ructure
of the cluster form ed by th e vectors K . T he explicit expressions for the inters-site Green
functions are the usual ones,

GIJ(w) = ~ L G(K , w) exp iK . (Ri-RJ )'
C K

(3)

T his expression connects cluster sites th at are topologically equiva lent and hence incon
gruent wit h the to pological dist inctions betw een clust ers in th e real material . T herefo re,
t he DCA cluster cannot be thought of a being "embedded" in an infinit e med ium . More
importan tly, t he correlations between fluctua tion s on different sit es of th e cluster do not
correspon d to corr elations between fluctua tions in the sit es embedded in such a medium.
T his is only accom plished in the strict limit of an infinit e cluster, but at no int ermediat e
step toward that limit.
For any given self-energy, E( K , w), we also define the subsidiary quan t ity in reciprocal space,
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t hat follows from the gener al express ion

G (K ,w) = G(K,w)[l + l;(K ,w) G( K ,w)].

An analogous definition holds in real space,

(4)

(5)

(6)

Now, th e sites of th e cluster defined by the space reciprocal to th e vectors K ar e assu med
to have th e disord er characteristics of the real material. For example, in th e case of a
disordered binary alloy, A 1 _ cEe , the sites of the alloy are taken to be ran domly occupied
by atoms of type A or E , wit h corres ponding prob abilit ies 1 - c an d c. Ma king the usual
assum ption that all atoms of a given species are ident ical throughout the syste m, each site
carries a potential VA or VB in accordance wit h th e type of atom occupying the sit e.
T he Green function, G[J(w) is defined as th e Fourier transform of G(K ,w) as indi cat ed
above. Similar ly, the real -space counterparts of G(K ,w) and l;(K ,w) can also be defined by
Eq. (6), completi ng the loop of self-consis tent equations to be solved for the self-energy.
These real-space qua ntities, defined over the sites of a finite cluster of sites, can be used
to provide an "exact" tre atment of the disorder in the cluster . Thus, the Green function
G satisfies the expression, (using opera to r notation and suppressing the energy par ameter
from now on)

G = G[l+VG]. (7)

Denoting the configurational average of G over th e cluster configurations by (G) = (;, a
cluster self-energy is obtained through the expression,

l; = (;- 1 _ G- 1. (8)

A Fourier tran sformation lead s to l;( K) , an d a new value for the Green fun ct ion. For every
k in a domai n A1K , we have

(9)

This new Green funct ion can be used to obt ain a new coar se-grained value, G(K) , as shown
in Eq. (2). An iterative process can be est ablished th at terminates when the change in the
self-energy (or th e Green funct ion) falls within a pre determined tol eran ce.

B. Th e prop ert ies of the DCA

We now exa mine the DCA again st th e set of conditions to be met by a sat isfact ory alloy
theory. By constructio n, the DCA yields an analytic self-energy and a Green fun ction that
take account of stat ist ical fluctu at ions in th e fictiti ous real-space cluste r corres ponding to
th e set of recip rocal-lattice vectors K . T he self-energy is periodic with th e point symmet ry
of the real lat tice, an d vanishes in the limit c --+ a and as th e scattering st rength app roaches
zero. It s behavior for small but non-zero concentration is not known . T his behavior would
be of relevance in app lications of th e theory to ordered systems.
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Perhap s the great est practical drawback of th e DCA is that it fails to t reat correctly inter
sit e corr elations in th e real system (its logical restrictions are mentioned below.) . The finite ,
real-spac e cluster repres ent ing th e disordered mat erial is marginall y connected to th e real
system, failing to pre serve th e inter-sit e topological relationships of the true disord ered
material. Alt ern ati vely, th e clust er int er-site Green functions do not correspond to th e
Green funct ions for sites of a real clust er embedded in a fluctuating medium. Thus , it
cannot yield spect ra associate d with distinct configur at ions of sites in the material. Such
inform at ion is oft en useful in analyzing physical properties, e.g. , magnetism, which can be
explicit function s of local environment . Consequently, th e method leads to a physical single
site Green funct ion (and hence single-site spectra ) but not to mult i-site spect ra l functions
rendering difficult the study of short -range ord er effects in th e real syste m.
It may be useful to expand on the discussion of th e DCA Green fun ct ions. To see th e
difficulti es encountered within th e DCA consider th e determination of Green funct ion matrix
elements th at connect sites in a clust er to points in the surr ounding medium. These element s
are read ily det ermined within the CPA or the MCPA but th ey are not defined in th e DCA .
Th is is because th e topological relationship s of the DCA cluster are not those charac te rizing
a cluster embedded in a medium , but one standing isolated in real space .
We now examine mor e closely th e formal ju stification of th e DCA and contrast it wit h th e
CPA . T he latt er approximation yields a site-diagonal self-energy that can be considered
both within rea l space and recipro cal space. Within real space, it can be viewed as being
associated with eve ry site in th e reallat tice, thu s yielding an effective medium that preserves
the translat ional invarianc e of that lattice. By construction, thi s self-energy accounts for
statistical fluct uations confined only to a single site . Wit hin reciprocal space it can be
thought of as being independent of k vector in th e Brillouin zone. To extend th e CPA can
also be thought of along real-space or reciprocal-spac e terms.
Within real space, one seeks an approxima tion that accounts for fluctu ations associated
with clusters larger than a single site . T his necessity has led to an immense effort [3] to
genera lize th e CPA to a self-consiste nt cluste r the ory. Judged aga inst t he criteria set up in
Section II , th is effort has met only with parti al success. No extension of th e CPA has been
constructed th at possesses th e required analytic prop erties while retaining th e translational
symmetry of the und erlying lattice while accounting exactly for inter- sit e corr elations in real
space cluste rs. T he theory th at comes th e closest to meeting these crite ria is the MCPA
th at , however , endows t he effective medium with the super-periodicity of a clust er of site s.
At th e same tim e, the MCPA lead s to a self-energy that properly accounts for int er-site
fluct uations with in comp act clust ers in th e material .
Th e elements touched upon in th e previous discussion culminate to a point of logic. A
physical theory is usually characterized by bot h necessar y and sufficient condit ions. And as
is well known one set cannot replace th e oth er. It is necessary for th e self-energy to have a
k dependence to conforms to the periodicity of th e underlying lattice and to possess certain
an alyt ic prop erties in th e comp lex energy plane. But these conditions are not sufficient to
guarant ee that th e self-energy sati sfying th em also account s prop erly for fluctuations in the
real, disord ered syste m. Thus th e fact th at the DCA self-energy possesses certain necessary
properties is no proof that it prov ides a correct description of a fluctu ating syste m.
Th e DCA yields an analytic self-energy that preserves th e translational invar iance of th e
lattice. However , it result s in a real-space system of strictly finit e size whose Green funct ions
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represen t fluct uation propagation from site to site only app roxima tely. In t he MCPA , the
cluster Gr een functions are exact for each choice of clus ter, being approximate in that th ey
differ from t hose of th e exac t configura tioanlly averaged system . In t he DCA th e Gr een
fun ct ions are not exact even for th e finite size cluster used to ob tain t he self-ene rgy. In t he
case of t he MC PA, one is confident that t he effects of short -range order can be accou nte d
for t hrough th e treatment of cluster of a ppropriate size. The confide nce is diminished in
the case of the DCA because the cluster treated cannot be viewed as em bed ded in th e real,
infinite sys tem, and t he cluster Green functions are not t hose of t he bar e real-space cluster
employed in determin ing the self-energy. In bo th cases, the treatment of t ran sport an d of
phonons, bot h involving long-r ange effects , is prob lemati c.

NON SELF- CO NSIST E NT T HEO RIES

A. The Quasi-Random Structure Method

In t his ap proach [15] to th e st udy of alloy electr onic structure and energetics, one simulates
a substitutiona lly disordered alloy by ensuring t hat the distribution of a toms of different
species over t he sit es of a lat t ice preserve the first select few spat ial corr elation functions of
th e real disordere d system. For example, the distribution may pre serve t he overall concen 
trat ion and the nea rest -neighbor pair correlat ion function .
Th is met hodo logy, which is also called SQS (for special quasi-random st ruct ures ) ha s been
extended to incorporat e volum e effects and other physical features ente ring th e description
of an alloy, such as charge-t ran sfer effects.
Wh en judged agains t t he crite ria required for a sa tisfacto ry alloy theor y, t he SQS method
ology can be seen to fail in a number of important areas . Th ere is no math em atic al ju s
t ificat ion for the method , as it has not been pro ven that the proper ties of a quasi-random
st ructu re have any conn ection to t hose of a man ifestly disord ered system, In pa rti cular , the
elect ronic states in such a st ructure have a very different cha racter th an those in a ran dom
alloy. Th e lat ter are cha rac teriz ed by sp read ing due to t he presence of rand omness whereas
the st ates in an ordered structure have shar p E (k ) dispersion relations. T he primary aim
of alloy t heory in th e context discussed here is t he determination of th e electro nic st ates
in the alloy. T his would allow t he calculat ion of expectat ion values of vario us operators
(observa bles) to be com pa red with exp eriment. Beca use a formal j ust ificat ion establishing
t he equi valence of the states in a ra ndom system with those in a quasi-rand om st ructure is
lacking, t here is no way of prod ucing logical ar gum ents conn ect ing t he resul t s of calcu lations
to proper ties of real alloys.
Nor is t he met hodo logy exha usti ve in terms of experimental data , as requi red of a proper
alloy t heory. Indeed, it produces result s th at are know n to be cont rar y to th e behavior of
physical systems. For example, it yield a "self-energ y" t hat is real whereas t he dispersion
in th e experimental spect ra of disord ered alloys suggest s a complex quantity . Becau se t he
method lacks scientific found ation , it s generaliza tion to incorporat e a bro ad er spect rum of
phy sical reality is unjustified .
Again , th e logical j ust ificatio n rears it s demanding head . The observed spatial correlation
functions ar e a result of th e under lying fluctuating nat ure of the system. T hey are, by
definit ion , an effect of th ese fluct uations. Th cre is no logic to th e statement t ha t two
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syste ms that show identical effect s are also identical at a fundamental level. Furthermore,
there is no ju st ification that a theory based on a particular effect as its starting point
captures any of the physics of the system even that which is respo nsible for the effect .
Reversing the roles of cau se and effect , as is done in the SQS, is illogical in it self.

B. The Conno lly-Williams Met hod

In this procedure [16] one extracts so-called cluster interactions that describ e the contribu
tion of a cluster of atoms to the energy of a system. Thi s is don e by solving a set of linear
equations for th ese interactions. In the se equations the int eractions are the coefficients of an
expansion in clust er basis function s of th e energies of various configurations and for variou s
concent rations.
Of all methodologies proposed thus far for the study of alloys , the CWM is the one that
fails most dramatically in meeting even th e r udiment s of logical or mathematical rigor .
(T here are other failures as well, but of a subsidiary natu re to the main ones.) In it s
proposed form , th e meth od combines the energies of alloys at different concentrations thus
excluding it self from making any statements wha tsoever about any particular alloy, (for
the fairly obviou s reason that a particular alloy is defined by a specific concentration and
it s prop erties are ofte n strong functions of concentration.) For example, th e methodology
allows the simultaneous tr eatment of alloys that are known to be magnetic in a given region
of concentration and non-magnetic in others. The notion that the par am eters th at one
obtains have th e same value thro ughout the concentration range is not only unju stified but
also non-physical.
Possibly most important , and most damaging, is th e methodology 's renuncia tion of some
well-est ablish ed mathematical laws. Expansion s over a vector spac e ar e mediat ed by th e
use of a complete (often or thonormal) basis set . T he totality of configurations at each
concent ration defines a complete vector space whose basis is forme d by th e cluster functions
used in the CWM. For an infinite system each of th ese configurational vector spaces has the
same dimensionality and allows a complete exp ansion of th e energies in terms of th e cluster
functions that form the basis in the space. Mixing different concen trations corre sponds to
the mixing of different vector spaces , a procedur e that is mathematically disallowed . (T he
orhonor ma lity and completeness relations of th e basis set cannot be shown to hold over
such a mixture and the expansion, as a whole, is non-sensible. )
Furthermore, the resulti ng set of linear equation in th e CWM is finite resulting in uncon
trolled effects on the solutions (the cluster int eractions) that are by definit ion of infinit e
number and generally of infinite extent . The argument that is often produced to counter
th is last defect , namely t hat th e interactions converge fast enough so that higher terms can
be neglected beyond a point carries no weight because the interactions are wrong in the
first place as just pointed out. One could , of cour se, t ry an applic ation of the methodology
within a single concentration. Although ide ntifying and computing a sufficient number of
such configurations within a single concentration is by no mean s easy , t he pro cedure would
alleviate somewhat the mathematical and logical inconsistencies resulting from th e mix
ing of different vector spaces (al tho ugh th e approximation of finite size expansions would
remain) . In add itio n, a serious physical incon sistency would also remain in that the calcu
la tions of th e energies used would corre spond to ordered systems. As such th e elect ronic
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st ruct ure of th ese systems is different from that of a truly ra ndom alloy at th e same concen
tr ation an d th e failing of th e conditions of physicality, mathema tical and logical int egri ty,
and experimental rigor follow in precipit ous man ner.
The logical consequence of th e preceding analysis is that th e extension of th is sort of method
ology to a broader domain of alloy physics is not ju stified.

