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Units of Analysis of Research on Teaching Mathematics that are 
not Under Teachers’ Control: Offline Variables 

Individual Student Characteristics, Abilities and Personal 
Qualities and the Teacher’s Role in Improving Mathematics 
Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 
Rhonda M. Faragher

v



vi Contents

Individual Student Internal Contexts and Considerations 
for Mathematics Teaching and Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 
S. Megan Che and T. Evan Baker 

External Context-Related Research: Digital Resources 
as Transformers of the Mathematics Teachers’ Context . . . . . . . . . . . . . . . 277 
Ghislaine Gueudet and Birgit Pepin 

Competency Framework for the Qualification of Facilitators 
of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 
Joyce Peters-Dasdemir, Lars Holzäpfel, Bärbel Barzel, and Timo Leuders 

Continuing Evolution of Research on Teaching and Learning: 
Exploring Emerging Methods for Unpacking Research 
on Teachers, Teaching, and Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 
Chandra Hawley Orrill, Zarina Gearty, and Kun Wang 

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379



The Evolution of Research on Teaching 
Mathematics: International Perspectives 
in the Digital Era: Introduction 

Agida G. Manizade , Nils Buchholtz , and Kim Beswick 

1 Introduction 

Mathematics teaching is subject to cultural and temporal conditions. Not only do 
school and societal conditions shift, and with them the composition of the student 
body, but also curricular regulations and new mathematical and pedagogical insights 
determine the content to be taught and the approach to learning used in mathematics 
classes. To reflect on mathematics teaching in a changing world, there is a need 
for continuous scientific research into this process of teaching mathematics. Results 
of this research also have a retrospective impact on mathematics teacher education 
insofar as the conditions of education need to be continuously adapted to the profes-
sional requirements of teachers in practice. Research on teaching mathematics thus 
bears a great responsibility and is a constantly evolving field of research for scholars 
around the globe. 

This book comes at the time when the world is facing an ongoing global pandemic 
and experiencing violence and unrest due to active war. This publication symbolizes

A. G. Manizade (B) 
Department of Mathematics and Statistics, Radford University, 801 E. Main St, 105 Whitt Hall, 
Radford, VA 24142, USA 
e-mail: amanizade@radford.edu 

N. Buchholtz 
Faculty of Education, University of Hamburg, Von-Melle-Park 8, 20146 Hamburg, Germany 
e-mail: nils.buchholtz@uni-hamburg.de 

Department of Teacher Education and School Research, University of Oslo, Moltke Moes Vei 35, 
0317 Oslo, Norway 

K. Beswick 
School of Education, University of New South Wales, Morven Brown Building, Kensington, 
NSW 2052, Australia 
e-mail: k.beswick@unsw.edu.au 

© The Author(s) 2023 
A. Manizade et al. (eds.), The Evolution of Research on Teaching Mathematics, 
Mathematics Education in the Digital Era 22, 
https://doi.org/10.1007/978-3-031-31193-2_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31193-2_1&domain=pdf
http://orcid.org/0000-0002-3088-6178
http://orcid.org/0000-0003-4254-7525
http://orcid.org/0000-0002-0224-5648
mailto:amanizade@radford.edu
mailto:nils.buchholtz@uni-hamburg.de
mailto:k.beswick@unsw.edu.au
https://doi.org/10.1007/978-3-031-31193-2_1


2 A. G. Manizade et al.

a professional commitment and international collaboration par excellence apropos 
teaching mathematics. The editors from three different continents and researchers 
who represent sixteen institutions and eight countries worked constructively and 
collaboratively with utmost respect for each other, with intentions to reflect on 
existing research knowledge and to create new knowledge that can be shared and 
used by other educators and researchers across the world. 

In preparation for this book, our international group of researchers shared current 
issues related to the evolution of research on teaching mathematics. We examined 
the present state of research on mathematics teaching and discussed the theoret-
ical and methodological challenges associated with it, including issues related to 
conceptualization, instrumentation, and design. Additionally, we explored the likely 
direction of future research developments. In our literature review and discussions 
on this project, it became evident that studies on teaching frequently establish direct 
relationships between units of analysis that, at first glance, cannot be assumed to 
be directly related in a chain of effects. There are examples of studies presented in 
this book that directly relate teacher competencies to student achievements using 
empirical measurement models in a causal or relational way. Without criticizing 
these studies across the board, however, it seems reasonable to consider moderating 
or intermediate variables in this chain of effects (Baron & Kenny, 1986), such as the 
initiated student learning activities observable by teachers in the classroom, aspects of 
instructional quality (e.g., classroom management or cognitive activation), or corre-
sponding student variables such as attention and cooperation in class or students’ 
prior knowledge (e.g., Fig. 1). 

Although there are researchers who do indeed study mediating variables (e.g., 
Blömeke et al., 2022), it became clear to us that there is a lack of a systematic 
scientific overview of the complete chain of effects between teacher characteristics, 
activities, and students’ learning processes. Overviews of precisely these aspects of 
research on teaching and respective studies are scarce, which inspired this book.

Mathematics teachers’ 
competencies 

Student mathematics 
learning outcomes 

Mathematics teacher 
activities 

Student mathematics 
learning activities 

Fig. 1 Example of a chain of effect in teaching 
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2 The Purpose of the Book 

Research that aims to relate teachers’ observable actions with students’ gains in 
achievement is referred to as process–product research. The term was first used by 
Donald M. Medley and Harold E. Mitzel (Hunt et al., 2010; Medley & Mitzel, 1963). 
Presage-process–product research then also considered other important variables, 
namely all the preceding and mediating variables that influence the actions of teachers 
in the classroom, such as teachers’ professional training, knowledge, competencies, 
skills, personality traits, and teachers’ abilities to plan a lesson or assess students. 
The framework for this book was based on a 1987 seminal work called “Evolution 
of research on teaching” by Medley (1987), in which he discussed literature on the 
development of research on teaching for thirty years prior to that publication vis-à-vis 
the presage-process–product standpoint. In it, he described a set of essential variables 
of research on teaching as given in Fig. 2, which he labelled online variables - “ones 
which lie along a direct line of influence of the teacher on pupil learning” (p. 105) 
and offline variables, “ones which affect pupil learning but are not under the direct 
control of the teacher.” (ibid.). 

Updating this framework is timely and, since it has not been described for mathe-
matics teaching in particular, the framework was adapted and applied in the context 
of mathematics teaching and mathematics teacher education, as presented in Fig. 3 
(Manizade et al., 2019). In the past twenty to thirty years, research on teaching has 
evolved further, and researchers have used a wide range of conceptual and theoretical 
frameworks in an effort to advance knowledge in presage-process–product research 
in mathematics education (e.g., Blömeke et al., 2016; Buchholtz, 2017; Liljedahl, 
2016; Manizade & Martinovic, 2018). For this reason, the terms of the variables used 
by Medley (1987) have been adapted to the current research discourse. Although the

Type F – Chapter 1.1 
PRE-EXISTING TEACHER CHARACTERISTICS 

Type E – Chapter 1.2 
TEACHER COMPETENCIES 

Type D – Chapter 1.3 
PREACTIVE TEACHER BEHAVIORS 

Type C – Chapter 1.4 
INTERACTIVE TEACHER BEHAVIORS 

Type B – Chapter 1.5 
PUPIL LEARNING ACTIVITIES 

Type A – Chapter 1.6 
LEARNING OUTCOMES 

Type J – Chapter 2.4 
TEACHER TRAINING VARIABLES 

Type I – Chapter 2.3 
EXTERNAL CONTEXT VARIABLES 

Type H – Chapter 2.2 
INTERNAL CONTEXT VARIABLES 

Type G – Chapter 2.1 
INDIVIDUAL PUPIL CHARACTERISTICS 

Fig. 2 Representation of Medley’s 1987 framework mapped to the book’s chapters 
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field of research on teaching mathematics has considerably advanced during the past 
twenty to thirty years, we find that the main units of analysis in the current research 
studies have remained the same: thus, Medley’s framework is still valuable as it 
gives an orientation to all possible variables that become apparent qua the chain of 
effects from teacher behavior to student achievements. Moreover, the abiding chal-
lenges associated with the conceptualization, instrumentation, operationalization, 
and research design that Medley described are still complex, despite recent advances 
in technology and research methodology in the digital era. 

One of the aims of the book is to update and situate Medley’s framework within 
mathematics education research of the last three decades. Societal and educational 
realities have changed significantly since Medley wrote his seminal paper. Therefore, 
based on current research, additional variables must be considered in the chain of 
effects. Another goal is to provide researchers, who are scientifically concerned 
with more than one main unit of analysis—as described in Fig. 3—with current 
knowledge and methods apropos of the respective variables in the overview chapters. 
Each chapter of the book is based on reviews of research conducted over the past 
twenty to thirty years and written by leading experts in the respective fields. The 
chapters therefore also address cultural and technological aspects of the research on 
the respective variables.

Main Units of Analysis of Research on Teaching Mathematics 

Type F: 
Pre-existing mathematics teacher characteristics 

a mathematics teacher’s beliefs and aptitude for teaching, characteristics 
needed to acquire professional competencies during training 

Type E: 
Mathematics teachers' competencies, knowledge, and skills 

to function effectively in mathematics teaching situations 

Type D: 
Pre- and post-active mathematics teacher activities 

such as planning, assessment, reflection, and other out-of-class activities 
of mathematics teaching 

Type C: 
Interactive mathematics teacher activities 

activities of the mathematics teacher while in the presence of students 

Type B: 
Student mathematics learning activities 

occur in the mathematics classroom. The types of student experiences 
that will result in desired learning outcomes 

Type A: 
Student mathematics learning outcomes 

measured after the teaching is over 

Type J: 
Mathematics teacher training and 

experiences 
designed to increase mathematics teachers’ 

range of competencies 

Type I: 
External context variables 

support systems: materials, technology, 
facilities, supervision, administrative support, 

community and parental support 

Type H: 
Internal context variables 

characteristics of students or groups of 
students which affect response to mathematics 

teacher behaviors and actions 

Type G: 
Individual student characteristics, abilities, 

and personal qualities 
which determine outcomes of any specific 

learning experience 

Within Cultural and Epistemological Contexts 

Within a Digital Context 

Fig. 3 Updated framework of research on teaching mathematics 
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Additionally, in his original work, Medley focused on discussion surrounding 
good teaching and the complexity of defining such a term in research (Medley, 
1987). In the past twenty to thirty years, myriad of new theoretical perspectives on 
teaching mathematics have emerged in the field. These perspectives assume that 
a wide range of mathematics learning goals based on theoretical frameworks are 
enacted by teachers in the classroom (Manizade et al., this volume). Depending on 
these goals, the definition of good teaching and what is valued in the mathematics 
classroom can have an array of meanings (Manizade et al., this volume). These 
include reproducing the perfect sequence of steps when solving a mathematical 
problem, engaging students in productive struggle and productive failure, developing 
mathematical constructs through collaborative discourse, and addressing students’ 
lived cultural experiences as mathematical experiences, to name a few. The updated 
framework, therefore, considers the epistemological contexts of research on teaching 
mathematics with respect to main units of analysis, in addition to considering the 
cultural and digital contexts that also affect all units of analyses of research presented 
in the framework (Fig. 3). 

3 Book Structure 

The book is comprised of two parts. In part one, we examine research in mathe-
matics education with focus on units of analysis that Medley called online variables 
(Medley, 1987). In contrast to current use, the term online has a distinct and different 
meaning in Medley’s work. Online variables are units of analysis of research that can 
be under the control of mathematics teachers. They included research on mathematics 
teaching and teacher education that examined: pre-existing mathematics teacher char-
acteristics (Type F); mathematics teacher competencies, knowledge, and skills (Type 
E); pre-post-active mathematics teacher activities (Type D); interactive mathematics 
teacher activities (Type C); student mathematics learning activities (Type B); and 
student mathematics learning outcomes (Type A) (Fig. 3). 

In part two, we examine mathematics education research with main units of anal-
ysis that are not under the direct control of teachers. These include offline research 
variables (Medley, 1987) such as individual student characteristics, abilities, and 
personal qualities (Type G); internal context variables (Type H); external context 
variables (Type I); and mathematics teacher training and experiences (Type J). A 
detailed discussion of both parts of the book is presented later in this chapter. Because 
the offline (Types J, I H, and G) research foci that are not under the direct control 
of mathematics teachers are so broad, our authors selected a subset of research vari-
ables within each type to discuss in their respective chapters included in part two 
of the book. We understand the importance of each research focus and unit of anal-
ysis and acknowledge that a larger publication would be needed to include all their 
components. 

In the following section, we give an overview of the individual units of analysis 
of research on teaching mathematics, as well as the chapters of the book.
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4 Part 1: Online Variables 

4.1 Pre-Existing Mathematics Teacher Characteristics 

Pre-existing teacher characteristics include abilities, knowledge, and attitudes that 
a candidate for admission to a teacher preparation program possesses on entry, as 
well as a candidate’s aptitude for teaching. In order for teachers to learn the neces-
sary competencies for teaching in teacher education processes, they must possess 
appropriate entry-level prerequisites that sustain competency development. 

Mathematics teacher competencies include, for example, cognitive abilities such 
as prior mathematical and pedagogical knowledge at the point of study entry, atti-
tudes toward mathematics as a subject or toward the learning and teaching mathe-
matics, as well as motivational and volitional variables such as enthusiasm for the 
subject of mathematics and personality traits and identity aspects such as one’s own 
understanding of one’s role, self-regulation and self-concept, and ability to reflect 
and collaborate with students and with colleagues. More recent research also counts 
emotional aspects such as personal well-being or stress resilience among personal 
factors that play a role in competence acquisition at entry level. It should be noted 
here that all the influencing variables themselves also change in the context of teacher 
education. That is, in line with Medley, the changeability of personality structures is 
assumed. 

In Chap. 2, Olive Chapman compiles findings on these main research units of 
analyses based on extensive literature reviews spanning over more than twenty years. 
With respect to the prior mathematical knowledge of pre-service teachers, Chapman 
focuses on studies in the content area of fractions, whole number operations, geom-
etry and algebraic thinking and problem-posing. Many of the current studies demon-
strate, in part, large gaps in knowledge related to conceptual understanding of elemen-
tary mathematical concepts and operations, which pose an ongoing challenge to 
teacher education. For the area of prior mathematics-related pedagogical knowl-
edge, Chapman focuses on studies examining skills in observing instruction and 
noticing and analyzing student work and thinking and evaluating tasks. Here, too, 
the systematic review revealed weaknesses among beginning pre-service teachers 
who, for example, can generate few pedagogical decisions from observations of 
instruction or fail to recognize the potential of mathematics tasks. In the area of 
attitudes, Chapman adds to existing findings with those related to attitudes toward 
technology use and mathematical processes or specific mathematics areas such as 
algebra. 

Overall, Chapman notes a shift in studies over the past twenty years away from 
focusing on single “hard” categories, such as high school graduation or mathematics 
grades, to examining content aspects of prior knowledge and learning conditions 
including those influenced by culture and technology at the beginning of the teacher 
education program. Finally, Chap. 2 also addresses methodological challenges and 
future directions for Type F research, including different survey formats, designs, 
and methods of research analysis.
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4.2 Mathematics Teachers’ Competencies, Knowledge 
and Skills 

Medley described Type E teacher competencies as knowledges, skills, and values 
that a teacher possesses. Without going into detail about what exactly is meant by 
competencies, knowledges, or skills, he describes these as the “tools” of teaching 
in an instrumental, functional sense. They are the prerequisites for successful and 
competent teacher action in various situations. This assumes that the prerequisites 
for teaching can be precisely specified for a given situation - as is done in later 
research, for example, through requirements analysis by observing teachers. Interest-
ingly, Medley also included values in these prerequisites and thus included affective 
characteristics of teachers among the competencies. A conceptual understanding of 
competency can be discerned here, the scope of which was recognized in the early 
2000s in the educational psychology discussion on the conceptual understanding 
of competencies and was more widely received. In contrast to Type F, however, 
Medley saw this online variable less as the personality characteristics of teachers. 
He understood teacher competencies as a measurable outcome of teacher education 
and experiences - in contrast to Type F, pre-existing mathematics teacher charac-
teristics. Teacher competencies thus always remain a potential trait in the exclusive 
research of Type E, since the (measurable) performance of these competencies only 
takes place in the actual preparation and implementation of teaching (Type D and 
C). 

In Chap. 3, Nils Buchholtz, Björn Schwarz, and Gabriele Kaiser describe the 
development of mathematics education research on teacher competencies in the 
last 30 years, especially the research on teacher knowledge and affective variables 
such as beliefs or self-regulatory skills. For the subject of mathematics, normative 
requirements have always been formulated for teachers in terms of their content 
knowledge. However, the researchers see the starting point of research on Type 
E in psychological cognition research, which has strongly influenced research on 
mathematics teaching and teacher education. At its starting point, research on Type 
E was thus still closely aligned with Medley’s description. However, Buchholtz, 
Schwarz and Kaiser describe how Lee Shulman’s work in particular inspired, devel-
oped, and advanced the research. A broad research field of qualitative and quanti-
tative studies on teacher cognitions developed, resulting in a plurality of different 
conceptualizations of teacher knowledge that refer to different knowledge bases 
(mainly: content knowledge, pedagogical content knowledge, pedagogical knowl-
edge). Teacher competencies are thus conceived in research as a multidimensional 
construct, the complexity of which poses major challenges to research in terms of its 
measurability. Different ways of measurement (especially through knowledge tests) 
have been used in research. Overall, the plurality in a research field is perceived 
as a strength, especially since it is broadly based internationally. In recent years, 
research on teacher competencies has started to focus more on the situational perfor-
mance of competencies, which has already extended the focus from Type E to Types
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D and C. The reason for this development has been on the one hand methodolog-
ical developments through video-based competence measurement, and on the other 
hand the increasing conviction that teacher competencies can only be examined to 
a limited extent outside of the situational context of practical teaching. That is, an 
isolated consideration of Type E is less insightful. To this end, the chapter provides 
an overview of current research on situational-based mathematics teacher compe-
tency measurement and the relationships among teacher competencies, instructional 
quality, and student outcomes. 

4.3 Pre- and Post-Active Mathematics Teacher Activities 

In his original work, Medley referred to the online variable, Type D, as preac-
tive teacher behaviors. These included such activities as “planning, evaluation, and 
other out-of-class activities of teaching, the things a teacher does to promote pupil 
learning while no pupils are present”. These are practices that demonstrate how 
teachers’ professional competencies knowledge and skills (Type E) affect the quality 
of their classroom interactions with students (Type C), and therefore, indicate how 
successfully the teacher can meet their goals for teaching. 

In their Chap. 4, Agida Manizade, Alex Moore, and Kim Beswick named this 
variable pre- and post- active because several of the Type D activities (e.g., lesson, 
and unit planning) are performed prior to teaching, while others (e.g., reflection, and 
assessment) are conducted after lessons have been taught. Manizade, Moore, and 
Beswick focused on lesson planning, assessment, and reflection as the key actions 
that teachers perform when students are not present in the classroom. These “pre-
and post-” actions are the most direct ways through which teachers shape observable 
teaching work, as mediated by their goals for teaching. These goals are represen-
tations of teachers’ epistemological commitments apropos teaching mathematics, 
whether those commitments be consciously espoused or unconsciously reproduced 
due to constraints within which they work. The researchers surveyed the literature 
on lesson planning, assessment, and reflection according to eight epistemological 
paradigms that are known in the field of mathematics teaching, namely Situated 
Learning Theory, Behaviorism, Cognitive Learning Theory, Social Constructivism, 
Structuralism, Problem Solving, Culturally Relevant Pedagogy, and Project- and 
Problem-Based Learning. They place other perspectives on learning theory, which are 
derivatives of these prevailing paradigms, within this overarching frame. They detail 
each perspective, providing a definition, goals for teaching, pros and cons of each 
theoretical perspective, and examples from the literature on teaching mathematics. 
The chapter revealed that some of the theoretical perspectives are well-reported in 
the literature whilst others have not received the same amount of attention from 
researchers. The researchers recognized that the chapter focused on the western 
cultural context and more research is needed in a variety of cultural settings, consid-
ering each of the settings affects every unit of analysis in research on mathematics 
teaching and teacher education (Fig. 3). The researchers posited that, amidst cultural



The Evolution of Research on Teaching Mathematics: International … 9

contexts and the technological advent of the digital era of mathematics education, 
researchers must engage more explicitly with the theoretical perspectives identified 
as underserved and must themselves reckon with their own epistemological commit-
ments more intentionally when engaging and reporting on studies regarding Type 
D. 

4.4 Interactive Mathematics Teacher Activities 

Medley (1987) described interactive teacher behaviors as “the behaviors of the 
teacher while in the presence of students” (p. 105). He explained that these behaviors 
are typically what are referred to as teaching and are the means through which teachers 
influence students. They are directly observable actions through which teachers trans-
late their pre-post-active behaviors (i.e., planning and other out-of-class activities, 
Type D) into learning experiences for students. They are the bridge between teachers’ 
plans to promote student learning (Type D) and the things that students do that result 
in their learning (Type B). 

In Chap. 5 Kim Beswick, Felicity Rawlings-Sanaei, and Laura Tuohilampi discuss 
the research literature related to the activities that mathematics teachers engage in 
when they are with students. Importantly in the digital era teachers can be with 
students without being physically with them. Teachers’ interactive behaviors in online 
or virtual contexts remain under-researched but have attracted increased attention in 
recent years in which the pandemic forced the closure of schools for periods of weeks 
or months in many countries, necessitating a move to online interaction. 

The authors structure their chapter in two main parts. The first surveys what 
we know about normative teaching practices; the things that typically happen in 
mathematics classrooms whether physical or virtual. They rely primarily on large 
scale studies, principally the Trends in International Mathematics and Science Study 
(TIMSS) and the Programme for International Student Assessment surveys (PISA). 
These studies rely on teacher self-reports as well as student reports of the activity 
that occurs in their mathematics classrooms. TIMSS video studies provided more 
direct access to teacher behaviors but have still relied on teachers to indicate the 
extent to which the video-recorded lessons were typical of their practice. The second 
part of Chap. 5 deals with teachers’ interactive behaviors documented by researchers 
interested in promoting or supporting teachers to implement particular behaviors or to 
adopt in some way an approach to mathematics teaching that the researchers believe 
will be beneficial. Beswick et al. describe the interactive behaviors reported in these 
studies as atypical because they represent approximations of changed behaviors that 
align with the researchers’ perspective.
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4.5 Student Mathematics Learning Activities 

The variable Type B was described by Medley as student learning activities. By 
this, he meant all types of student experiences within the classroom that result in 
the learning outcomes desired by the teacher. These student activities and behaviors 
always take place under teaching objectives, in that they are directed or oriented by 
the teacher and therefore a direct result of an interactive teacher’s behavior (Type C). 
For a direct influence of teaching activities on student learning to be assumed, Medley 
presupposed that all learning is based on learners’ activity. That is, student activity 
can be used as an indicator of learning processes. Most particularly, therefore, it is 
important that any activity is perceived as purposeful. 

Maria Timmerman addresses this purpose of students’ learning activities from a 
mathematical perspective in Chap. 6, presenting different ways in which students’ 
learning activities could be understood and seen as productive or purposeful for 
learning mathematics. She illustrates that effective and equitable experiences of 
students are related to how mathematics learning has been defined over recent 
decades, in different countries internationally and also under different educational 
premises, whereby respective curricula can provide an orienting framework. 

Timmerman notes a shift in mathematics education research towards student 
thinking over the last 30 years, where the focus is no longer exclusively on student 
behavior. This has been driven by developments of new epistemological perspectives 
on mathematics teaching, and the development of new curricular objectives, including 
but not limited to problem-solving, or project-based learning activities. Additionally, 
process-oriented goals, in contrast to the teaching of pure factual knowledge as well 
as the competence orientation, have fundamentally changed student learning activ-
ities by broadening the horizon of what over the years is considered as a learning 
activity in mathematics. 

Regarding the development of the theoretical perspective on student learning 
activities, Timmerman describes different conceptualizations of student learning in 
mathematics, including the theory of progressive coordination of actions and the 
development of cognitive schemata, the research model of learning through activity, 
and research on student engagement, which plays a particularly important role in 
problem solving processes. Timmerman also focuses on how in the context of such 
activities, the affective learning conditions of the students, such as productive dispo-
sitions or student perseverance, which can positively influence student learning activ-
ities (e.g., when students are struggling or failing and can use this for learning 
processes). This also brings the individual prerequisites of students (Type H) more 
into focus when examining the effectiveness of learning activities.
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4.6 Student Mathematics Learning Outcomes 

Medley identified student learning outcomes as the first online variable (Type A), 
which he associated with each type of “changes in pupils” (p. 105) that can be 
measured after teaching has been completed. He referred to the outcome of a 
completed learning process, which at that time was primarily measured in the form 
of achievement gains on standardized tests. In this sense, he called it a “production 
of learning outcomes” (p.105) as a result of teaching with the attention given to 
progress towards teaching goals that could be detected through close observation. 
Learning outcomes are seen as the ultimate goal and the measurability criterion of 
teaching effectiveness. There are, however, challenges associated with the measura-
bility of this criterion, that specifically relate to different theoretical frameworks and 
approaches used for teaching mathematics. These challenges, therefore, continue to 
be a part of the mathematics education research discourse. 

In Chap. 7, Jelena Radišić presents an overview of the challenge of describing 
mathematical understanding and knowledge as a measurable learning outcome, 
addressing different conceptualizations of mathematical competence, literacy, or 
proficiency. Making something as vague as mathematical understanding measurable 
based of certain criteria remains a challenge of mathematics education research to this 
day. Various mathematical activities, such as problem-solving, modelling, reasoning, 
and proving have continuously found their way into mathematics education curricula 
internationally over the last 30 years and still elude measurability of mastery. For this 
reason, teaching effectiveness that is measured according to students’ acquisition of 
these skills, is challenging. Jelena Radišić’s research perspective is based on inter-
national large-scale assessment studies (ILSAs), which have been developed inter-
nationally since the late 1980s for comparative educational monitoring and which 
still today systematically collect and compare learning outcomes on the basis of high 
scientific standards. Since the studies are almost exclusively methodologically quan-
titative and use big data by collecting a large number of variables on many cases, 
they now allow the simultaneous statistical correlation of multiple variables and 
consideration of different contextual conditions in the tradition of presage-process– 
product research. Whereas Medley’s assessment of “good teaching” with respect to 
Type A tended to be general in its maximization of learning outcomes, today’s Type 
A research takes a more nuanced view in measuring effectiveness of learning for 
students with individual learning needs. 

The fact that specific methodological problems arise with the measurement of 
student outcomes is addressed in the chapter, as is the growing influence that tech-
nology has on learning and therefore on our understanding of learning outcomes. 
Finally, Radišić takes a new perspective on research on Type A by describing affec-
tive variables such as student motivation and self-belief as learning outcomes in their 
own right. Affective variables remain underrepresented in research on teaching.
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5 Part 2: Offline Variables 

5.1 Individual Student Characteristics, Abilities and Personal 
Qualities 

In Medley’s model, individual student characteristics (Type G), that is abilities and 
other personal qualities of students, mediate between student learning activities 
(Type B) and student learning outcomes (Type A). This mediating offline variable 
is explained by the observation that students do not show the same outcome even 
under identical learning conditions. Learning processes in the classroom depend to 
a large extent on individual students’ cognitive and affective preconditions, which 
can be shaped by family, social, cultural identity-forming experiences, and physical 
conditions. 

Education is increasingly characterized by high levels of student diversity in many 
countries due to migration movements and cultural and transnational multiple attri-
butions. Individual student characteristics can, therefore, include variables such as 
race, gender, or socio-economic background. The language requirements of students 
today are diversified to a greater extent than in Medley’s time. In many countries, 
students with special educational needs are included in mainstream education, so 
that learning processes are also influenced by students’ physical or social-emotional 
development and how they can overcome learning difficulties or learning disabilities. 
Mathematics education research also takes up emotional and physical characteris-
tics such as resilience, mathematics anxiety, or students well-being as psychological 
variables influencing the individual learning process. 

In Chap. 8, Rhonda Faragher describes central aspects of Type G in an overview 
and focuses on the subset of Type G, namely learners with intellectual disabilities, 
learning difficulties, and learned difficulties. She starts by describing two significant 
developments in the last decades: the recognition of streaming (tracking) as harmful; 
and the recognition of inclusive education as beneficial. These have changed the 
nature of mathematics classrooms substantially. Faragher first describes different 
approaches of mathematics education, neuro-psychological research, and general 
pedagogical research on special needs education to understand learning difficulties 
and learning disabilities of students and to make them accessible for research. She 
then presents different approaches that have developed in recent years to address the 
impact of these learning difficulties and learning disabilities on student achievement 
in the classroom and to provide equal opportunities for all students. The researcher 
claims that in doing so, teachers can adapt instruction in ways such as by the use 
of Universal Design for Learning (UDL), using digital tools that make instructional 
content more accessible to students, or adapting curriculum and learning activities 
to students’ achievement levels and prior knowledge. Faragher uses case studies of 
achieving equity for students with Down syndrome to illustrate the latter throughout 
the chapter. Faragher argues that with the increasing acceptance and implementa-
tion of inclusive learning in the classroom, in research the Type G offline variable 
is ultimately not only a mediator between Type B and Type A, but as the direction
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of future research, this offline variable must also play a role in other research vari-
ables, for example when teachers’ lesson-planning is analyzed or appropriate support 
structures are created in schools. 

5.2 Internal Context Variables 

Internal context variables (Type H) affect individual or group student responses to 
any teacher actions in the classroom. They mediate between the interactive teacher 
behaviors (Type C) and the learning activities (Type B), thus influencing the way 
students respond to the teacher in social interaction and behave during initiated or 
mediated learning activities. By its nature, the Type H variable is close in content to 
the Type G variable, as psychosocial factors of student diversity are both evident at 
the individual level of learning processes and express their collective expression in 
the responses of students or groups of students to the teacher’s teaching activities. 
This may include, for example, students’ work behavior, motivation, self-efficacy, 
or self-regulation. Recent mathematics education research has also focused on the 
social and emotional experience of students and their well-being in the classroom. 
The offline variable, Type G, addresses intrapersonal cognitive preconditions and 
processing, as well as affective attitudes of the students, and thus primarily focuses 
on individual appropriation processes of the students against the background of diver-
sity, the variable Type H. Additionally, this main unit of research analysis focuses 
on social and interpersonal factors of the students’ diversity, which become particu-
larly important in the interaction between student and teacher and leads to different 
observable actions of the students in the classroom. 

Megan Che and Even Baker, in Chap. 9, follow this broader perspective on context 
variables by focusing on identity-creating aspects of individual student personality 
in their description of the Type H variable. The central thesis of their chapter is 
that the identity of students is not only based on individual elements, but also on 
collective elements and the learning context, i.e., the mathematical experiences of 
the students as doers of mathematics, which consequently requires a situated consid-
eration of identity-forming aspects and internal context variables both in research 
and in teaching within external contexts. In their description of the future direc-
tion of research on student internal context, Megan Che and Evan Baker call for 
further consideration of research approaches based on critical theory and postmodern 
perspectives on educational contexts. The researchers claim that these perspectives 
can provide additional insight into “understandings of students’ mathematical iden-
tities and internal social contexts in a variety of technological mathematical learning 
environments, including gaming environments, online mathematics classrooms, and 
social media environments” (Che & Baker, this volume) without dismissing the 
importance of students’ access to the technology. Additionally, they discuss another 
future research focus, “online communities and the potential to inhabit yet another 
identity as a virtual being in virtual worlds.” (Che & Baker, this volume).
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5.3 External Context Variables 

External context variables stand for the support system within which teachers act and 
thus exploit and develop the potential of their competencies for professional practice. 
Medley understood this as the material, the facilities, the supervision, and adminis-
trative support provided by the school or the community of practitioners. Since these 
offline variables are mediating factors between teacher competencies and pre-post-
active teacher activities, external context variables mainly influence how teachers 
carry out activities such as lesson planning, evaluation, and reflection depending on 
contingently given formal and material structures in the global educational system 
or the local school. Medley illustrated this dependency by highlighting that teachers 
with the same, or even assumedly identical competency profiles would act differently 
in differently supported instructional settings. 

What does the support mean within the school context in the sense of mathematics 
educational research on Type I? If we look at research on textbooks and curricula, 
for example, culturally shaped task and examination cultures and national educa-
tional standards come into view, and form the normative guidelines for teachers’ 
work in formulating learning goals and planning lessons. For the practical imple-
mentation of these guidelines, lack of free access to teaching materials and books 
is too often an obstacle. The collegial support of mathematics teachers at school 
can also be counted as part of this support system. The opportunities for further 
training through involvement in informal or national teacher associations, access to 
professional development (PD) and local feedback structures at school, for example 
through the principal, parents, or peers, are part of the support system described. 

In Chap. 10, Birgit Pepin and Ghislaine Gueudet consider an offline variable of 
the technological support of teaching. This new variable, which Medley could not yet 
include among the external context variables at the end of the 1980s, has continuously 
shaped the schoolwork of teachers within the last 30 years. In their chapter, Pepin and 
Gueudet shed light on the educational policy preconditions and anchors for the use of 
digital resources and educational technologies, as well as research on the willingness 
and preconditions for teachers to use or not use technology and digital resources in 
the classroom, or on the reasons why they do not. Overall, they note, the role of the 
teacher is changing toward supporting the learning process as students become more 
self-regulated learners in their engagement with digital learning tools. The integration 
of programming into mathematics instruction, which has been increasingly promoted 
over many years, also requires new knowledge on the part of the teacher. Research on 
the quality criteria of digital resources is also receiving attention, for example, on the 
development of electronic curriculum materials, electronic textbooks, and dynamic 
mathematics tasks that, in terms of student learning of mathematics, require teachers 
not only to integrate these materials into the classroom, but also to design their 
instruction around them.
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5.4 Mathematics Teacher Training and Experiences 

The duration and quality of teacher training can differ qualitatively and quantitatively 
across teachers, as Medley described in the Type J offline variable. Different teacher 
training factors are the influential variables that mediate teachers’ personal char-
acteristics (Type F) and learned competencies (Type E). This means, for example, 
the extent to which teachers can develop their personal potentials in the context of 
training processes and translate them into learned competencies and skills is influ-
enced by aspects of their training. Medley (1987) understood this as the experiences 
during teacher training designed to increase the “teacher’s repertoire of competen-
cies” (p. 106). Thus, indirectly, the abilities and mediation approaches of teacher 
educators, coaches and trainers come into view, as well as engagement in teacher 
PD. 

In the field of mathematics education research, there have long been many 
approaches to assessing the quality of teacher education and training and to evalu-
ating the influence of corresponding variables on the development of teacher compe-
tencies by means of empirical studies. International studies have considered, for 
example, the duration of teacher training, the quality of the courses offered, and 
the number of courses attended during training. The form of teacher training (e.g., 
how courses are structured or which seminars and courses are effective in teacher 
training to acquire mathematical knowledge for teaching) can also be analyzed and 
assessed from the perspective of cultural and national educational policy influences 
or normative values of “good” teaching. The importance of continuous professional 
development for teachers has increased over recent decades. As a result, respective 
corresponding variables are considered, such as engagement and participation in 
teacher PD. Recent mathematics education research also focuses on incorporating 
variables such as duration, structure, and quality of PD as well as effectiveness of 
PD assessment measures. 

In Chap. 11, Joyce Peters-Dasdemir, Lars Holzäpfel, Bärbel Barzel and Timo 
Leuders, describe a special unit of analysis assigned to Type J—the qualification of 
teacher educators or adult educators providing PD. This unit of analysis refers to 
the qualification of facilitators of PD in mathematics, which is an area that has been 
insufficiently researched and that Medley did not consider. The teaching profession 
is characterized by experiential and lifelong learning and continuous professional 
development has gained traction in educational studies. This development has led to 
scientific research on the quality of PD. The chapter’s central idea here in terms of 
advancing research on teaching and Medley’s framework is to extend the chain of 
effects upward to include the corresponding effectiveness of those engaged in teacher 
education. To this end, Peters-Dasdemir et al. developed a competency framework 
model that can be used to describe the necessary professional profile of facilitators. 
Based on the results of overview studies on the criteria of effective teacher training, 
development, and based on systematic findings in adult education, the model includes 
aspects of the role of trainers as facilitators, their content and field-specific knowl-
edge, professional values, and beliefs. In addition, their role identity, professional
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self-monitoring skills, and social competencies. The PD facilitators need to have 
fundamental professional knowledge and skills of the school subject that go beyond 
the knowledge of teachers (e.g., regarding curricular standards or current relevant 
empirical research findings). 

5.5 Research Methods, Techniques, and Tools for Research 
on Teaching in the Digital Era 

Following the description of the ten online and offline variables, Medley (1987) 
pointed out methodological issues to be considered in research on teaching. These 
methodological issues can refer to all stages of the research process in relation to 
the variables, their conceptualization, their instrumentation in empirical studies, the 
design of studies to investigate them, and the quality of the analysis of the data 
collected in studies. In relation to the conceptualization of the variables in research, 
Medley noted that the critical definition of effectiveness, that is, of “good teaching,” 
varies intersubjectively, so all variables can potentially be affected by researcher bias. 
Challenges are also posed by the instrumentation of studies, that is, how the vari-
ables under study are operationalized in studies. Here, the evolution of research on 
teaching has led to increasingly better refinement of methods, which is taken up by all 
the authors in this volume. Medley further identified challenges of a more method-
ological nature in how studies examining the different variables must be specifi-
cally designed and what forms of data collection must take place. Finally, statistical 
data analyses and interpretation of results also pose challenges to researchers, but 
Medley recognized an ongoing elaboration of statistical analysis procedures. With 
increased sophistication of technological tools access to powerful statistical proce-
dures has improved. Due to the fact that in the 1980s, the primary research methods 
accepted in the education community were first and foremost quantitative, Medley’s 
work focused on quantitative methods of analysis. However, his concerns related to 
conceptualization, instrumentation, and design in research on teaching are still valid 
and relevant today, even with new technological and methodological developments 
and a wide range of modern qualitative and mixed methods used in mathematics 
education research. 

Chandra Orrill, Zarina Gearty and Kun Wang in Chap. 12, provide information 
about methodological developments in mathematics education research and how it 
is positioned in the twenty-first century. They note that in addition to the quantita-
tive research that Medley had in mind, qualitative research methods continued to be 
developed steadily in the 1980s and have led to profound insights in the research 
on teaching. Since overcoming of what has been characterized as trench warfare 
between quantitative and qualitative methodologies, a growing number of mixed-
methods studies have also been observed with respect to the main units of anal-
ysis of research described by Medley. Looking specifically at quantitative research, 
Orrill et al. consider the item response theory (IRT) as an influential psychometric
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model which has significantly contributed to the further development of method-
ology in mathematics education research on teaching – especially, when it comes 
to the measurement of effectiveness. However, the researchers also present method-
ological advancements related to study design. For example, they describe teaching 
experiments, design-based-research, and cultural historical activity theory as new 
developments of design frameworks that meet the specific demands and needs of 
mathematics education research. Orrill et al. also separately address technological 
developments in research (e.g., eye-tracking, DGS and 360° video capture), and how 
these have led to both new insights and further development of methods in research. 

6 Conclusion 

Through the process of writing this book, we updated the original framework consid-
ering current research on teaching mathematics (Fig. 3). In addition to presenting 
new connections between main units of analyses of research, we acknowledge that 
each research variable must be considered within its cultural context and changes 
from one culture to another. The book focused on a western cultural perspective. 
Additionally, epistemological contexts are major factors in considering every unit of 
analysis of research on teaching mathematics. Depending on researchers’ conceptual 
framework, the ideas surrounding Medley’s “good teaching” change as the goals of 
teaching are directly tied to epistemological stances. Ultimately, new developments 
in technology change the way we can define (e.g., students’ digital identities), eval-
uate (e.g., new instruments/measures of teachers’ knowledge), and connect (e.g., 
modern research tools, methods, and techniques) main units of analysis described in 
framework presented in Fig. 3. 

Finally, in Medley’s original work, he warned against using variables that were far 
removed from one another within one study. New research methods and techniques 
described in Chap. 12 show that there are ways to consider multiple units of analyses, 
as well as the ones that are not adjacent to each other within the framework (Fig. 3). 
However, even with new technologies and advances, we found through writing this 
book that units of analyses (Types A though E) further removed from each other 
have less predictive value in contrast to those variables within the framework that are 
closer to each other. Although researchers considered and studied mediating variables 
between those that they intended to measure and report, it became clear to us was 
that there is a lack of a systematic scientific overview of the complete chain between 
the units of analysis described in Medley’s original framework. Our intention was 
to provide such an overview and to offer scholars potential directions for research 
related to each unit of analysis as presented in the chapters of this book. This was the 
inspiration for our project, and we hope the chapters broaden the readers’ horizons 
just as our views were expanded through collaboration with this international team 
of scholars.
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Mathematics Teachers’ Influence 
on Students’ Learning: Online Variables



Pre-existing Mathematics Teacher 
Characteristics 

Olive Chapman 

1 Introduction 

This chapter deals with one of the essential online variables of research on teaching 
(i.e., pre-existing teacher characteristics) promoted by Donald M. Medley in his 
seminal work on the evolution of research on teaching (Medley, 1987). Medley 
developed a framework of variables that research in teaching from a presage-process– 
product perspective must be concerned with to effectively contribute to the under-
standing and improvement of teaching. This framework provided the theoretical basis 
for framing this book on “evolution of research on teaching mathematics” (Manizade, 
Buchholtz, & Beswick, Chap. 1, this volume). As Manizade et al. explained, 

Medley’s framework is still valuable as it gives an orientation to all possible variables that 
become apparent qua the chain of effects from teacher behavior to student achievements. 
Moreover, the abiding challenges associated with the conceptualization, instrumentation, 
operationalization, and research design that Medley described are still complex, despite 
recent advances in technology and research methodology in the digital era. (p. 5) 

However, for this book, Manizade et al. updated the framework to take into consid-
eration cultural and epistemological contexts and digital contexts and to situate it 
within research on teaching mathematics (see Fig. “Updated framework of research 
on teaching mathematics”, Manizade et al., this volume). 

Medley’s (1987) framework includes six types of essential “online variables”, that 
is, “ones which lie along a direct line of influence of the teacher on pupil learning” 
(p. 105). Medley labelled and sequenced these variables from Type F to Type A. 
This chapter deals with the Type F variable that is at the beginning of this direct
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line. Figures two and three in the introductory chapter illustrate these variables as 
presented by Medley for research on teaching and adapted by Manizade et al. for 
research on teaching mathematics (Manizade, Buchholtz, & Beswick, Chap. 1, this  
volume). 

According to Medley (1987): 

Pre-existing teacher characteristics include abilities, knowledge, and attitudes that a candi-
date for admission to a teacher preparation program possesses on entry; they make up a 
candidate’s aptitude for teaching. Part of it consists of the characteristics a teacher needs 
in order to acquire those competencies that training and experience can provide; part of it 
consists of those competencies that a teacher must possess on entry. (p. 105) 

In relating it to mathematics teaching, Manizade et al. (this volume, p. 6) defined 
the Type F variable as “a mathematics teacher’s beliefs and aptitude for teaching, 
characteristics needed to acquire professional competencies during training.” This 
definition was adapted in this chapter to explore research of pre-existing mathematics 
teacher characteristics [PMTC] that prospective teachers possess on entry into a 
teacher education program or mathematics teacher education [MTE] as a necessary 
stage in understanding the mathematics teacher and mathematics teaching. 

In addition, Medley’s four factors regarding methodological issues that research 
on teaching must deal with were adapted in this chapter to discuss the evolution of 
research on PMTC. These factors, discussed later, are conceptualization, instrumen-
tation, design, and analysis. Medley explained that “evolution of research on teaching 
depends on advances made in how each has been dealt with” (p. 106). 

In general, the chapter provides an overview of research that addressed PMTC of 
prospective teachers of mathematics [PTs] through a systematic review and synthesis 
of relevant published empirical studies for the period 2000 to 2020. It begins with 
an overview of the scope of the literature review, followed by an overview of the 
types and nature of PMTC covered in the studies reviewed, then a discussion of the 
evolution of the research on PMTC and suggestions regarding future evolution of 
research on PMTC. 

2 Scope of Literature Review to Determine Studies 
of PMTC 

Given the large body of literature on PTs, it was decided to focus only on high 
profile peer-reviewed international journals (Williams & Leatham, 2017) that likely 
included studies on PTs’ PMTC. They included: Educational Studies in Mathe-
matics (ESM), Journal for Research in Mathematics Education (JRME), Journal of 
Mathematics Teacher Education (JMTE), Journal of Mathematical Behavior (JMB), 
International Journal of Science and Mathematics Education (IJSME), Mathematical 
Thinking and Learning (MTL), and ZDM—Mathematics Education. The author and 
a trained research assistant conducted a search of these journals for the period 2000– 
2020 using various combinations of keywords that included: prospective teachers;
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future teachers; teacher candidates; preservice teachers; student teachers; characteris-
tics; competencies; abilities; knowledge; attitudes; beliefs; identity; and recruitment. 
Based on our review of titles and abstracts, we prepared a list of articles with poten-
tially relevant studies. We examined these articles to determine whether participants 
were at the beginning of their MTE. This process produced very few studies. We then 
decided to focus on studies that addressed PTs’ characteristics at the beginning of a 
course or prior to an intervention during a course or in situations that reflected the 
nature of their background knowledge or ability (e.g., interpreting students’ work or 
evaluating tasks), which seemed to be a more promising approach to obtain studies of 
PMTC. The assumption was that these studies would suggest characteristics the PTs 
held prior to entering MTE if these characteristics were directly related to their school 
experiences with mathematics (e.g., mathematics curriculum content and pedagogy). 

We obtained a large list of these studies by examining the methodology section 
of articles in our list. We then examined these studies to determine if the findings 
provided information that was clearly related to PMTC to identify those studies 
to exclude. Many intervention studies highlighted the changes resulting from the 
intervention but not the initial characteristics of the PTs and were removed from the 
list. Studies at the beginning of a course that investigated characteristics that were 
related to prior mathematics or mathematics education courses in the program were 
also removed from the list. In keeping with the theme of this book, all studies not 
situated in a Western context were also later removed. This process resulted in a 
list of 51 studies from the above-noted journals, to which were added a few studies 
from other journals based on citations of relevant studies in articles on this list. 
These studies were situated mainly in the USA, with some from different regions 
internationally. To highlight this, in reporting the studies, the countries are noted for 
those that were not situated in the USA. 

For each article on the final list, the author and research assistant identified and 
recorded the PTs’ characteristics explicitly investigated based on the aim of the study. 
On examining the characteristics, we determined that they generally involved PTs’ 
mathematics knowledge, pedagogical knowledge, or beliefs, which became initial 
categories used to group the characteristics. The content of these categories consisted 
of, for each study, the type of characteristics, the aim of the study related to the char-
acteristics and key findings regarding the nature of the characteristics. Further exam-
ination of the content of each of the three categories and cross-checking of findings 
for agreement between the researcher and research assistant, resulted in sub-groups 
of characteristics consisting of different types of mathematics concepts and skills, 
different types of pedagogical knowledge and ability, and different types of beliefs 
or conceptions, respectively. This process also validated that all the characteristics 
were appropriately accounted for and could be represented by three broad categories: 
pre-existing mathematical knowledge and skills, pre-existing mathematics-related 
pedagogical knowledge and ability, and pre-existing mathematics-related beliefs. 
These final categories, described in the next section, provided a landscape of PMTC 
related to the Type F variable that were researched in the period 2000–2020. We also 
documented examples of research tools, design and analysis that formed the basis of 
discussion of the evolution of research on the PMTC.
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3 Landscape of PMTC Researched in 2000–2020 

The studies reviewed provided a landscape of several PMTC researched in 2000– 
2020 regarding what PTs knew or were able to do on entering MTE. These PMTC, 
grouped in three categories, are presented in this section in terms of the aims of the 
studies, with examples of key findings of the studies related to the PTs’ aptitude for 
teaching mathematics. The goal is to provide an overview of PMTC for the three cate-
gories: pre-existing mathematical knowledge and skills, pre-existing mathematics-
related pedagogical knowledge and ability, and pre-existing mathematics-related 
beliefs. 

3.1 Pre-existing Mathematical Knowledge and Skills 

This category consists of studies that investigated PTs’ mathematical knowledge 
and skills connected to school mathematics in the period 2000–2020. Collectively, 
these studies included primary, elementary, middle, and secondary school PTs and 
their knowledge of different content areas (i.e., fractions, whole number operations, 
geometry, algebra) and skills (i.e., problem posing). They addressed one category 
of PMTC that is central to teaching mathematics and important for PTs to have on 
entering teacher education. The following overview of these studies is organized 
by each content area and skill to highlight the extent to which they were addressed 
in terms of the aims of the studies and nature of the PTs’ PMTC and in reversed 
chronological order to indicate distribution in the period beginning with most recent 
studies. 

3.1.1 Fractions 

These studies on fractions focused mostly on elementary school PTs and addressed 
their knowledge of fractions in a variety of ways. During the second 10 years of the 
period: Lee and Lee (2020) investigated elementary school PTs’ exploration of model 
breaking points in fractions that included the area model of fraction addition. Most 
of the PTs represented fraction addition well with simple fractions but had difficulty 
representing fraction addition with improper fractions or fractions with unlike and 
relatively large denominators and tended to use algorithm-based thinking. The area 
models drawn by several of the PTs revealed various misconceptions. Lovin et al. 
(2018) investigated elementary and middle school PTs’ understanding of fractions as 
they were starting their first required mathematics course and found that they relied 
on procedural knowledge. Most of them had constructed the lower-level fraction 
schemes and operations but less than half had constructed the more sophisticated 
ones. Baeka et al. (2017) investigated elementary and middle school PTs’ pictorial 
strategies for a multistep fraction task in a multiplicative context. They found that
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many of the PTs were able to construct valid pictorial strategies that were widely 
diverse regarding how they made sense of an unknown referent whole of a fraction 
in multiple steps, how they represented the wholes in their drawings, in which order 
they did multiple steps, and the type of model they used (area or set). Whitacre and 
Nickerson (2016) investigated elementary school PTs’ fraction knowledge at the 
beginning and end of their first mathematics content course. In the beginning, the 
PTs used predominantly standard strategies with weak performance and flexibility 
in comparing fractions. Lin et al. (2013) explored an intervention for enhancing 
elementary school PTs’ fraction knowledge and found that, prior to the intervention, 
the PTs held procedural understanding of basic fractional ideas and basic fractional 
operations, including equivalent fractions and addition, subtraction, multiplication, 
and division of fractions. Finally, Osana and Royea (2011) explored an intervention 
centered on problem solving to support Canadian elementary school PTs’ learning of 
fractions. The PTs were initially challenged to generate word problems for number 
sentences involving fractions, construct meaningful solutions to fraction problems, 
and represent those solutions symbolically. 

Regarding the first 10 years of the period: Newton (2008) studied elementary PTs 
enrolled in a course on elementary school mathematics to obtain a comprehensive 
understanding of their fraction knowledge. Findings at the beginning of the course 
indicated that they had limited and fragmented knowledge of fractions. For example, 
they misapplied fraction algorithms, attended to superficial conditions when choosing 
a solution method, and demonstrated little flexibility in solving problems. Although 
they remembered many procedures, such as cross-multiplying and finding a common 
denominator, they were using them in inappropriate ways. Their most common error 
was to keep the denominator the same when it was not appropriate to do so. Tirosh 
(2000) investigated fraction division and found that in a class of Israeli elementary 
PTs, most of them knew how to divide fractions but could not explain why the 
procedure worked. 

3.1.2 Whole Number Operations 

This group of studies addressed elementary school PTs’ knowledge of addition, 
subtraction, multiplication, and division of whole numbers. Norton (2019) examined 
Australian primary school PTs’ mathematics knowledge at the beginning and end of 
their education course. Findings indicated that the PTs had low levels of knowledge of 
whole numbers at the beginning of the course. The most challenging whole-number 
computation for them was division by a double-digit divisor. Kaasila et al. (2010) 
investigated Finnish elementary PTs’ conceptual understanding, adaptive reasoning, 
and procedural fluency based on a non-standard division problem and concluded 
that division seemed not to be fully understood. Less than half of the PTs were 
able to produce complete or mainly correct solutions. The main reasons for their 
issues in understanding the task consisted of staying on the integer level, inability to 
handle the remainder, difficulties in understanding the relationships between different 
operations, and insufficient reasoning strategies. Thanheiser (2010) examined PTs’
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responses to standard addition and subtraction place-value tasks and found that, at 
the beginning of their MTE, the PTs were often able to perform but not explain 
algorithms. For example, they had incorrect views of regrouped digits that included: 
interpreting all regrouped digits consistently as having the same value (all as 1 or 
all as 10); treating the value of the digits as dependent on the context (addition or 
subtraction); interpreting the digits consistently within but not across contexts (i.e. all 
as 10 in addition but all as 1 in subtraction); and interpreting the digits inconsistently 
depending on the task (i.e. the same digit was interpreted in multiple ways). 

Thanheiser (2009) also reported on the PTs’ knowledge of multidigit whole 
numbers in the context of standard algorithms for addition and subtraction prior 
to their first mathematics course in their MTE. Most of the PTs did not have a deep 
understanding of numbers and struggled relating the values of the digits in a number 
to one another. They did not provide mathematical explanations of the algorithms. 
They referred to the digit in the tens place as ones rather than in terms of the reference 
unit tens or the appropriate groups of ones. While some drew on a conception that 
enabled them to explain the algorithm in at least one way, few exhibited an under-
standing of numbers that enabled them to explain the algorithm flexibly, including 
why the digits in any column can be treated as ones and why we can treat any pair 
of adjacent digits as if they were ones and tens. 

3.1.3 Geometry 

These two studies addressed different aspects of elementary and middle school PTs’ 
knowledge of geometry concepts. Miller (2018) analyzed PTs’ definitions of types 
of quadrilateral based on a survey of elementary school PTs who, since high school, 
had not yet studied geometry in their MTE. Findings included that the majority 
of the PTs’ definitions contained necessary attributes, but not sufficient or minimal 
attributes. The PTs were most comfortable with squares, followed by parallelograms, 
then rectangles, trapezoids, rhombi, and finally kites. They did not include hierar-
chical relationships as a means of defining one shape in terms of another and often 
created definitions that were aligned with emergent concept images of the shape 
types with only typical examples. Yanik (2011) investigated middle school PTs’ 
knowledge of rigid geometric translations and found that the PTs had difficulties 
recognizing, describing, executing, and representing geometric translations. They 
viewed geometric translations mainly as physical motions based on their previous 
experiences, that is, as rotational motion, translational motion, and mapping. They 
interpreted the vector that defines translations as a force, a line of symmetry, a direc-
tion indicator, and a displacement. Many of them knew that a vector has a magnitude 
and a direction but did not conclude that vectors define translations.
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3.1.4 Algebraic Concepts and Thinking 

This group of studies addressed elementary and middle school PTs’ knowledge of 
algebraic concepts and their ability to think algebraically. Hohensee (2017) exam-
ined the insights and challenges elementary school PTs experienced when exploring 
early algebraic reasoning. Findings indicated that they were challenged conceptu-
ally to identify the relationships contained in algebraic expressions, to distinguish 
between unknowns and variables, to bracket their knowledge of formal algebra, and 
to represent subtraction from unknowns or variables. You and Quinn (2010) investi-
gated elementary and middle school PTs’ knowledge of linear functions and found 
that they were stronger on procedural than conceptual knowledge of linear functions. 
They were weak in representation flexibility, for example, ability to transfer flexibly: 
(i) between visual and algebraic representations to recognize relevant properties of 
algebraic and visual representations and to make connections among them when 
treating functions as an entity; (ii) from functions to a word problem situation; and 
(iii) from word problem situations to various forms of functions. Richardson et al. 
(2009) studied how pattern-finding tasks promoted elementary school PTs’ learning 
of how to generalize and justify algebraic rules from an emergent perspective to 
support their teaching of early algebra concepts. They found that most of the PTs, in 
their only mathematics methods course, initially focused on numerical data in tables 
and had difficulty providing a valid justification for their generalizations. Nearly all 
of the PTs generalized explicit rules using symbolic notation but had trouble with 
justifications early in the experiment. Pomerantsev and Korosteleva (2003) investi-
gated the typical mistakes elementary and middle school PTs made as they progressed 
through their courses. They found that the PTs had difficulties recognizing structures 
of algebraic expressions at the introductory level of the courses. 

3.1.5 Problem Posing 

This group of studies addressed elementary and lower secondary school PTs’ problem 
posing knowledge or ability. Crespo and Sinclair (2008) investigated elementary 
school PTs’ problem-posing practices prior to planned interventions. They found 
that a majority of the problems the PTs posed consisted of assignment problems as 
opposed to the more complex relational or conditional problems for one task and 
factual problems (involving the recall of names and properties, the identification 
of properties, the application of measurement formulae, or the counting of shapes) 
for another task. The purpose was mainly to elicit information. Problem structure 
included clarity (problems not confusing, misleading, or under- and over-stated) and 
simplicity (numbers or shapes common and uncomplicated and right answers). Rizvi 
(2004) investigated Australian lower secondary school PTs’ ability to pose word 
problems for mathematical expressions involving division before an instructional 
intervention. She found that none of the PTs was able to pose word problems for the 
expressions where the divisors were fractions. They posed only sharing type word 
problems for the expressions where the divisor was a whole number. While many
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were aware of the repeated subtraction, no participants posed any word problem based 
on the repeated subtraction model for any division expression. Crespo (2003) inves-
tigated elementary school PTs’ beginning approaches to posing problems and found 
that they consisted of: making problems easy to solve (e.g., the narrow mathematical 
scope of the original version of the problem and the work of students); posing familiar 
problems (e.g., quick-translation story problems or computational exercises); and 
posing problems blindly (i.e., unawareness of the mathematical potential and scope 
of problem). 

3.1.6 Summary 

The overview of studies in this section on pre-existing mathematical knowledge and 
skills offers insights of the nature of the PTs’ content knowledge at the point of 
entry into a teacher education program. The studies investigated the PTs’ knowl-
edge of different content areas (i.e., fractions, whole number operations, geometry, 
algebra) and their problem-posing skills. There was more attention on elementary 
than secondary PTs and on fractions than the other areas. Those studies dealing 
with fractions focused on meaning of fractions, arithmetic operations with fractions, 
strategies for solving fraction tasks and models of representing fractions. They indi-
cated that the PTs’ fraction knowledge contained many misconceptions and was 
generally limited, fragmented, weak, low level, and procedural. Studies dealing with 
whole numbers focused on the arithmetic operations (addition, subtraction, multi-
plication, division). They indicated that the PTs did not have deep understanding 
of these procedures. Studies dealing with geometry focused on two-dimensional 
shapes and rigid motions. They indicated that the PTs’ had superficial knowledge or 
difficulties in dealing with these concepts. Studies dealing with algebraic concepts 
addressed algebraic expressions, linear functions, and algebraic rules. They indicated 
that the PTs had weak knowledge of the concepts, were challenged conceptually, 
and had difficulties with the concepts. Problem posing received the least attention 
with these studies focusing on posing word problems. The studies indicated that the 
PTs’ problem-posing ability was limited to posing problems of low level of cogni-
tive demand. Overall, the studies highlighted that the PTs’ pre-existing knowledge 
of mathematical content was plagued with difficulties and low conceptual under-
standing of specific mathematics concepts that are central to school mathematics 
curricula and their future teaching.
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3.2 Pre-existing Mathematics-Related Pedagogical 
Knowledge and Ability 

This second category consists of studies that investigated PTs’ mathematics-related 
pedagogical knowledge and ability in the period 2000–2020. These studies collec-
tively included early childhood and primary, elementary, middle, and secondary 
school PTs and their pedagogical ability (e.g., to notice, observe, analyze, and/or 
interpret teaching situations). They addressed another category of PMTC that is 
important for a teacher to function effectively in mathematics teaching situations and 
that PTs should have on entering MTE. The following overview of these studies is 
organized based on their foci on the PTs’ knowledge or ability involving (i) observing 
and analyzing teaching, (ii) noticing and interpreting students’ work or thinking, and 
(iii) evaluating tasks, to highlight the extent to which each was addressed in terms of 
the aims of the studies and the nature of the PTs’ PMTC. The studies are presented 
in reversed chronological order to indicate distribution in the period beginning with 
the most recent studies. 

3.2.1 Observing and Analyzing Teaching 

This group of studies addressed elementary, middle, and secondary school PTs’ 
ability to observe and/or analyze teaching by engaging the PTs in exploring videos 
of mathematics lessons. Star and Strickland (2008) investigated the impact of video 
viewing as a means to improve secondary school PTs’ ability to be observers of class-
room practice. Their findings of the pre-assessment indicated that the PTs generally 
did not enter teaching methods courses with well-developed observation skills. They 
were astute observers of classroom management regarding what the teacher did to 
maintain control in the classroom and what students did that might influence the 
teacher’s ability to maintain control. They were also reasonably attentive to the 
actions of the teacher to support the lesson objectives, such as her use of notes, her 
presentation of the material, how she structured the group work, and her assignment 
of homework. However, their ability to notice other aspects of the classroom was not 
as strong. They did not attend to features of the classroom environment and/or did not 
feel that such features needed their attention. They were weak in observing the math-
ematical content, for example, questions about the representation of the mathematics, 
the examples used, and the problems posed. They did not notice subtleties in the ways 
that the teacher helped students think about content. In general, the PTs were very 
attentive to issues of classroom management but mostly unaware of static features of 
the classroom environment and the subtleties of classroom communication and math-
ematical content. Stockero (2008) investigated the use of a video-case curriculum in 
a middle school mathematics methods course for PTs to develop a reflective stance 
to enable them to analyze classroom interactions. Findings early in the course indi-
cated that the PTs’ level of reflection or observation was at the two lowest levels 
of reflection; that is, describing and explaining levels. Their reflection focused on
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describing and explaining what they observed in the videos and did not demonstrate 
the higher levels of reflection consisting of theorizing, confronting, and restructuring. 
They also tended to analyze classroom events based on affective measures instead 
of pedagogical and mathematical reasons for instructional decisions. 

Morris (2006) provided the only study that focused on this observing/analyzing 
PTs’ ability when the PTs entered their MTE compared to others that considered it 
prior to an intervention in a course later in their MTE. She investigated the “learning-
from-practice skills” that elementary and middle school PTs possessed by requiring 
them to analyze a videorecorded mathematics lesson regarding the effects on student 
learning, to support their analysis with evidence, and to use their analysis to revise the 
lesson. She found that many of the PTs could carry out a cause-effect type of analysis 
of the relationships between specific instructional strategies and student learning and 
could use this analysis to make productive revisions to the instruction. But their ability 
to collect evidence that supported their analysis was less developed. Their analysis of 
the effects of instruction on the students’ learning was dependent on the video-task 
conditions. For example, when the task instructions indicated that the lesson was 
not successful, the PTs attended to both teacher and students and could make some 
elementary claims about how teaching and learning might be connected, but specific 
types of deficiencies in their evidence-gathering were apparent including the ability 
to collect evidence that supported conjectures about the effects of instruction. When 
the condition allowed the PTs to decide whether the lesson was successful and which 
instructional activities worked well or not, most of them focused primarily on the 
teacher, implying that students learn what the teacher explains. For example, they 
saw a teacher giving explanations and children giving correct responses, concluded 
that the children understood the teacher’s explanations, and made minimal revisions 
to the lesson. In general, the PTs’ support of hypotheses about student learning 
involved: no references to students’ responses, referring to students’ responses that 
were marginally related to the claims, attributing a wide range of understandings 
to students based on little or no objective evidence, and failing to refer to students’ 
responses that provided the most access to students’ thinking. 

3.2.2 Noticing and Interpreting Students’ Work and Thinking 

This group of studies collectively addressed early childhood and primary, elemen-
tary, and secondary school PTs’ knowledge of, and ability to notice and interpret, 
students’ mathematical work and thinking. Regarding the second 10 years of the 
period: Shin (2020) examined secondary school PTs’ noticing of students’ reasoning 
about mean and variability. Findings indicated that the PTs had difficulties noticing 
students’ reasoning about variability. None of the PTs explicitly interpreted the 
students’ limited understanding of variability when comparing data sets with unequal 
sample sizes. Some showed no evidence of differentiating between students’ different 
levels of reasoning. Superfine et al. (2019) investigated different facilitation moves to 
support the elementary school PTs in noticing children’s mathematical thinking and 
found that they generally did not discuss their noticing at a high-level and there were
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few instances where they provided evidence for their noticing. Sánchez-Matamoros 
et al. (2019) examined the relationships between how secondary school PTs in Spain 
attended to the mathematical elements in students’ solutions and interpreted students’ 
understandings for the derivative of a function at a given point. Their findings indi-
cated that the PTs had different levels of pre-existing ability consisting of those 
who provided general comments about students’ learning, who found it difficult to 
recognize characteristics of the students’ understanding, and who had difficulties in 
using mathematical elements in students’ solutions to recognize differences among 
students’ understanding. Callejo and Zapatera (2017) investigated Spanish primary 
school PTs’ noticing, describing, and interpreting of students’ mathematical thinking 
in their solution to a pattern generalization task. They found that the PTs were able 
to name various mathematical elements to describe the students’ answers but did 
not always use them to interpret the understanding of pattern generalization of each 
student. Some PTs could not recognize the understanding of the students. 

In addition, Simpson and Haltiwanger (2017) investigated how secondary school 
PTs made sense of students’ mathematical thinking of an algebra and function mathe-
matics problem, when professional noticing was not a formal part of their MTE. They 
found that the PTs exhibited a lack of rigorous evidence when interpreting what the 
students may or may not have understood. The PTs discussed only what the students 
understood in terms of the written work. They did not consider misconceptions 
or errors in the students’ mathematical thinking. Sánchez-Matamoros et al. (2015) 
examined the ability of secondary school PTs in Spain to notice students’ under-
standing of the derivative concept in the beginning and end of a “training module”. 
At the beginning, the PTs’ noticing was limited to describing students’ answers in 
the graphical and analytical modes of representation but without identifying the rele-
vant mathematical elements and interpreting the students’ understanding by making 
general comments related to “the good or bad understanding of the student.” Lastly, 
Son (2013) examined the secondary and elementary school PTs’ interpretations of 
and responses to a student’s error(s) involving finding a missing length in similar rect-
angles through a teaching scenario task. Findings indicated that although the student’s 
errors came from conceptual aspects of similarity, a majority of the PTs identified 
the errors as stemming from procedural aspects of similarity and consequently drew 
on procedural knowledge as a way to guide the students. 

Regarding the first 10 years of the period: Harkness and Thomas (2008) inves-
tigated early childhood PTs’ mathematical understanding of a student’s invented 
multiplication algorithm and found that a majority of the PTs relied on procedural 
and memorized explanations rather than using mathematical properties to describe 
the validity of the algorithm. Generally, their responses demonstrated a procedural or 
memorized understanding of the invented algorithm. Crespo’s (2000) study on how 
elementary school PTs in Canada interpreted their students’ work indicated that their 
interpretations were initially from a limited focus on the correctness of the students’ 
solutions and not meaning.
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3.2.3 Evaluating Tasks 

This group of studies addressed elementary and middle school PTs’ knowledge of, 
and ability to evaluate, features of mathematical tasks to support students’ learning. 
Magiera et al. (2013) explored middle school PTs’ ability to recognize opportuni-
ties to engage students in algebraic thinking. They found that the PTs demonstrated 
limited ability to recognize the full potential of algebra-based tasks to elicit alge-
braic thinking in students, recognizing only some features in the analyzed tasks. 
Stephens (2006) examined elementary school PTs’ awareness of equivalence and 
relational thinking to assess their initial preparedness to engage students in these 
aspects of early algebraic reasoning. She found that the PTs collectively demon-
strated an awareness of relational thinking in identifying opportunities offered by 
the tasks to engage students in this thinking. But in proposing difficulties students 
might have with selected tasks, few of them demonstrated an understanding that 
many students have misconceptions about the meaning of the equal sign. Osana 
et al. (2006) examined the nature of elementary school PTs’ evaluations of elemen-
tary mathematics problems using a model designed to discriminate among tasks 
according to their cognitive complexity. Results demonstrated that, overall, the PTs 
had more difficulty accurately classifying problems considered to represent high 
levels of cognitive complexity compared to less complex problems. They were influ-
enced by the surface characteristics of task length and tended to label short problems 
as less cognitively demanding and long problems as more so. 

3.2.4 Summary 

The overview of studies in this section on pre-existing mathematics-related peda-
gogical knowledge and ability offers insights of the nature of the PTs’ knowledge 
and ability related to teaching and learning mathematics at the point of entering a 
teacher education program. The studies addressed the PTs’ knowledge of how to 
observe and analyze teaching, notice and interpret students’ work or thinking, and 
evaluate tasks. Those dealing with observing and analyzing classroom behaviours of 
teachers and students indicated mostly weaknesses in the PTs’ ability to observe and 
make appropriate conclusions or suggestions regarding instruction. For example, they 
were strong in observing classroom management but weak in noticing other aspects 
of the classroom and demonstrated lowest levels of analysis of classroom interac-
tions. Those studies dealing with noticing and interpreting students’ mathematical 
thinking and work indicated that the PTs demonstrated several areas of difficulties in 
noticing or recognizing students’ reasoning, providing rigorous evidence to support 
their noticing, and discussing noticing at a high level. Studies dealing with evalu-
ating or interpreting features of tasks to support students’ learning indicated that 
the PTs had limited ability to recognize potential of tasks or difficulties students 
could experience with a task or classifying a problem of high level of cognitive 
complexity. Overall, the studies highlighted that there were much more weaknesses
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than strengths in the PTs’ pre-existing ability to notice, analyze, and interpret math-
ematics classroom behaviors of teachers and students and students’ mathematical 
work. 

3.3 Pre-existing Mathematics-Related Beliefs 

This third and final category consists of studies that investigated PTs’ mathematics-
related beliefs in the period 2000–2020. The studies collectively included primary, 
elementary, middle, and secondary school PTs and their content and pedagogical 
beliefs (conceptions and perceptions). They addressed another category of PMTC that 
are important to how teachers conceptualize and enact their teaching of mathematics 
and PTs would have on entering MTE. The following overview of these studies is 
organized based on their foci on the PTs’ beliefs about: (i) nature of mathematics, 
(ii) teaching and learning mathematics, (iii) use of technology, (iv) mathematical 
processes, and (v) mathematics concept, to highlight the extent to which they were 
addressed in terms of the aims of the studies and the nature of the PTs’ PMTC. The 
studies are presented in reversed chronological order to indicate distribution in the 
period beginning with the most recent studies. 

3.3.1 Nature of Mathematics 

This group of studies addressed primary, elementary, middle, and secondary school 
PTs’ beliefs of the nature of mathematics. Weldeana and Abraham (2014) investi-
gated an intervention to change beliefs of middle school PTs. They found that before 
the intervention a majority of the PTs did not hold progressive beliefs related to 
the nature of mathematics. For example, they believed that for every problem of 
mathematics, there is one unique approach leading to its solution. Shilling-Traina 
and Stylianides (2013) investigated changes in the beliefs about mathematics held 
by elementary school PTs in a mathematics course and found that their initial beliefs 
largely reflected instrumentalist and Platonist views. Conner et al. (2011) inves-
tigated secondary school mathematics PTs’ beliefs about mathematics. Findings 
indicated that their initial views of mathematics were primarily Platonist and instru-
mentalist. Some of the most prevalent descriptors of mathematics across participants 
were mathematics is logical and less subjective than other disciplines, and mathe-
matics is unambiguous in the sense that, while multiple solution paths are possible, 
each problem has a single, correct answer. Finally, Bolden et al. (2010) investigated 
primary school PTs in the UK early in their education course at the beginning of the 
program and found that the PTs held narrow, absolutist views of mathematics as a 
subject. Most conceived mathematics as a subject of a set body of knowledge that 
offered little or no room for freedom of expression, imagination, and independence. 
Most also believed that mathematics was not a creative subject, and it was difficult 
to encourage creativity in mathematics.
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3.3.2 Teaching and Learning Mathematics 

This group of studies addressed primary, elementary, middle, and secondary school 
PTs’ beliefs or conceptions about teaching and learning mathematics, including qual-
ities of teachers and learners, mathematical behaviour and creativity, and doing and 
understanding mathematics. Regarding the second 10 years of the period: Stohlmann 
et al., (2014/2015) investigated changing elementary school PTs’ beliefs about math-
ematical knowledge. At the beginning of the course, the majority of the PTs showed 
little or no evidence of the belief that conceptual understanding of mathematics is 
more powerful or generative than remembering mathematical procedures and they 
appeared to be focused on understanding mathematics in terms of procedural fluency. 
The majority of them also showed weak or no evidence of beliefs that: (i) One’s 
knowledge of how to apply mathematical procedures does not necessarily go with the 
understanding of the underlying concepts. (ii) Understanding mathematical concepts 
is more powerful and more generative than remembering mathematical procedures. 
(iii) If students learn mathematical concepts before they learn procedures, they are 
more likely to understand the procedures when they learn them. If they learn proce-
dures first, they are less likely ever to learn the concepts. For (i), very few PTs showed 
evidence or strong evidence of the belief that if a child knows procedures, they may 
not understand the underlying concepts. Weldeana and Abraham (2014) investigated 
an intervention to change beliefs of middle school PTs. They found that before the 
intervention a majority of the PTs did not hold progressive beliefs related to the 
way mathematics is learned, taught, and practiced. The PTs began with a strong 
belief that mathematics can be learned and understood through memorization of 
facts and formulae. They held many traditional beliefs related to knowing in math-
ematics (e.g., step-by-step procedure; getting the right answers quickly; retrieving 
information quickly; and figuring out formulae and equations to solve problems 
immediately). 

In addition, Conner et al. (2011) investigated secondary school PTs’ beliefs about 
mathematics teaching. They found that the PTs’ initial beliefs of characteristics of 
effective mathematics teachers included: having positive affective characteristics 
(a good teacher is nice, patient, friendly) and mathematical knowledge, attending 
to student needs, and facilitating student participation. They also initially held the 
belief that students should participate in class, asking questions and working together, 
but sometimes they described a teacher centered view of student participation that 
included direct instruction as the primary method for teaching new content. Bolden 
et al. (2010) investigated conceptions of creativity of primary school PTs in the UK 
early in their education course at the beginning of their MTE. Findings indicated that 
the meaning of creativity in primary school mathematics was not well understood 
by the PTs based on their conception of it. Their conceptions were narrow, predom-
inantly associated with the use of resources and technology, and tied to the idea of 
“teaching creatively” rather than “teaching for creativity”. They viewed creativity in 
terms of the types of resources used and the way in which they were used to teach 
mathematical topics and the way in which real-life examples were used to explore 
mathematical concepts.



Pre-existing Mathematics Teacher Characteristics 35

For the first 10 years of the period: Ambrose (2004) investigated an interven-
tion to build elementary school PTs’ beliefs. Findings indicated that initially the 
PTs held beliefs that teaching involves explaining things to children, which most 
of them continued to hold following the intervention. They initially equated doing 
mathematics with using memorized procedures. Their actions indicated a teaching-
as-telling belief along with a belief about mathematics learning as the acquisition 
of standard symbolic procedures. Szydlik et al. (2003) explored elementary school 
PTs’ beliefs about the nature of mathematical behavior both at the beginning and 
end of the education course. At the beginning, the majority of the PTs believed that, 
as learners, they could not “figure out” mathematics for themselves. They could not 
imagine being asked to do a problem significantly different from those in the text-
book or having a teacher who did not first show them how to do similar problems. 
They believed that they must memorize formulas, procedures, or template problems 
in order to work on new problems. 

3.3.3 Use of Technology 

These two studies addressed middle and secondary school PTs’ beliefs about the 
use of technology. Wachira et al. (2008) assessed middle school PTs’ beliefs about 
the appropriate use of technology in mathematics teaching and learning prior to 
taking the methods course. They found the PTs’ beliefs to be limited to the use of 
technology as computational tools and for checking the accuracy of these compu-
tations. The PTs’ conceptions indicated a lack of understanding of technology as 
powerful tools to help students gain knowledge, skills, deeper understanding and 
appreciation of mathematics. They did not provide specific ways on how technology 
could be used to promote learning. None indicated that technology could be used to 
explore patterns, discover more about mathematics concepts or investigate mathe-
matical relationships, which suggested that they lacked understanding of how tech-
nology could be used appropriately to develop concepts. Leatham (2007) investi-
gated secondary school PTs’ beliefs about teaching mathematics with technology 
later in their program after taking an education course on technology and found that 
their beliefs about the nature of technology in the classroom were about the avail-
ability of technology, the purposeful use of technology, and the importance of teacher 
knowledge of technology. 

3.3.4 Mathematical Processes 

These two studies addressed elementary school PTs’ beliefs (conceptions, views) 
of two mathematical processes: problem solving and representing mathematical 
concepts or situations. Son and Lee (2020) examined elementary PTs’ problem-
solving conceptions and performances. They found that a majority of the PTs held 
conceptions of problem solving as a means to a solution, that is, they expressed a 
skill-based or means-to-an-end view by focusing on solutions or procedural steps.
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Their conceptions of problem solving were related to their performances. Dreher 
et al. (2016) investigated views about using multiple representations held by British 
and German elementary school PTs at the beginning of their first year of their MTE. 
They found that the PTs showed little awareness for the role of representations for 
mathematical understanding. They viewed the role of multiple representations for 
understanding mathematics as less important than other non-discipline reasons for 
using multiple representations. They mostly were not able to recognize the learning 
potential of tasks focusing on conversions of representations, in comparison with 
tasks including rather unhelpful pictorial representations, to which they tended to 
assign a higher learning potential. 

3.3.5 Algebra 

One study addressed PTs’ conceptions of algebra. Stephens (2008) examined concep-
tions of algebra held by elementary school PTs enrolled in their only course 
addressing the teaching of mathematics. Findings suggested that their conceptions 
of algebra as subject matter were narrow. Most of them equated algebra with the 
manipulation of symbols. Very few identified other forms of reasoning, in partic-
ular, relational thinking, with algebra. Several made comments implying that student 
strategies that demonstrated traditional symbol manipulation might be valued more 
than those that demonstrated relational thinking, suggesting that what was viewed 
as algebra is what will be valued in the classroom. Tasks were often judged to be 
algebra or non-algebra problems by the presence or absence of a variable or letter, 
and students were often judged to have used or not used algebra based on how closely 
their work matched the symbol-manipulation model. 

3.3.6 Summary 

The overview of studies in this section on pre-existing mathematics-related beliefs 
offers insights of the nature of the PTs’ pre-existing beliefs or conceptions related to 
mathematics and mathematics pedagogy at the point of entering a teacher education 
program. The studies addressed the PTs’ beliefs about the nature of mathematics, 
teaching and learning mathematics, use of technology, mathematical processes, and 
mathematics concepts. Those dealing with beliefs about the nature of mathematics 
indicated that the PTs held beliefs of a Platonist or absolutist perspective of mathe-
matics. Those dealing with beliefs about teaching and learning mathematics indicated 
that the PTs’ beliefs mostly reflected a traditional or ‘teacher-centered’ perspective 
of teaching and learning mathematics. Those dealing with beliefs about mathematics 
concepts and processes indicated that the PTs held narrow conceptions of algebra, 
problem solving, and multiple representations. Those dealing with technology indi-
cated that the PTs lacked understanding of use of technology to support students’ 
learning and to develop concepts and held beliefs that could significantly limit their 
use of technology in teaching mathematics. Overall, the studies highlighted that
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the PTs’ pre-existing beliefs were mostly inappropriate to support contemporary 
perspectives of reform-based mathematics education. 

3.4 Summary of Landscape of PMTC 

Table 1 provides a summary of the PMTC that were addressed by studies investigating 
PTs’ characteristics in the period 2000–2020. The table includes the three categories 
of PMTC researched and the types of PMTC researched for each category. These 
PMTC could directly impact PTs’ learning during initial teacher education and their 
teaching as future teachers. They are further discussed in the sections that follow 
concerning how research has evolved in PMTC. 

4 Evolution of Research on PMTC 

The preceding section outlined studies relevant to Medley’s (1987) Type F variable 
that provided a landscape of the types of PMTC they addressed. These studies formed 
the basis to consider the evolution of research on PMTC in the period 2000–2020, 
based on what was done (i.e., the scope of research) and how it was done (i.e., method-
ological factors) in establishing and advancing research in this area of mathematics 
education. The scope of research involves the extent to which PMTC were studied. 
The methodological factors involve those that Medley proposed are necessary to 
consider the evolution of research on teaching, adapted to address research on PTs’ 
PMTC. These factors are conceptualization (e.g., of good teaching), instrumentation

Table 1 Landscape of PMTC of PTs Researcher in 2000–2020 

Categories of PMTC researched Types of PMTC researched 

Pre-existing mathematical knowledge and skills Fractions 
Whole number operations 
Geometry 
Algebra 
Problem posing 

Pre-existing mathematics-related pedagogical 
knowledge and ability 

Observing and analyzing teaching 
Noticing and interpreting students’ work or 
thinking 
Evaluating tasks 

Pre-existing mathematics-related beliefs Nature of mathematics 
Teaching and learning mathematics 
Use of technology 
Mathematical processes 
Algebra 
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(e.g., valid tools), design, and analysis. This section is organized in terms of the scope 
of research on PMTC and methodological factors. 

4.1 Scope of Research on PMTC 

The scope of research suggests an evolution of research on PMTC in terms of the 
extent of the types of PMTC researched, the extent to which PMTC were addressed 
by the studies, and the extent to which the studies were framed at the point of entry 
into MTE. 

4.1.1 Types of PMTC Researched 

The studies suggested a shift from researching teacher candidates’ characteristics, 
such as level of school mathematics they completed, mathematics courses they 
completed, their overall grade point average (GPA), and their mathematics GPA, 
which were not considered in any of the studies for 2000–2020. They also suggested 
growth in research on PMTC in terms of different types of PTs’ characteristics that 
were investigated. They addressed specific aspects of nine types of PMTC associated 
with three categories of characteristics (Table 1) the PTs held on entering MTE. These 
characteristics included PTs’ knowledge, skills, and beliefs that were connected to 
what they would have learned, directly or indirectly, as students in school mathe-
matics classrooms. For example, prior to entering teacher education, PTs would have 
developed knowledge of mathematical:

• Content—directly, based on what was taught.
• Processes—directly, based on what they engaged in.
• Learning—indirectly, based on how they were engaged and their personal 

orientation.
• Teaching—indirectly, based on how they were taught and assessed.
• Technological tools—directly or indirectly, based on how they were used in their 

learning.
• Beliefs—indirectly, based on what was taught and how it was taught. 

While the studies touched on all of these areas of PTs’ learning, aspects of them 
were not explored enough or at all to add depth to the body of research on PMTC. 
For example, little or no consideration was given to secondary school mathematics 
concepts, mathematical problem solving and thinking skills, technological tools, and 
assessment of learning. The studies also did not address contextual variables that 
impacted the characteristics, in particular, cultural context and technological context 
(discussed later). Thus, while the studies offered insights of some important PMTC 
held by PTs on entering MTE, in advancing the field of research on the mathematics 
teacher and teaching, they were limited in types and number of PMTC covered in a 
recent 20-year period.
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4.1.2 Attention to PMTC by Studies 

The extent to which the studies attended to the PMTC researched, based on number 
of studies, suggested relative levels of evolution of each of the three categories and 
types of PMTC (Table 1) for the period 2000–2020. For example, the pre-existing 
mathematical content and skills category received the most attention, suggesting 
higher interest in content-related characteristics, in particular, knowledge of fractions 
that represented almost half of the studies in the category, with most of them occurring 
in the second half of the period. The pre-existing mathematics-related pedagogical 
knowledge and ability and the pre-existing mathematics-related beliefs categories 
received the same level of attention, but when combined were higher by about 20% 
more studies than the mathematical content and skills category. This suggested that 
overall, research focused on PMTC regarding pedagogical ability and beliefs had 
grown more than for content knowledge. 

In particular, in the pedagogical ability category, there was significant attention in 
the studies on noticing and interpreting students’ work and thinking, which formed 
about two-thirds of the studies in this category, were the largest group of studies for 
the three categories, and were mostly occurring in the second half of the period. For 
the beliefs category, beliefs about teaching and learning received the most attention, 
but was third behind the interpreting students’ work and the fractions PMTC. Most of 
the studies for these three types of PMTC were also in the second half of the period, 
compared to the other types of PMTC that collectively had more studies in the first 
half of the period. All of the studies on problem posing, use of technology, and the 
ability to observe and analyze teaching, and most of those on ability to evaluate 
tasks and knowledge of whole number operations were in the first half of the period. 
Hence, there was a shift in focus from the first to the second half of the period 
that suggested a shift in research on PMTC that may be considered a partial growth 
regarding some PMTC researched and a limitation regarding lack of continuation 
of attention to those that are of ongoing importance to support effective teaching of 
mathematics. 

4.1.3 Studies at Point of Entry 

The extent to which the studies were framed at the PTs’ point of entry into MTE 
provided another perspective of the level of growth on research on PMTC for the 
period 2000–2020. While there is a large body of mathematics education research 
on PTs in this period, it is lacking in addressing PMTC of teacher candidates at the 
point of entering MTE. Only about 8% of the studies addressing PMTC in 2000–2020 
focused on PTs at the beginning of their programs, which was not defined. Hence, 
as previously discussed, the majority of the studies were framed at the beginning of 
mathematics education courses, or prior to research-based instructional interventions 
in a mathematics education course or based on activities in mathematics for teachers 
or mathematics education courses that depended solely on the use of prior knowledge 
related to school experience. This framing suggested that, in 2000 -2020, there was
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no growth of research of PTs’ PMTC at the point of entry into MTE or there was 
an evolution in terms of a shift to, or consideration of, more practical approaches of 
obtaining access to PTs and their PMTC (e.g., participants in mathematics education 
courses at different points in a program). 

Given the importance of understanding teacher candidates’ PMTC, the little atten-
tion of research on them could partly be related to challenges associated with the 
point of entry, which could be messy regarding accessing information on teacher 
candidates for one discipline and dealing with complexities associated with different 
admission requirements, different academic backgrounds of candidates, and different 
programs. For example, in a Western cultural context, mathematics teacher candi-
dates could enter a teacher education program directly from high school with or 
without a college entrance test/exam, or after receiving an undergraduate or grad-
uate degree in mathematics or some other related degree, or while jointly working 
on a mathematics education degree and another related degree. They could have 
completed only middle or high school mathematics, or a mathematics degree, or 
a mathematics-related degree (e.g., physics, engineering), or some mathematics or 
mathematics-related courses prior to beginning a teacher education or mathematics 
education program. These various groups of PTs would need to be considered sepa-
rately, in addition to the various groups according to different school levels for which 
PTs are preparing (e.g., elementary, middle, or high school) to obtain a reliable and 
meaningful picture of PMTC. 

A related issue is what is the point of entry for candidates in mathematics educa-
tion–the beginning of a general teacher education program that includes mathematics 
education, the beginning of a specialized mathematics education program, the begin-
ning of mathematics education courses, and mathematics courses for teachers? All 
of these possibilities could lead to different versions of the nature of PMTC held by 
PTs. Although the studies on PMTC in 2000–2020 addressed school levels, there was 
an underlying assumption that the PTs in a course formed a homogeneous group in 
terms of their academic backgrounds, which might or might not have been the case. 
However, the intent of most of these studies was not explicitly to address PMTC at 
the point of entry into an MTE, but to obtain baseline information to evaluate their 
instructional approaches, which could be another way of considering how research 
on PMTC has evolved. 

Another possible challenge for researching teacher candidates’ PMTC involves 
the use of institutions’ recruitment criteria or admission requirements as a basis of 
their point-of-entry PMTC, since what institutions want and what they get may not 
fully align. For example, as Artzt and Curcio (2008) explained, regarding recruiting 
high school students for secondary school mathematics education programs in the 
USA: 

There were several obstacles we faced in recruiting talented mathematics secondary students; 
it requires finding students from the intersection of three sets: those who love mathematics, 
those who want to become teachers, and those who are interested in attending Queens College 
…. Overcoming the barriers requires a multitude of recruitment strategies. (p. 249)
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Schmidt et al. (2012) also raised concerns about selectivity for institutions in the 
USA. They noted: 

There is great variation in what secondary mathematics individuals have had before entering 
teacher preparation. (p. 265). 

Variation was especially large for the college entrance mathematics score, … revealing 
a very large selectivity factor across institutions. (p. 270) 

From a policy perspective, selectivity relates to differences in mathematics knowledge 
among future teachers before they began their teacher preparation—the issue of who enters 
teaching. This is manifested by large differences among institutions. The policy issue related 
to selectivity includes recruiting more mathematically able students into primary teacher 
preparation no matter which institution they might attend. (p. 275) 

Selectivity could also be an issue within an institution where admission could be 
based on a combination of grades, interviews, portfolio, etc. which adds another layer 
of complexity in using admission requirements to determine PMTC. Research on 
PMTC in 2000–2020 did not address recruitment criteria or admission requirements 
of institutions, which could also be considered as representative of a shift in interest 
of the type of PMTC that seemed to be more relevant in this period. 

In general, then, the lack of research on PTs’ PMTC in 2000–2020, based on the 
journals reviewed, could be related to challenges in addressing variables associated 
with a point of entry into an education program or a shift in interest from consid-
ering PMTC at point of entry to indirectly addressing PMTC for PTs based on their 
participation in mathematics education courses regardless of where they are situated 
in a teacher education program. 

4.2 Methodological Factors 

Each of the four methodological factors adapted from Medley (1987) is discussed in 
this section regarding the evolution of research on the PTs’ PMTC. Conceptualiza-
tion is interpreted in terms of relationship to ‘good teaching’, teacher education, and 
technology and culture. Instrumentation is interpreted as procedures or tools used in 
collecting the data. Design is interpreted as what was used or done to support the data 
collection process and analysis is interpreted as the means used to extract informa-
tion from the data. These interpretations are appropriate to address the information 
provided in the studies. 

4.2.1 Conceptualization of PMTC in Relation to ‘Good Teaching’ 

In adapting Medley’s (1987) framework as a guide for research on teaching, it is 
important for studies to provide a conceptualization of good teaching. For the period 
2000–2020, while good or effective teaching of mathematics was not explicitly 
conceptualized in the studies on PMTC, it was implied based on the theoretical bases
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framing the PMTC being investigated for the three categories of mathematical knowl-
edge and skills, pedagogical knowledge, and beliefs. These theoretical perspectives 
were related to reform-based perspectives of mathematics education that promoted 
significant shifts in school mathematics curriculum, teaching, and learning and were 
associated with effective teaching of mathematics. Collectively, the studies directly or 
indirectly considered PMTC concerning specific elements of these perspectives that 
include: (a) standards and principles for mathematics education (NCTM, ); (b) mathe-
matical proficiency (Kilpatrick et al., 2001); (c) mathematical thinking (Mason et al., 
2010; Schoenfeld, 1992); (d) mathematics knowledge for teaching (Ball et al., 2008); 
(e) teaching practices (NCTM, 2014); and (f) beliefs about the nature of mathematics 
(Ernest, 1989) and teaching and learning mathematics (Beswick, 2012). 

The studies, then, indicated an evolution in conceptualizing PMTC to reflect 
contemporary perspectives of teaching and learning mathematics, with implications 
about the nature of the PMTC required for a PT to become “the teacher who has a 
set of personal characteristics closest to those of the ideal teacher” (Medley, 1987, 
p. 106). This implication seemed to underlie most of the studies considering the nature 
of the PTs’ PMTC mainly from a deficit perspective. The result was an evolution of 
research in the period to highlight what was wrong with the PMTC of the PTs on 
entering MTE. 

Regardless of whether addressing PTs at the primary, elementary, middle, or 
secondary school level, the studies showed an ongoing focus on issues and limi-
tations in their PMTC that indicated what they did not know or were not able to 
do at the beginning of their MTE. For example, collectively, the PTs: did not have 
deep conceptual or relational understanding of arithmetic and algebraic concepts; 
could not pose complex relational or conditional problems; were not able to think 
mathematically beyond a low level; were not able to observe details of the class-
room environment, mathematical content of a lesson, and subtleties of classroom 
communication and mathematics content beyond a surface level; were not able to 
collect, beyond surface level, appropriate evidence to support analysis of instruction 
and learning; could not base their analysis of instructional decisions on pedagogical 
and mathematical reasons instead of affective reasons; could not reflect on a level to 
theorize or restructure; were not able to analyze or interpret students’ solutions with 
depth, notice students reasoning based on meaning of student work, identify appro-
priate evidence for their noticing, identify conceptual aspect of errors, and classify 
tasks of high levels of cognitive complexity for students; and did not hold views 
of inquiry-based, constructivist-oriented perspectives of mathematics, teaching and 
learning, technology as tool to support deeper understanding and appreciation of 
mathematics, nature of genuine problems and problem solving in terms of their 
openness, conceptual use of multiple representation to support deep learning, and 
algebra as reasoning and relational thinking. 

The deficit perspective of the PTs’ PMTC also suggested limited evolution of 
school mathematics teaching based on reform recommendations since the different 
types of PMTC involved were directly related to what the PTs should have learned 
or experienced directly (e.g., mathematics content) and indirectly (e.g., mathematics 
pedagogy and beliefs) in school prior to entering teacher education. This probably
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limited evolution of teaching was also suggested by the studies based on what they 
noted or implied about what the PTs knew or were able to do, which reflected 
learning from traditional, pre-reform-oriented teaching of mathematics. For example, 
the PTs’ PMTC included: procedural or instrumental understanding of the some key 
school mathematics concepts; ability to pose problems of low level of cognitive 
complexity; ability to conduct instrumental analysis of relationship between instruc-
tion and student learning; ability to observe, describe and explain generic instruc-
tional issues, classroom management, instructional tasks, and affective factors of 
classroom interactions; ability to notice, interpret and describe students’ work or 
thinking on a procedural level; ability to identify tasks of low cognitive demand and 
attend to surface characteristics of tasks; beliefs of mathematics as absolute, teaching 
and learning as teacher-centered (e.g., teaching as telling, learning as memorizing), 
technology as computational tool; use of representations on an instrumental level; 
problem solving as a means to a solution involving procedural steps; and algebra as 
manipulation of symbols and in terms of surface features (e.g., variable or letter). 

