Skip to main content

Volcanic Eruptions, Explosive: Experimental Insights

  • Reference work entry
  • First Online:
Complexity in Tsunamis, Volcanoes, and their Hazards
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer-Verlag 2009

Glossary

Conduit :

Subterranean pathways to the surface created and sustained by the flow of volcanic materials are known as volcanic conduits. In the laboratory, tubes are used as scale equivalents. The two terminologies (‘conduits’ and ‘tubes’) should be kept distinct to avoid inadvertent acceptance that a laboratory experiment is a direct replica of a volcanic process.

Magma :

When rock melts underground it becomes magma. When magma flows on the surface it is known as lava and when it is projected into the atmosphere it forms pyroclasts. Most magma is silicate-based and comprises a three-phase mixture of solid (crystals, called microlites when small), liquid (melt) and gas (bubbles or vesicles).

Rheology :

When a force is applied to matter it deforms. The rheology of a material describes the relationship between applied force and the material response. Volcanic materials have a wide range of rheological behaviors dependent on the proportions of gas, liquid and solid, temperature,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  • Alidibirov M, Dingwell DB (1996a) Magma fragmentation by rapid decompression. Nature 380:146–149

    Article  Google Scholar 

  • Alidibirov M, Dingwell DB (1996b) An experimental facility for the investigation of magma fragmentation by rapid decompression. Bull Volcanol 58:411–416

    Article  Google Scholar 

  • Alidibirov M, Dingwell DB (2000) Three fragmentation mechanisms for highly viscous magma under rapid decompression. J Volcanol Geotherm Res 100:413–421

    Article  Google Scholar 

  • Alidibirov M, Panov V (1998) Magma fragmentation dynamics: experiments with analogue porous low-strength material. Bull Volcanol 59(7):481–489

    Article  Google Scholar 

  • Alidibirov M, Dingwell DB, Stevenson RJ, Hess K-U, Webb SL, Zinke J (1997) Physical properties of the 1980 Mount St. Helens cryptodome magma. Bull Volcanol 59:103–111

    Article  Google Scholar 

  • Anilkumar AV, Sparks RSJ, Sturtevant B (1993) Geological implications and applications of high-velocity two-phase flow experiments. J Volcanol Geotherm Res 56(1–2):145–160

    Article  Google Scholar 

  • Auger E, D’Auria L, Martini M, Chouet B, Dawson P (2006) Real-time monitoring and massive inversion of source parameters of very long period seismic signals: an application to Stromboli Volcano, Italy. Geophys Res Lett 33(4):L04301

    Google Scholar 

  • Bagdassarov NS, Dingwell DB (1992) A rheological investigation of vesicular rhyolite. J Volcanol Geophys Res 50:307–322

    Google Scholar 

  • Bagdassarov NS, Dingwell DB (1993) Frequency dependent rheology of vesicular rhyolite. J Geophys Res 98:6477–6487

    Article  Google Scholar 

  • Bagdassarov N, Pinkerton H (2004) Transient phenomena in vesicular lava flows based on laboratory experiments with analogue materials. J Volcanol Geotherm Res 132:115–136

    Article  Google Scholar 

  • Barenblatt GI (2003) Scaling. Cambridge University Press, Cambridge. ISBN 0-521-53394-5

    Book  Google Scholar 

  • Behrens H, Gaillard F (2006) Geochemical aspects of melts: volatiles and redox behavior. Elements 2(5):275–280. ISSN 1811-5209

    Google Scholar 

  • Berthoud G (2000) Vapor explosions. Annu Rev Fluid Mech 32:573–611

    Article  Google Scholar 

  • Birch F, Dane EB (1942) Viscosity. In: Birch F, Schairer JF, Spicer HC (eds) Handbook of physical constants, vol 97. Geological Society of America Special Paper, vol 36, pp 97–173

