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CHAPTER 1 

INTRODUCTION, OBJECTIVES AND THESIS OUTLINE 

 

 

1.1 INTRODUCTION 

 

Biological control is considered as a key component of sustainable integrated pest 

management strategies that pursue reductions in the use of chemical pesticides. It is 

defined as the use of parasitoid, predator, pathogen, antagonist, or competitor 

populations to suppress a pest population, making it less abundant and thus less 

damaging that it would otherwise be (Van Driesche and Bellows, 1996). Insects and 

mites belonging to different families have been frequently used as biological control 

agents of arthropods and molluscs (an overview is given by Van Driesche and Bellows 

(1996)).  

The subject of this study, Iphiseius degenerans (Berlese) (Fig. 1.1), is a predatory mite 

belonging to the family Phytoseiidae. Phytoseiid mites are economically important 

predators of phytophagous mites and insects in greenhouse crops. Mass reared 

phytoseiid mites are commercially available and used, amongst others, against spider 

mite and thrips infestations in greenhouse crops (e.g., Phytoseiulus persimilis Athias-

Henriot, Neoseiulus californicus McGregor, N. cucumeris (Oudemans). Iphiseius 

degenerans is used commercially in Belgium for thrips control in greenhouse crops 

since 1994.  

 

 

 

 

 

 

 

 

Figure 1.1. Female and male I. degenerans. 
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Effectiveness of a predator in biological control depends on factors including the ability 

to develop to the adult stage using the host as food source, climatic adaptation, the lack 

of negative effects on other beneficials present in the same environment, a good rearing 

method, a high kill rate (high intrinsic rate of increase) and a good searching efficiency 

(van Lenteren and Woets, 1988). However, being a commercially available predatory 

mite, little information on the biology of I. degenerans is available in the literature.  

 

 

1.2 OBJECTIVES OF THIS STUDY 

 

Thorough knowledge on the biology of a predator is essential for its practical use. The 

objective of this study was to investigate some fundamental aspects of the biology of 

the predatory mite I. degenerans. 

 

The research questions are: 

1. What is the impact of food on the development, longevity and life table parameters 

of I. degenerans? 

2. What is the maximum predation rate of I. degenerans on different natural prey 

species? 

3. Does I. degenerans show a preference for a particular food source? 

4. Is there an olfactory response involved when the predatory mite searches for prey? 

 

 

1.3 THESIS OUTLINE 

 

The purpose of the literature survey in chapter 2 is to provide an overview of the 

information available on the predatory mite I. degenerans. The focus of this survey is 

on morphology, bionomics, predatory behaviour and practical use of I. degenerans.  

 

The next three chapters explore some life history traits of the predatory mite. Chapter 3 

provides information on the egg size and body size of all life stages of the phytoseiid 

mite. This information is useful to distinguish the stages and this is needed in later 
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experiments. Further, in this chapter the mating behaviour of I. degenerans is described. 

Chapter 4 examines the relationship between both diet and substrate, and the 

developmental biology of I. degenerans. We studied the possibility of the predatory 

mite to complete development to adulthood on five pollen species (pollen of almond, 

apple, castor bean, plum and sweet pepper pollen), four natural prey species (twospotted 

spider mite Tetranychus urticae Koch, western flower thrips Frankliniella occidentalis 

(Pergande), greenhouse whitefly Trialeurodes vaporariorum Westwood and green 

peach aphid Myzus persicae (Sulzer), a combination of F. occidentalis nymphs and 

castor bean pollen, and finally, two factitious prey species (Mediterranean flour moth 

Ephestia kuehniella Zeller and brine shrimp Artemia franciscana Kellogg). 

Subsequently, the influence of different substrates (artificial versus leaf arena) on the 

developmental performance was assessed. Life table parameters were studied in 

chapter 5. Fecundity, longevity and intrinsic rate of increase rm were determined when 

the predatory mite was fed castor bean pollen, all life stages of T. urticae, T. 

vaporariorum eggs, F. occidentalis nymphs and E. kuehniella eggs. The VBA-macro 

written to calculate Jackknife values of rm is described in appendix I. 

 

Predation and prey preference of I. degenerans were analysed with respect to some 

economically important greenhouse pests, F. occidentalis, T. vaporariorum, and T. 

urticae. Three types of experiments were carried out: functional response tests, two 

choice preference tests and olfactometer tests. In chapter 6 the functional response was 

quantified by measuring the prey consumed by adult females, which had been starved 

for 4 h, when different densities of eggs of T. vaporariorum or T. urticae, adult females 

of T. urticae, and first or second instars of F. occidentalis were offered. Appendix II 

describes the program code used to analyse the functional response data. The study in 

chapter 7 was designed to evaluate prey selection in I. degenerans. Adult females were 

presented with varying ratios of two prey types (first or second instars of F. 

occidentalis, T. vaporariorum eggs or T. urticae eggs). The observed preference was 

discussed in relation to the predicted preference based on the individual functional 

response experiments. The influence of pollen on the predation rate of female predatory 

mites was also studied. Finally, in chapter 8 the olfactory response of the predatory 

mites was investigated. Y-tube olfactometer experiments were carried out to investigate 
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the response of starved I. degenerans females towards odours emitted by clean leaves, 

pollen, T. urticae infested bean leaves, F. occidentalis infested bean leaves, and T. 

vaporariorum infested bean leaves.  

 

The last chapter (chapter 9) presents a conclusion on the predatory abilities of I. 

degenerans as a biological control agent of greenhouse pests based on the results from 

the abovementioned studies.  
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CHAPTER 2 

IPHISEIUS DEGENERANS (BERLESE): A LITERATURE 

REVIEW 

 

 

2.1 INTRODUCTION 

 

Iphiseius degenerans is a member of the family Phytoseiidae, which belongs to the 

order Mesostigmata (Gamasida). This species was first described as Seius degenerans 

Berlese, 1889, but was transferred to the genus Iphiseius by Berlese (1921). This genus 

is considered a problem taxon and has received a lot of attention of taxonomists. An 

overview of the taxonomic history of the genus and its species is given in Hansell and 

Chant (1973). Recently, Chant and McMurtry (2005) proposed I. degenerans as senior 

synonym for Iphiseius martigellus (El-Badry).  

A survey of the literature revealed that about 130 studies on I. degenerans have been 

published since 1889. This is a relatively low number compared to the number of 

published records on other commercialized phytoseiid mites (e.g., Phytoseiulus 

persimilis Athias-Henriot, Neoseiulus cucumeris (Oudemans), Amblyseius californicus 

(McGregor)). 

This chapter is intended to give an overview of the literature and to find the gaps in the 

knowledge already available on the predatory mite I. degenerans. The morphology, 

bionomics, predatory behaviour and practical use of I. degenerans will be discussed.  

 

 

2.2 MORPHOLOGY 

 

Phytoseiid mites are small, 300 to 600 µm in length, and whitish to brown in colour. 

The body of an adult phytoseiid mite is divided into two major regions, the gnathosoma 

bearing the mouthparts and the idiosoma bearing the legs. The idiosoma is covered by a 

dorsal shield and bears ventrally a number of shields. Setae, which are useful for 

classification, are present on both ventral and dorsal surfaces. Adult males usually are 
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smaller than the females. Males also have a different sclerotization of the ventral 

surface, possess sexual organs on the chelicerae, and usually have the sublateral setae 

inserted on the dorsal shield.  

Iphiseius degenerans is a dark brown mite with a female basic body weight of 17.56 ± 

0.27µg (Yao and Chant, 1990). The difference between the external anatomy of adult 

females and males is described in more detail in the next paragraphs. No detailed 

description of the immature stages was found in the literature. 

 

 

2.2.1 Females  

 

The idiosoma of a female I. degenerans is dorsally and laterally covered with a shield 

and has ventrally a number of smaller shields: a sternal, genital, ventral and an anal 

shield (Fig. 2.1 and 2.2).  

The shield covering the dorsal and lateral surfaces is heavily sclerotized and is 

composed of two distinct parts: a dorsal shield and a marginal shield (Fig. 2.1).  

The broadly ovate dorsal shield (length 430 - 470 µm and width 330 - 340 µm) is 

relatively smooth (Van der Merwe, 1968). It has 11 pairs of pores and 17 pairs of 

simple setae. These setae are arranged into three longitudinal rows: a dorsal series of six 

pairs, a median series of two pairs and a lateral series of nine pairs (4 pairs of prolateral 

and 5 pairs of postlateral setae) (Van der Merwe, 1968, Elbadry, 1970). The 

nomenclature of the setae used in the description of the predatory mite differs among 

authors (Fig. 2.1) (Evans, 1954; Rowell and Chant, 1979). The vertical setae D1 (j1) (30 

- 34 µm) and L9 (Z5) (17 - 21 µm) are considerably longer than the others (5 – 8 µm).  

In larvae and in protonymphs two distinct dorsal shields are present, but these fuse 

during the moult from protonymph to deutonymph (Rowell and Chant, 1978). 

According to Rowell and Chant (1978) not all dorsal setae are present in the larval 

stage. In the protonymphal stage Z1, Z5 and S5 are present as observable setae, but are 

only present as incipient setal nubs in the larva. Setae Z4 are homologous with the 

whip-like setae in the larvae.  
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The marginal shield is less heavily sclerotized, striated and surrounds the dorsal 

shield except in the region of the vertical setae. Two pairs of simple, minute setae (Mg1 

and Mg2 or r3 and R1) are present on this shield (Elbadry, 1970). 

The sternal shield is 70 - 76 µm long and 74-80 µm wide (Van der Merwe, 1968) and 

bears two pairs of pores and three pairs of simple setae (Fig. 2.2). A fourth pair of setae 

(the metasternal setae) is placed on small metasternal shields, in line with the middle of 

coxae III. The metasternal setae are added during the moult from protonymph to 

deutonymph (Rowell and Chant, 1978).  

 

The anterior margin of the sternal shield is truncated and the posterior margin is 

provided medially with a distinct forked process extending to the level of the 

metasternal setae. The endopodals of coxae II are fused with the sternal shield forming 

its lateral margins and the conspicuous antero-lateral processes directed between coxae I 

and II. The remaining endopodals are weak and, with the exception of the posterior 

section to those bordering coxae IV, are difficult to detect. 

 The genital shield (width 110 - 118 µm) is wedge-shaped, the posterior margin being 

slightly convex. The one pair of genital setae is added during the moult from 

protonymph to deutonymph (Rowell and Chant, 1978). The transparent anterior part of 

the shield extends beyond the posterior margin of the sternal shield. The remaining 

sclerotized shield posterior to the genital shield is the ventrianal plate. This plate is 

fragmented into the ventral and the anal plate (Van der Merwe, 1963). The ventral 

shield is broadly rectangular, measuring 20 - 30 µm in length and 75 - 82 µm in width 

(Van der Merwe, 1968) and has three pairs of setae and a pair of large pores (Elbadry, 

1970). This pair of pores is located posteriorly to this shield and caudally to the inner 

posterior pair of setae. The anal shield is 70 - 75 µm long and 76 - 80 µm wide. This 

shield bears three setae: the paired para-anal and the post-anal setae. Its anterior margin 

is excavated.  

The ventral interscutal membrane in the region of the genital, ventral and anal shield 

is provided with four conspicuous pores and four pairs of simple setae. Setae JV4, ZV1 

and ZV3 are added during the moult from protonymph to deutonymph (Rowell and 

Chant, 1978). The caudal pair (JV5) is of moderate length, 23 - 28 µm.  
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Figure 2.1. Dorsal and marginal shield of a female adult of Iphiseius degenerans (Evans, 1954). 

Setal nomenclature according to Evans (1954): D, M, L, Mg (left), and to Rowell and Chant (1979): j, J, z, Z, s, S (right). 
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Figure 2.2. Venter of a female adult of Iphiseius degenerans (Evans, 1954). 
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On this membrane two pairs of metapodal plates, a pair of platelets lying on each 

side of the genital shield, are present (Elbadry, 1970). Posterior to the genital shield, a 

row of four (five) small-scattered plates, named the post-epigynial plates (Evans, 1954) 

is present.  

The stigma is situated ventro-laterally in the region of the fourth intercoxal space. 

The peritreme is long and reaches almost as far as setae D1 (j1) on the dorsal shield. 

The peritrematal plate is fused posteriorly with the exopodal plate and extends a short 

distance around the posterior margin of coxa IV. This peritrematal-exopodal plate is not 

fused with the endopodal plate. Anteriorly, the peritrematal plate forms a complete 

chitinized band between the gnathosoma and the anterior margin of the dorsal shield. It 

is fused with the latter in the region of vertical setae.  

The gnathosoma comprises a pair of pedipalps, a pair of chelicerae and a pair of 

stylets. Ventrally, the gnathosoma bears four pairs of setae. Iphiseius degenerans has a 

wide deutosternal groove (ca. 7 – 9 µm); this groove has seven rows of two denticles 

per row (Fig. 2.3a). The corniculi are strong and pointed distally. The epistome is 

weakly sclerotized and its anterior margin is smooth.  

The pedipalps are composed of five free segments with the chaetotactic formula (2-

3-6-14-16). The specialized setae on the palptarsus are two-pronged.  

The general shape of the chelicerae is broadly triangular and blunt (Flechtmann, 

1992b, Fig. 2.3b, c).  

 

 

 

 

 

 

 

 

 movable digit 

pilus dentilis fixed digit 

lobe 

tritosternum 

cba 

deutosternal groove 

Figure 2.3. Gnathosoma of a female Iphiseius degenerans. a. Ventral side, b. Abaxial 

aspect of the chelicerae, c. paraxial aspect of the chelicerae (Flechtmann and McMurtry, 

1992b). 
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The fixed digit of the chelicera is 28 - 30 µm long (Van der Merwe, 1968) and has 6 

or 7 small teeth and a strong pilus dentilis on the inner half of its margin. An additional 

tooth is located proximal to the pilus dentilis. The fixed digit also bears a broadly 

rounded flangelike expansion (called a “lobe”) that extends to the pilus dentilis 

(Flechtmann, 1992b). This lobe is produced into a spoonlike structure on the paraxial 

face of the digit. The movable digit is 28 - 30 µm long and bears a single tooth on its 

inner margin.  

Adult I. degenerans have 4 pairs of long and slender legs. The first legs are 424 ± 2 

µm long (Takafuji and Chant, 1976). Each leg has seven primary segments (coxa, 

trochanter, femur, genu, tibia, basitarsus and tarsus). All tarsi terminate in a praetarsus 

bearing a pulvillus and two claws. The genu, tibia and basitarsus of leg IV are each 

provided with a macroseta that is slightly swollen distally. Van der Merwe (1968) 

claims that these knobbed macrosetae are also present on genu II, genu III and on 

basitarsus IV. The remainder of the setation is composed of simple needle-like setae. 

The ontogenetic development of the leg setation has been described by Rowell and 

Chant (1978). The chaetotaxy of leg I, II and III is constant for the larval and 

protonymphal stages. Leg IV is not present in the larval stage and is added during the 

moult to protonymph. During the moult to deutonymph setae are added to the legs.  

 

 

2.2.2 Males 

 

The dorsal shield (353 – 376 µm long and 282 – 294 µm wide) of a male has nineteen 

pairs of setae: seta D1 (j1) is 28 - 31 µm long and seta L9 (Z5) 15 - 19 µm; the other 

setae are minute. The marginal shield is reduced to a narrow band extending posteriorly 

from the fusion point of the dorsal shield and the peritrematal plate. The setae-bearing 

portion of the marginal shield is now fused with the dorsal shield so that setae S1 (r3) 

and S2 (R1) are on the dorsal shield (Van der Merwe, 1968). 

The sternal, metasternal and genital shields are fused to form a genitosternal shield, 

which extends from the anterior margin of coxae II to the middle of coxae IV. This 

shield bears five pairs of setae and three pairs of pores (Fig. 2.4). The male genital 

opening is situated on its anterior margin. The endopodals are strongly formed 
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throughout their length and are fused with the lateral margin of the genitosternal shield. 

They are produced into distinct processes directed towards the exopodal process I and 

the fused peritrematal-exopodal process surrounding the posterior margin of coxa IV 

(Evans, 1954). 

The region posterior to coxae IV is almost entirely occupied by a large ventral shield 

and a smaller anal shield. The ventral shield measures 68 - 73 µm in length and 188 - 

195 µm in width. It is strongly reticulated and provided with three pairs of setae situated 

in the posterior half of the shield. Four pairs of distinct pores are also present.  

The anal shield, 49 - 53 µm long and 65 - 69 µm wide, bears three setae (Evans, 

1954; Van der Merwe, 1968).  

The stigma is situated ventro-laterally in the region of the fourth coxal space and the 

peritreme extends beyond the level of coxa I. The posterior portion of the peritrematal 

plate is fused with the exopodal and the ventral plates. Anteriorly it is strongly fused 

with the dorsal shield. The exopodal plate is similar in structure to that in the female and 

is not fused anteriorly with the peritrematal plate (Evans, 1954).The gnathosoma and 

pedipalps are essentially similar to those in the female. The fixed digit (24 µm long) has 

4 or 5 small closely set teeth and a large pilus dentilis. The movable digit of the 

chelicerae is unidentated and is provided with a strong spermatophoral process, which is 

bent slightly ventrad and bilobed.  

Legs are similar in shape as those of the females (Evans, 1954; Van der Merwe, 

1968).  

 

Phytoseiid mites, at this moment, are mainly identified based on their morphological 

characteristics. But because of their small size, identification is often difficult and 

requires a skilled taxonomist. According to Jeyaprakash and Hoy (2002) molecular 

identification could enhance the ability of researchers to identify phytoseiids 

encountered in the field and used in their studies. To distinguish between six 

commercially available phytoseiids among which I. degenerans, these authors 

investigated the mitochondrial 12S rRNA sequences of the predatory mites. These 

sequences were then used to design a “molecular ladder assay” that amplifies a 

diagnostically different sized DNA band from the phytoseiids using species-specific 

primers from the variable regions of the mitochondrial 12S rRNA gene.  
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Figure 2.4. Venter of a male adult of Iphiseius degenerans (Evans, 1954). 
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2.3 DISTRIBUTION 

 

Iphiseius degenerans occurs in different regions of Europe and Africa, and is also found 

in Asia (Fig. 2.5). Table 2.1 gives on overview of its natural distribution (country, plant 

species). Information on geographical distribution is based on surveys, carried out to 

characterize mites living in different regions and countries on different plant species.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hong Kong 

Figure 2.5. Natural distribution of I. degenerans in Europe, Africa and Asia. 
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Country Plant species Reference

Algeria Rubus ulmifolius Schott Athias-Henriot, 1957 
Benin Manihot glaziovii Müll. de Moraes et al., 1989 
Burundi  de Moraes et al., 1989 
Canary Islands Ricinus communis L. Pande et al., 1989 
Cape Verde Islands Saccharum officinarum L., Trichilia emetica Vahl., Vitis vinifera L., 

Dolichos lablab L. 
Ueckermann, 1992 

China (Hong Kong) Citrus sp. Swirski and Schechter, 1961 
Egypt Citrus sp. El Badry, 1970 
Greece Citrus sp. McMurtry, 1977; Papaioannou-Souliotis et al., 

1997 
Israel Citrus sp., R. communis, Solanum vilosum (L.) Mill., Ficus sycomorus 

L., Psidium guajava L., Narcissus sp. 
Swirski and Amitai, 1961, 1984, 1990; Porath 
and Swirski, 1965; Rubin et al., 1996; Palevsky 
et al., 2003 

Italy leaves and moss, Citrus sp. Berlese, 1892; McMurtry, 1977 
Kenya Manihot esculenta Crantz, Carica papaya L., Albizzia alba Swirski and Ragusa, 1978; Skovgård et al., 

1993 
Madagascar Fraxinus berlandieriana DC., Hibiscus rosa-sinensis L., Citrus limon 

L., C. papaya, Coffea arabica L. 

Blommers, 1976 
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Table 2.1. Geographic distribution of I. degenerans (continued) 

C
h
a
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Madeira Prunus domestica L. Carmona, 1962 
Malawi C. papaya Munthali, 1987; De Moraes et al., 1989; 

Zannou et al., 2005 
Morocco Citrus sp. McMurtry and Bounfour, 1989 
Nigeria  

  

Herbs De Moraes et al., 1989 
Rwanda Musa sp., Citrus sp., Pennisetum purpureum Schumacher, Annona 

cherimola P. Mill. 
Pritchard and Baker, 1962 

Sicily Citrus sp., Erythrina sp., Acanthus sp. Ragusa, 1986; Benfatto and Vacante, 1988; 
Ragusa and Tsolakis, 1995; Conti et al., 2001;  

South Africa Psidium guajava L., Hibiscus tiliaceus L., C. papaya, Gossypium sp., 
Morus sp., Sclerocarya sp., Erythrina caffra Thunb., Heeria paniculosa 
(Sond.) Kuntze, Jacaranda sp., Canna sp., Citrus sp. 

Van der Merwe, 1968; Catling, 1970; van den 
Berg, 1987;  

Tanganyika 
 (Tanzania) 

Coffea sp. Evans, 1954 

Tunisia Kreiter et al., 2005 
Turkey Citrus sp. Düzgünes, 1963 
Zaïre Berlinia sp., weeds Pritchard and Baker, 1962; de Moraes et al., 

1989 
Zimbabwe M. esculenta, Conyza sumatrensis (Retz.) E. Walker, Bidens pilosa L. Northcraft, 1987a,b 
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2.4 BIONOMICS 

 

2.4.1 Development 

 

2.4.1.1 Developmental stages 

 

The life cycle of I. degenerans comprises five developmental stages: the egg, larva, 

proto- and deutonymph, and the adult stage.  

 

 

2.4.1.2 Crucial factors for development and survival of immature stages 

 

All mobile instars of I. degenerans feed, although feeding is not obligatory in all stages. 

The larvae feed facultatively and hence do not need food to moult into protonymphs but 

often will feed if food is available (Chittenden and Saito, 2001). Larvae have been 

observed feeding on protonymphs of Tetranychus pacificus McGregor (Takafuji and 

Chant, 1976).  

Several conditions influence the development of immature stages including the 

availability and the kind of food, the presence of other predators in the environment, the 

oviposition strategy of female predators and climatic factors. 

To continue development beyond the protonymphal stage, food is required. Takafuji 

and Chant (1976) reported that in absence of prey, protonymphs died within 1.5 days 

after moulting. de Courcy Williams et al. (2002, 2004b) studied the effect of the 

combination of food (all life stages of Tetranychus urticae Koch) and water availability 

on immature stages of different phytoseiid mites. When only water was available, I. 

degenerans immatures survived for 3.6 days; this is half of the developmental period 

required when food is also available (i.e., 7 days). When deprived of food and water, the 

predator’s survival time decreased to less than 2 days. 

Various authors have assessed the developmental times for I. degenerans, in function 

of the type of food offered. These values are presented in Table 2.2. Food sources of 

plant origin, such as leaf tissue and extrafloral nectar of Ricinus communis L. are not 

sufficient to solely support development of the predator (van Rijn and Tanigoshi, 1999a, 
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1999b). On a diet of only pollen, however, I. degenerans is able to complete 

development to the adult stage. Literature reports on developmental times from egg to 

adult range from 5.2 to 8 days (Table 2.2). 

Not every prey species and/or prey stage is suitable for complete development. 

Several authors tested numerous arthropod species as potential prey for I. degenerans. 

Sengonca and Drescher (2001) reported that there was no development on a diet of 

Thrips tabaci Lindeman nymphs. Ragusa and Tsolakis (1995) concluded the same when 

eggs and crawlers of the mealybug Phenacoccus madeirensis Green were offered as 

food. On a diet consisting of all stages of the tarsonemid mite Polyphagotarsonemus 

latus (Banks), I. degenerans completed development in 9 days. However, the 

tarsonemid mite is considered unfavourable food for the predatory mite since there was 

only 5% survival (McMurtry et al., 1984). Although larvae of I. degenerans do not need 

food to survive to the protonymphal stage, Blaeser et al. (2002) reported a total 

developmental time of approximately 12 days, but also found a mortality of 25% in the 

larval stage when fed adult T. urticae. No explanation for this was given by the authors. 

Eggs of T. pacificus alone do not meet the requirements for normal development as the 

predator failed to develop beyond the protonymphal stage (Takafuji and Chant, 1976). 

The duration of the immature stages depends also on food availability. The 

developmental times of the protonymphal and deutonymphal stages of I. degenerans 

decreased rapidly with increasing density of T. pacificus protonymphs, to finally reach a 

constant value (Takafuji and Chant, 1976, Eveleigh and Chant, 1981b). When offered 

25 T. pacificus protonymphs per day, I. degenerans reached adulthood in 5.66 days 

(Takafuji and Chant, 1976). McMurtry (1977) reported a total developmental time of 8 

days when the predatory mites were fed eggs and larvae of T. pacificus. Iphiseius 

degenerans needed 6.7 days to complete development when offered all stages of T. 

urticae (van Rijn and Tanigoshi, 1999a). Eveleigh and Chant (1981b) claim that I. 

degenerans protonymphs need 3 to 4 T. pacificus protonymphs a day to develop to the 

deutonymphal stadium and more than seven prey for maximum growth rate (minimum 

developmental time); deutonymphs need 4 to 5 prey for 100% survival and more than 9 

prey for maximum growth rate. These needs are reflected in the higher number of prey 

killed by the deutonymphs. Underfed predators tend to become cannibalistic (Eveleigh 

and Chant, 1982d). 
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The study by Eveleigh and Chant (1982d) further revealed that the survival of I. 

degenerans nymphs was negatively affected by an increasing predator density, even 

when the number of prey killed per predator increased or remained unchanged. de 

Courcy-Williams et al. (2002) found that survival was high when immatures of the 

same species were allowed to interact with each other and there was little evidence of 

negative intraspecific interactions when food was available.  

The survival of the juvenile predators is also affected by the oviposition strategy of 

the females (see also 2.4.2.1). Eveleigh and Chant (1982a) observed that I. degenerans 

females are unable to discriminate between patches of prey and hence do not distribute 

its progeny in relation to the distribution of prey. Females even oviposited in areas 

where prey was absent. In this way, the area over which prey and predator interact is 

reduced, and this affects the survival of the progeny. The survival will be highly 

dependent on the dispersal capacities of the immatures, which are more limited than 

those of the adults.  

Humidity is also crucial for survival. The hatchability of predator eggs, which are the 

most vulnerable stage, strongly depends on of the relative humidity. Below 30% RH at 

20 °C no eggs hatched whereas all eggs hatched at 82% RH. The egg stage duration was 

not significantly affected by humidity over the range of 60 - 82% RH (de Courcy 

Williams, 2004a). van Houten et al. (1993, 1995a) reported that the vapour pressure 

deficit at which 50% of the eggs hatch is 1.48 ± 0.21 kPa (corresponding with a relative 

humidity of 53 %). This is in accordance with the value of 56% found by de Courcy 

Williams et al. (2004a).  

The effect of temperature on the development of the immature stages of I. 

degenerans when fed T. urticae was studied by Tsoukanas et al. (2006). Developmental 

thresholds for eggs, protonymphs, and deutonymphs were approximately the same 

(11.71, 10.11, and 11.28 °C, respectively) whereas that of the larval stage was found to 

be lower (7 °C) at 60% RH and a photoperiod of 16L:8D h. 
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Table 2.2 Developmental durations of the different stages of I. degenerans reported in the literature  

C
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Duration (days) Type of food 
egg larva protonymph deutonymph egg-to-adult

Reference 

Pollen       
Hymenocyclus croceus        

     
      
     

      

    
   

8 McMurtry, J.A., 1977
Maleophora crocea      6 - 7 McMurtry, J.A. et al., 1984 
Ricinus communis  1.92 0.88 1.10 1.33 5.2 van Rijn and Tanigoshi, 1999a 
Vicia faba  
 

2.06 0.88 1.14 1.12 5.2 van Rijn and Tanigoshi, 1999a 
 

Arthropod prey 
Polyphagotarsonemus latus  
(all stages) 

9 McMurtry, J.A. et al., 1984 

Tetranychus pacificus  
eggs and larvae 

8 McMurtry, J.A., 1977

Tetranychus pacificus  
protonymphs 

2.23 ± 0.63 0.96 ± 0.02 1.15 ± 0.01 1.32 ± 0.02 5.66 ± 0.03 Takafuji and Chant, 1976 

Tetranychus urticae  
(all stages) 

1.93 0.99 1.87 1.92 6.7 van Rijn and Tanigoshi, 1999a 

Tetranychus urticae  
adults 

ca. 3 ca. 3 ca. 6 ca. 12 Blaeser et al., 2002 

Arthropod prey and pollen 
Tetranychus neocaledonicus 
+ Bauchinia sp. pollen  
or Aloe chabaudii pollen 

7.3 (egg to deutonymph)  Blommers, 1976 
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2.4.2 Reproduction 

 

2.4.2.1 Oviposition behaviour 

 

The oviposition behaviour of I. degenerans is very complex and has been elucidated by 

Faraji et al. (2000, 2001, 2002a,b). In a sweet pepper crop, females of I. degenerans are 

usually found in flowers, where they feed on pollen and thrips nymphs (van Houten and 

van Stratum, 1995). Despite visiting flowers, females prefer to lay eggs on leaves. Eggs 

are laid in clusters inside domatia, which are parts of plants that have been modified to 

provide shelter to e.g., insects and mites (e.g., tiny pockets and hair tufts on the lower 

side of leaves). Iphiseius degenerans is not only capable to discriminate between eggs 

of interspecifics but also between closely and distantly related conspecifics, and prefers 

to add eggs to clusters of their own or closely related species (Faraji et al., 2000). This 

oviposition behaviour is likely to be an adaptation to resist egg predation by other 

arthropods, including its thrips prey. The predatory mite avoids ovipositing at places 

where the risk of predation is high. Moreover, the predator uses the chemical cues of 

thrips to assess the predation risk, and consequently oviposits away from risky places. 

In addition, in domatia, eggs are probably less vulnerable to desiccation (Faraji et al., 

2001, 2002a,b).  

Nevertheless, when eggs are laid close together sib-cannibalism can occur. This can be 

avoided in part by behavioural mechanisms such as variation in larval feeding 

behaviour, i.e., non-feeding I. degenerans larvae (Chittenden and Saito, 2001). Faraji et 

al. (2002b) observed that newly hatched larvae leave the cluster and look for shelter in 

an unoccupied domatium.  

 

When I. degenerans was subjected to short-day conditions (L10 (23 °C):D14 (16 °C)), 

no reproductive diapause was observed (van Houten et al., 1993, 1995a). Wysoki and 

Swirski (1971) found active “post embryonic” stages on aboveground plants even in 

winter in Israel. Palevsky et al. (2003) also found I. degenerans the whole year round in 

Israeli citrus orchards. Also in winter, Ragusa (1986) found males and young stages in 

citrus orchards. He suggests that in Sicily this species is active the whole year round.  
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2.4.2.2 Female life span and fecundity 

 

The mean longevity of adult females at 25 °C was 53 days when I. degenerans were 

provided with T. pacificus. Maximum longevity was obtained when 4 T. pacificus 

protonymphs were consumed by the predator per day (Takafuji and Chant, 1976). 

Diverse values are reported when the predator is fed with the twospotted spider mite T. 

urticae. The shortest lifespan is reported by Blaeser and Sengonca (2002); when fed 5 

adult spider mites/day the predator lived 11.1 days. de Courcy Williams (2002, 2004a) 

reported a mean life span of 27.8 days when the predator was continuously fed a 

mixture of all life stages of T. urticae. These values are very low compared to the 

median life span (52.7 days) found by van Rijn and Tanigoshi (1999a) on a diet 

consisting of all stages of T. urticae. Sengonca and Drescher (2001) found that 

longevity was reduced with 50% when the phytoseiid was offered T. tabaci second 

instars (ca. 7.5 days) instead of T. urticae (15 days), possibly due to a lower nutritional 

value of the former prey. According to Blaeser and Sengonca (2002) there are no 

significant differences in female life span when the predator is offered F. occidentalis 

nymphs or T. urticae adults. According to Ramakers (1993), van Houten et al. (1995) 

and van Rijn and Tanigoshi (1999a) pollen has a great influence on the female life span. 

On broad bean pollen or castor bean pollen, a median life span of 41.8 or 44.3 days, 

respectively, was reported by van Rijn and Tanigoshi (1999a). Other plant sources can 

also have an important influence on the life span. Females can survive for several weeks 

on a diet of extrafloral nectar of castor bean alone; however, there is no reproduction. 

When added to a diet of castor bean pollen, the nectar can provide a contribution to the 

population growth by augmenting the oviposition and extending the longevity of 

females as compared to mites fed pollen alone. The oviposition rate significantly 

increased from 1.73 to 2.17 eggs/female.day when pollen plus nectar was provided, 

while the lifespan of the females increased with the length of the nectar feeding period 

(van Rijn and Tanigoshi, 1999b). Kennett and Hamai (1980) reported that I. degenerans 

is able to survive on an artificial diet, which was initially intended for rearing 

Chrysoperla carnea (Stephens) larvae, but predator cultures maintained on this diet 

gradually declined in viability within 2 - 3 months, probably due to nutritional 

deficiencies. 

 



 Iphiseius degenerans: a literature review 23 

de Courcy William et al. (2004a) found no effect of humidity (between 60 and 82% 

RH) on the female adult life span, when food (a mixture of all life stages of T. urticae) 

was present continuously. When deprived of food and water, adult female mites were 

able to survive for 2 days; however, survival doubled when in the absence of food, free 

water was supplied (de Courcy Williams et al., 2004a). van Rijn and Tanigoshi (1999b) 

observed that transition of well-fed females to a diet of only water or a leaf resulted in a 

mortality of 50% of the predators after approximately 4 days. Takafuji and Chant 

(1976) found that adult females expand their longevity in the absence of prey to 11 days 

by ingesting juices from a bean leaf. In contrast, according to Yao and Chant (1990) I. 

degenerans is not able to survive starvation for longer than 15 hours.  

 

The life span of an adult female can be divided in a short pre-oviposition period (2.1 – 3 

days) (Blommers, 1976; Takafuji and Chant, 1976; van Rijn and Tanigoshi, 1999a), 

followed by an oviposition period and finally a post-oviposition period. Takafuji and 

Chant (1976) reported an oviposition period of 30.8 ± 4 days and a post-oviposition 

period of 19.1 ± 6.1 days when the phytoseiid was offered T. pacificus. The oviposition 

period of I. degenerans took more than 50 days when fed Tetranychus neocaledonicus 

André together with the pollen of Bauchinia sp. or Aloe chabaudii Schönland 

(Blommers, 1976), while it lasted 58.3 ± 1.2 days when fed female T. pacificus (Yao 

and Chant, 1989). Kennett and Hamai (1980) registered an oviposition period of at least 

21 days on a diet consisting of all stages of T. urticae and 18.9 days on an artificial diet 

initially intended for rearing C. carnea. In females fed T. tabaci, the duration of the 

oviposition period was reduced with 50% when compared with females fed spider mites 

(Sengonca and Drescher, 2001).  

 

In the study of Takafuji and Chant (1976), the oviposition rate on T. pacificus females 

was relatively constant from day 4 to day 26 in the adult stage and then it gradually 

decreased. Twenty percent of the females died within their oviposition period. To 

complete oviposition, multiple matings were necessary. The daily egg mass produced 

by a female of I. degenerans fed T. pacificus females is about 39 % of its full adult body 

weight (Yao and Chant, 1990).  
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 Eveleigh and Chant (1981b) reported that at least 8 protonymphs of T. pacificus per 

day are required to continue oviposition. Nwilene and Nachman (1996b) found that, at a 

prey density of 120 individuals/6 cm², an I. degenerans female had to eat 24 eggs, 13 

protonymphs or 5 females of the cassava green mite Mononychellus tanajoa (Bondar) to 

produce a single egg.  

 

In Table 2.3, oviposition rates of I. degenerans published up till now are listed, showing 

that the predator is able to reproduce on all kinds of food sources. Depending on the 

food source offered, oviposition rates range from 0 to 2.31 eggs/female.day. The 

different pollen species showed large differences in suitability as food for I. degenerans. 