TH E SINGLE-CO NFI GURATION AND FINITE-SIZE ARGUMENTS

T here are two notions that have found some favor among scientist s concerne d with th e
developm ent of alloy theory. Th e noti ons are, first , th at th e materials one deals with and
subject to a theoretical und erstanding act ua lly exist in a given, fixed configurat ion, and
th at the se mat erials are of finit e ra th er th an infinit e size. These two concepts are st rongly
related, wit h th e form er being inappli cabl e wit hout th e latter. Taken tog ether, th ey deal
a devastating blow to the very essence of th e conceptual challenge offered by fluctu ating
systems as th e first one does away with the need for treating fluctu ation s at all and the
latter dispenses with thermodynamics. Although both notions can be discount ed solely on
the basis of th eir poor conceptua l standing, th ere is something to be learn ed from looking
at th em both a bit mor e closely.

A. Single-configur ation argument

Th e notion that , after all, a given piece of a real materia l actually exist s in a given config
uration is based on the possibilit y that one can establish th e na tu re (chemical species) of
the at oms occupying th e Wigner-Seitz cells in th e mat erial. Of course, thi s can be done but
only if th e material is finit e. For an infinit e syste m, (of int erest to t hermodyn amics th at is
necessar y in the st udy of bulk alloys) thi s is not possible even in prin ciple, so th at th e not ion
in question has no standing in the development of alloy th eory. (T he int ricate connect ion
to thermodyna mics is addressed in th e next section. ) T he properties of a ra ndom alloy
(wheth er physical, chemical , or mechanical ) are determined by and ar e a stro ng funct ion of
its fluctu ating nature and the elimination of fluctu ation s removes subsequent considera tions
from the realm of alloy th eory. T he situa tion gets on even murkier logical ground when
thi s train of thought pro ceeds to eliminate th e relevan ce of concent rat ion from the picture
altoget her .
Now, the arg ument ru ns along the following lines. In an alloy of infinite exte nt th ere are
regions (finite or infinit e) cha racterized by effective concentra tions other than the alloy
concent rat ion. Th erefore, in describing alloy properti es (energies, st rength, etc.) one is
allowed to employ concent ration-independent parameters (as is don e, for exa mple, in certain
types of expansions such as th e CW M.) Thus, t he single-configuration arg ument can be used
in eit her it s weak form wher e a dependence on concentration is ret ained , or in its st rong
form in which th e dependence of alloy prop erties on concentration is eliminated from the
arg ument . In exa mining further th e merits of th e single-configura tion concept , it is most
convenient to begin with th e strong form .
Fir st, we consider th e argument that an alloy cont ains regions of concent ra tions c' other than
th e alloy concentration , c. Actually, t his argument is corr ect, postul ating th e existence in an
infinite syste m of regions, also possibly infinite, in which the effective concent ra tion fluctu -
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ate s. Thi s is a simple consequence of the fluctuating nature of th e atoms occup ying different
sites in the alloy, but does not impl y that alloy properties are concentration-independent nor
tha t th ey can be describ ed in terms of concentration-ind epend ent pa rameters. The physical
syste m behaves in a way that is consistent with th e presence of a fixed concentration . For
exa mple, t he chemical potent ials for adding or removing atoms of a given spec ies, or the
Ferm i level, th e electro nic chemical potential , and th e physical proper ties of the system,
e.g., magneti sm , depend on and vary with alloy concentration. In other words , th e system
"knows" it s concentration and its behavior is a function of it as observed expe rimentally
and as demanded by th erm odynamics. Therefore, repr esent ing an alloy by a collection of
configurations at various concentrations is not ju stified on eit her physical or mathematical
grounds.
T he weak form of th e argument considers an alloy as represe nted by a single configura
tion , or set of configurations, all at a given concentr ation. Compared to the st rong form
th is method is great ly relieved of both th e physical and mathematical difficulties connecte d
with that approach. However, care should be taken to apply thi s methodology to quan
tit ies that do vary wit h configuration , and to includ e eno ugh configurat ions for a prop er
statistical sampling. The energy, for exa mple, is a good can didate for such a treat ment,
but microscopic quantities that only depend on concentratio n (t he effects of configurations
having been integ ra ted out ) such as chemical pot entials, and the self-energy, say, are not.
T here is, however , one case th at demands part icular attention, and th at is th e case of
an ordered struct ure, say th e so-called 1.10 ordered configuration exhibite d by some alloys
based on a face-cent ered cubic la tti ce. Such ord ered structures do exist both as one of
the many configurations allowed for a random system , as well as th e only configurat ion
allowed when th e system undergoes a phase transit ion under particular ext ernal condit ions
on tempera ture and pressur e. In th e first case, th ey are counte d in any prop er th eory
of alloys (in which all configurations are treated in principle according to th eir stat istical
weight ). In the latter, the passage to a specific configuration materializes und er the loss or
gain of energy in a singular fashion , and th e prop erties of th e particular phas e so obtained
usually have nothing to do with those of th e disordered system. For exa mple, a disord ered
alloy may be ductile or non-m agnetic, while it s ordered phases may become quit e brit tl e, or
exhibit magne tic behavior . Mathemat ically, this cha nge in prop erties is describ ed th rough
th e presence of singular behavior in various thermodyna mic functions, such as th e specific
heat , a behavior th at is also manifest experimentally.
It is, of cour se, evident tha t no fluctu at ions exist in an ordered st ructure in which th e nature
of any atom in th e syste m is known th roughout , even if th e system is of infinite extent. With
fluctuations gone, the system behave s qui te differently from a random material. It is for
this reason tha t the use of a single, ordered configuration is disallowed , both physically and
logically, as a representative of a disordered alloy at a given concentrat ion.

B. T he finit e-size argum ent

Within the contex t of mat erials science , an d par ticularly the are a of alloys , t he realization
that t he mat erials we deal with ar e invari ably of finit e size has two different connotations .
Finite-size materials that conform to and can be described by th e laws of thermo dynamics,
and those th at do not . It is indeed a remarkable fact that natur e man ages to integrate
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microscopic effects so that beyond a cert ain size, ma terials behave as if ind eed they were of
infinit e extent. It took a great leap in th eoretic al developm ent to realize that thi s is indeed
th e case, thus separating out from the plethora of materials those th at can be studied and
understood in the thermodynamic limit. Otherwise , mat erial s whose size is not sufficiently
larg e must be st udied as fun ction of dimension and their prop erties classified accordingly.
Bulk alloys , as commonly perceived , lie in th e first cat egory. In cases in which one or mor e
dimension s are finit e so that size effects become manifest th e usual laws of th ermodynamics
must be modified so as to accommodate th ese effects .
Once the discipline of th ermodynamics has been introduced in the study of ma terials prop
erties it become s illogical to invoke th e concept of size. Th e purpose of th ermodynamics is
to prov ide a mod el whereby hum an genius can probe certain classes of physical phenomena.
Th e concept of the th ermodyn amic limit provide s a mean s of examining the properties of
mat erials that alt hough in actuality finit e behave in accordance with thi s limit . Th e form al
st udy of such systems now must pro ceed on th e basis of syste ms of infinit e extent. However ,
instead of attempting to describ e the nature of every atomi c cell at infinity , one uses a rule
that provides such a description in terms that are amenable to analysis. We can envision
an ord ered system of infinit e extent by stating that "each cell is occupied by an atom of a
given kind ." We can envision a random system by stating that "every cell has a prob ability
of being occupied by an atom of a given kind ."
Thi s has an imm ediate impli cation to the single-configuration argument discussed in th e
previous sect ion. Namely, in a random system of infinite size it is not possible to specify
the chemic al nature of every atom in any given cell. Thi s impossibilit y becom es obvious
when it is recognized that the specification of th e coordinat es of a cell plac es th at cell in a
finite region of the oth erwise infinit e system. Because of thi s it is necessar y to use a rule in
describing the nature of infinit e systems. And because it is not possible to approach infinity
from the finit e side, fluctuation in th e system can never be elimina ted. For this reason, the
single-configurat ion argum ent has no intell ectual standing in the study of alloys.
In oth er words, it is illogical to replace an alloy by a system of finit e size-where the specifi
cation of a single configur a tion is, of cour se, possible-or by an infinite syste m in an ordered
configuration . (Occasionally, use is made of a finit e system averaged over all possible con
figuration. The disadvantages of that approach are those discussed previously in connec
tion with th e syst ems of finite size.) Th e finite-si ze and/or single-configuration const ructs,
whether used separately or in conjunction may pro vide some guid ance in th e study of th er
mod ynamic syst ems. However , by themselves cannot be made into a form al basis for the
st udy of th ermodynamic quantities.

MODIFICATIONS OF THE MCPA AND A FUNDAMENTAL DIFFICULTY

A. Averaging the self-energy

One way of restoring the tr anslational invari ance that is lost in the break ing up of th e
lattice into the clust ers of the MCPA is to average the self-energy and some attempts in
that direction have been made [14]. However, such direct combinations or averages of
the MCPA self-energy, although possibl y preserving an alyticity and restoring translational
invariance, are beset with a numb er of formal probl ems.
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First , averaging the self-energy wipes away the rela tion of th e self-energy to distinct alloy
configurations in the determination of spectra l prop erti es (density of states). In addit ion, it
has the unphysical effect of producing a medium whose self-energy contains th e fluctuations
of incompatible configurations of the fluctu ations in the system. For example, adding th e
self-energy at the cent er of a cluster to that at a bord er site creates an effective site that
repr esent s two different and incompatible local configur ations in th e syste m.
The difficulties are multipli ed when ext ra conditions of translat ional invariance are placed
upon the self energy obtained through th e tr eatment of a finite clust er in an effective
medium [12]. Now, non-analytic behavior can ar ise. All obj ections raised above regarding
the tr eatment of embedding remain valid in th e present case. Finally, and quit e importantl y,
one would need to average the elements of the self-energy with elements of the Hamil tonian
of th e system in an ill-defined procedure given that the Hermitian cha ra cte r of th e latter is
absent in th e former .
Some of th e problems connected with averaging the self-energy, although not all , can be
circumvente d through an averaging of th e Green funct ion and a sub sequent identification
of a self-energy th rough inversion of the Green function over the whole space. Let GMCPA

denote the Green funct ion obtained in an application of th e molecular CPA to a disord ered
system and consider th e averaged Green function , G, defined through its matrix elements ,

- 1 MCPA
Gij = -N (Gij ).