    Google Scholar 

  • Blackburn EA, Wilson L, Sparks RSJ (1976) Mechanisms and dynamics of Strombolian activity. J Geol Soc Lond 132:429–440

    Article  Google Scholar 

  • Blower JD (2001) Factors controlling permeability-porosity relationships in magma. Bull Volcanol 63:497–504

    Article  Google Scholar 

  • Blower JD, Keating JP, Mader HM, Phillips JC (2001) Inferring volcanic degassing processes from vesicle size distributions. Geophys Res Lett 28(2):347–350

    Article  Google Scholar 

  • Bottinga Y, Weill DF (1972) The viscosity of magmatic silicate liquids: a model for calculation. Am J Sci 272:438–475

    Article  Google Scholar 

  • Burgisser A, Gardner JE (2005) Experimental constraints on degassing and permeability in volcanic conduit flow. Bull Volcanol 67:42–56

    Article  Google Scholar 

  • Burgisser A, Bergantz GW, Breidenthal RE (2005) Addressing complexity in laboratory experiments: the scaling of dilute multiphase flows in magmatic systems. J Volcanol Geotherm Res 141:245–265

    Article  Google Scholar 

  • Burton M, Allard P, Muré F, La Spina A (2007) Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science 317:227–230

    Article  Google Scholar 

  • Büttner R, Roder H, Zimanowski B (1997) Electrical effects generated by experimental volcanic explosions. Appl Phys Lett 70(14):1903–1905

    Article  Google Scholar 

  • Büttner R, Dellino P, Zimanowski B (1999) Identifying magma-water interaction from the surface features of ash particles. Nature 401(6754):688–690

    Article  Google Scholar 

  • Büttner R, Zimanowski B, Roder H (2000) Short-time electrical effects during volcanic eruption: Experiments and field measurements. J Geophys Res 105(B2):2819–2827

    Article  Google Scholar 

  • Cagnoli B, Barmin A, Melnik O, Sparks RSJ (2002) Depressurization of fine powders in a shock tube and dynamics of fragmented magma in volcanic conduits. Earth Planet Sci Lett 204(1–2):101–113

    Article  Google Scholar 

  • Cambridge Polymer Group (2002) The Cambridge Polymer Group Silly Putty™ “Egg”. http://www.campoly.com/documents/appnotes/sillyputty.pdf. Accessed 10 Oct 2008

  • Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St-Helens volcano. J Geophys Res 87(NB8):7061–7072

    Google Scholar 

  • Carroll MR, Holloway JR (eds) (1994) Volatiles in magmas. Rev Mineral 30:517. ISBN 0-939950-36-7

    Google Scholar 

  • Chojnicki K, Clarke AB, Phillips JC (2006) A shock-tube investigation of the dynamics of gas-particle mixtures: Implications for explosive volcanic eruptions. Geophys Res Lett 33:L15309. https://doi.org/10.1029/2006GL026414

    Article  Google Scholar 

  • Chouet BA, Hamisevicz B, McGetchin TR (1974) Photoballistics of volcanic jet activity at Stromboli, Italy. J Geophys Res 79:4961–4976

    Article  Google Scholar 

  • Chouet B, Dawson P, Ohminato T, Martini M, Saccorotti G, Giudicepietro F, De Luca G, Milana G, Scarpa R (2003) Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data. J Geophys Res 108(B1):2019. https://doi.org/10.1029/2002JB001919

    Article  Google Scholar 

  • Chouet B, Dawson P, Nakano M (2006) Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid. J Geophys Res 111:B07310

    Article  Google Scholar 

  • Chouet B, Dawson P, Martini M (2008) Shallow-conduit dynamics at Stromboli Volcano, Italy, imaged from waveform inversions. In: Lane SJ, Gilbert JS (eds) Fluid motion in volcanic conduits: a source of seismic and acoustic signals. Geol Soc Lond Spec Publ 307:57–84. https://doi.org/10.1144/SP307.5

