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The Evolution of Research on Teaching )
Mathematics: International Perspectives L
in the Digital Era: Introduction

Agida G. Manizade (®, Nils Buchholtz@®, and Kim Beswick

1 Introduction

Mathematics teaching is subject to cultural and temporal conditions. Not only do
school and societal conditions shift, and with them the composition of the student
body, but also curricular regulations and new mathematical and pedagogical insights
determine the content to be taught and the approach to learning used in mathematics
classes. To reflect on mathematics teaching in a changing world, there is a need
for continuous scientific research into this process of teaching mathematics. Results
of this research also have a retrospective impact on mathematics teacher education
insofar as the conditions of education need to be continuously adapted to the profes-
sional requirements of teachers in practice. Research on teaching mathematics thus
bears a great responsibility and is a constantly evolving field of research for scholars
around the globe.

This book comes at the time when the world is facing an ongoing global pandemic
and experiencing violence and unrest due to active war. This publication symbolizes
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a professional commitment and international collaboration par excellence apropos
teaching mathematics. The editors from three different continents and researchers
who represent sixteen institutions and eight countries worked constructively and
collaboratively with utmost respect for each other, with intentions to reflect on
existing research knowledge and to create new knowledge that can be shared and
used by other educators and researchers across the world.

In preparation for this book, our international group of researchers shared current
issues related to the evolution of research on teaching mathematics. We examined
the present state of research on mathematics teaching and discussed the theoret-
ical and methodological challenges associated with it, including issues related to
conceptualization, instrumentation, and design. Additionally, we explored the likely
direction of future research developments. In our literature review and discussions
on this project, it became evident that studies on teaching frequently establish direct
relationships between units of analysis that, at first glance, cannot be assumed to
be directly related in a chain of effects. There are examples of studies presented in
this book that directly relate teacher competencies to student achievements using
empirical measurement models in a causal or relational way. Without criticizing
these studies across the board, however, it seems reasonable to consider moderating
or intermediate variables in this chain of effects (Baron & Kenny, 1986), such as the
initiated student learning activities observable by teachers in the classroom, aspects of
instructional quality (e.g., classroom management or cognitive activation), or corre-
sponding student variables such as attention and cooperation in class or students’
prior knowledge (e.g., Fig. 1).

Although there are researchers who do indeed study mediating variables (e.g.,
Blomeke et al., 2022), it became clear to us that there is a lack of a systematic
scientific overview of the complete chain of effects between teacher characteristics,
activities, and students’ learning processes. Overviews of precisely these aspects of
research on teaching and respective studies are scarce, which inspired this book.

Mathematics teachers’ Student mathematics
competencies learning outcomes
Mathematics teacher Student mathematics

activities learning activities

Fig. 1 Example of a chain of effect in teaching
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2 The Purpose of the Book

Research that aims to relate teachers’ observable actions with students’ gains in
achievement is referred to as process—product research. The term was first used by
Donald M. Medley and Harold E. Mitzel (Hunt et al., 2010; Medley & Mitzel, 1963).
Presage-process—product research then also considered other important variables,
namely all the preceding and mediating variables that influence the actions of teachers
in the classroom, such as teachers’ professional training, knowledge, competencies,
skills, personality traits, and teachers’ abilities to plan a lesson or assess students.
The framework for this book was based on a 1987 seminal work called “Evolution
of research on teaching” by Medley (1987), in which he discussed literature on the
development of research on teaching for thirty years prior to that publication vis-a-vis
the presage-process—product standpoint. In it, he described a set of essential variables
of research on teaching as given in Fig. 2, which he labelled online variables - “ones
which lie along a direct line of influence of the teacher on pupil learning” (p. 105)
and offline variables, “ones which affect pupil learning but are not under the direct
control of the teacher.” (ibid.).

Updating this framework is timely and, since it has not been described for mathe-
matics teaching in particular, the framework was adapted and applied in the context
of mathematics teaching and mathematics teacher education, as presented in Fig. 3
(Manizade et al., 2019). In the past twenty to thirty years, research on teaching has
evolved further, and researchers have used a wide range of conceptual and theoretical
frameworks in an effort to advance knowledge in presage-process—product research
in mathematics education (e.g., Blomeke et al., 2016; Buchholtz, 2017; Liljedahl,
2016; Manizade & Martinovic, 2018). For this reason, the terms of the variables used
by Medley (1987) have been adapted to the current research discourse. Although the

Type F — Chapter 1.1

PRE-EXISTING TEACHER CHARACTERISTICS
l Type J — Chapter 2.4

TEACHER TRAINING VARIABLES

Type E — Chapter 1.2

TEACHER COMPETENCIES
l Type | — Chapter 2.3

EXTERNAL CONTEXT VARIABLES

Type D — Chapter 1.3
PREACTIVE TEACHER BEHAVIORS

l

Type C - Chapter 1.4

INTERACTIVE TEACHER BEHAVIORS
l Type H — Chapter 2.2

INTERNAL CONTEXT VARIABLES

Type B — Chapter 1.5

PUPIL LEARNING ACTIVITIES
Type G — Chapter 2.1

l INDIVIDUAL PUPIL CHARACTERISTICS

Type A — Chapter 1.6
LEARNING OUTCOMES

Fig. 2 Representation of Medley’s 1987 framework mapped to the book’s chapters
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field of research on teaching mathematics has considerably advanced during the past
twenty to thirty years, we find that the main units of analysis in the current research
studies have remained the same: thus, Medley’s framework is still valuable as it
gives an orientation to all possible variables that become apparent qua the chain of
effects from teacher behavior to student achievements. Moreover, the abiding chal-
lenges associated with the conceptualization, instrumentation, operationalization,
and research design that Medley described are still complex, despite recent advances
in technology and research methodology in the digital era.

One of the aims of the book is to update and situate Medley’s framework within
mathematics education research of the last three decades. Societal and educational
realities have changed significantly since Medley wrote his seminal paper. Therefore,
based on current research, additional variables must be considered in the chain of
effects. Another goal is to provide researchers, who are scientifically concerned
with more than one main unit of analysis—as described in Fig. 3—with current
knowledge and methods apropos of the respective variables in the overview chapters.
Each chapter of the book is based on reviews of research conducted over the past
twenty to thirty years and written by leading experts in the respective fields. The
chapters therefore also address cultural and technological aspects of the research on
the respective variables.

Main Units of Analysis of Research on Teaching Mathematics

Within Cultural and Epi logical Contexts
Type F:
P isti ics teacher istics

g
a mathematics teacher’s beliefs and aptitude for teaching, characteristics

needed to acquire professional competencies during training Type J:
Mathematics teacher training and
‘ experiences
Type E: designed to increase mathematics teachers’
ics teachers’ i and skills range of competencies
to function effectively in mathematics teaching situations
v
Type D: Type I:
Pre- and post-active mathematics teacher activities External context variables
such as planning, assessment, reflection, and other out-of-class activities 1 support systems: materials, technology,
of mathematics teaching facilities, supervision, administrative support,
‘ community and parental support
Type C:
Interactive mathematics teacher activities
activities of the mathematics teacher while in the presence of students Type H:
Internal context variables
characteristics of students or groups of
‘ students which affect response to mathematics
Type B: teacher behaviors and actions
Student mathematics learning activities
occur in the mathematics classroom. The types of student experiences
that will result in desired learning outcomes Type G:
‘ ivi student istics, abilities,
and personal qualities
Type A: which determine outcomes of any specific
Student mathematics learning outcomes learning experience

measured after the teaching is over

Within a Digital Context

Fig. 3 Updated framework of research on teaching mathematics
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Additionally, in his original work, Medley focused on discussion surrounding
good teaching and the complexity of defining such a term in research (Medley,
1987). In the past twenty to thirty years, myriad of new theoretical perspectives on
teaching mathematics have emerged in the field. These perspectives assume that
a wide range of mathematics learning goals based on theoretical frameworks are
enacted by teachers in the classroom (Manizade et al., this volume). Depending on
these goals, the definition of good teaching and what is valued in the mathematics
classroom can have an array of meanings (Manizade et al., this volume). These
include reproducing the perfect sequence of steps when solving a mathematical
problem, engaging students in productive struggle and productive failure, developing
mathematical constructs through collaborative discourse, and addressing students’
lived cultural experiences as mathematical experiences, to name a few. The updated
framework, therefore, considers the epistemological contexts of research on teaching
mathematics with respect to main units of analysis, in addition to considering the
cultural and digital contexts that also affect all units of analyses of research presented
in the framework (Fig. 3).

3 Book Structure

The book is comprised of two parts. In part one, we examine research in mathe-
matics education with focus on units of analysis that Medley called online variables
(Medley, 1987). In contrast to current use, the term online has a distinct and different
meaning in Medley’s work. Online variables are units of analysis of research that can
be under the control of mathematics teachers. They included research on mathematics
teaching and teacher education that examined: pre-existing mathematics teacher char-
acteristics (Type F); mathematics teacher competencies, knowledge, and skills (Type
E); pre-post-active mathematics teacher activities (Type D); interactive mathematics
teacher activities (Type C); student mathematics learning activities (Type B); and
student mathematics learning outcomes (Type A) (Fig. 3).

In part two, we examine mathematics education research with main units of anal-
ysis that are not under the direct control of teachers. These include offline research
variables (Medley, 1987) such as individual student characteristics, abilities, and
personal qualities (Type G); internal context variables (Type H); external context
variables (Type I); and mathematics teacher training and experiences (Type J). A
detailed discussion of both parts of the book is presented later in this chapter. Because
the offline (Types J, I H, and G) research foci that are not under the direct control
of mathematics teachers are so broad, our authors selected a subset of research vari-
ables within each type to discuss in their respective chapters included in part two
of the book. We understand the importance of each research focus and unit of anal-
ysis and acknowledge that a larger publication would be needed to include all their
components.

In the following section, we give an overview of the individual units of analysis
of research on teaching mathematics, as well as the chapters of the book.



6 A. G. Manizade et al.

4 Part 1: Online Variables

4.1 Pre-Existing Mathematics Teacher Characteristics

Pre-existing teacher characteristics include abilities, knowledge, and attitudes that
a candidate for admission to a teacher preparation program possesses on entry, as
well as a candidate’s aptitude for teaching. In order for teachers to learn the neces-
sary competencies for teaching in teacher education processes, they must possess
appropriate entry-level prerequisites that sustain competency development.

Mathematics teacher competencies include, for example, cognitive abilities such
as prior mathematical and pedagogical knowledge at the point of study entry, atti-
tudes toward mathematics as a subject or toward the learning and teaching mathe-
matics, as well as motivational and volitional variables such as enthusiasm for the
subject of mathematics and personality traits and identity aspects such as one’s own
understanding of one’s role, self-regulation and self-concept, and ability to reflect
and collaborate with students and with colleagues. More recent research also counts
emotional aspects such as personal well-being or stress resilience among personal
factors that play a role in competence acquisition at entry level. It should be noted
here that all the influencing variables themselves also change in the context of teacher
education. That is, in line with Medley, the changeability of personality structures is
assumed.

In Chap. 2, Olive Chapman compiles findings on these main research units of
analyses based on extensive literature reviews spanning over more than twenty years.
With respect to the prior mathematical knowledge of pre-service teachers, Chapman
focuses on studies in the content area of fractions, whole number operations, geom-
etry and algebraic thinking and problem-posing. Many of the current studies demon-
strate, in part, large gaps in knowledge related to conceptual understanding of elemen-
tary mathematical concepts and operations, which pose an ongoing challenge to
teacher education. For the area of prior mathematics-related pedagogical knowl-
edge, Chapman focuses on studies examining skills in observing instruction and
noticing and analyzing student work and thinking and evaluating tasks. Here, too,
the systematic review revealed weaknesses among beginning pre-service teachers
who, for example, can generate few pedagogical decisions from observations of
instruction or fail to recognize the potential of mathematics tasks. In the area of
attitudes, Chapman adds to existing findings with those related to attitudes toward
technology use and mathematical processes or specific mathematics areas such as
algebra.

Overall, Chapman notes a shift in studies over the past twenty years away from
focusing on single “hard” categories, such as high school graduation or mathematics
grades, to examining content aspects of prior knowledge and learning conditions
including those influenced by culture and technology at the beginning of the teacher
education program. Finally, Chap. 2 also addresses methodological challenges and
future directions for Type F research, including different survey formats, designs,
and methods of research analysis.
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4.2 Mathematics Teachers’ Competencies, Knowledge
and Skills

Medley described Type E teacher competencies as knowledges, skills, and values
that a teacher possesses. Without going into detail about what exactly is meant by
competencies, knowledges, or skills, he describes these as the “tools” of teaching
in an instrumental, functional sense. They are the prerequisites for successful and
competent teacher action in various situations. This assumes that the prerequisites
for teaching can be precisely specified for a given situation - as is done in later
research, for example, through requirements analysis by observing teachers. Interest-
ingly, Medley also included values in these prerequisites and thus included affective
characteristics of teachers among the competencies. A conceptual understanding of
competency can be discerned here, the scope of which was recognized in the early
2000s in the educational psychology discussion on the conceptual understanding
of competencies and was more widely received. In contrast to Type F, however,
Medley saw this online variable less as the personality characteristics of teachers.
He understood teacher competencies as a measurable outcome of teacher education
and experiences - in contrast to Type F, pre-existing mathematics teacher charac-
teristics. Teacher competencies thus always remain a potential trait in the exclusive
research of Type E, since the (measurable) performance of these competencies only
takes place in the actual preparation and implementation of teaching (Type D and
O).

In Chap. 3, Nils Buchholtz, Bjorn Schwarz, and Gabriele Kaiser describe the
development of mathematics education research on teacher competencies in the
last 30 years, especially the research on teacher knowledge and affective variables
such as beliefs or self-regulatory skills. For the subject of mathematics, normative
requirements have always been formulated for teachers in terms of their content
knowledge. However, the researchers see the starting point of research on Type
E in psychological cognition research, which has strongly influenced research on
mathematics teaching and teacher education. At its starting point, research on Type
E was thus still closely aligned with Medley’s description. However, Buchholtz,
Schwarz and Kaiser describe how Lee Shulman’s work in particular inspired, devel-
oped, and advanced the research. A broad research field of qualitative and quanti-
tative studies on teacher cognitions developed, resulting in a plurality of different
conceptualizations of teacher knowledge that refer to different knowledge bases
(mainly: content knowledge, pedagogical content knowledge, pedagogical knowl-
edge). Teacher competencies are thus conceived in research as a multidimensional
construct, the complexity of which poses major challenges to research in terms of its
measurability. Different ways of measurement (especially through knowledge tests)
have been used in research. Overall, the plurality in a research field is perceived
as a strength, especially since it is broadly based internationally. In recent years,
research on teacher competencies has started to focus more on the situational perfor-
mance of competencies, which has already extended the focus from Type E to Types
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D and C. The reason for this development has been on the one hand methodolog-
ical developments through video-based competence measurement, and on the other
hand the increasing conviction that teacher competencies can only be examined to
a limited extent outside of the situational context of practical teaching. That is, an
isolated consideration of Type E is less insightful. To this end, the chapter provides
an overview of current research on situational-based mathematics teacher compe-
tency measurement and the relationships among teacher competencies, instructional
quality, and student outcomes.

4.3 Pre- and Post-Active Mathematics Teacher Activities

In his original work, Medley referred to the online variable, Type D, as preac-
tive teacher behaviors. These included such activities as “planning, evaluation, and
other out-of-class activities of teaching, the things a teacher does to promote pupil
learning while no pupils are present”. These are practices that demonstrate how
teachers’ professional competencies knowledge and skills (Type E) affect the quality
of their classroom interactions with students (Type C), and therefore, indicate how
successfully the teacher can meet their goals for teaching.

In their Chap. 4, Agida Manizade, Alex Moore, and Kim Beswick named this
variable pre- and post- active because several of the Type D activities (e.g., lesson,
and unit planning) are performed prior to teaching, while others (e.g., reflection, and
assessment) are conducted after lessons have been taught. Manizade, Moore, and
Beswick focused on lesson planning, assessment, and reflection as the key actions
that teachers perform when students are not present in the classroom. These “pre-
and post-" actions are the most direct ways through which teachers shape observable
teaching work, as mediated by their goals for teaching. These goals are represen-
tations of teachers’ epistemological commitments apropos teaching mathematics,
whether those commitments be consciously espoused or unconsciously reproduced
due to constraints within which they work. The researchers surveyed the literature
on lesson planning, assessment, and reflection according to eight epistemological
paradigms that are known in the field of mathematics teaching, namely Situated
Learning Theory, Behaviorism, Cognitive Learning Theory, Social Constructivism,
Structuralism, Problem Solving, Culturally Relevant Pedagogy, and Project- and
Problem-Based Learning. They place other perspectives on learning theory, which are
derivatives of these prevailing paradigms, within this overarching frame. They detail
each perspective, providing a definition, goals for teaching, pros and cons of each
theoretical perspective, and examples from the literature on teaching mathematics.
The chapter revealed that some of the theoretical perspectives are well-reported in
the literature whilst others have not received the same amount of attention from
researchers. The researchers recognized that the chapter focused on the western
cultural context and more research is needed in a variety of cultural settings, consid-
ering each of the settings affects every unit of analysis in research on mathematics
teaching and teacher education (Fig. 3). The researchers posited that, amidst cultural
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contexts and the technological advent of the digital era of mathematics education,
researchers must engage more explicitly with the theoretical perspectives identified
as underserved and must themselves reckon with their own epistemological commit-
ments more intentionally when engaging and reporting on studies regarding Type
D.

4.4 Interactive Mathematics Teacher Activities

Medley (1987) described interactive teacher behaviors as “the behaviors of the
teacher while in the presence of students” (p. 105). He explained that these behaviors
are typically what are referred to as teaching and are the means through which teachers
influence students. They are directly observable actions through which teachers trans-
late their pre-post-active behaviors (i.e., planning and other out-of-class activities,
Type D) into learning experiences for students. They are the bridge between teachers’
plans to promote student learning (Type D) and the things that students do that result
in their learning (Type B).

In Chap. 5 Kim Beswick, Felicity Rawlings-Sanaei, and Laura Tuohilampi discuss
the research literature related to the activities that mathematics teachers engage in
when they are with students. Importantly in the digital era teachers can be with
students without being physically with them. Teachers’ interactive behaviors in online
or virtual contexts remain under-researched but have attracted increased attention in
recent years in which the pandemic forced the closure of schools for periods of weeks
or months in many countries, necessitating a move to online interaction.

The authors structure their chapter in two main parts. The first surveys what
we know about normative teaching practices; the things that typically happen in
mathematics classrooms whether physical or virtual. They rely primarily on large
scale studies, principally the Trends in International Mathematics and Science Study
(TIMSS) and the Programme for International Student Assessment surveys (PISA).
These studies rely on teacher self-reports as well as student reports of the activity
that occurs in their mathematics classrooms. TIMSS video studies provided more
direct access to teacher behaviors but have still relied on teachers to indicate the
extent to which the video-recorded lessons were typical of their practice. The second
part of Chap. 5 deals with teachers’ interactive behaviors documented by researchers
interested in promoting or supporting teachers to implement particular behaviors or to
adopt in some way an approach to mathematics teaching that the researchers believe
will be beneficial. Beswick et al. describe the interactive behaviors reported in these
studies as atypical because they represent approximations of changed behaviors that
align with the researchers’ perspective.
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4.5 Student Mathematics Learning Activities

The variable Type B was described by Medley as student learning activities. By
this, he meant all types of student experiences within the classroom that result in
the learning outcomes desired by the teacher. These student activities and behaviors
always take place under teaching objectives, in that they are directed or oriented by
the teacher and therefore a direct result of an interactive teacher’s behavior (Type C).
For a direct influence of teaching activities on student learning to be assumed, Medley
presupposed that all learning is based on learners’ activity. That is, student activity
can be used as an indicator of learning processes. Most particularly, therefore, it is
important that any activity is perceived as purposeful.

Maria Timmerman addresses this purpose of students’ learning activities from a
mathematical perspective in Chap. 6, presenting different ways in which students’
learning activities could be understood and seen as productive or purposeful for
learning mathematics. She illustrates that effective and equitable experiences of
students are related to how mathematics learning has been defined over recent
decades, in different countries internationally and also under different educational
premises, whereby respective curricula can provide an orienting framework.

Timmerman notes a shift in mathematics education research towards student
thinking over the last 30 years, where the focus is no longer exclusively on student
behavior. This has been driven by developments of new epistemological perspectives
on mathematics teaching, and the development of new curricular objectives, including
but not limited to problem-solving, or project-based learning activities. Additionally,
process-oriented goals, in contrast to the teaching of pure factual knowledge as well
as the competence orientation, have fundamentally changed student learning activ-
ities by broadening the horizon of what over the years is considered as a learning
activity in mathematics.

Regarding the development of the theoretical perspective on student learning
activities, Timmerman describes different conceptualizations of student learning in
mathematics, including the theory of progressive coordination of actions and the
development of cognitive schemata, the research model of learning through activity,
and research on student engagement, which plays a particularly important role in
problem solving processes. Timmerman also focuses on how in the context of such
activities, the affective learning conditions of the students, such as productive dispo-
sitions or student perseverance, which can positively influence student learning activ-
ities (e.g., when students are struggling or failing and can use this for learning
processes). This also brings the individual prerequisites of students (Type H) more
into focus when examining the effectiveness of learning activities.
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4.6 Student Mathematics Learning Qutcomes

Medley identified student learning outcomes as the first online variable (Type A),
which he associated with each type of “changes in pupils” (p. 105) that can be
measured after teaching has been completed. He referred to the outcome of a
completed learning process, which at that time was primarily measured in the form
of achievement gains on standardized tests. In this sense, he called it a “production
of learning outcomes” (p.105) as a result of teaching with the attention given to
progress towards teaching goals that could be detected through close observation.
Learning outcomes are seen as the ultimate goal and the measurability criterion of
teaching effectiveness. There are, however, challenges associated with the measura-
bility of this criterion, that specifically relate to different theoretical frameworks and
approaches used for teaching mathematics. These challenges, therefore, continue to
be a part of the mathematics education research discourse.

In Chap. 7, Jelena Radisi¢ presents an overview of the challenge of describing
mathematical understanding and knowledge as a measurable learning outcome,
addressing different conceptualizations of mathematical competence, literacy, or
proficiency. Making something as vague as mathematical understanding measurable
based of certain criteria remains a challenge of mathematics education research to this
day. Various mathematical activities, such as problem-solving, modelling, reasoning,
and proving have continuously found their way into mathematics education curricula
internationally over the last 30 years and still elude measurability of mastery. For this
reason, teaching effectiveness that is measured according to students’ acquisition of
these skills, is challenging. Jelena RadiSi¢’s research perspective is based on inter-
national large-scale assessment studies (ILSAs), which have been developed inter-
nationally since the late 1980s for comparative educational monitoring and which
still today systematically collect and compare learning outcomes on the basis of high
scientific standards. Since the studies are almost exclusively methodologically quan-
titative and use big data by collecting a large number of variables on many cases,
they now allow the simultaneous statistical correlation of multiple variables and
consideration of different contextual conditions in the tradition of presage-process—
product research. Whereas Medley’s assessment of “good teaching” with respect to
Type A tended to be general in its maximization of learning outcomes, today’s Type
A research takes a more nuanced view in measuring effectiveness of learning for
students with individual learning needs.

The fact that specific methodological problems arise with the measurement of
student outcomes is addressed in the chapter, as is the growing influence that tech-
nology has on learning and therefore on our understanding of learning outcomes.
Finally, Radisi¢ takes a new perspective on research on Type A by describing affec-
tive variables such as student motivation and self-belief as learning outcomes in their
own right. Affective variables remain underrepresented in research on teaching.
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5 Part 2: Offline Variables

5.1 Individual Student Characteristics, Abilities and Personal
Qualities

In Medley’s model, individual student characteristics (Type G), that is abilities and
other personal qualities of students, mediate between student learning activities
(Type B) and student learning outcomes (Type A). This mediating offline variable
is explained by the observation that students do not show the same outcome even
under identical learning conditions. Learning processes in the classroom depend to
a large extent on individual students’ cognitive and affective preconditions, which
can be shaped by family, social, cultural identity-forming experiences, and physical
conditions.

Education is increasingly characterized by high levels of student diversity in many
countries due to migration movements and cultural and transnational multiple attri-
butions. Individual student characteristics can, therefore, include variables such as
race, gender, or socio-economic background. The language requirements of students
today are diversified to a greater extent than in Medley’s time. In many countries,
students with special educational needs are included in mainstream education, so
that learning processes are also influenced by students’ physical or social-emotional
development and how they can overcome learning difficulties or learning disabilities.
Mathematics education research also takes up emotional and physical characteris-
tics such as resilience, mathematics anxiety, or students well-being as psychological
variables influencing the individual learning process.

In Chap. 8, Rhonda Faragher describes central aspects of Type G in an overview
and focuses on the subset of Type G, namely learners with intellectual disabilities,
learning difficulties, and learned difficulties. She starts by describing two significant
developments in the last decades: the recognition of streaming (tracking) as harmful;
and the recognition of inclusive education as beneficial. These have changed the
nature of mathematics classrooms substantially. Faragher first describes different
approaches of mathematics education, neuro-psychological research, and general
pedagogical research on special needs education to understand learning difficulties
and learning disabilities of students and to make them accessible for research. She
then presents different approaches that have developed in recent years to address the
impact of these learning difficulties and learning disabilities on student achievement
in the classroom and to provide equal opportunities for all students. The researcher
claims that in doing so, teachers can adapt instruction in ways such as by the use
of Universal Design for Learning (UDL), using digital tools that make instructional
content more accessible to students, or adapting curriculum and learning activities
to students’ achievement levels and prior knowledge. Faragher uses case studies of
achieving equity for students with Down syndrome to illustrate the latter throughout
the chapter. Faragher argues that with the increasing acceptance and implementa-
tion of inclusive learning in the classroom, in research the Type G offline variable
is ultimately not only a mediator between Type B and Type A, but as the direction
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of future research, this offline variable must also play a role in other research vari-
ables, for example when teachers’ lesson-planning is analyzed or appropriate support
structures are created in schools.

5.2 Internal Context Variables

Internal context variables (Type H) affect individual or group student responses to
any teacher actions in the classroom. They mediate between the interactive teacher
behaviors (Type C) and the learning activities (Type B), thus influencing the way
students respond to the teacher in social interaction and behave during initiated or
mediated learning activities. By its nature, the Type H variable is close in content to
the Type G variable, as psychosocial factors of student diversity are both evident at
the individual level of learning processes and express their collective expression in
the responses of students or groups of students to the teacher’s teaching activities.
This may include, for example, students’ work behavior, motivation, self-efficacy,
or self-regulation. Recent mathematics education research has also focused on the
social and emotional experience of students and their well-being in the classroom.
The offline variable, Type G, addresses intrapersonal cognitive preconditions and
processing, as well as affective attitudes of the students, and thus primarily focuses
on individual appropriation processes of the students against the background of diver-
sity, the variable Type H. Additionally, this main unit of research analysis focuses
on social and interpersonal factors of the students’ diversity, which become particu-
larly important in the interaction between student and teacher and leads to different
observable actions of the students in the classroom.

Megan Che and Even Baker, in Chap. 9, follow this broader perspective on context
variables by focusing on identity-creating aspects of individual student personality
in their description of the Type H variable. The central thesis of their chapter is
that the identity of students is not only based on individual elements, but also on
collective elements and the learning context, i.e., the mathematical experiences of
the students as doers of mathematics, which consequently requires a situated consid-
eration of identity-forming aspects and internal context variables both in research
and in teaching within external contexts. In their description of the future direc-
tion of research on student internal context, Megan Che and Evan Baker call for
further consideration of research approaches based on critical theory and postmodern
perspectives on educational contexts. The researchers claim that these perspectives
can provide additional insight into “understandings of students’ mathematical iden-
tities and internal social contexts in a variety of technological mathematical learning
environments, including gaming environments, online mathematics classrooms, and
social media environments” (Che & Baker, this volume) without dismissing the
importance of students’ access to the technology. Additionally, they discuss another
future research focus, “online communities and the potential to inhabit yet another
identity as a virtual being in virtual worlds.” (Che & Baker, this volume).
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5.3 External Context Variables

External context variables stand for the support system within which teachers act and
thus exploit and develop the potential of their competencies for professional practice.
Medley understood this as the material, the facilities, the supervision, and adminis-
trative support provided by the school or the community of practitioners. Since these
offline variables are mediating factors between teacher competencies and pre-post-
active teacher activities, external context variables mainly influence how teachers
carry out activities such as lesson planning, evaluation, and reflection depending on
contingently given formal and material structures in the global educational system
or the local school. Medley illustrated this dependency by highlighting that teachers
with the same, or even assumedly identical competency profiles would act differently
in differently supported instructional settings.

What does the support mean within the school context in the sense of mathematics
educational research on Type 17 If we look at research on textbooks and curricula,
for example, culturally shaped task and examination cultures and national educa-
tional standards come into view, and form the normative guidelines for teachers’
work in formulating learning goals and planning lessons. For the practical imple-
mentation of these guidelines, lack of free access to teaching materials and books
is too often an obstacle. The collegial support of mathematics teachers at school
can also be counted as part of this support system. The opportunities for further
training through involvement in informal or national teacher associations, access to
professional development (PD) and local feedback structures at school, for example
through the principal, parents, or peers, are part of the support system described.

In Chap. 10, Birgit Pepin and Ghislaine Gueudet consider an offline variable of
the technological support of teaching. This new variable, which Medley could not yet
include among the external context variables at the end of the 1980s, has continuously
shaped the schoolwork of teachers within the last 30 years. In their chapter, Pepin and
Gueudet shed light on the educational policy preconditions and anchors for the use of
digital resources and educational technologies, as well as research on the willingness
and preconditions for teachers to use or not use technology and digital resources in
the classroom, or on the reasons why they do not. Overall, they note, the role of the
teacher is changing toward supporting the learning process as students become more
self-regulated learners in their engagement with digital learning tools. The integration
of programming into mathematics instruction, which has been increasingly promoted
over many years, also requires new knowledge on the part of the teacher. Research on
the quality criteria of digital resources is also receiving attention, for example, on the
development of electronic curriculum materials, electronic textbooks, and dynamic
mathematics tasks that, in terms of student learning of mathematics, require teachers
not only to integrate these materials into the classroom, but also to design their
instruction around them.
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5.4 Mathematics Teacher Training and Experiences

The duration and quality of teacher training can differ qualitatively and quantitatively
across teachers, as Medley described in the Type J offline variable. Different teacher
training factors are the influential variables that mediate teachers’ personal char-
acteristics (Type F) and learned competencies (Type E). This means, for example,
the extent to which teachers can develop their personal potentials in the context of
training processes and translate them into learned competencies and skills is influ-
enced by aspects of their training. Medley (1987) understood this as the experiences
during teacher training designed to increase the “teacher’s repertoire of competen-
cies” (p. 106). Thus, indirectly, the abilities and mediation approaches of teacher
educators, coaches and trainers come into view, as well as engagement in teacher
PD.

In the field of mathematics education research, there have long been many
approaches to assessing the quality of teacher education and training and to evalu-
ating the influence of corresponding variables on the development of teacher compe-
tencies by means of empirical studies. International studies have considered, for
example, the duration of teacher training, the quality of the courses offered, and
the number of courses attended during training. The form of teacher training (e.g.,
how courses are structured or which seminars and courses are effective in teacher
training to acquire mathematical knowledge for teaching) can also be analyzed and
assessed from the perspective of cultural and national educational policy influences
or normative values of “good” teaching. The importance of continuous professional
development for teachers has increased over recent decades. As a result, respective
corresponding variables are considered, such as engagement and participation in
teacher PD. Recent mathematics education research also focuses on incorporating
variables such as duration, structure, and quality of PD as well as effectiveness of
PD assessment measures.

In Chap. 11, Joyce Peters-Dasdemir, Lars Holzépfel, Biarbel Barzel and Timo
Leuders, describe a special unit of analysis assigned to Type J—the qualification of
teacher educators or adult educators providing PD. This unit of analysis refers to
the qualification of facilitators of PD in mathematics, which is an area that has been
insufficiently researched and that Medley did not consider. The teaching profession
is characterized by experiential and lifelong learning and continuous professional
development has gained traction in educational studies. This development has led to
scientific research on the quality of PD. The chapter’s central idea here in terms of
advancing research on teaching and Medley’s framework is to extend the chain of
effects upward to include the corresponding effectiveness of those engaged in teacher
education. To this end, Peters-Dasdemir et al. developed a competency framework
model that can be used to describe the necessary professional profile of facilitators.
Based on the results of overview studies on the criteria of effective teacher training,
development, and based on systematic findings in adult education, the model includes
aspects of the role of trainers as facilitators, their content and field-specific knowl-
edge, professional values, and beliefs. In addition, their role identity, professional



16 A. G. Manizade et al.

self-monitoring skills, and social competencies. The PD facilitators need to have
fundamental professional knowledge and skills of the school subject that go beyond
the knowledge of teachers (e.g., regarding curricular standards or current relevant
empirical research findings).

5.5 Research Methods, Techniques, and Tools for Research
on Teaching in the Digital Era

Following the description of the ten online and offline variables, Medley (1987)
pointed out methodological issues to be considered in research on teaching. These
methodological issues can refer to all stages of the research process in relation to
the variables, their conceptualization, their instrumentation in empirical studies, the
design of studies to investigate them, and the quality of the analysis of the data
collected in studies. In relation to the conceptualization of the variables in research,
Medley noted that the critical definition of effectiveness, that is, of “good teaching,”
varies intersubjectively, so all variables can potentially be affected by researcher bias.
Challenges are also posed by the instrumentation of studies, that is, how the vari-
ables under study are operationalized in studies. Here, the evolution of research on
teaching has led to increasingly better refinement of methods, which is taken up by all
the authors in this volume. Medley further identified challenges of a more method-
ological nature in how studies examining the different variables must be specifi-
cally designed and what forms of data collection must take place. Finally, statistical
data analyses and interpretation of results also pose challenges to researchers, but
Medley recognized an ongoing elaboration of statistical analysis procedures. With
increased sophistication of technological tools access to powerful statistical proce-
dures has improved. Due to the fact that in the 1980s, the primary research methods
accepted in the education community were first and foremost quantitative, Medley’s
work focused on quantitative methods of analysis. However, his concerns related to
conceptualization, instrumentation, and design in research on teaching are still valid
and relevant today, even with new technological and methodological developments
and a wide range of modern qualitative and mixed methods used in mathematics
education research.

Chandra Orrill, Zarina Gearty and Kun Wang in Chap. 12, provide information
about methodological developments in mathematics education research and how it
is positioned in the twenty-first century. They note that in addition to the quantita-
tive research that Medley had in mind, qualitative research methods continued to be
developed steadily in the 1980s and have led to profound insights in the research
on teaching. Since overcoming of what has been characterized as trench warfare
between quantitative and qualitative methodologies, a growing number of mixed-
methods studies have also been observed with respect to the main units of anal-
ysis of research described by Medley. Looking specifically at quantitative research,
Orrill et al. consider the item response theory (IRT) as an influential psychometric
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model which has significantly contributed to the further development of method-
ology in mathematics education research on teaching — especially, when it comes
to the measurement of effectiveness. However, the researchers also present method-
ological advancements related to study design. For example, they describe teaching
experiments, design-based-research, and cultural historical activity theory as new
developments of design frameworks that meet the specific demands and needs of
mathematics education research. Orrill et al. also separately address technological
developments in research (e.g., eye-tracking, DGS and 360° video capture), and how
these have led to both new insights and further development of methods in research.

6 Conclusion

Through the process of writing this book, we updated the original framework consid-
ering current research on teaching mathematics (Fig. 3). In addition to presenting
new connections between main units of analyses of research, we acknowledge that
each research variable must be considered within its cultural context and changes
from one culture to another. The book focused on a western cultural perspective.
Additionally, epistemological contexts are major factors in considering every unit of
analysis of research on teaching mathematics. Depending on researchers’ conceptual
framework, the ideas surrounding Medley’s “good teaching” change as the goals of
teaching are directly tied to epistemological stances. Ultimately, new developments
in technology change the way we can define (e.g., students’ digital identities), eval-
uate (e.g., new instruments/measures of teachers’ knowledge), and connect (e.g.,
modern research tools, methods, and techniques) main units of analysis described in
framework presented in Fig. 3.

Finally, in Medley’s original work, he warned against using variables that were far
removed from one another within one study. New research methods and techniques
described in Chap. 12 show that there are ways to consider multiple units of analyses,
as well as the ones that are not adjacent to each other within the framework (Fig. 3).
However, even with new technologies and advances, we found through writing this
book that units of analyses (Types A though E) further removed from each other
have less predictive value in contrast to those variables within the framework that are
closer to each other. Although researchers considered and studied mediating variables
between those that they intended to measure and report, it became clear to us was
that there is a lack of a systematic scientific overview of the complete chain between
the units of analysis described in Medley’s original framework. Our intention was
to provide such an overview and to offer scholars potential directions for research
related to each unit of analysis as presented in the chapters of this book. This was the
inspiration for our project, and we hope the chapters broaden the readers’ horizons
just as our views were expanded through collaboration with this international team
of scholars.
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Mathematics Teachers’ Influence
on Students’ Learning: Online Variables



Pre-existing Mathematics Teacher )
Characteristics i

Olive Chapman

1 Introduction

This chapter deals with one of the essential online variables of research on teaching
(i.e., pre-existing teacher characteristics) promoted by Donald M. Medley in his
seminal work on the evolution of research on teaching (Medley, 1987). Medley
developed a framework of variables that research in teaching from a presage-process—
product perspective must be concerned with to effectively contribute to the under-
standing and improvement of teaching. This framework provided the theoretical basis
for framing this book on “evolution of research on teaching mathematics” (Manizade,
Buchholtz, & Beswick, Chap. 1, this volume). As Manizade et al. explained,

Medley’s framework is still valuable as it gives an orientation to all possible variables that
become apparent qua the chain of effects from teacher behavior to student achievements.
Moreover, the abiding challenges associated with the conceptualization, instrumentation,
operationalization, and research design that Medley described are still complex, despite
recent advances in technology and research methodology in the digital era. (p. 5)

However, for this book, Manizade et al. updated the framework to take into consid-
eration cultural and epistemological contexts and digital contexts and to situate it
within research on teaching mathematics (see Fig. “Updated framework of research
on teaching mathematics”, Manizade et al., this volume).

Medley’s (1987) framework includes six types of essential “online variables”, that
is, “ones which lie along a direct line of influence of the teacher on pupil learning”
(p- 105). Medley labelled and sequenced these variables from Type F to Type A.
This chapter deals with the Type F variable that is at the beginning of this direct
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line. Figures two and three in the introductory chapter illustrate these variables as
presented by Medley for research on teaching and adapted by Manizade et al. for
research on teaching mathematics (Manizade, Buchholtz, & Beswick, Chap. 1, this
volume).

According to Medley (1987):

Pre-existing teacher characteristics include abilities, knowledge, and attitudes that a candi-
date for admission to a teacher preparation program possesses on entry; they make up a
candidate’s aptitude for teaching. Part of it consists of the characteristics a teacher needs
in order to acquire those competencies that training and experience can provide; part of it
consists of those competencies that a teacher must possess on entry. (p. 105)

In relating it to mathematics teaching, Manizade et al. (this volume, p. 6) defined
the Type F variable as “a mathematics teacher’s beliefs and aptitude for teaching,
characteristics needed to acquire professional competencies during training.” This
definition was adapted in this chapter to explore research of pre-existing mathematics
teacher characteristics [PMTC] that prospective teachers possess on entry into a
teacher education program or mathematics teacher education [MTE] as a necessary
stage in understanding the mathematics teacher and mathematics teaching.

In addition, Medley’s four factors regarding methodological issues that research
on teaching must deal with were adapted in this chapter to discuss the evolution of
research on PMTC. These factors, discussed later, are conceptualization, instrumen-
tation, design, and analysis. Medley explained that “evolution of research on teaching
depends on advances made in how each has been dealt with” (p. 106).

In general, the chapter provides an overview of research that addressed PMTC of
prospective teachers of mathematics [PTs] through a systematic review and synthesis
of relevant published empirical studies for the period 2000 to 2020. It begins with
an overview of the scope of the literature review, followed by an overview of the
types and nature of PMTC covered in the studies reviewed, then a discussion of the
evolution of the research on PMTC and suggestions regarding future evolution of
research on PMTC.

2 Scope of Literature Review to Determine Studies
of PMTC

Given the large body of literature on PTs, it was decided to focus only on high
profile peer-reviewed international journals (Williams & Leatham, 2017) that likely
included studies on PTs’ PMTC. They included: Educational Studies in Mathe-
matics (ESM), Journal for Research in Mathematics Education (JRME), Journal of
Mathematics Teacher Education (JMTE), Journal of Mathematical Behavior (JMB),
International Journal of Science and Mathematics Education (IJSME), Mathematical
Thinking and Learning (MTL), and ZDM—Mathematics Education. The author and
a trained research assistant conducted a search of these journals for the period 2000—
2020 using various combinations of keywords that included: prospective teachers;
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future teachers; teacher candidates; preservice teachers; student teachers; characteris-
tics; competencies; abilities; knowledge; attitudes; beliefs; identity; and recruitment.
Based on our review of titles and abstracts, we prepared a list of articles with poten-
tially relevant studies. We examined these articles to determine whether participants
were at the beginning of their MTE. This process produced very few studies. We then
decided to focus on studies that addressed PTs’ characteristics at the beginning of a
course or prior to an intervention during a course or in situations that reflected the
nature of their background knowledge or ability (e.g., interpreting students’ work or
evaluating tasks), which seemed to be a more promising approach to obtain studies of
PMTC. The assumption was that these studies would suggest characteristics the PTs
held prior to entering MTE if these characteristics were directly related to their school
experiences with mathematics (e.g., mathematics curriculum content and pedagogy).

We obtained a large list of these studies by examining the methodology section
of articles in our list. We then examined these studies to determine if the findings
provided information that was clearly related to PMTC to identify those studies
to exclude. Many intervention studies highlighted the changes resulting from the
intervention but not the initial characteristics of the PTs and were removed from the
list. Studies at the beginning of a course that investigated characteristics that were
related to prior mathematics or mathematics education courses in the program were
also removed from the list. In keeping with the theme of this book, all studies not
situated in a Western context were also later removed. This process resulted in a
list of 51 studies from the above-noted journals, to which were added a few studies
from other journals based on citations of relevant studies in articles on this list.
These studies were situated mainly in the USA, with some from different regions
internationally. To highlight this, in reporting the studies, the countries are noted for
those that were not situated in the USA.

For each article on the final list, the author and research assistant identified and
recorded the PTs’ characteristics explicitly investigated based on the aim of the study.
On examining the characteristics, we determined that they generally involved PTs’
mathematics knowledge, pedagogical knowledge, or beliefs, which became initial
categories used to group the characteristics. The content of these categories consisted
of, for each study, the type of characteristics, the aim of the study related to the char-
acteristics and key findings regarding the nature of the characteristics. Further exam-
ination of the content of each of the three categories and cross-checking of findings
for agreement between the researcher and research assistant, resulted in sub-groups
of characteristics consisting of different types of mathematics concepts and skills,
different types of pedagogical knowledge and ability, and different types of beliefs
or conceptions, respectively. This process also validated that all the characteristics
were appropriately accounted for and could be represented by three broad categories:
pre-existing mathematical knowledge and skills, pre-existing mathematics-related
pedagogical knowledge and ability, and pre-existing mathematics-related beliefs.
These final categories, described in the next section, provided a landscape of PMTC
related to the Type F variable that were researched in the period 2000-2020. We also
documented examples of research tools, design and analysis that formed the basis of
discussion of the evolution of research on the PMTC.
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3 Landscape of PMTC Researched in 2000-2020

The studies reviewed provided a landscape of several PMTC researched in 2000—
2020 regarding what PTs knew or were able to do on entering MTE. These PMTC,
grouped in three categories, are presented in this section in terms of the aims of the
studies, with examples of key findings of the studies related to the PTs’ aptitude for
teaching mathematics. The goal is to provide an overview of PMTC for the three cate-
gories: pre-existing mathematical knowledge and skills, pre-existing mathematics-
related pedagogical knowledge and ability, and pre-existing mathematics-related
beliefs.

3.1 Pre-existing Mathematical Knowledge and Skills

This category consists of studies that investigated PTs’ mathematical knowledge
and skills connected to school mathematics in the period 2000-2020. Collectively,
these studies included primary, elementary, middle, and secondary school PTs and
their knowledge of different content areas (i.e., fractions, whole number operations,
geometry, algebra) and skills (i.e., problem posing). They addressed one category
of PMTC that is central to teaching mathematics and important for PTs to have on
entering teacher education. The following overview of these studies is organized
by each content area and skill to highlight the extent to which they were addressed
in terms of the aims of the studies and nature of the PTs” PMTC and in reversed
chronological order to indicate distribution in the period beginning with most recent
studies.

3.1.1 Fractions

These studies on fractions focused mostly on elementary school PTs and addressed
their knowledge of fractions in a variety of ways. During the second 10 years of the
period: Lee and Lee (2020) investigated elementary school PTs’ exploration of model
breaking points in fractions that included the area model of fraction addition. Most
of the PTs represented fraction addition well with simple fractions but had difficulty
representing fraction addition with improper fractions or fractions with unlike and
relatively large denominators and tended to use algorithm-based thinking. The area
models drawn by several of the PTs revealed various misconceptions. Lovin et al.
(2018) investigated elementary and middle school PTs’ understanding of fractions as
they were starting their first required mathematics course and found that they relied
on procedural knowledge. Most of them had constructed the lower-level fraction
schemes and operations but less than half had constructed the more sophisticated
ones. Baeka et al. (2017) investigated elementary and middle school PTs’ pictorial
strategies for a multistep fraction task in a multiplicative context. They found that
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many of the PTs were able to construct valid pictorial strategies that were widely
diverse regarding how they made sense of an unknown referent whole of a fraction
in multiple steps, how they represented the wholes in their drawings, in which order
they did multiple steps, and the type of model they used (area or set). Whitacre and
Nickerson (2016) investigated elementary school PTs’ fraction knowledge at the
beginning and end of their first mathematics content course. In the beginning, the
PTs used predominantly standard strategies with weak performance and flexibility
in comparing fractions. Lin et al. (2013) explored an intervention for enhancing
elementary school PTs’ fraction knowledge and found that, prior to the intervention,
the PTs held procedural understanding of basic fractional ideas and basic fractional
operations, including equivalent fractions and addition, subtraction, multiplication,
and division of fractions. Finally, Osana and Royea (2011) explored an intervention
centered on problem solving to support Canadian elementary school PTs’ learning of
fractions. The PTs were initially challenged to generate word problems for number
sentences involving fractions, construct meaningful solutions to fraction problems,
and represent those solutions symbolically.

Regarding the first 10 years of the period: Newton (2008) studied elementary PTs
enrolled in a course on elementary school mathematics to obtain a comprehensive
understanding of their fraction knowledge. Findings at the beginning of the course
indicated that they had limited and fragmented knowledge of fractions. For example,
they misapplied fraction algorithms, attended to superficial conditions when choosing
a solution method, and demonstrated little flexibility in solving problems. Although
they remembered many procedures, such as cross-multiplying and finding a common
denominator, they were using them in inappropriate ways. Their most common error
was to keep the denominator the same when it was not appropriate to do so. Tirosh
(2000) investigated fraction division and found that in a class of Israeli elementary
PTs, most of them knew how to divide fractions but could not explain why the
procedure worked.

3.1.2 Whole Number Operations

This group of studies addressed elementary school PTs’ knowledge of addition,
subtraction, multiplication, and division of whole numbers. Norton (2019) examined
Australian primary school PTs’ mathematics knowledge at the beginning and end of
their education course. Findings indicated that the PTs had low levels of knowledge of
whole numbers at the beginning of the course. The most challenging whole-number
computation for them was division by a double-digit divisor. Kaasila et al. (2010)
investigated Finnish elementary PTs’ conceptual understanding, adaptive reasoning,
and procedural fluency based on a non-standard division problem and concluded
that division seemed not to be fully understood. Less than half of the PTs were
able to produce complete or mainly correct solutions. The main reasons for their
issues in understanding the task consisted of staying on the integer level, inability to
handle the remainder, difficulties in understanding the relationships between different
operations, and insufficient reasoning strategies. Thanheiser (2010) examined PTs’
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responses to standard addition and subtraction place-value tasks and found that, at
the beginning of their MTE, the PTs were often able to perform but not explain
algorithms. For example, they had incorrect views of regrouped digits that included:
interpreting all regrouped digits consistently as having the same value (all as 1 or
all as 10); treating the value of the digits as dependent on the context (addition or
subtraction); interpreting the digits consistently within but not across contexts (i.e. all
as 10 in addition but all as 1 in subtraction); and interpreting the digits inconsistently
depending on the task (i.e. the same digit was interpreted in multiple ways).

Thanheiser (2009) also reported on the PTs’ knowledge of multidigit whole
numbers in the context of standard algorithms for addition and subtraction prior
to their first mathematics course in their MTE. Most of the PTs did not have a deep
understanding of numbers and struggled relating the values of the digits in a number
to one another. They did not provide mathematical explanations of the algorithms.
They referred to the digit in the tens place as ones rather than in terms of the reference
unit tens or the appropriate groups of ones. While some drew on a conception that
enabled them to explain the algorithm in at least one way, few exhibited an under-
standing of numbers that enabled them to explain the algorithm flexibly, including
why the digits in any column can be treated as ones and why we can treat any pair
of adjacent digits as if they were ones and tens.

3.1.3 Geometry

These two studies addressed different aspects of elementary and middle school PTs’
knowledge of geometry concepts. Miller (2018) analyzed PTs’ definitions of types
of quadrilateral based on a survey of elementary school PTs who, since high school,
had not yet studied geometry in their MTE. Findings included that the majority
of the PTs’ definitions contained necessary attributes, but not sufficient or minimal
attributes. The PTs were most comfortable with squares, followed by parallelograms,
then rectangles, trapezoids, rhombi, and finally kites. They did not include hierar-
chical relationships as a means of defining one shape in terms of another and often
created definitions that were aligned with emergent concept images of the shape
types with only typical examples. Yanik (2011) investigated middle school PTs’
knowledge of rigid geometric translations and found that the PTs had difficulties
recognizing, describing, executing, and representing geometric translations. They
viewed geometric translations mainly as physical motions based on their previous
experiences, that is, as rotational motion, translational motion, and mapping. They
interpreted the vector that defines translations as a force, a line of symmetry, a direc-
tion indicator, and a displacement. Many of them knew that a vector has a magnitude
and a direction but did not conclude that vectors define translations.
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3.1.4 Algebraic Concepts and Thinking

This group of studies addressed elementary and middle school PTs’ knowledge of
algebraic concepts and their ability to think algebraically. Hohensee (2017) exam-
ined the insights and challenges elementary school PTs experienced when exploring
early algebraic reasoning. Findings indicated that they were challenged conceptu-
ally to identify the relationships contained in algebraic expressions, to distinguish
between unknowns and variables, to bracket their knowledge of formal algebra, and
to represent subtraction from unknowns or variables. You and Quinn (2010) investi-
gated elementary and middle school PTs’ knowledge of linear functions and found
that they were stronger on procedural than conceptual knowledge of linear functions.
They were weak in representation flexibility, for example, ability to transfer flexibly:
(i) between visual and algebraic representations to recognize relevant properties of
algebraic and visual representations and to make connections among them when
treating functions as an entity; (ii) from functions to a word problem situation; and
(ii1) from word problem situations to various forms of functions. Richardson et al.
(2009) studied how pattern-finding tasks promoted elementary school PTs’ learning
of how to generalize and justify algebraic rules from an emergent perspective to
support their teaching of early algebra concepts. They found that most of the PTs, in
their only mathematics methods course, initially focused on numerical data in tables
and had difficulty providing a valid justification for their generalizations. Nearly all
of the PTs generalized explicit rules using symbolic notation but had trouble with
justifications early in the experiment. Pomerantsev and Korosteleva (2003) investi-
gated the typical mistakes elementary and middle school PTs made as they progressed
through their courses. They found that the PTs had difficulties recognizing structures
of algebraic expressions at the introductory level of the courses.

3.1.5 Problem Posing

This group of studies addressed elementary and lower secondary school PTs’ problem
posing knowledge or ability. Crespo and Sinclair (2008) investigated elementary
school PTs’ problem-posing practices prior to planned interventions. They found
that a majority of the problems the PTs posed consisted of assignment problems as
opposed to the more complex relational or conditional problems for one task and
factual problems (involving the recall of names and properties, the identification
of properties, the application of measurement formulae, or the counting of shapes)
for another task. The purpose was mainly to elicit information. Problem structure
included clarity (problems not confusing, misleading, or under- and over-stated) and
simplicity (numbers or shapes common and uncomplicated and right answers). Rizvi
(2004) investigated Australian lower secondary school PTs’ ability to pose word
problems for mathematical expressions involving division before an instructional
intervention. She found that none of the PTs was able to pose word problems for the
expressions where the divisors were fractions. They posed only sharing type word
problems for the expressions where the divisor was a whole number. While many
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were aware of the repeated subtraction, no participants posed any word problem based
on the repeated subtraction model for any division expression. Crespo (2003) inves-
tigated elementary school PTs’ beginning approaches to posing problems and found
that they consisted of: making problems easy to solve (e.g., the narrow mathematical
scope of the original version of the problem and the work of students); posing familiar
problems (e.g., quick-translation story problems or computational exercises); and
posing problems blindly (i.e., unawareness of the mathematical potential and scope
of problem).