'J

(10)

Here , th e angular bracket s denot e a summ ation over all elements of th e MCPA Green
function whose indices are connected to i, j by a single transla tion operation , and Nij are
the number of distin ct such element s. For example, when i = j one sums over all site
diagonal Green function s in th e clust er defined in the MCPA and divides by the numb er
of sites in the clust er . Similarly, one can obtain the element s of a Green function for all
int er-site vectors , R , - R j .
It is clear that the pro cedure defined by the last equa tion yields a Green function that
reflect s the translational symm etry of the underlying lattice. It is also analytic , being the
finite sum of analytic expressions. The self-energy corresponding to thi s translation ally
invariant medium is now obt ained to any desired approximation through th e inverse of G,

(11)

where W denotes th e tr anslationally invariant part of the Hamiltonian describing th e orig
inal disordered mat erial. Thi s expr ession can also be cast into reciprocal space,

(12)

where

(13)

with N denot ing the numb er of sites in the lattice.
Th e construction ju st described alleviates many of the und esirable features connected with
the averaging of the self-energy. At the same time, even th is approximation contains an
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unsati sfactory element . The final self-energ y, in spite of it s analyticity and translational
invarian ce, is not the direct result of a self-consist ent treatment of statist ical fluct uations,
but a derived one depending on the subsequent treat ment of the Gre en funct ion obtained
in the MC PA. Therefore, it cannot be used to study the effects of ver tex corre ctions on
t ran sport properties beca use it does not allow a st udy of specific clusters of sit es embedded
in th e effective medium . On the oth er ha nd, it does t rea t correc tly the effects of short -range
order becau se th ese can be incor porated into the MCPA averaging over cluster configur a
tions and are prop erly reflected in th e final Green fun ction and self-energy. It is easy to see
that th e procedure defined by Eq. (10) is an identity within the single-site CPA. It becomes
exact , as does the MC PA, an d also reduces to an identity as the cluster used in the MC PA
approac hes the size of the system.

B. A fun dament al difficulty

The great deal of effort that has been exp ended in the as yet unsuccessful effort to produce a
prop er cluster exte nsion of the single-site CPA - t ha t is to say an approxim at ion th at tr eats
int er-sit e fluct uation while preserving ana lyticity and lattice periodicity - can be traced
to the violation of a basic formal requirements of scattering th eory. Consider again the
embedding pro blem in the case of a k-d ependent self-energy . Although discussed a bove,
t he pro blem is wort h furt her mention. In orde r to embe d an impurity in the corresponding
effective medium one must remove in a formal way the on-site element of the medium at
th e site of embedding, as well all int er-site elements that emana te from it . That done, t hese
elements must now be replaced wit h t he corr espon ding quant iti es connect ed with th e real
potential cha racterizing the impurity to be embedded and its connect ion to the surrounding
medium .
T he difficulties that ar ise with thi s replacement can be most prominently illustra ted in the
case of a first -principles, first -quantizat ion application of th e CPA, such as the KKR-CPA.
In such a formalism one uses sca tt ering theory to t reat a free wave pro pagating thro ugh
th e lattice, being sca t tered by th e on-site potentials conne cted wit h the chemical species
occupying the sites of the lat ti ce. In it s most basic, scat t ering theory is founded on th e
construct that a wave in free spac e is scattered by a spatially bou nded potential. Th e
scattering matrix associated with that potential describes repeated scat te ring by a free
wave by that potential. T his construct is fully observed in implementations of t he CPA
or the MCPA. T he prop agat ion of a free wave is described by the st ructure const ants that
rem ain unalt ere d between sites (in th e case of the CPA) or between clusters of site s (in th e
case of th e MC PA) .
Now, consider t he case in which th e self-energy is k-dependent , and hence can have, in
principle, infinit e extent in rea l space. Now, the propagation through the lat t ice is not th at
corres ponding to a free wave, bu t a wave tha t has been modifie d by the potential of the
effective medium as described by the self-energy. If an impurity is to be embedded, it s
scattering matrix must be determined with reference to th at medium . Using the t- matrix
derived with reference to free space introduces an inconsist ency tha t cannot be removed
thro ugh self-consist ency conditions and that , indeed, prohibit s th eir impl ementation . Th e
prop er procedure, of cour se, would be to calculate a t-matrix wit h respec t to t he medium
but such an alte rnative is preclud ed as the self-energy is known only numerically. Equally
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important is th e ignoran ce of how a real potent ial couples to th e medium . T hat coupling
is a sou rce of sca t tering and it must be it self consistently determin ed with respect to the
medium parameters . It is clear th a t propagat ion to an d off the imp urity can be described
neither by th e free-space st ruc ture const ants nor by the inter-site elemen ts of the self
energy. And th ere are , in principle, an infinit e number of such element s. T he rea der may
wish to contemplate how parameters should be chosen to describ e the embedding of a single
impurity at t he central site of a cluster det ermined in the MCPA.
T he insidious nature - or th e st rict ness of th is requirement of consist ency with scattering
th eory - can be glimp sed when one realizes that remov ing t he original cluster from a medium
result s in th e alteration of th e mediu m param eters. T his is not the case in the CPA or
th e MCPA where free space sur rounding an impurity or a vacancy retains its scattering
properties.
There seems to be no way of alleviating thi s fundam ent al problem . It is th e problem th at
must be overcome in order to allow for a unified treatment within real an d recipro cal space .
Th e CPA and the MCPA do allow such a treatment but neither of them yields a properly
k-d epend ent self-energy. In all other cases, parti cularly in connection with attempt s to
preserve lat tice per iodicity, the discrepancies wit h respect to scattering t heory provide a
formid able st umbling block to th eir developm ent.

CONC LUSIONS

If t here is one message th at the present pap er is intended to send, is that physical t heory
must be consistent with th e logic of mathemati cs and the logic th at connect s th e mathe
ma tics to reality (th e world of experi ment and da ta gathering .) Each of these two different
kinds of logic plays an indi spensable role in establishing the viability and predict ive power
of a formal cons truct - a th eory - in science. Both must be present and demonst rably acting
a pri ori before a theory can be assessed as to th e accuracy of it s statements.
A number of models presented previously for th e st udy of rand om alloys - CW M, SQS - were
exa mined vis-a-vis these logical demands and found to lack, often severely, in compliance to
them. As such, these formal constructs cannot be viewed as occupying a place in physical
th eory. Other form alisms, such as the DCA, were shown to have a weak formal basis,
providing no ju st ification th at clust ers of point s in recipro cal space allow t he tr eatment of
fluctu at ions in the rea l mat erial.
T here can be, of cour se, no forma l proo f that a fully satisfactory alloy theory can never be
constructe d. (T his would be th e case if, for example, th e conditions enumera te d in t he body
of th e pap er were mutually cont radictory.) However , all at tempts towards the construction
of such a theory rep orted thus far, including th e modified form of the MCPA discussed in
this paper , have failed to achieve this goal. The difficult ies with th e consiste nt ap plicat ion
of scattering theory play a crucial role in thi s regard . It seems unlikely th a t a theory
will emerge that allows one to consider the embedding problem in term s of a previously
determined self-energy. So, for those demanding perfection , the outlook is not particularly
encouraging. But , as always , t here is plenty of room for improvement . And in th e ab sence
of a forma l proof of non-existence, why not cont inue playing th e game? Ju st as long as we
keep an eye on th e rules.
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MICROSCOPICAL DERIVATION OF GINZBURG-LANDAU
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BOUNDARIES
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Russia

INTROD U CTION

Studies of inhomogen eous alloys at t ract int erest from bot h fundamental and applied
points of view, in particular , in connect ion with t he microstructural evolut ion during
phase transformat ions [1-14]. Ty pical inhomogeneit ies in such problem s are ant iphase or
int erphase boundaries (APB s or IP Bs) which separat e the differently ord ered dom ain s or
th e different phases. Bot h, expe rime ntal and th eoreti cal studies show that in sit uat ions
of practi cal int ere st th e APB or IPB wid th usually not ably exceeds t he int eratomic
dist ance [5-14]. Therefore, Ginzburg-Landau (GL) ty pe gradient expans ions can be
used to describ e the free ene rgy of such states even though th e ord er parameters and
concentration variations here are typically not small, contr ary to assumptions of th e
st andard GL th eory. Employing such genera lized GL functionals (suggested first by
Calm and Hilli ard [1]) is now referr ed to as th e phas e-field method, and it is widely
used for most different syste ms, see e. g. [7-9J. However , a number of simplifying
asumptions are usually employed in this phenomenological approach, and so its relation
to mor e consiste nt theoretical tr eatments remains uncl ear. Recently, microscopi cal
cluster methods have been developed for inhomogeneous alloys [10-15J. Below we use
these methods to deriv e th e GL fun ctionals and th en appl y th em for studies of APBs
and IP Bs.

DERIVATION OF GINZBURG-LANDAU FU N CTIO N ALS FROM CLU S
TE R EXPANSIONS FOR FREE ENERGY

To be definite, we consider a bin ary alloy AcB1- c at c::; 1/ 2. Various distributions
of atoms over la t t ice sites i are described by t he me an occupat ions c, = (nil where ni
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is uni ty when th e site i is occupied by at om A and zero ot herwise, while averaging is
taken, generally, over th e space- and time-dep end ent distribution function [10]. T he
free energy F{ Ci} in the clust er description can be writ t en as a serie s [IS]:

F = Lt = L(F; + LF;j +... L F,:!,,·k) .
l l J J•.•.k

(I)

Here P is th e free ene rgy per site i ; FI = T[Ci In Ci + (I - ci) ln(1 - Ci )] is th e mixing
ent ropy cont ribution ; F(- ·k = FI ( c,, . .. Ck ) is th e contribut ion of int eractions within 1
site cluster of site s i , .. . k ; and m is th e maxim um cluster size considered . The simplest
mean-field approximat ion (MFA) and th e pair-clu ster one (PC A) correspond to neglect
ing many-sit e contribut ions Fm >2 in (I) , while in a mor e refined , tetrahedron cluster
approximat ion - T CA (that should be used, in particular, to ad equ at ely describe th e
Lh and Llo-typ e ord erings [10]) Eq. (1) includes also 4-site te rms F1jkl [IS].

For th e homo geneous ord ered st ruct ure , th e mean occupation Cj = c(r j) at site j
with th e la ttice vector r j can be writ te n as a supe rposit ion of concent ra tion waves wit h
some superst ruct ure vectors k, [9-1:3] :

Cj = C+ L 1)sexp(iks rj) == L 11pexp(ikprj) . (2)
p

Here amplitudes 11s can be considered as ord er param et er s; the last expression includes
also term wit h 11p = C and k, = 0; and for simplicity both paramet er s 11s and factors
exp(ik sr i) are supposed to be real which is th e case , in part icular, for th e B2, Ll o
and Llrtyp e order. For weakly inhomogeneous states, amplit udes 11p in (2) are not
const ants but smoot h fun ctions of coordinates r io Thus, funct ions P{Cj } in (I ) can be
expanded in powers of differences SCj = L pS11~ exp( ikprj) where

(3)

H " '" i / "' " " ",2 i / '" ,, '" /3 ( ) d I t iere v Tip = V1)p v1'i , V"/31Ip = v 1)p V1'i v1'i , r ji = r j - r , , an t ie summa IOn
over repeat ed Cartesian ind ices a, (3 = 1,2 , :3 is impli ed. After subst it u tion of t hese
expressions into Eq . (I ) one can pro ceed from th e summati on over i to th e int egration
over cont inuous vari abl e r = r .. Making also standa rd manipulations with part-by-p art
int egration of terms with V'"/31Ip [2], one obtains for th e GL fun ctional:

(4)

Here, Va is volume per atom ; f{1Ip} is function P{Cj} in (1) average d over all sublat t ices
wit h Cj given by Eq . (2); and g;: is given by th e expression:

" /3 _ I '" ." ,13 oi ['(k k)]g pq - -2 L.J 1ij1w'ij exp z prj - qri
J

+~ L 1-'k;(1·1i - r Zi)SL exp[i(kprj - k qri)]
k.j;j#i

(.5)

where Skj = 02P /OCkOCj. Not e th at th e last term of (5) is non zero only when all
three sites i , j and k are different , and so it is pre sent only when the non-pairw ise
cont ribut ions F,:1;; in (I) are taken into account , such as th e TCA terms F1 jkl [IS] .