Certain pollen species support the reproduction of the predatory mite similarly or even 

better than live prey (McMurtry, 1977; Ramakers and Voet, 1995; van Rijn and 

Tanigoshi, 1999a), whereas other pollen species are unsuitable for reproduction (e.g., 

cedar pollen). On P. maderiensis eggs and crawlers (Ragusa and Tsolakis, 1995) and on 

all stages of P. latus (McMurtry et al., 1984), both immature survival and fecundity 

were low or nihil. Only a few studies report on the fecundity of I. degenerans when fed 

thrips species (F. occidentalis and Scirtothrips citri (Moulton), respectively). The 

highest oviposition was found when the predatory mite was fed S. citri, while fecundity 

was almost nihil when F. occidentalis nymphs were offered as food (Grafton-Cardwell 

et al., 1999; Blaeser et al., 2002). Moreover, Blaeser and Sengonca (2001) and Blaeser 

et al. (2002) observed that eggs of which the parental generation was fed F. occidentalis 

nymphs did not hatch. On a diet of spider mites, the number of eggs ranged from 0.31 to 

2.24 eggs/female.day. The different values obtained on spider mites might be explained 

by the species and prey stage offered to the predatory mite (Table 2.3) 

 

Phytoseiid mites are capable of responding to increasing prey populations by paralleling 

their numerical increase (Sabelis, 1985). The change in a predator’s abundance in 

response to a changing prey density is named the numerical response (Solomon, 1949). 

According to Hassell (1966), predators can express two distinct types of numerical 

responses. First, there may be a change in reproductive and (or) survival rates of a 

predator with changing prey density; and second, there may be an aggregative response. 

The relationship between prey density and oviposition rate is named the reproductive 
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response (Nwilene and Nachman, 1996b). It has already been mentioned that immature 

predatory mites require a certain amount of prey within a certain stage in order to 

survive and develop successfully, and that successive predator stages require larger 

numbers of prey probably due to an increasing energy requirement (see 2.4.1.2). 

Takafuji and Chant (1976) studied the numerical response of adult I. degenerans and 

reported an increase in the rate of oviposition, up to a maximum level of approximately 

2 eggs/female.day, as the density of T. pacificus adults increased. The oviposition of I. 

degenerans also increased with the number of M. tanajoa up to a maximum of 2 

eggs/female.day (Nwilene and Nachman, 1996b). Eveleigh and Chant (1981b) reported 

that the mean daily oviposition rate of I. degenerans increased curvilinearly with 

increasing T. pacificus protonymph density. 

Nwilene and Nachman (1996b) compared the reproductive response of I. degenerans 

with that of Neoseiulus teke (Pritchard and Baker). The reproductive response of I. 

degenerans to a change in M. tanajoa density was lower than that of N. teke. According 

to the authors this indicates that I. degenerans is less efficient in converting food energy 

into egg production. Eveleigh and Chant (1981b) and Yao and Chant (1990) came to the 

same conclusion when comparing I. degenerans and P. persimilis fed on T. pacificus. 

Moreover, Eveleigh and Chant (1981b) even concluded that at high T. pacificus 

protonymph densities, I. degenerans killed prey in excess of its needs for egg 

production and only partially consumed the majority of the prey killed. 

 By paralleling the numerical increase in response to an increasing prey density, the 

number of conspecific predators in the environment increases. An increasing predator 

density, however, does no influence the fecundity of I. degenerans as much as the prey 

density does (Eveleigh and Chant, 1982d). This is because the per capita consumption 

of prey is not affected by the predator density (Eveleigh and Chant, 1982e). Yao and 

Chant (1989) determined the egg production of I. degenerans when living alone or 

together with P. persimilis. They reported that the presence of heterospecific predators 

in the environment did not influence the reproductive rates as long as prey is abundant.
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Table 2.3. Daily fecundity (eggs/female.day) of I. degenerans reared on different diets and substrates, as reported in the literature 
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Type of food Daily fecundity Substrate Reference 
Artificial diet 0.07 Parafilm M® Kennett and Hamai, 1980 
  

 
   

 

  
Water 0.02 ± 0.02 Green PVC 

 
van Rijn and Tanigoshi, 1999a 

  
Pollen 
Alnus rubra 1.55 ± 0.05 Green PVC van Rijn and Tanigoshi, 1999a 
Betula pubescens 2.12 ± 0.21 Green PVC van Rijn and Tanigoshi, 1999a 
Capsicum annuum  1.4   ± 0.1 Cucumber van Houten et al., 1995a 
Cedrus libani  0.03 ± 0.03 Green PVC van Rijn and Tanigoshi, 1999a 
Corylus americana 1.21 ± 0.05 Green PVC van Rijn and Tanigoshi, 1999a 
Corylus avellana 1.96 ± 0.22 Green PVC van Rijn and Tanigoshi, 1999a 
Dendranthema x grandiflora 0.53 ± 0.05 Green PVC van Rijn and Tanigoshi, 1999a 
Echium angustifolium 0.66 ± 0.06 Green PVC van Rijn and Tanigoshi, 1999a 
Epilobium angustifolium 1.48 ± 0.15 Green PVC van Rijn and Tanigoshi, 1999a 
Epilobium angustifolium (bee collected) 0.40 ± 0.19 Green PVC van Rijn and Tanigoshi, 1999a 
Eucalyptus sp.  2.09 ± 0.15 Green PVC van Rijn and Tanigoshi, 1999a 
Fragaria x ananassa 1.30 ± 0.22 Green PVC van Rijn and Tanigoshi, 1999a 
Helianthus annuus 0.86 ± 0.09 Green PVC van Rijn and Tanigoshi, 1999a 
Hymenocyclus croceus 1.74 ± 0.09 Persea indica McMurtry et al., 1977 
Juniperus sp.  0.00 Green PVC van Rijn and Tanigoshi, 1999a 
Maleophora crocea 2.05 ± 0.74 Lemon leaf McMurtry et al., 1984 
Malus domestica 1.77 ± 0.11 Green PVC van Rijn and Tanigoshi, 1999a 
Mesembrianthemum sp. 1.47 ± 0.02 Green PVC van Rijn and Tanigoshi, 1999a 
Pinus sylvestris  0.43 ± 0.09 Green PVC van Rijn and Tanigoshi, 1999a 
Prunus armeniaca 2.01 ± 0.20 Green PVC van Rijn and Tanigoshi, 1999a 
Prunus avium 2.28 ± 0.13 Green PVC van Rijn and Tanigoshi, 1999a 

 



  

Table 2.3. Daily fecundity (eggs/female.day) of I. degenerans reared on different diets and substrates, as reported in the literature (continued) 
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Prunus domestica 1.24 ± 0.19 Green PVC van Rijn and Tanigoshi, 1999a 
Prunus dulcis 2.28 ± 0.16 Green PVC van Rijn and Tanigoshi, 1999a 
Pyrus communis 1.36 ± 0.10 Green PVC van Rijn and Tanigoshi, 1999a 
Ricinus communis 1.73 ± 0.07 

> 2 
Green PVC 
Plastic 

van Rijn and Tanigoshi, 1999a 
Ramakers and Voet, 1995 

Rubus sp.  1.65 ± 0.11 Green PVC van Rijn and Tanigoshi, 1999a 
Salix babylonica 0.80 ± 0.02 Green PVC van Rijn and Tanigoshi, 1999a 
Typha angustifolia 1.98 ± 0.02 Green PVC van Rijn and Tanigoshi, 1999a 
Typha latifolia 1.94 ± 0.04 Green PVC van Rijn and Tanigoshi, 1999a 
Vicia faba 2.31 ± 0.15 Green PVC 

 
van Rijn and Tanigoshi, 1999a 

   
   

  

 
   

    

Arthropod prey 
Frankliniella occidentalis 0.09 ± 0.11 

1.4 ± 0.2 
Impatiens walleriana 
Cucumber 

Blaeser et al., 2002 
van Houten et al., 1995a 

Mononychellus tanajoa eggs and juveniles 1.92 ± 0.15 Manihot esculenta L. van Rijn and Tanigoshi, 1999a 
Oligonychus coffeae 2-3 Ricinus communis L. Blommers, 1976 
Phenacoccus madeirensis 0.08 - Ragusa and Tsolakis, 1995 
Polyphagotarsonemus latus 0 Lemon McMurtry et al., 1984 
Scirtothrips citri 1.96 Navel orange citrus Grafton-Cardwell et al., 1999 
Tetranychus pacificus eggs and larvae 1.39 ± 0.2 P. indica McMurtry, J.A., 1977 
T. pacificus protonymphs 2.24 ± 0.05 - Takafuji and Chant, 1976 
T. urticae adults 0.31 ± 0.24 I. walleriana Blaeser et al., 2002 
T. urticae all stages 1.17 ± 0.26 Blackberry  Kennett and Hamai, 1980 
T. urticae eggs and juveniles 1.57 ± 0.13 Green PVC 

 
van Rijn and Tanigoshi, 1999a 

  
Arthropod prey + pollen 
Tetranychus neocaledonicus +  
Bauchinia sp. pollen or Aloe chabaudii pollen 

1.5 - Blommers, 1976
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2.4.3 Intrinsic rate of increase 

 

The intrinsic rate of natural increase (rm) is a parameter frequently used to estimate the 

population growth. The value for rm is calculated from the equation  

where lx is the proportion of females surviving to age x and mx is the mean number of 

female progeny per adult female at age x. The value is hence influenced by the 

reproduction rate, and developmental rate, which were discussed in the previous 

paragraphs.  

1=∑ −
xx

xr mle m

van Rijn and Tanigoshi (1999b) estimated rm values of I. degenerans when presented 

with broad bean pollen, castor bean pollen and T. urticae as food. They found rm values 

ranging from 0.147 to 0.208 day-1. Takafuji and Chant (1976) reported a value of 0.248 

day-1 when the phytoseiid was fed T. pacificus females.  

 

 

2.5 PREDATORY BEHAVIOUR 

 

2.5.1 Foraging efficiency and distribution  

 

Iphiseius degenerans is considered to be a generalist (type III predator) (McMurtry and 

Croft, 1997), feeding both on live prey and pollen. In search for its prey, the predator 

walks over the leaf surface holding its first pair of legs in front of its body. These legs 

are waved from side to side continuously, acting like antennae (Eveleigh and Chant, 

1981c). The width of perception of I. degenerans, i.e., the distance between the tips of 

the first pair of legs is 0.038 cm. The area the predator can traverse per unit of time is 

estimated to be 2.257 cm²/h.  

Individual consumers spend most time in patches containing the greatest densities of 

prey; this is referred to as the aggregative response (Begon et al., 1996). Iphiseius 

degenerans exhibits no aggregative response to high densities of the spider mite T. 

pacificus, it even tends to avoid areas covered with the webbing of this prey (Takafuji 

and Chant, 1976). The lack of aggregative response was also observed by Eveleigh and 

Chant (1982c). The predators randomly distributed their search effort among patches of 

different T. pacificus protonymphs densities. The number of visits, the length of the first 
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visit to each patch, and the amount of time per visit are also not influenced by prey 

density, and hence contribute to the random distribution of the search effort (Eveleigh 

and Chant, 1982c). This indicates that the predatory mites do not respond to the relative 

profitability of the patch (i.e., the amount of prey a predator can collect during a given 

hunting time) (Eveleigh and Chant, 1982b; 1982c). This random distribution may be 

largely due to its searching pattern after prey captures. Eveleigh and Chant (1982g) 

reported that the predator exhibits area-restricted searching. This means that I. 

degenerans changes its searching behaviour after capturing a prey and tends to search 

near the point of last prey capture, regardless of the density and distribution of the prey. 

Iphiseius degenerans is slow in responding to temporal changes in prey distribution; it 

prefers instead to remain in the patch that was initially most profitable until most of the 

prey has disappeared (Eveleigh and Chant, 1982a). The predator also showed no 

response to changes in the spatial distribution of M. tanajoa (Skovgård et al., 1993). 

According to the authors, the hunger level determines the dispersal of the predators. 

Such hunger-dependent behaviour may be a consequence of their high prey 

requirements and their low searching speed (Eveleigh and Chant, 1981b; 1982g), 

necessitating the adoption of a strategy to minimize the cost of frequent movement 

between patches.  

The number of predators in a patch also did not greatly influence the distribution of the 

predator (Eveleigh and Chant, 1982b, d). 

 

In patchy environments, due to predation by I. degenerans patches get exploited. As 

mentioned above, despite this exploitation, Eveleigh and Chant (1982b) observed little 

redistribution of the predator among the patches. Thus, the searching success of I. 

degenerans is independent of the spatial arrangement of the prey (Eveleigh and Chant, 

1982b, 1982c). The predator density does not influence the searching efficiency in a 

patchy environment as there is no interference between predators (Eveleigh and Chant, 

1982b): searching efficiency even showed a tendency to increase as predator density 

increased (Eveleigh and Chant, 1982e). According to these authors, this does probably 

happen in more complex environments, as the low dispersal capacity would prevent it 

from responding quickly to changes in the prey density. The searching activity of I. 

degenerans is increased by the stimulation of being contacted by a moving prey 
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(Takafuji and Chant, 1976). The searching time of I. degenerans protonymphs is density 

dependent: the higher the prey density the less time is spent searching for prey. 

According to Eveleigh and Chant (1982f) the number of prey killed per unit time by I. 

degenerans is not affected by prey distribution.  

 

 

2.5.2 Feeding behaviour 

 

When physical contact is made with a potential prey, recognition occurs immediately. 

The attacking of for instance spider mites starts with the predator touching the prey with 

tarsi I, then grasping it with legs II. The cuticle of the prey is cut with the chelicerae; the 

corniculi are partially introduced in the prey’s body after cheliceral penetration. With 

the chelicerae and part of the hypostome inserted in the prey and after a short time of 

struggling, the prey is lifted from the substrate. The predatory mite then stands on its 

last two pairs of legs, orienting the body perpendicular to the substrate, either upright or 

inverted. Maintaining the grasp on its prey, but with the chelicerae and the hypostome 

no longer in contact with its prey, the predator turns the prey around several times 

before again drawing it to its gnathosoma and resuming feeding. Proteolytic enzymes 

are injected into the prey with at least some preoral digestion. By contraction of the 

pharynx muscles, the liquefied body contents of the prey are then sucked up 

(Flechtmann and McMurtry, 1992a). Considering the morphology of the chelicerae in 

relation to feeding, the same authors claim that I. degenerans in fact is a good pollen 

feeder. On the abaxial face of the fixed digit a large lobe which is produced into a 

“spoonlike” structure is present. When both chelicerae are at about the same level of 

protraction (retraction), a cavity is formed, dorsally and laterally closed by the 

chelicerae with their lobes and ventrally by the hypostome. The wide deutosternal 

groove is possibly also a modification associated with the intake of liquefied contents of 

the pollen grain core (Flechtmann and McMurtry, 1992a, b).  
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2.5.3 Prey spectrum 

 

2.5.3.1 Spider mites 

 

Up to the early 1990’s, I. degenerans was usually studied as a natural enemy of spider 

mites.  

Several studies under laboratory conditions have shown that I. degenerans is able to 

feed and reproduce on the cassava green mite M. tanajoa, with which I. degenerans is 

naturally associated in Kenya. Skovgård et al. (1993) found that the predator population 

increased in response to the growing cassava green mite population, but it failed to 

completely control M. tanajoa infestations. According to these authors, the ability of the 

predatory mite to control the cassava green mite was limited by the lack of spatial 

coincidence with the prey and predators and in particular, the fact that the predators 

stayed in the lower part of the canopy of the plants, while the phytophagous mites 

preferred the top. The study of Munthali (1989) suggests that I. degenerans is able to 

consume M. progresivus (Doreste) on cassava, at a ratio of 18 adult prey mites per day. 

The generalist I. degenerans showed marked numerical responses when released in an 

avocado orchard to determine its effect on the avocado brown mite Oligonychus 

punicae (Hirst) (McMurtry et al., 1984). Aponte et al. (1997) released several 

phytoseiid predatory mites, among which I. degenerans, to evaluate the effect on 

populations of the persea mite O. perseae in avocados. Iphiseius degenerans was unable 

to establish in the crop. This was apparently due to unfavourable environmental 

conditions and the inability to penetrate nests of the persea mite. Young female mites 

can kill over 10 O. coffeae females/day (Blommers, 1976).  

Espino et al. (1988) used I. degenerans in a cucumber crop to control T. urticae. Blaeser 

and Sengonca (2001) found that I. degenerans adults devoured 0.5 F. occidentalis 

nymphs per day versus 4 T. urticae adults. The adult predators preferred T. urticae 

adults to thrips nymphs. The observations of Blommers (1976) indicate that I. 

degenerans is incapable of controlling T. neocaledonicus in the field. When offered T. 

neocaledonicus and pollen, predation dropped to less than 1 female per day; if pollen 

was withheld, the predation initially rose to 7 prey females in the first 24 hours, but then 

dropped. In laboratory trials, an I. degenerans female consumed 28.8 T. pacificus 
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protonymphs throughout the entire immature period; this number increased to a total of 

1209 prey protonymphs during the pre-oviposition, oviposition, and post-oviposition 

periods. Eggs and larval stages of T. pacificus are equally consumed by the larvae but as 

the predator develops, its consumption of younger motile prey stages increases. This 

preference can be explained by the higher attacking activity of the predator when 

stimulated by movements of the prey (Takafuji and Chant, 1976). 

Yao and Chant (1990) calculated that the total amount of food intake of I. degenerans 

during 24 hours using T. pacificus as prey was 33.1 µg. This prey species weighs almost 

as much as the predator.  

Iphiseius degenerans does not consume captured prey completely and this feeding habit 

becomes more frequent as prey density increases (Takafuji and Chant, 1976). 

 

 

2.5.3.2 Thrips 

 

Laboratory, greenhouse and field experiments have been conducted to evaluate the 

potential of phytoseiid mites to reduce thrips populations in crops. Several phytoseiid 

mites including I. degenerans are potential predators of thrips species (van Lenteren and 

Loomans, 1998).  

As N. cucumeris fails to control Western flower thrips, F. occidentalis, in sweet 

pepper during winter (probably caused by diapause and the low resistance of the 

predator’s eggs to low humidity), van Houten et al. (1993, 1995a) searched for a non-

diapausing thrips predator tolerant to low humidities. Out of 5 subtropical predatory 

mites, I. degenerans and Amblyseius hibisci (Chant) gave best results. During a 72h 

experiment under laboratory conditions (25 °C, 70% RH, L16:D8 h photoperiod, 

cucumber leaves), I. degenerans consumed 4.4 ± 0.5 first instars of F. occidentalis a 

day. In a number of reports, it was demonstrated that it is possible to control western 

flower thrips throughout the growing season with I. degenerans (van Houten and van 

Stratum, 1993, 1995). Even early in the growing season (January - March) the predatory 

mite established well and later on even displaced another thrips consuming mite, N. 

cucumeris. Iphiseius degenerans not only decimated thrips populations, there was also a 

good distribution, not only in the rows where it had been released but also in other plant 
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rows. In greenhouse experiments conducted by Opit et al. (1997) the predatory potential 

of I. degenerans on Echinothrips americanus (Morgan) in pepper and cucumber was 

assessed. The predatory mite did not reduce the thrips population significantly 

compared with the control. Valentin (1997) stated that I. degenerans barely preys on E. 

americanus nymphs, because of the larger size of the nymphs compared with other 

thrips species and thus a better defence mechanism of the prey. 

The results of Brown et al. (1999) show that I. degenerans is able to prey on both F. 

occidentalis and Heliothrips haemorrhoidalis (Bouché), but that the predatory potential 

is influenced by both thrips and plant species. I. degenerans is more effective in killing 

F. occidentalis than H. haemorrhoidalis. On the plant species Capsicum annuum L. and 

Dombeya acutangula Cav. there was an effective decrease in the thrips population, 

where as the number of prey killed on Crotalaria capensis Jacq., Tephrosia grandiflora 

Aiton and Saurauia nepaulensis DC. did not differ significantly from the control 

mortality. Based on their field experiments, Chat-Locussol et al. (1998) concluded that 

I. degenerans did affect F. occidentalis populations in cucumber. Ten or 5 predatory 

mites per m² were introduced per week. Combined with Orius majusculus (Reuter) (5 

predatory bugs/m²), it was even possible to delay the increase of the thrips population 

by one month. To improve thrips control in cucumber, van Rijn et al. (1999) showed 

that applying cattail pollen in the crop made the predator population increase more 

rapidly while the thrips population remained smaller compared with the control.  

Grafton-Cardwell et al. (1999) evaluated the potential of augmentative releases of I. 

degenerans for reducing foliar damage caused by S. citri in citrus orchards. From a 5-

day laboratory experiment, they concluded that I. degenerans is able to consume up to 5 

citrus thrips nymphs per day. Ninety-six percent of the predators were able to survive on 

this prey and deposited 0.93 to 2.54 eggs per female per day. In commercial citrus 

nurseries, the predatory mite reduced the citrus thrips population and improved tree 

height and leaf numbers comparable with an abamectin insecticide treatment. In citrus 

orchards in Sicily, I. degenerans was found in association with the citrus thrips 

Pezothrips kellyanus (Bagnall), but it is still unclear whether the predator was 

responsible for natural control of the pest (Conti et al., 2001a, 2001b, 2003). In 

laboratory and field predation tests on leek I. degenerans did not feed on T. tabaci 

nymphs (Rat-Morris, 1999). 
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2.5.3.3 Other prey species 

 

Iphiseius degenerans was also found in association with the Japanese bayberry whitefly, 

Parabemisia myricae (Kuwana) in avocado and citrus orchards, preying upon larvae of 

this species (Swirski et al., 1987). They also feed on eggs and nymphs of the citrus 

psylla Trioza erytreae (Del Guernica), although they seem to play a minor role in 

reducing the psyllid populations (Catling, 1970). In laboratory tests, I. degenerans 

preyed on the citrus rust mite Phyllocoptruta oleivora (Ashmead) but the predation rate 

was dependent on the presence of pollen: when Typha domingensis Pers. pollen was 

added to the arena, survival of the predatory mite was much improved, but fewer citrus 

rust mites were killed (Palevsky et al., 2003). 

 

 

2.5.4 Functional response 

 

To assess the (potential) role of I. degenerans in the biological control of phytophagous 

species, the type and the parameters (attack rate, handling time) of the functional 

response of the predator towards its prey can be indicative. The functional response is 

defined as the change in the predator’s consumption rate in response to the density of 

the prey (Solomon, 1949). Holling (1966) studied the functional response of 

invertebrate predators in detail, and described three basic types of response curves: a 

type I response, which increases linearly to a plateau with increasing prey density; a 

type II response, which is a negatively accelerating rise to a plateau; and finally a type 

III response, which is an S-shaped rise to a plateau (see chapter 6 for more detailed 

information on functional responses). 

Literature only reports on functional responses of I. degenerans to changes in the 

density of spider mite species (T. pacificus, M. tanajoa). The functional response 

models observed in these studies are predominantly type II (e.g., Takafuji and Chant, 

1976; Eveleigh and Chant, 1981a,b, 1982f; Akpokodje et al., 1990). Only the study of 

Nwilene and Nachman (1996a) reports type III responses for I. degenerans 

protonymphs and females preying on three stages of M. tanajoa. The experimental 

conditions, however, differed between studies.  
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The nutritional requirements of the predators, predator stage and age, the exposure 

time, and feeding history have an important effect on predatory behaviour and 

consequently, on the functional response (Eveleigh and Chant, 1981a). The effects of 

these factors are reflected in the values of the attack rate and the handling time. The 

attack rate increases from protonymphs to deutonymphs but is similar for deutonymphs 

and for adults. The handling time decreases as the predator stages becomes larger. For a 

given predator stage, the predator’s attack rate declines and handling times increase as 

prey gets larger (Nwilene and Nachman, 1996a). Initial exposure to excess prey does 

not greatly affect the functional response of I. degenerans (Eveleigh and Chant, 1981a). 

According to Eveleigh and Chant (1981a, 1982c) and Nwilene and Nachman (1996a) 

the shape of the curve depends on the duration of the experiment in relation to the 

lifespan of the predator. Type II curves tend to become almost linear when the 

experimental period is extended from 3 to 24 hours (Eveleigh and Chant, 1981a). 

Takafuji and Chant (1976) reported that the initial increase in number of prey consumed 

per predator was almost linearly correlated with increasing T. pacificus density, and 

finally levelled off to a plateau. In their study, Nwilene and Nachman (1996a) suggested 

that the curve tends to become more sigmoid with experimental time. According to 

Nwilene and Nachman (1996a), who obtained another type of curve than Akpokodje et 

al. (1990) for the same predator and prey species, the size of the experimental arena also 

might affect the outcome of the functional response. Eveleigh and Chant (1982f) found 

that the overall shape of the functional response was not influenced by distribution of T. 

pacificus protonymphs (clumped, uniform or random), but that the estimates of the 

handling time and attack rate varied with prey distribution. 

 

 

2.6 PRACTICAL APPLICATION 

 

2.6.1 Release of Iphiseius degenerans in greenhouse crops 

 

In 1994, the predatory mite I. degenerans was first commercialized in Belgium to 

control thrips in greenhouse crops (Guido Sterk, pers. comm.). This predatory mite has 

two advantages compared with another phytoseiid thrips predator, N. cucumeris: I. 
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degenerans has no diapause and it tolerates low relative humidity (Degheele et al., 

1997). In a sweet pepper crop an introduction of minimum 2000 predatory mites per ha 

is recommended, with a minimum of 20 mites per introduction point (Biobest, 2006; 

Koppert, 2006).  

Iphiseius degenerans is known to be a generalist, using pollen as alternative food 

source. Hence, to support a predator population in the crop even before a pest is present, 

pollen can be used. Pollen of castor bean is known to be a high quality food source, 

equivalent to live prey and better than for instance pollen from oak and Cruciferae 

(Ramakers and Voet, 1995). As for I. degenerans, flowering castor bean plants cannot 

only be used for laboratory mass rearing (Nunnink, 1994, Ramakers and Voet, 1995) 

but also in an open rearing system (Ramakers and Voet, 1996). The combination of 

pollen and extrafloral nectar makes castor bean plants ideal rearing and banker plants 

(van Rijn and Tanigoshi, 1999b). The predators also tend to move from the banker 

plants into a sweet pepper crop, even in the absence of prey. The migration from leaf to 

leaf, or via plant supporting wires is far more important than migration via the soil 

(Ramakers and Voet, 1996). Ramakers and Voet (1995) recommend placing 15 bankers 

per hectare, and moving the plants every week to another part of the greenhouse. This is 

a cheap but slow method, applicable when no or very few thrips are present in the sweet 

pepper crop. 

On preyless plants that produce little or no pollen (e.g., cucumber) establishment of 

the predator is poor (Ramakers and Voet, 1995). Spraying suspensions of bee-collected 

pollen on the cucumber plants makes them more attractive to the predators and allows 

them to establish and reproduce in the absence of thrips (Ramakers and Voet, 1993; 

Ramakers, 1995). van Rijn et al. (1999, 2002) showed that the addition of cattail pollen 

in a cucumber crop resulted in a fast growing predator population, and thus an increase 

in effectiveness of the predatory mite in controlling thrips. The thrips population 

remained small, despite the fact that the pest can also utilize pollen. This is because the 

predator population was strongly clustered on leaves with pollen, whereas the thrips 

concentrated on the young, top leaves. 
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2.6.2 Interaction among predators and their prey 

 

Application of biological control agents in agricultural crops led to the replacement of 

simple tritrophic interactions by more complex food web interactions. A summary of 

these interactions is given in Janssen et al. (1998). 

When N. cucumeris and I. degenerans are released at the same time in a sweet 

pepper crop, the latter shows a more rapid population increase and reaches higher 

population densities than N. cucumeris; finally, I. degenerans displaces the other 

predator. This is probably because I. degenerans visits more flowers and is more active 

on leaves than N. cucumeris, and thus is more likely to encounter thrips nymphs (van 

Houten and van Stratum, 1993, 1995). Wittmann and Leather (1997) found that Orius 

laevigatus (Fieber), a predatory bug, favours thrips over I. degenerans. These authors 

suggest that both predators can be used simultaneously in the biocontrol of the western 

flower thrips. Yao and Chant (1989) studied the interaction between I. degenerans and 

P. persimilis feeding on T. pacificus. When confined together on a single arena, I. 

degenerans out competed P. persimilis. According to the authors, the extermination of 

P. persimilis is caused by intraguild predation by I. degenerans. Female adults of I. 

degenerans females can eat 3.3 ± 1.4 P. persimilis eggs, 4.6 ± 0.4 larvae or 5.6 ± 0.4 

protonymphs per day. On the other hand, eggs, larvae and protonymphs of I. 

degenerans are also prey for P. persimilis. However, predation of I. degenerans females 

on eggs, larvae or protonymphs of P. persimilis is significantly higher than that of P. 

persimilis on the corresponding stages of I. degenerans. Despite the possible interaction 

between the two predators, the presence of conspecifics or heterospecifics has no effect 

on the weight of I. degenerans, and hence on the food uptake. Both predators are even 

able to share meals (Yao and Chant, 1990).  

van Schelt (1999, 2000) hypothesized that I. degenerans influences the performance of 

the predatory gall midge Aphidoletes aphidimyza, which is used for aphid control, by 

preying on its eggs. In semi-field tests on sweet pepper plants, he observed that 

approximately 40% of the midge’s eggs were eaten. 

According to Faraji et al. (2002b) cannibalism on eggs is rare in I. degenerans, but 

cannibalism on larvae by adults and nymphs can occur. Starved female I. degenerans 

were able to eat 3.5 ± 0.4 eggs, 4.1 ± 0.6 larvae or 2.0 ± 0.2 protonymphs of its own 
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species per day. However, when feeding on conspecific offspring females survived for 

maximum 8.9 days (Yao and Chant, 1989). 

 

The interaction between I. degenerans and its prey F. occidentalis is of a special nature. 

All active stages of the thrips are capable of feeding on I. degenerans eggs, whereas the 

predatory mites only kill young thrips nymphs (Faradji et al., 2001). According to 

Willemse (2002) the feeding on I. degenerans eggs is not a defence mechanism but 

rather a form of nutrition. Also, research by Janssen et al. (2003) indicated that thrips 

nymphs feed more on predator eggs when the host plants are of low quality (e.g., sweet 

pepper). Hence, on superior host plants the killing of eggs does not serve as food 

supplement, but has another purpose. Janssen et al. (2002) showed that thrips nymphs 

might discriminate between the eggs of a dangerous and of a harmless predator, killing 

more eggs of the dangerous predator. Because adult predatory mites avoid ovipositing 

near killed eggs, killing eggs of a predatory mite results in a deterring of adult predator 

populations and a reduction of the predation risk. According to Janssen et al. (1998) 

odours emitted by pest-infested plants affect the searching behaviour of the predators, 

which results in a different distribution of pests and predators over the plant. For 

instance, spider mites avoid leaves previously exposed to predatory mites (Grostal and 

Dicke, 2000). Janssen et al. (1988) studied the response of I. degenerans to different 

volatiles in an olfactometer. Iphiseius degenerans did not prefer thrips infested plants to 

clean plants. This behaviour was found somewhat puzzling as the predatory mite is 

employed as a thrips predator. But, when given the choice between thrips infested plants 

and spider mite infested plants, the predator preferred thrips infested plants. The choice 

for thrips infested plants here may be due to the repellence of plants infested with spider 

mites. The feeding history of the predatory mite may be the cause of the lack of an 

olfactory response (Janssen et al., 1998). Iphiseius degenerans is normally reared on 

pollen (e.g., McMurtry and Scriven, 1965) and thus has no experience with thrips 

nymphs in most experiments. Conditioning on a specific herbivore may lead to a 

positive attraction (Janssen et al., 1998). Furthermore, the hunger state also seems to 

affect the response. When well-fed, all stages of the predatory mite seem to be repelled 

by T. pacificus infested bean leaves. However, starved females are attracted to the same 

leaves (Dong and Chant, 1986). In contrast, according to Yao and Chant (1989), I. 
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degenerans responds to airborne cues of T. pacificus, and the percentage of the 

successful choices was unaffected by their starvation. However, in the same study well-

fed females did lack a response to spider mite webbing. 

 

 

2.6.3 Side effects of pesticides on Iphiseius degenerans 

 

In order to utilize the phytoseiid mite in integrated pest management programs in 

several crops, it is essential to acquire information on the side-effects of pesticides to 

this predator. An overview of pesticides tested on I. degenerans is presented in Table 

2.4. However, because each source employs a different methodology it is not possible to 

rank the pesticides according to their impact on the predatory mite. 

Since I. degenerans is frequently found in citrus orchards, several authors evaluated the 

relative toxicity of pesticides used in citrus orchards. The phytoseiid seems to be more 

susceptible to insecticides and acaricides than Panonychus citri (Mc Gregor) and T. 

pacificus. However, azinphosmethyl and tricyclohexylhydroxytin are more toxic to the 

phytophagous mites, and there is no difference in susceptibility to hexakis (beta, beta-

dimethyl(phenethyl)-distannoxane) (Jeppson et al., 1975). Conti et al. (2004) concluded 

that the toxicity of azadirachtin, and abamectin and the mixture rotenone + pyrethrum, 

is not always negligible and can entail a reduction of the predator population.  

In sweet pepper crops, aphids are often chemically controlled with pirimicarb. The 

LC50-value (Lethal Concentration 50) on the phytoseiid population is 91 mg a.i./l. This 

is far beneath the field dose of 250 mg a.i./l that is used in Dutch green pepper crops 

(van Houten and van der Staay, 1993). Stark et al. (1997) estimated the acute lethal 

concentrations and studied the population growth rate of I. degenerans after exposure to 

azadirachtin and dicofol. Iphiseius degenerans immatures were more susceptible to 

azadirachtin than the adults, but to dicofol an equal susceptibility was found. Both 

pesticides affected the instantaneous rate of increase; exposure to 250 ppm azadirachtin 

or 140 ppm dicofol caused an extinction of the population. The NOEC (No Observed 

Effect Concentration) and LOEC (Lowest Observed Effect Concentration) values for 

the instantaneous rate of increase are respectively 3.9 ppm and 7.8 ppm for azadirachtin 

and 17.5 ppm and 3.5 ppm for dicofol. The NOEC and LOEC values for reproduction 
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are 0.98 and 1.96 ppm for azadirachtin and 4.4 and 8.8 ppm for dicofol. These 

concentrations significantly reduced the reproduction, but there was no mortality. 

Ludwig and Oetting (2001) reported a high mortality (> 60%, direct effect) when the 

phytoseiid was exposed to azadirachtin and neem oil for 48 h, whereas treatment with 

insecticidal soap caused a lower mortality. They suggest that insecticidal soap or 

azadirachtin can be used in combination with I. degenerans by releasing mites after the 

application. If plants are treated with neem oil, predators should not be released until the 

residue has had a chance to dissipate. In laboratory trials, I. degenerans showed high 

mortality when exposed to six-day-old residues of avermectin b1 (0.3 ml/l water) and 

pyridaben (0.284 ml/l water). In greenhouse trials, these acaricides caused a lower 

mortality and had a shorter residual toxicity. Adult mortality of the predator was less 

than 10% when exposed to 6-day-old residues of avermectin b1 for 48 hours, while this 

was 44% for a 6-day-old residue of pyridaben. Thresholds (expressed as LT25) for 

pyridaben were estimated at 18 days for I. degenerans (Shipp et al., 2000).  

Both studies of Ludwig and Oetting (2001) and Shipp et al. (2003) indicate that the 

use of the entomopathogenic fungus Beauveria bassiana Balsamo is compatible with 

predatory mites. Ludwig and Oetting (2001) found that under greenhouse conditions, 

infection due to the entomopathogenic fungi Verticillium lecanii (Zimmermann) and 

Metarhizium anisopliae (Metchnikoff) should also be minimal for I. degenerans. 

PreFeRal, a microbial insecticide based on the entomopathogenic fungus Paecilomyces 

fumosoroseus (Wize) proved to be completely harmless for I. degenerans. 

Fenpropathrin, tebufenpyrad, and abamectin were used as positive toxic standards. The 

toxicity of endosulfan depends on the host plant and the compound results in a higher 

mortality on castor bean than on green bean plants (Sterk et al., 1995). 

Pesticides do not always kill the predators present in the crop, but can influence their 

foraging behaviour and reproduction. Brown et al. (2003) evaluated the effect of 

teflubenzuron (at 80 mg a.i./l) on I. degenerans. This insect growth regulator does not 

kill the predators, but has an effect on foraging behaviour, which seems to be plant 

species dependent. These authors observed that the predation on F. occidentalis is 

higher on untreated leaf disks of D. acutangula than on the leaf disks treated with 

teflubenzuron. However, I. degenerans caused a similar level of mortality in F. 
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occidentalis on untreated or treated leaf disks of C. annuum, C. capensis and T. 

grandiflora. 