    Article  Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic, London, p 380. ISBN 012176950X

    Google Scholar 

  • Costa A (2006) Permeability-porosity relationship: a reexamination of the Kozeny–Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33:L02318

    Article  Google Scholar 

  • Dellino P, Zimanowski B, Büttner R, La Volpe L, Mele D, Sulpizio R (2007) Large-scale experiments on the mechanics of pyroclastic flows: design, engineering, and first results. J Geophys Res 112:B04202

    Article  Google Scholar 

  • Dickinson JT, Langford SC, Jensen LC, McVay GL, Kelso JF, Pantano CG (1988) Fractoemission from fused-silica and sodium-silicate glasses. J Vac Sci Technol A 6(3):1084–1089

    Article  Google Scholar 

  • Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273(5278):1054–1055

    Article  Google Scholar 

  • Dingwell DB, Webb SL (1989) Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes. Phys Chem Miner 16:508–516

    Article  Google Scholar 

  • Donaldson EE, Dickinson JT, Bhattacharya SK (1988) Production and properties of ejecta released by fracture of materials. J Adhes 25(4):281–302

    Article  Google Scholar 

  • Druitt TH, Avard G, Bruni G, Lettieri P, Maez F (2007) Gas retention in fine-grained pyroclastic flow materials at high temperatures. Bull Volcanol 69(8):881–901

    Article  Google Scholar 

  • Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602

    Article  Google Scholar 

  • Gardner JE (2007) Heterogeneous bubble nucleation in highly viscous silicate melts during instantaneous decompression from high pressure. Chem Geol 236:1–12

    Article  Google Scholar 

  • Geyer A, Folch A, Marti J (2006) Relationship between caldera collapse and magma chamber withdrawal: an experimental approach. J Volcanol Geotherm Res 157(4):375–386

    Article  Google Scholar 

  • Gilbert JS, Lane SJ (1994) The origin of accretionary lapilli. Bull Volcanol 56(5):398–411

    Article  Google Scholar 

  • Gladstone C, Ritchie LJ, Sparks RSJ, Woods AW (2004) An experimental investigation of density-stratified inertial gravity currents. Sedimentology 51(4):767–789

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2003) Explosive volcanism may not be the inevitable consequence of magma fragmentation. Nature 42:432–435

    Article  Google Scholar 

  • Grunewald U, Zimanowski B, Büttner R, Phillips LF, Heide K, Büchel G (2007) MFCI experiments on the influence of NaCl-saturated water on phreatomagmatic explosions. J Volcanol Geotherm Res 159:126–137

    Article  Google Scholar 

  • Hess K-U, Dingwell DB (1996) Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am Mineral 81:1297–1300

    Google Scholar 

  • Hill LG, Sturtevant B (1990) An experimental study of evaporation waves in a superheated liquid. In: Meier GEA, Thompson PA (eds) Adiabatic waves in liquid-vapor systems. IUTAM Symposium Göttingen, Germany. Springer, Berlin, pp 25–37. ISBN 3-540-50203-3

    Google Scholar 

  • Hoover SR, Cashman KV, Manga M (2001) The yield strength of subliquidus basalts – experimental results. J Volcanol Geotherm Res 107(1–3):1–18

    Article  Google Scholar 

  • Hurwitz S, Navon O (1994) Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature, and water content. Earth Planet Sci Lett 122(3–4):267–280

    Article  Google Scholar 

  • Ichihara M, Rittel D, Sturtevant B (2002) Fragmentation of a porous viscoelastic material: implications to magma fragmentation. J Geophys Res 107(B10):2229. https://doi.org/10.1029/2001JB000591

    Article  Google Scholar 

  • Ida Y (2007) Driving force of lateral permeable gas flow in magma and the criterion of explosive and effusive eruptions. J Volcanol Geotherm Res 162(3–4):172–184