For th e LI 2 and Ll., phases in FCC alloys, Eq. (2) includes waves with three
vectors k . : k j = (100)2rr/a , k2 = (01O)2rr /a , and k3 = (001)2rr/a where a is th e
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(6)

lat ti ce const ant [8-13]. Th e local order within APBs in t hese ph ases can be described
by th e dist ribution of amplit udes of t hese waves (111, 1/2,1/3) of the ty pe ((, 1/, 1/) and
corre sponds to t he tetragonal symm et ry [6,10,13] . To illust rate t he form of te rms 9;:
in (5), we present th eir MFA and PCA expressions for t his ty pe local order. Tensors
9;: here can be described in te rms of their "t ransverse" and "anisot ropic" component s,
9~ = 9; i = 9; ; and 9;q = (9~~ - 9;i)· Using for sim plicity t he 2-neighbor-int eract ion
model: V n >2 = 0, one obtains in t he MFA:

1 2 a _ 1 2 } .
- 2" a V2; 9«, '1'1 - ± 2"a I I,

1 2 .L
9~ - 2" a (VI + V2); 9:0 = 9~/(0.~ ( = 0,

while t he PCA express ions for 9~ and 9;q are :

9 .L ~a2 (_ , .0+ ± ,1.+ _ x + _ rodd). 9a _ 1a2ro-'
«,0 0 4 r 1 '1' 1 2 r 2 ' (0- 4' r l'

ga ~a2( ro+ ± »t» 9.L - ~a2( -ro- - x + + ,ndd).. «,a 4 rl '1'1' (0 - 4 r l 2 r 2 '

9,.L1
" ~a2( roab _ 2 X+)' 9a = _ ~a2 , nab .., 2 T 1 2 , f}71 2 r: 1 ,

.L 1 2(±,1.- 2 - ) a ± 1 2,1. - (7)9'I(,no 4'a '1'1 - 'P2 ; 9'1 (,~ 0 = 4'a '1'1 .

Here plus or minus in (±) cor respo nds to the first or t he second pair of lower indices in
t he left-h and-side of Eqs. (6)-(7);

'P:! - T 1,./R::; R:! = [1 +2In(c;+ Cj - 2CiCj) + I~ ( ci - cj )T/2;

± - 1( ab ± dd). ,I.± = ~ ( road ± rnbd). x ± = ~( rnaa ± robb). (8)'Pu - '2 'P n CPu ' 'fin 2 T n T n ' n 2 T n T n '

In = exp(-vn/T) - 1 is t he Mayer funct ion ; an d ind ex i or j equal to a, b or d
corresponds to t he mean occup ation c, or Cj of one of t hree different sublat t ices:

Ca = C+( + 21/; Cb = C+( - 21/; Cd = C- ( . (9)

(10)

If the T eA is used , t he nearest-n eighbor cont ribut ions 'P;j in Eqs. (7) ar e repl aced by
the relevan t tet rahed ron contr ibut ions Sjj presen ted in Ref. [1 6]. For the B2 order , th ere
is on ly one ord er par am eter 1/_ = 1/ [10]; ter ms 9;: have a cubic symme t ry: 9;: = O"/39pq;
and t he MFA and PCA expressions for 9pq are similar to t hose for 9~ in Eqs. (6) and
(7).

EQUAT ION S RELATING THE LO CAL COMPOSITION AND LOCAL
ORDER WITHIN APB

Let us now conside r the case of a plane APB (or IP B) when par am et ers 1/p in
(2) depend only on th e dist an ce ~ = rn., where no = (cos a , sin a cos 'P ,sin a sin 'P ) is
normal to th e APB plan e. To find t he equilibr ium structure, one should minimize th e
funct iona l (4) with resp ect to funct ions 1/p(e) at the fixed tot al number of a toms [2J .
Let us first consider t he APB between two B2-ord ered dom ain s. T hen t he vari ation al
equa t ions for th e orde r par am et er 1/(e) and th e concent rat iou c(e) have t he form:

"+ "+ 1 '1'1( ' )2 + '1'1 , , + (ne I oe)( ' )2 _ If .
9~'1 1/ 9neC 2"9'1 1/ o; 1/C 90 - 2"9'1 C - 2" ~ ,

"+ " + ( ')0 1 ~'I ) ( ')2+ cc I , + I cc _ 1 ( r )9'le1/ 90eC 9'1 - 2"90 1/ 9~ 1/C 2"90 - 2" J c - II .
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Here, prime means taking derivative with respect to ~ ; t he lower ind ex I] or C mean s
taking derivative with respect to I] or c; and It is th e chemi cal potential. At ~ --+ 00
functions c and 7] tend to th eir equilibrium values, Co and 7]0 (co).

Multiplying the first and second Eq . (10) , respectively, by 7]' and c' ; summing th em;
and int egrating the result, we obtain th e first int egral of thi s system of equations:

(11 )

where 0 is th e non-gradien part of the local excess grand canonical potenti al per atom,

o = It», c) - fa - It( c - co), (12)
and index zero at t he function means its value at 7] = 7]0 and c = Co .

In what follows , it is convenient to consider the order param et er 7] as an indep en
dent variable, while c and 0 as it s functions determined by Eqs. (10)-(12). Then th e
depend ence 77'(7]) is determined by Eq . (11):

7/ = d7]/d~ = (0/G)I /2 (13)

where G is (g,,,,+ 2g,/C c+ gee(2), and c is dcl dt], Using Eq. (13) one can eliminate 7]' in
the system of equat ions (10) and obtain the differential equation for c(7] ), to be called
th e composition-order equation (COE) :

where <I> is a linear fun ction of derivatives g~q :

<P = (gl}C + gcec)[~g:;'1 +g~"c + (g~C _ ~g~e) c2] -

(g + 9 c) (g" C_ ~gry " +gCCc + ~gCC(2).
- ' 1'1 nc ry 2 e n 2 C

(15)

(16)

Because of th e equilibrium condit ions: f ,? = 0, f~ = It , function 0(7]) (12) at 1]--+ 7]0 is
proportional to (7]- 7]0)2, T herefore, th e initi al value C(7]0) can be found by taking th e
7/ --+ 1]0 limit of Eq . (14).

For the given solut ion c(7]) of COE, th e coordinate dependence 7](0 is determined
by int egrating Eq. (1:3) :

1"~=6+ d7](G/0)1 /2
'I.

wher e th e reference point 6 is det ermined by th e choice of value 7]1 = 7](6) . For th e
symmetrical APB for which 7] --+ ±7]0 at ~ --+ ±oo, function s c, 0 and G are even in I],

and it is natural to put 6 = 0 at 7]1 = O. But for an IPB sepa rat ing th e ordered and
th e disord ered phases, value s 7]1 --+ 0 corre spond to ~ --+ (-00), and so 6 should be
chosen at some int ermediate value 7]1 '

T he sur face energy (J" and th e surface segregat ion r is th e excess of the grand canon
ical pot ential and of B atoms, respectively, per unit are a [2] . Taking into account Eqs .
(11)-(1:3) one obtain s for th e surface energy:

(17)

where 7]min is (-7]0) for an APB and zero for an IPB, while th e surface segregation is
given by th e expression:
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For a symmet rical APB , th e int egral in (17) or (18) can be writ ten as twice th e int egral
over positi ve 71.

Relations simil ar to Eqs. (11)-(18) can also be derived for phases with severa l order
paramete rs, such as th e LI z or Ll o phase. In particular , for an APB separa t ing two
LI z-ord ered dom ain s, the order parameters (711 , tn , 713) have th e form ((,71,1]) ment ioned
above with th e limiting values (710 , 710 ,710) and (710, -710, -710) at e-t ± oo. T he varia
tional equat ions and th eir first integral have th e form analogous to Eqs. (10) and (11)
but include three functi ons, c(O , ((0 and 71(0. It is aga in convenient to consider c
and ( as functions of 1] and obta in a system of equations for c(1]) and ((71) analogous
to Ca E (14) . Equ ation s for e(71) , (Y and r preserve th eir form (16)-(1 8) but G(1]) now
includes th e derivati ve ( = d(/d71 and six funct ions gpq, which are relat ed to g~,a in
Eqs. (6), (7) as follows:

gpq(a )=g;q+g;qcosZa , (19)

where a is the angl e between th e APB or ientat ion and the local tet ragona lity axi s.
When th e nearest- neighbor interaction V I much exceeds th e rest ones (as in CuAu
based alloys [10-13]), th e functi ons gpq (a) are highly anisot ropic, which is illustrated by
Eqs , (6): g~,/ ~ sinz a ; gee ~ cosz a . It results in a not able anisot ropy of distributions
of APB s, including the presence of many low-energy "conservat ive" APBs with a '::: 0
in th e Liz phase and a '::: 7r / 2 in the Ll o phase, as well as a peculiar alignment of APB s
in "twinned" Ll., st ructures [10-1:3]. In more detail , Ca E and Eqs. (16)-(19) for th e
Li z and Ll o phases will be discussed elsewhere.

Let us also not e tha t for an APB separating two Llo-ordered domains with th e same
tet ragona lity axis, th e local order par amet ers (7/I , 71z , 1]3) vary from values ((0,0 ,0) at
e-t 00 to (- (0,0 ,0) at e-t -00. T hus th e GL equa tions always have th e solution
(c, 7/1 , 71z, 1]3) of the form (c, (, 0, 0) with just two nonzero functi ons, c(0 and ( (0. Th e
"symme try breakin g " solution with non- zero 7/Zand 713, in part icular , th at of th e type
(c,(, 71, 71)mentioned above, can exist, too , and it seems usuall y to have th e lower ene rgy.
However, the T CA-b ased simulations of kineti cs of Ll o orderin g [11,12] show that th ese
"not-necessary" components 71" are usually small: 171,, 1« 1(/ (see, for example, figure
12 in [11 ]), and so the "symmet rical" solut ion of Ca E of th e form (c, (, 0, 0) can provide
a sufficient ly accurate description of such APB s. Thus, in this work for simplicity we
describ e APB s in the Ll o phase with the simplest form of Ca E (14) which includes
only one function c(() to be determined .

COMPARISON WITH THE PHASE-FIELD DESCRIPTION

Th ere are three main assumpt ions used in the convention al vers ions of th e phase
field method (PFM) [7-9]:

(i) Coefficient s gpq at the gradient te rms of GL functional s are supposed to not
depend on th e local values of paramet ers 71r.

(ii ) Non-diagona l terms gpq, such as gne, g,/co etc ., as well as an "a nisot ropic" term
g~c ' are pu t zero "on considera tions of symmetry" (which is a formal consequence of
(i)).

(iii) Th e free ene rgy densit y j(7Ip) for a homogeneous alloy is approximate d by a
polynom with coefficients fitted to the equilibrium values 71~ and/or some oth er exper
imental parameters.

Eqs. (6)-(7) show tha t th e assumptions (i) and (ii) may corr espond only to th e
simplest MFA , while in more accur at e approaches, such as th e PCA and TC A, th e
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Figure I: Reduced values g« ITc a 2 versus order parameter ( for an APB separa t ing two
Ll o-ordered dom ains wit h t he sa me tet ragonalit y ax is for t he Ni-AI-t yp e alloy model
at c = 0.5, the reduced te m perature T' = T ITe = 0.7, 11 = 0, and different angles Q

between the AP B or ien t at ion and t he tet ragonality axis.

dep enden ces 9;:(llr ) can be significant. Valid ity of t he po lynomial inter pola tion (iii) at
large order parameter values close to the sat ur at ion value shou ld also be exami ned .