3.1.6 Summary

The overview of studies in this section on pre-existing mathematical knowledge and
skills offers insights of the nature of the PTs’ content knowledge at the point of
entry into a teacher education program. The studies investigated the PTs’ knowl-
edge of different content areas (i.e., fractions, whole number operations, geometry,
algebra) and their problem-posing skills. There was more attention on elementary
than secondary PTs and on fractions than the other areas. Those studies dealing
with fractions focused on meaning of fractions, arithmetic operations with fractions,
strategies for solving fraction tasks and models of representing fractions. They indi-
cated that the PTs’ fraction knowledge contained many misconceptions and was
generally limited, fragmented, weak, low level, and procedural. Studies dealing with
whole numbers focused on the arithmetic operations (addition, subtraction, multi-
plication, division). They indicated that the PTs did not have deep understanding
of these procedures. Studies dealing with geometry focused on two-dimensional
shapes and rigid motions. They indicated that the PTs’ had superficial knowledge or
difficulties in dealing with these concepts. Studies dealing with algebraic concepts
addressed algebraic expressions, linear functions, and algebraic rules. They indicated
that the PTs had weak knowledge of the concepts, were challenged conceptually,
and had difficulties with the concepts. Problem posing received the least attention
with these studies focusing on posing word problems. The studies indicated that the
PTs’ problem-posing ability was limited to posing problems of low level of cogni-
tive demand. Overall, the studies highlighted that the PTs’ pre-existing knowledge
of mathematical content was plagued with difficulties and low conceptual under-
standing of specific mathematics concepts that are central to school mathematics
curricula and their future teaching.
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3.2 Pre-existing Mathematics-Related Pedagogical
Knowledge and Ability

This second category consists of studies that investigated PTs’ mathematics-related
pedagogical knowledge and ability in the period 2000-2020. These studies collec-
tively included early childhood and primary, elementary, middle, and secondary
school PTs and their pedagogical ability (e.g., to notice, observe, analyze, and/or
interpret teaching situations). They addressed another category of PMTC that is
important for a teacher to function effectively in mathematics teaching situations and
that PTs should have on entering MTE. The following overview of these studies is
organized based on their foci on the PTs’ knowledge or ability involving (i) observing
and analyzing teaching, (ii) noticing and interpreting students’ work or thinking, and
(iii) evaluating tasks, to highlight the extent to which each was addressed in terms of
the aims of the studies and the nature of the PTs’ PMTC. The studies are presented
in reversed chronological order to indicate distribution in the period beginning with
the most recent studies.

3.2.1 Observing and Analyzing Teaching

This group of studies addressed elementary, middle, and secondary school PTs’
ability to observe and/or analyze teaching by engaging the PTs in exploring videos
of mathematics lessons. Star and Strickland (2008) investigated the impact of video
viewing as a means to improve secondary school PTs’ ability to be observers of class-
room practice. Their findings of the pre-assessment indicated that the PTs generally
did not enter teaching methods courses with well-developed observation skills. They
were astute observers of classroom management regarding what the teacher did to
maintain control in the classroom and what students did that might influence the
teacher’s ability to maintain control. They were also reasonably attentive to the
actions of the teacher to support the lesson objectives, such as her use of notes, her
presentation of the material, how she structured the group work, and her assignment
of homework. However, their ability to notice other aspects of the classroom was not
as strong. They did not attend to features of the classroom environment and/or did not
feel that such features needed their attention. They were weak in observing the math-
ematical content, for example, questions about the representation of the mathematics,
the examples used, and the problems posed. They did not notice subtleties in the ways
that the teacher helped students think about content. In general, the PTs were very
attentive to issues of classroom management but mostly unaware of static features of
the classroom environment and the subtleties of classroom communication and math-
ematical content. Stockero (2008) investigated the use of a video-case curriculum in
a middle school mathematics methods course for PTs to develop a reflective stance
to enable them to analyze classroom interactions. Findings early in the course indi-
cated that the PTs’ level of reflection or observation was at the two lowest levels
of reflection; that is, describing and explaining levels. Their reflection focused on
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describing and explaining what they observed in the videos and did not demonstrate
the higher levels of reflection consisting of theorizing, confronting, and restructuring.
They also tended to analyze classroom events based on affective measures instead
of pedagogical and mathematical reasons for instructional decisions.

Morris (2006) provided the only study that focused on this observing/analyzing
PTs’ ability when the PTs entered their MTE compared to others that considered it
prior to an intervention in a course later in their MTE. She investigated the “learning-
from-practice skills” that elementary and middle school PTs possessed by requiring
them to analyze a videorecorded mathematics lesson regarding the effects on student
learning, to support their analysis with evidence, and to use their analysis to revise the
lesson. She found that many of the PTs could carry out a cause-effect type of analysis
of the relationships between specific instructional strategies and student learning and
could use this analysis to make productive revisions to the instruction. But their ability
to collect evidence that supported their analysis was less developed. Their analysis of
the effects of instruction on the students’ learning was dependent on the video-task
conditions. For example, when the task instructions indicated that the lesson was
not successful, the PTs attended to both teacher and students and could make some
elementary claims about how teaching and learning might be connected, but specific
types of deficiencies in their evidence-gathering were apparent including the ability
to collect evidence that supported conjectures about the effects of instruction. When
the condition allowed the PTs to decide whether the lesson was successful and which
instructional activities worked well or not, most of them focused primarily on the
teacher, implying that students learn what the teacher explains. For example, they
saw a teacher giving explanations and children giving correct responses, concluded
that the children understood the teacher’s explanations, and made minimal revisions
to the lesson. In general, the PTs’ support of hypotheses about student learning
involved: no references to students’ responses, referring to students’ responses that
were marginally related to the claims, attributing a wide range of understandings
to students based on little or no objective evidence, and failing to refer to students’
responses that provided the most access to students’ thinking.

3.2.2 Noticing and Interpreting Students’ Work and Thinking

This group of studies collectively addressed early childhood and primary, elemen-
tary, and secondary school PTs’ knowledge of, and ability to notice and interpret,
students’ mathematical work and thinking. Regarding the second 10 years of the
period: Shin (2020) examined secondary school PTs’ noticing of students’ reasoning
about mean and variability. Findings indicated that the PTs had difficulties noticing
students’ reasoning about variability. None of the PTs explicitly interpreted the
students’ limited understanding of variability when comparing data sets with unequal
sample sizes. Some showed no evidence of differentiating between students’ different
levels of reasoning. Superfine et al. (2019) investigated different facilitation moves to
support the elementary school PTs in noticing children’s mathematical thinking and
found that they generally did not discuss their noticing at a high-level and there were
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few instances where they provided evidence for their noticing. Sdnchez-Matamoros
etal. (2019) examined the relationships between how secondary school PTs in Spain
attended to the mathematical elements in students’ solutions and interpreted students’
understandings for the derivative of a function at a given point. Their findings indi-
cated that the PTs had different levels of pre-existing ability consisting of those
who provided general comments about students’ learning, who found it difficult to
recognize characteristics of the students’ understanding, and who had difficulties in
using mathematical elements in students’ solutions to recognize differences among
students’ understanding. Callejo and Zapatera (2017) investigated Spanish primary
school PTs’ noticing, describing, and interpreting of students’ mathematical thinking
in their solution to a pattern generalization task. They found that the PTs were able
to name various mathematical elements to describe the students’ answers but did
not always use them to interpret the understanding of pattern generalization of each
student. Some PTs could not recognize the understanding of the students.

In addition, Simpson and Haltiwanger (2017) investigated how secondary school
PTs made sense of students’ mathematical thinking of an algebra and function mathe-
matics problem, when professional noticing was not a formal part of their MTE. They
found that the PTs exhibited a lack of rigorous evidence when interpreting what the
students may or may not have understood. The PTs discussed only what the students
understood in terms of the written work. They did not consider misconceptions
or errors in the students’ mathematical thinking. Sdnchez-Matamoros et al. (2015)
examined the ability of secondary school PTs in Spain to notice students’ under-
standing of the derivative concept in the beginning and end of a “training module”.
At the beginning, the PTs’ noticing was limited to describing students’ answers in
the graphical and analytical modes of representation but without identifying the rele-
vant mathematical elements and interpreting the students’ understanding by making
general comments related to “the good or bad understanding of the student.” Lastly,
Son (2013) examined the secondary and elementary school PTs’ interpretations of
and responses to a student’s error(s) involving finding a missing length in similar rect-
angles through a teaching scenario task. Findings indicated that although the student’s
errors came from conceptual aspects of similarity, a majority of the PTs identified
the errors as stemming from procedural aspects of similarity and consequently drew
on procedural knowledge as a way to guide the students.

Regarding the first 10 years of the period: Harkness and Thomas (2008) inves-
tigated early childhood PTs’ mathematical understanding of a student’s invented
multiplication algorithm and found that a majority of the PTs relied on procedural
and memorized explanations rather than using mathematical properties to describe
the validity of the algorithm. Generally, their responses demonstrated a procedural or
memorized understanding of the invented algorithm. Crespo’s (2000) study on how
elementary school PTs in Canada interpreted their students’ work indicated that their
interpretations were initially from a limited focus on the correctness of the students’
solutions and not meaning.
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3.2.3 Evaluating Tasks

This group of studies addressed elementary and middle school PTs’ knowledge of,
and ability to evaluate, features of mathematical tasks to support students’ learning.
Magiera et al. (2013) explored middle school PTs’ ability to recognize opportuni-
ties to engage students in algebraic thinking. They found that the PTs demonstrated
limited ability to recognize the full potential of algebra-based tasks to elicit alge-
braic thinking in students, recognizing only some features in the analyzed tasks.
Stephens (2006) examined elementary school PTs’ awareness of equivalence and
relational thinking to assess their initial preparedness to engage students in these
aspects of early algebraic reasoning. She found that the PTs collectively demon-
strated an awareness of relational thinking in identifying opportunities offered by
the tasks to engage students in this thinking. But in proposing difficulties students
might have with selected tasks, few of them demonstrated an understanding that
many students have misconceptions about the meaning of the equal sign. Osana
et al. (2006) examined the nature of elementary school PTs’ evaluations of elemen-
tary mathematics problems using a model designed to discriminate among tasks
according to their cognitive complexity. Results demonstrated that, overall, the PTs
had more difficulty accurately classifying problems considered to represent high
levels of cognitive complexity compared to less complex problems. They were influ-
enced by the surface characteristics of task length and tended to label short problems
as less cognitively demanding and long problems as more so.

3.24 Summary

The overview of studies in this section on pre-existing mathematics-related peda-
gogical knowledge and ability offers insights of the nature of the PTs’ knowledge
and ability related to teaching and learning mathematics at the point of entering a
teacher education program. The studies addressed the PTs’ knowledge of how to
observe and analyze teaching, notice and interpret students’ work or thinking, and
evaluate tasks. Those dealing with observing and analyzing classroom behaviours of
teachers and students indicated mostly weaknesses in the PTs’ ability to observe and
make appropriate conclusions or suggestions regarding instruction. For example, they
were strong in observing classroom management but weak in noticing other aspects
of the classroom and demonstrated lowest levels of analysis of classroom interac-
tions. Those studies dealing with noticing and interpreting students’ mathematical
thinking and work indicated that the PTs demonstrated several areas of difficulties in
noticing or recognizing students’ reasoning, providing rigorous evidence to support
their noticing, and discussing noticing at a high level. Studies dealing with evalu-
ating or interpreting features of tasks to support students’ learning indicated that
the PTs had limited ability to recognize potential of tasks or difficulties students
could experience with a task or classifying a problem of high level of cognitive
complexity. Overall, the studies highlighted that there were much more weaknesses
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than strengths in the PTs’ pre-existing ability to notice, analyze, and interpret math-
ematics classroom behaviors of teachers and students and students’ mathematical
work.

3.3 Pre-existing Mathematics-Related Beliefs

This third and final category consists of studies that investigated PTs’ mathematics-
related beliefs in the period 2000-2020. The studies collectively included primary,
elementary, middle, and secondary school PTs and their content and pedagogical
beliefs (conceptions and perceptions). They addressed another category of PMTC that
are important to how teachers conceptualize and enact their teaching of mathematics
and PTs would have on entering MTE. The following overview of these studies is
organized based on their foci on the PTs’ beliefs about: (i) nature of mathematics,
(ii) teaching and learning mathematics, (iii) use of technology, (iv) mathematical
processes, and (v) mathematics concept, to highlight the extent to which they were
addressed in terms of the aims of the studies and the nature of the PTs” PMTC. The
studies are presented in reversed chronological order to indicate distribution in the
period beginning with the most recent studies.

3.3.1 Nature of Mathematics

This group of studies addressed primary, elementary, middle, and secondary school
PTs’ beliefs of the nature of mathematics. Weldeana and Abraham (2014) investi-
gated an intervention to change beliefs of middle school PTs. They found that before
the intervention a majority of the PTs did not hold progressive beliefs related to
the nature of mathematics. For example, they believed that for every problem of
mathematics, there is one unique approach leading to its solution. Shilling-Traina
and Stylianides (2013) investigated changes in the beliefs about mathematics held
by elementary school PTs in a mathematics course and found that their initial beliefs
largely reflected instrumentalist and Platonist views. Conner et al. (2011) inves-
tigated secondary school mathematics PTs’ beliefs about mathematics. Findings
indicated that their initial views of mathematics were primarily Platonist and instru-
mentalist. Some of the most prevalent descriptors of mathematics across participants
were mathematics is logical and less subjective than other disciplines, and mathe-
matics is unambiguous in the sense that, while multiple solution paths are possible,
each problem has a single, correct answer. Finally, Bolden et al. (2010) investigated
primary school PTs in the UK early in their education course at the beginning of the
program and found that the PTs held narrow, absolutist views of mathematics as a
subject. Most conceived mathematics as a subject of a set body of knowledge that
offered little or no room for freedom of expression, imagination, and independence.
Most also believed that mathematics was not a creative subject, and it was difficult
to encourage creativity in mathematics.
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3.3.2 Teaching and Learning Mathematics

This group of studies addressed primary, elementary, middle, and secondary school
PTs’ beliefs or conceptions about teaching and learning mathematics, including qual-
ities of teachers and learners, mathematical behaviour and creativity, and doing and
understanding mathematics. Regarding the second 10 years of the period: Stohlmann
etal., (2014/2015) investigated changing elementary school PTs’ beliefs about math-
ematical knowledge. At the beginning of the course, the majority of the PTs showed
little or no evidence of the belief that conceptual understanding of mathematics is
more powerful or generative than remembering mathematical procedures and they
appeared to be focused on understanding mathematics in terms of procedural fluency.
The majority of them also showed weak or no evidence of beliefs that: (i) One’s
knowledge of how to apply mathematical procedures does not necessarily go with the
understanding of the underlying concepts. (ii) Understanding mathematical concepts
is more powerful and more generative than remembering mathematical procedures.
(iii) If students learn mathematical concepts before they learn procedures, they are
more likely to understand the procedures when they learn them. If they learn proce-
dures first, they are less likely ever to learn the concepts. For (i), very few PTs showed
evidence or strong evidence of the belief that if a child knows procedures, they may
not understand the underlying concepts. Weldeana and Abraham (2014) investigated
an intervention to change beliefs of middle school PTs. They found that before the
intervention a majority of the PTs did not hold progressive beliefs related to the
way mathematics is learned, taught, and practiced. The PTs began with a strong
belief that mathematics can be learned and understood through memorization of
facts and formulae. They held many traditional beliefs related to knowing in math-
ematics (e.g., step-by-step procedure; getting the right answers quickly; retrieving
information quickly; and figuring out formulae and equations to solve problems
immediately).

In addition, Conner et al. (2011) investigated secondary school PTs’ beliefs about
mathematics teaching. They found that the PTs’ initial beliefs of characteristics of
effective mathematics teachers included: having positive affective characteristics
(a good teacher is nice, patient, friendly) and mathematical knowledge, attending
to student needs, and facilitating student participation. They also initially held the
belief that students should participate in class, asking questions and working together,
but sometimes they described a teacher centered view of student participation that
included direct instruction as the primary method for teaching new content. Bolden
et al. (2010) investigated conceptions of creativity of primary school PTs in the UK
early in their education course at the beginning of their MTE. Findings indicated that
the meaning of creativity in primary school mathematics was not well understood
by the PTs based on their conception of it. Their conceptions were narrow, predom-
inantly associated with the use of resources and technology, and tied to the idea of
“teaching creatively” rather than “teaching for creativity”. They viewed creativity in
terms of the types of resources used and the way in which they were used to teach
mathematical topics and the way in which real-life examples were used to explore
mathematical concepts.
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For the first 10 years of the period: Ambrose (2004) investigated an interven-
tion to build elementary school PTs’ beliefs. Findings indicated that initially the
PTs held beliefs that teaching involves explaining things to children, which most
of them continued to hold following the intervention. They initially equated doing
mathematics with using memorized procedures. Their actions indicated a teaching-
as-telling belief along with a belief about mathematics learning as the acquisition
of standard symbolic procedures. Szydlik et al. (2003) explored elementary school
PTs’ beliefs about the nature of mathematical behavior both at the beginning and
end of the education course. At the beginning, the majority of the PTs believed that,
as learners, they could not “figure out” mathematics for themselves. They could not
imagine being asked to do a problem significantly different from those in the text-
book or having a teacher who did not first show them how to do similar problems.
They believed that they must memorize formulas, procedures, or template problems
in order to work on new problems.

3.3.3 Use of Technology

These two studies addressed middle and secondary school PTs’ beliefs about the
use of technology. Wachira et al. (2008) assessed middle school PTs’ beliefs about
the appropriate use of technology in mathematics teaching and learning prior to
taking the methods course. They found the PTs’ beliefs to be limited to the use of
technology as computational tools and for checking the accuracy of these compu-
tations. The PTs’ conceptions indicated a lack of understanding of technology as
powerful tools to help students gain knowledge, skills, deeper understanding and
appreciation of mathematics. They did not provide specific ways on how technology
could be used to promote learning. None indicated that technology could be used to
explore patterns, discover more about mathematics concepts or investigate mathe-
matical relationships, which suggested that they lacked understanding of how tech-
nology could be used appropriately to develop concepts. Leatham (2007) investi-
gated secondary school PTs’ beliefs about teaching mathematics with technology
later in their program after taking an education course on technology and found that
their beliefs about the nature of technology in the classroom were about the avail-
ability of technology, the purposeful use of technology, and the importance of teacher
knowledge of technology.

3.3.4 Mathematical Processes

These two studies addressed elementary school PTs’ beliefs (conceptions, views)
of two mathematical processes: problem solving and representing mathematical
concepts or situations. Son and Lee (2020) examined elementary PTs’ problem-
solving conceptions and performances. They found that a majority of the PTs held
conceptions of problem solving as a means to a solution, that is, they expressed a
skill-based or means-to-an-end view by focusing on solutions or procedural steps.
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Their conceptions of problem solving were related to their performances. Dreher
et al. (2016) investigated views about using multiple representations held by British
and German elementary school PTs at the beginning of their first year of their MTE.
They found that the PTs showed little awareness for the role of representations for
mathematical understanding. They viewed the role of multiple representations for
understanding mathematics as less important than other non-discipline reasons for
using multiple representations. They mostly were not able to recognize the learning
potential of tasks focusing on conversions of representations, in comparison with
tasks including rather unhelpful pictorial representations, to which they tended to
assign a higher learning potential.

3.3.5 Algebra

One study addressed PTs’ conceptions of algebra. Stephens (2008) examined concep-
tions of algebra held by elementary school PTs enrolled in their only course
addressing the teaching of mathematics. Findings suggested that their conceptions
of algebra as subject matter were narrow. Most of them equated algebra with the
manipulation of symbols. Very few identified other forms of reasoning, in partic-
ular, relational thinking, with algebra. Several made comments implying that student
strategies that demonstrated traditional symbol manipulation might be valued more
than those that demonstrated relational thinking, suggesting that what was viewed
as algebra is what will be valued in the classroom. Tasks were often judged to be
algebra or non-algebra problems by the presence or absence of a variable or letter,
and students were often judged to have used or not used algebra based on how closely
their work matched the symbol-manipulation model.

3.3.6 Summary

The overview of studies in this section on pre-existing mathematics-related beliefs
offers insights of the nature of the PTs’ pre-existing beliefs or conceptions related to
mathematics and mathematics pedagogy at the point of entering a teacher education
program. The studies addressed the PTs’ beliefs about the nature of mathematics,
teaching and learning mathematics, use of technology, mathematical processes, and
mathematics concepts. Those dealing with beliefs about the nature of mathematics
indicated that the PTs held beliefs of a Platonist or absolutist perspective of mathe-
matics. Those dealing with beliefs about teaching and learning mathematics indicated
that the PTs’ beliefs mostly reflected a traditional or ‘teacher-centered’ perspective
of teaching and learning mathematics. Those dealing with beliefs about mathematics
concepts and processes indicated that the PTs held narrow conceptions of algebra,
problem solving, and multiple representations. Those dealing with technology indi-
cated that the PTs lacked understanding of use of technology to support students’
learning and to develop concepts and held beliefs that could significantly limit their
use of technology in teaching mathematics. Overall, the studies highlighted that
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the PTs’ pre-existing beliefs were mostly inappropriate to support contemporary
perspectives of reform-based mathematics education.

3.4 Summary of Landscape of PMTC

Table 1 provides a summary of the PMTC that were addressed by studies investigating
PTs’ characteristics in the period 2000-2020. The table includes the three categories
of PMTC researched and the types of PMTC researched for each category. These
PMTC could directly impact PTs’ learning during initial teacher education and their
teaching as future teachers. They are further discussed in the sections that follow
concerning how research has evolved in PMTC.

4 Evolution of Research on PMTC

The preceding section outlined studies relevant to Medley’s (1987) Type F variable
that provided a landscape of the types of PMTC they addressed. These studies formed
the basis to consider the evolution of research on PMTC in the period 2000-2020,
based on what was done (i.e., the scope of research) and how it was done (i.e., method-
ological factors) in establishing and advancing research in this area of mathematics
education. The scope of research involves the extent to which PMTC were studied.
The methodological factors involve those that Medley proposed are necessary to
consider the evolution of research on teaching, adapted to address research on PTs’
PMTC. These factors are conceptualization (e.g., of good teaching), instrumentation

Table 1 Landscape of PMTC of PTs Researcher in 2000-2020
Categories of PMTC researched Types of PMTC researched

Pre-existing mathematical knowledge and skills | Fractions

‘Whole number operations
Geometry

Algebra

Problem posing

Pre-existing mathematics-related pedagogical Observing and analyzing teaching
knowledge and ability Noticing and interpreting students” work or
thinking

Evaluating tasks

Pre-existing mathematics-related beliefs Nature of mathematics

Teaching and learning mathematics
Use of technology

Mathematical processes

Algebra
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(e.g., valid tools), design, and analysis. This section is organized in terms of the scope
of research on PMTC and methodological factors.

4.1 Scope of Research on PMTC

The scope of research suggests an evolution of research on PMTC in terms of the
extent of the types of PMTC researched, the extent to which PMTC were addressed
by the studies, and the extent to which the studies were framed at the point of entry
into MTE.

4.1.1 Types of PMTC Researched

The studies suggested a shift from researching teacher candidates’ characteristics,
such as level of school mathematics they completed, mathematics courses they
completed, their overall grade point average (GPA), and their mathematics GPA,
which were not considered in any of the studies for 2000-2020. They also suggested
growth in research on PMTC in terms of different types of PTs’ characteristics that
were investigated. They addressed specific aspects of nine types of PMTC associated
with three categories of characteristics (Table 1) the PTs held on entering MTE. These
characteristics included PTs’ knowledge, skills, and beliefs that were connected to
what they would have learned, directly or indirectly, as students in school mathe-
matics classrooms. For example, prior to entering teacher education, PTs would have
developed knowledge of mathematical:

e Content—directly, based on what was taught.

® Processes—directly, based on what they engaged in.

e [ earning—indirectly, based on how they were engaged and their personal
orientation.

e Teaching—indirectly, based on how they were taught and assessed.

e Technological tools—directly or indirectly, based on how they were used in their
learning.

e Beliefs—indirectly, based on what was taught and how it was taught.

While the studies touched on all of these areas of PTs’ learning, aspects of them
were not explored enough or at all to add depth to the body of research on PMTC.
For example, little or no consideration was given to secondary school mathematics
concepts, mathematical problem solving and thinking skills, technological tools, and
assessment of learning. The studies also did not address contextual variables that
impacted the characteristics, in particular, cultural context and technological context
(discussed later). Thus, while the studies offered insights of some important PMTC
held by PTs on entering MTE, in advancing the field of research on the mathematics
teacher and teaching, they were limited in types and number of PMTC covered in a
recent 20-year period.
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4.1.2 Attention to PMTC by Studies

The extent to which the studies attended to the PMTC researched, based on number
of studies, suggested relative levels of evolution of each of the three categories and
types of PMTC (Table 1) for the period 2000-2020. For example, the pre-existing
mathematical content and skills category received the most attention, suggesting
higher interest in content-related characteristics, in particular, knowledge of fractions
that represented almost half of the studies in the category, with most of them occurring
in the second half of the period. The pre-existing mathematics-related pedagogical
knowledge and ability and the pre-existing mathematics-related beliefs categories
received the same level of attention, but when combined were higher by about 20%
more studies than the mathematical content and skills category. This suggested that
overall, research focused on PMTC regarding pedagogical ability and beliefs had
grown more than for content knowledge.

In particular, in the pedagogical ability category, there was significant attention in
the studies on noticing and interpreting students’ work and thinking, which formed
about two-thirds of the studies in this category, were the largest group of studies for
the three categories, and were mostly occurring in the second half of the period. For
the beliefs category, beliefs about teaching and learning received the most attention,
but was third behind the interpreting students’ work and the fractions PMTC. Most of
the studies for these three types of PMTC were also in the second half of the period,
compared to the other types of PMTC that collectively had more studies in the first
half of the period. All of the studies on problem posing, use of technology, and the
ability to observe and analyze teaching, and most of those on ability to evaluate
tasks and knowledge of whole number operations were in the first half of the period.
Hence, there was a shift in focus from the first to the second half of the period
that suggested a shift in research on PMTC that may be considered a partial growth
regarding some PMTC researched and a limitation regarding lack of continuation
of attention to those that are of ongoing importance to support effective teaching of
mathematics.

4.1.3 Studies at Point of Entry

The extent to which the studies were framed at the PTs’ point of entry into MTE
provided another perspective of the level of growth on research on PMTC for the
period 2000-2020. While there is a large body of mathematics education research
on PTs in this period, it is lacking in addressing PMTC of teacher candidates at the
point of entering MTE. Only about 8% of the studies addressing PMTC in 2000-2020
focused on PTs at the beginning of their programs, which was not defined. Hence,
as previously discussed, the majority of the studies were framed at the beginning of
mathematics education courses, or prior to research-based instructional interventions
in a mathematics education course or based on activities in mathematics for teachers
or mathematics education courses that depended solely on the use of prior knowledge
related to school experience. This framing suggested that, in 2000 -2020, there was
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no growth of research of PTs’ PMTC at the point of entry into MTE or there was
an evolution in terms of a shift to, or consideration of, more practical approaches of
obtaining access to PTs and their PMTC (e.g., participants in mathematics education
courses at different points in a program).

Given the importance of understanding teacher candidates’ PMTC, the little atten-
tion of research on them could partly be related to challenges associated with the
point of entry, which could be messy regarding accessing information on teacher
candidates for one discipline and dealing with complexities associated with different
admission requirements, different academic backgrounds of candidates, and different
programs. For example, in a Western cultural context, mathematics teacher candi-
dates could enter a teacher education program directly from high school with or
without a college entrance test/exam, or after receiving an undergraduate or grad-
uate degree in mathematics or some other related degree, or while jointly working
on a mathematics education degree and another related degree. They could have
completed only middle or high school mathematics, or a mathematics degree, or
a mathematics-related degree (e.g., physics, engineering), or some mathematics or
mathematics-related courses prior to beginning a teacher education or mathematics
education program. These various groups of PTs would need to be considered sepa-
rately, in addition to the various groups according to different school levels for which
PTs are preparing (e.g., elementary, middle, or high school) to obtain a reliable and
meaningful picture of PMTC.

A related issue is what is the point of entry for candidates in mathematics educa-
tion—the beginning of a general teacher education program that includes mathematics
education, the beginning of a specialized mathematics education program, the begin-
ning of mathematics education courses, and mathematics courses for teachers? All
of these possibilities could lead to different versions of the nature of PMTC held by
PTs. Although the studies on PMTC in 2000-2020 addressed school levels, there was
an underlying assumption that the PTs in a course formed a homogeneous group in
terms of their academic backgrounds, which might or might not have been the case.
However, the intent of most of these studies was not explicitly to address PMTC at
the point of entry into an MTE, but to obtain baseline information to evaluate their
instructional approaches, which could be another way of considering how research
on PMTC has evolved.

Another possible challenge for researching teacher candidates’ PMTC involves
the use of institutions’ recruitment criteria or admission requirements as a basis of
their point-of-entry PMTC, since what institutions want and what they get may not
fully align. For example, as Artzt and Curcio (2008) explained, regarding recruiting
high school students for secondary school mathematics education programs in the
USA:

There were several obstacles we faced in recruiting talented mathematics secondary students;
it requires finding students from the intersection of three sets: those who love mathematics,
those who want to become teachers, and those who are interested in attending Queens College
.... Overcoming the barriers requires a multitude of recruitment strategies. (p. 249)
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Schmidt et al. (2012) also raised concerns about selectivity for institutions in the
USA. They noted:

There is great variation in what secondary mathematics individuals have had before entering
teacher preparation. (p. 265).

Variation was especially large for the college entrance mathematics score, ... revealing
a very large selectivity factor across institutions. (p. 270)

From a policy perspective, selectivity relates to differences in mathematics knowledge
among future teachers before they began their teacher preparation—the issue of who enters
teaching. This is manifested by large differences among institutions. The policy issue related
to selectivity includes recruiting more mathematically able students into primary teacher
preparation no matter which institution they might attend. (p. 275)

Selectivity could also be an issue within an institution where admission could be
based on a combination of grades, interviews, portfolio, etc. which adds another layer
of complexity in using admission requirements to determine PMTC. Research on
PMTC in 2000-2020 did not address recruitment criteria or admission requirements
of institutions, which could also be considered as representative of a shift in interest
of the type of PMTC that seemed to be more relevant in this period.

In general, then, the lack of research on PTs’ PMTC in 2000-2020, based on the
journals reviewed, could be related to challenges in addressing variables associated
with a point of entry into an education program or a shift in interest from consid-
ering PMTC at point of entry to indirectly addressing PMTC for PTs based on their
participation in mathematics education courses regardless of where they are situated
in a teacher education program.

4.2 Methodological Factors

Each of the four methodological factors adapted from Medley (1987) is discussed in
this section regarding the evolution of research on the PTs’ PMTC. Conceptualiza-
tion is interpreted in terms of relationship to ‘good teaching’, teacher education, and
technology and culture. Instrumentation is interpreted as procedures or tools used in
collecting the data. Design is interpreted as what was used or done to support the data
collection process and analysis is interpreted as the means used to extract informa-
tion from the data. These interpretations are appropriate to address the information
provided in the studies.

4.2.1 Conceptualization of PMTC in Relation to ‘Good Teaching’

In adapting Medley’s (1987) framework as a guide for research on teaching, it is
important for studies to provide a conceptualization of good teaching. For the period
2000-2020, while good or effective teaching of mathematics was not explicitly
conceptualized in the studies on PMTC, it was implied based on the theoretical bases
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framing the PMTC being investigated for the three categories of mathematical knowl-
edge and skills, pedagogical knowledge, and beliefs. These theoretical perspectives
were related to reform-based perspectives of mathematics education that promoted
significant shifts in school mathematics curriculum, teaching, and learning and were
associated with effective teaching of mathematics. Collectively, the studies directly or
indirectly considered PMTC concerning specific elements of these perspectives that
include: (a) standards and principles for mathematics education (NCTM, ); (b) mathe-
matical proficiency (Kilpatrick et al., 2001); (c) mathematical thinking (Mason et al.,
2010; Schoenfeld, 1992); (d) mathematics knowledge for teaching (Ball et al., 2008);
(e) teaching practices (NCTM, 2014); and (f) beliefs about the nature of mathematics
(Ernest, 1989) and teaching and learning mathematics (Beswick, 2012).

The studies, then, indicated an evolution in conceptualizing PMTC to reflect
contemporary perspectives of teaching and learning mathematics, with implications
about the nature of the PMTC required for a PT to become “the teacher who has a
set of personal characteristics closest to those of the ideal teacher” (Medley, 1987,
p. 106). This implication seemed to underlie most of the studies considering the nature
of the PTs” PMTC mainly from a deficit perspective. The result was an evolution of
research in the period to highlight what was wrong with the PMTC of the PTs on
entering MTE.

Regardless of whether addressing PTs at the primary, elementary, middle, or
secondary school level, the studies showed an ongoing focus on issues and limi-
tations in their PMTC that indicated what they did not know or were not able to
do at the beginning of their MTE. For example, collectively, the PTs: did not have
deep conceptual or relational understanding of arithmetic and algebraic concepts;
could not pose complex relational or conditional problems; were not able to think
mathematically beyond a low level; were not able to observe details of the class-
room environment, mathematical content of a lesson, and subtleties of classroom
communication and mathematics content beyond a surface level; were not able to
collect, beyond surface level, appropriate evidence to support analysis of instruction
and learning; could not base their analysis of instructional decisions on pedagogical
and mathematical reasons instead of affective reasons; could not reflect on a level to
theorize or restructure; were not able to analyze or interpret students’ solutions with
depth, notice students reasoning based on meaning of student work, identify appro-
priate evidence for their noticing, identify conceptual aspect of errors, and classify
tasks of high levels of cognitive complexity for students; and did not hold views
of inquiry-based, constructivist-oriented perspectives of mathematics, teaching and
learning, technology as tool to support deeper understanding and appreciation of
mathematics, nature of genuine problems and problem solving in terms of their
openness, conceptual use of multiple representation to support deep learning, and
algebra as reasoning and relational thinking.

The deficit perspective of the PTs’ PMTC also suggested limited evolution of
school mathematics teaching based on reform recommendations since the different
types of PMTC involved were directly related to what the PTs should have learned
or experienced directly (e.g., mathematics content) and indirectly (e.g., mathematics
pedagogy and beliefs) in school prior to entering teacher education. This probably
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limited evolution of teaching was also suggested by the studies based on what they
noted or implied about what the PTs knew or were able to do, which reflected
learning from traditional, pre-reform-oriented teaching of mathematics. For example,
the PTs” PMTC included: procedural or instrumental understanding of the some key
school mathematics concepts; ability to pose problems of low level of cognitive
complexity; ability to conduct instrumental analysis of relationship between instruc-
tion and student learning; ability to observe, describe and explain generic instruc-
tional issues, classroom management, instructional tasks, and affective factors of
classroom interactions; ability to notice, interpret and describe students’ work or
thinking on a procedural level; ability to identify tasks of low cognitive demand and
attend to surface characteristics of tasks; beliefs of mathematics as absolute, teaching
and learning as teacher-centered (e.g., teaching as telling, learning as memorizing),
technology as computational tool; use of representations on an instrumental level;
problem solving as a means to a solution involving procedural steps; and algebra as
manipulation of symbols and in terms of surface features (e.g., variable or letter).

In general, whether the PTs’ PMTC were viewed from a perspective of what they
knew or did not know, were able or not able to do, the studies indicated continued
issues with their PMTC when the PMTC were conceptualized in relation to reform
expectations for effective teaching of mathematics in the period 2000-2020. This
outcome suggested that the impact of the reform movement in school mathematics
had not materialized in this period and many PTs were entering teacher education
with PMTC that did not align with appropriate knowledge, skills, and beliefs in
relation to effective teaching. But this conclusion might not be representative of the
actual situation given the limitations of the studies regarding small sample sizes and
little information on those PTs with PMTC that reflected reform-based teaching at
the point of entry into MTE.

4.2.2 Conceptualization of PMTC in Relation to Teacher Education

Based on the definitions of Type F variable (Medley, 1987; Manizade et al., this
volume), research should also conceptualize PMTC in relation to “the character-
istics a teacher candidate needs in order to acquire those competencies that formal
education and experience can provide” (Medley, p. 105). Hence, as Medley indicated,
Types F and E variables should be combined in research on teaching, where Type
E involves mathematics teacher competencies, knowledge, and skills to function
effectively in mathematics teacher education (Manizade et al.). In addition, Medley
explained:

Type FE research is the proper research to provide support for selective admission to teacher
preparation, and may be called research in teacher selection. What characteristics of entering
students identify teachers who will acquire the competencies they need as a result of training?
(p. 111)

His perspective suggested that PMTC, in addition to being conceptualized in
relation to good or effective teaching, should be conceptualized in relation to good
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or effective teacher education, for example, the types and nature of the PMTC that
are consistent with the role of MTE or are most needed to support PTs’ learning in
MTE.

The studies on PMTC in 2000-2020 did not address this relationship or lacked
clarity about it. While they suggested that the PTs’ PMTC were not adequate in
relation to effective teaching, there was less clarity regarding whether or not the
PMTC were adequate to support their learning in MTE. But, based on the design of
many of the studies, there were underlying assumptions of the relationship between
the PTs’ PMTC and possible roles of MTE to help PTs develop the knowledge and
competencies for effective teaching of mathematics. For example, the intervention
studies with focus on fixing deficiencies in the PTs” PMTC implied PMTC were
conceptualized in relation to a remedial role of the teacher education programs. In
general, the studies did not suggest that PMTC were conceptualized in relation to a
constructivist role of MTE in which the PMTC were viewed as resources to build
on and not deficiencies to fix. For both of these roles, the quality of the PMTC on
entering MTE might not be important beyond some minimum standard required to
complete high school and/or to enter an education program. Overall, then, while
conceptualization of PMTC in relation to teacher education was unclear or limited
for research in 2000-2020, there was a shift in the underlying implication of the
studies that the role of mathematics teacher education was important to researching
and understanding the PMTC PTs needed on entering MTE for them to succeed in
1t.

4.2.3 Conceptualization of PMTC in Relation to Technology
and Culture

Context is important to understanding the mathematics teacher and teaching and
should be considered in the conceptualization of teachers” PMTC in research on
teaching. Medley (1987) identified four categories of context-related variables, also
adapted by Manizade et al., (this volume) for mathematics education research, that
should be considered, but he associated these categories with practicing teachers
and did not directly connect any with the Type F variable of PMTC. Thus, context-
related factors that could have impacted the PMTC prior to being engaged in teacher
education were not highlighted in Medley’s model. However, in a digital age and
a twenty-first century society, the evolution of research on PMTC in 2000-2020
should reflect the availability of technology and the cultural context in and outside
of classrooms. This view means that, for research in this period, the conceptualiza-
tion of PTs’ PMTC should also be related to technology and culture. This was not,
however, reflected in the studies, directly or indirectly, based on theories to support
the importance of culture and technology to mathematics teaching. For example,
equity and technology are two of the six principles recommended by NCTM (2000)
as fundamental to high-quality mathematics education.
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Regarding Technology. NCTM (2000) promoted technology as being essential in
teaching and learning mathematics. In addition, NCTM (2011) explained:

Technological tools include those that are both content specific and content neutral. In
mathematics education, content-specific technologies include computer algebra systems;
dynamic geometry environments; interactive applets; handheld computation, data collection,
and analysis devices; and computer-based applications. These technologies support students
in exploring and identifying mathematical concepts and relationships. Content-neutral tech-
nologies include communication and collaboration tools and Web-based digital media, and
these technologies increase students’ access to information, ideas, and interactions that can
support and enhance sense making, which is central to the process of taking ownership of
knowledge. (NCTM, 2011)

Despite this range of tools and importance of technology, there was no study in the
last ten years and only two studies in the early 2000s that considered technology in
relation to PMTC. There was, therefore, a lack of information regarding the influence
of technology on PTs” PMTC based on technology in general or the different types
of technology the PTs would have encountered in or out of the classroom. The two
studies on technology focused on PTs’ beliefs about it in a general sense (without
consideration of specific types), but neither considered the relationship between the
use of technology in learning and the PMTC.

Of the two studies, only one (Wachira et al., 2008) focused explicitly on pre-
existing beliefs at the beginning of a semester based on students’ responses to two
prompts: (a) to indicate their experiences with instructional technology use in math-
ematics, and (b) to provide compelling arguments for the use of technology in math-
ematics learning. Both studies highlighted the limitations of the PTs’ beliefs, which
suggested that their exposure to technology was not enriching to their PMTC. But
these studies occurred in the early 2000s when access to technology was not as avail-
able in schools as later in the period. They may not, therefore, be representative of
the significant changes and access to technology in western cultural contexts and the
impact on teacher candidates’ learning and thinking on entering MTE. Overall, there
was a lack of growth in conceptualizing PMTC in relation to technology.

Regarding Culture. The actions of teaching and learning exist in cultures that vary
greatly from society to society, from school to school, and even from classroom to
classroom in the same school. Thus, culture could be a problematic variable regarding
its meaning in researching teaching and a basis of conceptualizing PMTC. 1t is
considered here in relation to the classroom. The culture of a mathematics classroom
determines and is determined by the type of learning that takes place, affects the types
of experiences students engage in, and could interact with students’ personal cultural
(e.g., home or societal culture) experiences in positive or negative ways. Thus, in the
period 2000-2020, there has been the promotion of culturally responsive teaching
in general (Gay, 2010; Taylor & Sobel, 2011) and specific to mathematics education
(Greeretal., 2009; Presmeg, 2007) and of equity as a principle in school mathematics
education (NCTM, 2000) to meaningfully address diverse student population based
on various cultural heritage and social backgrounds of students in the western cultural
context.



46 O. Chapman

Culture then should be of importance in considering the evolution of research on
PMTC in relation to its impact on PTs’ experience and learning of mathematics that
are connected to the nature of their PMTC on entering MTE. These PMTC include
the mathematical identity PTs developed based on the classroom culture and the
personal cultural-based resources they bring to MTE with implications for the type
of teacher they will become. None of the studies attended to PMTC in relation to
culture. This lack of conceptualization of PMTC in relation to culture suggested a
significant deficiency in the evolution of research on beginning PTs. There seemed
to be a lack of a humanistic perspective in framing the studies that made culture
irrelevant in considering the PMTC. There was also a lack of focus on affective factors
that are directly associated with culture. Regardless of whether the PTs were from
culturally homogenous classrooms with homogenous cultural backgrounds, culture
still mattered regarding their identity as a teacher and the nature of their PMTC.
Thus, overall, there was a lack of growth in conceptualizing PMTC in relation to
culture.

4.2.4 Instrumentation in Researching PMTC

Instrumentation is the second factor Medley (1987) indicated as important in consid-
ering the evolution of research on teaching, interpreted here as procedures or tools
used in collecting the data. In earlier studies, Medley, for example, noted that instru-
mentation focused on surveys consisting of closed response questionnaires or brief
written response items about teaching. For the period 2000-2010, while the studies on
PMTC continued to use surveys, they also used a variety of tools for data collection.
This evolution of instrumentation mirrored the evolution in the conceptualization of
PMTC in relation to contemporary perspectives of effective mathematics teaching.
Four categories of instruments, discussed in turn in the following paragraphs, were
used in the studies to determine the PTs’ PMTC at the beginning of a program or
course or prior to an intervention to support their learning.

Questionnaires. Some studies used only questionnaires, for example: motivation
questionnaire (Newton, 2009); beliefs questionnaire (Dreher et al., 2016; Weldeana &
Abraham, 2014); questionnaire to analyze student work (Simpson & Haltiwanger,
2017); diagnostic questionnaire (Tirosh, 2000); content knowledge questionnaire
(Lee & Lee, 2020); questionnaire on concept maps and definitions (Miller, 2018);
and questionnaire with true/false, multiple choice, and short answer questions
(Star & Strickland, 2008). Other studies used open-ended questionnaires with semi-
structured interviews, for example: regarding conceptions and beliefs of mathe-
matics, problem solving or creativity (Bolden et al., 2009; Conner et al., 2011; Son &
Lee, 2020; Szydlik et al., 2003) and mathematics backgrounds and teaching interests
(Stephens, 2008).

Interviews. Some studies used only semi-structured interviews based on participants
solving mathematical tasks (Stephens, 2006; Thanheiser, 2009, 2010; Yanik, 2011).
In addition to interviews being combined with questionnaires, other studies combined
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interviews with written responses to analyse students’ written work (Magiera et al.,
2013; Shin, 2020) and to prompts on beliefs (Shilling-Traina & Stylianides, 2013).

Written Responses. Some studies used only written responses, including: jour-
nals on mathematics problem posing (Crespo, 2003); mathematical autobiographies
(Harkness et al., 2007; Wachira et al., 2008); responses to interpreting students’ solu-
tions to mathematical tasks (Callejo & Zapatera, 2017; Sdnchez-Matamoros et al.,
2015, 2019); responses to incorrect students’ solutions to the same problem solved
by PTs (Son, 2013); responses on reflecting on a student’s invented algorithm (Hark-
ness & Thomas, 2008); responses to written standard place-value-operation tasks
(addition and subtraction) (Thanheiser, 2010); and responses to the analysis of video
recorded mathematics lessons (Morris, 2006; Star & Strickland, 2008) and analysis
of a mathematics video curriculum (Stockero, 2008).

Mathematics Tests and Tasks. Some studies used content knowledge tests on
rational numbers and computations (Lovin et al., 2018); fractions (Lin et al., 2013;
Osana & Royea, 2011); whole number operations (Kaasila et al., 2010; Norton,
2019); linear functions (You & Quinn, 2010); and algebraic language (Pomer-
antsev & Korosteleva, 2003). One study combined a number sense test with inter-
views (Whitacre & Nickerson, 2016). A few studies used students’ work on mathe-
matical tasks involving solving algebra tasks (Hohensee, 2017); posing mathematics
problems (Crespo & Sinclair, 2008); solving pattern-finding tasks (Richardson et al.,
2009; and sorting mathematics problems (Osana et al., 2006).

The different ways of collecting data outlined above were used throughout the
period. There were about the same number of studies that used questionnaires, inter-
views, written responses, and tests and tasks, alone or in different combinations.
Overall, the growth in instrumentation consisted of very little use of only interviews
and an increased use of combinations of questionnaires and interviews, open written
responses, and tests or tasks which have the potential to produce more valid data
regarding the types of PMTC that were studied.

4.2.5 Design and Analysis in Researching PMTC

Design and analysis are the last two factors Medley (1987) indicated were important
in considering the evolution of research on teaching. However, based on Medley’s
perspective, they were problematic to address for the studies on PTMC in 2000-2020,
most of which were not specifically designed to address PTs” PMTC on entering
MTE, but had broader goals. Thus, the design was considered in terms of what the
studies used to support the data collection process at the beginning of a course or
prior to an intervention and analysis as the means used to obtain information from
the data.

Design. There was an evolution in the design of research in the period in terms of the
use of school students’ mathematical work and videos of mathematics teaching to
engage the PTs in situations to apply their PMTC. Students’ work included: actual
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solutions to various mathematical tasks (Callejo & Zapatera, 2017; Magiera et al.,
2013; Sdnchez-Matamoros et al., 2015, 2019; Simpson & Haltiwanger, 2017); hypo-
thetical written solutions (Shin, 2020); incorrect solutions to the same problem solved
by PTs (Son, 2013), and a student’s invented algorithm (Harkness & Thomas, 2008).
Videos included videotaped mathematics lessons (Morris, 2006; Star & Strickland,
2008) and a video-case curriculum (Stockero, 2008).

There was also evolution in terms of significant variations in the design of
instrumentation (e.g., questionnaires, written responses, tests and tasks) to match
the different types of PMTC and in terms of the combination of interviews with
other instruments to obtain reliable data. One area of limitation involved studies
not being designed solely for researching PMTC at the beginning of an education
program, which could have resulted in aspects of the PMTC not being identical to
the PTs’ PMTC on entering the program. A few studies were designed at the begin-
ning of courses, while most were designed as intervention studies with a pre-post-
intervention design. The intent of the intervention studies was more about promoting
the intervention as a way of impacting change and less about the nature of the PMTC.
Thus, they tended to provide little information on the pre-intervention characteris-
tics, with the emphasis being on the post-intervention. The design also tended to
use convenient samples of PTs enrolled in specific courses and small sample sizes
regardless of the nature of the instrumentation. Thus, the studies did not necessarily
provide a representative picture of PMTC within an institution or a region, even
though they offered useful insights about the PMTC.

Analysis. The analysis approaches used in the studies depended on the instrumenta-
tion and thus showed an evolution of approaches consisting of both quantitative and
qualitative strategies. These approaches varied within and across categories of instru-
ments depending on the design of the instrument. For example, some questionnaires
used the Likert scale (e.g., Dreher et al., 2016; Newton, 2009; Szydlik et al., 2003;
Weldeana & Abraham, 2014) while others used open-ended items with a rubric or
scale for scoring or categories to compile and rank frequencies (e.g., Conner et al.,
2011; Lee & Lee, 2020; Miller, 2018; Son & Lee, 2020). Interviews by themselves
were semi-structured and based on PTs solving mathematics tasks (Stephens, 2006;
Thanheiser, 2009, 2010; Yanik, 201 1); when combined with questionnaires they were
semi-structured and based on following up on questionnaire items or ideas (Ambrose,
2004; Conner et al., 2011; Son & Lee, 2020; Stephens, 2008; Szydlik et al., 2003).
Interviews as well as open written response tasks (Crespo, 2003, Harkness et al., 2007,
Sanchez-Matamoros et al., 2015; 2019; Son, 2013; Thanheiser, 2010; deCallejo &
Zapatera, 2017; Harkness & Thomas, 2008; Morris, 2006; Star & Strickland, 2008,
Stockero, 2008) were generally analyzed through coding to produce themes or cate-
gories. Tests, which dealt with mathematics content, used scoring schemes that indi-
cated the level of correctness or error in participants’ responses (e.g., Lin et al.,
2013; Lovin et al., 2018; Norton, 2019; Osana & Royea, 2011; You & Quinn, 2010).
While Medley (1987) suggested more use of technology in analysis, this was not
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reflected in the studies because of the shift to more qualitative approaches or quan-
titative approaches with small sample sizes that did not necessarily require complex
statistical analysis.

4.3 Summary of Evolution of PMTC Research

Overall, consideration of the scope and the methodological factors of the studies on
PMTC for the period 2000-2020 indicated that there were both growth and limitations
or gaps in research on PTs’ PMTC at the point of entry in MTE. There was evolution
in the scope of research in terms of the extent of the types of PMTC researched
and the extent to which PMTC were addressed by the studies. For example, while
the mathematical knowledge and skills category of PMTC received the most atten-
tion in the studies, suggesting ongoing interest in content-related characteristics, a
significant shift was the pedagogical skills category regarding studies on noticing
and interpreting students’ work and thinking that was the largest group of studies for
the three categories of PMTC (Table 1).

There was also evolution of aspects of methodology based on Medley’s (1987) four
factors of the conceptualization, instrumentation, design, and analysis. For example,
conceptualization of PMTC evolved to reflect contemporary perspectives of teaching
and learning mathematics. There was a shift in instrumentation from a focus on
surveys with large samples in early studies to a variety of tools, used alone or in
different combinations. There was growth in design regarding the use of school chil-
dren’s work and of videos on teaching as bases of obtaining pedagogical-related data.
The analysis also shifted from mainly statistical approaches to including qualitative
approaches particularly for interviews and written responses. Limitations and gaps
in the evolution of the research on PMTC are addressed in the following section in
relation to what needs to be considered in future research.

5 Future Evolution of Research on PMTC

Future evolution of research on PMTC refers to what should be considered to move
the field forward in this area. Medley (1987) indicated that the methodological factors
of conceptualization, instrumentation, design, and analysis should also be used in
considering the future evolution of research on teaching, which includes research on
PMTC. Consistent with the preceding section, the scope of research is also relevant.
The preceding discussion of evolution on research on PMTC in the period 2000-
2020 indicated that there were limitations or lack of attention regarding scope and
methodological factors, which suggest areas that need attention to support future
evolution of research on PMTC. The following summary highlights the key areas
that future research should consider.
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Regarding scope, much more attention is needed on research of PMTC for PTs at
the point of entry into a teacher education program as opposed to other points during
the program, which could be affected by confounding factors associated with their
experience in the program in general. There also needs to be more scope and depth
of the types of PMTC researched within and beyond the categories of mathematical
content and skills, pedagogical knowledge, and beliefs. There are other aspects of
PTs’ mathematical abilities, knowledge, and attitudes, as well as aptitude for teaching
that are important to understand PTs and their PMTC at point of entry MTE. One area
the studies in 2000-2020 were particularly lacking in addressing, that needs future
consideration, was affective factors such as PTs’ attitudes and what they value. For
example, do they value collaboration, know how to connect and form collaborative
groups, have the skills needed to create an environment of working with others?
As Blanton (2002) also asked, do they value discourse as an active process in which
students use the collective knowledge of a group to build understanding (i.e., dialogic
discourse)? What is their level of competence to reflect and to be curious? In addition,
as Strutchens et al. (2017) also suggested, there is a need to consider the various
identities that PTs have prior to their participation in preservice education.