In general, whether the PTs’ PMTC were viewed from a perspective of what they 
knew or did not know, were able or not able to do, the studies indicated continued 
issues with their PMTC when the PMTC were conceptualized in relation to reform 
expectations for effective teaching of mathematics in the period 2000–2020. This 
outcome suggested that the impact of the reform movement in school mathematics 
had not materialized in this period and many PTs were entering teacher education 
with PMTC that did not align with appropriate knowledge, skills, and beliefs in 
relation to effective teaching. But this conclusion might not be representative of the 
actual situation given the limitations of the studies regarding small sample sizes and 
little information on those PTs with PMTC that reflected reform-based teaching at 
the point of entry into MTE. 

4.2.2 Conceptualization of PMTC in Relation to Teacher Education 

Based on the definitions of Type F variable (Medley, 1987; Manizade et al., this 
volume), research should also conceptualize PMTC in relation to “the character-
istics a teacher candidate needs in order to acquire those competencies that formal 
education and experience can provide” (Medley, p. 105). Hence, as Medley indicated, 
Types F and E variables should be combined in research on teaching, where Type 
E involves mathematics teacher competencies, knowledge, and skills to function 
effectively in mathematics teacher education (Manizade et al.). In addition, Medley 
explained: 

Type FE research is the proper research to provide support for selective admission to teacher 
preparation, and may be called research in teacher selection. What characteristics of entering 
students identify teachers who will acquire the competencies they need as a result of training? 
(p. 111) 

His perspective suggested that PMTC, in addition to being conceptualized in 
relation to good or effective teaching, should be conceptualized in relation to good
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or effective teacher education, for example, the types and nature of the PMTC that 
are consistent with the role of MTE or are most needed to support PTs’ learning in 
MTE. 

The studies on PMTC in 2000–2020 did not address this relationship or lacked 
clarity about it. While they suggested that the PTs’ PMTC were not adequate in 
relation to effective teaching, there was less clarity regarding whether or not the 
PMTC were adequate to support their learning in MTE. But, based on the design of 
many of the studies, there were underlying assumptions of the relationship between 
the PTs’ PMTC and possible roles of MTE to help PTs develop the knowledge and 
competencies for effective teaching of mathematics. For example, the intervention 
studies with focus on fixing deficiencies in the PTs’ PMTC implied PMTC were 
conceptualized in relation to a remedial role of the teacher education programs. In 
general, the studies did not suggest that PMTC were conceptualized in relation to a 
constructivist role of MTE in which the PMTC were viewed as resources to build 
on and not deficiencies to fix. For both of these roles, the quality of the PMTC on 
entering MTE might not be important beyond some minimum standard required to 
complete high school and/or to enter an education program. Overall, then, while 
conceptualization of PMTC in relation to teacher education was unclear or limited 
for research in 2000–2020, there was a shift in the underlying implication of the 
studies that the role of mathematics teacher education was important to researching 
and understanding the PMTC PTs needed on entering MTE for them to succeed in 
it. 

4.2.3 Conceptualization of PMTC in Relation to Technology 
and Culture 

Context is important to understanding the mathematics teacher and teaching and 
should be considered in the conceptualization of teachers’ PMTC in research on 
teaching. Medley (1987) identified four categories of context-related variables, also 
adapted by Manizade et al., (this volume) for mathematics education research, that 
should be considered, but he associated these categories with practicing teachers 
and did not directly connect any with the Type F variable of PMTC. Thus, context-
related factors that could have impacted the PMTC prior to being engaged in teacher 
education were not highlighted in Medley’s model. However, in a digital age and 
a twenty-first century society, the evolution of research on PMTC in 2000–2020 
should reflect the availability of technology and the cultural context in and outside 
of classrooms. This view means that, for research in this period, the conceptualiza-
tion of PTs’ PMTC should also be related to technology and culture. This was not, 
however, reflected in the studies, directly or indirectly, based on theories to support 
the importance of culture and technology to mathematics teaching. For example, 
equity and technology are two of the six principles recommended by NCTM (2000) 
as fundamental to high-quality mathematics education.
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Regarding Technology. NCTM (2000) promoted technology as being essential in 
teaching and learning mathematics. In addition, NCTM (2011) explained: 

Technological tools include those that are both content specific and content neutral. In 
mathematics education, content-specific technologies include computer algebra systems; 
dynamic geometry environments; interactive applets; handheld computation, data collection, 
and analysis devices; and computer-based applications. These technologies support students 
in exploring and identifying mathematical concepts and relationships. Content-neutral tech-
nologies include communication and collaboration tools and Web-based digital media, and 
these technologies increase students’ access to information, ideas, and interactions that can 
support and enhance sense making, which is central to the process of taking ownership of 
knowledge. (NCTM, 2011) 

Despite this range of tools and importance of technology, there was no study in the 
last ten years and only two studies in the early 2000s that considered technology in 
relation to PMTC. There was, therefore, a lack of information regarding the influence 
of technology on PTs’ PMTC based on technology in general or the different types 
of technology the PTs would have encountered in or out of the classroom. The two 
studies on technology focused on PTs’ beliefs about it in a general sense (without 
consideration of specific types), but neither considered the relationship between the 
use of technology in learning and the PMTC. 

Of the two studies, only one (Wachira et al., 2008) focused explicitly on pre-
existing beliefs at the beginning of a semester based on students’ responses to two 
prompts: (a) to indicate their experiences with instructional technology use in math-
ematics, and (b) to provide compelling arguments for the use of technology in math-
ematics learning. Both studies highlighted the limitations of the PTs’ beliefs, which 
suggested that their exposure to technology was not enriching to their PMTC. But 
these studies occurred in the early 2000s when access to technology was not as avail-
able in schools as later in the period. They may not, therefore, be representative of 
the significant changes and access to technology in western cultural contexts and the 
impact on teacher candidates’ learning and thinking on entering MTE. Overall, there 
was a lack of growth in conceptualizing PMTC in relation to technology. 

Regarding Culture. The actions of teaching and learning exist in cultures that vary 
greatly from society to society, from school to school, and even from classroom to 
classroom in the same school. Thus, culture could be a problematic variable regarding 
its meaning in researching teaching and a basis of conceptualizing PMTC. It is 
considered here in relation to the classroom. The culture of a mathematics classroom 
determines and is determined by the type of learning that takes place, affects the types 
of experiences students engage in, and could interact with students’ personal cultural 
(e.g., home or societal culture) experiences in positive or negative ways. Thus, in the 
period 2000–2020, there has been the promotion of culturally responsive teaching 
in general (Gay, 2010; Taylor & Sobel, 2011) and specific to mathematics education 
(Greer et al., 2009; Presmeg,  2007) and of equity as a principle in school mathematics 
education (NCTM, 2000) to meaningfully address diverse student population based 
on various cultural heritage and social backgrounds of students in the western cultural 
context.
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Culture then should be of importance in considering the evolution of research on 
PMTC in relation to its impact on PTs’ experience and learning of mathematics that 
are connected to the nature of their PMTC on entering MTE. These PMTC include 
the mathematical identity PTs developed based on the classroom culture and the 
personal cultural-based resources they bring to MTE with implications for the type 
of teacher they will become. None of the studies attended to PMTC in relation to 
culture. This lack of conceptualization of PMTC in relation to culture suggested a 
significant deficiency in the evolution of research on beginning PTs. There seemed 
to be a lack of a humanistic perspective in framing the studies that made culture 
irrelevant in considering the PMTC. There was also a lack of focus on affective factors 
that are directly associated with culture. Regardless of whether the PTs were from 
culturally homogenous classrooms with homogenous cultural backgrounds, culture 
still mattered regarding their identity as a teacher and the nature of their PMTC. 
Thus, overall, there was a lack of growth in conceptualizing PMTC in relation to 
culture. 

4.2.4 Instrumentation in Researching PMTC 

Instrumentation is the second factor Medley (1987) indicated as important in consid-
ering the evolution of research on teaching, interpreted here as procedures or tools 
used in collecting the data. In earlier studies, Medley, for example, noted that instru-
mentation focused on surveys consisting of closed response questionnaires or brief 
written response items about teaching. For the period 2000–2010, while the studies on 
PMTC continued to use surveys, they also used a variety of tools for data collection. 
This evolution of instrumentation mirrored the evolution in the conceptualization of 
PMTC in relation to contemporary perspectives of effective mathematics teaching. 
Four categories of instruments, discussed in turn in the following paragraphs, were 
used in the studies to determine the PTs’ PMTC at the beginning of a program or 
course or prior to an intervention to support their learning. 

Questionnaires. Some studies used only questionnaires, for example: motivation 
questionnaire (Newton, 2009); beliefs questionnaire (Dreher et al., 2016; Weldeana & 
Abraham, 2014); questionnaire to analyze student work (Simpson & Haltiwanger, 
2017); diagnostic questionnaire (Tirosh, 2000); content knowledge questionnaire 
(Lee & Lee, 2020); questionnaire on concept maps and definitions (Miller, 2018); 
and questionnaire with true/false, multiple choice, and short answer questions 
(Star & Strickland, 2008). Other studies used open-ended questionnaires with semi-
structured interviews, for example: regarding conceptions and beliefs of mathe-
matics, problem solving or creativity (Bolden et al., 2009; Conner et al., 2011; Son & 
Lee, 2020; Szydlik et al., 2003) and mathematics backgrounds and teaching interests 
(Stephens, 2008). 

Interviews. Some studies used only semi-structured interviews based on participants 
solving mathematical tasks (Stephens, 2006; Thanheiser, 2009, 2010; Yanik, 2011). 
In addition to interviews being combined with questionnaires, other studies combined
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interviews with written responses to analyse students’ written work (Magiera et al., 
2013; Shin, 2020) and to prompts on beliefs (Shilling-Traina & Stylianides, 2013). 

Written Responses. Some studies used only written responses, including: jour-
nals on mathematics problem posing (Crespo, 2003); mathematical autobiographies 
(Harkness et al., 2007; Wachira et al., 2008); responses to interpreting students’ solu-
tions to mathematical tasks (Callejo & Zapatera, 2017; Sánchez-Matamoros et al., 
2015, 2019); responses to incorrect students’ solutions to the same problem solved 
by PTs (Son, 2013); responses on reflecting on a student’s invented algorithm (Hark-
ness & Thomas, 2008); responses to written standard place-value-operation tasks 
(addition and subtraction) (Thanheiser, 2010); and responses to the analysis of video 
recorded mathematics lessons (Morris, 2006; Star & Strickland, 2008) and analysis 
of a mathematics video curriculum (Stockero, 2008). 

Mathematics Tests and Tasks. Some studies used content knowledge tests on 
rational numbers and computations (Lovin et al., 2018); fractions (Lin et al., 2013; 
Osana & Royea, 2011); whole number operations (Kaasila et al., 2010; Norton, 
2019); linear functions (You & Quinn, 2010); and algebraic language (Pomer-
antsev & Korosteleva, 2003). One study combined a number sense test with inter-
views (Whitacre & Nickerson, 2016). A few studies used students’ work on mathe-
matical tasks involving solving algebra tasks (Hohensee, 2017); posing mathematics 
problems (Crespo & Sinclair, 2008); solving pattern-finding tasks (Richardson et al., 
2009; and sorting mathematics problems (Osana et al., 2006). 

The different ways of collecting data outlined above were used throughout the 
period. There were about the same number of studies that used questionnaires, inter-
views, written responses, and tests and tasks, alone or in different combinations. 
Overall, the growth in instrumentation consisted of very little use of only interviews 
and an increased use of combinations of questionnaires and interviews, open written 
responses, and tests or tasks which have the potential to produce more valid data 
regarding the types of PMTC that were studied. 

4.2.5 Design and Analysis in Researching PMTC 

Design and analysis are the last two factors Medley (1987) indicated were important 
in considering the evolution of research on teaching. However, based on Medley’s 
perspective, they were problematic to address for the studies on PTMC in 2000–2020, 
most of which were not specifically designed to address PTs’ PMTC on entering 
MTE, but had broader goals. Thus, the design was considered in terms of what the 
studies used to support the data collection process at the beginning of a course or 
prior to an intervention and analysis as the means used to obtain information from 
the data. 

Design. There was an evolution in the design of research in the period in terms of the 
use of school students’ mathematical work and videos of mathematics teaching to 
engage the PTs in situations to apply their PMTC. Students’ work included: actual
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solutions to various mathematical tasks (Callejo & Zapatera, 2017; Magiera et al., 
2013; Sánchez-Matamoros et al., 2015, 2019; Simpson & Haltiwanger, 2017); hypo-
thetical written solutions (Shin, 2020); incorrect solutions to the same problem solved 
by PTs (Son, 2013), and a student’s invented algorithm (Harkness & Thomas, 2008). 
Videos included videotaped mathematics lessons (Morris, 2006; Star & Strickland, 
2008) and a video-case curriculum (Stockero, 2008). 

There was also evolution in terms of significant variations in the design of 
instrumentation (e.g., questionnaires, written responses, tests and tasks) to match 
the different types of PMTC and in terms of the combination of interviews with 
other instruments to obtain reliable data. One area of limitation involved studies 
not being designed solely for researching PMTC at the beginning of an education 
program, which could have resulted in aspects of the PMTC not being identical to 
the PTs’ PMTC on entering the program. A few studies were designed at the begin-
ning of courses, while most were designed as intervention studies with a pre-post-
intervention design. The intent of the intervention studies was more about promoting 
the intervention as a way of impacting change and less about the nature of the PMTC. 
Thus, they tended to provide little information on the pre-intervention characteris-
tics, with the emphasis being on the post-intervention. The design also tended to 
use convenient samples of PTs enrolled in specific courses and small sample sizes 
regardless of the nature of the instrumentation. Thus, the studies did not necessarily 
provide a representative picture of PMTC within an institution or a region, even 
though they offered useful insights about the PMTC. 

Analysis. The analysis approaches used in the studies depended on the instrumenta-
tion and thus showed an evolution of approaches consisting of both quantitative and 
qualitative strategies. These approaches varied within and across categories of instru-
ments depending on the design of the instrument. For example, some questionnaires 
used the Likert scale (e.g., Dreher et al., 2016; Newton, 2009; Szydlik et al., 2003; 
Weldeana & Abraham, 2014) while others used open-ended items with a rubric or 
scale for scoring or categories to compile and rank frequencies (e.g., Conner et al., 
2011; Lee & Lee, 2020; Miller, 2018; Son & Lee, 2020). Interviews by themselves 
were semi-structured and based on PTs solving mathematics tasks (Stephens, 2006; 
Thanheiser, 2009, 2010; Yanik, 2011); when combined with questionnaires they were 
semi-structured and based on following up on questionnaire items or ideas (Ambrose, 
2004; Conner et al., 2011; Son & Lee, 2020; Stephens, 2008; Szydlik et al., 2003). 
Interviews as well as open written response tasks (Crespo, 2003, Harkness et al., 2007; 
Sánchez-Matamoros et al., 2015; 2019; Son, 2013; Thanheiser, 2010; deCallejo & 
Zapatera, 2017; Harkness & Thomas, 2008; Morris, 2006; Star & Strickland, 2008, 
Stockero, 2008) were generally analyzed through coding to produce themes or cate-
gories. Tests, which dealt with mathematics content, used scoring schemes that indi-
cated the level of correctness or error in participants’ responses (e.g., Lin et al., 
2013; Lovin et al., 2018; Norton, 2019; Osana & Royea, 2011; You & Quinn, 2010). 
While Medley (1987) suggested more use of technology in analysis, this was not
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reflected in the studies because of the shift to more qualitative approaches or quan-
titative approaches with small sample sizes that did not necessarily require complex 
statistical analysis. 

4.3 Summary of Evolution of PMTC Research 

Overall, consideration of the scope and the methodological factors of the studies on 
PMTC for the period 2000–2020 indicated that there were both growth and limitations 
or gaps in research on PTs’ PMTC at the point of entry in MTE. There was evolution 
in the scope of research in terms of the extent of the types of PMTC researched 
and the extent to which PMTC were addressed by the studies. For example, while 
the mathematical knowledge and skills category of PMTC received the most atten-
tion in the studies, suggesting ongoing interest in content-related characteristics, a 
significant shift was the pedagogical skills category regarding studies on noticing 
and interpreting students’ work and thinking that was the largest group of studies for 
the three categories of PMTC (Table 1). 

There was also evolution of aspects of methodology based on Medley’s (1987) four 
factors of the conceptualization, instrumentation, design, and analysis. For example, 
conceptualization of PMTC evolved to reflect contemporary perspectives of teaching 
and learning mathematics. There was a shift in instrumentation from a focus on 
surveys with large samples in early studies to a variety of tools, used alone or in 
different combinations. There was growth in design regarding the use of school chil-
dren’s work and of videos on teaching as bases of obtaining pedagogical-related data. 
The analysis also shifted from mainly statistical approaches to including qualitative 
approaches particularly for interviews and written responses. Limitations and gaps 
in the evolution of the research on PMTC are addressed in the following section in 
relation to what needs to be considered in future research. 

5 Future Evolution of Research on PMTC 

Future evolution of research on PMTC refers to what should be considered to move 
the field forward in this area. Medley (1987) indicated that the methodological factors 
of conceptualization, instrumentation, design, and analysis should also be used in 
considering the future evolution of research on teaching, which includes research on 
PMTC. Consistent with the preceding section, the scope of research is also relevant. 
The preceding discussion of evolution on research on PMTC in the period 2000– 
2020 indicated that there were limitations or lack of attention regarding scope and 
methodological factors, which suggest areas that need attention to support future 
evolution of research on PMTC. The following summary highlights the key areas 
that future research should consider.
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Regarding scope, much more attention is needed on research of PMTC for PTs at 
the point of entry into a teacher education program as opposed to other points during 
the program, which could be affected by confounding factors associated with their 
experience in the program in general. There also needs to be more scope and depth 
of the types of PMTC researched within and beyond the categories of mathematical 
content and skills, pedagogical knowledge, and beliefs. There are other aspects of 
PTs’ mathematical abilities, knowledge, and attitudes, as well as aptitude for teaching 
that are important to understand PTs and their PMTC at point of entry MTE. One area 
the studies in 2000–2020 were particularly lacking in addressing, that needs future 
consideration, was affective factors such as PTs’ attitudes and what they value. For 
example, do they value collaboration, know how to connect and form collaborative 
groups, have the skills needed to create an environment of working with others? 
As Blanton (2002) also asked, do they value discourse as an active process in which 
students use the collective knowledge of a group to build understanding (i.e., dialogic 
discourse)? What is their level of competence to reflect and to be curious? In addition, 
as Strutchens et al. (2017) also suggested, there is a need to consider the various 
identities that PTs have prior to their participation in preservice education. 

Another area not attended to, but that is of significance in the context of the 
current digital age and twenty-first century society and in need of future attention, 
is the impact of technology and culture on the PTs’ PMTC at the point of entry into 
MTE. Both are important to the nature of PTs’ PMTC and culture, in particular, 
to their developing mathematical identity. Finally, regarding beliefs, the scope was 
limited to types of beliefs but future attention could also be given to PTs’ ability to 
reflect on them. 

Regarding conceptualization, more attention is needed to conceptualize PMTC 
in relation to teacher education, for example, regarding the types and nature of PTs’ 
PMTC on entering teacher education that are consistent with the role of the teacher 
education program or are most needed to support the PTs’ learning in the program. 
In addition, PMTC should be conceptualized in relation to technology and culture 
regarding specific characteristics of the latter that influence the nature of the PMTC. 

Regarding instrumentation, design, and analysis, the future evolution will depend 
on the scope and characterization of future studies on PMTC. Some considerations 
are: designing studies with the sole aim of exploring PMTC at point of entry to MTE, 
which may also require different or “better instruments” (Medley, 1987) and analysis; 
designing studies that are more humanistic in focusing on what PTs’ know and can 
do based on their PMTC, which could be more practical when using convenient 
samples and qualitative instruments; and the use of more rigorous mixed methods 
research design with more rigorous statistical analysis and use of technology. 

To conclude, overall, the studies suggested that there have been significant changes 
in research on teaching with a focus on the Type F variable regarding PMTC of 
candidates MTE. But ongoing work is necessary for this area of research given its 
importance to understanding the selection of teacher candidates, the mathematics 
teacher, teaching of mathematics, and teacher education. Since PMTC at the point 
of entry are important starting points of PTs’ formal education to become a teacher,
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then more attention is needed to understand these PMTC and how to work with them 
in mathematics teacher education. 
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The Evolution of Research 
on Mathematics Teachers’ Competencies, 
Knowledge and Skills 

Nils Buchholtz , Gabriele Kaiser , and Björn Schwarz 

1 Introduction 

What characterizes competent mathematics teachers, what types of knowledge do 
they need in order to be able to teach successfully, and what skills do they draw 
upon for successful teaching? These questions have long concerned mathematics 
education research, teacher education and educational policy. The NCTM standards 
(2000), for example, refer specifically to teacher knowledge as a ground to start 
from, stating that “[t]eachers must know and understand deeply the mathematics 
they are teaching and be able to draw on that knowledge with flexibility in their 
teaching tasks” (p. 17). Teachers need not only sufficient disciplinary mathematical 
knowledge and knowledge of the school subject (Bromme, 1994). As Shulman (1986, 
1987) argues, teachers need a specialized knowledge base for teaching that is different 
from pure mathematical knowledge and that differs from other professions, thus 
coining the term of pedagogical content knowledge. However, to determine what 
teachers should know, what other aspects constitute teacher competencies, and to 
specify how teachers acquire these in teacher education, as well as how teachers use 
their skills and act competently in practical situations in teaching is not an easy task. 
Teacher competencies are also related to underlying beliefs about the role of teachers
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and the teaching profession, which are culturally shaped. All these entities are subject 
to change over time and are continually evolving. For example, further challenges 
arise over time as new demands emerge in the context of teachers’ professional 
practice—such as the increasing integration of technology and digitization, which 
also require thinking about additional necessary teacher competencies. 

In the framework of presage-process–product research underlying this volume 
(see Chap. 1), Medley (1987) names the facet of teacher competence (Type E) as a 
central variable within the research on teaching, which he understands as the “knowl-
edges [note: plural!], skills, and values which a teacher possesses” (p. 105) and which 
he considers being “the tools of teaching” (ibid.). Teacher competence has thus an 
impact on student learning (the outcome of teaching), as it enables teachers to teach 
successfully and competently in classroom situations. However, it becomes clear that 
in order to be able to assess this effect, additional mediating variables should be taken 
into account as good as possible (see Chap. 2). For example, pre- and post-active 
teacher activities (Type D), such as planning, assessment, reflection and out-of-
class activities of mathematics teaching (see Chap. 3) and interactive mathematics 
teacher activities (Type C), that take place when in the presence of the students (see 
Chap. 4). Yet, teacher competencies play a central role in the quality of instruction.1 

Characterized by a cognitivist and individualist perspective, what most research on 
teacher competence today seem to agree on is that teachers’ professional knowledge 
is central within teacher competence and is considered an essential component of the 
job-specific prerequisites for successful classroom action. It represents an important 
cognitive resource for interpreting classroom situations and generating informed 
decisions for actions needed for successful and competent teaching (Baumert & 
Kunter, 2006; Gitomer & Zisk, 2015; Guerriero, 2017). 

Since the beginning of presage-process–product research, and based on theoretical 
reflections on a subject-specific characterization of teacher cognitions in teaching, 
which were initiated in the U.S. in the late 1980s, the question of the theoretical 
conceptualization and empirically examination of teachers’ professional knowledge 
has become increasingly important (e.g. Carpenter & Fennema, 1992; Carpenter 
et al., 1988, 1989; Fennema et al., 1996; Neubrand, 2018; Petrou & Goulding, 
2011; Rowland, 2014). The research initially sought to identify and isolate more 
general variables of successful teaching, but has since taken somewhat different 
forms. Presage-process–product research meanwhile is transitioned into the content-
dependent, more situation-specific study of teachers’ professional knowledge and its 
implications for the quality of mathematics instruction. In recent years, a new branch 
of research on the theoretical description and empirical measurement of professional 
knowledge of mathematics teachers has become firmly established in the interna-
tional mathematics education research discipline (a.o. Ball et al., 2008; Baumert 
et al., 2010; Buchholtz et al., 2014; Carrillo-Yañez et al., 2018; Davis & Simmt, 
2006; Even & Ball, 2009; Hill et al., 2004, 2008a, 2008b; Kaiser et al., 2014, 2017;

1 For further student-related variables as well as external and internal context variables that play a 
role in the relation of teacher competence and student outcome see Chapter 1 and the other Chapters 
in this volume. 
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Krauss et al., 2008; Kunter et al., 2013; Lindmeier, 2011; Manizade & Martinovic, 
2016; Manizade & Mason, 2011; Rowland & Ruthven, 2011; Scheiner et al., 2019). 
However, this work already builds on research approaches that have developed over 
the past 30 years, as we will show in this chapter. 

On the theoretical level, following the seminal work of Shulman (1986, 1987), 
different dimensions of knowledge are often distinguished in the study of teachers’ 
professional knowledge, depending on assumed aspects of content, referring to the so-
called domain specificity. This classification of teachers’ professional knowledge has 
also been used in large-scale international comparative studies of the effectiveness of 
teacher education programs, such as TEDS-M 2008 (Blömeke et al., 2014a, 2014b; 
Tatto et al., 2012) and its predecessor study MT21 (Schmidt et al., 2007, 2011). 
Despite the abundance of studies in this area, however, there is still no agreement 
on a unified theoretical conceptualization because different conceptualizations are 
based on different domains attributed to teachers’ professional knowledge, differ in 
their theoretical assumptions, and also have different grain-size of the knowledge 
elements considered (Even, et al., 2017; Neubrand, 2018). 

However, the complexity of the construct of professional knowledge in contem-
porary research on Type E has not only increased as a result of different theoretical 
conceptualizations, but also because of the question of the extent to which it is 
situationally available in school practice as a cognitive prerequisite ‘in the head of 
a teacher’ in the form of requirements-related knowledge and skills. When such 
knowledge is operationalized and measured context-independently for empirical 
studies (for example in psychometric scalable knowledge tests), research to date 
showed mixed results as to whether or not it is possible to separate different knowl-
edge domains empirically (Bednarz & Proulx, 2009; Buchholtz et al., 2014; Char-
alambous et al., 2019; Depaepe et al., 2013). Current discourses within research on 
teaching, however, put up for discussing the extent to which a context-independent 
investigation of teachers’ professional knowledge seems to be useful at all. Thus, 
on various occasions, the importance of approaches that allow for a more situation-
specific measurement of teachers’ cognitive processes in teaching has been pointed 
out to strengthen the contextual study of teacher competence (e.g., Kaiser et al., 
2015; Shavelson, 2010). Since then, scholarly advancements in the last decade 
have consisted in the differentiation of the current conceptualizations for teaching 
mathematics according to the theoretically-sound and empirically-based integra-
tion of action-oriented knowledge facets (Blömeke et al., 2015; Kaiser et al., 2017; 
Neubrand, 2018). Among other things, this has led to current mathematics educa-
tion research approaches to the study of teacher competencies, such as the Knowl-
edge Quartet (Rowland, 2008a; b), Lindmeier’s action-based competence approach 
(Lindmeier, 2011; Lindmeier et al., 2020), and the German TEDS research program 
(Kaiser & König, 2019). These research approaches focus more on the situational 
manifestation of professional knowledge and its relation to perceived instructional 
quality (Even et al., 2017). At the same time, however, the call for a situation-
embedded study of knowledge is countered by the fact that the more contextually 
knowledge is analyzed in studies, the even more difficult it becomes to empirically
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distinguish knowledge from other factors such as teacher personality or affective 
variables (Even et al., 2017). 

Newer challenges in the description and study of teachers’ professional knowledge 
are also posed by the ever-changing demands of professional practice, which have 
increased significantly since the late 1980s so there is a constant need to rethink 
what specialized teacher competencies are needed for successful teaching. Medley 
(1987) identifies this as a distinct branch of research in teacher competence (Type 
E and Type D research, p. 111), which is normatively oriented and includes both 
preactive teacher behaviors like planning or evaluating as well as situational aspects 
of competence. For example, current topics in research on teaching include the study 
of teachers’ diagnostic skills. These are becoming increasingly important because of 
the need to deal with an ever-increasing linguistic and cultural diversity of students in 
the classroom due to transnationalization processes and multiple cultural attributions. 
Furthermore, novel challenges concerning competencies in the use of technology and 
digital media in mathematics teaching and dealing with the challenges of digitization 
play a role (e.g., Mishra & Koehler, 2006) as well as skills and attitudes for achieving 
equity and educational justice in mathematics classrooms (Schoenfeld et al., 2019). 

This chapter provides an overview of the most important developments in the field 
of describing professional competencies of mathematics teachers, especially taking 
up the perspective of the development of research over time since Medley’s (1987) 
reflections. However, this overview chapter does not follow the criteria of a system-
atic review; rather, we provide a narrative review (Snyder, 2019) to give as good 
and comprehensive as possible an overview on the progress of the research in the 
field. As a result, however, the perspective is inevitably subjective, and not all work 
is included. First, we will discuss the development of research on teacher compe-
tencies, knowledge and skills over time, before discussing various facets of teacher 
competencies and teacher professional knowledge separately in Sect. 2. Section 3 
deals with the different conceptualization and operationalization of teacher compe-
tencies in key studies and research programs and the further development of research 
towards the consideration of situational aspects. We conclude the chapter with an 
outlook on the further development of Type E research and a summary reflection. 

2 Evolution of Research on Teacher Competencies, 
Knowledge and Skills 

Research on teachers’ competencies, knowledge and skills has been influenced by 
different research directions over time. To be able to chronologically situate the 
developments and to describe the further developments in terms of thematic content, it 
is necessary to reflect on the underlying paradigms of research on teaching. Research 
on the teaching profession has undergone several paradigm shifts since the 1960s, 
changing the underlying theories and the research approaches used. In the process, 
existing paradigms were critically examined for weaknesses and further developed



The Evolution of Research on Mathematics Teachers’ Competencies, … 59

so that today’s research on teacher competencies, knowledge and skills is based 
on different paradigmatic approaches which have complementary strengths and set 
different accents. 

The so-called personality paradigm or traits paradigm, which prevailed until about 
the 1960s, attempted to attribute the pedagogical effectiveness of teachers’ actions 
to measured personality traits (e.g., patience or emotional stability). However, the 
paradigm had its weaknesses in that it was unable to explain how these character-
istics impact different classroom situations (Bromme, 2001). Since its research has 
produced few or only trivial results on the relationship between teacher action and 
learning success, the paradigm is not considered very fruitful today. 

Originating in teacher effectiveness research, Medley’s reflections on directly 
detectable relationships between different variables in the chain of effects (Medley, 
1987) on the outcomes of teaching can be assigned to the presage-process–product 
paradigm, which took over from the 1960s when research on teaching became more 
systematic and empirical. This research paradigm questions what effects certain 
characteristics of teachers have on the desired learning outcomes of their students, 
assuming stable behavior (Floden, 2001). 

In the past, researchers following this paradigm deliberately did not examine 
teachers’ cognitions, but rather behavioral features that are easy to control and 
observe, e.g., the number and level of questions asked, the waiting time after ques-
tions, or the frequency of feedback on students’ responses (e.g., Gage & Needels, 
1989). An assumption of many studies was that effective teaching practices were 
domain-general, and researchers could look across teaching in different domains 
and make generalizations about what teaching expertise looked like overall (Russ 
et al., 2011). The assumption of the paradigm, that a teacher’s behavior exerted a 
direct influence on student’s learning experienced significant criticism in later years, 
in part because the focus in observing teachers in some studies tended to be only on 
isolated surface characteristics and did not look at more complex structures of instruc-
tional quality (e.g., deep structures rather than surface structures) or the combination 
of multiple variables, including those of Types E and F2 (Bromme, 2001). It further 
became clear that the impact of specific teacher actions depended on the context and 
the learner much more than assumed and findings on teacher behavior were not as 
transferable to the realities of different classrooms as one had hoped for (Weinert 
et al., 1989). However, back in the 1980’s, researchers only had access to different 
(less advanced) research tools (e.g., compared to today’s multilevel structure equa-
tion modelling), and considered different evidence in their work. One outcome of 
the criticism was the programmatic remodelling of the paradigm, basically in the 
expert paradigm (Ornstein, 1995). But presage-process–product research neverthe-
less continued to evolve. An important aspect of presage-process–product research 
that continues to shape research on the teaching profession today is the holistic 
approach that seeks to make connections between teacher behavior and student

2 This criticism does not undermine the overall framework developed by Medley in general, as it 
is open to the conceptualization of the variables studied and also takes into account corresponding 
contextual variables. 
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learning in particular ways. It thus identifies relevant variables for successful teaching 
as shown in recent meta-analyses on the effectiveness of teaching (Hattie, 2009; 
Seidel & Shavelson, 2007). The presage-process–product paradigm thus continues 
to influence research on instructional quality today and has established its standards. 

Based on findings from cognitive psychology research, since the mid-1980s the 
individual cognitions of the teacher had become the focus of interest in research on the 
teaching profession. This approach was initially promising in that it was hoped that 
an understanding of the teacher’s thinking would provide insight into why teachers 
behaved in certain ways in the classroom. Again, however, the focus was in the 
beginning on cross-domain, rather than initially subject-specific, approaches (Russ 
et al., 2011). This changed mainly due to the growing influence of the research 
program “Knowledge Growth in Teaching” by Lee Shulman (Shulman, 1986, 1987) 
and the work of his research group at Stanford University. Shulman pointed out the 
importance of subject matter in the study of teacher knowledge. In his famous Pres-
idential Address at the 1985 annual meeting of the American Educational Research 
Association and the article published in 1986, Shulman cautioned against teacher 
effectiveness evaluations at the time that focused purely on generic teacher behav-
iors (such as orientation to simple rules like appropriate waiting times on student 
responses). He proposed a classification of teachers’ professional knowledge that 
accounted for subject-specific viewpoints and, he saw subject matter knowledge as 
central to the pedagogical preparation and accessibility of subject content in the 
classroom. The most important consideration for the research on teacher cogni-
tions at that time was his postulation of pedagogical content knowledge (PCK), 
which differs from the knowledge required by other professions, such as mathemati-
cians. PCK is specifically oriented towards teaching and includes knowledge about 
different student cognitions and teaching approaches. “Within the category of peda-
gogical content knowledge I include, for the most regularly taught topics in one’s 
subject area, the most useful forms of representation of those ideas, the most powerful 
analogies, illustrations, examples, explanations, and demonstrations—in a word, the 
ways of representing and formulating the subject that make it comprehensible to 
others” (Shulman, 1986, p. 9). Shulman himself did not aim for the development of 
a catalog of corresponding knowledge content but specified his idea of PCK in his 
article published the following year, “Knowledge and Teaching: Foundations of the 
New Reform” (Shulman, 1987) as a “specific amalgam” of knowledge about subject 
content and pedagogy, which focuses on subject representations and concepts of 
understanding as well as misconceptions. Shulman (1987, p. 8) distinguishes various 
forms of knowledge in his typology of professional knowledge:

• Content knowledge,
• General pedagogical knowledge (strategies of classroom management and orga-

nization),
• Curricular knowledge (including materials that serve as “tools of the trade” for 

teachers),
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• Pedagogical content knowledge, a special “amalgam” of subject content and 
pedagogy that is found exclusively among teachers and forms the basis of their 
professional understanding,

• Knowledge of learners and their characteristics,
• Knowledge of educational contexts (e.g., about working of groups, administration 

and funding of school districts, or the character of communities and cultures),
• Knowledge of educational goals and values and their philosophical and historical 

grounds. 

Later on, pedagogical knowledge, content knowledge, and pedagogical content 
knowledge had a great impact in terms of the theoretical design of research studies 
on teachers’ professional knowledge. 

According to Shulman, teachers must transform subject content into pedagog-
ical forms such as examples, illustrations, and classroom tasks that make the content 
accessible to learners. This transformation of subject matter into pedagogically effec-
tive forms of learning is understood as the central intellectual task of the teacher and 
has become the defining characteristic of pedagogical content knowledge (Deng, 
2007a, 2007b). Thus, for Shulman, PCK means the integration of subject matter 
knowledge and pedagogical knowledge that enables teachers to translate subject 
matter knowledge into pedagogically effective forms of presentation that match 
learners’ abilities and interests. Shulman’s work, however, did not go uncriticized and 
the criticism led to further developments in research on teacher knowledge. Among 
other things, it was noted that Shulman had a static understanding of knowledge as 
something that could be acquired and applied regardless of the complexity of the 
instructional context, and that the idea of “transforming” or “translating” subject 
matter into pedagogical forms amounted to a routine, mechanistic transmission of 
a fixed canon of knowledge. Shulman’s critics objected that mathematical knowl-
edge itself could also be assumed to be multidimensional and dynamic in nature, 
from which it follows that teachers’ knowledge is characterized by its “interactive 
and dynamic nature” (Fennema & Franke, 1992, p. 162). Other scholars adopted this 
dynamic view of knowledge, essentially viewing it as physically and socially situated 
in the act of teaching in a particular context (Bednarz & Proulx, 2009; Döhrmann 
et al., 2018; Meredith, 1995). 

This situatedness of teachers’ cognitions was taken up by the so-called expert 
paradigm. The presage-process–product research at that time looked more for the 
general abilities and skills of teachers and was less concerned with the question of 
whether these individual bundles of behaviors could actually be found in a person in 
reality. The expert paradigm focused on the successful teacher “as a whole” (Bromme, 
2001; Schön, 1983), and the focus henceforth was on teachers’ knowledge and skills. 
Central to this development was the work of Berliner (2001), for example, in which he 
calls the teacher an ‘expert teacher’ and speaks of ‘teaching expertise’. According to 
the expert paradigm, teachers are called experts because they can successfully manage 
a very specialized, complex task such as school teaching. Expertise is manifested, 
for example, in the immediacy of action expected of a responsible teacher in his 
or her teaching and the resulting time pressure of acting as well as in acting under
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information deficit concerning the current situation, the complexity and dynamics 
of which are continuously changing due to the students’ behavior. In this context, 
teachers draw on specific knowledge and skills, which can be technically described 
within the research approach through detailed analyses of requirements—such as 
those derived from psychology (e.g., Bromme, 1992, 2008). 

A recent further development of the expert paradigm has been the approach of 
professional competence of teachers for about twenty years (Kunter et al., 2013). In 
this approach, teachers’ knowledge and skills are not only identified using require-
ment analyses in terms of the expertise paradigm but are furthermore complemented 
by the examination of personality traits such as motivation and self-regulation. The 
concept of competence was introduced into the discussion by Franz Emmanuel 
Weinert (1999, 2001) about twenty years ago as part of an influential review of 
different definitions of competence in a report prepared for the OECD. In describing 
professional action competence, Weinert states: 

“The theoretical construct of action competence comprehensively combines those 
intellectual abilities, content-specific knowledge, cognitive skills, domain-specific 
strategies, routines and subroutines, motivational tendencies, volitional control 
systems, personal value orientations, and social behaviors into a complex system. 
Together, this system specifies the prerequisites required to fulfill the demands of 
a particular professional position, social role, or personal project” (Weinert, 1999, 
p. 10). In summary, competence can thus be defined as “the ability to successfully 
meet complex demands on a particular context through the mobilization of psychoso-
cial prerequisites (including both cognitive and noncognitive aspects)” (Rychen & 
Salganik, 2003, p. 43). 

A feature of this definition of competence is that it is first understood as context-
based. Second, in addition to purely cognitive components, it includes affective 
components such as volitional, motivational and social readiness to apply the compe-
tence in situations. It should also be noted that there is a distinction between compe-
tence as a general overarching concept, and the distinction between individual compe-
tencies if individual content-related competence facets are meant. According to 
this understanding, the professional competence of mathematics teachers consists 
of subject-related and subject-overlapping cognitive dispositions—teachers’ profes-
sional knowledge (cf. also Baumert & Kunter, 2006)—as well as additional affective 
personality traits like beliefs, motivation or values (Hannula et al., 2019) specifically 
for the subject mathematics. These form the basis for mastery of specific situations 
that arise in professional demands. 

Today’s research on teacher competencies, knowledge, and skills invokes the 
different approaches of these paradigms. These are perceived as complementary so 
that the boundaries between the different paradigms often fade. For example, the 
current approach to professional competence combines the systematic analysis of 
teachers’ characteristics and abilities of the presage-process–product paradigm with 
the approach of researching teacher cognitions and the approach of looking at certain 
characteristics of teachers’ personality, such as motivation and values. Consequently, 
Medley’s variables of Type E are still valid as the main units of analyses in research



The Evolution of Research on Mathematics Teachers’ Competencies, … 63

studies, even with today’s advances in research on mathematics teaching and teacher 
education. 

3 Components of Teachers’ Professional Competencies 

Taking into account Shulman’s (1986, 1987) reflections on the professional require-
ments of teachers, which we will discuss in more detail in the next section, the 
professional competencies of mathematics teachers and its components. 

3.1 Content Knowledge 

Teachers need knowledge of relevant facts, concepts, and their relations oriented 
to the subject body of knowledge, as well as subject-specific procedures for gener-
ating knowledge and justifying it. This means that teachers of mathematics must 
be proficient in mathematics, which can be expressed, for example, by the “five 
strands” of mathematical proficiency by Kilpatrick et al. (2001), which are: concep-
tual understanding, procedural fluency, strategic competence, adaptive reasoning, 
and productive disposition. The deeper understanding of reasoning also implies that 
argumentation and proving is part of the professional knowledge of teachers so 
that they are able “to explain why a particular proposition is deemed warranted, 
why it is worth knowing, and how it relates to other propositions” (Shulman, 1986, 
p. 9). Neubrand et al. (2009) address the connections of teachers’ content knowl-
edge to more general mathematical skills such as explaining, communicating, and 
even modeling, and include insights into the history and epistemology of mathe-
matics among the content knowledge of mathematics teachers. Somewhat later than 
Shulman, Bromme (1994)—a representative of the expert paradigm—also formu-
lated on this basis the central insight that when describing teachers’ content knowl-
edge, a distinction should be made between the knowledge of the discipline and that 
of the school subject, since the school subject has a “life of its own” (p. 74), with its 
own body of knowledge and epistemologies. In mathematics education research, this 
distinction by Bromme contributed to the identification of professional knowledge of 
school mathematics (Deng, 2007a, 2007b), or elementary mathematics from a higher 
standpoint in relevant studies (Buchholtz et al., 2013) going back to approaches by 
Felix Klein (1908/2016). Dreher et al. (2018), for example, conceptualized this type 
of knowledge as so-called school related content knowledge (SRCK).
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3.2 Pedagogical Content Knowledge 

Although Shulman identified two components that are central to PCK, namely knowl-
edge of instructional strategies and representations, and knowledge of students’ 
(mis)conceptions, he did not specify PCK for mathematics. To describe the subject-
specific PCK for mathematics, it is not sufficient to focus only on mathematical 
content, which would neglect cognitive and social preconditions of the learning 
processes of students. In terms of content, mathematical pedagogical content knowl-
edge presupposes an understanding of subject knowledge, but central to this is 
knowledge of the potential of school subject matter for learning processes (curricula 
and syllabi, learning goals and principles), knowledge of subject-related student 
cognitions (student ideas and errors, learning prerequisites), and knowledge of 
subject-specific instructional strategies (representations, subject-related diagnostics, 
performance measurement, and subject-related explanatory and mediation strate-
gies). Subsequently, Shulman’s model has been refined more and more, also in 
response to criticism (for an overview, see the systematic review on PCK by Depaepe 
et al., 2013). Grossman (1990) for example distinguished four components that are 
central to teachers’ PCK: (1) knowledge of students’ understanding, (2) knowledge of 
curriculum, (3) knowledge of instructional strategies, and (4) knowledge of purposes 
for teaching. Depaepe et al. (2013) even distinguish a total of eight different facets 
based on their systematic review: (1) knowledge of students’ (mis)conceptions and 
difficulties, (2) knowledge of instructional strategies, (3) knowledge of mathematical 
tasks and cognitive demands, (4) knowledge of educational ends, (5) knowledge of 
curriculum and media, (6) context knowledge, (7) content knowledge, and (8) peda-
gogical knowledge. A relevant extension of Shulman’s understanding of PCK was 
undertaken in the U.S. in the late 2000s in the Learning Mathematics for Teaching 
(LMT) project, amongst others, through the formulation of the construct mathemat-
ical knowledge for teaching (MKT) or content knowledge for teaching mathematics 
(CKTM) by Ball and colleagues (e.g., Ball et al., 2008; Hill et al., 2004, 2005, 2008a, 
2008b), which we will discuss in more detail below. 

If one takes a closer look at the relationship between mathematics and pedagogy 
within the construct of PCK, however, some aspects can be identified that are more 
strongly influenced by the subject, while other aspects are more clearly related to 
pedagogy (see also Chick et al., 2006). With respect to a normative description of 
the content of the PCK, the perspectives of referring to the scientific discipline of 
mathematics education (i.e., mathematics, psychology, educational science, general 
didactics), which have been discussed since the 1970s and which continue to shape the 
mathematics education discourse today, provide orientation (Buchholtz et al., 2014). 
By more subject-related pedagogical content knowledge we can therefore under-
stand primarily mathematical aspects of teaching and learning mathematics. This 
includes, for example, knowledge about subject-specific approaches to teaching, 
basic ideas, and mental representations of mathematical content, e.g., fractions,
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percentages, or the concept of derivation, and being able to identify critical mathe-
matical components within concepts that are fundamental for understanding; knowl-
edge about the interconnectedness and interdependence of mathematical concepts (to 
establish connections between the different subject areas of mathematics education 
and their mathematical backgrounds, connections to other subjects in the sense of 
interdisciplinary learning, and connections between mathematical concepts and the 
real world (Freudenthal, 1991)); knowledge about fundamental mathematical ideas 
and mathematical activities (e.g., abstraction or algorithmic thinking); knowledge 
of students’ subject-specific preconcepts and barriers to understanding, as well as 
levels of conceptual rigour and formalization (important in analysing and interpreting 
student solutions and student questions); knowledge of the role of everyday language 
and mathematical language in concept formation; knowledge of subject-motivated 
approaches to mathematical content (e.g., different approaches to the concept of 
probability; justifications for number range extensions); knowledge about subject-
matter-based diagnostics of student solutions and errors (e.g., student misconcep-
tions; appropriateness of student solutions); as well as knowledge about different 
types of tasks (important for using tasks as a starting point for learning processes). 

Under more teaching-related pedagogical content knowledge in mathematics, 
we can locate perspectives beyond mathematical subject knowledge, which focus 
more on educational-psychological areas, but which are constitutive for mathematics 
education. These include knowledge about concepts of mathematical education (e.g., 
theoretical concepts of mathematical thinking and general competencies such as 
modeling, problem-solving, and reasoning); knowledge about dealing with different 
forms of heterogeneity in mathematics education (e.g., the use of different teaching 
goals in mathematics education, differentiation, and individualization); knowledge 
about dyscalculia, giftedness, and special education support (important for devel-
oping support plans for dyscalculic and gifted learners or inclusive learning groups, 
taking into account specific learning requirements); knowledge about forms and 
concepts for teaching and learning mathematics in schools (e.g., genetic learning, 
discovery learning, dialogical learning, extracurricular learning); knowledge about 
educational standards, curricula, and textbooks for the subject of mathematics; and 
knowledge about aims and forms of assessment in mathematics education (formative 
and summative). 

The different requirements for PCK make clear that this knowledge is closely 
connected to content knowledge because the teacher consciously must choose 
between all the possible representations the subject provides for teaching (Neubrand 
et al., 2009). This may be one of the reasons for which there are still mixed findings 
of the empirical separation of these different knowledge facets (Charalambous et al., 
2019; Depaepe et al., 2013), depending on respective measures. However, it is also 
clear from these lists that there are overlaps with general pedagogical knowledge— 
which we describe in the next section, for example in the area of assessment and in 
the area of dealing with heterogeneity, and that subject-specific curricular aspects 
also play a role (Grossman, 1990), which Shulman (1987) had rather assigned to 
general curricular knowledge.
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3.3 General Pedagogical Knowledge 

What kind of general pedagogical knowledge a mathematics teacher should possess is 
not an easy question. As König et al. (2011) indicate, the shape of general pedagogy is 
strongly influenced by cultural perspectives on the objectives of schooling and on the 
role of teachers (Hopmann & Riquarts, 1995). However, König et al. (2011), identify, 
based on a literature review, two core tasks: instruction and classroom management. 
“Less agreement exists as to what extent and what kind of knowledge about coun-
seling and nurturing students’ social and moral development or knowledge about 
school management should also be included in the area of general pedagogy” (König 
et al., 2011, p. 189). When it comes to knowledge about effective instruction, theories 
of learning, an understanding of the various educational philosophies, and general 
knowledge about learners (Grossmann & Richert, 1988) should be added to teachers’ 
GPK along with knowledge about effective classroom management. By combining 
research on the quality of instruction and general didactics based on task analyses, 
König and colleagues were able to develop a framework for mathematics teachers’ 
GPK consisting of four different dimensions of pedagogical knowledge. Thus GPK in 
the model of König et al. (2011) comprises knowledge about structures (structuring 
of learning objectives, lesson planning and structuring the lesson process, lesson 
evaluation), knowledge about motivation, and classroom management (achievement 
motivation; strategies to motivate single students or the whole group, strategies to 
prevent and counteract interferences, effective use of allocated time and routines). 
Furthermore knowledge about adaptivity (strategies of differentiation, use of a wide 
range of teaching methods) and knowledge about assessment (assessment types and 
functions, evaluation criteria, teacher expectation effects). 

3.4 Beliefs 

Research on teacher action assumes that the application of professional knowledge in 
action situations presupposes corresponding subjective beliefs (Felbrich et al., 2014; 
Schmotz et al., 2010). This relation makes the connection between Medleys Type E 
and Type F (Chapter 1.1 on pre-existing mathematics teacher characteristics) clear 
since pre-service teachers already have initial beliefs about teaching and learning 
and about mathematics at the beginning of their studies, which also influences the 
acquisition of professional knowledge (Blömeke et al., 2014a, 2014b; Buchholtz, 
2017). Beliefs are thought to serve an orienting and action-guiding function for 
applying learned knowledge (Schmotz et al., 2010; Schoenfeld, 1998; Thompson, 
1992). However, despite intensive research on teachers’ beliefs, especially in the 
context of pedagogical-psychological oriented approaches, no precise and selective 
definition of the concept of beliefs can be discerned so far (Leder, 2019; Törner, 
2002). Philipp (2007) defines beliefs as “the lenses through which one looks when 
interpreting the world” (p. 258). Richardson (1996) proposes a domain-unspecific



The Evolution of Research on Mathematics Teachers’ Competencies, … 67

definition of beliefs that are based on a broader understanding. She understands 
beliefs to be “psychologically held understandings, premises, or propositions about 
the world that are felt to be true” (Richardson, 1996, p. 103). This refers to a person’s 
epistemological stands towards an object, which includes affective attitudes and the 
readiness to act (cf. Grigutsch et al., 1998) and which, in contrast to knowledge, are 
dependent on the degree of individual agreement (Beswick, 2005, 2007). Still beliefs 
are seen by many researchers as largely cognitive in nature (Beswick, 2018). So far, 
however, it has not been sufficiently clarified to what extend beliefs contain cogni-
tive components, and which components can be identified. With regard to long-term 
development of beliefs, however, it can be assumed according to the current state of 
research that they are relatively stable with respect to restructuring, and to a certain 
extent can act as psychological “filters” and/or “barriers” (Reusser et al., 2011). On 
the other hand, however, beliefs can change in teachers’ professional development 
(Eichler & Erens, 2015; Swars et al., 2009). For mathematics teachers, despite the 
vagueness of the term, there is a broad consensus on the differentiation of profession-
related beliefs (Ernest, 1989). Among others, it is assumed that beliefs can be domain-
specific (Eichler & Erens, 2015; Törner, 2002) or even situation-specific (Kuntze, 
2011; Schoenfeld, 2010). With respect to epistemological beliefs about the structure 
of mathematics, according to Grigutsch et al. (1998), the emphasis on the formal 
aspect of mathematics (formalism aspect) or an orientation towards procedures and 
calculation schemes (schema orientation) can be brought to the fore with respect to 
static views. With respect to dynamic views, the application aspect and the processual 
character of mathematics are mostly emphasized (cf. Grigutsch et al., 1998). In addi-
tion, beliefs about the acquisition of mathematical knowledge or the teaching and 
learning of mathematics (Handal, 2003; Kuntze, 2011; Staub & Stern, 2002) repre-
sent another significant dimension of epistemological beliefs. Here, transmission-
oriented beliefs, in which students are viewed as passive recipients of knowledge, 
are often distinguished from constructivist-influenced beliefs that endorse the prin-
ciples of constructive learning (Staub & Stern, 2002). Although the question of 
how teacher beliefs influence student achievement is far from conclusive, it is likely 
that dynamic beliefs about mathematics and constructivist teaching–learning beliefs 
are more strongly related to an emphasis on processual, iterative mathematics in 
instructional settings (Reusser et al., 2011). 

3.5 Motivation and Self-regulation Skills 

Motivational research in psychology counts motivation as a personal trait which 
refers to the individually varying personal characteristics that constitute the reasons 
for and the persistence of human behaviour (Kunter, 2013; Pintrich, 2003; Rhein-
berg, 2006). It serves as an important predictor of how successful people can handle 
situational demands that occur in teaching. Thus, motivation and self-regulation are 
vital for teachers to succeed in their profession in the long term (Alexander, 2008; 
Kunter et al., 2013; Woolfolk Hoy, 2008). The beginnings of research on teacher
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motivation in the 1970s were still in the study of why people decide to become 
teachers (Lortie, 1975). Within presage-process–product research, the motivational 
orientation would likely be described as a characteristic of beginning teacher candi-
dates (Type F, Chapter 1.1) and connections would be sought between career choice 
motivation at career entry and teachers’ learning outcomes (with the goal of selec-
tive admission to the teaching career). Medley (1987) describes this as Type FE 
research (research in teacher selection, p. 111). However, because affective person-
ality traits have (re)entered the professional competence research, contemporary 
research on professional teacher competencies examines differences in motivation 
and self-efficacy between practicing teachers, such as in the form of intrinsic moti-
vation and enthusiasm for the subject of mathematics and for teaching, and further, 
what influence these forms of enthusiasm have on teaching quality and, if applicable, 
student achievement (Kunter, 2013). By this, the research goes far beyond Type F 
and Type E research. The description of the manageable psychological construct of 
self-efficacy by Bandura (1997) in the late 1990s also contributed significantly to this 
development. Self-regulatory skills are now also part of many studies of professional 
teacher competence, as the teaching profession is believed to have implications for 
teacher health and well-being due to its high demands. In order to meet the demanding 
challenges over extended periods of time, teachers need to develop self-regulation 
skills in order to maintain their occupational commitment over time and to preclude 
unfavorable motivational and emotional outcomes (Kunter et al., 2013). 

4 Different Conceptualizations of Teacher Knowledge 

As knowledge is considered a major component of teacher competencies, we 
will focus on recent conceptualizations of mathematics teacher knowledge in the 
following. Worldwide, many conceptualizations of professional knowledge are based 
on Shulman’s fundamental description, such as in the U.S. the Learning Mathematics 
for Teaching project by the research group around Deborah Ball (LMT; cf. Hill 
et al., 2008a, 2008b), the study on Mathematics Knowledge in Teaching (Rowland & 
Ruthven, 2011) in the U.K., as well as different frameworks in Australia (Beswick & 
Chick, 2020; Chick et al., 2006). In Germany, the COACTIV study builds on this 
work (Kunter et al., 2013) but also frameworks developed by other researchers (Buch-
holtz et al., 2013; Dreher et al., 2016, 2018). International comparative studies such 
as MT21 (Schmidt et al., 2007, 2011) or the Teacher Education and Development 
Study in Mathematics (TEDS-M; Blömeke et al., 2014a, 2014b; Tatto, et al., 2012), 
also built on this work and investigated teachers’ professional knowledge at the end 
of their education with a framework based on Shulman. A more systematic overview 
of the description of professional knowledge by teachers can be found, for example, 
in the ICMI study by Even and Ball (2009), in the Handbook by Wood et al. (2008), 
or in various different publications such as by Cochran-Smith and Zeichner (2005), 
Rowland (2014), Neubrand (2018) or Manizade and Orrill (2020). In the following,
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we describe some of these key frameworks that have been more widely received 
internationally. 

4.1 Mathematical Knowledge for Teaching (MKT) 

A model that has been widely acknowledged and applied internationally is 
the Michigan group’s Mathematical Knowledge for Teaching. This approach to 
describing and measuring teachers’ professional knowledge consists of developing a 
practice-based theory of the mathematical resources entailed by the work of teaching 
on the basis of the knowledge facets identified by Shulman. To this end, extensive 
observational categories were derived from mathematics tasks and observation of 
primary teachers’ practical work with students. Thus, rather than normatively speci-
fying Shulman’s classification in technical terms, the project took, as its starting point, 
a requirements analysis that first identified three key responsibilities of teachers. The 
requirements were “(1) [t]o provide effective opportunities to learn substantial math-
ematics and treat the mathematics with intellectual integrity (Bruner, 1960); (2) to 
be able to hear student thinking, take it seriously, and make it an integral part of the 
instruction; and (3) to be committed to the learning of every student, and further to 
the learning of the class as an intellectual community” (Ball & Bass, 2009, p. 26). 
The goal of the project was initially to empirically study instruction to characterize 
the mathematical knowledge necessary “to carry out the work of teaching mathemat-
ics” (Hill et al., 2005, p. 373; Ball & Bass, 2003). In the process, knowledge facets 
were also specified in more detail (Ball et al., 2005, 2008), resulting in the develop-
ment of a model of professional knowledge (the MKT model). MKT covers three 
categories that relate to teachers’ subject matter knowledge: (1) common content 
knowledge (CCK, i.e., mathematical knowledge and skills used in settings other 
than teaching), which describes knowledge held in common with professionals in 
other mathematically intensive fields; (2) specialized content knowledge (SCK, i.e., 
mathematical knowledge and skills that are unique to the teaching of mathematics); 
and (3) horizon content knowledge (HCK, i.e., an awareness of how distinct math-
ematical topics are related to each other), which Bass and Ball (2009) described 
as an “elementary perspective on advanced knowledge that equips teachers with a 
broader and also more particular vision and orientation for their work” (Bass & Ball, 
2009, p. 34). In contrast, there are three categories that can be considered constituent 
of teachers’ PCK: (4) knowledge of content and students (KCS, i.e., knowledge 
about students’ mathematical thinking or typical student errors); (5) knowledge of 
content and teaching (KCT, i.e., knowledge to introduce a new concept or method); 
and (6) knowledge of content and curriculum (i.e., knowledge on educational goals, 
standards, and grade levels where particular topics are typically taught) (Ball et al., 
2008). Later on, the project developed measures of MKT (Hill et al., 2004) and 
used teachers’ scores as a predictor of students’ mathematics achievement. They 
found that “teachers’ mathematical knowledge was significantly related to student 
achievement gains in both first and third grades […]” (Hill et al., 2005, p. 371).
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Internationally, the model gained much recognition and was transferred or applied in 
many other countries including Ireland, Norway and Indonesia (Blömeke & Delanay, 
2012; Delanay et al., 2008; Fauskanger, 2015; Ng et al., 2012). However, although 
widely used the model has also been criticized as the empirical differentiation of the 
dimensions has not been shown sufficiently and it is not clear whether the model 
can be transferred to the secondary level (Speer et al., 2015). Furthermore, its oper-
ationalization for the empirical measurement of teachers’ knowledge and the use of 
multiple-choice operationalization items in a respective instrument have been crit-
icized because this operationalization might underestimate the complexity of some 
of the knowledge facets (especially those involving students learning and thinking) 
(Manizade & Mason, 2011). 

4.2 The Knowledge Quartet 

Tim Rowland and his colleagues in the United Kingdom took a perspective away 
from the empirical testing of teachers’ knowledge that is present in the Michigan 
project and other projects. They analyzed videotaped data from classroom obser-
vations and proposed a framework for describing the knowledge the teacher enacts 
in the classroom. The aim of their project, which became known as “Knowledge 
Quartet”, was to make visible and describe the professional knowledge and beliefs 
acquired during training in classroom teaching situations in which this knowledge 
becomes visible (Rowland, 2008a, 2008b). Their theoretical framework for the obser-
vation, analysis and development of mathematics teaching has been developed in 
the context of primary education, although approaches to transfer to the secondary 
level exist (Rowland et al., 2011). The approach of the study followed methods 
similar to grounded theory research. The identified theoretical model consisted of 
four categories: (1) foundation, which describes the teachers’ knowledge base; (2) 
transformation, which includes situations in which knowledge about chosen repre-
sentations, examples, analogies, explanations, etc. is revealed—a category that takes 
up the ideas of PCK; (3) connection, which describes situations in which students’ 
misconceptions are revealed, and the teacher knows about what is ‘hard’ or ‘easy’ 
to grasp for the students; and finally, (4) contingency, which refers to unexpected, 
unplanned moments, i.e. students’ unexpected responses and questions (Rowland 
et al., 2005). The framework is now used in several countries by collaborating 
colleagues (including Norway, U.K., the U.S., Ireland, Turkey, Italy, Cyprus and 
Australia). However, qualitative reconstructive studies with a rather smaller sample 
size dominate the study of teacher knowledge here (e.g., Maher et al., 2022; Petrou, 
2009).
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4.3 Modelling Teachers’ Knowledge in Relation to Teaching 
Practice 

Researcher groups from Australia, Canada and the U.S. developed frameworks for 
empirical research on teachers’ knowledge which especially account for the blurri-
ness of Shulmans knowledge domains when it comes to teaching practice. The work 
of the Michigan group was criticized for that “the precise way in which they conceive 
of knowledge and how aspects of such a conception beyond ‘facts that are known’ is 
incorporated in their model is not clear” (Beswick et al., 2012, p.133). Furthermore, 
teachers “do not always employ the same sort of knowledge in apparently equivalent 
situations, and they draw upon a range of types of knowledge concerning many of 
their everyday tasks, moving among them seamlessly and flexibly” (ibid., p.154). 
In the work of the Australian researchers Beswick and colleagues, therefore, the 
conception of knowledge also includes teachers’ beliefs and confidence as central 
components in corresponding frameworks, thus also taking into account affective 
competence characteristics in particular, which were thought to be more intertwined 
with knowledge facets here than in other frameworks because they have such a 
major impact on teachers’ actions in practice (Beswick & Chick, 2020; Beswick 
et al., 2012). To investigate the professional knowledge of Tasmanian middle school 
teachers in mathematics, a profile framework was developed with eight different 
facets. Specifically, the framework refers to teachers’ knowledge and readiness: (1) 
to nominate how they would improve middle school students’ mathematical under-
standings and how mathematics might be used to enhance students’ learning more 
broadly; (2) to outline a plan for teaching a mathematics concept that they consid-
ered important; and (3) to rate their confidence about developing their students’ 
understanding of a range of middle school mathematics topics, and their ability to 
make connections between mathematics and other curriculum areas. Furthermore 
(4) to use of mathematics in everyday life; (5) their beliefs on mathematics teaching 
and learning; (6) and to anticipate appropriate and inappropriate responses that their 
students might give to mathematics problems and to describe how they could use each 
of the items in their classroom. The framework furthermore contains teachers’ back-
ground variables and their perceived professional learning needs (Beswick et al., 
2012). The model developed and operationalized for an empirical study thus acts 
as counter to highly analytic models such as MKT. In order to provide evidence-
based insights into how Australian teacher education prepares mathematics teachers 
for their professional requirements, empirical studies examined the teacher knowl-
edge of primary and secondary mathematics teacher education students in MCK and 
PCK using Rasch-scaled knowledge tests (Beswick & Goos, 2012; Goos, 2013). In 
particular, the studies found close empirical relationships between the two knowl-
edge facets. Chick and her colleagues on the other hand developed a framework for 
analysing primary teachers’ PCK for teaching decimals (Chick et al., 2006). Their 
framework shows especially the blurriness between content knowledge and peda-
gogical knowledge. It entails three categories with a large number of sub-categories 
in which pedagogy and content are thought intertwined and set in a mutual context.
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Their PCK framework contains the knowledge of teaching strategies, knowledge of 
students’ thinking, knowledge of representations, knowledge of the cognitive demand 
of tasks, knowledge of explanations, as well as resources and the curriculum. Further-
more, a category “content knowledge in a pedagogical context,” covers a profound 
understanding of fundamental content, knowledge to deconstruct content to its key 
components, an awareness of mathematical structure and connections, as well as 
procedural knowledge when for example solving problems or using an algorithm. 
The third category of the framework is “pedagogical knowledge in a content context.” 
It contains sub-categories of knowledge of the goals of learning, assessment prac-
tices, and classroom techniques that are needed for example when students need to 
work in groups. (Beswick & Chick, 2020). 

The Canadian framework “Mathematics-for-Teaching” (Davis & Simmt, 2006) 
considers the complex structure of professional knowledge dynamically and distin-
guishes in knowledge acquisition “between the relatively stable aspects of mathe-
matical knowledge itself and the somewhat more volatile qualities” (Davis & Simmt, 
2006, p. 297). The model distinguishes relatively stable aspects of knowledge e.g. 
about curriculum structures or mathematics and dynamic aspects of “knowing”, e.g. 
classroom collectivity or a subjective understanding to attend to both explicit and tacit 
aspects of teachers’ mathematical knowledge. Other researchers describe the profes-
sional knowledge of mathematics teachers as situated within a specific mathematical 
content. 

Important in this context are the works of Manizade and Martinovic on 
professional-situated knowledge in geometry (Manizade & Martinovic, 2016, 2018; 
Manizade & Mason, 2011) in the U.S. and Canada, respectively, which are charac-
terized by the fact that Shulman’s CK and PCK are situated and considered and scru-
tinized for very specific mathematical topics commonly taught in secondary mathe-
matics, such as the area of trapezoids (see also e.g., rational numbers, Depaepe et al., 
2015). The researchers highlight the importance of the development of measures 
of professionally-situated knowledge. They focus on developing valid and reliable 
measurements of mathematics teachers’ situational manifestation of PCK and CK 
within specific geometry contexts. In their work, Manizade and Martinovic (2016) 
describe the following five dimensions of such knowledge, including: (1) geom-
etry knowledge; (2) knowledge of student challenges and conceptions; (3) ability 
to ask diagnostic questions; (4) knowledge of applicable instructional strategies and 
tools; and (5) ability to provide geometric extensions with respect to a specific topic 
in geometry. Martinovic and Manizade (2017, 2018) describe the development of 
instruments—which they referred to as probes—for assessing teachers’ knowledge 
for teaching geometry. Unlike assessing mathematics teacher competence on a more 
generic level, they argue the benefits of developing assessment instruments within a 
well-defined and narrow topic in mathematics, and of combining different measures 
to ensure the validity of the assessed construct.
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4.4 Teachers’ Knowledge About the Integration 
of Technology in the Classroom 

With the increase of the integration of technologies and digital tools in the teaching 
of mathematics, necessary new developments emerged for conceptualizations of 
teacher knowledge. Based on the premise that technology integration efforts should 
be creatively designed or structured for particular subject matter ideas in specific 
classroom contexts, Mishra and Koehler (2006) developed the TPACK framework 
based on Shulman’s description of PCK to describe the teacher knowledge needed 
when integrating technology in teaching. The TPACK framework was also later 
revised and adapted (Koehler & Mishra, 2008, 2009). The framework includes 
seven categories of knowledge: Technological knowledge (TK) includes the tech-
nical knowledge of using emerging media, including digital media, such as programs, 
devices, or hardware. It also includes pedagogical knowledge (PK), content knowl-
edge (CK), and four other categories defined by the intersections of these knowledge 
categories. These facets embrace the technological content knowledge (TCK), which 
is the knowledge of how technology and subject knowledge affect each other. From 
the perspective of mathematics education, this includes knowledge about technical 
possibilities for representing mathematics, for example, through dynamic geometry 
programs, pedagogical content knowledge (PCK), and technological pedagogical 
knowledge (TPK), which is knowledge about how the use of technologies affects 
general teaching and learning processes. In the intersection of all knowledge areas 
lies the so-called technological pedagogical content knowledge (TPACK), which 
describes a combination of subject-specific PCK with knowledge about the use of 
technology for learning. TPACK also takes into account the relationship between 
teachers’ decisions and the contextual factors of teaching, such as class size, envi-
ronment, resources, and culture (Koehler & Mishra, 2009). The TPACK framework 
was specifically designed to enable research on the knowledge teachers need to effec-
tively integrate technology into their teaching in a particular content area. Mathe-
matics educational research has increasingly adopted the rather generic framework in 
recent years to describe mathematics-specific requirements of each knowledge facet 
and to explore how these develop, for example, for the area of curriculum develop-
ment or in terms of describing instructional practices (Niess et al., 2009). Further-
more, the framework has been applied to observe mathematics teachers’ practices 
in using technology in teaching and to describe them at the level of the knowledge 
facets involved (Muir et al., 2016; Patahuddin et al., 2016). 

4.5 COACTIV 

Also based on the approaches of the Michigan group and the work of Shulman, a study 
with representative samples of German secondary school teachers developed in the 
mid-2000s to investigate teachers’ professional knowledge and its empirical relation
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to student achievement. The key factor was the facilitation of a national extension 
of the 2003 PISA sample, in which individual and grade-level aggregated student 
performance from the PISA study could be extended longitudinally and related to 
teacher characteristics of about 300 teachers teaching in these grades. The COACTIV 
research program (Baumert et al., 2010; Kunter et al., 2013) aimed to investigate the 
professional competencies of practicing mathematics teachers, including making 
statements about the relationship to student achievement. Standardized achievement 
tests of teacher professional knowledge were used (Krauss et al., 2008). The frame-
work for teacher knowledge developed by COACTIV is based on content knowledge, 
but identifies three different facets of subject-specific knowledge: first, knowledge 
of student conceptions and prior knowledge (e.g., knowledge about typical student 
errors or the difficulty of mathematical tasks); and secondly, knowledge of subject-
specific instructional strategies (for example, knowledge about representations and 
making content “accessible”). An innovative feature of the COACTIV theoretical 
framework was that subject-specific knowledge was operationalized in part through 
knowledge about task quality and the cognitive potential of the tasks used in the 
classroom. In this context, a corresponding classification of tasks used placed partic-
ular emphasis on the content-specific cognitive activation of mathematical tasks 
(Neubrand et al., 2013). This classification allowed “the recognition, for example, of 
how conceptual thinking is incorporated in a lesson, how teachers select the tasks, and 
if that selection influences the learning progress of the students” (Neubrand, 2018, 
p. 606). The research program investigated the competence of practicing German 
mathematics teachers differentiated in the areas of content knowledge and peda-
gogical content knowledge. Among other things, COACTIV found that systematic 
differences in performance existed between teachers for higher track secondary level 
in content knowledge, some of which could be attributed to differences in teacher 
education characteristics. A central finding of the study was also that the content 
knowledge of teachers was a necessary prerequisite for the acquisition of pedagog-
ical content knowledge, but that ultimately the pedagogical content knowledge of 
a teacher had a greater explanatory power for predicting student performance than 
their content knowledge (cf. Kunter et al., 2013)—which did not mean, however, that 
content knowledge was less important in teacher education. 

4.6 TEDS-M 

The studies from the TEDS-M research program focus on different aspects of profes-
sional competencies, each with a different emphasis. While earlier international 
comparative studies such as TEDS-M 2008 (Blömeke et al., 2014a, 2014b; Tatto et al., 
2012) or its predecessor study MT21 (Schmidt et al., 2007, 2011) focused mainly 
on knowledge-related (dispositional) aspects and knowledge at the end of teacher 
education, subsequent studies of the TEDS-M research program in Germany included 
in addition situational aspects of professional competence and thus also focus to a 
greater extent on the competencies of practicing teachers. Particular attention in the
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following first is given to the results of the TEDS-M 2008 study, which was commis-
sioned by the International Association for the Evaluation of Educational Achieve-
ment (IEA) and examined the teacher professional knowledge of prospective primary 
and secondary mathematics teachers in 16 participating countries. With regard to the 
underlying framework, the TEDS-M 2008 study and its predecessor study MT21 refer 
to the different knowledge facets of Shulman (1986, 1987) and differentiate PCK two-
dimensionally, namely along with different requirements for teachers (Döhrmann 
et al., 2012). Within the theoretical framework between teaching-related demands like 
“Mathematics Curricular Knowledge” and “Knowledge of Planning for Mathematics 
Teaching,” as well as learning process-related demands like “Enacting Mathematics 
for Teaching and Learning” are distinguished (Tatto et al., 2012, p. 131). Curric-
ular and instructional planning requirements include the selection of subject-specific 
teaching content for students, as well as its justification, simplification, and prepara-
tion using various representations. This therefore includes knowledge of mathematics 
curricula, assessment methods, and teaching methods. Interaction-related require-
ments, which reflect the teacher’s activities during the lesson, intend to include the 
classification of student answers against the background of cognitive levels, possible 
errors, and error patterns. These are therefore analytical and diagnostic skills that 
prospective teachers should possess. An overview of international research find-
ings is provided by Tatto et al. (2012). Furthermore, Blömeke and Delanay (2012) 
describe the current state of research from TEDS-M 2008 in a review article from the 
perspective of similarities and differences between TEDS-M 2008 and the Learning 
Mathematics for Teaching study (LMT; Hill et al., 2008a, 2008b). Meanwhile, several 
complementary and in-depth national analyses have emerged from TEDS-M 2008 
and MT21, looking in detail at specific issues in participating countries ( 2014a, 
2014b; Blömeke et al., 2009a, 2009b). Furthermore, within the TEDS-M research 
program TEDS-LT followed as a new study, expanding the concepts of TEDS-M 2008 
for a German sample to both a longitudinal design and more subjects, as German 
and English were included besides mathematics (Blömeke et al., 2011, 2013). 

5 Recent Extensions in the Concept of Mathematics 
Teacher Competence 

Despite the blurry lines between CK and PCK, like Kaiser and König (2019) note, 
several studies to date have provided evidence that the knowledge facets as proposed 
by Shulman (1987) can be theoretically and empirically differentiated and separated 
(e.g., Blömeke et al., 2016; Krauss et al., 2008), provided that appropriate instru-
ments, topics and sampling are used. Fundamental to this were scientific studies that 
examined the structure of professional knowledge in particular. Regarding the corre-
lations between the specific facets, it turned out that, “as Shulman (1987) with his 
“amalgam” hypothesis on the nature of PCK suggested PCK is related to both CK 
and GPK, whereas CK and GPK are more distant to each other” (Kaiser & König,
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2019. p. 603f.). For example, in the COACTIV study, a strong correlation between 
CK and PCK was found (0.61) (Baumert et al., 2010). Important scientific devel-
opments about the professional competence of teachers can be located especially 
in the last five to ten years. Since teachers access different forms of their profes-
sional knowledge in different instructional contexts—so the assumption—it seems 
reasonable to focus not only on the structure but especially on its application in 
different teaching situations when examining professional knowledge (Even et al., 
2017; Kaiser et al., 2015; Rowland, 2008b). Thus, as a new guiding question in 
research on mathematics teacher competencies, knowledge and skills, if we follow 
up on Medley’s Type E, it was added how content knowledge, pedagogical content 
knowledge, and general pedagogical knowledge can be surveyed in connection with 
teaching practice using suitable instruments, which led in particular to the investiga-
tion of situation -specific skills, in other studies referred to as professional noticing 
(Sherin et al., 2011; Van Es & Sherin, 2008). 

5.1 Situational Aspects of Mathematics Teachers’ 
Professional Competencies 

When situational aspects of teachers’ professional competencies are addressed in the 
context of empirical studies, the main aim is to survey competencies as closely as 
possible to real situations from everyday teaching. With their conceptualization of 
competence as a continuum, Blömeke et al. (2015) aimed to overcome an opposi-
tion that had increasingly emerged between different approaches to understanding 
competence. On one hand, there existed the analytical approach of dispositional 
aspects of competence, which formed essentially the basis of cognitively oriented 
empirical studies from educational research mainly using paper-and-pencil tests. 
According to this approach, one starts from analytically separable areas of compe-
tence (e.g., the knowledge facets) which can then be measured and considered in 
terms of their structural relationships. The goal here is to promote specific compe-
tencies as a resource for behavior in specific situations. As we described, compe-
tence here includes both cognitive and affective-motivational domains. The analyt-
ical approach was now opposed by a holistic approach in the research tradition 
from organizational psychology, which focused on the observation of behavior and 
performance in an appropriate real-life context. Competence then influences this 
behavior, whereby competence is still understood as a collection of diverse cognitive 
and affective-motivational components that constantly change—depending on the 
situation and requirements. The idea of Blömeke and her colleagues was to combine 
both approaches in a common continuous model. Specifically, they assume that the 
behavior of, for example, a teacher in concrete situations is influenced by his or her 
competence (in the sense of the holistic approach). However, competence is then 
not understood as a constantly changing collection of different components, but as a
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fixed sum of clearly describable individual components (in the sense of the analytical 
approach). 

The starting point of the new model of competence as a continuum is the disposi-
tion of a teacher, which is characterized by cognitive (CK, PCK, GPK) and affective-
motivational areas (a.o. beliefs). These cognitive and affective-motivational dispo-
sitions are complemented by situation-specific skills, which are also referred to as 
professional noticing (here, the teachers’ noticing discussion plays a role, in partic-
ular, see Sherin et al., 2011). That is, in a specific situation, a teacher first perceives the 
situation, interprets what is perceived, and makes appropriate decisions. The teacher 
does this influenced by the situation at hand, but of course also by their basic dispo-
sition. Based on the teacher’s perception, interpretation, and decision, their actual 
actions in the situation then emerge. It is therefore said that professional noticing 
consisting of the areas of perception, interpretation, and decision-making plays a 
mediating or transforming role between disposition and actual action which is an 
observable performance. While pure surveys with tests represent a proven possi-
bility for the investigation of competence in the sense of the analytical approach 
(for example with instruments of MKT or TEDS-M), it is immediately clear that 
situational aspects are difficult to assess in this way, because the reality of teaching 
can only be represented in test items to a limited extent. An alternative way of 
assessing competence in a situation-related manner is the use of video vignettes or 
dynamic geometry software as a stimulus for answering test items. Subsequently, 
many recent studies investigating situational teacher competence built on the use of 
video vignettes (e.g., Bruckmaier et al., 2016; Kaiser & König, 2019; Kersting, 2008; 
Kersting et al., 2010; Knievel et al., 2015; Seidel & Stürmer, 2014). Martinovic and 
Manizade (2020) for instance used interactive dynamic instruments (that incorpo-
rate dynamic software such as GeoGebra) to mimic the classroom simulations and 
a variety of student responses to a given mathematics problem question. This way, 
they evaluated teachers’ professionally situated knowledge (PCK and CK) based on 
teachers’ responses to the questions that follow up a dynamic simulation. 

5.2 Further Developments of the Studies of the TEDS-M 
Research Program 

The further developments of the TEDS-M research program in Germany, which aim 
at investigating the competence development of mathematics teachers in the first 
years of their professional activity, are also based on this approach. Central to this 
is the outlined understanding of competence as a continuum. In addition, expertise 
research (Berliner, 2001) with its basic distinction between experts and novices forms 
a central pillar of the conceptual framework for further developments. Specifically, 
the different areas of teacher knowledge from TEDS-M were conceptually supple-
mented by the situation-specific skills of professional noticing, which were surveyed 
with video vignettes aimed at eliciting different aspects of expertise. The TEDS-M
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Follow up study (TEDS-FU) for example measured perception, interpretation, and 
decision-making as facets of professional noticing of in-service mathematics teachers 
(Kaiser et al., 2015); The relation of knowledge and noticing concerning GPK was 
evaluated by König et al. (2014), differentiating mathematics teachers’ pedagogical 
competence into knowledge and noticing facets. Kaiser and König (2019, p. 605) 
also report structural connections in this context, with a connection between disposi-
tional and situational facets of professional competence being particularly evident in 
interpreting classroom perception: “Whereas teacher knowledge and interpretation 
skills are moderately related to each other (0.37), perception is only loosely related 
to interpretation (0.17) and knowledge (0.13).” 

5.3 Relationships of Teacher Competencies to Instructional 
Quality and Student Achievement 

The results presented so far give us clues about the relationship between teachers’ 
knowledge and their skills. What needs to be questioned, however, is why appro-
priate skills were considered valuable components of teacher competence in the 
first place. One obvious answer is that skills in the area of professional noticing 
help with the design of instruction and are linked to this assumption that ultimately 
student achievement can also be improved by good instruction. Specifically, some 
studies in recent years have surveyed the direct relationship between teacher skills 
and instructional quality (Hill et al., 2008a, 2008b; Santagata & Lee, 2021). In 
the TEDS-Instruct study and the TEDS-Validate study, for example, two observers 
each assessed lower secondary mathematics teaching on different criteria using a 
comprehensive rating manual that focused on four facets of teaching quality, namely 
efficient classroom management, constructive support, the potential for cognitive 
activation, and content-related structuring (for details Schlesinger et al., 2018). At 
the same time, results from the subject-related competence facets were available 
for the participating teachers, which were collected using TEDS-M and TEDS-FU 
instruments (Blömeke et al., 2020). Thereby, efficient classroom management did 
not correlate significantly with the subject-related competence facets. The remaining 
three quality dimensions correlate significantly positively with teachers’ professional 
noticing of mathematics teaching, but not consistently with subject-related knowl-
edge facets (Jentsch et al., 2021). As TEDS-Validate and TEDS-Instruct furthermore 
had access to the results of students’ achievement tests, the studies especially offer 
the opportunity to fully observe the linkage between teachers’ competences, instruc-
tional quality, and students’ achievements. Results revealed that with regard to the 
dimensions of instructional quality cognitive activation was found as a predictor for 
students’ progress in achievement. In addition, general pedagogical knowledge and 
situation-specific classroom management expertise (CME) serve as predictors for 
instructional quality (GPK for all three dimensions, CME only for cognitive acti-
vation). Furthermore, there is a direct effect of teachers’ professional competence
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on students’ achievement but without mediation by the instructional quality (König 
et al., 2021). Also, other studies investigated the relationships between professional 
competence, teaching quality, and student achievement (cf. Kaiser & König, 2019, 
p. 606). In the COACTIV study, a strong positive effect of PCK on student learning 
progress was found to be mediated by the quality of instruction. In particular, the 
dimensions of cognitive activation and individual learning support played a crucial 
role. For CK, however, the mediation model applied only to a very limited extent. 
Despite the high correlation with PCK, teachers’ CK had lower predictive power 
for students’ learning progress (Baumert et al., 2010). Similarly, Hill et al. (2005) 
and Hill and Chin (2018) furthermore showed that teachers’ knowledge and their 
instructional quality were significantly related to students’ outcomes. 

6 Concluding Remarks 

In the present chapter, we provided an overview of important lines of development and 
the evolution of mathematics education research on professional teacher competen-
cies, knowledge and skills. Research has evolved from the process–product paradigm 
and has been developed especially in the period of 30 years after Medley’s (1987) 
reflections. The starting point in this process were basic theoretical reflections on 
teachers’ professional knowledge, which were strongly influenced by cognitivism. 
Subsequently, an independent branch of research in mathematics education devel-
oped, which dealt with the professional competence of teachers, thus broadening 
the focus by not only taking single cognitive aspects into account. As in Medley’s 
time, the starting point to this shift in the research was the intention to measure 
and describe what makes a good teacher and how to improve student achievement 
in mathematics. From the critique of the studies in the following years, research 
evolved further towards the inclusion of more situation-specific teacher competen-
cies, examining connections and effects between the different variables within the 
chain of effects, namely teachers’ competence, instructional quality, and student 
achievements. 

What have these developments in common? The developments represent decisive 
improvements with regard to the systematic inclusion of personality characteristics 
of teachers as well as the contextual conditions in which teacher competencies come 
into play. It is clear that different conceptualizations of teacher competencies still take 
into account, to varying degrees, the same variables that Medley (1987) had already 
considered, although in the meantime a stronger emphasis on the subject-specific 
characteristics of mathematics has also been taken into account. 

However, new conceptual challenges arose as a result of further developments. 
Thus, after many years, as we describe, currently a large variety of frameworks 
on teacher competencies, knowledge and skills is available internationally, each 
describing teacher competence differently and thus setting different emphases. 
Conceptualizations are based on different domains attributed to teachers’ profes-
sional knowledge, differ in their theoretical assumptions, and also have different



80 N. Buchholtz et al.

grain-size of the knowledge elements considered (Even et al., 2017; Neubrand, 2018). 
On the one hand, the boundaries of what is understood by teacher competencies in 
certain domains are pragmatically determined from theoretical considerations or 
in the context of empirical studies, but on the other hand, Delphi methods, or the 
Grounded Theory Approach, for example, could also be used to develop content-
valid conceptualizations (Manizade & Mason, 2011; Martinovic & Manizade, 2017). 
Either way, however, the conceptualizations of teacher competencies, knowledge, 
and skills for research purposes remain normative—and thus dependent on cultural 
traditions, epistemologies, and values. We expect the field to evolve further with 
great progress in the next years. 

While we often assume that mathematics education is culture-neutral, research 
indicates that the way in which we express ourselves and view mathematics is in fact 
highly cultural (Leung et al., 2006). Although many of these different frameworks 
are used in several countries to assess teacher competencies, the cultural dependency 
of the frameworks should not be overlooked (Blömeke & Delanay, 2012), so that 
a transfer to other educational systems is by no means trivial and should require 
validation studies (e.g. Yang et al., 2018). In the future, therefore, it can be assumed 
that the cultural sensitivity of research on teacher competencies will be more critically 
scrutinized. International research on teacher competencies can nevertheless benefit 
from this polyphony, although it suffers from it at the same time. The multiplicity and 
diversity of frameworks need not be seen as confusion but can be seen as richness—if 
one takes a comparative perspective, however, it seems profitable when frameworks 
and conceptualizations are synthesized and compared based on their similarities and 
differences. 

What is clear from our overview, however, is that after more than three decades 
of developing research on teacher competencies, knowledge, and skills, there are 
still methodological challenges to empirical measurement. Certainly, current tools 
of measuring allow us to capture teacher competencies more accurately than in 
the past. Methodological advances such as multilevel structural equation modelling 
(Teo & Khine, 2009) allow for the consideration of numerous relevant (background) 
variables and differences between individuals, classes, and schools when examining 
relationships between teacher competencies and student outcomes. These analyses 
can be used to identify interactions between teachers’ characteristics, personal and 
affective traits, and various other factors, all those that are related to teacher compe-
tencies. Nevertheless, even today we do not have the means to realize Medley’s 
vision of taking into account the interrelationships of all variables in studies, and 
often only proxies can be used for variables to be measured so that even in the future 
the validity of measurement instruments, in particular, will have to be critically 
analyzed. However, these methodological advances should still not lead research 
on teacher competencies to neglect mediating variables in the chain of connections 
between teacher competencies and student outcomes. Teaching activities in instruc-
tional quality as a mediating variable, and thus the situatedness of teacher compe-
tencies has played and probably will play an increasingly central role as a site for 
observing and measuring competencies, especially in recent years.
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1 Introduction 

In this chapter, we focus on research in mathematics teaching such as mathematics 
teacher planning, assessment, and other teacher-related activities when students are 
not present (“pre- and post-active”; Type D). These are the types of activities that 
mathematics teachers do to promote student learning while no students are present; 
in other words, this chapter focuses on the invisible part of teaching mathematics. 
These activities are important means by which the teacher exercises control over their 
teaching and are also the main way that a teacher’s professional knowledge, compe-
tencies, skills, and beliefs (Type E; see Fig. 3 in Chap. 1, this volume) impact the 
process of teaching mathematics. Type E is necessary but not sufficient for producing 
quality student–teacher interactions in the mathematics classroom (e.g., Sullivan 
et al., 2009). Enactment of the teaching practice interactively with students is a 
direct result of teachers’ pre- and post-active (Type D) actions. Type D, therefore, 
determines how well the teacher performs the main interactive function of teaching 
mathematics (Type C) and how successfully the teacher accomplishes the purpose of
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teaching. Our perspective is premised on the belief that theory drives teaching prac-
tice, and, in this chapter, we demonstrate how that connection functions in relation 
to teacher’s pre- and post-active actions (Type D). 

The chapter includes a discussion of how teachers relate the problems they 
encounter in the practice of teaching mathematics to their professional knowledge, 
competencies, skills, and beliefs in deploying their available resources and their 
own abilities. Teachers’ subjective decision-making is based on the Type E elements 
that they possess, and the configuration of a teacher’s Type E elements “stabilizes 
[the teacher’s] world” (Žižek, 2012, p. 367, as cited in Brown, 2016, p. 86) through 
their subjective, decision-making process. This decision-making process could be 
based, for instance, on the most recent professional development presentation that 
they attended and ideas that they bought into, or on a conference presentation that 
their principal attended and practices subsequently imposed on the teachers. In either 
case, and even without having attended a recent conference, teachers’ choices and 
objectified beliefs are a product of the constraints within which they are working 
(Ingram & Clay, 2000). Thus, their decision-making process produces observable 
pre-post classroom actions that are the focus of this chapter. We also address the 
ways in which cultural and digital contexts affect Type D. Additionally, we discuss 
the theoretical and methodological challenges associated with conceptualization of 
the Type D domain, instrumentation, and research design. 

1.1 Statement of the Problem 

It is important to study Type D because teacher planning, which includes introducing 
key ideas, selecting associated tasks, and creating assessments to measure student 
understanding, has a great effect on the learning opportunities for students (Akyuz 
et al., 2013; Sullivan et al., 2009). It provides for targeted understanding of the 
lesson content, managing classroom transitions, and allows for a focus on classroom 
processes (Clark & Yinger, 1987). This applies not only to daily lesson plans, but also 
to unit plans that cover a range of related topics (Roche et al., 2014). McAlpine et al. 
(2006) specifically called for more research on the ways in which teachers think 
and the connection between teachers’ thinking and its influence on their teaching 
actions. This connection is hypothesized to be particularly useful in studying the 
relationship between teachers’ “theories-in-use” and teachers’ thinking (Kane et al., 
2002; McAlpine et al., 2006). Sullivan et al. (2009) called for more professional 
development to improve teachers’ abilities to take a mathematical task and convert 
it into a “meaningful learning experience” (p. 85), noting that Type E was necessary 
but not sufficient for this conversion. Thus, regardless of a teacher’s perspective on 
teaching mathematics as described by the theoretical framework that we present 
in this chapter (see Fig. 1), research on improving Type D is important because it 
contains the potential for improving the quality of mathematics instruction (Lewis 
et al., 2013).
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Depending on the importance the teacher assigns to planning, the outcomes of 
planning manifest in different ways through the observable and enacted lesson. Zazkis 
et al. (2009) compared Japanese teachers’ planning—which was focused on the 
process of student learning and discovery of concepts—and American teachers’ 
planning—which was focused on specific content outcomes. They found that the 
ways in which teachers talked about the professional act of planning varied greatly 
between the two groups and differences aligned with the observable outcome of the 
written lesson plan and its enactment. If teachers think of planning as a high-level 
professional task that is an important part of the act of teaching, then the produced 
written plan and its enactment lead to different types of teaching than is the case for a 
teacher who does not think of planning as having a central role in their practice (Zazkis 
et al., 2009). Designing lesson plans that incorporate teachers’ goals and are focused 
on “students’ anticipated learning” (Akyuz et al., 2013, p. 94) has been the focus 
of key reform-based documents, including Adding It Up (Kilpatrick et al., 2001). 
Further, Hiebert et al. (2003) emphasized the importance of developing teachers’ 
Type D: “[T]eachers need to design lessons with clear goals in mind, monitor their 
implementation, collect feedback, and interpret the feedback in order to revise and 
improve future practice” (p. 206). 

Regardless of the knowledge, competencies, skills, and beliefs that teachers 
develop in their teacher preparation programs, they often go back to the way they 
were taught when faced with the challenges of the everyday classroom: “People 
learn to teach, in part, by growing up in a culture—by serving as passive appren-
tices for 12 years or more when they themselves were students. When they face the 
real challenges of the classroom, they often abandon new practices and revert to 
the teaching methods their teachers used” (Hiebert et al., 2003, p. 201). It becomes 
extremely important therefore to develop teachers’ abilities to plan quality mathe-
matics lessons with specific goals in mind, and to use student data to make decisions 
about subsequent planning and instruction. As McAlpine et al. (2006) suggested, we 
need to develop a “language” (p. 129) for talking about teachers’ Type D activity 
to fully realize it as a domain of mathematics education research. To develop this 
necessary “language” for Type D research, we propose the conceptual framework 
in Fig. 1 for discussing literature related to Type D. We subscribe to Akyuz et al.’s 
(2013) definition of Type D, that cyclically relates preparation (pre-active) to reflec-
tion, anticipation, assessment, and revision (post-active). In their model relating these 
variables, reflection, anticipation, and assessment interrelate laterally with each other, 
all of which then inform revision. Revision, then, cycles back to preparation as the 
pre-active variable. 