 

Table 2.4. Overview of the pesticides tested on I. degenerans 

Pesticide Reference 
Abamectin Conti et al., 2004 

Sterk et al., 1995 
Azadirachtin Conti et al., 2004; 

Stark et al., 1997 
Azinphosmethyl Jeppson et al., 1975 
Biothion Jeppson et al., 1975 
Chlorobenzilate Jeppson et al., 1975 
Dicofol Jeppson et al., 1975 
 Stark et al., 1997 
Dimethoate Jeppson et al., 1975 
Dioxathion Jeppson et al., 1975 
Endosulfan Sterk et al., 1995 
Fenpropathrin Sterk et al., 1995 
Formetanate Jeppson et al., 1975 
Hexakis (beta,beta-dimethyl(phenethyl)-distannoxane) Jeppson et al., 1975 
Malathion Jeppson et al., 1975 
Parathion Jeppson et al., 1975 
Phosphamidon Jeppson et al., 1975 
Propargite Jeppson et al., 1975 
Pyrethrum Conti et al., 2004 
Pyriproxyfen Sterk et al., 1995 
Rotenone Conti et al., 2004 
Tebufenpyrad Sterk et al., 1995 
Teflubenzuron Brown et al., 2003 
Tricyclohexylhydroxytin Jeppson et al., 1975 
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CHAPTER 3 

MORPHOLOGY AND MATING BEHAVIOUR OF IPH SEIUS 

DEGENERANS 

I

 

 

3.1 INTRODUCTION 

 

Relatively few studies have provided detailed information on the life history of I. 

degenerans; therefore, the mating behaviour and some morphological features of the 

different life stages were documented. 

 An adult male waiting near or upon a female deutonymph which is ready to moult is 

a common phenomenon in phytoseiid mites. Mating usually takes place immediately 

after the final moult of the female. However, in some species a tendency to feed before 

mating was observed (Schulten, 1985). In Phytoseiidae two mating patterns occur: the 

“Amblyseius-Typhlodromus type” and the “Phytoseiulus type”. The first pattern is 

characterized by the male mounting the dorsum of the female prior to the venter-to-

venter mating position. In the latter pattern the male makes contact in a face-to-face 

position and then crawls underneath the female (Amano and Chant, 1978). According to 

the latter authors, I. degenerans follows the first type, but no detailed information is 

available. 

 After mating and insemination, females start laying eggs. All predatory mites of the 

cohort Gamasina pass through a larval stage and two nymphal stages (protonymph and 

deutonymph). The developmental stages are separated through moults. Knowledge on 

the size of the immature stages is helpful in recognising the different (mobile) life 

stages in a population at a glance. Literature, however, only reports on sizes of adult 

females and males of I. degenerans. Therefore, the sizes of eggs, larvae, protonymphs, 

female and male deutonymphs and adults were measured.  
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3.2 MATERIALS AND METHODS 

  

3.2.1 Predator culture 

 

A stock colony of I. degenerans was initiated in 2000 using mites obtained from 

Biobest NV (Belgium) and Koppert BV (The Netherlands), and was cultured in the 

laboratory for successive generations in a climatic cabinet at 25 ± 1 °C, 75 ± 5 % RH 

and a 16L:8D h photoperiod.  

 The mites were reared on a green plastic plate (20 x 25 x 0.3 cm) (Multicel, SEDPA, 

France) placed on top of a foam pad (20 x 25 x 4 cm) in a water containing plastic tray 

(30 x 40 x 7 cm) (Fig. 3.1). The edges of the Multicel plate were covered with absorbent 

paper immersed in the water in the tray, leaving an arena of 300 cm². The absorbent 

paper provided the mites with moisture and prevented them from escaping. Black 

sewing threads (ca. 5 cm long) served as oviposition substrates (van Rijn and Tanigoshi, 

1999a). Pollen of castor bean (Ricinus communis L.) was added ad libitum every 3 days 

using a fine brush. To start new rearing cohorts, eggs were collected every other day. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Rearing arena for Iphiseius degenerans. 
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3.2.2 Size of the different life stages 

 

To measure the size of the different life stages of I. degenerans, eggs, larvae, 

protonymphs, deutonymphs, females or males were collected from rearing units 

maintained on castor bean pollen, almond pollen or apple pollen. Measurements were 

made with thirty dead or anaesthetised individuals using a dissection microscope and a 

graded ocular. Larvae, protonymphs and adults were killed by immersing them in 

boiling water (Flechtmann and McMurtry, 1992a). Deutonymphs, which were later still 

needed to determine sex, where anaesthetised with CO2.  

 For larvae, nymphs and adults, length was measured in two ways: first from the 

posterior tip of the idiosoma to the anterior tip (thus without the gnathosoma), and 

second from the posterior tip of the idiosoma to the tip of the pedipalps. Width was 

measured at the broadest point of the idiosoma.  

 

 

3.2.3 Mating behaviour of Iphiseius degenerans 

 

Female and male deutonymphs were confined separately on small Multicel arenas. This 

prevented males from mating with newly moulted females prior to the start of the 

experiment. Within two days after the final moult, ten pairs were formed and observed 

under a binocular to which a video camera was connected. To measure the time required 

for the pre-mating behaviour and the duration of the first copulation, the predatory mites 

were continuously observed from their introduction into the arena until the end of the 

copulation event. 

To determine the sex of the first egg laid, twenty additional pairs were formed. The 

first egg laid by each female was removed from the arena, transferred singly to another 

arena, allowed to hatch and reared on castor bean pollen until adulthood. Upon the last 

moult, sex was determined. 
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3.3 RESULTS 

 

3.3.1 Size of the different life stages 

 

In Table 3.1, dimensions of the different developmental stages of I. degenerans are 

presented.  

 Little variation was found in egg size. Eggs averaged 232 ± 1 µm in length and 175 ± 

0 µm in width. In the larval and protonymphal stage it is not possible to distinguish 

between females and males. From the deutonymphal stage on, females and males can 

easily be distinguished based on their size. Female deutonymphs are on average 60 µm 

longer and 40 µm wider than male deutonymphs. The difference between females and 

males is more pronounced in the adult stage; females are on average 110 µm longer and 

90 µm wider than males.  

 The gnathosoma shows little variation over the life stages. Length varies from 81 µm 

(adult male) to 114 µm (female deutonymph). In immatures the length of the 

gnathosoma equals about 25% of the total body length (idiosoma + gnathosoma), while 

this is about 18% in adults. 

 

Table 3.1. Mean body size of the developmental stages of I. degenerans (µm ± SEM) 

n Idiosoma  Idiosoma + gnathosomaDevelopmental stage 

 Width Length  Length 

Larva 30 189 ± 2 251 ± 3  344 ± 4 

Protonymph 30 208 ± 2 289 ± 3  394 ± 3 

Deutonymph      

female 16  281 ± 6 360 ± 4  474 ± 6 

male 14 242 ± 3 306 ± 9  415 ± 4 

Adult      

female  30 362 ± 2 460 ± 2  553 ± 3 

male 30 272 ± 2 350 ± 3  431 ± 4 
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3.3.2 Mating behaviour of Iphiseius degenerans 

 

In preliminary tests, it was observed that I. degenerans males hover with their first two 

pairs of legs over the ophistosoma of a female deutonymph. However, not all males 

exhibited this behaviour. 

 Iphiseius degenerans displayed the “Amblyseius-Typhlodromus type” as already 

observed by Amano and Chant (1978). Figure 3.2 shows the behavioural steps in the 

“Amblyseius – Typhlodromus type” of pre-mating behaviour. 

f (10) e (10) 

b-1 (0)

b-2 (7)

b-3 (3)

c (10) a-2 (2) 

a-3 (2) 

d (10) 

a-1 (6) 

Figure 3.2. Diagram of mating behaviour in I. degenerans. The number in brackets 

indicates the total number of pairs observed in the present study in each category out of 

10 replicates. Dotted larger animals represent females (drawing after Amano and Chant, 

1978). 

 

In 30% of cases, the female contacted the male. The male was approached from behind, 

after which the male turned around into a head-to-head position (Fig. 3.2, a-1). In the 

other cases the male approached the female from the side (a-2), from behind (a-3) or via 

the head (a-1) and then climbed on the dorsum of the female. Seven out of 10 males 

climbed on the females laterally (b-2) and 3 males climbed from behind (b-3). Once on 
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the dorsum of the female, the male spent wandering for an average of 19 ± 8 s, facing 

forwards and tapping the female with its first pair of legs (c). Finally the male turned 

180° and crawled underneath the female via the rear end of the female (d-f). The time 

measured from the initial contact to the venter-to-venter position averaged 24 ± 8 s. The 

male was attached to the female by grasping it with the last two pairs of legs.  

The length of time in copula was on average 48 ± 8 minutes (range 39 – 64 minutes). 

During copulation, the female was able to move around. The copulation mostly ended 

by the male leaving the female. 

 After a pre-oviposition period of a few days (see chapter 4) females started laying 

eggs. In 100% of cases the first egg of I. degenerans developed into a male.  

 

 

3.4 DISCUSSION 

 

3.4.1 Size of the different life stages 

 

With the measurements of the eggs and the body size of I. degenerans immatures and 

adults presented in Table 3.1, it should be possible to enable the identification of a 

particular immature stage in a population.  

Croft et al. (1999) determined the mean size of eggs of 13 phytoseiid mites. The 

length of these eggs varied from 184.5 to 243.5 µm. From those 13 phytoseiids only 

Phytoseiulus persimilis Athias-Henriot has larger eggs than I. degenerans. 

Larvae, which are readily distinguishable by the fact that they have only 3 pairs of 

legs, average 251 µm in length and 189 µm in width. With these measurements larvae 

of I. degenerans are larger than the largest larvae (i.e., those of P. persimilis) reported 

by Croft et al. (1999).  

Adult phytoseiids are rarely longer than 500 µm. According to van der Merwe (1968) 

the dorsal shield of a female I. degenerans measures 430 to 470 µm in length and 330 to 

340 µm in width; the dorsal shield of a male is smaller (353 to 376 µm in length, 282 to 

294 µm in width). Our results correspond well with these values. Compared to other 

phytoseiids used for biological control, I. degenerans is among one of the largest mites. 

According to the measurements made by Croft et al. (1999) the length of the idiosoma 
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of I. degenerans exceeds that of P. persimilis. Idiosoma length of Amblyseius andersoni 

Chant, Neoseiulus barkeri (Hughes), Neoseiulus cucumeris (Oudemans), Galendromus 

occidentalis (Nesbitt), Typhlodromus pyri Scheuten, and Euseius finlandicus 

(Oudemans) varies from 350 to 420 µm, 350 to 380 µm, 395 to 400 µm, 340 to 350 µm, 

300 to 340 µm and 340 to 355 µm, respectively (Karg, 1993). 

 

 

3.4.2 Mating behaviour of Iphiseius degenerans 

 

The “Amblyseius-Typhlodromus type” of pre-mating behaviour, is common to the 

majority of phytoseiid mites observed to date (Amano and Chant, 1986).  

In I. degenerans, the females were often approached frontally as is also the case in T. 

pyri (Overmeer et al., 1982), while in Amblyseius potentillae (Garman) the approach is 

more from the lateral side or from behind. In the present study, I. degenerans climbed 

mainly onto the female from the side. Typhlodromus pyri and A. potentillae both climb 

onto the female from behind. The time from initial contact to the venter-to-venter 

position is very variable. For E. finlandicus, the change between the position on top of 

the female and the mating position was almost instantaneous, and too short to be timed. 

The time during which the males stayed on the dorsum of the female and the duration of 

the copulation event were extremely variable in Phytoseius macropilis (Banks), and 

could take even up to 130 minutes. Males of Typhlodromus pomi (Parrott) wandered 

around for 9.2 minutes before switching to the mating position (Amano and Chant, 

1986). Overmeer et al. (1982) reported that A. potentillae remained for a maximum of 2 

minutes on top of the females, while T. pyri maintained this position for 10-15 minutes. 

The time in copula varies among species, ranging from 45 minutes to more than 13 

hours. The duration of the copulation of E. finlandicus (70 minutes) was less than one 

fifth of the copulation time noted for T. pomi (385 minutes). In P. macropilis, males 

were observed mating continuously with females for longer than 13 h, while others 

stayed in the mating position for only 45 minutes (Amano and Chant, 1986). Length of 

time in copula for P. persimilis and Amblyseius bibens Blommers was 149 and 145 

minutes, respectively (Schulten et al., 1978). Amano and Chant (1978) reported that P. 

persimilis and A. andersoni remained in the mating position for 131 and 185 minutes, 
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respectively. In Amblyseius colimensis Aponte and McMurtry the initial mating took 

360 minutes, and the subsequent mating averaged 180 hours (Aponte and McMurtry, 

1992). The duration of the initial copulation of I. degenerans observed in this study is 

relatively short compared to that of other phytoseiid mites. 

 

Iphiseius degenerans starts to produce male progeny at the onset of the oviposition 

period. A sons-first pattern has been recorded for several other phytoseiid mites (e.g., T. 

pomi, P. macropilis, E. finlandicus (Amano and Chant, 1986), P. persimilis and 

Amblyseius womersleyi Schicha (Toyoshima and Amano, 1998)). According to Sabelis 

(1985) this pattern makes sense from an evolutionary point of view. The mother’s 

fitness will be favoured if she ensures fertilization of her female progeny at the earliest 

possible moment, since reproduction in phytoseiids with paternal genome loss (pseudo-

arrhenotoky) requires male gametes and thus, mating later in life would postpone 

reproduction (Sabelis, 1985). 
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CHAPTER 4 

EFFECT OF POLLEN, NATURAL PREY AND FACTITIOUS 

PREY ON THE DEVELOPMENT OF IPH SEIUS DEGENERANS  I  

 

 

4.1 INTRODUCTION 

 

In determining the power of population increase of phytoseiid predators, the 

developmental time and survival of immature stages are crucial factors (Sabelis, 1985). 

Various authors assessed the development of phytoseiids on different kinds of food, but 

in the case of I. degenerans only a few publications on the developmental biology are 

available in the literature. In these studies, however, mainly pollen or tetranychid prey 

were offered as food (Takafuji and Chant, 1976; McMurtry, 1977; McMurtry et al., 

1984; van Rijn and Tanigoshi, 1999).  

Considering the polyphagous character of this predator, the effect of 5 pollen species, 

four natural prey species (a mixture of Tetranychus urticae Koch life stages, nymphs of 

Frankliniella occidentalis (Pergande), Trialeurodes vaporariorum Westwood eggs, and 

nymphs of Myzus persicae Sulzer), a combination of F. occidentalis nymphs and 

Ricinus communis L. pollen, and 2 factitious prey species (Ephestia kuehniella Zeller 

eggs and Artemia franciscana Kellogg cysts) on the development of I. degenerans was 

determined. In addition, developmental performance of I. degenerans on different 

substrates (artificial versus leaf arena) was assessed. An artificial substrate (Multicel) 

was used in an attempt to standardize all experiments and to eliminate the influence of 

leaf feeding on the development of the predatory mite. Leaf arenas were used to 

investigate whether I. degenerans was able to develop on plant sap, to provide the 

natural prey with food or to serve as an oviposition substrate for prey. 

 

 

 

This chapter is based on: Vantornhout, I., Minnaert, H.L., Tirry, L. and De Clercq, P. 2004. Effect of 

pollen, natural prey and factitious prey on the development of Iphiseius degenerans. BioControl 49: 627-

644. 
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4.2 MATERIALS AND METHODS 

 

4.2.1 Predator culture 

 

Iphiseius degenerans was reared as described in chapter 3 (3.2.1 Predator culture). 

 

 

4.2.2 Food sources 

 

Pollen 

 

Pollen from apple (Malus domestica Borkh.), almond (Prunus dulcis (Mill.) Webb) and 

plum (Prunus domestica L.) were purchased from Firman Pollen Co. (Washington, 

USA) and stored in the refrigerator (ca. 6 °C) during the experiments. Pollen from 

castor bean R. communis was collected from plants grown in a field plot at the Faculty 

of Bioscience Engineering of Ghent University. Flowers were collected, dried in an 

incubator at 37 °C and thoroughly shaken in a 50 µm mesh sieve to separate and collect 

the pollen. Pollen was stored in glass jars in the deep freeze (at –18 °C) for long term 

storage or in the refrigerator (ca. 6 °C) during the experiments. Flowers of sweet pepper 

(Capsicum annuum L. var. California Wonder) were collected; the anthers were cut and 

dried in an incubator at 37 °C. The pollen was separated, collected and stored as above. 

 

Natural prey  

 

Spider mites (T. urticae) were reared on green bean plants (Phaseolus vulgaris L. var. 

Prelude) in a climatic chamber at 30 ± 5 °C, 40 ± 5% RH and a 16L:8D h photoperiod. 

As I. degenerans is able to prey on all life stages of the twospotted spider mite, a 

mixture of different life stages of the mite was either offered to the predator on a small 

piece of green bean foliage or was brushed off directly onto the arena. To make sure all 

life stages remained present during the experiment, fresh prey of different life stages 

were added daily. On a bean leaf arena, spider mites were allowed to develop and 

produce webbing on the arena for 4 days before introduction of predatory mites. 
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 The western flower thrips (F. occidentalis) was reared on green bean pods (P. 

vulgaris) and was kept in a climatic cabinet at 25 ± 1 °C, 75 ± 5 % RH and a 16L:8D h 

photoperiod. Either a mix of 1st and 2nd instar nymphs (10 nymphs per arena) or 10 first 

instar nymphs were offered to the predatory mites. Dead prey was removed daily from 

the arena, and replaced with fresh prey. 

Adults of the greenhouse whitefly T. vaporariorum were collected from Nicotiana 

glauca Graham plants in greenhouses on the premises of the faculty. They were 

subsequently reared on green bean plants in a continuous culture in the laboratory. 

Whitefly eggs were obtained by transferring adults to a fresh bean leaf contained in a 

drum cell (Fig. 4.1). The drum cell consisted of a Plexiglas cylindrical ring (9 cm 

diameter, 3.5 cm high), a Plexiglas plate (9 cm diameter) and a mesh-covered ring (9 cm 

diameter). The ring has 7 ventilation holes (1 cm diameter) covered with nylon gauze. 

Each “drum” cell was placed on a plastic support that contained tap water. A primary 

bean leaf was placed in each “drum” cell with the stem hanging in the tap water of the 

support via a hole in the Plexiglas ring. To avoid scatter of the eggs over the whole leaf 

surface, the leaf was covered with a piece of cloth (Vileda®) in which a circle (diameter 

4.5 cm) was cut. After 48 hours, adults were removed and the number of eggs was 

reduced to 100 by puncturing the excess with a needle. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Drum cell. 

 

Individuals of the green peach aphid M. persicae originated from INRA Antibes and 

were reared in the laboratory on pepper plants (C. annuum var. Cayenne Long Slim). A 
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mix of first and second instar nymphs were offered to the predatory mites (7 nymphs 

per arena). Every two days, aphid nymphs were removed and replaced with new ones. 

 

Factitious prey  

 

Deep frozen eggs of the Mediterranean flour moth E. kuehniella were obtained from 

Koppert BV and stored in the deep freeze (at –18 °C). Eggs used in the experiments 

were thawed and kept in the refrigerator (ca. 6 °C) for about 7 days. Every 3 days the 

eggs were removed from the arena and new eggs were supplied (10 to 20 eggs per 

arena). 

Cysts of the brine shrimp A. franciscana were obtained from the Laboratory of 

Aquaculture and Artemia Reference Centre, Ghent University, Belgium. Both dry 

encapsulated cysts and dry decapsulated cysts were used. Decapsulated cysts are cysts 

of which the outer alveolar layer is removed by washing in a hypochlorite solution (Van 

Stappen, 1996). The cysts were kept in the refrigerator during the experiments. Every 3 

days the cysts were removed from the arena and new cysts were supplied (10 to 20 cysts 

per arena). 

 

 

4.2.3 Experimental units 

 

Artificial substrate 

 

Each experimental unit consisted of a green Multicel plate (6 x 6 cm) placed on a 1 cm 

thick foam pad in a water-containing square petri dish (8 x 8 cm). The edges of the 

Multicel plate were covered with wet absorbent paper yielding an arena of 

approximately 12 cm². A 1 cm long black sewing thread served as a hiding place for the 

mites (Fig. 4.2 a). 
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Leaf substrate 

 

This arena differs from the Multicel arena by the fact that in this experimental unit, the 

Multicel plate was replaced by a piece of sweet pepper leaf (C. annuum var. California 

Wonder) or bean leaf (P. vulgaris var. Prelude) cut to a similar size (6 x 6 cm) (Fig. 

4.2.b).  

 

 

 

 

 

 
b 
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predatory mite. In a last series of experiments the effect of substrate (Multicel, bean leaf 

or sweet pepper leaf) on the development of the predatory mite when reared on three 

different diets was assessed. The selected diets were: castor bean pollen, the main food 

used in the mass rearing of I. degenerans, and two of its natural prey, T. urticae and F. 

occidentalis. 

 

Development and survival of immature stages 

 

To investigate the ability of I. degenerans to develop on the different kinds of food, one 

egg of the predatory mite was transferred to every experimental unit. Thirteen hours 

prior to the start of the experiments new black threads were placed in the predatory mite 

colony. From the eggs that were laid within 13 hours, thirty eggs were randomly chosen 

and transferred onto an experimental arena using a fine brush. There were 30 replicates 

per diet. When no food was added to the arena, the mites were able to consume water 

from the absorbent paper. In the experiments where food was presented to the predator, 

an excess of food was added as soon as the larvae emerged. The arenas were kept in a 

climatic cabinet at 25 ± 1 °C, 75 ± 5% RH and a 16L:8D h photoperiod. To obtain data 

on the duration of each developmental stage and on mortality and escape rates, 

observations were made every 12 hours until all individuals reached adulthood. The 

presence of exuviae on the arenas was used as a criterion for a successful moult to the 

next stage. 

 

 

4.2.5 Data analysis 

 

To avoid overestimation of the developmental duration of some stages, only the cases in 

which the eggs developed to adults were submitted to analysis. In experiments in which 

the number of obtained adults was less than 5 out of 30, no analyses were done. 

Developmental duration of the different life stages of the predatory mite was analysed 

using analysis of variance, followed by a multiple comparison test (Student Newman 

Keuls) at the p = 0.05 level (SPSS 12.0, SPSS Inc., 1989-2003).  
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4.3 RESULTS 

 

The time spent by the males and females of I. degenerans in each developmental stage 

(egg, larva, protonymph and deutonymph) was affected by the tested diets and 

substrates. 

 

 

4.3.1 Egg hatch 

 

All eggs used in the experiments successfully hatched at the given climatic conditions. 

The mean developmental time of the egg stage (± SEM) of I. degenerans calculated 

over all replicates and independently of the food offered to the predatory mite was 2.41 

± 0.02 days, with no significant differences between males and females (F = 0.5, df = 

368, p = 0.5). Although all eggs were harvested from the same colony maintained on 

castor bean pollen, there were significant differences in incubation time of eggs selected 

to initiate experiments (Tables 4.1 – 4.5).  

 

 

4.3.2 Development of immature stages and survival in the absence of food 

 

As expected, I. degenerans is not able to complete its development in the absence of 

food (Table 4.1). On all substrates larvae were able to develop into protonymphs, but 

then died as protonymphs 5 to 7 days after egg hatching. The predatory mites survived 

longer on a leaf arena than on a Multicel arena although significant differences between 

the arenas were only found in the egg and larval stage (eggs: F = 5.4, df = 56, p < 0.01; 

larvae: F = 11.0, df = 56, p < 0.0001; protonymphs: F = 0.5, df = 56, p = 0.6; total 

immature survival: F = 0.8, df = 56, p = 0.4). 
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Table 4.1. Development of immature stages of I. degenerans reared without food on 

three types of substrate  

Substrate nb  Stage duration (days)a

    Egg Larva Protonymph  Egg – death
Multicel 25   2.37 ± 0.06a 1.02 ± 0.04a 1.55 ± 0.14a   4.94 ± 0.14a 
Bean leaf 8  2.78 ± 0.10b 1.54 ± 0.16b 2.72 ± 0.30a  7.03 ± 0.40a
Sweet pepper leaf 24  2.53 ± 0.07a 1.03 ± 0.07a 2.98 ± 1.57a  6.55 ± 1.57a

aMeans (± SEM) within a column followed by the same letter are not significantly 

different (Student Newman Keuls-test, p > 0.05) 
bNumber of individuals that reached the protonymphal stage (initial number = 30) 

 

 

4.3.3 Effect of diet on development and survival of immature stages  

 

When reared on pollen, tetranychid prey, thrips nymphs, whitefly eggs, aphids, brine 

shrimp cysts or flour moth eggs, developmental and survival rates varied as a function 

of food and substrate used (Tables 4.2 – 4.4).  

 All larvae developed to the protonymphal stage irrespective of diet. From the 

protonymphal stage on, effects of food were more pronounced.  

For both females and males no development beyond the protonymphal stage was 

observed when 1st and 2nd instars of F. occidentalis or dry encapsulated cysts of the 

brine shrimp A. franciscana were offered (Table 4.2 and 4.3). Immature mortality 

recorded for abovementioned diets was 56.7% and 86.7% (F. occidentalis and dry 

encapsulated A. franciscana cysts, respectively); 43.3% and 13.3% of the individuals 

escaped from the arena, and were not retrieved. Immature mortality was highest in the 

protonymphal stage (40.0% and 73.3%, respectively). The highest escape rates were 

found among the larvae when fed thrips (26.7%); when fed dry encapsulated brine 

shrimp cysts 6.7% of the larvae and 6.7% of the deutonymphs escaped from the arena. 
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Diet nb Stage duration (days)a

       Egg Larva   Protonymph Deutonymph Total
Pollen          
Almond 

 

 

        

        

12 2.31 ± 0.13ab 0.81 ± 0.08 a   1.49 ± 0.09abc 1.51 ± 0.06a 6.11 ± 0.11a  
Apple 18 2.27 ± 0.04ab 0.94 ± 0.06a   1.46 ± 0.09abc 1.48 ± 0.08a 6.16 ± 0.08a  
Castor bean 14 2.57 ± 0.07b 1.01 ± 0.00a   1.21 ± 0.07a 1.43 ± 0.08a 6.20 ± 0.09a  
Plum 17 2.57 ± 0.06b 0.94 ± 0.04a   1.29 ± 0.09ab 1.52 ± 0.09a 6.32 ± 0.08a  
Sweet pepper 12 2.39 ± 0.08ab 

 
1.30 ± 0.06b   1.76 ± 0.24bc 1.58 ± 0.23a 7.04 ± 0.17b  
 

Natural prey          
T. urticae on a bean leaf  11 2.25 ± 0.16ab 1.01 ± 0.04a   1.55 ± 0.08abc 1.39 ± 0.10a 6.21 ± 0.20a  
T. urticae brushed off onto arena 15 2.30 ± 0.09ab 1.04 ± 0.06a   1.88 ± 0.15ca 1.63 ± 0.12a 6.85 ± 0.12b  
F. occidentalis (1st and 2nd instars) 
 

  0 - -   - - -  
 

Factitious prey          
Decapsulated Artemia cysts  10 2.55 ± 0.08b 1.05 ± 0.09a   1.74 ± 0.15abc 2.41 ± 0.19b 7.76 ± 0.28c  
Encapsulated Artemia cysts   0 - -   - - -  
E. kuehniella eggs   7 2.08 ± 0.11a 0.95 ± 0.01a   1.73 ± 0.11abc 2.26 ± 0.31b 7.02 ± 0.37b  

aMeans (± SEM) within a column followed by the same letter are not significantly different (p > 0.05, Student Newman Keuls). 
bNumber of individuals that reached adulthood; experiments were started with 30 eggs, data for emerging males are reported in Table 4.3. 
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Table 4.3. Development of I. degenerans males reared on different diets on a Multicel arena  

C
h
a
p
te

r 4
 

Diet nb Stage duration (days )a

      Egg Larva  Protonymph Deutonymph Total
Pollen        
Almond 

 

         

       
         

16 2.41 ± 0.09bc 0.98 ± 0.06ab  1.31 ± 0.11a 1.22 ± 0.08a 5.92 ± 0.08a
Apple 10 2.42 ± 0.08bc 0.95 ± 0.05ab  1.34 ± 0.08a 1.26 ± 0.09a 5.96 ± 0.09a
Castor bean 16 2.43 ± 0.09bc 0.88 ± 0.06a  1.37 ± 0.07a 1.22 ± 0.07a 5.91 ± 0.08a
Plum   9 2.53 ± 0.08bc 1.00 ± 0.00ab  1.29 ± 0.12a 1.28 ± 0.12a 6.09 ± 0.12a
Sweet pepper 
 

  6 2.60 ± 0.06c 
  

1.12 ± 0.02b 
 

 1.85 ± 0.37ab 
  

1.78 ± 0.31ab 
 

7.35 ± 0.40b
 

Natural prey
T. urticae on a bean leaf  14 2.15 ± 0.09ab 1.10 ± 0.06b  1.49 ± 0.08a 1.29 ± 0.09a 6.03 ± 0.10a
T. urticae brushed off onto arena   8 2.42 ± 0.08bc 0.99 ± 0.01ab  2.15 ± 0.16b 1.50 ± 0.15a 7.05 ± 0.26b
F. occidentalis (1st and 2nd instars) 
 

  0 - -  - - - 

Factitious prey
Decapsulated Artemia cysts  17 2.52 ± 0.06bc 1.00 ± 0.00ab  1.58 ± 0.12a 2.28 ± 0.16c 7.38 ± 0.20b
Encapsulated Artemia cysts   0 - -  - - - 
E. kuehniella eggs 16 2.01 ± 0.07a 0.94 ± 0.01ab  1.90 ± 0.20ab 2.12 ± 0.16bc 6.97 ± 0.29b

aMeans (± SEM) within a column followed by the same letter are not significantly different (p > 0.05, Student Newman Keuls). 
bNumber of individuals that reached adulthood; experiments were started with 30 eggs, data for emerging females are reported in Table 4.2. 
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On the remaining diets, development to the adult stage never took longer than 8.0 

days. The adult stage was reached more rapidly when the predator was fed pollen (6.1 – 

6.2 days and 5.9 – 6.0 days for females and males respectively), except for sweet pepper 

pollen and plum pollen, than when natural prey or factitious prey was offered (6.2 – 7.8 

days and 6.0 – 7.4 days for females and males respectively).  

In both sexes, significant differences in developmental periods were found between 

diets (females: F = 12.5, df = 115, p < 0.0001; males: F = 11.5, df = 111, p < 0.0001). 

Developmental times varied more as a function of diet in the protonymphal stage in 

females and, to a lesser extent, in the deutonymphal stage in males. In both females and 

males, mean total development time on almond, apple, castor bean and plum pollen was 

significantly shorter than on sweet pepper pollen. As for the diet consisting of T. 

urticae, development of the predator was affected by the manner in which the prey was 

offered. Development from egg to adult took significantly longer when a mixture of T. 

urticae life stages was directly brushed off onto the arena than when a bean leaflet 

infested with spider mites of all stages was supplied. In the factitious prey diets, dry 

decapsulated brine shrimp cysts resulted in a longer developmental time than 

Mediterranean flour moth eggs (7.8 and 7.4 days vs. 7.0 and 6.9 days for females and 

males respectively). In this case the difference between the two diets was only 

significant for I. degenerans females (Table 4.2). In seven out of nine diets, the total 

developmental time of the I. degenerans males was shorter than that of the females, 

with differences varying from 0.05 to 0.4 days. Male and female developmental times 

only differed significantly when castor bean pollen was supplied as food. Only in the 

case of sweet pepper pollen and twospotted spider mites brushed off onto a Multicel 

arena, did male development take slightly longer (max. 0.3 days). 

During development, mortality and escape rates were strongly affected by diet. 

Figure 4.3 shows the mortality and escape rates recorded for the diets on which I. 

degenerans was able to complete its development. The diets are grouped per food 

category (pollen, natural prey and factitious prey), and within each category data are 

sorted from the shortest to the longest total developmental time. Mortality occurred 

when the predator was reared on sweet pepper pollen (26.7%), Ephestia eggs (20.0%), a 

mixture of T. urticae life stages brushed off onto the arena (10.0%) or supplied on a 

bean leaflet (6.7%). On all diets, except castor bean pollen, some juveniles (varying 
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from 3.3% to 13.3%) escaped from the Multicel arena. The highest percentages of 

escape were found when plum pollen, sweet pepper pollen or twospotted spider mites 

were supplied as food. Escape of the predatory mites occurred mostly in the larval stage.  
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Figure 4.3. Mortality and escape rates of immature I. degenerans reared on different 

diets on a Multicel arena. 

 

 

Developmental times of I. degenerans on different food sources offered on a detached 

bean leaf are reported in Table 4.4. On castor bean pollen, the predator reached 

adulthood sooner than on the other diets. When F. occidentalis nymphs were offered, 

only 4 (diet consisting of 1st instars) and 3 predatory mites (diet consisting of 1st and 2nd 

instars) out of 30 survived to adulthood. Adding castor bean pollen to the diet of 1st 

instar thrips increased the survival rate to 60%. No immature mites died when reared on 

this combination of thrips nymphs and pollen, whereas mortality ranged from 33.3 - 

36.7% in the other diets consisting of thrips nymphs only.  

 



  

Table 4.4. Development of I. degenerans reared on different diets on a bean leaf arena  
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Diet nb Stage duration (days)a

      Egg Larva Protonymph Deutonymph Total
Pollen         
R. communis 21 2.46 ± 0.10b 0.92 ± 0.09a 

 
 1.35 ± 0.09a 

 
1.36 ± 0.12a 

  
6.09 ± 0.11a 

 
 

   

   

 
Natural prey         
T. urticae    8 2.53 ± 0.06b 1.04 ± 0.05a  2.07 ± 0.17c 2.41 ± 0.42b 8.05 ± 0.53c  
F. occidentalis (1st instars)   4 2.51 ± 0.34 1.03 ± 0.01  1.97 ± 0.01 2.24 ± 0.14 7.75 ± 0.21  
F. occidentalis (1st and 2nd instars)   3 2.57 ± 0.14 0.75 ± 0.16  2.77 ± 0.92 2.17 ± 0.74 8.26 ± 0.23  
T. vaporariorum 20 2.63 ± 0.05b 1.02 ± 0.05a  1.75 ± 0.09b 1.70 ± 0.06a 7.11 ± 0.13b  
M. persicae 15 2.16 ± 0.08a 1.09 ± 0.08a 

 
 2.26 ± 0.07c 

 
1.86 ± 0.07a 

  
7.38 ± 0.10b 

 
 

 
Natural prey and pollen         
F. occidentalis (1st instars) and R. communis  18 2.70 ± 0.05b 0.96 ± 0.03a  1.66 ± 0.11ab 1.85 ± 0.09a 7.16 ± 0.16b  

aMeans (± SEM) within a column followed by the same letter are not significantly different (p > 0.05, Student Newman Keuls); means 

without a letter were excluded from analysis. 
bNumber of individuals that reached adulthood; experiments were started with 30 eggs. 
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Table 4.5. Effect of substrate on the development of I. degenerans when reared on different diets  

nb Stage duration (days)aDiet Substrate
       Egg Larva  Protonymph Deutonymph Egg -adult
R. communis pollen Multicel 30   2.49 ± 0.06a 0.94 ± 0.03a 1.29 ± 0.05a 1.32 ± 0.05a 6.05 ± 0.06a 
 Bean leaf 

  

       
   

 21   2.46 ± 0.10a 0.92 ± 0.09a 1.35 ± 0.09a 1.36 ± 0.12a 6.09 ± 0.11a 
 Sweet pepper leaf 

 
25 2.32 ± 0.10a 
  

1.09 ± 0.07a 
 

 1.38 ± 0.13a 
  

1.54 ± 0.09a 
 

6.34 ± 0.07b 
 

 

T. urticae Multicel + bean leaf 
 

25   2.19 ± 0.09a 1.06 ± 0.04a 1.51 ± 0.06a 1.34 ± 0.07a 6.10 ± 0.10a 
 Multicel 23  2.34 ± 0.06ab 1.02 ± 0.04a 1.97 ± 0.11b 1.58 ± 0.10a 6.92 ± 0.12b  
 Bean leaf   8 2.53 ± 0.06b 1.04 ± 0.05a  2.07 ± 0.17b 2.41 ± 0.42b 8.05 ± 0.53c  
 Sweet pepper leaf 

 
  1 2.77 
 

0.98  2.00 1.58 7.33  
 
F. occidentalis Multicel   0 1.95 ± 0.08 1.37 ± 0.11  1.88 ± 0.42c - -
 Bean leaf   3 2.57 ± 0.14 0.75 ± 0.16  2.77 ± 0.92 2.17 ± 0.74 8.26 ± 0.23  
 Sweet pepper leaf   2 2.77 ± 0.00 0.98 ± 0.00  2.75 ± 0.17 2.54 ± 0.20 9.04 ± 0.37  

aMeans (± SEM) within a column and a diet followed by the same letter are not significantly different (p > 0.05, Student Newman Keuls); 

means without a letter were excluded from analysis.  
bNumber of individuals that reached adulthood (initial number = 30). 
 cAll individuals died in the protonymphal stage 
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The highest proportion of escaping mites (57%) was found in the diet consisting of 1st 

and 2nd instars of F. occidentalis, while 50% of the immatures escaped when offered 1st 

instar thrips nymphs. Iphiseius degenerans was able to develop on a diet of T. 

vaporariorum eggs or M. persicae nymphs. The obtained developmental times did not 

differ significantly from the values found when thrips nymphs and pollen were supplied 

as food. Immature mortality on a diet of aphid nymphs was higher than on whitefly eggs 

(38 versus 20%). 