Another area not attended to, but that is of significance in the context of the
current digital age and twenty-first century society and in need of future attention,
is the impact of technology and culture on the PTs” PMTC at the point of entry into
MTE. Both are important to the nature of PTs’ PMTC and culture, in particular,
to their developing mathematical identity. Finally, regarding beliefs, the scope was
limited to types of beliefs but future attention could also be given to PTs’ ability to
reflect on them.

Regarding conceptualization, more attention is needed to conceptualize PMTC
in relation to teacher education, for example, regarding the types and nature of PTs’
PMTC on entering teacher education that are consistent with the role of the teacher
education program or are most needed to support the PTs’ learning in the program.
In addition, PMTC should be conceptualized in relation to technology and culture
regarding specific characteristics of the latter that influence the nature of the PMTC.

Regarding instrumentation, design, and analysis, the future evolution will depend
on the scope and characterization of future studies on PMTC. Some considerations
are: designing studies with the sole aim of exploring PMTC at point of entry to MTE,
which may also require different or “better instruments” (Medley, 1987) and analysis;
designing studies that are more humanistic in focusing on what PTs’ know and can
do based on their PMTC, which could be more practical when using convenient
samples and qualitative instruments; and the use of more rigorous mixed methods
research design with more rigorous statistical analysis and use of technology.

To conclude, overall, the studies suggested that there have been significant changes
in research on teaching with a focus on the Type F variable regarding PMTC of
candidates MTE. But ongoing work is necessary for this area of research given its
importance to understanding the selection of teacher candidates, the mathematics
teacher, teaching of mathematics, and teacher education. Since PMTC at the point
of entry are important starting points of PTs’ formal education to become a teacher,
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then more attention is needed to understand these PMTC and how to work with them
in mathematics teacher education.
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Knowledge and Skills

Nils Buchholtz ®, Gabriele Kaiser ®, and Bjorn Schwarz

1 Introduction

What characterizes competent mathematics teachers, what types of knowledge do
they need in order to be able to teach successfully, and what skills do they draw
upon for successful teaching? These questions have long concerned mathematics
education research, teacher education and educational policy. The NCTM standards
(2000), for example, refer specifically to teacher knowledge as a ground to start
from, stating that “[t]Jeachers must know and understand deeply the mathematics
they are teaching and be able to draw on that knowledge with flexibility in their
teaching tasks” (p. 17). Teachers need not only sufficient disciplinary mathematical
knowledge and knowledge of the school subject (Bromme, 1994). As Shulman (1986,
1987) argues, teachers need a specialized knowledge base for teaching that is different
from pure mathematical knowledge and that differs from other professions, thus
coining the term of pedagogical content knowledge. However, to determine what
teachers should know, what other aspects constitute teacher competencies, and to
specify how teachers acquire these in teacher education, as well as how teachers use
their skills and act competently in practical situations in teaching is not an easy task.
Teacher competencies are also related to underlying beliefs about the role of teachers
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and the teaching profession, which are culturally shaped. All these entities are subject
to change over time and are continually evolving. For example, further challenges
arise over time as new demands emerge in the context of teachers’ professional
practice—such as the increasing integration of technology and digitization, which
also require thinking about additional necessary teacher competencies.

In the framework of presage-process—product research underlying this volume
(see Chap. 1), Medley (1987) names the facet of teacher competence (Type E) as a
central variable within the research on teaching, which he understands as the “knowl-
edges [note: plural!], skills, and values which a teacher possesses” (p. 105) and which
he considers being “the tools of teaching” (ibid.). Teacher competence has thus an
impact on student learning (the outcome of teaching), as it enables teachers to teach
successfully and competently in classroom situations. However, it becomes clear that
in order to be able to assess this effect, additional mediating variables should be taken
into account as good as possible (see Chap. 2). For example, pre- and post-active
teacher activities (Type D), such as planning, assessment, reflection and out-of-
class activities of mathematics teaching (see Chap. 3) and interactive mathematics
teacher activities (Type C), that take place when in the presence of the students (see
Chap. 4). Yet, teacher competencies play a central role in the quality of instruction. '
Characterized by a cognitivist and individualist perspective, what most research on
teacher competence today seem to agree on is that teachers’ professional knowledge
is central within teacher competence and is considered an essential component of the
job-specific prerequisites for successful classroom action. It represents an important
cognitive resource for interpreting classroom situations and generating informed
decisions for actions needed for successful and competent teaching (Baumert &
Kunter, 2006; Gitomer & Zisk, 2015; Guerriero, 2017).

Since the beginning of presage-process—product research, and based on theoretical
reflections on a subject-specific characterization of teacher cognitions in teaching,
which were initiated in the U.S. in the late 1980s, the question of the theoretical
conceptualization and empirically examination of teachers’ professional knowledge
has become increasingly important (e.g. Carpenter & Fennema, 1992; Carpenter
et al., 1988, 1989; Fennema et al., 1996; Neubrand, 2018; Petrou & Goulding,
2011; Rowland, 2014). The research initially sought to identify and isolate more
general variables of successful teaching, but has since taken somewhat different
forms. Presage-process—product research meanwhile is transitioned into the content-
dependent, more situation-specific study of teachers’ professional knowledge and its
implications for the quality of mathematics instruction. In recent years, a new branch
of research on the theoretical description and empirical measurement of professional
knowledge of mathematics teachers has become firmly established in the interna-
tional mathematics education research discipline (a.o. Ball et al., 2008; Baumert
et al., 2010; Buchholtz et al., 2014; Carrillo-Yafiez et al., 2018; Davis & Simmt,
2006; Even & Ball, 2009; Hill et al., 2004, 2008a, 2008b; Kaiser et al., 2014, 2017,

! For further student-related variables as well as external and internal context variables that play a
role in the relation of teacher competence and student outcome see Chapter 1 and the other Chapters
in this volume.



The Evolution of Research on Mathematics Teachers’ Competencies, ... 57

Krauss et al., 2008; Kunter et al., 2013; Lindmeier, 2011; Manizade & Martinovic,
2016; Manizade & Mason, 2011; Rowland & Ruthven, 2011; Scheiner et al., 2019).
However, this work already builds on research approaches that have developed over
the past 30 years, as we will show in this chapter.

On the theoretical level, following the seminal work of Shulman (1986, 1987),
different dimensions of knowledge are often distinguished in the study of teachers’
professional knowledge, depending on assumed aspects of content, referring to the so-
called domain specificity. This classification of teachers’ professional knowledge has
also been used in large-scale international comparative studies of the effectiveness of
teacher education programs, such as TEDS-M 2008 (Blomeke et al., 2014a, 2014b;
Tatto et al., 2012) and its predecessor study MT21 (Schmidt et al., 2007, 2011).
Despite the abundance of studies in this area, however, there is still no agreement
on a unified theoretical conceptualization because different conceptualizations are
based on different domains attributed to teachers’ professional knowledge, differ in
their theoretical assumptions, and also have different grain-size of the knowledge
elements considered (Even, et al., 2017; Neubrand, 2018).

However, the complexity of the construct of professional knowledge in contem-
porary research on Type E has not only increased as a result of different theoretical
conceptualizations, but also because of the question of the extent to which it is
situationally available in school practice as a cognitive prerequisite ‘in the head of
a teacher’ in the form of requirements-related knowledge and skills. When such
knowledge is operationalized and measured context-independently for empirical
studies (for example in psychometric scalable knowledge tests), research to date
showed mixed results as to whether or not it is possible to separate different knowl-
edge domains empirically (Bednarz & Proulx, 2009; Buchholtz et al., 2014; Char-
alambous et al., 2019; Depaepe et al., 2013). Current discourses within research on
teaching, however, put up for discussing the extent to which a context-independent
investigation of teachers’ professional knowledge seems to be useful at all. Thus,
on various occasions, the importance of approaches that allow for a more situation-
specific measurement of teachers’ cognitive processes in teaching has been pointed
out to strengthen the contextual study of teacher competence (e.g., Kaiser et al.,
2015; Shavelson, 2010). Since then, scholarly advancements in the last decade
have consisted in the differentiation of the current conceptualizations for teaching
mathematics according to the theoretically-sound and empirically-based integra-
tion of action-oriented knowledge facets (Blomeke et al., 2015; Kaiser et al., 2017,
Neubrand, 2018). Among other things, this has led to current mathematics educa-
tion research approaches to the study of teacher competencies, such as the Knowl-
edge Quartet (Rowland, 2008a; b), Lindmeier’s action-based competence approach
(Lindmeier, 2011; Lindmeier et al., 2020), and the German TEDS research program
(Kaiser & Konig, 2019). These research approaches focus more on the situational
manifestation of professional knowledge and its relation to perceived instructional
quality (Even et al., 2017). At the same time, however, the call for a situation-
embedded study of knowledge is countered by the fact that the more contextually
knowledge is analyzed in studies, the even more difficult it becomes to empirically
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distinguish knowledge from other factors such as teacher personality or affective
variables (Even et al., 2017).

Newer challenges in the description and study of teachers’ professional knowledge
are also posed by the ever-changing demands of professional practice, which have
increased significantly since the late 1980s so there is a constant need to rethink
what specialized teacher competencies are needed for successful teaching. Medley
(1987) identifies this as a distinct branch of research in teacher competence (Type
E and Type D research, p. 111), which is normatively oriented and includes both
preactive teacher behaviors like planning or evaluating as well as situational aspects
of competence. For example, current topics in research on teaching include the study
of teachers’ diagnostic skills. These are becoming increasingly important because of
the need to deal with an ever-increasing linguistic and cultural diversity of students in
the classroom due to transnationalization processes and multiple cultural attributions.
Furthermore, novel challenges concerning competencies in the use of technology and
digital media in mathematics teaching and dealing with the challenges of digitization
play arole (e.g., Mishra & Koehler, 2006) as well as skills and attitudes for achieving
equity and educational justice in mathematics classrooms (Schoenfeld et al., 2019).

This chapter provides an overview of the most important developments in the field
of describing professional competencies of mathematics teachers, especially taking
up the perspective of the development of research over time since Medley’s (1987)
reflections. However, this overview chapter does not follow the criteria of a system-
atic review; rather, we provide a narrative review (Snyder, 2019) to give as good
and comprehensive as possible an overview on the progress of the research in the
field. As a result, however, the perspective is inevitably subjective, and not all work
is included. First, we will discuss the development of research on teacher compe-
tencies, knowledge and skills over time, before discussing various facets of teacher
competencies and teacher professional knowledge separately in Sect. 2. Section 3
deals with the different conceptualization and operationalization of teacher compe-
tencies in key studies and research programs and the further development of research
towards the consideration of situational aspects. We conclude the chapter with an
outlook on the further development of Type E research and a summary reflection.

2 Evolution of Research on Teacher Competencies,
Knowledge and Skills

Research on teachers’ competencies, knowledge and skills has been influenced by
different research directions over time. To be able to chronologically situate the
developments and to describe the further developments in terms of thematic content, it
is necessary to reflect on the underlying paradigms of research on teaching. Research
on the teaching profession has undergone several paradigm shifts since the 1960s,
changing the underlying theories and the research approaches used. In the process,
existing paradigms were critically examined for weaknesses and further developed
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so that today’s research on teacher competencies, knowledge and skills is based
on different paradigmatic approaches which have complementary strengths and set
different accents.

The so-called personality paradigm or traits paradigm, which prevailed until about
the 1960s, attempted to attribute the pedagogical effectiveness of teachers’ actions
to measured personality traits (e.g., patience or emotional stability). However, the
paradigm had its weaknesses in that it was unable to explain how these character-
istics impact different classroom situations (Bromme, 2001). Since its research has
produced few or only trivial results on the relationship between teacher action and
learning success, the paradigm is not considered very fruitful today.

Originating in teacher effectiveness research, Medley’s reflections on directly
detectable relationships between different variables in the chain of effects (Medley,
1987) on the outcomes of teaching can be assigned to the presage-process—product
paradigm, which took over from the 1960s when research on teaching became more
systematic and empirical. This research paradigm questions what effects certain
characteristics of teachers have on the desired learning outcomes of their students,
assuming stable behavior (Floden, 2001).

In the past, researchers following this paradigm deliberately did not examine
teachers’ cognitions, but rather behavioral features that are easy to control and
observe, e.g., the number and level of questions asked, the waiting time after ques-
tions, or the frequency of feedback on students’ responses (e.g., Gage & Needels,
1989). An assumption of many studies was that effective teaching practices were
domain-general, and researchers could look across teaching in different domains
and make generalizations about what teaching expertise looked like overall (Russ
et al., 2011). The assumption of the paradigm, that a teacher’s behavior exerted a
direct influence on student’s learning experienced significant criticism in later years,
in part because the focus in observing teachers in some studies tended to be only on
isolated surface characteristics and did not look at more complex structures of instruc-
tional quality (e.g., deep structures rather than surface structures) or the combination
of multiple variables, including those of Types E and F?> (Bromme, 2001). It further
became clear that the impact of specific teacher actions depended on the context and
the learner much more than assumed and findings on teacher behavior were not as
transferable to the realities of different classrooms as one had hoped for (Weinert
et al., 1989). However, back in the 1980’s, researchers only had access to different
(less advanced) research tools (e.g., compared to today’s multilevel structure equa-
tion modelling), and considered different evidence in their work. One outcome of
the criticism was the programmatic remodelling of the paradigm, basically in the
expert paradigm (Ornstein, 1995). But presage-process—product research neverthe-
less continued to evolve. An important aspect of presage-process—product research
that continues to shape research on the teaching profession today is the holistic
approach that seeks to make connections between teacher behavior and student

2 This criticism does not undermine the overall framework developed by Medley in general, as it
is open to the conceptualization of the variables studied and also takes into account corresponding
contextual variables.
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learning in particular ways. It thus identifies relevant variables for successful teaching
as shown in recent meta-analyses on the effectiveness of teaching (Hattie, 2009;
Seidel & Shavelson, 2007). The presage-process—product paradigm thus continues
to influence research on instructional quality today and has established its standards.

Based on findings from cognitive psychology research, since the mid-1980s the
individual cognitions of the teacher had become the focus of interest in research on the
teaching profession. This approach was initially promising in that it was hoped that
an understanding of the teacher’s thinking would provide insight into why teachers
behaved in certain ways in the classroom. Again, however, the focus was in the
beginning on cross-domain, rather than initially subject-specific, approaches (Russ
et al., 2011). This changed mainly due to the growing influence of the research
program “Knowledge Growth in Teaching” by Lee Shulman (Shulman, 1986, 1987)
and the work of his research group at Stanford University. Shulman pointed out the
importance of subject matter in the study of teacher knowledge. In his famous Pres-
idential Address at the 1985 annual meeting of the American Educational Research
Association and the article published in 1986, Shulman cautioned against teacher
effectiveness evaluations at the time that focused purely on generic teacher behav-
iors (such as orientation to simple rules like appropriate waiting times on student
responses). He proposed a classification of teachers’ professional knowledge that
accounted for subject-specific viewpoints and, he saw subject matter knowledge as
central to the pedagogical preparation and accessibility of subject content in the
classroom. The most important consideration for the research on teacher cogni-
tions at that time was his postulation of pedagogical content knowledge (PCK),
which differs from the knowledge required by other professions, such as mathemati-
cians. PCK is specifically oriented towards teaching and includes knowledge about
different student cognitions and teaching approaches. “Within the category of peda-
gogical content knowledge I include, for the most regularly taught topics in one’s
subject area, the most useful forms of representation of those ideas, the most powerful
analogies, illustrations, examples, explanations, and demonstrations—in a word, the
ways of representing and formulating the subject that make it comprehensible to
others” (Shulman, 1986, p. 9). Shulman himself did not aim for the development of
a catalog of corresponding knowledge content but specified his idea of PCK in his
article published the following year, “Knowledge and Teaching: Foundations of the
New Reform” (Shulman, 1987) as a “specific amalgam” of knowledge about subject
content and pedagogy, which focuses on subject representations and concepts of
understanding as well as misconceptions. Shulman (1987, p. 8) distinguishes various
forms of knowledge in his typology of professional knowledge:

e Content knowledge,

e General pedagogical knowledge (strategies of classroom management and orga-
nization),

e Curricular knowledge (including materials that serve as “tools of the trade” for
teachers),
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e Pedagogical content knowledge, a special “amalgam” of subject content and
pedagogy that is found exclusively among teachers and forms the basis of their
professional understanding,

e Knowledge of learners and their characteristics,

e Knowledge of educational contexts (e.g., about working of groups, administration
and funding of school districts, or the character of communities and cultures),

e Knowledge of educational goals and values and their philosophical and historical
grounds.

Later on, pedagogical knowledge, content knowledge, and pedagogical content
knowledge had a great impact in terms of the theoretical design of research studies
on teachers’ professional knowledge.

According to Shulman, teachers must transform subject content into pedagog-
ical forms such as examples, illustrations, and classroom tasks that make the content
accessible to learners. This transformation of subject matter into pedagogically effec-
tive forms of learning is understood as the central intellectual task of the teacher and
has become the defining characteristic of pedagogical content knowledge (Deng,
2007a, 2007b). Thus, for Shulman, PCK means the integration of subject matter
knowledge and pedagogical knowledge that enables teachers to translate subject
matter knowledge into pedagogically effective forms of presentation that match
learners’ abilities and interests. Shulman’s work, however, did not go uncriticized and
the criticism led to further developments in research on teacher knowledge. Among
other things, it was noted that Shulman had a static understanding of knowledge as
something that could be acquired and applied regardless of the complexity of the
instructional context, and that the idea of “transforming” or “translating” subject
matter into pedagogical forms amounted to a routine, mechanistic transmission of
a fixed canon of knowledge. Shulman’s critics objected that mathematical knowl-
edge itself could also be assumed to be multidimensional and dynamic in nature,
from which it follows that teachers’ knowledge is characterized by its “interactive
and dynamic nature” (Fennema & Franke, 1992, p. 162). Other scholars adopted this
dynamic view of knowledge, essentially viewing it as physically and socially situated
in the act of teaching in a particular context (Bednarz & Proulx, 2009; D6hrmann
et al., 2018; Meredith, 1995).

This situatedness of teachers’ cognitions was taken up by the so-called expert
paradigm. The presage-process—product research at that time looked more for the
general abilities and skills of teachers and was less concerned with the question of
whether these individual bundles of behaviors could actually be found in a person in
reality. The expert paradigm focused on the successful teacher “as a whole” (Bromme,
2001; Schon, 1983), and the focus henceforth was on teachers’ knowledge and skills.
Central to this development was the work of Berliner (2001), for example, in which he
calls the teacher an ‘expert teacher’ and speaks of ‘teaching expertise’. According to
the expert paradigm, teachers are called experts because they can successfully manage
a very specialized, complex task such as school teaching. Expertise is manifested,
for example, in the immediacy of action expected of a responsible teacher in his
or her teaching and the resulting time pressure of acting as well as in acting under
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information deficit concerning the current situation, the complexity and dynamics
of which are continuously changing due to the students’ behavior. In this context,
teachers draw on specific knowledge and skills, which can be technically described
within the research approach through detailed analyses of requirements—such as
those derived from psychology (e.g., Bromme, 1992, 2008).

A recent further development of the expert paradigm has been the approach of
professional competence of teachers for about twenty years (Kunter et al., 2013). In
this approach, teachers’ knowledge and skills are not only identified using require-
ment analyses in terms of the expertise paradigm but are furthermore complemented
by the examination of personality traits such as motivation and self-regulation. The
concept of competence was introduced into the discussion by Franz Emmanuel
Weinert (1999, 2001) about twenty years ago as part of an influential review of
different definitions of competence in a report prepared for the OECD. In describing
professional action competence, Weinert states:

“The theoretical construct of action competence comprehensively combines those
intellectual abilities, content-specific knowledge, cognitive skills, domain-specific
strategies, routines and subroutines, motivational tendencies, volitional control
systems, personal value orientations, and social behaviors into a complex system.
Together, this system specifies the prerequisites required to fulfill the demands of
a particular professional position, social role, or personal project” (Weinert, 1999,
p- 10). In summary, competence can thus be defined as “the ability to successfully
meet complex demands on a particular context through the mobilization of psychoso-
cial prerequisites (including both cognitive and noncognitive aspects)” (Rychen &
Salganik, 2003, p. 43).

A feature of this definition of competence is that it is first understood as context-
based. Second, in addition to purely cognitive components, it includes affective
components such as volitional, motivational and social readiness to apply the compe-
tence in situations. It should also be noted that there is a distinction between compe-
tence as a general overarching concept, and the distinction between individual compe-
tencies if individual content-related competence facets are meant. According to
this understanding, the professional competence of mathematics teachers consists
of subject-related and subject-overlapping cognitive dispositions—teachers’ profes-
sional knowledge (cf. also Baumert & Kunter, 2006)—as well as additional affective
personality traits like beliefs, motivation or values (Hannula et al., 2019) specifically
for the subject mathematics. These form the basis for mastery of specific situations
that arise in professional demands.

Today’s research on teacher competencies, knowledge, and skills invokes the
different approaches of these paradigms. These are perceived as complementary so
that the boundaries between the different paradigms often fade. For example, the
current approach to professional competence combines the systematic analysis of
teachers’ characteristics and abilities of the presage-process—product paradigm with
the approach of researching teacher cognitions and the approach of looking at certain
characteristics of teachers’ personality, such as motivation and values. Consequently,
Medley’s variables of Type E are still valid as the main units of analyses in research
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studies, even with today’s advances in research on mathematics teaching and teacher
education.

3 Components of Teachers’ Professional Competencies

Taking into account Shulman’s (1986, 1987) reflections on the professional require-
ments of teachers, which we will discuss in more detail in the next section, the
professional competencies of mathematics teachers and its components.

3.1 Content Knowledge

Teachers need knowledge of relevant facts, concepts, and their relations oriented
to the subject body of knowledge, as well as subject-specific procedures for gener-
ating knowledge and justifying it. This means that teachers of mathematics must
be proficient in mathematics, which can be expressed, for example, by the “five
strands” of mathematical proficiency by Kilpatrick et al. (2001), which are: concep-
tual understanding, procedural fluency, strategic competence, adaptive reasoning,
and productive disposition. The deeper understanding of reasoning also implies that
argumentation and proving is part of the professional knowledge of teachers so
that they are able “to explain why a particular proposition is deemed warranted,
why it is worth knowing, and how it relates to other propositions” (Shulman, 1986,
p- 9). Neubrand et al. (2009) address the connections of teachers’ content knowl-
edge to more general mathematical skills such as explaining, communicating, and
even modeling, and include insights into the history and epistemology of mathe-
matics among the content knowledge of mathematics teachers. Somewhat later than
Shulman, Bromme (1994)—a representative of the expert paradigm—also formu-
lated on this basis the central insight that when describing teachers’ content knowl-
edge, a distinction should be made between the knowledge of the discipline and that
of the school subject, since the school subject has a “life of its own” (p. 74), with its
own body of knowledge and epistemologies. In mathematics education research, this
distinction by Bromme contributed to the identification of professional knowledge of
school mathematics (Deng, 2007a, 2007b), or elementary mathematics from a higher
standpoint in relevant studies (Buchholtz et al., 2013) going back to approaches by
Felix Klein (1908/2016). Dreher et al. (2018), for example, conceptualized this type
of knowledge as so-called school related content knowledge (SRCK).
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3.2 Pedagogical Content Knowledge

Although Shulman identified two components that are central to PCK, namely knowl-
edge of instructional strategies and representations, and knowledge of students’
(mis)conceptions, he did not specify PCK for mathematics. To describe the subject-
specific PCK for mathematics, it is not sufficient to focus only on mathematical
content, which would neglect cognitive and social preconditions of the learning
processes of students. In terms of content, mathematical pedagogical content knowl-
edge presupposes an understanding of subject knowledge, but central to this is
knowledge of the potential of school subject matter for learning processes (curricula
and syllabi, learning goals and principles), knowledge of subject-related student
cognitions (student ideas and errors, learning prerequisites), and knowledge of
subject-specific instructional strategies (representations, subject-related diagnostics,
performance measurement, and subject-related explanatory and mediation strate-
gies). Subsequently, Shulman’s model has been refined more and more, also in
response to criticism (for an overview, see the systematic review on PCK by Depaepe
et al., 2013). Grossman (1990) for example distinguished four components that are
central to teachers’ PCK: (1) knowledge of students’ understanding, (2) knowledge of
curriculum, (3) knowledge of instructional strategies, and (4) knowledge of purposes
for teaching. Depaepe et al. (2013) even distinguish a total of eight different facets
based on their systematic review: (1) knowledge of students’ (mis)conceptions and
difficulties, (2) knowledge of instructional strategies, (3) knowledge of mathematical
tasks and cognitive demands, (4) knowledge of educational ends, (5) knowledge of
curriculum and media, (6) context knowledge, (7) content knowledge, and (8) peda-
gogical knowledge. A relevant extension of Shulman’s understanding of PCK was
undertaken in the U.S. in the late 2000s in the Learning Mathematics for Teaching
(LMT) project, amongst others, through the formulation of the construct mathemat-
ical knowledge for teaching (MKT) or content knowledge for teaching mathematics
(CKTM) by Ball and colleagues (e.g., Ball et al., 2008; Hill et al., 2004, 2005, 2008a,
2008b), which we will discuss in more detail below.

If one takes a closer look at the relationship between mathematics and pedagogy
within the construct of PCK, however, some aspects can be identified that are more
strongly influenced by the subject, while other aspects are more clearly related to
pedagogy (see also Chick et al., 2006). With respect to a normative description of
the content of the PCK, the perspectives of referring to the scientific discipline of
mathematics education (i.e., mathematics, psychology, educational science, general
didactics), which have been discussed since the 1970s and which continue to shape the
mathematics education discourse today, provide orientation (Buchholtz et al., 2014).
By more subject-related pedagogical content knowledge we can therefore under-
stand primarily mathematical aspects of teaching and learning mathematics. This
includes, for example, knowledge about subject-specific approaches to teaching,
basic ideas, and mental representations of mathematical content, e.g., fractions,
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percentages, or the concept of derivation, and being able to identify critical mathe-
matical components within concepts that are fundamental for understanding; knowl-
edge about the interconnectedness and interdependence of mathematical concepts (to
establish connections between the different subject areas of mathematics education
and their mathematical backgrounds, connections to other subjects in the sense of
interdisciplinary learning, and connections between mathematical concepts and the
real world (Freudenthal, 1991)); knowledge about fundamental mathematical ideas
and mathematical activities (e.g., abstraction or algorithmic thinking); knowledge
of students’ subject-specific preconcepts and barriers to understanding, as well as
levels of conceptual rigour and formalization (important in analysing and interpreting
student solutions and student questions); knowledge of the role of everyday language
and mathematical language in concept formation; knowledge of subject-motivated
approaches to mathematical content (e.g., different approaches to the concept of
probability; justifications for number range extensions); knowledge about subject-
matter-based diagnostics of student solutions and errors (e.g., student misconcep-
tions; appropriateness of student solutions); as well as knowledge about different
types of tasks (important for using tasks as a starting point for learning processes).

Under more teaching-related pedagogical content knowledge in mathematics,
we can locate perspectives beyond mathematical subject knowledge, which focus
more on educational-psychological areas, but which are constitutive for mathematics
education. These include knowledge about concepts of mathematical education (e.g.,
theoretical concepts of mathematical thinking and general competencies such as
modeling, problem-solving, and reasoning); knowledge about dealing with different
forms of heterogeneity in mathematics education (e.g., the use of different teaching
goals in mathematics education, differentiation, and individualization); knowledge
about dyscalculia, giftedness, and special education support (important for devel-
oping support plans for dyscalculic and gifted learners or inclusive learning groups,
taking into account specific learning requirements); knowledge about forms and
concepts for teaching and learning mathematics in schools (e.g., genetic learning,
discovery learning, dialogical learning, extracurricular learning); knowledge about
educational standards, curricula, and textbooks for the subject of mathematics; and
knowledge about aims and forms of assessment in mathematics education (formative
and summative).

The different requirements for PCK make clear that this knowledge is closely
connected to content knowledge because the teacher consciously must choose
between all the possible representations the subject provides for teaching (Neubrand
et al., 2009). This may be one of the reasons for which there are still mixed findings
of the empirical separation of these different knowledge facets (Charalambous et al.,
2019; Depaepe et al., 2013), depending on respective measures. However, it is also
clear from these lists that there are overlaps with general pedagogical knowledge—
which we describe in the next section, for example in the area of assessment and in
the area of dealing with heterogeneity, and that subject-specific curricular aspects
also play a role (Grossman, 1990), which Shulman (1987) had rather assigned to
general curricular knowledge.



66 N. Buchholtz et al.

3.3 General Pedagogical Knowledge

Whatkind of general pedagogical knowledge a mathematics teacher should possess is
not an easy question. As Konig etal. (2011) indicate, the shape of general pedagogy is
strongly influenced by cultural perspectives on the objectives of schooling and on the
role of teachers (Hopmann & Riquarts, 1995). However, Konig et al. (2011), identify,
based on a literature review, two core tasks: instruction and classroom management.
“Less agreement exists as to what extent and what kind of knowledge about coun-
seling and nurturing students’ social and moral development or knowledge about
school management should also be included in the area of general pedagogy” (Konig
etal., 2011, p. 189). When it comes to knowledge about effective instruction, theories
of learning, an understanding of the various educational philosophies, and general
knowledge about learners (Grossmann & Richert, 1988) should be added to teachers’
GPK along with knowledge about effective classroom management. By combining
research on the quality of instruction and general didactics based on task analyses,
Konig and colleagues were able to develop a framework for mathematics teachers’
GPK consisting of four different dimensions of pedagogical knowledge. Thus GPK in
the model of Konig et al. (2011) comprises knowledge about structures (structuring
of learning objectives, lesson planning and structuring the lesson process, lesson
evaluation), knowledge about motivation, and classroom management (achievement
motivation; strategies to motivate single students or the whole group, strategies to
prevent and counteract interferences, effective use of allocated time and routines).
Furthermore knowledge about adaptivity (strategies of differentiation, use of a wide
range of teaching methods) and knowledge about assessment (assessment types and
functions, evaluation criteria, teacher expectation effects).

3.4 Beliefs

Research on teacher action assumes that the application of professional knowledge in
action situations presupposes corresponding subjective beliefs (Felbrich et al., 2014;
Schmotz et al., 2010). This relation makes the connection between Medleys Type E
and Type F (Chapter 1.1 on pre-existing mathematics teacher characteristics) clear
since pre-service teachers already have initial beliefs about teaching and learning
and about mathematics at the beginning of their studies, which also influences the
acquisition of professional knowledge (Blomeke et al., 2014a, 2014b; Buchholtz,
2017). Beliefs are thought to serve an orienting and action-guiding function for
applying learned knowledge (Schmotz et al., 2010; Schoenfeld, 1998; Thompson,
1992). However, despite intensive research on teachers’ beliefs, especially in the
context of pedagogical-psychological oriented approaches, no precise and selective
definition of the concept of beliefs can be discerned so far (Leder, 2019; Torner,
2002). Philipp (2007) defines beliefs as “the lenses through which one looks when
interpreting the world” (p. 258). Richardson (1996) proposes a domain-unspecific
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definition of beliefs that are based on a broader understanding. She understands
beliefs to be “psychologically held understandings, premises, or propositions about
the world that are felt to be true” (Richardson, 1996, p. 103). This refers to a person’s
epistemological stands towards an object, which includes affective attitudes and the
readiness to act (cf. Grigutsch et al., 1998) and which, in contrast to knowledge, are
dependent on the degree of individual agreement (Beswick, 2005, 2007). Still beliefs
are seen by many researchers as largely cognitive in nature (Beswick, 2018). So far,
however, it has not been sufficiently clarified to what extend beliefs contain cogni-
tive components, and which components can be identified. With regard to long-term
development of beliefs, however, it can be assumed according to the current state of
research that they are relatively stable with respect to restructuring, and to a certain
extent can act as psychological “filters” and/or “barriers” (Reusser et al., 2011). On
the other hand, however, beliefs can change in teachers’ professional development
(Eichler & Erens, 2015; Swars et al., 2009). For mathematics teachers, despite the
vagueness of the term, there is a broad consensus on the differentiation of profession-
related beliefs (Ernest, 1989). Among others, it is assumed that beliefs can be domain-
specific (Eichler & Erens, 2015; Torner, 2002) or even situation-specific (Kuntze,
2011; Schoenfeld, 2010). With respect to epistemological beliefs about the structure
of mathematics, according to Grigutsch et al. (1998), the emphasis on the formal
aspect of mathematics (formalism aspect) or an orientation towards procedures and
calculation schemes (schema orientation) can be brought to the fore with respect to
static views. With respect to dynamic views, the application aspect and the processual
character of mathematics are mostly emphasized (cf. Grigutsch et al., 1998). In addi-
tion, beliefs about the acquisition of mathematical knowledge or the teaching and
learning of mathematics (Handal, 2003; Kuntze, 2011; Staub & Stern, 2002) repre-
sent another significant dimension of epistemological beliefs. Here, transmission-
oriented beliefs, in which students are viewed as passive recipients of knowledge,
are often distinguished from constructivist-influenced beliefs that endorse the prin-
ciples of constructive learning (Staub & Stern, 2002). Although the question of
how teacher beliefs influence student achievement is far from conclusive, it is likely
that dynamic beliefs about mathematics and constructivist teaching—learning beliefs
are more strongly related to an emphasis on processual, iterative mathematics in
instructional settings (Reusser et al., 2011).

3.5 Motivation and Self-regulation Skills

Motivational research in psychology counts motivation as a personal trait which
refers to the individually varying personal characteristics that constitute the reasons
for and the persistence of human behaviour (Kunter, 2013; Pintrich, 2003; Rhein-
berg, 2006). It serves as an important predictor of how successful people can handle
situational demands that occur in teaching. Thus, motivation and self-regulation are
vital for teachers to succeed in their profession in the long term (Alexander, 2008;
Kunter et al., 2013; Woolfolk Hoy, 2008). The beginnings of research on teacher
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motivation in the 1970s were still in the study of why people decide to become
teachers (Lortie, 1975). Within presage-process—product research, the motivational
orientation would likely be described as a characteristic of beginning teacher candi-
dates (Type F, Chapter 1.1) and connections would be sought between career choice
motivation at career entry and teachers’ learning outcomes (with the goal of selec-
tive admission to the teaching career). Medley (1987) describes this as Type FE
research (research in teacher selection, p. 111). However, because affective person-
ality traits have (re)entered the professional competence research, contemporary
research on professional teacher competencies examines differences in motivation
and self-efficacy between practicing teachers, such as in the form of intrinsic moti-
vation and enthusiasm for the subject of mathematics and for teaching, and further,
what influence these forms of enthusiasm have on teaching quality and, if applicable,
student achievement (Kunter, 2013). By this, the research goes far beyond Type F
and Type E research. The description of the manageable psychological construct of
self-efficacy by Bandura (1997) in the late 1990s also contributed significantly to this
development. Self-regulatory skills are now also part of many studies of professional
teacher competence, as the teaching profession is believed to have implications for
teacher health and well-being due to its high demands. In order to meet the demanding
challenges over extended periods of time, teachers need to develop self-regulation
skills in order to maintain their occupational commitment over time and to preclude
unfavorable motivational and emotional outcomes (Kunter et al., 2013).

4 Different Conceptualizations of Teacher Knowledge

As knowledge is considered a major component of teacher competencies, we
will focus on recent conceptualizations of mathematics teacher knowledge in the
following. Worldwide, many conceptualizations of professional knowledge are based
on Shulman’s fundamental description, such as in the U.S. the Learning Mathematics
for Teaching project by the research group around Deborah Ball (LMT; cf. Hill
etal., 2008a, 2008b), the study on Mathematics Knowledge in Teaching (Rowland &
Ruthven, 2011) in the U.K., as well as different frameworks in Australia (Beswick &
Chick, 2020; Chick et al., 2006). In Germany, the COACTIV study builds on this
work (Kunter et al., 2013) but also frameworks developed by other researchers (Buch-
holtz et al., 2013; Dreher et al., 2016, 2018). International comparative studies such
as MT21 (Schmidt et al., 2007, 2011) or the Teacher Education and Development
Study in Mathematics (TEDS-M; Blomeke et al., 2014a, 2014b; Tatto, et al., 2012),
also built on this work and investigated teachers’ professional knowledge at the end
of their education with a framework based on Shulman. A more systematic overview
of the description of professional knowledge by teachers can be found, for example,
in the ICMI study by Even and Ball (2009), in the Handbook by Wood et al. (2008),
or in various different publications such as by Cochran-Smith and Zeichner (2005),
Rowland (2014), Neubrand (2018) or Manizade and Orrill (2020). In the following,
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we describe some of these key frameworks that have been more widely received
internationally.

4.1 Mathematical Knowledge for Teaching (MKT)

A model that has been widely acknowledged and applied internationally is
the Michigan group’s Mathematical Knowledge for Teaching. This approach to
describing and measuring teachers’ professional knowledge consists of developing a
practice-based theory of the mathematical resources entailed by the work of teaching
on the basis of the knowledge facets identified by Shulman. To this end, extensive
observational categories were derived from mathematics tasks and observation of
primary teachers’ practical work with students. Thus, rather than normatively speci-
fying Shulman’s classification in technical terms, the project took, as its starting point,
arequirements analysis that first identified three key responsibilities of teachers. The
requirements were “(1) [t]o provide effective opportunities to learn substantial math-
ematics and treat the mathematics with intellectual integrity (Bruner, 1960); (2) to
be able to hear student thinking, take it seriously, and make it an integral part of the
instruction; and (3) to be committed to the learning of every student, and further to
the learning of the class as an intellectual community” (Ball & Bass, 2009, p. 26).
The goal of the project was initially to empirically study instruction to characterize
the mathematical knowledge necessary “to carry out the work of teaching mathemat-
ics” (Hill et al., 2005, p. 373; Ball & Bass, 2003). In the process, knowledge facets
were also specified in more detail (Ball et al., 2005, 2008), resulting in the develop-
ment of a model of professional knowledge (the MKT model). MKT covers three
categories that relate to teachers’ subject matter knowledge: (1) common content
knowledge (CCK, i.e., mathematical knowledge and skills used in settings other
than teaching), which describes knowledge held in common with professionals in
other mathematically intensive fields; (2) specialized content knowledge (SCK, i.e.,
mathematical knowledge and skills that are unique to the teaching of mathematics);
and (3) horizon content knowledge (HCK, i.e., an awareness of how distinct math-
ematical topics are related to each other), which Bass and Ball (2009) described
as an “elementary perspective on advanced knowledge that equips teachers with a
broader and also more particular vision and orientation for their work™ (Bass & Ball,
2009, p. 34). In contrast, there are three categories that can be considered constituent
of teachers’ PCK: (4) knowledge of content and students (KCS, i.e., knowledge
about students’ mathematical thinking or typical student errors); (5) knowledge of
content and teaching (KCT, i.e., knowledge to introduce a new concept or method);
and (6) knowledge of content and curriculum (i.e., knowledge on educational goals,
standards, and grade levels where particular topics are typically taught) (Ball et al.,
2008). Later on, the project developed measures of MKT (Hill et al., 2004) and
used teachers’ scores as a predictor of students’ mathematics achievement. They
found that “teachers’ mathematical knowledge was significantly related to student
achievement gains in both first and third grades [...]” (Hill et al., 2005, p. 371).
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Internationally, the model gained much recognition and was transferred or applied in
many other countries including Ireland, Norway and Indonesia (Blomeke & Delanay,
2012; Delanay et al., 2008; Fauskanger, 2015; Ng et al., 2012). However, although
widely used the model has also been criticized as the empirical differentiation of the
dimensions has not been shown sufficiently and it is not clear whether the model
can be transferred to the secondary level (Speer et al., 2015). Furthermore, its oper-
ationalization for the empirical measurement of teachers’ knowledge and the use of
multiple-choice operationalization items in a respective instrument have been crit-
icized because this operationalization might underestimate the complexity of some
of the knowledge facets (especially those involving students learning and thinking)
(Manizade & Mason, 2011).

4.2 The Knowledge Quartet

Tim Rowland and his colleagues in the United Kingdom took a perspective away
from the empirical testing of teachers’ knowledge that is present in the Michigan
project and other projects. They analyzed videotaped data from classroom obser-
vations and proposed a framework for describing the knowledge the teacher enacts
in the classroom. The aim of their project, which became known as “Knowledge
Quartet”, was to make visible and describe the professional knowledge and beliefs
acquired during training in classroom teaching situations in which this knowledge
becomes visible (Rowland, 2008a, 2008b). Their theoretical framework for the obser-
vation, analysis and development of mathematics teaching has been developed in
the context of primary education, although approaches to transfer to the secondary
level exist (Rowland et al., 2011). The approach of the study followed methods
similar to grounded theory research. The identified theoretical model consisted of
four categories: (1) foundation, which describes the teachers’ knowledge base; (2)
transformation, which includes situations in which knowledge about chosen repre-
sentations, examples, analogies, explanations, etc. is revealed—a category that takes
up the ideas of PCK; (3) connection, which describes situations in which students’
misconceptions are revealed, and the teacher knows about what is ‘hard’ or ‘easy’
to grasp for the students; and finally, (4) contingency, which refers to unexpected,
unplanned moments, i.e. students’ unexpected responses and questions (Rowland
et al., 2005). The framework is now used in several countries by collaborating
colleagues (including Norway, U.K., the U.S., Ireland, Turkey, Italy, Cyprus and
Australia). However, qualitative reconstructive studies with a rather smaller sample
size dominate the study of teacher knowledge here (e.g., Maher et al., 2022; Petrou,
2009).
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4.3 Modelling Teachers’ Knowledge in Relation to Teaching
Practice

Researcher groups from Australia, Canada and the U.S. developed frameworks for
empirical research on teachers’ knowledge which especially account for the blurri-
ness of Shulmans knowledge domains when it comes to teaching practice. The work
of the Michigan group was criticized for that “the precise way in which they conceive
of knowledge and how aspects of such a conception beyond ‘facts that are known’ is
incorporated in their model is not clear” (Beswick et al., 2012, p.133). Furthermore,
teachers “do not always employ the same sort of knowledge in apparently equivalent
situations, and they draw upon a range of types of knowledge concerning many of
their everyday tasks, moving among them seamlessly and flexibly” (ibid., p.154).
In the work of the Australian researchers Beswick and colleagues, therefore, the
conception of knowledge also includes teachers’ beliefs and confidence as central
components in corresponding frameworks, thus also taking into account affective
competence characteristics in particular, which were thought to be more intertwined
with knowledge facets here than in other frameworks because they have such a
major impact on teachers’ actions in practice (Beswick & Chick, 2020; Beswick
et al., 2012). To investigate the professional knowledge of Tasmanian middle school
teachers in mathematics, a profile framework was developed with eight different
facets. Specifically, the framework refers to teachers’ knowledge and readiness: (1)
to nominate how they would improve middle school students’ mathematical under-
standings and how mathematics might be used to enhance students’ learning more
broadly; (2) to outline a plan for teaching a mathematics concept that they consid-
ered important; and (3) to rate their confidence about developing their students’
understanding of a range of middle school mathematics topics, and their ability to
make connections between mathematics and other curriculum areas. Furthermore
(4) to use of mathematics in everyday life; (5) their beliefs on mathematics teaching
and learning; (6) and to anticipate appropriate and inappropriate responses that their
students might give to mathematics problems and to describe how they could use each
of the items in their classroom. The framework furthermore contains teachers’ back-
ground variables and their perceived professional learning needs (Beswick et al.,
2012). The model developed and operationalized for an empirical study thus acts
as counter to highly analytic models such as MKT. In order to provide evidence-
based insights into how Australian teacher education prepares mathematics teachers
for their professional requirements, empirical studies examined the teacher knowl-
edge of primary and secondary mathematics teacher education students in MCK and
PCK using Rasch-scaled knowledge tests (Beswick & Goos, 2012; Goos, 2013). In
particular, the studies found close empirical relationships between the two knowl-
edge facets. Chick and her colleagues on the other hand developed a framework for
analysing primary teachers’ PCK for teaching decimals (Chick et al., 2006). Their
framework shows especially the blurriness between content knowledge and peda-
gogical knowledge. It entails three categories with a large number of sub-categories
in which pedagogy and content are thought intertwined and set in a mutual context.
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Their PCK framework contains the knowledge of teaching strategies, knowledge of
students’ thinking, knowledge of representations, knowledge of the cognitive demand
of tasks, knowledge of explanations, as well as resources and the curriculum. Further-
more, a category “content knowledge in a pedagogical context,” covers a profound
understanding of fundamental content, knowledge to deconstruct content to its key
components, an awareness of mathematical structure and connections, as well as
procedural knowledge when for example solving problems or using an algorithm.
The third category of the framework is “pedagogical knowledge in a content context.”
It contains sub-categories of knowledge of the goals of learning, assessment prac-
tices, and classroom techniques that are needed for example when students need to
work in groups. (Beswick & Chick, 2020).

The Canadian framework “Mathematics-for-Teaching” (Davis & Simmt, 2006)
considers the complex structure of professional knowledge dynamically and distin-
guishes in knowledge acquisition “between the relatively stable aspects of mathe-
matical knowledge itself and the somewhat more volatile qualities” (Davis & Simmt,
2006, p. 297). The model distinguishes relatively stable aspects of knowledge e.g.
about curriculum structures or mathematics and dynamic aspects of “knowing”, e.g.
classroom collectivity or a subjective understanding to attend to both explicit and tacit
aspects of teachers’ mathematical knowledge. Other researchers describe the profes-
sional knowledge of mathematics teachers as situated within a specific mathematical
content.

Important in this context are the works of Manizade and Martinovic on
professional-situated knowledge in geometry (Manizade & Martinovic, 2016, 2018;
Manizade & Mason, 2011) in the U.S. and Canada, respectively, which are charac-
terized by the fact that Shulman’s CK and PCK are situated and considered and scru-
tinized for very specific mathematical topics commonly taught in secondary mathe-
matics, such as the area of trapezoids (see also e.g., rational numbers, Depaepe et al.,
2015). The researchers highlight the importance of the development of measures
of professionally-situated knowledge. They focus on developing valid and reliable
measurements of mathematics teachers’ situational manifestation of PCK and CK
within specific geometry contexts. In their work, Manizade and Martinovic (2016)
describe the following five dimensions of such knowledge, including: (1) geom-
etry knowledge; (2) knowledge of student challenges and conceptions; (3) ability
to ask diagnostic questions; (4) knowledge of applicable instructional strategies and
tools; and (5) ability to provide geometric extensions with respect to a specific topic
in geometry. Martinovic and Manizade (2017, 2018) describe the development of
instruments—which they referred to as probes—for assessing teachers’ knowledge
for teaching geometry. Unlike assessing mathematics teacher competence on a more
generic level, they argue the benefits of developing assessment instruments within a
well-defined and narrow topic in mathematics, and of combining different measures
to ensure the validity of the assessed construct.
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4.4 Teachers’ Knowledge About the Integration
of Technology in the Classroom

With the increase of the integration of technologies and digital tools in the teaching
of mathematics, necessary new developments emerged for conceptualizations of
teacher knowledge. Based on the premise that technology integration efforts should
be creatively designed or structured for particular subject matter ideas in specific
classroom contexts, Mishra and Koehler (2006) developed the TPACK framework
based on Shulman’s description of PCK to describe the teacher knowledge needed
when integrating technology in teaching. The TPACK framework was also later
revised and adapted (Koehler & Mishra, 2008, 2009). The framework includes
seven categories of knowledge: Technological knowledge (TK) includes the tech-
nical knowledge of using emerging media, including digital media, such as programs,
devices, or hardware. It also includes pedagogical knowledge (PK), content knowl-
edge (CK), and four other categories defined by the intersections of these knowledge
categories. These facets embrace the technological content knowledge (TCK), which
is the knowledge of how technology and subject knowledge affect each other. From
the perspective of mathematics education, this includes knowledge about technical
possibilities for representing mathematics, for example, through dynamic geometry
programs, pedagogical content knowledge (PCK), and technological pedagogical
knowledge (TPK), which is knowledge about how the use of technologies affects
general teaching and learning processes. In the intersection of all knowledge areas
lies the so-called technological pedagogical content knowledge (TPACK), which
describes a combination of subject-specific PCK with knowledge about the use of
technology for learning. TPACK also takes into account the relationship between
teachers’ decisions and the contextual factors of teaching, such as class size, envi-
ronment, resources, and culture (Koehler & Mishra, 2009). The TPACK framework
was specifically designed to enable research on the knowledge teachers need to effec-
tively integrate technology into their teaching in a particular content area. Mathe-
matics educational research has increasingly adopted the rather generic framework in
recent years to describe mathematics-specific requirements of each knowledge facet
and to explore how these develop, for example, for the area of curriculum develop-
ment or in terms of describing instructional practices (Niess et al., 2009). Further-
more, the framework has been applied to observe mathematics teachers’ practices
in using technology in teaching and to describe them at the level of the knowledge
facets involved (Muir et al., 2016; Patahuddin et al., 2016).

4.5 COACTIV

Also based on the approaches of the Michigan group and the work of Shulman, a study
with representative samples of German secondary school teachers developed in the
mid-2000s to investigate teachers’ professional knowledge and its empirical relation



74 N. Buchholtz et al.

to student achievement. The key factor was the facilitation of a national extension
of the 2003 PISA sample, in which individual and grade-level aggregated student
performance from the PISA study could be extended longitudinally and related to
teacher characteristics of about 300 teachers teaching in these grades. The COACTIV
research program (Baumert et al., 2010; Kunter et al., 2013) aimed to investigate the
professional competencies of practicing mathematics teachers, including making
statements about the relationship to student achievement. Standardized achievement
tests of teacher professional knowledge were used (Krauss et al., 2008). The frame-
work for teacher knowledge developed by COACTIV is based on content knowledge,
but identifies three different facets of subject-specific knowledge: first, knowledge
of student conceptions and prior knowledge (e.g., knowledge about typical student
errors or the difficulty of mathematical tasks); and secondly, knowledge of subject-
specific instructional strategies (for example, knowledge about representations and
making content “accessible”). An innovative feature of the COACTIV theoretical
framework was that subject-specific knowledge was operationalized in part through
knowledge about task quality and the cognitive potential of the tasks used in the
classroom. In this context, a corresponding classification of tasks used placed partic-
ular emphasis on the content-specific cognitive activation of mathematical tasks
(Neubrand et al., 2013). This classification allowed “the recognition, for example, of
how conceptual thinking is incorporated in a lesson, how teachers select the tasks, and
if that selection influences the learning progress of the students” (Neubrand, 2018,
p. 606). The research program investigated the competence of practicing German
mathematics teachers differentiated in the areas of content knowledge and peda-
gogical content knowledge. Among other things, COACTIV found that systematic
differences in performance existed between teachers for higher track secondary level
in content knowledge, some of which could be attributed to differences in teacher
education characteristics. A central finding of the study was also that the content
knowledge of teachers was a necessary prerequisite for the acquisition of pedagog-
ical content knowledge, but that ultimately the pedagogical content knowledge of
a teacher had a greater explanatory power for predicting student performance than
their content knowledge (cf. Kunter et al., 2013)—which did not mean, however, that
content knowledge was less important in teacher education.

4.6 TEDS-M

The studies from the TEDS-M research program focus on different aspects of profes-
sional competencies, each with a different emphasis. While earlier international
comparative studies such as TEDS-M 2008 (Blomeke et al., 2014a, 2014b; Tatto et al.,
2012) or its predecessor study MT21 (Schmidt et al., 2007, 2011) focused mainly
on knowledge-related (dispositional) aspects and knowledge at the end of teacher
education, subsequent studies of the TEDS-M research program in Germany included
in addition situational aspects of professional competence and thus also focus to a
greater extent on the competencies of practicing teachers. Particular attention in the
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following first is given to the results of the TEDS-M 2008 study, which was commis-
sioned by the International Association for the Evaluation of Educational Achieve-
ment (IEA) and examined the teacher professional knowledge of prospective primary
and secondary mathematics teachers in 16 participating countries. With regard to the
underlying framework, the TEDS-M 2008 study and its predecessor study MT21 refer
to the different knowledge facets of Shulman (1986, 1987) and differentiate PCK two-
dimensionally, namely along with different requirements for teachers (D6hrmann
etal.,2012). Within the theoretical framework between teaching-related demands like
“Mathematics Curricular Knowledge” and “Knowledge of Planning for Mathematics
Teaching,” as well as learning process-related demands like “Enacting Mathematics
for Teaching and Learning” are distinguished (Tatto et al., 2012, p. 131). Curric-
ular and instructional planning requirements include the selection of subject-specific
teaching content for students, as well as its justification, simplification, and prepara-
tion using various representations. This therefore includes knowledge of mathematics
curricula, assessment methods, and teaching methods. Interaction-related require-
ments, which reflect the teacher’s activities during the lesson, intend to include the
classification of student answers against the background of cognitive levels, possible
errors, and error patterns. These are therefore analytical and diagnostic skills that
prospective teachers should possess. An overview of international research find-
ings is provided by Tatto et al. (2012). Furthermore, Blomeke and Delanay (2012)
describe the current state of research from TEDS-M 2008 in a review article from the
perspective of similarities and differences between TEDS-M 2008 and the Learning
Mathematics for Teaching study (LMT; Hill et al., 2008a, 2008b). Meanwhile, several
complementary and in-depth national analyses have emerged from TEDS-M 2008
and MT21, looking in detail at specific issues in participating countries ( 2014a,
2014b; Blomeke et al., 2009a, 2009b). Furthermore, within the TEDS-M research
program TEDS-LT followed as a new study, expanding the concepts of TEDS-M 2008
for a German sample to both a longitudinal design and more subjects, as German
and English were included besides mathematics (Blomeke et al., 2011, 2013).