    Article  Google Scholar 

  • Ishibashi H, Sato H (2007) Viscosity measurements of subliquidus magmas: alkali olivine basalt from the Higashi–Matsuura district, Southwest Japan. J Volcanol Geotherm Res 160(3–4):223–238

    Article  Google Scholar 

  • James MR, Lane SJ, Gilbert JS (2000) Volcanic plume electrification: experimental investigation of a fracture-charging mechanism. J Geophys Res 105(B7):16641–16649

    Article  Google Scholar 

  • James MR, Gilbert JS, Lane SJ (2002) Experimental investigation of volcanic particle aggregation in the absence of a liquid phase. J Geophys Res 107(B9):2191

    Article  Google Scholar 

  • James MR, Lane SJ, Gilbert JS (2003) Density, construction, and drag coefficient of electrostatic volcanic ash aggregates. J Geophys Res 108(B9):2435

    Article  Google Scholar 

  • James MR, Lane SJ, Chouet B, Gilbert JS (2004) Pressure changes associated with the ascent and bursting of gas slugs in liquid-filled vertical and inclined conduits. J Volcanol Geotherm Res 129(1–3):61–82

    Article  Google Scholar 

  • James MR, Lane SJ, Chouet BA (2006) Gas slug ascent through changes in conduit diameter: laboratory insights into a volcano-seismic source process in low-viscosity magmas. J Geophys Res 111:B05201. https://doi.org/10.1029/2005JB003718

    Article  Google Scholar 

  • James MR, Lane SJ, Corder SB (2008) Modelling the rapid near-surface expansion of gas slugs in low-viscosity magmas. In: Lane SJ, Gilbert JS (eds) Fluid motion in volcanic conduits: a source of seismic and acoustic signals. Geol Soc Lond Spec Publ 307:147–167. https://doi.org/10.1144/SP307.9

    Article  Google Scholar 

  • Jaupart C, Allegre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102:413–429

    Article  Google Scholar 

  • Jaupart C, Vergniolle S (1988) Laboratory models of Hawaiian and Strombolian eruptions. Nature 331(6151):58–60

    Article  Google Scholar 

  • Jaupart C, Vergniolle S (1989) The generation and collapse of a foam layer at the roof of a basaltic magma chamber. J Fluid Mech 203:347–380

    Article  Google Scholar 

  • Kalinichev AG (2001) Molecular simulations of liquid and supercritical water: thermodynamics, structure, and hydrogen bonding. Rev Mineral Geochem 42:83–129

    Article  Google Scholar 

  • Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res 103(B12):29759–29779

    Article  Google Scholar 

  • Klug C, Cashman KV (1996) Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol 58:87–100

    Article  Google Scholar 

  • Kouchi A, Tsuchiyama A, Sunagawa I (1986) Effect of stirring on crystallisation kinetics of basalt: texture and element partitioning. Contrib Mineral Petrol 93:429–438

    Article  Google Scholar 

  • Kueppers U, Perugini D, Dingwell DB (2006) “Explosive energy” during volcanic eruptions from fractal analysis of pyroclasts. Earth Planet Sci Lett 248(3–4):800–807

    Article  Google Scholar 

  • Lane SJ, Chouet BA, Phillips JC, Dawson P, Ryan GA, Hurst E (2001) Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system. J Geophys Res 106(B4):6461–6476

    Article  Google Scholar 

  • Lane SJ, Phillips JC, Ryan GA (2008) Dome-building eruptions: insights from analogue experiments. In: Lane SJ, Gilbert JS (eds) Fluid motion in volcanic conduits: a source of seismic and acoustic signals. Geological Society, London

    Google Scholar 

  • Lautze NC, Houghton BF (2007) Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy. Bull Volcanol 69(4):445–460

    Article  Google Scholar 

  • Liu Y, Zhang Y, Behrens H (2005) Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O–CO2 solubility in rhyolitic melts. J Volcanol Geotherm Res 143:219–235