The chapter can be thought of as broken into three main themes. In the first theme, 
we situate our current work: we discuss the connection between Type D and Type E 
(knowledge, competencies, skills, and beliefs), followed by a discussion of the goals 
of Type D broadly. The second theme constitutes the bulk of the chapter: we discuss 
each of the epistemological perspectives in Fig. 1, including a definition, goals of 
teaching, and examples from the literature. The third theme provides commentary 
on the first two themes: we discuss pros and cons of each perspective, followed by 
a commentary on the relationship of each perspective to cultural contexts, and we
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conclude with a brief discussion of the implications of each perspective on the task 
of lesson planning. We close by noting implications for future directions of research 
as a result of the intervention we offer in the present chapter. 

2 The Connection of Type D to Knowledge, Competencies, 
Skills, and Beliefs 

Teachers’ knowledge, competencies, skills, and beliefs (Type E) are connected to the 
way they plan their mathematics instruction and influences their decision-making, 
evidenced in the ways they implement their lessons. In some cases, this connection 
is conscious, and in other cases, it is unconscious. There are various factors that 
can affect teachers’ lesson planning and instruction, including their beliefs about 
the nature of mathematics, such as whether they hold an instrumental, Platonist, 
or problem-solving view (Beswick, 2005; Ernest, 1989); learning theories; and the 
pedagogical practices and approaches in which they have been trained. Most impor-
tantly, teachers can use combinations of these factors to produce and implement a 
lesson, and to assess students. 

Kilpatrick et al. (2001), for example, discussed the connection between Types 
C, D, E, and F—what they call teaching for mathematical proficiency—with the 
following components: 

(1) conceptual understanding of the core knowledge required in the practice of 
teaching; 

(2) fluency in carrying out basic instructional routines; 
(3) strategic competence in planning effective instruction and solving problems that 

arise during instruction; 
(4) adaptive reasoning in justifying and explaining one’s instructional practices and 

in reflecting on those practices so as to improve them; and 
(5) productive disposition towards mathematics, teaching, learning, and the 

improvement of practice. 
(Kilpatrick et al., 2001, p. 380) 

We align components (1) and (2) with Type E; component (3) with Types D and 
C; component (4) with Type D; and component (5) with Type F. 

While theories may influence teachers consciously and unconsciously, typically 
once they are with their students, they operate (and make pedagogical—and specif-
ically, planning—decisions and choices) in a way that strives for synchronicity and 
harmony between their previous experiences of successes in teaching; their knowl-
edge, competencies, and skills; their unique mixes of students and content for each 
of their course preparations; and the institutional constraints within which they are 
working (cf. Ingram & Clay, 2000). While a theory of learning may influence these 
decisions and choices, it wouldn’t necessarily have to “inform” them per se. For  
example, if a teacher has attended a “project-based learning” workshop, they may be 
motivated to try some of the techniques or lessons they were exposed to, but they are
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likely to do so as an adaptation of their existing lesson-planning practices. Regardless 
of the reasons behind specific instances of decision-making that are evident in their 
lesson planning, assessment, or instruction, we focus on the teachers’ objectified 
beliefs—that is, observable behaviors—that ostensibly have been chosen because 
they stabilize the teacher’s world. The focus of this chapter is not, then, on the “why” 
of the decision-making processes, but rather on “how” it manifests in the observable 
research components of Type D. 

In science education, researchers (e.g., Carlson et al., 2019) have reconceptualized 
teachers’ knowledge to include Enacted Pedagogical Content Knowledge (ePCK) 
and Personal Pedagogical Content Knowledge (pPCK), both of which include knowl-
edge associated with Type D, namely, planning and reflection. These researchers 
defined ePCK as knowledge for planning and reflection that is situated within the 
school, classroom, and individual students’ interactional contexts (cf. Ingram & Clay, 
2000) with the teacher and the teacher’s subject matter knowledge and discipline-
related skills. Personal PCK includes the PCK influences that have occurred over 
the teacher’s life, experiences, and interactions with other professionals (e.g., fellow 
teachers, researchers, coursework, professional development, reading journal arti-
cles) that have accumulated to shape and inform their ePCK. In other words, pPCK 
builds over time and experience to increase the sophistication with which they deploy 
their knowledge in thinking about, planning, and reflecting on their lessons. Addi-
tionally, ePCK is a subset of pPCK, meaning that the enacted—viz. observable— 
knowledge of a teacher is contained within their set of personal PCK, indicating that 
observable Type D can be conceived as objectification of personal knowledge and 
epistemological commitments. Thus, utilizing epistemological frameworks facili-
tates insight when studying teachers’ Type D. When conceptualized in this way, 
the teacher’s pPCK is a privately held knowledge that is unique to the teacher, 
whereas ePCK is the mode of the teacher’s knowledge with which the students most 
directly interact. The connection between ePCK and pPCK reveals that teachers’ 
epistemological commitments, knowledge about how students learn mathematics, 
and corresponding knowledge about how best to teach mathematics interrelate both 
at a micro-level (e.g., planning a particular lesson) and a macro-level (e.g., shaped 
over their lives, experiences, and professional formation). It is pertinent, therefore, for 
mathematics education researchers to consider how the objectifications of this knowl-
edge—as Type D observable behaviors in the form of decisions and choices—shape 
their teaching. As we explore in this chapter, some epistemological commitments 
have been explored apropos of Type D whilst others warrant further investigation by 
researchers. 

3 Goals of Pre- and Post-active Teacher Activities 

The purpose of this chapter is to focus on the decisions and choices teachers make 
while students are not present. Ultimately, these decisions and choices—regard-
less of any espoused epistemology or pedagogy—directly impact their lesson plans,
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which become the basis for what they subsequently enact in the classroom. Tricoglus 
(2007) explored planning and collaboration amongst mathematics teachers, revealing 
that teachers’ development of tasks and lesson plans involves cyclical thinking as 
they become more knowledgeable about them. The study highlighted three types of 
thinking that teachers engaged in when planning: deliberative thinking, which is the 
considered thought that generates ideas and future plans; interpretive thinking, which 
is the part in the process where decisions are made and problems are managed; and 
metacognition, which is evaluative, reflective thinking. These three types of thinking 
are the basis for teachers’ decisions and choices about the tasks and lesson plans they 
create, and are informed by their perspectives on teaching and learning mathematics. 
As teachers think about their beliefs and knowledge in this cyclical process, they 
formulate goals for their teaching as well as actions they intend to take to reach them 
(Aguirre & Speer, 2000; Akyuz et al., 2013; Schoenfeld, 1998). 

In Fig. 1, we provide a framework emergent from the literature presenting eight 
categories that researchers have used when describing lesson planning and mathe-
matics instruction. These eight categories are not strictly types of learning theories 
but rather the perspectives that researchers have characterized teachers as appearing 
to be enacting, through their decisions and choice-making, to represent observable 
and objectified beliefs, knowledge, competencies, and skills (Type E). The aim of 
Type D is to articulate “the learning goals for the lesson, and the hypotheses that link 
planned instructional activities with expected learning outcomes” (Hiebert et al., 
2003, pp. 207–208). Importantly, the focus of the teaching can be either on the goal 
of the lesson, or on the activities included in the lesson, regardless of the perspec-
tive the teacher adopts. When the focus is on the goal of the lesson, the teacher 
is likely to consider common student challenges with respect to the mathematical 
concepts taught, typical questions or difficulties students might experience based on 
their developmental levels, as well as ways to address those challenges and difficul-
ties (West & Staub, 2003). However, if the focus is on the activity itself, then it is 
less likely that teachers will think of students’ conceptual development of the mathe-
matics. Instead, the focus lands on the “how to”: lessons can become more prescribed 
and rigid, which potentially allows for missed opportunities when teachable moments 
arise (e.g., Akyuz et al., 2013). 

Regardless of teachers’ theoretical frameworks or beliefs about teaching math-
ematics or the nature of mathematics, all teachers operate within institutional, 
economic, cultural, familial, and logistical constraints (Ingram & Clay, 2000). Thus, 
the goals adopted by teachers for their teaching can be diverse, encompassing 
achieving high standardized test scores, developing interest in mathematics in their 
students, preparing students for futures of entering the workforce or college, meeting 
curricular demands of the administration, communicating ideas about mathematics, 
enabling students to solve a given problem multiple ways or to see the connection 
between different mathematical ideas, and describing patterns students might see 
in the world using mathematics. These are different performance or learning goals, 
and while not mutually exclusive, they cannot all be goals for a single lesson. The 
teacher will consciously and unconsciously use goals to formulate the actions they 
take when planning a lesson or assessing student work. For example, if a teacher’s
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goal is for the students to be able to talk to each other about the mathematics, then 
the lesson planning decisions will be very different from what they would be if the 
goal was for students to be able to replicate the process presented by the teacher in 
instruction. 

Despite the many challenges, the teacher must know how to create and carry 
out their plan and, most importantly, how to be flexible with their plan in changing 
classroom circumstances (Akyuz et al., 2013). A teacher will be faced with goals 
from other sources such as department chairs, parents, principals, school boards, 
state departments of education, co-workers, and so forth. Each of these sources has 
an interest in what the teacher is doing in the classroom. The goals produced by these 
parties and subsequently imposed on the teacher, whether directly or indirectly, exist 
in addition to the teacher’s own goals. The best-case scenario is that the teacher’s 
goals and the goals of these other sources are in harmony. However, if that is not 
the case, and the teacher has the job of synthesizing disparate goals from various 
sources, the result will be that the teacher’s goals—as objectified beliefs, observed 
through their lesson planning process—become a product of stabilizing the reality 
of their world and being. 

4 Theoretical Perspectives for Teaching Mathematics 
that Are Present in Type D 

In this section, we discuss and define each of the perspectives in Fig. 1, the goals for 
teaching associated with each, and provide some examples from the literature. The 
literature surveyed was selected for the representativeness each article provided for 
illustrating each of the epistemological perspectives in Fig. 1 apropos of Type D. An 
EBSCOhost search of the electronic library system of a major research university in 
the United States with keywords related to Type D was performed. We operated with 
three inclusion criteria: (1) Western context (US, Europe, Australia, New Zealand, 
etc.) for either the author or study setting; (2) articles written between 2000 and the 
present; and (3) articles must be about mathematics education specifically. Literature 
by a Western author performing a study in a non-Western context was also excluded. 
We then manually accessed each article to screen to relevance. Articles in which 
the primary focus was not on Type D were excluded. On reviewing the included 
literature, we noticed the emergence of eight epistemological themes with respect to 
the way the articles were situating and discussing Type D. We organized the literature 
into these eight themes, as seen in Fig. 1. 

In each of the examples discussed, some researchers explicitly cited a theoret-
ical perspective from Fig. 1, and in others, our characterization of a study as having 
employed a particular epistemological perspective is based on our interpretation of 
the researchers’ work. The examples given are in no way exhaustive but rather serve 
to demonstrate each particular perspective in recent literature. While we acknowl-
edge that cultural context is of great importance in understanding Type D, we only
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considered research from the Western context in the survey of literature that follows. 
A more complete discussion of the cultural context of the eight epistemological 
perspectives is included later in the chapter. 

4.1 Situated Learning Theory as Perspective 

4.1.1 Definition 

Situated learning theory (SLT), originally developed in the work of Lave and Wenger 
(Lave & Wenger, 1991; Wenger, 1998), represented a departure from other learning 
theories in existence in the 1990s by situating knowledge in the community rather than 
in individuals. The tonality shift here from individuals to communities is important 
to distinguish situated learning theory from other sociocultural theories of learning: 
epistemology itself is exclusively located in the community, entirely “decentered” 
(Lave & Wenger, 1991, p. 86) from the individual, and exists as a historical func-
tion of time including the future. This perspective differs from social constructivism 
because situated learning theory does not posit any individual possession of knowl-
edge. Instead, knowledge is experienced and participated in rather than possessing 
deterministic ontology, because at any point in time it is not possible to capture the 
community’s learning as such. An individual person’s role in this epistemology exists 
in their emergent formation of an identity as a member of that community. 

A useful metaphor for conceptualizing SLT is apprenticeship (Lave & Wenger, 
1991). The apprentice first must initiate a connection to one of the commu-
nity members, an act that expresses the aspiring apprentice’s desire to participate 
in the community. The apprentice then trains under the tutelage of one of the 
experts in the community. The community discourse proceeds through interactions 
between oldtimers and newcomers (Lave & Wenger, 1991). Oldtimers are estab-
lished members of the community who have participated in the community and its 
activities for a long time. Newcomers are novices and just beginning their appren-
ticeship journey into the community. Through this process, the apprentice—over 
time—becomes an expert and an oldtimer in their own right, thus bringing in new 
apprentices and repeating the cycle. If a student—a newcomer—desires to become 
a member of a community, they must initiate an apprenticeship with an expert, and 
spend the substantial amount of time required performing the labor and activities of 
the community to become an expert theirself. If one were to ask either the oldtimer 
or the newcomer when—exactly—they had learned to become a central member of 
the community or an expert, their answer would involve their entire career, perhaps 
with one or two critical moments when their status as an expert was validated by 
other member(s) of the community. Traditionally, university mathematics depart-
ments function in this way, where students are immersed in the practices of the math-
ematics community under the apprenticeship of their professors (experts). However, 
if a mathematics teacher does not think like a mathematician, they are unlikely to 
train their newcomers to think as mathematicians. In this case, instead of raising up



100 A. G. Manizade et al.

newcomers as experts (mathematics doers as people who are able to perform “doing 
mathematics” tasks; see Stein et al., 2000, p. 16), they will raise people who can act 
mathematically by producing a memorized sequence of procedures, a devolvement 
that more closely resembles behaviorism. 

4.1.2 Goals of Teaching 

For the teacher taking the perspective of SLT, the goal of their teaching is to build and 
operate a model of apprenticeship and legitimate peripheral participation (LPP)—the 
novice participation of newcomers who are not yet central to the community nor close 
to its experts—in the classroom. “[T]he important point concerning learning [in SLT] 
is one of access to practice as resource for learning, rather than to instruction. Issues of 
motivation, identity, and language deserve further discussion” (Lave & Wenger, 1991, 
p. 80). The teacher acts as the expert—the oldtimer—who is responsible for enabling 
the students—the newcomers—to engage in LPP into the community of mathematics. 
Of course, the teacher cannot expect that all their students will become professional 
mathematicians in the future, but that is not the purpose of the students’ LPP. Rather, 
the students’ LPP in the community of mathematics represents their experience of 
mathematics “learning”—that is, the experience of the peripheral participation is 
homologous to the content being learned. In other words, the content of knowledge-
learning is conceived as the process of becoming a certain type of person in the 
mathematics classroom. There is a critical bifurcation that must be at the forefront 
of the teacher’s mind, and that will determine whether the students’ LPP is indeed 
located within the landscape of the community of mathematics, or if it is located 
within the (nominal) community of public-school actors, wherein the focus is more 
closely aligned with following a perfect sequence of steps as with the behaviorist 
approach. If the former has been achieved in the teacher’s mindset, then the teacher 
is prepared to enact teaching from the SLT perspective. In practice, this may involve 
modeling for students the correct mathematical language (Morgan et al., 2014; cf.  
Pimm, 2014) and discourse patterns, how to solve problems and practice commu-
nicating their thinking (Sfard, 2008), and the rigor needed to perform mathematical 
labor in the normative cadence and standards of the community (Herbel-Eisenmann 
et al., 2015). 

The SLT perspective is different from the behaviorist perspective in that the latter is 
concerned with student outcomes on assessments. In the latter, knowledge outcomes 
are outcomes in and for themselves, rather than being related to a process of becoming 
a certain type of person who has a sense of belonging in the mathematics commu-
nity. In SLT, the product of LPP is that students develop a mathematical identity 
that affords them membership in the mathematics community—even if at a very 
surface level—because they have been trained to act and think like mathematicians, 
so in situations where mathematics is at the fore, their mathematical identity acts 
as a membership card for that situation. When using technology in the mathematics 
classroom from the SLT approach, teachers use educational technology to propose 
and provide opportunities to solve complex problems that students would not be able
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to solve without technology, instead of using technology as a black-box where mathe-
matical reasoning is not required in order for learners and teachers to produce a correct 
answer (Gueudet & Pepin, this volume; Goos et al., 2000; Leung & Bolite-Frank, 
2015; Straesser, 2002). 

4.1.3 Examples from the Literature 

Sfard (2008) has contributed greatly to the development of SLT as a perspective 
in mathematics education. One of the key notions developed by Sfard was that of 
commognition, which is a neologism of “communication” and “cognition.” The 
notion of commognition emphasizes that “cognitive processes and interpersonal 
communication are … different manifestations of basically the same phenomenon” 
(Sfard, 2008, p. 83), thus showing that the psychological aspect of other perspectives 
in Fig. 1 are homologous to the acts of LPP in the SLT perspective. Her theoret-
ical work has led other scholars such as Krummheuer (2011) to develop empirical 
representations of what it looks like to see LPP occurring in a mathematics classroom 
between teachers and students. Pertinent for this chapter is the way in which teachers 
plan their interaction with students. The SLT teacher will have planned for things 
like “eavesdropping” during active learning student activities, to qualify the students’ 
participation in the activity and help students maintain the desired direction of their 
LPP, presumably towards the “doing mathematics” of the mathematical topic of the 
planned lesson. The SLT teacher would anticipate during the planning process key 
observable behaviors of the students, qualified through the characteristics of “doing 
mathematics” for the mathematical topic of the lesson. This is similar to the “key 
questions” that are typically taught to future teachers as a lesson planning tactic 
(Atkin & Karplus, 1962). The work of Sfard, Krummheuer, and others elucidate 
the dangers of assuming that cognition and participation are separate phenomena: 
psychological phenomena do not occur without the environment, culture, history, 
and materiality of people in community with each other. Thus, in SLT, the “psy-
chology”—if it can indeed be called that—of mathematics teaching and learning is 
precisely homologous to the participation of teachers and students in the LPP dyad 
of oldtimers and newcomers. 

Dawkins and Weber (2017) described the process of teaching students how to 
prove in an undergraduate mathematics class. They seemed to herald the time-
honored mathematical practice of developing a proof argument as an encultura-
tion mechanism into the enlightened learning state that is ostensibly desired for all 
students of mathematics. While Dawkins and Weber’s article deals with undergrad-
uate mathematics, their critique directly translates to K-12 mathematics by aligning 
with the “doing mathematics” (Stein et al., 2000, p. 16) level of activity as described 
in curriculum standards such as those from the National Council of Teachers of 
Mathematics. In teacher preparation programs across the US (from which context 
we are writing the present chapter), pre-service teachers are trained to design and 
implement tasks that point towards an end-goal of being at the “doing mathemat-
ics” level. Indeed, the obsession with “doing mathematics” led Baldino and Cabral
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(2021) to question the qualifications applied by the teachers to the students who are 
ostensibly attempting to “do mathematics” in the classroom. Is the students’ effort 
(i.e., labor) good enough to be considered “doing mathematics?” This qualification 
is for the teacher to decide, and in thus deciding, excludes knowledge from students 
who are not laboring in the intended way, that is, in the way that a mathemati-
cian would be. This judgement differential crystallizes the hidden dimension of the 
teacher’s exercise of power in the SLT learning environment: that it is not clear who 
the “mathematicians” are, nor is it clear what their practice might be or not be. 

4.2 Behaviorism as Perspective 

4.2.1 Definition 

Behaviorism as an approach for teaching mathematics originated in classical 
psychology (e.g., Bloom, 1956; Gagne et al., 1993; Skinner, 1938; Thorndike, 1898, 
1905). In mathematics classrooms, the goal of the behaviorist is to elicit a desired 
response when a given stimulus is presented and to make undesired responses less 
likely based on consequences (see Freudenthal, 1978). This relationship between 
consequences and behaviors is called conditioning. Many behaviorists take the stance 
that students are “born as blank slates,” and thus without mathematics, and that by 
learning the desired behaviors, acquire mathematical knowledge. The learning of 
mathematics is thus largely the result of the classroom environment being structured 
with the behavior–consequence doublet at its fore. In the current educational envi-
ronment, behaviorism is still widely used if we look at the software and programs 
being utilized by teachers and schools, where students are given games to play 
that are focused on efficient achievement of low-level skills rather than engaging in 
conceptual understanding of higher-order tasks (e.g., Reflex Math software). Another 
example is when technology is used as a master (Geiger, 2005; Goos et al., 2000; 
Martinovic & Manizade, 2014), meaning that the technology knows the mathematics 
and the student believes or takes-for-granted any output produced by the software— 
lacking knowledge, competencies, and skills to engage his or her mathematical 
thinking to evaluate the outcome produced by the technology. 

4.2.2 Goals of Teaching 

The goal of the behaviorist approach is to create a perfect sequence of steps when 
teaching a mathematical topic that can be taught to a student procedurally with an 
expectation that the student will be able to repeat this sequence to produce the desired 
outcome. The main goal is to master the procedure and produce a desired outcome 
rather than examine the idea, construct new meaning, or make connections to other 
ideas within mathematics.
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Psychology has historically described two types of behaviorism—classical condi-
tioning and operant conditioning (Ormrod, 2020). The operant paradigm is more 
widely used in mathematics education settings, such as by pairing a reward with 
a desired behavior such as correctly answering mathematics problems. The goal 
of operant conditioning is to change current behavior towards the desired behavior 
by incentivizing with rewards. In the case of mathematics education, the desired 
behavior becomes the ability to correctly replicate procedures on tasks, and contrasts 
with a student’s own mathematical thinking because the student is being rewarded for 
replicating the steps as prescribed by the teacher rather for exercising creative agency 
over their own mathematics. The result of this, in the classroom, is that mathematics 
procedures are reproduced in students with high efficacy and efficiency; it is easy 
for the teacher to see that her students are performing the mathematics in the desired 
way and that the entire class is making progress. This is useful in training students to 
be prepared for standardized tests. Thus, the goals of the behaviorist teacher are to 
create a classroom environment that focuses on the desired behaviors as propagated 
by the teacher, along with a culture of expecting rewards for those desired behaviors. 
In this way, the behaviorist teacher’s goals are more focused on conditioning the 
behavior (e.g., reproducing a procedure) rather than understanding the mathematical 
concepts involved in the procedure. 

4.2.3 Examples from the Literature 

Kilpatrick et al. (2001) described vignettes of teachers’ planning and subsequent 
lesson enactment that follow the behaviorist perspective. In one example, Mr. 
Angelo (pseudonym) planned a lesson on multiplication by selecting only exam-
ples that would make it “likely that all students [would] be able to produce correct 
answers” (p. 329), as long as they memorized the presented rule. Despite these 
researchers’ elucidation of this early in the twenty-first century, more recent research 
has continued to detect the same behaviorist phenomena in mathematics classrooms. 

Amador and Lamberg (2013) found that veteran teachers were guided by a behav-
iorist orientation towards their lesson planning, whereas novice teachers were not— 
the latter tended towards cognitive learning theory instead, which will be discussed 
in the next section. For the veteran teachers, lesson planning was guided by what 
Amador and Lamberg characterized as a testing trajectory, borrowing the term and 
structural diagram from Simon’s (1995) work on Hypothetical Learning Trajectories 
(HLTs). In the testing trajectory, lesson plans were reverse engineered to produce a 
desired behavior in the students: that they could read, understand, and answer test 
questions correctly. In this type of lesson planning, the veteran teachers objectified 
four types of professional knowledge: (1) their knowledge about the test content and 
structure; (2) their beliefs about how to best prepare for a test; (3) their knowledge 
about how students achieve apropos of specific mathematics content, i.e., anticipating 
student misconceptions; and (4) their knowledge about how classroom activities and 
representations directly support test preparation and align with test questions, i.e.,
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as opposed to concept development. Interestingly, one of the veteran teachers in the 
study also described her beliefs about the nature of mathematics as being inherently 
procedural. 

Also straddling the line between the behaviorist and cognitive learning theory 
perspectives, Chizhik and Chizhik (2016) issued a call to the field to reject behav-
iorism in favor of cognitive learning theory—the latter will be discussed in the next 
section. Chizhik and Chizhik embraced the cognitivism of Vygotsky (1986) and the 
cognitive learning theorists as a retort to the behaviorist legacy that has overshad-
owed teacher preparation curricula on lesson planning since Tyler’s (1949) foun-
dational text on curriculum and instruction. At the time of publication of Tyler’s 
work, the education field was primarily influenced by behavioral psychology, a focus 
that has since shifted—at least in other areas of educational research—to cognitive 
psychology. Chizhik and Chizhik (2016) argued that research on lesson planning has 
not similarly updated to the cognitive perspective, remaining “stuck” in the behavioral 
psychology of 70 years ago. 

Technology-influenced Return to Behaviorism. The advent of technology in math-
ematics classrooms presents the danger of a return to the behaviorist approach for 
teaching mathematics, by focusing on rote memorization and practice of skills that are 
not based on student cognition of the mathematics presented through the technology. 
When used in this way, some technology functions as a novel way to keep students 
occupied with activity during class and makes it easy for teachers to monitor student 
completion of work—i.e., students successfully performing a desired behavior such 
as answering questions correctly—rather than students’ development of the math-
ematical concepts. The operant reward is the two-fold novelty of the use of tech-
nology in and for itself, as well as the novelty of “winning” games or completing the 
puzzle correctly. In this way, the mathematics is secondary to the game’s or puzzle’s 
architecture, and thus the reward is not mathematical in nature. 

During the COVID pandemic, school systems across the world were forced to tran-
sition to a virtual learning environment to protect the health and safety of students. 
They utilized various educational platforms and software (e.g., Mathletics, Reflex 
Math, and Sumdog). These Online Mathematics Instructional Program (OMPI) plat-
forms use the behaviorist approach for teaching mathematics to motivate students 
(Darragh, 2021; Jablonka, 2017). As a result, opportunities for collaboration, problem 
solving, and using contextual mathematics were no longer present but were replaced 
by the development of superficial mathematical skills (Darragh, 2021). 

We do not suggest that all technology is inherently slanted towards the behaviorist 
approach for teaching mathematics, but we do suggest that technology can be and 
often is used in that way (Parkhurst et al., 2010). In the institutionalized context 
of schooling, adopting any educational technology or platform is tied to teachers’ 
goals for teaching mathematics and their goals for students’ learning. Widely used 
dynamic platforms and software such as GeoGebra or Desmos can be pedagogically 
utilized in a way that is explicitly counter to the return to behaviorism (Edwards 
and Jones, 2006; Hohenwarter et al., 2008; Verhoef et al., 2015). The ways teachers 
use technologies present evidence of the perspective for teaching mathematics they
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enact, as described in the framework we present in this chapter. More research is 
warranted to explore gaps between the potential of technology and the actual uses 
of technology in schools, a need that is compounded by the fast-paced evolution of 
technologies that are available and adopted by schools (Moore, 2020). 

4.3 Cognitive Learning Theory as Perspective 

4.3.1 Definition 

Psychology is also the origin of cognitive learning theory (CLT) as a perspective 
informing what happens in mathematics classrooms, although innovations such as 
those of Piaget (1970a, 1970b) changed the perspective from a focus on behaviors to 
a focus on cognitive development. This perspective includes radical constructivism, 
which conceptualizes knowledge as the product of cognitive processes that construct 
or form individualized understandings of concepts. Cognitive learning theory strictly 
focuses on matching learning opportunities in mathematics with learners’ natural 
cognitive abilities and processes. The major departure of cognitive learning theory 
from behaviorism was encapsulated in the development of the notion of mental 
representations and associations. Mental representations and associations describe 
the ways in which students “build up their picture of the world piece by piece” 
(von Glasersfeld & Steffe, 1991, p. 92); thus, knowledge is not conceived of as a 
“commodity that can be transferred from a teacher to a learner” (p. 93). Mental 
representations and associations are not necessarily in exact correspondence with 
observable behaviors; that is, observable behavior does not necessarily capture the 
entirety of what a student knows. The student has mental representations and associ-
ations, what Piaget (1970a, 1970b) called structures, that may or may not be reflected 
in their behavior. Behaviors are separate from these structures. Thus, a pedagogical 
approach that merely focuses on behaviors falls short of accurately designing for and 
assessing the goals and products of teaching. 

4.3.2 Goals of Teaching 

Cognitive learning theory focuses on students’ development in thinking and provides 
learning opportunities that match the progression of this development. Unlike the 
behaviorist perspective where the focus is on the outcome of learning, cognitive 
learning theory focuses on enhancing the process of conceptual development through 
learning experiences. The goal of the teacher is to take an active role in helping 
students to make connections among their ideas, thus progressing from a simple 
conception of a topic towards a more complex one. 

Freudenthal (1973, 1991) and Gravemeijer (2004) described the process of guided 
reinvention, wherein the teacher pre-actively conducts “a thought experiment to envi-
sion a learning route the class might invent itself” (Stephan et al., 2014, p. 39) to
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mimic the evolution of mathematical concepts over decades or centuries. As a result, 
the teacher intentionally creates opportunities for students to explore and develop 
their own meanings of mathematics and mathematical concepts over the course of 
planned lesson units. The planned lesson units, which are teachers’ Type D, act as 
the guide for students’ reinvention of concepts and personal construction of meaning 
about those concepts: “[T]he learning route is designed so that the concepts emerge 
as students engage in the instructional sequence. It is in this sense that we say that 
students ‘reinvent’ mathematics” (Stephan et al., 2014, p. 39). In addition, the CLT 
teacher can only plan for what students might do, not what they will do—and for 
that matter, what students’ constructed mathematical concepts and meanings might 
be as a result of their teaching. 

Guided reinvention is pedagogically operationalized through work of radical 
constructivists Simon and colleagues (e.g., 1995, 2018). They developed the Learning 
Through Activity (LTA; Simon et al., 2018) framework based on the assumption that 
teachers can promote abstraction with engineered sequences of tasks. The framework 
extends from the teacher’s pre-active engineering and sequencing of tasks all the way 
through students’ abstraction of concepts. The engineering and sequencing portion 
of the framework is Type D; the task actively presented to students is Type C; the 
reflective abstraction is Type B; and the concept as the product of students’ abstrac-
tion is Type A. Thus, the CLT teacher’s Type D consists chiefly of task engineering 
and sequencing for the intended conceptual development trajectory: “If a concept is 
a result of reflective abstraction, that is an abstraction derived from activity, then it 
should be possible to engineer a sequence of tasks that elicits appropriate activity 
that promotes abstraction from that activity” (Simon et al., 2018, p. 103). 

4.3.3 Examples from the Literature 

Stephan et al. (2014) presented a cogent description of guided reinvention planning 
and teaching through a case study of 7th grade teachers who designed an instructional 
sequence of tasks intended to guide students in reinventing the rules of positive and 
negative integers, and integer operations. The task sequence started with a realistic 
context of financial transactions (e.g., net worth, assets, and debts) symbolized by 
integers and signs. The sequence progressed towards a purely abstract symbolization 
of signed integers and their operations, so that students through this process would 
explore and reinvent the meaning of these concepts for themselves. 

Amador and Lamberg (2013) studied the ways in which teachers designed learning 
trajectories and planned corresponding lessons within the institutional constraints of 
the school, such as testing. They conceptualized the study using CLT in order to 
investigate how teachers addressed the high-stakes nature of standardized testing 
apropos of the daily work of teaching, and how the task of preparing students for 
such tests might be different for different teachers. In order to do this, they theorized 
an analog to the HLT called a testing trajectory where preparation for the testing 
environment was the driver for decision-making in the planning and teaching process. 
Four teachers were interviewed—three veteran teachers and one novice, first-year
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teacher. The three veteran teachers’ planning was guided by the testing trajectory 
whereas the novice teacher’s planning was guided by conceptual development in the 
form of an HLT. That is, the veteran teachers worked backwards from the known 
parameters and format of the testing environment in order to theorize a hypothetical 
trajectory for preparing students to answer test questions whereas the novice teacher 
worked backwards from the mathematics conceptual goal in order to theorize a 
hypothetical learning trajectory for students’ development of that concept. The direct 
link to this conceptual outcome was not implicated in the testing environment for the 
novice teacher. We identify the novice teacher as having taken the CLT perspective 
whereas the veteran teachers were effectively acting as behaviorists. 

Chizhik and Chizhik (2016) issued a call to embrace CLT in lesson planning 
in tandem with a rejection of behaviorism. They note that, historically in teacher 
education, the texts being used in teacher preparation programs (TPPs) trace their 
origins to the behavioral psychology of Tyler (1949). Despite the field of education 
having since moved away (since the 1970s and 1980s; e.g., Vygotsky, 1986) from  
behaviorism in its predominant theoretical stance, TPP curricula on lesson planning 
have not consistently made the same update. This could potentially lead to the divide 
in teacher planning practices observed by Amador and Lamberg (2013). Chizhik and 
Chizhik (2016) argued for a reformulation of the lesson planning TPP curriculum 
to involve the following major components: (1) reconceptualize learning objectives 
by theorizing a CLT-based version of Bloom’s Taxonomy; and (2) reconceptualize 
instruction to maximize student engagement, sharing of ideas and thinking, and (3) 
meaningful teacher feedback, with these three components being the major drivers 
towards students’ success on tests. 

Fernandez and Cannon (2005) conducted a case study comparison of Japanese 
and US teachers’ lesson planning habits. They found that the two groups of teachers 
conceptualized the task of lesson planning in very different ways. The Japanese 
teachers’ views of the task of lesson planning centered on conceptualizing students 
as active participants in the learning process and prioritized students’ development of 
positive attitudes towards learning mathematics. The US teachers’ views of the task 
of lesson planning, conversely, centered on conceptualizing themselves as effec-
tive teachers of the content. While the US teachers were concerned with student 
engagement, they grouped it under the characteristics of being an effective teacher. 
Thus, the difference in the two cultural paradigms of the teachers in the study meant 
that the purpose of their lesson planning manifested in very different ways. The US 
teachers planned with their own performance in mind, whereas the Japanese teachers 
planned with their student’s cognition and affect in mind. In both cases, CLT could 
be implicated, but it is certainly more evident in the Japanese teachers’ privileging of 
the students’ position in the CLT paradigm. In both cases, CLT could be implicated 
because of the focus on trajectorial development of the mathematical content through 
the planned lesson. 

Lewis et al. (2009) contributed a theoretical model that combined elements of 
CLT and SLT for the purpose of application to Lesson Study (LS), a pedagogical 
approach to analysis of, reflection on, and refinement of lesson plans typically done 
in groups of teachers. In their model, they synthesized elements of both theories
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in various stages of LS, with the aim of theorizing how lesson improvement mate-
rializes from the LS process. The model connects CLT with these aspects of LS: 
(1) building understanding of the content area as well as students’ and colleagues’ 
thinking about it; (2) studying the standards, curriculum, and existing lesson plans 
to decide on building blocks for the conceptual development of the target lesson; (3) 
writing down lesson plan ideas that elucidate goals for student thinking—and student 
learning differences—to make them visible to colleagues; (4) observe a colleague 
teach a version of the lesson, paying attention to links between students’ thinking 
and lesson design apropos of learning goals; and (5) noting instructional practices 
that should be improved to support the learning goals of the lesson. Other aspects 
of the model focused more on SLT, such as collaboration amongst colleagues and 
sharing ownership of the LS process. By theorizing the LS process through the CLT 
perspective, Lewis and colleagues offered a more cogent description of the work of 
Simon et al. (2018) with specific regard to the task of lesson study and planning. 

Finally, Sullivan et al. (2013, 2015) have used CLT to research lesson planning. 
In their work, they connect Type D to Type C, with the distinction being that in Type 
D, the focus is on helping teachers identify important mathematical ideas that are 
fundamental for teaching a topic, whereas in Type C, they suggest that by improving 
teachers’ knowledge of mathematics through collaborative planning, their ability 
to plan for a given mathematical objective will improve. In their 2013 paper, they 
described the ways in which teachers use the Australian national curriculum docu-
ments during planning. They found that many teachers assume agency over planning 
decisions when reading and interpreting curriculum documents and execute those 
decisions with resolve. Thus, they claimed that authors of curriculum document 
should construct such documents with explicit focus on inspiring teachers’ decision 
agency in enacting the national curriculum standards. In short, Sullivan et al. (2013) 
argued that external actors in the school context (such as administrators, curriculum 
developers, etc.) should focus on unlocking teachers’ planning agency potential rather 
than attempting to structure or restrict it, and that collaborative planning should be 
ritualized in schools. In this process, the teachers in the 2013 study took up agential 
decision-making about their planning through a process of reading the curriculum 
documents. Sullivan et al. (2015) closely tied this work to the CLT perspective, 
by focusing on the teachers’ engagement with lesson planning practices that match 
students’ cognitive process (assumedly along an HLT or similar trajectory) with the 
difficulty of struggle in the lesson’s sequencing. In this way, teachers use CLT to 
reduce negative student experiences with the HLT and improve the lesson without 
reducing the cognitive demand—a crucial component of a successful application of 
CLT—of the lesson’s tasks. 

Sullivan et al. (2015) necessarily leads us to a discussion of the productive 
struggle and productive failure literature. This contrasts with the didactic perspec-
tive on teaching mathematics wherein the teacher “must produce a recontextual-
ization and a repersonalization of the knowledge. It must become the student’s 
knowledge” (Brousseau, 2002, p. 23, emphasis in original). The term productive 
struggle is defined as a necessary student learning behavior for building conceptual 
understanding and for promoting students’ sense making (Heibert & Grouws, 2007).
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Other researchers describe the goal of a CLT teacher as to teach for the robust under-
standing of mathematics by supporting students in productive struggle while building 
understandings through actively engaging in mathematical practices (Schoenfeld, 
2014; Schoenfeld & TRU Project, 2016). The TRU project team describes five dimen-
sions of powerful classrooms: (1) mathematics; (2) cognitive demand; (3) equitable 
access to content; (4) agency, ownership, and identity; and (5) formative assessment 
(Schoenfeld & TRU Project, 2016). They stress the importance of focusing on these 
dimensions during the lesson planning and reflection process (Type D). In addition, 
researchers encourage teachers to plan for students’ productive failures as a neces-
sary inseparable and cyclical portion of mathematics problem solving and learning 
(Kapur, 2010, 2014; Simpson & Maltese, 2017). Warshauer et al. (2021) highlight 
the importance of preservice mathematics teachers learning to identify strategies 
and practices that can be used for planning and supporting productive struggle in the 
classroom. 

4.4 Social Constructivism as Perspective 

4.4.1 Definition 

In social constructivism (SC), which is based on the work of Vygotsky (1960), the 
classroom community constructs knowledge and understanding as a cultural product 
of students’ learning experience. In the SC mathematics classroom, the shared nature 
of the knowledge is distinct from the cognitive learning theory perspective, because 
the personally held mathematical knowledge of an individual student is a reflection 
of the community’s construction of that knowledge rather than a personal product 
of construction of mental representations. The social constructivism perspective was 
further developed in varying ways by teams of scholars, including but not limited to 
the work of Bishop (acculturation; 1988), Resnick (socializing; 1988), and Cobb and 
Yackel (emergent perspective; 1996). Acculturation is induction of students into a 
foreign or alien culture (e.g., the mathematics classroom). In the culture of the math-
ematics classroom, this process includes interacting with others to perform the activ-
ities of counting, locating, measuring, designing, playing, and explaining (Bishop, 
1988) to develop mathematical knowledge. Socializing refers to social constructivism 
over time, where “personal habits and traits are shaped through participation in social 
interactions with particular demand and reward characteristics,” with the goal of the 
student “gradually tak[ing] on the characteristics of [the teacher]” (Resnick, 1988, 
p. 12). In the emergent perspective (Cobb & Yackel, 1996), cognitive and social 
perspectives work in parallel, with the teacher simultaneously interpreting students’ 
cognition (e.g., beliefs about self and others, the nature of mathematics, concep-
tions of mathematical ideas) and students’ social interactions (e.g., classroom norms, 
mathematical norms, and mathematical practices).
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4.4.2 Goals of Teaching 

The goal of the SC teacher is to involve students in a community discourse about 
mathematics through teaching that is focused on classroom discussion. The discourse 
promoted by the teacher is guided by the relevant mathematical tasks and investiga-
tions, with the teacher being the instrument of enculturation into the mathematizing 
culture; the students meanwhile are the ones being acculturated (Bishop, 1988). By 
encouraging students to form new understandings of mathematics using their inter-
pretations of prior mathematical knowledge, the teacher aims to empower students 
to contribute to the reconstruction—instead of reproduction—of new mathematical 
knowledge. In other words, SC teacher’s goal is to provide students with opportuni-
ties to develop subjective knowledge that must be constructed and validated through 
and within sociocultural interactions so that the subjective knowledge may become 
objective knowledge of the group. 

4.4.3 Examples from the Literature 

Purdum-Cassidy et al. (2015) used social constructivism in their study of the way 
in which teachers plan for questioning (e.g., key questions on a lesson plan) in 
elementary mathematics classes. In their Vygotskian framing, they noted how “con-
ceptual knowledge first occurs between learners … and then moves within the 
learner” (p. 81). Social constructivism thus positions the teacher’s key point of 
access—apropos their potential for impacting student learning outcomes—as that 
of influencing what happens between students in the classroom. The intrapsycholog-
ical impacts that occur consequently are left to each student’s own psyches for the 
purposes of meaning-making. The teacher should thus be primarily concerned with 
impacting the social construction of knowledge. In their study, Purdum-Cassidy and 
colleagues focused on the role of questioning (their own plans for key questions) 
and the role of interpreting and answering students’ questions during the lesson— 
overall what is generally called discourse in the mathematics education literature. 
In particular, they note how pre-service elementary teachers struggle to plan for and 
write key questions when planning a lesson. As an intervention, these researchers 
investigated the possibilities of children’s books that have mathematical topics in 
helping teachers plan for mathematical questioning in their lessons. Since children’s 
literature is discursively organized (viz. into the format of a story), the same struc-
ture can be ported over into the structuring of questions qua discourse. Such discur-
sively structured questioning prompts the classroom community to socially construct 
knowledge—vis-à-vis questioning and discourse—that is then internally reified for 
each student. 

Sullivan et al. (2015) investigated the connection between professional develop-
ment and teachers’ abilities to plan for scaffolding challenging mathematics tasks. In 
their study, they investigated how teachers exposed to challenging tasks that require 
student collaboration (such as inquiry tasks). Such tasks were initially uncomfortable 
for teachers to use, but once they had been supported by professional development,
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teachers felt confident in planning for such tasks and were more likely to seek out 
more inquiry tasks. This finding indicates that teachers are often hesitant to engage 
in the SC perspective when planning for and enacting mathematics lessons, but that 
this hesitation can be alleviated through the use of directed training on the approach. 

4.5 Structuralism as Perspective 

4.5.1 Definition 

The structuralist approach originates from both mathematics and psychology. Dienes 
(1960) emphasized the importance of children learning through the use of manipula-
tives (e.g., Gningue, 2016); however, classic examples of the structuralist approach 
can be found in every branch of mathematics. For instance, the Poincaré and Beltrami-
Klein models for describing hyperbolic geometry are used to help learners develop 
fundamental understanding of hyperbolic space that is challenging to visualize other-
wise. The focus of the structuralist perspective is on the structures and theories 
that underlie the mathematics presented. This perspective is often conflated with 
the constructivist approaches for teaching mathematics. It overlaps with radical 
constructivism in that there is a focus on theories of cognitive development and 
students’ concept formation of a specific mathematical idea. However, the struc-
turalist approach differs in that the focus is on discovering the structures that are 
introduced to students by the teacher, who is using those structures as a framework 
around which mathematical understanding can be developed, rather than constructing 
them. An example in K-12 teaching is the use of AlgeBlocks to visually demonstrate 
multiplication of polynomials, a mathematical process that would otherwise be only 
abstract and symbolic (de Walle et al., 2017). The difference, thus, is that the struc-
turalist perspective is focused on discovering the existing mathematical structure of 
polynomial multiplication, a structure that is already there. Conversely, the construc-
tivist perspective does not conceive of an existing structure that the student must reach 
through their mathematical activity, but rather, is exploring to construct their own 
concepts from scratch. The structuralist, therefore, can talk about misconceptions and 
misunderstandings when a student’s understanding is incongruent with the relevant 
structure, whereas constructivists do not use that term since the student’s concept is 
its own referent. 

4.5.2 Goals of Teaching 

The goal of the structuralist teacher is to guide students in discovering a mathematical 
structure, through the use of exemplary and sequenced tasks, each of which draws 
particular attention to some limit-case aspect of the structure. As already mentioned, 
one of the characteristics of the structuralist approach is an emphasis on the use of 
manipulatives. The manipulatives allow the student to experience an embodiment of
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the mathematical structure during their discovery process. Additionally, there is a 
spiral design in the curriculum that allows for revisiting key mathematical structures 
in a cycle, delving into them more deeply each time. 

A relevant metaphor here is the way in which a house is built: the cornerstones of 
the foundation must be located first, followed by the joists in the floors and beams in 
the walls, and it is not until this skeleton is truly discovered from behind the plaster 
walls (the general case examples), that the house’s structure could be said to be truly 
discovered. Thus, the structuralist teacher must first check their own understanding 
of the structure against the mathematical community and literature, and then locate 
exemplary cases of problems that will illuminate the cornerstones, beams, and joists 
of the structure. These must be carefully sequenced so that the student will follow the 
same path in discovering the hierarchy of the structure; for example, it would make no 
sense to study the roof trusses without first having discovered where the studs in the 
walls are. This identification and sequencing of exemplary tasks then leads students 
to develop a more general understanding of the structure as the teacher generalizes 
these exemplary cases. In practice, this typically follows the arc of beginning with 
manipulatives, then moving to a pictorial representation of the manipulatives (i.e., 
drawings), then associating the drawings with abstract symbols or ideas, and finally 
removing the manipulatives altogether so that the abstract symbols represent the 
structure itself in the student’s mind. 

In the structuralist approach, models and manipulatives are used to help students 
discover mathematical structures, but none of the models are robust enough to be 
applicable in every case or to demonstrate every attribute of the mathematical struc-
ture’s complexity. The teacher, therefore, uses manipulatives to help students discover 
a particular aspect or develop understanding of a particular example. These particu-
lars can then be used to develop understanding of the mathematical structure more 
generally. 

Mathematics education literature on multiple representations exemplify the prac-
tical use of the structuralist approach in mathematics classrooms. Researchers discuss 
the importance of using multiple representations and developing fluency in flexibly 
moving between them, such as visual, pictorial, graphical, numeric, and algebraic 
(e.g., Ainsworth, 2006; Deliyanni et al., 2016; Goldin, 2002; Goldin & Shteingold, 
2001; Mitchell et al., 2014; Stylianou, 2010). Manipulatives can be used as a tool 
for making and presenting representations and can either be virtual (on computers) 
or physical. Planning for these types of lessons thus includes envisioning tasks with 
different representation in sequence from concrete to abstract, and tasks that promote 
the students’ movement between the multiple representations’ uses. Illustrations of 
classroom implications of the structuralist approach to Type D can be found in math-
ematics educators’ works designed for training pre-service teachers (e.g., Beckmann, 
2022; Kilpatrick et al., 2001; Van de Walle, 2017).
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4.5.3 Examples from the Literature 

Pierce and Stacey (2009) discussed the use of graphing calculators in a structuralist 
classroom. In their study, they emphasized the importance of four aspects of lesson 
planning for the use of technology within the structuralist approach: (1) focusing 
on the main goal of the lesson and thoughtfully selecting multiple representations 
that directly support the goal; (2) identify, for each representation, a specific purpose 
aligned with student engagement; (3) “establish naming protocols for variables” 
(p. 231) so that students can translate variables across technologies and represen-
tations easily; and (4) reducing any excessive cognitive demand so that technology 
does not distract or detract from the lesson goal and students’ engagement with the 
intended mathematics. These researchers argued that technology allows the teacher 
to support the goals of the lesson as identified by the teacher during lesson planning. 
Depending on the goals for the lesson, the structuralist teacher might need to restrict 
the strategies that emerge during the discussion or restrict the representations being 
used, or plan for the reduction of distractions due to the technology (Pierce & Stacey, 
2009). 

In their study of the low-performing middle school mathematics classrooms, 
Panasuk and Todd (2005) present a conceptual framework within a structuralist 
approach for teaching mathematics that guided the development of the instrument 
titled Lesson Plan Evaluation Rubric (LPER) for the assessment of mathematics 
teachers’ lesson planning process. The researchers also described a four stages of 
lesson planning (FSLP) strategy comprising: (1) planning of objectives, formulated 
in terms of students’ observable behavior; (2) design of homework, that matches 
the lesson’s objectives; (3) inclusion of developmental activities that reflect the 
lesson’s objectives and advance students’ development and learning; and (4) plan-
ning mental mathematics that include activities to stimulate students’ prior knowl-
edge, and prepare students for the acquisition of new concepts. The FSLP strategy 
focuses on the development of lessons involving multiple representations such as 
visual representations (diagrams, pictures, graphs, tables), verbal representations 
(words), and symbolic representations (variables, expressions, operations, equations) 
to address students’ misconceptions and assess students’ progress toward meeting 
learning objectives. Moreover, the strategy produced lessons that were comprehen-
sive and coherent by emphasizing alignment between homework, classroom activ-
ities, and mental mathematics. The researchers claimed that to incorporate FSLP 
effectively, lesson plans must be flexible yet logical in their design to accommodate 
the distinctive needs of each student. Furthermore, this strategy encourages teachers 
to continuously adjust and adapt to achieve the desired learning outcomes. In addi-
tion, this strategy is compatible with Gueudet and Pepin’s (this volume) concept 
of coherence-in-use, which they define as the degree to which there is coherence 
within teachers’ (enacted) propositions to their students, after teachers have consulted 
various curricular materials. 

Harbour et al. (2016) described a process of structuralist lesson planning, that 
included beginning with a diagnostic interview to determine a student’s existing
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understanding of a concept, and then comparing that understanding with a standards-
informed intended goal for the student’s understanding as a result of the lesson. The 
teacher then, based on this gap, takes four considerations into their lesson planning: 
(1) plan the lesson to utilize instructional strategies that explicitly focus on students’ 
conceptual understanding of the topic; (2) plan explicit scaffolding and feedback 
opportunities into the lesson; (3) plan for student think-alouds and teacher think-
alouds; and (4) plan for the use of concrete materials, visual representations, and 
numeric representations. 

4.6 Problem Solving as Perspective 

4.6.1 Definition 

Problem solving as an instructional approach in mathematics classrooms is a type of 
teaching that focuses on developing students’ problem-solving skills and abilities to 
persist when faced with problems with which they have no experience, rather than 
practicing skills that they have already previously learned (e.g., from prior instruc-
tion). The focus is on both the mathematical content and the process, with the inten-
tion to produce and interpret different approaches and strategies for solving the same 
problem. This approach—based on the theoretical framework developed by Polya 
(1945/2015) in  How to Solve It—originated in the 1980s with the Cockcroft Report, 
Mathematics Counts (UK), and NCTM’s Agenda for Action, all of which called for 
problem solving and investigations to be included in mathematics teaching. Schoen-
feld (1983) has argued that studying problem solving requires the consideration of 
different and distinct domains of behavior and knowledge—knowledge resources, 
control, beliefs, heuristics, and practices—rather than purely relying on cognitive 
psychology. 

4.6.2 Goals of Teaching 

The goal of the teacher in a classroom that focuses on problem solving as an instruc-
tional approach is to create a thinking classroom (Liljedahl, 2019; Liljedahl et al., 
2016) in which students are given tasks that encourage thinking. This is the kind 
of task or activity that does not focus on precise application of a known proce-
dure, implementation of a taught algorithm, or the smooth execution of a formula. 
In other words, problem solving is a messy, non-linear, and idiosyncratic process 
(Liljedahl, 2020). Problem solving strategies include—but are not limited to—guess-
and-check, making lists or tables, looking for patterns, working backwards, making 
a model, drawing a picture, and trying a simpler problem first. The goal of the 
teacher is to encourage students to analyze each problem for what is given and what 
constraints are present, to highlight the relationships between variables, and to expli-
cate the goals of solving the problem. The teacher creates opportunities for students
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to explain the meaning of the problem, as well as to ask reflective questions such as “I 
wonder…” and “Does this make sense?” (Common Core State Standards Initiative, 
2010; Kobett & Karp, 2020; Timmerman, this volume). 

4.6.3 Examples from the Literature 

Liljedahl (2020) listed the practices teachers have to consider when planning for 
lessons in a thinking mathematics classroom. The list comprises 14 general categories 
of practice that all teachers adhere to in some shape or form: (1) What are the types 
of tasks we use; (2) How we form collaborative groups; (3) Where students work; 
(4) How we arrange the furniture; (5) How we answer questions; (6) When, where, 
and how we give tasks; (7) What homework looks like; (8) How we foster student 
autonomy; (9) How we use hints and extensions to further understanding; (10) How 
we consolidate a lesson; (11) How students take notes; (12) What we choose to 
evaluate; (13) How we use formative assessment; and (14) How we grade. 

As a case example of this approach to Type D, Lilejdahl (2015) studied teachers’ 
planning for problem solving in numeracy lessons. He investigated how a group of 
mathematics teachers engaged in lesson planning from the problem solving perspec-
tive over the course of six months, discussing their challenges with each other whilst 
shifting their goals for the lesson from a more traditional focus on students’ knowl-
edge to a focus on planning for students’ quality of participation in the problem 
solving tasks. Through this shift in focus, the teachers began to plan for students’ 
quality of engagement with the tasks—i.e., through the act of problem solving— 
rather than on designing lessons to transmit and assess a quantity of knowledge. 
This shift in focus was characterized by teachers’ embrace of open-ended, complex 
problems with multiple parameters that required students to engage in thinking crit-
ically about the problem and the parameters within which they would be expected to 
solve the problem, in other words, the boundaries that circumscribed the problem. By 
focusing on the problem and its particularities, teachers’ Type D assumed a different 
form than would have been required for more traditional, knowledge-based lesson 
planning. In particular, Liljedahl (2015) found that teachers who aimed at problem 
solving Type D focused on how to design the task with problem solving as its goal 
rather than students’ knowledge outcomes. 

Another example can be found in Zazkis et al.’s (2009) theorization of the impasse 
of teacher educators who teach their students to plan lessons comprehensively (i.e., 
with knowledge and outcome goals) thereby restricting the aims of mathematics 
education to those captured in curriculum documents. In the article, they juxtapose 
“planning teaching” (i.e., planning for knowledge and content goals) versus “teaching 
planning” (i.e., planning for students’ engagement in problem solving). By utilizing 
the practice of lesson plays, the authors theorized how planning for problem solving 
incorporates consideration of the “contingencies of teaching” (John, 2006, p. 487, 
as cited in Zazkis et al., 2009). With a shifted focus on problem solving instead of 
knowledge goals, “planning for teaching” instead of “teaching how to plan" priori-
tizes the playfulness and student activities of problem solving. These activities are
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captured in Liljedahl’s (2020) list of characteristics in aligning the teachers’ and 
students’ actions as “artifacts of the [lesson] planning structure” (Zazkis et al., 2009, 
p. 43), such as teachers’ responses to students’ unexpected progression through the 
problem solving nature of the lesson—or in other words, alignment of teachers’ 
planning for the teaching of their students as opposed to teachers’ planning of the 
lesson itself as an artifact. 

4.7 Culturally Relevant Pedagogy as Perspective 

4.7.1 Definition 

Culturally relevant pedagogy (CRP; Gay, 2010, 2018; Jett, 2013; Ladson-Billings, 
2014) as a teaching perspective emerged out of the Realistic Mathematics Education 
movement (RME; viz. Freudenthal, 1991) in response to the rise of post-colonial 
studies in education. CRP is one way of addressing the RME heuristic that mathe-
matics be contextualized to students’ cultures. As Makonye (2020) noted, the imper-
ative of CRP and contextualized mathematics is evidenced by the high rates of failure 
seen in school mathematics amongst marginalized populations, many of which are the 
modern product of colonialist efforts. CRP directly problematizes the Western, colo-
nialist notion that mathematics is objective, and that it is not value-laden by a culture 
(viz. Bishop, 1988). The erroneous belief that mathematics is in fact objective leads 
to what is experienced in modernity as the perceived universality of mathematics, 
and moreover, the “truth” of mathematics. Not only is this problematic for students’ 
learning of mathematics, but also for mathematics teachers’ training, because the 
training experiences of mathematics teachers predicate the beliefs they will have 
about mathematics, and subsequently will affect the ways in which they will be 
conditioned to enact their training in a classroom with students. Because of this, the 
issue of CRP has just as many implications for teaching as it does for learning. 

CRP is based on the assumptions that cultural groups engage in behavior that is 
based in mathematics or mathematical elements, and that knowledge is produced 
through and by culture and history. Thus, mathematical thinking must be consistent 
with the cultural context of the students. For example, enacting CRP teaching of 
students in a majority Black inner-city school in the US might consist of instruction 
that focuses on the origin of mathematical concepts within that culture and word 
problems or projects about mathematics within the Black culture and history of that 
city. 

Additionally, ethnomathematics has been a well-known research topic in mathe-
matics teaching since D’Ambrosio (1985) introduced the term. (Also, for a discus-
sion of how ethnomathematics implicates ethical responsibilities, such as through 
the use of technology, see D’Ambrosio, 1999). He defined ethnomathematics as 
“the mathematics which is practiced among identifiable cultural groups, such as 
national-tribal societies, labor groups, children of a certain age bracket, professional 
classes, and so on” (D’Ambrosio, 1985, p. 45, our emphasis). Thus, D’Ambrosio
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argued that ethnomathematics is conceptualized in contrast to the school mathematics 
which has the aim of maintaining and reproducing economic and social structures, 
“reminiscent of that given to the aristocracy when a good training in mathematics 
was essential for preparing the elite (as advocated by Plato), and at the same time 
allows this elite to assume effective management of the productive sector” (p. 45). 
Because of this distinction, we characterize CRP as owing its intellectual heritage to 
ethnomathematics but is markedly separate from it in terms of its degree of institu-
tionalization and purpose. Ethnomathematics is not concerned with the teaching of 
mathematics in institutionalized settings, like schools. In fact, scholars (e.g., Pais, 
2011) have revealed a growing misuse of ethnomathematical research, wherein the 
economic and cultural reality of the identifiable cultural group is removed from the 
ethnomathematics in the act of institutionalizing it. 

4.7.2 Goals of Teaching 

CRP teaching can be characterized by mathematics content that is explicitly situated 
within a contextual frame unique to the culture of the students being taught. Instead 
of focusing on the arbitrary nature of traditional mathematical structures, CRP bases 
mathematics in cultural activities and knowledge most relevant to the students. By 
doing so, teachers empower their students and present mathematics as intimately 
relevant to their students’ cultural lives instead of being abstract and formalist, thus 
giving mathematics a useful application for all students within the cultural context. 
As a result, for the CRP teacher, mathematics teaching includes explication of the 
value-laden nature of the mathematical concepts being taught, as well as adopting 
a perspective that their work as a teacher is to enculturate students into the culture 
of mathematics—whether that culture be Western and normative or Indigenous and 
marginal. This can, in many cases, lead to a conflict between the culture of the CRP 
teacher and the culture within which the mathematics is being contextualized (Bishop, 
1988). Thus, teachers must be proficient in not only their content and professionally 
situated knowledge of mathematics, but also in the cultural history and practices of the 
students whom they are teaching. As a result, traditional curriculum materials must 
be supplemented or redesigned to support CRP instructional efforts. In this process, 
the CRP teacher must be careful not to essentialize students’ culture (McCarty & 
Lee, 2014). 

4.7.3 Examples from the Literature 

An example of CRP teaching can be seen in American Indian and Indigenous studies, 
such as those conducted by Ruef et al. (2020), who studied how mathematical 
concepts are represented in the Ichishkíin language of the Yakima culture. In the 
article, the authors weave together a complex theoretical perspective to frame their 
work in a comprehensive framework of theory. In their analysis, they establish the 
fact that mathematics is culturally situated in the western/American context which
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is markedly different than for the Yakima people. One of the stories they described 
from the interview data (with a Yakima Elder) is that the word for “fraction” comes 
from the same root word in their native language for the process that happened when 
the White European settlers broke apart their nation by giving them the “choice” of 
either complete genocide or surrender of lands. The native language of the tribe uses 
this term for “broken” when they are talking about fractions. This shows how subtle 
the cultural situatedness of mathematics can be, and that researchers from dominant 
social groups are unable to fully grasp the concept of the differences in lived expe-
rience of other peoples’ mathematics. Through the CRP perspective, implications 
for teachers’ Type D “are not subtle” (Ruef et al., 2020, p. 316): mathematics can 
function as a form of White supremacy qua White knowledge production. Thus, the 
CRP teacher understands the culture of the students they teach, allowing them to plan 
lessons and assess student learning within that cultural frame. As Ruef et al. (2020) 
concluded, the work of planning for mathematics lessons and assessing student 
work—informed by CRP—is built around the concomitance of students’ cultural 
language and mathematical concepts so that students and teachers are connected 
through the place and time in which they are engaged in mathematics learning. The 
Alliance of Indigenous Math Circles (www.aimathcircles.org) offers resources for 
teachers interested in planning CRP mathematics lessons in the Indigenous American 
Indian context. 

Jett (2013) wrote about the context of working in pre-service mathematics teacher 
university courses so that the content and methods taught are of racial relevance 
to his students. Failure to conceptualize mathematics teacher education through 
a lens of cultural relevance is, for Jett, an act of fracturing the identities of pre-
service mathematics teachers as they are learning to plan and implement lessons. 
Culturally responsive pedagogy, thus, becomes a key driver in the ways that pre-
service mathematics teachers are taught to plan lessons because, as Ladson-Billings 
(2009) said, CRP “empowers students intellectually, socially, emotionally, and polit-
ically, by using cultural referents to impart knowledge, skills, and attitudes” (p. 20). 
Without CRP training in teacher education, future mathematics teachers are not 
equipped to plan CRP lessons of their own. An example of this can see in a study by 
Makonye (2020), who illustrated the consequences of teaching mathematics outside 
of students’ cultural contexts. Makonye gave the example of interest in the banking 
system and how it is irrelevant or unrelatable to students in South Africa, because 
requesting interest for any money loaned is considered immoral. When being taught 
about the application of interest and related mathematical concepts, South African 
students face challenges because the applications are based on a culturally irrele-
vant phenomenon and thus the mathematical concept’s universality fails (Makonye, 
2020). 

Skovsmose (2021) offers additional implications for CRP in the planning of math-
ematics lessons, namely that situations of crisis can serve as bases of lesson plans. As 
a human race, there are universally shared experiences (e.g., pandemic) that create 
cultural cohesion constitutive of “cultural relevance” for all students in a classroom. 
For example, a teacher could use mathematics to teach a lesson on a crisis or a critical 
situation such as COVID-19 to which all students could culturally relate; the cultural

http://www.aimathcircles.org
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context of COVID-19 is primary to all people because they have all experienced 
it. From a CRP perspective, COVID-19 is a cultural phenomenon and thus can be 
used to create and/or illustrate how the relevance of the mathematical activity can be 
presented pedagogically within a cultural group. 

4.8 Project and Problem-Based Learning as Perspective 

4.8.1 Definition 

Project and Problem-Based Learning (PBL) is a perspective for teaching mathematics 
that is based on the assumption that mathematical knowledge has to be presented in 
the real-world contexts of students’ environment. The environment provides meaning 
to the mathematics or contexts out of which new knowledge can be drawn. An 
example of this approach can be found in works that use nature as a context to 
teach mathematics concepts (e.g., Adam, 2003/2006; Toni, 2021). On the one hand, 
by exploring problems in the environment students are prompted to discover math-
ematical concepts. On the other hand, the abstract structures of mathematics can 
be imposed on an environmental or contextual situation, allowing the situation or 
context to be reinterpreted using mathematical concepts. The PBL teacher views 
mathematics as inseparable from the environment or context in which it exists or 
originates. In other words, every mathematical topic is presented within its context: 
the context itself is the source of inspiration and motivation for students’ interest 
in the mathematics, as well as the starting point for developing new mathematical 
knowledge. This means that the teacher is not there to impose notions onto the child, 
but rather, to select the influences (also see Dewey, 1897). 

Based on an extensive review on PBL literature, Merritt et al. (2017) found that 
different definitions existed. Most relevant for the mathematics education community 
are the functional/curriculum design, constructivist, and conceptual change defini-
tions. Based on their analysis, we align the functional/curriculum design definition 
with the inquiry-based learning literature, the constructivist definition with the cogni-
tive learning theory perspective discussed in the present chapter, and the conceptual 
change definition with the structuralist perspective also discussed in the present 
chapter. We conjecture that teachers who participate in educational experiences to 
learn about PBL—such as professional development events—accept PBL as a novel 
pedagogical tool without explicit reference to one of the three aforementioned defi-
nitions. Rather, when they return to their classroom and choose to plan lessons 
from their newly learned PBL perspective, they retroactively assign epistemological 
meaning to the lesson based on their other beliefs about mathematics teaching and 
learning; these beliefs then become objectified through the planning, enactment, and 
assessment of the PBL lesson. More research is needed in this area.
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4.8.2 Goals of Teaching 

The goal of PBL is for individual learners to construct mathematical concepts from 
the context familiar to them. The teacher uses real-world contexts as a source 
of inspiration, abstraction, meaning, and motivation for learning mathematics. As 
a result, the goal of teaching mathematics from this perspective is that students 
understand the mathematical concepts as intimately emergent from the context and 
environment itself. Thus, the student learns the structure of the environment as a 
mathematical structure along with learning the mathematical concepts. A character-
istic of this approach apropos of pedagogy is the implementation of collaborative 
group projects that often utilize statistical analyses, mathematical modeling, and 
exploratory activities (Capraro et al., 2013; Lee, 2018). 

4.8.3 Examples from the Literature 

Literature on PBL related to Type D has come from the STEM Education, Engi-
neering Education, and Science Education fields (e.g., Cheaney & Ingebritsen, 2005; 
Miller & Krajcik, 2019; Mills & Treagust, 2003). For example, Miller and Krajcik 
(2019) reported on a four-year action research project they did in their own classes 
in teacher education, on how best to align science teacher preparation with the goals 
of PBL as outlined in official curriculum documents such as the Next Generation 
Science Standards (NGSS; NGSS Lead State Partners, 2013). They highlighted the 
connection between the goals of PBL and developing students’ knowledge-in-use 
(see Pellegrino & Hilton, 2012), which is the “capacity that learners need to apply 
knowledge to make decisions and solve problems, and to evaluate when and how to 
get more information when necessary” (Miller & Krajcik, 2019, p. 1). Miller and 
Krajcik (2019) elucidated that planning for PBL lessons means planning for the 
creation of a specific type of learning environment: a “sense-making and knowledge 
generating environment” (p. 5) that is designed to pique students’ interest about 
natural phenomena or situations in the real world through the pursuit of questions 
about the world. As such, the teacher creating the PBL environment must estab-
lish driving questions to guide: (1) the lesson; (2) the development of the students’ 
knowledge-in-use; and (3) the development of artifacts (concrete representations) 
as the results of the PBL investigation. Specific instances of Type D in Miller and 
Krajcik’s (2019) process include: (1) planning for driving questions “about a problem 
to be solved or experience to be explained that promote wonderment about the world” 
(p. 6); (2) including students’ participation in scientific practices in the lesson plan; 
(3) planning for students’ exploration of the driving questions through “collabora-
tive sensemaking activities” (p. 6) that are designed to engage “in shared knowl-
edge building” (p. 6); (4) planning for scaffolding the development of students’ 
knowledge-in-use through the use of discursive pedagogical tools; and (5) assessing 
the artifacts students produce as a result of the PBL lesson for the extent to which they 
“scientifically address the driving questions with increasing sophistication” (p. 6).
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Conversely, the mathematics education literature on PBL focuses primarily on 
students’ conceptual understanding of mathematics and/or beliefs about and atti-
tudes towards mathematics as a result of having participated in a PBL lesson (e.g., 
Knezek & Christiansen, 2020; Merritt et al., 2017). Merritt et al. (2017) found that 
all the studies in mathematics and science PBL that they reviewed were concerned 
with students’ knowledge, achievement, and affectual outcomes. The literature on 
PBL and its Type D implications are relevant to mathematics teaching and teacher 
education as well. Considering the growing interest in PBL and the larger increase 
in focus on STEM education, this gap in the literature needs to be addressed in order 
to better understand how the mathematics teacher who wishes to implement PBL 
lessons plans for and assesses the impacts of those lessons. 

5 Pros and Cons for Each Perspective 

Each aforementioned instructional approach for teaching mathematics has advan-
tages and difficulties associated with it. Planning based on each instructional 
approach therefore presents unique challenges. We survey these briefly, not exhaus-
tively, in this section. 

From the Situated Learning Theory (SLT) perspective, the goal of the teacher is 
to develop a students’ sense of belonging in the mathematics community (e.g., using 
correct mathematical language and discourse patterns, solving problems, and prac-
ticing communication of their thinking, and doing mathematics). The knowledge is 
situated in the mathematics community rather than an individual and the students are 
treated as a newcomer apprentices in the community where the oldtimers—math-
ematics teachers—engage in doing mathematics as the leaders of the mathemat-
ical community. The challenge with this approach is the time needed to develop 
mathematical community and the norms associated with it, including the teacher’s 
identity as a member of the community—a practicing mathematician—and the 
students’ identities as legitimate participants in the community’s periphery. Knowl-
edge is conceived of as identity development and belonging, either as newcomers or 
oldtimers, in the community. This is challenging to plan for with a diverse and/or 
large classroom of students and institutional constraints that may not afford it or value 
such educational goals. An additional challenge is that the teacher needs to make the 
distinction between whether the students’ mathematical labor is sufficient to support 
their apprenticeship contra epistemic exclusion, and to be clear about what “doing 
mathematics” might look like. The SLT teacher will also need to continuously reflect 
on their own understanding of what it means to “do mathematics,” as such an inference 
can be rather opaque, and thus the SLT teacher needs to consider the material labor 
of their students as well: “To compensate for epistemic exclusion, we seek to develop 
a reliable way to evaluate the effort to understand mathematics” (Baldino & Cabral, 
2021, p. 280, emphasis in original). In our words, this effort represents students’ 
legitimate peripheral participation and desire to become an oldtimer.
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The Behaviorist classroom—where the focus of mathematics teaching is on 
showing students how to reproduce a perfect sequence of steps when solving a math-
ematical problem, and where the goal is on producing correct answers rather than 
understanding the meaning behind the mathematical concepts—works well when 
developing procedural fluency of mathematical concepts and ideas that have low 
cognitive demand (e.g., skill/drill activities and technology-related tasks designed 
to improve fluency). However, when addressing mathematical concepts with a high 
cognitive demand or that require critical thinking, this perspective is not appropriate 
for mathematics planning and teaching. 

In the Cognitive Learning Theory (CLT) classroom, mathematics teachers plan 
lessons that allow space for learners to develop their own structures and construct 
their own meanings for mathematics. This requires additional time for mathematics 
instruction and there is a danger that a lesson can become a set of unrelated activities 
and lose its focus with respect to the students’ construction of the lesson’s mathe-
matical aim. To avoid this, the CLT teacher plays an active role in aligning lesson 
plans with hypothetical learning trajectories, addressing individual student’s needs 
throughout the construction process, and assisting learners in making connections 
between big mathematical ideas. 

In the Social Constructivist (SC) mathematics classroom, teachers plan for math-
ematics learning where students develop their objective knowledge of mathematics 
concepts through a collaborative classroom discourse during which their subjective 
knowledge is examined, dissected, and confirmed by the group. Thus, any knowl-
edge production is jointly owned by the classroom community. A challenge with SC 
planning is that the mathematics teacher has to be knowledgeable of various math-
ematical approaches for a given problem, attitudes in the mathematical community, 
and the processes of developing new mathematical knowledge between people. 

In the Structuralist classroom, mathematics teachers plan to use various math-
ematical models that help students to simplify and reveal abstract mathematical 
structures. Each model used (e.g., AlgeBlocks, Geostrips) has limitations and there-
fore cannot be used as the sole source of explanation. The emphasis is on a student 
discovering underlying structures presented by the teacher instead of exploring and 
constructing their own mathematical structures (as in CLT). A difficulty with plan-
ning in the structuralist classroom is that teachers have to be knowledgeable about 
various appropriate models for each topic taught, the strengths and limitations of 
each model, and appropriate supplementary instructional tools and strategies needed 
for comprehensive understanding of essential mathematics. 

In the Problem Solving (PS) classroom, the focus is on multiple strategies for 
solving a given problem and being able to make connections to other strategies 
or other problems, rather than the content understanding that results from it. PS 
has the advantage of engaging students in mathematics making and creating new 
knowledge through the experience of dealing with unfamiliar situations as opposed 
to receiving knowledge through direct instruction from a teacher. It differs from 
radical constructivism in that it does not focus on the concepts that are constructed 
by students but rather focuses on the analytic schemes, critical thinking processes, 
and intuitions they develop for solving posed problems. A difficulty in this approach
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is that it often is misaligned with institutional goals for mathematics teaching— 
such as standardized testing of content knowledge—so that planning for PS lessons 
results in planning for student outcomes that are often not represented in curriculum 
documents. 

The Culturally Relevant Pedagogy (CRP) approach can lead to the development 
of students’ critical consciousness of social structures and inequities, as well as 
centering mathematics in the cultural practices and realities most familiar to students. 
This has the potential to reinvigorate students’ cultures with mathematical meaning 
and—further—to position students’ lived cultural experiences as mathematical expe-
riences. The difficulty with CRP planning and teaching is that the teacher must be 
an expert not only in the mathematics content taught, but also in the culture/s of 
their students. Thus, curriculum materials must be tailored to provide mathematical 
content within the cultural context. 

In the Problem- and Project-Based Learning (PBL) classroom, teachers plan math-
ematical activities within real-world contexts, so the meaning assigned to mathe-
matical knowledge is contextualized in the real-world situations used to teach the 
mathematical concepts. A PBL lesson typically includes an open-ended problem to 
which students attempt to develop a solution. Planning for such lessons requires 
teachers to have comprehensive knowledge about mathematics in real-world situa-
tions, as well as the pedagogical knowledge to translate this contextualized math-
ematics into planned activities and assessment strategies. Another issue with this 
approach, similarly to CLT, is that students construct their own understanding of 
mathematical concepts and solutions to problems, without any guarantee that those 
concepts or solutions will be in complete agreement with lesson objectives, institu-
tional and curriculum documents, or community norms. Thus, planning for a PBL 
lesson means incorporating additional teacher guidance (to help students in their 
problem-solving process) into the lesson plan. 

As we have shown, each perspective for planning and teaching mathematics has 
certain benefits and drawbacks, and each is not appropriate for every lesson. Devel-
oping teachers’ Type D means developing their ability to operationalize the different 
perspectives we present in this chapter as well as the ability to differentiate goals 
for mathematics lessons and identify the most appropriate type of epistemological 
commitment to support the teaching of different mathematics topics. Furthermore, 
developing teachers’ Type D means developing self-awareness of one’s a priori  
epistemological commitments about the teaching and learning of mathematics, and 
how these commitments may help or detract from planning and teaching a particular 
mathematics lesson.
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6 The Epistemological Perspectives in Different Cultural 
Contexts 

Culture is a foundationally structuring element of human experience and the social 
link between people. None of the eight epistemological perspectives are immune 
from this, because it is these perspectives that describe what teachers actually do 
when planning for and reflecting on their teaching work in the classroom. In the case 
of SLT, apprenticeship may take very different forms in different cultural settings, 
such as schooling and as apprenticeship outside of formal schooling. In the case 
of behaviorism, the paradigm itself is value-laden in a unique way that may socio-
politically charge any attempts to stray from it; consider a cultural setting where 
teachers are seen as the holders of knowledge and wherein students are expected to 
replicate exactly what the teacher tells them to do rather than discursively engage it. 
In the case of CLT, there may be cultural and institutional commitments that position 
CLT as a proposition outside of the role of school. In the case of SC, as with SLT, there 
may be an issue with implementing an SC agenda where discourse between students 
and teachers—and between students and each other—is not culturally privileged. In 
the case of structuralism, manipulatives are expensive, and not even in the wealthiest 
of Western countries are manipulates available in every classroom of every school. 
In the case of PS, again, this perspective is value-laden—why solve a single problem 
multiple ways if the economic situation in the context calls only for one solution? In 
the case of CRP, cultural context is central. However, consider the situation where 
a wealthy, White, suburban school is attempting to deploy CRP without any input 
from minority populations, leading inevitably to perversion of its theoretical princi-
ples; critical educators are crucial for CRP’s deployment. And finally, in the case of 
PBL, like structuralism, classroom materials and resources are required, as well as 
time and institutional flexibility regarding expectations of student outcomes within 
prescribed timelines and alignment with state warranties (e.g., government testing). 
We avow all of these cultural conditions as crucial to the employment of the eight 
epistemological paradigms in Fig. 1 but the purpose of this chapter was to survey the 
status of literature and knowledge regarding Type D in the recent Western context. 
The constraints listed are just some of the myriad constraints under which every 
teacher works (Ingram & Clay, 2000), and we leave it as an intellectual challenge 
to the reader to envision what implications these cultural considerations may have 
when considering Type D. 

7 Implications for Lesson Planning 

There are three additional implications related to Type D that teachers must consider 
when planning: the layout of the learning space, instrumentation related to lesson 
planning, and student assessment. We survey these briefly in this section.
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7.1 Layout of the Learning Space 

The layout of the room, the way the physical space is prepared, the way the board 
is organized, and the students’ access to manipulatives and technology are all key 
aspects of lesson planning. For example, the Instructional Quality Assessment (IQA; 
Boston & Smith, 2009; Boston & Wilhelm, 2017) lesson observation rubric includes a 
section that requires a description of the physical classroom layout, as well as a section 
about the potential of the task. Liljedahl (2020) emphasized the importance of the 
space/physical layout in creating thinking classrooms, noting that the physical layout 
of the room must correlate with and support the goals of the lesson. Considering the 
different perspectives on planning and teaching lessons presented in this chapter, 
the corresponding layouts that teachers plan for each approach must be coherent 
with the teacher’s epistemological commitments, the goals of the lesson, and their 
corresponding intended experiences for students. 

7.2 Instrumentation Related to Lesson Planning 

There are various instruments for evaluating the quality of lesson plans. These include 
but are not limited to the Guide to Core Issues in Mathematics Lesson Design (West & 
Staub, 2003) based on their Framework for Lesson Design and Analysis, the IQA 
Lesson Plan Rubric (Boston & Smith, 2009; Boston & Wilhelm, 2017), the Lesson 
Plan Evaluation Rubric (Panasuk et al., 2005), the Observation and Reflection Guide 
for a Mathematics Lesson (Grant et al., 2009), the Thinking Through a Lesson 
Protocol (Smith et al., 2008), and the 5E Lesson Plan Format (Goldston et al., 2010) 
which originated in science education. While these tools have been invaluable over 
the past two decades, lesson plan evaluation practice is lagging in research because it 
does not account for various the theoretical perspectives that we have described in this 
chapter. Indeed, Chizhik and Chizhik (2016) claimed that research on lesson plan-
ning is “stuck” in the behaviorist perspective. Furthermore, Medley (1987) argued 
that in order to conduct quality research, the issues of conceptualization, instrumen-
tation, and design have to be addressed; thus, it is important to advance the design of 
instrumentation for lesson planning that does not discriminate against any particular 
theoretical perspective in which it is based. Without quality lesson planning, there 
cannot be quality instruction in mathematics classrooms. 

7.3 Student Assessment 

Analyzing student assessment is an integral part of teachers’ reflection on their pre-
and post-classroom activities. Research related to student assessment is discussed 
in depth by Radišić (this volume). The advent of educational technology and online
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teaching has brought with it changes to student assessment. In virtual and phys-
ical mathematics classrooms, teachers use “technology as a servant” to serve as an 
assessment tool (Gueudet & Pepin, this volume; Geiger, 2005; Goos et al., 2000; 
Martinovic & Manizade, 2014). These considerations and more are discussed by 
Gueudet and Pepin (this volume). Due to space limitations, we will not expand on 
issues related to research on student assessment in this chapter. 

8 Conclusion and Future Directions of Research 

Teacher preparation and development programs provide “experiences designed 
to increase mathematics teachers’ range of competencies” (Type J). They have 
been conceptualized in our adaptation of Medley’s (1987) presage-process-product 
approach to understanding the inter-relationship of the variables that impact student 
learning outcomes as intervening between pre-existing mathematics teacher charac-
teristics (Type F), and the competencies, knowledge, and skills (Type E) that teachers 
bring to the preactive tasks of teaching (Type D). Among Type E variables, there is 
arguably a dual focus in mathematics teacher education and development programs 
on teachers’ knowledge and dispositions on the one hand, and on observable class-
room competence on the other. This is evident in the oft-lamented gap between 
theory and practice noted by Dewey (1904) and identified by Korthagen (2017) as  
the central problem of teacher education and development throughout the twen-
tieth century. According to Charalambous and Delaney (2020), practice is used in 
the mathematics education literature in at least four different ways: to distinguish 
between having an idea and enacting it; as something that is repeated with a view to 
improving performance; to describe the practice of teaching as having taken on the 
identity of a teacher; and, to describe classroom activities that are done habitually. 
While not excluding practices that occur in preparation for or following classroom 
activity, in each case the emphasis is on the teachers’ actions in classrooms with 
students. That is, efforts to address the theory–practice gap in teacher education and 
development can been seen as an attempt to link Type E variables (mathematics 
teacher knowledge, competencies, skills, and beliefs) directly to Type C variables 
(interactive mathematics teacher activities that occur in the presence of students) 
with insufficient attention to Type D variables such as planning. 

The approach taken in this chapter to the pre- and post-active actions of teaching 
foregrounds the importance of the teachers’ theoretical perspectives in determining 
the goals they have for teaching and hence the kinds of activities that they plan to use 
in their teaching, as well as the ways in which they reflect on and self-assess their 
teaching. We argue that teachers’ pre-active competencies such as lesson and unit 
planning—not simply as a technical skill or means of ensuring that novice teachers 
have “thought through” what they will do in their interactions with students, but as a 
theoretically driven bridge between teaching knowledge (typically characterized as 
theory) and practice—has the potential to address the traditionally perceived theory– 
practice gap. One way in which such an approach might manifest is in taking a step
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back from lesson planning proformas and the like that specify such things as how 
to formulate the objectives of a lesson—to first reflect on the over-arching goals 
of one’s mathematics teaching and its theoretical underpinnings. It should, thereby, 
be possible to trace a coherent theoretical perspective along the chain from Type E 
to Type D to Type C variables, influenced and constrained by Type J and Type I 
variables. 

In conclusion, we found that some theoretical perspectives with respect to Type D 
have been researched well (such as CLT) while others (such as SLT and PBL) have 
not. With the current impetus of reform in the digital era of mathematics education, 
we believe these under-researched perspectives warrant further research with respect 
to Type D to investigate their potential for improving teachers’ practice of lesson 
planning, assessment, and reflection. Elevating planning from a technical skill to a 
theoretically informed aspect of mathematics teaching would likely motivate further 
research on the topic as called for by Kilpatrick et al. (2001) who suggested that 
more research needs to be done on teacher planning, specifically, “What do teachers 
read when planning?”, “How do they interpret and use what they read?”, “And how 
do those uses affect their teaching?” (p. 337). The answers to each of these questions 
depend upon the theoretical perspective through which the teacher views the goals 
of their mathematics teaching. Consistent with this, our consideration of examples 
from the literature of each of the epistemological perspectives we identified in Fig. 1 
highlight the scope of and need for mathematics education researchers to be more 
explicit in relation to the theoretical perspectives that underpin their own thinking 
and the studies on which they report. 
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Interactive Mathematics Teacher 
Activities 

Kim Beswick , Felicity Rawlings-Sanaei, and Laura Tuohilampi 

1 Introduction 

The focus of this chapter is on interactive mathematics teacher activities (Type 
C). That is, the activities in which teachers engage in the presence of students. 
Researchers are often interested in innovative pedagogies aimed at enhancing the 
teaching and learning of mathematics. Studies, therefore, typically investigate class-
rooms in which teachers are participating in an intervention aimed at influencing their 
practice in ways deemed desirable by researchers or are attempting some kind of atyp-
ical practice that aligns with contemporary views of effective mathematics teaching. 
Fewer studies consider the nature of normative mathematics teaching practice. Those 
that do are necessarily large scale and provide less rich data than is usual for studies 
of atypical practice. They are, however, important for system level understanding 
and as a context in which to consider innovative practice. 

Manizade, Moore and Beswick (this volume) describe eight epistemological 
perspectives that formed a framework for examining research on teacher’s activities, 
such as lesson planning, reflecting on teaching, and assessing students, when not in 
the presence of students (i.e., Type D variables). Aspects of Type D that occur prior 
to teaching are intended to inform what happens when teachers interact directly with 
students (Type C). Nevertheless, we know that many factors intervene to ensure that 
there is rarely a direct translation from plan to practice by constraining the interactive

K. Beswick (B) · F. Rawlings-Sanaei · L. Tuohilampi 
School of Education, University of New South Wales, Morven Brown Building, Kensington 2052 
NSW, Australia 
e-mail: k.beswick@unsw.edu.au 

F. Rawlings-Sanaei 
e-mail: felicity.rawlings-sanaei@acu.edu.au 

L. Tuohilampi 
e-mail: l.tuohilampi@unsw.edu.au 

© The Author(s) 2023 
A. Manizade et al. (eds.), The Evolution of Research on Teaching Mathematics, 
Mathematics Education in the Digital Era 22, 
https://doi.org/10.1007/978-3-031-31193-2_5 

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31193-2_5&domain=pdf
http://orcid.org/0000-0002-0224-5648
mailto:k.beswick@unsw.edu.au
mailto:felicity.rawlings-sanaei@acu.edu.au
mailto:l.tuohilampi@unsw.edu.au
https://doi.org/10.1007/978-3-031-31193-2_5


136 K. Beswick et al.

activities that are feasible or desirable. They include Type I variables such as system 
and school policies and priorities, resources available to schools and choices about 
their allocation, resources of the families that schools serve, and cultural consider-
ations; and Type E variables, specifically the skills, knowledge, dispositions, and 
accumulated experience that individual teachers bring to their task. 

Apparent disjunctions between what teacher’s say they believe about teaching 
(an aspect of Type E), including their epistemological perspective, and hence plan 
to do, (Type D), and what in fact happens in their classrooms (Type C) gave rise to 
studies pre-dating the focus of this review that highlighted apparent discrepancies 
between beliefs and practice (e.g., Frykholm, 1999; Sosniak et al., 1991). An impor-
tant development in recent decades has been a growing consensus that teachers are 
reasonable when they state and enact their beliefs (Leatham, 2006) with more than 
a dozen ways in which apparent discrepancies can be reasonably explained having 
been documented (Liljedahl, 2008). In addition, Beswick (2003) highlighted the 
influence of the differing contexts in which teachers typically talk about their beliefs 
and then enact them. This certainly applies to the contexts in which teachers plan for 
interacting with students (Type D) and then implement those plans (Type C). Each 
of the epistemological paradigms identified by Manizade, Moore and Beswick (this 
volume) allow for a degree of contingency; that is, the teacher needs to respond to the 
ways in which students respond to teaching. Indeed contingency, defined as involving 
deviating from the plan, responding to student’s ideas, and making use of unplanned 
opportunities, is a dimension of the Knowledge Quartet that was developed based 
on observations of teacher’s practice and presented as a framework for observing 
mathematics teaching (Rowland & Turner, 2007). Speer (2005) argued that apparent 
discrepancies between teacher’s espoused and enacted beliefs are likely artefacts of 
the research methods employed, specifically a failure to consider data from practice as 
well as teacher reports via surveys or interviews when attempting to infer their beliefs. 
Care also needs to be taken to ensure that there are shared understandings between 
teachers and researchers of the meanings of words and interpretations of events 
(Beswick, 2005; Schoenfeld, 2003) which in turn are influenced by the researcher’s 
beliefs. In the case of large-scale studies, choices about the scales and items included 
reflect what the test designers assume to be desirable practices (Eriksson et al., 2019). 

Consistent with this, research interest in particular interactive teaching practices 
has followed developments in theoretical understandings of mathematics teaching 
and learning and the epistemological perspectives from which practices have been 
examined. As noted by Manizade, Moore and Beswick (this volume), these are not 
always explicitly stated but can be inferred with varying degrees of confidence from 
reports of studies. In this chapter we review what we know about teacher behaviours 
in typical mathematics classrooms and discuss the range of less widespread peda-
gogical approaches that are evident in the literature. In both cases we make links 
to underpinning epistemological perspectives as described by Manizade, Moore and 
Beswick pointing to how these appear to have both influenced the Type C variables 
that have been of interest and that may relate to practices observed, although we 
recognise the difficulties inherent in making such connections. Large scale surveys,
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for example, necessarily rely on teacher’s self-reports rather than on direct obser-
vations. Desimone et al. (2005) cited research showing that although self-reports 
are acceptably reliable and valid measures of the content taught and the teaching 
strategies that are emphasised (e.g., Mullens & Gayler, 1999, as cited by Desimone 
et al. 2005), they may not be well-suited to measuring aspects of practice such as 
teacher-student interaction (e.g., Mullens & Kaspryzyk, 1999, as cited by Desimone 
et al., 2005). According to Eriksson et al. (2019), there was almost no connec-
tion between teacher’s responses to items on an “instruction to Engage Students 
in Learning Scale” and student’s achievement, leading them to recommend relying 
instead upon student reports about what happens in their classrooms. Studies that 
involve direct observations of teaching provide more certainty about actual class-
room events but are necessarily smaller in scale and present their own challenges for 
researchers who seek to go beyond reporting what teachers and students do and say 
to make inferences about their intent and motivations. 

We also examine what has been found about the impacts of technology on what 
happens in classrooms (real or virtual) in which teachers and students interact, and the 
theoretical lenses that informed the work. We conclude with reflections on aspects of 
classroom practice that have been less or un-scrutinized, but which warrant attention 
in future studies. 

2 Our Approach 

We conducted an organically evolving search of research articles discussing teacher’s 
interactions with students in mathematics classrooms. We began with a search of 
relevant databases of the high-ranking mathematics education journals identified 
by Williams and Leatham (2017). The databases searched were ERIC, ProQuest 
Education, Informit A + Education, OECD Library, EBSCO Education Source and 
JSTOR. We began with a small number of relevant articles which were searched 
for relevant keywords (e.g., classroom environments, teacher-student interaction, 
teacher behaviors). Further researchers engaged in the field were identified and we 
focused specifically on articles that discussed teacher’s actions in classrooms, and 
identified the different perspectives, methods, recommendations, and issues raised. 
We restricted the sample to publications dating from 2000 and conducted further 
searches by prominent authors in the field and keywords (e.g., mathematics pedagogy, 
mathematics teaching, classroom practice). We refer to older literature when it is 
important to framing more recent trends and identifying their progress over slightly 
longer timeframes. 

The matched articles were transferred into an Excel spreadsheet in which they 
were categorised by title; author; date of publication; type of data (direct observation, 
indirect, other); type of activity (e.g., problem solving); theoretical approach; and 
whether it concerned existing practice or practice connected with an intervention. In 
addition, we found articles more broadly related to the topic, such as when a particular 
issue, e.g., conceptual understanding of fractions, was examined with an intervention



138 K. Beswick et al.

impacting teacher’s actions. Those articles only tangentially related were excluded 
from the core analyses but were discussed in author meetings thus informing our 
discussion in this chapter. For normative practices we also referred to reports of 
large-scale international surveys. 

The chapter is structured in two broad sections; the first describing the develop-
ment of research about widely practiced teacher student interactions, and the second 
exploring studies that have considered teacher’s behaviors with students in particular 
projects or in response to specific interventions. For the former, normative practices, 
we rely on large scale assessments of mathematics teaching and learning whereas 
for the atypical practices described in specific studies we refer to research reports 
available in the mathematics education literature. 

3 Normative Mathematics Teaching Practices 

In this section we survey what is known about what typically happens in math-
ematics classrooms. We rely primarily on the large-scale international surveys, 
Trends in International Mathematics and Science Study (TIMSS) that assess math-
ematics achievement at Years 4 and 8 in participating countries. The first TIMSS 
was conducted in 1995 but we confine our attention to those in the past two decades, 
beginning with TIMSS 2003. The Programme for International Student Assessment 
surveys (PISA) similarly provide insights into the classroom activities that constitute 
mathematics learning for 15-year-olds in participating countries. We begin with a 
brief overview of TIMSS and PISA before highlighting changes in the classroom 
activity that successive iterations of these surveys have revealed. 

Country participation in TIMSS has steadily increased over the years reflecting 
increased interest at government and education system level in the performance of 
their students relative to those in other countries. In 2003, 46 countries participated 
from the continents of Africa, Asia, Australia, Europe, North America, Oceania, and 
South America (Gonzales et al., 2004). By 2019 participation had risen to 64 coun-
tries, representing a broad range of geographic, demographic, and economic diversity 
(Mullis et al., 2020). Although the focus of this book is on Western countries, TIMSS 
is relevant because it provides an international overview of mathematics education, 
allowing comparisons among countries and the identification of distinctive charac-
teristics of mathematics teaching and curriculum objectives in particular countries 
of interest. 

PISA, undertaken by the Organisation for Economic Co-operation and Develop-
ment (OECD) assesses how well 15-year-old students can apply the knowledge and 
skills they have learned in the areas of reading, mathematics and science to real-life 
problems and situations. Seventy-nine countries participated in PISA in 2018 (Schle-
icher, 2019), which was the seventh cycle of the international assessment since the 
programme was launched in 2000. Each assessment focuses on one of the three 
subjects and provides a summary assessment of the other two. So, while Mathe-
matics has been assessed by PISA once every 3 years since 2000, the mathematics
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domain was the main area of focus only in 2003 and 2012. Mathematics will again 
be the major domain assessed in 2022.1 

We focus on aspects of TIMSS and PISA that relate most directly to what 
teachers do, or are able to do, in the presence of students. In terms of constraints on 
teacher’s activity with students, resources including teacher’s expertise and time for 
mathematics teaching, are especially salient and hence considered here. 