5 Recent Extensions in the Concept of Mathematics
Teacher Competence

Despite the blurry lines between CK and PCK, like Kaiser and Konig (2019) note,
several studies to date have provided evidence that the knowledge facets as proposed
by Shulman (1987) can be theoretically and empirically differentiated and separated
(e.g., Blomeke et al., 2016; Krauss et al., 2008), provided that appropriate instru-
ments, topics and sampling are used. Fundamental to this were scientific studies that
examined the structure of professional knowledge in particular. Regarding the corre-
lations between the specific facets, it turned out that, “as Shulman (1987) with his
“amalgam” hypothesis on the nature of PCK suggested PCK is related to both CK
and GPK, whereas CK and GPK are more distant to each other” (Kaiser & Konig,
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2019. p. 603f.). For example, in the COACTIV study, a strong correlation between
CK and PCK was found (0.61) (Baumert et al., 2010). Important scientific devel-
opments about the professional competence of teachers can be located especially
in the last five to ten years. Since teachers access different forms of their profes-
sional knowledge in different instructional contexts—so the assumption—it seems
reasonable to focus not only on the structure but especially on its application in
different teaching situations when examining professional knowledge (Even et al.,
2017; Kaiser et al., 2015; Rowland, 2008b). Thus, as a new guiding question in
research on mathematics teacher competencies, knowledge and skills, if we follow
up on Medley’s Type E, it was added how content knowledge, pedagogical content
knowledge, and general pedagogical knowledge can be surveyed in connection with
teaching practice using suitable instruments, which led in particular to the investiga-
tion of situation -specific skills, in other studies referred to as professional noticing
(Sherin et al., 2011; Van Es & Sherin, 2008).

5.1 Situational Aspects of Mathematics Teachers’
Professional Competencies

When situational aspects of teachers’ professional competencies are addressed in the
context of empirical studies, the main aim is to survey competencies as closely as
possible to real situations from everyday teaching. With their conceptualization of
competence as a continuum, Blomeke et al. (2015) aimed to overcome an opposi-
tion that had increasingly emerged between different approaches to understanding
competence. On one hand, there existed the analytical approach of dispositional
aspects of competence, which formed essentially the basis of cognitively oriented
empirical studies from educational research mainly using paper-and-pencil tests.
According to this approach, one starts from analytically separable areas of compe-
tence (e.g., the knowledge facets) which can then be measured and considered in
terms of their structural relationships. The goal here is to promote specific compe-
tencies as a resource for behavior in specific situations. As we described, compe-
tence here includes both cognitive and affective-motivational domains. The analyt-
ical approach was now opposed by a holistic approach in the research tradition
from organizational psychology, which focused on the observation of behavior and
performance in an appropriate real-life context. Competence then influences this
behavior, whereby competence is still understood as a collection of diverse cognitive
and affective-motivational components that constantly change—depending on the
situation and requirements. The idea of Blomeke and her colleagues was to combine
both approaches in a common continuous model. Specifically, they assume that the
behavior of, for example, a teacher in concrete situations is influenced by his or her
competence (in the sense of the holistic approach). However, competence is then
not understood as a constantly changing collection of different components, but as a
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fixed sum of clearly describable individual components (in the sense of the analytical
approach).

The starting point of the new model of competence as a continuum is the disposi-
tion of a teacher, which is characterized by cognitive (CK, PCK, GPK) and affective-
motivational areas (a.o. beliefs). These cognitive and affective-motivational dispo-
sitions are complemented by situation-specific skills, which are also referred to as
professional noticing (here, the teachers’ noticing discussion plays a role, in partic-
ular, see Sherinetal.,2011). That is, in a specific situation, a teacher first perceives the
situation, interprets what is perceived, and makes appropriate decisions. The teacher
does this influenced by the situation at hand, but of course also by their basic dispo-
sition. Based on the teacher’s perception, interpretation, and decision, their actual
actions in the situation then emerge. It is therefore said that professional noticing
consisting of the areas of perception, interpretation, and decision-making plays a
mediating or transforming role between disposition and actual action which is an
observable performance. While pure surveys with tests represent a proven possi-
bility for the investigation of competence in the sense of the analytical approach
(for example with instruments of MKT or TEDS-M), it is immediately clear that
situational aspects are difficult to assess in this way, because the reality of teaching
can only be represented in test items to a limited extent. An alternative way of
assessing competence in a situation-related manner is the use of video vignettes or
dynamic geometry software as a stimulus for answering test items. Subsequently,
many recent studies investigating situational teacher competence built on the use of
video vignettes (e.g., Bruckmaier et al., 2016; Kaiser & Konig, 2019; Kersting, 2008;
Kersting et al., 2010; Knievel et al., 2015; Seidel & Stiirmer, 2014). Martinovic and
Manizade (2020) for instance used interactive dynamic instruments (that incorpo-
rate dynamic software such as GeoGebra) to mimic the classroom simulations and
a variety of student responses to a given mathematics problem question. This way,
they evaluated teachers’ professionally situated knowledge (PCK and CK) based on
teachers’ responses to the questions that follow up a dynamic simulation.

5.2 Further Developments of the Studies of the TEDS-M
Research Program

The further developments of the TEDS-M research program in Germany, which aim
at investigating the competence development of mathematics teachers in the first
years of their professional activity, are also based on this approach. Central to this
is the outlined understanding of competence as a continuum. In addition, expertise
research (Berliner, 2001) with its basic distinction between experts and novices forms
a central pillar of the conceptual framework for further developments. Specifically,
the different areas of teacher knowledge from TEDS-M were conceptually supple-
mented by the situation-specific skills of professional noticing, which were surveyed
with video vignettes aimed at eliciting different aspects of expertise. The TEDS-M
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Follow up study (TEDS-FU) for example measured perception, interpretation, and
decision-making as facets of professional noticing of in-service mathematics teachers
(Kaiser et al., 2015); The relation of knowledge and noticing concerning GPK was
evaluated by Konig et al. (2014), differentiating mathematics teachers’ pedagogical
competence into knowledge and noticing facets. Kaiser and Konig (2019, p. 605)
also report structural connections in this context, with a connection between disposi-
tional and situational facets of professional competence being particularly evident in
interpreting classroom perception: “Whereas teacher knowledge and interpretation
skills are moderately related to each other (0.37), perception is only loosely related
to interpretation (0.17) and knowledge (0.13).”

5.3 Relationships of Teacher Competencies to Instructional
Quality and Student Achievement

The results presented so far give us clues about the relationship between teachers’
knowledge and their skills. What needs to be questioned, however, is why appro-
priate skills were considered valuable components of teacher competence in the
first place. One obvious answer is that skills in the area of professional noticing
help with the design of instruction and are linked to this assumption that ultimately
student achievement can also be improved by good instruction. Specifically, some
studies in recent years have surveyed the direct relationship between teacher skills
and instructional quality (Hill et al., 2008a, 2008b; Santagata & Lee, 2021). In
the TEDS-Instruct study and the TEDS-Validate study, for example, two observers
each assessed lower secondary mathematics teaching on different criteria using a
comprehensive rating manual that focused on four facets of teaching quality, namely
efficient classroom management, constructive support, the potential for cognitive
activation, and content-related structuring (for details Schlesinger et al., 2018). At
the same time, results from the subject-related competence facets were available
for the participating teachers, which were collected using TEDS-M and TEDS-FU
instruments (Blomeke et al., 2020). Thereby, efficient classroom management did
not correlate significantly with the subject-related competence facets. The remaining
three quality dimensions correlate significantly positively with teachers’ professional
noticing of mathematics teaching, but not consistently with subject-related knowl-
edge facets (Jentsch et al., 2021). As TEDS-Validate and TEDS-Instruct furthermore
had access to the results of students’ achievement tests, the studies especially offer
the opportunity to fully observe the linkage between teachers’ competences, instruc-
tional quality, and students’ achievements. Results revealed that with regard to the
dimensions of instructional quality cognitive activation was found as a predictor for
students’ progress in achievement. In addition, general pedagogical knowledge and
situation-specific classroom management expertise (CME) serve as predictors for
instructional quality (GPK for all three dimensions, CME only for cognitive acti-
vation). Furthermore, there is a direct effect of teachers’ professional competence
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on students’ achievement but without mediation by the instructional quality (Ko6nig
et al., 2021). Also, other studies investigated the relationships between professional
competence, teaching quality, and student achievement (cf. Kaiser & Konig, 2019,
p. 606). In the COACTIV study, a strong positive effect of PCK on student learning
progress was found to be mediated by the quality of instruction. In particular, the
dimensions of cognitive activation and individual learning support played a crucial
role. For CK, however, the mediation model applied only to a very limited extent.
Despite the high correlation with PCK, teachers’ CK had lower predictive power
for students’ learning progress (Baumert et al., 2010). Similarly, Hill et al. (2005)
and Hill and Chin (2018) furthermore showed that teachers’ knowledge and their
instructional quality were significantly related to students’ outcomes.

6 Concluding Remarks

In the present chapter, we provided an overview of important lines of development and
the evolution of mathematics education research on professional teacher competen-
cies, knowledge and skills. Research has evolved from the process—product paradigm
and has been developed especially in the period of 30 years after Medley’s (1987)
reflections. The starting point in this process were basic theoretical reflections on
teachers’ professional knowledge, which were strongly influenced by cognitivism.
Subsequently, an independent branch of research in mathematics education devel-
oped, which dealt with the professional competence of teachers, thus broadening
the focus by not only taking single cognitive aspects into account. As in Medley’s
time, the starting point to this shift in the research was the intention to measure
and describe what makes a good teacher and how to improve student achievement
in mathematics. From the critique of the studies in the following years, research
evolved further towards the inclusion of more situation-specific teacher competen-
cies, examining connections and effects between the different variables within the
chain of effects, namely teachers’ competence, instructional quality, and student
achievements.

What have these developments in common? The developments represent decisive
improvements with regard to the systematic inclusion of personality characteristics
of teachers as well as the contextual conditions in which teacher competencies come
into play. Itis clear that different conceptualizations of teacher competencies still take
into account, to varying degrees, the same variables that Medley (1987) had already
considered, although in the meantime a stronger emphasis on the subject-specific
characteristics of mathematics has also been taken into account.

However, new conceptual challenges arose as a result of further developments.
Thus, after many years, as we describe, currently a large variety of frameworks
on teacher competencies, knowledge and skills is available internationally, each
describing teacher competence differently and thus setting different emphases.
Conceptualizations are based on different domains attributed to teachers’ profes-
sional knowledge, differ in their theoretical assumptions, and also have different
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grain-size of the knowledge elements considered (Even et al., 2017; Neubrand, 2018).
On the one hand, the boundaries of what is understood by teacher competencies in
certain domains are pragmatically determined from theoretical considerations or
in the context of empirical studies, but on the other hand, Delphi methods, or the
Grounded Theory Approach, for example, could also be used to develop content-
valid conceptualizations (Manizade & Mason, 201 1; Martinovic & Manizade, 2017).
Either way, however, the conceptualizations of teacher competencies, knowledge,
and skills for research purposes remain normative—and thus dependent on cultural
traditions, epistemologies, and values. We expect the field to evolve further with
great progress in the next years.

While we often assume that mathematics education is culture-neutral, research
indicates that the way in which we express ourselves and view mathematics is in fact
highly cultural (Leung et al., 2006). Although many of these different frameworks
are used in several countries to assess teacher competencies, the cultural dependency
of the frameworks should not be overlooked (Blomeke & Delanay, 2012), so that
a transfer to other educational systems is by no means trivial and should require
validation studies (e.g. Yang et al., 2018). In the future, therefore, it can be assumed
that the cultural sensitivity of research on teacher competencies will be more critically
scrutinized. International research on teacher competencies can nevertheless benefit
from this polyphony, although it suffers from it at the same time. The multiplicity and
diversity of frameworks need not be seen as confusion but can be seen as richness—if
one takes a comparative perspective, however, it seems profitable when frameworks
and conceptualizations are synthesized and compared based on their similarities and
differences.

What is clear from our overview, however, is that after more than three decades
of developing research on teacher competencies, knowledge, and skills, there are
still methodological challenges to empirical measurement. Certainly, current tools
of measuring allow us to capture teacher competencies more accurately than in
the past. Methodological advances such as multilevel structural equation modelling
(Teo & Khine, 2009) allow for the consideration of numerous relevant (background)
variables and differences between individuals, classes, and schools when examining
relationships between teacher competencies and student outcomes. These analyses
can be used to identify interactions between teachers’ characteristics, personal and
affective traits, and various other factors, all those that are related to teacher compe-
tencies. Nevertheless, even today we do not have the means to realize Medley’s
vision of taking into account the interrelationships of all variables in studies, and
often only proxies can be used for variables to be measured so that even in the future
the validity of measurement instruments, in particular, will have to be critically
analyzed. However, these methodological advances should still not lead research
on teacher competencies to neglect mediating variables in the chain of connections
between teacher competencies and student outcomes. Teaching activities in instruc-
tional quality as a mediating variable, and thus the situatedness of teacher compe-
tencies has played and probably will play an increasingly central role as a site for
observing and measuring competencies, especially in recent years.



The Evolution of Research on Mathematics Teachers’ Competencies, ... 81
References

Alexander, P. A. (2008). Charting the course for the teaching profession: The energizing and
sustaining role of motivational forces. Learning and Instruction, 18(5), 483-491.

Ball, D. L., & Bass, H. (2003). Toward a practice-based theory of mathematical knowledge for
teaching. In B. Davis & E. Simmt (Eds.), Proceedings of the 2002 Annual Meeting of the
Canadian Mathematics Education Study Group (pp. 3—14). CMESG/GCEDM.

Ball, D. L., & Bass, H. (2009). With an eye on the mathematical horizon: Knowing mathematics for
teaching to learners’ mathematical futures. In M. Neubrand (Ed.), Beitrdge zum Mathematikun-
terricht 2009: Vortrdge auf der 43. Tagung fiir Didaktik der Mathematik vom 2.-6. Mdrz 2009
in Oldenburg (Vol. 1, pp. 11-22). WTM-Verlag.

Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathe-
matics well enough to teach third grade, and how can we decide? American Educator, 29, 1417,
20-22, 43-46.

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it
special? Journal of Teacher Education, 59(5), 389-407.

Bandura, A. (1997). Self-efficacy: The exercise of control. Freeman.

Baumert, J., & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkriften. Zeitschrift
fiir Erziehungswissenschaft, 9, 469-520.

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., & Tsai, Y.-M.
(2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student
progress. American Educational Research Journal, 47(1), 133-180.

Bednarz, N., & Proulx, J. (2009). Knowing and using mathematics in teaching: Conceptual and
epistemological clarifications. For the Learning of Mathematics, 29(3), 11-17.

Berliner, D. C. (2001). Learning about and learning from expert teachers. International Journal of
Educational Research, 35(5), 463—482.

Beswick, K. (2005). The beliefs/practice connection in broadly defined contexts. Mathematics
Education Research Journal, 17(2), 39-68.

Beswick, K. (2018). Systems perspectives on mathematics teachers’ beliefs: Illustrations from
beliefs about students. In E. Bergqvist, M. Osterholm, C. Granberg, & L. Sumpter (Eds.),
Proceedings of the 42nd conference of the international group for the psychology of mathematics
education (Vol. 1, pp. 3-18). PME.

Beswick, K. (2007). Teachers’ beliefs that matter in secondary mathematics classrooms. Educa-
tional Studies in Mathematics, 65(1), 95-120.

Beswick, K., Callingham, R., & Watson, J. (2012). The nature and development of middle school
mathematics teachers’ knowledge. Journal of Mathematics Teacher Education, 15(2), 131-157.

Beswick, K. & Chick, H. (2020). Beliefs and pedagogical content knowledge for teachers of math-
ematics. In D. Potari, & O. Chapman (Eds.), International handbook of mathematics teacher
education: Volume 1: Teacher knowledge, beliefs and identity in mathematics teaching and its
development (2nd ed., pp. 185-209). Brill Sense.

Beswick, K., & Goos, M. (2012). Measuring pre-service primary teachers’ knowledge for teaching
mathematics. Mathematics Teacher Education and Development, 14(2), 70-90.

Blomeke, S., & Delaney, S. (2012). Assessment of teacher knowledge across countries. ZDM
Mathematics Education, 44(3), 223-247.

Blomeke, S., Bremerich-Vos, A., Haudeck, H., Kaiser, G., Nold, G., Schwippert, K., & Willenberg,
H. (Eds.). (2011). Kompetenzen von Lehramtsstudierenden in gering strukturierten Domdnen.
Erste Ergebnisse aus TEDS-LT. Waxmann.

Blomeke, S., Bremerich-Vos, A., Kaiser, G., Nold, G., Haudeck, H., KeBler, J., & Schwippert, K.
(Eds.). (2013). Weitere Ergebnisse zur Deutsch-, Englisch- und Mathematiklehrerausbildung
aus TEDS-LT. Waxmann.

Blomeke, S., Busse, A., Kaiser, G., Konig, J., & Suhl, U. (2016). The relation between content-
specific and general teacher knowledge and skills. Teaching and Teacher Education, 56, 35-46.



82 N. Buchholtz et al.

Blomeke, S., Buchholtz, N., Suhl, U., & Kaiser, G. (2014a). Resolving the chicken-or-egg causality
dilemma: The longitudinal interplay of teacher knowledge and teacher beliefs. Teaching and
Teacher Education, 37, 130-139.

Blomeke, S., Gustafsson, J., & Shavelson, R. J. (2015). Beyond dichotomies—Competence viewed
as a continuum. Zeitschrift fiir Psychologie, 223(1), 3—13.

Blomeke, S., Hsieh, F.-J., Kaiser, G., & Schmidt, W. H. (Eds.). (2014b). International perspectives
on teacher knowledge, beliefs and opportunities to learn. Springer.

Blomeke, S., Kaiser, G., Konig, J., & Jentsch, A. (2020). Profiles of mathematics teachers’
competence and their relation to instructional quality. ZDM—Mathematics Education, 52(2),
329-342.

Blomeke, S., Schwarz, B., Kaiser, G., Seeber, S., & Lehmann, R. (2009a). Unter-
suchungen zum mathematischen und mathematikdidaktischen Wissen angehender GHR- und
Gymnasiallehrkrifte. Journal fiir Mathematik-Didaktik, 30(3/4), 232-255.

Blomeke, S., Seeber, S., Kaiser, G., Schwarz, B., Lehmann, R., Felbrich, A., & Miiller, C.
(2009b). Differentielle Item-Analysen zur Entwicklung professioneller Kompetenz angehender
Lehrkrifte wihrend der Lehrerausbildung. In O. Zlatkin-Troitschanskaia, K. Beck, D. Sembill,
R. Nickolaus, & R. Mulder (Eds.), Lehrerprofessionalitit—Bedingungen, Genese, Wirkungen
und ihre Messung (pp. 311-327). Beltz—Verlag.

Bromme, R. (2001). Teacher Expertise. In N. Smelser & P. Baltes (Eds.), International encyclopedia
of the social and behavioral sciences (pp. 15459-15465). Pergamon.

Bromme, R. (1992). Der Lehrer als Experte. Zur Psychologie des professionellen Wissens. Huber.

Bromme, R. (1994). Beyond subject matter: A psychological topology of teachers’ professional
knowledge. In R. Biehler, R. W. Scholz, R. Straesser, & B. Winkelmann (Eds.), Mathematics
didactics as a scientific discipline: The state of the art (pp. 73-88). Kluwer.

Bromme, R. (2008). Lehrerexpertise. In W. Schneider & M. Hasselhorn (Eds.), Handbuch der
Pidagogischen Psychologie (pp. 159-167). Hogrefe.

Bruckmaier, G., Krauss, S., Blum, W., & Leiss, D. (2016). Measuring mathematics teachers’ profes-
sional competence by using video clips (COACTIV video). ZDM Mathematics Education,
48(1-2), 111-124.

Bruner, J. (1960). The process of education. Harvard University Press.

Buchholtz, N., Kaiser, G., & Blomeke, S. (2014). Die Erhebung mathematikdidaktischen Wissens—
Konzeptualisierung einer komplexen Domine. Journal fiir Mathematik-Didaktik, 35(1), 101—
128.

Buchholtz, N., Leung, F. K. S, Ding, L., Kaiser, G., Park, K., & Schwarz, B. (2013). Future
mathematics teachers’ professional knowledge of elementary mathematics from an advanced
standpoint. ZDM Mathematics Education, 45(1), 107-120.

Buchholtz, N. (2017). The acquisition of mathematics pedagogical content knowledge in university
mathematics education courses: Results of a mixed methods study on the effectiveness of teacher
education in Germany. ZDM Mathematics Education, 49(2), 249-264.

Carpenter, T. P., & Fennema, E. (1992). Cognitively guided instruction: Building on the knowledge
of students and teachers. International Journal of Educational Research, 17(5), 457-470.

Carpenter, T. P, Fennema, E., Peterson, P. L., & Carey, D. (1988). Teachers’ pedagogical content
knowledge of students’ problem solving. Journal of Research in Mathematics Education, 19(5),
385-401.

Carpenter, T. P, Fennema, E., Peterson, P. L., Chiang, C. P., & Loef, M. (1989). Using knowledge
of children’s mathematics thinking in classroom teaching: An experimental study. American
Educational Research Journal, 26(4), 499-532.

Carrillo-Yafiez, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Avila,
D., Vasco, D., Rojas, N., Flores, P., Aguilar-Gonzdlez, A., Ribeiro, M., & Mufioz Catalén,
M. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in
Mathematics Education, 20(3), 236-253.



The Evolution of Research on Mathematics Teachers’ Competencies, ... 83

Charalambous, C. Y., Hill, H. C., Chin, M. J., et al. (2019). Mathematical content knowledge and
knowledge for teaching: Exploring their distinguishability and contribution to student learning.
Journal of Mathematics Teacher Education, 23, 579-613.

Chick, H. L., Baker, M., Pham, T. & Cheng, H. (2006). Aspects of teachers’ pedagogical content
knowledge for decimals. In Proceedings of the 30th Conference of the International Group for the
Psychology of Mathematics Education, 16-21 July 2006, Prague, Czech Republic (pp.297-304).
PME.

Cochran-Smith, M., & Zeichner, K. (Eds.). (2005). Studying teacher education: The report of the
AERA panel on research and teacher education. Erlbaum.

Davis, B., & Simmt, E. (2006). Mathematics-for-teaching: An ongoing investigation of the
mathematics that teachers (need to) know. Educational Studies in Mathematics, 61(3), 293-319.

Delaney, S., Ball, D. L., Hill, H. C., Schilling, S. G., & Zopf, D. (2008). “Mathematical knowledge
for teaching”: Adapting U.S. measures for use in Ireland. Journal of Mathematics Teacher
Education, 11(3), 171-197.

Deng, Z. (2007a). Knowing the subject matter of a secondary school science subject. Journal of
Curriculum Studies, 39(5), 503-535.

Deng, Z. (2007b). Transforming the subject matter: Examining the intellectual roots of pedagogical
content knowledge. Curriculum Inquiry, 37(3), 279-295.

Depaepe, F., Torbeyns, J., Vermeersch, N., Janssens, D., Janssen, R., Kelchtermans, G., Verschaftel,
L., & Dooren, W. (2015). Teachers’ content and pedagogical content knowledge on rational
numbers: A comparison of prospective elementary and lower secondary school teachers.
Teaching and Teacher Education, 47, 82-92.

Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A system-
atic review of the way in which the concept has pervaded mathematics educational research.
Teacher and Teacher Education, 34, 12-25.

Dohrmann, M., Kaiser, G., & Blomeke, S. (2018). The conception of mathematics knowledge for
teaching from an international perspective: The case of the TEDS-M study. In Y. Li & R. Huang
(Eds.), How Chinese acquire and improve mathematics knowledge for teaching (pp. 57-83).
Brill/Sense.

Dohrmann, M., Kaiser, G., & Blomeke, S. (2012). The conceptualization of mathematics compe-
tencies in the international teacher education study TEDS-M. ZDM—The International Journal
on Mathematics Education, 44(3), 325-340.

Dreher, A., Lindmeier, A., & Heinze, A. (2016). Conceptualizing professional content knowledge of
secondary teachers taking into account the gap between academic and school mathematics. In C.
Csikos, A. Rausch, & J. Szitanyi (Eds.), Proceedings of the 40th conference of the international
group for the psychology of mathematics education PME (pp. 219-226). PME.

Dreher, A., Lindmeier, A., Heinze, A., & Niemand, C. (2018). What kind of content knowledge do
secondary mathematics teachers need? A conceptualization taking into account academic and
school mathematics. Journal fiir Mathematik-Didaktik, 39, 319-341.

Eichler, A., & Erens, R. (2015). Domain-specific belief systems of secondary mathematics teachers.
In B. Pepin & B. Rosken-Winter (Eds.), From beliefs to dynamic affect systems in mathematics
education. Exploring a mosaic of relationships and interactions (pp. 179-200). Springer.

Ernest, P. (1989). The Knowledge, Beliefs and Attitudes of the Mathematics Teacher: a model.
Journal of Education for Teaching, 15(1), 13-33.

Even, R., & Ball, D. L. (Eds.). (2009). The professional education and development of teachers of
mathematics: The 15th ICMI study. Springer.

Even, R., Yang, X., Buchholtz, N., Charalambous, C., & Rowland, T. (2017). Topic study group
No. 46: Knowledge in/for teaching mathematics at the secondary level. In G. Kaiser (Ed.),
Proceedings of the 13th international congress on mathematical education (pp. 589-592).
Springer.

Fauskanger, J. (2015). Challenges in measuring teachers’ knowledge. Educational Studies in
Mathematics, 90, 57-73.



84 N. Buchholtz et al.

Fennema, E., Carpenter, T. P., Franke, M. L., Levi, L., Jacobs, V. R., & Empson, S. B. (1996). A
longitudinal study of learning to use children’s thinking in mathematics instruction. Journal for
Research in Mathematics Education, 27, 403—434.

Fennema, E., & Franke, L. M. (1992). Teachers’ knowledge and its impact. In D. A. Grouws (Ed.),
Handbook of research on mathematics teaching and learning (pp. 147-164). NCTM.

Felbrich, A., Kaiser, G., & Schmotz, C. (2014). The cultural dimension of beliefs: An investigation
of future primary teachers’ epistemological beliefs concerning the nature of mathematics in 15
countries. ZDM Mathematics Education, 44, 355-366.

Floden, R. E. (2001). Research on effects of teaching: A continuing model for research on teaching.
In V. Richardson (Ed.), Handbook of research on teaching (4th ed., pp. 3—16). American
Educational Research Association.

Freudenthal, H. (1991). Revisiting mathematics education. China lectures. Kluwer.

Gage, N. L., & Needels, M. (1989). Process-product research on teaching: A review of criticisms.
The Elementary School Journal, 89, 253-300.

Gitomer, D. H., & Zisk, R. C. (2015). Knowing what teachers know. Review of Research in
Education, 39, 1-53.

Goos, M. (2013). Knowledge for teaching secondary school mathematics: What counts? Interna-
tional Journal of Mathematical Education in Science and Technology, 44(7), 972-983.

Grigutsch, S., Raatz, U., & Torner, G. (1998). Einstellungen gegeniiber Mathematik bei Mathe-
matiklehrern. Journal fiir Mathematik-Didaktik, 19, 3-45.

Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher education.
Teachers College Press.

Grossman, P. L., & Richert, A. E. (1988). Unacknowledged knowledge growth: A re-examination
of the effects of teacher education. Teaching and Teacher Education, 4(1), 53-62.

Guerriero, S. (2017). Pedagogical knowledge and the changing nature of the teaching profession.
OECD Publishing.

Handal, B. (2003). Teachers’ mathematical beliefs: A review. The Mathematics Educator, 13,47-57.

Hannula, M., Leder, G. C., Morselli, F., Vollstedt, M., & Zhang, Q. (2019). Affect and mathematics
education. Fresh perspectives on motivation, engagement and identity. ICME-13 monographs.
Springer.

Hattie, J. (2009). Visible learning. A synthesis of over 800 meta-analyses relating to achievement.
Routledge.

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008a). Unpacking “pedagogical content knowledge”:
Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for
Research in Mathematics Education, 3(4), 372-400.

Hill, H. C., Blunk, M., Charalambous, C., Lewis, J., Phelps, G. C., Sleep, L., et al. (2008b). Math-
ematical knowledge for teaching and the mathematical quality of instruction: An exploratory
study. Cognition and Instruction, 26(4), 430-511.

Hill, H. C., & Chin, M. (2018). Connections between teachers’ knowledge of students, instruction,
and achievement outcomes. American Journal of Education, 55(5), 1076-1112.

Hill, H. C., Rowan, R., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for
teaching on student achievement. American Educational Research Journal, 41, 371-406.

Hill, H. C., Schilling, S. G., & Ball, D. L. (2004). Developing measures of teachers’ mathematics
knowledge for teaching. The Elementary School Journal, 105(1), 11-30.

Hopmann, S., & Riquarts, K. (Eds.). (1995). Didaktik und/oder Curriculum: Grundprobleme einer
international-vergleichenden Didaktik. Beltz.

Hofstede, G. (1983). Culture’s consequences: International differences in work-related values.
Administrative Science Quarterly, 28(4), 625-629.

Jentsch, A., Schlesinger, L., Heinrichs, H., Kaiser, G., Konig, J., & Blomeke, S. (2021). Erfassung
der fachspezifischen Qualitdt von Mathematikunterricht: Faktorenstruktur und Zusammenhinge
zur professionellen Kompetenz von Mathematiklehrpersonen. Journal fiir Mathematik-Didaktik,
42,97-121.



The Evolution of Research on Mathematics Teachers’ Competencies, ... 85

Kaiser, G., Blomeke, S., Busse, A., Dohrmann, M., & Koénig, J. (2014). Professional knowledge of
(prospective) mathematics teachers: Its structure and development. In P. Liljedahl, C. Nicol, S.
Oesterle, & D. Allan (Eds.), Proceedings of the PME 38 and PME-NA 36 (Vol. 1, pp. 35-50).
PME.

Kaiser, G., Blomeke, S., Konig, J., Busse, A., Dohrmann, M., & Hoth, J. (2017). Professional
competencies of (prospective) mathematics teachers—cognitive versus situated approaches.
Educational Studies in Mathematics, 94(2), 161-182.

Kaiser, G., Busse, A., Hoth, J., Konig, J., & Blomeke, S. (2015). About the complexities of video-
based assessments: Theoretical and methodological approaches to overcoming shortcomings of
research on teachers’ competence. International Journal of Science and Mathematics Education,
13(2), 369-387.

Kaiser, G., & Konig, J. (2019). Competence measurement in (mathematics) teacher education and
beyond: Implications for policy. Higher Education Policy, 32, 597-615.

Kersting, N. B. (2008). Using video clips of mathematics classroom instruction as item prompts
to measure teachers’ knowledge of teaching mathematics. Educational and Psychological
Measurement, 68(5), 845-861.

Kersting, N. B., Givvin, K. B., Sotelo, F. L., & Stigler, J. W. (2010). Teachers’ analyses of classroom
video predict student learning of mathematics: Further explorations of a novel measure of teacher
knowledge. Journal of Teacher Education, 61(1-2), 172—181.

Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up helping children learn mathematics.
National Academy Press.

Klein, F. (1908/2016). Elementary mathematics from a higher standpoint (Vol. 1). (German original
published 1908). Springer.

Knievel, 1., Lindmeier, A. M., & Heinze, A. (2015). Beyond knowledge: Measuring primary
teachers’ subject-specific competences in and for teaching mathematics with items based on
video vignettes. International Journal of Science and Mathematics Education, 13(2), 309-329.

Koehler, M. J., & Mishra, P. (2008). Introducing TPCK. AACTE Committee on Innovation and
Technology (Ed.), The handbook of technological pedagogical content knowledge (TPCK) for
educators (pp. 3-29). Lawrence Erlbaum Associates.

Koehler, M., & Mishra, P. (2009). What is technological pedagogical content knowledge (TPACK)?
Contemporary Issues in Technology and Teacher Education, 9(1), 60-70.

Konig, J., Blomeke, S., Jentsch, A., Schlesinger, L., Felske, C., Musekamp, F., & Kaiser, G. (2021).
The links between pedagogical competence, instructional quality, and mathematics achievement
in the lower secondary classroom. Educational Studies in Mathematics, 107(1), 189-212.

Konig, J., Blomeke, S., Klein, P., Suhl, U., Busse, A., & Kaiser, G. (2014). Is teachers’ general
pedagogical knowledge a premise for noticing and interpreting classroom situations? A video-
based assessment approach. Teaching and Teacher Education, 38, 76-88.

Konig, J., Blomeke, S., Paine, L., Schmidt, B., & Hsieh, F.-J. (2011). General pedagogical knowledge
of future middle school teachers. On the complex ecology of teacher education in the United
States, Germany, and Taiwan. Journal of Teacher Education, 62(2), 188-201.

Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., et al. (2008). Pedagog-
ical content knowledge and content knowledge of secondary mathematics teachers. Journal of
Educational Psychology, 100(3), 716-725.

Kunter, M. (2013). Motivation as an aspect of professional competence: Research findings on teacher
enthusiasm. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.),
Cognitive activation in the mathematics classroom and professional competence of teachers
(pp- 273-289). Springer.

Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2013).
Cognitive activation in the mathematics classroom and professional competence of teachers.
Springer.

Kuntze, S. (2011). Pedagogical content beliefs: Global, content domain-related and situation-
specific components. Educational Studies in Mathematics, 79(2), 273-292.



86 N. Buchholtz et al.

Leder, G. C. (2019). Mathematics-related beliefs and affect. In M. Hannula, G. Leder, F. Morselli,
M. Vollstedt, & Q. Zhang (Eds.), Affect and mathematics education. ICME-13 monographs.
Springer.

Leung, F. K. S., Graf, K.-D., & Lopez-Real, F. J. (2006). Mathematics education in different cultural
traditions: A comparative study of East Asia and the West. In FK.S. Leung, K.-D. Graf, & F.J.
Lopez-Real (Eds.), Mathematics education in different cultural traditions. A comparative study
of East Asia and the West. The 13th ICMI study (pp. 1-20). Springer.

Lindmeier, A. (2011). Modeling and measuring knowledge and competencies of teachers: A
threefold domain-specific structure model for mathematics. Waxmann.

Lindmeier, A., Seemann, S., Kuratli-Geeler, S., Wullschleger, A., Dunekacke, S., Leuchter, M.,
etal. (2020). Modelling early childhood teachers’ mathematics-specific professional competence
and its differential growth through professional development—An aspect of structural validity.
Research in Mathematics Education, 22(2), 168—187.

Lortie, D. C. (1975). School teacher: A sociological study. The University of Chicago Press.

Mabher, N., Muir, T. & Chick, H. (2022). Analysing senior secondary mathematics teaching using
the Knowledge Quartet. Educational Studies in Mathematics, 110, 233-249. https://doi.org/10.
1007/s10649-021-10125-1.

Manizade, A. G., & Martinovic, D. (2018). Creating profiles of geometry teachers’ pedagogical
content knowledge. In P. Herbst, U. H. Cheah, P. Richard, & K. Jones (Eds.), International
perspectives on the teaching and learning of geometry in secondary schools (pp. 127-144).
Springer.

Manizade, A. G., & Martinovic, D. (2016). Developing an interactive instrument for measuring
teachers’ professionally situated knowledge in geometry and measurement. In P. Moyer-
Packenham (Ed.), International perspectives on teaching and learning mathematics with virtual
manipulatives (pp. 323-342). Springer.

Manizade, A. G., & Mason, M. (2011). Using Delphi methodology to design assessments of
teachers’ pedagogical content knowledge. Educational Studies in Mathematics, 76(2), 183-207.

Manizade, A. G., & Orrill, C. H. (Eds.). (2020). International perspectives on frameworks for
mathematics teachers’ knowing and quality of mathematics instruction. [Special issue]. Research
in Mathematics Education, 22(2). https://doi.org/10.1080/14794802.2020.1798809

Martinovic, D., & Manizade, A. G. (2017). Using grounded theory to extend PCK framework at the
secondary level. Education Sciences, Special Issue: Critical Issues in Mathematics Education.,
7(60), 1-17. https://doi.org/10.3390/educsci7020060

Martinovic, D., & Manizade, A. G. (2020). Teachers using GeoGebra to visualize and verify conjec-
tures about trapezoids. Canadian Journal of Science, Mathematics and Technology Education,
20, 485-503.

Martinovic, D., & Manizade, A. G. (2018). The challenges in the assessment of knowledge for
teaching geometry. ZDM Mathematics Education, 50(4), 613-629.

Medley, D. M. (1987). Evolution of research on teaching. In M. J. Dunkin (Ed.), The international
encyclopedia of teaching and teacher education (pp. 105-113). Pergamon.

Meredith, A. (1995). Terry’s learning: Some limitations of Shulmans’ pedagogical content
knowledge. Cambridge Journal of Education, 25(2), 175-187.

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework
for teacher knowledge. Teachers College Record, 108(6), 1017-1054.

Muir, T., Callingham, R., & Beswick, K. (2016). Using the IWB in an early years mathematics
classroom: An application of the TPACK framework. Journal of Digital Learning in Teacher
Education, 32(2), 63-72.

National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school
mathematics. NCTM.

Neubrand, M. (2018). Conceptualizations of professional knowledge for teachers of mathematics.
ZDM Mathematics Education, 50, 601-612.

Neubrand, M., Jordan, A., Krauss, S., Blum, W., & Lowen, K. (2013). Task analysis in COACTIV:
Examining the potential for cognitive activation in German mathematics classrooms (Chap. 7).


https://doi.org/10.1007/s10649-021-10125-1
https://doi.org/10.1007/s10649-021-10125-1
https://doi.org/10.1080/14794802.2020.1798809
https://doi.org/10.3390/educsci7020060

The Evolution of Research on Mathematics Teachers’ Competencies, ... 87

In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss & M. Neubrand (Eds.), Cognitive
activation in the mathematics class-room and professional competence of teachers (pp. 125—
144). Springer.

Neubrand, M., Seago, N., Agudelo-Valderrama, C., DeBlois, L., Leikin, R., & Wood, T. (2009).
The balance of teacher knowledge: Mathematics and pedagogy. In R. Even, & D.L. Ball (Eds.),
The professional education and development of teachers of mathematics. New ICMI study series
(Vol. 11). Springer.

Ng, D.,Mosvold, R., & Fauskanger, J. (2012). Translating and adapting the mathematical knowledge
for teaching (MKT) measures: The cases of Indonesia and Norway. The Mathematics Enthusiast,
9(1/2), 149-178.

Niess, M. L., Ronau, R. N., Shafer, K. G., Driskell, S. O., Harper S. R., Johnston, C.,
Browning, C., Ozgiin—Koca, S. A., & Kersaint, G. (2009). Mathematics teacher TPACK stan-
dards and development model. Contemporary Issues in Technology and Teacher Education
[Online serial], 9(1). https://citejournal.org/volume-9/issue-1-09/mathematics/mathematics-tea
cher-tpack-standards-and-development-model.

Ornstein, A. C. (1995). The new paradigm in research on teaching. The Educational Forum, 59(2),
124-129.

Patahuddin, S. M., Lowrie, T., & Dalgarno, B. (2016). Analysing mathematics teachers’ TPACK
through observation of practice. Asia-Pacific Edu Res, 25, 863-872.

Petrou, M. (2009). Adapting the knowledge quartet in the Cypriot mathematics classroom. In
V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), CERME 6—working group
10: Mathematical curriculum and practice (pp. 2020-2029). Institut National De Recherche
Pédagogique.

Petrou, M., & Goulding, M. (2011). Conceptualising teachers’ mathematical knowledge in teaching.
In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 9-25). Springer.

Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester (Ed.), Second
handbook of research on mathematics teaching and learning: A project of the National Council
of Teachers of Mathematics (pp. 257-315). NCTM.

Pintrich, P. R. (2003). A motivational science perspective on the role of student motivation in
learning and teaching contexts. Journal of Educational Psychology, 95(4), 667-686.

Reusser, K., Pauli, C, & Elmer, A. (2011). Berufsbezogene Uberzeugungen von Lehrerinnen und
Lehrern. In E. Terhart, H. Bennewitz & M. Rothland (Eds.), Handbuch der Forschung zum
Lehrerberuf (pp. 478—495). Waxmann.

Rheinberg, F. (2006). Motivation. Kohlhammer.

Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In J. Sikula (Ed.),
Handbook of research on teacher education (pp. 102-119). Macmillan.

Rowland, T. (2008a). The purpose, design and use of examples in the teaching of elementary
mathematics. Educational Studies in Mathematics, 69(2), 149-163.

Rowland, T. (2008b). Researching teachers’ mathematics disciplinary knowledge. In P. Sullivan &
T. Wood (Eds.), Knowledge and beliefs in mathematics teaching and teaching development.
The international handbook of mathematics teacher education (Vol. 1, pp. 273-298). Sense
Publishers.

Rowland, T. (2014). Frameworks for conceptualizing mathematics teacher knowledge. In S. Lerman
(Ed.), Encyclopedia of mathematics education (pp. 235-238). Springer.

Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowl-
edge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education,
8(3), 255-281.

Rowland, T., Jared, L., & Thwaites, A. (2011). Secondary mathematics teachers’ content knowledge:
The case of Heidi. In M. Pytlak, T. Rowland & E. Swoboda (Eds.), Proceedings of the seventh
congress of the European Society for Research in Mathematics Education (pp. 2827-2837).
University of Rzeszow.

Rowland, T., & Ruthven, K. (Eds.) (2011). Mathematical knowledge in teaching (Mathematics
Education Library, Vol. 50). Springer.


https://citejournal.org/volume-9/issue-1-09/mathematics/mathematics-teacher-tpack-standards-and-development-model.
https://citejournal.org/volume-9/issue-1-09/mathematics/mathematics-teacher-tpack-standards-and-development-model.

88 N. Buchholtz et al.

Russ, R. S., Sherin, B., & Sherin, M. G. (2011). Images of expertise in mathematics teaching. In Y.
Li & G. Kaiser (Eds.), Expertise in mathematics instruction (pp. 41-60). Springer.

Rychen, S., & Salganik, L. H. (2003). A holistic model of competence. In S. Rychen & L. H.
Salganik (Eds.), Key competencies for a successful life and a well-functioning society (pp. 41—
62). Hogrefe & Huber.

Santagata, R., & Lee, J. (2021). Mathematical knowledge for teaching and the mathematical quality
of instruction: A study of novice elementary school teachers. Journal of Mathematics Teacher
Education, 24, 33-60. https://doi.org/10.1007/s10857-019-09447-y

Scheiner, T., Montes, M. A., Godino, J. D., Carrillo, J., & Pino-Fan, L. R. (2019). What makes
mathematics teacher knowledge specialized? Offering alternative views. International Journal
of Science and Mathematics Education, 17(1), 153-172.

Schlesinger, L., Jentsch, A., Kaiser, G., Konig, J., & Blomeke, S. (2018). Subject-specific charac-
teristics of instructional quality in mathematics education. ZDM Mathematics Education, 50(3),
475-490.

Schmidt, W. H., Blomeke, S., & Tatto, M. T. (2011). Teacher education matters. A study of the
mathematics teacher preparation from six countries. Teacher College Press.

Schmidt, W., Tatto, M. T., Bankov, K., Blomeke, S., Cedillo, T., Cogan, L., Han, S. 1., Houang,
R., Hsieh, F. S., Paine, L., Santillan, M., & Schwille, J. (2007). The preparation gap: Teacher
education for middle school mathematics in six countries (MT21 report). MSU Center for
Research in Mathematics and Science Education.

Schmotz, C., Felbrich, A., & Kaiser, A. (2010). Uberzeugungen angehender Mathematiklehrkrifte
fiir die Sekundarstufe I im internationalen Vergleich. In S. Blomeke, G. Kaiser, & R.
Lehmann (Eds.), TEDS-M 2008—Professionelle Kompetenz und Lerngelegenheiten angehender
Mathematiklehrkrifte fiir die Sekundarstufe I im internationalen Vergleich (pp. 279-306).
Waxmann.

Schoenfeld, A. H. (1998). Toward a theory of teaching-in-context. Issues in Education, 4, 1-94.

Schoenfeld, A. H. (2010). How we think. A theory of goal- oriented decision making and its
educational applications. Routledge.

Schoenfeld, A. H., Baldinger, E., Disston, J., Donovan, S., Dosalmas, A., Driskill, M., Fink, H.,
Foster, D., Haumersen, R., Lewis, C., Louie, N., Mertens, A., Murray, E., Narasimhan, L.,
Ortega, C., Reed, M., Ruiz, S., Sayavedra, A., Sola, T., ... Zarkh, A. (2019). Learning with
and from TRU: Teacher educators and the teaching for robust understanding framework. In
K. Beswick (Ed.), International handbook of mathematics teacher education, volume 4, the
mathematics teacher educator as a developing professional (pp. 271-304). Sense Publishers.

Schon, D. (1983). The reflective practitioner, how professionals think in action. Basic Books.

Seidel, T., & Shavelson, R. J. (2007). Teaching effectiveness research in the last decade: Role
of theory and research design in disentangling meta-analysis results. Review of Educational
Research, 77, 454—499.

Seidel, T., & Stiirmer, K. (2014). Modeling and measuring the structure of professional vision in
preservice teachers. American Educational Research Journal, 51(4), 739-771.

Shavelson, R. J. (2010). On the measurement of competency. Empirical Research in Vocational
Education and Training, 1, 43-65.

Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (2011). Mathematics teacher noticing. Seeing through
teachers’ eyes. Routledge.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational
Researcher, 15(2), 4-14.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard
Educational Review, 57(1), 1-22.

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines.
Journal of Business Research, 104, 333-339.

Speer, N., King, K., & Howell, H. (2015). Definitions of mathematical knowledge for teaching:
Using these constructs in research on secondary and college mathematics teachers. Journal of
Mathematics Teacher Education, 18(2), 105-122.


https://doi.org/10.1007/s10857-019-09447-y

The Evolution of Research on Mathematics Teachers’ Competencies, ... 89

Staub, F., & Stern, E. (2002). The nature of teachers’ pedagogical content beliefs matters for
students’ achievement gains: Quasi-experimental evidence from elementary mathematics.
Journal of Educational Psychology, 94, 344-355.

Swars, S. L., Smith, S. Z., Smith, M. E., & Hart, L. C. (2009). A longitudinal study of effects of a
developmental teacher preparation program on elementary prospective teachers’ mathematics
beliefs. Journal of Mathematics Teacher Education, 12(1), 47-66.

Tatto, M., Schwille, J., Senk, S., Bankov, K., Rodriguez, M., Reckase, M., Ingvarson, L., Rowley,
G., & Peck, R. (2012). Policy, practice, and readiness to teach primary and secondary math-
ematics in 17 countries: Findings from the IEA teacher education and development study in
mathematics (TEDS-M). IEA.

Teo, T., & Khine, M. S. (2009). Structural equation modelling in educational research: Concepts
and applications. Sense Publishers.

Thompson, A. G. (1992). Teachers’ beliefs and conceptions: A synthesis of the research. In D. A.
Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the
National Council of Teachers of Mathematics (pp. 127-146). Macmillan Publishing Co Inc.

Torner, G. (2002). Mathematical beliefs—A search for a common ground: Some theoretical consid-
erations on structuring beliefs, some research questions, and some phenomenological observa-
tions. In G. Leder, E. Pehkonen, & G. Torner (Eds.), Beliefs: A hidden variable in mathematics
education? (pp. 73-94). Kluwer.

van Es, E. A., & Sherin, M. G. (2008). Mathematics teachers’ “learning to notice” in the context of
a video club. Teaching and Teacher Education, 24(2), 244-276.

Weinert, F. E. (1999). Concepts of competence. Manx Planck Institute for Psychological Research
[Published as a contribution to the OECD project Definition and selection of competencies:
Theoretical and conceptual foundations (DeSeCo)]. DeSeCo.

Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. Rychen & L.
Salganik (Eds.), Defining and selecting key competencies (pp. 45-65). Hogrefe & Huber.

Weinert, F. E., Schrader, F.-W., & Helmke, A. (1989). Quality of instruction and achievement
outcomes. International Journal of Educational Research, 13, 895-914.

Wood, T., et al. (2008). The international handbook of mathematics teacher education (Vols. 1-4).
Sense Publishers.

Woolfolk Hoy, A. (2008). What motivates teachers? Important work on a complex question.
Learning and Instruction, 18(5), 492-498.

Yang, X., Kaiser, G., Konig, J., & Blomeke, S. (2018). Measuring Chinese teacher professional
competence: Adapting and validating a German framework in China. Journal of Curriculum
Studies, 50(5), 638—653.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/

The Research on Mathematics Teaching )
and Planning: Theoretical Perspectives i
and Implications of Teachers’ Pre-post
Classroom Activities

Agida G. Manizade (®, Alexander S. Moore ([, and Kim Beswick

1 Introduction

In this chapter, we focus on research in mathematics teaching such as mathematics
teacher planning, assessment, and other teacher-related activities when students are
not present (“pre- and post-active”; Type D). These are the types of activities that
mathematics teachers do to promote student learning while no students are present;
in other words, this chapter focuses on the invisible part of teaching mathematics.
These activities are important means by which the teacher exercises control over their
teaching and are also the main way that a teacher’s professional knowledge, compe-
tencies, skills, and beliefs (Type E; see Fig. 3 in Chap. 1, this volume) impact the
process of teaching mathematics. Type E is necessary but not sufficient for producing
quality student—teacher interactions in the mathematics classroom (e.g., Sullivan
et al., 2009). Enactment of the teaching practice interactively with students is a
direct result of teachers’ pre- and post-active (Type D) actions. Type D, therefore,
determines how well the teacher performs the main interactive function of teaching
mathematics (Type C) and how successfully the teacher accomplishes the purpose of
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teaching. Our perspective is premised on the belief that theory drives teaching prac-
tice, and, in this chapter, we demonstrate how that connection functions in relation
to teacher’s pre- and post-active actions (Type D).

The chapter includes a discussion of how teachers relate the problems they
encounter in the practice of teaching mathematics to their professional knowledge,
competencies, skills, and beliefs in deploying their available resources and their
own abilities. Teachers’ subjective decision-making is based on the Type E elements
that they possess, and the configuration of a teacher’s Type E elements “stabilizes
[the teacher’s] world” (Ziiek, 2012, p. 367, as cited in Brown, 2016, p. 86) through
their subjective, decision-making process. This decision-making process could be
based, for instance, on the most recent professional development presentation that
they attended and ideas that they bought into, or on a conference presentation that
their principal attended and practices subsequently imposed on the teachers. In either
case, and even without having attended a recent conference, teachers’ choices and
objectified beliefs are a product of the constraints within which they are working
(Ingram & Clay, 2000). Thus, their decision-making process produces observable
pre-post classroom actions that are the focus of this chapter. We also address the
ways in which cultural and digital contexts affect Type D. Additionally, we discuss
the theoretical and methodological challenges associated with conceptualization of
the Type D domain, instrumentation, and research design.

1.1 Statement of the Problem

Itis important to study Type D because teacher planning, which includes introducing
key ideas, selecting associated tasks, and creating assessments to measure student
understanding, has a great effect on the learning opportunities for students (Akyuz
et al., 2013; Sullivan et al., 2009). It provides for targeted understanding of the
lesson content, managing classroom transitions, and allows for a focus on classroom
processes (Clark & Yinger, 1987). This applies not only to daily lesson plans, but also
to unit plans that cover a range of related topics (Roche et al., 2014). McAlpine et al.
(2006) specifically called for more research on the ways in which teachers think
and the connection between teachers’ thinking and its influence on their teaching
actions. This connection is hypothesized to be particularly useful in studying the
relationship between teachers’ “theories-in-use” and teachers’ thinking (Kane et al.,
2002; McAlpine et al., 2006). Sullivan et al. (2009) called for more professional
development to improve teachers’ abilities to take a mathematical task and convert
it into a “meaningful learning experience” (p. 85), noting that Type E was necessary
but not sufficient for this conversion. Thus, regardless of a teacher’s perspective on
teaching mathematics as described by the theoretical framework that we present
in this chapter (see Fig. 1), research on improving Type D is important because it
contains the potential for improving the quality of mathematics instruction (Lewis
etal., 2013).
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Depending on the importance the teacher assigns to planning, the outcomes of
planning manifest in different ways through the observable and enacted lesson. Zazkis
et al. (2009) compared Japanese teachers’ planning—which was focused on the
process of student learning and discovery of concepts—and American teachers’
planning—which was focused on specific content outcomes. They found that the
ways in which teachers talked about the professional act of planning varied greatly
between the two groups and differences aligned with the observable outcome of the
written lesson plan and its enactment. If teachers think of planning as a high-level
professional task that is an important part of the act of teaching, then the produced
written plan and its enactment lead to different types of teaching than is the case for a
teacher who does not think of planning as having a central role in their practice (Zazkis
etal., 2009). Designing lesson plans that incorporate teachers’ goals and are focused
on “students’ anticipated learning” (Akyuz et al., 2013, p. 94) has been the focus
of key reform-based documents, including Adding It Up (Kilpatrick et al., 2001).
Further, Hiebert et al. (2003) emphasized the importance of developing teachers’
Type D: “[TJeachers need to design lessons with clear goals in mind, monitor their
implementation, collect feedback, and interpret the feedback in order to revise and
improve future practice” (p. 206).