    Article  Google Scholar 

  • Llewellin EW, Manga M (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143:205–217

    Article  Google Scholar 

  • Llewellin EW, Mader HM, Wilson SDR (2002) The rheology of a bubbly liquid. Proc R Soc Lond A 458:987–1016

    Article  Google Scholar 

  • Lyakhovsky V, Hurwitz S, Navon O (1996) Bubble growth in rhyolitic melts: experimental and numerical investigation. Bull Volcanol 58:19–32

    Article  Google Scholar 

  • Mader HM (1998) Conduit flow and fragmentation. Geol Soc Lond Spec Publ 145:51–71

    Article  Google Scholar 

  • Mader HM, Zhang Y, Phillips JC, Sparks RSJ, Sturtevant B, Stolper E (1994) Experimental simulations of explosive degassing of magma. Nature 372(6501):85–88

    Article  Google Scholar 

  • Mader HM, Phillips JC, Sparks RSJ, Sturtevant B (1996) Dynamics of explosive degassing of magma: Observations of fragmenting two-phase flows. J Geophys Res Solid Earth 101(B3):5547–5560

    Article  Google Scholar 

  • Mader HM, Brodsky EE, Howard D, Sturtevant B (1997) Laboratory simulations of sustained volcanic eruptions. Nature 388(6641):462–464

    Article  Google Scholar 

  • Marshall JR, Sauke TB, Cuzzi JN (2005) Microgravity studies of aggregation in particulate clouds. Geophys Res Lett 32(11):L11202

    Article  Google Scholar 

  • Martel C, Dingwell DB, Spieler O, Pichavant M, Wilke M (2000) Fragmentation of foamed silicic melts: an experimental study. Earth Planet Sci Lett 178:47–58

    Article  Google Scholar 

  • Martel C, Dingwell DB, Spieler O, Pichavant M, Wilke M (2001) Experimental fragmentation of crystal- and vesicle-bearing silicic melts. Bull Volcanol 63:398–405

    Article  Google Scholar 

  • Mason RM, Starostin AB, Melnik OE, Sparks RSJ (2006) From Vulcanian explosions to sustained explosive eruptions: the role of diffusive mass transfer in conduit flow dynamics. J Volcanol Geotherm Res 153(1–2):148–165

    Article  Google Scholar 

  • McGetchin TR, Settle M, Chouet B (1974) Cinder cone growth modeled after Northeast Crater, Mount Etna, Sicily. J Geophys Res 79:3257–3272

    Article  Google Scholar 

  • McMillan PF (1994) Water solubility and speciation models. In: Carroll MR, Holloway JR (eds) Volatiles in magmas

    Google Scholar 

  • Melnik O, Sparks RSJ (2002) Dynamics of magma ascent and lava extrusion at Soufriére Hills Volcano, Montserrat. In: Druitt T, Kokelaar P (eds) The eruption of Soufriére Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, pp 153–171

    Google Scholar 

  • Moore JG, Peck DL (1962) Accretionary lapilli in volcanic rocks of the western continental United-States. J Geol 70(2):182–193

    Article  Google Scholar 

  • Mourtada-Bonnefoi CC, Mader HM (2001) On the development of highly-viscous skins of liquid around bubbles during magmatic degassing. Geophys Res Lett 28(8):1647–1650

    Article  Google Scholar 

  • Mourtada-Bonnefoi CC, Mader HM (2004) Experimental observations of the effects of crystals and pre-existing bubbles on the dynamics and fragmentation of vesiculating flows. J Volcanol Geotherm Res 129:83–97. https://doi.org/10.1016/S0377-0273(03)00233-6

    Article  Google Scholar 

  • Murase T (1962) Viscosity and related properties of volcanic rocks at 800° to 1400°C. J Fac Sci Hokkaido Univ Ser VII 1:487–584