To get an idea about a possible sca le of er ro rs brought by t he ass um pt ions (i)
(iii), we calculated pr op erti es of APBs in th e Ll ., ph ase for a realisti c alloy model
(to be refer red to : "Ni- Al-type model" ) wit h t he int eracti on paramet ers est imated by
Chassagne et al. [17] from th eir expe rime ntal dat a for Ni- Al alloys: vsl», = 0.125;
vsl», = .:....0 .021; and v~/v l = - 0. 12:3. T hen we compared our results wit h those
obtaine d under th e PFM-typ e description of th e sa me model. Som e resu lts of t his
comparison are pr esen ted in figures I-a. T he com pa rison shows:

(i) Variat ion of te rms g pq under var iation of local par am eters li p with in AP Bs ca n be
significant. In part icul ar , for t he Ni-AI-type model at T' = TITe = 0.7, t hese variat ions
reach .50-100 % for t he Ll 0 phase (see figur e I), an d 20- aO% for t he Ll , ph ase.

(ii) T he "non-d iagona l" 9pq and g~c te rms ca n also be im portant. In par ti cul ar , for
the Ni-Al-ty pe mod el at T' = T ITe = 0.7, te rms g~e are ty pica lly not small in t he Ll 0

ph ase: s: ~ (0.4 - 0.6) g;;" while g, ( ar e not iceable in t he L12 phase at c > 0.25 wher e
g,,( ~ (0.2 - o.a)g« .

(i ii) Possibl e errors of polinomial inerpolations of f (llp) are illusrat ed in figure s 2
and :3. Cur ve PFM-a in figure 2 cor respond s to the int erpo lation of t he T CA ca lculated
f = /TCA (() by t he polynom a(-e+(4/2(5) fitted to th e "t rue" equilibrium value (lCA
and th e "t rue" curvature at ( = 0, whi le t he curve PFM-b is fitted to th e equilibrium
valu e (~FA and th e "tru e" MFA value of t he coefficient b at (4 in the Land au ex pa nsion
at small ( . Figure a shows that using such interpola tions for t he description of proper t ies
of AP B can lead to notable erro rs .

The or igin of the large distort ion of th e form of f (() at large values (o(T ) ~ (~nax = C

by polynom ial interpolations seems to be mainly rela ted to t he mixing entropy term
Fi(Ci) in t he clust er expansion ( I) . At sm all (c - () t his te rm incl ud es t he "dilute
solut ion" singularity ~ (c - () In (c - () which descr ibes a sha rp vari ation of J( () near
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Figure 2: The reduced free energy density I( (l ITe in th e Ll o phase at c = 0.5 and 11 = 0
for t he Ni- Al-ty pe model by Chassagne et al. (1989) at different reduced temper atures
T' = T ITc. Th e upper MFA and T CA cur ves correspond to T' = 0.9, and th e lower ones,
to T' = 0.7. Cur ve PFM-b corresponds to t he polynom ial interpolat ion I = b((4_ 2(g( 2)
with b = bM FA = Te1 12, and curve PFM-a , to t he interpolat ion I = a(_ (2 + (4/ 2(g )
wit h a = - (8!TcAI8(2) c=0 where bot h equilibrium value (0 and !TCA correspond to
th e TeA calc ulation at T' = 0.7.

(0. At t he same time, j ust t his region is imp ort ant for both t he fit of t he inte rpola
t ion pa ra mete rs and t he calc ulat ions of cha racterist ics of APB . Under t he polynomial
int erpolat ion t his sha rp var iat ion is lost , which can lead to significant errors in describ
ing t he APB prop er ties. T herefore , for t he PFM-typ e treatments, one may suggest to
explicit ly write t he mi xing entropy term in t he free energy density I , using t he polyno
mial int erpolat ion only for t he rest contributions being more smoot h functions of local
paramet ers lip .

SEGREGAT ION AT APB NEAR THE SE COND-ORDER TRANSITION
LINE

Let us discuss some applications of Eqs, (14)-( 19) . F irst , we consider t he case when
th e equilibrium ord er par am et er 110 is small. T hen t he fun cti on I in (4) can be written
as the Land au ex pa nsion:

(20)

where <p, a, b and d are some fun ct ions of conce nt rat ion c and temperature T . T he
equilibrium value 110 is det ermined by t he equa t ion 1,~ = 0, while th e orde ring spinodal
T = Ts ( c) (t he disord ered ph ase stability lim it) is det ermined by t he equa t ion: a(c, T) =

O. Small values 110 under conside rat ion corres pond to C{j,T points near th e ordering
spinoda l where a(Co, T ) is small.

It is clear from both phy sical considerat ions and th e result s below th at t he difference
(c - co) at small 110 is also small. T herefore, functio ns (Ie - 11 ) and I~ in Eq. (14) can
be ex pa nded in powers of (c - Co) , 11 and 110:

i; -/1

1"
a~ (712

- 11~ ) + <P~e (c - Co) +...
411bo (112 - 11~ ) + 21I a~(C - Co) +...

(21)

(22)
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Figure 3: Left : Temperature dependence of th e redu ced surface energy a; = aa 2/Te for
the same APB as in figure 1 at a = IT / 4. Curve PFM-b corresponds to the polynomial
interpolation I = b((4 - 2(;;e) wit h b = Te / 12 and (0 = (J'cA(T) . Right : Sam e as in
th e left figure bu t for the APB width 5(T) defined as th e distance between the points
~+ and ~_ for which: 11(~+) = 0.9110 , and 11(~_) = -0.9110 '

Here <p~c is (82<p /8c2)0, and th e dots mean terms of higher ord ers in "7~ . T he analogous
expansion of!1( c, II) starts wit h terms bilinear in (c-co) and ( 112_ 11~), while for functions
g1JC and c t he exp ansions start with terms linear in II. Thus, th e terms wit h !1 and I~ in
(14) are proportiona l to Ilci , being small compared to (fe- IL) ~ 11~ , an d COE is redu ced
to th e equation Ie= 11, which yie lds:

(23)

Taki ng th e derivative of equat ion a(c, T) = 0, one obtains ( -a~ ) = T:a , where a is
(8a /8T)0 and T: = dTs /dc . Thus, the surface segregat ion at AP B is proportional to
the ordering spi nodal slope T:(co), and so it decreases with approaching the critical
point where T: = O.

Let us now suppose the alloy state co,T in th e c, T plane to be close to the second
order transit ion line Ts ( c) far from the possible tri critical point s. Then th e higher-order
terms in expansions (20)-(22) can be neglected, and for th e function !1("7) (12) such
expansion yields:

(24)

Using Eqs. (16)-( 18) and (24) one obtains in this case for 1M), c( ~), th e AP B energy
a and th e segregat ion I':

110 tanh(~/5) ;

8 3 ( - ) 1/2
;--3 110 9 b ;
. Va

Co - cW = 11~ '\ cosh - 2 ( ~/5 ) ;

r = ! "70 ,\(g/b)I /2
Va

(25)

where ,\ is a T:/<P~e ; 9 is g~~; and 5 = (gh~b) I /2 is t he APB widt h . T hese ex
pressions generalize th e earlier MFA result s [14] to th e case of any GL functi onal.
The temperature or the concentration dep endence of th e segregation r at small "70
is more sharp than that of the APB energ y: r (X 110 ~ (Ts - T) I/2 ~ (co - Cs)I /2

408



wher e T, = Ts(Co) or c, = cs(T ) correspon d to t he second-order transit ion line, while
(T ex 1]g~ iT; - T )3/ 2 ~ (Co - cs )3/ 2. Eqs. (24)-(25) also show that the presence of segre
gation results in a renormalization of t he Landau parameter bo ente ring characte rist ics
of APB to t he lesser value b given by Eq, (24) . It resul t s in a decrease of the APB
energ y (T an d an increas e of its width 15 and segregation r under decreasing tem perature
T along t he ordering spinodal T = Ts(c).

STRUCTURE OF APBS AN D IPBS NEAR AND FAR FROM THE TRI
CR IT IC AL POINT

The point Co , T at which both a(Co, T) in (20) an d b in (24) vanish corresponds to
t he tri crit ical point Ct, Tt • At T < Ti, t he second-order transition line Ts ( c) in the c, T
plan e splits into two binodals, Cbo (T ) an d Cbd(T ), delim it ing the single-phase ord ered
and disordered field , resp ectively. Such tri crit ica l poin t is obser ved , for example, in Fe
Al alloys [4]. At t his point , t he lowest order term s in Eqs. (22) an d (24) vanish, so that
one should conside r t he next-order terms , and function n (12) at small x = (Co - Cl)
and t = (T - Ttl takes t he form:

(26)

Here, h = h(x , t ) is a linear function of x and t , which can be writ ten in terms of
the binodal tem perature derivati ve c~o = dCbo/d T as: li = v(x - t c~o ) , while A and
v are some positive constants. Using Eqs. (16)-( 18) and (26), one obtai ns for t he
characte rist ics of AP B near Ti :

(T =

11o sinh y .
(cosh'' y + 0')1 /2'

.1(0') ( A 4)1 /2 .
V a 9 11o , (27)

Here y is UJ; a is II5Ih; while J, L(O') and .1(0') are:

J = [g/A 1]~ (h + II~W /2 ; L(O' ) = In [(I + 0')1/2+ 0'1/2];
1

.1(0') = 20'2 [( I +4O' )L(O' ) + (20' - 1)(0' + 0'2)1 /2 ]. (28)

T he funct ion h(x , t) in (26)-(28) is prop ortional to t he distance in t he c, T plane from
point C{) , T to t he binoda l cbo (T ), while II~ is prop ort ional to t he dist ance to t he ord ering
spino da l Ts(c). T hus at small 0' « I, Eqs , (26)-(28) turn to (24)-(25) with b= Ah an d
describe the cri t ica l behav iour of APB near Ts ( c) discussed above. The oppos ite case
a » 1 correspo nds to th e region of "wet t ing" AP Bs which has recent ly received mu ch
attentio n [3,6,18]. The value h = 0 corr espo nds to t he ord ered state wit h Co = Cbo(T) ,
and th en COE (14) describes an IPS bet wen th is st ate and t he disordered state wit h
lid = 0 and Cd = Cbd(T) . Substituting Eq . (26) wit h h = 0 into Eqs. (16) and (17), we
obtain for this IP B:

(29)

(TAPB = 2(TIPB. (30)

Here z is t /r5 j ; 151 = (g/A) I/2/211~ is t he IPB width ; (T[PB = (gA1]'J)1/2/2va is th e IPB
energy; Cd is Co - .\1]6; and t he coordinate tl = 0 in (16) is chosen at III = 1]0/ ,;2
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Figure 4: Left: Phase diagram for the alloy model with B2 order ing and tri cri t ical poin t
(B2-t model) for which: vsl» , = - 2.6, and V3/V] = 0.4. Right : Surface segregation
I'(c) for the 82-t mod el at T > T, (lower curve), and at T < T, (upper curve) .

where c(t/1 ) is (co + cd )/ 2. Equations (29) show th at the order parameter f/ in the
disordered phase decreases with moving from IPB much more slowly th an th e concen
t ration deviat ion: f/ ~ (c - Cd) 1/2. Equ ations (27)-(30) also show th at , in the "wet ting"
regime of large o , the profiles f/(O and c(O in Eq. (27) correspond to the presence,
at ~± = ±<5] ln o , of two almost independent IPBs described by Eqs, (29) (see figures
,5a and 5b below). T he to ta l width I ~ (~+ - ~_) and the segregat ion r for such APB
are prop ort ional to In(i /h ) while th e energy difference (UAPB - 2UIPB) is proport ional
to h In( l /h ), which are usual dependences for the wet t ing regime [19]. Eqs, (27)-(30)
specify these relat ions for the vicinity of tr icrit ical points and enable one to follow t he
tr ansition from wetti ng to the crit ical behaviour of APBs under the variat ion of T or

Co ·
Let us discuss the main qualit ati ve features of segregat ion at APBs far from the

phase tr ansition lines. To thi s end we use the simple MFA model of an alloy with B2
ordering and tri criti cal point (B2-t model) for which vslv, = -2.6, V3/V ] = 0.4, while
its MFA phase diagram is shown in the left figure 4. For th is model, the coefficient gee in
Eq, (14) vanishes, and so the COE is reduced to the simple nonlinear equat ion rather
th an to the different ial one. Th e right figure 4 shows the concent rat ion dependence
of the segregat ion r( c) at different temp eratures. At the sto ichiometric composit ion
c = 0.5, the segregation is absent because of the symmet ry of an alloy AeBI - e with
pair interact ions with respect to the interchange of all A and B at oms [2]. Figure
4 illustr ates both th e above-ment ioned sharp increase of r( c) near Ta(c) at T > Tt ,

and the logar ithmic divergence of I'{ c) in the wet t ing regime at c -t cb(T) . Figures
5, a- c illust rate th e st ruct ure of IPB s between the ordered and disordered phase. We
sec, in parti cular, th at in the disordered phase, th e order param eter decreases with
moving from IPB more slowly tha n th e concentrat ion deviat ion, both near and far from
the tri criti cal point , and so it seems to be a genera l feature of order-disorder phase
bound aries.