3.1 Resources for Teaching Mathematics 

Hopper et al. (2017) explained how the TIMSS Context Questionnaire gathers data 
about two types of resources that affect the teaching of mathematics. These are Type 
I variables, beyond the direct control of the teacher but that, nevertheless, provide 
constraints and affordances for what teachers are able to do in their interactions with 
students (Type C). The first are general resources such as school infrastructure (e.g., 
buildings, and grounds, heating and lighting, classroom space), teaching supplies, and 
the availability of technology. The second resource type is specific to mathematics 
including such things as particular software, calculators, and instructional materials. 
Data are also gathered on the difficulty or otherwise of finding well-qualified mathe-
matics teachers, and on the rates of attainment of tertiary discipline and pedagogical 
study deemed necessary for teaching mathematics that teachers have undertaken. 
While acknowledged as crude proxy for knowledge for teaching mathematics, the 
extent to which mathematics teachers have undertaken such studies contributes to 
Type E variables that inform and constrain Type D and hence Type C activities. 

The amount of time that teachers are able to spend with their students constrains 
the kinds of activities in which they can engage. Lack of time is frequently cited by 
teachers as an obstacle to implementing innovative practices in their mathematics 
classrooms (e.g., Livy et al., 2021). There was a significant variation in the amount 
of mathematics instructional time across the 64 countries surveyed in TIMSS 2019. 
On average, the fourth-grade students received 154 h of mathematics instruction per 
year, which equated to approximately 17% of total instructional time. The average 
number of hours received by eighth grade students was 17 h less than in fourth 
grade (137 h or 13% of the total) (Mullis et al., 2020). The increase in the amount 
of mathematics instructional time since 2003 is noteworthy. Although the sample 
size in TIMSS 2003 was considerably smaller (19 countries at fourth grade and 35 
countries at eighth grade) the data point to a smaller time allocation: on average, 
fourth-grade students in 2003 received 149 h of mathematics instruction per year, 
which equated to approximately 16% of total instructional time. The average number 
of hours received by eighth grade students in 2003 was 26 h less than in fourth grade 
(123 h or 12% of the total) (Mullis et al., 2004). The reduction in hours dedicated

1 The next PISA round was initially scheduled for 2021. It was postponed until 2022 due to the 
COVID-19 pandemic. 
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to mathematics instruction from Year 4 to Year 8 likely reflects the broader range of 
subject areas taught at eighth grade (Mullis et al., 2020). 

3.2 Instructional Practices 

Rožman and Klieme (2017) identified three major international trends in education 
based on contemporary educational policy and discourse. These were: an increased 
interest in regular assessment of student progress; greater advocacy of student-centred 
pedagogies; and promotion of reasoning and problem-solving rather than the devel-
opment of computational and procedural skills as the goals of mathematics teaching. 
They investigated four cycles of TIMSS (1995–1999–2003–2007) at eighth grade 
across 18 countries. Only slight evidence of increased use of testing was found 
across TIMSS assessments from 1995 to 2007 (Rožman & Klieme, 2017). In rela-
tion to the second trend—greater advocacy of student-centred pedagogies – there was 
some evidence that associated pedagogical approaches, such as making connections 
between mathematics and student’s daily lives and working in groups had increased 
in several countries, most particularly in East Asia. In relation to the third trend—the 
promotion of reasoning and problem-solving rather than the development of compu-
tational and procedural skills as the goals of mathematics teaching—contrary to 
expectations, there was an increased practice of computational skills, with a particular 
emphasis in Central and Eastern Europe. Despite an initial increase in the frequency 
of problem solving, there was a decrease from 2003–2007. 

In the 2003 and 2007 TIMSS studies, Year 8 students were asked about instruc-
tional practices in their classrooms considered relevant to instructional quality 
(Eriksson et al., 2019). In their discussion Eriksson et al. (2019) focused on three 
items, namely: (1) we listen to the teacher give lecture-style presentations, (2) we 
relate what we are learning in mathematics to our daily lives and, (3) we memo-
rise formulas and procedures. As Eriksson et al. (2019) pointed out there is no 
consensus as to the optimal frequency with which any of these practices should 
occur. The frequency of lecturing, for example, that might be considered beneficial 
depends upon what the teacher is aiming to achieve, that is their goals for teaching. 
As explained by Manizade, Moore and Beswick, a teacher adopting a behaviorist 
perspective is likely to be concerned with helping students to perform flawlessly the 
steps of a procedure to obtain correct answers to a class of mathematical problems. 
In this case telling students clearly the steps that need to be followed is likely to be 
effective. In contrast, from other perspectives such as social constructivism, where 
the goals of teaching relate to the quality of interactions among students and building 
subjective knowledge, much less frequent use of lecture style presentations would 
be deemed desirable. 

TIMSS 2015 data indicated positive associations between instructional clarity and 
student achievement (Hooper et al., 2017) as did TIMSS 2019 (Mullis et al., 2020) 
which used updated scales to further explore this trend. Students at fourth grade in 
2019 reported clearer instruction than did students in eighth grade: Most students in



Interactive Mathematics Teacher Activities 141

fourth grade (95%) reported moderate to high clarity of instruction compared with 
only 46% of students in eighth grade. 

TIMSS 2019, like TIMSS surveys since 1995, collected data on instructional prac-
tices and strategies. For mathematics these concerned how often students; worked 
on problems on their own, explained their answers in class, and decided on their own 
strategies for solving problems (Hooper et al., 2017). Just as the theoretical perspec-
tives that teachers bring to their work influence the goals they have for their teaching 
(Manizade, Moore & Beswick) and hence the instructional practices that they are 
likely to adopt, the choice of items included in TIMSS studies reflect the theoretical 
perspectives, and their concomitant goals and practices, that are of interest to the test 
designers, influenced by theoretical developments and recent research on approaches 
to teaching mathematics. The three items listed from TIMSS 2019 suggest interest in 
the extent to which problem solving and reasoning, and collaborative or individual 
working, are fostered in mathematics classrooms. These are consistent with problem 
solving and social constructivist perspectives on mathematics teaching. Researchers 
have, across successive iterations of TIMSS, explored associations between partic-
ular instructional practices and mathematics achievement. As Eriksson et al. (2019) 
pointed out the results of these studies do not always support theoretical assump-
tions about what constitutes instructional quality. They suggest that instructional 
practices should only be considered characteristic of quality teaching if they are 
found empirically to support student achievement. 

TIMSS video studies were conducted in 1995 and 1999. The 1995 study involved 
a total of 231 mathematics lessons in the United States (81 lessons), Germany (100 
lessons), and Japan (50 lessons), while in the 1999 a total of 638 mathematics 
lessons were video recorded across the seven participating countries: Australia, 
Czech Republic, Hong Kong SAR, Japan, the Netherlands, Switzerland, and the 
US (Neubrand, 2006). Video studies offer an opportunity for teachers (and student) 
behaviors to be studied repeatedly from different theoretical standpoints, and to 
address different questions about what is happening in those classrooms. Researchers 
have been interested in such things as how teachers structure their lessons, the 
clarity of instruction, interruptions, and how homework is treated. For example, 
Neubrand (2006) re-analysed 22 lessons from each of the three participating coun-
tries in the 1995 study to explore the number and types of tasks that teachers offered 
their students in the three countries. The 1999 lessons have also been examined in 
terms of lesson structure, mathematical content, and instructional practices, and to 
discern differences in mathematics classroom activity in different countries. Hiebert 
et al., (2003) observed that while there were some similar features in the relatively 
higher achieving countries, there were also distinct differences. For example, eighth-
grade lessons in all participating countries included both whole-class work and 
individual/small group work. However, lessons in Australia, the Netherlands and 
Switzerland allocated more time, on average, to students working individually or 
in small groups. Another finding of note was that across all of the participating 
countries, at least 80% of lesson time in eighth grade, on average, was dedicated 
to solving mathematics problems. But there was considerable variation in respect 
to drawing the relationships between mathematics problems and real-life situations
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ranging from only 9% of problems per lesson in Japan to 42% of problems per lesson 
in the Netherlands. Regarding computers, relatively few eighth-grade lessons in the 
participating countries made use of them. However, 91% of eighth-grade lessons in 
the Netherlands used calculators; a percentage much higher than in the other coun-
tries which ranged from 31 to 56% of lessons (except in Japan where no reliable 
estimate could be reported due to their infrequent use). In summary, Hiebert et al., 
reported that ‘no single method of teaching eighth-grade mathematics was observed 
in all the relatively higher achieving countries participating in this study’ (2003, 
p. 15). 

Eligible mathematics teachers and students in a representative sample of 150 PISA 
participating schools in eight countries (Australia, Finland, Latvia, Mexico, Portugal, 
Romania, Singapore, and Spain) responded to the OECD’s Teaching and Learning 
International Surveys (TALIS) on classroom practice (OECD, 2017). Teachers and 
students were asked to rate teacher’s use of eight classroom practices. These practices 
were clustered according to three broad teaching strategies: structuring practices, 
student-oriented practices, and enhanced learning activities. Structuring practices 
entailed the explicit specification of learning goals; student practice until all students 
have understood the content; and a summary presentation by the teacher of recently 
learned subject matter. Student-oriented practices were the differentiation of the work 
for students with learning difficulties or the ability to progress more quickly than their 
peers, and groupwork that allows students to devise a collective solution to a problem 
or task. Enhanced learning activities comprised students undertaking projects of at 
least one week’s duration, an expectation that students explain their thinking, and 
encouragement to seek multiple ways to solve problems (OECD, 2017). 

Both teachers and students reported that almost all mathematics teachers across 
participating countries used clear and structured teaching practices; specifically, 
explicitly stating learning goals; allowing students to practice until they understand 
the content; and providing summaries of recently learned content. The teacher’s use 
of enhanced learning activities was also commonly reported by both teachers and 
students, suggesting strong encouragement of students to solve problems in more 
than one way, and a high expectation that students explain their thinking on complex 
problems. The use of project work lasting at least one week was less frequent. While 
used less often than the other two practices, most teachers and over half of students 
confirmed the use of student-oriented practices, i.e., giving different work to students 
according to their level of understanding, or the use of small groups for students to 
come up with joint solutions. 

Structuring practices were the most frequently used teaching practices in mathe-
matics classrooms, according to both teachers and students. According to the authors, 
“Since they (structured practices) aim to deliver an orderly and clear lesson, they 
could be seen as the necessary foundation for the development of any other practice. 
This would explain why they are so predominant in the teaching strategies imple-
mented by teachers” (OECD, 2017, p. 7). Nevertheless, “classroom instruction time 
is a scarce resource, and an overemphasis on structuring practices could limit teachers 
in their use of other potentially more innovative strategies, such as enhanced learning 
activities and student-oriented strategies” (OECD, 2017, p. 7).
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3.3 Teacher’s Use of Technology 

The growing presence of digital learning technologies has brought new opportunities 
and challenges for mathematics teachers. An array of mobile devices, application 
software and other online technologies have transformed the landscape of mathe-
matics classrooms providing myriad pedagogical opportunities, notably in relation 
to problem-solving, experimentation and collaboration. Based on the most recent 
TALIS Vincent-Lancrin et al. (2019) noted that changes in the use of ICT in math-
ematics lessons has been a major driver of pedagogical innovation in mathematics 
classrooms, along with professional development of mathematics teachers through 
peer learning. However, the challenge for teachers to equip themselves with the requi-
site skills to effectively use new technologies and engage in higher-order pedagogical 
tasks is significant. An observation made by Handal and Campbell et al. in 2012 still 
has currency a decade on: 

In the case of online tools, there is a vast range of technologies available, but do teachers feel 
that they know how to find them and use them once located? A range of dynamic geometry 
software (e.g., Geometer’s Sketchpad) and computer algebra software is available. These 
tools have a steep learning curve and teachers need to be able to model these technologies 
for students for use in the classroom. (2012, p. 394) 

A corollary of a digitally-rich classroom is a shift in the role of the teacher and 
hence what they do in their direct interactions with students. This is particularly 
discernible in the context of the ‘flipped classroom’ where instructive videos typically 
replace ‘traditional’ homework tasks to allow more focused teaching in class time 
(Muir, 2020). In such circumstances where recorded teaching is made available to 
students to engage with in their own time, the teacher and each student are effectively 
interacting, albeit in a uni-directional way, asynchronously. Medley (1987) did not 
envisage interactions of this kind, but they have become increasingly common as 
technology has evolved and as circumstances have demanded the use of distance 
learning. Teacher behaviors as they engage in virtual asynchronous teaching are an 
aspect of Type C that warrants research. The content that is presented and whether 
or not it is presented in a way that elicits student-centered interactions depends on 
the theoretical perspective adopted by the teacher. 

TIMSS 2019 investigated three areas relating to the use of technology: computer 
access for instruction; technology to support learning; and tests delivered on digital 
devices. Teachers were asked about availability of computers during mathematics 
lessons and the types of access i.e., whether each student has a computer, the class-
room has shared computers, and/or the school sometimes gives access to computers. 
Teachers reported similar levels of access to computers at fourth and eighth grades 
(39% and 37% respectively), but there was variation in the level of access to 
computers across countries as well as in the types of access. The type of access 
most frequently reported for both fourth and eighth grades was that the school has 
computers that the class can sometimes use (29% and 28% respectively). Average 
student achievement was associated with access to computers at both grades, not
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surprisingly given that access to computers would be related to socio-economic 
advantage (Mullis et al., 2020). 

TIMMS 2019 also investigated the frequency with which teachers used computer 
activities to support learning in mathematics. Around two-thirds of students in both 
fourth and eighth grades were in classes in which their teacher reported that they 
“never or almost never” do computer activities to support learning (67% and 68% 
respectively). Average student achievement was lowest for students in these classes, 
with a 15 point-average difference at fourth level and an 18 point-average difference 
at eighth level (Mullis et al., 2020). The way in which teachers administer tests, and 
specifically whether they use computers or tablets for this purpose was also examined 
with eight grade students reporting the lowest occurrence of digitally delivered tests 
having the highest achievement. 

4 Atypical Mathematics Teaching Practices 

In this section, we consider studies that have addressed practices that have been 
less common in mathematics classrooms. We discuss the topics that have attracted 
researcher’s attention when it comes to teacher’s efforts to implement non-traditional 
practices and discuss aspects that have been most influential in shaping teacher’s 
activity in mathematics classrooms in the last two decades. 

Since 2000, smaller scale studies have emphasized the examination of pedagogical 
approaches based on constructivism, with many studies having involved examining 
the implementation and impact of particular practices. Teacher-student interactions 
have sometimes been observed directly, but artifacts such as teacher’s lesson plans 
(Type D), have also been reviewed, and teacher actions inferred from them. Artifacts 
of this kind provide indirect insight into what teachers do in their classrooms but need 
to be interpreted carefully because of their indirectness. There are, for example, many 
reasons for which a lesson may not be implemented as planned. Small scale studies 
have focused on broad pedagogical approaches or perspectives (e.g., project-based 
learning, culturally responsive teaching), aspects of teacher’s practices (e.g., ques-
tioning, types of listening), the organization of teaching and learning (e.g., flipped 
classrooms), and classroom environments. In the sections that follow we describe 
findings from these studies according to themes identified from the foci of the studies. 

4.1 Pedagogical Approaches 

Boaler (e.g., Boaler, 2001) has made extensive contributions to research on teacher’s 
use of student-centered approaches complemented by practical work providing 
resources (underpinned perhaps by a social constructivist, cognitive learning theory, 
or structuralist perspective (Manizade, Moore, & Beswick)) and instructions for 
teachers to inform their classroom activity. In Boaler’s work, the concept of rights of
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the learners, that include such things as the right to be heard, make mistakes and be 
confused, requiring a degree of sensitivity from teacher’s side (Kalinec-Craig, 2017) 
features as something that should guide teacher’s interactions with students. What one 
considers to be the rights of a learner depends in part upon teacher’s perspective on 
mathematics teaching and hence what the goal of teaching is. From a situated learning 
theory or social constructivist perspective it would be quite natural to allow students 
to voice their thinking whereas a teacher approaching their task from a behaviorist 
perspective might see this as detracting from the effectiveness of teaching aimed 
at the perfect performance of procedures. From this perspective, affording students 
rights necessarily constrains the actions available to and appropriate for teachers as 
they interact with students. 

Fewer studies have considered how the student-centered approaches proposed are 
understood by teachers, or how they are translated in classrooms. Silver et al. (2009) 
analysed portfolio entries submitted by teachers. In the entries, teachers proposed 
lesson plans with pedagogical features to support the development of students’ under-
standing. They found that teachers were not able to systematically embed innovative 
pedagogical approaches in their best practice submissions. While this study shed light 
on the degree of teacher’s adaptation to some atypical practices, the study did not 
address the question of how each innovative, student-centred approach was under-
stood by teachers; that is how the teachers defined and hence might enact the atypical 
practices they were proposing in their entries. 

The research literature suggests that student-centered interactions and teacher’s 
role in those interactions have been thoroughly researched and are well understood. 
Nevertheless, large-scale studies such as TIMSS and PISA suggest these approaches 
are not widely used. Reasons for the limited spread of student-centered approaches 
has been the subject of considerable speculation. For example, Buschman (2004) 
pointed to a “blame game”, described as teachers commonly arguing that good activi-
ties don’t exist and ‘blaming’ the supply of activities, as an explanation and canvassed 
many of the features of the debate about the uptake of atypical practices in which 
researchers in the field, have participated. These include: generic definitions of the 
approach in question (problem-solving as a loose term that refers to enhanced under-
standing, student centeredness and shifting the teaching from drilling to supporting 
genuine ideas); the realization that such practices have not been fully entertained 
by teachers, implying that the suggested practices would work as expected should 
the teachers only learn the way to acquire what is suggested to them; and providing 
informed, but not thoroughly evidence-based speculations about the situation. 

Approaches that were innovative but not student-centered were hard to find in the 
body of research conducted in the last two decades, suggesting that perspectives that 
underpin teaching with features that could be characterised as student centred (e.g., 
social constructivism, structuralism, problem solving, culturally relevant pedagogy, 
and project and problem-based learning), are the lenses through which researchers 
have envisioned effective mathematics teaching. We struggled to find studies that 
examined innovative teacher-centered approaches and did not find studies taking a 
fresh perspective on behaviorist approaches.
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There is, however, a body of research on cognitive load theory (Paas et al., 2004; 
Sweller, 2011), that has investigated teaching practices and techniques that reduce 
unnecessary load on students’ working memory. Such an approach is, if not teacher-
centred, at least teacher-led, and often considered as an opposing approach to student-
led problem solving, inquiry-based learning or ‘discovery learning’ (Paas, 2004, 
p. 6), although the intention of the approach is not to avoid mental challenges, but to 
question the external interruptions that may appear in student-centred, inquiry-based 
or collaborative problem-solving settings. Best practices to reduce (unnecessary) 
cognitive load have been developed and delivered through laboratory studies, as 
well as within training programs for teachers (Van Merrienboer & Sweller, 2005). 
One can find comparative studies testing the effects of reduced cognitive load on 
student’s learning (e.g., on geometry in Reis et al., 2012; the use of spreadsheets and 
sequencing in Clarke et al., 2005) but how teachers have applied those practices in 
their mathematics classrooms and the extent to which laboratory-based findings can 
be reproduced in classroom contexts seems less known. 

The pedagogical approaches discussed above have their roots in ideas presented in 
earlier decades. For example, “a quasi-empirical” approach to mathematics teaching 
was proposed by Lerman (1990). In that approach, teachers were encouraged to 
take mathematical misconceptions as hypotheses (as a source of something produc-
tive) and investigate the conditions under which they might or might not work (and 
why). Similarly, Ball and colleagues (e.g., Ball & Bass, 2000) have contributed to 
the general understanding of student-centered, constructivist pedagogies. Schoen-
feld (e.g., 1992) has been influential in elaborating and building understanding of 
problem-solving as a means of teaching mathematics. Influential elaborations such as 
these have likely contributed to student-centred, inquiry-based approaches becoming 
dominant in the small-scale intervention studies. Comparison of these studies with 
typical mathematics teaching practices discerned from large scale studies, along with 
studies that suggest many teachers may have deeply ingrained views aligned with a 
behaviorist perspective on teaching (Schoenfeld, 2018) offers an explanation for the 
limited traction that student centred teaching has achieved. Not only do theoretical 
perspectives constrain the behaviors of teachers in their interactions with students, 
but they also constrain the kinds of questions researchers ask, the way studies are 
designed, and the questions that remain unanswered. 

In the next section we discuss approaches in mathematics classrooms, namely, 
the practices in, and organisation of, the environment of a mathematics classroom. 

4.2 Aspects of Teacher’s Practices 

Burkhardt (2006) reviewed the benefits and the spread of teaching modelling in 
the mathematics classrooms, concluding that the approach is only moderately used 
despite the opportunities it affords for student learning. Boaler (2001) described 
research in which modeling was a practice that had made a difference in student’s 
learning in an investigation contrasting mathematics teaching in two schools. She
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concluded that teachers needed to change their practices to allow students to develop 
transferable problem-solving skills. 

The concept of robust understanding was introduced by Schoenfeld et al. (2020) 
along with a framework for teaching in ways that support the development of student’s 
robust understanding of mathematics (Schoenfeld, 2018). He described activities 
derived from three teacher’s lessons and analysed them in terms of the framework. 
The three teachers differed in the aspects of the framework that they emphasized. 
Each was able to address some aspects but struggled in others. In general, teachers 
seemed to struggle to shift from pedagogies that develop procedural knowledge 
to facilitating more connected understanding, and to build on student’s thinking, 
making sure everyone had access to opportunities to develop their agency (Schoen-
feld, 2018). Similarly, Buschman (2004), noted that teachers often miss opportunities 
to build on student’s ideas, and speculated that there is a need for more examples of 
the desired practice, more collaboration among teachers, and greater acceptance of 
making mistakes while adapting to new practices. 

Others such as Conner et al. (2014) have examined ways in which teachers can 
support argumentation, while Handal and Bobis (2004) considered thematically 
structured teaching. Sullivan et al. (2003) investigated context-based teaching and 
Shahrill (2013), conducted a review of teacher’s questioning, focusing on what makes 
questioning effective, rather than on what teachers are actually doing in relation to 
questioning. 

A particular practice, “instructing between the desks” was investigated as part of 
the cross-cultural Lexicon project by Clarke and colleagues (e.g., Dong et al., 2015). 
In this project, aspects of teachers’ practices were labelled in order to provide a 
vocabulary to make it easier for researchers and teachers to address the various aspects 
of teachers’ conscious and unconscious actions in mathematics classrooms. Clarke 
and his team were able to identify significant cultural differences in the ways in which 
teachers facilitate students’ learning. For example, instructing between the desks 
seems more casually and less systematically applied in many Western countries, 
but rigorously practiced as “Kikan-shido” in some cultures (O’Keefe et al., 2006). 
Linguistic aspects of mathematics teaching have also been addressed by Sfard (2021), 
who elaborated on the role of language in the mathematics learning process. 

4.3 The Organization of Teaching and Learning 

Flipped classrooms have attracted considerable attention from mathematics educa-
tion researchers during the last two decades. The enactment of a flipped classroom 
relies on technology, as the learner needs to acquire some of the content through 
digital resources independently. The need for independence on the part of the learner 
has been suggested to require self-determination (Deci & Ryan, 2012) from the  
learner’s side and being well informed of appropriate resources from the teacher’s side 
(Muir, 2020; Muir & Geiger, 2016). Muir (2020) observed a teacher implementing a 
flipped classroom approach and concluded that with careful preparation, the teacher
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was able to support all aspects of her students’ self-determination (competence, 
autonomy, and relatedness), while also helping students to develop their conceptual 
and procedural knowledge. 

In addition to the well-studied flipped classroom approach, we found several 
case studies of community engagement. Many of these studies were reported in 
conference proceedings, but there were also a few such cases documented in journal 
articles. For example, Leonard and Evans (2008) described an intervention in which 
teachers worked closely with local churches in urban settings to adapt practices from 
community building. The aim was to address social justice and improve cultural 
responsiveness. Leonard’s and Evan’s (ibid.) study serves as an alternative example 
of what teachers (with or without a research-connection) could engage with in order 
to widen their perceptions of what is possible to support mathematics learning, as well 
as to better meet the needs of their students as individuals with varying backgrounds. 

4.4 Classroom Environments 

Research studies are typically based on researchers’ initiatives inspired by their 
beliefs about what constitutes good mathematics teaching. Teachers may adopt the 
new practice during an intervention, but reports of what happened before and after 
these interventions are rare. 

Some researchers have made extensive efforts in creating resources to help 
teachers apply recommended ideas independently of participation in a project. 
Liljedahl (2019), for example, has suggested tangible changes in the classroom envi-
ronment. His concept of “thinking classrooms” includes the use of vertical surfaces as 
a mean to support student argumentation. Working in small groups and documenting 
the mathematical work on vertical boards that everyone can see has attracted atten-
tion (as evidenced in teacher groups in social media) but is hard to find evidence of 
precisely how these practices have been adopted or the extent of their adoption. 

Research literature is written and initiated by researchers, and when teachers share 
their ideas (for example, in professional journals or on social media), the accounts 
are mostly anecdotal. One of the authors of this chapter considers herself “an insider” 
in relation to what we can infer of teachers’ attention to educational ideas in social 
media. Having her own media to spread research-based resources for teachers to 
use, she has learned that even if there is a “hype” from the teacher’s side about a 
new practice, the real change may remain undone or only partially implemented. As 
Buschman (2004) explained, it is hard work for a teacher, who most likely has never 
been experienced alternative methods as a learner or observed them being used by 
colleagues, to adopt them, no matter how much value they might see in doing so. 

In the digital era, online resources are also available for teachers to use for a range 
of purposes (e.g., as enriching the activities, outsourced feedback, creating excite-
ment). Handal et al. (2013) reviewed more than one hundred mobile applications 
designed for mathematics learning. They categorized applications using three main 
clusters: explorative, productivity and instructive tools. It was noted that teachers
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should understand an application’s instructional value when deciding which to use as 
some are of little instructional value. They recommended a “watchful but enthusiastic 
eye” (p. 126) on new mobile learning developments in mathematics teaching. 

Other examples of the ubiquity of digital resources vary from general organisa-
tion of teaching such as hybrid learning environments (Cribbs & Linder, 2013), to 
specific techniques, such as teaching with embodied learning technologies (Flood 
et al., 2020), or applications of known learning theories, such as cognitive load theory, 
in digital settings (Pass & Sweller, 2005). In an overview of the impact of the Internet 
on mathematics classrooms Engelbrecht et al. (2020) discussed the new meanings 
for old constructs such as ‘tool’, ‘resources’ or ‘learning setting’. These new mean-
ings, introduced in mathematics classrooms in the digital era include using Massive 
Open Online Courses and blended approaches (referred to as Principles of design), 
technologies in online contexts supporting social interaction and construction of 
knowledge, and online tools and resources (traditional resources in a digital form, as 
well as new conceptualisations of what is perceived as a mathematical activity). 

In sum, the mathematics classroom as a physical environment has begun to be 
transformed along with the expansion of the digital world (Engelbrecht et al., 2020). 
Teachers teaching mathematics are no longer restricted to being the key source, 
let alone the sole source, of mathematical knowledge. What is more, Engelbrecht 
et al., (ibid.) discussed the Internet Era transforming the traditional teacher led push 
approach to mathematics teaching into a student led pull approach, increasing student 
engagement and agency. Again, the ways in which teachers have reacted to these 
recent opportunities is less documented (Clark-Wilson et al., 2020) but appears to 
vary from not using technology, supporting student’s use of technology, through to 
deliberately eliciting student thinking with and through technology. 

Finally, COVID-19 pandemic has accelerated the adoption of technologies in 
mathematics classrooms, and the impacts are yet to be fully identified. Some insights 
about impacts of digital technologies in mathematics education during the COVID-
19 pandemic were discussed by Borba (2021). The sudden move to online classrooms 
around the world required teachers to react quickly and with minimal preparation. 
There is an urgent need to study how the mathematics learning process looks, and 
specifically what teachers do as they interact with students in new online settings on 
such a massive scale. The impacts of COVID-19 might have included a decrease in 
equity as a result of differing access to technologies according to student’s socio-
economic background (e.g., using a phone to attend the mathematics class instead 
of a computer) (Clark-Wilson, 2020). The pandemic necessitated all teachers of 
mathematics engaging with technologies to teach. Studies of teachers’ activities with 
students will continue to need to include conceptions of mathematics classrooms that 
transcend physical boundaries.
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5 Implications and Conclusions 

The research considered in this chapter is far from exhaustive. Rather we surveyed a 
broad range of literature to identify the kinds of research being undertaken relating to 
teacher’s interactive classroom behaviors, and the extent to which promoted practices 
are used beyond specific studies. 

We distinguished between normative mathematics teaching practice and atypical 
mathematics teaching practices. Large scale studies such as TIMSS and PISA provide 
insight, albeit indirect, into what happens in the majority of mathematics classrooms. 
It seems that, in contrast with the student-centered approaches that have dominated 
mathematics education literature in recent decades, behaviorist approaches remain 
prevalent. Researcher’s beliefs about, or theoretical perspective on, mathematics 
teaching inform and constrain their research (its design, conduct and reporting) just 
as teacher’s theoretical perspectives in either the pre-active (Type D) or interactive 
phase of teaching (Type C) limit the actions that they perform in their classrooms. 
The mismatch between the teacher behaviors that researchers advocate and the peda-
gogies that students most commonly report experiencing raise the longstanding issue 
of how teacher’s practice can be influenced in ways deemed desirable. Researchers’ 
interests in particular perspectives on teaching mathematics seem also to have limited 
research on the practices that most commonly occur in mathematics classrooms. A 
better understanding of these practices, including the reasons for which teachers 
adopt and often stick with them, and the variations in context and the practices them-
selves that affect their efficacy would be valuable in its own right as well to inform 
efforts to influence teacher’s interactive classroom activity. 

In some classrooms technology has had a profound impact on pedagogical possi-
bilities and has led to new ways of structuring teaching such as flipped class-
rooms. There has been recognition that in a digital world interactions between 
teacher and students can be both virtual and asynchronous. This development extends 
Medley’s conception of Type C variables research on teacher behaviors during online 
synchronous or asynchronous teaching. It problematizes what it in fact means to be 
in the presence of students. 

It is apparent that researchers bring their own theoretical perspectives and beliefs 
to their work, just as teachers do. The theoretical perspectives described by Manizade, 
Moore, and Beswick apply equally well to interactive teacher behaviors (Type C) and 
to pre- and post-active teacher behaviors (Type D). Our review has also highlighted 
the relative dearth, beyond large scale studies, of research on normative interactions 
in mathematics classrooms.
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Student Mathematics Learning Activities 

Maria A. Timmerman 

1 Introduction 

In the late 1980s, to understand “good” teachers and improve teaching practices, 
Medley (1987) reviewed prior research on teaching and teacher education and iden-
tified 10 different variables that were studied to determine effective teaching (Intro-
duction, this volume). Using a chain of effects of presage-process–product research, 
he reviewed studies that focused on measuring teaching and student behaviors that 
resulted in desired student learning outcomes. Further, he identified six of the 10 vari-
ables (Types A—F) as “online variables” (p. 105) that were in direct control of the 
teacher and these variables could be studied individually or in relationships between 
two or more variables. Using Manizade et al.’s (2019) adaptation of Medley’s work 
for mathematics education (Introduction, this volume), this chapter describes an anal-
ysis and review of the literature relevant to the Type B variable, student engagement 
in mathematics learning activities, over the last three decades. According to Medley, 
student learning activities are defined in the following way: 

Pupil learning activities occur in the classroom. The principal means by which teaching can 
affect learning outcomes is through its influence on pupil behaviors in the classroom. The 
function of teaching is to provide pupils with experiences that will result in desired outcomes. 
It is axiomatic that all learning depends on the activity of the learner. (p. 105) 

As mathematics education researchers, we are interested in examining relation-
ships between how students engage in or approach student learning activities (Type 
B) that result in the successful achievement of desired student learning outcomes 
(Type A). It is the teacher practices in classrooms (Type C) that are needed to facil-
itate effective and equitable student interactions with learning activities in which
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students develop mathematical content knowledge and engage in the process of 
doing mathematics. 

Yet, what are the characteristics of student engagement in learning activities that 
promote the development of content knowledge? What behaviors do students actively 
engage in while learning mathematics that reflect what it means to know and do math-
ematics? Can these learning activities be generalized across diverse K-12 classrooms, 
including settings that use a wide range of technological tools that support a “syn-
ergistic relationship” between technical and conceptual dimensions of mathematical 
activity (Zbiek et al., 2007)? How do teachers facilitate and enhance students’ experi-
ences while learning mathematics? One way to address these questions is to consider 
a review since Medley’s work of how the global mathematics education community 
has described constructs that further explore students’ development of mathematics 
content knowledge and engagement in learning activities while doing mathematics. 

A historical review of reform-based mathematics curriculum initiatives provides 
insight into visions of various student learning activities, including the use of tech-
nology, which impact how students engage in knowing and doing mathematics 
(Sect. 2). To address the many names for these activities, I use Kobett and Karp’s 
(2020, p. 40) terminology of behaviors and dispositions (i.e., proficiencies, processes, 
practices, competencies, and habits of mind) to identify the multiple and intersecting 
student experiences that are relevant to how students develop and show evidence of 
their mathematical thinking. Section 3 articulates multiple theoretical perspectives 
that capture how the process of student learning occurs in different learning environ-
ments. This is followed by studies relevant to student engagement in making sense 
of mathematics (problem-solving behaviors) and perseverance (productive dispo-
sitions) that are often linked to instructional practices to support desired learning 
outcomes (Sect. 4). For some studies, Medley’s methodology concerns are addressed 
related to the quality and effectiveness of research. Lastly, a discussion of findings is 
presented and implications for future mathematics education research in the area of 
student mathematics learning activities and active student engagement in knowing 
and doing mathematics (Sect. 5). 

2 Student Mathematics Learning Activities: An Overview 

Over the past several decades, early reform initiatives in the United States [U.S.] 
(National Council of Teachers of Mathematics [NCTM], 1980, 1989, 1991, 1995, 
2000; National Research Council [NRC], 2001) and other countries, such as 
Denmark, New Zealand, and Australia (Davidson et al., 2019; Hipkins, 2018; 
McDowell & Hipkins, 2018; Niss, 2003) have promoted new curricula frameworks to 
develop mathematics content knowledge and learning activities to improve student 
mathematics achievement. The organization of curriculum centered on content at 
different grade bands with some consideration of behaviors needed to engage students 
in learning mathematics. Student mathematics learning activities are a set of behav-
iors and dispositions students engage in to achieve learning goals that reflect an
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in-depth understanding of mathematics. From the last three decades, this overview 
documents a shift toward a focus on student thinking needed to build a concep-
tual understanding of mathematics and identifying how students should experience 
solving mathematical tasks. A review of reform initiatives shows an evolution of 
specificity of learner activities envisioned to meet high-quality curriculum goals that 
support students’ learning of mathematics with understanding. 

Beginning in the mid-1970s and into the decade of the 1980s, school curriculum 
reform focused on accountability and measurable standards that demonstrated 
students’ achievement in mathematics (Cuban, 1992; Pink, 1989). Teacher certi-
fication standards and higher student graduation requirements were raised in the 
hopes of improving the teaching and learning of mathematics. The 1983 publi-
cation, A Nation at Risk (National Commission, 1983) reported the failure of the 
U.S. school system with the decline of student test scores and achievement levels. 
Students lacked mathematical competence and they were unable to problem solve. 
At the same time, the business community became aware of a shrinking supply of 
skilled workers causing them to become involved in public school reform (Cuban, 
1992; Martin, 1989; Sola, 1989). According to Martin (1989), businesses supported 
education initiatives because of the potential of providing skilled workers, including 
those able to work with the emergence of technology. Yet, the need for accountability 
prompted a return to teaching basic skills and the measurement of student behavioral 
objectives (i.e., achievement of performance goals) where students completed rote 
procedures and computations that could be easily measured. 

During the decades of the 1970s and 1980s, what appeared to be missing was a 
focus on measuring student achievement of learning goals (Smith & Sherin, 2019). 
Moving beyond equating knowing mathematics as successfully completing proce-
dures, researchers needed to show evidence of what students “understood” about 
specific mathematics content as a result of engaging in learning experiences in the 
classroom. In response to the needs of the discipline and society for the 1980s, NCTM 
published the Agenda for Action (1980), which recommended future directions for 
improving the teaching and learning of mathematics. Based on reports of low math-
ematics performance, the student behavior of problem solving became central for 
engaging students in a mathematics learning activity and has remained a primary 
focus in curriculum initiatives over the last three decades. 

In the 1990s, the NCTM trilogy of U.S. Standards reform initiatives (1989, 1991, 
1995) provided a vision for the organization of school mathematics curriculum and 
evaluation, teaching, and assessment. The sets of standards described the nature of 
mathematics with an emphasis on students developing a conceptual understanding 
of mathematics rather than an acquisition of procedural knowledge, skills, and 
facts. Based on interpretations of Piaget’s (1970) and Vygotsky’s (1981) work, 
constructivist and social constructivist theories of learning supported a new vision of 
students constructing knowledge individually or collaboratively, rather than passively 
receiving knowledge. Mathematics represented a dynamic, changing discipline rather 
than a static body of knowledge. However, it is critical to state that the early sets of 
NCTM standards represented “statements of values” and that underlying assump-
tions about the teaching and learning of mathematics “were not well anchored in



160 M. A. Timmerman

either research or theory” (Kilpatrick, 2003, p. 1). Likewise, Lesh et al.’s (2020) 
recent review of learning theories in mathematics education found that the early 
“NCTM Standards themselves were not based on any research per se, but simply an 
envisioning of what mathematics education in classrooms (i.e., in practice) might 
look like and what the appropriate content might look like, keeping the learner in 
mind” (p. 862). One of the issues relevant to a lack of research may be attributed 
to transitioning from past theories and methods of measuring procedural, student 
performance goals to a vision of measuring conceptual, student learning goals often 
showed little, if any, research related to new ways of teaching and learning. This 
is because the sets of standards had not been implemented in many mathematics 
classrooms. Moreover, although the curriculum initiatives promoted mathematics 
content learning goals and engagement in student mathematical learning activities 
(i.e., behaviors and dispositions), teaching practices (Type C) that support student 
learning with understanding were missing. 

In response to a lack of research and explicitly connected to an updated version of 
U.S. standards (NCTM, 2000), Kilpatrick (2003) asserted that a companion publi-
cation (NCTM, 2003) synthesized a review of the literature that informed the vision 
of school mathematics in the 1990s and 2000. In this publication, Sfard reviewed 
learning theory research and identified ten mathematical learner needs that were 
reflected in the curriculum changes of the NCTM standards. For example, she iden-
tified learners as having a “need for meaning and the need to understand ourselves and 
the world around us have come to be recognized as the basic driving force behind 
all our intellectual activities” (p. 356). Bringing the needs of learners to the fore-
front, researchers raised new questions about how to measure student behaviors and 
dispositions that provide detailed explanations of students’ need for “meaning” while 
learning mathematics with understanding and what does this look like in mathematics 
classrooms. 

Recognizing the ever-present dilemma of balancing the needs of mathematics 
(discipline theory) and the needs of the learner (psychological theory) in the orga-
nization of curriculum, Sfard asserted: “In our attempts to improve the learning of 
mathematics, we will always remain torn between two concerns: Our concern about 
the learner and our concern about the quality of the mathematics being learned” 
(p. 386). When one of these theories controls too much of the school mathematics 
curriculum, then disruption occurs within the entire curriculum. Over the last three 
decades and across different countries, the challenge of this dilemma has continued to 
be addressed with frameworks of curriculum initiatives that identify content knowl-
edge students should know and processes students need to engage in while doing 
mathematics. Reviewing the relevant literature, a number of terms and documents 
pertaining to student behaviors and dispositions will appear in this section and be 
discussed further throughout the chapter. Brief, capsule definitions of these terms 
and documents are included in the Appendix. The goal of the following subsections 
is to identify and compare student mathematics learning activities (Type B) that have 
evolved with students becoming knowers and doers of mathematics.
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2.1 Mathematical Processes 

After much debate related to the dilemma Sfard (2003) articulated about balancing 
the needs of both the discipline and learners, the U.S. Principles and Standards of 
School Mathematics (NCTM, 2000) expanded the vision of mathematics educa-
tion to include a more deliberate focus on school curriculum organized around 
the framework of process standards to promote learning activities students should 
engage in while doing mathematics. Rather than describe performance goals of doing 
procedures, the processes defined what mathematicians might do and say when 
problem solving. The process standards recommended providing all students oppor-
tunities to learn mathematics through engagement in five overlapping processes: 
problem solving, communication, representation, making connections, and reasoning 
and proof (NCTM, 2000). Problem solving is the primary action of mathematics 
activity and it has always been recommended as way to know and do mathematics 
(NCTM, 1980). The learning activity of reasoning develops through problem solving. 
Compared to an earlier set of process standards (NCTM, 1989), representation was 
added to the original four processes as a way to engage students in making their 
mathematical thinking explicit. To support students’ development of mathematical 
reasoning and proof, Huinker (2015) extended Lesh et al. (1987) modes of represen-
tation: contextual, physical, visual, verbal, and symbolic, with an explicit focus on 
students building representational competence from which mathematical connec-
tions are made “between” and “within” representations. In Sect. 2.5, Zbeik et al.  
(2007) use an equivalent term of representation fluency as a construct to describe 
students’ access and engagement with multiple representations in technological 
environments. The process standards inform ways students could participate while 
engaged in knowing and doing mathematics. 

2.2 Mathematical Competencies 

At the same time, in 2000, the Denmark Ministry of Education created a national 
committee to examine ways to improve mathematics teaching and learning. Their 
work resulted in the Mathematical Competencies and Learning of Mathematics: 
The Danish KOM Project (Niss, 2003). In this report, mathematical competence 
was defined as having “the ability to understand, judge, do, and use mathematics in 
a variety of intra- and extra-mathematical contexts and situations in which math-
ematics plays or could play a role” (p. 7). The project identified eight mathe-
matical competencies that demonstrated evidence of students’ “mental or physical 
processes, activities, and behaviors” (p. 9). The competencies extended NCTM’s 
process standards and included: thinking mathematically, posing and solving mathe-
matical problems, modeling mathematically, reasoning mathematically, representing 
mathematical entities, handling mathematical symbols and formalisms, communi-
cating in, with, and about mathematics, and making use of aids and tools (including
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instructional technology) (Niss, 2003). This framework of mathematical competen-
cies is relevant to Manizade et al.’s (2019) adaptation of Medley’s Type B variable 
as they identify learning experiences students should engage in to develop a deep 
understanding of mathematics articulated in high-quality curriculum goals. 

In a similar vein focused on identifying mathematical competencies, the Program 
for International Student Assessment [PISA] (PISA, 2021) measures to what extent 
15-year-olds use their many years of building mathematical knowledge to solve real-
world problems. In students’ lives outside of school, they need to solve problems 
that often demand the use and integration of multiple mathematical topics, rather 
than only knowing how to use a single procedure learned in a mathematics lesson. 
PISA assesses different mathematical competencies that gauge students’ mathemat-
ical literacy; that is, “an individual’s capacity to reason mathematically and to formu-
late, employ, and interpret mathematics to solve problems in a variety of real-world 
contexts” (PISA, 2021). The PISA mathematical literacy framework lists multiple 
competencies under each of three clusters: reproduction, connections, and reflection. 
As a research fellow at the Australian Council for Educational Research (ACER) at 
the beginning of the last decade, Turner (2010) reviewed research analyzing PISA 
mathematics test items. To be successful in solving contextual problems, he found 
that students needed to activate prior mathematical knowledge. Further, he reported 
students’ difficulty in problem solving when they needed to activate more rather than 
fewer mathematics competencies. Similar to Denmark’s competencies, the PISA 
competencies included the following: communication, mathematising, representa-
tion, reasoning and argument, strategic thinking, and using symbolic, formal, and 
technical language and operations. Turner argued for teacher activities (Type C) in 
which they increased a focus on these competencies (Type B) to engage students in 
developing mathematical literacy. 

Over the last two decades, a Ministry of Education-funded project, Competencies 
in New Zealand Curriculum (NZC) (McDowall & Hipkins, 2018; Hipkins, 2018), 
described an evolution and research base of key competencies for student learning in 
general and eight content learning areas for the twenty-first century. Connected to a 
PISA framework, a construct of competencies originated from an Organization for 
Economic Development (OECD) Definition and Selection Competencies (DeSeCo) 
Project which produced a framework to guide the development of PISA assessments 
(Hipkins, 2018). For the NZC, each learning area described “what they [students] 
will come to know and do” (Ministry of Education, 2015, p. 37) and identified five 
key competencies: thinking, relating to others, using language, symbols, and text, 
managing self, and participating/contributing. According to the Ministry of Educa-
tion (2020), “Key competencies matter because they support dispositions that will 
enable young people to learn well now, and to go on learning throughout their lives… 
Dispositions mean learners are ready (i.e., being motivated to use particular knowl-
edge, skills, and values to achieve the task at hand), willing (i.e., recognizing when 
it is relevant to draw on these), and able (i.e., knowing how to do so appropriately).” 
Similar to the framework of proficiency strands (NRC, 2001) and Kobett and Karp’s 
explicit inclusion of “disposition” when describing students’ knowing and doing 
mathematics, the NZC recognized the critical role of dispositions needed for current
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and future student learning. In mathematics and statistics, “students explore relation-
ships in quantities, space, and data and learn to express relationships in ways that help 
them to make sense of the world around them” (p. 17). When examining mathemat-
ical connections to four of the key competencies: thinking, relating to others, using 
language, symbols, and text, and participating and contributing, the NZC stated: 
“Students develop the ability to think creatively, critically, strategically and logi-
cally… They learn to create models and predict outcomes, to conjecture, to justify 
and verify, and to seek patterns and generalizations… [there is] a broad range of prac-
tical applications in everyday life, in other learning areas, and in workplaces” (p. 26). 
Within the NZC, three interrelated strands of eight levels of achievement objectives 
are identified: number and algebra, geometry and measurement, and statistics. Each 
level begins with this statement: “In a range of meaningful contexts, students will 
be engaged in thinking mathematically and statistically. They will solve problems 
and model situations that require them to:” (Ministry of Education, 2014). Similar to 
other frameworks of competencies described previously, there is a focus on students 
engaged in thinking, meaningful contexts, knowing, doing, and dispositions. 

McDowall and Hipkins’ (2018) review of large systematic studies that examined 
competencies in the NZC resulted in emergent themes that defined “four phases in 
the ways that key competencies have been understood and enacted in the overall 
school curriculum” (p. 2). Between 2006 and 2018, these phases provided a “trajec-
tory of change” when considering the nature of student learning and how to weave 
the competencies into the curriculum. As an example, although there was overlap 
between the phases, in phase two (i.e., 2007–2011), “relationships between key 
competencies and ideas about learning to learn (an NZC principle) and lifelong 
learning (a part of the NZC vision)” (p. 7) came to the forefront. Research examined 
how the NZC was implemented across multiple schools and what barriers existed. 
A shift occurred in phase three (i.e., 2011–2014) with a recognition of a need for 
the “weaving of key competencies and learning area content” (p. 9); that is, relation-
ships were examined between competencies and desired discipline-specific learning 
outcomes (Type A). 

Moreover, “students’ opportunities to develop their key competencies were 
closely tied to the pedagogy used by the teacher” (p. 9) (Type B and C variables). To 
engage students in learning activities, they needed tasks where they took “meaningful 
action in real-world contexts” (p. 10) and other pedagogical approaches included crit-
ical inquiry and experimental learning. To investigate phase four studies, which are 
ongoing, McDowall and Hipkins (2018) reported: (1) “Students should actively use 
and build knowledge, as opposed to just being consumers of knowledge produced 
by others;” (2) “There should be opportunities for students to collaborate in more 
demanding ways than simply group work;” and (3) “The diverse life experiences and 
ways of being that students bring to learning are seen as a resource for learning rather 
than a problem to be managed” (p. 12). Looking ahead to future research, Hipkins 
et al. (2018) examined the OECD 2030 Learning Framework (p. 2) and its alignment 
and implications for the NZC. As in the past, the 2030 framework identifies a focus 
on knowledge, skills, attitudes, and values leading to competencies for individual and
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societal well-being. The OECD framework development is a collaborative, interna-
tional project and a work-in-progress. It is intended to update the DeSeCo framework 
for PISA assessments and provide a pathway for future research connecting student 
learning activities, teacher activities, and student learning outcomes (Type A, B, and 
C variables, Introduction, this volume). 

2.3 Mathematical Proficiency 

In the same time period as the updated NCTM (2000) process standards, the National 
Research Council’s [NRC] Mathematics Learning Study Committee published 
Adding It Up: Helping Children Learn Mathematics (2001) to identify how students 
attain mathematical proficiency through cognitive and affective engagement within 
these five strands: conceptual understanding, procedural fluency, strategic compe-
tence, adaptive reasoning, and productive disposition. By including the last strand, 
productive disposition, the NRC committee asserted the value of beliefs, attitudes, 
and emotions and their affective impact on students’ engagement in learning math-
ematics. According to NRC, conceptual understanding is defined as the “compre-
hension of mathematical concepts, operations, and relationships” and productive 
disposition is the “habitual inclination to see mathematics as sensible, useful, and 
worthwhile, coupled with a belief in diligence and one’s own efficacy” (p. 116). 
Making connections to the strands, Kobett and Karp (2020) mapped each proficiency 
to examples of what students’ strength behaviors look like in a classroom setting. 
For conceptual understanding, they included a student question, “Why do we call 
some numbers square numbers? Why do we call some numbers cube numbers?” and 
explained: “When students make a comment that something doesn’t make sense to 
them, that is an indication that they desire mathematics should be a sense-making 
activity” (p. 42). Not only was this student engaged in making sense of the meaning 
of different types of numbers, the student asked why questions to develop reasoning 
about the structure of numbers. 

In Australia, the national curriculum standards identified mathematical reasoning 
as both a process that demonstrates mathematical thinking and a strategy for learning 
mathematics (Davidson et al., 2019). According to the Australian Curriculum and 
Assessment Reporting Authority (ACARA, 2017), reasoning is one of the four profi-
ciency strands students engage in when “thinking and doing of mathematics.” In 
other words, the process of reasoning provides insight into students’ mathematical 
thinking and their engagement in student learning activities. The other three profi-
ciency strands are understanding, fluency, and problem-solving. The four Australian 
proficiency strands “describe the actions in which students can engage when learning 
and using the content” (ACARA, 2017). Thus, the proficiency strands suggest a call 
for research that examines students’ mathematical thinking when developing content 
knowledge (learning) and engagement in doing mathematics (using the content).
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2.4 Standards for Mathematical Practice 

In 2010, the U.S. created the national Common Core State Standards for Math-
ematics (CCSSM) (National Governors Association [NGA] Center for Best Prac-
tices and Council of Chief State School Officers [CCSSO], 2010), which included 
specific mathematical competencies for students called the Standards for Mathemat-
ical Practice (SMP). Many of the same international mathematical behaviors iden-
tified previously were stated: (1) make sense of problems and persevere in solving 
them, (2) reason abstractly and quantitatively, (3) construct viable arguments and 
critique the reasoning of others, (4) model with mathematics, (5) use appropriate 
tools strategically, (6) attend to precision, (7) look for and make use of structure, and 
(8) look for and express regularity in repeated reasoning. For the U.S., the CCSSM 
continued an evolution of reform visions stated in earlier initiatives and by other 
international researchers (Bostic & Sondergeld, 2015; Hipkins, 2018; Keazer & Jung, 
2020; Kobett & Karp, 2020; Koestler et al., 2013; McDowall & Hipkins, 2018; NRC, 
2001; Sanchez et al., 2015; Sfard,  2003; Turner, 2010). One purpose for creating the 
CCSSM was to provide consistency across the U.S. in K-12 grade-level curriculum 
standards rather than each state having different standards. The eight SMP described 
how students should engage in mathematics learning activities to become “doers of 
mathematics” (Kobett & Karp, 2020, p. 40). 

In summary, when reviewing the aforementioned frameworks of curriculum initia-
tives, there is a shift toward making explicit how students should experience doing 
mathematics while making sense of their developing mathematical content knowl-
edge. To demonstrate the evolution of student learning activities across different 
reform initiatives, a few mathematics educators have compared behaviors and dispo-
sitions found in the documents. Kobert and Karp described connections between 
the mathematical proficiency strands and SMP. If researchers use Manizade et al.’s 
(2019) framework (Introduction, this volume) for examining relationships between 
classroom Type C and B variables (i.e., teacher-student activities), studies could 
address Kobert and Karp’s challenge: “We want teachers to think about how their 
students respond to and interact with mathematics learning via each of these compo-
nents and that, in doing so, they listen for whispers of their students’ previously 
undetected strengths” (p. 41). What research exists that documents how students 
engage in learning activities portrayed in frameworks of curriculum initiatives to 
develop a deep understanding of mathematics and how do teachers listen and respond 
to their students? Recently, Lesh et al. (2020) argued: “The mathematics education 
community still does not know how to operationally define measurable conceptions 
of almost any of the higher-level understandings or abilities that the CCSC Stan-
dards refers to as mathematical practices” (p. 863). In essence, when working with 
the complexity of studying the nature of students’ mathematical learning with under-
standing and student engagement in a range of mathematical practices (i.e., behaviors 
and dispositions), do studies exist for the knowledge base that provide evidence of 
measures to define effective and equitable student experiences with learning activities 
in mathematics classrooms, including technology-based environments?
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A potential line of research could take advantage of Koestler et al.’s and Kobett and 
Karp’s alignment between the NCTM process standards and the Common Core stan-
dards of mathematical practice. These authors presented classroom vignettes for each 
SMP to illustrate how students engaged in doing these learning activities. Specifically, 
the problem-solving process standard was connected to all eight SMP. This suggests 
if researchers focused on students’ engagement with the first SMP, make sense of 
problems and persevere in solving them, there is a strong possibility that students 
will be engaged in the other “higher-level” practices. Given that similar practices 
are articulated across international frameworks of curriculum initiatives, research is 
warranted to provide evidence of students’ engagement in problem-solving behaviors 
(i.e., making sense of mathematics) and productive dispositions (i.e., perseverance). 

2.5 Cognitive Technological Tools and Student Mathematics 
Learning Activities 

In the Second Handbook of Research on Mathematics Teaching and Learning, Zbiek 
et al. (2007) articulated a perspective of multiple constructs researchers should use to 
examine students’ mathematical understanding while engaged in technology-based 
learning activities. Reviewing earlier research, the authors used the term cognitive 
technological (CT) tools to represent a wide variety of technologies that reflect a 
technical dimension, conceptual dimension, and a “synergistic relationship” among 
these two dimensions. Focusing on the technical dimension, CT tools “must allow 
the user the means to take actions on mathematical objects or representations of 
these objects” (p. 1171). Examining the conceptual dimension, CT tools provide 
“reactive visual feedback” as “observable evidence of the consequences of the user’s 
actions” (p. 1171). Zbiek et al. cautioned researchers against the study of mathe-
matics teaching and learning in technological settings using only one dimension. 
This is attributed to the fact that student learning activities may include technical 
actions, such as solving equations and graphing, and simultaneously these actions are 
informed by students’ conceptual understanding and reasoning, such as conjecturing, 
finding patterns, and generalizing. Similarly, in the recent Compendium for Research 
in Mathematics Education, Roschelle et al. (2017) described a change in technology 
media over the last two decades from static to dynamic representations whereby 
students learn mathematics with understanding over time. Roschelle et al. identi-
fied dynamism as a new construct that incorporates a “time dimension” for students 
making sense of mathematics through dynamic representations. Specifically, they 
asked: “How is a mathematical representation being connected to a student’s experi-
ence of time to advance understanding of mathematical relationships?” (p. 863). To 
support students’ learning of difficult mathematical topics, Roschelle et al. used the 
“design of dynamic representations to enable new means of access [for students] to the 
topic” (p. 865). In Sect. 3, two of the emerging theoretical perspectives are grounded 
in conceptual studies (Hackenburg, 2010; Simon et al., 2016, 2018) whereby students
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use the dynamism of computer microworlds to support research focused on the 
interrelationship between technical and conceptual dimensions. 

When students engage in doing technology-based mathematics learning activities, 
they may set goals and search to find appropriate CT tools that are needed to solve 
a mathematical task. Dependent upon the cognitive demand of a task, students can 
set different types of goals (i.e., performance or learning) which results in students 
exhibiting different types of behaviors. When using these CT tools, Zbiek et al. 
(2007) identified two types of activities students engage in when solving tasks: 
exploratory and expressive (p. 1180). Building on mathematical modeling research 
(Bliss & Ogborn, 1989), students engaged in doing exploratory activities will follow 
teacher instructions to use specific CT tools and procedures. On the other hand, 
expressive activities allow students to select their own CT tools and make their own 
decisions on how they will solve a technology-based task. Mathematics curricula 
often include “explorations” for students to engage with different learning activi-
ties and dependent upon how much teacher direction (Type C) is given, elements of 
both exploratory and expressive activity can be observed. Examining how students 
engage in doing mathematics through these two forms of activity will often result in 
different student learning outcomes (Type A). As an example of expressive activity, 
Zbiek et al. described the role of “play” in learning where students were allowed the 
freedom of unstructured play and time to try a range of different actions with CT 
tools to determine what was possible or not possible as they viewed the results of 
their actions. Students engaged individually or with partners and eagerly called out 
what they observed in a technological setting. However, the conundrum of the “play 
paradox” (Hoyles & Noss, 1992) comes to the forefront, where many CT tools offer 
students such a wide range of processes for solving problems, that they may never 
encounter the mathematical content a teacher intended or what the designers of a 
technology-based activity planned. Zbiek et al. offered mixed research results on the 
productive use of unstructured, expressive play versus structured, exploratory play 
to engage students in learning and doing mathematics. 

Moreover, in a technological setting, researchers have examined both types of 
activity (i.e., exploratory or expressive) that students engaged in and made observa-
tions of students’ corresponding behaviors which “lead to insights about the appro-
priateness of their use of those tools and about their understanding of mathematics” 
(Zbiek et al., 2007, p. 1184). Specifically, inferences about students’ mathematical 
thinking were supported by students’ actions with CT tools, which in turn, reflected 
students’ mental actions. To categorize student behaviors, Zbiek et al. introduced 
the construct of work method which draws upon the research of Guin and Trouche 
(1999) and Trouche (2005). In a 1999 study of 17- to 18-year-old students’ engage-
ment with mathematical tasks that included an option to use symbolic calculators, 
Guin and Trouche reported five different student work methods: random, mechan-
ical, resourceful, rational, and theoretical. As an example, students using a random 
work method would search using trial and error to find a CT tool action that would 
give any answer (i.e., correct or incorrect) for a mathematical task. Yet, students’ 
engagement in a random process of finding any result often provided evidence of 
students missing the mathematical analysis of a problem. In other words, students
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accepted the results without any reflection related to the underlying mathematics 
which hindered their ability to achieve mathematical learning goals. 

Revisiting the development of frameworks for mathematics curricula designed for 
student engagement with learning activities, some researchers (Sandoval et al., 2000 
and Hong & Thomas, 2002 as cited in Zbiek et al., 2007) have identified the construct 
of representational fluency as a lens to study students’ learning by noticing how and 
why students interact and make sense of multiple representations of the same mathe-
matics entity. How might students think differently about possible models and strate-
gies for problem solving in a technological environment that provides quick access 
to multiple representations? Also, how could the selection of mathematics content go 
beyond traditional school mathematics due to the potential capabilities of CT tools? 
Consistent with other researchers, Zbiek et al. described representational fluency as 
“the ability to translate across representations, the ability to draw meaning about 
a mathematical entity from different representations of that mathematical entity, 
and the ability to generalize across different representations” (p. 1192). Access to 
technology can provide learners with opportunities to use different actions to ‘try 
out’ multiple representations and make sense of expected or unexpected results. As 
students reflect on their actions and begin to understand the meaning of each repre-
sentation, they have an opportunity to develop representational fluency which could 
lead to a deep understanding of mathematical concepts. 

Taken together, addressing research studies examining student engagement in 
learning activities (Type B) portrayed in frameworks of curriculum initiatives, 
including technological environments, provides insight relevant to both cognitive 
and affective aspects of student learners as they become knowers and doers of 
mathematics. To address Lesh et al.’s (2020) concerns, researchers can ask: How 
have we transitioned from measuring student learning for lower-level procedural 
outcomes toward analyzing student learning associated with desired higher-level 
thinking student outcomes (Type A)? One way researchers may respond is to consider 
a review since Medley’s work of important constructs that interpret existing research 
and target new areas of research with a focus on the complexity of the learning and 
teaching process; that is, the interrelationships between teachers, students, math-
ematical activities, curriculum content, and the added effect of technology. In the 
next section, three theoretical perspectives provide explanations relevant to how and 
why student behaviors and dispositions develop in the way they do within different 
learning environments. 

3 Theoretical Perspectives 

Within a framework for research relevant to study student behaviors and disposi-
tions, questions can be raised that warrant further investigation about how and why 
students engage in learning activities. What kinds of interactions provide students 
with learning opportunities to develop mathematical knowledge with understanding 
and do mathematics? Are there patterns in how students become “knowers and doers
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of mathematics” or is it idiosyncratic for individual students? Middleton et al.’s 
(2017) recent review of engagement research articulates the complexity of studying 
the phenomenon of student engagement while learning and doing mathematics. They 
reported four individual and overlapping components of engagement: behavioral, 
cognitive, affective, and social. There are research challenges in providing expla-
nations that attend to the four different components of engagement in learning 
activities to move our understanding of students’ mathematical thinking forward. 
Jansen (2020) elaborated and defined engagement with mathematics as “an interac-
tive relationship students have with the subject matter, as manifested in the moment 
through expressions of behavior and experiences of emotion and cognitive activity, 
and is constructed through opportunities to do mathematics” (p. 273). To advance 
research relevant to student learning activities, researchers could consider Jansen’s 
recent focus on cognitive and social aspects of behaviors “in the moment” to provide 
evidence of what engagement might look like for students building mathematical 
content knowledge. In Siedal and Shavelon’s (2007) meta-analysis of studies of 
teaching effectiveness related to student learning during the period 1995 to 2004, 
they articulated the role of student learning activities needed to build understanding: 

We assumed that learning is a set of constructive processes in which the individual student 
(alone or socially) builds, activates, elaborates, and organizes knowledge structures. These 
processes are internal to the student and can be facilitated and fostered by components of 
teaching. Moreover, we assumed that higher order learning and a deep understanding of 
learning content is based on the quality of knowledge building and, thus, on the execution 
of learning activities. Learning activities should evoke both basic information processing 
and domain-specific processing. Consequently, we assumed the area of executing learning 
activities to be most proximal to knowledge building. (p. 462) 

Relevant to Manizade et al.’s (2019) framework of examining relationships 
between variables to determine “good” teaching (Introduction, this volume), Siedal 
and Shavelson’s meta-analysis reported constructivist and social constructivist 
paradigms of knowing in studies that made connections between students’ execu-
tion of student mathematics learning activities (Type B), desirable student learning 
outcomes (Type A), and interactive teaching behaviors (Type C). Different theo-
ries of learning hypothesize frameworks centered on student engagement in mathe-
matical learning activities and consequential desired student learning outcomes. As 
researchers interpret particular aspects of the learning process, it is framed by their 
own construction of theories to explain what they notice in students’ behaviors and 
dispositions. 

In this section, I describe three theoretical perspectives that provide explanations 
of student engagement in learning activities which are needed to develop mathe-
matical content knowledge with understanding and engage in processes envisioned 
in frameworks of curriculum initiatives over the last three decades. Departing from 
describing student learning activities in mathematics classrooms, two researchers’ 
conceptualizations of learning are examined through individual dyads and one-on-
one teaching experiments using technology-based problems (Hackenberg, 2010; 
Simon et al., 2016, 2018; Tzur, 1999; Tzur & Simon, 2004). According to Tzur 
(2004), teaching experiments allow a teacher-researcher to present tasks, use ongoing
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analysis of students’ current cognitive constructs, and design more tasks that promote 
students’ engagement in constructing higher-level mathematical thinking. On the 
other hand, consistent with Medley’s call for research in classroom settings, Liljedahl 
(2016) studied connections between teaching practices and student engagement in 
learning activities in mathematics classrooms (Type CB research). 

3.1 Developing Schemes: Progressive Coordination 
of Actions 

Hackenberg’s (2010) model of students’ reversible multiplicative schemes is an 
important contribution to the evolution of research on students’ engagement in math-
ematics learning activities. Synthesizing prior studies of students’ development of 
fraction knowledge (Steffe, 1994; Tzur, 1995, 1999, 2004), Hackenberg identified 
three areas of research that informed key theoretical constructs for her study: (a) 
building on students’ prior knowledge and everyday experiences with fractions; (b) 
student learning activities for fraction knowledge—partitioning and unitizing; and 
(c) three of Kieren’s (1980) five subconstructs of fractions—quotients, operators, and 
measures of length. Further, she studied the process of reversibility in developing 
multiplicative relationships. Solving a problem with a sequence of actions in one 
direction is not easily decomposed to reorganize a scheme in the other direction. 
Before reporting on the results of Hackenberg’s study, her interpretation of scheme 
theory is described to explain one theory about how learners develop mathemat-
ical knowledge. Similar to Medley’s review, she drew upon theories of Piaget and 
Vygotsky to explain how students learn mathematics. 

Hackenberg defined mathematical learning “as a process in which people make 
accommodations in schemes in ongoing interaction with their experiential world” 
(p. 385). According to von Glasersfeld’s (1989) interpretation of Piaget’s theories, 
a scheme consists of three parts: (a) an individual recognizes a situation or experi-
ence from a previous situation, (b) engagement in an activity associated with this 
situation, and (c) expecting the same result or outcome experienced when previ-
ously engaged in the activity. When examining fraction knowledge that is needed to 
develop multiplicative schemes, learners engage in activities, such as partitioning, 
dis-embedding, iterating, and splitting (see Steffe & Olive, 2010; Tzur, 1995, 1999, 
2004 for details of these operations). A perturbation occurs when a learner’s current 
schemes no longer appear useful because they do not fit past learning experiences. To 
eliminate perturbations, schemes either remain stable, or become modified contin-
gent upon a learner’s actions and reflections. For Hackenberg, a perturbation explains 
any reorganization of a learner’s existing schemes. Through repeated experiences, a 
process of reflective abstraction internalizes knowledge based upon the entire cycle 
of perturbation, action, and reflection. If a learner coordinates a scheme successfully 
using accommodation and does not need to physically act on parts of a task while 
describing his or her reasoning, an anticipatory scheme is constructed.
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Hackenberg’s research design allowed her to engage four sixth-grade students in 
problems to facilitate each learner’s construction of anticipatory fraction schemes 
for reversible multiplicative relationships. Data collection consisted of videotaped 
episodes with cameras focused on interactions between a pair of students and 
researcher, and a recording of students’ computer or written work. Students used 
the JavaBars computer program (Biddlecomb & Olive, 2000) to facilitate a mean-
ingful interpretation of the fraction construct of measure as length. Olive (1994) 
stated that microworlds are “tools for the teacher/researchers to construct situations 
in which they can use their emerging models of the children’s mathematics” (p. 71). 

Using retrospective analysis of the video files, Hackenberg examined each 
student’s cognitive structures and how schemes changed over time. She reported 
that students constructed schemes to solve tasks when a fraction relationship existed 
between known and unknown quantities. One pair of students demonstrated use 
of fraction anticipatory schemes. Only one of the four students also engaged in 
reversible schemes when constructing reciprocal relationships. Hackenberg found 
that students’ construction of anticipatory schemes for multiplicative relationships 
required a coordination of three levels of units prior to engaging in an activity. 
Teaching experiments using technology-based problems offer an environment where 
researchers can examine students’ engagement in exploratory or expressive activities 
(Zbiek et al., 2007). Further, researchers could study how these two activities in tech-
nological settings are related to scheme theory to provide an explanation of student 
actions and reflections when they are building mathematical content knowledge and 
doing mathematics. 

3.2 Learning Through Activity: Progressive Coordination 
of Mathematical Concepts 

In a similar vein, building upon Piaget’s (1980) theoretical construct of reflective 
abstraction, Learning Through Activity [LTA] (Simon et al., 2016, 2018) is a research 
model that examines how learners engage in learning activities to develop mathe-
matical concepts. In an evolution of research on student learning activities, prior 
LTA research from the past 10 years provided insight for an emerging integrated 
theory relevant to students’ conceptual learning and instructional design. Using 
Manizade et al.’s (2019) framework, the LTA research model potentially informs 
future research making connections between Type D, C, B, and A variables (Intro-
duction, this volume). Specifically, the LTA model seeks to answer this question: 
“How do humans learn mathematical concepts, and how can instruction be designed 
to enlist these learning processes in service of learning particular mathematical 
concepts?” (Simon et al., 2018, p. 96). Further, what is the process that engages 
a learner to move forward from constructing one concept to a higher-level concept 
in a learner’s network of knowledge for different mathematical concepts? And how 
can this learning process be promoted?
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To study these questions, Simon et al. (2018) proposed an elaboration of the 
construct of reflective abstraction with two refinements: Focusing on new concepts 
developed from prior concepts rather than using schemes, and a shift away from 
earlier work of abstractions attributed to a reflection of activity-effect relationships 
(Simon et al., 2004). The authors asserted that perturbations do not provide evidence 
of how learning occurs and scheme theory does not explain what a learner “attends 
to” in order to achieve a learning goal. Moreover, they no longer viewed reflective 
abstraction as a chronological sequence of actions for developing a new concept, 
but a construction of higher-level concepts based on lower-level actions. Balancing 
the needs of mathematics and a learner, Simon et al. (2018) described developing 
concepts as a “bi-directional” process; “that is, how one explains conceptual learning 
is dependent on the nature of a concept, and the nature of a concept is, in part, 
determined by the process through which it is constructed” (p. 98). A concept consists 
of a goal (e.g., solve a task) and an action a learner takes to achieve the goal. When 
engaged in mathematical activity, learning may not occur if there are no prior actions 
(i.e., mental activities) a learner can access. In LTA’s model, actions are considered 
components of concepts, which transforms the construct of reflective abstraction 
from a coordination of actions to a coordination of existing concepts (Simon et al., 
2016). Student learning activities provide opportunities for learners to construct 
mathematical concepts if they are aware of a sequence of available mental actions 
they have already constructed. 

As an example of progressive coordination of concepts, Simon et al. (2018) 
analyzed the 5-year Measurement Approach to Rational Number (MARN) Project 
data. Similar to Hackenberg’s (2010) study, the same program, JavaBars, was used to 
facilitate students’ construction of fraction and multiplicative concepts. A teacher-
researcher interacted one-on-one with a student to avoid the influence of others’ 
thinking that is often encouraged in classroom settings. The task sequence research 
design included: “(1) Assess the relevant understanding of the learner; (2) Specify 
the learning goal (intended abstraction); (3) Identify an activity or activity sequence 
that the learner already has available that could be the basis for the new abstrac-
tion; and (4) Design a sequence of tasks that is likely to bring forth the learners’ 
use of this activity and lead to the intended abstraction” (Simon et al., 2016, p. 67). 
When students engaged in carefully designed tasks intended to promote concep-
tual learning, individual learning processes illustrated “in the moment” thinking and 
student focus while solving the task. 

Building on Tzur and Simon’s (2004) hypothesis that two stages, participatory 
and anticipation, are necessary to develop mathematical concepts, LTA researchers 
(Simon et al., 2016, 2018) proposed that an initial reflective abstraction is only the 
first of two stages for building a mathematical concept. For the first, participatory 
stage, a learner engages in an activity and uses existing concepts to begin to develop 
new mathematical knowledge. The analyses of MARN data provided evidence that 
learners may not be able to use their initial abstraction (concept) created one day 
for a similar task the following day. Only when a learner could call upon an earlier 
abstraction (concept) in different contexts, LTA researchers identified this second
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stage as anticipatory. Simon et al. (2018) reported that a fourth-grade student coor-
dinated pairs of actions when determining a composite fraction amount of a whole 
number quantity. Higher-level conceptual knowledge was built upon prior existing 
knowledge. The two-stage distinction represents a new aspect of research when 
analyzing qualitative data of student engagement in learning activities. Still, LTA 
researchers point out that future research is needed to provide a more detailed expla-
nation of how teachers can promote a transition from students’ participatory stage 
to an anticipatory stage for developing conceptual knowledge. What is the role of 
teacher activities (Type C) to facilitate this transition of students engaged in knowing 
and doing mathematics (Type B)? 

To inform data analysis and instructional design, LTA researchers (Simon et al., 
2016, 2018) also continued to study the development of a reversible concept Hack-
enberg (2010) and other researchers (Steffe, 1994; Tzur, 2004) have examined as a 
necessary part of conceptual learning. A student may construct a reversible concept 
when he or she does not need to engage in lower-level actions where the orig-
inal concept was developed. Using the context of Cognitively Guided Instruction 
(CGI) research-based addition and subtraction tasks (Carpenter et al., 2015), LTA 
researchers built a typology of reversibility for six potential tasks (see Simon et al., 
2016, 2018 for details of reversible concepts). Consistent with Hackenberg’s (2010) 
findings for reversibility, Simon et al. (2018) reported that a learner may have an orig-
inal concept and not easily construct reversible concepts. The typology of reversibility 
has informed these researchers’ decisions related to the design of instructional tasks 
used during the LTA teaching episodes. 

Overall, LTA’s theoretical perspective focuses on explaining the process of 
building conceptual knowledge through students’ engagement in learning activi-
ties as a progressive coordination of mathematical concepts. Using ongoing data 
analyses, individual tasks and sequences of tasks are modified dependent upon a 
learner’s progress. If no new concept is developed, more of the same or different 
experiences are needed to facilitate student reflection and a new abstraction. A chal-
lenge for researchers is to reflect upon ways to apply LTA’s theory beyond indi-
vidual students engaged in teaching experiment settings and implemented in whole-
classroom settings. To this end, in the next section, I provide an example of student 
construction of mathematical knowledge and engagement in learning activities in 
the context of classrooms. 

3.3 The AHA! Experience: Proxies of Student Engagement 

Medley (1987) recommended five different types of future research needed to inform 
effective teaching practices, with two types focused on student learning activities in 
classroom settings: Type BA, “research relates learning outcomes to pupil learning 
experiences” and Type CB, “research relates interactive teacher behavior to pupil 
learning activities” (p. 110). For Type CB relationships, Medley posed the following 
two questions for researchers to examine: “The teacher whose pupils have the best



174 M. A. Timmerman

learning experiences in school (Type B)? The teacher whose classroom behavior 
conforms most closely to some conception of ‘best’ practice (Type C)?” (p. 106). 
Using Manizade et al.’s (2019) framework (Introduction, this volume), studies are 
needed that focus on student–teacher interactions between student learning activities 
and interactive teacher behaviors that engage students in becoming knowers and 
doers of mathematics. 

As an example of Type CB research which evolved from 10 years of earlier 
research in Canada, Liljedahl (2016) proposed nine elements of critical teaching 
practices that are needed for teachers to orchestrate and sustain student thinking in 
mathematics classrooms. Moreover, he identified student proxies of engagement to 
describe and measure the effectiveness of the nine elements of teaching practices 
to facilitate student learning. In many of his classroom observations, he reported 
how teachers implicitly assumed “that the students either could not or would not 
think” (p. 362). This may be related to established classroom norms that supported 
learning in traditional ways which hindered students’ ability to engage in thinking 
and problem-solving behaviors recommended by reform curriculum initiatives. 

Liledahl argued for a transition moving away from a non-thinking toward a 
thinking classroom; that is, “a space that is inhabited by thinking individuals as well 
as individuals thinking collectively, learning together and constructing knowledge 
and understanding through activity and discussion” (p. 362). Consistent with other 
researchers’ (Cobb, 1994; Cobb et al., 1992) calls for the coordination of Piaget’s 
(1970) constructivist and Vygotsky’s (1981) sociocultural perspectives, Liljedahl 
assumed that knowledge is constructed both individually and collectively, during 
social interactions with others while engaged in doing mathematical activities. For 
Cobb (1994), these two complementary perspectives address how theories of learning 
emerge; that is, “the sociocultural perspective gives rise to theories of the conditions 
for the possibility of learning, whereas theories developed from the constructivist 
perspective focus on both what students learn and the processes by which they do 
so” (p. 18). As described earlier, Hackenberg’s and Simon et al.’s research approach 
of teaching experiments provided explanations for the process of student learning 
outside mathematics classrooms. 

To inform Liljedah’s (2016) study of teaching and learning practices in secondary 
mathematics classrooms, it is useful to review his perspective on the process of 
mathematical learning “in the moment” during group work and individual problem 
solving. In 2005, experiences in his mathematics course for prospective elementary 
school teachers (PTs) affected their thinking about teaching and learning mathe-
matics. An AHA! experience occurred when “a problem has just been solved, or 
a new piece of mathematics has been found, and it has happened in a flash of 
insight, in a moment of illumination” (Liljedahl, 2005, p. 219). If a student was 
“stuck” working on a problem, but experienced an AHA! moment, she or he became 
“unstuck” and continued to make progress. Liljedahl studied the learning process of 
how this sudden insight or AHA! experience happened and how it affected the PTs’ 
ability to make sense of problems and persevere. Some PTs often identify themselves 
as failures in mathematics based on a lack of successful learning experiences and they 
exhibit high math anxiety in mathematics courses. Given the vision of mathematics
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curriculum initiatives for learners to develop a deep understanding of mathematics, 
a potential increase in the intensity of affective responses may result in promoting 
more negative attitudes when compared to learning routine procedures. Liljedahl’s 
conceptual framework included attention to the affective domain for learning mathe-
matics; that is, examining the constructs of beliefs, attitudes, and emotions (McLeod, 
1992). Beliefs reflect low levels of affective involvement, are relatively stable, and 
develop over a long period of time. According to McLeod, attitude “refers to affective 
responses that involve positive or negative feelings of moderate intensity and reason-
able stability” (p. 581). By contrast, the emotional aspects of learning are unstable 
and connect more to “in the moment” feelings that are “fleeting” (McLeod, 1992). 

To study the process of how learning occurs when students experience insight 
during an AHA! experience, Liljedahl (2005) examined how “moments of illumina-
tion” were related to positive emotions and how they changed PTs beliefs and atti-
tudes about doing mathematics. For an assignment, PTs wrote about an AHA! expe-
rience while problem solving. Analyzing responses, Liljedahl reported four affective 
themes: anxiety, pleasure, change in beliefs, and change in attitudes. He found that 
repeated positive emotional AHA! experiences produced positive beliefs and atti-
tudes about mathematics and students’ abilities to do mathematics. As an example, 
one PT wrote: “AHA moments are those great moments of deeper understanding and 
clarification of problems where incorrect or incomplete understanding is overcome. 
These moments inspire us and encourage us to keep going despite the frustration and 
anxiety that often tends to overwhelm us in times of difficulty when attempting to 
solve a problem” (p. 231). Engaged in making sense of mathematics, this PT became 
aware of her need to persevere, as moments of insight can lead to an understanding of 
mathematics. Liljedahl hypothesized two explanations for a high degree of change in 
the affective domain: “Positive emotion that is achieved during an AHA! experience 
is much more powerful than the emotions that are achieved through non-illuminated 
problem solving” and “Having solved something challenging, or understood some-
thing difficult, besides being a great accomplishment is also a measure of what 
is possible” (p. 231). AHA! experiences promoted changes in PTs’ behaviors and 
dispositions; that is, engagement in student learning activities of problem solving 
and perseverance. 

Liljedahl (2016) extended his work and investigated engagement of secondary 
mathematics students who worked together in small groups of two to four to solve 
problem-solving tasks. He studied the interaction between Type B and C variables 
by examining the effect of different teaching practices and how students engaged in 
problem solving. To inform his observations, he used Mason’s (2002) framework of 
noticing; that is, “Noticing refers to the act of focusing attention and making sense of 
situational features in a visually complex world” (Jacobs & Spangler, 2017, p. 771). 
From data analysis, he proposed nine elements of effective mathematics teaching 
practices for building and sustaining a thinking classroom (see Liljedahl, 2016; 
for list/analysis of practices). Using an iterative design-based research approach, 
each element provided opportunities for teaching practices to be refined or dropped, 
depending on how students engaged in mathematical thinking while problem solving. 
Still, Liljedahl reported that it was challenging for teachers and students to shift from
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traditional, familiar classroom norms. To resolve this issue, he used a “contrarian” 
approach in which an ineffective practice was changed to the exact opposite and then 
implemented in mathematics classrooms. 

Liljedahl measured the effectiveness of teaching practices by studying “proxies 
of engagement—observable and measurable (either qualitatively or quantitatively) 
student behaviors” (p. 366). He referred to these behaviors as “proxies” because he 
did not have direct access to student thinking and he could not tell if the mathematical 
thinking was an individual construction, or, collective thinking due to interactions 
with others. He reported eight student behaviors and dispositions: (1) time to task, 
(2) time to first mathematical notation, (3) eagerness to start, (4) discussion, (5) 
participation, (6) persistence, (7) non-linearity of work, and (8) knowledge mobility. 
As described in Sect. 2, linkages can be made between Liljedahl’s student engagement 
in learning activities (Type B) and those listed in various frameworks of curriculum 
initiatives. In response to Lesh et al.’s (2020) concerns of the need for “measures” 
of higher-level student understanding, Liljedahl provided a framework of student 
behaviors and dispositions that could be used in future studies to provide evidence 
of the effects of students’ engagement in learning activities while building content 
knowledge and doing mathematics. 

Moreover, Middleton et al. (2017) reported researchers studying student engage-
ment experiences often approach their studies using a lens of an observational study. 
Also, interview data can provide more detailed insights on the observed behaviors. 
For his 2016 study, Liljedahl conducted follow-up interviews to confirm teachers’ 
interpretation of student behaviors. Similar to other research perspectives focused 
on how student mathematical learning occurs and described in this section, Liljedahl 
asserted that we need “to honor the activities of a thinking classroom through a 
focus on the processes of learning more so than the products and it needs to include 
both group work and individual work” (p. 382). That is, as Medley (1987) recom-
mended for the future evolution of research for teaching, there is a need to focus 
on the interplay between elements of teaching practices and student engagement 
in learning activities (Type B and C variables) rather than examining only student 
learning outcomes (Type A). 

In summary, the last three decades of frameworks of mathematics curriculum 
initiatives impacted researchers’ approaches to studying the needs of the learner 
and needs of the discipline for effective mathematics teaching and learning. The 
complexity of studying student engagement in higher-level thinking with under-
standing has called for an examination of student learning activities through a lens of 
various theoretical perspectives that provide explanations relevant to how and why 
student behaviors and dispositions develop in the way they do. Given the different 
perspectives relevant to students’ development of mathematical thinking with under-
standing and doing mathematics, theories have emerged in particular settings using 
teaching experiments in technological settings and mathematics classroom environ-
ments. As students become knowers and doers of mathematics, Chan and Clark 
(2017) address the difficulty in conducting valid and reliable research studies of 
student learning in classroom settings, as there is a “tension between the need for 
control in an experimental environment and the freedom needed for the participants
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to interact and behave as they would in a naturalistic classroom setting remains a 
challenge in the design of research studies investigating student learning in social 
settings” (p. 954). 

Nevertheless, different theoretical perspectives allow researchers to gain insight 
into potential refinements in the conceptualization or design of studies that examine 
student learning activities and active student engagement within diverse individual 
and whole-class settings, including CT tool environments. This could result in unique 
insights emerging from studies making explicit connections between Type A, B, and 
C variable relationships. The next section characterizes a selection of studies of 
student mathematics learning activities identified earlier in Sect. 2 that encompass 
most behaviors and dispositions into two main activities: (1) making sense of mathe-
matics (i.e., problem-solving) and (2) perseverance in doing mathematics: productive 
disposition, productive struggle, and productive failure. Taken together, the studies 
extend the mathematics education knowledge base of the effects of student learning 
activities when students engage in developing mathematics knowledge with under-
standing and doing mathematics. Each study includes a brief description of method-
ology to address Medley’s (1987) quality concerns related to conceptualization, 
instrumentation, design, and statistical analysis. 

4 Making Sense and Perseverance Involved in Learning 
Mathematics Knowledge 

4.1 Problem Solving 

Mathematicians, mathematics educators, and teachers have described the problem-
solving process in multiple ways (Schoenfeld, 1992) which has led to the develop-
ment of research agendas focused on examining student behaviors supporting the 
development of mathematical knowledge (Lesh & Zawojewski, 2007; Schoenfeld, 
1992; Schoenfeld & the Teaching for Robust Understanding [TRU] project, 2016). 
According to Santos-Trigo’s (2020) recent review of mathematics education research 
literature, problem solving is defined as “the systematic study of what the process of 
formulating and solving problems entails and the ways to structure problem-solving 
approaches to learn mathematics” (p. 687). Over the last three decades, studying the 
behaviors and dispositions of student engagement in problem solving has continued 
to be a research priority with an emphasis on detailed accounts of teacher expecta-
tions for problem solving and student interactions in mathematics classrooms. This 
is attributed to the shift of focus on teachers understanding students’ mathematical 
thinking “in the moment” and making connections between Type B and C variables 
(Manizade et al., 2019). Lesh and Zawojewski (2007) described students’ engage-
ment in problem solving as using “several iterative cycles of expressing, testing 
and revising mathematical interpretations—and of sorting out, integrating, modi-
fying, revising, or refining clusters of mathematical concepts from various topics
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within and beyond mathematics” (p. 782). As described earlier, teaching experiment 
methodology (Hackenberg, 2010; Simon et al., 2016, 2018) has provided an oppor-
tunity for researchers to examine students’ thinking “in the moment” and explain 
how students develop mathematical conceptual understanding. 

An emerging field of research is investigating student learning activities (see 
Sect. 2) identified in the Common Core standards of mathematical practice [SMP] 
(Bostic & Sondergeld, 2015; Gilbert, 2014; Sanchez et al., 2015) and similar math-
ematical competencies (Hipkins, 2018; McDowell & Hipkins, 2018; Niss, 2003; 
NRC, 2001; Turner, 2010) that focus on students’ sense-making and extends Polya’s 
(2004) problem-solving research. A new term of mathematical sense-making defines 
the needs of a learner when engaged in problem solving as a critical component of 
what it means for students to know and do mathematics. A limited number of qual-
itative studies (Bostic & Sondergeld, 2015; Kapur, 2014; Warshauer, 2015) have  
examined research questions focused on students’ problem-solving experiences in 
mathematics classrooms. Although the term problem solving is not explicitly stated 
in the SMP, the meaning is implicit and places a priority on problem solving as 
students “make sense” of mathematical content. 

The literature revealed various teacher interpretations (Type C) of student 
problem-solving behaviors (Type B) as envisioned in frameworks of mathematics 
curriculum initiatives. In an exploratory study, Keazer and Jung (2020) designed a 
survey for 71 PTs in which they responded to questions about student mathematics 
learning activities. For example, PTs read a paragraph description of the first SMP 
and were asked to think about their future teaching when responding: “Which aspect 
of SMP1 do you think will be most difficult for you to develop in your students? 
Why?” (p. 82). Separate statements of the SMP1 description were matched along-
side PT responses that described anticipated difficulties when engaging students in 
these behaviors and dispositions. The PTs selected: They make conjectures about 
the form and meaning of the solution and plan a solution pathway rather than 
simply jumping into a solution attempt, with the highest frequency as the most diffi-
cult learning activity to develop; the second highest activity was: Mathematically 
proficient students check their answers to problems using a different method, and 
they continually ask themselves, ‘Does this make sense?’ Encouraging their future 
students to plan, use more than one strategy, and reflect on the problem-solving 
process as “making sense” did not appear to be a strength. Close to one-third of the 
PTs shared that they themselves struggled with some of the expected learning goals 
of SMP1. Consequently, it was a major challenge for many PTs to anticipate how 
they would engage students in learning activities (Type B) in their future mathematics 
classrooms. 

Keazer and Jung’s findings led to their design of a conceptual framework matching 
student behaviors and dispositions articulated in the SMP1 sentences to Polya’s 
(2004) four problem-solving phases. Citing the research of Schoenfeld and the 
TRU project (2016) with a focus on the cognitive demand of tasks dimension, they 
proposed using the SMP1-Polya framework to facilitate prospective and practicing 
teachers’ understanding of different levels of sense making (i.e., problem solving). 
According to Keazer and Jung, “SMP1 aligns with level 3 sense making, in which the
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teacher supports students in mathematical exploration and productive struggle that 
results in understanding and engagement in mathematical practices” (p. 88). Making 
connections explicit between sections of SMP1 sentences and Polya’s problem-
solving phases could provide an entry point for supporting teachers’ understanding 
of student engagement in problem-solving experiences. With the high frequency of 
two SMP1 statements in the PTs responses, the student behaviors of Polya’s second 
phase, devise a plan, and fourth phase, look back, continued to show the need to 
engage students in problem solving or making sense of mathematics to develop a 
progression of understanding mathematical concepts. For researchers interested in 
understanding different levels of students’ sense making that supports participatory 
and anticipatory conceptual development, problem-solving activities may provide 
an opportunity to examine LTA’s theory of progression of concepts (Simon et al., 
2016, 2018) beyond individual students to small- and whole-group work methods in 
mathematics classrooms. 

4.2 Productive Disposition 

Building upon Liljedahl’s (2016) theoretical perspective that includes affective 
factors of learner engagement, recent studies are focusing on student “persever-
ance” in solving problems. As described earlier, the NRC (2001) defined an affective 
strand of productive disposition as viewing “mathematics as sensible, useful, and 
worthwhile, coupled with a belief in diligence and one’s own efficacy” (p. 116). 
Gilbert (2014) broadened the meaning of productive disposition to include learning 
activities in which students are “making sense of problems and persevering in solving 
them” and linkages to motivational theory. Observing students actively engaged in 
doing mathematics, researchers could ask: What do strengths-based learners look 
like when they exhibit the characteristics of a productive disposition in mathematics 
classrooms? According to Kobett and Karp (2020), “They are just curious and fasci-
nated. They work diligently, even when faced with obstacles. They try again when 
stymied. They understand that learning mathematics can be hard work and they will, 
therefore, often continue to work well after their peers have given up” (p. 43). For 
further investigation, how might researchers study and measure these characteristics 
of students displaying productive disposition? 

As an example, in October 2005, Gilbert (2014) surveyed a sample of 140 
prealgebra students who volunteered to participate from two California middle 
schools. She hypothesized a relationship between productive disposition (Type B) 
and an achievement-related (Type A) variables. Specifically, she studied a relation-
ship between students’ abilities to attend to precision when they critiqued another 
student’s work. To examine student learning activities, Gilbert stated, “The behav-
iors required to demonstrate these SMP thus relate to psychological constructs that 
go beyond ability beliefs (e.g., efficacy) and utility value (i.e., usefulness of mathe-
matics)” (p. 340). First, students responded to survey questions that measured moti-
vational constructs associated with productive disposition, such as, “My main goal
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in math is to learn as much as I can” (mastery-approach goal) (p. 342). Second, 
students completed an assessment item which measured their ability to add fractions 
with unlike denominators. Third, using an open-ended question, students were given 
a student’s incorrect work, ½ + ¾ = 4/6, and asked to write an explanation to the 
student indicating why the answer was right or wrong. 

Gilbert reported using reliability and factor analyses with an examination of corre-
lations that documented the subscales measured distinct constructs of productive 
disposition. She found that 44% of the students responded with a more precise 
critique of a student’s incorrect strategy by engaging longer and suggested at least 
two steps to correct the student’s work. Also, a multivariate analysis of variance 
supported the hypothesis that students who responded with a more precise critique 
of a peer’s work reported a higher productive disposition than students who responded 
with a basic critique. Two motivation constructs: (1) productive disposition and (2) 
mastery approach goals and negative emotions, showed statistically significant differ-
ences between the two groups. Based on survey responses, more precise critique 
students reported higher mastery-approach goals and less frequent negative emotions 
compared to basic critique students. The results of this study suggest more research is 
needed to focus on NCTM’s (2014) effective teaching practices (Type C), including 
“building procedural fluency from conceptual understanding” (Type B, mastery-
approach goals), where the procedure of adding fractions is built upon a foundation 
of conceptual understanding. Using multiple representations of fractions, students 
could be provided with opportunities to make connections between concepts and 
procedures situated in a classroom where meaningful mathematics discourse occurs. 

4.3 Productive Struggle 

Beginning elementary school teachers often say that students should not “strug-
gle” or be confused in learning mathematics and if they do struggle, a teacher may 
restate the same strategy for students to follow. Keazer and Jung (2020) reported 
a few PTs stated they needed to “show and tell” (Type C) all possible strategies 
to students rather than engage them in productive struggle. However, researchers 
have reported the positive effects of productive struggle whereby the act of strug-
gling is crucial for students learning mathematics with understanding (Hiebert & 
Grouws, 2007; Keazer & Jung, 2020; NCTM, 2014; Schoenfeld & TRU, 2016; 
Warshauer, 2015). Hiebert and Grouws (2007) defined productive struggle as a 
student learning behavior that promotes students making sense of mathematics and 
is necessary to develop conceptual understanding. In a similar manner, Dingham 
et al. (2019) identified productive struggle as “intellectual effort students expend 
to make sense of mathematical concepts that are challenging but fall within the 
students’ reasoning capabilities” (p. 91). Schoenfeld and the TRU project (2016) 
identified five dimensions of mathematics learning activities that were necessary 
to ensure that classroom environments supported students as “powerful thinkers.” 
In response to the needs of the discipline, one dimension focused on the cognitive
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demand of tasks in “which students have opportunities to grapple with and make 
sense of important disciplinary ideas and their use. Students learn best when they are 
challenged… The level of challenge should be conducive to what has been called 
productive struggle” (p. 1). Similar to behaviors and dispositions described in Sect. 2, 
productive struggle engages students in perseverance when solving challenging prob-
lems. Schoenfeld and the TRU project (2016) reported teachers categorized at the 
highest level supported “students in productive struggle in building understandings 
and engaging in mathematical practices” (p. 24). Likewise, NCTM (2014) explicitly 
addressed the need for teachers to engage students in productive struggle: “Effective 
teaching of mathematics consistently provides students, individually and collectively, 
with opportunities and support to engage in productive struggle as they grapple with 
mathematical ideas and relationships” (p. 48). 