 

 

4.3.4 Effect of substrate on development and survival of the immature stages 

 

Table 4.5 shows the effect of substrate used in the experimental unit on the development 

of I. degenerans on three diets. The developmental period from egg to adult on castor 

bean pollen averaged 6.0 days on a Multicel arena or a bean leaf, whereas on a sweet 

pepper leaf development took significantly longer (ca. 0.3 days). 

A greater variation was observed when twospotted spider mites were provided as 

food. Iphiseius degenerans develops significantly faster when offered a spider mite 

infested bean leaf on a Multicel arena (indicated in Table 4.5 as Multicel + bean leaf). 

The longest developmental time (ca. 8.0 days) was recorded on the bean leaf substrate. 

When T. urticae was presented to the predator on a sweet pepper leaf, only 1 individual 

reached adulthood. Mortality of the predator reared on spider mites was 6.7% when an 

infested bean leaf was placed on a Multicel arena, 10.0% when the prey was brushed off 

onto the Multicel arena, 13.3% on a detached bean leaf arena and 36.7% on a detached 

sweet pepper leaf arena. Escape rates were 10.0%, 13.3%, 60.0% and 60.0%, 

respectively. When reared on spider mites, escape of the predatory mites was highest in 

the larval stage, whereas mortality occurred mostly in the protonymphal stage. 

On a diet consisting of F. occidentalis nymphs, no development beyond the 

protonymphal stage was recorded when I. degenerans was reared on a Multicel arena. 

The predator lived on average for 5.2 days. Only 3 and 2 predatory mites reached 

adulthood on a detached bean leaf and sweet pepper leaf, respectively. On the detached 

bean leaf arena 56.7% of the predators escaped from the arena, and 33.3% died. Escape 

rates were higher in the larval stage (40.0%), whereas the mortality was highest in the 
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protonymphal stage (16.7%). Similar results were obtained on a sweet pepper leaf 

arena: 63.3% of the individuals escaped from the arena (53.3% as larvae) and 30.0% 

died as protonymphs. Here, no mortality was recorded in the larval and deutonymphal 

stages. 

 

 

4.4 DISCUSSION 

 

Developmental rates and immature survival of phytoseiid mites vary considerably 

depending on abiotic and biotic factors. Larvae of some phytoseiids, for example 

Phytoseiulus longipes Evans, Neoseiulus cucumeris (Oudemans), and Neoseiulus 

californicus (McGregor) (Badii and McMurtry, 1983; van Rijn and Tanigoshi, 1999; 

Chittenden and Saito, 2001) are able to develop into the protonymphal stage in the 

absence of food, but for further development, food such as natural prey or plant pollen 

is required. Iphiseius degenerans was unable to develop beyond the protonymphal stage 

when offered leaf tissue or water only. van Rijn and Tanigoshi (1999) and Chittenden 

and Saito (2001) reported similar results for the same species. Even when I. degenerans 

is able to feed on plant cells, the nutritional value of plant sap is insufficient to ensure 

full development. Porres et al. (1975) concluded that plant sap may be an alternative 

source of food and/or moisture for Amblyseius hibisci (Chant). However, Chant and 

Fleschner (1960) showed earlier that A. hibisci did not reproduce and that the lifespan 

was only slightly prolonged when compared with individuals living on water alone.  

 Pollen is considered to be favourite food for the immature stages of several 

phytoseiid mites. Development on pollen is reportedly completed within 6 – 7 days 

(Castagnoli and Simoni, 1990; Yue and Tsai, 1996; Broufas and Koveos, 2000). 

Particularly almond, apple and castor bean pollen yielded higher developmental rates 

and lower mortality, when compared with other diets. N. cucumeris also showed better 

immature survival and a shorter egg-to-adult period when reared on pollen (Castagnoli 

and Simoni, 1990). Our results indicate that almond pollen is even superior to castor 

bean pollen, which is used in our mass rearing of I. degenerans. van Rijn and Tanigoshi 

(1999) also reported a higher oviposition rate of I. degenerans on almond pollen than on 

R. communis (2.28 and 1.73 eggs/day, respectively). This suggests that almond pollen is 
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a better diet for mass rearing I. degenerans. The results on sweet pepper pollen seem 

surprising as I. degenerans is frequently found in sweet pepper flowers using pollen 

and/or thrips nymphs as food (van Houten and van Stratum, 1993). The developmental 

duration obtained on sweet pepper pollen is even higher than when T. urticae was 

supplied on a Multicel arena. van Rijn and Sabelis (1990) concluded that sweet pepper 

pollen is a determinant of N. cucumeris population size in periods of thrips scarcity.  

In 7 of the nine diets offered on a Multicel arena, males developed slightly faster 

than the females (max. 9 h) (the difference was only significant in the diet consisting of 

castor bean pollen). Sabelis (1985) reported that egg-to-adult period of male phytoseiids 

is generally not shorter than that of females. However, in Phytoseius hawaiiensis Prasad 

and N. cucumeris, males develop more rapidly than the females, but in most species the 

difference between the developmental times of both sexes is not significant (e.g., 

Sanderson and McMurtry, 1984; Castagnoli and Simoni, 1990). 

Generally, development of phytoseiid mites fed on tetranychids is completed within 

5.4-8 days (Takafuji and Chant, 1979; Castagnoli and Simoni, 1990; Duso and 

Camporese, 1991; van Rijn and Tanigoshi, 1999; Kazak et al., 2002). Our results fit 

well within that range. However, the developmental time was affected by two factors: 

the substrate used in the experimental unit, and the way in which the spider mites were 

offered to the predator on a Multicel arena. Shorter developmental times were obtained 

on Multicel than on leaf substrates. When spider mites were brushed from a leaf onto a 

Multicel arena, development of the predator took longer than when a bean leaf infested 

with spider mites was supplied. These differences might be caused by the webbing of 

the spider mites, as the adult stage was reached more rapidly on arenas on which less 

webbing was produced. On Multicel arenas, the webbing was produced around the 

black thread on the arena, and this was observed more frequently in experiments in 

which prey was brushed off onto the arena than when an infested bean leaf was 

supplied. As the bean leaf dried, prey wandered more frequently over the arena and thus 

was easier to seize by the predator, compared to prey in the webbing around the black 

thread. In experiments using leaf arenas, the whole area was covered with webbing, 

resulting in a longer developmental time of the predator. The escape rates on a leaf 

arena were 6 times higher compared to those on a Multicel arena. The webbing of 

Tetranychus spp. appears to be an impediment to foraging I. degenerans, and forces the 
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predator to leave the arena. This might explain the higher escape rates observed on leaf 

arenas. According to van Rijn and Tanigoshi (1999), I. degenerans and N. cucumeris 

showed a similar performance on pollen and on the twospotted spider mite, when the 

latter was offered without webbing. Sabelis and Bakker (1992) found that the phytoseiid 

mites that were better protected from the webbing of Tetranychidae had long setae in 

the medial and lateral position on the dorsal shield. I. degenerans may thus be less 

adapted to preying on spider mites, given that this species has short dorsal and lateral 

setae on the dorsal shield (Van der Merwe, 1968).  

A diet consisting of eggs of the greenhouse whitefly T. vaporariorum was sufficient 

for the development of I. degenerans. When fed whitefly eggs the predator reached 

adulthood in 7 days, with a survival rate of 67%. These results are similar to those 

obtained when the predatory mites were fed on a combination of pollen and thrips 

nymphs. Attacks of I. degenerans on Parabemisia myricae (Kuwana) have been 

reported (Swirski et al., 1987), but no further data on the predatory activity of I. 

degenerans against any whitefly species have been found in the literature. Several 

Amblyseius, Typhlodromus and Euseius species, however, have been reported as 

predators of the sweetpotato whitefly Bemisia tabaci (Gennadius). An overview of 

phytoseiid predators recorded feeding on B. tabaci is given by Gerling (2001) and 

Nomikou et al. (2001). Our results are consistent with those found in the literature. 

Developmental times of phytoseiids fed on immature stages of B. tabaci range from 7 to 

9 days (Nomikou et al., 2001; Meyerdirk and Coudriet, 1985, 1986). Meyerdirk and 

Coudriet (1986) reported that 47-65% of E. scutalis fed B. tabaci survived, whereas for 

E. hibisci a survival rate of 75% was recorded (Meyerdirk and Coudriet, 1985). 

 Iphiseius degenerans was able to complete development from egg to adult when fed 

on M. persicae nymphs. Fifty percent of the immatures survived to adulthood in 7.4 

days. To our knowledge, development of I. degenerans when fed aphid nymphs has not 

been documented before. Nevertheless, the predatory mite has been recommended as a 

biological control agent for aphids (ATTRA, 2005). 

 Not all prey tested in this study was suitable for the development of I. degenerans. 

No development beyond the protonymphal stage occurred when the predator was fed 1st 

and 2nd instars of F. occidentalis on a Multicel arena. Also given the low number of 

adults obtained on a leaf substrate, it can be concluded that nymphs of F. occidentalis 
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are unfavourable food for immature I. degenerans. As this phytoseiid mite is 

commercialized as a thrips predator, these results seem surprising. Sengonca and 

Drescher (2001) reported similar observations with I. degenerans and 2nd instars of 

Thrips tabaci Lindemann as prey. For the commercialized thrips predator N. cucumeris 

developmental times ranging from 8.2 to 9.5 days have been found (Gillespie and 

Ramey, 1988; Castagnoli et al., 1990; Castagnoli and Simoni, 1990). High immature 

mortality (37.83%) for the latter species has been reported by Castagnoli et al. (1990). 

The high percentages of escape and immature mortality on both Multicel and leaf arenas 

may be explained in part by the aggressive defence behaviour of the thrips nymphs. 

Larvae of I. degenerans escaped more from the arena than the other developmental 

stages. It is hypothesized that the less active larvae of the predator, compared to the 

other stages, are more disturbed by the wandering (and defence behaviour) of thrips 

nymphs and consequently flee to the absorbent paper in which they get stuck and die. It 

was also observed that the thrips nymphs (especially second instars) evade attacks, 

particularly of the smaller protonymphs, by jerking with their abdomen. In that way, 

protonymphs were deprived of food and died, explaining the high mortality in that 

stage. Bakker and Sabelis (1989) reported that thrips nymphs also evade attacks by 

predators by producing a drop of rectal fluid. Only when thrips nymphs are seized in the 

thoracic region, both jerking and droplet production are ineffective. Adding castor bean 

pollen to a diet of thrips nymphs resulted in longer developmental times compared to 

that on a diet consisting of pollen alone. The presence of pollen on the arena, however, 

reduced the mortality of I. degenerans immatures, but predators still escaped from the 

arena. As the thrips nymphs also used the pollen as food, the possibility of encountering 

thrips nymphs and as such being exposed to the defence behaviours of the thrips 

nymphs, still remained. 

Iphiseius degenerans was able to develop to the adult stage on E. kuehniella eggs and 

decapsulated A. franciscana cysts, emphasizing the polyphagous character of the 

predatory mite and its ability to feed and develop on factitious foods. However, they do 

not constitute a good alternative for use in mass rearing of the predatory mite as these 

diets resulted in the longest developmental duration. In the literature no records were 

found in which phytoseiid mites were fed on Ephestia eggs or Artemia cysts. Ephestia 

eggs are frequently used as an alternative food source for natural enemies (examples in 
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Morrison, 1985; Schanderl et al., 1988; Grenier et al., 1989; Nicoli et al., 1991; Vacante 

et al., 1997). 

On non-hydrated encapsulated Artemia cysts, I. degenerans failed to develop beyond 

the protonymphal stage, whereas full development did take place on decapsulated eggs. 

The lack of development may be explained by the fact that I. degenerans may not be 

able to pierce the alveolar layer of fresh Artemia cysts (see Van Stappen (1996) for 

detailed information on Artemia cysts). The ladybird beetle Harmonia axyridis (Pallas) 

(Hongo and Obayashi, 1997) and the anthocorid thrips predator Orius laevigatus 

(Fieber) (Arijs and De Clercq, 2001) are also able to develop on brine shrimp cysts. 

However, the developmental period of O. laevigatus nymphs was significantly shorter 

on decapsulated cysts than on encapsulated cysts. 

In general, high escape rates were correlated with long developmental times (Fig. 

4.3). This may indicate that when a food source is considered unfavourable, the 

predators start wandering in search of more suitable food. The high escape rates 

(especially of the larvae) and mortality of the immature stages (especially in the 

protonymphal stage) may also in part be explained by the experimental set-up. Plants 

provide more shelter for the larvae of I. degenerans. If the immature predatory mites are 

unable to seize prey such as spider mites or thrips nymphs, they can feed on an 

alternative food source such as pollen, or feed on prey that has been killed by an adult 

predator.  

 

In conclusion, our study shows that I. degenerans is a generalist, able to develop on a 

wide range of natural and factitious foods.  

Pollen has been shown to be an optimal food for the immature stages of several 

phytoseiid mites. The castor bean pollen we are using in our mass rearing may not result 

in the shortest developmental times, but is far easier to collect than the other pollen 

species used in this study.  

Although I. degenerans is frequently found in the flowers of sweet pepper plants, 

sweet pepper pollen and thrips nymphs were found to be unfavourable food for 

immature development of the predator.  
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Further, I. degenerans may be not be able to cope with dense webbing of spider 

mites, but it may be effective in the initial phase of a spider mite infestation, when the 

leaves are not yet entirely covered with webbing.  

The ability to develop on T. vaporariorum eggs and M. persicae nymphs implies the 

potential of the predator to control these pests, but further information on life history 

traits and prey preference is necessary.  

 

As a next step in determining the effectiveness of I. degenerans as a biological control 

agent, further research will evaluate the ability of adult mites to feed and reproduce on 

different diets. 
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CHAPTER 5 

INFLUENCE OF DIET ON LIFE TABLE PARAMETERS OF 

IPHISEIUS DEGENERANS 

 

 

5.1 INTRODUCTION 

 

There have been several studies on the immature development of I. degenerans 

(Takafuji and Chant, 1976; McMurtry, 1977; McMurtry et al., 1984; van Rijn and 

Tanigoshi, 1999ab; Vantornhout et al., 2004), and its reproductive characteristics 

(Takafuji and Chant, 1976; McMurtry, 1977; Kennett and Hamai, 1980; McMurtry et 

al., 1984; van Houten et al., 1995; Nwilene and Nachman, 1996). However, full life 

table studies were only performed by van Rijn and Tanigoshi (1999ab) on broad bean 

pollen, castor bean pollen, castor bean pollen and nectar, or the twospotted spider mite 

Tetranychus urticae Koch on an artificial substrate, and by Takafuji and Chant (1976) 

on the pacific spider mite Tetranychus pacificus McGregor on a paper substrate. 

 This study was conducted to determine the impact of different diets on some 

biological characteristics of the predatory mite. Ricinus communis L. (castor bean) 

pollen (the diet used for mass rearing I. degenerans), a mix of all stages of the spider 

mite T. urticae or of F. occidentalis nymphs (two natural prey species), T. 

vaporariorum eggs (potential natural prey species), and Ephestia kuehniella Zeller eggs 

(potential factitious food), were selected as food. In the diets consisting of natural prey, 

leaf arenas were used. In the case of spider mites both artificial and leaf arenas were 

used in order to investigate the influence of webbing on the life cycle parameters of the 

predatory mite. For the remaining diets only artificial arenas were used. 

 

 

 

 

 

This chapter is based on: Vantornhout, I., Minnaert, H.L., Tirry, L. and De Clercq, P. 2005. Influence of 

diet on life table parameters of Iphiseius degenerans. Exp. Appl. Acarol. 35: 183-195. 

 



74 Chapter 5  

5.2 MATERIALS AND METHODS 

 

5.2.1 Predator culture 

 

Iphiseius degenerans was reared as described in chapter 3 (3.2.1 Predator culture). 

 

 

5.2.2 Food sources 

 

In this study castor bean R. communis pollen, 1st and 2nd instars of the western flower 

thrips F. occidentalis, all stages of the spider mite T. urticae, eggs of the greenhouse 

whitefly T. vaporariorum and eggs of the Mediterranean flour moth, E. kuehniella were 

used as food sources. Rearing, handling and origin of these food sources have been 

described in chapter 4 (4.2.2 Food sources). 

 

 

5.2.3 Experimental units 

 

Both artificial arenas and leaf arenas (as described chapter 4, 4.2.3 Experimental units) 

were used in this study. 

 

 

5.2.4. Experiments  

 

Eggs from the stock colony were collected over a 12 h period and reared on a new 

artificial arena. To make sure all predatory mites had the same feeding history, 

immature stages in all treatments were fed on castor bean pollen until they reached 

adulthood. Newly moulted female mites (less than 24 h old) were transferred singly to 

either a Multicel or a leaf arena together with a male of the same age, and fed one of the 

food sources described above. Diet-substrate combinations used in the experiments 

were: castor bean pollen–Multicel arena, spider mites–Multicel arena, spider mites–

bean leaf arena, thrips nymphs–sweet pepper leaf arena, whitefly eggs–bean leaf arena 
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and Ephestia eggs–Multicel arena. There were 30 replicates per combination of diet-

substrate.  

Every 7 days the predatory mites were transferred to a fresh arena. Males that died 

before their female partners were replaced. 

Every replicate was observed daily until the death of the female. On each 

observation, the following parameters were recorded: interval (in hours) between the 

present and previous observation, number of dead and escaped females, and number of 

eggs laid per female.  

The eggs produced by all females fed on a food source were pooled per daily 

observation and then spread over three new arenas. The resulting larvae were fed the 

same food as their parents. However, in experiments in which the parent generation was 

offered western flower thrips, the progeny was fed on castor bean pollen, because 

previous work (chapter 4) showed that western flower thrips nymphs are unfavourable 

food for immature development. On a sweet pepper leaf, only 7% of the predatory mites 

reached adulthood when presented with thrips nymphs. This low amount of adults 

obtained was due to a high degree of escape among the larvae of I. degenerans and a 

high mortality rate in the protonymphs (see chapter 4). Once the progeny reached 

adulthood, the survival, escape and sex ratio were calculated.  

All experiments were conducted in a climatic cabinet at 25 ± 1 °C, 75 ± 5% RH and 

a 16L:8D h photoperiod. 

 

 

5.2.5 Data analysis 

 

Based upon the data obtained from the experiments described above, mean longevity, 

duration of the oviposition period, and fecundity (expressed as the number of eggs over 

the oviposition period) of female mites were calculated. Data from females that escaped 

from the arena or that drowned in the surrounding moist absorbent paper were excluded 

from these calculations. Given the high level of escape and mortality in the progeny of 

the predatory mite, the percentage of females was calculated as the number of daughters 

over the total amount of obtained adults in the progeny.  
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 Second, the age-specific survival of the predatory mite in each treatment was 

described. To take the escape of females in account, survival was calculated by 

multiplying survival ratios over all previous observations. Hence, at each observation a 

survival ratio was calculated as (N-D)/N, where N is the number of mites alive at the 

previous observation, and D is the number of predators that died between two 

observations. To define the type of survivorship curve, the survival data were fitted to 

the three-parameter Gompertz function ( [ ])/)(exp(exp*)( 0 bxxaxf −−−= ), where f(x) 

is the survival at age x, and a, b and x0 are the three parameters of the function. 

Parameter a determines the position of the asymptote, or the maximum value the 

survival reaches (i.e., a cannot exceed the value of 1). The rate at which the curve 

reaches this value is determined by parameter b. Parameter x0 determines the position of 

the curve. Parameters were estimated using SigmaPlot 2002 (SPSS Inc., 1986-2001). 

 Third, life table parameters were calculated. The intrinsic rate of increase rm was 

calculated from the equation  where lx is the proportion of females 

surviving to age x and mx is the mean number of female progeny per adult female at age 

x. Other parameters calculated were the net reproductive rate R0 ( = ) or the 

mean number of daughters produced per female, the mean generation time T ( = 

 ), and the doubling time DT ( = ). To estimate the variance for rm 

the Jackknife method was used (Meyer et al., 1986). For this purpose a VBA-macro 

(MS Excel, see Appendix I) was written, based on the brief description of the technique 

in Hulting et al. (1990). The VBA-macro was tested for correctness, using the datasets 

in Hulting et al. (1990). Obtained Jackknife ‘pseudo-values’ of the intrinsic rate of 

increase were then transferred to SPSS 12.0 (SPSS Inc., 1989-2003) in which a multiple 

comparison test was used to evaluate the differences among the means.  

1=∑ −
xx

xr mle m

xxml∑

mrR /)(ln 0 mr/)2(ln

Analysis of variance (ANOVA) was used to test for statistical differences in 

longevity, fecundity, and the Jackknife intrinsic rate of increase among diets. The 

ANOVA was followed by a multiple comparison test (Student Newman Keuls) at the p 

= 0.05 level (SPSS 12.0, SPSS Inc., 1989-2003). 
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5.3 RESULTS 

  

5.3.1 Adult longevity and reproductive capacity 

 

The results on adult female longevity and reproductive capacity are summarized in 

Tables 5.1 to 5.3 and Figure 5.1.  

 During the experiments a number of females escaped from the arena and were not 

retrieved. The percentage of females escaping ranged from 13.3% (castor bean pollen) 

to 76.7% (thrips nymphs). 

 The shortest female longevity (13.1 days) was found when the predator was fed on 

whitefly eggs. On the other diets the longevity ranged from 29.5 to 42.4 days (Table 

5.1, F = 11.4, df = 91, p ≤ 0.0001). Figure 5.1 shows the observed and simulated age-

specific survivorship curves of I. degenerans reared on different diets. The Gompertz-

function ( [ )/)(exp(exp*)( 0 bxxaxf ]−−−= ) yielded a good fit to the data for each diet 

(simulated age-specific survivorship curve in Figure 5.1), with R² ranging from 0.905 to 

0.987. Parameter estimates for this function are given in Table 5.2. The steep drop-off 

in the survivorship curve on a diet of castor bean pollen is indicated by the highest value 

of parameter b, whereas on the other diets the drop-off is less steep (as indicated by 

lower values of b). The x0 value is highest on the diet consisting of thrips nymphs 

indicating that the position of this survivorship curve is more pronounced to the right, 

compared with the other curves. 

 Both observed and simulated age-dependent survivorship curves are described by a 

type I pattern in all cases. This pattern indicates a high survival at young and 

intermediate ages, followed by a steep drop-off in survival as individuals approach their 

maximum life span (Gotelli, 1995). The first 6 points of the observed survivorship curve 

indicate the survival of the immature stages. During the immature stage, in which 

predators were fed castor bean pollen, there was 100% survival (chapter 4). First adult 

mortality was observed from 1 (spider mites, Multicel arena) to 19 days (pollen) after 

moulting to the adult stage. The observed maximum female longevity on pollen, thrips 

nymphs, spider mites (artificial arena), spider mites (leaf arena), Ephestia eggs and 

whitefly eggs was recorded at 52, 75, 54, 52, 60, and 35 days respectively (Fig. 5.1). 
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Table 5.1. Female adult longevity and duration of the oviposition periods (days) of I. degenerans reared on different diets and substrates 
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Diet   Substrate na Female 
longevityb

Pre-oviposition 
periodb

Oviposition 
periodb

Post-oviposition 
periodb

R. communis pollen  Multicel 26 36.7 ± 2.2bc 3.0 ± 0.1a 31.9 ± 2.1b 1.7 ± 0.8a 
F. occidentalis nymphs  Sweet pepper leaf 

 
  7 40.8 ± 4.4c 4.6 ± 0.9b 35.3 ± 4.5b 0.9 ± 0.3a 

T. urticae  Multicel 20 29.5 ± 2.5b 3.1 ± 0.2a 25.0 ± 2.3b 1.4 ± 0.7a 
T. urticae  Bean leaf 14 35.1 ± 2.9bc 5.8 ± 0.5c 27.0 ± 3.0b 2.4 ± 0.8a 
Ephestia eggs  Multicel 14 42.4 ± 2.8c 4.3 ± 0.4b 35.7 ± 3.1b 2.4 ± 0.8a 
T. vaporariorum eggs  Bean leaf 11 13.1 ± 2.8a 2.9 ± 0.1a  9.0 ± 2.7a 1.3 ± 0.4a 

 

 

 

 

 

 

aNumber of females that died of a natural cause (initial number of females = 30) 
bMeans (± SEM) followed by the same letter are not significantly different (Student-Newman-Keuls–test, p > 0.05) 

 

 

Table 5.2. Parameter estimates for the Gompertz function [ ])/)(exp(exp*)( 0 bxxaxf −−−=  
 Parameters  Diet  

 
 Substrate na

a b x0  
R2

R. communis pollen  Multicel 26 1 -10.2 48. 2  0.968
F. occidentalis nymphs  Sweet pepper leaf 

 
  7 1 -15.5 64.1  0.926

T. urticae  Multicel 20 1 -11.9 42.5  0.946
T. urticae  Bean leaf 14 1 -16.8 41.7  0.967
Ephestia eggs  Multicel 14 1 -10.4 57.6  0.987
T. vaporariorum eggs  Bean leaf 11 1 -11.0 33.2  0.905

 

 

 

 

 

aNumber of females that died of a natural cause (initial number of females = 30) 
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Figure 5.1. Age specific survivorship curve (solid dots), fitted survivorship curve (Gompertz function, solid line) and age specific daily 

fecundity (open dots) of I. degenerans reared on different diets and substrates. 
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After pairing I. degenerans males and females, the pre-oviposition period lasted 2.9 

(whitefly eggs) to 5.8 days (spider mites, leaf arena) (F = 12.5, df = 91, p < 0.0001). No 

females died during the pre-oviposition period when fed pollen or whitefly eggs; when 

fed spider mites on a leaf arena 16.7% of the females died, while in the remaining diets 

only 3.33% died. The oviposition period lasted 9.0 (whitefly eggs) to 35.7 days 

(Ephestia eggs) (Table 5.1, F = 10.1, df = 91, p < 0.0001). 

 

Mean egg production per female during the oviposition period was lowest for females 

reared on whitefly eggs (Table 5.3; F = 8.99, df = 91, p < 0.0001). The mean daily 

fecundity varied with female age. The main peaks in fecundity occurred on days 11-26 

(pollen), 21-33 (thrips), 12-28 (spider mites, artificial arena), 26-38 (spider mites, leaf 

arena), 12-19 (Ephestia eggs), and 12-15 (whitefly eggs) (Fig. 5.1). On all diets, 

maximum daily oviposition did not exceed 2.5 eggs/female. Average daily oviposition 

ranged from 1 to 1.9 eggs/female, and was significantly higher on spider mites (artificial 

arena) than on the other diets (F = 25.5, df = 91, p < 0.0001). Over all the experiments 

in this study 4866 eggs were processed, of which 40% reached adulthood. Sixty percent 

of the obtained adults were female. The percentage of females in the live offspring per 

diet is given in Table 5.3. The survival rate of the progeny ranged from 7% (spider 

mites, leaf arena) to 61 % (pollen). The duration of the post-oviposition period varied 

between 1 and 2.5 days, and was independent of diet (Table 5.1, F = 0.47, df = 91, p = 

0.80).  

 

 

5.3.2 Life table parameters 

 

Life table parameters of I. degenerans are summarized in Table 5.4. Significant 

differences between the intrinsic rates of increase were found (F = 48.75, df = 91, p < 

0.0001).  

 The highest values of rm (females/female.day) and R0 (females/female) were found 

when the predatory mites were fed pollen (0.142 and 15.0, respectively), whereas the 

lowest values were recorded on spider mites (leaf arena) (0.015 and 1.53, respectively). 

When the predatory mites were fed Ephestia eggs or whitefly eggs, rm and R0 values 
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were higher than those found on spider mites (leaf arena), but lower than those obtained 

on the other diets. 

Castor bean pollen resulted in the lowest generation time T (days) and doubling time 

DT (days) (19.0 and 4.88, respectively), whereas spider mites (leaf arena) yielded the 

highest values (29.6 and 46.2, respectively). Life table parameters obtained on spider 

mites (artificial arena) were similar to those on thrips.  

 

Table 5.3. Total and daily fecundity (eggs/female), and offspring sex ratio (% females in 

the obtained adult progeny) of I. degenerans reared on different diets and substrates 

Fecundityb Sex ratioDiet Substrate na

Total Daily   
R. communis pollen Multicel 26 38.6 ± 3.1b 1.2 ± 0.1a   64 
F. occidentalis nymphs Sweet pepper leaf 7 42.6 ± 5.2b 1.3 ± 0.1a  40 
T. urticae Multicel 20 47.8 ± 4.0b 1.9 ± 0.1b  73 
T. urticae Bean leaf 14 32.9 ± 5.3b 1.1 ± 0.1a  62 
Ephestia eggs Multicel 14 36.9 ± 3.9b 1.0 ± 0.1a  53 
T. vaporariorum eggs Bean leaf 11   9.1 ± 2.5a 1.2 ± 0.1a  65 
aNumber of females that died of a natural cause (initial number of females = 30) 
bMeans (± SEM) followed by the same letter are not significantly different (Student-

Newman-Keuls – test, p > 0.05) 

 

 

5.4 DISCUSSION 

 

Life table parameters are good indices of population growth under a given set of 

conditions. We demonstrated that diet had a significant effect on life cycle parameters 

of I. degenerans. The phytoseiid was able to survive and reproduce on all food sources 

offered. All rm values found were within the range of values reported by McMurtry and 

Croft (1997) for generalist predators, i.e., below 0.1 (Typhlodromus pyri Scheuten and 

Phytoseius hawaiiensis Prasad) up to 0.25 females/female.day (I. degenerans, 

Amblyseius largoensis (Muma), Typhlodromalus limonicus (Garman and McGregor) 

and T. peregrinus (Muma)).  
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Table 5.4. Life table parameters of I. degenerans reared on different diets and substrates 

 
Diet Substrate na rm 

bc  95% CId R0
e Tf DTg

Castor bean pollen Multicel 26 0.142 ± 0.004d  0.135 - 0.150 15.0 19.0  4.88 
Thrips nymphs Sweet pepper leaf  7 0.114 ± 0.005c  0.101 - 0.127 14.5 23.5  6.08 
Spider mites Multicel 20 0.115 ± 0.003c  0.110 - 0.121 10.3 20.2  6.03 
Spider mites Bean leaf 14 0.015 ± 0.006a  0.002 - 0.028  1.53 29.6 46.2 
Ephestia eggs Multicel 14 0.073 ± 0.006b  0.061 - 0.086  5.02 22.0  9.49 
Whitefly eggs Bean leaf 11 0.056 ± 0.019b  0.015 - 0.098  2.36 16.2 12.4 

 

 

 

 

 

aNumber of females that died of a natural cause (initial number of females = 30) 
bMeans (± SEM) followed by the same letter are not significantly different (Student-Newman-Keuls-test, p > 0.05) 
c intrinsic rate of increase in females/female.day 
d 95% confidence interval of rm

e net reproductive rate in females/female 
f generation time in days 
g doubling time in days 
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 The demographic parameters of I. degenerans fed on castor bean pollen proved to be 

better than on any of the arthropod prey tested. The values we obtained (T = 19.0 days, 

rm = 0.142 females/female.day, R0 = 15.0 females/female) were lower than those 

reported by van Rijn and Tanigoshi (1999a) under comparable experimental conditions. 

In other studies it has also been shown that pollen is a good food source with respect to 

the fecundity of I. degenerans (e.g., Ramakers and Voet, 1995; van Rijn and Tanigoshi, 

1999a).  

 When presented with thrips nymphs a high percentage of females escaped from the 

arena, with only 7 of the initial 30 females dying of a natural cause. This may be 

explained in part by the aggressive defence behaviour of the thrips nymphs. Hence, I. 

degenerans may encounter problems in catching this type of prey, and in search of more 

suitable prey it leaves the arena and gets stuck in the absorbent paper on the arena. 

Alternatively, I. degenerans may leave the arena to avoid egg predation by thrips 

nymphs. Janssen et al. (2003) showed that in presence of low quality plant food (e.g., 

sweet pepper) thrips nymphs feed more on I. degenerans eggs than they do on high 

quality plant food.  

 The oviposition rate observed on a mix of 1st and 2nd instars (i.e., 1.3 

eggs/female.day) is comparable with that on F. occidentalis first instars, as reported by 

van Houten and van Rijn (1995). On a diet of second instar citrus thrips (Scirtothrips 

citri (Moulton)), I. degenerans deposited 0.93 to 2.54 eggs/day during the first 5 days of 

their oviposition period (Grafton-Cardwell et al., 1998). For Amblyseius cucumeris 

(Oudemans), the number of eggs varied from 1.5 eggs/day on F. occidentalis nymphs to 

1.87 eggs/female on first instar larvae of Thrips tabaci Lindeman (Gillespie and Ramey, 

1988; Castagnoli and Simoni, 1990). The results from the previous chapter indicated 

that I. degenerans has great difficulty to develop to the adult stage on a diet of thrips 

nymphs; therefore, the eggs obtained from the parental generation were further reared 

on castor bean pollen. This must be taken into consideration when comparing the 

intrinsic rate of increase on F. occidentalis nymphs with the values obtained on the 

other diets in this study. In contrast to our findings, Blaeser and Sengonca (2001) were 

not able to calculate life table parameters for I. degenerans, because eggs produced by 

females fed on western flower thrips nymphs did not hatch. Life table parameters of I. 

degenerans preying on thrips nymphs were not found in the literature. For other 
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phytoseiids (e.g., A. cucumeris, A. barkeri (Hughes)) fed on T. tabaci, intrinsic rates of 

0.154 females/female.day (Castagnoli and Simoni, 1990) and 0.22 females/female.day 

(Bonde, 1989) were reported.  

 The literature reports oviposition rates of I. degenerans fed Tetranychidae (M. 

tanajoa, T. urticae, T. pacificus) on different arenas (e.g., plastic, paper, leaves) 

(Takafuji and Chant, 1976; McMurtry, 1977; Kennett and Hamai, 1980; Nwilene and 

Nachman, 1996, van Rijn and Tanigoshi, 1999a). The oviposition rate we observed for 

T. urticae offered on a leaf substrate is lower (1.1 eggs/female.day) than the values 

reported in the literature, whereas that obtained here for spider mites on an artificial 

arena (1.9 eggs/female.day) is similar or higher. 

 The suitability of spider mites in our study depended on the substrate. When the 

phytoseiid preyed on T. urticae on an artificial arena, all observed life table parameters 

were superior to those obtained on a bean leaf arena. The inferior results on a leaf 

substrate may be due to the fact that I. degenerans has difficulty coping with the 

webbing of T. urticae. As was already described in chapter 4, on an artificial arena, the 

only webbing was produced around the black thread on the arena, and thus both 

predator and prey wandered more over the arena, resulting in a better capture of the 

prey. In experiments using leaf arenas the whole area was covered with webbing, 

reducing the mobility of the predator. Sabelis and Bakker (1992) found that phytoseiid 

mites that were better protected from the webbing of Tetranychidae had long setae in 

the medial and lateral position on the dorsal shield. Iphiseius degenerans may thus be 

less adapted to preying on spider mites, given that this species has short dorsal and 

lateral setae on the dorsal shield (Van der Merwe, 1968). The inferior values of the life 

table parameters may also be explained by the high escape rate of the progeny. van Rijn 

and Tanigoshi (1999a) reported an rm value of 0.147 females/female.day when offering 

T. urticae infested bean leaves to I. degenerans on a PVC arena. On a diet of T. 

pacificus females, Takafuji and Chant (1976) found an rm value of 0.248 

females/female.day. For other phytoseiid mites (e.g., Phytoseiulus persimilis Athias-

Henriot, Amblyseius longispinosus Evans, Typhlodromus floridanus (Muma)) that had 

been fed T. urticae, the rm value ranged from 0.159 to 0.374 females/female.day (many 

references in Sabelis, 1985). 
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 In the previous chapter it was shown that I. degenerans is able to complete its 

development when fed on T. vaporariorum eggs. Adult predatory mites are also able to 

feed and reproduce on a diet of whitefly eggs. The literature reports on life history traits 

of phytoseiids fed on immature stages of T. tabaci. Oviposition rates of mites that were 

offered immature stages of B. tabaci generally fluctuated between 0.1 and 2 

eggs/female.day (Meyerdirk and Coudriet, 1985, 1986; Nawar and Sherif, 1993; 

Nomikou et al., 2001 and references herein). Our findings fit well within that range. 