Let us now compare the results of the present approach with the more quant itat ive
studies of AP Bs available. Schm id and Binder [5] applied Monte Carlo methods to
investiga te the st ruct ure of APB for the Fe-AI ty pe model wit h the phase diagram
shown in figur e 6. In figur es 6 and 7 we compare their result s with our Te A and
MFA calculat ions for the same mod el. Figur e 7 shows that the GL ap proach describ es
the st ruct ure of AP B for this model fai rly well, t hough the APB width seems to be
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Figure 5: (a) Redu ced order param eter 1/11/0, and (b) reduced concent ration deviation
(C - co)h5, near tr icrit ical point in the wett ing regime described by Eqs. (17) at
CY = 1/51h = 104. (c) Profiles 1/(0 and c(o for IPB s in the B2-t mo del at different
reduced temperatures T' < T: ~ 0.75.

somewhat und erestimat ed .
We also tried to compare our result s with th e first pri nciple calcu lation by Asta

and Quong [8] for Ti-AI alloys at 1300 K. As th ese authors did not describ e details
of their calculations, we used for comparison th e above-ment ioned Ni-AI-type mod el
in the Ll 0 phase with th e same equilibrium order param eter value 1/0 ~ 0.45 as that
found by Asta an d Quong; it corres ponds to th e redu ced tem perature T' = 0.62 in our
model. Figure 8 shows th at th e main features of st ruct ure and segregati on at APB in
the first-principle calcula t ion for Ti-AI and in our calcula t ion for the Ni-AI-ty pe mod el
seem to be similar, in spite of th e difference of the alloys considered (as well as the
approximat ions mentioned in the end of secti on 3). It may impl y that the ty pe of
effective interac tio ns in th e Ti-Al and Ni-AI systems is not grea rt ly different , while the
APB struct ure, at th e given concent ration c and temperature T', is not very sensit ive
to the interacti on det ails. Figure 8 also shows that the GL ap proach seems to again
und erestimate the APB width.

In figure 9 we show th e concent rat ion depend ence of the APB energy 0'(c) at different
temp eratures calculated for th e Ni-AI-type model and compa re it with the similar de
pend ence 0'AQ (c) found by Asta and Quong [8] for T i-AI alloys at 1300 K. As th e absolute
value O'AQ(C) depends on the interaction par ameters not given in Ref. [8], in figure 9 we
present th e sca led quantity O'~Q ( c) = CY O'AQ(C) with the sca ling factor CY fitted to our cal
culated value O'TCA at C= Co = 0.5 and T~ = 0.62: CY = O'TCA(CO , T~)IO'AQ(Co ). Figure 9
shows the similarity of the first-principle and the T e A (but not MFA) calculated concen
tratio n depe ndences O'(c). In addit ion to that, the comparison of depen dences O'TCA(C)
at different temperatures T' shows tha t with lowering T' th ese depend ences become
more and more sharp, part icularly near the sto ichiome tr ic concentrat ion Co = 0.5. It il-
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c
Figure 6: Phase diagram for th e Fe- Al-type model by Schmid and Binder [5] for which:
V2 / V I = 0.167, and V3/V I = - 0.208. Thi ck line , T CA and PCA; dash ed line, MFA;
circles and thin line, Mont e Carlo results.

lust rates the low-tem perature anomalies of APB energies in the short -range-inte ract ion
alloy systems, which are discussed below in sect ion 8.

WETTING R E LAT IO N S FOR SYSTEMS WITH SEVERAL OR DER PA
RAMETERS

Let us now appl y Eqs. (14)-( 17) to derive the wet t ing relat ion (30) for the phases
with several order parameters, in parti cular, for the Lh phase in equilibrium with the
LJo or the disord ered FCC (A I) phase. Thi s problem was discussed by a number of
authors [:1 ,6,18] bu t the general proof seems to be absent yet. Let us first note that in
considerat ion of [PB , the initi al condit ion to Ca E (14) can be put in either the ordered
or the disordered phase, i.e. at (c,7/) values equal to eit her (Co, 7/0) or (Cd, 0), while the
solut ion CIPS(7/) at eit her choice is the same and unique. T herefore, in consideration
of APB with the same init ial values eo, 7/0, the solut ion CAPS( 7/) coincides with CIPS( 7/)
at 7/ > 0, it is CAPS( -7/) at '/ < 0, and so Eq. (30) follows from Eq. (17). For the
APB or IPB in the Ll 2 phase, the local order can be described by the par ameters
(c, (, 7/ ) mentioned above, and their initi al values in COE are (eo, 7/0, 7/0 ), while the final
ones are (eo, 7/0 , -7/0 ), (Cd ,0, 0), and (Cf, 7/1 , 0) for the case of an APB , [PB(Ll 2-AI), and
[PB (LI TLl o), respectively, where CI and 7/1 correspond to th e second binodal LITLl o.
T herefore, the wet ti ng relation (:30) for the LI2-AI or L12-Ll o phase equilibrium follows
from CaE and Eq. (17), just as for th e single-order-parameter case. Note, however ,
that at the given orient at ion no there are three ty pes of an AP B in the LI2 phase with
the local ord er (7/I,7/2, 7/3) of the form ((, n, 7/), (7/, (, 7/) or (7/,7/, (), and the struct ure and
energy for each ty pe is, generally, different . Th erefore, there are at least three ty pes of
an IPB(LI2-AI ) corresponding to "a half" of the relevant APB in the wettin g limit . In
the course of the kineti cal wetting (for example, und er AI-+AI +Ll 2 transformations
st udied in [7,10]) each AP B first tr ansforms into two "its own" IPB s, bu t later on these
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figure 6.
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Fig ure 8: Local order pa ra meter 1](0 (left ) and local concentrat ion c(~) (right) within
AP B in the Ll o ph ase at Co = 0.46. Thick an d dashed line, T CA an d MFA calculations
for the Ni-Al-type mod el at T' = 0.62; circles, first- principle calcula t ions by Ast a and
Quong [8] for Ti -Al alloys at T = 1300 K.

IPBs can evolve to other typ es.
T he effects of anisot ropy und er wetting AP Bs in Eqs. (16)-(18) are desc ribed by

a fact or G1
/

Z
, while t he main contribu t ion to 0 (1/) here is determined by t he th er

mo dyna mic relations. In pa rticular, singular contri but ions to (T and r under wett ing
Ll z-APB by t he Al or Ll., ph ase correspo nd to the reg ion of small 1] where 0 has t he
same form as in Eq. (26), while G(I/) is reduced to its first term g~~ as fun cti ons g'I('
g'IC ' ( an d c, bein g odd in 1], van ish at small 1/. T hus t he main cont ribut ions to th e
AP B wid th and energy t ake t he form:

I ~ g~~Z In (l/h); ( (TAP B - 2(TIPB ) ~ g~~2 h In (1 /h), (31)

where t he angular dependen ce g'm is given by (19). Th erefore, th e wett ing effects can
reveale a significant anisotropy, par ti cul arl y in th e short -ra nge int eract ion sys te ms. It
agrees wit h some previous resul t s [3,6,18J.
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Figur e 9: Conce nt rat ion dep end ence of t he redu ced sur face energy oA c) in t he Ll.,
phase. Thick and dashed line, TC A and MFA calculat ions for th e Ni- Al-type model;
circles, first -princip le calculat ions by Ast a and Quong [8J for Ti-Al alloys at T = 1300
K scaled by th e value crT CA at c = 0.5, T' = 0.62 as explained in th e text .

LOW- TEMPERATURE ANOMALIES OF AP B ENERGY

Cahn and Kikuchi [2] not ed t hat for t he nearest-n eighbor int eracti on mod el of a
binary ordered alloy AcBI - c (t hey considered t he B2 order in t he BCe lattice), th e
AP B energy cr(c,T ) at T -t 0 should vanish at any non-stoichiometri c value c of.
0.5 , while at c = 0.5, a monotonously incr eases wit h lowering T up to some finite
value. T his is because t he addit ion of an extra B or A atom to t he perfectly ord ered
sto ichiome t ric struct ure leads to th e breakin g of th e same number of "favoura ble bond s"
A-B both within th e ordered dom ain and near it s APB. It can be easily und erstood
considering, for example, th e simplest case of th e two-dimensional squa re lattice for
which an addit ion of an extra B atom to t he perfectl y ordered "checkered" st ructure
AB breakes 4 favourab le bond s A-B irrespectively of t he ot her ext ra ato m positions.
Then a vert ica l or horizontal AP B can be formed from t he initi al single-do main order ed
state wit h t he randomly distr ibu ted "excess " B atoms in the following two steps: (i)
transferr ing some of t hese exces s B atoms from t heir random posit ions so as to for m
a conti nuous vert ical or horizontal row of B atoms sepa ra ti ng two "in-phase" ordered
domains, and (ii) displacing t hese two dom ains wit h respect to each oth er along the row
by one lat ti ce constant . Both operations (i) and (ii) do not change t he tot al a lloy energy
E, and so th e final state with an APB and two ant iphase-ordered dom ains has th e same
energy as t he initial state . Th erefore, t he free energy loss, JF = J(E - T 8 ), und er
th e creat ion of such APB is relat ed ju st to th e entropic cont ribut ion, which vani shes at
T -t o. It impli es that t he concent ration dep end en ce cr(c) near th e stoichiomet ric value
c = 0.5 at low T should be very sha rp becoming for mally discont inu es at T = O. It is
illust rat ed by cur ves cr(c) for th e nea rest-neighbor-interact ion (NN I) mode l in figure
10.

To get an idea about th e scale of similar low-temperat ure anomalies in more realisti c
systems in which th e not- nearest-neighb or-interact ions V,, > 1 are also present , we used
COE to calculate the conce ntrat ion and temperature dep endences cr(c, T ) for t he two
models:
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Figure 10: Temperature depend ence of the redu ced surface energy ar(T) for some
alloy models wit h B2 ordering calculated in the MFA. Thin lines, th e discret e lattice
calculat ions by Cahn and Kikuchi [2] for the nearest-neighbo r-interact ion (NN I) model;
dashed lines, present calculat ions for the NNI-model; t hick lines, present calculations
for the almost-nearest-neighbor-interaction (ANNI) model for which: V2 /V 1 = V3 /V1 =
0.05, and V4 /1I 1 = 0.01.

(i) Th e "almost-nearest- neighbor-interact ion" (ANNI) mod el of a B2-ordered alloy
in the BCC lat ti ce, with the following pair inte rac t ion parameters: V2/V1 = V3 / 1I1 =
0.05, and 114/V 1 = 0.01, being t reated in the MFA for comparison wit h the analogous
discrete latti ce calcula tions by Calm an d Kiku chi [2J for the NNI mod el.