Regardless of the knowledge, competencies, skills, and beliefs that teachers
develop in their teacher preparation programs, they often go back to the way they
were taught when faced with the challenges of the everyday classroom: “People
learn to teach, in part, by growing up in a culture—by serving as passive appren-
tices for 12 years or more when they themselves were students. When they face the
real challenges of the classroom, they often abandon new practices and revert to
the teaching methods their teachers used” (Hiebert et al., 2003, p. 201). It becomes
extremely important therefore to develop teachers’ abilities to plan quality mathe-
matics lessons with specific goals in mind, and to use student data to make decisions
about subsequent planning and instruction. As McAlpine et al. (2006) suggested, we
need to develop a “language” (p. 129) for talking about teachers’ Type D activity
to fully realize it as a domain of mathematics education research. To develop this
necessary “language” for Type D research, we propose the conceptual framework
in Fig. 1 for discussing literature related to Type D. We subscribe to Akyuz et al.’s
(2013) definition of Type D, that cyclically relates preparation (pre-active) to reflec-
tion, anticipation, assessment, and revision (post-active). In their model relating these
variables, reflection, anticipation, and assessment interrelate laterally with each other,
all of which then inform revision. Revision, then, cycles back to preparation as the
pre-active variable.

The chapter can be thought of as broken into three main themes. In the first theme,
we situate our current work: we discuss the connection between Type D and Type E
(knowledge, competencies, skills, and beliefs), followed by a discussion of the goals
of Type D broadly. The second theme constitutes the bulk of the chapter: we discuss
each of the epistemological perspectives in Fig. 1, including a definition, goals of
teaching, and examples from the literature. The third theme provides commentary
on the first two themes: we discuss pros and cons of each perspective, followed by
a commentary on the relationship of each perspective to cultural contexts, and we
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conclude with a brief discussion of the implications of each perspective on the task
of lesson planning. We close by noting implications for future directions of research
as a result of the intervention we offer in the present chapter.

2 The Connection of Type D to Knowledge, Competencies,
Skills, and Beliefs

Teachers’ knowledge, competencies, skills, and beliefs (Type E) are connected to the
way they plan their mathematics instruction and influences their decision-making,
evidenced in the ways they implement their lessons. In some cases, this connection
is conscious, and in other cases, it is unconscious. There are various factors that
can affect teachers’ lesson planning and instruction, including their beliefs about
the nature of mathematics, such as whether they hold an instrumental, Platonist,
or problem-solving view (Beswick, 2005; Ernest, 1989); learning theories; and the
pedagogical practices and approaches in which they have been trained. Most impor-
tantly, teachers can use combinations of these factors to produce and implement a
lesson, and to assess students.

Kilpatrick et al. (2001), for example, discussed the connection between Types
C, D, E, and F—what they call teaching for mathematical proficiency—with the
following components:

(1) conceptual understanding of the core knowledge required in the practice of
teaching;

(2) fluency in carrying out basic instructional routines;

(3) strategic competence in planning effective instruction and solving problems that
arise during instruction;

(4) adaptive reasoning in justifying and explaining one’s instructional practices and
in reflecting on those practices so as to improve them; and

(5) productive disposition towards mathematics, teaching, learning, and the
improvement of practice.
(Kilpatrick et al., 2001, p. 380)

We align components (1) and (2) with Type E; component (3) with Types D and
C; component (4) with Type D; and component (5) with Type F.

While theories may influence teachers consciously and unconsciously, typically
once they are with their students, they operate (and make pedagogical—and specif-
ically, planning—decisions and choices) in a way that strives for synchronicity and
harmony between their previous experiences of successes in teaching; their knowl-
edge, competencies, and skills; their unique mixes of students and content for each
of their course preparations; and the institutional constraints within which they are
working (cf. Ingram & Clay, 2000). While a theory of learning may influence these
decisions and choices, it wouldn’t necessarily have to “inform” them per se. For
example, if a teacher has attended a “project-based learning” workshop, they may be
motivated to try some of the techniques or lessons they were exposed to, but they are
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likely to do so as an adaptation of their existing lesson-planning practices. Regardless
of the reasons behind specific instances of decision-making that are evident in their
lesson planning, assessment, or instruction, we focus on the teachers’ objectified
beliefs—that is, observable behaviors—that ostensibly have been chosen because
they stabilize the teacher’s world. The focus of this chapter is not, then, on the “why”’
of the decision-making processes, but rather on “how” it manifests in the observable
research components of Type D.

In science education, researchers (e.g., Carlson et al., 2019) have reconceptualized
teachers’ knowledge to include Enacted Pedagogical Content Knowledge (ePCK)
and Personal Pedagogical Content Knowledge (pPCK), both of which include knowl-
edge associated with Type D, namely, planning and reflection. These researchers
defined ePCK as knowledge for planning and reflection that is situated within the
school, classroom, and individual students’ interactional contexts (cf. Ingram & Clay,
2000) with the teacher and the teacher’s subject matter knowledge and discipline-
related skills. Personal PCK includes the PCK influences that have occurred over
the teacher’s life, experiences, and interactions with other professionals (e.g., fellow
teachers, researchers, coursework, professional development, reading journal arti-
cles) that have accumulated to shape and inform their ePCK. In other words, pPCK
builds over time and experience to increase the sophistication with which they deploy
their knowledge in thinking about, planning, and reflecting on their lessons. Addi-
tionally, ePCK is a subset of pPCK, meaning that the enacted—yviz. observable—
knowledge of a teacher is contained within their set of personal PCK, indicating that
observable Type D can be conceived as objectification of personal knowledge and
epistemological commitments. Thus, utilizing epistemological frameworks facili-
tates insight when studying teachers’ Type D. When conceptualized in this way,
the teacher’s pPCK is a privately held knowledge that is unique to the teacher,
whereas ePCK is the mode of the teacher’s knowledge with which the students most
directly interact. The connection between ePCK and pPCK reveals that teachers’
epistemological commitments, knowledge about how students learn mathematics,
and corresponding knowledge about how best to teach mathematics interrelate both
at a micro-level (e.g., planning a particular lesson) and a macro-level (e.g., shaped
over their lives, experiences, and professional formation). It is pertinent, therefore, for
mathematics education researchers to consider how the objectifications of this knowl-
edge—as Type D observable behaviors in the form of decisions and choices—shape
their teaching. As we explore in this chapter, some epistemological commitments
have been explored apropos of Type D whilst others warrant further investigation by
researchers.

3 Goals of Pre- and Post-active Teacher Activities

The purpose of this chapter is to focus on the decisions and choices teachers make
while students are not present. Ultimately, these decisions and choices—regard-
less of any espoused epistemology or pedagogy—directly impact their lesson plans,
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which become the basis for what they subsequently enact in the classroom. Tricoglus
(2007) explored planning and collaboration amongst mathematics teachers, revealing
that teachers’ development of tasks and lesson plans involves cyclical thinking as
they become more knowledgeable about them. The study highlighted three types of
thinking that teachers engaged in when planning: deliberative thinking, which is the
considered thought that generates ideas and future plans; interpretive thinking, which
is the part in the process where decisions are made and problems are managed; and
metacognition, which is evaluative, reflective thinking. These three types of thinking
are the basis for teachers’ decisions and choices about the tasks and lesson plans they
create, and are informed by their perspectives on teaching and learning mathematics.
As teachers think about their beliefs and knowledge in this cyclical process, they
formulate goals for their teaching as well as actions they intend to take to reach them
(Aguirre & Speer, 2000; Akyuz et al., 2013; Schoenfeld, 1998).

In Fig. 1, we provide a framework emergent from the literature presenting eight
categories that researchers have used when describing lesson planning and mathe-
matics instruction. These eight categories are not strictly types of learning theories
but rather the perspectives that researchers have characterized teachers as appearing
to be enacting, through their decisions and choice-making, to represent observable
and objectified beliefs, knowledge, competencies, and skills (Type E). The aim of
Type D is to articulate “the learning goals for the lesson, and the hypotheses that link
planned instructional activities with expected learning outcomes” (Hiebert et al.,
2003, pp. 207-208). Importantly, the focus of the teaching can be either on the goal
of the lesson, or on the activities included in the lesson, regardless of the perspec-
tive the teacher adopts. When the focus is on the goal of the lesson, the teacher
is likely to consider common student challenges with respect to the mathematical
concepts taught, typical questions or difficulties students might experience based on
their developmental levels, as well as ways to address those challenges and difficul-
ties (West & Staub, 2003). However, if the focus is on the activity itself, then it is
less likely that teachers will think of students’ conceptual development of the mathe-
matics. Instead, the focus lands on the “how to”: lessons can become more prescribed
and rigid, which potentially allows for missed opportunities when teachable moments
arise (e.g., Akyuz et al., 2013).

Regardless of teachers’ theoretical frameworks or beliefs about teaching math-
ematics or the nature of mathematics, all teachers operate within institutional,
economic, cultural, familial, and logistical constraints (Ingram & Clay, 2000). Thus,
the goals adopted by teachers for their teaching can be diverse, encompassing
achieving high standardized test scores, developing interest in mathematics in their
students, preparing students for futures of entering the workforce or college, meeting
curricular demands of the administration, communicating ideas about mathematics,
enabling students to solve a given problem multiple ways or to see the connection
between different mathematical ideas, and describing patterns students might see
in the world using mathematics. These are different performance or learning goals,
and while not mutually exclusive, they cannot all be goals for a single lesson. The
teacher will consciously and unconsciously use goals to formulate the actions they
take when planning a lesson or assessing student work. For example, if a teacher’s
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goal is for the students to be able to talk to each other about the mathematics, then
the lesson planning decisions will be very different from what they would be if the
goal was for students to be able to replicate the process presented by the teacher in
instruction.

Despite the many challenges, the teacher must know how to create and carry
out their plan and, most importantly, how to be flexible with their plan in changing
classroom circumstances (Akyuz et al., 2013). A teacher will be faced with goals
from other sources such as department chairs, parents, principals, school boards,
state departments of education, co-workers, and so forth. Each of these sources has
an interest in what the teacher is doing in the classroom. The goals produced by these
parties and subsequently imposed on the teacher, whether directly or indirectly, exist
in addition to the teacher’s own goals. The best-case scenario is that the teacher’s
goals and the goals of these other sources are in harmony. However, if that is not
the case, and the teacher has the job of synthesizing disparate goals from various
sources, the result will be that the teacher’s goals—as objectified beliefs, observed
through their lesson planning process—become a product of stabilizing the reality
of their world and being.

4 Theoretical Perspectives for Teaching Mathematics
that Are Present in Type D

In this section, we discuss and define each of the perspectives in Fig. 1, the goals for
teaching associated with each, and provide some examples from the literature. The
literature surveyed was selected for the representativeness each article provided for
illustrating each of the epistemological perspectives in Fig. 1 apropos of Type D. An
EBSCOhost search of the electronic library system of a major research university in
the United States with keywords related to Type D was performed. We operated with
three inclusion criteria: (1) Western context (US, Europe, Australia, New Zealand,
etc.) for either the author or study setting; (2) articles written between 2000 and the
present; and (3) articles must be about mathematics education specifically. Literature
by a Western author performing a study in a non-Western context was also excluded.
We then manually accessed each article to screen to relevance. Articles in which
the primary focus was not on Type D were excluded. On reviewing the included
literature, we noticed the emergence of eight epistemological themes with respect to
the way the articles were situating and discussing Type D. We organized the literature
into these eight themes, as seen in Fig. 1.

In each of the examples discussed, some researchers explicitly cited a theoret-
ical perspective from Fig. 1, and in others, our characterization of a study as having
employed a particular epistemological perspective is based on our interpretation of
the researchers’ work. The examples given are in no way exhaustive but rather serve
to demonstrate each particular perspective in recent literature. While we acknowl-
edge that cultural context is of great importance in understanding Type D, we only
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considered research from the Western context in the survey of literature that follows.
A more complete discussion of the cultural context of the eight epistemological
perspectives is included later in the chapter.

4.1 Situated Learning Theory as Perspective

4.1.1 Definition

Situated learning theory (SLT), originally developed in the work of Lave and Wenger
(Lave & Wenger, 1991; Wenger, 1998), represented a departure from other learning
theories in existence in the 1990s by situating knowledge in the community rather than
in individuals. The tonality shift here from individuals to communities is important
to distinguish situated learning theory from other sociocultural theories of learning:
epistemology itself is exclusively located in the community, entirely “decentered”
(Lave & Wenger, 1991, p. 86) from the individual, and exists as a historical func-
tion of time including the future. This perspective differs from social constructivism
because situated learning theory does not posit any individual possession of knowl-
edge. Instead, knowledge is experienced and participated in rather than possessing
deterministic ontology, because at any point in time it is not possible to capture the
community’s learning as such. An individual person’s role in this epistemology exists
in their emergent formation of an identity as a member of that community.

A useful metaphor for conceptualizing SLT is apprenticeship (Lave & Wenger,
1991). The apprentice first must initiate a connection to one of the commu-
nity members, an act that expresses the aspiring apprentice’s desire to participate
in the community. The apprentice then trains under the tutelage of one of the
experts in the community. The community discourse proceeds through interactions
between oldtimers and newcomers (Lave & Wenger, 1991). Oldtimers are estab-
lished members of the community who have participated in the community and its
activities for a long time. Newcomers are novices and just beginning their appren-
ticeship journey into the community. Through this process, the apprentice—over
time—becomes an expert and an oldtimer in their own right, thus bringing in new
apprentices and repeating the cycle. If a student—a newcomer—desires to become
a member of a community, they must initiate an apprenticeship with an expert, and
spend the substantial amount of time required performing the labor and activities of
the community to become an expert theirself. If one were to ask either the oldtimer
or the newcomer when—exactly—they had learned to become a central member of
the community or an expert, their answer would involve their entire career, perhaps
with one or two critical moments when their status as an expert was validated by
other member(s) of the community. Traditionally, university mathematics depart-
ments function in this way, where students are immersed in the practices of the math-
ematics community under the apprenticeship of their professors (experts). However,
if a mathematics teacher does not think like a mathematician, they are unlikely to
train their newcomers to think as mathematicians. In this case, instead of raising up
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newcomers as experts (mathematics doers as people who are able to perform “doing
mathematics” tasks; see Stein et al., 2000, p. 16), they will raise people who can act
mathematically by producing a memorized sequence of procedures, a devolvement
that more closely resembles behaviorism.

4.1.2 Goals of Teaching

For the teacher taking the perspective of SLT, the goal of their teaching is to build and
operate a model of apprenticeship and legitimate peripheral participation (LPP)—the
novice participation of newcomers who are not yet central to the community nor close
to its experts—in the classroom. “[T]The important point concerning learning [in SLT]
is one of access to practice as resource for learning, rather than to instruction. Issues of
motivation, identity, and language deserve further discussion” (Lave & Wenger, 1991,
p- 80). The teacher acts as the expert—the oldtimer—who is responsible for enabling
the students—the newcomers—to engage in LPP into the community of mathematics.
Of course, the teacher cannot expect that all their students will become professional
mathematicians in the future, but that is not the purpose of the students’ LPP. Rather,
the students’ LPP in the community of mathematics represents their experience of
mathematics “learning”—that is, the experience of the peripheral participation is
homologous to the content being learned. In other words, the content of knowledge-
learning is conceived as the process of becoming a certain type of person in the
mathematics classroom. There is a critical bifurcation that must be at the forefront
of the teacher’s mind, and that will determine whether the students’ LPP is indeed
located within the landscape of the community of mathematics, or if it is located
within the (nominal) community of public-school actors, wherein the focus is more
closely aligned with following a perfect sequence of steps as with the behaviorist
approach. If the former has been achieved in the teacher’s mindset, then the teacher
is prepared to enact teaching from the SLT perspective. In practice, this may involve
modeling for students the correct mathematical language (Morgan et al., 2014; cf.
Pimm, 2014) and discourse patterns, how to solve problems and practice commu-
nicating their thinking (Sfard, 2008), and the rigor needed to perform mathematical
labor in the normative cadence and standards of the community (Herbel-Eisenmann
etal., 2015).

The SLT perspective is different from the behaviorist perspective in that the latter is
concerned with student outcomes on assessments. In the latter, knowledge outcomes
are outcomes in and for themselves, rather than being related to a process of becoming
a certain type of person who has a sense of belonging in the mathematics commu-
nity. In SLT, the product of LPP is that students develop a mathematical identity
that affords them membership in the mathematics community—even if at a very
surface level—because they have been trained to act and think like mathematicians,
so in situations where mathematics is at the fore, their mathematical identity acts
as a membership card for that situation. When using technology in the mathematics
classroom from the SLT approach, teachers use educational technology to propose
and provide opportunities to solve complex problems that students would not be able
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to solve without technology, instead of using technology as a black-box where mathe-
matical reasoning is not required in order for learners and teachers to produce a correct
answer (Gueudet & Pepin, this volume; Goos et al., 2000; Leung & Bolite-Frank,
2015; Straesser, 2002).

4.1.3 Examples from the Literature

Stard (2008) has contributed greatly to the development of SLT as a perspective
in mathematics education. One of the key notions developed by Sfard was that of
commognition, which is a neologism of “communication” and “cognition.” The
notion of commognition emphasizes that “cognitive processes and interpersonal
communication are ... different manifestations of basically the same phenomenon”
(Sfard, 2008, p. 83), thus showing that the psychological aspect of other perspectives
in Fig. 1 are homologous to the acts of LPP in the SLT perspective. Her theoret-
ical work has led other scholars such as Krummheuer (2011) to develop empirical
representations of what it looks like to see LPP occurring in a mathematics classroom
between teachers and students. Pertinent for this chapter is the way in which teachers
plan their interaction with students. The SLT teacher will have planned for things
like “eavesdropping” during active learning student activities, to qualify the students’
participation in the activity and help students maintain the desired direction of their
LPP, presumably towards the “doing mathematics” of the mathematical topic of the
planned lesson. The SLT teacher would anticipate during the planning process key
observable behaviors of the students, qualified through the characteristics of “doing
mathematics” for the mathematical topic of the lesson. This is similar to the “key
questions” that are typically taught to future teachers as a lesson planning tactic
(Atkin & Karplus, 1962). The work of Sfard, Krummbheuer, and others elucidate
the dangers of assuming that cognition and participation are separate phenomena:
psychological phenomena do not occur without the environment, culture, history,
and materiality of people in community with each other. Thus, in SLT, the “psy-
chology”—if it can indeed be called that—of mathematics teaching and learning is
precisely homologous to the participation of teachers and students in the LPP dyad
of oldtimers and newcomers.

Dawkins and Weber (2017) described the process of teaching students how to
prove in an undergraduate mathematics class. They seemed to herald the time-
honored mathematical practice of developing a proof argument as an encultura-
tion mechanism into the enlightened learning state that is ostensibly desired for all
students of mathematics. While Dawkins and Weber’s article deals with undergrad-
uate mathematics, their critique directly translates to K-12 mathematics by aligning
with the “doing mathematics” (Stein et al., 2000, p. 16) level of activity as described
in curriculum standards such as those from the National Council of Teachers of
Mathematics. In teacher preparation programs across the US (from which context
we are writing the present chapter), pre-service teachers are trained to design and
implement tasks that point towards an end-goal of being at the “doing mathemat-
ics” level. Indeed, the obsession with “doing mathematics” led Baldino and Cabral
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(2021) to question the qualifications applied by the teachers to the students who are
ostensibly attempting to “do mathematics” in the classroom. Is the students’ effort
(i.e., labor) good enough to be considered “doing mathematics?” This qualification
is for the teacher to decide, and in thus deciding, excludes knowledge from students
who are not laboring in the intended way, that is, in the way that a mathemati-
cian would be. This judgement differential crystallizes the hidden dimension of the
teacher’s exercise of power in the SLT learning environment: that it is not clear who
the “mathematicians” are, nor is it clear what their practice might be or not be.

4.2 Behaviorism as Perspective

4.2.1 Definition

Behaviorism as an approach for teaching mathematics originated in classical
psychology (e.g., Bloom, 1956; Gagne et al., 1993; Skinner, 1938; Thorndike, 1898,
1905). In mathematics classrooms, the goal of the behaviorist is to elicit a desired
response when a given stimulus is presented and to make undesired responses less
likely based on consequences (see Freudenthal, 1978). This relationship between
consequences and behaviors is called conditioning. Many behaviorists take the stance
that students are “born as blank slates,” and thus without mathematics, and that by
learning the desired behaviors, acquire mathematical knowledge. The learning of
mathematics is thus largely the result of the classroom environment being structured
with the behavior—consequence doublet at its fore. In the current educational envi-
ronment, behaviorism is still widely used if we look at the software and programs
being utilized by teachers and schools, where students are given games to play
that are focused on efficient achievement of low-level skills rather than engaging in
conceptual understanding of higher-order tasks (e.g., Reflex Math software). Another
example is when technology is used as a master (Geiger, 2005; Goos et al., 2000;
Martinovic & Manizade, 2014), meaning that the technology knows the mathematics
and the student believes or takes-for-granted any output produced by the software—
lacking knowledge, competencies, and skills to engage his or her mathematical
thinking to evaluate the outcome produced by the technology.

4.2.2 Goals of Teaching

The goal of the behaviorist approach is to create a perfect sequence of steps when
teaching a mathematical topic that can be taught to a student procedurally with an
expectation that the student will be able to repeat this sequence to produce the desired
outcome. The main goal is to master the procedure and produce a desired outcome
rather than examine the idea, construct new meaning, or make connections to other
ideas within mathematics.
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Psychology has historically described two types of behaviorism—classical condi-
tioning and operant conditioning (Ormrod, 2020). The operant paradigm is more
widely used in mathematics education settings, such as by pairing a reward with
a desired behavior such as correctly answering mathematics problems. The goal
of operant conditioning is to change current behavior towards the desired behavior
by incentivizing with rewards. In the case of mathematics education, the desired
behavior becomes the ability to correctly replicate procedures on tasks, and contrasts
with a student’s own mathematical thinking because the student is being rewarded for
replicating the steps as prescribed by the teacher rather for exercising creative agency
over their own mathematics. The result of this, in the classroom, is that mathematics
procedures are reproduced in students with high efficacy and efficiency; it is easy
for the teacher to see that her students are performing the mathematics in the desired
way and that the entire class is making progress. This is useful in training students to
be prepared for standardized tests. Thus, the goals of the behaviorist teacher are to
create a classroom environment that focuses on the desired behaviors as propagated
by the teacher, along with a culture of expecting rewards for those desired behaviors.
In this way, the behaviorist teacher’s goals are more focused on conditioning the
behavior (e.g., reproducing a procedure) rather than understanding the mathematical
concepts involved in the procedure.

4.2.3 Examples from the Literature

Kilpatrick et al. (2001) described vignettes of teachers’ planning and subsequent
lesson enactment that follow the behaviorist perspective. In one example, Mr.
Angelo (pseudonym) planned a lesson on multiplication by selecting only exam-
ples that would make it “likely that all students [would] be able to produce correct
answers” (p. 329), as long as they memorized the presented rule. Despite these
researchers’ elucidation of this early in the twenty-first century, more recent research
has continued to detect the same behaviorist phenomena in mathematics classrooms.

Amador and Lamberg (2013) found that veteran teachers were guided by a behav-
iorist orientation towards their lesson planning, whereas novice teachers were not—
the latter tended towards cognitive learning theory instead, which will be discussed
in the next section. For the veteran teachers, lesson planning was guided by what
Amador and Lamberg characterized as a festing trajectory, borrowing the term and
structural diagram from Simon’s (1995) work on Hypothetical Learning Trajectories
(HLTs). In the testing trajectory, lesson plans were reverse engineered to produce a
desired behavior in the students: that they could read, understand, and answer test
questions correctly. In this type of lesson planning, the veteran teachers objectified
four types of professional knowledge: (1) their knowledge about the test content and
structure; (2) their beliefs about how to best prepare for a test; (3) their knowledge
about how students achieve apropos of specific mathematics content, i.e., anticipating
student misconceptions; and (4) their knowledge about how classroom activities and
representations directly support test preparation and align with test questions, i.e.,
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as opposed to concept development. Interestingly, one of the veteran teachers in the
study also described her beliefs about the nature of mathematics as being inherently
procedural.

Also straddling the line between the behaviorist and cognitive learning theory
perspectives, Chizhik and Chizhik (2016) issued a call to the field to reject behav-
iorism in favor of cognitive learning theory—the latter will be discussed in the next
section. Chizhik and Chizhik embraced the cognitivism of Vygotsky (1986) and the
cognitive learning theorists as a retort to the behaviorist legacy that has overshad-
owed teacher preparation curricula on lesson planning since Tyler’s (1949) foun-
dational text on curriculum and instruction. At the time of publication of Tyler’s
work, the education field was primarily influenced by behavioral psychology, a focus
that has since shifted—at least in other areas of educational research—to cognitive
psychology. Chizhik and Chizhik (2016) argued that research on lesson planning has
not similarly updated to the cognitive perspective, remaining “stuck’ in the behavioral
psychology of 70 years ago.

Technology-influenced Return to Behaviorism. The advent of technology in math-
ematics classrooms presents the danger of a return to the behaviorist approach for
teaching mathematics, by focusing on rote memorization and practice of skills that are
not based on student cognition of the mathematics presented through the technology.
When used in this way, some technology functions as a novel way to keep students
occupied with activity during class and makes it easy for teachers to monitor student
completion of work—i.e., students successfully performing a desired behavior such
as answering questions correctly—rather than students’ development of the math-
ematical concepts. The operant reward is the two-fold novelty of the use of tech-
nology in and for itself, as well as the novelty of “winning” games or completing the
puzzle correctly. In this way, the mathematics is secondary to the game’s or puzzle’s
architecture, and thus the reward is not mathematical in nature.

During the COVID pandemic, school systems across the world were forced to tran-
sition to a virtual learning environment to protect the health and safety of students.
They utilized various educational platforms and software (e.g., Mathletics, Reflex
Math, and Sumdog). These Online Mathematics Instructional Program (OMPI) plat-
forms use the behaviorist approach for teaching mathematics to motivate students
(Darragh, 2021; Jablonka, 2017). As aresult, opportunities for collaboration, problem
solving, and using contextual mathematics were no longer present but were replaced
by the development of superficial mathematical skills (Darragh, 2021).

We do not suggest that all technology is inherently slanted towards the behaviorist
approach for teaching mathematics, but we do suggest that technology can be and
often is used in that way (Parkhurst et al., 2010). In the institutionalized context
of schooling, adopting any educational technology or platform is tied to teachers’
goals for teaching mathematics and their goals for students’ learning. Widely used
dynamic platforms and software such as GeoGebra or Desmos can be pedagogically
utilized in a way that is explicitly counter to the return to behaviorism (Edwards
and Jones, 2006; Hohenwarter et al., 2008; Verhoef et al., 2015). The ways teachers
use technologies present evidence of the perspective for teaching mathematics they
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enact, as described in the framework we present in this chapter. More research is
warranted to explore gaps between the potential of technology and the actual uses
of technology in schools, a need that is compounded by the fast-paced evolution of
technologies that are available and adopted by schools (Moore, 2020).

4.3 Cognitive Learning Theory as Perspective

4.3.1 Definition

Psychology is also the origin of cognitive learning theory (CLT) as a perspective
informing what happens in mathematics classrooms, although innovations such as
those of Piaget (1970a, 1970b) changed the perspective from a focus on behaviors to
a focus on cognitive development. This perspective includes radical constructivism,
which conceptualizes knowledge as the product of cognitive processes that construct
or form individualized understandings of concepts. Cognitive learning theory strictly
focuses on matching learning opportunities in mathematics with learners’ natural
cognitive abilities and processes. The major departure of cognitive learning theory
from behaviorism was encapsulated in the development of the notion of mental
representations and associations. Mental representations and associations describe
the ways in which students “build up their picture of the world piece by piece”
(von Glasersfeld & Steffe, 1991, p. 92); thus, knowledge is not conceived of as a
“commodity that can be transferred from a teacher to a learner” (p. 93). Mental
representations and associations are not necessarily in exact correspondence with
observable behaviors; that is, observable behavior does not necessarily capture the
entirety of what a student knows. The student has mental representations and associ-
ations, what Piaget (1970a, 1970b) called structures, that may or may not be reflected
in their behavior. Behaviors are separate from these structures. Thus, a pedagogical
approach that merely focuses on behaviors falls short of accurately designing for and
assessing the goals and products of teaching.

4.3.2 Goals of Teaching

Cognitive learning theory focuses on students’ development in thinking and provides
learning opportunities that match the progression of this development. Unlike the
behaviorist perspective where the focus is on the outcome of learning, cognitive
learning theory focuses on enhancing the process of conceptual development through
learning experiences. The goal of the teacher is to take an active role in helping
students to make connections among their ideas, thus progressing from a simple
conception of a topic towards a more complex one.

Freudenthal (1973, 1991) and Gravemeijer (2004) described the process of guided
reinvention, wherein the teacher pre-actively conducts “a thought experiment to envi-
sion a learning route the class might invent itself” (Stephan et al., 2014, p. 39) to
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mimic the evolution of mathematical concepts over decades or centuries. As a result,
the teacher intentionally creates opportunities for students to explore and develop
their own meanings of mathematics and mathematical concepts over the course of
planned lesson units. The planned lesson units, which are teachers’ Type D, act as
the guide for students’ reinvention of concepts and personal construction of meaning
about those concepts: “[T]he learning route is designed so that the concepts emerge
as students engage in the instructional sequence. It is in this sense that we say that
students ‘reinvent’ mathematics” (Stephan et al., 2014, p. 39). In addition, the CLT
teacher can only plan for what students might do, not what they will do—and for
that matter, what students’ constructed mathematical concepts and meanings might
be as a result of their teaching.

Guided reinvention is pedagogically operationalized through work of radical
constructivists Simon and colleagues (e.g., 1995,2018). They developed the Learning
Through Activity (LTA; Simon et al., 2018) framework based on the assumption that
teachers can promote abstraction with engineered sequences of tasks. The framework
extends from the teacher’s pre-active engineering and sequencing of tasks all the way
through students’ abstraction of concepts. The engineering and sequencing portion
of the framework is Type D; the task actively presented to students is Type C; the
reflective abstraction is Type B; and the concept as the product of students’ abstrac-
tion is Type A. Thus, the CLT teacher’s Type D consists chiefly of task engineering
and sequencing for the intended conceptual development trajectory: “If a concept is
a result of reflective abstraction, that is an abstraction derived from activity, then it
should be possible to engineer a sequence of tasks that elicits appropriate activity
that promotes abstraction from that activity” (Simon et al., 2018, p. 103).

4.3.3 Examples from the Literature

Stephan et al. (2014) presented a cogent description of guided reinvention planning
and teaching through a case study of 7th grade teachers who designed an instructional
sequence of tasks intended to guide students in reinventing the rules of positive and
negative integers, and integer operations. The task sequence started with a realistic
context of financial transactions (e.g., net worth, assets, and debts) symbolized by
integers and signs. The sequence progressed towards a purely abstract symbolization
of signed integers and their operations, so that students through this process would
explore and reinvent the meaning of these concepts for themselves.

Amador and Lamberg (2013) studied the ways in which teachers designed learning
trajectories and planned corresponding lessons within the institutional constraints of
the school, such as testing. They conceptualized the study using CLT in order to
investigate how teachers addressed the high-stakes nature of standardized testing
apropos of the daily work of teaching, and how the task of preparing students for
such tests might be different for different teachers. In order to do this, they theorized
an analog to the HLT called a festing trajectory where preparation for the testing
environment was the driver for decision-making in the planning and teaching process.
Four teachers were interviewed—three veteran teachers and one novice, first-year
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teacher. The three veteran teachers’ planning was guided by the testing trajectory
whereas the novice teacher’s planning was guided by conceptual development in the
form of an HLT. That is, the veteran teachers worked backwards from the known
parameters and format of the testing environment in order to theorize a hypothetical
trajectory for preparing students to answer test questions whereas the novice teacher
worked backwards from the mathematics conceptual goal in order to theorize a
hypothetical learning trajectory for students’ development of that concept. The direct
link to this conceptual outcome was not implicated in the testing environment for the
novice teacher. We identify the novice teacher as having taken the CLT perspective
whereas the veteran teachers were effectively acting as behaviorists.

Chizhik and Chizhik (2016) issued a call to embrace CLT in lesson planning
in tandem with a rejection of behaviorism. They note that, historically in teacher
education, the texts being used in teacher preparation programs (TPPs) trace their
origins to the behavioral psychology of Tyler (1949). Despite the field of education
having since moved away (since the 1970s and 1980s; e.g., Vygotsky, 1986) from
behaviorism in its predominant theoretical stance, TPP curricula on lesson planning
have not consistently made the same update. This could potentially lead to the divide
in teacher planning practices observed by Amador and Lamberg (2013). Chizhik and
Chizhik (2016) argued for a reformulation of the lesson planning TPP curriculum
to involve the following major components: (1) reconceptualize learning objectives
by theorizing a CLT-based version of Bloom’s Taxonomy; and (2) reconceptualize
instruction to maximize student engagement, sharing of ideas and thinking, and (3)
meaningful teacher feedback, with these three components being the major drivers
towards students’ success on tests.

Fernandez and Cannon (2005) conducted a case study comparison of Japanese
and US teachers’ lesson planning habits. They found that the two groups of teachers
conceptualized the task of lesson planning in very different ways. The Japanese
teachers’ views of the task of lesson planning centered on conceptualizing students
as active participants in the learning process and prioritized students’ development of
positive attitudes towards learning mathematics. The US teachers’ views of the task
of lesson planning, conversely, centered on conceptualizing themselves as effec-
tive teachers of the content. While the US teachers were concerned with student
engagement, they grouped it under the characteristics of being an effective teacher.
Thus, the difference in the two cultural paradigms of the teachers in the study meant
that the purpose of their lesson planning manifested in very different ways. The US
teachers planned with their own performance in mind, whereas the Japanese teachers
planned with their student’s cognition and affect in mind. In both cases, CLT could
be implicated, but it is certainly more evident in the Japanese teachers’ privileging of
the students’ position in the CLT paradigm. In both cases, CLT could be implicated
because of the focus on trajectorial development of the mathematical content through
the planned lesson.

Lewis et al. (2009) contributed a theoretical model that combined elements of
CLT and SLT for the purpose of application to Lesson Study (LS), a pedagogical
approach to analysis of, reflection on, and refinement of lesson plans typically done
in groups of teachers. In their model, they synthesized elements of both theories



108 A. G. Manizade et al.

in various stages of LS, with the aim of theorizing how lesson improvement mate-
rializes from the LS process. The model connects CLT with these aspects of LS:
(1) building understanding of the content area as well as students’ and colleagues’
thinking about it; (2) studying the standards, curriculum, and existing lesson plans
to decide on building blocks for the conceptual development of the target lesson; (3)
writing down lesson plan ideas that elucidate goals for student thinking—and student
learning differences—to make them visible to colleagues; (4) observe a colleague
teach a version of the lesson, paying attention to links between students’ thinking
and lesson design apropos of learning goals; and (5) noting instructional practices
that should be improved to support the learning goals of the lesson. Other aspects
of the model focused more on SLT, such as collaboration amongst colleagues and
sharing ownership of the LS process. By theorizing the LS process through the CLT
perspective, Lewis and colleagues offered a more cogent description of the work of
Simon et al. (2018) with specific regard to the task of lesson study and planning.

Finally, Sullivan et al. (2013, 2015) have used CLT to research lesson planning.
In their work, they connect Type D to Type C, with the distinction being that in Type
D, the focus is on helping teachers identify important mathematical ideas that are
fundamental for teaching a topic, whereas in Type C, they suggest that by improving
teachers’ knowledge of mathematics through collaborative planning, their ability
to plan for a given mathematical objective will improve. In their 2013 paper, they
described the ways in which teachers use the Australian national curriculum docu-
ments during planning. They found that many teachers assume agency over planning
decisions when reading and interpreting curriculum documents and execute those
decisions with resolve. Thus, they claimed that authors of curriculum document
should construct such documents with explicit focus on inspiring teachers’ decision
agency in enacting the national curriculum standards. In short, Sullivan et al. (2013)
argued that external actors in the school context (such as administrators, curriculum
developers, etc.) should focus on unlocking teachers’ planning agency potential rather
than attempting to structure or restrict it, and that collaborative planning should be
ritualized in schools. In this process, the teachers in the 2013 study took up agential
decision-making about their planning through a process of reading the curriculum
documents. Sullivan et al. (2015) closely tied this work to the CLT perspective,
by focusing on the teachers’ engagement with lesson planning practices that match
students’ cognitive process (assumedly along an HLT or similar trajectory) with the
difficulty of struggle in the lesson’s sequencing. In this way, teachers use CLT to
reduce negative student experiences with the HLT and improve the lesson without
reducing the cognitive demand—a crucial component of a successful application of
CLT—of the lesson’s tasks.

Sullivan et al. (2015) necessarily leads us to a discussion of the productive
struggle and productive failure literature. This contrasts with the didactic perspec-
tive on teaching mathematics wherein the teacher “must produce a recontextual-
ization and a repersonalization of the knowledge. It must become the student’s
knowledge” (Brousseau, 2002, p. 23, emphasis in original). The term productive
struggle is defined as a necessary student learning behavior for building conceptual
understanding and for promoting students’ sense making (Heibert & Grouws, 2007).
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Other researchers describe the goal of a CLT teacher as to teach for the robust under-
standing of mathematics by supporting students in productive struggle while building
understandings through actively engaging in mathematical practices (Schoenfeld,
2014; Schoenfeld & TRU Project, 2016). The TRU project team describes five dimen-
sions of powerful classrooms: (1) mathematics; (2) cognitive demand; (3) equitable
access to content; (4) agency, ownership, and identity; and (5) formative assessment
(Schoenfeld & TRU Project, 2016). They stress the importance of focusing on these
dimensions during the lesson planning and reflection process (Type D). In addition,
researchers encourage teachers to plan for students’ productive failures as a neces-
sary inseparable and cyclical portion of mathematics problem solving and learning
(Kapur, 2010, 2014; Simpson & Maltese, 2017). Warshauer et al. (2021) highlight
the importance of preservice mathematics teachers learning to identify strategies
and practices that can be used for planning and supporting productive struggle in the
classroom.

4.4 Social Constructivism as Perspective

4.4.1 Definition

In social constructivism (SC), which is based on the work of Vygotsky (1960), the
classroom community constructs knowledge and understanding as a cultural product
of students’ learning experience. In the SC mathematics classroom, the shared nature
of the knowledge is distinct from the cognitive learning theory perspective, because
the personally held mathematical knowledge of an individual student is a reflection
of the community’s construction of that knowledge rather than a personal product
of construction of mental representations. The social constructivism perspective was
further developed in varying ways by teams of scholars, including but not limited to
the work of Bishop (acculturation; 1988), Resnick (socializing; 1988), and Cobb and
Yackel (emergent perspective; 1996). Acculturation is induction of students into a
foreign or alien culture (e.g., the mathematics classroom). In the culture of the math-
ematics classroom, this process includes interacting with others to perform the activ-
ities of counting, locating, measuring, designing, playing, and explaining (Bishop,
1988) to develop mathematical knowledge. Socializing refers to social constructivism
over time, where “personal habits and traits are shaped through participation in social
interactions with particular demand and reward characteristics,” with the goal of the
student “gradually tak[ing] on the characteristics of [the teacher]” (Resnick, 1988,
p. 12). In the emergent perspective (Cobb & Yackel, 1996), cognitive and social
perspectives work in parallel, with the teacher simultaneously interpreting students’
cognition (e.g., beliefs about self and others, the nature of mathematics, concep-
tions of mathematical ideas) and students’ social interactions (e.g., classroom norms,
mathematical norms, and mathematical practices).
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4.4.2 Goals of Teaching

The goal of the SC teacher is to involve students in a community discourse about
mathematics through teaching that is focused on classroom discussion. The discourse
promoted by the teacher is guided by the relevant mathematical tasks and investiga-
tions, with the teacher being the instrument of enculturation into the mathematizing
culture; the students meanwhile are the ones being acculturated (Bishop, 1988). By
encouraging students to form new understandings of mathematics using their inter-
pretations of prior mathematical knowledge, the teacher aims to empower students
to contribute to the reconstruction—instead of reproduction—of new mathematical
knowledge. In other words, SC teacher’s goal is to provide students with opportuni-
ties to develop subjective knowledge that must be constructed and validated through
and within sociocultural interactions so that the subjective knowledge may become
objective knowledge of the group.

4.4.3 Examples from the Literature

Purdum-Cassidy et al. (2015) used social constructivism in their study of the way
in which teachers plan for questioning (e.g., key questions on a lesson plan) in
elementary mathematics classes. In their Vygotskian framing, they noted how “con-
ceptual knowledge first occurs between learners ... and then moves within the
learner” (p. 81). Social constructivism thus positions the teacher’s key point of
access—apropos their potential for impacting student learning outcomes—as that
of influencing what happens between students in the classroom. The intrapsycholog-
ical impacts that occur consequently are left to each student’s own psyches for the
purposes of meaning-making. The teacher should thus be primarily concerned with
impacting the social construction of knowledge. In their study, Purdum-Cassidy and
colleagues focused on the role of questioning (their own plans for key questions)
and the role of interpreting and answering students’ questions during the lesson—
overall what is generally called discourse in the mathematics education literature.
In particular, they note how pre-service elementary teachers struggle to plan for and
write key questions when planning a lesson. As an intervention, these researchers
investigated the possibilities of children’s books that have mathematical topics in
helping teachers plan for mathematical questioning in their lessons. Since children’s
literature is discursively organized (viz. into the format of a story), the same struc-
ture can be ported over into the structuring of questions gua discourse. Such discur-
sively structured questioning prompts the classroom community to socially construct
knowledge—vis-a-vis questioning and discourse—that is then internally reified for
each student.

Sullivan et al. (2015) investigated the connection between professional develop-
ment and teachers’ abilities to plan for scaffolding challenging mathematics tasks. In
their study, they investigated how teachers exposed to challenging tasks that require
student collaboration (such as inquiry tasks). Such tasks were initially uncomfortable
for teachers to use, but once they had been supported by professional development,
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teachers felt confident in planning for such tasks and were more likely to seek out
more inquiry tasks. This finding indicates that teachers are often hesitant to engage
in the SC perspective when planning for and enacting mathematics lessons, but that
this hesitation can be alleviated through the use of directed training on the approach.

4.5 Structuralism as Perspective

4.5.1 Definition

The structuralist approach originates from both mathematics and psychology. Dienes
(1960) emphasized the importance of children learning through the use of manipula-
tives (e.g., Gningue, 2016); however, classic examples of the structuralist approach
can be found in every branch of mathematics. For instance, the Poincaré and Beltrami-
Klein models for describing hyperbolic geometry are used to help learners develop
fundamental understanding of hyperbolic space that is challenging to visualize other-
wise. The focus of the structuralist perspective is on the structures and theories
that underlie the mathematics presented. This perspective is often conflated with
the constructivist approaches for teaching mathematics. It overlaps with radical
constructivism in that there is a focus on theories of cognitive development and
students’ concept formation of a specific mathematical idea. However, the struc-
turalist approach differs in that the focus is on discovering the structures that are
introduced to students by the teacher, who is using those structures as a framework
around which mathematical understanding can be developed, rather than constructing
them. An example in K-12 teaching is the use of AlgeBlocks to visually demonstrate
multiplication of polynomials, a mathematical process that would otherwise be only
abstract and symbolic (de Walle et al., 2017). The difference, thus, is that the struc-
turalist perspective is focused on discovering the existing mathematical structure of
polynomial multiplication, a structure that is already there. Conversely, the construc-
tivist perspective does not conceive of an existing structure that the student must reach
through their mathematical activity, but rather, is exploring to construct their own
concepts from scratch. The structuralist, therefore, can talk about misconceptions and
misunderstandings when a student’s understanding is incongruent with the relevant
structure, whereas constructivists do not use that term since the student’s concept is
its own referent.

4.5.2 Goals of Teaching

The goal of the structuralist teacher is to guide students in discovering a mathematical
structure, through the use of exemplary and sequenced tasks, each of which draws
particular attention to some limit-case aspect of the structure. As already mentioned,
one of the characteristics of the structuralist approach is an emphasis on the use of
manipulatives. The manipulatives allow the student to experience an embodiment of
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the mathematical structure during their discovery process. Additionally, there is a
spiral design in the curriculum that allows for revisiting key mathematical structures
in a cycle, delving into them more deeply each time.

A relevant metaphor here is the way in which a house is built: the cornerstones of
the foundation must be located first, followed by the joists in the floors and beams in
the walls, and it is not until this skeleton is truly discovered from behind the plaster
walls (the general case examples), that the house’s structure could be said to be truly
discovered. Thus, the structuralist teacher must first check their own understanding
of the structure against the mathematical community and literature, and then locate
exemplary cases of problems that will illuminate the cornerstones, beams, and joists
of the structure. These must be carefully sequenced so that the student will follow the
same path in discovering the hierarchy of the structure; for example, it would make no
sense to study the roof trusses without first having discovered where the studs in the
walls are. This identification and sequencing of exemplary tasks then leads students
to develop a more general understanding of the structure as the teacher generalizes
these exemplary cases. In practice, this typically follows the arc of beginning with
manipulatives, then moving to a pictorial representation of the manipulatives (i.e.,
drawings), then associating the drawings with abstract symbols or ideas, and finally
removing the manipulatives altogether so that the abstract symbols represent the
structure itself in the student’s mind.

In the structuralist approach, models and manipulatives are used to help students
discover mathematical structures, but none of the models are robust enough to be
applicable in every case or to demonstrate every attribute of the mathematical struc-
ture’s complexity. The teacher, therefore, uses manipulatives to help students discover
a particular aspect or develop understanding of a particular example. These particu-
lars can then be used to develop understanding of the mathematical structure more
generally.

Mathematics education literature on multiple representations exemplify the prac-
tical use of the structuralist approach in mathematics classrooms. Researchers discuss
the importance of using multiple representations and developing fluency in flexibly
moving between them, such as visual, pictorial, graphical, numeric, and algebraic
(e.g., Ainsworth, 2006; Deliyanni et al., 2016; Goldin, 2002; Goldin & Shteingold,
2001; Mitchell et al., 2014; Stylianou, 2010). Manipulatives can be used as a tool
for making and presenting representations and can either be virtual (on computers)
or physical. Planning for these types of lessons thus includes envisioning tasks with
different representation in sequence from concrete to abstract, and tasks that promote
the students’ movement between the multiple representations’ uses. [llustrations of
classroom implications of the structuralist approach to Type D can be found in math-
ematics educators’ works designed for training pre-service teachers (e.g., Beckmann,
2022; Kilpatrick et al., 2001; Van de Walle, 2017).



The Research on Mathematics Teaching and Planning: Theoretical ... 113
4.5.3 Examples from the Literature

Pierce and Stacey (2009) discussed the use of graphing calculators in a structuralist
classroom. In their study, they emphasized the importance of four aspects of lesson
planning for the use of technology within the structuralist approach: (1) focusing
on the main goal of the lesson and thoughtfully selecting multiple representations
that directly support the goal; (2) identify, for each representation, a specific purpose
aligned with student engagement; (3) “establish naming protocols for variables”
(p- 231) so that students can translate variables across technologies and represen-
tations easily; and (4) reducing any excessive cognitive demand so that technology
does not distract or detract from the lesson goal and students’ engagement with the
intended mathematics. These researchers argued that technology allows the teacher
to support the goals of the lesson as identified by the teacher during lesson planning.
Depending on the goals for the lesson, the structuralist teacher might need to restrict
the strategies that emerge during the discussion or restrict the representations being
used, or plan for the reduction of distractions due to the technology (Pierce & Stacey,
2009).

In their study of the low-performing middle school mathematics classrooms,
Panasuk and Todd (2005) present a conceptual framework within a structuralist
approach for teaching mathematics that guided the development of the instrument
titled Lesson Plan Evaluation Rubric (LPER) for the assessment of mathematics
teachers’ lesson planning process. The researchers also described a four stages of
lesson planning (FSLP) strategy comprising: (1) planning of objectives, formulated
in terms of students’ observable behavior; (2) design of homework, that matches
the lesson’s objectives; (3) inclusion of developmental activities that reflect the
lesson’s objectives and advance students’ development and learning; and (4) plan-
ning mental mathematics that include activities to stimulate students’ prior knowl-
edge, and prepare students for the acquisition of new concepts. The FSLP strategy
focuses on the development of lessons involving multiple representations such as
visual representations (diagrams, pictures, graphs, tables), verbal representations
(words), and symbolic representations (variables, expressions, operations, equations)
to address students’ misconceptions and assess students’ progress toward meeting
learning objectives. Moreover, the strategy produced lessons that were comprehen-
sive and coherent by emphasizing alignment between homework, classroom activ-
ities, and mental mathematics. The researchers claimed that to incorporate FSLP
effectively, lesson plans must be flexible yet logical in their design to accommodate
the distinctive needs of each student. Furthermore, this strategy encourages teachers
to continuously adjust and adapt to achieve the desired learning outcomes. In addi-
tion, this strategy is compatible with Gueudet and Pepin’s (this volume) concept
of coherence-in-use, which they define as the degree to which there is coherence
within teachers’ (enacted) propositions to their students, after teachers have consulted
various curricular materials.

Harbour et al. (2016) described a process of structuralist lesson planning, that
included beginning with a diagnostic interview to determine a student’s existing
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understanding of a concept, and then comparing that understanding with a standards-
informed intended goal for the student’s understanding as a result of the lesson. The
teacher then, based on this gap, takes four considerations into their lesson planning:
(1) plan the lesson to utilize instructional strategies that explicitly focus on students’
conceptual understanding of the topic; (2) plan explicit scaffolding and feedback
opportunities into the lesson; (3) plan for student think-alouds and teacher think-
alouds; and (4) plan for the use of concrete materials, visual representations, and
numeric representations.

4.6 Problem Solving as Perspective

4.6.1 Definition

Problem solving as an instructional approach in mathematics classrooms is a type of
teaching that focuses on developing students’ problem-solving skills and abilities to
persist when faced with problems with which they have no experience, rather than
practicing skills that they have already previously learned (e.g., from prior instruc-
tion). The focus is on both the mathematical content and the process, with the inten-
tion to produce and interpret different approaches and strategies for solving the same
problem. This approach—based on the theoretical framework developed by Polya
(1945/2015) in How to Solve It—originated in the 1980s with the Cockcroft Report,
Mathematics Counts (UK), and NCTM’s Agenda for Action, all of which called for
problem solving and investigations to be included in mathematics teaching. Schoen-
feld (1983) has argued that studying problem solving requires the consideration of
different and distinct domains of behavior and knowledge—knowledge resources,
control, beliefs, heuristics, and practices—rather than purely relying on cognitive

psychology.

4.6.2 Goals of Teaching

The goal of the teacher in a classroom that focuses on problem solving as an instruc-
tional approach is to create a thinking classroom (Liljedahl, 2019; Liljedahl et al.,
2016) in which students are given tasks that encourage thinking. This is the kind
of task or activity that does not focus on precise application of a known proce-
dure, implementation of a taught algorithm, or the smooth execution of a formula.
In other words, problem solving is a messy, non-linear, and idiosyncratic process
(Liljedahl, 2020). Problem solving strategies include—but are not limited to—guess-
and-check, making lists or tables, looking for patterns, working backwards, making
a model, drawing a picture, and trying a simpler problem first. The goal of the
teacher is to encourage students to analyze each problem for what is given and what
constraints are present, to highlight the relationships between variables, and to expli-
cate the goals of solving the problem. The teacher creates opportunities for students
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to explain the meaning of the problem, as well as to ask reflective questions such as “I
wonder...” and “Does this make sense?” (Common Core State Standards Initiative,
2010; Kobett & Karp, 2020; Timmerman, this volume).

4.6.3 Examples from the Literature

Liljedahl (2020) listed the practices teachers have to consider when planning for
lessons in a thinking mathematics classroom. The list comprises 14 general categories
of practice that all teachers adhere to in some shape or form: (1) What are the types
of tasks we use; (2) How we form collaborative groups; (3) Where students work;
(4) How we arrange the furniture; (5) How we answer questions; (6) When, where,
and how we give tasks; (7) What homework looks like; (8) How we foster student
autonomy; (9) How we use hints and extensions to further understanding; (10) How
we consolidate a lesson; (11) How students take notes; (12) What we choose to
evaluate; (13) How we use formative assessment; and (14) How we grade.