The value of rm found for I. degenerans in the current study is smaller than the values 

reported for other phytoseiids feeding on whiteflies. Nomikou et al. (2001) reported rm 

values ranging between 0.131 (Typhlodromus athiasae (Hirschmann)) and 0.215 

females/female.day (Euseius scutalis (Athias-Henriot)).  

 The effect of Ephestia eggs, a widely used factitious food for insect predators, on the 

longevity and reproduction of I. degenerans has never been assessed before. Previous 

work indicated that I. degenerans is able to develop on Ephestia eggs (chapter 4). In the 

present study it was shown that the predatory mite is also capable to reproduce when fed 

eggs of the Mediterranean flour moth. Predatory mites fed Ephestia eggs lived longer 

than those fed spider mites (Multicel arena). The daily oviposition rate was similar to 

that on the other diets (except for spider mites on a Multicel arena). Iphiseius 

degenerans fed on Ephestia eggs had a higher growth potential than when fed on spider 

mites (leaf arena), but this did not exceed the growth potential on castor bean pollen 

(i.e., the food source used for mass rearing I. degenerans) or on western flower thrips 

and spider mites (Multicel arena). The generalist I. degenerans is commercialized as a 

thrips predator in greenhouse crops (van Houten and van Stratum, 1993). Castor bean 

pollen appears to be by far the most suitable diet for mass rearing purposes. It results in 

rapid population growth, is easy to collect, and is much cheaper than for instance 

Ephestia eggs.  

 The polyphagous character of I. degenerans may have a positive and negative impact 

on its value as a predator in the field. A major advantage is that the predator is able to 

develop and reproduce on alternative prey when preferred food becomes scarce. As 

western flower thrips nymphs appear to be unfavourable food for development of I. 

degenerans (see chapter 4), the immature stages can feed on other prey or pollen present 

in the crop, whereas the adult mites may shift their focus to thrips nymphs. On the other 
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hand, the predator may prefer other food over thrips, which may in some situations 

impair its value as biocontrol agent targeting that pest. Further, the phytoseiid may 

exhibit a secondary effect on spider mites, but this is probably only the case when 

leaves are not yet entirely covered with webbing, since the predatory mites may not 

cope with dense webbing. Based on the low intrinsic rate of increase obtained when fed 

whitefly eggs, it is difficult to predict the value of I. degenerans as a whitefly predator. 

It is not likely that the predator will be able to control whitefly infestations in a crop, but 

instead will use whiteflies as an alternative food source when other prey becomes 

scarce. Life history traits of the predatory mite fed on the other immature stages of the 

whitefly need further investigation. The feeding behaviour of I. degenerans in the crop 

may be very complex due to its pollinivory. Pest control will only be improved if a 

decrease in predation rate due to feeding on pollen is compensated by a greater level of 

predation due to an increased predator population (McMurtry and Scriven, 1966; Wei 

and Walde, 1997). van Rijn et al. (2002) also suggest that supplying cattail pollen in a 

crop may promote thrips control by I. degenerans. Further research on the food 

preference of I. degenerans is warranted to understand the feeding ecology of the 

predator and its potential for augmentative biological control. 
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CHAPTER 6 

FUNCTIONAL RESPONSE OF IPHISEIUS DEGENERANS 

TO DIFFERENT PREY SPECIES 

 

 

6.1 INTRODUCTION 

 

The determination of the functional response is an important aspect to unravel the 

dynamics of predator prey interaction. Solomon (1949) defined the functional response 

as the change in the number in prey consumed per predator to changes in prey densities. 

Holling (1961) suggested that there are three distinct types of functional response in 

invertebrate predators (Fig. 6.1):  

- Type I, in which the attack rate of the predator increases linearly with prey density but 

then suddenly reaches a constant; 

- Type II, in which the attack rate of the predator increases at a decreasing rate with 

increasing prey density until a constant is reached; 

- Type III, in which the attack rate of the predator first increases at an increasing rate 

with prey density, but then decelerates towards a constant. 

Three basic components of the functional response, i.e., the length of prey exposure to 

the predator, the attack rate of the predator a and the prey handling time Th exhibited by 

the predator alone, or together with a fourth component, the effects of hunger or egg 

complement, are sufficient to explain a Type II functional response. The handling time 

is the time in which the predator pursues, subdues, consumes and digests a single prey; 

the attack rate is the rate at which a predator searches its prey. A fifth component, the 

stimulation of the predator by each newly discovered prey, however, is necessary to 

explain the S-shaped curve of a Type III functional response (Holling, 1961).  

Several studies have been carried out on the functional response of phytoseiid mites, 

mostly with spider mites as prey. A variety of functional response curves have been 

reported; most of these curves were Type II curves (e.g., Takafuji and Chant, 1976; 

Sabelis, 1985; Shipp and Whitfield, 1991; Fan and Petit, 1994; Badii et al., 1999; Lester 

and Harmsen, 2002). Type I curves (linear rises of the functional response) were 
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reported by Takafuji and Chant (1976), Everson (1979) and Eveleigh and Chant (1981), 

while Type III curves were found by Nwilene and Nachman (1996a). Next to the 

classical types, other types of functional response curves were found or used by other 

authors: 

- Type IV curves are dome-shaped curves which are characterized by a Type II curve 

followed by a decline in number of consumed prey at high densities (Takafuji and 

Chant, 1976; Castagnoli and Simoni, 1999); 

- Type V curves, which are the reverse (i.e., a second rise up to another plateau), and 

compound-curves (e.g., Type III-II curves) were reported by Eveleigh and Chant (1981) 

and Sabelis (1985). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Three types of functional responses. The relationships between number 

of prey eaten (Ne) and number of prey present (N) are depicted in parts A, C, and E. The 

corresponding relationships between proportion eaten (Ne/N) and number of prey 

present (N) are depicted in parts B, D, and F (Juliano, 2001). 
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Despite the fact that I. degenerans has been commercialized as thrips control agent, the 

research on the functional response of the predator has until now been limited to spider 

mites as prey organisms. Tetranychus pacificus Koch as prey has been extensively 

studied by Eveleigh and Chant (1981) and Takafuji and Chant (1976), while Akpokodje 

et al. (1990) and Nwilene and Nachman (1996) assessed the functional response of I. 

degenerans on changing densities of the cassava green mite Mononychellus tanajoa 

Bondar. 

The objective of this study was to determine the type(s) of functional response of I. 

degenerans females to densities of 1st and 2nd instars of the western flower thrips 

Frankliniella occidentalis (Pergande), eggs and adults of the twospotted spider mite 

Tetranychus urticae Koch, and eggs of the greenhouse whitefly Trialeurodes 

vaporariorum Westwood under laboratory conditions. Further, the parameters of the 

functional response curves were estimated. 

 

 

6.2 MATERIALS AND METHODS 

 

6.2.1 Predator culture 

 

Iphiseius degenerans was reared as described in chapter 3 (3.2.1 Predator culture). 

 

 

6.2.2 Prey 

 

The prey species tested in the functional response experiments were T. urticae eggs and 

adults, T. vaporariorum eggs and F. occidentalis 1st and 2nd instars. Descriptions of the 

rearing methods of these species are presented in chapter 4 (4.2.2 Food sources). 
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6.2.3 Experimental set-up 

 

Functional response experiments were carried out in plastic containers (diameter: 4.5 

cm, height: 1.5 cm) with a mesh-screened lid (100 µm). Arenas consisted of 4.5 cm 

diameter bean leaf discs placed upside down on a 1 cm layer of agar (1%). These leaf 

discs were punched out of primary bean leaves (Fig. 6.2).  

The functional response on T. urticae eggs was determined at 8 different densities (1, 

3, 5, 10, 20, 30, 40, 50 eggs/arena). Eggs were obtained by allowing adequate numbers 

of T. urticae females to oviposit on the leaf discs one or two days prior to the 

experiment. On the day of the experiment, the number of eggs was reduced to the 

designated level by puncturing superfluous eggs with a thin needle (diameter: 0.4 mm).  

 
Figure 6.2. Experimental arenas used in the functional response experiments. 

  

Predation on adult female T. urticae was measured at densities of 1, 3, 5, 10, 15, 20, 

25, 30 and 40 females/arena. Prey mites were transferred directly from the stock culture 

to the experimental arena, after which predators were introduced immediately.  

The densities of T. vaporariorum eggs tested were 1, 3, 5, 8, 10, 20, 30, 40, 60, and 

100 eggs/arena. Leaf discs infested with eggs were obtained by confining adult T. 

vaporariorum to the lower side of bean leaves inside “drum” cells (see chapter 4 for a 

description, Fig. 4.1). After 48 hours, adults were removed and the number of eggs was 

reduced to the desired density by puncturing superfluous eggs with a needle. The leaf 

disc was then punched out and transferred to the experimental arena.  
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The functional response of I. degenerans attacking 1st or 2nd instars of F. occidentalis 

was determined at prey densities of 1, 3, 5, 8, 10, 15, 20, 30 and 40 prey individuals per 

arena. Prey was transferred directly from the stock culture to the experimental arena. 

Before the start of the experiment, reproductively mature female predatory mites (8-

12 days old), reared on castor bean pollen, were starved for 4 hours. One individual of 

the predator was introduced per arena, and every combination of prey density – predator 

was replicated 10 times.  

The number of dead prey was recorded after 24 hours, during which consumed prey 

was not replaced (i.e., prey depletion). Experimental arenas were maintained in a 

climatic cabinet at 25 °C, 75% RH and a 16L:8D h photoperiod.  

 

 

6.2.4 Data analysis 

 

Analyzing functional response data required two distinct steps. In a first step the shape 

of the functional response was determined by logistic regression analysis of the 

proportion of prey killed in relation to initial density (
0N

Ne ). In this step a polynomial 

logistic model was fitted:  
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where Ne is the number of prey eaten, N0 is the initial prey density and P0, P1, P2 and P3 

are the parameters to be estimated. Regressions were obtained by starting with a cubic 

model, and deleting the highest order coefficients that were not significantly different 

from zero until all remaining coefficients in the model were significantly different from 

zero. A simple logistic model, which only contains P0 and P1, is the lowest order model 

that could be fitted. The sign of the linear parameter P1 was used to distinguish between 

a Type II functional response and a Type III functional response. If P1 < 0, the 

proportion of prey eaten declines monotonically with the initial number of prey offered, 

thus describing a Type II functional response. If P1 > 0, the proportion of prey eaten is 

initially positively density dependent, describing a Type III functional response 

(Juliano, 2001). 
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In a second step, the parameters of the functional response (handling time Th and 

attack rate a, respectively) were estimated and compared using a nonlinear least squares 

regression of the number of prey eaten versus prey density. Given that the experiments 

were conducted with prey depletion, Holling’s disc equation (
h

e aNT
aNTN
+

=
1

) could not 

be used.  

Because it allows for prey depletion, the random predator equation of Rogers (1972) 

was used for Type II functional responses. The equation is as follows: 

([{ TNTaNN ehe −−= exp10 )]}      Equation 6.1 

with N0 the initial density of prey, Th the handling time, a the attack rate and T the total 

duration of the experiment, i.e., 24 hours. 

 

For Type III functional responses the equation reads: 

( )( ) ( )[{ }000 1/exp1 cNTNTbNdNN ehe ]+−+−=     Equation 6.2 

with N0 the initial density of prey, Th the handling time, a the attack rate en T the 

duration of the experiment and b, c, d are constants from the function that relates a and 

N0 in Type III functional responses: )1/()( 00 cNbNda ++= . 

Parameters were obtained by fitting observed data to the models using the nonlinear 

least squares method with an iterative application of Newton’s method. This step is 

needed because the equations 6.1 and 6.2. have Ne on both sides of the expression. 

(Juliano, 2001). 

Logistic and nonlinear regressions were performed in SAS Learning Edition. (SAS 

Institute Inc., 2001). The program code is presented in Appendix II.  

 

 

6.3 RESULTS 

 

Parameter estimates from the logistic regression of proportion of prey eaten by I. 

degenerans over a 24 h period versus prey density are presented in Table 6.1.  

For F. occidentalis first and second instars and T. urticae adults, the cubic and quadratic 

coefficients were non-significant and the linear term was negative, indicating a 

monotonic decrease in proportion of prey eaten versus prey density (Type II functional 
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response). A type II functional response was also found for T. vaporariorum eggs. For 

T. urticae eggs the best polynomial included significant linear, quadratic and cubic 

coefficients and the linear term was positive indicating a Type III functional response.  

To fit a model (equation 6.1 or 6.2) to the data and to estimate functional response 

parameters (i.e., attack rate a and handling time Th), nonlinear least squares regression 

was used. Because the logistic regression indicated Type II functional responses for F. 

occidentalis first and second instars, spider mite adults and whitefly eggs, equation 6.1 

was fitted. A significant test indicated a good overall fit of the models (p < 0.001). The 

models are depicted in Figure 6.3 (a, b, c, d).  

 

Table 6.1. Maximum-likelihood estimates (± SEM) from the logistic regression of 

proportion of prey eaten by I. degenerans (Ne/N) as a function of initial density (N) 

ParameteraPrey species 
Constant (P0) Linear (P1) Quadratic (P2) Cubic (P3) 

F. occidentalis  -0.501* -0.062* - - 
(1st instars)  (0.158) (0.007) - - 
     
F. occidentalis -2.150* -0.025* - - 
(2nd instars)  (0.216)  (0.008) - - 
     
T. urticae -0.683** -0.057** - - 
adults  (0.175) (0.007) - - 
     
T. urticae -2.819**  0.277** -0.015** 0.0002** 
eggs (0.467) (0.062) (0.002) (0.00003) 
     
T. vaporariorum 2.813** -0.094** 0.0005** - 
eggs (0.173) (0.0068) (0.000) - 

a Parameters followed by * are significant at p < 0.01, ** p < 0.0001 (χ2 test) 

 

When fed thrips nymphs, spider mite females or whitefly eggs, the number of prey 

killed by a predator (Ne) increased at a decreasing rate until a plateau was reached. This 

indicates a type II functional response. Theoretically, an I. degenerans female could 

consume a maximum of 2.5 thrips nymphs or spider mite females, or 22 eggs of the 

greenhouse whitefly per day (24 h/Th). The parameters describing the Type II functional 

responses are presented in Table 6.2. On all diets, the obtained handling times are 

significantly different from zero. Only the diets consisting of 2nd instars of F. 

occidentalis and T. vaporariorum eggs resulted in significant attack rates. In the other 
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cases the 95% confidence interval of a included 0, indicating that the attack rate is not 

significantly different from zero.  

For the data on spider mite eggs, the logistic regression indicated a Type III 

functional response (Table 6.1, Fig. 6.3). In a first fit of equation 6.2, four parameters 

(Th, b, c, and d) had to be assessed. Because all parameters were non-significant, the 

model was reduced by eliminating first c and eventually d from the equation. Finally a 

two-parameter model (with parameters b and Th) was fitted, but although the model was 

significant, only b was significantly different from 0 (Table 6.2). Because this Type III 

functional response was described by a two-parameter model, the data were also fitted 

to a two-parameter Type II functional response. Fitting the data in equation 6.1 resulted 

in parameters a = 0.0043 ± 0.0026 h-1 and Th = 2.772E-8 ± 3.6344 h. These parameters, 

however, were not significantly different from zero. Also, the residual sum of squares 

for the Type II model was greater than that for the Type III model, indicating that the 

latter model fits the data better. 

 

To compare the Type II functional response for the different prey species, once again 

nonlinear least square regression was used. Since there were only two functional 

response models with significant parameters, only these two models were compared (F. 

occidentalis 2nd instars versus T. vaporariorum eggs). Statistical analyses indicated that, 

although the handling time for F. occidentalis was 9 times that for T. vaporariorum, 

there were no significant differences between handling time and attack rate. 
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Figure 6.3. Functional responses of I. degeneran s to changing densities of different prey types. Number of prey killed determined in the 
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Table 6.2. Parameter estimates (95% confidence interval) of the random predator 

equation (Rogers, 1972) for I. degenerans preying on different prey types 

Prey species a Th b 
F. occidentalis  0.073 ± 0.053 9.44 ± 1.21 - 
(1st instars) (-0.032 - 0.179) (7.03 - 11.85) - 
    
F. occidentalis 0.0052 ± 0.0020 9.19 ± 2.98 - 
(2nd instars) (0.0012 - 0.0091) (3.29 - 15.09) - 
    
T. urticae 0.036 ± 0.020 8.76 ± 1.19 - 
adults (-0.003 - 0.075) (6.39 - 1.13) - 
    
T. urticae - 1.27E-8 ± 1.89 0.00012 ± 0.00005 
eggs - (-3.75 - 3.75) (0.00002 - 0.00023) 
    
T. vaporariorum 0.196 ± 0.079 1.10 ± 0.08 - 
eggs (0.039 - 0.353) (0.93 - 1.27) - 
a: attack rate, b: parameter describing the relation between a and the initial prey density 

N, Th: handling time 

 

6.4 DISCUSSION 

 

Logistic regression analysis revealed that the type of functional response exhibited by 

female adults of I. degenerans depends on prey species.  

Iphiseius degenerans showed a Type II functional response when feeding on first or 

second instars of F. occidentalis, adult females of T. urticae or eggs of T. vaporariorum, 

and a Type III functional response when feeding on eggs of T. urticae. Although the 

logistic regression determined the shape of the functional responses of I. degenerans to 

be Type II or Type III and significant models could be fitted, the parameter estimates of 

these functional responses were not always significantly different from zero. The lack of 

significant parameters complicates ecological interpretation of the estimated functional 

responses. According to Juliano (pers. comm.) the best guide to distinguish Type II and 

Type III functional response is to observe the shape of the fitted curve. In the current 

study, the shapes of the Type II functional response models fitted the data very well. In 

all Type II response models a plateau appears to be reached at the higher prey densities. 

However, the number of prey consumed at this plateau was quite low. This low 

predation rate may be related to the long handling times and the low attack rates 
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estimated by the models. In two cases (i.e., the diet consisting of 1st instars of F. 

occidentalis or adults of T. urticae), the attack rate was not significantly different from 

zero.  

The plot of the average number of consumed T. urticae eggs versus initial prey 

density, however, indicated that a plateau is not yet reached at a density of 50 eggs per 

arena. It appears that the functional response is starting as a Type III functional response 

with a first plateau at density 20-30, followed by another Type III response at higher 

densities. To assess if the functional response of I. degenerans to changing densities of 

spider mites eggs is indeed a combined response, more experiments are necessary.  

Based on the observations on the response of I. degenerans to changing densities of 

different prey types in our experiments, it can be concluded that this is a predator with a 

natural low predation rate. However, it should be taken into account that the 

experimental conditions used in this study might limit the predation rate of the predator 

(see below). In this aspect, it might be useful to conduct detailed studies on the 

behaviour of I. degenerans when attacking prey.  

Different functional responses have been documented for phytoseiids feeding on 

different life stages of spider mites. Takafuji and Chant (1976) determined the 

functional response of I. degenerans females feeding on T. pacificus eggs. The number 

of consumed eggs rose almost linearly to a plateau. The predator was able to consume 

around 40 eggs in 24 hours, when 50 prey eggs were offered. Gotoh et al. (2004) 

summarized the daily prey consumption in adult females of acarophagous phytoseiid 

predator species found in the literature. The daily consumption of spider mite eggs 

ranged from 4.4 (Phytoseiulus macropilis Banks) to 33.7 (Phytoseiulus persimilis 

Athias-Henriot) at 25 °C. The authors reported a Type II response for Amblyseius 

californicus (McGregor), with a theoretical maximum consumption rate of 35 prey 

eggs. Fan and Petitt (1994) reported that the generalist Neoseiulus barkeri (Hughes) 

showed a Type II functional response to densities of different stages of the twospotted 

spider mite. A starved female could consume a theoretical maximum of 94 eggs, 98 

larvae or 3 adult females of T. urticae per day at 25 °C. These values are higher than 

those obtained in the present study: at the highest prey density offered, I. degenerans 

consumed 13.4 eggs or 2.7 adults of T. urticae. Akpokodje et al. (1990) found that the 

functional response of larvae and females of I. degenerans attacking different 
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developmental stages of the cassava green mite M. tanajoa were all Type II. Maximum 

number of cassava green mite eggs and adults eaten by I. degenerans during a five-hour 

period were 13 and 3.6, respectively. In contrast, Nwilene and Nachman (1996) only 

found Type II curves for I. degenerans protonymphs attacking cassava green mite eggs 

and females. Females of this phytoseiid attacking eggs, protonymphs and female adults 

of M. tanajoa all showed Type III functional responses.  

 

To our knowledge, no information on the functional response of I. degenerans to 

densities of the western flower thrips F. occidentalis is available in the literature. In this 

study, the predator exhibited a Type II functional response when feeding on first or 

second instars of F. occidentalis. In experimental conditions which closely resembled 

those in our study, Shipp and Whitfield (1991) described the functional response of 

Amblyseius cucumeris (Oudemans) when feeding on first instars of the western flower 

thrips. They reported Type II functional response curves for mated females. Estimated 

values of the attack rate and the handling time were 0.870 day-1 and 0.062 days, and 

0.967 day-1 and 0.124 days on sweet pepper and cucumber leaf discs, respectively. The 

attack rate on 1st instars of F. occidentalis found in the present study is about 2 times 

higher (0.0732 h-1 = 1.757 day-1), while the handling time was 3 to 6 times longer 

(9.436 h = 0.393 days) than the values reported by Shipp and Whitfield (1991). 

Amblyseius cucumeris could consume a theoretical maximum of 16 or 8 thrips nymphs 

depending on the host plant species (sweet pepper or cucumber, respectively), whereas 

I. degenerans could consume no more than 3 first or second instars of F. occidentalis in 

our study. 

 

In previous chapters, it has been shown that I. degenerans is able to feed and develop 

on eggs of the greenhouse whitefly T. vaporariorum. In the present study, the predatory 

mite exhibited a Type II response when offered eggs of T. vaporariorum. The literature 

reports no data on functional responses of phytoseiids feeding on different life stages of 

T. vaporariorum. According to Meyerdirk and Coudriet (1985) females of the 

phytoseiid mite Euseius hibisci (Chant) can consume an average of 4.5 Bemisia tabaci 

(Gennadius) eggs per female per day, with a range of 0 to 18.4. Nomikou et al. (2003) 

reported that both Typhlodromus swirskii (Athias-Henriot) and Euseius scutalis (Athias-

 



 Functional response of Iphiseius degenerans  99 

Henriot) killed more B. tabaci eggs and 1st instars than later stages. The predation rate 

on B. tabaci eggs by the two predatory mites was approximately 20 eggs per female per 

day. In the present study, I. degenerans could theoretically consume a maximum of 22 

T. vaporariorum eggs per day which is very close to the values reported in above-

mentioned studies. 

Functional responses are usually measured to provide information on the suitability of 

the predator as a biological control agent. The functional response experiments in our 

study suggest that I. degenerans has limited predation capacity, particularly on F. 

occidentalis against which the predator is used in augmentative biological control in 

protected cultivation. 

The information obtained in laboratory tests, however, is not easily extrapolated to field 

conditions. Functional responses measured in the laboratory describe a short-term 

behavioural phenomenon; the experiments last a short time relative to the life span of 

the predator (Murdoch, 1973). According to Berry et al. (1988) several problems are 

associated with estimating functional responses in the laboratory. Predators are not 

allowed to leave a patch in search of higher densities where prey location is more 

efficient, and as a consequence predators consume more prey at low density than they 

would probably do in nature. This may result in Type II functional responses when the 

underlying response is really Type III (Van Lenteren and Bakker, 1976). The functional 

response of a phytoseiid mite may be affected by the size of the experimental arena 

(Akpokodje et al., 1990) or by plant species (Shipp and Whitfield, 1991; Skirvin and 

Fenlon, 2001). Due to consumption by predators or reproduction by ovipositioning 

prey, changes in prey densities may occur. Also, the length of the experimental period 

may be critical (Eveleigh and Chant, 1981).  

In this study, functional response was assessed with one predator and one prey species. 

Prey preference and switching behaviour are additional factors to be considered when 

evaluating a predator. Although I. degenerans is released for control of F. occidentalis, 

this predator is a generalist (Croft and McMurtry, 1997) and little is known on its prey 

preference and switching behaviour. In the next chapters these two factors will be 

studied. 
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CHAPTER 7 

EVALUATING THE PREY PREFERENCE OF IPHISEIUS 

DEGENERANS UNDER LABORATORY CONDITIONS 

 

 

7.1. INTRODUCTION 

 

Iphiseius degenerans has received attention mainly as a natural enemy of thrips and 

spider mites and only in a few studies the predation on other prey species has been 

addressed (Catling, 1970; Swirski et al., 1987; Palevsky et al., 2003). In previous 

chapters, it was shown that I. degenerans is able to develop, reproduce and feed on 

different prey species which they are likely to encounter in the field.  

In all these experiments, the predatory mites were confined singly with one prey 

species and were not allowed to leave the arena in search for a more favourable prey. 

Additional knowledge on prey preference might be useful in understanding the 

predator’s behaviour in the field. A predator exhibits preference for a prey type when 

the proportion of that prey in the predator’s diet is higher than its proportion in the 

predator’s environment (Begon, 1996). Preference for a prey type, however, is not 

always constant. Prey preference can change depending on the relative presence of the 

available prey types. This behaviour is called “switching”. As a particular prey species 

declines in numbers, partly by predation by the predator, the predator switches the 

greater proportion of its attacks to another prey that has become the most abundant 

(Murdoch, 1969). Switching behaviour in phytoseiid mites (e.g., Phytoseiulus persimilis 

Athias-Henriot, Euseius finlandicus (Oudemans)) has been observed by Blackwood et 

al. (2001), but further little information is available.  

In this study, the prey preferences of I. degenerans were assessed. Predation of adult 

female predatory mites was measured in two-choice leaf disc experiments. Different 

ratios of prey species were offered to examine the preference of I. degenerans and the 

predator’s ability to adjust its feeding behaviour depending on the relative abundances 

of each prey species. The obtained results were compared with the preference predicted 

using the results from the functional response experiments (chapter 6). 
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7.2 MATERIALS AND METHODS 

 

7.2.1 Predator culture 

 

Iphiseius degenerans was reared as described in chapter 3 (3.2.1 Predator culture). 

 

 

7.2.2 Prey 

 

The prey species tested in the food preference experiments were eggs of T. urticae and 

T. vaporariorum, and 1st and 2nd instar nymphs of F. occidentalis. Descriptions of the 

rearing methods of the insects and mites used in the experiments are presented in 

chapter 4 (4.2.2 Food sources). 

 

 

7.2.3 Experimental set-up 

 

To examine the prey preference of I. degenerans, adult females (8 – 12 days post-

maturation) were given a choice between two prey types. Single female predatory mites 

were starved for 4 hours and then placed on a bean leaf disc in a plastic container. 

A detailed description of the way prey infested leaf discs were obtained and of the 

experimental arena, is given in chapter 4 (4.2.2 Food sources) and chapter 6 (6.2.3 

Experimental units), respectively. Prey was offered to the predator in pair-wise 

combinations: 

• combination 1: 1st instars of F. occidentalis vs. 2nd instars of F. occidentalis 

• combination 2: 1st instars of F. occidentalis vs. eggs of T. vaporariorum 

• combination 3: 1st instars of F. occidentalis vs. eggs of T. urticae 

• combination 4: eggs of T. vaporariorum vs. eggs of T. urticae 

 

First analysis of prey preference showed that I. degenerans had a significant preference 

for 1st instars of F. occidentalis. For that reason no combinations were made with 2nd 

instars of F. occidentalis and eggs of T. vaporariorum or T. urticae. 
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The total amount of prey items in each combination was 60. For each combination 

three prey density ratios were tested (1:1, 1:2 and 2:1), and for each ratio there were 20 

replicates.  

 

In addition, the influence of castor bean pollen on predation rates on abovementioned 

prey types was tested. Bean leaf discs were infested with 20, 30, or 40 prey individuals 

and dusted with castor bean pollen. Single female predatory mites were starved for 4 

hours and then transferred onto the bean leaf disc in a plastic container. Twenty 

replicates were used per prey density.  

 

Also, the predation rate was assessed when the predatory mite was offered only one 

prey species. Single female predatory mites were starved for 4 hours and then 

transferred onto the bean leaf disc infested with 20, 30, or 40 prey individuals. There 

were 20 replicates per prey density.  

 

The number of dead prey was recorded after 24 hours. Dead prey were not replaced 

during the experimental period. Experimental arenas were maintained in a climatic 

cabinet at 25 °C, 75% RH and a 16L:8D h photoperiod.  

 

 

7.2.3 Data analysis 

 

Predation  

 

The mean predation rate was analysed using analysis of variance, followed by a 

multiple comparison test (Student Newman Keuls) at the p = 0.05 level (SPSS 12.0, 

SPSS Inc., 1989-2003). 
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Preference index 

 

Different methods are available to measure and express prey preference. An overview 

of these methods is given by Cock (1978). In the current study preference was analysed 

by application of Manly’s Beta-index (1972, 1974): 
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where βi is the measurement of the predator’s preference for prey belonging to class i, ri 

and rs are the number of surviving prey belonging to prey class i and s, Ai and As are the 

initial number of prey belonging to prey class i and s, and K is the number of different 

prey classes (in the experiments conducted during this study K = 2). 

 

This index was chosen because it is appropriate to use in situations where both prey 

species are offered simultaneously and are not replenished throughout the experiment 

(Cock, 1978).  

 

The index assigns preference values from 0 (preference for class 2) to 1 (preference for 

class 1), where 0.5 represents no preference. 

The β-value was calculated per replicate and averaged to obtain a mean β-value for each 

prey ratio. Mean β-values were considered significant when the 95% confidence 

intervals did not overlap β = 0.5.  

 

Switching behaviour 

 

To evaluate the capacity of I. degenerans to switch between two prey species 

(frequency-dependent preference), two different methods were used. 
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First, β -values were compared using analysis of variance (ANOVA). Second, β -values 

were fitted to Manly’s linear model of frequency-dependent selection (Manly, 1973): 

ρβ ba +=  

where a is the intercept, b the slope and ρ = A1/(A1+A2) or the proportion of prey of 

class 1 out of the total number of prey offered to the predator. In this model, parameter 

b can be regarded as the measurement of switching capacity between the two prey 

species. A positive slope of the regression line indicates that preference for prey 1 

increases as the proportion of prey 1 offered to the predator increases. A negative slope 

suggests that preference for prey 1 decreases as the proportion of prey 1 offered 

increases. A horizontal line suggests frequency-independent behaviour.  

 

Predicting prey preference using the functional response models 

 

According to Cock (1978), the parameters of the individual prey type functional 

responses can be used to predict prey preference when both prey types are presented 

together to the predator. The null hypothesis in this method assumes that the predator’s 

response remains constant in the presence of either prey type individually and both 

types together. Deviations from the predicted values would be caused by a change in 

one of the searching parameters due to either a change in search strategy, or the 

selection and/or rejection of disproportionate numbers of prey (switching).  

To predict prey preference from functional response models five steps were involved:  

(1) functional response experiments for each prey separately were performed (Chapter 

6) 

(2) the attack rate a and the handling time Th were estimated using the random predator 

equations for functional response (Rogers, 1972): 

([ ]{ }TNTaNN ehe −−= exp10 )  (Type II)    Equation 7.1  

( )( ) ( )[{ }000 1/exp1 cNTNTbNdNN ehe ]+−+−=  (Type III) Equation 7.2 

with N0 the initial density of prey, Th the handling time, a the attack rate and T the 

duration of the experiment and b, c, d are constants from the function that relates a and 

N0 in Type III functional responses: )1/()( 00 cNbNda ++= . 
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(3) two functional response equations were combined to describe the two-prey 

interaction (Lawton et al., 1974): 

([{ 22111101 exp1 ehehe NTNTTaNN )]}−−−−=    Equation 7.3 

( )[ ]{ }11222202 exp1 ehehe NTNTTaNN −−−−=  

with N0 the initial density of prey, Th the handling time, a the attack rate and T the 

duration of the experiment for prey 1 and 2, respectively. 

(4) the predation of I. degenerans over a range of densities of the two prey species 

together was examined;  

(5) the proportion of prey type I within the diet was plotted against the proportion of 

prey type I present in the environment, and the observed preference was compared with 

the predicted preference.  

 

 

7.3. RESULTS 

 

Predation rates of I. degenerans, expressed as the number of prey killed per 24 hours, 

are presented in Table 7.1.  

 

The results indicate that when two prey types were offered simultaneously I. 

degenerans preyed on both types of prey. The presence of a second food source 

influenced the number of prey eaten. Compared with the control (no second food source 

offered), the predator consumed less prey in the presence of pollen, although this 

reduction was not always significant. The reduction in prey consumption in the presence 

of pollen ranged from 31% to 90%. In some combinations, adding a second prey species 

to the environment of the predator reduced the number of the first prey species 

consumed by the predator, although this reduction was not always significant (Table 

7.1). One exception is the combination of T. urticae eggs vs. 1st instars of F. 

occidentalis; here the presence of thrips nymphs led to a significantly higher 

consumption of T. urticae eggs compared with the number of spider mite eggs preyed 

upon when offered alone to the predator.  

 

 

 



  

Table 7.1. Mean number of prey consumed (± SEM) by I. degenerans in 24 h when prey is offered alone or together with a second food source at 

three different prey ratios (prey 1: prey 2)b

  Number of prey 1 killeda

Prey 1 Prey 2 Prey ratio  

   1:2 1:1 2:1

F. occidentalis 1st instars  No second prey 2.00 ± 0.37a 2.65 ± 0.36b 3.80 ± 0.49a

 T. urticae eggs 2.90 ± 0.47a 2.32 ± 0.38b 3.50 ± 0.42a

 T. vaporariorum eggs 1.95 ± 0.37a 2.05 ± 0.48ab 3.20 ± 0.55a

 R. communis pollen 1.25 ± 0.30a 1.05 ± 0.21a 2.60 ± 0.31a

  

  

F = 2.43 
df = 96 
p =0.053 
 

F = 3.19 
df = 97 
p < 0.05 

F = 1.22 
df = 97 
p =0.31 

F. occidentalis 2nd instars No second prey 1.45 ± 0.45b 1.35 ± 0.36a 1.75 ± 0.24a

 F. occidentalis 1st instars 2.22 ± 0.49b 0.74 ± 0.28a 1.41 ± 0.45a

 R. communis pollen 0.40 ± 0.11a 0.50 ± 0.14a 1.13 ± 0.22a

F = 8.70 
df = 57 
p < 0.01 

F = 2.59 
df = 58 
p =0.08 

F = 1.00 
df = 52 
p =0.37 
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T. urticae eggs No second prey 3.50 ± 0.90b 2.70 ± 0.65a 1.80 ± 0.46a 

 F. occidentalis 1st instars 6.71 ± 0.94c 6.10 ± 1.08b 10.4 ± 1.51b 

 T. vaporariorum eggs 2.00 ± 0.84ab 2.40 ± 0.61a 1.25 ± 0.28a 

 R. communis pollen 0.35 ± 0.30a 0.60 ± 0.32a 0.50 ± 0.31a 

  

  

F = 12.0 
df = 77 
p < 0.0001 
 

F = 10.4 
df = 73 
p < 0.0001 

F = 30.2 
df = 75 
p < 0.0001 

T. vaporariorum eggs No second prey 14.9 ± 0.85c 17.1 ± 1.31c 22.1 ± 1.26d 

 F. occidentalis 1st instars 5.90 ± 0.90b 9.75 ± 1.47b 9.60 ± 1.39b 

 T. urticae eggs 2.44 ± 0.52a 2.13 ± 0.52a 2.67 ± 0.57a 

 R. communis pollen 6.40 ± 0.83b 7.45 ± 0.98b 15.3 ± 1.67c 

F = 41.7 
df = 75 
p < 0.0001 

F = 22.6 
df = 74 
p < 0.0001 

F = 38.4 
df = 77 
p < 0.0001 

aMeans (± SEM) within a column and a first prey species followed by the same letter are not significantly different (Student Newman Keuls-test, 

p > 0.05)  
bWhen two arthropod prey types are offered simultaneously, the total number of prey items offered equals 60; when one prey type is offered 

without a second prey, or with R. communis pollen, the total number of prey is 20 (ratio1:2), 30 (ratio 1:1) or 40 (ratio 2:1)  
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Overall, the consumption by I. degenerans was very low (Table 7.2). In treatments 

with two prey types, 60 prey individuals were offered of which a minimum of 3.65 (1st 

instars vs. 2nd instars of F. occidentalis, ratio 1:2) and a maximum of 13.3 (T. 

vaporariorum eggs vs. T. urticae eggs, ratio 1:2) prey items were consumed.  