    Google Scholar 

  • Murase T, McBirney AR (1973) Properties of some common igneous rocks and their melts at high-temperatures. Geol Soc Am Bull 84(11):3563–3592

    Article  Google Scholar 

  • Namiki A, Manga M (2005) Response of a bubble bearing viscoelastic fluid to rapid decompression: implications for explosive volcanic eruptions. Earth Planet Sci Lett 236:269–284

    Article  Google Scholar 

  • Namiki A, Manga M (2006) Influence of decompression rate on the expansion velocity and expansion style of bubbly fluids. J Geophys Res 111:B11208

    Article  Google Scholar 

  • Newhall CG, Self S (1982) The explosivity index (VEI) – an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(NC2):1231–1238

    Article  Google Scholar 

  • Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134:77–107

    Article  Google Scholar 

  • Phillips JC, Lane SJ, Lejeune A-M, Hilton M (1995) Gum rosin – acetone system as an analogue to the degassing behaviour of hydrated magmas. Bull Volcanol 57:263–268

    Google Scholar 

  • Pinkerton H, Norton G (1995) Rheological properties of basaltic lavas at sub-liquidus temperatures – laboratory and field-measurements on lavas from Mount Etna. J Volcanol Geotherm Res 68(4):307–323

    Article  Google Scholar 

  • Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopaedia of volcanoes. Academic, pp 263–269. ISBN 0-12-643140-X

    Google Scholar 

  • Riedel C, Ernst GGJ, Riley M (2003) Controls on the growth and geometry of pyroclastic constructs. J Volcanol Geotherm Res 127(1–2):121–152

    Google Scholar 

  • Riley CM, Rose WI, Bluth GJS (2003) Quantitative shape measurements of distal volcanic ash. J Geophys Res Solid Earth 108(B10):2504

    Article  Google Scholar 

  • Ripepe M, Ciliberto S, Della Schiava M (2001) Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J Geophys Res Solid Earth 106(B5):8713–8727

    Article  Google Scholar 

  • Roche O, Druitt TH (2001) Onset of caldera collapse during ignimbrite eruptions. Earth Planet Sci Lett 191(3–4):191–202

    Article  Google Scholar 

  • Saar MO, Manga M (1999) Permeability-porosity relationship in vesicular basalts. Geophys Res Lett 26:111–114

    Article  Google Scholar 

  • Schumacher R, Schmincke HU (1995) Models for the origin of accretionary lapilli. Bull Volcanol 56(8):626–639

    Article  Google Scholar 

  • Seyfried R, Freundt A (2000) Experiments on conduit flow and eruption behavior of basaltic volcanic eruptions. J Geophys Res Solid Earth 105:23727–23740

    Article  Google Scholar 

  • Shaw HR (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Am J Sci 272:870–893

    Article  Google Scholar 

  • Sparks RSJ (1997) Causes and consequences of pressurisation in lava dome eruptions. Earth Planet Sci Lett 150:177–189

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, Chichester. ISBN 0-471-93901-3

    Google Scholar 

  • Spera FJ, Borgia A, Strimple J, Feigenson M (1988) Rheology of melts and magmatic suspensions I. Design and calibration of a concentric cylinder viscometer with application to rhyolitic magma. J Geophys Res 93:10273–10294

    Article  Google Scholar 

  • Spieler O, Alidibirov M, Dingwell DB (2003) Grain-size characteristics of experimental pyroclasts of 1980 Mount St. Helens cryptodome dacite: effects of pressure drop and temperature. Bull Volcanol 65:90–104

    Article  Google Scholar 

  • Spieler O, Kennedy B, Kueppers U, Dingwell DB, Scheu B, Taddeucci J (2004) The fragmentation threshold of pyroclastic rocks. Earth Planet Sci Lett 226:139–148

    Article  Google Scholar 

  • Sugioka I, Bursik M (1995) Explosive fragmentation of erupting magma. Nature 373(6516):689–692