Warshauer (2015) studied what different types of student struggle looked like 
in six U.S. middle school mathematics classrooms and how teachers responded to 
their students’ struggles (Type CB research). His conceptual framework centered 
on the “process of struggling to make sense” (p. 378) for a deep understanding 
of mathematics, the relationship between the students’ struggles and the types of 
mathematical tasks explored, and the dynamic, social nature of interaction when 
teachers responded as helping or hindering student learning. Given the complexity of 
studying student–teacher and student–student interactions, he conducted embedded 
case study methodology (Yin, 2009) using instructional episodes. Multiple sources 
of data allowed for triangulation of the data to establish dependability, confirmability, 
and transferability when he reported findings of the study. 

Warshauer developed a productive struggle framework for reporting the frequency 
of four different types of student behavior of struggle: get started, carry out a process, 
uncertainty in explaining and sense-making, and express misconception and errors 
(Type B). As an example, “confusion about what the task was asking” or a “gesture 
of uncertainty or resignation” (p. 385) described students struggling at the beginning 
of the problem-solving process. It should be noted that there is a parallel alignment in 
some of his framework categories to Polya’s (2004) four phases of problem solving; 
that is, “get started” with Polya’s first phase and “carry out the process” with the third 
phase. Similar to Keazer and Jung’s (2020) study, connecting student struggles to 
some of Polya’s problem-solving phases could provide researchers with a new lens 
for analyzing students’ sense-making through existing problem-solving literature. 

For student–student interactions, Warshauer reported students’ “uncertainty in 
explaining and sense-making” when their explanations lacked clarity and did not 
make sense to other students, or they struggled with appropriate responses. He found 
evidence of proportional reasoning misconceptions such as using additive rather 
than multiplicative thinking for the meaning of ratios. For teacher-student interac-
tions, Warshauer reported the frequency of four different types of teacher responses to 
student struggles: telling, directed guidance, probing guidance, and affordance (Type 
C). The first two types of responses did not engage students in productively under-
standing the concept of proportional reasoning. As might be anticipated, a telling 
response often enabled a student to move beyond being stuck, but used a teacher’s 
thinking rather than student thinking. Often, a procedure was stated for a student to
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follow which resulted in lowering a problem’s level of cognitive demand. Both the 
last two types of teacher responses supported students’ thinking without lowering 
the level of cognitive demand. 

Warshauer identified three outcomes of student struggles: productive, productive 
at a lower level, and unproductive. Productive interactions included: “(1) maintained 
the intended goals and cognitive demand of the task; (2) supported students’ thinking 
by acknowledging effort and mathematical understanding and (3) enabled students 
to move forward in the task execution through student actions” (p. 390). He reported 
42% of student struggles met all three criteria, 40% of the interactions only used the 
second criteria, and 18% of struggles were unproductive. For unproductive struggles, 
students were not “making progress toward the goals of the task; reached a solution 
but a task that had been transformed to a procedural one that significantly reduced the 
task’s intended cognitive demand; or if the students simply stopped trying” (p. 391). 
In essence, teachers balanced how much they pressed students to persevere based on 
students’ levels of tolerance for frustration at different levels of cognitive demand. 
Productive struggle depended on keeping tasks at higher cognitive-demand levels, 
supporting students’ perseverance, and teachers who provided guidance and affor-
dance. These results promote the future use of a productive struggle framework 
as a tool for researchers examining students’ productive struggles (Type B) and 
teacher-student interactions (Type BC research). 

4.4 Productive Failure 

Research on examining students’ productive struggle when attempting to make sense 
of mathematics content and persevere in solving problems, is related to engagement in 
another Type B variable: productive failure (Kapur, 2010, 2014; Simpson & Maltese, 
2017). Failure can be defined in many ways, such as, giving up or stopping engage-
ment in an activity, not reaching the intended goal, or incorrect problem solutions. 
Further, failure can bring to the forefront negative connotations such as “negative 
emotional states (e.g., fear, anxiety, depression), low perceptions of self, diminished 
sense of belonging, less academic risk taking, and avoidant behaviors” (Simpson & 
Maltese, 2017, p. 223). These negative behaviors and dispositions suggest that failure 
may decrease students’ desire or ability to continue to problem solve. Still, what might 
happen if we view failure as a “necessary and sufficient condition” for students’ 
engagement in learning activities? In what ways might students’ metacognitive anal-
ysis of their problem-solving process while stuck on a problem make errors explicit, 
or, how may critiquing their peers’ use of models and strategies support learning? 
According to the Partnership for 21st Century Learning (2019), creativity and inno-
vation are enhanced through failure; that is, persistent attempts are part of innovative 
practices marked by “a long-term, cyclical process of small successes and frequent 
mistakes” (p. 4). How might this process of success and failure be part of learning 
activities?
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Simpson and Maltese (2017) studied the role of failure in the development of 
science, technology, engineering, or mathematics (STEM) professionals. They inter-
viewed 99 STEM professionals about their experiences in entering and pursuing a 
STEM-related career. Using life history interviews, they focused on how participants’ 
failure shaped: outlooks connected to failure, career trajectories within STEM fields, 
and provision of additional skills. They reported about one-fifth of the professionals 
described failure as a positive experience. However, when using a follow-up survey 
and asked if “the term failure was an accurate representation or label of their experi-
ences, 67% disagreed and claimed words and phrases such as inadaptability, setback, 
unsuccessful, not living up to expected outcomes, defeat, and learning opportunity 
as more suitable” (p. 228). Rather than considering failure as an end to becoming 
a STEM-related professional, they reported two-thirds of respondents saw failure 
as a minor setback that motivated them to move past difficulties in coursework or 
professional projects. Also, they described the trait of “persistence” as the most 
“important quality to possess when experiencing instances of failure” (p. 233). As 
described earlier, perseverance is a productive student mathematics learning activity 
envisioned by curriculum initiatives over the last three decades. 

In a study of ninth-grade students who lived in the national capital region of 
India, Kapur (2014) proposed that engaging students in problem solving which 
initially resulted in productive failure would ensure “correct conceptual knowledge 
and mathematical procedures over faulty ones” (p. 1009). For Kapur, the term produc-
tive failure meant that students’ initial individual problem-solving attempts were 
unsuccessful in finding correct solutions, and became productive when supported 
with appropriate mathematics classroom instruction. Similar to productive behav-
iors researched over the last decade, Kapur hypothesized relationships between indi-
vidual student failure (Type B), sequence of teaching phases (Type C), and student 
outcomes (Type A). For Kapur’s (2014) study, in one classroom, students first partic-
ipated in a problem-solving (PS) phase for standard deviation (SD) problems that 
was followed by a direct instruction (DI) phase. In the comparison classroom, the 
same teacher first taught students using DI followed by a PS phase. During the PS 
phase, students solved a SD practical problem individually and the teacher encour-
aged them to use multiple strategies and find as many solutions as possible. For 
the more traditional DI phase, the teacher showed four examples of SD problems, 
gave time for individual student practice, and provided student feedback related to 
common SD misconceptions. 

Similar to Gilbert’s (2014) study, Kapur examined aspects of both cognitive and 
affective behaviors and dispositions using surveys and mathematics content knowl-
edge measures. He designed four instruments to measure students’ learning of SD 
concepts and procedures. These included a pre- and post-test of SD knowledge and 
survey questions relevant to engagement and mental effort. Kapur reported that the 
class of students who began instruction with a PS phase provided an average of six 
different solutions to a SD practical problem. The number of solutions served as a 
“proxy” measure of students’ prior knowledge activation. By comparison, the other 
class of students beginning with DI, only demonstrated an average of three different 
solutions.
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Examining affective behaviors and dispositions, data collected from survey ques-
tions provided evidence of significantly greater mental effort of productive failure 
students (PS phase first) compared to DI students (PS phase second) during both 
phases of instruction. Yet, Kapur found no significant difference between the two 
sequences of instruction on math ability or prior SD knowledge. Analyzing posttest 
data and the two different sequences of instruction, Kapur reported “significant multi-
variate main effects only of math ability and condition” (p. 1013). Although there 
was no significant difference between students’ procedural knowledge in either class-
room, students engaged in the PS phase first, significantly outperformed students 
receiving the DI phase first on posttest conceptual understanding and transfer items. 
No significant correlations appeared in the data for students beginning with DI. 

Kapur’s research supports a learner’s perspective that is relevant to NCTM’s 
(2014) teaching practices whereby teachers provide students time to think, make 
conjectures, and use their own strategies while problem solving: “Effective teaching 
of mathematics engages students in solving and discussing tasks that promote math-
ematical reasoning and problem solving and allow multiple entry points and varied 
solution strategies” (p. 17). Kapur’s study provides specificity for this teaching prac-
tice (Type C) by supporting engagement in student learner activities (Type B) that 
may include productive failure first at the beginning of a lesson. After experiencing 
a PS phase followed by more instruction, students engaged in more mental effort 
and demonstrated more conceptual understanding than students who experienced DI 
(teaching as telling) at the beginning of a lesson. Thus, it appeared that productive 
failure provided students with an opportunity to learn from their own failed solutions 
and they were ready to engage in classroom-based instruction with a focus on impor-
tant mathematical ideas relevant to SD. For teachers who believe it takes too much 
time to allow students to think and engage individually in the PS process, Kapur 
found that “time on task, the number of problems solved, and materials for each of 
the phases were identical in both [classes]” (p. 1010). 

5 Discussion of Findings and Future Implications 

What can be learned from this selected analysis and review of student mathematics 
learning activities that actively engage students in knowing and doing mathematics? 
How has research evolved over the last three decades to support students’ develop-
ment of mathematical content knowledge and engagement in processes (i.e., behav-
iors and dispositions) that have been identified in multiple frameworks of interna-
tional mathematics curriculum initiatives? How has the increased availability of CT 
tools for students enhanced researchers’ observations and inferences of students’ 
thinking, including technologies to advance research methodologies? What theo-
retical perspectives have researchers refined for examining the nature of students’ 
construction of mathematical content knowledge with understanding to provide 
explanations relevant to how and why student behaviors and dispositions develop 
in the way they do within different learning environments? Lastly, how has this
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chapter informed future research needed to advance our understanding of student 
learning activities? 

To address these questions, this chapter’s review and analysis of three decades 
of research highlight the contributions of selected studies related to understanding 
the nature of student mathematics learning activities and the resulting impact on 
students’ knowing and doing mathematics. The findings offer insights for researchers, 
curriculum designers, administrators, teachers, parents, students, and other stake-
holders involved in mathematics teaching and learning, situated in both non-
technological and technological environments. First, a major theme in this chapter of 
studies of student learning activities was researchers’ increased focus on reviewing 
multiple characterizations of mathematical behaviors and dispositions to refine 
competency frameworks to study how students actively engage in the processes 
of learning mathematics. An evolution of similar and interrelated learning activities 
from different countries provided details about what processes to study and how to 
analyze the effect of students’ learning experiences, including two main learning 
activities of making sense of mathematical knowledge and perseverance in doing 
mathematics. At the beginning of the twenty-first century, Sfard (2003) asserted that 
learning activities should “engage students in what may count as an authentic activity 
of mathematizing rather than in learning ready-made mathematical facts” (p. 354). 
There has been growth in researchers’ understanding of what constructs to study 
related to student mathematics learning activities (Type B) and various theoretical 
perspectives that provide explanations of students’ engagement in knowing and doing 
mathematics. 

Although Kobert and Karp (2020) created an alignment of student behaviors 
and dispositions between the five strands of mathematical proficiency (NRC, 2001) 
and the eight standards of mathematical practice (NGA Center for Best Practices 
and CCSSO, 2010), few studies have focused on this alignment and what can be 
learned to inform our understanding of student engagement in learning activities. 
Researchers could further examine the relationships among these multiple frame-
works in curriculum initiatives and the impact of using different (albeit similar) 
frameworks (see Sect. 2) to examine students’ active engagement in learning mathe-
matics. What is the same and what is different in using these identified mathematical 
behaviors and dispositions to investigate students’ knowing and doing mathematics? 
As another example, how might researchers take advantage of Koestler et al.’s 
(2013) and Kobett and Karp’s alignment between the process standards (NCTM, 
2000) and standards of mathematical practice (NGA Center for Best Practices and 
CCSSO, 2010)? What insights might emerge when researchers “synergize” these 
two frameworks together to inform research studies about students’ engagement in 
mathematics learning activities? To respond to engaging students in an “authentic 
activity of mathematizing” that mathematicians display when they know and do 
mathematics (see Sect. 2), researchers could build upon a rich tradition of studying 
students’ problem-solving behaviors (e.g., Polya’s problem-solving phases) with a 
further examination of critical connections between frameworks and conceptual-
izations of higher-level mathematical processes. Further, research could focus on 
at least three of Liljedahl’s (2016) proxies of student engagement (i.e., discussion,
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participation, and persistence) to examine and explain students’ perseverance while 
problem solving, both individually and in groups, to make inferences about students’ 
mathematical thinking. 

Second, research over the past three decades has extended our understanding of 
how and why the process of student engagement in learning and doing mathematics 
occurs in different learning environments. Using teaching experiment methodology, 
a small number of studies have articulated emerging theoretical perspectives that 
focused on analyzing students’ development of mathematical concepts in technolog-
ical settings outside the classroom (Hackenberg, 2010; Simon et al., 2016, 2018). 
From these studies, observations and analyses documented how students engaged 
in a sequence of learning activities using CT tools that were intended to promote 
students’ reflective abstraction and reversible thinking for rational number concepts. 
How might a similar cycle of students’ engagement in learning activities including 
CT tools and coupled with researchers’ noticing and analyses provide a research 
pathway to further our understanding and infer students’ mathematical thinking 
for reversible thinking in different conceptual areas? Simon et al. (2018) proposed 
that researchers could positively contribute to addressing unsuccessful mathematics 
instruction for specific conceptual areas (e.g., fractions, ratios, proportions, and other) 
through implementing the LTA research model. 

One result of the last decade of research, Simon et al. (2018) refined an earlier 
theoretical framework of scheme theory and moved research forward with a better 
understanding of the constructs of student learning to create the LTA theory which 
resulted in analyzing students’ progressive development of concepts. In what ways 
could researchers use the LTA research model of task sequence design and analyses to 
investigate students’ engagement in mathematical processes that focus on a progres-
sive concept development and lead to intended abstractions in non-technological 
environments? Further studies of students’ learning with understanding in different 
areas of mathematics could provide more useful explanations as to how and why 
students’ knowledge changes or does not change “over time” or “in the moment.” 
Moreover, if researchers look beyond using teaching experiment methodology, what 
can be gleaned from the LTA approach to investigate small- and whole-group student 
engagement in knowing and doing mathematics in classrooms? In particular, findings 
from Liljedahl’s (2005, 2016) studies should be explored using his new conceptual 
framework to measure and expand our understanding of a relationship between math-
ematics teaching practices and student learning activities (Type CB research) that 
seems necessary to build and sustain thinking classrooms. Furthermore, the past two 
decades of research studies about student mathematics learning activities has shown 
an increased focus of examining the interrelationships between Type B and C vari-
ables (Keazer & Jung, 2020; Schoenfeld & TRU, 2016; Warshauer, 2015) to inform 
our understanding of the effects of students’ engagement in learning activities. Yet, 
more studies are needed to explore research questions about relationships among 
Type B and A variables (Gilbert, 2014) and Type A, B, and C variables (Kapur, 
2014) to improve student learning outcomes (Type A). 

A third finding of this chapter is the identification of some of the important 
constructs (e.g., expressive activity, exploratory activity, representational fluency,
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and others) that are needed to inform research related to technology-based mathe-
matics teaching and learning (Zbiek et al, 2007). These constructs should be further 
explored to refine our current understanding of links between student engagement in 
the processes (i.e., behaviors and dispositions) of learning mathematics and students’ 
use of CT tools. As an example of future research for studying “promising variables” 
with student-tool relationships, Zbiek et al. proposed: “Students’ dragging behavior 
[with CT tools] could be viewed as an intervening variable between the mathemat-
ical activity and student achievement” (p. 1201). In other words, using Manizade 
et al.’s (2019) framework for examining relationships between Type B and A vari-
ables (Introduction, this volume), researchers should investigate the potential of a new 
“intervening variable” between two adjacent variables in the adaptation of Medley’s 
(1987) work that could provide evidence of how students engage in learning and 
doing mathematics in technological settings. 

Given the documentation of some unproductive student work methods, Zbiek et al. 
call for “research that identifies constructs that are associated with the development 
of judicious use [italics added] of technology” (p. 1186); that is, examining teacher 
activities (Type C) which facilitate students being aware of their need to focus on the 
mathematics content of a task and use productive work methods (Type B). Researcher 
observations of successful and unsuccessful student behaviors when using CT tools 
may provide insight into how the successful use of technology can be sustained and 
ways to change unsuccessful student behaviors. 

Further questions that warrant researchers’ investigation of students’ mathemat-
ical learning and engagement with technology-based activities include: If students 
encounter an unexpected result with one representation (using CT tools), do they 
stay with that representation, or switch to another representation that provides more 
insight as a way to solve a given task? What is the role of teacher activities (Type C) 
in engaging students in their development of representational fluency? As described 
in Sect. 2, access to technology introduces the “play paradox” where unstructured, 
expressive activity can enable some students to avoid the intended mathematical 
content of an activity. How might studies of understanding students’ development 
of representational fluency provide evidence of the effect of exploratory activity and 
expressive activity in technological settings? Zbiek et al. advocate for studies of “how 
the representational fluency of a group relates to the representational fluency of indi-
viduals in the group” (p. 1194). Also, is there a relationship between the construct of 
representational fluency and student work methods (Zbiek et al.)? Within technolog-
ical environments, researchers should consider many of these questions and examine 
relationships between Type A, B, and C variables to inform the knowledge base of 
student mathematics learning activities. 

Fourth, reviewing different conceptualizations of student engagement in mathe-
matics learning activities focused on not only identifying behaviors and dispositions 
that actively engage students in knowing and doing mathematics in existing studies 
but also to suggest new directions in building the knowledge base related to student 
mathematics learning activities. A clear trend of this chapter’s selected review of 
studies about student learning activities focused on how and why students make
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sense of mathematics “in the moment” and perseverance to know and do math-
ematics “over time.” Whether using teaching experiments or classroom settings, 
researchers investigated and explained students’ engagement in learning mathe-
matics with understanding and doing mathematics. As an example, Liljedahl’s (2005) 
study of PTs’ problem-solving activities and their “AHA! moments of illumina-
tion” promoted positive changes in their mathematical understanding (i.e., cogni-
tive construct) and productive dispositions (i.e., affective construct). Complementary 
relationships between cognitive and affective constructs of students’ mathematical 
learning experiences could inform future research design for individual studies or 
sets of related studies. Moreover, studies with an increased focus of examining inter-
relationships between Type B and C variables provided evidence of how teachers 
responded to individual students’ use of or lack of problem-solving strategies and 
informed their decision-making on next steps in a lesson or sequence of lessons (see 
Sects. 3 and 4). 

To advance our current understanding of mathematics teaching and learning, there 
is a continued need to review and extend the knowledge base related to the devel-
opment of student behaviors and dispositions that actively engage all students in 
knowing and doing mathematics. One way to move the knowledge base forward 
is a consideration of the results of the past decade with an increasing availability 
of wide-ranging technological methodologies that can provide data about students’ 
engagement in mathematics learning activities to both teachers and researchers (Type 
CB research). To address the gap between research and practice for understanding and 
improving students’ mathematical learning experiences, Cai et al. (2018) proposed 
the collection, analysis, and use of “continuous data on the learning experiences of 
each student” (p. 363) to facilitate researchers’ understanding of explicit connec-
tions between teaching practices (Type C) and student learning activities (Type B). 
Yet, questions need to be considered if technological and methodological tools exist 
without overwhelming both researchers and teachers with too many data? According 
to Cai et al. (2018), the “capacity to capture, process, and store comprehensive cogni-
tive and noncognitive data longitudinally for every student either already exists or 
is on the near horizon” (p. 364). Two years later, Cai et al. (2020) described current 
digital tools for collecting and managing student data but acknowledged that techno-
logical tools that could be used “during [classroom] lessons to monitor small-group 
discussion, analyze student work, and even gauge students’ affect” (p. 392) are still 
under development. Still, examining the future potential of technology to access 
student mathematical thinking for each student in the next decade, Cai et al. (2018) 
have proposed a framework for collecting, analyzing, and using data on students’ 
mathematical experiences that uses a three-part time frame: (1) in the moment, (2) 
short term, and (3) long term (p. 366). In addition, both cognitive and noncogni-
tive learning experiences, such as “students unexpected responses” and “students’ 
engagement with tasks” are identified and have been reported in prior studies of 
student mathematics learning activities (see Cai et al., 2018, for further frame-
work details). Future research is needed to ground this framework in the data across 
multiple diverse settings.
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Notwithstanding and looking to the next decade, Bartell et al. (2017) asserted 
that the “CCSSM, with its implicit political and economic goals and its lack of 
explicit attention to race, gender, class, and so forth, is not framed to support equity” 
(p. 9). Consequently, Bartell et al. designed a framework to connect research-based 
equitable mathematical teaching practices (Type C) with all the SMP (Type B) to 
explicitly address issues of equity. Making connections, they identified nine core 
teaching practices described in the chapter on culture, race, and power in the Second 
Handbook of Research on Mathematics Teaching (Diversity in Mathematics Educa-
tion , 2007) and more recent research (see Bartell et al., 2017, for details of the 
practices). As an emerging field of research, their framework offers existing and new 
research connections between student mathematics learning activities and equitable 
mathematical teaching practices (Type BC research). Each part of the framework 
provides multiple entry points for research supporting what it means for students to 
actively engage in effective and equitable mathematical learning activities. Students’ 
engagement in mathematical behaviors and dispositions needs to be studied in partic-
ular contexts and situations to inform and extend the knowledge base of what works 
and does not work for all students to become knowers and doers of mathematics. 

Brief, Capsule Definitions of Terms and Documents 
for Chapter 6

• Assessment, curriculum and evaluation, and professional standards for school 
mathematics: A trilogy of documents that provided a vision for the organization 
of curriculum reform in the U.S. in the 1990s (National Council of Teachers of 
Mathematics [NCTM], 1989, 1991, 1995).

• Behaviors and dispositions: Identification of student experiences, such as, profi-
ciencies, processes, practices, competencies, and habits of mind (Kobett & Karp, 
2020, p. 40) that demonstrate how students develop and show evidence of their 
mathematical thinking.

• Cognitive technological (CT) tools: Consists of tools that support a “syner-
gistic relationship” between technical and conceptual dimensions of mathematical 
activity in technological environments (Zbiek, Heid, Blume, & Dick, 2007).

• Competencies: Frameworks for knowing and doing mathematics, such as, (1) 
Denmark’s (2003) mathematical competencies that provided evidence of students’ 
“mental or physical processes, activities, and behaviors” (p. 9); (2) Program for 
International Student Assessment [PISA] (PISA, 2021) assessed mathematical 
competencies as “an individual’s capacity to reason mathematically and to formu-
late, employ, and interpret mathematics to solve problems in a variety of real-
world contexts” (PISA, 2021); and (3) Identified in the New Zealand Curriculum 
(NZC), competencies “that describe what they [students] will come to know and 
do” (Ministry of Education, 2015, p. 37).
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• Conceptual understanding: Student learning is defined as the “comprehension 
of mathematical concepts, operations, and relationships” (National Research 
Council [NRC], 2001, p. 116).

• Direct instruction (DI): Traditional, instructional methods where students watch, 
listen, and take notes about problems that teachers provide procedures and 
solutions for students to follow and use (Kapur, 2014).

• Learning goals: Focus on student “understanding” where students build knowl-
edge; “Explicitly state what students will understand about mathematics as a result 
of engaging in a particular lesson” (Smith & Sherin, 2019, p. 14).

• Learning through activity[LTA]: A research model that examines how learners 
actively engage in learning activities through a progressive coordination of math-
ematical concepts (Simon, Kara, Placa, & Avitzur, 2018; Simon, Placa, & Avitzur, 
2016).

• Mathematical sense-making: Student engagement in processes, such as problem 
solving, to learn mathematics with understanding; one aspect of what it means to 
know and do mathematics.

• National Governors Association [NGA] Center for Best Practices & Council of 
Chief State School Officers [CCSSO]: Authors of the U.S. Common Core State 
Standards for Mathematics (CCSSM), 2010.

• Organization for Economic Development (OECD) Definition and Selection 
Competencies (DeSeCo) Project: Created a framework to guide the development 
of PISA assessments.

• Performance goals: Focus on the end result or product of students’ engagement 
in learning mathematics: “What students will be able to do as a result in engaging 
in a lesson” (Smith & Sherin, 2019, p. 14).

• Principles and standards for school mathematics: Updated U.S. document that 
provides a vision for curriculum reform at the beginning of the twenty-first century 
(NCTM, 2000).

• Problem-solving: Defined as “the systematic study of what the process of formu-
lating and solving problems entails and the ways to structure problem-solving 
approaches to learn mathematics” (Santos-Trigo, 2020, p. 687).

• Process standards: Five processes that define what mathematicians might do 
and say when engaged in doing mathematics: Problem solving, communication, 
representation, making connections, and reasoning and proof (NCTM, 2000).

• Productive disposition: An affective construct defined as learners having an 
“habitual inclination to see mathematics as sensible, useful, and worthwhile, 
coupled with a belief in diligence and one’s own efficacy” (NRC, 2001, p. 116).

• Productive failure: Students’ initial problem-solving attempts are unsuccessful 
and became productive when supported with appropriate mathematics classroom 
instruction (Kapur, 2014).

• Productive struggle: A student learning behavior that promotes learners making 
sense of mathematics and is necessary to develop conceptual understanding 
(Hiebert & Grouws, 2007); “Intellectual effort students expend to make sense of 
mathematical concepts that are challenging but fall within the students’ reasoning 
capabilities” (Dingman, Kent, McComas, & Orona, 2019, p. 91)
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• Proficiencies: Frameworks for students’ engagement while learning mathematics, 
such as, (a) Cognitive and affective proficiencies for five strands: conceptual 
understanding, procedural fluency, strategic competence, adaptive reasoning, and 
productive disposition (NRC, 2001); and (b) Reasoning as one of the four profi-
ciency strands students engage inwhen “thinking and doing of mathematics” 
(Australia Curriculum and Assessment Reporting Authority [ACARA], 2017).

• Prospective elementary school teachers (PTs) and AHA! Experience: Students 
engage in problem solving and experience how “a problem has just been solved, 
or a new piece of mathematics has been found, and it has happened in a flash of 
insight, in a moment of illumination” (Liljedahl, 2005, p. 219).

• Representational fluency: Within or outside technological environments, “The 
ability to translate across representations, the ability to draw meaning about a 
mathematical entity from different representations of that mathematical entity, 
and the ability to generalize across different representations” (Zbiek et al., 2007, 
p. 1192).

• Research for principles and standards for school mathematics: Research litera-
ture that informed the U.S. vision of school mathematics in the 1990s and 2000 
(NCTM, 2003).

• Scheme: A cycle of perturbation, action, and reflection in which an individual 
anticipates, acts and mentally prepares, and assesses the outcome of his or her 
actions (Hackenberg, 2010; Steffe, 1994; von Glasersfeld, 1995)

• Standards for Mathematical practice (SMP): Eight mathematical competencies 
identified as a national Common Core State Standards for Mathematics (CCSSM) 
in the U.S., 2010.

• Student learning activities: “In the classroom… All learning depends on the 
activity of the learner” (Medley, 1987, p. 105).

• Student engagement: Defined as “an interactive relationship students have with 
the subject matter, as manifested in the moment through expressions of behavior 
and experiences of emotion and cognitive activity, and is constructed through 
opportunities to do mathematics” (Jansen, 2020, p. 273).

• Teaching for robust understanding [TRU] project: Framework of five dimen-
sions of classroom activity that supports professional development (PD) to engage 
teachers in creating a classroom student learning environment that facilitates the 
development of powerful thinkers (Schoenfeld & the TRU project, 2016). 
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Student Mathematics Learning 
Outcomes 

Jelena Radišić 

1 Introduction 

Within the context of presage-process–product research and its pursuit of ‘good’ 
teaching (Type C), learning outcomes (Type A) represent the end goal and final 
criterion on which any assessment of teaching must be based (Medley, 1977, 1987a; 
also see Figs. 2 and 3 in Manizade et al., 2022). In this respect, ‘good’ teaching 
can be considered teaching that produces the maximum learning outcomes and 
progress to meet the prescribed education goals. However, the very idea of learning 
outcomes and educational goals has changed throughout the years, mainly because 
the understanding of what education, and here mathematics education, should entail 
has changed (Kilpatrick, 2020a; Manizade et al., 2022). 

Since the 1980s, worldwide, the increasing demand for knowledge in many 
areas of life and work has placed the burden of productivity on education systems 
(Klieme et al., 2008). Consequently, this has led to a stronger focus on ‘outputs’ 
and ‘outcomes’ at all levels of the educational system and their transferability to 
the job market. In such a society, mathematical knowledge, ability, skills and(or) 
competence are seen as an essential prerequisite in encountering the challenges of 
the world today (Boesen et al., 2018; Ehmke et al., 2020; Freeman et al., 2015; 
Gravemeijer et al., 2017; OECD, 2016). Such a need has also led to a broader under-
standing of what being ‘mathematically’ equipped means. It includes both posing 
and answering questions in and by means of mathematics (i.e., reasoning, modelling, 
problem-solving), as well as handling the language, constructs and tools of the field 
(i.e., formalism and language, handling different representations, handling material 
aids and tools for mathematical activity, digital tools included; Niss et al., 2017;
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Niss & Højgaard, 2019). At the same time, mathematics itself consists of different 
subfields, each of which may employ somewhat different mathematical tools. Some 
have argued that the development of the underlying frameworks that bring together 
these constituents has, in return affected teaching to a certain extent (Type C) (e.g., 
Boesen et al., 2014). Such discussions are coupled with considerable differences 
of opinion regarding which teaching methods are effective, which may help sustain 
different learning goals and desired outcomes (e.g., Blazar, 2015; Hiebert & Grouws, 
2007; Hill et al., 2005). 

Indeed, efforts to improve the quality of teaching largely depend on the effec-
tiveness and availability of accurate, detailed and objective evaluations of teaching 
(Medley, 1987a, 1987b). Students’ learning outcomes represent one of the most 
favoured criteria, especially amid policy, under the assumption that it is reasonable 
to judge teaching by its results, just as we do for most other activities in life (Darling-
Hammond & Rustique-Forrester, 2005). Additionally, both affective and self-belief 
constructs may be specified as learning outcomes (Ramseier, 2001), here with the 
rationale that competent participants within a field also hold certain beliefs about 
the field itself (Aditomo & Klieme, 2020; Radišić & Jensen, 2021). Furthermore, 
facilitating students’ development of positive self-beliefs and interest in mathematics 
increases the probability that even students with lower skills can gain the opportunity 
to move forward in developing own skills and can gradually become individuals who 
apply reasoning or problem-solving in daily situations (Callan et al., 2021; Freeman 
et al., 2015; Radišić & Jensen, 2021; Verschafel et al., 2020). 

Against this background, in this chapter, we focus on how learning outcomes 
have been defined and some of the conceptualisations that have been used for the 
purpose. Afterwards, the process of assessing learning outcomes within the class-
room context, here regarding international large-scale assessments (ILSAs), will be 
discussed in more detail. From the perspective of Medley (1987b), successful assess-
ment of student outcomes involves three essential steps (p. 170). These comprise 
standard tasks or a set of tasks that must be alike or equivalent for all students. Thus, 
the differences in the quality of performance will not arise because of dissimilarities 
in the tasks. Next, a detailed, objective and accurate documentary record is required. 
Finally, a scoring key with clear procedures for developing the criterion score from 
the record is compulsory, ensuring that the same quality can be obtained no matter 
who does the scoring. Robust conceptualisation, instrumentation, design and statis-
tical analyses are crucial prerequisites for these three steps to be fulfilled. ILSAs may 
be seen as the perfect examples of student outcomes assessments in trying to realise 
all these conditions. 

Subsequently, this chapter will also address how technology shapes our under-
standing of students’ learning and outcomes. Finally, we revisit the idea of an 
‘outcome’, examining it in the context of individual students’ characteristics (Type 
G), namely self-beliefs and interest in mathematics.
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2 Being Competent in Math: A Desirable Learning 
Outcome 

Historically, becoming proficient in mathematics has taken on different meanings and 
expectations (Abrantes, 2001; Kilpatrick et al., 2001; Niss et al., 2017). Ever since 
the 1930s, when it came to defining mathematics learning outcomes, the focus was 
primarily on knowledge and understanding of the mathematical content, that is, defi-
nitions and theorems and a clear set of associated procedural skills. However, these 
ideas of being proficient in mathematics were soon confronted (Niss et al., 2017). 
Examples can be found as early as in the work of Polya (1945), who writes that if 
a teacher only focuses on ‘drilling’ their students in routine operations, that same 
teacher destroys students’ interests, hampering their intellectual development. Since 
the 1980s, the National Council of Teachers of Mathematics (NCTM) in the US has 
strongly advocated that problem-solving should be the focus of school mathematics; 
at the same time, basic skills should be defined to include more than merely compu-
tational ability (1980, p. 1). Similar conceptions were nurtured elsewhere, leading 
to a firm footing in the understanding that the overall enactment of mathematics and 
general mathematical thinking is and should be embedded in the different aspects of 
daily activities, school curriculum included (Kilpatrick et al., 2001; Niss & Højgaard, 
2019; Niss et al., 2017). At the same time, it was acknowledged that none of these 
different aspects could stand-alone or contradict one another (Kilpatrick et al., 2001; 
Niss et al., 2017; RAND Mathematics Study Panel, 2003). Notably, despite the devel-
opment in what it means to master mathematics, desired mastery, that is, the outcome, 
was inevitably used as a criterion to assess student learning progress in math, the 
quality of teaching, or even the system (Klieme et al., 2008). Moreover, although the 
criterion-oriented outcome evaluation still has a strong foothold in both practice and 
research, the concept of ‘mathematical knowledge’ has lost its supremacy, and the 
idea of competence has gained momentum both in mathematics education research 
and neighbouring fields like educational psychology (Guskey, 2013; Niss et al., 2017; 
Kilpatrick, 2020b; Sternberg & Grigorenko, 2003; Sternberg, 2017; Weinert, 2001). 
There, the idea of competence was mainly discussed within and in connection to the 
notion of ability and intelligence (Sternberg & Grigorenko, 2003; Sternberg, 2017). 

The concept of competence is one of the most fleeting in the educational litera-
ture (Kilpatrick, 2020b), and arriving at a collective meaning of competence across 
different fields is even more difficult. The concept possesses a myriad of similar 
terms like mastery, proficiency or skill (Niss et al., 2017). Furthermore, one distin-
guishes between a ‘competence’ with a broader meaning compared with the term 
‘competencies’, which refers to the various facets of competence (Blömeke et al., 
2015). 

With the notion that ‘many theoretical approaches and no single conceptual frame-
work’ (Weinert, 2001, p. 46) can be found, Weinert recognises seven different ways 
of defining competence. Weinert’s framework includes general cognitive compe-
tencies, specialised cognitive competencies, the competence–performance model, 
modifications of the competence-performance model, cognitive competencies and
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motivational action tendencies, objective and subjective competence concepts and 
action competence. The idea could be observed as a critical shift within the broader 
context of the presage-process–product research because it moves away from utilising 
a strict cognitive lens. Interestingly, starting in the late 1980s, NCTM Curriculum 
and Evaluation Standards for School Mathematics (1989), besides a focus on cogni-
tive competencies, already included motivational action tendencies, as recognised 
by Weinert, in the form that students should learn to value mathematics and become 
confident in their ability to do mathematics. Revisions in 2000 eliminated these 
attitudinal and dispositional aspects (NCTM, 2000). 

Conversely, specialised cognitive competency frameworks dominate the mathe-
matics field. Also, being context-dependent implies that their advancement can only 
be perceived as a result of an individual’s interaction with relevant situations and 
experiences, such as one encounter during the mathematics class. 

In contrast, Bloom’s taxonomy (1956), with its attempt to outline the cognitive 
goals of any school subject, can be seen as a predecessor of context-dependent 
frameworks today. Its categories of knowledge, comprehension, application, anal-
ysis, synthesis and evaluation, which were later revised by Anderson and Krathwohl 
(2001), do not withstand the criticism that the taxonomy itself does not genuinely fit 
the mathematics field’s needs (Kilpatrick, 2020b). Nevertheless, a competency frame-
work for mathematics may still include a division of the processes alone, leaving out 
the mathematical content or combining the processes and the subject’s content. Exam-
ples of the former are seen in the frameworks proposed by the National Research 
Council in the United States and the well-known KOM1 project (Niss, 2003; Niss &  
Højgaard, 2019) linked to the reform of the Danish education system. Reforms in 
other countries, under similar influences, followed (e.g., Abrantes, 2001; Boesen 
et al., 2014; Nortvedt, 2018). 

The KOM framework 

The KOM project defines mathematical competence as a ‘means to have knowledge 
about, to understand, to exercise, to apply and relate to and judge mathematics and 
mathematical activity in a multitude of contexts, which do involve, or potentially 
might involve, mathematics (Niss, 2003, p. 43). It distinguishes between the eight 
competencies needed for mastering mathematics and is divided into two groups 
(Niss, 2003, 2015). The first gathers aspects of involvement with and in math— 
thinking mathematically, posing and solving mathematical problems and modelling 
and reasoning mathematically. The second group of competencies addresses dealing 
with and managing mathematical language and tools—representing mathematical 
entities, handling mathematical symbols and formalisms, making use of aids and 
tools and communicating in, with and about mathematics (Fig. 1).

1 KOM = Kompetencer og matematiklæring; in Danish: Competencies and the Learning of 
Mathematics. 
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Fig. 1 Competencies within the KOM framework (adapted from Niss, 2003) 

At the same time, it is proposed that the entire set of dimensions has both analytical 
and productive sides (Niss & Højgaard, 2019). In addition, each competency can be 
developed and employed only by dealing with specific topics in math, but their choice 
is not predetermined and may transcend the subject. 

Parallel to the use and development of each of the competencies, the frame-
work also proposes three types of ‘overview and judgements’ that students should 
develop through their study of mathematics. These include its application, its histor-
ical development and its unique nature, which combined with the eight competencies, 
may be used (a) descriptively—to describe mathematics teaching and learning; (b) 
normatively—by proposing outcomes for school mathematics; and (c) metacogni-
tively—aiding teachers and students in monitoring what they are teaching or have 
learned so far. Overall, the critical impact of the KOM framework was in its introduc-
tion and description of the concepts of mathematical competence and mathematical 
competencies (Kilpatrick, 2020b), as well as the possible roles these may play in the 
process of teaching and learning mathematics (Niss & Højgaard, 2019). Ultimately, 
it should be noted that although KOM authors recognise the importance of affective 
and dispositional factors as part of mathematical mastery, these factors are not consid-
ered within the KOM framework. Mathematical competence and competencies are, 
in essence, cognitive constructs. 

Strands of mathematical proficiency 

In contrast to the competency approach, which focuses on what it takes to do math-
ematics, Kilpatrick, Swafford and Findell (2001) focus on mathematics learning.
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Mathematical proficiency is the key concept used for this purpose. The basic premise 
is that mathematical proficiency should not be seen as a unidimensional trait. 
Instead, it should combine five strands that are mutually intertwined and codepen-
dent (Kilpatrick, 2001). Central to this understanding is a concept from the findings 
in neighbouring fields (i.e., ‘cognitive’ sciences, as referred to by Kilpatrick) that 
having a deep understanding involves learners being able to connect pieces of existing 
knowledge. In turn, such a ‘connection’ is an essential factor in facilitating whether 
learners can use what they know effectively while solving (mathematical) problems. 

The following strands are pertinent to the framework (a) conceptual under-
standing—comprehension of mathematical concepts, operations, and relations; (b) 
procedural fluency—a skill needed to carry out procedures accurately, fittingly and 
flexibly; (c) strategic competence—an ability to articulate, formulate, represent, and 
solve mathematical problems; (d)adaptive reasoning—a capacity for logical thought, 
justification, explanation and reflection; and (e) productive disposition—a habit of 
inclining to see mathematics as functional, useful, and meaningful, coupled with a 
belief in one’s own efficacy (Kilpatrick et al., 2001). To reach mathematical profi-
ciency cannot be achieved by attending to merely one or two of these strands, but 
rather, this calls for instructional programmes that address them all (Kilpatrick, 2001), 
an argument resonating well with the earlier ideas of Polya (1945) (Fig. 2). 

Fig. 2 Five proficiency 
strands. (adapted from 
Kilpatrick et al., 2001)
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Kilpatrick et al. (2001) argue that, although there is no perfect fit between 
the proposed strands and different kinds of knowledge and processes identified 
by researchers within mathematics education or the adjacent fields on the factors 
contributing to learning, the strands do resonate with a substantial body of litera-
ture on the topic. Examples can be found in the investigation of motivation, which is 
considered a component of productive disposition and metacognition, contributing to 
strategic competence. Finally, proficiency strands include motivational action tenden-
cies (Weinert, 2001), compared to the KOM framework, which remains solely in the 
cognitive sphere. 

How is mathematical competence conceptualised in the ILSA? 

Among the frameworks that combine the processes and mathematics content, we 
choose to discuss two coming from the ILSA domain here, given their prevalent 
influence on understanding student competence in mathematics worldwide. The first 
is linked to Trends in International Mathematics and Science Study (TIMSS), which 
was initiated in 1995 and as a follow-up to the IEA’s2 previous studies during the 
1960s through the 1980s. TIMSS uses the curriculum as the principal organising 
concept to see how educational opportunities are provided to students and the factors 
that affect how such opportunities are used by the students (Mullis, 2017). The 
TIMSS curriculum model has three aspects. It comprises the intended curriculum, the 
implemented curriculum and the attained curriculum. These three aspects combined 
represent the mathematics students are expected to master. Since 1995, the TIMSS 
framework has been provided for grades four and eight, with recurrent improvements 
given each four-year cycle (Mullis, 2017). For example, the TIMSS assessment 
frameworks for 2019 were updated from those employed in 2015. In this way, the 
participating countries are provided with a chance for an update regarding their 
national curricula, standards and mathematics instruction for every cycle, keeping 
the frameworks relevant and coherent with the previous assessment. At the same time, 
in each cycle, a particular emphasis is given to a specific aspect of the assessment. 
In the TIMSS 2019 cycle, the focus was on the transition to eTIMSS. This transition 
implied conducting the assessments in the eTIMSS digital format, hence providing 
an enriched measurement of the TIMSS mathematics (and science) frameworks. 
Here, the mathematics frameworks were updated to utilise both digital and paper 
assessment formats. About half the countries participating in TIMSS 2019 transited 
to eTIMSS, and the process has continued into the 2023 cycle. 

In 2019, the frameworks for both grades four and eight were organised around 
two dimensions: (1) content dimension (i.e., subject matter to be assessed) and (2) 
cognitive dimension (i.e., thinking processes to be assessed; Lindquist et al., 2017). 
See Table 1 for details.3 

The content domains differ between grades four and eight, thus reflecting the 
topics taught at each level. For example, the ‘number’ is emphasised more in grade

2 International Association for the Evaluation of Educational Achievement. 
3 For examples on TIMSS tasks from the 2019 cycle see https://timss2019.org/reports/achievement/ 
and accompanying exhibits for grades four and eight.

https://timss2019.org/reports/achievement/
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Table 1 Domains of mathematical competence within the TIMSS framework (adapted from 
Lindquist et al., 2017) 

Grade 4 Grade 8 

Content domain 

Number Whole numbers, 
expressions, simple 
equations, relationships, 
fractions and decimals 

50% Integers, fractions and 
decimals, ratio, 
proportion, and per cent 

30% 

Algebra Expressions, operations, 
equations, relationships 
and functions 

30% 

(Measurement and) 
Geometry data (and 
Probability) 

Measurement, geometry 30% Geometric shapes and 
measurements 

20% 

Reading, interpreting, and 
representing data, using 
data to solve problems 

20% Data, probability 20% 

Cognitive domain 

Knowing Recall, recognise, 
classify/order, compute, 
retrieve, measure 

40% 35% 

Applying Determine, 
represent/model, 
implement 

40% 40% 

Reasoning Analyse, 
integrate/synthesise, 
evaluate, draw 
conclusions, generalise, 
justify 

20% 25%

four than in grade eight, at which point algebra is also introduced. Although in grade 
four, the section on ‘data’ focuses on collecting, reading and representing data, the 
interpretation of data, basic statistics and the fundamentals of probability are the 
focus in the eighth grade. Also, about two-thirds of the items demand that students 
use applying and reasoning skills. The cognitive domains are alike for both grades, 
with less of an emphasis on the ‘knowing’ domain for grade eight. Altogether, they 
largely resemble earlier Bloom’s taxonomy categories (1956). 

Similar to the notion of Bandura on the distinction between knowing and being 
able to use one’s own skills well when under diverse settings (1990), the question 
on which skills young adults at the end of (compulsory) education would need to 
be able to play a constructive role as citizens in society was the guiding principle of 
OECD policymakers in setting up an international programme to assess the outcome 
of schooling (OECD, 1999, 2003, 2013a, 2018; Trier & Peschar, 1995). Unlike 
TIMSS, the Programme for International Student Assessment (PISA) crosses the 
boundaries of school curricula by taking a functional view (Klieme et al., 2008) with 
the idea of being prepared to cope with the demands and challenges in the future. This
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cross-curricular competence or life skill becomes central within the PISA framework 
(OECD, 1997, 2013a, 2018). 

In the context of mathematics, the PISA framework initially defined mathemat-
ical literacy4 as ‘an individual’s ability, in dealing with the world, to identify, to 
understand, to engage in and to make well-founded judgements about the role that 
mathematics plays, as needed for that individual’s current and future life as a construc-
tive, concerned and reflective citizen’ (OECD, 1999, p. 41). Also, the mathematics 
framework drew a clear parallel to the eight competencies of the KOM framework, 
but here with the label of skills (e.g., modelling skill, Niss, 2015). Succeeding frame-
works alternate ability with the ‘capacity to reason mathematically and to formu-
late, employ and interpret mathematics to solve problems in a variety of real-world 
contexts’ (OECD, 2018). 

PISA 2003 was the first to focus on students’ mathematical literacy. Its frame-
work entailed situations/contexts (i.e., personal, educational/occupational, public, 
and scientific) in which the problems were situated. The mathematical content cate-
gories (i.e., quantity, space and shape, change and relationships, uncertainty) and the 
processes (i.e., thinking and reasoning; argumentation; communication; modelling; 
problem posing and solving; representation; using symbolic, formal and technical 
language and operations; and the use of aids and tools) were employed to solve 
them (OECD, 2003). The latter serves the purpose of supporting matematisation, 
representing constitutive parts of a comprehensive mathematical competence (Niss, 
2015). In the 2003 framework, relying on the work of Niss and colleagues is even 
more prominent. 

With the 2012 PISA round, the mathematics framework grew significantly, eventu-
ally including a more progressive organisation of the contexts (i.e., societal was intro-
duced), content (i.e., data were combined with uncertainty) and processes that have 
undergone a more significant change. This change has led to the following division 
of the processes students engage in as they solve problems: formulating situations 
mathematically; employing mathematical concepts, facts, procedures and reasoning; 
and interpreting, applying and evaluating mathematical outcomes. The associated 
underlying fundamental mathematical capabilities, which replaced earlier mathe-
matical competency (Niss, 2015), include communication, representation, devising 
strategies, mathematisation, reasoning and argument, symbolic, formal and technical 
language and operations and mathematical tools (OECD, 2013a).5 Redefining funda-
mental capabilities served the purpose, among other things, to clearly set the stage 
for a scheme to analyse the requirements of PISA items. 

Finally, PISA 2022 has aimed to consider mathematics in a ‘rapidly changing 
world driven by new technologies and trends in which citizens are creative and

4 For a more thorough discussion on the notion of mathematical literacy see Jablonka (2003). Overal, 
the argument drawn is that literacy focusses on the individual’s ability to use the mathematics they 
are supposed to learn at school. 
5 Example items may be found at https://www.oecd.org/pisa/test/PISA%202012%20items%20for% 
20release_ENGLISH.pdf. 

https://www.oecd.org/pisa/test/PISA%202012%20items%20for%20release_ENGLISH.pdf
https://www.oecd.org/pisa/test/PISA%202012%20items%20for%20release_ENGLISH.pdf
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engaged, making nonroutine judgements for themselves and the society in which 
they live’ (OECD, 2018, p. 7) (see Fig.  3). 

These shifts focus on the capacity to reason mathematically. At the same time, 
the effect technology has created, fosters the need for students to understand compu-
tational thinking concepts that are part of mathematical literacy. The theoretical 
foundations of the PISA mathematics assessment are still based on its fundamental 
concept of mathematical literacy, here relating mathematical reasoning and the three 
processes of the problem solving (mathematical modelling) cycle. The framework 
defines how mathematical content knowledge is organised into four content cate-
gories that are coupled with four context categories that situate the mathematical 
challenges students face. Novel to the framework is a more detailed description of

Fig. 3 PISA 2022 mathematics framework—the relationship between mathematical reasoning, 
the problem-solving (modelling) cycle, mathematical contents, context and selected twenty-first-
century skills (adapted from OECD, https://pisa2022-maths.oecd.org/); Note: This is an adaptation 
of an original work by the OECD. The opinions expressed and arguments employed in this adaptation 
are the sole responsibility of the author of the adaptation and should not be reported as representing 
the official views of the OECD or of its member countries 

https://pisa2022-maths.oecd.org/
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mathematical reasoning that includes six basic understandings that deliver structure 
and support. The basic understandings include (1) understanding quantity, number 
systems and their algebraic properties; (2) valuing the power of abstraction and 
symbolic representation; (3) seeing mathematical structures and their regularities; 
(4) distinguishing functional relationships between quantities; (5) using mathemat-
ical modelling as a lens onto the real world; and (6) understanding variation as the 
fundamentals of statistics. 

To sum up, irrespective of whether a competency framework is hierarchical (e.g., 
Bloom), whether it addresses topic areas in mathematics (e.g., TIMSS) or not (e.g., 
KOM framework), or what its primary use is (normative vs, descriptive), the frame-
works serve the purpose of demonstrating that the learning of mathematics and 
outcomes at the end is more than acquiring a myriad of facts. Instead, mastering math-
ematics as an outcome of learning (Type A) involves grappling with its content and is 
more than carrying out well-rehearsed procedures. Although school mathematics is 
often seen as a simple match between knowledge and skill, competency frameworks 
challenge this view, affecting curricular contents more and more (Abrantes, 2001; 
Boesen et al., 2014; Nortvedt, 2018). Even if it may appear that the frameworks 
do not communicate well, fundamentally, some form of mathematical modelling is 
described in each (i.e., in PISA ‘formulate’, ‘employ’ and ‘interpret’ or in TIMSS 
by ‘applying’ and ‘reasoning’). Still, how explicitly this is stated (e.g., in KOM 
modelling competency), of course, varies. What separates KOM from the PISA and 
TIMSS frameworks is that the latter consider the reality of ILSA; that is, clear opera-
tionalisations are needed for measurement to take place (Medley, 1987b)—‘elements 
have to be separable to be measurable’ (Niss et al., 2017, p. 241). A clear example of 
this principle can be found in the introduction of the fundamental capabilities within 
the 2012 PISA mathematics framework. In the following section, we focus on how 
learning of mathematics and its outcomes are captured. 

3 Assessment of Student Outcomes 

It has been argued that as long as there were students learning mathematics in one 
form or another, they experienced some form of assessment, either to observe the 
impact of the teaching they have been exposed to or how much of the content they 
have mastered themselves (Niss, 1993; Suurtamm et al., 2016). Thus although it may 
seem that discussing student learning outcomes has picked up in intensity recently, 
especially when the results of ILSAs are concerned, measuring student outcomes 
has a long tradition. Furthermore, Kilpatrick (1993) maintains that the notion of 
assessing the mathematics students have learned was unavoidably entwined with the 
questions of who should receive additional mathematics instruction and how that 
instruction should be brought about. Thus, assessment and measuring outcomes are 
an integral part of teaching and learning from the beginning (Suurtamm et al., 2016). 

According to Niss et al. (1998), in mathematics, the term assessment refers to the 
identification and appraisal of students’ knowledge, insights, understanding, skills,
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achievement performance and capability in math. Pegg (2002) later contests this, 
stating that the dominant view of assessment in mathematics has been focused on 
content, specific skills and the production of these in a given situation. In addition, 
when assessments are being made, they are never free of context, serve different 
stakeholders and are bound by the available resources. So within the classroom 
context, although assessing students’ problem-solving skills may be inviting, many 
teacher-made tests will still focus on computational skills because these are often 
less time-consuming (Palm et al., 2011). 

Conversely, one of the principal reasons assessment of student outcomes has 
attracted increased attention from the international mathematics education commu-
nity is that during the past couple of decades, the field of mathematics education has 
developed considerably (Suurtamm et al., 2016). Nevertheless, assessment practice 
seems to be somewhat lagging (e.g., paper and pencil is still the dominant format), and 
the ideas of mathematics as a hierarchically organised school subject and a vehicle for 
regulating education still seem to be alive (Kilpatrick, 1993, 2020a). Thus, the chal-
lenge of assessing students’ learning gains in mathematics still focuses on producing 
measures that allow for an understanding of how students come to use mathematics 
(Type A) in different social settings and how one can create mathematics instruction 
that helps them use mathematics even better (Type C) (Blazar, 2015; Blömeke et al., 
2016; Hiebert & Grouws, 2007; Kilpatrick, 2020a; Manizade et al., 2022; Medley, 
1977, 1987a). 

However, one needs to acknowledge that the variety of assessment practices 
has been increased. Still, Nortvedt and Buchholtz (2018) recognise that discus-
sions within the field of mathematics education are often influenced by discussions 
in neighbouring disciplines (e.g., educational psychology), ultimately affecting the 
purpose, conceptualisation and chosen outlets of assessment. To date, the purpose 
of assessing student outcomes in mathematics has varied. Although debates are still 
very much alive on what the purpose of mathematics education is (Niss, 2007; Niss  
et al., 2017) or the optimal teaching practices (e.g., Blazar, 2015; Hiebert & Grouws, 
2007; Hill et al., 2005), the same goes for what should be the primary purpose 
of assessments in and of mathematics. Although some strongly argue that assess-
ments should be used mainly to improve learning (e.g., Black & Wiliam, 2012; Niss, 
1993), the formative-summative debate—coupled with the existence of ILSAs and 
national tests—ignites the ongoing discussions, despite attempts to merge some of 
the contrasting perspectives (e.g., Buchholtz et al., 2018; Nortvedt & Buchholtz, 
2018). Each type of assessment may target different audiences and needs. While 
some have the purpose of informing policy-making, others are intended to inform 
the teacher teaching a particular group of students (Nortvedt, 2018). These goals can 
also be combined within a particular assessment session. 

‘One size of assessment does not fit all’ 

Student learning outcomes are assessed in different contexts and for different 
purposes (Klieme et al., 2008; Niss, 1993; Kilpatrick, 1993, 2020a; Suurtamm et al., 
2016). These equally include ILSAs (e.g., TIMSS and PISA), evaluations of imple-
mented programmes or classroom assessments. Thus, an assessment is of central
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importance in education (Taras, 2005). Furthermore, given that the realisation of 
many educational decisions, choices and interventions depend on assessments, their 
accuracy in monitoring learning outcomes is pivotal (Klieme et al., 2008). At the indi-
vidual level, assessments provide teachers with an opportunity to promote individual 
learning. However, they may also be detrimental in granting students an opportu-
nity to continue education in the desired field (e.g., entry test to the STEM field in 
higher education). Conversely, assessments that report results at an aggregated level 
(i.e., country score in PISA) assess institutions or systems and advise and inform 
decision-makers and policy. Thus, ‘one size of assessment does not fit all’ purposes 
(Pellegrino et al., 2001, p. 222). 

However, in improving learning outcomes, the discussion is often set on the forma-
tive–summative divide. If we assume that the central aim of educational research 
is to improve teaching and learning processes, formative assessment can be seen 
as one such tool (Black & Wiliam, 2012; Niss, 1993; Pinger et al., 2018; Taras, 
2005; Thompson et al., 2018). Formative assessment is founded on the notion of 
evaluating students’ understanding and progress regularly throughout the process of 
teaching and making use of this information to improve both teaching and learning. 
Consequently, teachers can use this information to adapt their (mathematics) instruc-
tion, aligning it with students’ needs and providing them with feedback to improve 
learning. For assessment to be regarded as formative, it is fundamental that the 
assessment information is used successively to alter students’ learning processes 
(Black & Wiliam, 2009, 2012). Providing students with feedback is a powerful tool 
for changing learning processes and, as a result, is regarded as a key strategy in 
realising formative assessments (Hattie & Timperley, 2007; Klieme et al., 2008). 

At the same time, the assessment of individual achievements may also entail the 
summative evaluation of competencies, either at the individual or aggregated level 
(Klieme et al., 2008; Taras, 2005). Such evaluations help determine whether a student 
has reached a certain level of competence, for example, upon completion of upper 
secondary education. As such, these evaluations have significant consequences— 
representing a high-stake test for the student (de Lange, 2007; Klieme et al., 2008). 
However, if a student takes part in an ILSA survey such as TIMSS and PISA, the 
practical consequences of taking a test are nonexistent (e.g., getting a low mark) at 
the student level (low stakes). In contrast, the consequences of the same assessment 
at the system level may be detrimental and lead to practical decisions at the system 
level (e.g., PISA shock in Germany, de Lange, 2007). 

International large-scale assessment and the field of mathematics 

Robust conceptualisation, instrumentation and design have long been recognised to 
be essential to successful assessment (Medley, 1987b). Large-scale studies utilise 
complex and often representative samples, offer multi-layered, rich data and results, 
allow for the latter’s generalisability and are created to describe and inform about a 
particular system rather than an individual student (Middleton et al., 2015). Of course, 
such studies are also rather costly. Nevertheless, in past decades, many countries have 
opted for some version of large-scale assessment studies. Examples may be found in 
national mathematics tests in Norway (Nortvedt, 2018) and Sweden (Boesen et al.,
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2018) or in the National Educational Panel Study (NEPS) in Germany (Ehmke et al., 
2020) and National Assessment of Educational Progress (NAEP) in the United States 
(NCES, 2021). Common across these is that they attempt to capture what it means to 
be mathematically competent in one way or another. However, despite this ‘common’ 
goal, it can be questioned to what extent they all measure the same thing or the ‘what’ 
of the assessment (Nortvedt & Buchholtz, 2018). A joint criterion or framework 
is missing, similar to measuring and comparing temperatures in different capitals 
across the world without referencing either Celsius or Fahrenheit scales while doing 
so (Cartwright et al., 2003). ILSAs produce such a frame of reference, thus attracting 
much attention in educational research and outside the field, that is, policy and media, 
when discussing the quality of education in different countries and how that quality 
can be improved (de Lange, 2007; Nortvedt, 2018). 

The origins of ILSAs date back to the 1960s, with the International Association 
for the Evaluation of Educational Achievement (IEA) being established in 1959. 
Its purpose was to conduct international comparative research studies focused on 
educational achievement and its factors. In this initial stage, the aim was to under-
stand the vast complexity of the aspects influencing student achievement in different 
subject fields, with mathematics being one of them. The famous metaphor used by the 
founding researchers was that they ‘wanted to use the world as an educational labora-
tory to investigate effects of school, home, student and societal factors’ (Gustafsson, 
2008, p. 1). The argument was that an international comparative methodology was 
essential for investigating the effects of many of these factors. The first study inves-
tigating mathematics achievement in 12 countries started in 1964. The Six Subject 
Survey, conducted in 1970–71, followed the first study, gathering information on the 
subjects of reading comprehension, literature, civic education, English and French 
as foreign languages, and science. Throughout the 1980s, mathematics and science 
studies were repeated. 

During the 1990s, the IEA was transformed. The TIMSS was born, creating a 
slight shift in the focus6 —describe the educational systems that partake in the study. 
The published international reports primarily describe the outcomes alongside back-
ground and process factors. There is no attempt to explain the variations in outcomes 
between school systems—inferences about causes and effects are also omitted. The 
latter, causes and effects, are left to participating countries, with caution being urged 
when claiming causality because of the cross-sectional design of ILSAs (Rutkowski 
et al., 2010). 

In many cases, the results were used to evaluate educational quality as a basis for 
national discussions about educational policy (Cai et al., 2015; Gustafsson, 2008; 
Middleton et al., 2015). This goal was even more prominent with the establishment 
of PISA in 2000 (OECD, 2001). The volume and frequency of ILSAs have increased 
(i.e., every three and four years), along with the number of participating countries 
(e.g., 58 in grade four and 39 in grade eight in the 2019 TIMSS cycle). Both these 
aspects have contributed to comparing and contrasting the systems and particular

6 ‘Third’ in the title Third International Mathematics and Science Study shifted later into ‘Trends’ 
and the same acronyms continue to be used. 
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groups within a system, for example, boys and girls in grade four in Norway or across 
the Scandinavian countries (Cai et al., 2015), helping in identifying the affordances 
and strengths within and across each (Mullis et al., 2016; Mullis, 2017; OECD, 
2013b, 2016). 

Here, in terms of methodological challenges, ILSAs have been questioned on 
whether a single assessment format or particular test can grasp the full image of 
being skilful in mathematics, the ‘how(s)’ of assessment (Nortvedt & Buchholtz, 
2018) and provide comparable measures of curriculum effects across countries (de 
Lange, 2007). Jablonka (2003) addresses this situated nature of mathematics compe-
tence in the context of PISA, stating that the contexts used in the assessment will be 
familiar to some students more than others (e.g., students across Europe, compared 
to students in many of the African countries). Cultural differences are an essential 
aspect in understanding students’ mastery of mathematics as a field (Manizade et al., 
2022). This variation is visible in the ILSA results. For example, PISA 2012 reports 
a significant variance across countries (OECD, 2013b), with as many as, on average, 
43% of the students reporting perceiving themselves as not being competent in math-
ematics. Just within Europe, in the same cycle, the number of students who scored low 
in mathematics (below level 2) was between 10.5% (Estonia) and 60.7% (Albania). 
However, according to de Lange (2007), follow-up discussions about the outcomes 
of ILSAs are often about politics rather than performance, and the consequences of 
having similar or dissimilar results as a neighbouring country may not be taken upon 
in the fashion it was established or envisioned earlier. Taking the example of PISA, 
Baird et al. (2016) claim that the connection between PISA results and policy is not 
consistent. PISA’s ‘supranational spell’ (p. 133) in policy connects to how its results 
are used as a magical stick in political discourse, as though results invoke particular 
policy choices. Instead, they divert from the ideological basis for reforms, indicating 
that the same PISA results could motivate different policy solutions. 

Most often, when a new set of results in PISA or TIMSS for mathematics come 
out, policymakers, media and a part of academia focus on the country rankings using 
the number and position in the league tables as an indication of system quality. Auld 
and Morris (2016) dispute such a view, claiming it reduces the complexity of the 
information ILSAs may provide while decreasing opportunities to identify insights 
that could be used to learn valuable lessons about school effectiveness and inform 
national educational policies. 

In observing the benefits of partaking in ILSA programmes and their relevance to 
mathematics as a field, Sälzer and Prenzel (2014) argue that ILSAs provide a standard 
or benchmark against which countries can measure themselves. In addition, the abun-
dance of data collected about schools, processes and outcomes allows for profound 
insights into policy and decision making and observing particular patterns relevant to 
the teaching and learning process. Cai et al. (2016) are even more explicit regarding 
the affordance of mathematics education gains from ILSAs; these include under-
standing students’ mathematical thinking, classroom instruction, students’ experi-
ences with teaching and students’ disposition for mathematics. All of these are highly 
valid to mathematics education researchers, as well as school leaders and teachers.
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Moreover, with the recent uptake in the use of technology in mathematics class-
rooms, ILSAs can also be a vehicle for understanding what it means to be competent 
in mathematics in a digital environment (Stacey & Wiliam, 2013). 

How does technology affect our understanding of student outcomes in mathematics? 

The use of technology, especially within the past decade, has influenced how mathe-
matics is viewed (Manizade et al., 2022). Technology has enabled a ‘transformation 
of [the field] from static to dynamic symbolic systems through which teachers and 
learners can access knowledge and think’ (Hegedus & Moreno-Armella, 2018, p. 1).  
It has also set a new understanding of students’ competence—including handling 
digital tools (Niss et al., 2017)—affected curricular goals (Gravemeijer et al., 2017) 
and initiated the need for different kinds of assessments to probe students’ skills 
in a new way (Li & Ma, 2010; Stacey & Wiliam, 2013). Several studies have 
analysed technology-enhanced learning environments in mathematics classrooms 
(e.g., Higgins et al., 2019; Hillmayr et al., 2020; Pape et al., 2013). In their meta-
study, Li and Ma (2010) show that the effect of technology may vary. For example, 
technology can promote elementary over secondary students’ achievement or special 
needs education students over the general population. In addition, the positive effect 
of technology has been found to be more significant when combined with construc-
tivist instructional approaches compared with the traditional ones. Drijvers (2015) 
provides caution, stating that the integration of technology in mathematics educa-
tion is a subtle question, whose success and failure occur at the levels of learning, 
teaching and research (p. 147). 

Over the past decade, digital assessments have emerged primarily in the context of 
large-scale assessments of students’ outcomes, both within the national (e.g., Norway, 
Japan, USA) and international contexts. TIMSS and PISA are clear examples of the 
latter. It has been argued that computer-based assessments (CBAs) possess several 
advantages. They allow complex stimuli, response formats, and interactive testing 
procedures and may incorporate computerised adaptive testing (Klieme et al., 2008). 
Regarding the latter, the task (stimuli) presented is designed to fit the individual 
ability level of the test taker (student) in real-time. Feedback procedures may also be 
incorporated (Chung et al., 2008), thus allowing the assessment of learning progress 
(i.e., ‘dynamic testing’). Moreover, CBAs allow for the production of complex and 
interactive stimuli that would be very expensive or difficult to realise on paper. Conse-
quently, the practice may afford the assessment of new competencies previously not 
accessible through more traditional procedures. 

Software suitable for use in the mathematics classroom is also increasingly avail-
able. Its use within the classroom context is advocated for by the argument of 
improving the quality of mathematics teaching and assessment to be more real-
istic and attuned to the needs of the new generation learners (Gravemeijer et al., 
2017; Hoogland & Tout, 2018). The possibility of simulating real-life situations in 
the assessment situation makes CBA an example of what Weinert (2001) describes 
as context-specific cognitive dispositions. 

Although digital tools may enable new and enhanced possibilities for the learning, 
teaching and assessment of mathematics (Drasgow, 2002; Drijvers, 2015; Higgins
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et al., 2019; Hillmayr et al., 2020; Pape et al., 2013), only their appropriate use 
and equal availability to all participants will produce a positive impact (Gravemeijer 
et al., 2017; Higgins et al., 2019; Li & Ma,  2010). With this in mind, a request 
for any assessment is to afford all students the optimal opportunities to demon-
strate what they have learned and can do (Niss, 2007). Such demand holds the same 
for technology-assisted assessments. Although the recent shift towards assessments 
focusing on problem-solving and modelling may benefit from the technology, others 
argue that assessments of student outcomes combining affordances of technology and 
nonstatic item formats allows students to demonstrate mastery of a broader range of 
mathematical skills (Hoogland & Tout, 2018; Stacey & Wiliam, 2013). Conversely, 
although a shift from traditional paper-based to computer-assisted assessments may 
be favourable to a task requiring students to model a solution, Jerrim (2016) warns 
of the possible adverse effects on student outcomes. These risks are primarily in 
danger of appearing if mathematics teaching does not include the use of such tools. 
An interesting finding here may be found in PISA 2012. Together with the regular 
paper-and-pencil test, a computer-based assessment in mathematics was offered as 
an option. Among the European countries that took advantage of this, only a handful 
of countries remained at the same competency level when paper- and computer-based 
assessment results were compared (OECD, 2013b). 

Furthermore, studies show that the impact of computer-assisted assessment also 
relies on students’ prior experience. In some cases, this may include general computer 
skills (Falck et al., 2018; Stacey & Wiliam, 2013), whereas in others, this tackles the 
understanding and use of specific tools (Hoogland & Tout, 2018) or item formats 
(e.g., real-life problems). Hillmayr et al. (2020) show that overall, digital tools posi-
tively affect student learning outcomes. However, the provision of teacher training 
on digital tool use significantly moderates the effect. The effect size is more promi-
nent when digital tools are used in addition to other instruction methods and not as 
a substitute, with intelligent tutoring systems or dynamic mathematical tools being 
more beneficial than hypermedia systems. 

New opportunities with CBAs have opened doors for their use in a different context 
that is still relevant to mathematics teaching and learning. Nevertheless, many of 
these applications are driven by the rapid development of computer technology rather 
than well-founded models and theories. Thus, much empirical and theoretical work 
is needed to link complex measurement potentials to particular learning outcomes 
and (or) instructional practices hence maintaining rigour in the conceptualisation, 
instrumentation and design (Medley, 1987b) of future assessments.
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4 Optimal Self-beliefs and Motivation for Math: 
A New-Old Learning Outcome 

So far, we have discussed students’ learning outcomes as achievement outcomes. 
However, both an array of motivational and ability–belief constructs may be spec-
ified as learning outcomes (Ramseier, 2001). Although Weinert (2001) recognises 
‘cognitive competencies and motivational action tendencies’ as one of the seven 
ways to define competence, in Medley’s reflections (1987a), individual student char-
acteristics (Type G) are seen as mediating the relationship between A (outcomes) 
and B (students’ learning activities). Medley (1987a) states, ‘Even if two pupils 
have identical learning experiences, they do not show identical outcomes because of 
differences in these characteristics’ (p. 105). To date, such a lens has dominated the 
field. ILSAs are a clear example, with domain achievements measured separately 
from attitudinal constructs and the latter often being reported concerning achieve-
ment. An exception may be found in the framework of Kilpatrick et al. (2001), which 
include motivational action tendencies. 

The tradition of observing ‘attitude’ towards mathematics in mathematics educa-
tion research was apparent as early as the 1950s (Zan & Di Martino, 2020). However, 
one fundamental characteristic of the research in that period was the absence of a 
proper definition or theoretical background. Schukajlow et al. (2017) recognise an 
increased interest in attitudinal constructs (i.e., motivation, affect, ability beliefs) in 
mathematics education over the last decade, and similarly, Zan and Di Martino (2020) 
attribute the beginnings of modern research on these topics to McLeod (1992), who 
include attitude among the three factors that define the affective domain. 

At the same time, neighbouring fields—namely educational psychology—have 
flourished in different conceptualisations and frameworks that explain what drives 
human action (e.g., Ryan & Deci, 2016; Eccles & Wigfield, 2020; Hidi & Renninger, 
2006). Several of these frameworks are used in mathematics education research, each 
presenting its terms (Schukajlow et al., 2017). Among them, attitudes, self-beliefs, 
intrinsic motivation and interest are probably the most commonly used. Amid the 
diverse frameworks aiming to explain students’ motivation, expectancy-value (EV) 
theory covers a variety of aspects that affect the decisions students make by relating 
students’ expectancies for success and subjective task values to their achievement and 
achievement-related choices (Eccles & Wigfield, 2020; Wigfield & Eccles, 2000). 

Within the EV framework, expectancies for success originate from a person’s 
domain-specific beliefs that are based on experience or beliefs about their ability 
to succeed in future tasks like solving a mathematical problem. Though the tags 
these beliefs may have had are somewhat different, confidence, self-efficacy and 
self-concept are all found under the category of ability beliefs (Lee & Stankov, 
2018). Furthermore, the EV model recognises four subjective task values. These 
include intrinsic value, attainment value, utility value and cost (Eccles & Wigfield, 
2020; Wigfield & Eccles, 2000). Intrinsic value relates to the anticipated enjoyment 
that one expects to gain from doing a task. The dimension itself is similar in certain 
respects to the concepts of interest (Hidi & Renninger, 2006) and intrinsic motivation
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(Ryan & Deci, 2016). Attainment value relates to identity and how important the task 
is for the individual. Utility value indicates how useful the task is for other goals. 
Again, in certain respects, the utility value is related to the idea of extrinsic motivation 
(Ryan & Deci, 2016). Finally, cost indicates the time, effort, stress and other valued 
tasks put away to fulfil the current task in which an individual participates. 

Today, although mastering math is seen as a requirement in meeting the demands 
of modern life (Boesen et al., 2018; Ehmke et al., 2020; Freeman et al., 2015; Grave-
meijer et al., 2017; OECD, 2016), research demonstrates that students’ task values 
and ability beliefs are fundamental to their optimal outcomes in mathematics (Dowker 
et al., 2016; Marsh et al., 2012; Schöber et al., 2018; Skaalvik et al., 2015; Stankov & 
Lee, 2017; Wang, 2012, Watt et al.,  2012). For example, in PISA 2012, a rise in the 
degree of one standard deviation in self-efficacy was linked to an increase of 49 
score points in achievement—the equivalent of more than one school year (OECD, 
2013b). Similarly, students experiencing low-ability beliefs are potentially at risk of 
underperforming (OECD, 2013b). 

Nevertheless, the relationship between achievement in mathematics and different 
motivational and belief constructs is not always straightforward; neither one portrays 
a unique image (Zan & Di Martino, 2020). For example, Wang (2012) argues that task 
values are stronger predictors of engagement and choices to stay in the field of math-
ematics, while expectations of success predict more immediate student achievement 
outcomes. Watt et al. (2012) similarly conclude on intrinsic value, linking ability 
beliefs to staying within the field (i.e., career choice in math). Prast et al. (2018) 
argue for a unique contribution of perceived competence in predicting subsequent 
achievement in mathematics. 

Gender differences in students’ ability beliefs in mathematics are relatively 
common (Nagy et al., 2010), mostly favouring boys (e.g., Geary et al., 2019). Like-
wise, although it has been shown that among ability beliefs, positive self-concept 
is conducive to student learning and achievement in mathematics (Marsh et al., 
2017), the relationship itself can be direct, indirect (Habók et al., 2020) or reciprocal 
(Schöber et al., 2018). 

Despite this somewhat diverse image on how students’ ability beliefs and task 
values, namely intrinsic value, contribute to achievement in math, that is, what the 
genuine relationship between what Medley (1987a) labels as the A and G type vari-
ables, there is growing support regarding the development of positive self-beliefs 
and interest in math. The latter has gained a foothold given that both self-beliefs and 
interest are regarded as facilitators in students becoming individuals that engage in 
mathematical reasoning, apply problem-solving in daily situations and even choose 
careers in mathematics (Freeman et al., 2015). From the perspective of lifelong 
learning, this is crucial given its end goal of building highly competent, engaged 
individuals. The reasoning backs the notion that competent participants within a field 
are also those who possess certain beliefs about the field itself (Aditomo & Klieme, 
2020), like the use of mathematical reasoning in everyday lives. Also, supporting 
students’ development of positive self-beliefs and interest in math increases the like-
lihood that even students with lower competence will acquire the opportunity to move 
forward in developing their skills and gradually become individuals who engage in,
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for example, applying problem-solving or some form of mathematical modelling in 
daily situations (Callan et al., 2021; Radišić & Jensen, 2021). 

Echoing what Maehr (1976) noted many years ago, that motivation is one of the 
more essential and seldom studied educational outcomes, Anderman and Grey (2017) 
conclude that motivation matters. However, coupled with ability beliefs, motivation 
is still not considered a prized outcome in (mathematics) education. Undeniably, 
‘achievement’ repeatedly triumphs motivation. Although, across many countries, 
decision-makers proudly acclaim the extent high achievement students have reached 
in a particular domain, like mathematics, little focus is given to whether those students 
subsequently wish to continue pursuing a career in mathematics (Anderman & Grey, 
2017). 

5 Concluding Remarks 

Starting from the presage-process–product paradigm and reasoning formed primarily 
in the period after Medley’s reflections (1977, 1987a, 1987b) on relevant research 
variables in understanding mathematics teaching and student outcomes as its ultimate 
goal (Manizade et al., 2022), in the present chapter, an attempt had been made to 
provide an overview of the main lines of rationale in mathematics education research 
on student learning outcomes and their assessment. A point of departure in this 
process has been capturing the basic ideas on what it means to be proficient in 
mathematics and how students’ outcomes could be understood in light of such ideas. 
The focus was on different conceptual frameworks instead of particular theoretical 
background. In doing so, different frameworks were presented, with no ambition 
to capture all of them but instead to sketch the flow of ideas pre- and post-Medley 
times. This was achieved by showing dominant orientations (e.g., the dominance of 
cognitive and context-specific frameworks), their possible similarities (e.g., KOM 
and PISA framework) and dissimilarities in the understandings each of them provides 
(e.g., TIMSS and PISA). 

A discussion on some core aspects of assessing student outcomes followed, 
capturing its historical perspective within mathematics education, including the foun-
dations of the formative versus summative assessment and through the lenses of 
ILSAs, which have strongly affected the assessment process. Although there was 
no particular aim to investigate all methodological challenges related to assessments 
as such, major ideas were discussed by keeping in mind the principle conditions 
Medley (1987b) mentions (e.g., robust conceptualisation, instrumentation, design) 
when discussing the successful assessment of student outcomes. The section ended 
with deliberation on the technology intake and need to link complex measurement 
potentials to particular learning outcomes and (or) instructional practices (Manizade 
et al., 2022). 

Finally, an argument was raised on how student outcomes could be envisioned 
today and the extent this widens or blurs the relationship between the A–G variables 
proposed by Medley (1987a). To date, it remains crucial to grasp at what it means and
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requires to master mathematics. Understanding the role of dispositional factors (e.g., 
ability beliefs and task values) in the conceptualisations of mathematical competence 
is still required (Niss et al., 2017), especially given their fleeting position across 
existing frameworks (e.g., included as one of the proficiency strands but absent from 
the vast majority of other frameworks). Possible recognition could lead to a broader 
and fuller understanding of what it means to be proficient in mathematics without 
solely relying on the cognitive aspect of being competent. Ultimately, this may lead 
to different methodological choices on measuring mastery and shifting the balance 
from cognitive to noncognitive learning outcomes, which, in return, affect choices 
such as applying problem-solving or some form of mathematical modelling in daily 
situations or even pursuing a career in mathematics. Only then could the enactment 
of mathematics, coupled with teaching and assessment, be genuinely in agreement. 
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Mathematics that are not Under Teachers’ 

Control: Offline Variables



Individual Student Characteristics, 
Abilities and Personal Qualities 
and the Teacher’s Role in Improving 
Mathematics Learning Outcomes 

Rhonda M. Faragher 

1 Introduction 

Teachers of students in general mathematics classrooms accept and welcome the 
learners they are assigned to teach. Students’ characteristics influence the planning 
teachers undertake, the learning activities they provide, and the learning outcomes 
achieved by their students as a result. This chapter explores the impact of student 
characteristics that are beyond the control of teachers, and yet are within their powers 
through their actions to make a considerable difference to the mathematics learning 
outcomes of their students (Manizade et al., 2019). 

In recent times, two significant developments—the recognition of streaming (the 
practice of grouping students “within-grade-level on the basis of perceived ability” 
(Forgasz, 2010, p. 57)) as harmful and the recognition of inclusive education as bene-
ficial—have changed the nature of general mathematics classrooms. The research on 
assigning students to mathematics classes based on their achievement has long shown 
that this is a harmful practice (Hunter et al., 2020; Wilkinson & Penney, 2014; Zeven-
bergen, 2005). Streaming is detrimental to not just low and average groups but also has 
limited benefits along with possible risks for high achieving students (Linchevski & 
Kutscher, 1998; Parsons & Hallam, 2014). 

In a separate development, the inclusive education movement, where all learners 
are welcomed and supported in general learning environments, has also become 
prominent. General Comment Number 4 of the United Nations’ Committee on the 
Rights of Persons with Disabilities (2016) distinguishes inclusive education from 
integration, segregation and exclusion. Inclusive education requires the learning 
support needs of all learners to be met within the general classroom where all learners 
are working towards the learning outcomes of their class program. Again the research
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evidence is unequivocal (Hehir et al., 2016)—all learners do better in inclusive educa-
tion environments. Through international charters and conventions, the provision of 
inclusive education has become a requirement of States Parties to these agreements. 
In the case of the United Nations Convention on the Rights of Persons with Disabil-
ities (United Nations, 2006), all but seven countries in the world have signed the 
convention, thereby signalling their intention to provide inclusive education for all 
learners with disabilities. 

For mathematics education, these two evidence-based movements—heteroge-
neous rather than streamed groupings and inclusive education—combine to provide 
strong impetus for the need to teach all learners in general classrooms. In practice, 
this means that teachers can expect to teach students across the breadth of human 
variation. This might seem overwhelming and indeed it would be if the approach 
were to attempt to teach individual lessons to each student in the class. Research 
in this field has led to alternative approaches that indicate approaches that teachers 
might use to plan effective mathematics lessons for all learners, including those with 
intellectual disabilities in the one classroom. These will be canvassed in this chapter. 
In this way, it is argued that teachers use to advantage the characteristics learners 
bring to the classroom, leading to improved mathematics learning outcomes for all. 

2 Literature Review 

Individual student characteristics are beyond the teacher’s control. If we assume 
inclusive classrooms, the students they teach are also beyond the teacher’s control. 
Teachers do not exclude students who have particular attributes, such as intellectual 
disability. The example of intellectual disability is taken here because it is possibly 
the area of student diversity that presents as most instructive for understanding the 
impact of learners’ characteristics on mathematics learning outcomes. The impact 
of learner attributes on the presage, process, and products (PPP) of mathematics 
teaching must be understood for the best learning outcomes to be achieved. 

One challenge encompassing both theoretical and methodological aspects of this 
area relates to the historical approach to the education of low attaining students 
in mathematics. The emergence of two education systems—special education and 
mainstream—has meant the mathematics education of students with intellectual 
disabilities and learning difficulties mostly had been undertaken by special educa-
tion teachers. In recent times, inclusive education has been adopted around the world 
with the aim of educating all students in mainstream classrooms (Florian, 2012) 
and therefore the mathematics education of learners with intellectual disabilities has 
become the task of general mathematics teachers. 

Mathematics education research typically takes a different approach to research 
from that of special education research in the field of mathematics (Xin & Tzur, 2016). 
It is not a happy marriage and reconciliation is not easy. Behaviourist approaches to 
mathematics learning, with a focus on remediating deficits and explicit teaching of 
procedures (often with mnemonics to aid recall of the procedures, see, for example,
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Flores, 2010), have been favoured by many special education researchers in math-
ematics (for a review, see Tan et al., 2019), though not all (see, for example, 
Browder et al., 2012). Special education research focuses on interventions and 
understanding learner deficiencies. Mathematics education research focuses more 
on pedagogy appropriate for learning mathematics. The systematic review by Tan 
and colleagues, sampled literature published between 2006 and 2017 related to math-
ematics education of students with intellectual disabilities. From their review, they 
distilled three categories: Deficit-oriented, Discursively-aligned and Socio-political. 
48% of reviewed articles fell within the sub-category “Behaviorism” of the “Deficit-
oriented” category, where they note, “In these studies, mathematics education is 
characterized as reproducing or memorization of prescribed facts or procedures. … 
Students in these studies are shown a particular sequence of solving mathematics 
problems, followed by assessing their ability to exactly follow each step in the pre-
defined procedure.” (Tan et al., p. 6). The goal of the mathematics taught was found 
to be functional, “research focused on the importance of mathematics fact recall as 
they connected their work to functional life skills and the importance of mathematics 
for everyday tasks such as shopping” (p. 6). 

By contrast, general mathematics education research emphasizes the value of 
mathematics as a discipline and favours less utilitarian views of the purpose of 
learning mathematics, for all students including those with disabilities (Scherer et al., 
2016). In the Tan et al. (2019) review, a category of research was identified that aligned 
with this view of mathematics education research. 

In contrast to the dominant forms of research in mathematics education involving students 
with intellectual disabilities that focuses on direct forms of instruction and basic mathe-
matics skills development …, undermining conceptual construction and understanding of 
mathematics, the studies in this category presume, to a greater extent, that students with an 
intellectual disability are mathematics thinkers and doers, capable of a range of mathematics 
engagement. (p. 8) 

For the purposes of this chapter, providing an overview of current understandings 
in this field, three areas of diverse student characteristics are reviewed: mathematics 
learning disabilities, which are inherent to the student; learned difficulties, which are 
not; and other learner characteristics, not related to intellectual development, that 
have an impact on mathematics learning leading to learning difficulties. 

2.1 Current Understandings of Mathematics Learning 
Difficulties, Disabilities and Dyscalculia 

Some students struggle to learn mathematics. This is hardly a revelation. No matter 
whether the assessment is norm-referenced (with a proportion of the population 
automatically performing worse than expected for their age) or criterion-referenced 
(with a possibly similar subset of the population not meeting learning targets for 
their grade level), teachers, parents, and the students themselves have known that
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learning mathematics does not come easily for all. The source of these difficulties is 
of particular interest because that affects approaches teachers might take to improve 
learning outcomes. 

It would seem that the source of some mathematics learning disabilities is neuro-
biological in origin leading to differences in cognition. Developmental Dyscalculia 
(DD), possibly with sub-types (Skagerlund & Träff, 2016), is a condition caused by 
atypical development of the parts of the brain that support the understanding of quan-
tity such as numerical magnitude processing, the development of a mental number 
line, and the ability to calculate using known facts (Kaufmann & von Aster, 2012; 
Peters & De Smedt, 2018; Skagerlund & Träff, 2016). Diagnosis is not undertaken 
based on brain imaging studies, however. Instead, diagnosis is usually made based 
on the determination of “a serious impairment of the learning of basic numerical-
arithmetical skills in a child whose intellectual capacity and schooling are otherwise 
adequate” (Kaufmann & von Aster, 2012, p. 769). This comparison with progress 
in other areas of schooling or in comparison with other intelligence measures leads 
to the challenge of diagnosing DD in learners with intellectual disabilities who have 
relatively more difficulty in acquiring a sense of number than other areas of learning 
(Cuskelly & Faragher, 2019). The significant challenges of defining mathematics 
learning disabilities by discrepancy from “normal” achievement are well articulated 
by Scherer and colleagues (Scherer et al., 2016). Lewis (2014) draws attention to the 
challenges of diagnosis based on an arbitrary cut-off score and instead advocates for 
analysis of ‘persistent understandings’ that are divergent from correct mathematical 
understanding as an indication of mathematics learning disability. 

Some aspects of difficulties learning mathematics overlap with language diffi-
culties. Dyslexia, a learning disorder characterized by difficulties with language 
and reading, has a documented overlap with difficulties retrieving arithmetic facts 
(Peters & De Smedt, 2018) and is also neurobiological in origin. The area of the brain 
affected is not the same as that proposed for DD. Aspects of mathematics affected 
by dyscalculia also differ from that of dyslexia. Some aspects of arithmetic, such 
as retrieval of number facts, appear to be more language based (Dehaene, 2011). 
The impact of limitations of remembering arithmetical facts could arguably have 
been overstated, being a carry over from a time when the inability to calculate by 
written methods severely hampered further work in parts of mathematics reliant on 
these processes. With the ready availability of alternative methods of calculation, it 
might be the case that number and quantity need no longer be seen as core aspects 
of mathematics upon which the rest of the discipline relies. More research is needed 
in this area (Verschaffel et al., 2016). 

Beyond those learners with mathematics learning disabilities such as DD, there are 
those with learning difficulties. The proportion of individuals who meet diagnostic 
criteria for DD is thought to be in the range of 5–7% (Butterworth et al., 2011). 
However, “a much larger number of children and adults experience less severe or 
less specific difficulties with mathematics which are nevertheless sufficient to cause 
significant educational and occupational difficulties” (Dowker & Kaufmann, 2009, 
p. 339). These learning difficulties with mathematics are the result of factors separate 
from the neurobiological functioning of the learner and reflect low achievement due
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to other factors. These factors include poor teaching, environmental factors, affective 
factors (Lewis, 2014), minority status (Hunter et al., 2020), previous academic attain-
ment, gender, age, health, family socio-economic characteristics (such as parental 
education, income and health), and school characteristics (Parsons & Hallan, 2014). 

Understanding the impact of factors that lead to mathematics learning difficul-
ties has been the focus of mathematics research endeavors (Faragher et al., 2016; 
Scherer et al., 2016; Vale et al., 2016) and the concern of teachers. Lindenskov and 
Lindhardt noted in their study (2020, p. 65) the concern of teachers with the paucity 
of mathematics learning experiences they felt compelled to offer students who had 
difficulties learning mathematics. 

The distinction between the two groups—disabilities and difficulties—is critical 
for intervention. Underpinning both, though, is the need for, and value of, good 
teaching with the right support. 

2.2 Current Understandings of Learned Difficulties 

Low attainment in mathematics, as the argument is building, can be the result of 
learning disability leading to different development, or learning difficulty due to 
factors in the ecosystem of the learner. Low attainment can be the result of a mismatch 
of mathematics education approaches with the needs of the learner (Lewis, 2014; 
Lindenskov & Lindhardt, 2020). 

The third group of low attaining learners is comprised of a group who have 
acquired their difficulties with mathematics while they have been learners at school. 
These are those students who did not commence school with a disability or difficulty 
but through engagement with the school mathematics environment, they acquired 
difficulties with mathematics. This third group can be designated as those with 
learned difficulties. A group of learners in this category that has received research 
attention in recent times are learners with mathematics anxiety (Dowker et al., 2016). 
This group of students can become so fearful of mathematics that they will actively 
avoid even those mathematics tasks that are easily within their capability (Wilson, 
2018). 

Learned difficulties with mathematics can be pervasive, leading to limitations on 
the mathematics individuals are willing to undertake in the contexts of their lives. 
This important research finding, documented in many government reports including 
the influential Cockroft Report from the UK (1982), has led to impacts on concep-
tualization of numeracy—the use of mathematics in life contexts. These models 
acknowledge that it is insufficient to know mathematics and make sense of contexts; 
affective attributes such as willingness to undertake mathematics are also essential 
to consider (Goos et al., 2015). 

While the three groups proposed (learning disabilities, learning difficulties and 
learned difficulties) have been presented as disjoint, intersection between groups 
may well exist. Students with learning disabilities could quite conceivably gain more 
pronounced difficulties via the same mechanisms as other students e.g. development 
of mathematics anxiety.
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2.3 Interventions 

Having outlined three main groups of low attaining students in mathematics—those 
with learning disabilities, learning difficulties, and learned difficulties—attention is 
now turned towards what research indicates might be done to improve the attainment 
of those students. 

Overcoming a neurological developmental difference requires specific attention 
to the cause, with brain-based interventions implicated. Some studies have tested the 
impact of computer interventions based on repeated task training aimed at developing 
new neural pathways (Räsänena et al., 2009) with some localized benefits. Unfor-
tunately, transfer to areas of mathematics learning beyond the immediate training 
tasks was not found. It would seem that treatment approaches that correct neuro-
logical impairments to mathematics learning are yet to be uncovered. Instead, or 
in the meantime, teachers must take other approaches. It is not acceptable to do 
nothing—ways around the barriers to learning must be found if students are to be 
successful at learning mathematics in inclusive classrooms. Lewis’ work (2014) indi-
cates the need for teachers to deeply comprehend the way a student is understanding 
or making sense of a mathematical concept and basing teaching to build from that 
conceptualization towards a correct mathematical understanding. 

For students with learning difficulties, Lindenskov and Lindhardt (2020) indicated 
teachers in their study held a commonly accepted view that low attaining students 
required training and task repetition. These teachers also noted, however, “the low 
motivation of students who are vulnerable partly due to the monotonous and tedious 
tasks they were offered” (p. 65). After engagement with the research project, these 
teachers subsequently noted: “that the early use of calculators may prevent students’ 
low calculating skills to slow down processes towards conceptual understanding” 
(p. 66). This is an important example because it moves beyond a focus on number 
facts and arithmetic, characteristics used by much of the research literature to identify 
mathematics learning disabilities and difficulties. The calculator is used to move 
beyond those early aspects of arithmetic to a much more productive mathematical 
focus on understanding. 

With respect to learned difficulties, overcoming detrimental thinking patterns 
acquired in the school years can be exceedingly difficult to change (Dowker et al., 
2016). Some approaches have been trialed based on techniques used in psychology 
to treat other forms of anxiety. From a mathematics education perspective, this is an 
area of low attainment where the intervention should surely be to prevent anxiety 
from developing in the first place. 