Within a prey combination, the total number of prey eaten remained constant 

(combination 1: F = 2.52, df = 53, p = 0.09; combination 2: F = 1.02, df = 59, p = 0.37; 

combination 4: F = 0.36, df = 48, p = 0.70), except in the third combination (1st instars 

of F. occidentalis – T. urticae eggs) in which the mean total number of prey consumed 

at ratio 1:2 differed significantly from that consumed at ratio 1:1 (F = 4.03, df = 58, p < 

0.05). 

 

Table 7.2. Mean number of prey consumed (± SEM) out of a total of 60 prey individuals 

for different prey combinations and prey ratios 

Combination Prey ratioa   
 1:2 1:1 2:1 
Combination 1 
F. occidentalis (1st instars)  
F. occidentalis (2nd instars) 

3.65 ± 0.63a 3.35 ± 0.41a 5.00 ± 0.63a 

Combination 2 
F. occidentalis (1st instars) 
T. vaporariorum eggs 

11.55 ± 1.45a 11.80 ± 1.68a 9.10 ± 1.28a 

Combination 3 
 F. occidentalis (1st instars) 
 T. urticae eggs 

13.30 ± 1.56b 8.42 ± 1.16a 10.21 ± 0.84ab 

Combination 4 
 T. vaporariorum eggs  
 T. urticae eggs 

3.69 ± 0.60a 4.53 ± 0.89a 4.67 ± 1.04a 

a Means (± SEM) within a row followed by the same letter are not significantly different 

(Student Newman Keuls-test, p > 0.05) 
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To evaluate the preference of I. degenerans for the various prey species, Manly’s index 

of preference was calculated (Manly, 1973, 1974). According to Murdoch (1969), prey 

preference is best determined when both prey species are offered in equal amounts. In 

the first three combinations, 1st instars of F. occidentalis were selected as prey 1; thus, 

an index above 0.5 suggests preference for 1st instars of F. occidentalis; in the fourth 

combination, whitefly eggs were chosen as prey 1. The preference indices for each 

combination of prey species offered to the predator are presented in Table 7.3.  

First, preference was evaluated when both prey types were offered in equal numbers 

(ratio 1:1 in Table 7.3). In combination 1 (first instars vs. second instars of F. 

occidentalis), the predator showed a significant preference for first instars of the thrips. 

When first instars of F. occidentalis were offered together with eggs of T. vaporariorum 

(combination 2), there was a significant preference for the latter. In combinations 3 and 

4, I. degenerans preferred T. urticae eggs over first instars of the western flower thrips 

or eggs of the greenhouse whitefly; however, since the 95% confidence interval 

included 0.5 these preferences are not significant. 

 

Table 7.3. Values of Manly’s preference index β (95% confidence interval) for I. 

degenerans females offered different combinations of prey in different ratios 

Combination Prey ratioa   
 1:2 1:1 2:1 
Combination 1 
F. occidentalis 1st instars 
F. occidentalis 2nd instars 

 
0.73b 
(0.54 – 0.92) 

 
0.84b 
(0.74 – 0.94) 

 
0.48a 
(0.33 – 0.64) 

Combination 2 
F. occidentalis 1st instars 
T. vaporariorum eggs 

 
0.30a 
(0.20 – 0.40) 

 
0.18a 
(0.10 – 0.26) 

 
0.29a 
(0.14 – 0.44) 

Combination 3 
 F. occidentalis 1st instars 
 T. urticae eggs 

 
0.39a 
(0.25 – 0.53) 

 
0.35a  
(0.20 – 0.50) 

 
0.25a 
(0.13 – 0.37) 

Combination 4 
 T. vaporariorum eggs  
 T. urticae eggs 

 
0.74a 
(0.59 – 0.89) 

 
0.46a  
(0.22 – 0.70) 

 
0.72a 
(0.54 – 0.90) 

a Means (95% CI’s) within a row followed by the same letter are not significantly 

different (Student Newman Keuls-test, p > 0.05) 
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Second, preference indices were compared among prey ratios within each combination. 

In combinations 2 to 4, the observed preference of I. degenerans was constant over the 

whole range of density ratios of the two prey species offered (Table 7.3, Fig. 7.1). 

Significant changes in β only occurred in combination 1, where F. occidentalis nymphs 

of different instars were offered together (F = 6.42, df = 53, p < 0.01), indicating 

switching behaviour.  

 

The relationship between β-indices within a prey combination could be described by 

Manly’s linear model of frequency-dependent selection (Manly, 1973): ρβ ba += . 

The results are plotted in Figure 7.1 (solid lines), while parameters of the models are 

shown in Table 7.4. The estimate of b was only significant in combination 1 (first 

instars and second instars of F. occidentalis), which indicates switching. The linear 

model had a negative slope, indicating a negative switching behaviour, with a 

significantly decreased preference for first instars of F. occidentalis in response to an 

increased abundance of first instars.  

 

Table 7.4 Parameter estimates (± SEM) of Manly’s linear model of frequency-

dependent selection 

Combination Parametera

 a b 
Combination 1 
F. occidentalis 1st instars  
F. occidentalis 2nd instars 

1.06 ± 0.17* -0.74 ± 0.33* 

Combination 2 
F. occidentalis 1st instars 
T. vaporariorum eggs 

0.26 ± 0.12* -0.01 ± 0.24 

Combination 3 
 F. occidentalis 1st instars 
 T. urticae eggs 

0.55 ± 0.14* -0.44 ± 0.27 

Combination 4 
 T. vaporariorum eggs  
 T. urticae eggs 

0.65 ± 0.21* -0.01 ± 0.39 

a Parameter estimates followed by * are significantly different from zero (p < 0.05, 

linear regression) 
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igure 7.1. Prey preference β with 95% confidence intervals (solid dots). Bold solid lines represent Manly’s linear model of frequency-dependent 
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Prey type 1 as proportion of the total number of prey offered ρ 

Figure 7.2. Predation of I. degenerans upon different prey species: observed proportion of prey 1 in the diet (± SEM) (solid triangles). The solid 

line shows the predicted preference based on the individual functional response curves. The dotted line is the no-preference line 

 



114 Chapter 7  

The parameters of the individual functional responses were used to predict 

consumption of prey when both prey types are presented together. Using the 2-prey 

interaction (equation 7.3), the number of prey consumed was predicted for different 

prey types and different prey densities. Results were compared with the observed 

predation over the same range of densities (Fig. 7.2). In each case the predicted and 

observed proportion of prey type 1 in the diet are plotted against the proportion of prey 

type 1 of the total initial prey density (60 prey individuals).  

Iphiseius degenerans showed a preference for 1st instars over 2nd instars of F. 

occidentalis at two ratios (Fig. 7.2a, ratio 1:2 and 1:1). Based on the individual 

functional response curves, there should be preference for 1st instars over all ratios. The 

deviation between predicted and observed preference indicated that there was a slight 

change in the predator behaviour when the two prey stages were offered simultaneously. 

The same can be concluded when comparing predicted and observed preference when 

whitefly eggs and spider mite eggs were offered (Fig. 7.2d). Here the observed value at 

ratio 1:1 differed from the predicted one. Figure 7.2b shows that there is a preference 

for T. vaporariorum eggs over 1st instars of F. occidentalis. This preference is predicted 

from the separate functional response curves. The outcome of choice between 1st instars 

of F. occidentalis and T. urticae eggs is depicted in Figure 7.2c. Iphiseius degenerans 

had a preference for spider mite eggs at ratio 1:1 and 2:1, although the functional 

response experiments predicted the contrary. 

 
 
7.4. DISCUSSION 
 

When a prey type was offered in combination with pollen, predation on the prey was 

affected. In three out of four combinations, predation on arthropod prey was 

significantly reduced in the presence of pollen. This concurs with the results of Wei and 

Walde (1997) who looked at the effect of the presence of Typha latifolia L. pollen on 

the functional response of Typhlodromus pyri Scheuten to Panonychus ulmi (Koch). 

However, in their study, the effect on predation was limited. At a density of 30 prey 

individuals offered, the predation rate with pollen was approximately 80% of that when 

no pollen was present. McMurtry and Scriven (1966) also concluded that the 

consumption of Oligonychus punicae (Hirst) by Amblyseius hibisci (Chant) decreased 
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when pollen was added, with an average reduction of 60.4 and 25.7% depending on the 

quantity of pollen offered (‘high’ or ‘low’). Feeding on alternative food like pollen has 

received a lot of attention, regarding the persistence of the predator population in the 

field and consequently its role in biological control. According to Wei and Walde 

(1997) the enhancement of biological control due to the presence of pollen should be 

most likely when the primary prey is preferred more than pollen (thus minimizing the 

reduction in predation rate), but the alternative food is also of high quality, thus 

maximizing the numerical response. In the case of I. degenerans, the presence of pollen 

as an alternative food source is likely to reduce the predation on thrips nymphs, spider 

mite eggs and whitefly eggs. 

 

Prey preference of phytoseiid mites has been evaluated when the predators were 

offered immature life stages of con- and heterospecifics (Schausberger, 1999; Walzer 

and Schausberger, 1999), different life stages of one prey species (Takafuji and Chant, 

1976, Fernando and Hassell, 1980; Clements and Harmsen, 1993; Blackwood, 2001) or 

life stages of different prey species (Clements and Harmsen, 1993; Smith et al., 1996). 

Typhlodromus caudiglans Schuster preferred active larvae and protonymphs over eggs 

and adult females of P. ulmi (Clements and Harmsen, 1993). Smith et al. (1996) tested 

the preference of five phytoseiid mites to eggs and immatures of Mononychellus 

tanajoa (Bondar) and Mononychellus caribbeanae McGregor. None of the predators 

showed any preference based on the consumption of eggs, but they did show a 

preference for M. tanajoa based on the consumption of mobile immatures.  

 

In the present study, preference for a particular prey species was determined by 

estimating Manly’s preference index (1973) and was predicted from the individual 

functional responses (Cock, 1978). Although I. degenerans is considered a generalist 

predator (McMurtry and Croft, 1997), the predator showed a clear preference in at least 

two cases. It showed selectivity towards 1st instars over 2nd instars of F. occidentalis 

when equal numbers of the two prey stages were present. A significant preference was 

also observed for T. vaporariorum eggs over 1st instars of F. occidentalis. The lack of 

preference for thrips in our experiments is surprising as the predator is used as a 

biological control agent of thrips. The preference for whitefly eggs over first instars of 
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F. occidentalis is not clear. Immobile stages may be preferred as the predator does not 

need to spend extra energy for catching the prey. On the other hand, for mobile prey, 

there is an increased probability of an encounter. Thrips nymphs, however, are known 

to be aggressive and able to evade attacks by predators (Bakker and Sabelis, 1989). The 

choice for T. vaporariorum eggs over thrips nymphs concurs with the results from the 

experiments on developmental time (chapter 4), revealing that a diet of whitefly eggs 

resulted in a faster developmental time (7.11 days) and a higher survival of the 

immatures (66.7 %) than did a diet of thrips nymphs (7.75 days and 13 % respectively). 

In contrast, in terms of reproductive success, thrips nymphs are a better choice than 

whitefly eggs. The intrinsic rate of increase of the predatory mite when fed thrips 

nymphs was about two times higher than that on a diet of whitefly eggs (0.114 vs. 0.056 

females/female.day). Whether phytoseiid mites select the best prey species in terms of 

reproductive success was investigated by Dicke et al. (1990). They found that the prey 

preference of Amblyseius (= Euseius) finlandicus (Oudemans) for Aculus schlechtendali 

(Nalepa) could be understood in terms of reproductive success, whereas preferences 

shown by T. pyri and Amblyseius potentillae (Garman) could not.  

 

When confronted with different ratios of the tested prey types, the overall trend is 

that there is no switching behaviour in I. degenerans. The only exception to non-

switching was the combination with 1st and 2nd instars of F. occidentalis. Iphiseius 

degenerans exhibited negative switching, with a significantly decreased preference for 

1st instars of F. occidentalis in response to an increased abundance of first instars. 

Blackwood et al. (2001) reported on switching behaviour in five phytoseiid mite 

species. Adult females of E. finlandicus and P. persimilis exhibited a slightly negative 

prey-stage switching, feeding more on T. urticae larvae in response to increased 

abundance of prey eggs. In contrast, positive switching occurred in adult females of T. 

pyri. 

 

The preferences shown by I. degenerans can be summarized as follows: T. 

vaporariorum eggs - T. urticae eggs > 1st instars of F. occidentalis > 2nd instars of F. 

occidentalis. In 3 out of 4 combinations tested, the preference was generally predicted 

well by the individual functional response curves. This means that the searching 
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behaviour of female I. degenerans was the same when confronted with a single or two 

prey species. One exception was found when the predator was simultaneously offered 

1st instars of F. occidentalis and T. urticae eggs. The individual response curves 

predicted a preference for 1st instars of F. occidentalis, but in choice tests the predatory 

mite was observed to prefer T. urticae eggs, although this preference was not significant 

at all ratios tested. This discrepancy may be explained by a change in predatory 

behaviour when both species were offered together. As mentioned above, the reason 

why eggs are preferred is not clear. To investigate this, observing phytoseiid mites in a 

patch with two or more prey species would probably provide some more information on 

the foraging behaviour of I. degenerans. 

 

Investigation of the searching behaviour of I. degenerans would be helpful in 

understanding abovementioned results. The orientation of the predatory mite in an 

olfactometer might provide useful information for this purpose. The olfactory response 

of I. degenerans females to infested bean leaves with different prey species will be 

studied in the next chapter.  
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CHAPTER 8 

OLFACTORY RESPONSE OF IPHISEIUS DEGENERANS 

TOWARDS ODOURS FROM PLANTS, POLLEN AND PREY 

 

 

8.1 INTRODUCTION 

 

In the previous chapter prey preference of I. degenerans was assessed in two-choice 

experiments. When arriving in a prey patch with one or more prey stages or species, the 

predator has to make foraging decisions (Dicke, 1988). Chemical communication, both 

between arthropods and between plants and arthropods, plays a very important role in 

the behaviour of an arthropod predator. Chemical information can originate from the 

herbivore, its food, herbivore-associated organisms or from interactions between these 

sources (Vet and Dicke, 1992). Some plants have been found to produce and emit 

volatile infochemicals in response to attacks by herbivores. These infochemicals are 

released in large amounts and the blend composition is specific for a plant species or 

genotype, and for the herbivore species or instar damaging the plant (Vet and Dicke, 

1992; Dicke and Vet, 1999). This mechanism is a mode of indirect plant defence. 

Indirect plant defences bypass the direct defence route against the second trophic level 

(the herbivore) by promoting the effectiveness of the third level (the herbivore’s natural 

enemies) (Sabelis et al., 1999). Research conducted over the past two decades has 

shown that these volatiles can be used by predatory heteropterans and mites, and by 

parasitoids to find their prey (e.g., Dicke, 1988; Dickens, 1999; Lo Pinto et al., 2004; 

McGregor and Gillespie, 2004; Gardiner et al., 2005). The use of these infochemicals 

by natural enemies of herbivores is presumed to increase predation efficiency by 

reducing searching time and increasing attack rate (Dicke and Vet, 1999). Phytoseiid 

mites can discriminate between different herbivore species on the same host plant. 

Apparently, they prefer the volatiles related to one prey species over volatiles related to 

another species (Dicke et al., 1988). 
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The interaction between plants, spider mites and phytoseiid predators is well 

documented. The trithrophic system consisting of Lima bean plants (Phaseolus lunatus 

L.) – Tetranychus urticae Koch – Phytoseiulus persimilis Athias-Henriot has received 

considerable attention (e.g., Sabelis and Van de Baan, 1985; Dicke, 1988; Shimoda and 

Dicke, 2000; Maede and Takabayashi, 2001; De Boer et al., 2005).  

To obtain more information on the prey location behaviour of I. degenerans, the ability 

of the predator to detect volatiles from infested bean leaves was assessed. This was done 

by presenting female predatory mites odours from uninfested bean leaves (Phaseolus 

vulgaris L.), and leaves originating from plants infested with Frankliniella occidentalis 

(Pergande), T. urticae or Trialeurodes vaporariorum Westwood, or leaves dusted with 

Ricinus communis L. pollen in two-choice experiments using a Y-tube olfactometer. 

 

 

8.2 MATERIALS AND METHODS 

 

8.2.1 Predator culture 

 

Iphiseius degenerans was reared as described in chapter 3 (3.2.1 Predator culture). 

 

 

8.2.2 Preparation of infested bean leaves 

 

Four types of food sources were used in the trials: bean leaves infested with T. urticae, 

T. vaporariorum, or F. occidentalis or dusted with pollen of R. communis. Descriptions 

of the rearing methods of the insects and mites, and of the collection of pollen used in 

the experiments are presented in chapter 4 (4.2.2 Food sources) 

 

To obtain leaves infested by T. urticae, 150 adult spider mites per leaf were introduced 

onto fresh bean plants with two primary leaves. Plants were placed in a climatic 

chamber at 30 ± 5 °C, 40 ± 5% RH and a 16L:8D h photoperiod to allow spider mites to 

establish a population with mixed life stages.  
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Whitefly infested bean leaves were obtained by placing fresh bean plants into the stock 

culture of T. vaporariorum (25 ± 1 °C, 50 ± 5% RH and a 16L:8D h photoperiod). 

Leaves bearing eggs, larvae, pupae and adult whiteflies were used in the experiments.  

First and second instars of F. occidentalis were gently brushed off from a green bean 

pod onto fresh bean plants. Infested plants were kept in the laboratory at 25 ± 1 °C, 50 ± 

5% RH and a 16L:8D h photoperiod. When the typical damage by thrips (cell damage 

and drops of excrements) was visible, leaves were used in the olfactometer trials. 

In the trials with pollen, the odour source consisted of uninfested bean leaves dusted 

with approximately 0.2 g of castor bean pollen per leaf.  

In each replicate, four primary bean leaves were used as odour source. 

 

 

8.2.3 Olfactometer 

 

To test the attraction of I. degenerans towards volatiles of different odour sources, a Y-

tube olfactometer was used (Fig. 8.1). The olfactometer consisted of a central glass tube 

(diameter: 4 cm, length: 15 cm) with two arms (diameter: 4 cm, length 11 cm). The side 

arms were extended with 21 cm long glass tubes and connected with screw caps 

(SVL42, diameter: 4.2 cm). These extensions contained two smaller glass tubes, 

between which a metal mesh was placed.  

Air was blown into the olfactometer by a pump (KNF Neuberger pump, type N035 AN 

18) and run through Tygon® tubing. Air was then filtered through activated charcoal 

(Whatman ® Carbon Cap ™) and split into two air streams (3 l/min). The flow rate was 

adjusted by flow meters (Aalborg ®). Conditioning was done by leading the air stream 

through glass gas wash bottles filled with distilled water, and was then directed to two 

similar bottles that contained the odour sources. The resulting humidified odour flows 

were then introduced into the two arms of the Y-tube olfactometer. The air left the 

olfactometer through the central tube.  

 

 

 

 

 



122 Chapter 8  

 
flow meters 

 

moisturising unit 
pump 

odour sources 

Y tube
carbon filter 

Figure 8.1. Y-tube olfactometer. 

 

To provide a runway on which predatory mites could walk during the experiments, a 

Y-shaped iron wire was inserted in the Y-tube. A metal mesh fitted into the SVL42 

connection supported the wire at the end of the Y-tube arms. The base of the wire was 

turned downwards and rested at the bottom of the Y-tube. 

 

 

8.2.4 Experimental set-up 

 

Individual females were introduced on the iron wire and had to move upwind. At the 

fork, they had to make a choice between the two odour sources. When the predator 

reached the end of one of the olfactometer arms (i.e., the black SVL42 connection, Fig. 

8.1.), the choice for the respective odour source was recorded. Each female was 

observed for 5 min. Predators that did not make a choice within this time span were 

recorded as “no choice”.  
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In the olfactometer, females were offered a choice between following combinations: 

• Clean bean leaves vs. bean leaves dusted with castor bean pollen 

• Clean bean leaves vs. T. urticae infested bean leaves  

• Clean bean leaves vs. F. occidentalis infested bean leaves 

• Clean bean leaves vs. T. vaporariorum infested bean leaves 

• Bean leaves dusted with castor bean pollen vs. T. urticae infested bean leaves 

• Bean leaves dusted with castor bean pollen vs. F. occidentalis infested bean leaves 

• Bean leaves dusted with castor bean pollen vs. T. vaporariorum infested bean leaves 

• T. urticae infested bean leaves vs. F. occidentalis infested bean leaves 

• T. urticae infested bean leaves vs. T. vaporariorum infested bean leaves 

• F. occidentalis infested bean leaves vs. T. vaporariorum infested bean leaves 

For each combination of odour sources, thirty females were used. All predators were 8-

12 days post-maturation, reared on castor bean pollen and starved for 4 hours prior to 

the start of the experiment. Each female was used only once.  

After 15 replicates, the odour sources were uncoupled and connected to the other arm 

of the Y-tube to compensate for unforeseen asymmetry in the set-up. After each set of 

30 replicates the glass tubes and odour sources were rinsed with acetone and the 

Tygon® tubing with water. 

 

 

8.2.5 Data analysis  

 

The results of each experiment were analyzed for statistical significance by a chi-square 

test (SPSS 12.0, SPSS Inc., 1989-2003). The null hypothesis was that predators 

exhibited a 50:50 distribution over the two odour sources. 

 

 

8.3 RESULTS 

 

The proportion of I. degenerans females responding to infested bean leaves is shown in 

Figure 8.2.  
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Iphiseius degenerans females were significantly more attracted to clean bean leaves 

compared to odours from thrips infested leaves (χ2 = 6.53, p < 0.05). No preference was 

observed for leaves infested with spider mites or whiteflies (χ2 = 0.14, p = 0.71; χ2 = 

0.00, p = 1). The predator did not discriminate between clean bean leaves and leaves 

dusted with pollen (χ2 = 0.13, p = 0.72). 

When offered a choice between odours from pollen-dusted leaves and prey-infested 

leaves, the predatory mite showed no preference for either one of the odour sources (χ2 

= 0.00, p = 1; χ2 = 0.53, p = 0.47; χ2 = 0.00, p = 1). When presented with leaves infested 

with thrips and leaves infested with spider mites, females were significantly more 

attracted to the thrips-infested leaves (χ2 = 6.53, p < 0.05). No attraction nor rejection 

was observed when I. degenerans was offered a choice between whitefly infested and 

spider mite infested leaves, and whitefly infested and thrips infested leaves (χ2 = 1.20, p 

= 0.27; χ2 = 0.13, p = 0.72).  

The number of non-responding females was generally low. Only when spider mite 

infested leaves and uninfested leaves were presented, two predator females did not 

make a choice within five minutes. 

 

 

8.4 DISCUSSION 

 

In this study an olfactometer was used to investigate the response of I. degenerans to 

volatiles from prey infested bean leaves. Iphiseius degenerans females were offered a 

choice between odours from uninfested bean leaves and leaves originating from plants 

infested with either F. occidentalis, T. urticae or T. vaporariorum, or leaves dusted with 

R. communis pollen. 

Female predatory mites that had been reared on castor bean pollen did not show a 

response to pollen odours. Nonetheless, I. degenerans is often found in flowers feeding 

on pollen and thrips (van Houten and van Stratum, 1995). Based on our results it 

remains unclear whether the predator is attracted to the flowers due to the presence of 

pollen or thrips. It has been demonstrated that pollen emit odours than can be used by 

insects to find this food source (Kirk, 1985; Cook et al., 2002).  
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Figure 8.2. Response of I. degenerans females in a Y-tube olfactometer. Numbers in bars indicate the number of females choosing for either 

olfactometer arm. n.s : p > 0.05, * : p < 0.05. 

 



126  Chapter 8  

The olfactometer experiments showed that the predators did not discriminate 

between odours from spider mite infested, whitefly infested, or pollen dusted bean 

leaves and clean bean leaves. However, female predators preferred clean leaves over 

thrips infested leaves. Our results correspond with those obtained by Janssen et al. 

(1998) who investigated the response of three phytoseiid predators, including I. 

degenerans, to odours emanating from infested cucumber plants. They reported that 

both P. persimilis and N. cucumeris were attracted to plants with thrips, while I. 

degenerans showed no preference for plants infested with thrips over clean leaves. The 

specialist P. persimilis was also attracted to spider mites, N. cucumeris showed neither 

attraction nor avoidance and I. degenerans avoided plants infested with spider mites.  

The predator did not discriminate between leaves with spider mites and leaves with 

whiteflies, and between leaves with thrips and leaves with whiteflies. However, I. 

degenerans showed a strong preference for leaves with thrips over spider mite infested 

leaves. This was also reported by Janssen et al. (1998). According to these authors, the 

reason why thrips-infested plants were preferred over plants with spider mites, was 

probably because the predator was repelled by plants with spider mites. But this was not 

shown in our data, since repellence was only observed when the predatory mite was 

offered a choice between leaves infested with F. occidentalis and T. urticae. 

 

It would be interesting to know whether the preferences exhibited in the Y-tube trials 

also occur when prey species are present in the same prey patch. This can be 

investigated by comparing results from olfactometer studies, prey preference studies or 

electrophoretic analysis of the gut content of predators. Dicke (1988) showed that 

Typhlodromus pyri Scheuten preferred Panonychus ulmi (Koch) to Aculus 

schlechtendali (Nalepa) based on the olfactory response. This conclusion was confirmed 

by the electrophoretic analysis of the gut content of T. pyri (Dicke and De Jong, 1988). 

Results of the present study show that I. degenerans preferred F. occidentalis to T. 

urticae and although not significant, somewhat more females oriented towards T. 

vaporariorum than towards T. urticae. There was no clear response when F. 

occidentalis and T. vaporariorum were presented together. These findings do not concur 

with the results of the two-choice predator experiments (chapter 7). When equal 

amounts of these prey species were offered simultaneously in two-choice leaf disc 
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experiments, the predator did not discriminate between T. vaporariorum and T. urticae, 

but preferred eggs of T. urticae or T. vaporariorum over F. occidentalis first instars. In 

olfactometer tests, preference for F. occidentalis can solely be based on olfactory 

information, whereas in predation experiments also tactile stimuli may influence 

predator response. It has already been mentioned that thrips nymphs (especially second 

instars) evade attacks by jerking with their abdomen (chapter 4) and can also evade 

attacks by predators by producing a drop of rectal fluid (Bakker and Sabelis, 1989). 

Alternatively, Dong and Chant (1986) mentioned that the searching efficiency of I. 

degenerans may be more reliant on tactile information. Takafuji and Chant (1976) 

showed that I. degenerans became more active and the searching activity was 

stimulated when prey bumped into resting I. degenerans. 

The responses measured in the present study may have been affected by several 

factors. Iphiseius degenerans was reared on castor bean pollen and had no experience 

with either of the prey species. Further, the hunger level of the phytoseiid may also 

influence the response. According to Dong and Chant (1986), food deprivation and life 

stage of I. degenerans affected its response to Tetranychus pacificus McGregor prey 

mites. Only starved females showed a positive response, while well-fed adults and 

protonymphs did not. In the present study, females were starved for 4 h. Longer 

starvation times may result in a different response. However, preliminary tests showed 

that fitness of the predator may be affected by starvation times longer than 24 h.  

Gardiner et al. (2005) reviewed numerous factors related to the condition of the host 

plant or the predator affecting the attraction of a phytoseiid predator to plants damaged 

by spider mites. Beside the hunger level of the predator and the predator’s rearing 

history, within-plant variation in volatile production, presence of other (conspecific or 

heterospecific) arthropods, the abundance of prey, the amount of light and water 

received by the plant and the infection of the predator with a pathogen are also factors 

which may play a role in the attraction of the predator. To assess the importance of 

these factors in the olfactory response of I. degenerans, however, further study is 

necessary.  
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CHAPTER 9 

GENERAL DISCUSSION, CONCLUSION AND PERSPECTIVES 

 

 

The western flower thrips, Frankliniella occidentalis (Pergande) became one of the 

major crop pests in European greenhouses since its introduction in Europe in 1983 (van 

Lenteren and Loomans, 1998). A variety of predators, entomopathogenic fungi, 

nematodes and parasitoids of thrips are known (an overview is given by Sabelis and van 

Rijn (1997) and van Lenteren and Loomans (1998)). Several of these natural enemies 

proved to be good enough to control thrips, but only under specific conditions (van 

Lenteren and Loomans, 1998). For example, Amblyseius cucumeris (Oudemans) and 

Orius spp. are successfully introduced for thrips control in greenhouses in spring and 

summer (Van den Meiracker and Ramakers, 1991). Unfortunately, in winter, both 

species enter a reproductive diapause induced by short day conditions. Also, eggs of A. 

cucumeris are vulnerable to low air humidity. 

In 1995, van Houten et al. reported on experiments that aimed at selecting new 

phytoseiid predatory mites which were able to control F. occidentalis year round. In 

these experiments, the rates of predation and oviposition on a diet of 1st instars of F. 

occidentalis, the rate of oviposition on a diet of sweet pepper pollen, the reproductive 

diapause incidence under short day conditions and the egg-hatching success at different 

ambient humidities was studied on cucumber leaf discs. Based on their results, the 

authors suggested that Iphiseius degenerans (Berlese) and Amblyseius hibisci (Chant) 

were the most promising candidates for biological control of the western flower thrips.  

A survey of the literature, presented in the second chapter of this study, revealed that 

information on I. degenerans is relatively scarce. For instance, no records were found 

on life table parameters and functional responses when the predator was fed F. 

occidentalis. Also, there was no information found on the prey preference of the 

predatory mite. According to van Lenteren and Woets (1988) the ability to develop to 

the adult stage on the host, climatic adaptation, the lack of negative effects on other 

beneficials present in the same environment, a good rearing method, a high kill rate 

(high intrinsic rate of increase) and a good searching efficiency are essential criteria for 

preintroductory evaluation of natural enemies for biological control in greenhouses, and 
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yet little or no information on these criteria was available for I. degenerans. It can be 

concluded that, although I. degenerans has been used for years as a biological control 

agent, it is not clear how I. degenerans interacts with its primary target, the western 

flower thrips F. occidentalis.  

 

This study was undertaken to elucidate interactions of I. degenerans with prey species 

the predator is likely to encounter in the crop (F. occidentalis, Tetranychus urticae 

Koch and Trialeurodes vaporariorum Westwood). Following research questions were 

addressed during this study: 

1. What is the influence of food on the development, longevity and life table parameters 

of I. degenerans ? 

2. What is the maximum predation rate of I. degenerans on different natural prey 

species? 

3. Does I. degenerans show a preference for a particular food source? 

4. Is there an olfactory response involved when the predatory mite searches for prey? 

 

To provide an answer to these questions, studies on I. degenerans were carried out 

under laboratory conditions of 25 ± 1 °C, 75 ± 5% RH and a 16L:8D h photoperiod. 

 

Life history traits of the predatory mite (i.e., development, fecundity, longevity, life 

table parameters) were explored in relation to different food sources in chapters 4 and 5. 

Previous studies reported on the immature development of I. degenerans, but in most of 

these studies pollen or tetranychid prey was offered as food (Takafuji and Chant, 1976; 

McMurtry, 1977; McMurtry et al., 1984; van Rijn and Tanigoshi, 1999ab). 

Reproductive characteristics were reported by Takafuji and Chant (1976), McMurtry 

(1977), Kennett and Hamai (1980), McMurtry et al. (1984), van Houten et al. (1995) 

and Nwilene and Nachman (1996), however, full life table studies were only performed 

by van Rijn and Tanigoshi (1999ab) on broad bean pollen, castor bean pollen, castor 

bean pollen and nectar, or on the twospotted spider mite Tetranychus urticae Koch on 

an artificial substrate, and by Takafuji and Chant (1976) on the pacific spider mite 

Tetranychus pacificus McGregor on a paper substrate. As mentioned before, 
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information on developmental rates and life table parameters is crucial to fully 

appreciate the potential of a predator for use in augmentative biological control.  

Iphiseius degenerans is considered a generalist predator (Croft and McMurtry, 1997). 

The present study revealed that its polyphagous character is not restricted to prey that 

the predator is likely to encounter in the field, but is extended to factitious prey such as 

cysts of the brine shrimp Artemia franciscana Kellogg. Its polyphagous character may 

both have a positive and negative impact on its value as a predator in the field.  

 

 One positive impact, as discussed in chapter 4, is the ability to develop on alternative 

prey. Frankliniella occidentalis nymphs, the primary target of I. degenerans, appeared 

to be unfavourable food for immature development. A high percentage of I. degenerans 

individuals were observed to escape the experimental arenas when the adult predators 

were presented with F. occidentalis nymphs (chapter 5). It was hypothesized that 

predatory mites may start wandering in search of more suitable food, explaining the 

high escape and mortality rates when thrips nymphs were supplied as prey. According 

to Lester and Harmsen (2002), a predator stage that cannot gain nutrition from a prey 

population may be considered a weak link in the food chain. This situation, however, 

may be alleviated should there be alternative prey available to any weak-link stage. 

Iphiseius degenerans is able to develop on nymphs of the green peach aphid Myzus 

persicae (Sulzer), the spider mite T. urticae, and eggs of the whitefly T. vaporariorum 

within 8 days. Adult predatory mites were able to feed and reproduce when fed these 

natural prey species, although population growth differed among these diets. The use of 

pollen as an alternative food source by phytoseiid mites has received considerable 

attention. Supplying pollen may promote pest control if the decrease in predation rate 

due to feeding on pollen (as observed in chapter 7) is compensated by a greater level of 

predation due to an increased predator population (McMurtry and Scriven, 1996; Wei 

and Walde, 1997). Offering castor bean pollen in combination with F. occidentalis 

nymphs reduced the mortality of the I. degenerans immatures, but predators still fled 

from the arena. Castor bean pollen offered solely to I. degenerans did not cause 

mortality, nor did the predatory mites tend to escape from the arena. Compared with the 

diets consisting of T. urticae and T. vaporariorum eggs, the diet of castor bean pollen 

resulted in the lowest generation time and doubling time. 
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In conclusion, due to its polyphagous character I. degenerans can use alternative 

prey to build up a population in the crop. But how effective is the predator population in 

controlling the target pest population? Literature reports neither on predation rates nor 

on prey preference of I. degenerans.  

Functional response experiments, together with numerical response experiments are 

regarded as key components in the selection of predators. Based on these experiments, it 

is possible to determine the theoretical maximum number of prey consumed, which may 

give an indication of the number of predators that have to be introduced in the crop to 

control a pest population. As demonstrated in chapter 6, I. degenerans is a predator with 

a low natural predation rate. The predator showed a Type II functional response when 

feeding on 1st or 2nd instars of F. occidentalis, adult females of T. urticae or eggs of T. 

vaporariorum, and a Type III functional response when feeding on eggs of T. urticae. 

Theoretically, an I. degenerans female could consume a maximum of 2.5 spider mite 

females, or 22 eggs of the greenhouse whitefly per day. The plateau in the Type III 

functional response was not yet reached in the present study, but at the highest density 

offered, the predatory mite consumed ca. 13 T. urticae eggs per day. Amblyseius 

cucumeris could consume a theoretical maximum of 16 or 8 first instars nymphs of F. 

occidentalis depending on the host plant species (sweet pepper or cucumber, 

respectively) (Shipp and Whitfield, 1991), whereas I. degenerans could consume no 

more than 3 first or second instars of F. occidentalis in the present study. 

It is worth mentioning here that the absence of standardized protocols to conduct and 

analyze these functional response experiments complicated the interpretation and 

comparison of results. Berry et al. (1988) summarized several problems that are 

associated with estimating functional responses in the laboratory (e.g., predator 

movement out of a patch, size of the experimental arena, …). In the present study, 

difficulties were encountered when analysing the functional curves; there was a 

discrepancy between the conclusions based on the statistical analysis and those based on 

the visualized functional response curves.  

 

A disadvantage of its polyphagous character may be that the focus of I. degenerans may 

shift towards other (pest)species present in the crop. Prey preference tests conducted in 

the laboratory may indicate what prey species is preferred (chapter 7). Again, this 
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information is not available in the literature. In the study of van Houten et al. (1995) it 

is assumed that I. degenerans prefers first instars of F. occidentalis based on the smaller 

size of this prey type, without testing this assumption in two-choice preference tests. 

Based on two-choice preference tests performed in the present study, the preferences 

shown by I. degenerans can be summarized as follows: T. vaporariorum eggs - T. 

urticae eggs > 1st instars of F. occidentalis > 2nd instars of F. occidentalis.  