As a case example of this approach to Type D, Lilejdahl (2015) studied teachers’
planning for problem solving in numeracy lessons. He investigated how a group of
mathematics teachers engaged in lesson planning from the problem solving perspec-
tive over the course of six months, discussing their challenges with each other whilst
shifting their goals for the lesson from a more traditional focus on students’ knowl-
edge to a focus on planning for students’ quality of participation in the problem
solving tasks. Through this shift in focus, the teachers began to plan for students’
quality of engagement with the tasks—i.e., through the act of problem solving—
rather than on designing lessons to transmit and assess a quantity of knowledge.
This shift in focus was characterized by teachers’ embrace of open-ended, complex
problems with multiple parameters that required students to engage in thinking crit-
ically about the problem and the parameters within which they would be expected to
solve the problem, in other words, the boundaries that circumscribed the problem. By
focusing on the problem and its particularities, teachers’ Type D assumed a different
form than would have been required for more traditional, knowledge-based lesson
planning. In particular, Liljedahl (2015) found that teachers who aimed at problem
solving Type D focused on how to design the task with problem solving as its goal
rather than students’ knowledge outcomes.

Another example can be found in Zazkis et al.’s (2009) theorization of the impasse
of teacher educators who teach their students to plan lessons comprehensively (i.e.,
with knowledge and outcome goals) thereby restricting the aims of mathematics
education to those captured in curriculum documents. In the article, they juxtapose
“planning teaching” (i.e., planning for knowledge and content goals) versus “teaching
planning” (i.e., planning for students’ engagement in problem solving). By utilizing
the practice of lesson plays, the authors theorized how planning for problem solving
incorporates consideration of the “contingencies of teaching” (John, 2006, p. 487,
as cited in Zazkis et al., 2009). With a shifted focus on problem solving instead of
knowledge goals, “planning for teaching” instead of “teaching how to plan" priori-
tizes the playfulness and student activities of problem solving. These activities are
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captured in Liljedahl’s (2020) list of characteristics in aligning the teachers’ and
students’ actions as “artifacts of the [lesson] planning structure” (Zazkis et al., 2009,
p- 43), such as teachers’ responses to students’ unexpected progression through the
problem solving nature of the lesson—or in other words, alignment of teachers’
planning for the teaching of their students as opposed to teachers’ planning of the
lesson itself as an artifact.

4.7 Culturally Relevant Pedagogy as Perspective

4.7.1 Definition

Culturally relevant pedagogy (CRP; Gay, 2010, 2018; Jett, 2013; Ladson-Billings,
2014) as a teaching perspective emerged out of the Realistic Mathematics Education
movement (RME; viz. Freudenthal, 1991) in response to the rise of post-colonial
studies in education. CRP is one way of addressing the RME heuristic that mathe-
matics be contextualized to students’ cultures. As Makonye (2020) noted, the imper-
ative of CRP and contextualized mathematics is evidenced by the high rates of failure
seen in school mathematics amongst marginalized populations, many of which are the
modern product of colonialist efforts. CRP directly problematizes the Western, colo-
nialist notion that mathematics is objective, and that it is not value-laden by a culture
(viz. Bishop, 1988). The erroneous belief that mathematics is in fact objective leads
to what is experienced in modernity as the perceived universality of mathematics,
and moreover, the “truth” of mathematics. Not only is this problematic for students’
learning of mathematics, but also for mathematics teachers’ training, because the
training experiences of mathematics teachers predicate the beliefs they will have
about mathematics, and subsequently will affect the ways in which they will be
conditioned to enact their training in a classroom with students. Because of this, the
issue of CRP has just as many implications for teaching as it does for learning.

CRP is based on the assumptions that cultural groups engage in behavior that is
based in mathematics or mathematical elements, and that knowledge is produced
through and by culture and history. Thus, mathematical thinking must be consistent
with the cultural context of the students. For example, enacting CRP teaching of
students in a majority Black inner-city school in the US might consist of instruction
that focuses on the origin of mathematical concepts within that culture and word
problems or projects about mathematics within the Black culture and history of that
city.

Additionally, ethnomathematics has been a well-known research topic in mathe-
matics teaching since D’ Ambrosio (1985) introduced the term. (Also, for a discus-
sion of how ethnomathematics implicates ethical responsibilities, such as through
the use of technology, see D’ Ambrosio, 1999). He defined ethnomathematics as
“the mathematics which is practiced among identifiable cultural groups, such as
national-tribal societies, labor groups, children of a certain age bracket, professional
classes, and so on” (D’Ambrosio, 1985, p. 45, our emphasis). Thus, D’ Ambrosio
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argued that ethnomathematics is conceptualized in contrast to the school mathematics
which has the aim of maintaining and reproducing economic and social structures,
“reminiscent of that given to the aristocracy when a good training in mathematics
was essential for preparing the elite (as advocated by Plato), and at the same time
allows this elite to assume effective management of the productive sector” (p. 45).
Because of this distinction, we characterize CRP as owing its intellectual heritage to
ethnomathematics but is markedly separate from it in terms of its degree of institu-
tionalization and purpose. Ethnomathematics is not concerned with the teaching of
mathematics in institutionalized settings, like schools. In fact, scholars (e.g., Pais,
2011) have revealed a growing misuse of ethnomathematical research, wherein the
economic and cultural reality of the identifiable cultural group is removed from the
ethnomathematics in the act of institutionalizing it.

4.7.2 Goals of Teaching

CRP teaching can be characterized by mathematics content that is explicitly situated
within a contextual frame unique to the culture of the students being taught. Instead
of focusing on the arbitrary nature of traditional mathematical structures, CRP bases
mathematics in cultural activities and knowledge most relevant to the students. By
doing so, teachers empower their students and present mathematics as intimately
relevant to their students’ cultural lives instead of being abstract and formalist, thus
giving mathematics a useful application for all students within the cultural context.
As a result, for the CRP teacher, mathematics teaching includes explication of the
value-laden nature of the mathematical concepts being taught, as well as adopting
a perspective that their work as a teacher is to enculturate students into the culture
of mathematics—whether that culture be Western and normative or Indigenous and
marginal. This can, in many cases, lead to a conflict between the culture of the CRP
teacher and the culture within which the mathematics is being contextualized (Bishop,
1988). Thus, teachers must be proficient in not only their content and professionally
situated knowledge of mathematics, but also in the cultural history and practices of the
students whom they are teaching. As a result, traditional curriculum materials must
be supplemented or redesigned to support CRP instructional efforts. In this process,
the CRP teacher must be careful not to essentialize students’ culture (McCarty &
Lee, 2014).

4.7.3 Examples from the Literature

An example of CRP teaching can be seen in American Indian and Indigenous studies,
such as those conducted by Ruef et al. (2020), who studied how mathematical
concepts are represented in the Ichishkiin language of the Yakima culture. In the
article, the authors weave together a complex theoretical perspective to frame their
work in a comprehensive framework of theory. In their analysis, they establish the
fact that mathematics is culturally situated in the western/American context which
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is markedly different than for the Yakima people. One of the stories they described
from the interview data (with a Yakima Elder) is that the word for “fraction” comes
from the same root word in their native language for the process that happened when
the White European settlers broke apart their nation by giving them the “choice” of
either complete genocide or surrender of lands. The native language of the tribe uses
this term for “broken” when they are talking about fractions. This shows how subtle
the cultural situatedness of mathematics can be, and that researchers from dominant
social groups are unable to fully grasp the concept of the differences in lived expe-
rience of other peoples’ mathematics. Through the CRP perspective, implications
for teachers” Type D “are not subtle” (Ruef et al., 2020, p. 316): mathematics can
function as a form of White supremacy qua White knowledge production. Thus, the
CRP teacher understands the culture of the students they teach, allowing them to plan
lessons and assess student learning within that cultural frame. As Ruef et al. (2020)
concluded, the work of planning for mathematics lessons and assessing student
work—informed by CRP—is built around the concomitance of students’ cultural
language and mathematical concepts so that students and teachers are connected
through the place and time in which they are engaged in mathematics learning. The
Alliance of Indigenous Math Circles (www.aimathcircles.org) offers resources for
teachers interested in planning CRP mathematics lessons in the Indigenous American
Indian context.

Jett (2013) wrote about the context of working in pre-service mathematics teacher
university courses so that the content and methods taught are of racial relevance
to his students. Failure to conceptualize mathematics teacher education through
a lens of cultural relevance is, for Jett, an act of fracturing the identities of pre-
service mathematics teachers as they are learning to plan and implement lessons.
Culturally responsive pedagogy, thus, becomes a key driver in the ways that pre-
service mathematics teachers are taught to plan lessons because, as Ladson-Billings
(2009) said, CRP “empowers students intellectually, socially, emotionally, and polit-
ically, by using cultural referents to impart knowledge, skills, and attitudes” (p. 20).
Without CRP training in teacher education, future mathematics teachers are not
equipped to plan CRP lessons of their own. An example of this can see in a study by
Makonye (2020), who illustrated the consequences of teaching mathematics outside
of students’ cultural contexts. Makonye gave the example of interest in the banking
system and how it is irrelevant or unrelatable to students in South Africa, because
requesting interest for any money loaned is considered immoral. When being taught
about the application of interest and related mathematical concepts, South African
students face challenges because the applications are based on a culturally irrele-
vant phenomenon and thus the mathematical concept’s universality fails (Makonye,
2020).

Skovsmose (2021) offers additional implications for CRP in the planning of math-
ematics lessons, namely that situations of crisis can serve as bases of lesson plans. As
a human race, there are universally shared experiences (e.g., pandemic) that create
cultural cohesion constitutive of “cultural relevance” for all students in a classroom.
For example, a teacher could use mathematics to teach a lesson on a crisis or a critical
situation such as COVID-19 to which all students could culturally relate; the cultural
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context of COVID-19 is primary to all people because they have all experienced
it. From a CRP perspective, COVID-19 is a cultural phenomenon and thus can be
used to create and/or illustrate how the relevance of the mathematical activity can be
presented pedagogically within a cultural group.

4.8 Project and Problem-Based Learning as Perspective

4.8.1 Definition

Project and Problem-Based Learning (PBL) is a perspective for teaching mathematics
that is based on the assumption that mathematical knowledge has to be presented in
the real-world contexts of students’ environment. The environment provides meaning
to the mathematics or contexts out of which new knowledge can be drawn. An
example of this approach can be found in works that use nature as a context to
teach mathematics concepts (e.g., Adam, 2003/2006; Toni, 2021). On the one hand,
by exploring problems in the environment students are prompted to discover math-
ematical concepts. On the other hand, the abstract structures of mathematics can
be imposed on an environmental or contextual situation, allowing the situation or
context to be reinterpreted using mathematical concepts. The PBL teacher views
mathematics as inseparable from the environment or context in which it exists or
originates. In other words, every mathematical topic is presented within its context:
the context itself is the source of inspiration and motivation for students’ interest
in the mathematics, as well as the starting point for developing new mathematical
knowledge. This means that the teacher is not there to impose notions onto the child,
but rather, to select the influences (also see Dewey, 1897).

Based on an extensive review on PBL literature, Merritt et al. (2017) found that
different definitions existed. Most relevant for the mathematics education community
are the functional/curriculum design, constructivist, and conceptual change defini-
tions. Based on their analysis, we align the functional/curriculum design definition
with the inquiry-based learning literature, the constructivist definition with the cogni-
tive learning theory perspective discussed in the present chapter, and the conceptual
change definition with the structuralist perspective also discussed in the present
chapter. We conjecture that teachers who participate in educational experiences to
learn about PBL—such as professional development events—accept PBL as a novel
pedagogical tool without explicit reference to one of the three aforementioned defi-
nitions. Rather, when they return to their classroom and choose to plan lessons
from their newly learned PBL perspective, they retroactively assign epistemological
meaning to the lesson based on their other beliefs about mathematics teaching and
learning; these beliefs then become objectified through the planning, enactment, and
assessment of the PBL lesson. More research is needed in this area.
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4.8.2 Goals of Teaching

The goal of PBL is for individual learners to construct mathematical concepts from
the context familiar to them. The teacher uses real-world contexts as a source
of inspiration, abstraction, meaning, and motivation for learning mathematics. As
a result, the goal of teaching mathematics from this perspective is that students
understand the mathematical concepts as intimately emergent from the context and
environment itself. Thus, the student learns the structure of the environment as a
mathematical structure along with learning the mathematical concepts. A character-
istic of this approach apropos of pedagogy is the implementation of collaborative
group projects that often utilize statistical analyses, mathematical modeling, and
exploratory activities (Capraro et al., 2013; Lee, 2018).

4.8.3 Examples from the Literature

Literature on PBL related to Type D has come from the STEM Education, Engi-
neering Education, and Science Education fields (e.g., Cheaney & Ingebritsen, 2005;
Miller & Krajcik, 2019; Mills & Treagust, 2003). For example, Miller and Krajcik
(2019) reported on a four-year action research project they did in their own classes
in teacher education, on how best to align science teacher preparation with the goals
of PBL as outlined in official curriculum documents such as the Next Generation
Science Standards (NGSS; NGSS Lead State Partners, 2013). They highlighted the
connection between the goals of PBL and developing students’ knowledge-in-use
(see Pellegrino & Hilton, 2012), which is the “capacity that learners need to apply
knowledge to make decisions and solve problems, and to evaluate when and how to
get more information when necessary” (Miller & Krajcik, 2019, p. 1). Miller and
Krajcik (2019) elucidated that planning for PBL lessons means planning for the
creation of a specific type of learning environment: a “sense-making and knowledge
generating environment” (p. 5) that is designed to pique students’ interest about
natural phenomena or situations in the real world through the pursuit of questions
about the world. As such, the teacher creating the PBL environment must estab-
lish driving questions to guide: (1) the lesson; (2) the development of the students’
knowledge-in-use; and (3) the development of artifacts (concrete representations)
as the results of the PBL investigation. Specific instances of Type D in Miller and
Krajcik’s (2019) process include: (1) planning for driving questions “about a problem
to be solved or experience to be explained that promote wonderment about the world”
(p. 6); (2) including students’ participation in scientific practices in the lesson plan;
(3) planning for students’ exploration of the driving questions through “collabora-
tive sensemaking activities” (p. 6) that are designed to engage “in shared knowl-
edge building” (p. 6); (4) planning for scaffolding the development of students’
knowledge-in-use through the use of discursive pedagogical tools; and (5) assessing
the artifacts students produce as a result of the PBL lesson for the extent to which they
“scientifically address the driving questions with increasing sophistication” (p. 6).
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Conversely, the mathematics education literature on PBL focuses primarily on
students’ conceptual understanding of mathematics and/or beliefs about and atti-
tudes towards mathematics as a result of having participated in a PBL lesson (e.g.,
Knezek & Christiansen, 2020; Merritt et al., 2017). Merritt et al. (2017) found that
all the studies in mathematics and science PBL that they reviewed were concerned
with students’ knowledge, achievement, and affectual outcomes. The literature on
PBL and its Type D implications are relevant to mathematics teaching and teacher
education as well. Considering the growing interest in PBL and the larger increase
in focus on STEM education, this gap in the literature needs to be addressed in order
to better understand how the mathematics teacher who wishes to implement PBL
lessons plans for and assesses the impacts of those lessons.

5 Pros and Cons for Each Perspective

Each aforementioned instructional approach for teaching mathematics has advan-
tages and difficulties associated with it. Planning based on each instructional
approach therefore presents unique challenges. We survey these briefly, not exhaus-
tively, in this section.

From the Situated Learning Theory (SLT) perspective, the goal of the teacher is
to develop a students’ sense of belonging in the mathematics community (e.g., using
correct mathematical language and discourse patterns, solving problems, and prac-
ticing communication of their thinking, and doing mathematics). The knowledge is
situated in the mathematics community rather than an individual and the students are
treated as a newcomer apprentices in the community where the oldtimers—math-
ematics teachers—engage in doing mathematics as the leaders of the mathemat-
ical community. The challenge with this approach is the time needed to develop
mathematical community and the norms associated with it, including the teacher’s
identity as a member of the community—a practicing mathematician—and the
students’ identities as legitimate participants in the community’s periphery. Knowl-
edge is conceived of as identity development and belonging, either as newcomers or
oldtimers, in the community. This is challenging to plan for with a diverse and/or
large classroom of students and institutional constraints that may not afford it or value
such educational goals. An additional challenge is that the teacher needs to make the
distinction between whether the students’ mathematical labor is sufficient to support
their apprenticeship contra epistemic exclusion, and to be clear about what “doing
mathematics” might look like. The SLT teacher will also need to continuously reflect
on their own understanding of what it means to “do mathematics,” as such an inference
can be rather opaque, and thus the SLT teacher needs to consider the material labor
of their students as well: “To compensate for epistemic exclusion, we seek to develop
a reliable way to evaluate the effort to understand mathematics” (Baldino & Cabral,
2021, p. 280, emphasis in original). In our words, this effort represents students’
legitimate peripheral participation and desire to become an oldtimer.
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The Behaviorist classroom—where the focus of mathematics teaching is on
showing students how to reproduce a perfect sequence of steps when solving a math-
ematical problem, and where the goal is on producing correct answers rather than
understanding the meaning behind the mathematical concepts—works well when
developing procedural fluency of mathematical concepts and ideas that have low
cognitive demand (e.g., skill/drill activities and technology-related tasks designed
to improve fluency). However, when addressing mathematical concepts with a high
cognitive demand or that require critical thinking, this perspective is not appropriate
for mathematics planning and teaching.

In the Cognitive Learning Theory (CLT) classroom, mathematics teachers plan
lessons that allow space for learners to develop their own structures and construct
their own meanings for mathematics. This requires additional time for mathematics
instruction and there is a danger that a lesson can become a set of unrelated activities
and lose its focus with respect to the students’ construction of the lesson’s mathe-
matical aim. To avoid this, the CLT teacher plays an active role in aligning lesson
plans with hypothetical learning trajectories, addressing individual student’s needs
throughout the construction process, and assisting learners in making connections
between big mathematical ideas.

In the Social Constructivist (SC) mathematics classroom, teachers plan for math-
ematics learning where students develop their objective knowledge of mathematics
concepts through a collaborative classroom discourse during which their subjective
knowledge is examined, dissected, and confirmed by the group. Thus, any knowl-
edge production is jointly owned by the classroom community. A challenge with SC
planning is that the mathematics teacher has to be knowledgeable of various math-
ematical approaches for a given problem, attitudes in the mathematical community,
and the processes of developing new mathematical knowledge between people.

In the Structuralist classroom, mathematics teachers plan to use various math-
ematical models that help students to simplify and reveal abstract mathematical
structures. Each model used (e.g., AlgeBlocks, Geostrips) has limitations and there-
fore cannot be used as the sole source of explanation. The emphasis is on a student
discovering underlying structures presented by the teacher instead of exploring and
constructing their own mathematical structures (as in CLT). A difficulty with plan-
ning in the structuralist classroom is that teachers have to be knowledgeable about
various appropriate models for each topic taught, the strengths and limitations of
each model, and appropriate supplementary instructional tools and strategies needed
for comprehensive understanding of essential mathematics.

In the Problem Solving (PS) classroom, the focus is on multiple strategies for
solving a given problem and being able to make connections to other strategies
or other problems, rather than the content understanding that results from it. PS
has the advantage of engaging students in mathematics making and creating new
knowledge through the experience of dealing with unfamiliar situations as opposed
to receiving knowledge through direct instruction from a teacher. It differs from
radical constructivism in that it does not focus on the concepts that are constructed
by students but rather focuses on the analytic schemes, critical thinking processes,
and intuitions they develop for solving posed problems. A difficulty in this approach
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is that it often is misaligned with institutional goals for mathematics teaching—
such as standardized testing of content knowledge—so that planning for PS lessons
results in planning for student outcomes that are often not represented in curriculum
documents.

The Culturally Relevant Pedagogy (CRP) approach can lead to the development
of students’ critical consciousness of social structures and inequities, as well as
centering mathematics in the cultural practices and realities most familiar to students.
This has the potential to reinvigorate students’ cultures with mathematical meaning
and—further—to position students’ lived cultural experiences as mathematical expe-
riences. The difficulty with CRP planning and teaching is that the teacher must be
an expert not only in the mathematics content taught, but also in the culture/s of
their students. Thus, curriculum materials must be tailored to provide mathematical
content within the cultural context.

In the Problem- and Project-Based Learning (PBL) classroom, teachers plan math-
ematical activities within real-world contexts, so the meaning assigned to mathe-
matical knowledge is contextualized in the real-world situations used to teach the
mathematical concepts. A PBL lesson typically includes an open-ended problem to
which students attempt to develop a solution. Planning for such lessons requires
teachers to have comprehensive knowledge about mathematics in real-world situa-
tions, as well as the pedagogical knowledge to translate this contextualized math-
ematics into planned activities and assessment strategies. Another issue with this
approach, similarly to CLT, is that students construct their own understanding of
mathematical concepts and solutions to problems, without any guarantee that those
concepts or solutions will be in complete agreement with lesson objectives, institu-
tional and curriculum documents, or community norms. Thus, planning for a PBL
lesson means incorporating additional teacher guidance (to help students in their
problem-solving process) into the lesson plan.

As we have shown, each perspective for planning and teaching mathematics has
certain benefits and drawbacks, and each is not appropriate for every lesson. Devel-
oping teachers’ Type D means developing their ability to operationalize the different
perspectives we present in this chapter as well as the ability to differentiate goals
for mathematics lessons and identify the most appropriate type of epistemological
commitment to support the teaching of different mathematics topics. Furthermore,
developing teachers’ Type D means developing self-awareness of one’s a priori
epistemological commitments about the teaching and learning of mathematics, and
how these commitments may help or detract from planning and teaching a particular
mathematics lesson.
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6 The Epistemological Perspectives in Different Cultural
Contexts

Culture is a foundationally structuring element of human experience and the social
link between people. None of the eight epistemological perspectives are immune
from this, because it is these perspectives that describe what teachers actually do
when planning for and reflecting on their teaching work in the classroom. In the case
of SLT, apprenticeship may take very different forms in different cultural settings,
such as schooling and as apprenticeship outside of formal schooling. In the case
of behaviorism, the paradigm itself is value-laden in a unique way that may socio-
politically charge any attempts to stray from it; consider a cultural setting where
teachers are seen as the holders of knowledge and wherein students are expected to
replicate exactly what the teacher tells them to do rather than discursively engage it.
In the case of CLT, there may be cultural and institutional commitments that position
CLT as a proposition outside of the role of school. In the case of SC, as with SLT, there
may be an issue with implementing an SC agenda where discourse between students
and teachers—and between students and each other—is not culturally privileged. In
the case of structuralism, manipulatives are expensive, and not even in the wealthiest
of Western countries are manipulates available in every classroom of every school.
In the case of PS, again, this perspective is value-laden—why solve a single problem
multiple ways if the economic situation in the context calls only for one solution? In
the case of CRP, cultural context is central. However, consider the situation where
a wealthy, White, suburban school is attempting to deploy CRP without any input
from minority populations, leading inevitably to perversion of its theoretical princi-
ples; critical educators are crucial for CRP’s deployment. And finally, in the case of
PBL, like structuralism, classroom materials and resources are required, as well as
time and institutional flexibility regarding expectations of student outcomes within
prescribed timelines and alignment with state warranties (e.g., government testing).
We avow all of these cultural conditions as crucial to the employment of the eight
epistemological paradigms in Fig. 1 but the purpose of this chapter was to survey the
status of literature and knowledge regarding Type D in the recent Western context.
The constraints listed are just some of the myriad constraints under which every
teacher works (Ingram & Clay, 2000), and we leave it as an intellectual challenge
to the reader to envision what implications these cultural considerations may have
when considering Type D.

7 Implications for Lesson Planning

There are three additional implications related to Type D that teachers must consider
when planning: the layout of the learning space, instrumentation related to lesson
planning, and student assessment. We survey these briefly in this section.
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7.1 Layout of the Learning Space

The layout of the room, the way the physical space is prepared, the way the board
is organized, and the students’ access to manipulatives and technology are all key
aspects of lesson planning. For example, the Instructional Quality Assessment (IQA;
Boston & Smith, 2009; Boston & Wilhelm, 2017) lesson observation rubric includes a
section that requires a description of the physical classroom layout, as well as a section
about the potential of the task. Liljedahl (2020) emphasized the importance of the
space/physical layout in creating thinking classrooms, noting that the physical layout
of the room must correlate with and support the goals of the lesson. Considering the
different perspectives on planning and teaching lessons presented in this chapter,
the corresponding layouts that teachers plan for each approach must be coherent
with the teacher’s epistemological commitments, the goals of the lesson, and their
corresponding intended experiences for students.

7.2 Instrumentation Related to Lesson Planning

There are various instruments for evaluating the quality of lesson plans. These include
but are not limited to the Guide to Core Issues in Mathematics Lesson Design (West &
Staub, 2003) based on their Framework for Lesson Design and Analysis, the IQA
Lesson Plan Rubric (Boston & Smith, 2009; Boston & Wilhelm, 2017), the Lesson
Plan Evaluation Rubric (Panasuk et al., 2005), the Observation and Reflection Guide
for a Mathematics Lesson (Grant et al., 2009), the Thinking Through a Lesson
Protocol (Smith et al., 2008), and the 5E Lesson Plan Format (Goldston et al., 2010)
which originated in science education. While these tools have been invaluable over
the past two decades, lesson plan evaluation practice is lagging in research because it
does not account for various the theoretical perspectives that we have described in this
chapter. Indeed, Chizhik and Chizhik (2016) claimed that research on lesson plan-
ning is “stuck” in the behaviorist perspective. Furthermore, Medley (1987) argued
that in order to conduct quality research, the issues of conceptualization, instrumen-
tation, and design have to be addressed; thus, it is important to advance the design of
instrumentation for lesson planning that does not discriminate against any particular
theoretical perspective in which it is based. Without quality lesson planning, there
cannot be quality instruction in mathematics classrooms.

7.3 Student Assessment

Analyzing student assessment is an integral part of teachers’ reflection on their pre-
and post-classroom activities. Research related to student assessment is discussed
in depth by RadiSi¢ (this volume). The advent of educational technology and online
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teaching has brought with it changes to student assessment. In virtual and phys-
ical mathematics classrooms, teachers use “technology as a servant” to serve as an
assessment tool (Gueudet & Pepin, this volume; Geiger, 2005; Goos et al., 2000;
Martinovic & Manizade, 2014). These considerations and more are discussed by
Gueudet and Pepin (this volume). Due to space limitations, we will not expand on
issues related to research on student assessment in this chapter.

8 Conclusion and Future Directions of Research

Teacher preparation and development programs provide “experiences designed
to increase mathematics teachers’ range of competencies” (Type J). They have
been conceptualized in our adaptation of Medley’s (1987) presage-process-product
approach to understanding the inter-relationship of the variables that impact student
learning outcomes as intervening between pre-existing mathematics teacher charac-
teristics (Type F), and the competencies, knowledge, and skills (Type E) that teachers
bring to the preactive tasks of teaching (Type D). Among Type E variables, there is
arguably a dual focus in mathematics teacher education and development programs
on teachers’ knowledge and dispositions on the one hand, and on observable class-
room competence on the other. This is evident in the oft-lamented gap between
theory and practice noted by Dewey (1904) and identified by Korthagen (2017) as
the central problem of teacher education and development throughout the twen-
tieth century. According to Charalambous and Delaney (2020), practice is used in
the mathematics education literature in at least four different ways: to distinguish
between having an idea and enacting it; as something that is repeated with a view to
improving performance; to describe the practice of teaching as having taken on the
identity of a teacher; and, to describe classroom activities that are done habitually.
While not excluding practices that occur in preparation for or following classroom
activity, in each case the emphasis is on the teachers’ actions in classrooms with
students. That is, efforts to address the theory—practice gap in teacher education and
development can been seen as an attempt to link Type E variables (mathematics
teacher knowledge, competencies, skills, and beliefs) directly to Type C variables
(interactive mathematics teacher activities that occur in the presence of students)
with insufficient attention to Type D variables such as planning.

The approach taken in this chapter to the pre- and post-active actions of teaching
foregrounds the importance of the teachers’ theoretical perspectives in determining
the goals they have for teaching and hence the kinds of activities that they plan to use
in their teaching, as well as the ways in which they reflect on and self-assess their
teaching. We argue that teachers’ pre-active competencies such as lesson and unit
planning—not simply as a technical skill or means of ensuring that novice teachers
have “thought through” what they will do in their interactions with students, but as a
theoretically driven bridge between teaching knowledge (typically characterized as
theory) and practice—has the potential to address the traditionally perceived theory—
practice gap. One way in which such an approach might manifest is in taking a step
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back from lesson planning proformas and the like that specify such things as how
to formulate the objectives of a lesson—to first reflect on the over-arching goals
of one’s mathematics teaching and its theoretical underpinnings. It should, thereby,
be possible to trace a coherent theoretical perspective along the chain from Type E
to Type D to Type C variables, influenced and constrained by Type J and Type I
variables.

In conclusion, we found that some theoretical perspectives with respect to Type D
have been researched well (such as CLT) while others (such as SLT and PBL) have
not. With the current impetus of reform in the digital era of mathematics education,
we believe these under-researched perspectives warrant further research with respect
to Type D to investigate their potential for improving teachers’ practice of lesson
planning, assessment, and reflection. Elevating planning from a technical skill to a
theoretically informed aspect of mathematics teaching would likely motivate further
research on the topic as called for by Kilpatrick et al. (2001) who suggested that
more research needs to be done on teacher planning, specifically, “What do teachers
read when planning?”, “How do they interpret and use what they read?”, “And how
do those uses affect their teaching?” (p. 337). The answers to each of these questions
depend upon the theoretical perspective through which the teacher views the goals
of their mathematics teaching. Consistent with this, our consideration of examples
from the literature of each of the epistemological perspectives we identified in Fig. 1
highlight the scope of and need for mathematics education researchers to be more
explicit in relation to the theoretical perspectives that underpin their own thinking
and the studies on which they report.
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Interactive Mathematics Teacher )
Activities o

Kim Beswick @, Felicity Rawlings-Sanaei, and Laura Tuohilampi

1 Introduction

The focus of this chapter is on interactive mathematics teacher activities (Type
C). That is, the activities in which teachers engage in the presence of students.
Researchers are often interested in innovative pedagogies aimed at enhancing the
teaching and learning of mathematics. Studies, therefore, typically investigate class-
rooms in which teachers are participating in an intervention aimed at influencing their
practice in ways deemed desirable by researchers or are attempting some kind of atyp-
ical practice that aligns with contemporary views of effective mathematics teaching.
Fewer studies consider the nature of normative mathematics teaching practice. Those
that do are necessarily large scale and provide less rich data than is usual for studies
of atypical practice. They are, however, important for system level understanding
and as a context in which to consider innovative practice.

Manizade, Moore and Beswick (this volume) describe eight epistemological
perspectives that formed a framework for examining research on teacher’s activities,
such as lesson planning, reflecting on teaching, and assessing students, when not in
the presence of students (i.e., Type D variables). Aspects of Type D that occur prior
to teaching are intended to inform what happens when teachers interact directly with
students (Type C). Nevertheless, we know that many factors intervene to ensure that
there is rarely a direct translation from plan to practice by constraining the interactive
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activities that are feasible or desirable. They include Type I variables such as system
and school policies and priorities, resources available to schools and choices about
their allocation, resources of the families that schools serve, and cultural consider-
ations; and Type E variables, specifically the skills, knowledge, dispositions, and
accumulated experience that individual teachers bring to their task.

Apparent disjunctions between what teacher’s say they believe about teaching
(an aspect of Type E), including their epistemological perspective, and hence plan
to do, (Type D), and what in fact happens in their classrooms (Type C) gave rise to
studies pre-dating the focus of this review that highlighted apparent discrepancies
between beliefs and practice (e.g., Frykholm, 1999; Sosniak et al., 1991). An impor-
tant development in recent decades has been a growing consensus that teachers are
reasonable when they state and enact their beliefs (Leatham, 2006) with more than
a dozen ways in which apparent discrepancies can be reasonably explained having
been documented (Liljedahl, 2008). In addition, Beswick (2003) highlighted the
influence of the differing contexts in which teachers typically talk about their beliefs
and then enact them. This certainly applies to the contexts in which teachers plan for
interacting with students (Type D) and then implement those plans (Type C). Each
of the epistemological paradigms identified by Manizade, Moore and Beswick (this
volume) allow for a degree of contingency; that is, the teacher needs to respond to the
ways in which students respond to teaching. Indeed contingency, defined as involving
deviating from the plan, responding to student’s ideas, and making use of unplanned
opportunities, is a dimension of the Knowledge Quartet that was developed based
on observations of teacher’s practice and presented as a framework for observing
mathematics teaching (Rowland & Turner, 2007). Speer (2005) argued that apparent
discrepancies between teacher’s espoused and enacted beliefs are likely artefacts of
the research methods employed, specifically a failure to consider data from practice as
well as teacher reports via surveys or interviews when attempting to infer their beliefs.
Care also needs to be taken to ensure that there are shared understandings between
teachers and researchers of the meanings of words and interpretations of events
(Beswick, 2005; Schoenfeld, 2003) which in turn are influenced by the researcher’s
beliefs. In the case of large-scale studies, choices about the scales and items included
reflect what the test designers assume to be desirable practices (Eriksson et al., 2019).

Consistent with this, research interest in particular interactive teaching practices
has followed developments in theoretical understandings of mathematics teaching
and learning and the epistemological perspectives from which practices have been
examined. As noted by Manizade, Moore and Beswick (this volume), these are not
always explicitly stated but can be inferred with varying degrees of confidence from
reports of studies. In this chapter we review what we know about teacher behaviours
in typical mathematics classrooms and discuss the range of less widespread peda-
gogical approaches that are evident in the literature. In both cases we make links
to underpinning epistemological perspectives as described by Manizade, Moore and
Beswick pointing to how these appear to have both influenced the Type C variables
that have been of interest and that may relate to practices observed, although we
recognise the difficulties inherent in making such connections. Large scale surveys,
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for example, necessarily rely on teacher’s self-reports rather than on direct obser-
vations. Desimone et al. (2005) cited research showing that although self-reports
are acceptably reliable and valid measures of the content taught and the teaching
strategies that are emphasised (e.g., Mullens & Gayler, 1999, as cited by Desimone
et al. 2005), they may not be well-suited to measuring aspects of practice such as
teacher-student interaction (e.g., Mullens & Kaspryzyk, 1999, as cited by Desimone
et al., 2005). According to Eriksson et al. (2019), there was almost no connec-
tion between teacher’s responses to items on an “instruction to Engage Students
in Learning Scale” and student’s achievement, leading them to recommend relying
instead upon student reports about what happens in their classrooms. Studies that
involve direct observations of teaching provide more certainty about actual class-
room events but are necessarily smaller in scale and present their own challenges for
researchers who seek to go beyond reporting what teachers and students do and say
to make inferences about their intent and motivations.

We also examine what has been found about the impacts of technology on what
happens in classrooms (real or virtual) in which teachers and students interact, and the
theoretical lenses that informed the work. We conclude with reflections on aspects of
classroom practice that have been less or un-scrutinized, but which warrant attention
in future studies.

2  Our Approach

We conducted an organically evolving search of research articles discussing teacher’s
interactions with students in mathematics classrooms. We began with a search of
relevant databases of the high-ranking mathematics education journals identified
by Williams and Leatham (2017). The databases searched were ERIC, ProQuest
Education, Informit A 4+ Education, OECD Library, EBSCO Education Source and
JSTOR. We began with a small number of relevant articles which were searched
for relevant keywords (e.g., classroom environments, teacher-student interaction,
teacher behaviors). Further researchers engaged in the field were identified and we
focused specifically on articles that discussed teacher’s actions in classrooms, and
identified the different perspectives, methods, recommendations, and issues raised.
We restricted the sample to publications dating from 2000 and conducted further
searches by prominent authors in the field and keywords (e.g., mathematics pedagogy,
mathematics teaching, classroom practice). We refer to older literature when it is
important to framing more recent trends and identifying their progress over slightly
longer timeframes.

The matched articles were transferred into an Excel spreadsheet in which they
were categorised by title; author; date of publication; type of data (direct observation,
indirect, other); type of activity (e.g., problem solving); theoretical approach; and
whether it concerned existing practice or practice connected with an intervention. In
addition, we found articles more broadly related to the topic, such as when a particular
issue, e.g., conceptual understanding of fractions, was examined with an intervention
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impacting teacher’s actions. Those articles only tangentially related were excluded
from the core analyses but were discussed in author meetings thus informing our
discussion in this chapter. For normative practices we also referred to reports of
large-scale international surveys.

The chapter is structured in two broad sections; the first describing the develop-
ment of research about widely practiced teacher student interactions, and the second
exploring studies that have considered teacher’s behaviors with students in particular
projects or in response to specific interventions. For the former, normative practices,
we rely on large scale assessments of mathematics teaching and learning whereas
for the atypical practices described in specific studies we refer to research reports
available in the mathematics education literature.

3 Normative Mathematics Teaching Practices

In this section we survey what is known about what typically happens in math-
ematics classrooms. We rely primarily on the large-scale international surveys,
Trends in International Mathematics and Science Study (TIMSS) that assess math-
ematics achievement at Years 4 and 8 in participating countries. The first TIMSS
was conducted in 1995 but we confine our attention to those in the past two decades,
beginning with TIMSS 2003. The Programme for International Student Assessment
surveys (PISA) similarly provide insights into the classroom activities that constitute
mathematics learning for 15-year-olds in participating countries. We begin with a
brief overview of TIMSS and PISA before highlighting changes in the classroom
activity that successive iterations of these surveys have revealed.

Country participation in TIMSS has steadily increased over the years reflecting
increased interest at government and education system level in the performance of
their students relative to those in other countries. In 2003, 46 countries participated
from the continents of Africa, Asia, Australia, Europe, North America, Oceania, and
South America (Gonzales et al., 2004). By 2019 participation had risen to 64 coun-
tries, representing a broad range of geographic, demographic, and economic diversity
(Mullis et al., 2020). Although the focus of this book is on Western countries, TIMSS
is relevant because it provides an international overview of mathematics education,
allowing comparisons among countries and the identification of distinctive charac-
teristics of mathematics teaching and curriculum objectives in particular countries
of interest.

PISA, undertaken by the Organisation for Economic Co-operation and Develop-
ment (OECD) assesses how well 15-year-old students can apply the knowledge and
skills they have learned in the areas of reading, mathematics and science to real-life
problems and situations. Seventy-nine countries participated in PISA in 2018 (Schle-
icher, 2019), which was the seventh cycle of the international assessment since the
programme was launched in 2000. Each assessment focuses on one of the three
subjects and provides a summary assessment of the other two. So, while Mathe-
matics has been assessed by PISA once every 3 years since 2000, the mathematics
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domain was the main area of focus only in 2003 and 2012. Mathematics will again
be the major domain assessed in 2022.!

We focus on aspects of TIMSS and PISA that relate most directly to what
teachers do, or are able to do, in the presence of students. In terms of constraints on
teacher’s activity with students, resources including teacher’s expertise and time for
mathematics teaching, are especially salient and hence considered here.

3.1 Resources for Teaching Mathematics

Hopper et al. (2017) explained how the TIMSS Context Questionnaire gathers data
about two types of resources that affect the teaching of mathematics. These are Type
I variables, beyond the direct control of the teacher but that, nevertheless, provide
constraints and affordances for what teachers are able to do in their interactions with
students (Type C). The first are general resources such as school infrastructure (e.g.,
buildings, and grounds, heating and lighting, classroom space), teaching supplies, and
the availability of technology. The second resource type is specific to mathematics
including such things as particular software, calculators, and instructional materials.
Data are also gathered on the difficulty or otherwise of finding well-qualified mathe-
matics teachers, and on the rates of attainment of tertiary discipline and pedagogical
study deemed necessary for teaching mathematics that teachers have undertaken.
While acknowledged as crude proxy for knowledge for teaching mathematics, the
extent to which mathematics teachers have undertaken such studies contributes to
Type E variables that inform and constrain Type D and hence Type C activities.
The amount of time that teachers are able to spend with their students constrains
the kinds of activities in which they can engage. Lack of time is frequently cited by
teachers as an obstacle to implementing innovative practices in their mathematics
classrooms (e.g., Livy et al., 2021). There was a significant variation in the amount
of mathematics instructional time across the 64 countries surveyed in TIMSS 2019.
On average, the fourth-grade students received 154 h of mathematics instruction per
year, which equated to approximately 17% of total instructional time. The average
number of hours received by eighth grade students was 17 h less than in fourth
grade (137 h or 13% of the total) (Mullis et al., 2020). The increase in the amount
of mathematics instructional time since 2003 is noteworthy. Although the sample
size in TIMSS 2003 was considerably smaller (19 countries at fourth grade and 35
countries at eighth grade) the data point to a smaller time allocation: on average,
fourth-grade students in 2003 received 149 h of mathematics instruction per year,
which equated to approximately 16% of total instructional time. The average number
of hours received by eighth grade students in 2003 was 26 h less than in fourth grade
(123 h or 12% of the total) (Mullis et al., 2004). The reduction in hours dedicated

! The next PISA round was initially scheduled for 2021. It was postponed until 2022 due to the
COVID-19 pandemic.
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to mathematics instruction from Year 4 to Year 8 likely reflects the broader range of
subject areas taught at eighth grade (Mullis et al., 2020).

3.2 Instructional Practices

RoZman and Klieme (2017) identified three major international trends in education
based on contemporary educational policy and discourse. These were: an increased
interestin regular assessment of student progress; greater advocacy of student-centred
pedagogies; and promotion of reasoning and problem-solving rather than the devel-
opment of computational and procedural skills as the goals of mathematics teaching.
They investigated four cycles of TIMSS (1995-1999-2003-2007) at eighth grade
across 18 countries. Only slight evidence of increased use of testing was found
across TIMSS assessments from 1995 to 2007 (RoZman & Klieme, 2017). In rela-
tion to the second trend—greater advocacy of student-centred pedagogies — there was
some evidence that associated pedagogical approaches, such as making connections
between mathematics and student’s daily lives and working in groups had increased
in several countries, most particularly in East Asia. In relation to the third trend—the
promotion of reasoning and problem-solving rather than the development of compu-
tational and procedural skills as the goals of mathematics teaching—contrary to
expectations, there was an increased practice of computational skills, with a particular
emphasis in Central and Eastern Europe. Despite an initial increase in the frequency
of problem solving, there was a decrease from 2003-2007.

In the 2003 and 2007 TIMSS studies, Year 8 students were asked about instruc-
tional practices in their classrooms considered relevant to instructional quality
(Eriksson et al., 2019). In their discussion Eriksson et al. (2019) focused on three
items, namely: (1) we listen to the teacher give lecture-style presentations, (2) we
relate what we are learning in mathematics to our daily lives and, (3) we memo-
rise formulas and procedures. As Eriksson et al. (2019) pointed out there is no
consensus as to the optimal frequency with which any of these practices should
occur. The frequency of lecturing, for example, that might be considered beneficial
depends upon what the teacher is aiming to achieve, that is their goals for teaching.
As explained by Manizade, Moore and Beswick, a teacher adopting a behaviorist
perspective is likely to be concerned with helping students to perform flawlessly the
steps of a procedure to obtain correct answers to a class of mathematical problems.
In this case telling students clearly the steps that need to be followed is likely to be
effective. In contrast, from other perspectives such as social constructivism, where
the goals of teaching relate to the quality of interactions among students and building
subjective knowledge, much less frequent use of lecture style presentations would
be deemed desirable.

TIMSS 2015 data indicated positive associations between instructional clarity and
student achievement (Hooper et al., 2017) as did TIMSS 2019 (Mullis et al., 2020)
which used updated scales to further explore this trend. Students at fourth grade in
2019 reported clearer instruction than did students in eighth grade: Most students in



Interactive Mathematics Teacher Activities 141

fourth grade (95%) reported moderate to high clarity of instruction compared with
only 46% of students in eighth grade.

TIMSS 2019, like TIMSS surveys since 1995, collected data on instructional prac-
tices and strategies. For mathematics these concerned how often students; worked
on problems on their own, explained their answers in class, and decided on their own
strategies for solving problems (Hooper et al., 2017). Just as the theoretical perspec-
tives that teachers bring to their work influence the goals they have for their teaching
(Manizade, Moore & Beswick) and hence the instructional practices that they are
likely to adopt, the choice of items included in TIMSS studies reflect the theoretical
perspectives, and their concomitant goals and practices, that are of interest to the test
designers, influenced by theoretical developments and recent research on approaches
to teaching mathematics. The three items listed from TIMSS 2019 suggest interest in
the extent to which problem solving and reasoning, and collaborative or individual
working, are fostered in mathematics classrooms. These are consistent with problem
solving and social constructivist perspectives on mathematics teaching. Researchers
have, across successive iterations of TIMSS, explored associations between partic-
ular instructional practices and mathematics achievement. As Eriksson et al. (2019)
pointed out the results of these studies do not always support theoretical assump-
tions about what constitutes instructional quality. They suggest that instructional
practices should only be considered characteristic of quality teaching if they are
found empirically to support student achievement.

TIMSS video studies were conducted in 1995 and 1999. The 1995 study involved
a total of 231 mathematics lessons in the United States (81 lessons), Germany (100
lessons), and Japan (50 lessons), while in the 1999 a total of 638 mathematics
lessons were video recorded across the seven participating countries: Australia,
Czech Republic, Hong Kong SAR, Japan, the Netherlands, Switzerland, and the
US (Neubrand, 2006). Video studies offer an opportunity for teachers (and student)
behaviors to be studied repeatedly from different theoretical standpoints, and to
address different questions about what is happening in those classrooms. Researchers
have been interested in such things as how teachers structure their lessons, the
clarity of instruction, interruptions, and how homework is treated. For example,
Neubrand (2006) re-analysed 22 lessons from each of the three participating coun-
tries in the 1995 study to explore the number and types of tasks that teachers offered
their students in the three countries. The 1999 lessons have also been examined in
terms of lesson structure, mathematical content, and instructional practices, and to
discern differences in mathematics classroom activity in different countries. Hiebert
et al., (2003) observed that while there were some similar features in the relatively
higher achieving countries, there were also distinct differences. For example, eighth-
grade lessons in all participating countries included both whole-class work and
individual/small group work. However, lessons in Australia, the Netherlands and
Switzerland allocated more time, on average, to students working individually or
in small groups. Another finding of note was that across all of the participating
countries, at least 80% of lesson time in eighth grade, on average, was dedicated
to solving mathematics problems. But there was considerable variation in respect
to drawing the relationships between mathematics problems and real-life situations
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ranging from only 9% of problems per lesson in Japan to 42% of problems per lesson
in the Netherlands. Regarding computers, relatively few eighth-grade lessons in the
participating countries made use of them. However, 91% of eighth-grade lessons in
the Netherlands used calculators; a percentage much higher than in the other coun-
tries which ranged from 31 to 56% of lessons (except in Japan where no reliable
estimate could be reported due to their infrequent use). In summary, Hiebert et al.,
reported that ‘no single method of teaching eighth-grade mathematics was observed
in all the relatively higher achieving countries participating in this study’ (2003,
p. 15).

Eligible mathematics teachers and students in a representative sample of 150 PISA
participating schools in eight countries (Australia, Finland, Latvia, Mexico, Portugal,
Romania, Singapore, and Spain) responded to the OECD’s Teaching and Learning
International Surveys (TALIS) on classroom practice (OECD, 2017). Teachers and
students were asked to rate teacher’s use of eight classroom practices. These practices
were clustered according to three broad teaching strategies: structuring practices,
student-oriented practices, and enhanced learning activities. Structuring practices
entailed the explicit specification of learning goals; student practice until all students
have understood the content; and a summary presentation by the teacher of recently
learned subject matter. Student-oriented practices were the differentiation of the work
for students with learning difficulties or the ability to progress more quickly than their
peers, and groupwork that allows students to devise a collective solution to a problem
or task. Enhanced learning activities comprised students undertaking projects of at
least one week’s duration, an expectation that students explain their thinking, and
encouragement to seek multiple ways to solve problems (OECD, 2017).

Both teachers and students reported that almost all mathematics teachers across
participating countries used clear and structured teaching practices; specifically,
explicitly stating learning goals; allowing students to practice until they understand
the content; and providing summaries of recently learned content. The teacher’s use
of enhanced learning activities was also commonly reported by both teachers and
students, suggesting strong encouragement of students to solve problems in more
than one way, and a high expectation that students explain their thinking on complex
problems. The use of project work lasting at least one week was less frequent. While
used less often than the other two practices, most teachers and over half of students
confirmed the use of student-oriented practices, i.e., giving different work to students
according to their level of understanding, or the use of small groups for students to
come up with joint solutions.

Structuring practices were the most frequently used teaching practices in mathe-
matics classrooms, according to both teachers and students. According to the authors,
“Since they (structured practices) aim to deliver an orderly and clear lesson, they
could be seen as the necessary foundation for the development of any other practice.
This would explain why they are so predominant in the teaching strategies imple-
mented by teachers” (OECD, 2017, p. 7). Nevertheless, “classroom instruction time
is a scarce resource, and an overemphasis on structuring practices could limit teachers
in their use of other potentially more innovative strategies, such as enhanced learning
activities and student-oriented strategies” (OECD, 2017, p. 7).
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3.3 Teacher’s Use of Technology

The growing presence of digital learning technologies has brought new opportunities
and challenges for mathematics teachers. An array of mobile devices, application
software and other online technologies have transformed the landscape of mathe-
matics classrooms providing myriad pedagogical opportunities, notably in relation
to problem-solving, experimentation and collaboration. Based on the most recent
TALIS Vincent-Lancrin et al. (2019) noted that changes in the use of ICT in math-
ematics lessons has been a major driver of pedagogical innovation in mathematics
classrooms, along with professional development of mathematics teachers through
peer learning. However, the challenge for teachers to equip themselves with the requi-
site skills to effectively use new technologies and engage in higher-order pedagogical
tasks is significant. An observation made by Handal and Campbell et al. in 2012 still
has currency a decade on:

In the case of online tools, there is a vast range of technologies available, but do teachers feel
that they know how to find them and use them once located? A range of dynamic geometry
software (e.g., Geometer’s Sketchpad) and computer algebra software is available. These
tools have a steep learning curve and teachers need to be able to model these technologies
for students for use in the classroom. (2012, p. 394)

A corollary of a digitally-rich classroom is a shift in the role of the teacher and
hence what they do in their direct interactions with students. This is particularly
discernible in the context of the ‘flipped classroom’ where instructive videos typically
replace ‘traditional’ homework tasks to allow more focused teaching in class time
(Muir, 2020). In such circumstances where recorded teaching is made available to
students to engage with in their own time, the teacher and each student are effectively
interacting, albeit in a uni-directional way, asynchronously. Medley (1987) did not
envisage interactions of this kind, but they have become increasingly common as
technology has evolved and as circumstances have demanded the use of distance
learning. Teacher behaviors as they engage in virtual asynchronous teaching are an
aspect of Type C that warrants research. The content that is presented and whether
or not it is presented in a way that elicits student-centered interactions depends on
the theoretical perspective adopted by the teacher.

TIMSS 2019 investigated three areas relating to the use of technology: computer
access for instruction; technology to support learning; and tests delivered on digital
devices. Teachers were asked about availability of computers during mathematics
lessons and the types of access i.e., whether each student has a computer, the class-
room has shared computers, and/or the school sometimes gives access to computers.
Teachers reported similar levels of access to computers at fourth and eighth grades
(39% and 37% respectively), but there was variation in the level of access to
computers across countries as well as in the types of access. The type of access
most frequently reported for both fourth and eighth grades was that the school has
computers that the class can sometimes use (29% and 28% respectively). Average
student achievement was associated with access to computers at both grades, not
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surprisingly given that access to computers would be related to socio-economic
advantage (Mullis et al., 2020).

TIMMS 2019 also investigated the frequency with which teachers used computer
activities to support learning in mathematics. Around two-thirds of students in both
fourth and eighth grades were in classes in which their teacher reported that they
“never or almost never” do computer activities to support learning (67% and 68%
respectively). Average student achievement was lowest for students in these classes,
with a 15 point-average difference at fourth level and an 18 point-average difference
at eighth level (Mullis et al., 2020). The way in which teachers administer tests, and
specifically whether they use computers or tablets for this purpose was also examined
with eight grade students reporting the lowest occurrence of digitally delivered tests
having the highest achievement.

4 Atypical Mathematics Teaching Practices

In this section, we consider studies that have addressed practices that have been
less common in mathematics classrooms. We discuss the topics that have attracted
researcher’s attention when it comes to teacher’s efforts to implement non-traditional
practices and discuss aspects that have been most influential in shaping teacher’s
activity in mathematics classrooms in the last two decades.

Since 2000, smaller scale studies have emphasized the examination of pedagogical
approaches based on constructivism, with many studies having involved examining
the implementation and impact of particular practices. Teacher-student interactions
have sometimes been observed directly, but artifacts such as teacher’s lesson plans
(Type D), have also been reviewed, and teacher actions inferred from them. Artifacts
of this kind provide indirect insight into what teachers do in their classrooms but need
to be interpreted carefully because of their indirectness. There are, for example, many
reasons for which a lesson may not be implemented as planned. Small scale studies
have focused on broad pedagogical approaches or perspectives (e.g., project-based
learning, culturally responsive teaching), aspects of teacher’s practices (e.g., ques-
tioning, types of listening), the organization of teaching and learning (e.g., flipped
classrooms), and classroom environments. In the sections that follow we describe
findings from these studies according to themes identified from the foci of the studies.