In this section of the chapter, a brief review of research understandings of types of 
student difficulties with learning mathematics has been given. It is now time to turn 
attention to the research investigating work that teachers might undertake to account 
for these student attributes in lesson planning and teaching.
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3 Impact of Students’ Attributes on Their Learning 
Outcomes 

Where do teachers need to take account of these diverse attributes? In the Medley 
(1987)/Manizade et al. (2023) framework, we are looking at the impact of Type G 
(student attributes) on the relationship between Types B (learning activities) and A 
(learning outcomes). It is not possible to teach separate lessons to each student in 
the class, nor desirable, and yet the current focus on learning trajectories and more 
traditional approaches of teaching from where the student is at might suggest that is 
required. The implicit assumption is that mathematics is inherently hierarchical and 
rarely questioned (Forgasz & Cheeseman, 2015) and therefore, learners follow the 
same path, though perhaps at different rates. There is an alternative view, that there 
are many paths to mathematical achievement. 

If we were to make the assumption, or perhaps working hypothesis, that alter-
native pathways to mathematics attainment are possible, we could then consider 
some alternative approaches to curriculum design and the planning of mathematics 
learning activities by teachers. In this section, three will be considered: Universal 
Design for Learning, the use of digital solutions, and year level adjusted curriculum. 

3.1 Universal Design for Learning 

Universal Design (UD) was first used in architecture where it was suggested that new 
buildings and spaces could be made accessible by their design from the beginning. 
The underpinning idea required consideration of access for individuals with disabil-
ities, and all others, as a key principle in the design phase of architectural planning. 
In brief, UD involves the design of products and environments to be useable by all 
people to the greatest extent possible without the need for adaptation or specialized 
design. The impact of UD in public building design is obvious, once noticed. The 
frustration of lack of access or the expense of adding facilities to provide access 
for an individual after a building is completed is avoided. In countries where UD is 
written into building design codes, we come to expect that there will be ramps or 
lifts, easily accessible light switches and power points, good lighting and accessible 
toilet facilities. If we need them, they are there, if we do not, they do not impede our 
use. 

The idea of UD was expanded into other areas and by the late 1990s, it was 
applied to education. Meyers and Rose, researchers at the Center for Applied Special 
Technology (CAST) developed an application of UD to learning situations and coined 
the phrase Universal Design for Learning (UDL) (CAST, 2020). In an analogy to 
universal building design, UDL emphasizes meeting as many learning support needs 
as possible in the one lesson plan. The key feature of the designed curricula is 
the promotion of access, participation, and progress in general education for all 
learners. UDL becomes a way of thinking: planning (presage) always to provide
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multiple ways of presenting information, engaging with content, and demonstrating 
accomplishment. Diversity is expected, planned for, and valued for adding richness 
and alternative ways of thinking about the topic. 

The use of rich problem solving tasks, an established practice in mathematics 
pedagogy (Chan & Clarke, 2017), is an example of how teachers might engage 
and challenge all learners in the one classroom with the one task (Lindenskov & 
Lindhardt, 2020; Sullivan, 2017). There are many sources of tasks of this nature 
and in the collection of Downton et al., (2006) they also provide work samples 
from students demonstrating different ranges of performance and accomplishment 
on each task. For example, Mason et al., (2010, p. 184) offers the following task: 
“What numbers have an odd number of divisors?” In order to plan to use this in an 
inclusive classroom, a teacher would consider what students would need to know to 
be able to make a start. What “enabling prompts” (Sullivan et al., 2006) would be 
needed? Understanding the question is likely to be needed, including definitions of 
keywords, such as “divisor”. Ways to find divisors (factors) of numbers would be 
needed. Demonstrating an example with blocks would be one way. For example, a 
teacher might show how to find the factors of 12 by taking 12 blocks and arranging 
them in rectangles. The side lengths are the factors. A teacher would also need to 
prepare ways to extend the problem for learners who have solved the original task. 
Mason et al. suggest “Is there a number with exactly 13 divisors?” as one option. 

Just as universal building design will not meet the needs of some users with 
very specific needs, some learners require very specific adjustments. These adjust-
ments can be added into the planning stage when those requirements are known. For 
example, one learner with Down syndrome in a senior secondary mathematics class, 
who was involved in the research project discussed in the later section (see Faragher, 
et al., 2019, for details), required step-by-step instructions for using his graphics 
calculator. His teacher prepared these adjustments as part of her lesson planning 
for specific topics. Any additional adjustment she made, she also provided for other 
students. In the case of the graphics calculator instructions, she made and laminated 
two copies—one for the student with the individual plan, and the other was placed 
on the table at the front of the class for use by any other student (and many did). 

3.2 Digital Solutions 

It is undeniable that technological advances have made astonishing possibilities for 
adjustments in mathematics classrooms. They have also fundamentally changed the 
nature of numeracy. Numeracy is the use of mathematics in life contexts and therefore, 
how we engage with these contexts and the technology available for our use, changes 
our numeracy needs. Implications for learners with intellectual disabilities have been 
discussed previously (Faragher, 2019). When we consider the impact of Type B 
activities (Student Mathematics Learning Activities) on learning outcomes, it can be 
argued that there is a fundamental change needed here: in what students are required 
to do, and what they need to be taught for numeracy development.
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Digital solutions also affect how we know what students are able to do and 
understand as a result of learning. It is possible to go far beyond the time-honored 
techniques of tests and examinations to gather evidence of students’ mathematics 
learning. For students who find writing difficult, we can record them demonstrating 
techniques or presenting their work to peers. For students who have limited expres-
sive language, we can observe them making choices or undertaking adjusted tasks. 
Video records can capture the ‘aha’ moments. In a recent research study discussed 
in Sect. 5.2 below (see Faragher et al., 2019, for background), such a moment was 
captured on video. The researcher and teacher were working in a secondary math-
ematics classroom with a student with Down syndrome. The student had limited 
expressive language. He was working on trigonometry with other students in the 
class, including his friend without a disability who was helping him learn to distin-
guish right-angled triangles from other triangles. The moment when the student 
reached for a right-angled triangle from a collection of possibilities, rather than 
testing at random, was observed by the researcher and the teacher, and captured on 
the video recording. In this way, the video recording is an example of a digital solu-
tion where a record of learning is made that can be analyzed and used to confirm 
learning. Of course, a camera has to be on at the time and except in the context of 
research studies, it is unlikely to be the case in routine classroom activities. However, 
the use of video can be used strategically. For example, in the concluding phase of 
a lesson, where a teacher wishes to gather evidence of learning, particularly from a 
student with communication limitations, a video clip could be taken of the student 
demonstrating the performance of a task. 

Individual learner characteristics (Type G) affect the types of activities they are 
given (Type B) that allow them to demonstrate their learning (Type A). Digital options 
allow many more valid approaches to the assessment of learning with the likelihood 
of uncovering Type A outcomes that may never have been imagined. A study of the 
use of technology for formative assessment of mathematics was undertaken by Dalby 
and Swan (2019). They considered “the potential for iPad technology to facilitate 
and enhance formative assessment processes by contributing to the construction of 
richer and more efficient processes, that bring benefits to student learning” (p. 835). 
In the research, six lessons were co-designed with teachers and researchers, and 
these were then trialled in two secondary schools in the UK. The research used “a 
cyclical process of design, testing, feedback, reflection and redesign” (p. 836). Data 
analysis of the process of formative assessment used coding and categorization from 
which five categories emerged. The analysis indicated the potential for the use of 
technology for assessing mathematics using existing pedagogies while cautioning 
that “the greatest challenge for teachers in using technology in the classroom is not 
the technology but an understanding of the process by which it can enhance student 
learning.” (p. 843). More research into the use of digital solutions for assessing 
learning, particularly of students with intellectual disabilities, is needed to understand 
its full potential. 

Sometimes, the promise of digital solutions is promoted as the panacea for 
improving the learning of low attaining students, and particularly those with disabil-
ities. It is clear that while these tools do hold great promise, they are not sufficient in
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themselves and the other variables around teacher classroom practice need greater 
exploration. In this chapter, the possibilities the digital context affords to teachers 
are recognized in conjunction with other aspects of their work. 

3.3 Adding Adjustments to Year Level Curriculum 

The learning theorist Bruner argued that it is possible to teach any topic to a school 
aged child in an intellectually honest manner (Bruner, 1960, 1977). Over the years 
since then, examples from mathematics have emerged where students have indeed 
been taught seemingly more sophisticated mathematics than their years or curriculum 
attainment would suggest would be possible. Intriguing examples have emerged from 
Italy, a country that has not had a special education system for more than 50 years 
and so has had opportunity to explore possibilities of curriculum innovations. In a 
paper by Monari Martinez and Bennetti (2011), we see examples of students with 
significant intellectual disabilities being taught and achieving learning outcomes in 
areas of mathematics such as algebra and coordinate geometry. Perhaps the most 
astonishing is a student who learned to use the distance formula to find the distance 
between two points and then graphed these on centimetre graph paper. Subsequently, 
the student came to understand measuring with a ruler as she learned the ruler could 
be used to obtain the same answer as she had already calculated. 

Learning how to measure with a ruler through co-ordinate geometry is beyond 
intriguing to be completely counter-intuitive. Replication studies are needed to deter-
mine if the specifics of that particular study can be repeated. Further research with 
similar results from other areas of mathematics is already emerging, however. Studies 
from the United States also indicate what is possible (Browder et al., 2012; Creech-
Galloway & Collins, 2013). In the United States, the “No Child Left Behind” legisla-
tion encouraged the development of teaching approaches to support the requirement 
that all students would be assessed on the curriculum aligned with their grade level 
(Browder & Spooner, 2014). 

Known variously as “age-appropriate”, “grade-aligned” or “year-level” 
curriculum, teachers have devised innovative approaches to learning design 
(Browder & Spooner, 2014). I choose to use the terminology of year-level adjusted 
curriculum (YLAC) because some students are older or younger than their class 
peers due to a number of possible factors including transfer across school districts, 
ill-health, and delayed entry. The purpose of adjusting the year-level curriculum is to 
begin with the curriculum being planned for the class and then meet specific learning 
needs by planning adjustments. 

In the YLAC approach, teachers begin with the curriculum for the year level 
they are teaching; that is, they start with the lesson as they intend to plan for their 
assigned class. This approach is discussed in more depth elsewhere (Faragher, 2017; 
Faragher et al., 2019), and outlined here. Using principles of UDL or other planning 
methods, teachers plan multiple approaches for each aspect of their lesson, ensuring 
the learning support needs of as many students as possible are provided for in the
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standard plan. This means that enabling prompts to assist learners to enter a learning 
task are provided as well as extending prompts to ensure all learners, and particularly 
gifted and talented students, are challenged in the lesson (Sullivan et al., 2006). 
Similarly, provisions for students with language, social-emotional, physical, and 
sensory needs are planned. 

Once the lesson has been planned, teachers then consider specific additional 
adjustments that may be required by some learners. In research studies exploring the 
practices of teachers who were including students with Down syndrome in regular 
primary and secondary mathematics classes (Faragher & Clarke, 2020; Faragher 
et al., 2019), teachers considered each stage of the lesson and thought about where 
the student might face barriers. At this point, teachers would look for ways to work 
around the barriers. These situations arose where students’ impairments were having 
an impact on their work, such as difficulties hand-writing or using the layout of a 
calculator. On occasion, the barriers were to do with intellectual disability, though 
these were mostly attended to in the general plan. 

In these three approaches to lesson planning (UDL, digital solutions, and YLAC), 
the impact of the characteristics of learners (Type G), is clear. Diverse classrooms 
bring a diversity of Type G variables that directly affect the work of teachers. In the 
decades since inclusive education has become policy around the world, the nature 
of teachers’ work has fundamentally changed as well. This work, and the impact 
of Type G variables on learner outcomes, needs much greater exploration. In the 
following section, a more detailed analysis of examples from two recent studies into 
YLAC provide an illustration of the interaction between Type G factors and Type B 
(student learning activities) and Type A (learning outcomes). Through this analysis, 
an overt investigation of the interaction of these variables can be considered. 

4 Learning Year Level Curriculum 

At the turn of this century, a significant research project in Australia was under-
taken to track the early numeracy development of children (Clarke et al., 2002). The 
project developed task-based interviews for teachers to use with their students to track 
their mathematical development. In a subsequent study, the interview was adapted 
to explore the mathematical development of young children with Down syndrome. 
While the interview had been used with children enrolled in special schools (Clarke & 
Faragher, 2004), to our knowledge, it had not been used with children with Down 
syndrome. Down syndrome is a genetic condition leading to varying degrees of 
intellectual disability. Difficulties with number have been documented in research 
literature for decades (and often incorrectly generalised to difficulties with mathe-
matics in general). Other areas of mathematics attainment have rarely been studied 
until recent times (Faragher & Clarke, 2014).
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In our research project (Clarke & Faragher, 2014; Faragher & Clarke, 2014), 
we became aware that some children seemed to be making greater progress than 
others and that there appeared to be a teaching effect. We wished to know more 
about the classroom environments where these children were developing their early 
mathematics knowledge. 

4.1 Learning Year Level Mathematics Curriculum 
in Primary Schools 

So began a study of learning year-level mathematics curriculum in primary class-
rooms by children with Down syndrome. We were focused on the work of teachers, 
rather than the students themselves as we observed their teaching practice over one 
school year. In our project, professional learning workshops were interspersed with 
classroom lesson observations and interviews with teachers about their work. As 
reported in a recent paper (Faragher & Clarke, 2020), there were indeed practices that 
teachers adopted, in response to the learning characteristics of their students (Type 
G), that had an impact on the learning outcomes of students with Down syndrome 
(Type A) within inclusive classrooms. In that study, it was clear that effective teachers 
expected all students to think mathematically and were focused on ways to engage 
their students with Down syndrome in cognitively challenging mathematics. They 
made judgments in lessons about when to withhold from telling a student the answer, 
and instead, encouraged them to persist. Teachers also had a clear focus on the math-
ematics of the year-level and they communicated that focus to teaching assistants 
(adult helpers without teaching qualifications) assigned for the lesson. The math-
ematical focus of the lesson for the student with Down syndrome was the same 
as for the rest of the class and teachers made adjustments to enable that to occur. 
Consideration of the learning needs of the student occurred at the planning and 
lesson implementation stages. A key finding was that “the provision of reasonable 
adjustments in mathematics is highly skilled work exemplifying high-quality math-
ematics teaching. This involves knowledge of the learner, the mathematics and how 
to teach it” (Faragher & Clarke, 2020, p. 141). In the context of education research 
variables, here is the interplay between Type G variables (individual student char-
acteristics, abilities, and personal qualities) and resulting learning outcomes (Type 
A). The provision of reasonable adjustments to allow students with disabilities to 
access the curriculum is a requirement in law in many countries, and specified in the 
UNCRPD. Determining and planning reasonable adjustments requires a teacher to 
carefully consider the learning characteristics of students at all stages of the presage, 
process, product model of classroom learning. 

In our work with primary school teachers, it was evident that good teaching and 
the right support had an important impact on the mathematics learning outcomes of 
their students with Down syndrome. In the Medley/Manizade et al. model (2023), 
we can see the interaction of research types at play here and these will be discussed 
in the implications section below.
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4.2 Learning Year Level Secondary Mathematics 

The primary mathematics research led naturally to consider possibilities in secondary 
mathematics. In particular, a parent had learned of early findings of the primary 
project and was keen to have her school consider implications for her son (called 
“Brian” in the project) in year nine. At the time, he was struggling with single digit 
addition and was being given worksheets with simple examples, such as 5 + 3, 
written vertically. Brian was acutely aware that this work was childish and what 
is worse, he found it difficult. His teacher asked for advice and following a short 
conversation, planned an adapted worksheet on the topic being taught to his class— 
linear functions. A clever aspect of the planned adjustment was that Brian ended up 
doing lots of single digit addition, but now in the context of algebra where he was 
substituting for variables. He now enjoyed doing this work. As a result of this initial 
success, the school became instigators of a broader research project that involved the 
teaching teams of five students with Down syndrome in three Australian states over 
two years. 

Background to the research study, including the methodology and methods 
involved have been discussed previously (Faragher et al., 2019). In this chapter, the 
mathematics learning of three of the students is studied through the analytical lens of 
the Medley/Manizade et al. (2023) framework. In analyzing the case studies, the focus 
will be on how individual student characteristics (Type G) mediate the connection 
between student mathematics learning activities (Type B) and the resulting learning 
outcomes (Type A). 

In the sections below, three of the students will be introduced—Brian, Jay, and 
Mary. I have used pseudonyms for each. First, I present a brief description of their 
learning context before moving to give a short overview of key aspects of the different 
variable types. 

4.2.1 Brian 

Brian has Down syndrome and attended a mainstream Catholic boys’ school. At 
the time of the study, Brian was in his final two years of secondary school, studying 
Prevocational Mathematics. This is a subject designed for students who require math-
ematics beyond school in areas such as employment and trades. It is not designed 
for students intending to study at university. 

Brian’s teacher had a genuine expectation that Brian could be successful at 
learning the mathematics content of his course. She focused her planning on consid-
ering barriers Brian might face and then working out what adjustments might be 
needed to assist him. In an interview, when asked about additional planning load, 
she agreed there was extra work involved but she discounted this as a problem. Her 
point was that while she was spending time making resources and undertaking task 
analysis for various procedures, this was an investment in future work because “there 
will always be students of mine who need this support”. She made a particular point
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of making two copies of any resource—one for Brian, and one for the rest of the 
class. Students in one observation lesson were seen to access the instruction guide 
for calculating means, medians, and modes. 

Learner characteristics affected the teacher’s planning of assessment activities 
that would be supported by the teacher aide. She felt that a page of exercises would 
be daunting and so she took the required exercises and reprinted them in a more 
engaging format. The advantage of electronic texts was clear here, as the reformatting 
was relatively straightforward. She often used color coding so that Brian would be 
able to have a visual cue to the type of task involved. She had developed this strategy 
through her experience of working with Brian over time. 

Most of the assessment for this Prevocational course was undertaken by assign-
ments involving rich tasks that students completed during class time. One example 
was a task where students were to design a car park. Another was to investigate 
various data representation approaches in the quantity control of matches. Each 
required mathematics techniques from different branches of mathematics, in these 
cases, geometry and statistics. Planning the work for Brian involved breaking the 
assessment activities into smaller sections, considering the mathematics required 
and then undertaking a task analysis to break the learning into small steps. A further 
consideration was the work to be undertaken by the teaching assistant. At the start of 
each lesson, the teacher would spend a short time with the teacher aide (not neces-
sarily the same person each lesson) explaining the mathematics and indicating what 
she required Brian to do. It was not her expectation that the teacher aide would be 
solely responsible for teaching Brian. 

During class, Brian worked on the assigned tasks, supported by his teacher aide 
who assisted with understanding the task instructions. The teacher would move 
around the room assisting students as they needed. She would also routinely move 
to check on Brian’s progress. In the observation lessons, the interaction between 
the teacher, the teacher aide and Brian was noted. On one occasion, Brian needed 
assistance with a particular part of the carpark assignment. He was incorrectly using 
his calculator to find the perimeter. When his teacher approached, she sat down in 
the chair beside Brian to assist. The teacher aide listened briefly then moved away to 
assist other students. This seamless interaction was a way the two adults supported 
each other and the learning in the classroom. 

Type G Individual Student Characteristics, Abilities, and Personal Qualities 

Brian was eager to learn. This was apparent throughout the observations. More 
specifically, he was eager to learn mathematics that was being taught to the other 
students in the class. His enthusiasm was described in his exclamation “I just love 
it” which exemplified the finding on affect reported in a previous paper (Faragher 
et al., 2019). At the final observation visit, the class was in the last few weeks of 
secondary school and their assessments were largely complete. The other students 
were keen to leave the secondary mathematics lessons behind and talk about post-
school parties. Not Brian! His teacher explained that a visit would be productive 
because she was still preparing mathematics lessons for Brian (and any other student 
who wanted—though there were no other takers!).
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Mathematically, Brian continued to have difficulty with arithmetic and used a 
calculator to do any calculations required. Most lessons he was supported by a teacher 
assistant. 

Type B Student Mathematics Learning Activities 

The mathematics learning activities that Brian was engaged in during observed 
lessons were significant to inclusive practice and the resulting learning outcomes. 
Brian in his early years in secondary school indicated the desire to study mathematics 
that was like his peers’ program. Success with adjusted activities in the junior school 
led to the expectation of participation in and the possibility of success with learning 
year-level adjusted mathematics in the senior school. In the senior school, exit assess-
ment is required. The assessment tasks developed by the mathematics department 
were designed to meet the requirements of the state syllabus. In preparing adjustments 
for these tasks, his teacher had to present work with the right level of challenge. This 
was not always easy to judge and the teacher talked in her interviews about the need 
to make further adjustments sometimes during a lesson. She relied on the teacher 
assistant and her interactions with Brian to discern when the level of challenge of 
the tasks was too little or too much. 

Type A Student Mathematics Learning Outcomes 

Brian’s learning outcomes fell into two types—mathematical and non-mathematical. 
As Brian was studying a senior subject, his work was assessed to state standards. 
He received a passing grade for Prevocational Mathematics with the culmination 
being the award of the Queensland Certificate of Education. Brian became adept at 
the use of mathematical equipment, including graphics calculators and spreadsheets, 
and indeed, he required these to remove the calculation load enabling him to engage 
in the mathematical thinking and processes of the subject. 

Beyond the achievement of mathematics learning outcomes, other learning 
outcomes were evident. Brian enjoyed his engagement in the senior mathematics 
classes and spoke with pride of his work. His teacher reported that his learning 
behaviour had improved in other subject areas in the school that were not part of the 
research study. This transfer is reminiscent of findings in the area of quality of life, 
a framework for understanding disability. Researchers in that field have found that 
interventions aimed at improving quality of life in one domain have led to unintended 
benefits to other domains of life (Brown et al., 1989). 

Impact of Type G on B and A 

Brian’s learning characteristics could not be ignored by his teacher and had a signif-
icant impact on her work. The success Brian experienced in lessons (as evidenced 
through his obvious enjoyment in lessons, engagement with tasks, and through 
wanting to keep learning at the end of the school year) and in his exit assessment on 
completion of the course, are success measures for the activities planned by Brian’s 
teacher. These activities were carefully constructed based on his teacher’s deep 
knowledge of him as a learner. She explicitly considered his learning characteristics 
to develop activities that would build his mathematical understanding.
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An intriguing, and rarely considered side benefit in the PPP analysis of mathe-
matics education research, is the impact on the learning activities offered to the other 
students in the class. Because the teacher had to take account of Brian’s significant 
learning support needs, she provided activities that were supportive of the learning 
needs of other struggling students in the class. 

4.2.2 Jay 

Like all students in the study, Jay has Down syndrome and an intellectual disability. In 
the first year of the study, Jay was in his second year of secondary school, attending a 
mainstream, co-educational Catholic school. The school has a tradition of educating 
students from diverse backgrounds, with a variety of learning needs and accomplish-
ments. Jay’s class included students from a range of nationalities, many recently 
arrived in the country. 

His teacher had many years’ experience and Jay’s class was the bottom stream of 
mathematics for the year level (students were assigned to classes based on achieve-
ment, with four classes—one for high, two for moderate and one for low achieve-
ment). The bottom stream class still had the expectations of meeting the year level 
curriculum learning outcomes. In preparing for Jay’s class, his teacher, made few 
adjustments. This was a bottom stream class and Jay was able to undertake activities 
along with other students. The teacher used whole-class teaching of mathematics 
techniques with worksheets to allow students to practise. 

Assessment of the junior secondary mathematics involved tests and assignments. 
Jay undertook the same tests as the other students in his class, which were designed 
for the bottom stream class. In the second year of the project, Jay was observed 
working on an assignment where he had the same task as others in the year level and 
was required to undertake exploratory data analysis of various data sets, including 
constructing back to back Stem and Leaf plots. He was observed using his laptop to 
complete the questions that were not modified. 

Each observed lesson there was at least one teacher aide assisting the teacher and 
on occasions an additional cultural liaison assistant. Jay required little support from 
the teacher aides. For example, in one observed lesson, his teacher aide, who used 
a wheel chair, positioned his chair beside but a little behind Jay. From time to time 
he drew Jay’s attention away from his worksheet, to the teacher giving instructions 
at the whiteboard at the front of the class. The teacher aide assisted students nearby 
when they required support. 

Following the practice on the worksheet tasks, the teacher returned the focus to 
the whiteboard, calling for responses from students. During this time, he asked direct 
questions of Jay, based on what he had noticed Jay was able to do on his sheet. 

One observed lesson was taught by a casual teacher, replacing the teacher on 
sick leave. This relief teacher assumed Jay would need easier work than the other 
students and had prepared a simpler level worksheet on the topic ratio, the same topic 
as the rest of the class. When the worksheet phase of the lesson was commenced, 
the teacher immediately gave Jay the easier worksheet. I asked the teacher if Jay
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might also have the worksheet being given to the rest of the class. She immediately 
agreed and gave the second sheet to Jay who was initially concerned. He was unsure 
what sheet he should do and his desire to complete work required reassurance from 
his teacher that he only needed to complete one of the sheets. Jay completed the 
unmodified worksheet without error. 

Type G Individual Student Characteristics, Abilities, and Personal Qualities 

Although in year 8, Jay had been assessed by the school as being at a year 3 level in 
mathematics. Jay is a serious student, dedicated to his work. He is strongly motivated 
to complete assigned tasks. In observed lessons, he was never seen to be off-task. 
Amid exuberant adolescents, he sat quietly working away on his mathematics. For 
each of the observed lessons, Jay was prepared for his class, fastidious in his attention 
to having the right equipment, including his laptop, textbook, and notebooks. It was 
perhaps remarkable to note that Jay was arguably the most dedicated student in his 
class. Some of the adolescent behaviours expected in bottom stream classes, including 
disengagement, off-task distractions, and lack of motivation were exhibited by other 
students, but not Jay. In every observed lesson, Jay diligently completed the tasks 
assigned to the class, mostly without adjustments. An observable aspect of Jay’s 
work was his attention to the steps in a process. His dedication and emphasis on task 
completion were attributes that supported his work in this class, where his enjoyment 
was evident in following the steps in mathematical procedures and exercises that were 
required to be successful in that class. 

These Type G variables are quite different from those usually reported for students 
with intellectual disabilities. Those reports, such as in research and professional 
literature more commonly focus on learning deficits. School documentation that 
indicated year 3 level in mathematics further emphasize deficit and when considering 
Type B variables, have a direct impact on tasks offered to students. 

Type B Student Mathematics Learning Activities 

By being included in the general mathematics class, Jay experienced the same 
learning activities as his classmates in the whole class instruction phase. In the phases 
that focused on consolidation and practice, usually through worksheets or computer 
based exercises, differentiation of learning activities occurred. Being the bottom 
stream class of the year level, the level of mathematical challenge had already been 
reduced for the class and Jay did not indicate he needed further adjustment during 
the observed lessons. However, as was noted earlier, on at least one occasion, the 
learning activity he was initially provided was made simpler than it needed to be. 

Type A Student Mathematics Learning Outcomes 

For Jay, the learning outcomes were measured through the use of worksheets and 
assignment tasks. As part of the data collection for the project, photographs of these 
completed sheets were taken. One lesson culminated in the completion of exercises 
on index notation where he completed each exercise without error. The lesson obser-
vation and the learning artefacts can only provide evidence of the completion of
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procedures—following the steps of the process. We can know little of Jay’s under-
standing of the structures of mathematics underpinning these steps. However, it must 
also be noted that such evidence was not obtained from other members of the class, 
either. All were asked to demonstrate that they could complete the assigned exercises 
and the requirement was met if the steps were completed without error. 

Impact of Type G on B and A 

The Type G variables—the learner characteristics—that Jay brought to his mathe-
matics lessons might reasonably be presumed to offer expectations of mathematical 
success. Those Type A outcomes were initially at risk, though, through presump-
tions of more pervasive mathematics learning difficulties than actually existed. The 
relief teacher did not know the student and made the assumption, perhaps based on 
school documentation, that he would need a simpler sheet. She automatically gave 
the easier worksheet to Jay, without checking, and without offering the sheet to any 
other learner. This indicates the danger of offering learning adjustments before a 
student demonstrates the adjustments are required. 

High expectations and presumed competence are needed to counteract the 
pervasive deficit discourse about learners with intellectual disabilities. 

4.2.3 Mary 

Mary lives in a small town in a farming district. She attends her local school and at the 
time of the project was in her first year of secondary school. Mary seemed to enjoy her 
time at school and liked interacting playfully with her teacher and teacher assistants. 
In the first observation, she was being taught alongside two other students with 
significant, but very different learning support needs arising from other disabilities 
than Down syndrome. The class had 30 students and was taught by the teacher with 
two assistants working with the students with disabilities to the side of the class. 
In the first year of the project, Mary’s teacher prepared different activities for Mary 
from the main lesson she planned for the class. This approach changed as the research 
progressed. At the first observation, Mary was being taught in a segregated approach 
and over the two years, she gradually became more included in the general class 
activities. This mirrored Mary’s developing social inclusion (Koller et al., 2018). For 
example, her teacher told of her walking to school each day, with a mobile phone 
should she need assistance when originally she had been driven to school. Similarly, 
on the first observation day, Mary had been having lunch on her own in the school 
library. On later visits, she spent lunchtime in the school playground. 

In this section, the teacher’s changing inclusive practice will be presented and 
then, using the Medley/Manizade et al. (2023) model, these data will be analyzed to 
suggest how teacher reflection on the impact of Type G variables (individual student 
characteristics, abilities, and personal qualities) can lead to profound changes in their 
inclusive mathematics teaching practice. 

The first lesson observed was from a year 7 statistics unit where students were 
learning about Stem and Leaf plots. The lesson was adjusted for Mary. She collected
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data about screen time usage, as the other students did, however, instead of using 
the data to construct a Stem and Leaf plot, she was given another task of putting 
numbers in order. In the post-lesson conversation, the researchers and the teacher 
discussed the possibility of teaching Mary to construct a Stem and Leaf plot. After 
the next lesson, the teacher sent the team a photo of the student’s work sample 
where she had completed a Stem and Leaf plot. This led the teacher to reflect on the 
structure of her teaching and in the following lessons, she adopted inclusive teaching 
practice, planning the one lesson with adjustments for Mary based on her learning 
characteristics. 

In the next year, the now year 8 class was learning about adding and subtracting 
positive and negative integers. The teacher found a lesson from a website that focused 
on rich tasks for gifted and talented learners. In a pre-lesson conversation, she 
discussed how she had thought about how she would engage Mary in the context of 
the lesson. The task was a game that was to be played in pairs where each player had 
a hot air balloon with hot air and sandbags affecting the height. She found a video 
clip of hot air balloons to introduce the lesson to ensure that Mary would understand 
the context of the game. Because the lesson involved a game, she chose the student 
who she would assign to play with Mary. The activity game cards were prepared for 
each group in the class and were made by the teacher before the lesson. 

At the start of the lesson, the video was played and Mary moved her chair so she 
could be directly in front of the screen. When the class broke into groups to play 
the game, the teacher assistant sat with Mary and her classmate and helped them to 
learn the rules of the game. Once the students were settled to the task, the teacher 
aide gradually withdrew. The teacher then asked the assistant to complete some 
administrative work on the computer at the teacher’s desk. The students continued 
to play the game without further teacher assistance. 

Type G Individual Student Characteristics, Abilities, and Personal Qualities 

Mary’s learner characteristics had a significant impact on the planning that her teacher 
undertook. In addition, she also considered the learner characteristics of the other 
students in the class, specifically when she selected a student to partner with Mary in 
the mathematics game. She chose a student who liked working with Mary and who 
would not over support her. 

Type B Student Mathematics Learning Activities 

Mary had the opportunity to learn year-level mathematics through engaging in 
learning activities with her class peers. Her teacher had embraced the idea of an 
inclusive year-level curriculum and developed her planning whereby she no longer 
prepared separate lessons for learners with intellectual disabilities. Instead, she made 
adjustments to ensure Mary could engage with lessons. Mary, in turn, responded by 
expressing her enjoyment of working in the mathematics lessons. She also enjoyed 
working with her classmates.
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Type A Student Mathematics Learning Outcomes 

Achievement of learning outcomes was indicated by completed tasks. Lesson arte-
facts were collected, such as photographs of completed activities. Other indications 
of Mary’s learning were also obtained by observing her responses in the lessons. In 
the lesson on operations with integers, Mary quickly learned the rules of the game. 
The winner was the balloon that reached the top of the vertical axis first. Each turn 
of the cards involved turning over a positive or negative sign and then a positive or 
negative number. Mary loved to win and when she turned her cards and saw that she 
had to move the balloon down, she refused to move the balloon. It was obvious that 
not only did she understand how to operate with integers, but also, she could do so in 
her head. Furthermore, she insisted on playing until she won, gaining much practice 
in the process. 

Impact of Student Characteristics on Learning Activities and Outcomes (Type G on 
B and A) 

As for Jay, Type G variables initially led to restrictions in the mathematics offered to 
Mary. There was an assumption that her intellectual disability would require different 
activities for the lesson (Type B), leading to detrimental impacts on the learning 
outcomes (Type A). What also was evident was how quickly the teacher was able to 
make profound changes to her practice through reflection on the lesson and engage-
ment in a conversation with researchers about the lesson. Here is an indication of 
the role of researchers in a teacher’s professional ecosystem. Teachers do not work 
in isolation and having a colleague to support reflection and stimulate professional 
growth has clear benefits for students’ learning outcomes. 

The teacher already had the required pedagogical skills and practices in her reper-
toire. Her initial approach appeared to be governed by what she believed was a 
necessary response to the Type G learning support needs of her student. As her 
knowledge of the student grew, and encouragement to try adjusting the year level 
curriculum had an impact on the learning outcomes (she could see what the student 
could achieve) she fundamentally changed her teaching approach to a genuinely 
inclusive mathematics classroom. 

A striking development was the use the teacher made of rich tasks from a collection 
of resources to challenge gifted and talented learners. She saw value in the use of 
these tasks in meeting the diverse learning needs of her students. 

4.3 Learner Characteristics, the Mathematics They Engage 
in and the Learning Outcomes They Achieve 

In times past (and not that long ago), students with learning disabilities were rarely 
given the opportunity to learn mathematics at their year-level. Exploration of exam-
ples where teachers have adjusted the year-level curriculum for their students at
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primary and secondary level are instructive for considering how learning character-
istics attenuate relationships between mathematics learning activities (Type B) and 
the resultant learning outcomes (Type A). A focus on students who struggle with 
learning mathematics allows us to examine what might be possible for all learners. 

What is clear is that these learner attributes in no way predetermine the learning 
outcomes. Learners need the opportunity to engage with year level mathematics, 
adjusted to be at the level of productive challenge (Gilmore & Cuskelly, 2014). 
Before and during lessons, teachers make adjustments in dynamic ways where they 
bring their understanding of mathematics, the learning outcomes intended, and their 
knowledge of the learner to the decisions they make. Dynamic judgments about the 
level of challenge and required support allowed teachers to respond where initial 
over-support was being made to students’ learning activities. Over-support has the 
potential harm of reducing the mathematics learning outcomes, and it was important 
that teachers responded and corrected this at the point when it occurred. 

In all the lessons observed in both the primary and secondary projects reported 
earlier in this section of the chapter, the students were engaged in learning math-
ematics for their year level. In contradiction to what is commonly portrayed or 
anticipated by guides to teaching students with mathematics learning difficulties, the 
students in our project were rarely off task, when the work was the same topic as 
their peers. Indeed, as we saw with both Jay and Brian, these boys were at times more 
focussed than their peers without disabilities. The impact on learners, particularly 
those in the secondary years, was pronounced with benefits not only to their math-
ematics learning outcomes but also to their self-concept as learners of mathematics 
and learners in general. 

4.4 Implications from These Studies 

In the examples from YLAC mathematics research projects, we see students with 
significant individual characteristics and abilities likely to have an impact on their 
mathematics learning. These attributes are outside the control of the teacher and 
yet as has been seen, teacher actions can ameliorate student attributes and lead to 
productive learning outcomes. Rather than these attributes determining the learning 
outcomes, a case can be made that while student attributes might affect the work 
of teachers and the learners themselves, mathematics learning outcomes at the year 
level are indeed possible. 

Teachers in our studies underpinned their work with the expectation that their 
students could be successful at year-level mathematics. If there were barriers, they 
worked to find ways around through adjustments to learning materials or approaches 
to the topics. A common feature was that small suggestions regarding possibili-
ties for changing approaches to be more inclusive were taken up by the teachers 
in creative and reflective ways, leading to new approaches in their classrooms or 
different responses from students.
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These studies of the practices of effective inclusive mathematics teachers indicate 
the dynamic nature of teaching and responding to the learning of students due to the 
characteristics they bring with them to the learning process. Teachers’ planning is 
affected before, and during, the lesson as teachers think and problem solve and make 
decisions in the moment. It is clear that individual student characteristics affect 
learning outcomes but in surprising ways. Creative, reflexive teachers respond to 
these characteristics by changing, adjusting, and developing the mathematics learning 
activities offered not just to the students with learning disabilities and difficulties, 
but to all learners in the class. Learning outcomes are likely to be improved for all. 
As a way out of low attainment, this is a critical aspect of mathematics education and 
an imperative of mathematics education research to further explore its possibilities. 

This research also calls into further question the persistent, detrimental practice 
of streaming based on previous attainment. By planning for all learners, anticipating 
diversity and providing learning adjustments as required to year level curriculum, 
teachers have an alternative to separating students into coarse class groupings with 
known detrimental impacts. 

5 Implications 

Learning characteristics of students with intellectual disabilities cannot be ignored— 
they have too great an impact on teachers’ work. When embracing the teaching of 
diverse learners, teachers commence planning with learners’ characteristics central 
to their thinking. 

Medley (1987) defined Type G variables as “individual student characteristics, 
abilities and personal qualities which determine outcomes of any specific learning 
experience”. Recent research, as outlined in this chapter, raises questions about 
the determinism of outcomes. Similar questions also emerge from a greater under-
standing of the impact of disability on learning, a field that continues to evolve and 
with greater opportunities for learning afforded by inclusive practice around the 
world, continues to surprise teachers and researchers alike. Perhaps a more accu-
rate definition for Type G variables might be those learner variables that “affect 
outcomes”, rather than determine outcomes. These learner variables do not deter-
mine outcomes, at least in a predictable way. Indeed, by continuing to explore ways 
to make learning accessible for students who are variable in their characteristics, 
abilities, and qualities (Type G), there is the capacity for teachers to be surprised 
(Russo et al, 2020). This surprise is likely to affect preactive teacher activities (Type 
D) with flow on implications right through to student learning outcomes (Type A). 

In addition to modification to the definition of Type G variables, there are impli-
cations for the placement of these variables in the framework. Currently, Type G 
variables are shown to act between Type B and Type A. New ways of thinking about 
learning for students with learning difficulties and disabilities, challenges us to think 
about new ways of representing where Type G variables affect the PPP process.
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Teachers do not plan a lesson and teach it to the class only to find that learner charac-
teristics are affecting how that information is received. When working with diverse 
learners, teachers factor in learner characteristics much earlier on, and throughout 
the PPP process. 

In this chapter exploring the impact of learner variables on student outcomes, a 
focus has been taken on learners who struggle with mathematics. These students 
present a considerable challenge to teachers as they work to improve learning 
outcomes. In most countries around the world, it has only been in recent times 
that students with significant mathematics learning difficulties and disabilities have 
been included in mainstream classrooms with the expectation that they can achieve 
learning outcomes. A deep understanding of the practice of teachers in these contexts 
is still emerging (Tan et al., 2019). It would seem that there is much more to learn 
about Type G variables and their effect on student learning outcomes and especially 
so in inclusive mathematics classrooms. Furthermore, there is much to learn about 
how teachers grow professionally through reflecting on the interplay between learner 
variables, student activities, and the resulting learning outcomes. 
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Individual Student Internal Contexts 
and Considerations for Mathematics 
Teaching and Learning 

S. Megan Che and T. Evan Baker 

1 Introduction 

School classrooms are enormously intricate, complex, dynamic, and, to an extent, 
unpredictable spaces where diverse humans meet together to deepen and expand their 
intellectual prowess. As the introductory chapter to this volume more fully explicates, 
the field of mathematics education research has devoted much intensive time and 
effort to improving our understandings of the myriad factors pertaining to teaching 
and learning in mathematics classrooms. Specifically, the chapters in this volume are 
connected in our shared endeavors to elaborate on one of the contexts adapted from 
Medley’s (1987) framework, which include internal and external student and teacher 
contexts as well as characteristics and qualities of students, teachers, and learning 
environments. 

Within this larger project, this chapter presents, discusses, and problema-
tizes the progression of our field’s understandings of individual student internal 
contexts through considerations of (1) meanings of internal/external (subject/object) 
dichotomies, (2) individual student cognitive processes, (3) individual student affec-
tive processes, (4) how these individual student cognitive and affective experiences 
connect with (are informed by and inform) each other as well as broader communi-
ties such as mathematics classroom learning environments and home environments, 
and (5) implications for teachers and teacher educators. 

Specifically, we situate the notion of an individual student as an entity in contin-
uous dialectic with environmental influences, to the point that—at one scale, it
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becomes meaningless to distinguish between individual and environment. As we 
begin this chapter, we explicate the scale we choose to use for our chapter: the scale 
at which individuals are distinguishable from each other and their environments but 
also inseparable from each other and their environments. In so doing, we elaborate a 
connected perspective of student identity. We then similarly situate the experiences of 
cognition and affect prior to deeply considering the progression of our understand-
ings of students’ cognitive and affective processes. We proceed to articulate and 
examine ways these individual experiences connect with multi-individual commu-
nities like home environments and mathematics classrooms. Our chapter ends with a 
consideration, from the lens of social justice, of implications of these understandings 
for teachers and teacher educators. 

2 Context 

The title of this chapter presents a few boundaries and restrictions on our field of 
view in an attempt to focus the reader’s attention on what we (the authors) would 
like for you to be attending to. Aware of the risk of reductively simplifying and 
nonchalantly utilizing heavy-handed attention-directing tactics, we here attempt to 
openly articulate our meanings for these boundaries vis-à-vis the purposes of this 
chapter. The first of these boundaries is the concept of an “individual”. As von 
Glasersfeld (2013) points out, humans dialectically and continually construct and 
reconstruct themselves based on one’s analysis (however (un)aware one may be of 
this analysis) of how one’s peers view one. That is, I continually (re)construct my 
notion of myself as an individual based, to a practically meaningful extent, on who 
I think people around me think I am. Thus, my individuality is inseparable from 
the constructions of people around me, on which I (at least partially, and however 
unconsciously) base my own notion of who I am; identity construction is an inter-
twined, reflexive process of “understanding who I am and whom you see” (Walshaw, 
2010, p. 490). For teachers, this means that the self-fulfilling prophecy is at best 
incomplete (Wineburg, 1987); students do not simply live up to the expectations of 
teachers because teachers’ expectations are not transmitted directly and unfiltered to 
students. Students construct their ideas about teachers’ expectations and perspectives 
of them for themselves, based on their experiences with teachers. To the extent that 
teachers’ constructions of students influence those students’ identity constructions of 
themselves as students, these students respond to what they (the students) think their 
teacher’s expectations are of them. In constructing ourselves, we do so by playing 
at shadows, mirror images, or doubles (Žižek, 1989; Turner & Oronato, 1999). A 
potential implication for teachers of reflexive, complex, and non-linear processes of 
identity construction is that our beliefs are not imparted in a direct one-to-one fashion 
onto students’ psyches (Walshaw, 2010). As a teacher, for instance, if I fervently 
believe that all students are capable of doing important mathematics, that belief 
risks residing only within myself since—unless my students realize/internalize that
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I am constructing them as capable, talented, and smart—they may not (re)construct 
themselves as such in our class. 

The notion of individuality is further quickly complicated when one considers that 
not all aspects of an individual, or not all of one’s identities, may be equally prone 
to this process of reflexive reconstruction. Additionally, not every “other” may hold 
equal sway over one’s reconstruction of themselves. Certain, perhaps more peripheral 
characteristics or personality traits may vary relatively widely over the course of a 
year, a month, a week, or even within a day (Markus & Kunda, 1986; Turner & 
Onorato, 1999). Other, perhaps more central, identity aspects tend to be more stable, 
though still dynamic (Markus & Kunda, 1986; Turner & Onorato, 1999). With time, 
experience, and attention teachers can develop an awareness of which aspects of their 
students’ individualities they might have the potential to influence and which aspects 
are more deeply ingrained. Further, as teachers understand from their own experience, 
the quality and quantity of leverage we hold over the individual constructions of 
others are variable from person to person and also across time; we may be able to 
more firmly convince a student one day of our belief in their potentialities than we 
are on another day, and we may be less successful in our convincing than a different 
teacher of that same student. 

Because of the dynamic nature of at least some aspects of identity, it is important 
for us to understand that one individual student may exhibit, enact, and construct 
different student identities in different academic disciplines (Aydeniz & Hodge, 
2011). Even within one discipline (mathematics, for instance), an individual student’s 
identity may be changing and changeable. To encapsulate these dynamic processes 
and complexities, we see (mathematics) identity as a fluid construct that dialectically 
shapes and is shaped by social context; for our chapter, this context is a complex range 
of individual, cultural, and social influences in a learning environment that are often 
in states of tension between conflicting roles and relationships that are activated at 
any moment in a mathematics classroom (McAdams, 2001; McCaslin, 2009; Nasir,  
2002). 

In the following sections, we focus closely on students’ construction of math-
ematics and students’ psychosocial construction of themselves as students of and 
doers of mathematics. In this opening section, however, we seek to foreground 
the interdependency of our individualities as we simultaneously acknowledge that, 
at some scale (for instance, the scale of visible physical humans in a classroom) 
we exist as sets of seemingly separate individuals brought together in community. 
We posit that, from a different perspective (for instance, the not-directly-visible 
cosmos composed of strands of relationship, influence, power, and control) and— 
for many of the purposes of mathematics teaching and learning—we function more 
as interconnected beings, inextricable from the perceptions of our surrounding envi-
ronment, which we ourselves also influence. As such, we (co)construct as we are 
(co)constructed by the webs that enmesh us; the ontological status of our identities is 
unclear and perhaps unknowable (Turner & Onorato, 1999; von Glasersfeld, 2001; 
Walshaw, 2010; Walkerdine, 2003; Žižek, 1989, 1998). For us, the implications of 
the uncertain ontology of identity are that we expect (and, at times, seek) the unex-
pected. In the indeterminacy of identity, for us, resides the potential for curiosity and
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wonder not just about our natural worlds but about our ‘own’ selves and those selves 
of our students. This affords us opportunities for expansiveness and responsiveness. 

This complex indeterminacy of identity also poses research challenges, not the 
least of which is a variety of theories of identity. In the preceding discussion, we have 
implicitly placed ourselves in a more poststructural view of identity than psycholog-
ical or socio-cultural (Grootenboer et al., 2006) because of our emphasis on dynamic 
process (becoming) and on the relative nature of identity, but even that placement 
is murky since our perspective shares many salient features with a socio-cultural 
perspective, including the embodied and connected nature of identity. The experience 
of not being quite able to provide a static, definitive definition for a critically impor-
tant aspect of student mathematical reality can be frustrating as well as confusing; in 
our work, we are becoming more comfortable with uncertainty and more cognizant 
of the value in process rather than product. That is, we see the process of thinking 
through and with these various perspectives to be increasingly important to our 
research methods and methodologies. Our distance from a definitive “answer” to the 
nature of identity is becoming less of a challenge for us to navigate because we see 
that distance as providing space for (re)thinking and (re)envisioning what we think 
we know. 

Another boundary we establish in our title is that of focusing on internal rather 
than external contexts. What might we mean by that? Encircled and embedded as 
we are within dialectical, dynamic, non-linear and non-deterministic connection, 
all reverberating within material and historical situations, experiences, and narra-
tives, on what level does it make sense to distinguish between internal and external? 
The demarcation of internal contexts serves, for the purposes of this chapter, to 
establish an operationalization of what the object (see Deleuze & Guiattari, 1994; 
Gallagher, 2000; Russell, 2001; Wittgenstein, 1969 for a sampling of philosophical 
considerations of self, subject, and object) of this chapter is—mathematics students’ 
psychosocial processes of identity and content construction in school mathematics. 
For much of this chapter, we will examine students’ constructions of themselves and 
their mathematical contexts with an aim of better understanding how students come 
to understand themselves as mathematics students as well as how students under-
stand mathematics. This understanding of students’ understandings can, hopefully, 
further our reflexive (re)construction of ourselves as mathematics teachers and as 
mathematics teacher educators. Therefore, our meaning for the word “internal” in 
our title signifies that the primary basis of understanding for this chapter derives 
from insights students construct within themselves about themselves as mathematics 
students as well as the perceptions they have (co)constructed for/within themselves 
about the discipline of school mathematics. 

Understanding that these student insights about themselves and about mathematics 
are situated within (that is, formed by and also forming) threads and strands of 
material and historical circumstance, community (defined at various scales), and 
family (expansively conceived), we want to reiterate that we are not attempting to 
pretend away those strands but rather, for the moments of the reading and writing 
of much of this chapter, to foreground the students in the strands rather than the 
strands. In the penultimate section of this chapter, we (re)focus on the ways in which
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students interact and relate with (that is, how they are formed by and how they 
form) the threads and strands connecting them with events and circumstances at 
broader scales than an individual. Additionally, situating these insights in historical 
circumstance, community (e.g., family, school, classroom, peer, biosystem) commits 
us to (co)construct the student as an active, self-cognizing agent (Davis & Sumara, 
1997; Newell, 2008) rather than (co)constructing the student reductively as a product 
of context and environment. 

One last boundary we have built as we define what this chapter might mean for us 
and for you is the demarcation of which aspects of individual identity we intend to 
include; for our purposes of articulating our field’s progression of understanding of 
student internal context in school mathematics, we will consider student cognitive 
(psychological) and (with) affective (social) contexts. Because of the importance of 
both knowing and feeling in mathematics classrooms, we feel that giving emphasis 
to these aspects of identity, for this moment, might afford us a clarity of insight 
relevant to mathematics teaching and learning that could be potentially obscured 
if we attempted a more distributed examination of student identity. Medley (1987) 
framed these internal contexts as variables that affect student response to mathematics 
teacher behavior. While we concur that student internal context often influences how 
a student responds to activities in their mathematics classrooms (activities which 
Medley framed as Type C, interactive mathematics teacher activities, and Type B, 
student mathematics learning activities), our dialectic and indeterministic perspective 
of student internal context is informed also by critical, postmodern, and construc-
tivist insights that have largely emerged in the decades since Medley established his 
framework. 

As we traverse the unfolding of our field’s understandings of student internal 
cognitive contexts, we will be seeking insight about how students come to know 
themselves—with the obvious implication that this knowing is ever incomplete and 
is continually ongoing, that this knowing is much more a process than a product 
(Davis, 2004). Particularly, we will discuss many of our field’s contributions to 
questions of how students know themselves as mathematics students, what knowing 
means for mathematics students, and what students know they know (or not) about 
mathematics. As important and interesting as it is for mathematics teachers and math-
ematics teacher educators to attain deep insight, from students, about how mathe-
matics students come to know about themselves and about mathematics in school, it 
is also interesting and important for us to understand students’ affective and sociolog-
ical realities and identities in school mathematical environments. In the next section, 
we will articulate trends and patterns in our field’s progression of understanding 
about how students feel in school mathematics classrooms—how students feel about 
themselves as mathematics learners, and how students feel about mathematics (or 
school) mathematics.
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3 Students’ Internal Contexts 

In this section, we detail our field’s insights of student processes of generating 
mathematical understandings, focusing on cognitive, sociological, and psychoso-
cial perspectives of student mathematical experiences. Additionally, in the second 
subsection, we discuss mathematics students’ perceptions of themselves as mathe-
matics learners, including our understandings of mathematics students’ identities, 
self-concepts, self-perception, and self-beliefs. In the third subsection, we discuss 
students’ internal contexts vis-a-vis the subject of mathematics itself, so we inves-
tigate students’ perceptions and processes of forming attitudes about mathematics 
content. Throughout, we emphasize those many places where the insights in these 
subsections connect and overlap with those that we have highlighted in other subsec-
tions; these are not mutually exclusive categories we are setting up but rather focal 
points in connection with each other. 

Students’ cognitive processes as mathematics learners 

In the decades prior to the accessibility of translations of Piaget (especially Piaget, 
1972) and Vygotsky (see Vygotsky, 1978a, 1978b) in the U.S. in the 1970s, 
the educational research community’s understandings of students’ epistemological 
processes were influenced by a behaviorist management perspective, which empha-
sized connections between repetition, routinization, and skill performance (Doll & 
Broussard, 2002); though there existed progressive counter-narratives to the reduc-
tionist and utilitarian outcroppings of behaviorism, particularly from Dewey, one 
of the first philosophers to emphasize students’ active roles in learning (Dewey, 
1933/1998; Bruner, 1990). From a behaviorist epistemology, students learn mathe-
matics by repeatedly performing small chunks of mathematical operations through 
steps provided by a teacher, and fluent performance as well as immediate recall of 
procedure are prioritized (Doll & Broussard, 2002). Constructivist epistemological 
paradigms have, for the past several decades, expanded and complicated educational 
scholars’ understandings of student processes of making sense of mathematics by 
illuminating the active role of student cognition in learning processes (Doolittle, 
2014). In mathematics education, our understandings of constructivist cognition have 
been bolstered in no small measure by our long-standing research connections with 
cognitive psychologists: 

Cognitive psychologists have provided the concept of ‘well-organized’ schemata to explain 
how people impose order on experiential information. Assimilation, accommodation, and 
mode of functioning in response to new information are important in the enterprise of 
schooling […] Schema use must be a dynamic, constructive process, for people do not 
have a schema stored to fit every conceivable situation. In this view, acquisition of knowl-
edge implies changes in schemata, not just the aggregation of information. (Romberg, 1992, 
p. 62) 

Cognitive constructivism espoused by Piaget and the radical constructivism of 
Von Glasersfeld (2013) are focused on how individuals internally, actively construct 
knowledge as they seek to make sense of lived experiences (Bruner, 1990); the
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emphasis is understanding people’s internal cognitive structures and processes rather 
than on an imposition or interaction of external ‘knowledge’ (Schunk, 2020). Social 
constructionism (Vygotsky, 1978a, 1978b) tends to highlight the social nature of 
knowledge construction and orients us to the importance of interaction in processes 
of knowledge construction. Connecting these two orientations is the premise that, 
rather than environmental stimuli producing knowledge (or adaptations), it is an 
individual’s active processing of stimuli in relationship to that individual’s cognitive 
structures that brings about knowledge (Huitt, 2003). Doolittle and Hicks (2003) 
distill constructivist epistemology into four tenets: 

1. Knowledge is not passively accumulated, but rather, is the result of active 
cognizing by the individual. 

2. Cognition is an adaptive process that functions to make an individual’s cognition 
and behavior more viable given a particular environment or goal. 

3. Cognition organizes and makes sense of one’s experience, and is not a process 
to render an accurate representation of an external reality. 

4. Knowing has its roots in both biological/neurological construction and in social, 
cultural, and language-based interactions (pp. 77–78). 

Given these understandings of individual student cognitive processes of learning, 
several potential insights and implications for teachers emerge, including the indi-
rect nature of teaching (Ackermann, 2001). That is, the content that teachers may try 
to impart into students is not transmitted in a direct, unfiltered manner. Instead, 
students actively respond to content from teachers (stimuli) by connecting it to 
(and connecting to it) their pre-existing cognitive structures. Doolittle and Hicks 
(2003) discuss several additional learning principles which can inform constructivist 
pedagogy, including:

• The construction of knowledge and the making of meaning are individually and 
social active processes

• The construction of knowledge involves social mediation within cultural contexts
• The construction of knowledge takes place within the framework of the learner’s 

prior knowledge and experience
• The construction of knowledge is integrated more deeply by engaging in multiple 

perspective and representations of content, skills, and social realms
• The construction of knowledge is fostered by students becoming self-regulated, 

self-mediated, and self-aware (Doolittle, 2014, pp. 498–490). 

For mathematics teaching and learning environments, specifically, construc-
tivism is strongly connected with ontological questions about the nature of math-
ematics, because one corollary of certain constructivist views (particularly from 
radical constructivism) is that the process of coming to know is an adaptive process 
grounded in experiential realities and that knowing is not a process of discovering 
external, independent, pre-existing realities (Lerman, 1989). Contrasting with an 
enduring popular view of mathematics (the “Romance of Mathematics” as Lakoff 
and Nuñez (2000) call it (p. 339)) as existing outside of the mind of a knower, as 
Lakoff and Nuñez point out, “Ideas do not float abstractly in the world. Ideas can
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be created only by, and instantiated only in, brains” (p. 33). As Lakoff and Nuñez 
detail precise ways in which humans have used language to develop mathematical 
metaphors that extend our very limited innate mathematical capabilities, they connect 
the ways in which human minds make sense of experiences that are external to us: 

1. There are regularities in the universe independent of us. 
2. We human beings have invented consistent, stable forms of mathematics (usually 

with unique right answers). 
3. Sometimes human physicists are successful in fitting human mathematics as they 

conceptualize it to their human conceptualization of the regularities they observe 
in the physical world. But the human mathematical concepts are not out there in 
the physical world (pp. 345–346). 

Many other constructivists in mathematics education assert, rather than claiming 
that mathematics does or does not map an external reality, that—because we construct 
our understandings from the basis of our own experiences and previous knowledge— 
we cannot know whether a mathematical concept exists in an objective reality (Von 
Glasersfeld, 1995; Steffe & Gale, 1995; Simon, 1995). Instead, our test of emergent 
knowledge is not an independent, objective existence or truth but the extent to which 
that mathematical knowledge works in our lived realities; that is, the extent to which 
mathematical insights are “viable” (Von Glasersfeld, 1995). As students construct 
their mathematical knowledge, they do so by coordinating mathematical material or 
mental actions into organized, goal-directed action patterns (Steffe, 1991). The goal 
towards which students are oriented is that of resolving the perturbation or disequi-
librium that arises when students have a novel experience and “restoring coherence” 
to their experiential worlds (Cobb, 1994). Further, as students interact with peers and 
teachers in a mathematics classroom environment, they have opportunities to test and 
refine the viability of their mathematical conjectures, contributing to an emergence of 
a socioculturally-embodied mathematical knowledge (Cobb, 1994; Cobb & Yackel, 
1996). 

In the next subsection, we leverage these current constructivist understandings of 
student cognition to investigate how these cognitive processes might connect with 
mathematics students’ perceptions of themselves as mathematics learners. In the last 
section of this chapter, we explicate several insights specific to mathematics teachers 
relating to a constructivist epistemology of student learning. 

Students’ identity constructions as mathematics learners 

During the past several decades, mathematics educators have (re)formulated a variety 
of constructs to facilitate our understandings of how students view themselves as 
learners of mathematics, including mathematics self-concept, self-efficacy, mathe-
matics identity, and mathematical disposition. Di Martino and Zan (2011) emphasize 
that, far from being disconnected with cognitive processes, the interactions between 
emotional and cognitive dynamics constitutes the concept of affect. This affective 
sphere in mathematics education, which Di Martino and Zan (2011) frame as interac-
tions between Emotional Disposition, Perceived Competence, and Vision of Mathe-
matics, constitutes a fundamentally important “internal representation system” (p. 1).
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Medley’s (1987) framework articulates these internal contexts as characteristics (for 
us, specifically, identity, self-concept, self-efficacy, disposition) of students that affect 
their response to behaviors of mathematics teachers. In this subsection, we examine 
our understandings of how mathematics students construct themselves as learners. 

As we discussed in the opening section, for us, (mathematics) identity dynami-
cally dialectically shapes and is shaped by a complex range of influences existing 
in a social context like a mathematics classroom. There is no shortage of reasons 
to devote energy to better understanding student mathematics identity, given its 
central location to mathematics learning. As Andersson et al. (2015) point out, 
“When considering how students’ affective responses impact on their willingness to 
engage in learning mathematics, the notion of identity becomes particularly impor-
tant because it provides ways to understand the complexity of students’ decision 
making”. Grootenboar and Zevenberguen (2008) also affirm the importance of iden-
tity: “The teachers’ role is temporal, and at the end of the teaching period it is the 
students’ mathematical identities that will endure.” Boaler and Greeno (2000) and 
Boaler (2002) raise the point that mathematics learning environments provide stimuli 
for students as they construct their mathematics identities and that the range of iden-
tities students construct may be linked to the mathematical learning environments 
they experience. Specifically, there are indications that students learning in tradi-
tional lecture-based environments as compared to discussion-based environments 
may construct different mathematical identities (Boaler, 2002). 

Just as we in this chapter at times highlight certain frames of reference (the scale 
of an individual rather than that of a classroom, for instance), mathematics education 
researchers frequently foreground particular aspects of mathematics identity with a 
view to deepening our insights relative to that specific aspect. Research in mathe-
matics education and psychology indicate that two prominent aspects of individual 
student mathematics context that strongly connect to student mathematics perfor-
mance are prior academic (and mathematics) performance (sometimes referred to as 
intelligence) (Deary et al., 2007; Frey & Detterman, 2004; Gustafsson & Undheim, 
1996; Kuncel et al., 2004) and motivation (Gose et al., 1980; Schicke & Fagan, 
1994; Spinath et al., 2006; Steinmayr & Spinath, 2009). These two characteristics 
are clearly connected in feedback loops wherein strong motivation can fuel higher 
performance, which can fuel further increases in performance as well as strength-
ened motivation; the reverse can also hold wherein lower academic performance can 
dampen motivation, which can contribute to further declines in performance (Guay 
et al., 2003; Marsh & Yeung, 1997). In the remainder of this section, we foreground 
the notion of motivation before focusing on the influences of prior performance; then 
we revisit the connections between these aspects of student mathematics identity in 
a culminating discussion of the construct of mathematical disposition. 

Mathematics education and psychological researchers rely on a variety of inter-
acting constructs to formulate different theories of motivation such as Bandura’s 
(1986) social cognitive theory (Schunk & DiBenedetto, 2020), expectancy-value 
theories (Eccles & Wigfield, 2002), and self-determination theory (Ryan & Deci, 
2002); see Schukajlow et al. (2017) for a more comprehensive review of motiva-
tional theories in mathematics education. Psychological constructs that contribute
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to student motivation include expectancy-value (Eccles et al., 1983), task interest 
(Cleary & Chen, 2009; Cleary & Kitsantas, 2017), and math anxiety (Pajares & 
Graham, 1999) among others. However, research indicates the possibility that self-
efficacy may correlate with mathematics performance more strongly than other moti-
vational constructs (Cleary & Kitsantas, 2017; Pajares & Graham, 1999). Because of 
this potentially stronger correlation of student self-efficacy with student performance, 
the notion of self-efficacy merits further elaboration. 

The set of a student’s mathematical self-perceptions, particularly self-efficacy 
and/or self-concept (Steinmayr & Spinath, 2009) are central to student internal 
context and to their mathematical identities. Though these two constructs sound 
and seem very similar (and, indeed share several commonalities (Bong & Skaalvik, 
2003)), many educational psychologists have constructed both theoretical and empir-
ical distinctions between self-concept and self-efficacy (Zimmerman, 2000; Bong & 
Skaalvik, 2003; Parker et al., 2013; Chmieleqski et al., 2013). Self-concept and self-
efficacy are similar in that they are taken to (at least partially) explain an individual’s 
thought, emotion and action in a given context where the individual’s perceived skills 
and abilities come into play. Further, both self-concept and self-efficacy are domain 
specific (Bong & Skaalvik, 2003), so an individual can have a strong self-concept 
or self-efficacy in one area but not in another. Bong and Skaalvik (2003) turn to  
Bandura (1986) to draw distinctions between the two constructs: 

While self-concept represents one’s general perceptions of the self in given domains of 
functioning, self-efficacy represents individuals’ expectations and convictions of what they 
can accomplish in given situations. For example, the expectation that one can high-jump 6 
ft is an efficacy judgment (Bandura, 1986). It is not a judgment of whether one is competent 
in high jumping in general but a judgment of how strongly a person believes that [they] 
can successfully jump that particular height under the given circumstances. Self-efficacy 
researchers thus tend to emphasize the role played by specific contexts in efficacy appraisals. 
(p. 5) 

In the context of mathematics classrooms, then, mathematics self-concept 
discloses individuals’ perceptions about themselves in the area of mathematics (or 
perhaps in more specific domains like algebra or geometry) while mathematics self-
efficacy, following Bong and Skaalvik’s (2003) articulation, is a more bounded, 
context-dependent estimation of the extent to which students believe they can succeed 
at given specific mathematical tasks to certain levels. Both mathematics self-efficacy 
and mathematics self-concept can influence students’ mathematical identities, math-
ematical dispositions, mathematical classroom experiences and the mathematics they 
construct in practically meaningful ways, not the least of which is by fueling oneself 
with the motivation to persevere. 

Bandura (2010) noted that an individual’s self-efficacy relates to their belief in 
their ability to exert an influence over events pertaining to their lives, a belief which 
connects right to the foundation of human motivation and emotional well-being 
as well as (academic) performance. Bandura (2010) points out that, unless indi-
viduals believe that they can produce “desired effects by their actions, they have 
little incentive to undertake activities or to persevere in the face of difficulties.” As 
one may expect, mathematics education researchers have devoted much energy to



Individual Student Internal Contexts and Considerations … 265

intensive studies of student mathematics self-efficacy, from investigating potential 
sources of student mathematics self-efficacy (Lent et al., 1991; Lopez & Lent, 1992; 
Usher & Pajares, 2009) to exploring connections between self-efficacy and math-
ematics performance (Hackett & Betz, 1989; Pajares & Graham, 1999; Pajares & 
Miller, 1995) to the potential roles of mathematics self-efficacy in achievement, 
problem solving, and even career choice (Betz & Hackett, 1983; Lopez & Lent, 
1992; Pajares & Miller, 1994; Randhawa et al., 1993). Researchers also point to 
the importance of mathematics self-concept to persistence (Parker et al., 2013) and 
to mathematics performance. Seaton et al. (2014) suggest that addressing students’ 
mathematics self-concept may be as influential to their mathematics performance as 
building their mathematical fluency. 

These decades of research indicate that the way students view themselves as 
learners of mathematics is centrally important to the mathematics those students 
might construct. In the next section, we discuss how students’ views of themselves 
interfaces with their views of mathematics as they engage in processes of learning 
mathematics. 

Students’ views on mathematics 

Understanding the ways students construct mathematical knowledge by actively 
seeking to make sense of their realities through adaptation to new experiences 
connects to the previous discussion of students’ mathematical identities, because, 
as we saw, the particular characteristics students construct about themselves as 
mathematics learners can influence their construction of mathematical insights. 
Another aspect of mathematical learning environments also connects, however, to 
ways students might be primed to undertake mathematical knowledge construction, 
and that is students’ views of the field of mathematics (Kilpatrick et al., 2001). As 
McLeod (1992) notes, students in school mathematics settings regularly experience 
a range of emotions; the frequency, ferocity, and severity of these emotions relates 
to a student’s affective attitude towards the discipline of mathematics itself. McLeod 
(1992) asserts that, “the improvement of mathematics education will require changes 
in affective responses of both children and adults” (p. 575). 

In school mathematics settings, students’ views about the nature of mathematics 
(what mathematics is, what mathematics is like, what mathematics is not—from 
psychosocial perspectives) is informed by their experiences as mathematics students. 
These mathematical experiences are categorized by Medley (1987) as Type C, Inter-
active Mathematics Teacher Activities and Type B, Student Mathematics Learning 
Activities. Unsurprisingly, students who have experienced success in school math-
ematics performance tend to continue to experience success in school mathematics 
performance (Archambault et al., 2012; Reynolds, 1991). Concerningly, however, 
students who have less successful school mathematics prior achievement tend to 
struggle with mathematics performance (Archambault et al., 2012; Reynolds, 1991). 
These trends make sense both from cognitive and affective perspectives, because, 
if a child has somehow succeeded in learning mathematics content, it is reason-
able to surmise that they may be successful in learning more, and perhaps related, 
mathematics content. Further, it is reasonable that a student experiencing success
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in school mathematics likely is boosted in their mathematics identity (self-concept, 
self-efficacy), which can increase the chances that that student persists and perseveres 
as well as enjoys mathematics while connecting school mathematics to other aspects 
of their lives. We have realized for decades, from the work of Eccles and others, that 
students’ impressions about and experiences with mathematics in school inform and 
relate to both their mathematics identities and their construction of mathematical 
knowledge (Eccles, 1983; Meece et al., 1990; Simpkins et al., 2006). 

However, decades after the National Council of Teachers of Mathematics (NCTM, 
1989, 2000) embarked on its monumental reform movement, students are still 
frequently taught mathematics from a traditional perspective where mathematics 
is seen as a static discipline, a “sets of preexisting facts and procedures that is passed 
along from teacher to student in an authoritarian manner” (Wilkins & Ma, 2003). 
In such classrooms, students’ activities are dominated by silent, individual seatwork 
and rote note taking, so many students suspect that mathematics is about memo-
rization of content (Wilkins, 2000). In such classroom environments, students often 
reasonably surmise that mathematics is dry, boring, and potentially a waste of time. 
Responding to this concerning student view of mathematics, mathematics educators 
have, in the past few decades, begun to focus increasingly on supporting productive 
student mathematical dispositions, which Kilpatrick et al. (2001) characterized in 
their report Adding it Up as an intertwining of students’ views of mathematics with 
their views of themselves as mathematics learners: 

Productive disposition […] includes the student’s habitual inclination to see mathematics as 
a sensible, useful, and worthwhile subject to be learned, coupled with a belief in the value of 
diligent work and in one’s own efficacy as a doer of mathematics. (Kilpatrick, 2001, p. 107) 

Gresalfi (2009) emphasizes that, just as the content students learn is insepa-
rable from the ways in which they learn it, students’ dispositions—their social, 
affective, and motivational factors such as persistence, collaboration, and engaging 
with novel problems—are both central to and inseparable from learning processes. 
Dispositions involve students’ ideas about, perspectives towards, and their interac-
tions with content; dispositions “capture not only…what one knows but how [they] 
know it…not only the skills one has acquired, but how those skills are leveraged” 
(Gresalfi, 2009, p. 329). Students’ mathematical dispositions are clearly pertinent to 
mathematics teachers, who may seek to better understand their students’ mathemat-
ical dispositions in relation to classroom mathematics practice. Clark et al. (2014) 
emphasize four aspects of student identity that can provide information for mathe-
matics teachers relative to their students’ mathematical dispositions, which includes 
students’

• perceptions of their mathematics ability and the ways these perceptions influence 
their mathematics performance

• perceptions of the importance of mathematics inside and beyond their current 
experiences in the mathematics classroom

• perceptions of the engagement in and exposure to particular forms of mathematical 
activity and the ways these engagements influence students seeing themselves as 
mathematics learners, and
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• motivations to perform at a high level and attributions of their success or failure 
in mathematical contexts (p. 251). 

4 Connections Among Individual Student Internal 
Contexts and Broader Social Scales 

Contexts of social systems (students, teachers, schools, families, communities, or 
disciplines of study) are filled with relationship and connection. Although, in all 
of the previous sections of this chapter, we have repeatedly attempted to plant this 
theme, we use this section to specifically foreground these influences and connections 
seemingly external to the scale of an individual student. These influences include 
relationships between and among students and their classroom peers, their teachers, 
their school community, their home contexts, their local social community, their 
individual and familial histories and material contexts. Because of the limitations 
both of language itself and of our (lack of) prowess with language, we are constrained 
to list (rather incompletely) these relationships as if they are connected only to the 
student and are separate from their own interconnections, but this is inaccurate. All of 
these relationships are in dynamic and nondeterministic (although self-organizing) 
conversation with all of the other relationships (and more), pinging and twinging 
in transformative interdependence such that one apparently isolated experience that 
may, for instance, directly connect only the student and their teacher activates this 
entire biosystem of relationships (though perhaps not all to the same extent), buzzing 
them alive with energy that can (un)make and/or (trans)form them. Thus, when we 
have the privilege to interact with a student, we must also be interacting with their 
entire relationship biosystem. 

For us, this illuminates the impossibility of cleaving a mathematics student from 
their ambient realities and contexts. As Aydeniz and Hodge (2011) explain, 

students’ identities in relation to science or mathematics cannot be fully understood without 
considering the multiple communities in which students participate including home commu-
nity, school community, and the online social communities that now define most students’ 
daily social lives in western societies. (p. 513) 

For us, this means that, in a classroom relationship biosystem, it is not possible, 
for instance, to affirm a student’s mathematical contributions while delegitimizing a 
seemingly distinct aspect of that student, such as their non-English primary language, 
because that student’s construction of mathematics is inextricably, meaningfully 
connected to that core, identity-influencing experience of being, for instance, bilin-
gual. Additionally, we maintain that it is also not possible to generatively value, 
say, a student’s mathematical persistence while delegitimizing, however indirectly, 
a seemingly different but core aspect of that student’s reality, such as their gender 
identities. When we (as people in general or especially as teachers) are dismis-
sive, even offhandedly, of the efforts of persons (like our students, for instance) 
to have their humanity embraced and legitimized, we risk hindering for ourselves, 
and perhaps for some time, the potential to affirm students in their mathematical
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processes. Because students’ identities are complex, dynamic, and interconnected, 
teachers cannot assume that they can separate a student’s mathematical identity from 
the student’s holistic identity. 

Further, a stunting dismissal of our fellow humans’ identities and lived reali-
ties tends to atrophy classroom relationship biosystems, as one might imagine, at 
(various) scale(s) and can profoundly influence students’ mathematical (just to name 
one) identities, even for students apparently adjacent to the target of the dismissal. 
That is, a delegitimization (very often) resulting in a degeneration of relationship can 
tinge not just the holistic biosystems of the persons directly involved (the doer of 
the delegitimization and the direct recipient(s)), but also those of all of the persons 
cognizant of the delegitimization; vicarious experiences can powerfully impact our 
efficacies (Zimmerman, 2000). Teachers, in practice, interact not just with a student 
but with their entire relationship biosystem, and these interpersonal interactions 
contribute to classroom-level interactions, which also interact with the holistic rela-
tionship biosystems of all aware persons in those interactions as well as impinging 
upon the classroom-level network of relationship. 

To dismiss or belittle aspects of students’ selves has potential restrictive ramifica-
tions for how a teacher can meaningfully interact with students in their mathematics 
classroom. Conversely, there is a potential for a more expansive student–teacher 
connection when teachers’ interpersonal behaviors consistently communicate how 
highly each student and their intellectual contributions are valued. Student percep-
tion of teachers’ behaviors indicating tolerance, care for student wellbeing, and rela-
tive lack of authoritarianism is an important feature of student–teacher connections 
(Van Petegem et al., 2008), so implications for teachers are profound on the scale 
of students and, we emphasize, on the level of the classroom community relation-
ship biosystem as well. Teachers, because of their position in the classroom, have 
considerable opportunity and responsibility to mindfully facilitate equitable status 
relationships with all students; otherwise, students’ academic progress and class-
room participation (among other potential damages) are at risk (Alexander et al., 
1987; Cohen & Lotan, 1995; Fuller & Clarke, 1994). 

The interconnected nature of student mathematics cognition, identity, and dispo-
sition to wider contexts like mathematics classrooms, schools, and communities 
uncovers several issues pertaining to student access to opportunities to develop and 
nurture productive identities and dispositions within dynamic and rigorous class-
room environments. Access to important mathematics content is far from equitably 
attainable (Reddy, 2005), as academic curriculum tracks (Oakes, 2005), along with 
intergenerational and geographically-dependent disparities in school funding struc-
tures (Kozol, 2012) pose non-trivial barriers and opportunity gaps (Horn, 2012) 
to the fulfillment and facilitation of every students’ potential to be their most full 
mathematical selves. 

Much as student internal context cannot be bifurcated into disconnected pieces 
like cognitive vs. emotional processes, individual students cannot be separated from 
their multi-leveled social and historical contexts. The discussion in this section illus-
trates the futility, as understood within mathematics education scholars, of attempting 
to isolate mathematical cognitive processes in students and interact (or operate
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with) solely those processes. Perhaps even more critically, this section empha-
sizes the responsibilities and obligations of teachers to advocate for student growth, 
development, and health in holistic and connected ways. 

5 Implications for Teachers 

Though the reasons for inequitable access to high quality, rigorous, engaging math-
ematics learning opportunities are many, systemic, and extending beyond bounded 
educational structures, we focus in this section on several aspects of mathematics 
learning environments that teachers and students can more directly influence, and 
which are closely connected to our previous discussions of student mathematics 
learning processes, student mathematical identity constructions, and student atti-
tudes and views towards mathematics. These aspects include the existence and roles 
of status in mathematics classrooms and socially just and affirming pedagogies in 
mathematics. 

Socially just and affirming mathematics pedagogies not only provide opportuni-
ties for mathematics teachers to provide students with enactive experiences, which 
strongly inform students’ efficacy beliefs (Zimmerman, 2000) and which can foster 
productive mathematics dispositions, but they can also facilitate students’ cogni-
tive growth. For instance, culturally responsive teaching is one such pedagogically 
affirming approach, which Hammond (2014) characterizes as 

An educator’s ability to recognize students’ cultural displays of learning and meaning making 
and respond positively and constructively with teaching moves that use cultural knowledge as 
a scaffold to connect what the student knows to new concepts and content in order to promote 
effective information processing. All the while, the educator understands the importance 
of being in a relationship and having a social-emotional connection to the student in order 
to create a safe space for learning. (p. 15, emphasis in original) 

Culturally responsive teaching in mathematics asks teachers to be open and 
expansive to a variety of ‘real worlds’ that their students navigate and negotiate 
daily (Gay, 2002). Further, socially just and affirming pedagogy expects teachers 
to validate students lived realities in part by creating space for those realities in 
mathematics learning processes. Simultaneously, culturally responsive mathematics 
teaching expects that high quality, rigorous, important mathematics teaching and 
learning occurs in classrooms. Our understandings of such justice-oriented peda-
gogies indicates that powerful and affirming mathematics teaching draws on and 
leverages broader contexts that students inhabit beyond their individual selves and 
expands students’ and teachers’ awareness of the ways mathematics holds power 
to critically analyze and interpret our worlds, potentially opening up spaces for 
justice-oriented agency and action (Aguirre & Zavala, 2013). 

Just as our field has pointed to connectivity and generativity over the past several 
decades, it has also emphasized the capability of (all) students to deeply think and 
reason, so an affirming classroom relationship system is not devoid of student ques-
tioning and debating. When responding to a student contribution, for instance, an
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affirming expectation can be that the student will articulate, explain, and justify their 
contribution and, if necessary, attempt to persuade peers in the classroom to agree 
with their mathematical justification. An affirming mathematics classroom relation-
ship system does not let just any suggestion prevail; it acts—with often analytical 
purpose—to ascertain which suggestions are viable for the mathematics commu-
nity and to justify why that viability exists. At the same time, however, we are 
increasingly (if belatedly) aware of important commitments to social justice that 
mathematics teachers entail as political agents in an unjust social system. We can 
only weakly attempt to maintain the neutrality of mathematics and the teaching of 
mathematics; this neutrality is exposed as a fiction, which, for us, implies that math-
ematics teachers’ socio-political self (and community) awareness is more and more 
paramount. Beyond implementing mathematical instructional practices that deeply 
and actively engage students in contextual and meaningful mathematics, Aguirre and 
Zavala (2013) argue that culturally responsive mathematics teachers must

• develop a socio-cultural political consciousness
• understand and embrace social constructivist and socio-cultural theories of 

learning
• get to know and leverage the mathematical resources of students, their families, 

and their communities. 

Socially justice-oriented mathematics classrooms can provide a potential-filled 
connective space for nurturing and facilitating the aspects of student internal and 
individual contexts we have discussed in this chapter. 

6 Concluding Comments 

The adapted framework for this volume articulates a number of factors, characteris-
tics, and contexts relevant for teaching and learning in mathematics classrooms. Each 
of these is important on their own, and perhaps even more so in concert with other 
contexts; for the authors of this chapter, we agree with Dewey (1906) and many 
other educational scholars that students and their contexts are crucially important 
to mathematics learning. In this chapter, we have provided an overview of several 
influential aspects of individual student internal context (Type H), including student 
mathematical identities, self-efficacy, and disposition. We have also emphasized the 
significance of the connections between all of these aspects and other educational 
and social considerations and contexts; students exist, as we all do, within a cosmos 
of relationship rather than in an isolated vacuum. 

Given this overview, several avenues for future research emerge in our field, as we 
hope they do for the reader. Though each person may see different research poten-
tials arising from the work scholars in our field have already done, the potentials 
we see are for an increased presence of postmodern research perspectives on student 
internal context and for greater consideration of critical theoretical approaches in our 
consideration of student and educational contexts. Postmodern perspectives disrupt
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static boundaries and binaries as well as linear, predictable pathways while empha-
sizing the importance of context and acknowledging the existence of indeterminacy 
(Stinson & Bullock, 2012). These perspectives offer promise to our work in student 
mathematical internal context because of the dynamic complexity of identity and its 
non-linear enmeshment in broader conditions; we have the potential to (re)envision 
our notions of student identity and student mathematics performance in ways that 
are open to irregularity and spontaneity while maintaining rigor in research. Simul-
taneously, we see ourselves as undertaking an important responsibility to refrain 
from treating students as isolated subjects; in socially aware and critical educational 
research, it is incumbent upon us to deepen our understandings of the systemic nature 
of concealed, asymmetric relationships of power (Stinson & Bullock, 2012) and the 
ways those of social contexts of inequity reveal themselves in children’s educational 
lived experiences and identities. 

One social context that has emerged in the past two decades as a potentially 
powerful research focus is that of online communities and the potential to inhabit yet 
another identity as a virtual being in virtual worlds. Though mathematics researchers 
have been studying the connections between technology and student mathematics 
motivation, achievement, and attitude (Higgins et al., 2019) since the mid-1980’s, 
the possibility to understand how online spaces and realities impact and are impacted 
by students’ online mathematical identities is more recently being realized (Rosa & 
Lerman, 2011), especially in the context of gamification (Lo & Hew, 2020). Tech-
nology has progressed from desktop computers placed in classrooms to hand-held 
devices providing not only unprecedented access to information but also potential for 
identity transformation and (re)construction. The responsive, adaptive, and dynamic 
aspects of critical postmodern research perspectives seem well poised to contribute to 
our understandings of students’ mathematical identities and internal social contexts 
in a variety of technological mathematical learning environments, including gaming 
environments, online mathematics classrooms, and social media environments while 
also pushing us to better understand patterns and asymmetries in student access to 
important online mathematics learning communities. 
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External Context-Related Research: 
Digital Resources as Transformers 
of the Mathematics Teachers’ Context 

Ghislaine Gueudet and Birgit Pepin 

1 Introduction 

The contribution of this chapter addresses current issues associated with the evolution 
of research in mathematics education related to the external context for mathematics 
teachers’ professional activity. The external context combines many elements, such 
as for example materials, facilities, community support (Manizade et al., 2019). We 
contend that, in this digital era, digital resources play an essential role in this external 
context. We primarily focus on research concerning the external context and related 
with digital resources: this includes research about the digital resources themselves, 
as well as research about for example community support for the integration of digital 
resources by teachers, or educational policy linked with digital resources. 

In other words, we have concentrated on Medley’s (1987) Type I (external context) 
variable in the context of digital resources. By doing that, we focus on the “materials” 
variable (Manizade et al., 2019), with a specific focus on digital materials, and on 
other materials when they are combined with digital materials. For the sake of the 
size of the chapter, we do not review research concerning school administration (e.g., 
Hunter, 2019), supervision (e.g., Yang et al., 2021), community support (e.g., Nicol, 
2018), and parental support systems (e.g., Wadham et al., 2020), when they are not 
linked with digital resources. 

Returning to our focus, digital technologies have led to tremendous changes in 
these external context variables: not only changes in the access to available digital
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materials, but also changes in what can be called “community support” through 
digitalization (e.g., on platforms), or more generally for supporting the integration 
of digital resources. Research in mathematics education about these external context 
variables has undergone very significant changes. The factors ‘causing’ these changes 
in the focus of research studies were related to the technologies themselves, but also 
to other factors, such as events in the society impacting the educational system (e.g., 
the COVID-19 pandemic), have played a role. Moreover, these studies not only 
concentrate on the changes in the external context (Type I) variables; we evidence in 
this chapter that they also address the influence of digital resources as elements of the 
external on several online variables and their interactions, in particular D (teachers’ 
pre-post-out-of-class activities) and E (teachers’ competence, knowledge and skills), 
and also the process variables B (students’ mathematics learning activities) and C 
(teacher-student interactions in class). 

Given the large number of research publications concerning the teaching of math-
ematics in the digital era and related to the selected external context variables, we 
restricted our search to the identification of important trends. In this chapter, we 
address the following research question: 

Which are the evolutions of research in mathematics education about digital resources as 
context for mathematics teachers’ professional activity? 

We considered recent research literature, research published between 2016 and 
2020. This was done, because during that period a large body of research emerged 
that addressed the changes due to digital resources. We also included selected seminal 
pieces cited in the literature, covering the last 20 years. This included conference 
proceedings of the following conferences: Congress of the European Society for 
Research in Mathematics Education (CERME10,1 2017), CERME11, 2019); Mathe-
matics Education in the Digital Age (MEDA,2 2018; MEDA,3 ); International Confer-
ence on Technology in Mathematics Teaching (ICTMT13,4 2017), ICTMT14,5 

2019); International Conference on Mathematics Textbooks Research and Develop-
ment (ICMT3,6 2019). Further, we included journal articles: we searched the 2016– 
2020 issues of Educational Studies in Mathematics (ESM), Journal for Research 
in Mathematics Education (JRME), ZDM Mathematics Education, Digital Expe-
riences in Mathematics Education (DEME). Moreover, we searched the following 
books: Hoyles and Lagrange (2010, ICMI Study 17 about technology), Clark-Wilson 
et al., (2014, 2021), Drijvers et al. (2016), Monaghan et al. (2016), Trouche et al. 
(2019). We systematically searched for papers or chapters about digital technologies 
and digital resources as contexts in mathematics teaching: we used the keywords 
“technology”, “digital technology”, “digital resources”, “digital platforms”, “digital

1 All the CERME proceedings are available at http://erme.site/cerme-conferences/. 
2 https://www.math.ku.dk/english/research/conferences/2018/meda/proceedings/. 
3 https://www.jku.at/linz-school-of-education/steam/meda-conference-2020/. 
4 https://hal.archives-ouvertes.fr/hal-01632970. 
5 https://duepublico2.uni-due.de/receive/duepublico_mods_00048820. 
6 https://tagung.math.uni-paderborn.de/event/1/. 
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tools”, crossed with “teaching”, “teacher”, “teacher professional development”. We 
excluded papers whose central focus concerned topics addressed in other chapters of 
this book (e.g., mathematics teacher affect studies; studies on mathematics teacher 
professional development; mathematics teacher knowledge). Nevertheless, we did 
not restrict ourselves to the research about digital resources because studying the 
influence of a given digital resource on the teaching of mathematics often includes 
studying its use by teachers, or indeed the knowledge development through the use of 
such resources. At the end of this process, we retained 160 papers and chapters. We 
noted for each of these papers the questions addressed, and the main results obtained. 

We have chosen the following organization for this chapter: After this Introductory 
Sect. 1, we present theoretical elements guiding our review of the literature (Sect. 2). 
In Sect. 3, we discuss evolution of research about educational policies and about 
teachers’ professional activity, including assessment. Section 4 focusses on research 
about the quality of digital curriculum resources, while Sect. 5 concerns selected 
current evolutions. In Sect. 6 we present our conclusions. 

2 Theoretical Frames guiding our Review 

In this section we introduce the concepts that guided our review of the literature. We 
present in particular what we mean by (1) educational technology as compared to 
digital curriculum resources; and (2) mathematics teachers’ professional activity for 
the purpose of this chapter. 

2.1 Digital (Curriculum) Resources and Educational 
Technology 

The literature reviewed in this chapter concerns what we call digital resources. Digital 
resources can be defined as materials that have been conceived and created digitally 
or by converting analogue materials to a digital format. Examples of digital resources 
are simulations, models, graphics, e-books, and e-notes intended to make learning 
more engaging, accessible and contextualized. Over the past decade there have been 
numerous research studies investigating the use of digital resources for mathematics 
teaching (e.g., Clark-Wilson et al., 2014; Drijvers et al., 2016; Hoyles & Lagrange, 
2010). 

Within the general category of digital resources, we distinguish between digital 
curriculum resources (DCRs) and educational technologies (ETs), following Pepin 
et al. (2017a) who defined DCRs as follows: 

It is the attention to sequencing—of grade-, or age-level learning topics, or of content asso-
ciated with a particular course of study (e.g., algebra)—so as to cover (all or part of) a 
curriculum specification, which differentiates DCRs from other types of digital instructional 
tools or educational software programmes. (p. 647).
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ETs can be defined as the digital tools that are used in and for education by students 
or teachers (e.g., platforms). Once these tools are used for teaching (and learning) a 
particular curriculum content, and built into for example a lesson plan, they would 
have become DCRs. 

Pepin et al. (2017a) observed that research about DCRs pays particular attention 
to: 

1. The aims and content of teaching and learning mathematics; 
2. The teacher’s role in the instructional design process (i.e., how teachers select, 

revise, and appropriate curriculum materials); 
3. Students’ interactions with DCRs in terms of how they navigate learning 

experiences within a digital environment; 
4. The impact of DCRs in terms of how the scope and sequence of mathematical 

topics are navigated by teachers and students; 
5. The educative potential of DCRs in terms of how teachers develop capacity to 

design pedagogic activities. 

For our review, it makes sense that we bring these two together (DCRs and ETs), 
as teachers are working in environments that are influenced by both. Nevertheless, as 
we will see in what follows, the distinction between them can contribute to refining 
our understanding of the research literature: for example, conceptualizing quality 
(see Sect. 4) is a need that emerged from the studies about DCRs. 

2.2 Teachers’ Professional Activity 

Reviewing the literature about digital resources as external context for teachers’ 
professional activity depends on the perspective chosen on this professional activity. 
Indeed, the external context and this professional activity are intertwined. 

Borba and Villarreal (2005) started with the premise that technologies have 
changed humankind, and emphasized that: 

[...] humans-with-media, human-media or humans-with-technologies are metaphors that 
can lead to insights regarding how the production of knowledge itself takes place [...] this 
metaphor synthesizes a view of cognition and of the history of technology that makes it 
possible to analyze the participation of new information technology ‘actors’ in these thinking 
collectives in a way that we do not judge whether there is ‘improvement’ or not, but rather 
identify transformations in practice. (p. 23) 

The “Humans-with-media” perspective challenges the borders between what is 
external and what is internal for the teachers interacting with a context comprising 
digital resources. In terms of the framework of research on teaching mathematics 
(Manizade et al., Chap. 1), it invites to consider that some of the digital media do not 
only belong to the offline Type I variables, but can also be considered as belonging 
to the online Type E variables, e.g., because the teacher-with-media can be seen as 
a hybrid entity.
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Using a historical lens, when digital resources became available for teachers and 
mathematics classrooms, and teachers were increasingly encouraged to use those 
‘tools’, the research literature also reflected this turn. Questions such as the following 
were asked: What is the teacher-tool relationship (e.g., Brown, 2009)? In which ways 
does the ‘tool’ influence teachers’ practices, or indeed their knowledge development 
concerning the use of the ‘tool’? Particular theoretical lenses were developed to face 
the challenges associated with answering such questions. The instrumental approach 
to didactics (e.g., Guin et al., 2005) and the documentational approach to didactics 
(e.g., Trouche et al., 2020a) provide us with theoretical tools which have been useful 
to face this challenge in our review. The instrumental approach (Guin et al., 2005)was  
developed to study, and theorize, the integration of computer tools into mathematics 
education. It distinguishes between an artifact, a product of the human activity, 
designed for a goal-directed activity, and an instrument developed by the user along 
their activity for a given goal. The subject (e.g., the student) develops an instrument, 
incorporating the artifact (external) and knowledge (internal). Two different subjects 
even with the same goal do not develop the same instrument. The development of 
an instrument is called instrumental genesis. This genesis comprises two inseparable 
processes: instrumentation that describes how the features of the artifact influence the 
subject’s activity; and instrumentalization which describes how the subject modifies 
the artifact, according to their pre-existing knowledge. 

The instrumental approach has been used in mathematics education research to 
analyze how students learned with educational technologies (the calculator, in partic-
ular). The concept of orchestration was introduced by Trouche (2004) to address the 
question: “How do teachers use technology in class, and why do they use it this 
way?”. With the perspective of the instrumental approach, this question was formu-
lated as: “How do teachers orchestrate the students’ instrumental geneses with a 
given educational technology?”. The instrumental orchestration was defined as the 
systematic organization, arrangement and didactical use of artifacts in the classroom, 
and therefore, concerns both Type C (interactive mathematics teacher activities) and 
Type D (pre- and post-active mathematics teacher activities) of Medley’s variables. 

Introduced by Trouche (2004) and refined by Drijvers (2012), the concept of 
instrumental orchestration has been a first step in the development of studies refer-
ring to the instrumental approach and investigating the teacher’s role. This direction 
of research has rapidly developed, with authors considering teachers’ instrumental 
geneses. In particular, Haspekian (2014) introduced the concept of teachers’ double 
instrumental geneses: the teachers had to learn the technical functionalities of the 
artifact, and at the same time had to learn how to use the artifact for their teaching 
goals. While these studies from the instrumental approach still focused on educa-
tional technologies, the available DCRs were rapidly growing, and opening new 
avenues for a mathematics teacher’s (curriculum/tool/task) design activities (e.g., 
Pepin et al., 2017b), individually and collaboratively. 