(ii) Th e above-ment ioned Ni-Al type model of an Ll o-ordered alloy in th e FCC
lat tice, being t rea te d in both th e MFA and T CA.

Some results of these calcula tions are pr esent ed in figur es 10 and I I. Let us first
discuss the result s for the NNI mod el presen ted in figure 10. Th e comparison of our GL
approach (dashed lines) wit h the discret e lat tice calculat ions by Ca lm and Kiku chi (thin
lines) shows that the neglect of the dicret e lat t ice st ruct ure leads to some overesti mation
of the AP B energy. However , at high and intermediate temperatures, T' ;::: 0.5, t he
relevant errors are virtua lly negligible, and they remai n to be small up to rath er low
T' ;::: 0.2, part icularly at small deviati ons of concent ra t ion c from the stoi chiometric
value Co = 0.5. T he presence of not-nearest-neighbo r interactions (characterist ic of
rea l alloys ) corresponds to an increase of the interaction range with respect to to the
NNI model, which should result in a higher accuracy of th e continuous app roximations.
Th erefore, for real alloys, t he discrete lat tice effects shoud be still less th an those for
the NNI mod el shown in figure 10.

Th e result s for th e ANNI mod el (thi ck curves in figure 10) show th at the presence
of even small not-nearest -neighb or inte ract ions leads to th e drasti c change in th e low
temperature behaviour of the AP B energy: at T -+ 0, the a(T, c) value becomes finite
and concent rat ion-dependent. However, wit h elevat ing tem perat ure the influence of
such small int era ct ions rap idly weakens, and at T' ;::: 0.3 - 0.4, the AP B energies for
the NNI and ANN I models do virt ually coincide.

Figure II (as well as figure 9) shows the temp erature and concent rat ion depend ences
of APB energies calculated for a more realisti c, Ni-Al-type model with the Ll o order.
The near est-neighbo r int eracti on III for this model much exceeds the other intera ctions
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Figure 11: Temperat ure dep end ence of the redu ced sur face energy ar(T) for (100)
orient ed APBs und er Ll o ord erin g in t he Ni-Al-type alloy model. Thick lines, T CA;
dashed lines, MFA .

Un> ! (see sectio n 4), and th is is also ty pical for most of real a lloys . Therefore , th e
abo ve-di scussed anomalies in th e dep end en ces a(c, T ) should be manifested for th e Ni
AI-type model, and our calcula tions for th is mod el can also illustrate the sca le of similar
anomalies for real alloys .

Figure 11 shows that th e general form of th ese anoma lies, bo th in th e MFA and
T CA calcula t ions , ap pears to be t he sa me as that for th e ANNI model in figure 10.
In particular , at all non- soichiometric concent ra tions c =1= 0.5, th e cha racteris t ic max
ima in th e te mpera t ure depend en ces a(T) are also present for th e Ni-Al-type model.
Figur e II also shows th at in more accur a te, T CA calculat ions, the anomalies have a
larger scale and are manifest ed at higher temperatures compared to more crude, MFA
calculat ions . In addt ion to th at , Figur es 11 and 9 show t hat t he "sharpening" of t he
concent rat ion dep end ences a(c) with lower ing T is quite pronounced even at not very
low te mperatur es, T' ~ 0.5 - 0.6, and so th ese effects probably ca n be observ ed in
experime nts with the properly relaxed and equilibra te d APBs [8].

ACKNOWLEDGEMENTS

The aut hors are much indebted to Georges Martin for numerous stimulating discu s
sions . Th e work was supported by th e Russian Fund of Basic Research und er Grants
No. 00-02-17692 and 00-15-96709 .

References

[1] J .W . Calm and J. E. Hilliard , Free Energy of a Nonuniform System : 1. lntefacial
Free Energy, J. Chern. Phys. 28(2),258-267 (1958) .

416



[2] J.W. Cahn and R. Kikuchi , Theory of Domain Walls in Ordered Structures: II and
III , J. Phys . Chem . Solids 23(1) ,137-151 (1962), and 27(5), 1305-1317 (1966).

[3] R. Kiku chi and J .W. Calm , Theory of Int erphase and Antiphase Boundaries in
F.C.C. Alloys, Acta Met. 27(5), 1337-135:3 (1979).

[4] S.M. Allen and J .W. Calm, Mechan isms of Phase Transformations within the Mis
cibility Gap of Fe-rich Fe-AI Alloys, Acta Met . 24(2), 425-437 (1976).

[5] F. Schmid and K. Binder, Rough interphaces in a bcc-ba sed binary allloy, Phys.
Rev. B 46(20), 13553-13564 (1992).

[6] R.J . Braun, J .W. Calm , G.B. McFadd en and A.A. Wheeler , Anisotropy of Inter
pha ces in an Ordered Alloy: A Miltipl e-Order-Parameter Model, Phil . Trans. Roy .
Soc. London A 355(17:30), [787-1833 (1997).

[7] Y. Wang, D. Banerjee, C.C. Su and A.G. Khachaturyan , Field kinetic mode l and
computer simulation of precipitation of L1 2 ordered intermetallics from F.C .C.
solid solut ion, Acta Mat er. 46(9), 298:3-3001 (1998).

[8] M. Asta and A. Quong , Th e concentration and temp erature dependences of
ant iphase-bounda ry energies in , -TiAI: a first-principle study, Phil . Mag. Lett.
76(5), 33[-339 (1997).

[9] L. Provill e and A. Finel, Kinetics of the coherent order-di sorder transition in AhZr,
Phys . Rev. B 64, 054104 - (1-7) (2001).

[10] K.D. Belashchenko, V.Yu. Dobret sov, I.R. Pankratov , G.D. Samolyuk and V.G.
Vaks, Th e kineti c clust er-field method and its applicat ion to studies of Lh-type
orderings in alloys, and : Kinetic features of alloy ordering with many types of
ordered domain: D03-type orderings, J. Phys.: Condens. Matt er 11 (52), 1059:3
10620 and 10567-10592 ([999) .

[11] I.R. Pankratov and V.G. Yaks, Kinetics of Ll.j-type and L[2-typ e orderings in
alloys at early stages of phas e transfotmations, J. Phys. : Condens. Matt er 13(32),
6031-6058 (2001).

[12] K.D. Belashchenko, I.R . Pankratov , G.D. Samolynk and V.G. Vaks, Kineti cs of
formation of twinn ed structures under Lls-type orderings in alloys, J. Phys .: Con
dens . Matt er 14 (2), 56.5-589 (2002).

[13] V.G. Vaks, Ginzburg-Landau-type theory of antiphase boundaries in poly twinn ed
st ructures, Pis . Zh. Eksp. Teor. Fiz. 73(5), 274-278 (2001) [J ETP Lett. 73(5),
237-241 (2001)].

[14] V.Yu. Dobret sov, G. Mar tin , F. Soisson and V.G. Yaks, Effects of th e Interac
tion between Order Parameter and Concentration on the Kinetics of Antiphase
Boundary Motion, Europlius . Lett. 31 (7), 417-422 ([995) .

[15] V.G. Vaks and G.D. Samolyuk , On accura cy of different cluster methods used in
describin g orderin g phase transitions in fcc alloys, Zh. Eksp . Teor. Fiz. 11 5(1)
158-179 (1999) [ Sov. Phys.- J ET P 88( 1) 89-100 (1999)].

[16] V.G. Yaks, N.E. Zein and V.V . Kamyshenko, On the cluster method in th e theory
of short-range orde r in alloys, J. Phys. F: Meta l Physi cs 18(8) , 1641-1661 (1988).

[17] F. Chassagne, M. Bessiere, Y. Calvayrac, P . Cenedese and S. Lefebvre , X-Ray
Diffuse-Scattering Invest igat ion of Different Stat es of Local Order in Ni-Al Solid
Solutions , Acta M et. 37(9) 2329-2338 ([989) .

417



[1 8] Y. Le Bouar, A. Loiseau , A. Finel and F. Ducastelle, Wetting behaviour in the
Co-Pt system, Phys. Rev. B 61(5) , 3317-3326 (2000) .

[19J B. Widom , Stru ctrure of the 0' - / Interph ace, J. Chem. Phys . 68( 8), 3878-3883
(1978).

418



INVESTIGATION OF STRUCTURES AND PROPERTIES OF C3P4

ALLOY USING FIRST-PRINCIPLES ELECTRONIC STRUCTURE
CALCULATION

Adele Tzu-Lin Lim', Jin-Cheng Zheng2 and Yuan Ping Feng'

I Department of Physic s, National University of Singapore
2 Science Drive 3, Singapore 117542

2 TCM, Cavendish Laboratory, University of Cambridge
Madingley Road, Cambridge, CB3 OHE, UK

INTRODUCTION

In the past , we have witnessed an increasing dependence of our technological and
industrial base on advanced materials. There is every reason to believe that this trend will
accelerate, and that progress in many areas , such as electronics, will be more dependent on
the development of new materials and processing techniques. Meanwhile, in the process of
searching and designing for new materials, numerical modelling has emerged as a powerful
and widely used tool due to increasing computing resources and development of efficient
algorithms. Compared to laboratory synthesis, computer modelling provides an inexpensive
and efficient alternative for designing new materials, as the relative stability of various
possible structures of a given compound can be studied and their physical properties
explored by computer simulation before laboratory synthesis. This will at least provide
some guidance to eventual laboratory synthesis of the compound. Such a strategy has been
widely used in drug design.

Various computational techniques have been developed for studying materials,
ranging from empirical potential or force field methods, semi-empirical calculation, and to
the state-of-the-art first-principles method. First-principles simulations based on density
functional theory (DFT) and particularly local density approximation (LOA) have proved to
be the most reliable and computationally tractable tool in materials science. These
simulations have now impacted virtually every area of this broad field, and have began to
be used in the study of real materials. Compared to other computational techniques, the
first-principles method requires no experimental parameters and is thus very powerful in
predicting properties of new materials. Therefore, it is ideal for the study of new materials.
Along with the advances in computing technology, there have been important algorithmic
improvements, particularly for pseudopotential and plane-wave based methods. For certain
classes of materials it is now feasible to simulate systems containing hundreds of atoms in a
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unit cell on a work station. This opens the door for direct application of these techniques in
studying a substantial set of real material problems.

One of the succe sses of first-principles methods in studying new materials is the
prediction of superhard CJN4'-4. Using first-principles calculation based on pseudopotential
and plane-wave method, Liu and Cohen predicted that the bulk modulus of CJN4 could be
comparable to that of diamond which stimulated wide interests in this material. Films
consisting of a-CJN4 and P-C3N4 with bulk moduli of up to 349 GPa have reportedly been
synthesized 5.

In this work , we explore possible structures and properties of C3P4 using first
principles electronic structure calculation. C3P4 can be obtained by substituting N for P in
C3N4. Since both C and P are group V elements in the periodic table , one can expect C3P4

to have properties similar to C3N4. Trend analysis according to mean atomic number
suggests that C3P4 could have a wide band gap and could be a relatively hard material''. As
a matter of fact , the bulk moduli of tetrahedrally bonded covalent solids can be estimated
based on the following empirical model 7,

B=19.71-2.20A

d J
·'

where d is the length and A the ionicity of the bond. Since the sum of ideal tetrahedral
covalent bond length between C and P atoms is 1.87 A which incidentally is the same as
that between Si and N atoms" , it is expected that C3P4will have a bulk modulus comparable
to that of Si3N4 .

Even though the existence of C3P4 was postulated together with C3N4 as early as in
19849

, no research has been done on carbon phosphide besides a recent work on
phosphorus-doped diamond-like carbon films6

. The present study is therefore expected to
provide basic information on the structure and properties of carbon phosphide. It is of
interest to know whether C3P4 can form a stable alloy . And if it does, what is the possible
structure? What physical properties does it have? The ultimate aim is to produce a stable
form of carbon phosphide having potentially useful electronic properties.