4.1 Pedagogical Approaches

Boaler (e.g., Boaler, 2001) has made extensive contributions to research on teacher’s
use of student-centered approaches complemented by practical work providing
resources (underpinned perhaps by a social constructivist, cognitive learning theory,
or structuralist perspective (Manizade, Moore, & Beswick)) and instructions for
teachers to inform their classroom activity. In Boaler’s work, the concept of rights of
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the learners, that include such things as the right to be heard, make mistakes and be
confused, requiring a degree of sensitivity from teacher’s side (Kalinec-Craig, 2017)
features as something that should guide teacher’s interactions with students. What one
considers to be the rights of a learner depends in part upon teacher’s perspective on
mathematics teaching and hence what the goal of teaching is. From a situated learning
theory or social constructivist perspective it would be quite natural to allow students
to voice their thinking whereas a teacher approaching their task from a behaviorist
perspective might see this as detracting from the effectiveness of teaching aimed
at the perfect performance of procedures. From this perspective, affording students
rights necessarily constrains the actions available to and appropriate for teachers as
they interact with students.

Fewer studies have considered how the student-centered approaches proposed are
understood by teachers, or how they are translated in classrooms. Silver et al. (2009)
analysed portfolio entries submitted by teachers. In the entries, teachers proposed
lesson plans with pedagogical features to support the development of students’ under-
standing. They found that teachers were not able to systematically embed innovative
pedagogical approaches in their best practice submissions. While this study shed light
on the degree of teacher’s adaptation to some atypical practices, the study did not
address the question of how each innovative, student-centred approach was under-
stood by teachers; that is how the teachers defined and hence might enact the atypical
practices they were proposing in their entries.

The research literature suggests that student-centered interactions and teacher’s
role in those interactions have been thoroughly researched and are well understood.
Nevertheless, large-scale studies such as TIMSS and PISA suggest these approaches
are not widely used. Reasons for the limited spread of student-centered approaches
has been the subject of considerable speculation. For example, Buschman (2004)
pointed to a “blame game”, described as teachers commonly arguing that good activi-
ties don’t exist and ‘blaming’ the supply of activities, as an explanation and canvassed
many of the features of the debate about the uptake of atypical practices in which
researchers in the field, have participated. These include: generic definitions of the
approach in question (problem-solving as a loose term that refers to enhanced under-
standing, student centeredness and shifting the teaching from drilling to supporting
genuine ideas); the realization that such practices have not been fully entertained
by teachers, implying that the suggested practices would work as expected should
the teachers only learn the way to acquire what is suggested to them; and providing
informed, but not thoroughly evidence-based speculations about the situation.

Approaches that were innovative but not student-centered were hard to find in the
body of research conducted in the last two decades, suggesting that perspectives that
underpin teaching with features that could be characterised as student centred (e.g.,
social constructivism, structuralism, problem solving, culturally relevant pedagogy,
and project and problem-based learning), are the lenses through which researchers
have envisioned effective mathematics teaching. We struggled to find studies that
examined innovative teacher-centered approaches and did not find studies taking a
fresh perspective on behaviorist approaches.
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There is, however, a body of research on cognitive load theory (Paas et al., 2004;
Sweller, 2011), that has investigated teaching practices and techniques that reduce
unnecessary load on students’ working memory. Such an approach is, if not teacher-
centred, at least teacher-led, and often considered as an opposing approach to student-
led problem solving, inquiry-based learning or ‘discovery learning’ (Paas, 2004,
p. 6), although the intention of the approach is not to avoid mental challenges, but to
question the external interruptions that may appear in student-centred, inquiry-based
or collaborative problem-solving settings. Best practices to reduce (unnecessary)
cognitive load have been developed and delivered through laboratory studies, as
well as within training programs for teachers (Van Merrienboer & Sweller, 2005).
One can find comparative studies testing the effects of reduced cognitive load on
student’s learning (e.g., on geometry in Reis et al., 2012; the use of spreadsheets and
sequencing in Clarke et al., 2005) but how teachers have applied those practices in
their mathematics classrooms and the extent to which laboratory-based findings can
be reproduced in classroom contexts seems less known.

The pedagogical approaches discussed above have their roots in ideas presented in
earlier decades. For example, “a quasi-empirical” approach to mathematics teaching
was proposed by Lerman (1990). In that approach, teachers were encouraged to
take mathematical misconceptions as hypotheses (as a source of something produc-
tive) and investigate the conditions under which they might or might not work (and
why). Similarly, Ball and colleagues (e.g., Ball & Bass, 2000) have contributed to
the general understanding of student-centered, constructivist pedagogies. Schoen-
feld (e.g., 1992) has been influential in elaborating and building understanding of
problem-solving as a means of teaching mathematics. Influential elaborations such as
these have likely contributed to student-centred, inquiry-based approaches becoming
dominant in the small-scale intervention studies. Comparison of these studies with
typical mathematics teaching practices discerned from large scale studies, along with
studies that suggest many teachers may have deeply ingrained views aligned with a
behaviorist perspective on teaching (Schoenfeld, 2018) offers an explanation for the
limited traction that student centred teaching has achieved. Not only do theoretical
perspectives constrain the behaviors of teachers in their interactions with students,
but they also constrain the kinds of questions researchers ask, the way studies are
designed, and the questions that remain unanswered.

In the next section we discuss approaches in mathematics classrooms, namely,
the practices in, and organisation of, the environment of a mathematics classroom.

4.2 Aspects of Teacher’s Practices

Burkhardt (2006) reviewed the benefits and the spread of teaching modelling in
the mathematics classrooms, concluding that the approach is only moderately used
despite the opportunities it affords for student learning. Boaler (2001) described
research in which modeling was a practice that had made a difference in student’s
learning in an investigation contrasting mathematics teaching in two schools. She
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concluded that teachers needed to change their practices to allow students to develop
transferable problem-solving skills.

The concept of robust understanding was introduced by Schoenfeld et al. (2020)
along with a framework for teaching in ways that support the development of student’s
robust understanding of mathematics (Schoenfeld, 2018). He described activities
derived from three teacher’s lessons and analysed them in terms of the framework.
The three teachers differed in the aspects of the framework that they emphasized.
Each was able to address some aspects but struggled in others. In general, teachers
seemed to struggle to shift from pedagogies that develop procedural knowledge
to facilitating more connected understanding, and to build on student’s thinking,
making sure everyone had access to opportunities to develop their agency (Schoen-
feld, 2018). Similarly, Buschman (2004), noted that teachers often miss opportunities
to build on student’s ideas, and speculated that there is a need for more examples of
the desired practice, more collaboration among teachers, and greater acceptance of
making mistakes while adapting to new practices.

Others such as Conner et al. (2014) have examined ways in which teachers can
support argumentation, while Handal and Bobis (2004) considered thematically
structured teaching. Sullivan et al. (2003) investigated context-based teaching and
Shahrill (2013), conducted a review of teacher’s questioning, focusing on what makes
questioning effective, rather than on what teachers are actually doing in relation to
questioning.

A particular practice, “instructing between the desks” was investigated as part of
the cross-cultural Lexicon project by Clarke and colleagues (e.g., Dong et al., 2015).
In this project, aspects of teachers’ practices were labelled in order to provide a
vocabulary to make it easier for researchers and teachers to address the various aspects
of teachers’ conscious and unconscious actions in mathematics classrooms. Clarke
and his team were able to identify significant cultural differences in the ways in which
teachers facilitate students’ learning. For example, instructing between the desks
seems more casually and less systematically applied in many Western countries,
but rigorously practiced as “Kikan-shido” in some cultures (O’Keefe et al., 2006).
Linguistic aspects of mathematics teaching have also been addressed by Sfard (2021),
who elaborated on the role of language in the mathematics learning process.

4.3 The Organization of Teaching and Learning

Flipped classrooms have attracted considerable attention from mathematics educa-
tion researchers during the last two decades. The enactment of a flipped classroom
relies on technology, as the learner needs to acquire some of the content through
digital resources independently. The need for independence on the part of the learner
has been suggested to require self-determination (Deci & Ryan, 2012) from the
learner’s side and being well informed of appropriate resources from the teacher’s side
(Muir, 2020; Muir & Geiger, 2016). Muir (2020) observed a teacher implementing a
flipped classroom approach and concluded that with careful preparation, the teacher
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was able to support all aspects of her students’ self-determination (competence,
autonomy, and relatedness), while also helping students to develop their conceptual
and procedural knowledge.

In addition to the well-studied flipped classroom approach, we found several
case studies of community engagement. Many of these studies were reported in
conference proceedings, but there were also a few such cases documented in journal
articles. For example, Leonard and Evans (2008) described an intervention in which
teachers worked closely with local churches in urban settings to adapt practices from
community building. The aim was to address social justice and improve cultural
responsiveness. Leonard’s and Evan’s (ibid.) study serves as an alternative example
of what teachers (with or without a research-connection) could engage with in order
to widen their perceptions of what is possible to support mathematics learning, as well
as to better meet the needs of their students as individuals with varying backgrounds.

4.4 Classroom Environments

Research studies are typically based on researchers’ initiatives inspired by their
beliefs about what constitutes good mathematics teaching. Teachers may adopt the
new practice during an intervention, but reports of what happened before and after
these interventions are rare.

Some researchers have made extensive efforts in creating resources to help
teachers apply recommended ideas independently of participation in a project.
Liljedahl (2019), for example, has suggested tangible changes in the classroom envi-
ronment. His concept of “thinking classrooms” includes the use of vertical surfaces as
a mean to support student argumentation. Working in small groups and documenting
the mathematical work on vertical boards that everyone can see has attracted atten-
tion (as evidenced in teacher groups in social media) but is hard to find evidence of
precisely how these practices have been adopted or the extent of their adoption.

Research literature is written and initiated by researchers, and when teachers share
their ideas (for example, in professional journals or on social media), the accounts
are mostly anecdotal. One of the authors of this chapter considers herself “an insider”
in relation to what we can infer of teachers’ attention to educational ideas in social
media. Having her own media to spread research-based resources for teachers to
use, she has learned that even if there is a “hype” from the teacher’s side about a
new practice, the real change may remain undone or only partially implemented. As
Buschman (2004) explained, it is hard work for a teacher, who most likely has never
been experienced alternative methods as a learner or observed them being used by
colleagues, to adopt them, no matter how much value they might see in doing so.

In the digital era, online resources are also available for teachers to use for a range
of purposes (e.g., as enriching the activities, outsourced feedback, creating excite-
ment). Handal et al. (2013) reviewed more than one hundred mobile applications
designed for mathematics learning. They categorized applications using three main
clusters: explorative, productivity and instructive tools. It was noted that teachers
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should understand an application’s instructional value when deciding which to use as
some are of little instructional value. They recommended a “watchful but enthusiastic
eye” (p. 126) on new mobile learning developments in mathematics teaching.

Other examples of the ubiquity of digital resources vary from general organisa-
tion of teaching such as hybrid learning environments (Cribbs & Linder, 2013), to
specific techniques, such as teaching with embodied learning technologies (Flood
etal., 2020), or applications of known learning theories, such as cognitive load theory,
in digital settings (Pass & Sweller, 2005). In an overview of the impact of the Internet
on mathematics classrooms Engelbrecht et al. (2020) discussed the new meanings
for old constructs such as ‘tool’, ‘resources’ or ‘learning setting’. These new mean-
ings, introduced in mathematics classrooms in the digital era include using Massive
Open Online Courses and blended approaches (referred to as Principles of design),
technologies in online contexts supporting social interaction and construction of
knowledge, and online tools and resources (traditional resources in a digital form, as
well as new conceptualisations of what is perceived as a mathematical activity).

In sum, the mathematics classroom as a physical environment has begun to be
transformed along with the expansion of the digital world (Engelbrecht et al., 2020).
Teachers teaching mathematics are no longer restricted to being the key source,
let alone the sole source, of mathematical knowledge. What is more, Engelbrecht
et al., (ibid.) discussed the Internet Era transforming the traditional teacher led push
approach to mathematics teaching into a student led pull approach, increasing student
engagement and agency. Again, the ways in which teachers have reacted to these
recent opportunities is less documented (Clark-Wilson et al., 2020) but appears to
vary from not using technology, supporting student’s use of technology, through to
deliberately eliciting student thinking with and through technology.

Finally, COVID-19 pandemic has accelerated the adoption of technologies in
mathematics classrooms, and the impacts are yet to be fully identified. Some insights
about impacts of digital technologies in mathematics education during the COVID-
19 pandemic were discussed by Borba (2021). The sudden move to online classrooms
around the world required teachers to react quickly and with minimal preparation.
There is an urgent need to study how the mathematics learning process looks, and
specifically what teachers do as they interact with students in new online settings on
such a massive scale. The impacts of COVID-19 might have included a decrease in
equity as a result of differing access to technologies according to student’s socio-
economic background (e.g., using a phone to attend the mathematics class instead
of a computer) (Clark-Wilson, 2020). The pandemic necessitated all teachers of
mathematics engaging with technologies to teach. Studies of teachers’ activities with
students will continue to need to include conceptions of mathematics classrooms that
transcend physical boundaries.



150 K. Beswick et al.

5 Implications and Conclusions

The research considered in this chapter is far from exhaustive. Rather we surveyed a
broad range of literature to identify the kinds of research being undertaken relating to
teacher’s interactive classroom behaviors, and the extent to which promoted practices
are used beyond specific studies.

We distinguished between normative mathematics teaching practice and atypical
mathematics teaching practices. Large scale studies such as TIMSS and PISA provide
insight, albeit indirect, into what happens in the majority of mathematics classrooms.
It seems that, in contrast with the student-centered approaches that have dominated
mathematics education literature in recent decades, behaviorist approaches remain
prevalent. Researcher’s beliefs about, or theoretical perspective on, mathematics
teaching inform and constrain their research (its design, conduct and reporting) just
as teacher’s theoretical perspectives in either the pre-active (Type D) or interactive
phase of teaching (Type C) limit the actions that they perform in their classrooms.
The mismatch between the teacher behaviors that researchers advocate and the peda-
gogies that students most commonly report experiencing raise the longstanding issue
of how teacher’s practice can be influenced in ways deemed desirable. Researchers’
interests in particular perspectives on teaching mathematics seem also to have limited
research on the practices that most commonly occur in mathematics classrooms. A
better understanding of these practices, including the reasons for which teachers
adopt and often stick with them, and the variations in context and the practices them-
selves that affect their efficacy would be valuable in its own right as well to inform
efforts to influence teacher’s interactive classroom activity.

In some classrooms technology has had a profound impact on pedagogical possi-
bilities and has led to new ways of structuring teaching such as flipped class-
rooms. There has been recognition that in a digital world interactions between
teacher and students can be both virtual and asynchronous. This development extends
Medley’s conception of Type C variables research on teacher behaviors during online
synchronous or asynchronous teaching. It problematizes what it in fact means to be
in the presence of students.

It is apparent that researchers bring their own theoretical perspectives and beliefs
to their work, just as teachers do. The theoretical perspectives described by Manizade,
Moore, and Beswick apply equally well to interactive teacher behaviors (Type C) and
to pre- and post-active teacher behaviors (Type D). Our review has also highlighted
the relative dearth, beyond large scale studies, of research on normative interactions
in mathematics classrooms.
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1 Introduction

In the late 1980s, to understand “good” teachers and improve teaching practices,
Medley (1987) reviewed prior research on teaching and teacher education and iden-
tified 10 different variables that were studied to determine effective teaching (Intro-
duction, this volume). Using a chain of effects of presage-process—product research,
he reviewed studies that focused on measuring teaching and student behaviors that
resulted in desired student learning outcomes. Further, he identified six of the 10 vari-
ables (Types A—F) as “online variables” (p. 105) that were in direct control of the
teacher and these variables could be studied individually or in relationships between
two or more variables. Using Manizade et al.’s (2019) adaptation of Medley’s work
for mathematics education (Introduction, this volume), this chapter describes an anal-
ysis and review of the literature relevant to the Type B variable, student engagement
in mathematics learning activities, over the last three decades. According to Medley,
student learning activities are defined in the following way:

Pupil learning activities occur in the classroom. The principal means by which teaching can
affect learning outcomes is through its influence on pupil behaviors in the classroom. The
function of teaching is to provide pupils with experiences that will result in desired outcomes.
It is axiomatic that all learning depends on the activity of the learner. (p. 105)

As mathematics education researchers, we are interested in examining relation-
ships between how students engage in or approach student learning activities (Type
B) that result in the successful achievement of desired student learning outcomes
(Type A). It is the teacher practices in classrooms (Type C) that are needed to facil-
itate effective and equitable student interactions with learning activities in which
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students develop mathematical content knowledge and engage in the process of
doing mathematics.

Yet, what are the characteristics of student engagement in learning activities that
promote the development of content knowledge? What behaviors do students actively
engage in while learning mathematics that reflect what it means to know and do math-
ematics? Can these learning activities be generalized across diverse K-12 classrooms,
including settings that use a wide range of technological tools that support a “syn-
ergistic relationship” between technical and conceptual dimensions of mathematical
activity (Zbiek et al., 2007)? How do teachers facilitate and enhance students’ experi-
ences while learning mathematics? One way to address these questions is to consider
areview since Medley’s work of how the global mathematics education community
has described constructs that further explore students’ development of mathematics
content knowledge and engagement in learning activities while doing mathematics.

A historical review of reform-based mathematics curriculum initiatives provides
insight into visions of various student learning activities, including the use of tech-
nology, which impact how students engage in knowing and doing mathematics
(Sect. 2). To address the many names for these activities, I use Kobett and Karp’s
(2020, p. 40) terminology of behaviors and dispositions (i.e., proficiencies, processes,
practices, competencies, and habits of mind) to identify the multiple and intersecting
student experiences that are relevant to how students develop and show evidence of
their mathematical thinking. Section 3 articulates multiple theoretical perspectives
that capture how the process of student learning occurs in different learning environ-
ments. This is followed by studies relevant to student engagement in making sense
of mathematics (problem-solving behaviors) and perseverance (productive dispo-
sitions) that are often linked to instructional practices to support desired learning
outcomes (Sect. 4). For some studies, Medley’s methodology concerns are addressed
related to the quality and effectiveness of research. Lastly, a discussion of findings is
presented and implications for future mathematics education research in the area of
student mathematics learning activities and active student engagement in knowing
and doing mathematics (Sect. 5).

2 Student Mathematics Learning Activities: An Overview

Over the past several decades, early reform initiatives in the United States [U.S.]
(National Council of Teachers of Mathematics [NCTM], 1980, 1989, 1991, 1995,
2000; National Research Council [NRC], 2001) and other countries, such as
Denmark, New Zealand, and Australia (Davidson et al., 2019; Hipkins, 2018;
McDowell & Hipkins, 2018; Niss, 2003) have promoted new curricula frameworks to
develop mathematics content knowledge and learning activities to improve student
mathematics achievement. The organization of curriculum centered on content at
different grade bands with some consideration of behaviors needed to engage students
in learning mathematics. Student mathematics learning activities are a set of behav-
iors and dispositions students engage in to achieve learning goals that reflect an
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in-depth understanding of mathematics. From the last three decades, this overview
documents a shift toward a focus on student thinking needed to build a concep-
tual understanding of mathematics and identifying how students should experience
solving mathematical tasks. A review of reform initiatives shows an evolution of
specificity of learner activities envisioned to meet high-quality curriculum goals that
support students’ learning of mathematics with understanding.

Beginning in the mid-1970s and into the decade of the 1980s, school curriculum
reform focused on accountability and measurable standards that demonstrated
students’ achievement in mathematics (Cuban, 1992; Pink, 1989). Teacher certi-
fication standards and higher student graduation requirements were raised in the
hopes of improving the teaching and learning of mathematics. The 1983 publi-
cation, A Nation at Risk (National Commission, 1983) reported the failure of the
U.S. school system with the decline of student test scores and achievement levels.
Students lacked mathematical competence and they were unable to problem solve.
At the same time, the business community became aware of a shrinking supply of
skilled workers causing them to become involved in public school reform (Cuban,
1992; Martin, 1989; Sola, 1989). According to Martin (1989), businesses supported
education initiatives because of the potential of providing skilled workers, including
those able to work with the emergence of technology. Yet, the need for accountability
prompted a return to teaching basic skills and the measurement of student behavioral
objectives (i.e., achievement of performance goals) where students completed rote
procedures and computations that could be easily measured.

During the decades of the 1970s and 1980s, what appeared to be missing was a
focus on measuring student achievement of learning goals (Smith & Sherin, 2019).
Moving beyond equating knowing mathematics as successfully completing proce-
dures, researchers needed to show evidence of what students “understood” about
specific mathematics content as a result of engaging in learning experiences in the
classroom. In response to the needs of the discipline and society for the 1980s, NCTM
published the Agenda for Action (1980), which recommended future directions for
improving the teaching and learning of mathematics. Based on reports of low math-
ematics performance, the student behavior of problem solving became central for
engaging students in a mathematics learning activity and has remained a primary
focus in curriculum initiatives over the last three decades.

In the 1990s, the NCTM trilogy of U.S. Standards reform initiatives (1989, 1991,
1995) provided a vision for the organization of school mathematics curriculum and
evaluation, teaching, and assessment. The sets of standards described the nature of
mathematics with an emphasis on students developing a conceptual understanding
of mathematics rather than an acquisition of procedural knowledge, skills, and
facts. Based on interpretations of Piaget’s (1970) and Vygotsky’s (1981) work,
constructivist and social constructivist theories of learning supported a new vision of
students constructing knowledge individually or collaboratively, rather than passively
receiving knowledge. Mathematics represented a dynamic, changing discipline rather
than a static body of knowledge. However, it is critical to state that the early sets of
NCTM standards represented “statements of values” and that underlying assump-
tions about the teaching and learning of mathematics “were not well anchored in
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either research or theory” (Kilpatrick, 2003, p. 1). Likewise, Lesh et al.’s (2020)
recent review of learning theories in mathematics education found that the early
“NCTM Standards themselves were not based on any research per se, but simply an
envisioning of what mathematics education in classrooms (i.e., in practice) might
look like and what the appropriate content might look like, keeping the learner in
mind” (p. 862). One of the issues relevant to a lack of research may be attributed
to transitioning from past theories and methods of measuring procedural, student
performance goals to a vision of measuring conceptual, student learning goals often
showed little, if any, research related to new ways of teaching and learning. This
is because the sets of standards had not been implemented in many mathematics
classrooms. Moreover, although the curriculum initiatives promoted mathematics
content learning goals and engagement in student mathematical learning activities
(i.e., behaviors and dispositions), teaching practices (Type C) that support student
learning with understanding were missing.

In response to a lack of research and explicitly connected to an updated version of
U.S. standards (NCTM, 2000), Kilpatrick (2003) asserted that a companion publi-
cation (NCTM, 2003) synthesized a review of the literature that informed the vision
of school mathematics in the 1990s and 2000. In this publication, Sfard reviewed
learning theory research and identified ten mathematical learner needs that were
reflected in the curriculum changes of the NCTM standards. For example, she iden-
tified learners as having a “need for meaning and the need to understand ourselves and
the world around us have come to be recognized as the basic driving force behind
all our intellectual activities” (p. 356). Bringing the needs of learners to the fore-
front, researchers raised new questions about how to measure student behaviors and
dispositions that provide detailed explanations of students’ need for “meaning” while
learning mathematics with understanding and what does this look like in mathematics
classrooms.

Recognizing the ever-present dilemma of balancing the needs of mathematics
(discipline theory) and the needs of the learner (psychological theory) in the orga-
nization of curriculum, Sfard asserted: “In our attempts to improve the learning of
mathematics, we will always remain torn between two concerns: Our concern about
the learner and our concern about the quality of the mathematics being learned”
(p. 386). When one of these theories controls too much of the school mathematics
curriculum, then disruption occurs within the entire curriculum. Over the last three
decades and across different countries, the challenge of this dilemma has continued to
be addressed with frameworks of curriculum initiatives that identify content knowl-
edge students should know and processes students need to engage in while doing
mathematics. Reviewing the relevant literature, a number of terms and documents
pertaining to student behaviors and dispositions will appear in this section and be
discussed further throughout the chapter. Brief, capsule definitions of these terms
and documents are included in the Appendix. The goal of the following subsections
is to identify and compare student mathematics learning activities (Type B) that have
evolved with students becoming knowers and doers of mathematics.



Student Mathematics Learning Activities 161

2.1 Mathematical Processes

After much debate related to the dilemma Sfard (2003) articulated about balancing
the needs of both the discipline and learners, the U.S. Principles and Standards of
School Mathematics (NCTM, 2000) expanded the vision of mathematics educa-
tion to include a more deliberate focus on school curriculum organized around
the framework of process standards to promote learning activities students should
engage in while doing mathematics. Rather than describe performance goals of doing
procedures, the processes defined what mathematicians might do and say when
problem solving. The process standards recommended providing all students oppor-
tunities to learn mathematics through engagement in five overlapping processes:
problem solving, communication, representation, making connections, and reasoning
and proof (NCTM, 2000). Problem solving is the primary action of mathematics
activity and it has always been recommended as way to know and do mathematics
(NCTM, 1980). The learning activity of reasoning develops through problem solving.
Compared to an earlier set of process standards (NCTM, 1989), representation was
added to the original four processes as a way to engage students in making their
mathematical thinking explicit. To support students’ development of mathematical
reasoning and proof, Huinker (2015) extended Lesh et al. (1987) modes of represen-
tation: contextual, physical, visual, verbal, and symbolic, with an explicit focus on
students building representational competence from which mathematical connec-
tions are made “between” and “within” representations. In Sect. 2.5, Zbeik et al.
(2007) use an equivalent term of representation fluency as a construct to describe
students’ access and engagement with multiple representations in technological
environments. The process standards inform ways students could participate while
engaged in knowing and doing mathematics.

2.2 Mathematical Competencies

At the same time, in 2000, the Denmark Ministry of Education created a national
committee to examine ways to improve mathematics teaching and learning. Their
work resulted in the Mathematical Competencies and Learning of Mathematics:
The Danish KOM Project (Niss, 2003). In this report, mathematical competence
was defined as having “the ability to understand, judge, do, and use mathematics in
a variety of intra- and extra-mathematical contexts and situations in which math-
ematics plays or could play a role” (p. 7). The project identified eight mathe-
matical competencies that demonstrated evidence of students’ “mental or physical
processes, activities, and behaviors” (p. 9). The competencies extended NCTM’s
process standards and included: thinking mathematically, posing and solving mathe-
matical problems, modeling mathematically, reasoning mathematically, representing
mathematical entities, handling mathematical symbols and formalisms, communi-
cating in, with, and about mathematics, and making use of aids and tools (including
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instructional technology) (Niss, 2003). This framework of mathematical competen-
cies is relevant to Manizade et al.’s (2019) adaptation of Medley’s Type B variable
as they identify learning experiences students should engage in to develop a deep
understanding of mathematics articulated in high-quality curriculum goals.

In a similar vein focused on identifying mathematical competencies, the Program
for International Student Assessment [PISA] (PISA, 2021) measures to what extent
15-year-olds use their many years of building mathematical knowledge to solve real-
world problems. In students’ lives outside of school, they need to solve problems
that often demand the use and integration of multiple mathematical topics, rather
than only knowing how to use a single procedure learned in a mathematics lesson.
PISA assesses different mathematical competencies that gauge students’ mathemat-
ical literacy; that is, “an individual’s capacity to reason mathematically and to formu-
late, employ, and interpret mathematics to solve problems in a variety of real-world
contexts” (PISA, 2021). The PISA mathematical literacy framework lists multiple
competencies under each of three clusters: reproduction, connections, and reflection.
As aresearch fellow at the Australian Council for Educational Research (ACER) at
the beginning of the last decade, Turner (2010) reviewed research analyzing PISA
mathematics test items. To be successful in solving contextual problems, he found
that students needed to activate prior mathematical knowledge. Further, he reported
students’ difficulty in problem solving when they needed to activate more rather than
fewer mathematics competencies. Similar to Denmark’s competencies, the PISA
competencies included the following: communication, mathematising, representa-
tion, reasoning and argument, strategic thinking, and using symbolic, formal, and
technical language and operations. Turner argued for teacher activities (Type C) in
which they increased a focus on these competencies (Type B) to engage students in
developing mathematical literacy.

Over the last two decades, a Ministry of Education-funded project, Competencies
in New Zealand Curriculum (NZC) (McDowall & Hipkins, 2018; Hipkins, 2018),
described an evolution and research base of key competencies for student learning in
general and eight content learning areas for the twenty-first century. Connected to a
PISA framework, a construct of competencies originated from an Organization for
Economic Development (OECD) Definition and Selection Competencies (DeSeCo)
Project which produced a framework to guide the development of PISA assessments
(Hipkins, 2018). For the NZC, each learning area described “what they [students]
will come to know and do” (Ministry of Education, 2015, p. 37) and identified five
key competencies: thinking, relating to others, using language, symbols, and text,
managing self, and participating/contributing. According to the Ministry of Educa-
tion (2020), “Key competencies matter because they support dispositions that will
enable young people to learn well now, and to go on learning throughout their lives...
Dispositions mean learners are ready (i.e., being motivated to use particular knowl-
edge, skills, and values to achieve the task at hand), willing (i.e., recognizing when
it is relevant to draw on these), and able (i.e., knowing how to do so appropriately).”
Similar to the framework of proficiency strands (NRC, 2001) and Kobett and Karp’s
explicit inclusion of “disposition” when describing students’ knowing and doing
mathematics, the NZC recognized the critical role of dispositions needed for current



Student Mathematics Learning Activities 163

and future student learning. In mathematics and statistics, “students explore relation-
ships in quantities, space, and data and learn to express relationships in ways that help
them to make sense of the world around them” (p. 17). When examining mathemat-
ical connections to four of the key competencies: thinking, relating to others, using
language, symbols, and text, and participating and contributing, the NZC stated:
“Students develop the ability to think creatively, critically, strategically and logi-
cally... They learn to create models and predict outcomes, to conjecture, to justify
and verify, and to seek patterns and generalizations... [there is] a broad range of prac-
tical applications in everyday life, in other learning areas, and in workplaces” (p. 26).
Within the NZC, three interrelated strands of eight levels of achievement objectives
are identified: number and algebra, geometry and measurement, and statistics. Each
level begins with this statement: “In a range of meaningful contexts, students will
be engaged in thinking mathematically and statistically. They will solve problems
and model situations that require them to:” (Ministry of Education, 2014). Similar to
other frameworks of competencies described previously, there is a focus on students
engaged in thinking, meaningful contexts, knowing, doing, and dispositions.

McDowall and Hipkins’ (2018) review of large systematic studies that examined
competencies in the NZC resulted in emergent themes that defined “four phases in
the ways that key competencies have been understood and enacted in the overall
school curriculum” (p. 2). Between 2006 and 2018, these phases provided a “trajec-
tory of change” when considering the nature of student learning and how to weave
the competencies into the curriculum. As an example, although there was overlap
between the phases, in phase two (i.e., 2007-2011), “relationships between key
competencies and ideas about learning to learn (an NZC principle) and lifelong
learning (a part of the NZC vision)” (p. 7) came to the forefront. Research examined
how the NZC was implemented across multiple schools and what barriers existed.
A shift occurred in phase three (i.e., 2011-2014) with a recognition of a need for
the “weaving of key competencies and learning area content” (p. 9); that is, relation-
ships were examined between competencies and desired discipline-specific learning
outcomes (Type A).

Moreover, “students’ opportunities to develop their key competencies were
closely tied to the pedagogy used by the teacher” (p. 9) (Type B and C variables). To
engage students in learning activities, they needed tasks where they took “meaningful
action in real-world contexts” (p. 10) and other pedagogical approaches included crit-
ical inquiry and experimental learning. To investigate phase four studies, which are
ongoing, McDowall and Hipkins (2018) reported: (1) “Students should actively use
and build knowledge, as opposed to just being consumers of knowledge produced
by others;” (2) “There should be opportunities for students to collaborate in more
demanding ways than simply group work;” and (3) “The diverse life experiences and
ways of being that students bring to learning are seen as a resource for learning rather
than a problem to be managed” (p. 12). Looking ahead to future research, Hipkins
etal. (2018) examined the OECD 2030 Learning Framework (p. 2) and its alignment
and implications for the NZC. As in the past, the 2030 framework identifies a focus
on knowledge, skills, attitudes, and values leading to competencies for individual and
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societal well-being. The OECD framework development is a collaborative, interna-
tional project and a work-in-progress. It is intended to update the DeSeCo framework
for PISA assessments and provide a pathway for future research connecting student
learning activities, teacher activities, and student learning outcomes (Type A, B, and
C variables, Introduction, this volume).

2.3 Mathematical Proficiency

In the same time period as the updated NCTM (2000) process standards, the National
Research Council’s [NRC] Mathematics Learning Study Committee published
Adding It Up: Helping Children Learn Mathematics (2001) to identify how students
attain mathematical proficiency through cognitive and affective engagement within
these five strands: conceptual understanding, procedural fluency, strategic compe-
tence, adaptive reasoning, and productive disposition. By including the last strand,
productive disposition, the NRC committee asserted the value of beliefs, attitudes,
and emotions and their affective impact on students’ engagement in learning math-
ematics. According to NRC, conceptual understanding is defined as the “compre-
hension of mathematical concepts, operations, and relationships” and productive
disposition is the “habitual inclination to see mathematics as sensible, useful, and
worthwhile, coupled with a belief in diligence and one’s own efficacy” (p. 116).
Making connections to the strands, Kobett and Karp (2020) mapped each proficiency
to examples of what students’ strength behaviors look like in a classroom setting.
For conceptual understanding, they included a student question, “Why do we call
some numbers square numbers? Why do we call some numbers cube numbers?”” and
explained: “When students make a comment that something doesn’t make sense to
them, that is an indication that they desire mathematics should be a sense-making
activity” (p. 42). Not only was this student engaged in making sense of the meaning
of different types of numbers, the student asked why questions to develop reasoning
about the structure of numbers.

In Australia, the national curriculum standards identified mathematical reasoning
as both a process that demonstrates mathematical thinking and a strategy for learning
mathematics (Davidson et al., 2019). According to the Australian Curriculum and
Assessment Reporting Authority (ACARA, 2017), reasoning is one of the four profi-
ciency strands students engage in when “thinking and doing of mathematics.” In
other words, the process of reasoning provides insight into students’ mathematical
thinking and their engagement in student learning activities. The other three profi-
ciency strands are understanding, fluency, and problem-solving. The four Australian
proficiency strands “describe the actions in which students can engage when learning
and using the content” (ACARA, 2017). Thus, the proficiency strands suggest a call
for research that examines students” mathematical thinking when developing content
knowledge (learning) and engagement in doing mathematics (using the content).
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2.4 Standards for Mathematical Practice

In 2010, the U.S. created the national Common Core State Standards for Math-
ematics (CCSSM) (National Governors Association [NGA] Center for Best Prac-
tices and Council of Chief State School Officers [CCSSO], 2010), which included
specific mathematical competencies for students called the Standards for Mathemat-
ical Practice (SMP). Many of the same international mathematical behaviors iden-
tified previously were stated: (1) make sense of problems and persevere in solving
them, (2) reason abstractly and quantitatively, (3) construct viable arguments and
critique the reasoning of others, (4) model with mathematics, (5) use appropriate
tools strategically, (6) attend to precision, (7) look for and make use of structure, and
(8) look for and express regularity in repeated reasoning. For the U.S., the CCSSM
continued an evolution of reform visions stated in earlier initiatives and by other
international researchers (Bostic & Sondergeld, 2015; Hipkins, 2018; Keazer & Jung,
2020; Kobett & Karp, 2020; Koestler et al., 2013; McDowall & Hipkins, 2018; NRC,
2001; Sanchez et al., 2015; Sfard, 2003; Turner, 2010). One purpose for creating the
CCSSM was to provide consistency across the U.S. in K-12 grade-level curriculum
standards rather than each state having different standards. The eight SMP described
how students should engage in mathematics learning activities to become “doers of
mathematics” (Kobett & Karp, 2020, p. 40).

In summary, when reviewing the aforementioned frameworks of curriculum initia-
tives, there is a shift toward making explicit how students should experience doing
mathematics while making sense of their developing mathematical content knowl-
edge. To demonstrate the evolution of student learning activities across different
reform initiatives, a few mathematics educators have compared behaviors and dispo-
sitions found in the documents. Kobert and Karp described connections between
the mathematical proficiency strands and SMP. If researchers use Manizade et al.’s
(2019) framework (Introduction, this volume) for examining relationships between
classroom Type C and B variables (i.e., teacher-student activities), studies could
address Kobert and Karp’s challenge: “We want teachers to think about how their
students respond to and interact with mathematics learning via each of these compo-
nents and that, in doing so, they listen for whispers of their students’ previously
undetected strengths” (p. 41). What research exists that documents how students
engage in learning activities portrayed in frameworks of curriculum initiatives to
develop a deep understanding of mathematics and how do teachers listen and respond
to their students? Recently, Lesh et al. (2020) argued: “The mathematics education
community still does not know how to operationally define measurable conceptions
of almost any of the higher-level understandings or abilities that the CCSC Stan-
dards refers to as mathematical practices” (p. 863). In essence, when working with
the complexity of studying the nature of students’ mathematical learning with under-
standing and student engagement in a range of mathematical practices (i.e., behaviors
and dispositions), do studies exist for the knowledge base that provide evidence of
measures to define effective and equitable student experiences with learning activities
in mathematics classrooms, including technology-based environments?
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A potential line of research could take advantage of Koestler et al.’s and Kobett and
Karp’s alignment between the NCTM process standards and the Common Core stan-
dards of mathematical practice. These authors presented classroom vignettes for each
SMP toillustrate how students engaged in doing these learning activities. Specifically,
the problem-solving process standard was connected to all eight SMP. This suggests
if researchers focused on students’ engagement with the first SMP, make sense of
problems and persevere in solving them, there is a strong possibility that students
will be engaged in the other “higher-level” practices. Given that similar practices
are articulated across international frameworks of curriculum initiatives, research is
warranted to provide evidence of students’ engagement in problem-solving behaviors
(i.e., making sense of mathematics) and productive dispositions (i.e., perseverance).

2.5 Cognitive Technological Tools and Student Mathematics
Learning Activities

In the Second Handbook of Research on Mathematics Teaching and Learning, Zbiek
etal. (2007) articulated a perspective of multiple constructs researchers should use to
examine students’ mathematical understanding while engaged in technology-based
learning activities. Reviewing earlier research, the authors used the term cognitive
technological (CT) tools to represent a wide variety of technologies that reflect a
technical dimension, conceptual dimension, and a “synergistic relationship”” among
these two dimensions. Focusing on the technical dimension, CT tools “must allow
the user the means to take actions on mathematical objects or representations of
these objects” (p. 1171). Examining the conceptual dimension, CT tools provide
“reactive visual feedback” as “observable evidence of the consequences of the user’s
actions” (p. 1171). Zbiek et al. cautioned researchers against the study of mathe-
matics teaching and learning in technological settings using only one dimension.
This is attributed to the fact that student learning activities may include technical
actions, such as solving equations and graphing, and simultaneously these actions are
informed by students’ conceptual understanding and reasoning, such as conjecturing,
finding patterns, and generalizing. Similarly, in the recent Compendium for Research
in Mathematics Education, Roschelle et al. (2017) described a change in technology
media over the last two decades from static to dynamic representations whereby
students learn mathematics with understanding over time. Roschelle et al. identi-
fied dynamism as a new construct that incorporates a “time dimension” for students
making sense of mathematics through dynamic representations. Specifically, they
asked: “How is a mathematical representation being connected to a student’s experi-
ence of time to advance understanding of mathematical relationships?” (p. 863). To
support students’ learning of difficult mathematical topics, Roschelle et al. used the
“design of dynamic representations to enable new means of access [for students] to the
topic” (p. 865). In Sect. 3, two of the emerging theoretical perspectives are grounded
in conceptual studies (Hackenburg, 2010; Simon et al., 2016, 2018) whereby students
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use the dynamism of computer microworlds to support research focused on the
interrelationship between technical and conceptual dimensions.

When students engage in doing technology-based mathematics learning activities,
they may set goals and search to find appropriate CT tools that are needed to solve
a mathematical task. Dependent upon the cognitive demand of a task, students can
set different types of goals (i.e., performance or learning) which results in students
exhibiting different types of behaviors. When using these CT tools, Zbiek et al.
(2007) identified two types of activities students engage in when solving tasks:
exploratory and expressive (p. 1180). Building on mathematical modeling research
(Bliss & Ogborn, 1989), students engaged in doing exploratory activities will follow
teacher instructions to use specific CT tools and procedures. On the other hand,
expressive activities allow students to select their own CT tools and make their own
decisions on how they will solve a technology-based task. Mathematics curricula
often include “explorations” for students to engage with different learning activi-
ties and dependent upon how much teacher direction (Type C) is given, elements of
both exploratory and expressive activity can be observed. Examining how students
engage in doing mathematics through these two forms of activity will often result in
different student learning outcomes (Type A). As an example of expressive activity,
Zbiek et al. described the role of “play” in learning where students were allowed the
freedom of unstructured play and time to try a range of different actions with CT
tools to determine what was possible or not possible as they viewed the results of
their actions. Students engaged individually or with partners and eagerly called out
what they observed in a technological setting. However, the conundrum of the “play
paradox” (Hoyles & Noss, 1992) comes to the forefront, where many CT tools offer
students such a wide range of processes for solving problems, that they may never
encounter the mathematical content a teacher intended or what the designers of a
technology-based activity planned. Zbiek et al. offered mixed research results on the
productive use of unstructured, expressive play versus structured, exploratory play
to engage students in learning and doing mathematics.

Moreover, in a technological setting, researchers have examined both types of
activity (i.e., exploratory or expressive) that students engaged in and made observa-
tions of students’ corresponding behaviors which “lead to insights about the appro-
priateness of their use of those tools and about their understanding of mathematics”
(Zbiek et al., 2007, p. 1184). Specifically, inferences about students’ mathematical
thinking were supported by students’ actions with CT tools, which in turn, reflected
students’ mental actions. To categorize student behaviors, Zbiek et al. introduced
the construct of work method which draws upon the research of Guin and Trouche
(1999) and Trouche (2005). In a 1999 study of 17- to 18-year-old students’ engage-
ment with mathematical tasks that included an option to use symbolic calculators,
Guin and Trouche reported five different student work methods: random, mechan-
ical, resourceful, rational, and theoretical. As an example, students using a random
work method would search using trial and error to find a CT tool action that would
give any answer (i.e., correct or incorrect) for a mathematical task. Yet, students’
engagement in a random process of finding any result often provided evidence of
students missing the mathematical analysis of a problem. In other words, students
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accepted the results without any reflection related to the underlying mathematics
which hindered their ability to achieve mathematical learning goals.

Revisiting the development of frameworks for mathematics curricula designed for
student engagement with learning activities, some researchers (Sandoval et al., 2000
and Hong & Thomas, 2002 as cited in Zbiek et al., 2007) have identified the construct
of representational fluency as a lens to study students’ learning by noticing how and
why students interact and make sense of multiple representations of the same mathe-
matics entity. How might students think differently about possible models and strate-
gies for problem solving in a technological environment that provides quick access
to multiple representations? Also, how could the selection of mathematics content go
beyond traditional school mathematics due to the potential capabilities of CT tools?
Consistent with other researchers, Zbiek et al. described representational fluency as
“the ability to translate across representations, the ability to draw meaning about
a mathematical entity from different representations of that mathematical entity,
and the ability to generalize across different representations” (p. 1192). Access to
technology can provide learners with opportunities to use different actions to ‘try
out’ multiple representations and make sense of expected or unexpected results. As
students reflect on their actions and begin to understand the meaning of each repre-
sentation, they have an opportunity to develop representational fluency which could
lead to a deep understanding of mathematical concepts.

Taken together, addressing research studies examining student engagement in
learning activities (Type B) portrayed in frameworks of curriculum initiatives,
including technological environments, provides insight relevant to both cognitive
and affective aspects of student learners as they become knowers and doers of
mathematics. To address Lesh et al.’s (2020) concerns, researchers can ask: How
have we transitioned from measuring student learning for lower-level procedural
outcomes toward analyzing student learning associated with desired higher-level
thinking student outcomes (Type A)? One way researchers may respond is to consider
areview since Medley’s work of important constructs that interpret existing research
and target new areas of research with a focus on the complexity of the learning and
teaching process; that is, the interrelationships between teachers, students, math-
ematical activities, curriculum content, and the added effect of technology. In the
next section, three theoretical perspectives provide explanations relevant to how and
why student behaviors and dispositions develop in the way they do within different
learning environments.

3 Theoretical Perspectives

Within a framework for research relevant to study student behaviors and disposi-
tions, questions can be raised that warrant further investigation about how and why
students engage in learning activities. What kinds of interactions provide students
with learning opportunities to develop mathematical knowledge with understanding
and do mathematics? Are there patterns in how students become “knowers and doers
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of mathematics” or is it idiosyncratic for individual students? Middleton et al.’s
(2017) recent review of engagement research articulates the complexity of studying
the phenomenon of student engagement while learning and doing mathematics. They
reported four individual and overlapping components of engagement: behavioral,
cognitive, affective, and social. There are research challenges in providing expla-
nations that attend to the four different components of engagement in learning
activities to move our understanding of students’ mathematical thinking forward.
Jansen (2020) elaborated and defined engagement with mathematics as “an interac-
tive relationship students have with the subject matter, as manifested in the moment
through expressions of behavior and experiences of emotion and cognitive activity,
and is constructed through opportunities to do mathematics” (p. 273). To advance
research relevant to student learning activities, researchers could consider Jansen’s
recent focus on cognitive and social aspects of behaviors “in the moment” to provide
evidence of what engagement might look like for students building mathematical
content knowledge. In Siedal and Shavelon’s (2007) meta-analysis of studies of
teaching effectiveness related to student learning during the period 1995 to 2004,
they articulated the role of student learning activities needed to build understanding:

We assumed that learning is a set of constructive processes in which the individual student
(alone or socially) builds, activates, elaborates, and organizes knowledge structures. These
processes are internal to the student and can be facilitated and fostered by components of
teaching. Moreover, we assumed that higher order learning and a deep understanding of
learning content is based on the quality of knowledge building and, thus, on the execution
of learning activities. Learning activities should evoke both basic information processing
and domain-specific processing. Consequently, we assumed the area of executing learning
activities to be most proximal to knowledge building. (p. 462)

Relevant to Manizade et al.’s (2019) framework of examining relationships
between variables to determine “good” teaching (Introduction, this volume), Siedal
and Shavelson’s meta-analysis reported constructivist and social constructivist
paradigms of knowing in studies that made connections between students’ execu-
tion of student mathematics learning activities (Type B), desirable student learning
outcomes (Type A), and interactive teaching behaviors (Type C). Different theo-
ries of learning hypothesize frameworks centered on student engagement in mathe-
matical learning activities and consequential desired student learning outcomes. As
researchers interpret particular aspects of the learning process, it is framed by their
own construction of theories to explain what they notice in students’ behaviors and
dispositions.

In this section, I describe three theoretical perspectives that provide explanations
of student engagement in learning activities which are needed to develop mathe-
matical content knowledge with understanding and engage in processes envisioned
in frameworks of curriculum initiatives over the last three decades. Departing from
describing student learning activities in mathematics classrooms, two researchers’
conceptualizations of learning are examined through individual dyads and one-on-
one teaching experiments using technology-based problems (Hackenberg, 2010;
Simon et al., 2016, 2018; Tzur, 1999; Tzur & Simon, 2004). According to Tzur
(2004), teaching experiments allow a teacher-researcher to present tasks, use ongoing
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analysis of students’ current cognitive constructs, and design more tasks that promote
students’ engagement in constructing higher-level mathematical thinking. On the
other hand, consistent with Medley’s call for research in classroom settings, Liljedahl
(2016) studied connections between teaching practices and student engagement in
learning activities in mathematics classrooms (Type CB research).

3.1 Developing Schemes: Progressive Coordination
of Actions

Hackenberg’s (2010) model of students’ reversible multiplicative schemes is an
important contribution to the evolution of research on students’ engagement in math-
ematics learning activities. Synthesizing prior studies of students’ development of
fraction knowledge (Steffe, 1994; Tzur, 1995, 1999, 2004), Hackenberg identified
three areas of research that informed key theoretical constructs for her study: (a)
building on students’ prior knowledge and everyday experiences with fractions; (b)
student learning activities for fraction knowledge—partitioning and unitizing; and
(c) three of Kieren’s (1980) five subconstructs of fractions—quotients, operators, and
measures of length. Further, she studied the process of reversibility in developing
multiplicative relationships. Solving a problem with a sequence of actions in one
direction is not easily decomposed to reorganize a scheme in the other direction.
Before reporting on the results of Hackenberg’s study, her interpretation of scheme
theory is described to explain one theory about how learners develop mathemat-
ical knowledge. Similar to Medley’s review, she drew upon theories of Piaget and
Vygotsky to explain how students learn mathematics.

Hackenberg defined mathematical learning ““as a process in which people make
accommodations in schemes in ongoing interaction with their experiential world”
(p. 385). According to von Glasersfeld’s (1989) interpretation of Piaget’s theories,
a scheme consists of three parts: (a) an individual recognizes a situation or experi-
ence from a previous situation, (b) engagement in an activity associated with this
situation, and (c) expecting the same result or outcome experienced when previ-
ously engaged in the activity. When examining fraction knowledge that is needed to
develop multiplicative schemes, learners engage in activities, such as partitioning,
dis-embedding, iterating, and splitting (see Steffe & Olive, 2010; Tzur, 1995, 1999,
2004 for details of these operations). A perturbation occurs when a learner’s current
schemes no longer appear useful because they do not fit past learning experiences. To
eliminate perturbations, schemes either remain stable, or become modified contin-
gent upon a learner’s actions and reflections. For Hackenberg, a perturbation explains
any reorganization of a learner’s existing schemes. Through repeated experiences, a
process of reflective abstraction internalizes knowledge based upon the entire cycle
of perturbation, action, and reflection. If a learner coordinates a scheme successfully
using accommodation and does not need to physically act on parts of a task while
describing his or her reasoning, an anticipatory scheme is constructed.
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Hackenberg’s research design allowed her to engage four sixth-grade students in
problems to facilitate each learner’s construction of anticipatory fraction schemes
for reversible multiplicative relationships. Data collection consisted of videotaped
episodes with cameras focused on interactions between a pair of students and
researcher, and a recording of students’ computer or written work. Students used
the JavaBars computer program (Biddlecomb & Olive, 2000) to facilitate a mean-
ingful interpretation of the fraction construct of measure as length. Olive (1994)
stated that microworlds are “tools for the teacher/researchers to construct situations
in which they can use their emerging models of the children’s mathematics” (p. 71).

Using retrospective analysis of the video files, Hackenberg examined each
student’s cognitive structures and how schemes changed over time. She reported
that students constructed schemes to solve tasks when a fraction relationship existed
between known and unknown quantities. One pair of students demonstrated use
of fraction anticipatory schemes. Only one of the four students also engaged in
reversible schemes when constructing reciprocal relationships. Hackenberg found
that students’ construction of anticipatory schemes for multiplicative relationships
required a coordination of three levels of units prior to engaging in an activity.
Teaching experiments using technology-based problems offer an environment where
researchers can examine students’ engagement in exploratory or expressive activities
(Zbiek et al., 2007). Further, researchers could study how these two activities in tech-
nological settings are related to scheme theory to provide an explanation of student
actions and reflections when they are building mathematical content knowledge and
doing mathematics.

3.2 Learning Through Activity: Progressive Coordination
of Mathematical Concepts

In a similar vein, building upon Piaget’s (1980) theoretical construct of reflective
abstraction, Learning Through Activity [LTA] (Simon et al., 2016, 2018) is aresearch
model that examines how learners engage in learning activities to develop mathe-
matical concepts. In an evolution of research on student learning activities, prior
LTA research from the past 10 years provided insight for an emerging integrated
theory relevant to students’ conceptual learning and instructional design. Using
Manizade et al.’s (2019) framework, the LTA research model potentially informs
future research making connections between Type D, C, B, and A variables (Intro-
duction, this volume). Specifically, the LTA model seeks to answer this question:
“How do humans learn mathematical concepts, and how can instruction be designed
to enlist these learning processes in service of learning particular mathematical
concepts?” (Simon et al., 2018, p. 96). Further, what is the process that engages
a learner to move forward from constructing one concept to a higher-level concept
in a learner’s network of knowledge for different mathematical concepts? And how
can this learning process be promoted?
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To study these questions, Simon et al. (2018) proposed an elaboration of the
construct of reflective abstraction with two refinements: Focusing on new concepts
developed from prior concepts rather than using schemes, and a shift away from
earlier work of abstractions attributed to a reflection of activity-effect relationships
(Simon et al., 2004). The authors asserted that perturbations do not provide evidence
of how learning occurs and scheme theory does not explain what a learner “attends
to” in order to achieve a learning goal. Moreover, they no longer viewed reflective
abstraction as a chronological sequence of actions for developing a new concept,
but a construction of higher-level concepts based on lower-level actions. Balancing
the needs of mathematics and a learner, Simon et al. (2018) described developing
concepts as a “bi-directional” process; “that is, how one explains conceptual learning
is dependent on the nature of a concept, and the nature of a concept is, in part,
determined by the process through which itis constructed” (p. 98). A concept consists
of a goal (e.g., solve a task) and an action a learner takes to achieve the goal. When
engaged in mathematical activity, learning may not occur if there are no prior actions
(i.e., mental activities) a learner can access. In LTA’s model, actions are considered
components of concepts, which transforms the construct of reflective abstraction
from a coordination of actions to a coordination of existing concepts (Simon et al.,
2016). Student learning activities provide opportunities for learners to construct
mathematical concepts if they are aware of a sequence of available mental actions
they have already constructed.