    Article  Google Scholar 

  • Suzuki T (1983) A theoretical model for dispersion of tephra. In: Shimozuru D, Yokoyama I (eds) Arc volcanism, physics and tectonics. Terra Scientific Publishing Company (Terrapub), Tokyo, pp 95–113

    Google Scholar 

  • Taddeucci J, Spieler O, Kennedy B, Pompilio M, Dingwell DB, Scarlato P (2004) Experimental and analytical modeling of basaltic ash explosions at Mount Etna, Italy, 2001. J Geophys Res 109:B08203. https://doi.org/10.1029/2003JB002952

    Article  Google Scholar 

  • Taddeucci J, Spieler O, Ichihara M, Dingwell DB, Scarlato P (2006) Flow and fracturing of viscoelastic media under diffusion-driven bubble growth: an analogue experiment for eruptive volcanic conduits. Earth Planet Sci Lett 243:771–785

    Article  Google Scholar 

  • Taddeucci J, Scarlato P, Andronico D, Cristaldi A, Büttner R, Zimanowski B, Küppers U (2007) Advances in the study of volcanic ash. Eos Trans AGU 88(24):253

    Article  Google Scholar 

  • Takeuchi S, Nakashima S, Tomiya A, Shinohara H (2005) Experimental constraints on the low gas permeability of vesicular magma during decompression. Geophys Res Lett 32:L10312

    Article  Google Scholar 

  • Takeuchi S, Nakashima S, Tomiya A (2008) Permeability measurements of natural and experimental volcanic materials with a simple permeameter: Toward an understanding of magmatic degassing process. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2008.05.010

  • Textor C, Graf HF, Longo A, Neri A, Ongaro TE, Papale P, Timmreck C, Ernst GG (2005) Numerical simulation of explosive volcanic eruptions from the conduit flow to global atmospheric scales. Ann Geophys 48(4–5):817–842

    Google Scholar 

  • Trigila R, Battaglia M, Manga M (2007) An experimental facility for investigating hydromagmatic eruptions at high-pressure and high-temperature with application to the importance of magma porosity for magma-water interaction. Bull Volcanol 69:365–372

    Article  Google Scholar 

  • Tuffen H, Dingwell D (2005) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67:370–387

    Article  Google Scholar 

  • Walker GPL, Wilson L, Bowell ELG (1971) Explosive volcanic eruptions. 1. Rate of fall of pyroclasts. Geophys J Roy Astron Soc 22(4):377–383

    Article  Google Scholar 

  • Watson EB (1994) Diffusion in volatile-bearing magmas. In: Carroll MR, Holloway JR (eds) Volatiles in magmas

    Google Scholar 

  • Wilson L, Huang TC (1979) Influence of shape on the atmospheric settling velocity of volcanic ash particles. Earth Planet Sci Lett 44(2):311–324

    Article  Google Scholar 

  • Wohletz KH (1983) Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. J Volcanol Geotherm Res 17(1–4):31–63

    Article  Google Scholar 

  • Woolley AR, Church AA (2005) Extrusive carbonatites: a brief review. Lithos 85(1–4):1–14

    Article  Google Scholar 

  • Yokoyama I (2005) Growth rates of lava domes with respect to viscosity of magmas. Ann Geophys 48(6):957–971

    Google Scholar 

  • Zhang YX (1998) Experimental simulations of gas-driven eruptions: kinetics of bubble growth and effect of geometry. Bull Volcanol 59(4):281–290

    Article  Google Scholar 

  • Zhang Y (1999) A criterion for the fragmentation of bubbly magma based on brittle failure theory. Nature 402:648–650

    Article  Google Scholar 

  • Zhang Y, Behrens H (2000) H2O diffusion in rhyolitic melts and glasses. Chem Geol 169:243–226

    Article  Google Scholar 

  • Zhang YX, Sturtevant B, Stolper EM (1997) Dynamics of gas-driven eruptions: experimental simulations using CO2-H2O-polymer system. J Geophys Res Solid Earth 102(B2):3077–3096