The proliferation of available DCRs and the need to understand its consequences 
for teachers’ professional activity led to the introduction of the documentational 
approach to didactics (DAD, Gueudet & Trouche, 2009; Gueudet et al., 2012; 
Trouche et al., 2019, 2020a). This approach considered the interactions between
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teachers and (digital) resources mobilized for their teaching. Referring to Adler 
(2000), the term resource was used with a very general meaning, namely anything 
that can re-source the teacher’s practice is a resource. All the elements of teachers’ 
professional external context: (digital) curriculum resources, students’ productions, 
discussions with colleagues can constitute resources. Even elements of their personal 
context can become resources for their teaching: discussions with a member of a 
family, a journal where the teacher notices interesting statistics etc. Teachers’ docu-
mentational work (searching for resources, selecting them, modifying them and using 
them in class) is central to their professional activity. 

The documentational approach drew on the instrumental approach and intro-
duced a distinction between a given set of resources, and a document, developed 
by the teacher about their use of these resources for the goals of their activity. The 
document connects the recombined resources and the teacher’s professional knowl-
edge. The development of a document was called documentational genesis. Like the 
instrumental genesis, it encompasses two associated processes of instrumentation 
and instrumentalization. 

The DAD viewed a teachers’ professional activity as continuous design work 
and considered teachers as (co-)designers. The availability of a wealth of resources, 
digital resources in particular, opened new possibilities for teachers but also created 
new complexity, requiring the development of teachers’ (co-)design capacity (Pepin 
et al., 2017b). According to the documentational approach, Medley’s variables 
Type C (interactive mathematics teacher activities) and Type D (preactive mathe-
matics teacher activities) are strongly linked, and the DAD can be considered as a 
conceptualization of the links between variables of Type I, C, D and E. 

At the end of this review of theory, we retain certain points that seem particularly 
important to us, and we make certain choices for the rest of the chapter:

• In what follows we use “digital resources” as the most general term. We acknowl-
edge that it is complex to distinguish between Digital Curriculum Resources 
(DCRs) and Educational Technologies (ET), and that both are often combined in 
teachers’ practice. Nevertheless, this distinction can be useful for some aspects 
of the literature.

• There are still many terms relevant for our study that are not always precisely 
defined (e.g., “digital platform” can be used for very different digital resources, 
depending on the cultural context in particular).

• The instrumental approach introduced the distinction between an artifact 
(external) and an instrument (both external and internal) developed by teacher 
interacting with this artifact. The documentational approach introduced a similar 
distinction between resource (external) and document (both external and internal). 
While we do not consider here studies focusing on teacher knowledge, we included 
in our review studies focusing on the interactions between teachers and digital 
resources.).
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3 Evolution of Research about External Context Variables 
linked with Digital Resources and about their Influence 
on Teacher Work and Teacher Knowledge 

In this section we analyze the evolution of research considering external context 
variables (Type I) and their influence on the online variables Type C, D and E, 
keeping our focus on teachers working with DCRs. While Medley (1987) considered 
that external context variables influenced the Type E-D relation (between teachers’ 
competencies, knowledge and skills and teachers’ pre-post-out-of-class activities), 
we align here with the new model proposed by Manizade et al. (Chap. 1 in this book) 
by also considering their influence on the Type D-C relation (between teachers’ 
pre-post-out-of-class activities and teachers’ interactions with students in class). 

We claim that one way that research about external context variables has evolved 
concerns investigations about educational policies (including official curricula and 
reforms) addressing the provision and use of DCRs. We present this research and 
its evolution in Sect. 3.1. The research about teacher integration (or non-integration) 
of DCRs has also evolved during the last 20 years. Since this integration is strongly 
influenced by educational policies, we consider that research about teacher integra-
tion addresses the influence of Type I variables on Types C-D-E, and will discuss 
this in Sect. 3.2. One of the levers used by educational policies to influence teacher 
integration of DCRs is assessment; we focus on this issue in Sect. 3.3. 

3.1 Educational Policies as Context for Teachers’ Work 
with DCRs 

Educational policies, including curriculum reforms, were not listed by Medley (1987) 
amongst the examples of Type I variables. Nevertheless, educational policies of their 
respective countries and institutions are an important element of the teachers’ external 
context. In the “Challenges in basic mathematics education” brochure, Artigue (2011) 
stresses that “Quality education for all today cannot be achieved without taking tech-
nological factors into account” (ibid p. 35). Within mathematics education research, 
work on educational policies, and how they contribute to shaping the teachers’ use 
of DCRs (how this Type I variable influences Types C and D) or how educational 
authorities use DCRs in their attempts to shape teachers’ practices has developed 
during the last 20 years. 

Educational Policies and Access to Technology 

Between 2000 and 2010, many studies investigated how educational policies and 
projects at a national scale tried to promote through different means the use of 
technologies in the mathematics classroom (UNESCO, 2005). These studies, often 
comparing different national situations, examined in particular the issue of access 
to technology. Specifically, how the policies try to develop this access, and does the
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actual provision of computers permit the design by the teacher of classroom orches-
trations where students exploit the potential of relevant software in their mathematical 
activity? 

Julie et al. (2010) described the situations in four countries (Russia, Hong Kong, 
Vietnam, South Africa) and one region (Latin-America). They noted similarities in 
the educational policies of these countries and particularly the acceptance at the 
political and bureaucratic level of the use of digital technologies for mathematics 
teaching and learning. The translation of policy into practice took very different 
forms (in terms of equipment in computers, Internet access, provision of digital 
resources, and teacher education), according to the different economic situations of 
these countries. Nevertheless, in all countries they observed that unequal access to 
technologies remained, and that the actual use of digital technologies in schools was 
rare. 

Sinclair et al. (2010) compared five projects concerning the use of technologies 
in the teaching and learning of mathematics that had been undertaken at a national 
scale in different parts of the world. These projects were: Mexico’s Enciclomedia, 
Italy’s M@t.abel; the US’s Sketchpad for Young Learners, Lithuania’s Mathematics 
9 and 10 with The Geometer’s Sketchpad, and Iran’s E-content initiative. The authors 
introduced three axes, for their comparison of the projects: (1) The curriculum 
axis (Technology activities support existing curriculum vs. Technology activities 
encourage new content); (2) The teacher practices axis (Technology activities reify 
existing teacher practices vs. Technology activities endorse new practices); and (3) 
Activity design (“Open” activity design for students vs. “Closed” student activity 
design). Their analysis led them to observe shifts in the projects, such as increasing 
participation of the teachers as co-designers and epistemic value (supporting the 
learning of mathematics) of the technologies being progressively foregrounded rela-
tive to its pragmatic value (e.g., obtaining a numerical result). Nevertheless, at least 
in some of the countries, difficulties of access to computers were an obstacle for the 
implementation of these projects. 

Analyzing Evolution of the Policies and their Implications 

The work by Trouche et al. (2013) can be considered as a transition between the 
‘early’ (2000–2012) works about educational policies and technologies, where the 
issue of access was central, to more recent works (2013–2021) where DCRs are used 
by educational authorities to support teacher design, and at the same time to try to 
influence teacher classroom practices. 

Trouche et al. (2013) analyzed the issues connected to policy implications on two 
continua/ dimensions, as shown in Fig. 1.

1. bottom-up to top-down policy approaches (e.g., “A top- down policy could be 
a national directive of imposing access to graphing calculators during national 
examinations; whereas support for teachers who start to design their own online 
resources can be seen as a bottom-up policy” (p. 2).); and 

2. access—support approaches (e.g., “In the United States, the National Council 
of Teachers of Mathematics (NCTM), in its 2008 Position Statement, claims
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Fig. 1 The two policy dimensions (left) with potential orientation towards bottom-up and 
supporting policies (right), extracted from Trouche et al. (2013) 

that “all schools must ensure that all their students have access to technology” 
but also that “Programs in teacher education and professional development must 
continually update practitioners’ knowledge of technology and its classroom 
applications” (NCTM, 2008, p. 13).)

This evolution of the policies as envisaged by Trouche et al. (2013) is also linked 
with evolution in research foci. Researchers in mathematics education have increas-
ingly investigated how the educational policies support teacher integration of tech-
nologies, and teacher design. The researchers themselves sometimes participate in 
this effort, by developing curricula in particular. This evolution of the policies (and of 
associated research) is linked with another kind of evolution: the educational author-
ities increasingly use DCRs to provide resources for teacher design (supporting this 
design, acting on Type D variables), with further aim of influencing the classroom 
practices (acting on Type C variables). 

Use of DCRs for Supporting Teacher Design and Shaping Teacher Practices 

The Cornerstone Maths project in England is an illustrative example (e.g., Clark-
Wilson & Hoyles, 2019) of systematically scaling-up of innovations involving DCRs. 
It began in 2011 by designing curriculum units that embedded digital technology for 
learning mathematics (called dynamic mathematical technology, DMT). Such tech-
nologies were said to offer the potential for teachers and pupils to (re-)express their 
mathematical understandings. The national curriculum for mathematics (introduced 
in England in 2012) specifies the content of the school mathematics curriculum 
(5–16 years) but offers little pedagogical guidance with regard to the use of tech-
nology, implying that teachers should use their judgement about when ICT tools 
should be used, and how. Consequently, there were no government-funded initia-
tives to support either secondary school mathematics teachers to develop ways of 
integrating DMTs into their classroom practices or for mathematics departments to 
embed such approaches within their school-designed schemes of work. Some use 
of technology across the secondary curriculum was expected and lightly monitored 
within the school inspection regime. There was the need to support within-school
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upscaling. The team judged it important to design and test an in-school professional 
development toolkit as that could help instructional leaders in schools to support 
other colleagues and to develop as leaders. The present step (reported in the article) 
concerned the issue of supporting a large-scale and sustained use of this curriculum 
units, and this was done via a web-based toolkit. However, there were also difficulties 
in the context: due to a shortage of mathematics teachers, which acted as a barrier 
for schools to sustain innovations and innovative practices. The study is also inter-
esting in terms of the importance of the schools as sites for supporting professional 
development of teachers with respect to their work with digital curriculum resources. 

While researchers sometimes participate in the design and dissemination of DCRs 
to contribute to teacher professional development, the national educational authorities 
more generally have offered resources to teachers. Their aim is to influence teachers’ 
practices in and out-of-class, and to contribute to their professional development (in 
particular in the context of reforms). In many countries, digital platforms propose 
DCRs to teachers. 

Concerning platforms and their use by teachers, there are issues involving expec-
tation management. For example, in relation to ‘design’- developments, whilst in 
some countries (and schools) mathematics teachers are to some extent expected to 
(co-) design their curriculum, in others teachers are expected merely to follow the 
approved textbook (Trouche et al., 2019). However, the free availability of an enor-
mous number of DCRs, leaves the teacher at a loss in regard to assessing the quality 
of the available DCRs (see Sect. 4 below), and how to design or amend DCRs? 
The availability of free resources is also of economic importance, as it raises the 
issue of competition with commercial resources (e.g., textbooks). In some countries, 
government institutions provide access to or design DCRs themselves. Others offer 
opportunities for teachers to engage in the creation of resources. The DCRs’ design 
issues cannot be seen on two dimensions; they are more complex, involving a variety 
of ‘systems’ and agents with commercial and economic considerations. 

In their investigation of digital platforms for mathematics teacher design (Gueudet 
et al., 2021), the international team members analyzed the affordances and constraints 
of commonly used digital education platforms available for mathematics teachers 
(often provided by governments). They used the documentational approach and the 
concept of ‘connectivity’ (Pepin, 2021), introduced by Gueudet et al. (2016) in their 
study of e-textbooks. These authors distinguish between: (1) macro-level connec-
tivity (e.g., connections made between the book and other websites, or between the 
resource systems of users); (2) micro-level connectivity (e.g., internal mathemat-
ical connections made by the authors between different representations; between 
the mathematical content and real-life contexts). Transferring this concept to digital 
platforms, Gueudet et al. (2021) compared three contrasting cases of platforms in 
three European countries (France, Netherlands, and Denmark), in terms of poten-
tial instrumentation and instrumentalization processes for users, and of micro- and 
macro-level connectivity. They found important differences between the platforms 
that were strongly linked with national educational policies and national perspectives 
on teachers’ work. For example, in Denmark the use of the platforms was compulsory, 
and their features were chosen to compel teachers to design objective-driven lessons,
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according to new national standards. In France, the digital platform was designed to 
support the implementation of the new curriculum. In the Netherlands, the platform 
was linked with a policy supporting the use of open educational resources. 

As claimed by these authors, digital platforms or other digital resources offered by 
the institution can be seen as interfaces between educational policies and teacher’s 
practices (in class and out-of-class). Hence studies about educational policies are 
strongly linked with the studies about teachers’ integration of digital resources that 
we discuss in the next section. 

3.2 Teachers’ Integration of Digital Resources 

In this section we analyze the evolution of research about teachers’ integration of 
digital resources. We argue that the studies about integration firstly tried to identify 
the factors supporting or hindering the use of technologies by teachers in class. The 
influence of Type I variables (e.g., educational policies) on the uses in class (Type C 
variable) was identified by these studies; then they noted the importance of teacher 
knowledge (Type E) as a factor of integration. As the environment for teachers in 
terms of available resources has become more complex, specific theoretical frame-
works have emerged that allow for the consideration of interactions between variables 
of Types C, D, E and I. 

Early research mostly focused on questions concerning the factors explaining 
the integration or non-integration of educational technologies. The factors identified 
were firstly external variables, and integration was considered in terms of in class use. 
We consider these works to address the influence of Type I on Type C variables. Some 
of these variables were linked with the national or regional educational policies, in 
terms of equipment, and technical support offered to the teachers in their schools 
(Thomas, 2006). These policies also led to the presence, or not, of the technologies in 
the mathematics curricula, and in the official examinations (Trouche, 2016), and this 
had a strong influence on the extent of integration. Other external factors concerned 
the level of the school environment, the school culture and the interactions among 
colleagues in the school (Forgasz, 2006). If the use of technologies was promoted by 
the school, with support staff, or by way of a collective project drawing on some kind 
of technology, the integration was favored. On the other hand, if a group of teachers 
in a school felt that the use of technology was an additional constraint imposed by 
the superiors, this constituted a strong obstacle to integration in that school. 

Progressively, the studies considered Type I variables as factors explaining inte-
gration and Type E variables like teachers’ experience and teachers’ knowledge (e.g., 
Attard et al., 2020; Geiger et al., 2016; Goos, 2014). This draws a more complex land-
scape, involving the interaction of four types of variables. The model (framework of 
research on teaching mathematics) introduced by Manizade et al. (Chap. 1, this book) 
considers the influence of Type I variables on the E-D and on the D-C relations. But 
in this model the E-D-C relation is presented as linear: teacher knowledge influences 
teacher preparation which in turn influences teacher activity in-class. In the studies
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we consider here, E-D-C can be viewed as a triangle, with two-way interactions along 
each side of the triangle. Indeed, the researchers investigated how Type E variables 
influenced the use of technology in-class (Type C) and out-of-class (Type D), still 
taking-into-account the external context (Type I). The theoretical perspective of the 
instrumental approach (Guin et al., 2005) strongly associates the technology (Type 
I), the teacher’s knowledge (Type E), and her practice both in class (Type C) and 
out-of-class (Type D) and has been used by some authors to study the interactions 
between teacher knowledge and their use of technology. 

Assude (2007) introduced the concept of ‘instrumental integration stages’. She 
proposed four stages of increasing technology use in the classroom. In the instru-
mental initiation stage, the teacher wants the students to learn how to use the soft-
ware; in the instrumental exploration stage, the students explore the software through 
mathematical tasks; the instrumental reinforcement means that the software in used 
to reinforce mathematical knowledge, and finally in instrumental symbiosis stage the 
software and the mathematics are combined in the students’ mathematical activity. 
Assude (2007) explained that these stages do not correspond to stages of professional 
development. Rather, even in the same lesson, the teacher could propose software 
use corresponding to instrumental reinforcement at some point, and to instrumental 
exploration at another moment. Assude (2005) also foregrounded the importance 
of time as factor hindering or favoring the integration of technology by teachers. 
The consideration of time economy as an essential variable was realized in partic-
ular by Ruthven (2009), who proposed a theoretical framework combining variables 
of different natures and including this notion of time economy. This framework 
called “the Structuring Features of the Classroom Practices” (SFCP) associates five 
features (considered here as variables) that explain how a teacher integrates a new 
digital technology:

• the working environment: classroom equipment, support in the school (Type I);
• the activity format: the teacher and their students have a usual activity format 

(Type C);
• the curriculum script: professional knowledge (Type E);
• the time economy (Type I);
• the resource system: mathematical tools and curriculum materials in use in the 

classroom (Type I, with interactions with Type C). 

The SFCP framework foregrounded the importance of considering different 
features for understanding the integration or non-integration of a given educational 
technology. It played an important role in the evolution of research from studies 
focused on a single educational technology to studies considering sets of resources, 
including digital resources of different kinds. Considering these five features led to 
studies evidencing the interactions between Type I, Type E and Type C variables. 

The SFCP framework (Ruthven, 2009) was together with the instrumental 
approach one of the sources of the documentational approach. One of the main devel-
opments brought about by the studies referring to the documentational approach has 
been the strong association of the teacher’s work in the classroom and outside the
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Fig. 2 The Chinese abacus, material (on the left), virtual (on the right) (Gueudet & Poisard, 2018) 

classroom, because teacher design as an essential and continuous process takes place 
in class and out-of-class leading to associations among variables of Types C and D. 

Studies referring to the documentational approach (Trouche et al., 2019) consid-
ered complex sets of resources (e.g., Gueudet & Poisard, 2018; Wang et al., 2018). 
The integration by a teacher of an available resource meant that the teacher, using this 
resource, developed one or several documents. For example, Gueudet and Poisard 
(2018) studied the integration by a primary school teacher of a set of resources7 

designed by a research team for the teaching of number, using the Chinese abacus, 
both material and digital, as seen in Fig. 2. 

The mathematics teacher planned for her students to use manipulatives. She inte-
grated both the material and the digital abacus in her lesson. This was observed by 
the researchers through the analysis of the documents developed by the teacher for 
different aims of her activity. In this case the virtual abacus was never considered 
as isolated, but as associated with the material abacus, lesson plans, examples of 
students’ productions, and other resources designed by the researchers. 

To summarize, the integration of digital resources by teachers is viewed with 
the perspective of the documentational approach as their integration in teachers’ 
resource systems (Trouche et al., 2020a). Studying this integration process requires 
to consider the work of the teacher in class (Type C) and out-of-class (Type D), 
and teacher knowledge (Type E) previously developed that will influence the use of 
digital resources or developed along the use of these resources. The digital resources 
offered (e.g., by the educational authorities, but also simply available on the web) 
are Type I variables; but along their use in class and out-of-class the teachers develop 
documents, which are mixed entities: research about documents associates Types 
I-E-D and C variables. 

One of the factors shaping links between education policies, digital resources and 
teachers’ work concerns assessment. We consider research about assessment in the 
next subsection.

7 http://seminaire-education.espe-bretagne.fr/?page_id=611. 

http://seminaire-education.espe-bretagne.fr/?page_id=611
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3.3 Assessment, Digital Technologies and Digital Curriculum 
Resources 

The amount of research about assessment has significantly increased since 2000, 
and this also concerns research about assessment involving digital technologies or 
digital curriculum resources. Assessment is both a Type I variable, as an aspect of 
the curriculum, and an outcome of interactions between Type C and D variables, 
since the teacher designs assessment for their students and implement them in class. 
Hence, the research about assessment and digital resources concerns Types I, C and 
D variables. Since most of this research developed during the last ten years, we do not 
analyze in detail its historical evolution. The most important historical evolution that 
we want to stress in this subsection is the emergence of research about assessment, 
and especially about digital resources and assessment. 

Stacey and William (2013) introduced a useful distinction, further developed 
by Drijvers et al. (2016), to categorize this research. Assessment with technology 
concerns the use of technology during an assessment, such as when the students are 
allowed to use CAS in a written exam. Assessment through technology concerns 
digital assessment, for example with online exercises. According to the distinctions 
we use here, assessment with technology is linked with DCRs. 

Digital technology has been introduced internationally in mathematics curricula. 
This introduction has been followed by the integration of technology in both forma-
tive and summative assessment (Stacey & William, 2013). Teachers designing assess-
ments with technology had new possibilities in their choice of tasks: they could 
propose rich problems that the students would not be able to solve without tech-
nologies (e.g., Leung & Bolite-Frank, 2015). These new possibilities were associ-
ated with a new complexity. In particular when designing summative assessments, 
teachers need to find a delicate balance between proposing tasks that are too complex 
and creating the possibility of a black-box use of technology. How teachers design 
assessments with technology also strongly depends on national educational policies, 
including whether and how technology can be used in mathematics exams (Drijvers 
et al., 2015). Moreover, technology can be used in very different ways in mathe-
matics exams. Jankvist et al. (2021), presented contrasting examples of the use of 
CAS in different countries. In Denmark, for example, CAS has been used in the 
final exams in upper secondary school since 2005, and in lower secondary school 
since 2013. Jankvist et al. (2021) offered the example of a task presented at the final 
exam to Grade 9 students, showed that the students could solve this task without 
any mathematical reasoning, using the CAS as a black-box. They contrasted this 
example with a task given in Germany for the upper-secondary final exam in Bavaria 
in 2014. That involved complex mathematical modelling and would have been very 
difficult to solve without CAS. These differences in exams have strong impacts on 
the teachers’ practices with educational technologies in class. 

In the literature assessment through technology is called Computer-Aided-
Assessment (CAA) or sometimes Computer Assessment System is also used, but 
we use here CAA in order to avoid a possible confusion with Computer Algebra
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Systems. Sangwin et al. (2010) identified three possible outcomes generated by a 
CAA: a numerical mark; written feedback or statistics concerning a cohort’s achieve-
ment. A numerical mark and automated feedback on technical errors offer to teachers 
the possibility of concentrating their own feedback on understanding (Olsher et al., 
2016). Statistical overviews of cohort achievement are also a new element in teacher’s 
external context, which can lead to adaptations of the content of the course. These 
can include adaptions, for example, when using clickers at university level (e.g., 
Lockard & Metclaf, 2015). 

Other outcomes of CAA have been identified. For example, the FASMED project 
(Formative Assessment in Science and Mathematics Education), Aldon et al. (2017b) 
also foregrounded the possibilities opened by CAA in terms of automatically gener-
ated feedback or statistical overviews. They added possibilities for tracking students’ 
learning paths, through access to statistics, and also to rich data about the students’ 
mathematical activity. 

Finally, technological advances have opened the way for a new kind of association 
between assessment with technology and assessment through technology resulting 
from automated scoring. Drijvers (2018) studied the automated scoring of students 
through digital means, using Intelligent Tutoring Systems. While online assessment 
sometimes means multiple-choice quizzes focused on technical skills, these new 
automated scoring tools have the potential to assess complex reasoning, and students’ 
productions with educational technologies, particularly Dynamic Geometry Systems. 
These new tools offer possibilities for the design of digital assessment, associated 
with a subtle automatic scoring. As designers, teachers can propose dynamic and 
interactive tasks; as graders, they save a lot of time and have access to analyses of 
their students’ work (Drijvers, 2018). 

To summarize Sect. 3, it can be said that the research in mathematics educa-
tion concerning the influence of digital resources and other associated Type I vari-
ables (e.g., educational policies) has evolved during the past 20 years towards more 
complexity and more refined analyses of the interactions between different kinds of 
variables. This refinement has been associated with an increasing complexity of the 
teachers’ working environment in terms of digital resources, which has contributed 
to the development of specific theories. These theories have evidenced the need for 
considering different dimensions and the ways they are linked. These dimensions 
corresponded to Type I (e.g., the digital resources themselves, but also, for example, 
the time economy), Type C (teachers’ practices in class), Type D (teachers’ practices 
out-of-class) and Type E (teacher knowledge). 

4 On the Quality of Digital Curriculum Resources 

In this section, we review the literature concerning the quality of digital resources in 
teachers’ contextual environment, as we assume that a conceptualization of quality 
influences teachers’ choice of resources. Considering that over the past decade a 
considerable amount of research in mathematics education has investigated teachers’
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lesson planning and enactment of designed lessons involving the use of digital 
resources (e.g., Aldon & Trgalová, 2017; Clark-Wilson et al., 2014, 2021; Trouche 
et al., 2019), it is surprising that a similar amount has not attended to the resources’ 
quality within teachers’ contexts of teaching. However, there are a number of studies 
attending to this issue in teacher design of their curriculum. In conceptualizing the 
quality of DCRs, we have to distinguish between (1) different aspects of quality 
criteria, and (2) quality of which kinds of digital resources. 

4.1 Quality of Dynamic Mathematics Materials 

Whilst there is no consensus of what ‘platform’, actually is, many dynamic mathe-
matics materials are ‘deposited’ on platforms of some kind. The literature presents 
research on numerous online platforms providing a large number of Open Educa-
tional Resources (OER) for teaching mathematics: e.g., GeoGebra Materials, 2016; 
LearningApps, 2016; I2Geo, 2016. Teachers find it difficult to choose amongst the 
enormous quantity of resources and note inconsistency in their quality (Trgalová 
et al., 2011). Quality variability is particularly likely if the platform is not supported 
by ‘gatekeepers’, that is a dedicated ‘editorial team’ that checks on the quality of 
‘self-made’ resources that are often freely available or shared by different types of 
users (Camilleri et al., 2014). 

There are several platforms that provide mechanisms for assessing the quality of 
their resources, in order to be able to rank the materials according to their quality. 
In the context of the Intergeo project, for example, Trgalová et al., (2011, p. 1163) 
identified nine “relevant indicators” of the quality of dynamic geometry resources 
on their platform I2Geo: “metadata, technical aspect, mathematical dimension of the 
content, instrumental dimension of the content, potential of the DG, didactical imple-
mentation, pedagogical implementation, integration of the resource into a teaching 
sequence, [and] usage reports.” In that project a questionnaire was developed based 
on these nine quality indicators. The assessment of the quality of a particular resource 
on the I2Geo platform required users to respond to nine broad statements, which can 
be extended optionally to 59 questions (ibid). 

In her search for quality aspects of ‘dynamic materials’, Kimeswenger (2017) 
interviewed experts in electronic resource development, who described their views 
on educationally valuable use of dynamic materials. The analysis of the expert inter-
views revealed eight core “quality dimensions” as crucial factors: (1) author, (2) 
mathematical content, (3) resource type, (4) supporting the learning of mathematics, 
(5) integration into teaching, (6) advantages of dynamic material, (7) design and 
presentation, and (8) technical aspects. She also provided examples of these quality 
criteria. For example, for the criterion “Supporting the learning of mathematics”, 
the following question is asked: “Does the dynamic material support the learning of 
mathematics?” and in of the following ways:
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• Allows students to explore with the dynamic construction;
• Allows students to discover mathematics;
• Encourages students to make their own assumptions;
• Encourages students to formulate insights. 

She also emphasized that the majority of experts stated that there is/was/should 
be a strong correlation between the ‘quality’ of the author and the created material, 
and the authors’ views on learning. 

In another study, Ladel et al. (2018) developed the ACAT framework for the eval-
uation of apps, in order to provide information on quality of apps and also on the 
various possibilities for teachers to evaluate apps in an efficient and reliable way. 
Artifact-Centric Activity Theory (ACAT) is a model developed to capture complex 
situations that arise when digital technology is introduced in classroom situations. 
They proposed five steps and questions for the evaluation: (S1) What is the math-
ematical object of the app? (S2) How do students interact with the mathematical 
object, mediated by the app? (S3) How does the interaction develop? (S4) Is the app 
suitable for teaching and learning the mathematical object? (S5) How can the app be 
used in classroom instruction? 

Leaning on selected theories in mathematics education (e.g., cognitive load), 
Donevska-Todorova and Weigand (2018) developed three design principles for 
‘resources and tasks for technology-enhanced teaching and learning mathematics’. 
These were; (P1) Reduction of the total cognitive load by decreasing extraneous 
cognitive load; (P2) Reduction of the total cognitive load by decrease of the intrinsic 
cognitive load; (P3) Connection of active engagement and focus on mathematical 
content. Donevska-Todorova (2019) also developed a framework for evaluating the 
quality of tablet apps in primary mathematics education and their integration in 
student-centered learning environments. Focusing on the didactical potentials of 
tablet-apps, she identified six overarching categories: (1) mathematical content and 
relation to curriculum, (2) communication, collaboration and cooperation, (3) differ-
entiation, (4) feedback and assessment, (5) connections and networking and (6) logis-
tics. She claimed that the proposed model may become “meaningful for teachers’ 
decision making when selecting and implementing touchpad-apps in their instruc-
tional practices but also for developmental surveying of existing apps, their re-designs 
and further novel designs involving identified potentials” (p. 121). Based on this 
framework, Donevska-Todorova and Eilerts (2019) also developed review criteria 
related to a particular content area: space and shape. 

4.2 Quality of E-Textbooks 

The e-textbook can be seen a system of digital curriculum resources. In their efforts 
to identify aspects of the quality of e-textbooks, Pepin et al. (2015) distinguished 
between three models of currently available e-textbooks – dynamic, evolving or “liv-
ing”, and interactive. In the “dynamic” model, a static textbook (traditional or digital)
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is linked to other learning objects. In the “living” model, textbooks are dynamically 
and cumulatively authored by a community, often a community of teachers (e.g., 
Gueudet et al., 2013). The third model of e-textbooks – interactive – is based on a 
toolkit model, and is anchored in a set of learning objects, where tasks and inter-
active materials can be linked and combined in different ways. These distinctions 
also relate to the quality aspect of ‘coherence’. Drawing on Gueudet et al. (2013) 
and Yerushalmy and Chazan (2008), distinguished between two types of coherence 
in textbooks. First, coherence of the design of a textbook encompasses aspects such 
as mathematical correctness, epistemological stance toward mathematical topics, 
sequencing that avoids gaps in the mathematical progression, consistent handling 
of mathematical objects, and consistency with national curricula. These aspects of 
coherence are constituted in the textbook’s expositions, its tasks, and ways in which 
technology is made available to students. The second type of coherence-in-use is 
the coherence of what teachers actually propose to their students, drawing on the 
textbook, or on other curricular material. The e-textbook is changing the boundary 
between coherence of design and coherence in use. Issues pertaining to sequencing 
and availability of technology, which have been considered aspects of design of 
a linear textbook, are becoming aspect of coherence in use, as teachers re-design 
the textbook (e.g., Gueudet, et al., 2018). In order to help teachers to use digital 
resources in ways that provide a coherent learning trajectory for students, Confrey 
and her team (e.g., Confrey et al., 2017) have designed tools and materials to help 
teachers develop learning trajectories through a “bag of resources” in alignment with 
particular standards (in this case US Common Core State Standards). 

4.3 Quality of Dynamic Mathematical Tasks 

Concerning the quality in dynamic mathematics tasks, one of these quality aspects 
related to authentic tasks, which require realistic objects and questions (e.g., Jablonski 
et al., 2018). An example is MathCityMap which takes up the idea of outdoor math-
ematics through the creation of math trails by using an app and a web portal in which 
every registered user is allowed to create and publish their own tasks. Through 
a constantly growing community and the provision of a particular quality of the 
published material, the system is based on a multistep review process and several 
criteria for published tasks. Criteria for tasks in a MathCityMap math trail include 
the following: (1) Uniqueness (every task should provide a picture that helps identify 
the object of the task and what the task is about); (2) attendance (authenticity- the 
task can only be solved at the object location); (3) activity (embodied mathematics, 
i.e., mathematics can only be fully comprehended through an active experience); 
(4) multiple solution (solvable in different way); (5) reality (meaningful relevance); 
(6) hints (every task should provide at least one hint in terms of solving the task); 
(7) school math and tags (the task should feature a connection to school math); (8) 
solution formats (e.g., each task should be based on a meaningful answer format, 
such as intervals for measurement tasks); (9) tools (the task should be solved without
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special and extraordinary tools). A math trail idea is a combination of different tasks 
that should harmonize as a trail. Therefore, the whole trail comes into the review 
process after every task of a trail has been through it. 

4.4 Quality of Curriculum Programs 

Choppin et al. (2014) created a typology for analyzing the quality of digital curricula 
in mathematics education. They documented two distinct curriculum types, individ-
ualized learning programs and digitized versions of traditional textbooks. In order 
to help educators better understand the characteristics of these materials, they devel-
oped and applied a framework to analyze a representative sample of digital curriculum 
programs. The framework has three distinct themes: 

Theme 1 relates to students’ interactions with the programs, and was subdivided 
into three categories that describe students’ interactions with the programs: 

1. Student learning experiences (what students see and do in the program); 
2. differentiation/individualization (features that enable teachers to select content 

according to their perceptions of students’ abilities); and 
3. social/collective features (features of the programs aimed at virtually connecting 

groups of students or other stakeholders). 

Theme 2 concerns curriculum use and adaptations, that address the flexibility 
of each program in terms of providing tools and resources to sequence and design 
lessons for teachers. Choppin et al. (2014) analyzed programs according to four 
categories that provide teachers the ability to: 

1. Map and sequence lessons; 
2. Design content of lessons; 
3. Locate and use multi-media presentation materials; and 
4. Make and store notes for future planning. 

Theme 3 encompasses the analysis of assessment systems. As assessment systems 
offer the potential for online assessments and the ability to automatically analyze and 
report assessments, they proposed criteria for the analysis of the assessment systems, 
built into the programs, and focused on the following four categories of functionality: 

1. Create assessments; 
2. Record and store results of assessments; 
3. Generate dashboard or other summaries of data; and 
4. Generate and transmit reports/results to multiple audiences, including teachers, 

parents, and administrators. 

Choppin et al. (2014) claimed that while the programs offered some of the features 
identified as transformative, particularly with respect to assessment systems that 
rapidly and visually report student performance, there were many features that did 
not take full advantage of the digital medium.
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To summarize this section, it appears that there is a huge variety of DCRs. As 
different DCRs (and types of DCRs) have different affordances and constraints (also 
as compared to analogue materials), perceptions of what is ‘quality’ also vary: from 
interactive, over add-on, to dynamic materials, to name but a few of the quality 
notions. Moreover, notions of didactic quality seem to change their ‘appearance’ 
in teachers’ work with digital resources (e.g., what does consistency or coherence 
means in e-textbooks). 

5 Recent Developments and Future Directions for Research 

We have seen in the previous sections that the progress of research on teaching 
taking-into-account digital resources is manifested through development of theories, 
which propose different dimensions to understand the interactions of teachers with 
available digital resources, and the consequences of these interactions. We foresee 
that this progress will continue, since teachers’ working environment (and hence their 
professional activity in class and out-of-class) continue to evolve with new elements, 
predictable or not at this stage. 

In this section, we consider three themes that correspond to recent evolutions in the 
external contexts of mathematics teachers’ professional activity and that are giving 
rise to a growing body of research. We have chosen themes illustrating different 
elements of the external context for teachers: (1) official curricula and the inte-
gration of programming in these curricula; (2) the collective work of teachers in 
different kinds of teams or networks related to digital resources; and (3) the COVID-
19 pandemic, which foregrounded the importance of digital tools, in particular for 
distance teaching (and learning). 

5.1 Introduction of Programming in the Mathematics 
Curricula Internationally and Consequences for Teachers 

Research in mathematics education about programming is not new (e.g., Papert, 
1993), albeit the interest for programming in mathematics education declined at the 
end of the 90s and beginning of 2000s. 

Then a major change happened in the official curricula internationally: between 
2010 and 2020 that saw programming introduced in primary and secondary school 
curricula of many countries (see e.g., Haspekian, 2017; Misfeldt et al., 2020; 
Modeste, 2015). In some countries programming was introduced as a specific disci-
pline and has been taught by computer science teachers. In others it has been inserted 
in mathematics curricula and has been taught by mathematics teachers. These changes 
in curricula have led to a renewal of research about programming and computa-
tional thinking in mathematics education. While the early works in the 70s and 80s
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were mostly focused on students’ learning and their development of computational 
thinking, researchers now acknowledge the importance of the teacher (Benton et al., 
2017; Pérez, 2018), and the need to investigate how teachers integrate programming 
in their mathematics courses. 

In the Scratchmath project in UK, Benton et al. (2017) designed a curriculum 
for primary school teachers, and the team studied teachers’ implementation of 
this curriculum. The authors observed that some primary school teachers were 
not familiar with programming, and that the concept of an algorithm was diffi-
cult for them. Nevertheless, the framework designed by the researchers supported 
teachers in their implementation of strategies with their students. The choice of 
strategies depended in particular on their confidence with Scratch. The teachers 
also made different choices in terms of emphasizing programming, or mathematics. 
This research was similar to other studies evoked in Sect. 3.2 concerning teacher 
integration of digital resources, and how they were integrated. 

The issue of the links between programming and mathematics that these devel-
opments draw attention to has been investigated in several studies. Pérez (2018) 
proposed a framework evidencing different dimensions of computational thinking; 
this framework has been actually developed has a tool for secondary school math-
ematics teachers engaging for the first time with the teaching of programming and 
facing the need to combine mathematical thinking and computational thinking. 
Misfeldt et al. (2020) examined the official curricula in Denmark, Sweden and 
England, and examined the enacted curriculum through selected cases. They iden-
tified four possible types of relations between mathematics and programming: “(1) 
specific relations to mathematical concepts or processes [.]; (2) explicit relations to 
mathematics [.]; (3) implicit relations to mathematics, [.]; and (4) no or weak relations 
to mathematics.” (ibid. p. 259). How teachers can and do combine mathematics and 
programming in this new context is a promising and important direction for research. 

The role of the teacher in courses combining programming and mathematics has 
already been the subject of research at university level, where programming has been 
present in some courses since the early 2000s. One example is the MICA courses 
(Mathematics Integrated with Computers and Applications) at Brock University in 
Canada. Buteau and Muller (2014) evidenced that teachers in these courses also 
intervened as policy makers, and that this role was essential for implementing and 
sustaining the intervention at the departmental level. In their recent research, Buteau 
et al. (2020) used the instrumental approach and the theory of orchestration, to study 
how a teacher in MICA courses supported students’ instrumental geneses with a 
programming language, for mathematical investigations. They showed that the lab 
setting was a key element in the teacher’s orchestration, where the work of the 
students on their projects were supported. Lockwood & Mørken (2021) called for 
more research exploring the relationships between computing and mathematics at 
university level, and this is also certainly a promising direction for research. 

Studies about teaching programming and mathematics have much in common with 
the recent studies evoked in Sect. 3.2, about how teacher integrate digital resources. 
They have also investigated how a Type I variable (the introduction of programming 
in the official curriculum) affects Type C, D and E variables. We note, nevertheless,
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that the nature of Type E variables in this case is specific, since it questions the links 
between mathematics and programming. 

5.2 Teacher Collaborative Activities 

Research on mathematics teachers’ collective work with DCRs has developed signif-
icantly over the last 20 years, and particularly in the most recent of these years. 
This includes research on teacher’s work in established communities as well as in 
spontaneously set-up communities with a common purpose, and it also includes the 
collective work online, in schools, at home or in institutions that offer collective work 
as professional development. 

Regarding collective work in organized teacher collectives, Gueudet et al. (2016) 
provided a window into the collective design of an e-textbook, which was made 
possible by new “digital” opportunities: e.g., platforms, discussion lists. The context 
of the collective work was provided by the French Sesamath teacher association and 
their design of a Grade 10 e-textbook in terms of the “functions” chapter. This study 
concerned the influence of Type I variables on the collective teacher design (Type D). 
Here the Type I variables include the digital platform, but also from the point of view 
of an individual teacher, member of the group, the other members of the group (in 
this case mathematics teacher and computer science specialists). At the individual 
level, these variables also influence a member of the group in terms of professional 
knowledge (Type E), and the Type D-E variable interaction, as described in Medley’s 
framework. 

In terms of teachers working ‘spontaneously’ with colleagues, Trouche et al. 
(2020b) reported on the collective work of an experienced mathematics teacher at 
secondary level, who has also worked as a teacher educator in a university depart-
ment. They investigated her work and professional development with colleagues 
(e.g., lesson planning), with a particular interest in the digital resources, including 
both digital curriculum resources (e.g., e-textbooks, online resources) and digital 
technologies (e.g., for communicating, sharing). Results show that her transition to 
DCRs was a critical process in her professional learning trajectory. Of importance 
were the notions of resource system for studying the teacher’s activity as a whole, 
and of documentational trajectory for studying the teacher’s activity over the time. In 
other words, they point to a teacher’s resource system (an organized system of digital 
and analogue resources) and his/her collective work (over time) as major ingredi-
ents for professional learning and development. The authors claimed to contribute 
to a better understanding of the impact of digital resources on mathematics teachers’ 
work and professional learning over time, and of the ways the context of collaboration 
shapes their professional work and learning. Hence, they consider the interactions 
between variables of Type I (digital resources, colleagues) and variables of Type C, 
D and E (since the practice and the knowledge of the teacher evolved). 

Other recent research concerns teacher collective work with DCRs in a context 
of preservice or in-service teacher education, hence interactions between Type I
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and Type J offline variables (with consequences for Types C, D and E variables). 
Although the collective work in the context of teacher education has been researched 
for more than 20 years, the use of various digital means opened new possibilities, in 
particular in terms of blended or distant learning, that have been recently investigated. 
For example, in a study by Borba et al. (2018) online pre-service teacher distance 
education is the context. The purpose of this study was to analyze the role of digital 
technologies in two specific contexts: how teachers, tutors, and students play a role in 
producing interactive DCRs, and how digital technologies themselves can play a role 
in teaching distance learning courses. However, for these roles to emerge, the authors 
pointed to the need for participants in online courses to interact collaboratively. Their 
results showed that the roles are related and that digital technologies transform both 
teacher and student roles and participation in the virtual classroom, with the result 
that an ‘agency of media’ (meaning here the possibility to combine different media, 
to change media when relevant) emerges in online mathematics education. 

Lesson Study (LS, Takahashi, 2014) provides context in which teachers collabo-
rate to design lessons (through cycles of plan—teach—reflect). LS has been inves-
tigated for more than 20 years by mathematics education researchers; but they are 
renewed by digital resources, allowing in particular the organization of blended 
training. Joubert et al. (2020) reported on a Lesson Study in a blended approach 
to support isolated mathematics teachers (who could not meet face-to-face), to use 
and integrate mobile technology in their teaching. They identified eleven aspects 
playing an important role in the processes: technology; collective/group; learning 
management system; online facilitation; technological pedagogical content knowl-
edge; (mobile) learning strategies; a lesson planning form; backward design; time; 
photos, videos and reports; and reflection questions. The eleven aspects that emerged 
led to the development of a framework consisting of three dimensions of LS, namely 
Collaboration, Instructional Development, and the Iterative Improvement Process, 
supported by the identified aspects. 

Massive Open Online Courses (MOOCs) are another kind of digital curriculum 
resource that now contribute in mathematics teachers’ in-service education. Holle-
brands and Lee (2020) reported on the design of three MOOCs for mathematics 
teachers’ professional learning. The designs were based on principles of effective 
online professional development that included: self-directed learning, learning from 
multiple voices, job-connected learning, and peer-supported learning. The team 
examined how these design principles were enacted in the development of the 
MOOC-Eds and how they influenced the engagement of 5767 participants. Evidence 
showed that the three MOOC-Eds were successful in “allowing two experienced 
mathematics teacher educators to design engaging experiences for teachers that have 
shown to have positive impacts on their beliefs, perspectives and practices in teaching 
mathematics and statistics” (p. 872). The authors claimed that scaling-up professional 
development for teachers requires much more than simply transforming typical in-
person experiences into online videos and readings. As they grounded their design 
in an interconnected model of professional growth (Clarke & Hollingsworth, 2002) 
and used best practices from mathematics teacher education and design principles
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for online teacher engagement, they claimed that they could establish a large-scale 
professional development program that engaged and impacted teachers from around 
the world. 

An assessment of design principles used to guide the development of MOOCs 
for teachers was conducted by Aldon et al. (2017a). They examined how instruc-
tors’ practices influenced collaboration and participation in MOOCs implemented 
in France (eFAN Maths MOOC) and Italy (UniTo: Geometria MOOC and Numeri 
MOOC). The MOOCs from these countries supplemented discussion forums with 
the use of other collaborative tools (e.g., Padlet, social networks, collaborative project 
spaces). There were differences noted in how the instructors facilitated collaboration. 
With those in the French MOOCs focused on fostering local collaboration while the 
Italian MOOCs encouraged collaboration among all participants within the MOOC. 
The study pointed to the importance of examining not just the design of a MOOC for 
teachers, but also how such MOOCs are enacted and experienced by participants. 

Many possibilities for combining digital resources and mathematics teachers’ 
collective work exist, and can have different consequences for teacher knowledge 
and teacher practice (within a teacher training program or more informally). Cai et al. 
(2020) suggest that digital technologies can contribute to the design of shared knowl-
edge base for mathematics teachers and for researchers in mathematics education. 
The effective realization of these new possibilities constitutes a challenge for the 
mathematics education research communities and a promising direction for future 
research. 

5.3 Digital Resources in Mathematics Education, Equity, 
and COVID-19 

The socio-economic environment in which students live is also a critical compo-
nent of the professional context for teachers. Research in mathematics education is 
increasingly taking this context into account, and there is interest in how teaching 
can contribute to equity (Forgasz & Rivera, 2012). Questions have been raised in 
particular about the use of technologies because students have different accesses and 
relationships to technology, depending on their socio-cultural background, how can 
teaching be equitable when teachers use technology in their mathematical courses? 
Can they use technology to create opportunities for students from different socio-
cultural backgrounds? Forgasz et al. (2010) present a synthesis or research inves-
tigating such issues. They showed that obstacles to the use of technologies linked 
to issues of access seem to have decreased in rich countries, whereas they remain 
prevalent in developing countries. They also presented teaching interventions (in rich 
countries) where technology was used to create mathematical learning opportunities 
for all students. 

While resources in the form of computers, software, and Internet access have 
tremendously increased since these early studies, important disparities in terms of
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access to digital technologies remain at an international level (e.g., Bethell, 2016). 
The external context for mathematics teachers is thus very different according to the 
country in which teachers work, and we acknowledge that research synthesized in this 
chapter mostly addresses the context of teachers in rich countries. Nevertheless, even 
in these rich countries, socio-economic differences exist between different schools. 
In the U.S. Kitchen and Berk (2016) argue that the use by teachers of computer 
assisted instruction in schools that predominantly serve low-income students may 
favour work on technical tasks, instead of problems fostering a rich mathematical 
activity. This reduces the opportunities of learning for these students. 

Research in mathematics education has increasingly considered equity issues, and 
how digital resources can contribute to equitable teaching. Referring to the framework 
guiding this book, we consider that this research investigates how a Type I variable 
(digital resources) can be used to counterbalance negative effects of another Type I 
variable (the socio-economic background) on the relations between processes (Types 
C and B) and product (Type A, learning outcomes). For example, in a study conducted 
in a primary school in ‘unfavorable’ (in socio-economic terms) contexts in Mexico, 
Sandoval and Trigueros (2021) observed that when primary school teachers create a 
classroom culture grounded on mutual respect, listening to each other, and combined 
this with the use of software supporting students’ problem-solving activity, all the 
students can grasp the important mathematical ideas. 

Finally, major changes in the mathematics teachers’ external context in recent 
years have been due to the COVID-19 pandemic. From Kindergarten to University, 
teachers all over the world were forced to teach online of at least some of the time 
over several months. This dramatic context is also a new theme (or a large set of new 
themes) for research. 

From the first lockdown, researchers in mathematics education launched ques-
tionnaires to investigate the consequences of this situation for teachers’ practices, 
including naturally their use of technologies. 

Drijvers (2020) and his colleagues, for example, conducted a study entitled 
“Math@Distance study” in Flanders, Germany and the Netherlands. They asked 
1719 secondary school mathematics teachers about their teaching practices during 
lockdown. The use of digital resources was an important aspect in their study. They 
observed that the use of video conferencing software drastically increased. More 
surprisingly, the use of online exercises and online learning environments decreased. 
During the synchronous video lessons, the teacher presents, the students answer ques-
tions; but the collective work of students was scarce. Hodgen et al. (2020) reached 
similar conclusions, analyzing questionnaires and interviews with 49 heads of mathe-
matics departments in secondary schools in England. Moreover, disadvantaged pupils 
were less engaged in the teaching due to problems of access, low parental support, 
and new personal and familial difficulties. Solomon (2021) stressed that equity is 
one of the most difficult challenges in the COVID-19 context; at the same time this 
context presented new opportunities for teachers to access student thinking using 
some of the technologies utilized during distant teaching. 

Technological equipment and online teaching practices have changed since these 
“early” in the pandemic chronology studies. We assume that “Which digital resources



302 G. Gueudet and B. Pepin

can support teachers, and students, in secondary school mathematics for distant or 
hybrid teaching in a context of pandemic?” will remain an important research ques-
tion for some years to come. This is because the pandemic unfolds over several years 
and the research will need several years of setbacks to understand these phenomena. 

6 Conclusions 

The question leading this chapter was: 

How has the evolution of research in mathematics education about digital resources impacted 
the context of mathematics teachers’ professional activity? 

Reviewing the relevant literature, we have observed a very large number of 
changes in the research studies. We have selected and presented particular direc-
tions in these that seemed to be the most pertinent. Our focus was not only on digital 
resources themselves (e.g., e-textbooks, mathematical software, digital platforms, 
online assessment systems, tools for distant collaboration, videos, and other kinds 
of digital media), but on various aspects of teachers’ external context linked with 
digital resources: community support, or time economy for example. Moreover, we 
have shown that the research studies on these topics strongly associate Type I, Type 
E, Type D and Type C variables. 

The changes we observed and insights we gained can be summarized as follows:

• Evolution in the research about educational policies: early studies considered the 
policies in terms of material equipment of the schools, and then the place of the 
educational technologies in national curricula. They evidenced some discrepan-
cies between the intended curriculum and the enacted curriculum, linked with a 
lack of equipment, and teachers’ professional development concerning the use of 
technologies. The role of technology in national assessments (often very limited) 
was an important factor explaining the discrepancies. Recent research has been 
more focused on DCRs (e.g., digital platforms), proposed by the educational 
authorities to support teachers’ design, in particular in a context of reforms.

• Evolution in research about teachers’ integration of digital resources: the research 
questions evolved from the integration of a single educational technology by a 
teacher to questions about complex sets of resources available in a digital envi-
ronment. This evolution in the questions being asked was linked with the devel-
opment of theoretical frameworks and new conceptualizations of digital resource 
integration by teachers. New questions arose about the role of the teacher. In a digi-
talized context, students develop as self-directed learners together with support 
from their peers, and teachers become the scaffolders of knowledge development. 
The research also highlighted new requirements for the teachers, including a need 
to change their perspective on the mathematics (e.g., seeing programming as an 
integral part of mathematics). Finally, an increasing number of studies considered 
the potential and actual collective dimensions of teachers’ work and how these 
have been impacted by digital resources.
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• Evolution in the research about the digital resources: Concurrent with devel-
opment and use of new digital resources, new issues have emerged and have 
been developed. These included the quality of digital resources. Research has 
produced different kinds of tools for assessing this quality, and revealed the need 
to re-conceptualize quality, to consider new possibilities for connectivity, and new 
perspectives on the teachers as designers of their own curriculum (Type D and 
Type C variables, since the design takes place out-of-class and in-class). It has 
become evident that new technologies and digital resources necessitate and drive 
new pedagogical approaches. In other words, questions are not only concerned 
with how the teacher may be able to suitably integrate resources, but with the 
digital resources themselves (e.g., digital learning environments) require and force 
teachers to take a different stance and build their ‘teaching’ (or coaching) around 
the new digital environment. 

Different causes were combined to produce these changes. Each time that a new 
digital resource is introduced in school, it is a new element in the external context 
for teachers and opens the way for research on the potential of this digital resource, 
on its actual use, on its impact on teaching and on teacher knowledge (Types C, D 
and E). The general evolution of research on mathematics education has also influ-
enced research about DCRs as part of teachers’ context (this can involve any of the 
variables). New research issues (e.g., assessment; teachers’ and students’ collective 
work) encompass studies about digital resources and mathematics teaching. The 
socio-political turn, and the value of research addressing equity issues is also an 
important trend in recent research present in the literature we reviewed. 

We foresee further evolution in research in all the directions mentioned above that 
stress the need for more research on:

• Educational policies pertaining to the offering of digital curriculum (e.g., digital 
platforms) and the tensions between supporting teacher creativity (with these 
resources) and efforts of the national agencies offering the resources to help 
teachers align with education reforms;

• Provision and quality of particular DCRs (e.g. for particular mathematical topic 
areas, including programming);

• Digital assessment procedures, developing from simple tests to complex digital 
environments where students can work collaboratively on tasks;

• Distant and hybrid teaching at all school levels, and its links with equity issues. 

Moreover, in an external context requiring teachers to become the designers of 
their own curriculum, more research is needed on educative digital resources for 
teacher professional development (Type J variable). We contend that digital resources 
as elements of the external context for mathematics teachers’ professional activity 
are often underestimated, and their affordances, constraints, and potential to drive 
under-researched. For us, this review was an eye-opener, and we believe that there 
are many avenues for mathematics education research in this field.
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Competency Framework 
for the Qualification of Facilitators 
of Mathematics 

Joyce Peters-Dasdemir , Lars Holzäpfel , Bärbel Barzel , 
and Timo Leuders 

1 Introduction 

As pointed out by Medley (1987), research related to teaching is always focused on 
student learning outcomes (Type A). The factors relating to teachers which directly 
influence these outcomes include four online variables. Teachers’ competencies, 
knowledge, and skills play a critical role in this regard (Type E) and are connected 
to the variables describing proactive (planning, evaluation in Type D) and interac-
tive (process of teaching in Type C) observable teacher behaviors relating to their 
performance. The overall basis for teacher competencies are teachers’ pre-existing 
characteristics which they already have prior to admission to teacher education (Type 
F). 

For optimal performance, it is crucial to strengthen teachers’ competencies (Type 
E); this is a core goal when conducting mathematics teacher training and reflection on 
experiences (see Type J). This offline variable is intended to foster teachers’ personal

Data collection and analysis were supported by the expert network within the German Centre for 
Mathematics Teacher Education (DZLM). We have no conflicts of interest to disclose. 

J. Peters-Dasdemir (B) · B. Barzel 
Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Straße 9, 45127 Essen, 
Germany 
e-mail: joyce.peters-dasdemir@uni-due.de 

B. Barzel 
e-mail: baerbel.barzel@uni-due.de 

L. Holzäpfel · T. Leuders 
Institute for Mathematical Education Freiburg, University of Education Freiburg, Kunzenweg 21, 
79117 Freiburg Im Breisgau, Germany 
e-mail: lars.holzaepfel@ph-freiburg.de 

T. Leuders 
e-mail: timo.leuders@ph-freiburg.de 

© The Author(s) 2023 
A. Manizade et al. (eds.), The Evolution of Research on Teaching Mathematics, 
Mathematics Education in the Digital Era 22, 
https://doi.org/10.1007/978-3-031-31193-2_11 

311

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31193-2_11&domain=pdf
http://orcid.org/0000-0001-9991-4619
http://orcid.org/0000-0002-7511-9028
http://orcid.org/0000-0001-6249-0891
http://orcid.org/0000-0002-7621-7826
mailto:joyce.peters-dasdemir@uni-due.de
mailto:baerbel.barzel@uni-due.de
mailto:lars.holzaepfel@ph-freiburg.de
mailto:timo.leuders@ph-freiburg.de
https://doi.org/10.1007/978-3-031-31193-2_11


312 J. Peters-Dasdemir et al.

and individual professionalization as a core presage variable in terms of presage-
process–product Research (PPPR, see Medley, 1987, p. 108; Manizade et al., 2019). 
Mathematics teacher training includes pre-service activities at university as well as 
professional development (PD) programs for teachers already in service. 

The core issue in teacher training is linking the cognitive side of knowledge 
with experience (Type J) gained in either pre-service or in-service training. Schön’s 
concept of “The Reflective Practitioner” (1983) highlights this link as the initial 
connection between teachers’ practice and knowledge, and thus also sheds more light 
on research into professionalization. The aim of any professionalization process is 
to lead teachers to recognize new ideas and innovative approaches for their teaching 
and enable them to implement these in the classroom. This process must be initiated 
and supported during PD programs. It is important that facilitators provide teachers 
with opportunities to reflect on and enhance all facets of knowledge because—in 
addition to the central role of knowledge in thinking, acting, and learning—learning 
is an active, constructive process, with knowledge and learning rooted in contexts and 
cultures (Brown & Borko, 1992; Putnam & Borko, 2000). It is worth emphasizing 
here that it is knowledge and beliefs themselves which are the critical targets of 
change for classroom implementation, since these largely determine what teachers 
do in the classroom. Accordingly, during PD programs, these components must be 
considered targets of change (Putnam & Borko, 2000). Borko and colleagues (2014) 
describe delivering appropriate PD programs as challenging and see facilitators as 
responsible for appropriately implementing such learning opportunities. 

Although facilitators play an important role, a complete description of the compe-
tencies required to fulfill the complex tasks they must perform to conduct effective 
PD is lacking. Even though facilitators are usually experienced teachers, teaching 
experience in itself does not guarantee that a teacher has the necessary competen-
cies to help other teachers develop their own mathematics teaching (Even, 2005). 
Our paper follows in the footsteps of Manizade and colleagues’ (2019) framework  
along with Medley’s (1987) concept of “mathematics teacher training and experi-
ence” (Type J). As mentioned in the book’s introduction, over the years there have 
been many approaches to assessing the quality of teacher education and training and 
to evaluating (via empirical studies) the influence of corresponding variables on the 
development of teacher competencies. The importance of PD has also increased in 
recent decades, and thus corresponding variables such as teacher engagement and 
participation in PD have also been the focus of research. However, rather than looking 
at variables such as the design and quality of professional development, the focus 
here will be on the competencies of facilitators themselves with the aim to describe 
the range of competencies required by facilitators in mathematics. This chapter’s key 
aim is to advance teaching research and build on Medley’s framework by focusing 
on learning outcomes to include the effectiveness of those involved in educating 
teachers themselves. 

Scope of Our Work 

To describe the competencies needed by facilitators in mathematics education 
and understand their responsibilities regarding chain effects on students’ learning
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outcomes, it is important to build on existing research findings and insights from the 
field of teacher professionalization (Sect. 2). Epistemologically, learning is an active 
process of constructing new knowledge (von Glasersfeld, 1998) and it is therefore 
important to design any learning process as an interplay of content and learners’ 
perspectives. Facilitators in PD programs must regard teachers as learners. However, 
unlike students and pupils, teachers are adults and experienced professionals, and 
facilitators must motivate them and initiate PD in an appropriate way. Therefore, 
this paper examines the field of general adult education, with a focus on the specific 
needs of mathematics teachers as adult learners. The first topic under discussion is 
thus mathematics education. Following this, we start our review with findings and 
insights regarding adult learning in general (Sect. 2.1) and then specifically from 
the perspective of mathematics education (Sect. 2.2). An overview of both fields 
is necessary to examine the various challenges that facilitators must address when 
leading mathematics teachers to reflect on and develop their practices and teaching 
routines. 

Section 3 provides insights into how the role, tasks, and competencies of facili-
tators are currently conceptualized. To better understand and categorize our under-
standing of facilitators, the role is first explicitly defined (Sect. 3.1). Once again, the 
(overlapping but distinct) fields of PD in adult education and mathematics educa-
tion are both considered in this part of the paper. In the field of adult education 
(Sect. 3.2), the review is based on existing competency frameworks already discussed 
in the literature (Wahlgren, 2016). However, these frameworks require adaptation and 
further development to be effectively applied within the specific context of mathe-
matics education. Some of the existing competency frameworks within general adult 
education will also be discussed to provide a historical review of the development of 
these considerations (Sect. 3.2). This is followed by a focus on the teaching profes-
sion in mathematics education (Sect. 3.3). The challenge—as will be shown in the 
following sections—is to develop a competency framework that fits the professional 
requirement profile as well as the cultural and structural framework. To emphasize 
the complexity of this challenge, we will conclude this section by presenting such 
an evolutionary process based on the literature review performed within the context 
of the DZLM expert network (Sect. 3.4). 

In the outlook, we will summarize the findings and lines of development from the 
last twenty years and take a look at further challenges in the field of mathematics 
teacher training and reflection on experiences (Sect. 4). In doing so, technological 
developments and their influence on teaching and training will be presented as an 
example. 

Methodology of Our Literature Review 

Depending on the topic and the existing literature, different types of literature reviews 
may be appropriate (Higgins & Green, 2008). To provide an overview of the research 
evidence on the competencies of facilitators in mathematics, we chose to conduct 
an integrative review to cover the breadth of both fields of interest, general adult 
education and mathematics education (Whittemore & Knafl, 2005). An integrative 
review represents a holistic approach offering the possibility of bringing together
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studies using a wide variety of methods, meaning that qualitative and quantitative 
methods are considered in addition to theoretical and empirical ones. This enables 
us to not only depict the current state of research but also to create direct links to 
possible areas of application. Due to the involvement of several people (the four 
authors) in the research, a certain level of objectivity can be assumed in the selection 
and evaluation process. 

Since reviews usually include all studies that are found to consider the research 
field, the number of studies included can vary dramatically. In the first search run for 
the field of general adult education, a very broad constellation was found extending 
in very different directions. Narrowing the search to the competencies of mathe-
matics teachers and existing research on mathematics facilitators produced relatively 
focused and clearer results. Due to the wide range of work in both content areas, we 
decided to focus mainly on articles and studies looking closely at teacher compe-
tencies and their development and which attempt to formulate quality standards for 
facilitators. Furthermore, we also set restrictions in terms of publication date and 
study design. For example, for general adult education, we looked predominantly at 
literature from the last twenty years or which (in some cases) introduced changes 
or innovations to previous frameworks. For the requirements and competencies of 
mathematics facilitators, such restrictions were unnecessary due to the small field 
of research. By means of communicative validation, the focus was then condensed 
to the articles that have been integrated here. The results of the research have been 
discussed and checked how the authors assess the validity of the results (according to 
Mayring, 1990). When selecting articles, in addition to general keywords, particular 
attention was paid to their compatibility with teacher education and, based on the 
journals consulted in the database search, to high-quality international peer-reviewed 
journals. More narrowly, the discipline of mathematics was also a key focus, since 
it soon became obvious that subject-specific content was important. 

We searched the literature using various keywords such as professional devel-
opment, competency framework, competencies of facilitators, and requirements 
for facilitators in both content areas. We used several databases to include global 
studies. The databases included ERIC, ELSVIER, and even MathEduc, which was 
available until December 2019. These journals included the International Journal 
of Science and Mathematics Education (IJSME), International Journal of STEM 
Education, Journal of Mathematics Teacher Education (JMTE), Journal of Mathe-
matical Behavior (JMB), Journal for Research in Mathematics Education (JRME), 
Psychology of Mathematics Education (PME), Mathematics Education Research 
Journal (MERJ), and ZDM—Mathematics Education. The International Handbook 
of Mathematics Teacher Education was also consulted, as Volume 4 is specifically 
addressed to facilitators in mathematics education. With reference to facilitators of 
adult education more generally, the following journals were reviewed: the Journal 
of Teacher Educator (JTE), Journal for Research on Adult Education (ZfW), Adult 
Education Journal, Teaching and Teacher Education, Educational Psychology and 
Educational Researcher (ER). Finally, in reviewing the articles that were crucial for 
us, we also consulted others that were listed in these articles if further insights could 
be generated. It can be noted that all mathematics-specific articles specifically related
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to PD competencies, rather than PD design and quality, have been listed in this paper. 
Because there is such variety in the field of general adult education, we primarily 
selected those that provided an overall view of development cycles or used a Delphi 
study, as there is much variation to be found at the national level. All 78 referenced 
articles that were relevant to our work are mentioned and cited in this chapter. 

2 The Evolution of Framing Teachers’ Professionalization 

2.1 PD in General Education 

Medley’s (1987) description of PPPR focused on processes to improve student 
learning outcomes. The general steps he identifies are nonetheless valuable and 
provide crucial foundation for further concretization. The modeling he used to 
describe each teaching and learning process—at the teacher-student level in his 
case—can be elevated and applied to the facilitator-teacher level too, thus providing 
a perspective on facilitators’ competencies as well. 

Innovations and change processes due to new curricula or new administrative 
conditions pose many challenges for schools and teachers, who need intensive 
support and assistance to tackle them. This requires PD programs that reach as many 
teachers as possible by scaling-up PD programs of a high standard. In Hattie’s meta-
study (2009, p. 119 ff.), he calculates the influence of content-related in-service PD 
programs with an effect size of d = 0.62 and classifies PD programs as an important 
intervention with significant effects on improving teaching quality. Facilitators of 
teacher PD programs, in turn, need comprehensive, evidence-based qualifications to 
be able to successfully design and implement teacher PD programs. The meta-study 
by Timperley and colleagues (2007) also reported the effects of teacher training on 
student outcomes. This study discovered that there was an average effect of d = 0.66, 
but variations were found by school subject and student level. For example, the effect 
in mathematics was d = 0.50. From the various meta-analyses, it can be concluded 
that teachers who regularly participate in PD programs sustain and even enhance their 
professionalism throughout their working lifespan, thus also effecting pupil learning 
outcomes. For this to occur, Lipowsky and Rzejak (2015) note that in-service teachers 
need regular PD. This in-service PD must involve a sufficient quantity of high quality 
learning opportunities planned and implemented by facilitators. 

The insights provided by Medley (1987) in his description of state of the art 
teaching research can also be applied to learning outcomes among teachers following 
PD programs. In other words, the first question is which competencies teachers need 
to carry out effective teaching in schools. Based on the answer, the competencies 
that facilitators should have to deliver effective PD programs should be identified. 
Simultaneously, research that examines teacher competencies and pre-existing char-
acteristics must also be considered, as this strand of research can shed further light
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on the knowledge needed by facilitators to adequately enhance the competencies that 
teachers require. 

A detailed illustration which highlights that the design and use of CPD programs 
are not the only initial and preparatory component of the transfer process in teacher 
professionalization can be found in Lipowsky’s (2014) “offer-and-use model on PD 
level” (Fig. 1). It provides a highly differentiated framework to concretize in detail 
the challenges of the offline variable “mathematics teacher training and experiences” 
(Manizade et al., 2019) to achieve a successful transfer process and successful CPD 
at every level (see also Guskey, 2002), including for student learning outcomes. 

Most research on PD focuses on describing the design of PD programs and 
assessing their quality. For example, the meta-study by Darling-Hammond and 
colleagues (2017), which reviewed 35 effective PD, identifies seven characteristics 
of effective teacher PD, that mainly relate to PD program design and implemen-
tation (e.g., content focused, sustained duration, or opportunities for feedback and 
reflection). 

In addition to this focus on content, how the PD is carried out and how spontaneous 
situations are managed and properly moderated are also important. These areas relate 
to learning processes in subject lessons and active learning using the theory of adult

Fig. 1 Offer-and-use model for research on teachers’ professional development. Lipowsky (2014, 
p. 515), English version: Lipowsky and Rzejak (2015, p. 30) 
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learning should be considered here. Collaboration should also be supported in in-
service contexts, and various models of effective practices should be applied. The 
format of permanence should be another focus. Finally, regarding feedback and 
reflection opportunities, coaching and expert support are mentioned. However, like 
in the illustration of Lipowsky’s model (2014), the competencies of the facilitators 
themselves are a crucial initial component. 

2.2 PD in Mathematics Education 

Focusing on the context of mathematics, Sztajn (2011, p. 221) pointed out that the 
attention paid to research in the field of mathematics teacher education increased 
significantly in the 1990s. When this is connected to Medly’s framework (1987) and 
its adaptation in the context of research on mathematics teaching and mathematics 
teacher education by Manizade and colleagues (2019), it becomes apparent how this 
field has evolved to reflect current research. 

In their meta-study, Timperley and colleagues (2007) looked at the effects of 
teacher training on student outcomes in a differentiated way, depending on school 
subject and student level. In mathematics, they speak of an effect size of d = 0.50 
for student learning outcomes, although this differentiated view relates only to 11 
core studies. For mathematics specifically, stronger effects were found in studies that 
focused on building teachers’ content knowledge and pedagogical knowledge than 
studies that looked only at content knowledge. As reflected in several research papers 
on PD programs and most notably in the review by Sztajn and colleagues (2017), 
there is a growing body of empirical research that reveals the structure, content, 
and impact of effective CPD in mathematics education. Predominantly, these studies 
provide insights into the characteristics of PD programs that provide appropriate 
learning opportunities for teachers. 

Other studies indicate that PD opportunities for mathematics teachers are recog-
nized as a critical factor in increasing student achievement. Figure 2, which depicts 
the chain of effects from the competency level of facilitators (teacher leaders (TL)) 
to student learning outcomes, illustrates that the design and use of PD programs is 
not the only initial and preparatory component in the transfer process within teacher 
professionalization. Borko and colleagues (2014, p. 149 ff.) see the quality of math-
ematics instruction as the central factor influencing student learning. In this regard, 
the emergence of teacher competencies for quality instruction is seen as starting 
from high-quality PD programs. Accordingly, facilitators must be able to consider 
and implement all aspects of PD programs so that their influence on the quality of 
mathematics instruction is sufficient. This also requires establishing qualification 
standards for this group of adult learners (PD for TLs).

As can be seen in Fig. 2, frameworks usually describe facilitators from the class-
room level (see Carroll & Mumme, 2007; Perks & Prestage, 2008; Jaworski,  2008; 
Hauk et al., 2017; Prediger et al., 2019). Thereby, knowledge on the lower level 
is always a component of the level above. Here, Carroll and Mumme (2007) see
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Fig. 2 Implementing the 
problem-solving cycle: 
theory of action (Borko 
et al., 2014, p. 152)

mathematical knowledge at the classroom level: a teacher’s mathematical knowl-
edge for the mathematics teacher educator within a larger context. That includes, for 
example, knowledge of teachers’ professional learning. Perks and Prestage (2008) 
add an additional aspect they call “professional traditions” describing a structure 
similar to Carroll and Mumme’s in which each level is nested within the next. This 
new area includes knowledge of school curricula or practices as well as research 
at classroom level. At teacher PD level, this is expanded to include knowledge of 
systems, institutions, and teachers’ own research efforts. 

However, the framework focuses more on the types of knowledge that must be 
brought into the classroom and less on the interactions between people and content. 
Thus, despite very similar nesting in both frameworks, the focus lies on different 
areas. In the work of Hauk and colleagues (2017), the relationships between knowl-
edge and thinking types associated with the development of mathematical knowl-
edge for teaching are presented. To illustrate this, they have used a concrete case of 
a specific type of elementary-middle school. Like Carrol and Mumme, the “three-
tetrahedron model (3TM) of professionalization research” (Prediger et al., 2019) 
revisit the interaction between individuals—actors—, but rather than focusing on a 
specific type of school, it is intended as an overarching framework (Fig. 3, Prediger 
et al., 2019, p. 410). Following this, the 3TM instead describes rather the mesh of the 
different levels and is not to be understood as a process model as in Medley (1987).

In Germany, these research topics are the focus of the work of the German 
Center for Teacher Education in Mathematics (DZLM), a nationwide institution for 
the development and research of in-service PD programs for mathematics teachers 
(Prediger et al., 2019), concentrating on the qualification of facilitators. In the 3TM, 
individual levels are described and related to one another (Prediger et al., 2019). The 
elements of the three-tetrahedron model are the most important reference points for 
facilitator activities (see in more detail Prediger et al., 2019):
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Fig. 3 Three-tetrahedron model (3TM) for content-related PD research (Prediger et al., 2019, 
p. 410)

• The lowest level is the classroom tetrahedron, in which the pedagogical triangle 
has been extended by the corner “classroom resources.” This classroom tetrahe-
dron, as a whole, is PD content.

• The teacher PD level regards teachers learning this content—so here too, there is a 
tetrahedron with the relevant actors (facilitators as teachers; teachers as learners) 
and a corner for resources, especially resources seeking to further education.

• Facilitators themselves are “learners” at the top level. Here, facilitators are 
involved in continuous qualification programs, which vary greatly in quality and 
quantity in different systems depending on local framework conditions. 

Regarding the development of a competency framework for facilitators, it is impor-
tant to realize that facilitators are related to all elements of the 3TM, since they are 
both learners on the qualification level and teachers on the PD level, while the class-
room level, as the PD content, is always on the facilitators’ minds. In addition, 
depending on the framing of the educational system in question, facilitators may 
act as teachers as well. In most systems, facilitators are also teachers and are active 
in the development of their own schools. They can act as colleagues among peers, 
accompany a quorum as a regular guest, or provide impetus as external experts. 

For the qualification of facilitators, all relevant aspects of the individual must be 
considered (e.g., Bromme, 1992; König & Blömeke, 2009). This involves a cognitive 
perspective on the facilitators’ knowledge and orientations and a situated perspec-
tive on their work as a facilitator (Prediger, 2019). These perspectives are comple-
mentary and may be located within a continuum from disposition to performance 
(Blömeke et al., 2015; Depaepe et al., 2013). In this paper, the focus is on the cognitive 
perspective. We will discuss competencies, which represent the latent characteristics 
required to perform effectively as facilitators (Weinert, 2001, p. 27). These cover
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facilitators’ knowledge, beliefs, and attitudes, which can be learned and improved 
through institutional learning opportunities (Klieme et al., 2008; Weinert, 2001). 

Interest in PD in mathematics has increased, with consideration given to location 
and structure as well as interrelationships within the impact chain, but as Sztajn and 
colleagues (2017) pointed out, in terms of what is known about PD, the knowledge 
gap still includes what facilitators should be required to know and be able to do and 
what is associated with their preparation of PD. This field of interest has become 
more significant in more recent working groups. Since 2011, there have been several 
working groups at PME addressing this field, and attention has also been paid to 
mathematics facilitators at CERME and ICME. There have also been three major 
international publications, namely JMTE (2018, Vol. 21(5)), The International Hand-
book of Mathematics Teacher Education (2020, Vol. 4), and the book “The Learning 
and Development of Mathematics Teacher Educators” by Goos and Beswick (2021) 
which specifically address the knowledge, skills and development of facilitators in 
mathematics education. 

Although the topic has been identified as important, there is still little research 
on this phase of teacher education. This is at odds with the attention given to the 
design of high-quality learning processes for teachers and facilitators, as previously 
mentioned. It is interesting to see which research strands have stood out in this area 
of mathematics teacher training over the past 20 years. While comprehensive and 
accurate knowledge of facilitator competencies was neglected in the past, it is now 
recognized as being an area of great interest which is worthy of specific consideration. 
We therefore aim to address the competencies of facilitators as a new presage variable. 

3 Facilitators’ Competencies—A New Presage Variable 

As initiating PD with adult learners presents specific challenges for facilitators to 
overcome, we first focus on our understanding of facilitators as well as their role and 
then take a closer look at the field of general adult education. Following this, we look 
in detail at findings in the field of facilitators in mathematics education and highlight 
developments in this area of research. 

3.1 The Role of Facilitators 

In most school systems, there are people entrusted with the task of planning, orga-
nizing, and carrying out CPD programs for in-service teachers. In many (but not all) 
school systems, these people have worked or still work as teachers and are often, in a 
sense, “self-made” (Zaslavsky, 2008, p. 93). They usually devote themselves to these 
activities in addition to their work as teachers and often have few systematic qual-
ifications for this activity. The many different designations in use—such as mathe-
matics trainers, moderators, multipliers, teacher educators, didacticians, specialists,
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coaches, or facilitators (see also Bernhardsson & Lattke, 2011, p. 19)—show the 
heterogeneity of the work they carry out. Henceforth, we will call them facilitators, 
as we feel this term best expresses their role in guiding teachers to undertake change 
processes more easily. 

A “facilitator” is a person who opens new possibilities and accompanies others 
on development processes; in contrast, “teachers’ leader” or “teachers’ educator” 
designates a hierarchical relationship (e.g., in teacher PD programs with structurally 
conditioned relationships of dependence). Lunenberg and colleagues (2014) iden-
tify six different roles: teacher of teachers, researcher, coach, curriculum developer, 
gatekeeper, and broker. A look at these various roles once again highlights the mani-
fold requirements for facilitators in terms of both knowledge and competencies. 
The diverse roles a facilitator might perform require expertise, skills, and special 
abilities such as accompanying, demonstrating, counseling, mentoring, evaluating, 
empowering, cooperating, and so on (Shagrir, 2013). Smith (2005) and Zaslavsky 
(2008) concretized these requirements by listing facilitators’ typical characteristics 
(e.g., Shagrir, 2013; Smith, 2005; Zaslasvsky, 2008). Smith (2005) identifies specific 
qualities and behavior for facilitators, who he states should:

• be self-aware to reflect on their actions and discuss them,
• have in-depth professional knowledge based on theory (on testing in practice),
• be involved in research (to be involved in creating new knowledge) and in the 

writing processes of the curriculum,
• be good teachers and have experience in different age groups (school levels),
• have a comprehensive understanding of the education system and
• have reached a high level of professional maturity and autonomy. 

These requirements, as Shagrir (2013) points out, obligate facilitators not only 
to establish clear work procedures at each stage, but also to sustain the relation-
ship between the field of practice and teacher education institutions. Interestingly, 
these characteristics are all interdisciplinary and their application to mathematics 
and mathematics teachers is only implicit. Therefore, it is unsurprising that similar 
issues are also discussed in adult education research, with the added discourse of the 
respective professional field. 

3.2 Facilitators in General Adult Education 

Why do we need such competency frameworks in adult education at all? The neces-
sity arose over time. Just as with other professional training strands, as adult educa-
tion became an increasingly important field of action, professionalization had to 
occur, since the demands on teachers were constantly growing. Adult education 
represents a significant challenge and cannot be undertaken lightly, as pointed out 
by MacKaye back in 1931 when he described it as an “act of war” for which one 
must prepare tactically (as cited in Rossman & Bunning, 1978, p. 140). Delivering 
it is a challenging task which therefore requires in-depth qualifications. In the first
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half of the twentieth century, numerous programs were developed in which studies 
were conducted to identify the central requirements and the core activities of adult 
trainers. As Rossman and Bunning (1978) noted, one of the first texts on training 
adult educators was published in 1948 by Hallenbeck. Since then, more and more 
attention has been paid to this topic, and over time, awareness has arisen that this 
activity must be taken up as a profession. 

The literature shows that over several decades, various frameworks have been 
developed for adult education to teach skills, knowledge, and competencies (see 
Wahlgren, 2016). During this period, the question of adult educators’ competencies 
has been studied from different perspectives and in different contexts. Three main 
positions can be distinguished according to Wahlgren (2016): Delphi studies, national 
curricula for adult educators, and studies on competencies for vocational educators. 
Wahlgren (2016) gives an overview of these developments and draws attention to 
the fact that these findings were mostly gained through Delphi studies by experts in 
this field. It is noteworthy that the differentiation between skills and knowledge is no 
longer made in more recent studies, and that these two concepts are no longer even 
the focus of research. Instead, attention is focused on the concept of competency: “In 
the more recent study, a distinction between knowledge and skills is no longer made, 
but the concept of competencies is still used.” (Wahlgren, 2016, p. 346.) In addition, 
Wahlgren emphasizes that communication skills and the related ability to identify 
students’ needs and experiences have consistently been found to be essential, even 
though different studies identified different emphases and rankings (Wahlgren, 2016, 
p. 346). One of the most recent large-scale Delphi studies on adult learning relating 
to facilitators’ core activities was published by Bernhardsson and Lattke (2011), and 
makes it possible to compare different competency frameworks both over time and 
across countries, as Wahlgren (2016) has done. 

There are numerous efforts underway to formulate uniform frameworks that can 
be used not only across occupational groups but also across countries. However, 
this is particularly difficult for teachers, as not only does each country have specific 
school qualification frameworks, but teachers as a professional group differ greatly 
from other professional groups such as lawyers or police officers. In this context, 
the prominent project QF2TEACH is worth mentioning. In QF2TEACH, the core 
competencies of teachers for continuing education are developed in relation to the 
European context (see Bernhardsson & Lattke, 2012). Such projects usually focus on 
comparing different activity profiles, but also on the degree of concretization, which 
varies across frameworks. Our aim is thus to identify the overarching structures that 
are considered relevant. 

There are certainly substantial differences between the various occupational fields 
that may explain the far greater differences in the related formulation of competency 
frameworks. Facilitators must be experts in their specific domain (in this case math-
ematics education) and must know about the individual characteristics that teachers 
need to successfully carry out their profession. In the frame of DZLM, we aimed 
for a competency framework for facilitators of mathematics education. As a starting 
point we choose the GRETA competency framework of the German Institute for 
Adult Education (DIE, Leibniz Centre for Lifelong Learning) in the field of general
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adult education, for two reasons. First, it fits well with the existing requirements (the 
abbreviation GRETA in German stands for “basics for a standardized process for 
recognizing teachers’ and trainers’ competencies in adult and continuing education”; 
www.die-bonn.de/greta; see Fig. 4), which are as follows: 

• The cultural context (cf. Wahlgren, 2016) emerges from it.
• The specific requirements of this professional field are considered.
• The level of detail corresponds to that which appears to be suitable for the later 

use of the framework.
• Docking with the required subject area of mathematics is possible. 

The GRETA framework offers an interdisciplinary structural competency frame-
work covering all the basic competencies required to be able to teach well in adult and 
continuing education and it highlights the importance of including content-specific

Fig. 4 GRETA competency framework (Strauch & Lencer, 2017). https://ec.europa.eu/epale/en/ 
blog/greta-competence-model-teachers-continuing-training

http://www.die-bonn.de/greta
https://ec.europa.eu/epale/en/blog/greta-competence-model-teachers-continuing-training
https://ec.europa.eu/epale/en/blog/greta-competence-model-teachers-continuing-training
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competencies. This framework uses Baumert and Kunter’s framework (2013) as  
orientation and was developed through a Delphi-process with educational practi-
tioners and stakeholders. The comprehensive framework of Baumert and Kunter 
(2013) refers specifically to mathematics teachers. It relies on Shulman’s (1986) 
structural knowledge dimensions: content knowledge (CK), pedagogical content 
knowledge (PCK), and general pedagogical knowledge (PK). Baumert and Kunter 
(2013) also included existing organizational knowledge, coaching knowledge to 
communicate professionally with parents (see Bromme & Rambow, 2001), and 
beliefs and values as separate categories, with fluid transitions. 

The GRETA framework was developed in a Delphi-process with educational 
practitioners, researchers, and stakeholders, meaning manifold perspectives were 
involved. Facilitators for every subject area must consider aspects of general adult 
education because program participants are adult professionals. In addition, they 
must be experts in the specific domain (in this case, mathematics education) and 
must know about the individual characteristics that teachers need for the successful 
accomplishment of their profession. In this regard, the DIE has developed an inter-
disciplinary structural competency framework covering all the basic competencies 
required to be able to teach well in adult and continuing education. 

The GRETA framework is designed to identify all relevant competency aspects 
(outer ring), domains (inner ring), and facets (middle ring) via an assessment 
procedure (Lencer & Strauch, 2016). The framework comprises an even more 
holistic understanding by providing four aspects of competency (see Fig. 4): profes-
sional knowledge and skills, content and field-specific knowledge, professional self-
monitoring, and professional values and beliefs. The framework is applicable to all 
fields of adult education so the areas pertaining to subject-specific competencies 
have been left blank and must be filled in for the discipline under consideration 
(mathematics education in our case). 

3.3 Facilitators in Mathematics Education 

As noted in Sect. 2.2, several working groups have been at PME since 2011, and facil-
itators in mathematics education have also been a focus for CERME and ICME since 
2021. In addition, since 2018 there have been three major international publications 
specifically dedicated to this field. 

In contrast to the previous section which dealt with adult education in general, 
this section now focuses on the target group of facilitators and on facilitators in 
mathematics education specifically. A general adult education framework is insuffi-
cient as a competency framework for the qualification of facilitators in mathematics 
education, as content-specific concretizations must be made. For example, in the 
meta-study by Timperley and colleagues, they note that, when it comes to the school 
sector,
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Experts need more than knowledge of the content of changes in teaching practice that might 
make a difference to students; they also need to know how to make the content meaningful to 
teachers and manageable within the context of teaching practice. We are calling these skills 
provider pedagogical content knowledge. (Timperley et al., 2007, p. xxix) 

This makes it clear that, above all, domain-specific knowledge is also highly 
relevant to the content in which one is acting. 

Here, we take a more concrete approach and focus on teachers and facilitators 
in mathematics. By adopting this specific focus, more concrete facets of interest 
can be identified, which can then be elaborated as individual categories—always in 
comparison to an underlying general framework of adult education. Consequently, 
a concrete examination of the subject-specific challenges involved in the discipline 
of mathematics must take place. Teacher beliefs sometimes play an important role 
in mathematics education because they guide actions determining how the subject 
is taught (Kunter et al., 2013). For instance, mathematics as a discipline may be 
conceptualized in a more receptive way, with a focus on algorithms and automa-
tion. Alternatively, mathematical thinking and problem-solving may be the focus 
(e.g., Rott, 2020). The content of qualification programs for facilitators would differ 
according to these perspectives. 

At the same time, it must be kept in mind that such a framework does not apply 
equally to every facilitator. The many designations used for people who carry out 
this role not only testify to the heterogeneity of their tasks but also make it clear that 
very different roles and activities are linked to the diverse requirements and compe-
tencies. Facilitators also play decisive roles in PD in terms of the extent to which 
teachers are motivated and supported in their learning (Linder, 2011). To the areas 
mentioned by Smith (2005, see Sect. 3.1), Zaslavsky (2008) adds further require-
ments for facilitators in mathematics education such as adaptability and conscious 
selection of methods and media. It should be noted that facilitators are often expected 
to be very good (or even the best) teachers (as Smith notes in his list above). However, 
the role of a facilitator can be compared to that of a soccer coach, in that someone 
who may not be (or have been) the best player or teacher may be able to successfully 
train others. Carroll and Mumme (2007) also suggested that facilitators should have 
detailed subject content knowledge, information about the participating teachers as 
well as the students of those teachers, knowledge of how to teach students and adults, 
and knowledge of how to use materials for training to create a productive learning 
environment. 

Various studies have set different priorities for the content knowledge that facili-
tators should have. However, all studies emphasize that facilitators’ knowledge must 
exceed the teachers’ knowledge to enable the former to encourage the latter to grow 
and acquire new knowledge, i.e., fulfilling a similar role that teachers must play for 
their students (Borko et al., 2014). This goes hand in hand with the 3TM already 
described (Fig. 3, Prediger et al., 2019). 

Although, according to these three levels, facilitators should have extended knowl-
edge compared to teachers, it should be emphasized that there are also knowledge 
elements that are relevant for teachers but not for facilitators (Beswick & Chapman,
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Fig. 5 Knowledge in teacher education (Jaworski, 2008, p. 336) 

2015). These include, for example, detailed knowledge of school curricula or back-
ground knowledge about individual students. For facilitators, only general knowl-
edge of educational standards and curricula is important, as well as relevant empirical 
findings from (current) research. This is also expressed in Jaworski’s framework of 
knowledge in teacher education (2008, Fig.  5). 

The extended knowledge of facilitators refers not only to new knowledge of math-
ematical content and the relevant pedagogical aspects aimed at PD-level, but also to 
their pedagogical knowledge of adult education. This includes, for example, knowl-
edge of teachers’ existing practices (Even, 2005; Even et al., 2003) and current views 
on PD programs in mathematics education (Borko et al., 2014). 

In addition to current views on PD programs, Borko and colleagues (2011) 
also highlighted knowledge about mentoring (i.e., the accompanying support in the 
implementation of training content) for PD in mathematics. Facilitators should be 
able to stimulate productive mathematical work in teachers and lead discussions 
about student reasoning and instructional practices while encouraging reflection, 
as well as build professional learning communities. In this context, mentoring is 
seen as a special form of individual support and, unlike coaching, the individual’s 
interests are seen as the absolute priority. Particularly in the second key aspect of 
mentoring discussed by Borko and colleagues (2011), leading discussions about 
student reasoning and instructional practices as well as effective use of video-based 
PD programs can contribute as forms of facilitation (e.g., Ebers, 2020; van  Es  &  
Sherin, 2010; van Es et al., 2014; Zhang et al., 2011). In this regard, communica-
tion about video cases is an important component in training teachers’ awareness 
and ability to analyze. Content should be purposefully related to the teaching and 
learning of mathematics, ideally contributing to more reflective classroom practice. 

Certainly, several of the interdisciplinary competencies mentioned earlier can be 
directly applied to the roles of facilitators for mathematics teachers. However, it is
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also apparent from the formulation of individual areas of competencies that a domain-
specific focus is needed. As Tzur (2001), in describing in his own development as 
a mathematics facilitator, states, “… a development from a lower to a higher level 
is not a simple extension, that is, doing more and better of the same thing. On the 
contrary, development entails a conceptual leap that results from making one’s and 
others’ activities and ways of thinking at a lower level the explicit focus of reflection” 
(Tzur, 2001, p. 275). 

As the following example shows, it is not enough to swap out content, rather the 
entire spectrum of competencies mentioned is needed because they are all system-
ically interrelated. In one teacher training program on mathematical modeling, the 
focus is the student task “There is a 3 km traffic jam on the motorway. How many 
vehicles are caught in this traffic jam?” (see Peter-Koop, 2005, p. 6). It quickly 
becomes clear that there is no standard procedure or clear solution to this problem. 
Some of the participating teachers loudly reject the task as irrelevant to mathematics 
teaching since the task is not in line with their idea of mathematical thinking. The 
teacher training situation is now challenging for the facilitator in several respects. 
First, the subject matter “modeling” needs to be taught—meaning that a subject-
specific PD program is essential (e.g., Bardy et al., 2021; Dreher et al., 2018). At the 
same time, it is also important to question participants’ skeptical attitude towards the 
task and to address their basic beliefs about teaching and learning mathematics. At 
this point, competencies are required of the facilitator that go beyond pure content 
or pedagogical content knowledge. 

The example shows the need for facilitators to have a wide range of competencies: 
subject-specific competencies at the classroom level and subject-specific competen-
cies regarding mathematics teachers’ particular needs, problems, and obstacles as 
well as social competencies as adult educators. All these must be deployed as needed 
in a fluid interplay of PD activities. As Koster and colleagues (2005) concluded, refer-
ences to PD activities should be made in addition to a competency framework. In 
this article, a competency framework is understood as part of a more comprehen-
sive concept of the professional profile, which is additionally linked to activities. 
These activities define the purpose of the competencies (see Koster et al., 2005). 
In other words, a competency framework is a working repertoire of expertise that 
provides orientation and enables someone to perform professionally. As the previous 
PD activity example showed, facilitators need different competencies for different 
PD activities on specific PD topics. 

In the field of mathematics education, plenty of studies exist which describe the 
differentiation of facilitators’ knowledge towards teachers in mathematical education 
(e.g., Ball et al., 2008; Beswick & Chapman, 2015; Beswick & Goos, 2018; Borko  
et al., 2014; Lesseig et al., 2016; Smith, 2005). However, a systematic description 
of a framework is still missing. This is essential to adequately support and, poten-
tially, qualify facilitators. As early as 1999, Even stressed the importance of holding 
frequent planning meetings with facilitators learning a new mathematics PD program 
to develop their knowledge and leadership skills and to create a professional refer-
ence group. She described such meetings as the cornerstone for the “development of 
a common vision and feeling of shared ownership” (Even, 1999, p. 20).
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Reviewing the relevant literature on the generation of competency frameworks 
in adult education enabled us to identify the relevant categories that underpin these 
frameworks. Furthermore, we were able to deduce the important stakeholders for this 
process. With these findings, we laid the foundations for implementing a Delphi study, 
which involved researchers in mathematics education and key stakeholders (senior 
administrators). Through cycles of design, evaluation, and redesign, the framework 
was evaluated for holism, integrity, and practicality. It was important to strike the 
right balance between general adult education and mathematics education. We briefly 
report on this process in the following section. 

3.4 Facilitators’ Competencies Framework 

Here, we give a brief insight into the study undertaken and, above all, present the 
result of the Delphi study. Based on our results, we will once again take up the findings 
from the literature review. A detailed version of the Delphi study can be found in 
the PME paper by Peters-Dasdemir and colleagues (2021). As with other reported 
studies, it was important for us to identify a competency framework designed to fit the 
present setting, local requirements, and stakeholder acceptance to qualify facilitators 
in Germany appropriately. For this purpose, we also included the literature review 
shown above and embedded it in the Delphi study. 

The process consisted of three consecutive rounds in which 61 experts with 
different professional backgrounds participated. In these discourses, the most impor-
tant stakeholders were invited to evaluate the framework regarding its practical appli-
cability. We involved 33 researchers, 28 stakeholders, and several teachers with expe-
rience in CPD. We completed three cycles of further development. All researchers 
involved were experts in the field of CPD in mathematics education for primary and 
secondary levels and were asked to use this expertise to point out key competen-
cies for facilitators. The selection of the people involved in the Delphi study was 
carried out along the 3TM so that all levels involved in the facilitator activities were 
included. This was in line with the basic idea of a Delphi study which should include 
all experts with different backgrounds. The results of the Delphi study showed that 
experts from different fields were able to develop a common understanding of the 
competencies necessary for the qualification of facilitators who are responsible for 
the CPD of mathematics teachers. It leads to the DZLM framework covering four 
areas, which are concretized from the perspective of mathematics education (see 
Fig. 6): (1) Professional Values and Beliefs, (2) Professional Self-Monitoring, (3) 
Competencies at the Professional Development Level, and (4) Competencies at the 
Classroom Level.