As an example of progressive coordination of concepts, Simon et al. (2018)
analyzed the 5-year Measurement Approach to Rational Number (MARN) Project
data. Similar to Hackenberg’s (2010) study, the same program, JavaBars, was used to
facilitate students’ construction of fraction and multiplicative concepts. A teacher-
researcher interacted one-on-one with a student to avoid the influence of others’
thinking that is often encouraged in classroom settings. The task sequence research
design included: “(1) Assess the relevant understanding of the learner; (2) Specify
the learning goal (intended abstraction); (3) Identify an activity or activity sequence
that the learner already has available that could be the basis for the new abstrac-
tion; and (4) Design a sequence of tasks that is likely to bring forth the learners’
use of this activity and lead to the intended abstraction” (Simon et al., 2016, p. 67).
When students engaged in carefully designed tasks intended to promote concep-
tual learning, individual learning processes illustrated “in the moment” thinking and
student focus while solving the task.

Building on Tzur and Simon’s (2004) hypothesis that two stages, participatory
and anticipation, are necessary to develop mathematical concepts, LTA researchers
(Simon et al., 2016, 2018) proposed that an initial reflective abstraction is only the
first of two stages for building a mathematical concept. For the first, participatory
stage, a learner engages in an activity and uses existing concepts to begin to develop
new mathematical knowledge. The analyses of MARN data provided evidence that
learners may not be able to use their initial abstraction (concept) created one day
for a similar task the following day. Only when a learner could call upon an earlier
abstraction (concept) in different contexts, LTA researchers identified this second
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stage as anticipatory. Simon et al. (2018) reported that a fourth-grade student coor-
dinated pairs of actions when determining a composite fraction amount of a whole
number quantity. Higher-level conceptual knowledge was built upon prior existing
knowledge. The two-stage distinction represents a new aspect of research when
analyzing qualitative data of student engagement in learning activities. Still, LTA
researchers point out that future research is needed to provide a more detailed expla-
nation of how teachers can promote a transition from students’ participatory stage
to an anticipatory stage for developing conceptual knowledge. What is the role of
teacher activities (Type C) to facilitate this transition of students engaged in knowing
and doing mathematics (Type B)?

To inform data analysis and instructional design, LTA researchers (Simon et al.,
2016, 2018) also continued to study the development of a reversible concept Hack-
enberg (2010) and other researchers (Steffe, 1994; Tzur, 2004) have examined as a
necessary part of conceptual learning. A student may construct a reversible concept
when he or she does not need to engage in lower-level actions where the orig-
inal concept was developed. Using the context of Cognitively Guided Instruction
(CGI) research-based addition and subtraction tasks (Carpenter et al., 2015), LTA
researchers built a typology of reversibility for six potential tasks (see Simon et al.,
2016, 2018 for details of reversible concepts). Consistent with Hackenberg’s (2010)
findings for reversibility, Simon et al. (2018) reported that a learner may have an orig-
inal concept and not easily construct reversible concepts. The typology of reversibility
has informed these researchers’ decisions related to the design of instructional tasks
used during the LTA teaching episodes.

Overall, LTA’s theoretical perspective focuses on explaining the process of
building conceptual knowledge through students’ engagement in learning activi-
ties as a progressive coordination of mathematical concepts. Using ongoing data
analyses, individual tasks and sequences of tasks are modified dependent upon a
learner’s progress. If no new concept is developed, more of the same or different
experiences are needed to facilitate student reflection and a new abstraction. A chal-
lenge for researchers is to reflect upon ways to apply LTA’s theory beyond indi-
vidual students engaged in teaching experiment settings and implemented in whole-
classroom settings. To this end, in the next section, I provide an example of student
construction of mathematical knowledge and engagement in learning activities in
the context of classrooms.

3.3 The AHA! Experience: Proxies of Student Engagement

Medley (1987) recommended five different types of future research needed to inform
effective teaching practices, with two types focused on student learning activities in
classroom settings: Type BA, “research relates learning outcomes to pupil learning
experiences” and Type CB, “research relates interactive teacher behavior to pupil
learning activities” (p. 110). For Type CB relationships, Medley posed the following
two questions for researchers to examine: “The teacher whose pupils have the best
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learning experiences in school (Type B)? The teacher whose classroom behavior
conforms most closely to some conception of ‘best’ practice (Type C)?” (p. 106).
Using Manizade et al.’s (2019) framework (Introduction, this volume), studies are
needed that focus on student—teacher interactions between student learning activities
and interactive teacher behaviors that engage students in becoming knowers and
doers of mathematics.

As an example of Type CB research which evolved from 10 years of earlier
research in Canada, Liljedahl (2016) proposed nine elements of critical teaching
practices that are needed for teachers to orchestrate and sustain student thinking in
mathematics classrooms. Moreover, he identified student proxies of engagement to
describe and measure the effectiveness of the nine elements of teaching practices
to facilitate student learning. In many of his classroom observations, he reported
how teachers implicitly assumed “that the students either could not or would not
think” (p. 362). This may be related to established classroom norms that supported
learning in traditional ways which hindered students’ ability to engage in thinking
and problem-solving behaviors recommended by reform curriculum initiatives.

Liledahl argued for a transition moving away from a non-thinking toward a
thinking classroom; that is, “a space that is inhabited by thinking individuals as well
as individuals thinking collectively, learning together and constructing knowledge
and understanding through activity and discussion” (p. 362). Consistent with other
researchers’ (Cobb, 1994; Cobb et al., 1992) calls for the coordination of Piaget’s
(1970) constructivist and Vygotsky’s (1981) sociocultural perspectives, Liljedahl
assumed that knowledge is constructed both individually and collectively, during
social interactions with others while engaged in doing mathematical activities. For
Cobb (1994), these two complementary perspectives address how theories of learning
emerge; that is, “the sociocultural perspective gives rise to theories of the conditions
for the possibility of learning, whereas theories developed from the constructivist
perspective focus on both what students learn and the processes by which they do
s0” (p. 18). As described earlier, Hackenberg’s and Simon et al.’s research approach
of teaching experiments provided explanations for the process of student learning
outside mathematics classrooms.

To inform Liljedah’s (2016) study of teaching and learning practices in secondary
mathematics classrooms, it is useful to review his perspective on the process of
mathematical learning “in the moment” during group work and individual problem
solving. In 2005, experiences in his mathematics course for prospective elementary
school teachers (PTs) affected their thinking about teaching and learning mathe-
matics. An AHA! experience occurred when “a problem has just been solved, or
a new piece of mathematics has been found, and it has happened in a flash of
insight, in a moment of illumination” (Liljedahl, 2005, p. 219). If a student was
“stuck” working on a problem, but experienced an AHA! moment, she or he became
“unstuck” and continued to make progress. Liljedahl studied the learning process of
how this sudden insight or AHA! experience happened and how it affected the PTs’
ability to make sense of problems and persevere. Some PTs often identify themselves
as failures in mathematics based on a lack of successful learning experiences and they
exhibit high math anxiety in mathematics courses. Given the vision of mathematics
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curriculum initiatives for learners to develop a deep understanding of mathematics,
a potential increase in the intensity of affective responses may result in promoting
more negative attitudes when compared to learning routine procedures. Liljedahl’s
conceptual framework included attention to the affective domain for learning mathe-
matics; that is, examining the constructs of beliefs, attitudes, and emotions (McLeod,
1992). Beliefs reflect low levels of affective involvement, are relatively stable, and
develop over a long period of time. According to McLeod, attitude “refers to affective
responses that involve positive or negative feelings of moderate intensity and reason-
able stability” (p. 581). By contrast, the emotional aspects of learning are unstable
and connect more to “in the moment” feelings that are “fleeting” (McLeod, 1992).

To study the process of how learning occurs when students experience insight
during an AHA! experience, Liljedahl (2005) examined how “moments of illumina-
tion” were related to positive emotions and how they changed PTs beliefs and atti-
tudes about doing mathematics. For an assignment, PTs wrote about an AHA! expe-
rience while problem solving. Analyzing responses, Liljedahl reported four affective
themes: anxiety, pleasure, change in beliefs, and change in attitudes. He found that
repeated positive emotional AHA! experiences produced positive beliefs and atti-
tudes about mathematics and students’ abilities to do mathematics. As an example,
one PT wrote: “AHA moments are those great moments of deeper understanding and
clarification of problems where incorrect or incomplete understanding is overcome.
These moments inspire us and encourage us to keep going despite the frustration and
anxiety that often tends to overwhelm us in times of difficulty when attempting to
solve a problem” (p. 231). Engaged in making sense of mathematics, this PT became
aware of her need to persevere, as moments of insight can lead to an understanding of
mathematics. Liljedahl hypothesized two explanations for a high degree of change in
the affective domain: “Positive emotion that is achieved during an AHA! experience
is much more powerful than the emotions that are achieved through non-illuminated
problem solving” and “Having solved something challenging, or understood some-
thing difficult, besides being a great accomplishment is also a measure of what
is possible” (p. 231). AHA! experiences promoted changes in PTs’ behaviors and
dispositions; that is, engagement in student learning activities of problem solving
and perseverance.

Liljedahl (2016) extended his work and investigated engagement of secondary
mathematics students who worked together in small groups of two to four to solve
problem-solving tasks. He studied the interaction between Type B and C variables
by examining the effect of different teaching practices and how students engaged in
problem solving. To inform his observations, he used Mason’s (2002) framework of
noticing; that is, “Noticing refers to the act of focusing attention and making sense of
situational features in a visually complex world” (Jacobs & Spangler, 2017, p. 771).
From data analysis, he proposed nine elements of effective mathematics teaching
practices for building and sustaining a thinking classroom (see Liljedahl, 2016;
for list/analysis of practices). Using an iterative design-based research approach,
each element provided opportunities for teaching practices to be refined or dropped,
depending on how students engaged in mathematical thinking while problem solving.
Still, Liljedahl reported that it was challenging for teachers and students to shift from
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traditional, familiar classroom norms. To resolve this issue, he used a “contrarian”
approach in which an ineffective practice was changed to the exact opposite and then
implemented in mathematics classrooms.

Liljedahl measured the effectiveness of teaching practices by studying “proxies
of engagement—observable and measurable (either qualitatively or quantitatively)
student behaviors” (p. 366). He referred to these behaviors as “proxies” because he
did not have direct access to student thinking and he could not tell if the mathematical
thinking was an individual construction, or, collective thinking due to interactions
with others. He reported eight student behaviors and dispositions: (1) time to task,
(2) time to first mathematical notation, (3) eagerness to start, (4) discussion, (5)
participation, (6) persistence, (7) non-linearity of work, and (8) knowledge mobility.
Asdescribed in Sect. 2, linkages can be made between Liljedahl’s student engagement
in learning activities (Type B) and those listed in various frameworks of curriculum
initiatives. In response to Lesh et al.’s (2020) concerns of the need for “measures”
of higher-level student understanding, Liljedahl provided a framework of student
behaviors and dispositions that could be used in future studies to provide evidence
of the effects of students’ engagement in learning activities while building content
knowledge and doing mathematics.

Moreover, Middleton et al. (2017) reported researchers studying student engage-
ment experiences often approach their studies using a lens of an observational study.
Also, interview data can provide more detailed insights on the observed behaviors.
For his 2016 study, Liljedahl conducted follow-up interviews to confirm teachers’
interpretation of student behaviors. Similar to other research perspectives focused
on how student mathematical learning occurs and described in this section, Liljedahl
asserted that we need “to honor the activities of a thinking classroom through a
focus on the processes of learning more so than the products and it needs to include
both group work and individual work” (p. 382). That is, as Medley (1987) recom-
mended for the future evolution of research for teaching, there is a need to focus
on the interplay between elements of teaching practices and student engagement
in learning activities (Type B and C variables) rather than examining only student
learning outcomes (Type A).

In summary, the last three decades of frameworks of mathematics curriculum
initiatives impacted researchers’ approaches to studying the needs of the learner
and needs of the discipline for effective mathematics teaching and learning. The
complexity of studying student engagement in higher-level thinking with under-
standing has called for an examination of student learning activities through a lens of
various theoretical perspectives that provide explanations relevant to how and why
student behaviors and dispositions develop in the way they do. Given the different
perspectives relevant to students’ development of mathematical thinking with under-
standing and doing mathematics, theories have emerged in particular settings using
teaching experiments in technological settings and mathematics classroom environ-
ments. As students become knowers and doers of mathematics, Chan and Clark
(2017) address the difficulty in conducting valid and reliable research studies of
student learning in classroom settings, as there is a “tension between the need for
control in an experimental environment and the freedom needed for the participants
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to interact and behave as they would in a naturalistic classroom setting remains a
challenge in the design of research studies investigating student learning in social
settings” (p. 954).

Nevertheless, different theoretical perspectives allow researchers to gain insight
into potential refinements in the conceptualization or design of studies that examine
student learning activities and active student engagement within diverse individual
and whole-class settings, including CT tool environments. This could result in unique
insights emerging from studies making explicit connections between Type A, B, and
C variable relationships. The next section characterizes a selection of studies of
student mathematics learning activities identified earlier in Sect. 2 that encompass
most behaviors and dispositions into two main activities: (1) making sense of mathe-
matics (i.e., problem-solving) and (2) perseverance in doing mathematics: productive
disposition, productive struggle, and productive failure. Taken together, the studies
extend the mathematics education knowledge base of the effects of student learning
activities when students engage in developing mathematics knowledge with under-
standing and doing mathematics. Each study includes a brief description of method-
ology to address Medley’s (1987) quality concerns related to conceptualization,
instrumentation, design, and statistical analysis.

4 Making Sense and Perseverance Involved in Learning
Mathematics Knowledge

4.1 Problem Solving

Mathematicians, mathematics educators, and teachers have described the problem-
solving process in multiple ways (Schoenfeld, 1992) which has led to the develop-
ment of research agendas focused on examining student behaviors supporting the
development of mathematical knowledge (Lesh & Zawojewski, 2007; Schoenfeld,
1992; Schoenfeld & the Teaching for Robust Understanding [TRU] project, 2016).
According to Santos-Trigo’s (2020) recent review of mathematics education research
literature, problem solving is defined as “the systematic study of what the process of
formulating and solving problems entails and the ways to structure problem-solving
approaches to learn mathematics” (p. 687). Over the last three decades, studying the
behaviors and dispositions of student engagement in problem solving has continued
to be a research priority with an emphasis on detailed accounts of teacher expecta-
tions for problem solving and student interactions in mathematics classrooms. This
is attributed to the shift of focus on teachers understanding students’ mathematical
thinking “in the moment” and making connections between Type B and C variables
(Manizade et al., 2019). Lesh and Zawojewski (2007) described students’ engage-
ment in problem solving as using “several iterative cycles of expressing, testing
and revising mathematical interpretations—and of sorting out, integrating, modi-
fying, revising, or refining clusters of mathematical concepts from various topics
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within and beyond mathematics” (p. 782). As described earlier, teaching experiment
methodology (Hackenberg, 2010; Simon et al., 2016, 2018) has provided an oppor-
tunity for researchers to examine students’ thinking “in the moment” and explain
how students develop mathematical conceptual understanding.

An emerging field of research is investigating student learning activities (see
Sect. 2) identified in the Common Core standards of mathematical practice [SMP]
(Bostic & Sondergeld, 2015; Gilbert, 2014; Sanchez et al., 2015) and similar math-
ematical competencies (Hipkins, 2018; McDowell & Hipkins, 2018; Niss, 2003;
NRC, 2001; Turner, 2010) that focus on students’ sense-making and extends Polya’s
(2004) problem-solving research. A new term of mathematical sense-making defines
the needs of a learner when engaged in problem solving as a critical component of
what it means for students to know and do mathematics. A limited number of qual-
itative studies (Bostic & Sondergeld, 2015; Kapur, 2014; Warshauer, 2015) have
examined research questions focused on students’ problem-solving experiences in
mathematics classrooms. Although the term problem solving is not explicitly stated
in the SMP, the meaning is implicit and places a priority on problem solving as
students “make sense”” of mathematical content.

The literature revealed various teacher interpretations (Type C) of student
problem-solving behaviors (Type B) as envisioned in frameworks of mathematics
curriculum initiatives. In an exploratory study, Keazer and Jung (2020) designed a
survey for 71 PTs in which they responded to questions about student mathematics
learning activities. For example, PTs read a paragraph description of the first SMP
and were asked to think about their future teaching when responding: “Which aspect
of SMP1 do you think will be most difficult for you to develop in your students?
Why?” (p. 82). Separate statements of the SMP1 description were matched along-
side PT responses that described anticipated difficulties when engaging students in
these behaviors and dispositions. The PTs selected: They make conjectures about
the form and meaning of the solution and plan a solution pathway rather than
simply jumping into a solution attempt, with the highest frequency as the most diffi-
cult learning activity to develop; the second highest activity was: Mathematically
proficient students check their answers to problems using a different method, and
they continually ask themselves, ‘Does this make sense?’ Encouraging their future
students to plan, use more than one strategy, and reflect on the problem-solving
process as “making sense” did not appear to be a strength. Close to one-third of the
PTs shared that they themselves struggled with some of the expected learning goals
of SMP1. Consequently, it was a major challenge for many PTs to anticipate how
they would engage students in learning activities (Type B) in their future mathematics
classrooms.

Keazer and Jung’s findings led to their design of a conceptual framework matching
student behaviors and dispositions articulated in the SMP1 sentences to Polya’s
(2004) four problem-solving phases. Citing the research of Schoenfeld and the
TRU project (2016) with a focus on the cognitive demand of tasks dimension, they
proposed using the SMP1-Polya framework to facilitate prospective and practicing
teachers’ understanding of different levels of sense making (i.e., problem solving).
According to Keazer and Jung, “SMP1 aligns with level 3 sense making, in which the
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teacher supports students in mathematical exploration and productive struggle that
results in understanding and engagement in mathematical practices” (p. 88). Making
connections explicit between sections of SMP1 sentences and Polya’s problem-
solving phases could provide an entry point for supporting teachers’ understanding
of student engagement in problem-solving experiences. With the high frequency of
two SMP1 statements in the PTs responses, the student behaviors of Polya’s second
phase, devise a plan, and fourth phase, look back, continued to show the need to
engage students in problem solving or making sense of mathematics to develop a
progression of understanding mathematical concepts. For researchers interested in
understanding different levels of students’ sense making that supports participatory
and anticipatory conceptual development, problem-solving activities may provide
an opportunity to examine LTA’s theory of progression of concepts (Simon et al.,
2016, 2018) beyond individual students to small- and whole-group work methods in
mathematics classrooms.

4.2 Productive Disposition

Building upon Liljedahl’s (2016) theoretical perspective that includes affective
factors of learner engagement, recent studies are focusing on student “persever-
ance” in solving problems. As described earlier, the NRC (2001) defined an affective
strand of productive disposition as viewing “mathematics as sensible, useful, and
worthwhile, coupled with a belief in diligence and one’s own efficacy” (p. 116).
Gilbert (2014) broadened the meaning of productive disposition to include learning
activities in which students are “making sense of problems and persevering in solving
them” and linkages to motivational theory. Observing students actively engaged in
doing mathematics, researchers could ask: What do strengths-based learners look
like when they exhibit the characteristics of a productive disposition in mathematics
classrooms? According to Kobett and Karp (2020), “They are just curious and fasci-
nated. They work diligently, even when faced with obstacles. They try again when
stymied. They understand that learning mathematics can be hard work and they will,
therefore, often continue to work well after their peers have given up” (p. 43). For
further investigation, how might researchers study and measure these characteristics
of students displaying productive disposition?

As an example, in October 2005, Gilbert (2014) surveyed a sample of 140
prealgebra students who volunteered to participate from two California middle
schools. She hypothesized a relationship between productive disposition (Type B)
and an achievement-related (Type A) variables. Specifically, she studied a relation-
ship between students’ abilities to attend to precision when they critiqued another
student’s work. To examine student learning activities, Gilbert stated, “The behav-
iors required to demonstrate these SMP thus relate to psychological constructs that
go beyond ability beliefs (e.g., efficacy) and utility value (i.e., usefulness of mathe-
matics)” (p. 340). First, students responded to survey questions that measured moti-
vational constructs associated with productive disposition, such as, “My main goal
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in math is to learn as much as I can” (mastery-approach goal) (p. 342). Second,
students completed an assessment item which measured their ability to add fractions
with unlike denominators. Third, using an open-ended question, students were given
a student’s incorrect work, ¥2 + 3 = 4/6, and asked to write an explanation to the
student indicating why the answer was right or wrong.

Gilbert reported using reliability and factor analyses with an examination of corre-
lations that documented the subscales measured distinct constructs of productive
disposition. She found that 44% of the students responded with a more precise
critique of a student’s incorrect strategy by engaging longer and suggested at least
two steps to correct the student’s work. Also, a multivariate analysis of variance
supported the hypothesis that students who responded with a more precise critique
of apeer’s work reported a higher productive disposition than students who responded
with a basic critique. Two motivation constructs: (1) productive disposition and (2)
mastery approach goals and negative emotions, showed statistically significant differ-
ences between the two groups. Based on survey responses, more precise critique
students reported higher mastery-approach goals and less frequent negative emotions
compared to basic critique students. The results of this study suggest more research is
needed to focus on NCTM’s (2014) effective teaching practices (Type C), including
“building procedural fluency from conceptual understanding” (Type B, mastery-
approach goals), where the procedure of adding fractions is built upon a foundation
of conceptual understanding. Using multiple representations of fractions, students
could be provided with opportunities to make connections between concepts and
procedures situated in a classroom where meaningful mathematics discourse occurs.

4.3 Productive Struggle

Beginning elementary school teachers often say that students should not “strug-
gle” or be confused in learning mathematics and if they do struggle, a teacher may
restate the same strategy for students to follow. Keazer and Jung (2020) reported
a few PTs stated they needed to “show and tell” (Type C) all possible strategies
to students rather than engage them in productive struggle. However, researchers
have reported the positive effects of productive struggle whereby the act of strug-
gling is crucial for students learning mathematics with understanding (Hiebert &
Grouws, 2007; Keazer & Jung, 2020; NCTM, 2014; Schoenfeld & TRU, 2016;
Warshauer, 2015). Hiebert and Grouws (2007) defined productive struggle as a
student learning behavior that promotes students making sense of mathematics and
is necessary to develop conceptual understanding. In a similar manner, Dingham
et al. (2019) identified productive struggle as “intellectual effort students expend
to make sense of mathematical concepts that are challenging but fall within the
students’ reasoning capabilities” (p. 91). Schoenfeld and the TRU project (2016)
identified five dimensions of mathematics learning activities that were necessary
to ensure that classroom environments supported students as “powerful thinkers.”
In response to the needs of the discipline, one dimension focused on the cognitive
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demand of tasks in “which students have opportunities to grapple with and make
sense of important disciplinary ideas and their use. Students learn best when they are
challenged... The level of challenge should be conducive to what has been called
productive struggle” (p. 1). Similar to behaviors and dispositions described in Sect. 2,
productive struggle engages students in perseverance when solving challenging prob-
lems. Schoenfeld and the TRU project (2016) reported teachers categorized at the
highest level supported “students in productive struggle in building understandings
and engaging in mathematical practices” (p. 24). Likewise, NCTM (2014) explicitly
addressed the need for teachers to engage students in productive struggle: “Effective
teaching of mathematics consistently provides students, individually and collectively,
with opportunities and support to engage in productive struggle as they grapple with
mathematical ideas and relationships” (p. 48).

Warshauer (2015) studied what different types of student struggle looked like
in six U.S. middle school mathematics classrooms and how teachers responded to
their students’ struggles (Type CB research). His conceptual framework centered
on the “process of struggling to make sense” (p. 378) for a deep understanding
of mathematics, the relationship between the students’ struggles and the types of
mathematical tasks explored, and the dynamic, social nature of interaction when
teachers responded as helping or hindering student learning. Given the complexity of
studying student—teacher and student—student interactions, he conducted embedded
case study methodology (Yin, 2009) using instructional episodes. Multiple sources
of data allowed for triangulation of the data to establish dependability, confirmability,
and transferability when he reported findings of the study.

Warshauer developed a productive struggle framework for reporting the frequency
of four different types of student behavior of struggle: get started, carry out a process,
uncertainty in explaining and sense-making, and express misconception and errors
(Type B). As an example, “confusion about what the task was asking” or a “gesture
of uncertainty or resignation” (p. 385) described students struggling at the beginning
of the problem-solving process. It should be noted that there is a parallel alignment in
some of his framework categories to Polya’s (2004) four phases of problem solving;
that is, “get started” with Polya’s first phase and “carry out the process” with the third
phase. Similar to Keazer and Jung’s (2020) study, connecting student struggles to
some of Polya’s problem-solving phases could provide researchers with a new lens
for analyzing students’ sense-making through existing problem-solving literature.

For student—student interactions, Warshauer reported students’ “uncertainty in
explaining and sense-making” when their explanations lacked clarity and did not
make sense to other students, or they struggled with appropriate responses. He found
evidence of proportional reasoning misconceptions such as using additive rather
than multiplicative thinking for the meaning of ratios. For teacher-student interac-
tions, Warshauer reported the frequency of four different types of teacher responses to
student struggles: telling, directed guidance, probing guidance, and affordance (Type
C). The first two types of responses did not engage students in productively under-
standing the concept of proportional reasoning. As might be anticipated, a telling
response often enabled a student to move beyond being stuck, but used a teacher’s
thinking rather than student thinking. Often, a procedure was stated for a student to



182 M. A. Timmerman

follow which resulted in lowering a problem’s level of cognitive demand. Both the
last two types of teacher responses supported students’ thinking without lowering
the level of cognitive demand.

Warshauer identified three outcomes of student struggles: productive, productive
at a lower level, and unproductive. Productive interactions included: “(1) maintained
the intended goals and cognitive demand of the task; (2) supported students’ thinking
by acknowledging effort and mathematical understanding and (3) enabled students
to move forward in the task execution through student actions” (p. 390). He reported
42% of student struggles met all three criteria, 40% of the interactions only used the
second criteria, and 18% of struggles were unproductive. For unproductive struggles,
students were not “making progress toward the goals of the task; reached a solution
but a task that had been transformed to a procedural one that significantly reduced the
task’s intended cognitive demand; or if the students simply stopped trying” (p. 391).
In essence, teachers balanced how much they pressed students to persevere based on
students’ levels of tolerance for frustration at different levels of cognitive demand.
Productive struggle depended on keeping tasks at higher cognitive-demand levels,
supporting students’ perseverance, and teachers who provided guidance and affor-
dance. These results promote the future use of a productive struggle framework
as a tool for researchers examining students’ productive struggles (Type B) and
teacher-student interactions (Type BC research).

4.4 Productive Failure

Research on examining students’ productive struggle when attempting to make sense
of mathematics content and persevere in solving problems, is related to engagement in
another Type B variable: productive failure (Kapur, 2010, 2014; Simpson & Maltese,
2017). Failure can be defined in many ways, such as, giving up or stopping engage-
ment in an activity, not reaching the intended goal, or incorrect problem solutions.
Further, failure can bring to the forefront negative connotations such as “negative
emotional states (e.g., fear, anxiety, depression), low perceptions of self, diminished
sense of belonging, less academic risk taking, and avoidant behaviors” (Simpson &
Maltese, 2017, p. 223). These negative behaviors and dispositions suggest that failure
may decrease students’ desire or ability to continue to problem solve. Still, what might
happen if we view failure as a “necessary and sufficient condition” for students’
engagement in learning activities? In what ways might students’ metacognitive anal-
ysis of their problem-solving process while stuck on a problem make errors explicit,
or, how may critiquing their peers’ use of models and strategies support learning?
According to the Partnership for 21st Century Learning (2019), creativity and inno-
vation are enhanced through failure; that is, persistent attempts are part of innovative
practices marked by “a long-term, cyclical process of small successes and frequent
mistakes” (p. 4). How might this process of success and failure be part of learning
activities?
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Simpson and Maltese (2017) studied the role of failure in the development of
science, technology, engineering, or mathematics (STEM) professionals. They inter-
viewed 99 STEM professionals about their experiences in entering and pursuing a
STEM-related career. Using life history interviews, they focused on how participants’
failure shaped: outlooks connected to failure, career trajectories within STEM fields,
and provision of additional skills. They reported about one-fifth of the professionals
described failure as a positive experience. However, when using a follow-up survey
and asked if “the term failure was an accurate representation or label of their experi-
ences, 67% disagreed and claimed words and phrases such as inadaptability, setback,
unsuccessful, not living up to expected outcomes, defeat, and learning opportunity
as more suitable” (p. 228). Rather than considering failure as an end to becoming
a STEM-related professional, they reported two-thirds of respondents saw failure
as a minor setback that motivated them to move past difficulties in coursework or
professional projects. Also, they described the trait of “persistence” as the most
“important quality to possess when experiencing instances of failure” (p. 233). As
described earlier, perseverance is a productive student mathematics learning activity
envisioned by curriculum initiatives over the last three decades.

In a study of ninth-grade students who lived in the national capital region of
India, Kapur (2014) proposed that engaging students in problem solving which
initially resulted in productive failure would ensure “correct conceptual knowledge
and mathematical procedures over faulty ones” (p. 1009). For Kapur, the term produc-
tive failure meant that students’ initial individual problem-solving attempts were
unsuccessful in finding correct solutions, and became productive when supported
with appropriate mathematics classroom instruction. Similar to productive behav-
iors researched over the last decade, Kapur hypothesized relationships between indi-
vidual student failure (Type B), sequence of teaching phases (Type C), and student
outcomes (Type A). For Kapur’s (2014) study, in one classroom, students first partic-
ipated in a problem-solving (PS) phase for standard deviation (SD) problems that
was followed by a direct instruction (DI) phase. In the comparison classroom, the
same teacher first taught students using DI followed by a PS phase. During the PS
phase, students solved a SD practical problem individually and the teacher encour-
aged them to use multiple strategies and find as many solutions as possible. For
the more traditional DI phase, the teacher showed four examples of SD problems,
gave time for individual student practice, and provided student feedback related to
common SD misconceptions.

Similar to Gilbert’s (2014) study, Kapur examined aspects of both cognitive and
affective behaviors and dispositions using surveys and mathematics content knowl-
edge measures. He designed four instruments to measure students’ learning of SD
concepts and procedures. These included a pre- and post-test of SD knowledge and
survey questions relevant to engagement and mental effort. Kapur reported that the
class of students who began instruction with a PS phase provided an average of six
different solutions to a SD practical problem. The number of solutions served as a
“proxy”” measure of students’ prior knowledge activation. By comparison, the other
class of students beginning with DI, only demonstrated an average of three different
solutions.
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Examining affective behaviors and dispositions, data collected from survey ques-
tions provided evidence of significantly greater mental effort of productive failure
students (PS phase first) compared to DI students (PS phase second) during both
phases of instruction. Yet, Kapur found no significant difference between the two
sequences of instruction on math ability or prior SD knowledge. Analyzing posttest
data and the two different sequences of instruction, Kapur reported “significant multi-
variate main effects only of math ability and condition” (p. 1013). Although there
was no significant difference between students’ procedural knowledge in either class-
room, students engaged in the PS phase first, significantly outperformed students
receiving the DI phase first on posttest conceptual understanding and transfer items.
No significant correlations appeared in the data for students beginning with DI.

Kapur’s research supports a learner’s perspective that is relevant to NCTM’s
(2014) teaching practices whereby teachers provide students time to think, make
conjectures, and use their own strategies while problem solving: “Effective teaching
of mathematics engages students in solving and discussing tasks that promote math-
ematical reasoning and problem solving and allow multiple entry points and varied
solution strategies” (p. 17). Kapur’s study provides specificity for this teaching prac-
tice (Type C) by supporting engagement in student learner activities (Type B) that
may include productive failure first at the beginning of a lesson. After experiencing
a PS phase followed by more instruction, students engaged in more mental effort
and demonstrated more conceptual understanding than students who experienced DI
(teaching as telling) at the beginning of a lesson. Thus, it appeared that productive
failure provided students with an opportunity to learn from their own failed solutions
and they were ready to engage in classroom-based instruction with a focus on impor-
tant mathematical ideas relevant to SD. For teachers who believe it takes too much
time to allow students to think and engage individually in the PS process, Kapur
found that “time on task, the number of problems solved, and materials for each of
the phases were identical in both [classes]” (p. 1010).

5 Discussion of Findings and Future Implications

What can be learned from this selected analysis and review of student mathematics
learning activities that actively engage students in knowing and doing mathematics?
How has research evolved over the last three decades to support students’ develop-
ment of mathematical content knowledge and engagement in processes (i.e., behav-
iors and dispositions) that have been identified in multiple frameworks of interna-
tional mathematics curriculum initiatives? How has the increased availability of CT
tools for students enhanced researchers’ observations and inferences of students’
thinking, including technologies to advance research methodologies? What theo-
retical perspectives have researchers refined for examining the nature of students’
construction of mathematical content knowledge with understanding to provide
explanations relevant to how and why student behaviors and dispositions develop
in the way they do within different learning environments? Lastly, how has this
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chapter informed future research needed to advance our understanding of student
learning activities?

To address these questions, this chapter’s review and analysis of three decades
of research highlight the contributions of selected studies related to understanding
the nature of student mathematics learning activities and the resulting impact on
students’ knowing and doing mathematics. The findings offer insights for researchers,
curriculum designers, administrators, teachers, parents, students, and other stake-
holders involved in mathematics teaching and learning, situated in both non-
technological and technological environments. First, a major theme in this chapter of
studies of student learning activities was researchers’ increased focus on reviewing
multiple characterizations of mathematical behaviors and dispositions to refine
competency frameworks to study how students actively engage in the processes
of learning mathematics. An evolution of similar and interrelated learning activities
from different countries provided details about what processes to study and how to
analyze the effect of students’ learning experiences, including two main learning
activities of making sense of mathematical knowledge and perseverance in doing
mathematics. At the beginning of the twenty-first century, Sfard (2003) asserted that
learning activities should “engage students in what may count as an authentic activity
of mathematizing rather than in learning ready-made mathematical facts” (p. 354).
There has been growth in researchers’ understanding of what constructs to study
related to student mathematics learning activities (Type B) and various theoretical
perspectives that provide explanations of students’ engagement in knowing and doing
mathematics.

Although Kobert and Karp (2020) created an alignment of student behaviors
and dispositions between the five strands of mathematical proficiency (NRC, 2001)
and the eight standards of mathematical practice (NGA Center for Best Practices
and CCSSO, 2010), few studies have focused on this alignment and what can be
learned to inform our understanding of student engagement in learning activities.
Researchers could further examine the relationships among these multiple frame-
works in curriculum initiatives and the impact of using different (albeit similar)
frameworks (see Sect. 2) to examine students’ active engagement in learning mathe-
matics. What is the same and what is different in using these identified mathematical
behaviors and dispositions to investigate students’ knowing and doing mathematics?
As another example, how might researchers take advantage of Koestler et al.’s
(2013) and Kobett and Karp’s alignment between the process standards (NCTM,
2000) and standards of mathematical practice (NGA Center for Best Practices and
CCSSO, 2010)? What insights might emerge when researchers “synergize” these
two frameworks together to inform research studies about students’ engagement in
mathematics learning activities? To respond to engaging students in an “authentic
activity of mathematizing” that mathematicians display when they know and do
mathematics (see Sect. 2), researchers could build upon a rich tradition of studying
students’ problem-solving behaviors (e.g., Polya’s problem-solving phases) with a
further examination of critical connections between frameworks and conceptual-
izations of higher-level mathematical processes. Further, research could focus on
at least three of Liljedahl’s (2016) proxies of student engagement (i.e., discussion,
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participation, and persistence) to examine and explain students’ perseverance while
problem solving, both individually and in groups, to make inferences about students’
mathematical thinking.

Second, research over the past three decades has extended our understanding of
how and why the process of student engagement in learning and doing mathematics
occurs in different learning environments. Using teaching experiment methodology,
a small number of studies have articulated emerging theoretical perspectives that
focused on analyzing students’ development of mathematical concepts in technolog-
ical settings outside the classroom (Hackenberg, 2010; Simon et al., 2016, 2018).
From these studies, observations and analyses documented how students engaged
in a sequence of learning activities using CT tools that were intended to promote
students’ reflective abstraction and reversible thinking for rational number concepts.
How might a similar cycle of students’ engagement in learning activities including
CT tools and coupled with researchers’ noticing and analyses provide a research
pathway to further our understanding and infer students’ mathematical thinking
for reversible thinking in different conceptual areas? Simon et al. (2018) proposed
that researchers could positively contribute to addressing unsuccessful mathematics
instruction for specific conceptual areas (e.g., fractions, ratios, proportions, and other)
through implementing the LTA research model.

One result of the last decade of research, Simon et al. (2018) refined an earlier
theoretical framework of scheme theory and moved research forward with a better
understanding of the constructs of student learning to create the LTA theory which
resulted in analyzing students’ progressive development of concepts. In what ways
could researchers use the LTA research model of task sequence design and analyses to
investigate students’ engagement in mathematical processes that focus on a progres-
sive concept development and lead to intended abstractions in non-technological
environments? Further studies of students’ learning with understanding in different
areas of mathematics could provide more useful explanations as to how and why
students’ knowledge changes or does not change “over time” or “in the moment.”
Moreover, if researchers look beyond using teaching experiment methodology, what
can be gleaned from the LTA approach to investigate small- and whole-group student
engagement in knowing and doing mathematics in classrooms? In particular, findings
from Liljedahl’s (2005, 2016) studies should be explored using his new conceptual
framework to measure and expand our understanding of a relationship between math-
ematics teaching practices and student learning activities (Type CB research) that
seems necessary to build and sustain thinking classrooms. Furthermore, the past two
decades of research studies about student mathematics learning activities has shown
an increased focus of examining the interrelationships between Type B and C vari-
ables (Keazer & Jung, 2020; Schoenfeld & TRU, 2016; Warshauer, 2015) to inform
our understanding of the effects of students’ engagement in learning activities. Yet,
more studies are needed to explore research questions about relationships among
Type B and A variables (Gilbert, 2014) and Type A, B, and C variables (Kapur,
2014) to improve student learning outcomes (Type A).

A third finding of this chapter is the identification of some of the important
constructs (e.g., expressive activity, exploratory activity, representational fluency,
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and others) that are needed to inform research related to technology-based mathe-
matics teaching and learning (Zbiek et al, 2007). These constructs should be further
explored to refine our current understanding of links between student engagement in
the processes (i.e., behaviors and dispositions) of learning mathematics and students’
use of CT tools. As an example of future research for studying “promising variables”
with student-tool relationships, Zbiek et al. proposed: “Students’ dragging behavior
[with CT tools] could be viewed as an intervening variable between the mathemat-
ical activity and student achievement” (p. 1201). In other words, using Manizade
et al.’s (2019) framework for examining relationships between Type B and A vari-
ables (Introduction, this volume), researchers should investigate the potential of a new
“intervening variable” between two adjacent variables in the adaptation of Medley’s
(1987) work that could provide evidence of how students engage in learning and
doing mathematics in technological settings.

Given the documentation of some unproductive student work methods, Zbiek et al.
call for “research that identifies constructs that are associated with the development
of judicious use [italics added] of technology” (p. 1186); that is, examining teacher
activities (Type C) which facilitate students being aware of their need to focus on the
mathematics content of a task and use productive work methods (Type B). Researcher
observations of successful and unsuccessful student behaviors when using CT tools
may provide insight into how the successful use of technology can be sustained and
ways to change unsuccessful student behaviors.

Further questions that warrant researchers’ investigation of students’ mathemat-
ical learning and engagement with technology-based activities include: If students
encounter an unexpected result with one representation (using CT tools), do they
stay with that representation, or switch to another representation that provides more
insight as a way to solve a given task? What is the role of teacher activities (Type C)
in engaging students in their development of representational fluency? As described
in Sect. 2, access to technology introduces the “play paradox” where unstructured,
expressive activity can enable some students to avoid the intended mathematical
content of an activity. How might studies of understanding students’ development
of representational fluency provide evidence of the effect of exploratory activity and
expressive activity in technological settings? Zbiek et al. advocate for studies of “how
the representational fluency of a group relates to the representational fluency of indi-
viduals in the group” (p. 1194). Also, is there a relationship between the construct of
representational fluency and student work methods (Zbiek et al.)? Within technolog-
ical environments, researchers should consider many of these questions and examine
relationships between Type A, B, and C variables to inform the knowledge base of
student mathematics learning activities.

Fourth, reviewing different conceptualizations of student engagement in mathe-
matics learning activities focused on not only identifying behaviors and dispositions
that actively engage students in knowing and doing mathematics in existing studies
but also to suggest new directions in building the knowledge base related to student
mathematics learning activities. A clear trend of this chapter’s selected review of
studies about student learning activities focused on how and why students make
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sense of mathematics “in the moment” and perseverance to know and do math-
ematics “over time.” Whether using teaching experiments or classroom settings,
researchers investigated and explained students’ engagement in learning mathe-
matics with understanding and doing mathematics. As an example, Liljedahl’s (2005)
study of PTs’ problem-solving activities and their “AHA! moments of illumina-
tion” promoted positive changes in their mathematical understanding (i.e., cogni-
tive construct) and productive dispositions (i.e., affective construct). Complementary
relationships between cognitive and affective constructs of students’ mathematical
learning experiences could inform future research design for individual studies or
sets of related studies. Moreover, studies with an increased focus of examining inter-
relationships between Type B and C variables provided evidence of how teachers
responded to individual students’ use of or lack of problem-solving strategies and
informed their decision-making on next steps in a lesson or sequence of lessons (see
Sects. 3 and 4).

To advance our current understanding of mathematics teaching and learning, there
is a continued need to review and extend the knowledge base related to the devel-
opment of student behaviors and dispositions that actively engage all students in
knowing and doing mathematics. One way to move the knowledge base forward
is a consideration of the results of the past decade with an increasing availability
of wide-ranging technological methodologies that can provide data about students’
engagement in mathematics learning activities to both teachers and researchers (Type
CB research). To address the gap between research and practice for understanding and
improving students’ mathematical learning experiences, Cai et al. (2018) proposed
the collection, analysis, and use of “continuous data on the learning experiences of
each student” (p. 363) to facilitate researchers’ understanding of explicit connec-
tions between teaching practices (Type C) and student learning activities (Type B).
Yet, questions need to be considered if technological and methodological tools exist
without overwhelming both researchers and teachers with too many data? According
to Cai et al. (2018), the “capacity to capture, process, and store comprehensive cogni-
tive and noncognitive data longitudinally for every student either already exists or
is on the near horizon” (p. 364). Two years later, Cai et al. (2020) described current
digital tools for collecting and managing student data but acknowledged that techno-
logical tools that could be used “during [classroom] lessons to monitor small-group
discussion, analyze student work, and even gauge students’ affect” (p. 392) are still
under development. Still, examining the future potential of technology to access
student mathematical thinking for each student in the next decade, Cai et al. (2018)
have proposed a framework for collecting, analyzing, and using data on students’
mathematical experiences that uses a three-part time frame: (1) in the moment, (2)
short term, and (3) long term (p. 366). In addition, both cognitive and noncogni-
tive learning experiences, such as “students unexpected responses” and “students’
engagement with tasks” are identified and have been reported in prior studies of
student mathematics learning activities (see Cai et al., 2018, for further frame-
work details). Future research is needed to ground this framework in the data across
multiple diverse settings.
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Notwithstanding and looking to the next decade, Bartell et al. (2017) asserted
that the “CCSSM, with its implicit political and economic goals and its lack of
explicit attention to race, gender, class, and so forth, is not framed to support equity”
(p- 9). Consequently, Bartell et al. designed a framework to connect research-based
equitable mathematical teaching practices (Type C) with all the SMP (Type B) to
explicitly address issues of equity. Making connections, they identified nine core
teaching practices described in the chapter on culture, race, and power in the Second
Handbook of Research on Mathematics Teaching (Diversity in Mathematics Educa-
tion , 2007) and more recent research (see Bartell et al., 2017, for details of the
practices). As an emerging field of research, their framework offers existing and new
research connections between student mathematics learning activities and equitable
mathematical teaching practices (Type BC research). Each part of the framework
provides multiple entry points for research supporting what it means for students to
actively engage in effective and equitable mathematical learning activities. Students’
engagement in mathematical behaviors and dispositions needs to be studied in partic-
ular contexts and situations to inform and extend the knowledge base of what works
and does not work for all students to become knowers and doers of mathematics.

Brief, Capsule Definitions of Terms and Documents
for Chapter 6

o Assessment, curriculum and evaluation, and professional standards for school
mathematics: A trilogy of documents that provided a vision for the organization
of curriculum reform in the U.S. in the 1990s (National Council of Teachers of
Mathematics [NCTM], 1989, 1991, 1995).

® Behaviors and dispositions: Identification of student experiences, such as, profi-
ciencies, processes, practices, competencies, and habits of mind (Kobett & Karp,
2020, p. 40) that demonstrate how students develop and show evidence of their
mathematical thinking.

e Cognitive technological (CT) tools: Consists of tools that support a “syner-
gistic relationship” between technical and conceptual dimensions of mathematical
activity in technological environments (Zbiek, Heid, Blume, & Dick, 2007).

e Competencies: Frameworks for knowing and doing mathematics, such as, (1)
Denmark’s (2003) mathematical competencies that provided evidence of students’
“mental or physical processes, activities, and behaviors” (p. 9); (2) Program for
International Student Assessment [PISA] (PISA, 2021) assessed mathematical
competencies as “an individual’s capacity to reason mathematically and to formu-
late, employ, and interpret mathematics to solve problems in a variety of real-
world contexts” (PISA, 2021); and (3) Identified in the New Zealand Curriculum
(NZC), competencies “that describe what they [students] will come to know and
do” (Ministry of Education, 2015, p. 37).
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e Conceptual understanding: Student learning is defined as the “comprehension
of mathematical concepts, operations, and relationships” (National Research
Council [NRC], 2001, p. 116).

e Direct instruction (DI): Traditional, instructional methods where students watch,
listen, and take notes about problems that teachers provide procedures and
solutions for students to follow and use (Kapur, 2014).

® Learning goals: Focus on student “understanding” where students build knowl-
edge; “Explicitly state what students will understand about mathematics as aresult
of engaging in a particular lesson” (Smith & Sherin, 2019, p. 14).

® Learning through activity[LTA]: A research model that examines how learners
actively engage in learning activities through a progressive coordination of math-
ematical concepts (Simon, Kara, Placa, & Avitzur, 2018; Simon, Placa, & Avitzur,
2016).

e Mathematical sense-making: Student engagement in processes, such as problem
solving, to learn mathematics with understanding; one aspect of what it means to
know and do mathematics.

® National Governors Association [NGA] Center for Best Practices & Council of
Chief State School Officers [CCSSO]: Authors of the U.S. Common Core State
Standards for Mathematics (CCSSM), 2010.

e Organization for Economic Development (OECD) Definition and Selection
Competencies (DeSeCo) Project: Created a framework to guide the development
of PISA assessments.

® Performance goals: Focus on the end result or product of students’ engagement
in learning mathematics: “What students will be able to do as a result in engaging
in a lesson” (Smith & Sherin, 2019, p. 14).

e Principles and standards for school mathematics: Updated U.S. document that
provides a vision for curriculum reform at the beginning of the twenty-first century
(NCTM, 2000).

e Problem-solving: Defined as “the systematic study of what the process of formu-
lating and solving problems entails and the ways to structure problem-solving
approaches to learn mathematics” (Santos-Trigo, 2020, p. 687).

® Process standards: Five processes that define what mathematicians might do
and say when engaged in doing mathematics: Problem solving, communication,
representation, making connections, and reasoning and proof (NCTM, 2000).

e Productive disposition: An affective construct defined as learners having an
“habitual inclination to see mathematics as sensible, useful, and worthwhile,
coupled with a belief in diligence and one’s own efficacy” (NRC, 2001, p. 116).

® Productive failure: Students’ initial problem-solving attempts are unsuccessful
and became productive when supported with appropriate mathematics classroom
instruction (Kapur, 2014).

® Productive struggle: A student learning behavior that promotes learners making
sense of mathematics and is necessary to develop conceptual understanding
(Hiebert & Grouws, 2007); “Intellectual effort students expend to make sense of
mathematical concepts that are challenging but fall within the students’ reasoning
capabilities” (Dingman, Kent, McComas, & Orona, 2019, p. 91)
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® Proficiencies: Frameworks for students’ engagement while learning mathematics,
such as, (a) Cognitive and affective proficiencies for five strands: conceptual
understanding, procedural fluency, strategic competence, adaptive reasoning, and
productive disposition (NRC, 2001); and (b) Reasoning as one of the four profi-
ciency strands students engage inwhen ‘“thinking and doing of mathematics”
(Australia Curriculum and Assessment Reporting Authority [ACARA], 2017).

® Prospective elementary school teachers (PTs) and AHA! Experience: Students
engage in problem solving and experience how “a problem has just been solved,
or a new piece of mathematics has been found, and it has happened in a flash of
insight, in a moment of illumination” (Liljedahl, 2005, p. 219).

® Representational fluency: Within or outside technological environments, “The
ability to translate across representations, the ability to draw meaning about a
mathematical entity from different representations of that mathematical entity,
and the ability to generalize across different representations” (Zbiek et al., 2007,
p- 1192).

® Research for principles and standards for school mathematics: Research litera-
ture that informed the U.S. vision of school mathematics in the 1990s and 2000
(NCTM, 2003).

e Scheme: A cycle of perturbation, action, and reflection in which an individual
anticipates, acts and mentally prepares, and assesses the outcome of his or her
actions (Hackenberg, 2010; Steffe, 1994; von Glasersfeld, 1995)

e Standards for Mathematical practice (SMP): Eight mathematical competencies
identified as a national Common Core State Standards for Mathematics (CCSSM)
in the U.S., 2010.

e Student learning activities: “In the classroom... All learning depends on the
activity of the learner” (Medley, 1987, p. 105).

e Student engagement: Defined as “an interactive relationship students have with
the subject matter, as manifested in the moment through expressions of behavior
and experiences of emotion and cognitive activity, and is constructed through
opportunities to do mathematics” (Jansen, 2020, p. 273).

e Teaching for robust understanding [TRU] project: Framework of five dimen-
sions of classroom activity that supports professional development (PD) to engage
teachers in creating a classroom student learning environment that facilitates the
development of powerful thinkers (Schoenfeld & the TRU project, 2016).
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1 Introduction

Within the context of presage-process—product research and its pursuit of ‘good’
teaching (Type C), learning outcomes (Type A) represent the end goal and final
criterion on which any assessment of teaching must be based (Medley, 1977, 1987a;
also see Figs. 2 and 3 in Manizade et al., 2022). In this respect, ‘good’ teaching
can be considered teaching that produces the maximum learning outcomes and
progress to meet the prescribed education goals. However, the very idea of learning
outcomes and educational goals has changed throughout the years, mainly because
the understanding of what education, and here mathematics education, should entail
has changed (Kilpatrick, 2020a; Manizade et al., 2022).

Since the 1980s, worldwide, the increasing demand for knowledge in many
areas of life and work has placed the burden of productivity on education systems
(Klieme et al., 2008). Consequently, this has led to a stronger focus on ‘outputs’
and ‘outcomes’ at all levels of the educational system and their transferability to
the job market. In such a society, mathematical knowledge, ability, skills and(or)
competence are seen as an essential prerequisite in encountering the challenges of
the world today (Boesen et al., 2018; Ehmke et al., 2020; Freeman et al., 2015;
Gravemeijer et al., 2017; OECD, 2016). Such a need has also led to a broader under-
standing of what being ‘mathematically’ equipped means. It includes both posing
and answering questions in and by means of mathematics (i.e., reasoning, modelling,
problem-solving), as well as handling the language, constructs and tools of the field
(i.e., formalism and language, handling different representations, handling material
aids and tools for mathematical activity, digital tools included; Niss et al., 2017;
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Niss & Hgjgaard, 2019). At the same time, mathematics itself consists of different
subfields, each of which may employ somewhat different mathematical tools. Some
have argued that the development of the underlying frameworks that bring together
these constituents has, in return affected teaching to a certain extent (Type C) (e.g.,
Boesen et al., 2014). Such discussions are coupled with considerable differences
of opinion regarding which teaching methods are effective, which may help sustain
different learning goals and desired outcomes (e.g., Blazar, 2015; Hiebert & Grouws,
2007; Hill et al., 2005