    Article  Google Scholar 

  • Zhang Y, Xu Z, Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from kinetic experiments: a new viscosity model. Am Mineral 88:1741–1752

    Article  Google Scholar 

  • Zimanowski B, Lorenz V, Frohlich G (1986) Experiments on phreatomagmatic explosions with silicate and carbonatitic melts. J Volcanol Geotherm Res 30(1–2):149–153

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Lorenz V, Häfele H-G (1997) Fragmentation of basaltic melt in the course of explosive volcanism. J Geophys Res 102(B1):803–814

    Article  Google Scholar 

Books and Reviews

  • Barnes HA (1997) Thixotropy – a review. J Non-Newtonian Fluid Mech 70:1–33

    Article  Google Scholar 

  • Barnes HA (1999) The yield strength – a review or ‘πανταρει’ everything flows? J Non-Newtonian Fluid Mech 81:133–178

    Article  Google Scholar 

  • Chhabra RP (2006) Bubbles, drops, and particles in non-Newtonian fluids. CRC Press, London, p 771. ISBN 0824723295

    Book  Google Scholar 

  • Chouet B (2003) Volcano seismology. Pure Appl Geophys 160:739–788

    Article  Google Scholar 

  • De Kee D, Chhabra RP (2002) Transport processes in bubbles, drops, and particles. Taylor and Francis, p 352. ISBN 1560329068

    Google Scholar 

  • Fan L-S, Zhu C (1998) Principles of gas-solid flows. Cambridge University Press, Cambridge, p 575. ISBN 0521581486

    Book  Google Scholar 

  • Gilbert JS, Sparks RSJ (1998) The physics of explosive volcanic eruptions. The Geological Society, London. ISBN 1-86239-020-7

    Google Scholar 

  • Gonnermann HM, Manga M (2007) The fluid mechanics inside a volcano. Annu Rev Fluid Mech 39:321–356

    Article  Google Scholar 

  • Henderson G, Calas G, Stebbins J (eds) (2006) Glasses and melts: linking geochemistry and materials science. Elements 2(5):257–320. ISSN 1811–5209

    Google Scholar 

  • Kaminski E, Tait S, Carazzo G (2005) Turbulent entrainment in jets with arbitrary buoyancy. J Fluid Mech 526:361–376

    Article  Google Scholar 

  • Mather TA, Harrison RG (2006) Electrification of volcanic plumes surveys. Geophysics 27(4):387–432

    Google Scholar 

  • Moretti R, Richet P, Stebbins JF (2006) Physics, chemistry and rheology of silicate melts and glasses. Chem Geol 229(1–3):1–226

    Article  Google Scholar 

  • Parfitt L, Wilson L (2008) Fundamentals of physical volcanology. Blackwell, p 256. ISBN 0632054433

    Google Scholar 

  • Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) (2000) Encyclopaedia of volcanoes. Academic. ISBN 0-12-643140-X

    Google Scholar 

  • Tong L-S, Tang YS (1997) Boiling heat transfer and two-phase flow. Taylor and Francis, p 542. ISBN 1560324856

    Google Scholar 

  • Webb S (1997) Silicate melts: relaxation, rheology, and the glass transition. Rev Geophys 35(2):191–218

    Article  Google Scholar 

  • Wood CA (1980) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7:387–413

    Article  Google Scholar 

Download references

Acknowledgments

We thank Bernard Chouet for a highly constructive review of this chapter, William H. K. Lee for editing this section and the staff at Springer including Julia Koerting and Kerstin Kindler.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lane, S.J., James, M.R. (2009). Volcanic Eruptions, Explosive: Experimental Insights. In: Tilling, R.I. (eds) Complexity in Tsunamis, Volcanoes, and their Hazards. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1705-2_579

Download citation

Publish with us

Policies and ethics