COMPUTATIONAL DETAILS

In the absence of experimental data on crystalline carbon phosphide, we begin with
possible configurations of C3N4 as suggested in Ref. [4] with N substituted by P. In this
study, we only considered several carbon phosphide structures with stoichiometry C3P4.
However, there is no reason to believe that only this stoichiometry is possible. Neither is
this stoichiometry confined to the phases considered. The crystal structures considered are
U-C3P4, P-C3P4, cubic-Cjf'a, pseudocubic-Cjl', and graphitic-Cjl'a. (see Figure I)

We have performed ground state total-energy calculations using the pseudopotential
plane-wave method based on density-functional theory in the local density approximation
for exchange and correlation10. The Vanderbilt ultrasoft pseudopotentials were used 11-12.

The wave functions are expanded into plane-waves up to an energy cutoff of 310 eV.
Special k points generated according to Monkhorst-Pack scheme!' were used for integration
over the irreducible wedge of the Brillouin zone for the various structures. We used 18 k
points for U-C3P4, 36 for P-C3P4, 32 for cubic-Cjf'a, 32 for pseudocubic-Cjl', and 16 for
graphitic-Cjf'a. Good convergence is achieved with this cutoff energy and number of k
points for the various C3P4structures considered. We also optimized each crystal geometry
within the preselected space groups.
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Figure I. Unit cells of (a) a-C 'P4. (b) P-C,P 4 , (c) cubic-Cjl-L, (d) graphitic-Cjrv, and (e)
pseudocubic-Cjl' 4. The C atoms are shown using small spheres while the P atoms are
shown using large spheres. All structures are fully optimized within the preselected space
group s. The pseudocubic-Cvl', is energetically the most stable structure.

RESULTS AND DISCUSSION

Figure 2 shows the calculated total energy per C3P4 unit as a function of volume for
the five structures considered. At each volume , the atomic positions were fully relaxed
within the preselected space group for each structure . The optimized structures are shown
in Figure I.
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Figure 2. Total energy as a function of volume for the various structures investigated. The calculated data
points (symbols) are fitted to fourth order polynomial expansion (lines) to obtain the bulk modulus for each
structure.

Unl ike C3N4, the calcul ations predict that pseudocubic-Cjl'4 is energetically favored
relative to oth er phases. In parti cular, a -C3N4 and P-C3N4 are the stable phases for C3N4 but
a- C3P4 and P-C3P4 are found to be less stable here . As a matter of fact, large de formations
in internal co ordinates were found during the structural relaxation in both a- and P-C3P4,
which ma y indicate that they are unstable.

It is interesting to note that the stability of the pseud ocubic ph ase of C3P4 is quite
exceptional as the total energy per C3P4 unit of'pseudocubic-Cd'; is almos t 2 eV lower than
that of the next mo st energetically favoured structure, i.e. a -C3P4.

In order to assess the mech anic al stability of pscudocubic-Cjl'4, we further relaxed the
struc ture under the PI symme try from the previou sly opt imized geom etry and from ideal
zincblende coordinates . We found virtually no change in the structural parameters, internal
coordinat es and total energy from tho se of pseudocubic-Cjf'a. Hence, we predi ct that the
pseudocubi c phase is energetically an d mech anically stable.

Table 1. Equilibrium struc tural parameters , bulk moduli and tot al energies cal cul ated for a
C3P4, P-C3P4, cub ic-C jl'4, pscudocubic-Cjl'4 and graphitic-C jl'4.

Structure

a
P
Cubic

Pseud ocubi c

Graphitic

Space
Group
P3\c

P63/m

143d
P42m

P6m2

a
(A)

8.120
8.3 19
6.670

4.102

5.72 3

c
CA)

5.755
2.815

4.101

8.168

80

(GPa)
85
110
142

203

Eo
(eV/C3P4 Unit)

-11 85 .006
-11 84 .009
-I 183 .552

-118 6.801

-1184.264
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For C3N4, the most stable structure amo ng the pha ses that have been studied is
graphitic-C jNa, followed by a- C3N4, P-C3N4and cubic-Cjbla, whe reas pseudocubi c-Cjbl, is



least stab le", It is known that in graphitic-Cjl-L, a -C3N4, P-C3N4 and cubic-Cjlva, each C
atom is approximately tetrahedrally-coordinated by N atoms and each N atom is nearly
planarly-threefold coordinated to C atoms l

-4. This suggests sp' hybrid on C atom and s/
hybrid on N atom . However, in pseudocubic-Cdva , the C-N-C bond angle is close to the
sp' value of 109.47, indicating that the N atoms in the pseudocubic structure form Sp3
rather than sp' bonding orb itals .

Moving down the periodic table , si hybridization is energetically favourab le and
therefore, the lowest energy configuration for C3P4 corresponds to the structure in which P
atoms form si bonding orbi tals. The C-P-C bond angle of 103.4 in pseudocuibic-Cjl', is
less than the ideal tetrahedral bond angle of 109.47 due to relaxation of the P atom towards
an empty C site . The C-P bond length of 1.86 A is close to the sum of idea l te trahedral
covalent bond length of 1.87 A. In contrast, P atom s in cubic -C jl', which is energetically
least favourable among the phases considered, is constrained to form s/ bonding orbitals .
Although the C-P bond length for this phase is also 1.86 A, the C-P-C bond angle is
114.3 . The stabil ity of grap hitic-, a - and P-C3P4, relies on the ability of P atoms to form si
bonding orbitals. Therefore, the disp lacement of their atomic coordinates from idea l atomic
coordinates of C3N4 for the respective phases is rather significant, with the a and P phases
disp laying the most significant changes, which is the cause of its structural instability.

Table 2. Optimized atomic positions of various phases ofC3P4.

Phase Atom u v w
a CI 0.4609 0.1065 0.17 12

C2 0.1625 0.2389 1.0 158
P I 0.0000 0.0000 0.1146
P2 0.3333 0.6667 0.5906
P3 0.3199 0.9958 0.9188
P4 0.2634 0.3510 0.3035

P CI 0.1754 -0.1828 0.2500
PI 0.3653 0.0508 0.2500
P2 0.3333 0.6667 0.2500

Cubic CI 0.8750 0.0000 0.2500
PI 0.2529 0.2529 0.2529

Pseudocubic CI 0.0000 0.0000 0.0000
C2 0.5000 0.0000 0.5000
PI 0.2768 0.2768 0.2232

Graphitic C I 0.3454 0.1727 0.0000
C2 0.012 1 0.5060 0.5000
PI 0.0000 0.0000 0.0000
P2 0.6667 0.3333 0.5000
P3 0.1430 0.2860 0.5000
P4 0.4759 0.5241 0.0000

Not only is the pse udoc ubic phase exce ptio nally stable, it also has the smallest volume
per C3P4 unit and therefore the highest density among all the phases investigated. This
implies that it is impossible for pseudocubic-Cd'4 to undergo a phase transition under
pressure. Of course, there may be other high-pressure phases of C3P4 besides the five
structures investigated here . Pseudocubic-Cjl'4 can be classified as a defect-zincblende
structure type. Based on the fact that the high-pressure phase of semiconductors such as
GaAs and ZnS is the p-Sn struc ture, the corresponding defect B-Sn structure could be a
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candidate for the high-pressure phase of C3P4. We thus searched for poss ible metas table
phases with a smaller volume per C3P4 unit by varying the cia ratio in each case . However,
the calculated total energy decreases monotonically with the cia ratio and volume , and no
energy minimum was found in the range of V<Vo where Vo is the equilibrium cell volume
of pseudocubic-Cjl's . We therefore conc lude that there is no pathway for phase transition
from the pseudocubic phase to other structural forms under pressure.

Table 3. Optimized atomic positions of various phases ofC3N4.

Phase
a

Cubic

Pseudocubic

Graphitic

Atom u v w
CI 0.5169 0.0810 0.2033
C2 0.1654 0.2547 0.9936
NI 0.0000 0.0000 -0.0058
N2 0.3333 0.6667 0.6303
N3 0.3471 0.9511 0.9730
N4 0.3148 0.3183 0.2447
CI 0.1786 0.7732 0.2500
NI 0.3303 0.0332 0.2500
N2 0.3333 0.6667 0.2500
CI 0.8750 0.0000 0.2500
NI 0.2839 0.2839 0.2839
CI 0.0000 0.0000 0.0000
C2 0.5000 0.0000 0.5000
NI 0.2451 0.2451 0.2549
CI 0.3499 0. 1749 0.0000
C2 0.0175 0.5087 0.5000
NI 0.0000 0.0000 0.0000
N2 0.6667 0.3333 0.5000
N3 0.1699 0.3398 0.5000
N4 0.5032 0.4968 0.0000

The calculated total energies are fitted to fourth order polynomials and the bulk
modulus for each structure is then determined. Table I shows the equilibrium structural
parameters, bulk moduli and total energies per C3P4 unit for the five structures of C3P4
being studied . For calculation of the bulk moduli, we have assumed uniform compression
and expansion of the lattice. Incidentally, the pseudocubic phase also has the highest bulk
modulus of 203 GPa.

In Table 2, the optimized atomic positions in each C3P4 structure are given in terms of
the lattice translational vectors. For comparison, we have repeated similar calculations for
the various phases of C3N4 and the optimized atomic positions are listed in Table 3. The
calculated various physical quantitie s of C3N4 such as equilibrium lattice constants, bulk
moduli, band structures, etc. are in good agreement with results of previous calculations!".
As can be seen, both a-C 3P4 and ~-C3P4 are driven by significant atomic relaxation,
resulting in the large differences between atomic positions in C3P4 and C3N4. Furthermore,
there is no apparent symmetry in the atomic relaxation in a-C 3P4 and ~-C3P4 ' It is,
therefore, reasonab le to believe that these structures may not be stable at all . If the
structures were allowed to relax without imposing any symmetry constraints, they may
transform into other more stable structures such as the pseudocubic-Cji'4. This will be
explored in further study.

The P atom in the cubic phase relaxes along the cube diagonal in C3P4 relative to that
in C3N4 while the C atom is constrained to its location by symmetry in both C3N4 and C3P4.
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As mentioned earlier, the pseudocubic phase is a defect zincblende structure . Instead
of tetrahedral bonding, each N or P atom is bonded to three C atoms. In the case of C3N4,
the N atom relaxes away from the defect site by -0.03 A(2% of the C-N bond length) . The
P atom in C3P4, however, undergoes a larger relaxation of - 0.19 A(11% of the C-P bond
length) and it relaxes in the opposite direction, moving towards the defect site. This is due
to the strong C-N bonding in C3N4 relative to the C-P bond in C3P4. Analysis on electronic
propert ies shows that the nature of the C-N bond in C3N4 is more ionic with large charge
transfer from C to N. In contrary, the C-P bond in C3P4 is more covalent and charge is
transferred from P to C.

We have also investigated the electronic propertie s of the various phases of C3P4. It
was found that within the LDA approximation , C3P4 is metallic. Even though it is known
that LDA underestimates band gap, the overlap between the lowest conducti on band and
the highest valance band is almost 2 eV and correction of the band gap by other method
may not be able to completely remove this large overlap . We therefore also conclude that
C3P4 is metallic or at most a narrow gap semiconductor. The results of electronic properties
ofC3P4 will be published elsewhere.

CONCLUSION

In conclusion, we have investigated the possible structures and properties of C3P4
using first-principles electronic structure calculation . Our results show that C3P4 has
unexpected properti es. The most stable phase of C3P4 is the pseudocub ic phase. This is in
contrast to the structures of similar compound s, e.g. C3N4 and Si3N4. Furthermore, the
stability of the pseudocubic-Cd', is exceptional since the total energy of pseudocubic-Cjl' ,
is almost 2 eV lower than the next most stable phase per C3P4 unit. The pseudocubi c phase
also has the highest density among the structures investigated. It may not be possible for
pscudocubic -Cjl'4 to undergo a phase transition under pressure. The C3P4 alloy is also
expected to be metallic .
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