Given the low intrinsic rate of increase obtained when fed whitefly eggs, it is difficult to 

predict the value of I. degenerans as a whitefly predator. It is not likely that the predator 

will be able to control whitefly infestations in a crop, but instead will use whiteflies as 

an alternative food source when other prey becomes scarce. The phytoseiid may exhibit 

a secondary effect on T. urticae, but this is probably only the case when leaves are not 

yet entirely covered with webbing, as the predatory mites may not cope with dense 

webbing. This is supported by the high escape rate of the progeny from the 

experimental arena and the high doubling time of the predator population when I. 

degenerans was reared on spider mites.  

The preference was generally predicted well by the individual functional response 

curves, except when the predator was offered 1st instars of F. occidentalis and T. urticae 

eggs simultaneously. The individual functional response curves predicted a preference 

for 1st instars of F. occidentalis, but the predatory mite was observed to prefer T. urticae 

eggs, although this preference was not significant at all prey density ratios tested. This 

discrepancy may be explained by a change in predatory behaviour when both species 

were offered together.  

The preference for 1st instars over 2nd instars of F. occidentalis changed with the 

density ratio of offered thrips instars. Iphiseius degenerans exhibited negative 

switching, with a significantly decreased preference for 1st instars of F. occidentalis in 

response to an increased abundance of 1st instars.  

Prey preference of the predatory mite was further analyzed in olfactometer 

experiments (chapter 8). Predators did not discriminate between odours from spider 

mite infested, whitefly infested, or pollen dusted bean leaves and clean bean leaves. 

However, female predators preferred clean leaves over thrips infested leaves. The 

results from the olfactometer tests did not correspond with the results of the two-choice 

experiments on leaf arenas. Iphiseius degenerans did not discriminate between leaves 
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with spider mites and leaves with whiteflies, and between leaves with thrips and leaves 

with whiteflies. However, it showed a strong preference for leaves with thrips over 

spider mite infested leaves. The olfactory responses of the predator remain unclear as 

the preference for thrips infested leaves and the repellence for spider mite infested 

leaves was not shown in all combinations with one of these prey species present. 

Predators reared on R. communis pollen did not show a response to pollen odours in 

olfactometer experiments. 

 

Based on the results of the laboratory experiments (i.e., its polyphagous character, the 

inability of immature predators to develop when offered thrips nymphs, the high escape 

rate when prey is considered suboptimal for development and reproduction, the low 

predation rate and the absence of a strong preference for certain prey species), it would 

be expected that I. degenerans is not a successful thrips predator. Nevertheless, I. 

degenerans has been used for many years in agricultural practice. Since the laboratory 

experiments carried out in the current study could not explain the control potential of 

this phytoseiid predator, further research may be warranted to fully understand its role 

in the regulation of arthropod pest populations. For instance, video monitoring of 

predatory mites when foraging and electrophoretic analysis of the gut content may 

elucidate the preference behaviour of I. degenerans. Also, it would be imperative to 

study how the behaviour of I. degenerans in the laboratory is reflected in more complex 

field situations, by conducting more field realistic experiments. 

 

Recently, a new predatory mite has been commercialized in Europe for control of thrips 

populations: Amblyseius (= Typhlodromips) swirskii (Athias-Henriot). Amblyseius 

swirskii is expected to replace A. cucumeris as the standard phytoseiid mite against 

thrips (Bolckmans et al., 2005). Further, according to Nomikou et al. (2001, 2002) this 

predatory mite can also be used as a biological control agent of the tobacco whitefly 

Bemisia tabaci Gennadius. Like I. degenerans, this generalist predatory mite exhibits no 

diapause and thus can be used for year-round control. But again, very little information 

on the biology and predatory properties of this mite is available. It might be worthwhile 

to study biological characteristics and predatory behaviour of A. swirskii in depth, in 

order to gain insight in its capacities as a predator and in order to compare these 
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properties with those of I. degenerans in order to find out if A. swirskii can eventually 

be a valuable alternative to I. degenerans in augmentation biological control. 
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SUMMARY 

 

 

The subject of this study, Iphiseius degenerans (Berlese), is a predatory mite belonging 

to the family Phytoseiidae. Phytoseiid mites are economically important predators of 

phytophagous mites and insects in greenhouse crops. Iphiseius degenerans is used 

commercially in Belgium for thrips control in greenhouse crops since 1994.  

A survey of the literature revealed that information on I. degenerans is relatively 

scarce. For instance, no records were found on life table parameters and functional 

responses when the predator was fed F. occidentalis. Also, there was no information 

found on the prey preference of the predatory mite. Nevertheless, these biological 

parameters are, among others, essential criteria for preintroductory evaluation of natural 

enemies for biological control in greenhouses. 

It can be concluded that, although I. degenerans has been used for years as a biological 

control agent, it is not clear how I. degenerans interacts with its primary target, the 

western flower thrips Frankliniella occidentalis (Pergande).  

 

Laboratory studies were undertaken to elucidate interactions of I. degenerans with 

prey species the predator is likely to encounter in the crop (F. occidentalis, Tetranychus 

urticae Koch and Trialeurodes vaporariorum Westwood).  

 

In the first experimental part of the study, life history traits of the predatory mite (i.e., 

development, fecundity, longevity, life table parameters) were explored in relation to 

different food sources. 

The experiments conducted in this part revealed that its polyphagous character is not 

restricted to prey that the predator is likely to encounter in the field, but is extended to 

factitious prey such as cysts of the brine shrimp Artemia franciscana Kellogg. This 

polyphagous character may both have a positive and negative impact on its value as a 

predator in the field.  

 

 Frankliniella occidentalis nymphs, the primary target of I. degenerans, appeared to 

be unfavourable food for immature development. A high percentage of I. degenerans 
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individuals were observed to escape the experimental arenas when the adult predators 

were presented with F. occidentalis nymphs. It was hypothesized that predatory mites 

may start wandering in search of more suitable food, explaining the high escape and 

mortality rates when thrips nymphs were supplied as prey. Iphiseius degenerans is able 

to develop on nymphs of the green peach aphid Myzus persicae (Sulzer), the spider mite 

T. urticae, and eggs of the whitefly T. vaporariorum within 8 days. Adult predatory 

mites were able to feed and reproduce when fed these natural prey species, although 

population growth differed among these diets. The intrinsic rate of natural increase (rm) 

varied between 0.015 and 0.115 females/female.day. The diet consisting of T. urticae 

offered on a Multicel arena resulted in the highest population growth whereas the diet of 

T. urticae brushed of onto a bean leaf resulted in the slowest population growth. 

The use of pollen as an alternative food source by phytoseiid mites has received 

considerable attention. Supplying pollen may promote pest control if the decrease in 

predation rate due to feeding on pollen is compensated by a greater level of predation 

due to an increased predator population (McMurtry and Scriven, 1996; Wei and Walde, 

1997). Offering castor bean pollen in combination with F. occidentalis nymphs reduced 

the mortality of the I. degenerans immatures, but predators still fled from the arena. 

Castor bean pollen offered solely to I. degenerans did not cause mortality, nor did the 

predatory mites tend to escape from the arena. Compared with the diets consisting of T. 

urticae and T. vaporariorum eggs, the diet of castor bean pollen resulted in a higher 

population growth (rm = 0.142 females/female.day). 

In conclusion, due to its polyphagous character I. degenerans can use alternative 

prey to build up a population in the crop. But how effective is the predator population in 

controlling the target pest population? Literature reports neither on predation rates nor 

on prey preference of I. degenerans.  

 

The predatory behaviour and prey preference were examined in the second experimental 

part of this study.  

Functional response experiments indicated that I. degenerans shows a Type II 

functional response when feeding on 1st or 2nd instars of F. occidentalis, adult females 

of T. urticae or eggs of T. vaporariorum, and a Type III functional response when 

feeding on eggs of T. urticae. These experiments also indicated that this is a predator 
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with a low natural predation rate. Theoretically, I. degenerans could consume no more 

than 3 first or second instars of F. occidentalis, 2.5 spider mite females, or 22 eggs of 

the greenhouse whitefly per day. The plateau in the Type III functional response was 

not yet reached in the present study, but at the highest density offered, the predatory 

mite consumed ca. 13 T. urticae eggs per day. 

 

A disadvantage of its polyphagous character may be that the focus of I. degenerans may 

shift towards other (pest) species present in the crop. Prey preference tests conducted in 

the laboratory may indicate what prey species is preferred. Based on two-choice 

preference tests performed in the present study, the preferences shown by I. degenerans 

can be summarized as follows: T. vaporariorum eggs - T. urticae eggs > 1st instars of F. 

occidentalis > 2nd instars of F. occidentalis.  

Given the low intrinsic rate of increase obtained when fed whitefly eggs, it is difficult to 

predict the value of I. degenerans as a whitefly predator. It is not likely that the predator 

will be able to control whitefly infestations in a crop, but instead will use whiteflies as 

an alternative food source when other prey becomes scarce. The phytoseiid may exhibit 

a secondary effect on T. urticae, but this is probably only the case when leaves are not 

yet entirely covered with webbing, as the predatory mites may not cope with dense 

webbing. This is supported by the high escape rate of the progeny from the 

experimental arena and the high doubling time of the predator population when I. 

degenerans was reared on spider mites.  

The preference was generally predicted well by the individual functional response 

curves, except when the predator was offered 1st instars of F. occidentalis and T. urticae 

eggs simultaneously. The individual functional response curves predicted a preference 

for 1st instars of F. occidentalis, but the predatory mite was observed to prefer T. urticae 

eggs, although this preference was not significant at all prey density ratios tested. This 

discrepancy may be explained by a change in predatory behaviour when both species 

were offered together. 

The preference for 1st instars over 2nd instars of F. occidentalis changed with the 

density ratio of offered thrips instars. Iphiseius degenerans exhibited negative 

switching, with a significantly decreased preference for 1st instars of F. occidentalis in 

response to an increased abundance of 1st instars.  
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Prey preference of the predatory mite was further analyzed in olfactometer 

experiments. Predators did not discriminate between odours from spider mite infested, 

whitefly infested, or pollen dusted bean leaves and clean bean leaves. However, female 

predators preferred clean leaves over thrips infested leaves. The results from the 

olfactometer tests did not correspond with the results of the two-choice experiments on 

leaf arenas. Iphiseius degenerans did not discriminate between leaves with spider mites 

and leaves with whiteflies, and between leaves with thrips and leaves with whiteflies. 

However, it showed a strong preference for leaves with thrips over spider mite infested 

leaves. The olfactory responses of the predator remain unclear as the preference for 

thrips infested leaves and the repellence for spider mite infested leaves was not shown 

in all combinations with one of these prey species present. Predators reared on R. 

communis pollen did not show a response to pollen odours in olfactometer experiments. 

 

Based on the results of the laboratory experiments (i.e., its polyphagous character, the 

inability of immature predators to develop when offered thrips nymphs, the high escape 

rate when prey is considered suboptimal for development and reproduction, the low 

predation rate and the absence of a strong preference for certain prey species), it would 

be expected that I. degenerans is not a successful thrips predator. Nevertheless, I. 

degenerans has been used for many years in agricultural practice. Since the laboratory 

experiments carried out in the current study could not explain the control potential of 

this phytoseiid predator, further research may be warranted to fully understand its role 

in the regulation of arthropod pest populations.  

 

 



 Samenvatting 141 

SAMENVATTING 

 

 

De Californische trips Frankliniella occidentalis (Pergande) werd geïntroduceerd in 

Europa in 1983 en is sindsdien één van de belangrijkste plagen in kasteelten (van 

Lenteren en Loomans, 1998). Een groot aantal natuurlijke vijanden van trips (predators, 

entomopathogene schimmels, nematoden en parasitoïden) zijn reeds gekend; een 

overzicht van deze natuurlijke vijanden werd gegeven door Sabelis en van Rijn (1997) 

en van Lenteren en Loomans (1998). Een aantal van deze natuurlijke vijanden zijn in 

staat om trips succesvol te bestrijden, maar enkel onder specifieke omstandigheden. 

Amblyseius cucumeris (Oudemans) en Orius spp. bijvoorbeeld worden succesvol 

uitgezet in kasteelten tijdens de lente en de zomer (Van den Meiracker  Ramakers, 

1991). In de winter gaan deze tripsbestrijders echter in een reproductieve diapauze 

(winterrust) onder invloed van korte dag omstandigheden. Een bijkomend probleem is 

dat de eitjes van A. cucumeris gevoelig zijn voor lage luchtvochtigheden.  

van Houten et al. (1995) rapporteerden over een studie die als doel had roofmijten te 

selecteren die F. occidentalis het hele jaar rond kunnen bestrijden. In deze studie 

werden de predatie en eiafleg voor een aantal roofmijten gevoed met 

eerstestadiumnimfen van F. occidentalis, de eiafleg wanneer de roofmijten gevoed 

werden met paprikapollen, de reproductieve diapauze onder invloed van korte dag 

omstandigheden en de ontluiking van de eitjes onder invloed van verschillende relatieve 

vochtigheden bestudeerd. Op basis van de bekomen resultaten, suggereerden de 

onderzoekers dat Iphiseius degenerans (Berlese) en Amblyseius hibisci (Chant) 

veelbelovende kandidaten voor de biologische bestrijding van de Californische trips 

zijn.  

Literatuuronderzoek, voorgesteld in het eerste hoofdstuk van voorliggende studie, 

wees echter uit dat er weinig informatie over I. degenerans beschikbaar is. Er zijn 

bijvoorbeeld geen gegevens voorhanden over de levenstabelparameters en de 

functionele responsen wanneer de roofmijt gevoed wordt met F. occidentalis. Verder is 

er ook weinig of geen informatie beschikbaar over de voedselpreferentie van de 

roofmijt. 
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Volgens van Lenteren en Woets (1988) zijn er een aantal essentiële criteria die bij de 

evaluatie van natuurlijke vijanden voor biologische bestrijding in kasteelten nader 

bestudeerd moeten worden: de mogelijkheid van de predator om te ontwikkelen tot het 

adultstadium wanneer ze gevoed worden met de prooi, de aanpassing aan 

klimatologische omstandigheden, de afwezigheid van negatieve effecten op andere 

natuurlijke vijanden in het gewas, een gemakkelijke kweekmethode, een grote capaciteit 

om prooien te doden (hoge intrinsieke groeisnelheid) en een goede zoekefficiëntie. Voor 

I. degenerans zijn deze gegevens schaars. 

Op basis van deze vaststelling kan geconcludeerd worden dat, alhoewel I. degenerans 

reeds jaren gebruikt wordt als een natuurlijke vijand van de Californische trips F. 

occidentalis, het niet duidelijk is hoe de roofmijt interageert met dit plaaginsect . 

 

Het doel van deze studie was de interacties tussen I. degenerans en een aantal 

plaagorganismen (F. occidentalis, Tetranychus urticae Koch en Trialeurodes 

vaporariorum Westwood) op te helderen. De onderzoeksvragen die hierbij gesteld 

werden, waren: 

• Wat is de invloed van verschillende voedselbronnen op de ontwikkeling, levensduur, 

en levenstabelparameters van I. degenerans? 

• Wat is de maximale hoeveelheid prooien die I. degenerans kan consumeren? 

• Heeft I. degenerans een voorkeur voor een bepaalde voedselbron? 

• Spelen olfactorische prikkels een rol wanneer de roofmijt op zoek gaat naar voedsel? 

 

Om een antwoord op bovenstaande vragen te formuleren, werden een aantal 

experimenten uitgevoerd in het laboratorium bij 25 ± 1 °C, 75 ± 5% RV en een 

licht/donkercyclus van 16 uur licht en 8 uur duisternis. 

 

De biologische karakteristieken van de predator (ontwikkeling, fecunditeit, 

levensduur, levenstabelparameters) werden bestudeerd in relatie met verschillende 

voedselbronnen in hoofdstukken 4 en 5. In vorige studies over de ontwikkeling van I. 

degenerans werden meestal pollen of spintmijten aangeboden als prooi (Takafuji en 

Chant, 1976; McMurtry, 1977; McMurtry et al., 1984; van Rijn en Tanigoshi, 1999ab). 

Kenmerken over de reproductie werden gerapporteerd door Takafuji en Chant (1976), 
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McMurtry (1977), Kennett en Hamai (1980), McMurtry et al. (1984), van Houten et al. 

(1995), en Nwilene en Nachman (1996), maar volledige levenstabellen werden enkel 

opgesteld door van Rijn en Tanigoshi (1999ab) wanneer de roofmijt gevoed werd met 

bonenpollen, wonderboompollen, wonderboompollen en nectar, of met kasspint T. 

urticae op een plastic substraat, en door Takafuji en Chant (1976) wanneer de spintmijt 

Tetranychus pacificus McGregor werd aangeboden op een papieren substraat. Zoals 

eerder vermeld is de informatie over ontwikkelingstijden en levenstabelparameters 

cruciaal om het vermogen van de predator bij de biologische bestrijding van 

plaaginsecten en –mijten volledig te begrijpen. Iphiseius degenerans wordt aanzien als 

een generalist (Croft en McMurtry, 1997). The huidige studie toonde echter aan dat het 

polyfage karakter van de roofmijt zich niet beperkt tot prooien die de predator kan 

tegenkomen in het gewas, maar ook voeding op onnatuurlijke voedselbronnen inhoudt 

zoals de cysten van het pekelkreeftje Artemia franciscana Kellogg. Dit polyfage 

karakter kan echter zowel een positieve als negatieve invloed hebben op de waarde van 

de predator in natuurlijke systemen. 

 

Een voordeel, bediscussieerd in hoofdstuk 4, is het vermogen van de roofmijt om 

zich te ontwikkelen op alternatieve prooien. De nimfen van F. occidentalis, de 

belangrijkste plaag waartegen I. degenerans wordt uitgezet, zijn immers geen goede 

voedselbron om de ontwikkeling van de roofmijt te ondersteunen. Naast het niet kunnen 

voltooien van de ontwikkeling tot het adultstadium, werd ook opgemerkt dat een groot 

percentage roofmijten die F. occidentalis nimfen kregen aangeboden, vluchtten van de 

arena. Verondersteld werd dat deze vluchtende roofmijten op zoek gaan naar een 

andere, meer geschikte voedselbron. Volgens Lester en Harmsen (2002) is het 

predatorstadium dat niet in staat is een prooipopulatie te gebruiken voor verdere 

ontwikkeling, een zwakke schakel in de voedselketen. Deze predators kunnen eventueel 

wel verder ontwikkelen wanneer ze zich voeden met een alternatieve prooi. 

Iphiseius degenerans kan zich ontwikkelen tot het adultstadium in 8 dagen wanneer de 

mijt gevoed wordt met nimfen van de perzikluis Myzus persicae (Sulzer), de spintmijt 

T. urticae en eitjes van de kaswittevlieg T. vaporariorum. Volwassen roofmijten zijn in 

staat om zich te voeden en voort te planten wanneer ze deze prooien aangeboden 

krijgen, maar de populatiegroei is afhankelijk van de prooisoort. Het gebruik van pollen 
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als een alternatieve voedselbron voor roofmijten heeft reeds veel aandacht gekregen. 

Het aanbieden van pollen kan de plaagbestrijding in het gewas helpen, maar enkel 

indien de daling van het aantal geconsumeerde prooien als gevolg van het zich voeden 

op pollen (zoals geobserveerd werd voor I. degenerans in hoofdstuk 7) gecompenseerd 

wordt door een stijging in de prooiconsumptie als gevolg van de toegenomen 

predatorpopulatie (McMurtry en Scriven, 1996; Wei en Walde, 1997). In de huidige 

studie werd waargenomen dat door het gezamenlijk aanbieden van wonderboompollen 

en F. occidentalis nimfen de mortaliteit van de onvolwassen roofmijten daalde, maar dat 

er nog steeds roofmijten wegvluchtten van de arena. Ter vergelijking, wanneer 

wonderboompollen als enige voedselbron werd aangeboden, dan werd er noch 

mortaliteit noch ontsnapping waargenomen. Vergeleken met de diëten bestaande uit T. 

urticae en T. vaporariorum eieren, resulteerde het dieet bestaande uit 

wonderboompollen in de laagste generatietijd en verdubbelingstijd.  

 

Samenvattend, door zijn polyfage karakter kan I. degenerans alternatieve 

voedselbronnen gebruiken om in een gewas een populatie op te bouwen. Maar hoe 

effectief is deze predatorpopulatie in het bestrijden van de beoogde prooipopulatie? De 

wetenschappelijke literatuur rapporteert noch over predatie noch over 

voedselpreferentie van I. degenerans. 

 

Experimenten over de functionele respons en de numerieke respons worden gezien 

als belangrijke componenten bij de selectie van predators. Op basis van de resultaten uit 

dit type van experimenten is het mogelijk om het maximaal aantal prooien dat een 

predator per dag kan consumeren, te bepalen. Deze waarde kan een indicatie geven van 

het aantal predators dat geïntroduceerd moet worden in het gewas om een goede 

plaagbestrijding te garanderen. In hoofdstuk 6 werd geargumenteerd dat I. degenerans 

een predator met een lage predatiecapaciteit is. De roofmijt vertoonde een Type II 

functionele respons als reactie op toenemende prooidensiteiten van eerste- of 

tweedestadiumnimfen van F. occidentalis, volwassen wijfjes van T. urticae of eieren 

van T. vaporariorum, en een Type III functionele respons bij voeding op T. urticae 

eieren. Theoretisch kon een I. degenerans wijfje maximaal 2,5 wijfjes van de spintmijt, 

of 22 eieren van de kaswittevlieg per dag consumeren. Het plateau in de Type III 
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functionele respons werd niet bereikt, maar bij de hoogste prooidensiteit consumeerde I. 

degenerans ca. 13 T. urticae eieren. Amblyseius cucumeris kon een theoretisch 

maximum van 16 of 8 eerstestadiumnimfen van F. occidentalis consumeren (op paprika 

en boon, respectievelijk) (Shipp en Whitfield, 1991), terwijl I. degenerans niet meer dan 

3 eerste- of tweedestadiumnimfen van deze prooi per dag kon consumeren in de huidige 

studie. 

Bij de proeven over de functionele respons dient er ook opgemerkt te worden dat 

door het niet bestaan van gestandaardiseerde protocollen om deze experimenten uit te 

voeren en te analyseren, de interpretatie en vergelijkingen van de bekomen data 

bemoeilijkt worden. Berry et al. (1988) haalden al een aantal problemen aan die het 

bepalen van de functionele respons van een predator compliceren, zoals bijvoorbeeld de 

(on)mogelijkheid van een predator om de arena te verlaten, en de grootte van de 

experimentele arena. In de huidige studie was de moeilijkheid bij het analyseren en 

interpreteren van de resultaten te wijten aan het verschil in conclusies enerzijds 

gebaseerd op de statistische analyse en anderzijds op de visuele voorstelling van de 

functionele respons. 

 

Een nadeel van het polyfage karakter van de roofmijt, is dat de focus van I. degenerans 

kan verschuiven naar andere (plaag)insecten en -mijten aanwezig in het gewas. Het 

bestuderen van de voedselpreferentie in het laboratorium kan aangeven welke prooi de 

predator zal verkiezen in het gewas (hoofdstuk 7). Informatie over de voedselpreferentie 

van I. degenerans is echter ook niet aanwezig in de literatuur. In de studie van van 

Houten et al. (1995) wordt verondersteld dat I. degenerans eerstestadiumnimfen van F. 

occidentalis prefereert omdat dit het kleinste stadium is. Voedselpreferentietesten die 

deze veronderstelling staven, werden echter nog niet uitgevoerd. Op basis van de 

resultaten uit hoofdstuk 7 kan de prooivoorkeur van I. degenerans als volgt worden 

samengevat: T. vaporariorum eieren - T. urticae eieren > eerstestadiumnimfen van F. 

occidentalis > tweedestadiumnimfen van F. occidentalis. Gebaseerd op de kleine 

waarde van de intrinsieke groeisnelheid (hoofdstuk 5), is het echter moeilijk om het 

potentieel van I. degenerans als biologische bestrijder van wittevliegen te voorspellen. 

Hoogstwaarschijnlijk is de roofmijt niet in staat om wittevliegaantastingen in het gewas 

onder controle te houden, maar kan wittevlieg wel als een alternatieve voedselbron 
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gebruikt worden. Iphiseius degenerans kan een secundair bestrijdingseffect op T. 

urticae genereren, maar dit is waarschijnlijk slechts het geval wanneer de bladeren nog 

niet volledig met spinsel zijn bedekt. De roofmijt lijkt immers moeilijkheden te hebben 

met de dichte webben van de spintmijt. Deze vaststelling is gebaseerd op het feit dat er 

een hoog percentage roofmijten vluchtten van de arena en er een hoge verdubbelingstijd 

van de populatie werd waargenomen wanneer roofmijten werden gevoed met het 

kasspint. 

De voorkeur werd over het algemeen goed voorspeld door de individuele functionele 

responscurven, behalve wanneer gelijktijdig eerstestadiumnimfen van F. occidentalis en 

eieren van T. urticae werden aangeboden. De individuele responscurven voorspelden 

een voorkeur voor eerstestadiumnimfen van F. occidentalis, maar observaties wezen uit 

dat de roofmijt T. urticae eieren prefereerden, hoewel deze voorkeur niet bij alle geteste 

verhoudingen significant was. Deze discrepantie kan erop wijzen dat I. degenerans zijn 

zoekgedrag aanpast wanneer de twee prooisoorten tegelijkertijd worden aangeboden. 

De voorkeur voor eerste- boven tweedestadiumnimfen van F. occidentalis wijzigde 

wanneer de verhouding van de aangeboden tripsnimfen veranderde. Iphiseius 

degenerans vertoonde negatieve switching; dit duidt op een verminderde voorkeur voor 

eerstestadiumnimfen van F. occidentalis als reactie op een verhoogde proportie van dit 

prooitype in het aangeboden dieet. 

 

De voedselpreferentie werd verder geanalyseerd in olfactometerexperimenten 

(hoofdstuk 8). Iphiseius degenerans was niet in staat onderscheid te maken tussen de 

geuren afkomstig van bonenplanten aangetast door spintmijten of wittevliegen, 

bonenplanten bestoven met wonderboomstuifmeel en onaangetaste bonenbladeren. 

Iphiseius degenerans verkoos wel onaangetaste bladeren boven bladeren aangetast door 

tripsen. Iphiseius degenerans maakte geen onderscheid tussen bladeren met spintmijten 

en bladeren met wittevliegen, en tussen bladeren met tripsen en bladeren met 

wittevliegen, maar vertoonde wel een sterke voorkeur voor bladeren met tripsen boven 

bladeren met spintmijten.  

De olfactorische respons bleef onduidelijk aangezien de voorkeur voor bladeren 

aangetast door tripsen en de afkeer voor bladeren met spintmijten niet in alle 

combinaties met één van deze prooien werd aangetoond.  

 



 Samenvatting 147 

Roofmijten gekweekt op wonderboompollen vertoonden geen reactie op geurstoffen 

afkomstig van deze pollensoort in de olfactometerexperimenten. 

 

Gebaseerd op de resultaten van de voorgestelde laboratoriumexperimenten (het 

polyfage karakter van de roofmijt, het onvermogen om zich tot het adultstadium te 

ontwikkelen wanneer tripsnimfen worden aangeboden als voedsel, het hoge percentage 

mijten dat vlucht wanneer de aangeboden prooi niet geschikt is voor een optimale 

ontwikkeling en reproductie, de lage prooiconsumptie en het ontbreken van een sterke 

voorkeur voor bepaalde prooisoorten), kan er verwacht worden dat I. degenerans geen 

succesvolle tripspredator is. Niettemin wordt I. degenerans al vele jaren gebruikt in de 

landbouwpraktijk. Aangezien het, op basis van de laboratoriumexperimenten uit de 

huidige studie, niet mogelijk is om het bestrijdingspotentieel van deze roofmijt te 

verklaren, kan verder onderzoek belangrijk zijn om de rol van de roofmijt bij de 

bestrijding van plagen volledig te begrijpen. Met behulp van videomonitoring en de 

elektroforetische analyse van de darminhoud van I. degenerans kan het 

voorkeursgedrag verder uitgeklaard worden. Het is ook noodzakelijk om na te gaan hoe 

het gedrag dat I. degenerans vertoont in het laboratorium zich manifesteert in meer 

complexe natuurlijke omstandigheden, door het uitvoeren van “semi-field” of 

veldexperimenten.  

 

Onlangs werd een nieuwe roofmijt geïntroduceerd op de markt in Europa, namelijk 

Amblyseius (= Typhlodromips) swirskii (Athias-Henriot). Deze roofmijt zou A. 

cucumeris, die nu standaard wordt gebruikt in de biologische bestrijding van trips, 

moeten vervangen (Bolckmans et al., 2005). Volgens Nomikou et al. (2001, 2002) kan 

deze roofmijt ook als biologische bestrijder van de tabakswittevlieg Bemisia tabaci 

Gennadius worden gebruikt. Net zoals I. degenerans gaat deze roofmijt niet in diapauze 

onder invloed van korte dag omstandigheden en kan ze bijgevolg het hele jaar door 

uitgezet worden. Maar opnieuw is er zeer weinig fundamentele informatie over de 

biologie en de predatiecapaciteit van deze mijt beschikbaar. Het is bijgevolg lonend om 

de biologische kenmerken en de predatiecapaciteit van A. swirskii diepgaand te 

bestuderen om een volledig beeld te krijgen van het potentieel van deze roofmijt. Deze 

eigenschappen kunnen met die van I. degenerans vergeleken worden om te bepalen of 

 



148 Samenvatting   

A. swirskii ook een waardevol alternatief voor I. degenerans bij de biologische 

bestrijding kan zijn.  
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APPENDIX I 

VBA MACRO “JACKKNIFE METHOD TO CALCULATE LIFE 

TABLE PARAMETERS” 

 

 

1. INTRODUCTION 

 

In this Appendix a VBA Macro (Visual Basic for Applications version 6.3) is described. 

The macro was compiled in order to calculate Jackknife estimates of rm.  

The Jackknife is a general nonparametric procedure for obtaining estimated standard 

errors for statistics which are complex functions of the data (Tukey, 1958). This 

technique has been used to obtain standard errors for intrinsic rates of increase (Meyer 

et al., 1986, Hulting et al., 1990) 

 A brief description of the technique used for the calculations of the intrinsic rate of 

increase follows. 

1. Compute rm based upon the complete sample (e.g., n = 30 females) by solving the 

equation  1=∑ −
xx

xr mle m

2. Compute the corresponding statistics rmi (i = 1, 2, …, n) based upon the sample data 

with each of the ith element (e.g., ith female) ignored in turn 

3. Compute the Jackknife pseudo-values ir~  as follows: 

))1(()(~
mimi rnnrr −−=  

4. Compute the Jackknife estimate of the intrinsic rate of increase : mr̂

∑
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5. The standard error of is calculated as follows: mr̂
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2. PROGRAM DESCRIPTION 

 

2.1 Input file 

 

Input in the Excel worksheet consists of data from one replicate for a group of females. 

The first line of the worksheet contains titles: sex ratio, survival rate, pivotal age and a 

female number. The following lines of input consist each of: the overall sex ratio of the 

progeny on pivotal age x, the overall survival ratio of the progeny on pivotal age x, the 

pivotal age x and the number of eggs of each female at age x (Fig. I.1). 

 

Figure I.1. Input file for the VBA-Macro. 

 

 

2.2 Program code 

 

Sub Jacknife_rm 

 

' This macro has been created by ir. Isabelle Vantornhout and ir. Hilde Minnaert (2003) 

 

‘ STEP A 

‘ Create a new dataset containing the number of daughters per females per pivotal age ‘ 

by multiplying the number of eggs per female by the sex ratio and the survival rate 
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' Step A1: Count the number of rows and columns in order to know the number of  

' females (i.e., mothers) and the duration of the experiment (i.e., number of 

observations) 

 

Dim numbercolumn As Integer, numberrow As Integer, numberfemales As Integer 

Dim numberobservations As Integer 

Sheets("blad1").Select 

ActiveSheet.Name = "eggfemaleday" 

Range("A1").Select 

Selection.CurrentRegion.Select 

numbercolumn = Selection.Columns.Count 

numberrow = Selection.Rows.Count 

numberfemales = numbercolumn - 3 

numberobservations = numberrow - 1 

 

' Step A2: Add a column, insert a title (sex*surv) and multiply the sexratio with the  

‘ survival rate for each pivotal age 

 

Columns("C:C").Select 

Selection.Insert shift:=xlToRight 

Range("C1").Select 

ActiveCell.FormulaR1C1 = "sex*surv" 

Range("C2").Select 

ActiveCell.FormulaR1C1 = "=RC[-2]*RC[-1]" 

Selection.Copy 

Columns("C:C").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

 

' Step A3: Make a dataset containing the number of daughters per female on a new  

‘ sheet 
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Dim j As Integer 

Sheets("blad2").Select 

For j = 1 To numberfemales 

counter = j 

Cells(1, j).Select 

ActiveCell.FormulaR1C1 = counter 

Next j 

 

Dim i As Integer 

For i = 2 To numberrow 

Cells(i, 1).Select 

ActiveCell.FormulaR1C1 = "=eggfemaleday!RC[4]*eggfemaleday!RC3" 

Selection.Copy 

Rows(i).Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

Next i 

 

Range("a1").Select 

Selection.CurrentRegion.Select 

Selection.Copy 

Sheets("blad3").Select 

ActiveSheet.Name = "daughtersfemaleday" 

Range("a1").Select 

Selection.PasteSpecial Paste:=xlValues 

Selection.Columns.AutoFit 

 

For i = 2 To numberrow 

For j = 1 To numberfemales 

Cells(i, j).Select 

If ActiveCell.Text = "#WAARDE!" Then ActiveCell.FormulaR1C1 = 

"=eggfemaleday!RC[4]" 
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Next j 

Next i 

 

Sheets("blad2").Select 

Application.DisplayAlerts = False 

ActiveWindow.SelectedSheets.Delete 

 

' STEP B:  

‘ Create an MxLx table  

 

‘ Step B1: Calculate the survival of the females 

 

Sheets("daughtersfemaleday").Select 

Range("A1").Select 

Selection.CurrentRegion.Select 

numberrow = Selection.Rows.Count 

numberfemales = Selection.Columns.Count 

numberobservations = numberrow - 1 

  

Sheets.Add 

ActiveSheet.Name = "numberfemales" 

 Range("a1") = numberfemales 

 

Dim counterescaped As Integer, counterdead As Integer 

Sheets("daughtersfemaleday").Select 

For i = 2 To numberrow 

Rows(i).Select 

counterescaped = 0 

counterdead = 0 

For j = 1 To numberfemales 

For Each word In Worksheets("daughtersfemaleday").Cells(i, j) 

If word.Value = "escaped" Then counterescaped = counterescaped + 1 
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For Each word2 In Worksheets("daughtersfemaleday").Cells(i, j) 

If word2.Value = "dead" Then counterdead = counterdead + 1 

Next 

Next 

Next j 

Cells(i, numberfemales + 2) = counterescaped 

Cells(i, numberfemales + 3) = counterdead 

Next i 

Cells(1, numberfemales + 1).Select 

ActiveCell.FormulaR1C1 = "number" 

Cells(1, numberfemales + 2).Select 

ActiveCell.FormulaR1C1 = "number escaped" 

Cells(1, numberfemales + 3).Select 

ActiveCell.FormulaR1C1 = "number dead" 

Cells(2, numberfemales + 1).Select 

ActiveCell.FormulaR1C1 = "='numberfemales'!R1C1-'daughtersfemaleday'!RC[1]-

'daughtersfemaleday'!RC[2]" 

Selection.Copy 

Columns(numberfemales + 1).Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

Columns(numberfemales + 1).Select 

Selection.Copy 

Sheets.Add 

ActiveSheet.Name = "survivalratio" 

Selection.PasteSpecial Paste:=xlValues 

Sheets("daughtersfemaleday").Select 

Columns(numberfemales + 2).Select 

Selection.Copy 

Sheets("survivalratio").Select 

Range("B1").Select 

Selection.PasteSpecial Paste:=xlValues 
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Sheets("daughtersfemaleday").Select 

Columns(numberfemales + 3).Select 

Selection.Copy 

Sheets("survivalratio").Select 

Range("C1").Select 

Selection.PasteSpecial Paste:=xlValues 

Range("D1").Select 

ActiveCell.FormulaR1C1 = "Survivalratio" 

Range("D2").Select 

ActiveCell.FormulaR1C1 = "=(RC[-3]-RC[-1])/RC[-3]" 

Range("D3").Select 

ActiveCell.FormulaR1C1 = "=(R[-1]C[-3]-(RC[-1]-R[-1]C[-1]))/R[-1]C[-3]" 

Selection.Copy 

Columns("D:D").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

 

Range("E1").Select 

ActiveCell.FormulaR1C1 = "Lx" 

Range("E2").Select 

ActiveCell.FormulaR1C1 = "=RC[-1]* 1" 