Like the GRETA framework, we have chosen to structure these aspects and the 
related competencies in a circle format to symbolize the dynamic fluidity and inter-
connection between all competency domains in the inner ring. Besides the Compe-
tencies on the Classroom Level with PK-C, CK-C, and PCK-C, there is an extra level 
for Competencies on the Professional Development Level. All surveys focused on
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Fig. 6 Competency framework of facilitators in mathematics education

the question of the differences and similarities that exist between the competencies 
of teachers at the classroom level and those of facilitators at the PD level. This is 
similar to the work of Borko and colleagues (2014), who based their framework on 
the work of Ball and colleagues (2008) on “Mathematical Knowledge for Teaching 
(MKT)” analogously for facilitators. There was an intense debate about whether 
these two aspects should be separated as equal parts or whether competencies at 
classroom level are an integral part of competencies at PD level. This led to the 
specification in the two areas on competencies at classroom and PD levels. The final 
agreement was that content knowledge at PD level (CK-PD) would cover all aspects 
of teachers’ knowledge. This is in line with Beswick and Chapman’s (2015) and 
Jaworski’s (2008) similar views but in our case was expanded to include knowledge 
domains. Looking at the established specifications CK, PK and PCK at the PD level, 
PK-PD and PCK-PD for facilitators need to be further specified (Wilhelm et al., 
2019). Both consider the specific focus on teachers as learners, either from a general 
adult education perspective (PK-PD) or in a subject-related way (PCK-PD) (Prediger,
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2019). PCK-PD encompasses all “skills to engage teachers in focused activities and 
conversations about these mathematical concepts and relationships and to help them 
gain a better understanding of how students are likely to approach related tasks” 
(Jacobs et al., 2017, p. 3). This also includes, for example, the possible learning 
hurdles when teaching mathematics (Rösken-Winter et al., 2015). Furthermore, the 
PD and qualification programs developed and implemented within the framework 
of the DZLM were also examined as examples. A subject-specific view was appro-
priate for working out specific requirements and then classifying them into a larger 
framework. As with Borko and colleagues (2014), a PD excerpt for problem-solving 
in mathematics was chosen to gain insight into the facilitators’ concrete tasks. As 
a result, both perspectives (“tasks” and “activities and competencies”) are set in 
relation to each other. 

To cooperate efficiently with higher authorities such as ministries or learning 
communities, facilitators require competencies similar to the coaching knowledge 
required of teachers communicating with laypersons. As a result, the clear structure 
of the framework with four key competency areas (Competencies on the Classroom 
Level, Competencies on the PD Level, Professional Values and Beliefs, and Profes-
sional Self-Monitoring) needed to be changed to become five by adding Professional 
Social Competencies. Another reason was that “communication and cooperation” 
must be considered at all levels and is a competency relevant to all actors (teachers, 
facilitators, stakeholders). 

An intermediate result of the evaluation of an online questionnaire with a response 
rate of 34% was that the domains of Communication and Cooperation as well as 
Coaching and Counseling are often only perceived as a level between facilitators 
and teachers. This is due to the representation of Competencies on the PD Level. 
Therefore, a small change was made here so that both aspects were placed in the 
new area of Professional Social Competencies. Thus, as in the 3TM, the relation-
ship of these competency aspects to facilitators, to teachers, and among facilitators 
themselves should be better emphasized. Essentially, no significant discrepancies 
occurred here. A comparison with the literature on general adult education reveals 
that the competencies of facilitators of mathematics teachers can also be divided into 
the four essential areas of social and communicative competencies, personal compe-
tencies or self-competencies, values and beliefs, and field competencies. In terms of 
different levels, however, content knowledge and (content) pedagogical knowledge 
are subdivided into PD and classroom levels. 

The aspects of Professional Values and Beliefs and Professional Self-Monitoring 
were essentially retained but required partial restructuring due to specific characteris-
tics of facilitators of mathematics. Respect of Professional Values and Beliefs can be 
taken as an example: it may be useful to consider beliefs about teaching and learning 
mathematics (Grigutsch et al., 1998) in all PD courses. However, if a facilitator is 
mainly concerned with the subject of language sensitization, then their beliefs on 
language sensitization would be important or, in the case of the subject of digitiza-
tion, beliefs on use of digital media would matter. In the same course, changes in 
the focus on self-efficacy beliefs or in the knowledge of frequent teacher problems 
occur when delivering different PD content, and it is therefore not possible to present
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competency facets in great detail. The areas of Professional Values and Beliefs and 
Professional Self-Monitoring have a strong interplay. Above all, the dual role and 
one’s own understanding of one’s role as a facilitator has an increased influence. 
Thus, Role Identity was included alongside Professional Beliefs and Professional 
Ethics. The concept of motivational orientation was replaced by Self-efficacy Beliefs, 
as this aspect of PD is more relevant to mathematics (Bandura, 1999; Thurm & 
Barzel, 2020). At times, the question arose in the discussions as to whether one’s 
own experience should be included as a competency domain. For the stakeholders, it 
was important to include Professional Experience to explicitly promote appreciation 
of teaching practice. In addition to formal learning pathways, it is often the informal 
paths (practice experiences) that strengthen facilitators’ competencies (Zaslavsky & 
Leikin, 2004). 

4 Outlook 

Teacher PD plays an important role in the continuous development of mathematics 
teaching and learning. Medley (1987) articulates this in the context of teachers’ pre-
existing characteristics (Type F) and their required competencies (Type E). In this 
chapter, we focused on facilitators as core actors and on professionalizing mathe-
matics teachers (Type J). One can also note that while Medley ends with instructors 
as teachers, it is clear to see that the chain of effects extends beyond this point. To 
strengthen teacher competencies, we need to start one level higher (e.g., Lipowsky, 
2014; Prediger et al., 2019). As Medley states, teacher competencies need to be 
strengthened, and by extension, research on the competency development of facili-
tators needs to be undertaken in the field of teacher education. This is necessary to 
achieve real improvement in the quality of PD programs and their implementation 
and thus for Type J to positively impact on Type E. The framework developed within 
this study is designed to be used for this purpose. 

There are many competency frameworks for adult educators or facilitators gener-
ally, but they are not always usable in specific cases, either because they lack focus or 
because they are too non-specific. In such cases what is needed is adaptation; for our 
purposes, a framework that is tailored to the teaching profession and which focuses 
on the didactic perspective of mathematics. But what is new about this competency 
framework compared to existing frameworks as reported in the overview by Rossman 
and Bunning (1978), Wahlgren (2016) or the framework by Bernhardsson and Lattke 
(2011)? The challenge was to use these rather general frameworks as a starting point 
to develop a specific competency framework for facilitators in mathematics educa-
tion, and even more specifically to the context of the DZLM, and to develop such a 
framework in cooperation with key stakeholders in school administration to ensure 
a systemic strategy.  

First, the professional field of teaching must be considered as a specific feature 
here. The general competency frameworks that have emerged from adult education 
are too broad in their orientation for this and do not emphasize aspects relevant to the
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teaching profession or inadequately differentiate individual competency facets (see 
GRETA framework; Wahlgren, 2016). However, this differentiation is necessary to 
address the relevant domains. 

A further specification that had to be considered here was the discipline of mathe-
matics because even within the teaching profession, there are significant differences 
across subjects. In addition to the differences between scientific disciplines such as 
mathematics and physics, professional cultures in the field (teachers, engineers, etc.) 
also vary considerably. Therefore, specific areas have emerged, which also account 
for attitudes towards the subject. 

Lattke and Zhu (2010) drew attention to another reason for developing a specific 
framework for mathematics facilitators: cultural context is key. Cross-cultural studies 
show that cultural norms significantly influence views of what constitutes “good” 
mathematics teaching (Dreher et al., 2021). Of course, a different focus can be applied 
in terms of cultural context (whether this is regional, national, or global). However, 
in a field where close cooperation with local authorities and schools is required, local 
challenges must be considered. Close dialogue with stakeholders in the local system 
should therefore largely determine which components are included in such a frame-
work. Local, cultural anchoring is always present when such a framework is devel-
oped with stakeholders on the ground—and the resulting competency framework 
would in all probability look different if it were to be developed elsewhere. 

The continuous changes taking place in the school system require teachers to 
act dynamically and to respond in a differentiated way to changing needs. Facilita-
tors, through the relationship between the field of practice and the teacher educa-
tion system, can build an important bridge here by considering social changes and 
responding to them within the educational system and, accordingly, by responding to 
these innovations in PD programs. To do so they need to be competent and perform 
their role properly. As we have seen, facilitators in mathematics education have 
professional status and must therefore have a wide range of competencies. 

The developed competency framework provides a research-based systematic 
overview for research and development of what should be kept in mind, especially the 
affective and self-regulatory competencies, in addition to the central competencies 
PK-PD, PCK-PD, and CK-PD. For communication at educational administration 
level, the competency framework is useful to sensitize facilitators to the fact that 
performing their role effectively requires not only being well versed in CK, but a 
multitude of other facets as well. Alternatively, the competency framework can be 
helpful for quality assurance at the level of educational administration. 

The need for the whole range of competencies in the frame of PD programs became 
obvious when (for example) we looked at integrating technology in mathematics 
classrooms (Barzel & Biehler, 2020; Thurm et al., accepted), possibly due to the 
fact that PD aims relating to technology are manifold. Teachers must familiarize 
themselves with the latest technology and consequently rethink their tasks, teaching 
routines, and practices. All these aspects also touch on underlying beliefs about 
mathematics and teaching mathematics with technology (Clark-Wilson & Hoyles, 
2019; Thurm & Barzel, 2020).
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Covering all these areas requires facilitators to have not only mathematical compe-
tencies at classroom level but also competencies at the PD level. For example, 
regarding attitudes and beliefs, awareness of the latest research on teachers’ atti-
tudes and beliefs about teaching with technology is relevant to ensure facilitators are 
adequately prepared to address teachers’ diverse knowledge and beliefs on the matter 
in a PD program. Especially for teachers with a more traditional, instructor-centered 
teaching approach, teaching with technology often means a greater challenge and 
loss of control than for those teachers who are more used to managing more open-
ended approaches (Simonsen & Dick, 1997; Zbiek & Hollebrands, 2008, p. 291). 
Therefore, research results highlighting the importance of fostering self-efficacy to 
be able to teach mathematics with technology are not at all surprising (Thurm, 2020). 
Specific activities such as classroom trials are suitable as the basis for reflection-in-
action (Schön, 1983), a promising method at PD level for the implementation of new 
teaching routines and innovations (cf. Arsal, 2014; Hattie, 2009; Lipowsky & Rzejak, 
2015; Thurm, 2020). This has been identified as an especially important element in 
PD concerning technology in mathematics (Thurm, 2020). Besides general design 
principles for effective PD (Barzel & Selter, 2015), all these aspects demand highly 
developed moderation skills (PK-PD) to deal with disruptive situations in PD, self-
regulation to organize the different fields of requirements, and strong professional 
ethics to ensure they always consider teachers in their thinking. The fluidity of all 
these facets in the competency framework is essential for facilitators to achieve their 
aims when enabling teachers to integrate technology into their everyday classrooms. 

The success of PD from the facilitator to the student outcomes could not be 
identified in various research studies and have not been the subject of investigation. 
What can be assumed, however, is that the levels of success of PD as shown in Fig. 1 
can be extended upwards and can lead to a change in student outcomes if facilitators 
train teachers adequately. 

The presented competency framework offers a starting point for making the 
competency level of facilitators measurable. In a further step, instruments need 
to be developed to measure competencies. The competency framework could be 
a good way to map and check which competencies are addressed in a qualification 
program. For example, there are already approaches to designing PD for mathematics 
education with technology to foster teacher and facilitator noticing (see Thurm et al., 
accepted), which could be researched in more detail regarding implementation, where 
the interplay of competencies could also be considered. 

It has been shown that this field of research, “mathematics teacher training and 
experience” (Type J), is still relatively young area of mathematics didactics, and it can 
be assumed that research in this area will continue to sharpen. Already in the various 
mathematics conferences, as described above, there are more and more workshop 
groups discussing this topic. In different countries with differing structures, the need 
for quality standards for facilitators is still present and qualification programs must 
be specifically developed and implemented to ensure the nationwide success of PD 
programs. Our findings show that facilitators are a central factor in such success and 
that their own training must therefore not be neglected, as they play a crucial role in 
the PD process for mathematics teachers.
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Emerging Methods for Unpacking 
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1 Introduction 

In 1987, Medley offered an explanation of the “present state of the art of research in 
teaching” (p. 105). By doing so, he outlined the categories of variables that could be 
studied and provided strong guidance for high-quality research on these variables. 
His guidance suggested that research should seek to find out why teaching quality 
varies widely and to do that, one must have a conceptualization of what good teaching 
is, an instrument that is valid for distinguishing good teaching from poor teaching, 
and a plan for collecting accurate data and for analyzing that data. While aspects 
of research on the relationship between all of the variables that shape the complex 
act of teaching students in a formal learning environment have remained unchanged 
since 1987, much has changed in educational research including the emergence of 
new methodologies and the increasing presence of technology both as a tool for 
teaching and learning and as a tool for research, making research on the connections 
between and among the variables both richer and more flexible than Medley originally 
suggested.
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In this chapter, our goal is to provide some clear examples of the ways in which 
the field of mathematics education has been able to pursue the interactions put forth 
by Medley (1987) thanks to the emergence of new theories, research methods, and 
technologies. We discuss some of the critical ways in which the research landscape 
has changed since the original article was published. First, we look at methodolo-
gies that have become more widespread since Medley introduced his framework. 
Second, we explore some examples of research methods that offer new ways of 
thinking about research questions related to teaching and learning in formal environ-
ments. These methods are important because they have opened opportunities to look 
across the variables in ways that were unavailable to researchers until recently. We 
finish by considering the opportunities that have been created by technology. These 
have changed the ways we collect data and the data we collect. We close by briefly 
discussing how the changes discussed in this chapter specifically relate to presage-
process–product research (Medley, 1987). Our goal in this chapter is not to present 
a comprehensive review of the literature, rather, we seek to highlight both where the 
field is now in terms of research methods and tools as well as to provide examples of 
the ways in which Medley’s framework is being pursued in newer research. We have 
chosen to rely on Fig. 3 in Chap. 1 (Manizade et al., 2023) rather than the original 
Medley model for the purposes of our discussion, except where noted. 

2 Changing Methodologies 

Since Medley’s framework was originally proposed, the field has seen the emergence 
of new research methodologies (i.e., scientific frameworks), methods (i.e., specific 
approaches), and tools (i.e., instruments) that allow innovative lenses with which 
to make sense of the multi-faceted enterprise that is teaching and learning. In this 
chapter, we offer brief overviews of just a few of the methods currently available 
for answering questions related to the presage-process–product model. These tools 
sometimes allow us ways to look at connections between more than two variable cate-
gories (e.g., cultural-historical activity theory) or allow us to conceive of research as 
a web of interconnected studies all serving to develop a larger theory (e.g., Design-
Based Research). Below, we talk about the emergence of Qualitative and Mixed 
Methods methodologies as well as emerging psychometric models, then we intro-
duce several methods that provide new ways of thinking about the interconnected 
nature of the variables for teaching and learning. These include teaching experiments, 
Design-Based Research, cultural-historical activity theory (CHAT), and quantitative 
ethnography.
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3 Qualitative and Mixed Methods Research Methodologies 

In 1987, qualitative research was not often used in education. While there were 
certainly some examples of qualitative research emerging (e.g., Erlwanger, 1973), 
those studies were not as widely accepted as quantitative studies. However, with 
the shifts in ontology and increased acceptance of new methods, the field of math-
ematics education research became more open to—and, indeed, primarily focused 
on—qualitative research. The reason is simple: quantitative research methodologies 
are particularly appropriate for a model of teaching and learning that relies on transfer 
of knowledge from the expert to the novice. As we moved toward theories of learning 
that were more grounded in constructivism, socio-cultural theories, and critical theo-
ries, new questions were being asked. As an array of new learning theories emerged, 
the definitions of teaching and learning became more diverse and even questions 
could be pursued. Rather than asking if teachers who took teaching methods courses 
in mathematics or science are more effective than those who did not, researchers 
began wondering in what ways particular backgrounds might shape learning expe-
riences (Type E—teacher’s competencies, knowledge and skills—and Type F—pre-
existing teacher characteristics) and their interaction on Type A (student learning 
outcome) variables (e.g., Manizade et al., 2023; Medley, 1987)) and how teachers 
conceive of making content learnable for children (Type D variables interacting with 
Type B and A variables (e.g., Manizade et al., 2023; Medley, 1987)). Further, with the 
emergence of new theories of learning, the definitions of what constitutes learning, 
and, thus, how learning is measured, also changed. Consider, for example, Wenger’s 
theory of situated cognition (Wenger, 1998). Within this theory, “learning” is defined 
as a change in participation, because learning is viewed as becoming a member of a 
community of practice. Thus, as one learns, one becomes a fully-integrated member 
of the community of practice. If participation is the goal, a written assessment of 
content knowledge is no longer an appropriate instrument for measuring learning 
and new approaches need to be developed. Thus, it is consistent with the rise of the 
cognitive, socio-cultural, and critical theories that qualitative research would become 
a critical tool for research. 

Once qualitative methodologies were established as a norm within the field, it was 
natural for some researchers to use qualitative and quantitative methods together to 
better understand a phenomenon. Thus, mixed methods approaches have been used 
by some researchers to understand the interactions inherent in the learning envi-
ronment. Grounded in pragmatism (Johnson et al., 2007), mixed methods research 
is a methodology that combines qualitative and quantitative methods to produce 
“defensible and usable research findings” (p. 129). For example, a researcher may 
conduct a survey (quantitative), then conduct interviews with a subset of partici-
pants (qualitative) to more deeply understand the findings of the survey (Creswell, 
2014). For example, in one recent study (Starrett et al., 2021), researchers used 
surveys and interviews with teachers and students to understand how teacher’s prox-
imity to their school impacted their use of place-based education, thus using mixed
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methods to connect Type I (external context) variables to Type D (pre- and post-
active mathematics teacher activities), Type C (interactive teacher activities), and 
Type B (student learning activities). Another approach to mixed methods analysis is 
to use the various analyses to dig into specific aspects of the data. For example, an 
approach the first author of this chapter has used (e.g., Izsák et al., 2010; Orrill & 
Cohen, 2016), included mixture Rasch analysis of an assessment of teacher’s math 
knowledge. Our goals was to identify specific mathematics tasks that teachers found 
difficult or with which different groups of teachers had different experience. From 
those data, we were able to identify specific items on which to focus in the qualitative 
analysis of the interviews. Using this approach, we were able to not only see how 
teachers performed on the assessment, but also to generate assertions about why they 
performed in these ways, thus providing us with additional information for designing 
effective instruction. These methods allowed us to more thoroughly understanding 
Type E variables. 

For understanding the ways in which teachers, their experiences, and their actions 
intersect with student learning, access to a wide array of methodologies is crucial. 
While quantitative research is still used, studies using qualitative and mixed methods 
approaches are as accepted in most venues as quantitative research. The critical factor 
in high-quality research is not the methodologies and methods used, but rather the 
alignment of the methods and methodologies to the research questions. 

4 Continuing to Develop Quantitatively: Emerging 
Psychometric Models 

Methods for conducting quantitative research have also continued to develop since 
1987. While quantitative research has remained theoretically grounded in positivism 
and still adheres to the methodological frameworks that were in place in the 1980s, 
quantitative research has benefitted tremendously from increased access to computers 
and the emergence of new models that has been possible because of computers. Now 
that nearly everyone has access to extremely powerful computing technology, quanti-
tative analysis can be more robust and more accessible than ever. Particularly impor-
tant for presage-process–product research are the myriad statistical and psychometric 
models that have emerged in the past few decades. In this section, we briefly introduce 
four such models that have played a role in our own research on teacher knowledge 
and student learning: Item Response Theory (IRT), mixture Rasch Models, Diag-
nostic Classification Models, and Topic Models. We have selected these four models 
because each provides researchers with different information about learning. Further, 
we included IRT because of its widespread use. Each of the four offers a way to better 
connect the variables highlighted by Medley. We do not, however, intend this as an 
exhaustive list. 

Item Response Theory (Baker, 2001; Baker & Kim, 2004) is probably the most 
influential psychometric model in widespread use as it has largely replaced classic test
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theory for scoring standardized tests. Rather than simply assigning a score indicating 
how many items are correct or incorrect, IRT provides various kinds of information. 
First, IRT provides a score that expresses a participant’s performance in terms of 
the number of standard deviations above or below the mean of participant scores. 
The second piece of data provided by IRT is information regarding the difficulty of 
an item, where difficulty is reported as the probability that someone scoring at the 
identified difficulty level would have a 50% chance of answering the item correctly. 
IRT provides researchers with information that allows them to consider not just 
whether “learning” has occurred, but where there may be deficits in aspects of content 
knowledge as well as a relative weighting of participant’s performances. Because 
of the information that it can return, IRT is currently a critical component in the 
development of learning trajectories (e.g., Clements et al., 2011; Confrey et al., 
2017), which sit at the intersection of student learning (Type A), teacher planning 
(Type D), and teacher knowledge of students (Types G & H). 

Building from IRT, mixture Rasch models (Izsák & Templin, 2016; Rost,  1990) 
look for latent trends in the patterns of responses among participants to determine 
whether all the participants should be placed along the same continuum or whether 
there are groups within the data that performed in ways different from others. This 
approach has been used to identify patterns of reasoning among teachers. These 
patterns highlight that performance on an assessment can be tied to patterns in 
teacher’s reasoning about the content (e.g., Izsák et al., 2010; Orrill & Cohen, 2016). 
The data can also be used to capture a different kind of “learning”. Rather than 
focusing only on whether participants have improved their scores on an assessment, 
researchers can also determine whether participants have changed latent classes. Such 
change would indicate a fundamental shift in the ways the participants are reasoning 
about the mathematics items on the assessment (Izsák et al., 2010). While mixture 
Rasch has primarily been used for in-depth consideration of Type E variables, we 
assert that it could be used as a lens for understanding the relationship between Type 
E and Types C and D (how teachers plan and implement instruction). It could also 
be readily used to look at connections between Type A and Type C and D variables 
if an assessment were given to students and correlated to observations of classroom 
practice. 

Another emerging family of models is Diagnostic Classification Models (DCMs; 
Bradshaw et al., 2014; Izsák & Templin, 2016; Rupp et al., 2010). DCMs require an 
a priori defining of the specific attributes each item of an assessment measures (e.g., 
Tatsuoka et al., 2016). From that mapping, analysis is done on participant’s perfor-
mance, and results are reported as the probability that the participant has mastered 
each individual attribute. For example, in Bradshaw et al. (2014), the authors identi-
fied four attributes being measured by the assessment of fractions: referent unit under-
standing, partitioning and iterating, appropriateness, and multiplicative comparison. 
The attribute inventories that are returned in place of traditional test scores can provide 
insights into specific aspects of understanding demonstrated by a given sample, thus 
providing data that can shape the instructional experiences for participants. As with 
mixture Rasch models, DCMs provide an opportunity to connect teacher or student
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understanding of mathematics (Type A or E) to the activity in the classroom (Type 
B or C).  

One final emergent psychometric model is Topic Modeling (e.g., Blei, 2012). 
Topic Models allow a statistical analysis of qualitative data to show a change in 
patterns of language usage. Topic models rely on looking for particular words in 
natural text or natural speech to see their patterns of co-occurrence. From those 
patterns, groupings are created that separate participants. For example, in Kim 
et al. (2017), the researchers found three main themes in their analysis of student’s 
responses on a science assessment. The first theme featured answers that included 
appropriate technical terms for middle grades science students (e.g., change, variable, 
dependent). The second theme was discipline-specific terms (e.g., energy, popula-
tion, kinetic). The third theme focused on everyday language (e.g., put, stronger, big, 
think). Across four assessments, the participating middle school students shifted 
from using the everyday language topic to the other two topics (Linking Type B 
to Type C variables). These results suggested that students were learning about the 
discipline. Topic Modeling is particularly important for measuring learning through 
a socio-cultural lens. 

New psychometric models do not fundamentally change the design and limita-
tions of quantitative research. Thus, they have some limitations outlined by Medley 
in terms of looking at relationships between the variables. However, the new models 
allow measurement of different kinds of learning (e.g., change in participation or in 
natural language use, rather than acquisition of knowledge), and they open oppor-
tunities for mixed methods approaches such as those described in the discussion 
of mixed methods above. So, even within the realm of quantitative research, there 
are more tools available to support asking questions in new ways and looking at 
relationships through different theoretical lenses than was possible in 1987. 

5 Emerging Research Approaches 

In this section, we introduce four of the approaches to research that have changed the 
ways in which we can answer questions about teaching and learning in formal (and 
informal) contexts. As with the discussion above, we do not assert that these are the 
only approaches appropriate for research in the presage-process–product framework. 
Rather, these are tools that have been used, or are emerging in use, in mathematics 
education and the learning sciences to answer research questions related to the vari-
ables in Medley’s framework and the connections between them. Certainly, there are 
many other approaches that could also be used for this purpose. Below, we discuss: 
Teacher Experiments, Design-Based Research, Cultural-Historical Activity Theory 
(CHAT), and Quantitative Ethnography. Teaching experiments are featured because 
of their prominence in mathematics education research over the past three decades, 
while the other approaches were selected because they offer robust and diverse path-
ways for making sense of the complexity of learning environments through their 
analytical lenses or through iterative implementation. For each, we describe what
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it is, some benefits and limitations for the approach, and some examples of studies 
done with the approach. 

6 Teaching Experiments 

6.1 What is It? 

Teaching experiments stem from Piaget’s clinical interviews (Steffe & Thompson, 
2000) and have roots in Russian education research (e.g., Davydov, 1975). Teaching 
experiments are fundamentally constructivist and have been used with a wide variety 
of constructivist perspectives, ranging from radical constructivism to social construc-
tivism (Cobb, 2000). In a teaching experiment, the researcher serves in the role of 
a teacher and conducts a series of teaching episodes, usually working with a small 
group of students or one individual (Cobb & Steffe, 1983). The key goal is to develop 
a “living model of student’s mathematics” (Steffe & Thompson, 2000, p. 284), testing 
and revising instructional activities designed to support student learning (McClain, 
2002). 

Teaching experiments go beyond the scope of a clinical interview by aiming to 
help the researcher understand the change and progress of a student’s mind rather 
than just the current state of the mind. The teacher-researcher constructs a conjecture 
about student’s mathematical knowledge, then tests the conjecture with teaching 
episodes designed to move the student’s understanding forward, reformulating the 
conjecture after each episode (Cobb & Steffe, 1983; Steffe & Thompson, 2000). 
Initial hypotheses can be abandoned based on student’s responses as it is vital that 
the teacher-researcher allows the student’s contributions to guide the trajectory of 
the teaching episode. 

Typically, a teaching experiment consists of the teacher-researcher, the student(s), 
and an observer. The role of the observer is to witness and document student’s reac-
tion and behavior. The teacher-researcher, constantly interacting with the students 
and instantaneously reacting to the students, may not be able to capture all relevant 
observations (Cobb, 2000). The teacher-researcher engages the students in instruc-
tional tasks or activities to observe and promote mathematical learning and reasoning 
by posing tasks and asking follow-up questions (Steffe & Thompson, 2000). The data 
that is collected is qualitative and meant to record the models of student’s mathe-
matical understanding. The teacher-researcher uses this data to revise conjectures as 
teaching episodes progress and to revise the activities in the episodes. Ultimately, 
a model of student thinking about the specific content or topic is generated by the 
researcher, with a variety of qualitative data to support the model (Cobb & Steffe, 
1983). From the perspective of the framework of research on teaching mathematics 
adapted from Medley (Manizade et al., 2023), teacher experiments allow conjec-
tures to be made about how student mathematics learning outcomes (Type A) are 
shaped by the interactive mathematics teacher activities (Type C) that are pre-active
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activities (Type D) from considering student’s engagement in previous mathematics 
learning activities (Type B). In a sense, while the outcome of the teaching experi-
ment is a theory about student’s learning, the experiment itself is an iteration of the 
relationships of Type A, B, C, and D variables conducted by a person with compe-
tency, knowledge, and skill (Type E) in the mathematics, in student learning, and in 
designing instructional interventions. 

6.2 Benefits and Limitations 

One clear benefit of teaching experiments is the insight they provide about how to 
support a student or small group of students to move forward in their understanding 
of specific concepts. A unique feature of teaching experiments is that the researcher 
is directly involved with the teaching. Therefore, the researcher should have teaching 
experience and the ability to interact and engage with students (Steffe & Thompson, 
2000). The goal is to elicit and support thinking during these interactions; teacher-
researchers should be cognizant of how their actions and language are perceived by 
students (Tallman & Weber, 2015). 

Teaching experiments are powerful tools for understanding learning, however, 
they are also very challenging. One clear challenge of this method, particularly for 
inexperienced researchers, is that data collection and data analysis are simultaneous 
during the series of episodes (Tallman & Weber, 2015). Additionally, to demonstrate 
the evolution of the conjectures and model building, the researcher-teacher needs to 
maintain on-going documentation of the reasoning for decisions and the interpreta-
tion of student’s thinking (McClain, 2002). Self-reflexivity becomes a key assump-
tion, where the researcher-teacher acknowledges that he/she is an active participant 
of the student’s constructions (Steffe & Thompson, 2000; Tallman & Weber, 2015). 
A common data analysis method after the series of teaching experiments is retro-
spective analysis, changing and revising the hypothesized model (Cobb & Steffe, 
1983). 

6.3 Examples 

Many researchers used teaching experiments as exploratory tools, usually as part of 
larger projects. Simon and colleagues (2018) conducted a teaching experiment with 
a single student as part of the Measurement Approach to Rational Number (MARN) 
Project. Their goal was to understand how instruction could promote student’s 
construction of the concept of multiplication with whole number and fractions, and to 
develop a hypothetical learning trajectory based on their analysis. The participant was 
a fifth-grade student, Kylie, that the research group had been working with for two 
years, conducting various clinical interviews and teaching experiments. One of the 
teaching experiments involved the use of a computer application called Java Bars as
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the instructional tool. Simon served as the teacher-researcher and posed several multi-
plication tasks designed to explore Kylie’s changing conceptions about the meaning 
of the multiplier. The research group initially used the concept of generalizing assim-
ilation, as defined by Piaget (1952) as the theoretical base for their hypothetical 
learning trajectory. They hypothesized that the progression of their instructional 
tasks would stimulate changes in the assimilatory structure of the student. However, 
during the initial teaching episodes, the researchers were not seeing any evidence of 
conceptual change and modified the teaching tasks. Using retrospective analysis of 
the data collected, Simon and colleagues revised their hypothetical learning trajectory 
conjecture to rather be stimulated by reflective abstraction, also a construct defined by 
Piaget (1952). When reporting their findings, the authors included a detailed descrip-
tion of the progression and rationale of the learning trajectory. The research group 
went on to conduct more teaching experiments with the revised instructional tasks 
and hypothetical learning trajectory (Simon et al., 2018). This research is focused 
on the interaction of student mathematics learning activities and student mathemat-
ical outcomes (Type B and Type A)—that is, how does an instructional intervention 
affect learning. Because it was a teaching experiment, though, it extended to Type 
C, interactive mathematics teacher activities, because one of the outcomes of this 
work was a hypothetical learning trajectory which could be used to guide other 
teachers for supporting student learning. Finally, consistent with the Framework of 
research on teaching mathematics as shown in Fig. 3 of Manizade and colleagues 
(Manizade et al., 2023), Type G research (individual student characteristics, abilities, 
and personal qualities) is also tacitly happening as the teacher-researcher is consis-
tently assessing the student’s abilities and understandings to make the instructional 
decisions that lead to particular learning activities. 

Teaching experiments can also be done with larger groups of students. A study 
conducted with 299 undergraduate calculus students by Wagner and colleagues 
(2017) consisted of eight teaching episodes which were designed to study the change 
in student’s ability to generate examples for the purpose of understanding novel 
concepts. The researchers formulated a hypothesized learning sequence and devel-
oped an instructional sequence of tasks and questions. The learning progression 
was broken down into intended student’s awareness and behavior on specific skills 
and views. Over the course of eight teaching episodes, the teacher-researcher intro-
duced the tasks, which progressed from more rigid to more open-ended to allow 
students to show their views and ability to generate examples. Data analysis was 
done using emergent codes from the participant’s words and phrases from the reflec-
tions and written tasks. The evidence showed a progression of positive changes in 
the student’s views of generating examples. The researchers revised their proposed 
learning sequence for the third iteration of the teaching experiment, where new 
students were chosen who had not yet learned calculus material, to test their revisions. 

As with the Simon et al. (2018) example, this research approach follows a Type 
C-B-A flow, moving from considering interactive mathematics teacher activities to 
student mathematics learning activities to student mathematics learning outcomes. 
The researcher plays the role of a teacher, so data can be gathered on Type C, inter-
active mathematics teacher activities. Second, the research group designs a set of
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activities based on data from Type G (individual students characteristics, abilities, 
and personal qualities) and Type A (student learning outcomes) to simulate student 
learning experiences that could occur in the classroom, allowing the study of Type B 
(student mathematics learning activities) variables. Finally, the researchers analyze 
data and make assertions on how the activities impact student learning. Both groups 
used iterative design to develop a learning theory, ultimately laying out a trajectory 
of activities for teacher to implement and student to experience (Type C and Type 
B). Simon et al. (2018) implicitly also study the individual student Kylie, providing 
details about her abilities and personal qualities (Type G). In summary, teaching 
experiments are an extension of clinical interviews and align to constructivist learning 
theories. The researcher becomes a teacher in this methodology where he/she formu-
lates, tests, and revises a hypothesis of a model for a change in student thinking as a 
response to some instructional sequence (Cobb, 2000; Steffe & Thompson, 2000). 

7 Design-Based Research 

7.1 What is It? 

Design-Based Research (DBR) approaches originated from a desire to pursue 
research questions that cannot be answered in a laboratory setting (e.g., Brown, 
1992; Collins, 1992). Underlying the development of DBR was a desire to develop 
an approach that overcame the issues in attempting to apply results from educa-
tion laboratory studies into actual classrooms (Cobb et al., 2003; McKenney & 
Reeves, 2013). Over time, Brown’s and Collin’s notions of “design experiments” 
matured into an approach known by many names, that we refer to as Design-Based 
Research (DBR; Design-Based Research Collective (DBRC), 2003). DBR focuses 
on the development and refinement of theory along with the development and refine-
ment of innovations that embody that theory (e.g., Barab & Squire, 2004; Cobb et al., 
2003; DBRC, 2003; McKenney & Reeves, 2013). DBR is an approach to research 
that relies on a trajectory of inter-connected studies conducted, often over several 
years, rather than a single study (Cobb et al., 2003). It is inherently grounded in 
partnerships between researchers and practitioners. 

A unique feature of DBR is the dual goal of generating a theory and developing and 
refining a particular intervention that embodies that theory (McKenney & Reeves, 
2013; Sandoval, 2014). Researchers focus on both problematizing the context and 
on using theories to generate usable knowledge (DBRC, 2003). The development of 
such theories is a key component of DBR (Cobb et al., 2003). Through the iterative 
processes, conjectures are made, tested in the natural setting, revised based on the 
outcome, and tested again. The theory becomes emergent through this process and 
is refined at the end of the project (Barab & Squire, 2004). Because of this focus 
on developing theory and innovation together, DBR projects tend to include serious 
consideration of student learning outcomes (Type A), student mathematics learning
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activities (Type B), interactive mathematics teacher activities (Type C) and pre or 
post-active mathematics teacher activities (Type D). Many also include consideration 
of teacher competencies, knowledge, and skills (Type E); external context variables 
(Type I); and teacher development and experiences (Type J). 

DBR projects usually span several years. The reason for this is twofold. First, 
DBR focuses on iterative in design (Cobb et al., 2003; DBRC, 2003), which involves 
multiple implementations, data collection and analysis cycles. Second, to understand 
an innovation and the theory it embodies in a way that moves toward generalizable 
knowledge, different grain sizes must be considered. Studies may focus on a single 
tool with a few students, then that tool used in a classroom, then that tool used in the 
context of the delivery of a piece of curriculum, etc. Because the studies focus on 
a series of related questions of different grain sizes, they often benefit from mixed 
methods approaches across the lifespan of the research (DBRC, 2003). Rather than 
having confined control variables, multiple dependent variables such as classroom 
environment and learning outcomes are examined to generate a deep understanding 
of the issues and the effect of the intervention (Cobb et al., 2003). 

In DBR, researchers partner with various stakeholders to achieve the goals of 
refining theory and refining the intervention. Interventions can be educational prod-
ucts, policies, or programs (McKenney & Reeves, 2013). Examples of stakeholders 
are teachers, school leaders, coaches, and subject matter experts. These participants 
become an integral part of the development and implementation of the design, sharing 
their expertise to collaboratively work through the project (DBRC, 2003). Much of 
the work is conducted in a natural authentic setting, such as schools and classrooms; 
the context is problematized and studied as a vital part of understanding the learning 
and teaching that occurs (Barab & Squire, 2004). 

The overall structure of DBR is flexible and iterative, but also systematic. It is 
a sequence of approaches rather than just one approach (Barab & Squire, 2004). 
Several models of approaches have been offered by researchers (e.g., Eljersbo et al., 
2008; McKenney & Reeves, 2012; Reeves,  2011). Most of these models include the 
initial phase of exploring and analyzing a problem, followed by the construction 
of a design and then reflection and evaluation. Since the entire process is iterative 
and usually non-linear, most researchers using DBR work back and forth through 
those phases. Theories are developed and tested throughout the process until enough 
evidence and data is gathered for a mature theory and usable knowledge. Usable 
knowledge can be declarative knowledge, such as describing a certain phenomenon 
or prescriptive knowledge, such as ways to facilitate learning with a certain interven-
tion (McKenney & Reeves, 2019). In the initial phase, researchers study a setting and 
develop testable conjectures about how to address an educational problem or how to 
influence a change in students learning (Cobb et al., 2003). Data analysis becomes 
an ongoing process as both researchers and practitioners aim to deepen their under-
standing of phenomenon that occur in the natural setting (Barab & Squire, 2004). This 
collective partnership and iterative design process can be seen as unique features of 
DBR whose purpose is to close the gap between educational research and classroom 
practice and to further theoretical knowledge that can influence change in settings 
facing similar problems (DBRC, 2003; McKenney & Reeves, 2019). The DBR
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approach has been applied in various sectors of education such as learning sciences, 
curriculum development, instructional design and teacher professional development 
(See special issues of journals such as Educational Researcher (2003, 31(1)), Journal 
of the Learning Science (2004, 13(1)) and Educational Psychologist (2004, 39(4)). 

7.2 Benefits and Limitations 

One of the key benefits of DBR is its ability to inform the development of a usable 
intervention while also yielding a generalizable theory. This two-faceted benefit 
ensures that both the immediate outcome of the project (the intervention) has educa-
tional merit while also ensuring that there is something beyond a single application 
of the theory that can support teaching and learning. This ensures that the theory can 
continue to inform practice beyond the lifespan of the intervention. 

Due to its multi-faceted design, DBR can be a challenging approach even for 
experienced researchers. The role of the researcher is less defined and more fluid; she 
can be the designer and the implementor, which can introduce threats to validity and 
objectivity (Barab & Squire, 2004). Furthermore, the researcher needs to anticipate 
and communicate means of support for the various groups of people involved in the 
project, who often can have different opinions and perspectives on educational issues 
(Cobb et al., 2003). Time and personal commitment are devoted to maintaining close 
and respectful relationship with partnerships (Cobb et al., 2003). Another source of 
difficulty arises from the various sources of data and the extended period of collection 
time (DBRC, 2003). Various techniques for data collection and analysis are often 
required along with an appropriate balance between rich data and a surplus of data 
to ensure validity (McKenney & Reeves, 2013) and often retrospective analysis is 
needed for theory development (Cobb et al., 2003). Despite these limitations and 
challenges, researchers have found DBR to be useful for a wide range of studies. A 
few such studies are highlighted in the next section. 

7.3 Examples 

Barab and colleagues (e.g., Barab et al., 2010) combined DBR and socially respon-
sible design to create an intervention that would help students develop their iden-
tity both as individuals and members of their community along being educated to 
be knowledgeable citizen of the world. The project spanned over five years and 
included several iterative components, ultimately designing a video game that became 
known as Quest Atlantis (QA), with teachers, students, community members and 
web designers as part of the research partnership. Key to the DBR methodology, the 
research group developed a theory about transformational play: that video games can 
serve as effective mediums for deep and sustained learning by providing engagement 
not possible in the classroom (Barab et al., 2010). This theory has also been used
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by other researchers (e.g., de Sousa et al., 2018) as a framework to their work. One 
project that grew from the theory developed by Barab and colleagues is the extension 
of the Adventures of Jasper Woodbury mathematics curriculum work that has been 
undertaken by Gresalfi and her colleagues (e.g., Gresalfi & Barnes, 2012). Like the 
development of Quest Atlantis and the development of the original Adventure of 
Jasper Woodbury series (e.g., CTGV 1992; 1994), Gresalfi has undertaken the new 
work related to the Adventures of Jasper Woodbury by engaging in a DBR approach 
that looks at the relationship of student mathematics learning activities (Type B) and 
student mathematics learning outcomes (Type A), but also incorporates variables of 
Types C (interactive mathematics teacher activities) and G (individual student charac-
teristics, abilities, and personal qualities). Her group designed the Boone’s Meador 
mission as an activity that provides insight into Type B variables (student mathe-
matics learning activities). In Boone’s Meadow, students are tasked with making 
calculations and decisions regarding how to reach a destination in order to save an 
endangered eagle. The game measures student learning outcomes based on student’s 
responses and decisions made throughout the activity, shedding insight into Type A 
variables (student mathematics learning outcomes). The game includes feedback that 
is meant to reflect the actions of a teacher, thus including Type C variables (interactive 
mathematics teacher activities), as well as how that feedback affects the activity of the 
game (Type B—student learning activities) and student learning (Type A—student 
learning outcomes). Gresalfi and Barnes (2012) did two iterations of DBR to design 
and explore the effect of consequential feedback, which is feedback that is embedded 
in context and requires students to evaluate their mathematical reasoning based on 
the outcome of their decisions. The two rounds of implementations spanned across 
two years; data sources included videotapes of discussions and student work. Several 
rounds of data analysis were done using both a priori and emergent codes. The team 
saw an increase in the use of mathematical justification and critical engagement when 
feedback was embedded in context and given prior to the end of the game. 

An extension of DBR that arose in the early 2010s is Design-Based Implemen-
tation research (DBIR), in which implementation becomes the vital focus of theory 
development and analysis (Penuel et al., 2011). DBIR often includes the combination 
of learning sciences research and policy research. One such example of DBIR is the 
work of Cobb and colleagues (e.g., Cobb et al., 2013), who partnered with four urban 
schools to improve the quality of mathematics instruction with an 8-year project titled 
Middle School Mathematics and the Instructional Setting of Teaching (MIST). The 
focus of improving mathematical instruction was broken down into increasing the 
learning of conceptual understanding, justifying solutions, and explicit connection 
between multiple representations. The researchers believed that a reorganization of 
teacher’s instructional practice was necessary for these improvements to occur. 

The research partnership consisted of school and district leaders, math coaches, 
teachers, and researchers. The iterative design process consisted of yearly cycles 
of data collection, analysis and feedback: they documented district’s improvement 
strategies, collected and analyzed data to assess the implementation of the strate-
gies, and recommended revisions of strategies for the following year. Additionally, 
a secondary level of focus was on gathering data to test and revise conjectures about
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supports and accountability measures that the research group had generated from 
literature. Examples of data collection methods include audio-recorded interviews, 
district organizational schedules, evaluation forms, online surveys, classroom obser-
vations, and student achievement data. Cobb’s team (Cobb et al., 2003) analyzed 
their recommendations for each district, looking patterns and similarities to find 
potential generality. After the third year of data collection, retrospective analysis 
was conducted to provide evidence for conjectures about major components of their 
emerging theory of action for instructional improvement in mathematics. 

As part of the theory development, the researchers designed, tested and modified 
conjectures about instructional improvement, more specifically on methods of both 
supporting and holding teachers accountable for reorganization of practices. They 
developed an interpretative framework that captured four general supports that the 
districts used in the improvement strategies: new positions, learning events, orga-
nizational routines and tools. The research on the ways that mathematical instruc-
tion improved map to Medley’s Type E variables, focusing on teacher competency, 
knowledge, and skills. The researchers also attended to the ways in which a change 
in teacher’s instructional practice, including variable D, pre and post-active math-
ematics teacher activities, and variable C, interactive mathematics teacher activi-
ties, was tied to mathematics teacher’s competence, knowledge, and skills (Type E). 
Further, the MIST research team was able to provide recommendations for the district 
on how to support teachers. The four recommendation areas focused on variables 
of Type I (external context variables) and J (mathematics teacher development and 
experience). Therefore, MIST was able to study the relationship of variables of Type 
E (teacher’s competence, knowledge and skills), D (pre and post-active mathematics 
teacher activities), and C (interactive mathematics teacher activities) by surveying 
and observing teachers. Recommendations are also focused on variables Type I 
(external context variables) and J (mathematics teacher training and experience) as 
the research team partnered with the school leaders to influence those categories 
outside of teacher control. MIST has continued to work with schools as partnerships 
in implementing strategies to improve math instruction and teacher practices (see 
Cobb et al., 2018 for more detail). 

8 Cultural Historical Activity Theory 

8.1 What is It? 

Cultural-Historical Activity Theory (CHAT) is a theoretical framework for 
conducting sociocultural research. CHAT supports the analysis of human interac-
tion while considering how an individual or group of individuals and their interac-
tions with the environment affect their activities (Kuutti, 1996; Cole & Engeström, 
1993; Engeström, 1993). The basic idea of CHAT is that humans should not be sepa-
rated from their participation in various activities; therefore, rather than focusing on
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the individual as the unit of analysis, CHAT instead focuses on the activity in which 
people participate (Cole & Engeström, 1993; Engeström, 2004). Thus, the unit of 
analysis includes both the setting and individuals. The activity system refers to a 
collective concept—it is object-oriented, designed to think about the phenomenon in 
terms of the inner relations of activity and collaborative relationship between people 
(Roth, 2012). For the purposes of this chapter, we are focusing solely on the psycho-
logical aspects of CHAT and not on economic or materialist aspects. We assert that 
is most productive for this chapter’s focus. 

CHAT was initiated and developed by Russian theorists who saw behaviorism and 
analytical psychology lacking in its ability to describe cultural realities. The pedigree 
of CHAT can be traced back to dialectical materialism, and then to Lev Vygotsky who 
founded the first-generation of activity theory in the 1920s, centering it around his 
core idea: cultural mediation that is graphically expressed as a triangle with subject, 
object, and mediating artifact/tool comprising the vertices (Cole, 1998). The basic 
elements could be described as:

• Subject—The individual or subgroup involved in the activity.
• Object—The problem space or recipient of action to which the activity is directed 

to be molded or transformed in reaching the outcome that is sought.
• Mediating Artifacts/Tools—Internal mental signs and external physical objects 

that facilitate and support thinking processes and regulate interaction between 
the individual and the world. The artifact is “an aspect of the material world that 
has been modified over the history of its incorporation into goal-directed human 
action” (Cole, 1996, p.117) 

Beyond the prevailing behaviorist theories about the stimulus–response associ-
ation at that time, Vygotsky’s mediation triangle, as a semiotic process between 
subject, mediating artifact, and the object of an activity, was a revolutionary way 
individual make meaning of the world (Cole, 1996; Cole & Engeström, 1993; 
Yamagata-Lynch, 2007). 

The first-generation theory was critiqued, because the unit of analysis still focused 
on individuals. To overcome it, Alexei Leont’ev (1981), Vygotsky’s colleague 
and disciple, along with his colleagues, created a second generation of CHAT, 
which took into account inter-relationships between the individual and the commu-
nity, history, context, and interaction of the situation and activity. According 
to Leont’ev (1974): “activity is…a system possessing structure, inner transforma-
tions, conversations, and development” (p. 10). Thus, the consequences of events 
and activities that occur during the activity can qualitatively change the participants, 
the participant’s participation purpose and motivation, the social environment of the 
activity, and the activity itself (Rogoff, 2008; Rozin, 2004; Yamagata-Lynch, 2010). 

According to Engeström (2004), Leont’ev never graphically expanded Vygotsky’s 
original model to illustrate a collective activity system. In addition, Leont’ev and his 
colleagues did not adequately address the methodological challenges for capturing, 
analyzing, and presenting activity-based data. To address these shortcomings,
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Fig. 1 Expanded 
mediational triangle 
(EMT) (Engeström & Cole, 
1993) 

Engeström created the third generation of CHAT, offering a foundation for under-
standing and designing learning as a transformation of human activities and orga-
nizations. Engeström and his colleagues developed CHAT as an analytical frame-
work by introducing a descriptive model of activity, which can be used in anal-
yses of complex qualitative data. Compared to other sociocultural learning theo-
ries, Engeström’s theory of expansive learning puts the primacy “on communi-
ties as learners, on transformation and creation of culture, on horizontal movement 
and hybridization, and on the formation of theoretical concepts” (Engeström, 2010, 
p.2). Cole and Engeström (1993) further detailed the representation of modeling 
human activity as a system form in the diagram of expanded mediational triangle, 
shown as Fig. 1. This is the triangle that typifies CHAT research. 

The triangle provides an organizer to support researchers in mapping complex 
human interactions that take place in collective settings. The uppermost sub-triangle 
is identical to Vygotsky’s basic structure of mediated action. In addition to the basic 
components of Subject, Tools and Object presented in the basic first-generation 
triangle, the expanded mediational model also includes the following three elements:

• Rules-norms, regulations, convention and gnorms, regulations, convention and 
guidelines that afford or constrain action and interaction within an activity system.

• Community-multiple individuals and subgroups involved in an activity.
• Division of Labor-distribution of work and responsibilities between members of 

the community. 

The Rules, Community, and Division of Labor in the bottom portion of the 
triangle model add the sociohistorical collective nature of mediation that was not 
addressed by Vygotsky (Engeström, 1999a, 1999b). The outcome is the results or 
consequences that the subject finds once the activity is completed (Engeström, 1993, 
1999a). Engeström (1999a) explained that the relationship between components of 
an activity system is two-way as people not only use instruments, but also renew 
them, they not only use rules, but also reformulate them. 

The interactions among the components of the triangle model highlight tensions 
that are inherent in human activities; researchers find tensions in activity systems 
when elements from one or more components pull participants away from achieving
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the purpose of the activity thus cause changes in activities, so tensions may either 
promote or hinder human activities. (Cole & Engeström, 1993; Engeström, 1993, 
2004; Yamagata-Lynch, 2003). We argue that from the perspective of Medley’s 
(1987) variables, CHAT is appropriate for looking at relationships between any subset 
of the variables, depending on the data to be collected. Because CHAT was developed 
to consider complex systems, it is particularly suited to the task Medley was concep-
tualizing in the development of the presage-product-process perspective (Medley, 
1987). 

8.2 Benefits and Limitations 

The primary benefit of CHAT is its inherent ability to make sense of a complex 
system in a way that accounts for the actors and mediators at work in that system 
(Yamagata-Lynch, 2010). As exemplified in the examples below, CHAT provides a 
means for making sense of external context variables and the effects they have on 
instructional activities for teachers and students. This is important if the field wants 
to extend beyond Mendeley’s (1987) original assertion that only two adjacent levels 
of variables can be considered at one time. 

The limitations of CHAT are important considerations. First, it is not appropriate 
for considering human thinking, as it relies on observable activity (Yamagata-Lynch, 
2010). This has implications for the kinds of growth that can be considered, how 
knowledge is characterized, and other elements of consideration that can only be 
observed by proxy. Further, the triangle model, while supporting sense-making about 
human activity systems, also oversimplifies those systems (Yamagata-Lynch, 2003, 
2010). That is, complex human interactions are summarized to the point that they 
are “…not as rich and complex as real experiences” (Yamagata-Lynch, 2010, p. 33). 
Finally, CHAT is complicated to learn. This is because it requires the researcher 
to be proficient in qualitative methods, to understand and honor the complexity of 
collecting trustworthy data, and the ability to bring all of that together within a very 
specific theory (Yamagata-Lynch, 2010). 

8.3 Examples 

One of the challenges of STEM education is to integrate activities, content, and 
tools in a meaningful in-class activity. Using CHAT models as a basis for analyzing 
learning, teaching, and in-class interactions between different subjects calls for the 
transformation of authentic scientific/mathematics practices into classroom activity 
systems. Here we provide two examples that have relied on Engeström’s theorizing 
of CHAT. We also invite the reader to look at the work of Schmittau, who used 
cultural-historical theory as put forward by Vygotsky to make sense of student’s 
mathematical learning (e.g., Schmittau, 2004, 2005, 2011).
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CHAT has become an important lens in mathematics education research because it 
has “power to deal with complexity in educational systems” (Jaworski & Potari 2009, 
p. 222). To build on early research with use of activity theory in mathematics 
teaching–learning, as well as with a focus on the classroom tasks and their related 
macro-social setting, Jaworski and Potari (2009) considered teaching as activity in 
their study in the 10th grade classroom of a UK secondary school where students in 
this grade group are considered “lower achievers”. They used CHAT to consider 
the role of the social framework within which classroom teaching is situated. 
They had two primary goals. The first was to understand the relationship between 
teacher-student interactions and the ways in which cognition is evident in classroom 
dialogue. The second was to analyze the relationships between classroom interac-
tion and cognition within the broader cultural context in which learning occurs. They 
employed triangles from EMT to characterize the “subject” to be any teacher or pupil 
learning in this setting, each with their goal or object for their activity. 

Specifically, Jaworski and Potari (2009) analyzed teacher-student interactions 
through classroom dialogue, which they viewed as a micro-analysis. In an episode 
offered by the authors, the teacher, Sam, had planned a didactical inquiry including 
in-class activities and relevant resources. In the implementation of this plan, Sam met 
with some “tensions” (p. 229). For example, students who had not done their home-
work completely derailed Sam’s lesson plan. Jaworski and Potari suggested expla-
nations behind the homework issue. They talked about the task that teacher assigned 
to students: from a teacher’s perspective, the activity seemed “logico-mathematical” 
and reasonable in “didactical communities”; however, for student peer and family 
communities, it is “strange and unreasonable”. 

The representation of the application of CHAT to allow analysis from both 
teacher’s and student’s perspective. For example, through their analysis, Jaworski and 
Potari (2009) determined: teacher’s object could be “understanding of basic statistical 
terms and associated concepts,” while pupil’s object would be “classroom survival”; 
teacher’s rules could be “teacher/student authority structures,” while pupil’s rules are 
“homework expectations within the school”; and the outcomes for teachers are “Non 
achievement of object due to pupils not taking the required responsibility, tension in 
the classroom”, for pupils are “survival by ignoring terms of homework, contravening 
rules and contributing to classroom tension” (p. 231). By illustrating the descriptive 
power of CHAT for making sense of the observable activities in mathematics class-
rooms, the researchers framed teacher’s mathematics teaching as inconsistent with 
their socio-cultural histories. Further, they found that the teaching did not match non-
dominant student’s learning. This highlighted, for the researchers, the lack of oppor-
tunities for mathematics teachers to challenge privilege-oriented activities. Without 
these opportunities, many well-intentioned mathematics teachers may unconsciously 
continue to perceive, explain, and respond to the classroom activities and specific 
learners through the dominant discourse system, which triggers the equality that they 
originally desired to abolish. (Jaworski & Potari, 2009). 

When we place this study in Manizade et al.’s (2023) adaptation of Medley’s 
(1987) framework, we can see the role of external context variables (Type I), where 
the teacher’s preparation of instructional materials (e.g., homework designed for
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students), school rules about homework, and student’s parent’s supportive attitudes 
toward homework are all factors that contribute to student’s responses to home-
work. In Sam’s example above, his preparation for class belongs to Type D (math-
ematics teacher’s competencies, knowledge, and skills), including his requirement 
for students to do pre-work before class, and his design of in-class activities based 
on student’s pre-work. The relationship of variables of Type I (external context vari-
ables) to Type D (pre- and post-active teacher activities) show up as tensions between 
tool and community in EMT framework. Then, in the analysis of the student’s 
and teacher’s perspectives, we can see interactions between variables of Type C 
(interactive teacher activities) and Type B (student learning activities), but unlike 
other research in which the influence is only considered in one direction (e.g., from 
Type C to Type B), CHAT allowed the researchers to understand the relationship in 
both directions—that is, the student’s perspectives on the learning activities and the 
teacher’s perspectives on the student’s characteristics, abilities, and personal qualities 
(Type G) through the lens of their interaction with the learning activities. In summary, 
this example of mathematics teaching–learning interaction in the CHAT framework 
shows the power of this new method for addressing the interactions between and 
among the presage-process–product variables in Medley’s framework. 

In a separate study, Black et al. (2010) offered new insights into student’s identity 
development by exploring an implicit mediation: they drew on Leont’ev’s approach 
to gain an understanding of “self” related to mathematics. Mediation has a complex 
and abstract nature, studying an unintentional and less obvious object, like iden-
tity development or mental functioning, could be implicit. Driven by the interest 
in student’s perception of themselves in relation to future aspirations, particularly 
their mathematical identity shifts, Black et al. (2010) conducted post-observation 
interviews with Mary and Lee (aged 16–17 years), two students studying advanced-
subsidiary level (AS level) mathematics in England, to explore the relationship 
between learner’s identity and mathematics. Black and colleagues (Black et al., 
2010) adopted the methodological tool “leading activity” adopted from Leont’ev, 
which framed their understanding that activities become leading and can trigger a 
new activity when new motives are generated that surpass the original motive. In 
this work, the researchers found that satisfying mathematics-learning experiences 
implicitly mediated a “leading identity” that affected student’s career choice, for 
example, in Mary’s case, her identity also represented as her motive for studying 
mathematics is ‘vocational (get a good job)’; however, in Lee’s case, his focus on 
study as an activity is mediated by both his identity shifting and motive for attending 
a university. As such, Black et al. (2010) built on CHAT theories by presenting a 
relationship between self-identity and one’s motive to engage in activity. 

Considering the Black et al. paper (2010) from the perspective of Medley’s frame-
work, we can see the interaction of variables of Type G (individual student charac-
teristics, abilities, and personal qualities) with Type A (student learning outcomes). 
In Mary’s case, her engineering project experience as a leading activity significantly 
drove her to her future potentiality. Meanwhile, her self-awareness of the needs as 
“I like hands-on stuff” with some other positive aspects in her personality contribute 
to her motivation to become an engineer. In contrast, Lee did not value mathematics
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as much as Mary did, so his purpose for studying mathematics and engagement 
with the subject was less meaningful than Mary’s (Black et al., 2010). This analysis 
highlights how Type G variables (individual student characteristics, abilities, and 
personal qualities) may impact learning outcomes. 

9 Quantitative Ethnography 

9.1 What is It? 

Quantitative ethnography (QE) is an emerging approach to research that attempts to 
bring quantitative and qualitative analysis of data into the same conceptual frame-
work (Shaffer, 2018a, 2018b). That is, QE draws from the tools, perspectives, and 
approaches of both qualitative traditions and quantitative traditions to create a mixed 
methods approach that is philosophically consistent with both. This is a research 
approach that builds from the emergence of Big Data, which has allowed the collec-
tion of data that can be simultaneously as rich as traditional ethnographic data while 
being collected in quantities previously reserved for only the largest studies (Shaffer, 
2017, 2018a; Wooldridge et al., 2018). While many approaches to working with big 
data have focused on statistical analysis, QE offers a different approach. 

QE has been developed grounded in the belief that learning is an interpersonal 
activity. Learning is conceived of as making meaning of the world in a way that is 
consistent with how a particular group makes meaning of the world (Shaffer, 2018a). 
That is, learning is about induction into a community of practice (e.g., Lave & Wenger, 
1991; Wenger, 1998) and, thus, it is about learning the Discourse of that community or 
culture. Discourse, in this case, refers to Gee’s (2014) notions of “Big D” Discourse, 
which is any culture’s way of being, including people’s ways of talking, listening, 
interacting, believing, valuing, and feeling. In this case “small d” discourse becomes 
the observable behaviors through which researchers can gain insight into Discourse, 
as Discourse cannot be readily observed. “Small d” discourse is what people actually 
say and do. Thus, when we use QE to assess and understand learning, we are looking 
for the ways in which participants express their changes as they are inducted into a 
community of practice. This focus on induction as the outcome of learning makes QE 
particularly appropriate for considering student learning outcomes (Type A) in light 
of the instructional environment variables including student activities, interactive 
teacher activities, and pre and post-active teacher activities (Types B, C, and D) while 
considering many contextual variables, including Type H (internal context variables), 
Type I (external context variables) and Type J (mathematics teacher development and 
experience). 

In quantitative ethnography, the research process is distinctly and necessarily 
mixed methods (Wooldridge et al., 2018). The data collected are rich in nature, 
just as they would be in traditional ethnography. They are collected using rigorous 
qualitative methods and may include traditional qualitative data such as observations
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and interviews, or newer forms of data collection such as data collected by the 
computer as students work together in a virtual environment. Such data could include 
clickstream data as well as full transcripts of interactions. The analysis of the data is 
where we start to see the mixed methods nature of the approaches. For example, in 
epistemic network analysis (ENA; Shaffer et al., 2009, 2016; Shaffer & Ruiz, 2017; 
Shaffer, 2018b), the data are coded using frameworks from discourse analysis (Gee, 
2014), which structures analysis by breaking data into segments that are typically a 
single utterance and joining those segments into logical chunks called stanzas. Then, 
ENA draws from traditional qualitative research, particularly grounded theory (e.g., 
Charmaz, 2014) to code data using approaches such as those used in grounded theory 
or inductive analysis (e.g., Maxwell, 2013) to create a coding scheme which is then 
applied to every segment. Once this is done, ENA draws from social network analysis 
(e.g., Robins, 2015) to mathematically create a visual display of the interactions 
between codes. The visual display (e.g., Fig. 2), shows the prevalence of single code 
(represented by a node) through the size of the node, and it shows the strength of the 
connections between nodes through line thickness. In this way, the visual shows those 
ideas (codes) that co-occurred in a single statement, which is a proxy measure for the 
codes having some kind of connection to each other for the person speaking. From this 
visual, additional statistical analysis, such as t-tests to determine whether particular 
groups are significantly different, or additional qualitative analysis, such as looking 
at all of the instances in the transcripts captured by particular node connections can 
be pursued. 

As an example, we present two ENA maps from the first author’s dataset in Fig. 2. 
This data was collected as part of a larger study focused on how middle school 
mathematics teachers understand proportional reasoning. The two teachers featured 
here (Autumn and Patricia—all names are pseudonyms) are representatives of the 
larger pool of 32 teachers. Each teacher responded to a number of items related to

Fig. 2 Two teacher’s ENA plots showing the knowledge resources they used for reasoning about 
proportional situations 
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proportions that were designed to help us understand how they reason about propor-
tional situations. Part of the data was collected using a face-to-face clinical interview 
(Ginsburg, 1997) and part was collected using a think-aloud protocol mailed to the 
participants for which they used a Livescribe pen that captured their talking and 
their writing to create a record of their thinking. The coding scheme was developed 
using a grounded theory approach (Weiland et al., 2020). The figure shows the ENA 
mapping of our analysis of Autumn and Patricia’s responses to the items. In these 
maps, each node shows a particular mathematical understanding that was included 
in their response, and the lines connecting the nodes show where they discussed 
those mathematical ideas in the same utterance. For example, in Autumn’s map, we 
can see that Comparing Quantities, Scaling Up and Down, and Covary were the 
most commonly used knowledge resources because those nodes are largest. Further, 
we can see that she often talked about Covary and Scaling together and she talked 
about Scaling and Comparing Quantities together frequently. In contrast, we can 
see that Patricia relied more on Ratio as a Multiplicative Comparison and Scaling 
Up and Down. However, she did not demonstrate strong connections between the 
knowledge resources that were as frequent as Autumn demonstrated. By using ENA, 
we can see different patterns among teacher’s data, which helps us understand what 
knowledge they access while solving problems and where there may be opportunities 
for professional learning. While this may appear to be only focused on variable Type 
E (mathematics teacher’s competencies, knowledge, and skills), we would argue that 
it is also capitalizing on Type C (interactive mathematics teacher activities) and Type 
D (pre and post-active mathematics teacher activities) because we have found that 
situating conversations of teacher knowledge in the context of the decisions teachers 
make about students and instruction provides additional insights into the teacher’s 
knowledge of the content as it relates to their teaching. Thus, doing this kind of 
research relies on the interaction between Types C, D, and E to understand teacher 
knowledge in context. 

9.2 Benefits and Limitations 

Quantitative ethnography is unique in its approach to using large amounts of data to 
create thick, rich accounts of the situation. From the perspective of Medley’s (1987) 
framework, this method allows us to look explicitly at the interactions within a single 
element or to look at interactions across elements depending on the framing of the 
research questions. In fact, using epistemic frame theory (Shaffer, 2004, 2006, 2009, 
2018b), which is one set of axioms that can form the basis for the framing of the 
study and the analysis of data, one would specifically consider how the elements 
of learning or teaching are situated within the culture of the classroom over time. 
Learning would only be conceived of as interpersonal, meaning that the interactions 
between teachers and students would be one site in which one would look for changes 
in the nature of discourse. QE allows the collection of large amounts of rich data that 
can be analyzed in ways that capitalize on both statistics and qualitative approaches.
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Despite its origins as an assessment tool for learning in simulation environments, 
QE has evolved to be useful for other kinds of analyses, such as the analysis of teacher 
knowledge shown above. Thus, while it is grounded in a clear theory of learning, the 
methods can be used in other ways. This is consistent with other methods as well, 
including grounded theory. 

Depending on the research question and focus for coding, there are tools that 
can help with the initial coding of data for QE. If the data being analyzed can be 
coded by the computer, that can save considerable time as coding a large body of 
data can be very slow. Studies that adhere more closely to the ideas of measuring 
discourse as a means for understanding Discourse, for example, could include coding 
of keywords and concepts that could be captured through computerized coding. In 
contrast, work like that done by the first author cannot benefit from computerized 
coding, because interviewees do not necessarily use consistent language to express 
certain understandings and because some keywords are used in a variety of ways 
ranging from ways that indicate strong understanding to ways that do not. Thus, for 
some research, QE can be very time intensive, while for other research it is less so. 

9.3 Examples 

Much of the initial work with ENA that has led to the development of QE was focused 
on learning games designed to help learners assimilate into the community of prac-
tice relevant to the game. For example, Nephrotex (e.g., Arastopoor et al., 2012) 
and RescuShell are two simulations that provide engineering students with virtual 
internships during their first year of an engineering program. In each, students are 
presented with a design problem that they work to solve. In one recent study of 
these environments (Chester et al., 2015), the researchers wanted to know what 
students learn from a course based entirely on working in these two simulations. 
They collected data from 50 students across the semester. Data collected included 
pre and post-surveys built into each simulation as well as all of the student’s chats, 
emails, notebook entries, and work products entered into the systems throughout 
the semester. Data were analyzed using an engineering epistemic frame that had 
codes in the categories of knowledge, skills, identity, values, and epistemology. The 
researchers were able to analyze these data using ENA to measure student’s develop-
ment within the engineering epistemic framework. From the analysis, they learned 
that participating in two virtual internships was more effective than participating in 
just one. While participation in one simulation led to connection making between 
skills and knowledge, participation in a second simulation led to additional connec-
tions with knowledge of the client and epistemic aspects of engineering, which the 
authors assert are important aspects of thinking like an engineer. They also found that 
students were more satisfied with the course at the end of the second simulation than 
at the end of the first, though student satisfaction was predominantly positive for both. 
From the perspective of the framework of research on teaching mathematics adapted 
from Medley (Manizade et al., 2023), this is research focused on Type A variable
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(student mathematics learning outcomes). But, it uses Type B (student learning activ-
ities) and Type E (teacher’s competencies, knowledge, and skills) variables to explore 
the student learning. Specifically, the researchers used student’s evidence from their 
activities (Type B) to determine the learning outcomes (Type A); and the measure of 
those learning outcomes was based on how similar the student’s connection-making 
had become to the instructor’s (Type E). Because moving students to think in ways 
that are consistent with the instructor is the explicit goal of these simulations, the 
planning (Type D—pre- and post-active mathematics teacher activities) and interac-
tive mathematics teacher activities (Type C) are developed as explicit stepping stones 
connecting teacher knowledge to student knowledge. 

While popular in the learning sciences, QE is only beginning to emerge in math-
ematics education. One example of a mathematics education implementation of QE 
is from pilot work completed by the first author and her colleagues (e.g., Burke et al., 
2012; Orrill & Shaffer, 2012). That research focused on the knowledge resources 
in-service middle school mathematics teachers exhibited as they reasoned about a 
number of mathematics tasks. In this work, Knowledge in Pieces (e.g., diSessa, 
2018) was used as a conceptual framework to drive the identification of fine-grained 
understandings being used by the teachers. The focus on this work was determining 
whether there are differences among the relative connectedness of the knowledge 
resources for the teachers. The hypothesis being that teachers who exhibit more 
connections between and among their knowledge resources may be better situated to 
engage with a wider range of student ideas. The work showed that there were unique 
patterns of knowledge resource used among the teachers and suggested that areas 
worthy of further research included consideration of teacher’s classroom experience 
(e.g., the development of pedagogical content knowledge) and the relative strength 
of teacher’s mathematics knowledge. As noted above, this line of research embeds 
teacher’s competencies, knowledge, and skills (Type E) in the work that teachers do, 
which is interactive, pre-active, and post-active mathematics teacher activity (Type 
D and Type C) to understand how it impacts student’s opportunities to learn. 

10 Technology for Research 

As we alluded to in the discussion of quantitative methods, technology has revolu-
tionized aspects of the research enterprise. It has changed the kinds of data we can 
collect, which changes the kinds of questions we can ask. Suddenly, we can access 
new data through tracking devices (e.g., Lee et al., 2015), uncover thinking in news 
ways by collecting data using different tools (e.g., Hickman, 2015), and engage in 
mathematical thinking in different ways as technology allows us to interact in more 
tangible ways this those ideas (e.g., Hegedus & Roschelle, 2013). While a compre-
hensive review of the ways in which technology has shaped presage-process–product 
research is beyond the scope of this chapter, we offer three examples of the ways 
in which technology has fundamentally shaped the research that can be done. We 
first look at eye tracking, which allows the capture of data previously unavailable
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to researchers, thus being appropriate for questions about the interactions between 
student learning outcomes and learning activities (Types A and B) with the interac-
tive mathematics teacher activities (Type C). Then, we discuss the use of dynamic 
geometry software as one tool that is useful for better understanding how people 
reason about geometric situations as it allows the researcher and participant to move 
away from discussing a single example, to instead potentially focusing on an entire 
class of examples. This allows us to consider the interplay of variable Types A, 
B, C, and D, but even more, it allows us to ask different questions about student 
learning outcomes (Type A) and teacher’s competency, knowledge, and skills (Type 
E) than we can ask without dynamic environments. We end with a discussion of 360° 
video, which opens opportunities for both teaching and researching teaching, and 
has supported researchers in adding in important ways to the literature on teacher 
noticing. As with CHAT, 360° video opens an array of possibilities for the researcher 
to examine all the variables acting together to create the learning environment. 

11 Eye Tracking 

11.1 What is It? 

Eye-tracking technology has made it possible to track and record the eye movement 
of people looking at screens or paper, which provides data focused on what the person 
is attending to on the screen. Eye tracking was initially used primarily in reading 
research but has been gaining popularity in the field of mathematics, particularly 
being used to analyze multimedia learning processes. Multimedia learning can be 
referred to as creating mental models from resources that contain both verbal, both 
spoken and written, and pictorial representations, such as graphs, animations, or 
tables (Mayer, 2005). Eye trackers can either be attached to a computer monitor or to 
a head mount wore by the participant. In a recent review of 161 eye tracking studies 
in mathematics education research (Strohmaier et al., 2020), almost all of the studies 
used a computer monitor attachment. The data provided from eye trackers is usually 
in the form of coordinates, which are then categorized into groups of events using 
automated or manual algorithms (Strohmaier et al., 2020). The information gained 
from eye tracking can be used, for example, to improve the design of instructional 
material or answer questions about the differences between novice and experts. Eye 
tracking provides insight into the relationship between variables of Type B (student 
learning activities) and Type A (student learning outcomes). More specifically, it 
allows researchers to better understand which aspects of the screen (instructional 
activity) students focus on as they complete their work. Assertions can be made 
about the design of the activity and how it influences student learning. Implicitly, 
researchers can study individual student characteristics, abilities, and personal qual-
ities (Type G) and internal context variables (Type H) such as patterns in where 
student attention is given.
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11.2 Benefits and Limitations 

Eye tracking has allowed researchers to gain insight into visual attention, which 
is often done too quickly and even subconsciously for participants to register and 
report on; researchers now have access to data that is not observable to people. This 
technology provides objective and numerical data that can be used both in qualitative 
and quantitative research; this unique information on what is being attended to, for 
how long, and in what order can be used in numerous ways to answer questions that 
were unable to be addresses previously (van Gog & Scheiter, 2010). 

With any use of technology comes limitations. There can be data loss, particularly 
in very young or old participants; about 10% of data can be blinks and saccades, 
which provide no valuable information. Additionally, accuracy of the eye tracking 
device can be hindered with head-mounted devices (Strohmaier et al., 2020). It is 
noteworthy for researchers to be aware that eye tracking only reports data on what 
the participant is attending to; there is no data on that can give any explanation as to 
why the participant is looking at certain places. Therefore, researchers must rely on 
making inferences about any cognitive processes underlying the movement. 

11.3 Examples 

Eye tracking can be used to provide data for numerous research purposes. For 
example, it can be used to study how participants split their attention when presented 
with texts and diagrams. For example, Andra et al. (2015) investigated difference 
between how students look at formulas and graphs of linear equations, thus linking 
variables of Type A to Type C, with implicit attention to Type B. The review 
mentioned previously (Strohmaier et al., 2020) found that a majority of the mathe-
matics studies covered the topic of numbers and arithmetic, studying, for example, 
how participants represent and process numbers, calculations, and equations. The 
topic of geometry, particularly shapes and form, was another common topic for 
researchers to investigate (See Strohmaier et al., 2020 and the special issue of 
Learning and Instruction (2010, 20(2) for mathematics examples). 

12 Dynamic Geometry Software 

12.1 What is It? 

To enhance twenty-first century student’s learning process and academic perfor-
mance, a pioneering technology development, dynamic geometry software (DGS) 
has become a main feature that acknowledges the idea of ‘interpretative flexibility’ 
(Ruthven, 2018). By borrowing the idea of creating dynamic rather than static
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graphics from contemporary drawing software, it is possible to drag the objects such 
as points, line segments, or circles of the graphics while retaining the defined proper-
ties, and the dynamic feature can be reflected in some “transformation” manipulation, 
such as translations, reflections, rotations, and dilations, with the help of mouse or 
tracker-ball on a laptop. DGS has been regularly used worldwide for teaching and 
learning geometry, with software like GeoGebra, Geometer’s SketchPad, and Cabri 
Géomètre being common in many mathematics classrooms. More and more, it is 
being used to uncover understandings about mathematics concepts in ways that attend 
to transformations, thus allowing the researcher and participant to have something 
visual to discuss as they consider the mathematical ideas. DGS can be used to better 
understand student learning outcomes (Type A) as well as the interaction between 
Type B (student mathematics learning activities) and Type A variables. Research on 
teacher knowledge, such as that discussed below, can also focus on Type E (mathe-
matics teacher’s competencies, knowledge, and skills) and, if a researcher wanted to 
understand the ways in which DGS can be used to promote learning, a design that 
connects variable Types E (teacher competency, knowledge and skills), D (pre and 
post-active teacher activities), C (interactive teacher activities), B (student learning 
activities), and A (student learning outcomes) could be developed. 

12.2 Benefits and Limitations 

In Geometry class, DGS could support children’s learning transition from “because 
it looks correct” or “because it works in these situations” to robust mathematical 
understanding of the geometric situation (Jones, 2000). To be specific, applying 
DGS can provide opportunities for students to find patterns in abstract geomet-
rical graphics, so they can conceptualize mathematical ideas, such as invariance, or 
perceive mathematics rules, such as the relationship of the leg lengths in triangles, 
with less vagueness. For example, purposive manipulation like dragging along a 
circle can help make a defined property—the unchanging measure of an angle of 
circumference—comprehensible and convincing to students. Despite the benefit of 
visualization and facilitation, teachers hold different perspectives on the efficiency 
issue of students using software in class. In some situations, only teachers use soft-
ware for in-class presenting because they concern that students would invest in-class 
time to get familiar with software operation (Ruthven, 2018). 

As a research tool, DGS opens new ways to engage teachers and students in 
explaining how they understand geometric concepts. Rather than being limited to 
describing a phenomenon based on a drawing on paper, the interviewer and inter-
viewee can engage in showing each other what they mean. This opens a pathway for 
richer understanding of participant’s knowledge.
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12.3 Examples 

Martinovic and Manizade (2020) explored teacher’s thinking through the use of DGS 
by examination of both the teacher’s written work and GeoGebra sketches from 23 
in-service secondary school teachers in the USA. How these teachers visualized 
and verified the trapezoid area formula conjectures in GeoGebra is quantitatively 
as well as qualitatively analyzed as “empirical proofs” (p. 3) of their strategies and 
connection to teaching. From the qualitative analysis, the authors identified four 
distinct strategies: eyeballing, measurement, constructions, and written statements, 
and they found that the teachers used a combination of these four strategies. They 
also found out teacher’s “misconceptions” (p. 16) that were magnified in the process 
of using technology, and some operation failure of that some teachers may treat 
DGS as a paint software. Overall, this study contributes on the teacher’s strategies 
of visualizing and verifying the trapezoid area formula conjectures, also widen the 
scope of potential research on teacher’s knowledge in the context of geometry class. 
This study focused on Type E (teacher competencies, knowledge, and skills), with 
implications for improving and modifying Type J (mathematics teacher development 
and experiences). 

Nagar (2019 ; Nagar et al., 2022) found four categories of invariance that teachers 
were able to identify by engaging them with a series of four DGE protocols. He 
found that teachers did not discuss invariance at all without prompting, but when 
prompted, they were able to use the DGE to highlight important aspects of the 
geometry. This was particularly interesting given the notoriously difficult task of 
uncovering invariance in other work (e.g., Laborde, 2005). Consistent with Nagar’s 
speculations that this work will inform how we teach students to better understand 
geometry, we would consider it research focused on variable Type E (mathematics 
teacher competencies, knowledge, and skills) with implications for variable Types 
D (pre- and post-active teacher activities), C (interactive teacher activities), and B 
(student learning activities). 

12.4 360° Video and Other Full-Room Video Capture 

12.4.1 What is it? 

The emergence of affordable video tools and better computer programs for control-
ling video has opened opportunities for research classrooms to be built that are 
designed for researchers to capture the entire experience of the classroom. These 
rooms can include multiple video cameras and multiple microphones. Sometimes, 
they include a control room from which a researcher can control the data collection. 
The goal of these rooms is to capture as much data as possible in real time. 

At the same time as these teaching and research labs are emerging, new technolo-
gies are making it possible to collect full-room video in other ways, too. For example,
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some researchers are using video cameras that are designed to capture 360° views 
rather than just the normal framing of video. Other researchers are using tools that 
allow you to control a tablet computer to follow a speaker and record that person 
as they teach or present. This can allow remote data collection as well as collection 
of data using a number of devices in a single setting. Similarly, some researchers 
have used wearable video cameras, such as GoPros, to see what each participant in 
a study can see (e.g., Sherin et al., 2008). Like CHAT, this kind of research is rich in 
the research opportunities it opens. We would argue that any variables, except Type 
F (pre-existing mathematics teacher characteristics) and Type I (external context 
variables) could be studied using this technology depending on the design of the 
study. 

12.5 Benefits and Limitations 

While the benefits of capturing classroom activity this way are myriad, it is not 
true that the data is unbiased. As with any data, there is always bias in video data 
because a human has made a set of decisions based on a set of criteria for data being 
collected in the space (e.g., Hall, 2000). However, these whole-room approaches 
to video capture allow something closer to unbiased capture of the experience to 
happen. While dedicated video suites remain relatively rare because they require 
dedicated space, the other options (e.g., 360° cameras, GoPros, etc.) are relatively 
inexpensive and easy to set up in a variety of settings. Clearly, capturing the volume 
of data made available through this application requires careful attention to research 
design to ensure that the studies resulting from high volumes of data are doable. 

12.6 Examples 

In one line of research, the 360° video technology is being used to create the research 
stimuli. Preservice teachers are asked to watch 360° videos of children learning 
mathematics as part of lessons on teacher noticing (e.g., Kosko et al., 2020; Zolfaghari 
et al., 2020). The research has focused both on what the preservice teachers notice in 
the 360° video versus traditional video views as well as how to promote preservice 
teacher’s noticing of student’s strategies. Findings in the Kosko et al. (2020) showed  
that preservice teachers who used the 360° videos were more successful in noticing 
both reform-oriented and content-specific aspects of the instruction than those who 
relied on traditional video views. This research considers the connection between 
Type B (student learning activities) and Type E (teacher’s competencies, knowledge, 
and skills) variables by looking at them through the teacher interactive, pre-active, 
and post-active activities (Types D and C) that were implemented. 

In another line of research related to video technologies is research focused on 
determining the most effective uses of the technology for a variety of teaching,
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learning, and research purposes. For example, van der Kleij and colleagues (2019) 
undertook a study in Australia to explore the feasibility of using GoPro cameras 
with iPads to capture student–teacher interactions. Their findings showed that the 
two technologies used together can be useful and that teachers are able to engage 
in teacher noticing activities while viewing the videos created with these devices. 
This was similar to the findings of Sherin et al. a decade earlier (2008), though they 
only considered wearable cameras and not the addition of the iPad tablets. As with 
the research above, this study is considering students learning activities (Type B) 
by watching the planned instruction (Type D—pre-active teacher activities) as it is 
enacted (Type C—interactive teacher activities). 

13 Presage-Process–Product Research in the 21st Century 

While this chapter cannot possibly provide an exhaustive discussion of the ways in 
which research has evolved since the Medley (1987) framework was introduced, we 
have attempted to offer insights into changes that have shaped the ways in which 
we think about research, learning, and teaching as well to provide some examples of 
approaches to research that simply were not available in 1987. Despite the develop-
ment in methods and tools, it still holds that one cannot study the interactions of the 
variables without considering the mediating factors (which, often, are other variables 
from Medley’s framework). His assertion that we need to have a clear conception 
of good teaching, valid instruments, and appropriate data is still at the heart of good 
research. Perhaps more than in 1987, modern researchers recognize that teaching is 
multifaceted and there is no single definition of “good teaching”; thus the onus is on 
the researcher to define the construct and clearly convey the purpose of the research 
(e.g., Orrill & Cohen, 2016). 

Looking back, we can see the emergence of new methods and theories that attend 
far more to contextual variables and rich details than those commonly in use in 1987. 
Rather than trying to find particular variables that explain learning or teaching, the 
field is now more concerned with context and complexity. The research methods and 
theories that are in use and emerging now reflect that shift. In part, technology is to 
be thanked for this change as it has made data collection and analysis much easier 
than it was in 1987. 

The advantage of our current research landscape lies in the ways we can chal-
lenge Medley’s (1987) assertion that “research designed to correlate nonadjacent 
points is not worth doing” (p. 111). With the tools and approaches we now have 
available, current researchers have opportunities to think about the relationships 
between Medley’s variables in ways that are more robustly interconnected and less 
hierarchical. For example, QE and CHAT are both explicitly focused on finding the 
connections between and among elements within and between the variables. CHAT, 
particularly, is interested in how teaching, learning, and instruction interact with each 
other. Similarly, DBR is expressly focused on including the context of the research 
as part of the consideration of what happened.
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At the same time, we challenge Medley’s assertion about the necessity of looking 
only at adjacent variables, as we can now examine the relationships between and 
among variables in ways Medley could not have imagined. QE, for example, with its 
ability to draw on large datasets to yield thick, rich description can help us understand 
connections between the adjacent variables. Instead of being limited to understanding 
whether Type B student learning activities (Manizade et al., 2023) shape student’s 
Type A learning outcomes, we can now look across large groups of students to find 
out how those activities shaped learning, how particular groups of students (Type 
G—individual student characteristics, abilities, and personal qualities and Type H— 
interactive context variables) interacted with those activities and what was learned, 
and the influence on individual and group learning outcomes. Teaching experiments 
offer one model for diving deeply into student outcomes and their relationship to 
student learning activities by focusing explicitly on student characteristics. 

As with QE, DBR also allows us to conduct research on multiple pairs of adjacent 
variables simultaneously. The unique characteristic of partnering with a variable of 
professionals allows for each group to provide insight and perspective that can be 
used to study multiple variables. By partnering with teachers, each DBR project indi-
rectly provides informal development experiences (Type J) that can influence teacher 
competency, knowledge, and skills (Type E). The initial phase of DBR projects 
includes exploring and understanding a project in natural context (McKenney & 
Reeves, 2013), which gives researchers the opportunity to examine internal context 
variables (Type H) through interviews and questionnaires to better design student 
mathematics learning activities (Type B). 

The examples of DBR studies described in the previous section were able to study 
multiple pairs of variables. The goal of MIST was to improve interactive mathematics 
teacher activities (Type C). The research group studied external context variables of 
the support systems (Type I—external context variables) and teacher pre-active and 
post-active activities (Type D). They made recommendations for changes in the 
support system to influence these practices (Type C). Additionally, they observed 
interactive teacher activities (Type C) to understand how the changes in support 
impacted what happened in the classroom (student mathematics learning activities, 
Type B, and student learning outcomes, Type A). They spent several years on inves-
tigating variables of individual student characteristics (Type G) and internal context 
(Type H) variables. The knowledge of these variables directly affected the design 
of QA, a student learning activity (Type B). Then, the group collected data on the 
relationship between this activity and learning outcomes. 

As shown throughout this chapter, there are explicit and implicit connections 
between the variables of interest to any research effort focused on the relationship 
between teaching and learning. When these connections are not explicitly attended 
to in the research design, the result is research that yields inconclusive or confounded 
findings. For example, large scale studies of professional development, in an effort 
to yield clear relationships between teacher development and experience (Type J) 
and student learning outcomes (Type A) rely on data of Type E (teacher competence, 
knowledge, and skills) and Type A (student learning outcomes) only without consid-
eration of the steps in between that mediate the effectiveness of the PD (e.g., Wayne
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et al., 2008, 2011). It is for this reason that conclusive findings from PD are often 
elusive (Yoon et al., 2007) or very broad, such as those offered by Garet et al. (2011). 
Attending to only measures of teacher knowledge and student knowledge can also 
lead to the appearance that professional development had no significant impact on 
student learning, when the actual relationship is more complicated than those data 
would suggest (e.g., Garet et al., 2011). This lack of attention to the “in-between” 
variables is understandable given the immense complexity of understanding not only 
whether PD impacted student learning (cf., Banilower et al., 2006, 2007). However, 
exploring the relationships in-between Type E (teacher’s mathematics competencies 
knowledge and skills) and Type A (student learning outcomes) is critical for under-
standing how, when, and under what conditions teacher professional development 
can lead to better student learning. The kinds of methods and technologies discussed 
in this chapter open opportunities for thinking about these connections in new ways. 

Our parting observation is that we believe the presage-process–product framework 
remains a relevant way to conceptualize research. In this chapter, we have attempted 
to highlight the ways in which the research field has changed over the three decades 
since Medley offered his framework. We assert that the evolution of research method-
ologies, research methods, and available technologies has fundamentally changed the 
landscape in ways that allow the inclusion of multiple variables, rather than limiting 
them only to adjacent relationships and has allowed more careful consideration of 
connections and relationships between and among the variables than was possible 
with quantitative methods and classic test theory. 
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Appendix 

Brief, Capsule Definitions of Terms and Documents for Chap. 6

• Assessment, curriculum and evaluation, and professional standards for school 
mathematics: A trilogy of documents that provided a vision for the organization 
of curriculum reform in the U.S. in the 1990s (National Council of Teachers of 
Mathematics [NCTM], 1989, 1991, 1995).

• Behaviors and dispositions: Identification of student experiences, such as, profi-
ciencies, processes, practices, competencies, and habits of mind (Kobett & Karp, 
2020, p. 40) that demonstrate how students develop and show evidence of their 
mathematical thinking.

• Cognitive technological (CT) tools: Consists of tools that support a “syner-
gistic relationship” between technical and conceptual dimensions of mathematical 
activity in technological environments (Zbiek et al., 2007).

• Competencies: Frameworks for knowing and doing mathematics, such as, (1) 
Denmark’s (2003) mathematical competencies that provided evidence of student’s 
“mental or physical processes, activities, and behaviors” (p. 9); (2) Program for 
International Student Assessment [PISA] (PISA, 2021) assessed mathematical 
competencies as “an individual’s capacity to reason mathematically and to formu-
late, employ, and interpret mathematics to solve problems in a variety of real-
world contexts” (PISA, 2021); and (3) Identified in the New Zealand Curriculum 
(NZC), competencies “that describe what they [students] will come to know and 
do” (Ministry of Education, 2015, p. 37).

• Conceptual understanding: Student learning is defined as the “comprehension 
of mathematical concepts, operations, and relationships” (National Research 
Council [NRC], 2001, p. 116).

• Direct instruction (DI): Traditional, instructional methods where students watch, 
listen, and take notes about problems that teachers provide procedures and work 
out for students to follow and use (Kapur, 2014).
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• Learning goals: Focus on student “understanding” where students build knowl-
edge; “Explicitly state what students will understand about mathematics as a result 
of engaging in a particular lesson” (Smith & Sherin, 2019, p. 14).

• Learning through activity [LTA]: A research model that examines how learners 
actively engage in learning activities through a progressive coordination of 
mathematical concepts (Simon et al., 2016, 2018).

• Mathematical sense-making: Student engagement in processes, such as problem 
solving, to learn mathematics with understanding; one aspect of what it means to 
know and do mathematics.

• National Governors Association Center for Best Practices [NGA] & Council of 
Chief State School Officers [CCSSO]: Authors of the U.S. Common Core State 
Standards for Mathematics (CCSSM), 2010.

• Organization for Economic Development (OECD) Definition and Selection 
Competencies (DeSeCo) Project: Created a framework to guide the development 
of PISA assessments.

• Performance goals: Focus on the end result or product of student’s engagement 
in learning mathematics: “What students will be able to do as a result in engaging 
in a lesson” (Smith & Sherin, 2019, p. 14).

• Principles and standards for school mathematics: Updated U.S. document that 
provides a vision for curriculum reform at the beginning of the twenty-first century 
(NCTM, 2000).

• Problem-solving: Defined as “the systematic study of what the process of formu-
lating and solving problems entails and the ways to structure problem-solving 
approaches to learn mathematics” (Santos-Trigo, 2020, p. 687).

• Process standards: Five processes that define what mathematicians might do 
and say when engaged in doing mathematics: Problem solving, communication, 
representation, making connections, and reasoning and proof (NCTM, 2000).

• Productive disposition: An affective construct defined as learners having an 
“habitual inclination to see mathematics as sensible, useful, and worthwhile, 
coupled with a belief in diligence and one’s own efficacy” (NRC, 2001, p. 116).

• Productive failure: Student’s initial problem-solving attempts are unsuccessful 
and became productive when supported with appropriate mathematics classroom 
instruction (Kapur, 2014).

• Productive struggle: A student learning behavior that promotes learners making 
sense of mathematics and is necessary to develop conceptual understanding 
(Hiebert & Grouws, 2007); “Intellectual effort students expend to make sense of 
mathematical concepts that are challenging but fall within the student’s reasoning 
capabilities” (Dingman et al., 2019, p. 91)

• Proficiencies: Frameworks for student’s engagement while learning mathematics, 
such as, (a) Cognitive and affective proficiencies for five strands: conceptual 
understanding, procedural fluency, strategic competence, adaptive reasoning, and 
productive disposition (NRC, 2001); and (b) Reasoning as one of the four profi-
ciency strands students engage in when “thinking and doing of mathematics” 
(Australia Curriculum and Assessment Reporting Authority [ACARA], 2017).
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• Prospective elementary school teachers (PTs) and AHA! Experience: Students 
engage in problem solving and experience how “a problem has just been solved, 
or a new piece of mathematics has been found, and it has happened in a flash of 
insight, in a moment of illumination” (Liljedahl, 2005, p. 219).

• Representational fluency: Within or outside technological environments, “The 
ability to translate across representations, the ability to draw meaning about a 
mathematical entity from different representations of that mathematical entity, 
and the ability to generalize across different representations” (Zbiek et al., 2007, 
p. 1192).

• Research for principles and standards for school mathematics: Research litera-
ture that informed the U.S. vision of school mathematics in the 1990s and 2000 
(NCTM, 2003).

• Scheme: A cycle of perturbation, action, and reflection in which an individual 
anticipates, acts and mentally prepares, and assesses the outcome of his or her 
actions (Hackenberg, 2010; Steffe, 1994; von Glaserfeld, 1989)

• Standards for Mathematical practice (SMP): Eight mathematical competencies 
identified as a national Common Core State Standards for Mathematics (CCSSM) 
in the U.S., 2010.

• Student learning activities: “In the classroom… All learning depends on the 
activity of the learner” (Medley, 1987, p. 105).

• Student engagement: Defined as “an interactive relationship students have with 
the subject matter, as manifested in the moment through expressions of behavior 
and experiences of emotion and cognitive activity, and is constructed through 
opportunities to do mathematics” (Jansen, 2020, p. 273).

• Teaching for robust understanding [TRU] project: Framework of five dimen-
sions of classroom activity that supports professional development (PD) to engage 
teachers in creating a classroom student learning environment that facilitates the 
development of powerful thinkers (Schoenfeld & the TRU project, 2016).
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