Range("E3").Select 

ActiveCell.FormulaR1C1 = "=RC[-1]*R[-1]C" 

Selection.Copy 

Columns("E:E").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

 

Sheets("daughtersfemaleday").Select 

Columns(numberfemales + 1).Select 

Selection.Delete shift:=xlLeft 

Columns(numberfemales + 1).Select 
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Selection.Delete shift:=xlLeft 

Columns(numberfemales + 1).Select 

Selection.Delete shift:=xlLeft 

 

‘ Step B2: Create a table to be used in the Jackknife technique (removal of one female ‘ 

on each turn 

 

Sheets.Add 

ActiveSheet.Name = "database" 

Range("a1").Select 

 

ActiveCell.FormulaR1C1 = "adult age" 

For i = 1 To numberrow 

counter2 = i 

Cells(i + 1, 1).Select 

ActiveCell.Value = counter2 

Next i 

 

Sheets("eggfemaleday").Select 

Columns("D:D").Select 

Selection.SpecialCells(xlCellTypeConstants, 3).Select 

Selection.Copy 

Sheets("database").Select 

Range("B1").Select 

Selection.PasteSpecial Paste:=xlValues 

Sheets("daughtersfemaleday").Select 

Selection.CurrentRegion.Select 

Selection.Copy 

Sheets("database").Select 

Range("c1").Select 

Selection.PasteSpecial Paste:=xlValues 

Sheets.Add 
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ActiveSheet.Name = "original database" 

Sheets("database").Select 

Range("a1").Select 

Selection.CurrentRegion.Select 

Selection.Copy 

Sheets("original database").Select 

Selection.PasteSpecial Paste:=xlValues 

Sheets("database").Select 

Application.DisplayAlerts = False 

ActiveWindow.SelectedSheets.Delete 

 

Sheets("original database").Select 

 

Range("a1").Select 

Selection.CurrentRegion.Select 

Selection.Copy 

Sheets.Add 

ActiveSheet.Name = "copy database" 

Range("a1").Select 

ActiveSheet.Paste 

 

Sheets("daughtersfemaleday").Select 

Application.DisplayAlerts = False 

ActiveWindow.SelectedSheets.Delete 

Sheets.Add 

ActiveSheet.Name = "daughtersfemaleday" 

Sheets("copy database").Select 

Range("A1").Select 

Selection.CurrentRegion.Select 

Selection.Copy 

Sheets("daughtersfemaleday").Select 

Range("a1").Select 
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Selection.PasteSpecial Paste:=xlValues 

Columns("a:b").Select 

Selection.Delete shift:=xlLeft 

 

' STEP B3 : Create a MxLx table 

 

Sheets("copy database").Select 

Columns("b:b").Select 

Selection.SpecialCells(xlCellTypeConstants, 23).Select 

Selection.Copy 

Sheets.Add 

ActiveSheet.Name = "xLxMx table" 

Range("A1").Select 

ActiveSheet.Paste 

Range("b1").Select 

ActiveCell.FormulaR1C1 = "Mx" 

Range("b2").Select 

ActiveCell.FormulaR1C1= 

"=SUM(daughtersfemaleday!R)/COUNT(daughtersfemaleday!R)" 

Range("b2").Select 

Selection.Copy 

Columns("b:b").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

 

For j = 2 To numberrow 

Cells(j, 2).Select 

If ActiveCell.Text = "#DEEL/0!" Then ActiveCell.FormulaR1C1 = "0" 

Next j 

 

Sheets("survivalratio").Select 

Columns("E:E").Select 
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Selection.SpecialCells(xlCellTypeFormulas, 3).Select 

Selection.Copy 

Sheets("xLxMx table").Select 

Range("C2").Select 

Selection.PasteSpecial Paste:=xlValues 

Range("C1").Select 

ActiveCell.FormulaR1C1 = "Lx" 

 

Sheets("xLxMx table").Select 

Range("D1").Select 

ActiveCell.FormulaR1C1 = "MxLx" 

Range("D2").Select 

ActiveCell.FormulaR1C1 = "=RC[-1]*RC[-2]" 

Range("D2").Select 

Selection.Copy 

Columns("D:D").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

Range("E1").Select 

ActiveCell.FormulaR1C1 = "xMxLx" 

Range("E2").Select 

ActiveCell.FormulaR1C1 = "=RC[-1]*RC[-4]" 

Range("E2").Select 

Selection.Copy 

Columns("E:E").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

 

' STEP C 

' Solve the equation  and copy the life table parameters for the complete 

dataset on a new worksheet ‘ named “final parameters” 

1=∑ −
xx

xr mle m
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Sheets.Add 

ActiveSheet.Name = "parameters" 

Sheets("copy database").Select 

Sheets("copy database").Move Before:=Sheets(2) 

Sheets("xLxMx table").Select 

Sheets("xLxMx table").Move Before:=Sheets(4) 

 

Sheets("parameters").Select 

ActiveCell.FormulaR1C1 = "iterationnumber" 

Range("B1").Select 

ActiveCell.FormulaR1C1 = "som MxLx" 

Range("C1").Select 

ActiveCell.FormulaR1C1 = "som xMxLx" 

Range("D1").Select 

ActiveCell.FormulaR1C1 = "Tc" 

Range("E1").Select 

ActiveCell.FormulaR1C1 = "Ro" 

Range("F1").Select 

ActiveCell.FormulaR1C1 = "rc" 

Range("G1").Select 

ActiveCell.FormulaR1C1 = "r" 

Range("H1").Select 

ActiveCell.FormulaR1C1 = "T" 

Range("I1").Select 

ActiveCell.FormulaR1C1 = "iterationsum" 

Range("B2").Select 

ActiveCell.FormulaR1C1 = "=SUM('xLxMx table'!C[2])" 

Range("C2").Select 

ActiveCell.FormulaR1C1 = "=SUM('xLxMx table'!C[2])" 

Range("D2").Select 

ActiveCell.FormulaR1C1 = "=RC[-1]/RC[-2]" 

Range("E2").Select 
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ActiveCell.FormulaR1C1 = "=RC[-3]" 

Range("F2").Select 

ActiveCell.FormulaR1C1 = "=LN(RC[-1])/RC[-2]" 

Range("F2").Select 

Selection.Copy 

Range("G2").Select 

Selection.PasteSpecial Paste:=xlValues 

Range("H2").Select 

ActiveCell.FormulaR1C1 = "=LN(RC[-3])/RC[-1]" 

 

Sheets("xLxMx table").Select 

Range("F1").Select 

ActiveCell.FormulaR1C1 = "minrx" 

Range("F2").Select 

ActiveCell.FormulaR1C1 = "=-parameters!R2C7*'xLxMx table'!RC[-5]" 

Range("F2").Select 

Selection.Copy 

Columns("F:F").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

Range("G1").Select 

ActiveCell.FormulaR1C1 = "exp(minrx)" 

Range("G2").Select 

ActiveCell.FormulaR1C1 = "=EXP(RC[-1])" 

Range("G2").Select 

Selection.Copy 

Columns("G:G").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

Range("H1").Select 

ActiveCell.FormulaR1C1 = "som =1" 

Range("H2").Select 
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ActiveCell.FormulaR1C1 = "=RC[-1]*RC[-4]" 

Range("H2").Select 

Selection.Copy 

Columns("H:H").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

Sheets("parameters").Select 

Range("I2").Select 

ActiveCell.FormulaR1C1 = "=SUM('xLxMx table'!C[-1])" 

 

SolverOk SetCell:="$I$2", MaxMinVal:=3, ValueOf:="1", ByChange:="$G$2" 

SolverSolve Userfinish:=True 

 

Sheets.Add 

ActiveSheet.Name = "final parameters" 

Sheets("parameters").Select 

Rows("1:2").Select 

Selection.Copy 

Sheets("final parameters").Select 

Selection.PasteSpecial Paste:=xlValues, Transpose:=True 

 

Sheets("final parameters").Select 

Sheets("final parameters").Move After:=Sheets(6) 

 

‘ STEP D: 

' In the following loop Jackknife estimates of r m are calculated 

 

‘ Step D1: one female at the time is removed from the dataset 

 

For x = 1 To numberfemales 

 

Sheets("daughtersfemaleday").Select 
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Application.DisplayAlerts = False 

ActiveWindow.SelectedSheets.Delete 

 

Sheets.Add 

ActiveSheet.Name = "daughtersfemaleday" 

 

Sheets("original database").Select 

Range("a1").Select 

Selection.CurrentRegion.Select 

Selection.Copy 

Sheets("copy database").Select 

Range("a1").Select 

ActiveSheet.Paste 

Columns(x + 2).Select 

Selection.Delete shift:=xlLeft 

 

Range("a1").Select 

Selection.CurrentRegion.Select 

Selection.Copy 

Sheets("daughtersfemaleday").Select 

Range("a1").Select 

Selection.PasteSpecial Paste:=xlValues 

Columns("a:b").Select 

Selection.Delete shift:=xlLeft 

 

‘ Step D2: Calculate the survival of the females 

 

Sheets("daughtersfemaleday").Select 

Range("A1").Select 

Selection.CurrentRegion.Select 

numberrow = Selection.Rows.Count 

numberfemales = Selection.Columns.Count 
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numberobservations = numberrow - 1 

Sheets("numberfemales").Select 

Range("a1") = numberfemales 

 

Sheets("daughtersfemaleday").Select 

For i = 2 To numberrow 

Rows(i).Select 

counterescaped = 0 

counterdead = 0 

For j = 1 To numberfemales 

For Each word In Worksheets("daughtersfemaleday").Cells(i, j) 

If word.Value = "escaped" Then counterescaped = counterescaped + 1 

For Each word2 In Worksheets("daughtersfemaleday").Cells(i, j) 

If word2.Value = "dead" Then counterdead = counterdead + 1 

Next 

Next 

Next j 

Cells(i, numberfemales + 2) = counterescaped 

Cells(i, numberfemales + 3) = counterdead 

Next i 

 

Cells(1, numberfemales + 1).Select 

ActiveCell.FormulaR1C1 = "number" 

Cells(1, numberfemales + 2).Select 

ActiveCell.FormulaR1C1 = "number escaped" 

Cells(1, numberfemales + 3).Select 

ActiveCell.FormulaR1C1 = "number dead" 

Cells(2, numberfemales + 1).Select 

ActiveCell.FormulaR1C1 = "='numberfemales'!R1C1-'daughtersfemaleday'!RC[1]-

'daughtersfemaleday'!RC[2]" 

Selection.Copy 

Columns(numberfemales + 1).Select 
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Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

 

Columns(numberfemales + 1).Select 

Selection.Copy 

Sheets("survivalratio").Select 

Range("a1").Select 

Selection.PasteSpecial Paste:=xlValues 

Sheets("daughtersfemaleday").Select 

Columns(numberfemales + 2).Select 

Selection.Copy 

Sheets("survivalratio").Select 

Range("B1").Select 

Selection.PasteSpecial Paste:=xlValues 

Sheets("daughtersfemaleday").Select 

Columns(numberfemales + 3).Select 

Selection.Copy 

Sheets("survivalratio").Select 

Range("C1").Select 

Selection.PasteSpecial Paste:=xlValues 

Columns("D:e").Select 

Selection.Delete shift:=xlLeft 

Range("D1").Select 

ActiveCell.FormulaR1C1 = "Survivalratio" 

Range("D2").Select 

ActiveCell.FormulaR1C1 = "=(RC[-3]-RC[-1])/RC[-3]" 

Range("D3").Select 

ActiveCell.FormulaR1C1 = "=(R[-1]C[-3]-(RC[-1]-R[-1]C[-1]))/R[-1]C[-3]" 

Selection.Copy 

Columns("D:D").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 
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Range("E1").Select 

ActiveCell.FormulaR1C1 = "Lx" 

Range("E2").Select 

ActiveCell.FormulaR1C1 = "=RC[-1]* 1" 

Range("E3").Select 

ActiveCell.FormulaR1C1 = "=RC[-1]*R[-1]C" 

Selection.Copy 

Columns("E:E").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

 

Sheets("daughtersfemaleday").Select 

Columns(numberfemales + 1).Select 

Selection.Delete shift:=xlLeft 

Columns(numberfemales + 1).Select 

Selection.Delete shift:=xlLeft 

Columns(numberfemales + 1).Select 

Selection.Delete shift:=xlLeft 

 

‘ Step D3: Create an MxLx table 

 

Sheets("xLxMx table").Select 

Application.DisplayAlerts = False 

ActiveWindow.SelectedSheets.Delete 

 

Sheets("copy database").Select 

Columns("b:b").Select 

Selection.SpecialCells(xlCellTypeConstants, 23).Select 

Selection.Copy 

Sheets.Add 

ActiveSheet.Name = "xLxMx table" 

Range("A1").Select 
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ActiveSheet.Paste 

Range("b1").Select 

ActiveCell.FormulaR1C1 = "Mx" 

Range("b2").Select 

ActiveCell.FormulaR1C1 = 

"=SUM(daughtersfemaleday!R)/COUNT(daughtersfemaleday!R)" 

Range("b2").Select 

Selection.Copy 

Columns("b:b").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

 

For j = 2 To numberrow 

Cells(j, 2).Select 

If ActiveCell.Text = "#DEEL/0!" Then ActiveCell.FormulaR1C1 = "0" 

Next j 

 

Sheets("survivalratio").Select 

Columns("E:E").Select 

Selection.SpecialCells(xlCellTypeFormulas, 3).Select 

Selection.Copy 

Sheets("xLxMx table").Select 

Range("C2").Select 

Selection.PasteSpecial Paste:=xlValues 

Range("C1").Select 

ActiveCell.FormulaR1C1 = "Lx" 

 

Sheets("xLxMx table").Select 

Range("D1").Select 

ActiveCell.FormulaR1C1 = "MxLx" 

Range("D2").Select 

ActiveCell.FormulaR1C1 = "=RC[-1]*RC[-2]" 
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Range("D2").Select 

Selection.Copy 

Columns("D:D").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

Range("E1").Select 

ActiveCell.FormulaR1C1 = "xMxLx" 

Range("E2").Select 

ActiveCell.FormulaR1C1 = "=RC[-1]*RC[-4]" 

Range("E2").Select 

Selection.Copy 

Columns("E:E").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

 

Sheets("parameters").Select 

Range("B2").Select 

ActiveCell.FormulaR1C1 = "=SUM('xLxMx table'!C[2])" 

Range("C2").Select 

ActiveCell.FormulaR1C1 = "=SUM('xLxMx table'!C[2])" 

Range("D2").Select 

ActiveCell.FormulaR1C1 = "=RC[-1]/RC[-2]" 

Range("E2").Select 

ActiveCell.FormulaR1C1 = "=RC[-3]" 

Range("F2").Select 

ActiveCell.FormulaR1C1 = "=LN(RC[-1])/RC[-2]" 

Range("F2").Select 

Selection.Copy 

Range("G2").Select 

Selection.PasteSpecial Paste:=xlValues 

Range("H2").Select 

ActiveCell.FormulaR1C1 = "=LN(RC[-3])/RC[-1]" 
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Sheets("xLxMx table").Select 

Range("F1").Select 

ActiveCell.FormulaR1C1 = "minrx" 

Range("F2").Select 

ActiveCell.FormulaR1C1 = "=-parameters!R2C7*'xLxMx table'!RC[-5]" 

Range("F2").Select 

Selection.Copy 

Columns("F:F").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

Range("G1").Select 

ActiveCell.FormulaR1C1 = "exp(minrx)" 

Range("G2").Select 

ActiveCell.FormulaR1C1 = "=EXP(RC[-1])" 

Range("G2").Select 

Selection.Copy 

Columns("G:G").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

Range("H1").Select 

ActiveCell.FormulaR1C1 = "som =1" 

Range("H2").Select 

ActiveCell.FormulaR1C1 = "=RC[-1]*RC[-4]" 

Range("H2").Select 

Selection.Copy 

Columns("H:H").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

Sheets("parameters").Select 

Range("I2").Select 

ActiveCell.FormulaR1C1 = "=SUM('xLxMx table'!C[-1])" 
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' STEP D4 

'Solve  and copy the Jackknife pseudovalues of the life table 

‘parameters for the complete dataset on the worksheet named “final parameters” 

1=∑ −
xx

xr mle m

 

SolverOk SetCell:="$I$2", MaxMinVal:=3, ValueOf:="1", ByChange:="$G$2" 

SolverSolve Userfinish:=True 

 

Sheets("parameters").Select 

Rows("2:2").Select 

Selection.Copy 

Sheets("final parameters").Select 

Columns(x + 2).Select 

Selection.PasteSpecial Paste:=xlValues, Transpose:=True 

ActiveCell.FormulaR1C1 = "=column(RC[-2])" 

 

Next x 

 

‘STEP E:  

‘Calculate the Jackknife estimate of the intrinsic rate of increase and its standard error 

 

Sheets("parameters").Select 

Application.DisplayAlerts = False 

ActiveWindow.SelectedSheets.Delete 

Sheets("copy database").Select 

Application.DisplayAlerts = False 

ActiveWindow.SelectedSheets.Delete 

Sheets("numberfemales").Select 

Application.DisplayAlerts = False 

ActiveWindow.SelectedSheets.Delete 

Sheets("daughtersfemaleday").Select 

Application.DisplayAlerts = False 

ActiveWindow.SelectedSheets.Delete 
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Sheets("xLxMx table").Select 

Application.DisplayAlerts = False 

ActiveWindow.SelectedSheets.Delete 

Sheets("final parameters").Select 

Range("b1").Select 

ActiveCell.FormulaR1C1 = "alle" 

Selection.SpecialCells(xlCellTypeConstants, 1).Select 

Selection.NumberFormat = "0.000" 

Range("a10").Select 

ActiveCell.FormulaR1C1 = "numberfemales" 

 

Sheets("eggfemaleday").Select 

Range("A1").Select 

Selection.CurrentRegion.Select 

numbercolumn = Selection.Columns.Count 

numberfemales = numbercolumn - 4 

Sheets("final parameters").Select 

Range("b10") = numberfemales 

 

Range("a11").Select 

ActiveCell.FormulaR1C1 = "jacknife pseudovalues" 

Range("C11").Select 

ActiveCell.FormulaR1C1 = "=R10C2*R7C2-(R10C2-1)*R[-4]C" 

Range("C11").Select 

Selection.Copy 

Rows("11:11").Select 

Selection.SpecialCells(xlCellTypeBlanks).Select 

ActiveSheet.Paste 

Range("B11").Select 

Selection.ClearContents 

 

Range("A12").Select 
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ActiveCell.FormulaR1C1 = "Jacknife rm" 

Range("C12").Select 

ActiveCell.FormulaR1C1 = "=AVERAGE(R[-1])" 

Range("A13").Select 

  ActiveCell.FormulaR1C1 = "standard deviation" 

  Range("C13").Select 

  ActiveCell.FormulaR1C1 = "=STDEV(R[-2])" 

  Range("A14").Select 

  ActiveCell.FormulaR1C1 = "standard error" 

  Range("C14").Select 

  ActiveCell.FormulaR1C1 = "=R[-1]C/SQRT(R[-4]C[-1])" 

  Range("A15").Select 

   

  Sheets("final parameters").Select 

  Range("A1").Select 

  Selection.CurrentRegion.Select 

  Selection.Columns.AutoFit 

 

End Sub 
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APPENDIX II 

ANALYSIS OF FUNCTIONAL RESPONSE EXPERIMENTS: 

SAS PROGRAM CODE 

 

 

1. INTRODUCTION 

In this Appendix SAS code (SAS LE) for data input and regression analysis of 

functional response data is described. The SAS code presented here is an extension of 

the code available on http://www.oup-usa.com/sc/0195131878/chapter10.html. 

 

 

2. PROGRAM CODE 

 

2.1 Analysis of one functional response experiment with prey depletion  

 

2.1.1 Data input lines 

 

DATA FUNCRESP; 

INPUT N0 REP FATE NE; /* N0 = initial number of prey, REP =replicate number, 

FATE: 0 = prey eaten 1 = prey alive, NE = count of prey in each FATE */ 

N02=N0**2; /* initial number of prey squared */ 

N03=N0**3; /*initial number of prey cubed */ 

cards; /*below this line data is inserted NO REP FATE NE */ 

 

 

2.1.2 Procedure LOGISTIC for logistic regression 

 

/* cubic model, if the parameters of this model are non-significant, next step is to 

eliminate the cubic term N03*/ 

proc logistic data=FUNCRESP; 

MODEL FATE = N0 N02 N03; 

 

http://www.oup-usa.com/sc/0195131878/chapter10.html
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WEIGHT NE;  

/* quadratic model, if the parameters of this model are non-significant, next step is to 

eliminate the cubic term N02*/ 

proc logistic data=FUNCRESP; 

MODEL FATE = N0 N02; 

WEIGHT NE; 

 

/* simple logistic regression, lowest order model that can be fitted*/ 

proc logistic data=FUNCRESP; 

MODEL FATE = N0; 

WEIGHT NE; 

 

DATA FUNCRES2; /* obtaining means and SE's for observed proportions eaten */ 

SET FUNCRESP;  

PROC MEANS DATA=FUNCRES2; 

BY N0 NOTSORTED; 

VAR PROPEAT; 

OUTPUT OUT=FUNCMEAN MEAN=FUNCPROP; 

DATA FUNCRES3; /* generating predicted proportions eaten */ 

SET FUNCMEAN; 

K=EXP(-0.6831+(-0.0570*N0)+(0*N0**2)+(0*N0**3)); /* insert parameter estimates 

of logistic regression in this expression */ 

PRED=K/(1+K); 

 

PROC PLOT DATA=FUNCRES3; /* plotting observed means and predicted values */ 

PLOT PRED*N0='o'; 

 

 

2.1.3 Procedure NLIN for non-linear regression 

 

The choice for one of the program codes given below depends on the type of functional 

response (Type II or Type III) determined by the logistic regression. 
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A. TYPE II functional response 

 

proc nlin data=FUNCRES2 

method=dud; 

PARMS A = 0.0001 0.001 0.01 0.1 /* initial parameter estimates */ 

THHAT=8.0;  

BOUNDS A>0, THHAT>0; /* parameter bounds */ 

T=24; /* experimental period in H */ 

X=NE; /* initial predicted value */  

/* define the implicit function */ 

C1=EXP(-A*T); /* components of the implicit function */ 

C2=A*THHAT; 

H=N0*C1*EXP(C2*X)+X-N0; /* the implicit function */ 

ITER=0; /* iterations for Newton's method */ 

/* Newton's method employed to find predicted number eaten */ 

DO WHILE(ABS(H)>0.0001 AND ITER<50); /* stop criteria for Newton's method */ 

X=X-H/(N0*C1*C2*EXP(C2*X)+1); /* new predicted value */ 

H=N0*C1*EXP(C2*X)+X-N0; /* new value of implicit function */ 

ITER=ITER+1; /* iteration counter */ 

END; 

MODEL NE=X; /* model for nonlinear least squares */ 

OUTPUT OUT=PLOTNOTO P=PRED R=RES; /* output data set for plotting */ 

 

B. TYPE III functional response 

/* full model */ 

proc nlin data=FUNCRES2 

method=dud; 

PARMS BHAT= 0.001 0.01 0.1 /* initial parameter estimates */ 

CHAT= 0.001 0.01 0.1  

DHAT= 0 THHAT=3.0;  

BOUNDS BHAT>0,CHAT>=0, 

THHAT>0; /* parameter bounds */ 
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T=24; /* experimental period in H */ 

X=NE; /* initial predicted value */  

A=(DHAT+BHAT*N0)/(1+CHAT*N0); /* expression for A */ 

/* define the implicit function */ 

C1=EXP(-A*T); /* components of the implicit function */ 

C2=A*THHAT; 

H=N0*C1*EXP(C2*X)+X-N0; /* the implicit function */ 

ITER=0; /* iterations for Newton's method */ 

/* Newton's method employed to find predicted number eaten */ 

DO WHILE(ABS(H)>0.0001 AND ITER<50); /* stop criteria for Newton's method */ 

X=X-H/(N0*C1*C2*EXP(C2*X)+1); /* new predicted value */ 

H=N0*C1*EXP(C2*X)+X-N0; /* new value of implicit function */ 

ITER=ITER+1; /* iteration counter */ 

END; 

MODEL NE=X; /* model for nonlinear least squares */ 

OUTPUT OUT=PLOTNOTO P=PRED R=RES; /* output data set for plotting */ 

 

/* reduced model: chat omitted */ 

PROC NLIN DATA=FUNCRES2 

method =dud;  

PARMS BHAT=0.001 0.01 0.1 /* initial parameter estimates */ 

DHAT=0  

THHAT=3.0;  

BOUNDS BHAT>0,THHAT>0; /* parameter bounds */ 

T=24; /* experimental period in h */ 

X=NE; /* initial predicted value */ 

A=(DHAT+BHAT*N0); /* expression for A */ 

/* define the implicit function */ 

C1=EXP(-A*T); /* components of the implicit function */ 

C2=A*THHAT; 

H=N0*C1*EXP(C2*X)+X-N0; /* the implicit function */ 

ITER=0; /* iterations for Newton's method */ 
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/* Newton's method employed to find predicted number eaten */ 

DO WHILE(ABS(H)>0.0001 AND ITER<50); /* stop criteria for Newton's method */ 

X=X-H/(N0*C1*C2*EXP(C2*X)+1); /* new predicted value */ 

H=N0*C1*EXP(C2*X)+X-N0; /* new value of implicit function */ 

ITER=ITER+1; /* iteration counter */ 

END; 

MODEL NE=X; /* model for nonlinear least squares */ 

OUTPUT OUT=PLOTNOTO P=PRED R=RES; /* output data set for plotting */ 

 

/* reduced model: chat and dhat omitted */ 

PROC NLIN DATA=FUNCRES2 

method = dud; 

PARMS BHAT= 0.001 0.01 0.1 /* initial parameter estimates */ 

THHAT= 3.0;  

BOUNDS BHAT>0,THHAT>0; /* parameter bounds */ 

T=24; /* experimental period in H */ 

X=NE; /* initial predicted value */ 

A=BHAT*N0; /* expression for A */ 

/* define the implicit function */ 

C1=EXP(-A*T); /* components of the implicit function */ 

C2=A*THHAT; 

H=N0*C1*EXP(C2*X)+X-N0; /* the implicit function */ 

ITER=0; /* iterations for Newton's method */ 

/* Newton's method employed to find predicted number eaten */ 

DO WHILE(ABS(H)>0.0001 AND ITER<50); /* stop criteria for Newton's method */ 

X=X-H/(N0*C1*C2*EXP(C2*X)+1); /* new predicted value */ 

H= N0*C1*EXP(C2*X)+X-N0; /* new value of implicit function */ 

ITER=ITER+1; /* iteration counter */ 

END;  

MODEL NE=X; /* model for nonlinear least squares */ 

OUTPUT OUT=PLOTFUNC P=PRED R=RES; /* output data set for plotting */ 
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2.2 Program code for experiments without prey depletion  

 

2.2.1 Data input lines 

 

DATA FUNCRESP; 

INPUT N0 REP FATE NE; /* N0 = initial number of prey, REP =replicate number, 

FATE: 0 = prey eaten 1 = prey alive, NE = count of prey in each FATE */ 

N02=N0**2; /* initial number of prey squared */ 

N03=N0**3; /*initial number of prey cubed */ 

cards; /*below this line data are inserted NO REP FATE NE */ 

 

 

2.2.2 Procedure LOGISTIC for logistic regression 

 

/* cubic model, if the parameters of this model are non-significant, next step is to 

eliminate the cubic term N03*/ 

proc logistic data=FUNCRESP; 

MODEL FATE = N0 N02 N03; 

WEIGHT NE;  

 

/* quadratic model, if the parameters of this model are non-significant, next step is to 

eliminate the cubic term N02*/ 

proc logistic data=FUNCRESP; 

MODEL FATE = N0 N02; 

WEIGHT NE; 

 

/* simple logistic regression, lowest order model that can be fitted*/ 

proc logistic data=FUNCRESP; 

MODEL FATE = N0; 

WEIGHT NE; 

 

DATA FUNCRES2; /* obtaining means and SE's for observed proportions eaten */ 
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SET FUNCRESP;  

PROC MEANS DATA=FUNCRES2; 

BY N0 NOTSORTED; 

VAR PROPEAT; 

OUTPUT OUT=FUNCMEAN MEAN=FUNCPROP; 

DATA FUNCRES3; /* generating predicted proportions eaten */ 

SET FUNCMEAN; 

K=EXP(-0.6831+(-0.0570*N0)+(0*N0**2)+(0*N0**3)); /* insert parameter estimates 

of logistic regression in this expression */ 

PRED=K/(1+K); 

 

PROC PLOT DATA=FUNCRES3; /* plotting observed means and predicted values */ 

PLOT PRED*N0='o'; 

 

 

2.2.3 Procedure NLIN for non-linear regression 

 

The choice for one of the program codes given below depends on the type of functional 

response (Type II or Type III) determined by the logistic regression. 

 

A. TYPE II functional response 

 

proc nlin data=FUNCRES2 

method=dud; 

PARMS A = 0.001 0.01 0.1 /* initial parameter estimates */ 

THHAT=3.0;  

BOUNDS A>0, THHAT>0; /* parameter bounds */ 

MODEL NE=A*N0*24/(1+A*N0*THHAT); /* model for nonlinear least squares */ 

OUTPUT OUT=PLOTNOTO P=PRED R=RES; /* output data set for plotting */ 

 

B. TYPE III functional response 

/* full model */ 
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proc nlin data=FUNCRES2 

method=dud; 

PARMS BHAT= 0.001 0.01 0.1 /* initial parameter estimates */ 

CHAT= 0.001 0.01 0.1  

DHAT= 0 THHAT=3.0;  

BOUNDS BHAT>0,CHAT>=0, 

THHAT>0; /* parameter bounds */ 

T=24; /* experimental period in H */ 

MODEL NE=(DHAT*N0*T + BHAT*N02*T)/(1 + 

CHAT*N0+DHAT*N0*THHAT+BHAT*N02*THHAT); /* model for nonlinear least 

squares */ 

OUTPUT OUT=PLOTNOTO P=PRED R=RES; /* output data set for plotting */ 

 

/* reduced model: chat omitted */ 

proc nlin data=FUNCRES2 

method=dud; 

PARMS BHAT= 0.001 0.01 0.1 /* initial parameter estimates */ 

DHAT= 0 THHAT=3.0;  

BOUNDS BHAT>0,CHAT>=0, 

THHAT>0; /* parameter bounds */ 

T=24; /* experimental period in H */ 

MODEL NE=(DHAT*N0*T + BHAT*N02*T)/(1 + 

DHAT*N0*THHAT+BHAT*N02*THHAT); /* model for nonlinear least squares */ 

OUTPUT OUT=PLOTNOTO P=PRED R=RES; /* output data set for plotting */ 

 

/* reduced model: chat omitted */ 

proc nlin data=FUNCRES2 

method=dud; 

PARMS BHAT= 0.001 0.01 0.1 /* initial parameter estimates */ 

THHAT=3.0;  

BOUNDS BHAT>0, 

THHAT>0; /* parameter bounds */ 
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T=24; /* experimental period in H */ 

MODEL NE= (BHAT*N02*T)/(1 + BHAT*N02*THHAT); /* model for nonlinear 

least squares */ 

OUTPUT OUT=PLOTNOTO P=PRED R=RES; /* output data set for plotting */ 

 

 

 

 





 

CURRICULUM VITAE  

 

 





 Curriculum vitae 211 

CURRICULUM VITAE 

Isabelle VANTORNHOUT 

 

 
1. PERSONAL DATA 

 

 Name: Isabelle A.S. Vantornhout  

 Place and date of birth:  Kortrijk (Belgium), 7 January 1975 

 Nationality: Belgian 

 Address: Roeselarestraat 144 

8560 Wevelgem (Belgium) 

 Mobile: 0479/74 95 32  

 

 

2. DIPLOMAS AND CERTIFICATES 

 

 Bio-Engineer in Agricultural Science (1998) 

 Option: Crop Protection 

 Ghent University, Faculty of Bioscience Engineering 

 Qualified Teacher's Degree for Secondary Education - Section 2 in Applied 

Biological Sciences (2004) 

 Ghent University, Faculty of Psychology and Educational Sciences 

 Doctoral Training in Applied Biological Sciences (2004) 

 Ghent University, Faculty of Bioscience Engineering 

 

3. WORK EXPERIENCE 

 

 1 February 1999 – 30 November 2004: 

 Academic assistent at the Laboratory of Agrozoology, Department of Crop 

Protection, Faculty of Bioscience Engineering, Ghent University.  

 From 1 December 2004: 

 



212 Curriculum vitae  

 Study counsellor (“Studietrajectbegeleider”) at the Faculty of Bioscience 

Engineering, Ghent University. 

 

 

4. PUBLICATIONS 

 

 Vantornhout, I., Van de Veire, M. and Tirry, L. 1999. Toxicity of imidacloprid to 

Myzus persicae and the predatory bugs Orius laevigatus and Macrolophus 

caliginosus. Med. Fac. Landbouww. Univ. Gent. 64: 49-57. 

 Van de Veire, M., Vantornhout, I. and Tirry, L. 1999. Integrated control of the 

green peach aphid Myzus persicae in sweet peppers using the nicotinyl insecticide 

imidacloprid. IOBC/WPRS Bull. 22: 263-266. 

 Vantornhout, I., Minnaert, H.L., Tirry, L. and De Clercq, P. 2001. Development of 

Iphiseius degenerans Berlese (Acari: Phytoseiidae) on four different kinds of food 

sources. Med. Fac. Landbouww. Univ. Gent. 66: 321-325. 

 Vantornhout, I., Minnaert, H.L., Tirry, L. and De Clercq, P. 2004. Effect of pollen, 

natural prey and factitious prey on the development of Iphiseius degenerans. 

BioControl 49: 627-644. 

 Vantornhout, I., Minnaert, H.L., Tirry, L. and De Clercq, P. 2005. Influence of diet 

on life table parameters of Iphiseius degenerans. Exp. Appl. Acarol. 35: 183-195. 

 Mahdian, K., Vantornhout, I., Tirry, L. and De Clercq, P. Effects of temperature on 

predation by the stinkbugs Picromerus bidens and Podisus maculiventris 

(Heteroptera: Pentatomidae) on noctuid caterpillars. Bull. Entomol. Res. In press. 

 

 

5. ATTENDED SYMPOSIA AND CONFERENCES  

 

 51st International Symposium on Crop Protection. 4 May 1999, Ghent, Belgium. 

(presentation: I. Vantornhout, M. Van de Veire and L. Tirry. Toxicity of 

imidacloprid to Myzus persicae and the predatory bugs Orius laevigatus and 

Macrolophus caliginosus). 

 



 Curriculum vitae 213 

 Studie- en vervolmakingsdag: Gewasbescherming in de toekomst. Coda, 29 maart 

2000, Tervuren, Belgium.  

 Splus cursus, 20 April 2000, Ghent, Belgium. 

 52nd International Symposium on Crop Protection. 9 May 2000, Ghent, Belgium. 

 53rd International Symposium on Crop Protection. 8 May 2001, Ghent, Belgium. 

 7th FLTBW PhD Symposium. 10 Octobre 2001, Ghent, Belgium. (Poster 

presentation: I. Vantornhout, H. Minnaert, L. Tirry and P. De Clercq. Development 

of Iphiseius degenerans Berlese (Acari: Phytoseiidae) on four different kinds of 

food sources.). Poster award 7th FLTBW PhD Symposium 2001. 

 54th International Symposium on Crop Protection. 7 May 2002, Ghent, Belgium. 

(Poster presentation: I. Vantornhout, H. Minnaert, L. Tirry and P. De Clercq. 

Development of Iphiseius degenerans Berlese (Acari: Phytoseiidae) on four 

different kinds of food sources.) 

 55th International Symposium on Crop Protection. 6 May 2003, Ghent, Belgium 

(secretary Section Agricultural entomology and IPM) 

 Studie- en vervolmakingsdag: Gewasbescherming: wat blijft ervan over? Coda, 31 

March 2004, Tervuren, Belgium.  

 56th International Symposium on Crop Protection. 4 May 2004, Ghent, Belgium 

(secretary Section Agricultural entomology and IPM) 

 5th Symposium of the European Association of Acarologists, 26-30 July 2004, 

Berlin, Duitsland. (Presentation: I. Vantornhout, H. Minnaert, L. Tirry and P. De 

Clercq. Biological parameters of Iphiseius degenerans fed on twospotted spider 

mites and western flower thrips) 

 57th International Symposium on Crop Protection. 10 May 2005, Ghent, Belgium 

(secretary Section Agricultural entomology and IPM) 

 58th International Symposium on Crop Protection. 23 May 2006, Ghent, Belgium 

(Vice-chair Section Biological control of pests) 

 


