Skip to main content

Myasthenia Gravis

  • Reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Myasthenia gravis (MG) is the prototypical autoimmune antibody-mediated disease characterized by muscle weakness and fatigability. The antibodies cause reduced numbers of available acetylcholine receptors at neuromuscular junctions. In addition to destruction of acetylcholine receptors, they can change the surface membrane clustering of receptors or cause change in the postsynaptic membrane architecture. The final result is impaired neuromuscular transmission.

Generalized myasthenia can affect the limbs, bulbar, facial, and respiratory muscles. The diagnosis of MG can be made in clinic with clinical tests such as the sleep test and ice test. Serological testing for acetylcholine receptor antibodies and for the antibodies to muscle-specific tyrosine kinase and low-density lipoprotein receptor-related protein 4 will be discussed.

Ocular myasthenia gravis is a subtype of myasthenia with weakness that is clinically isolated to the extraocular, levator palpebrae superioris, and orbicularis oculi muscles.

MG is a treatable disease. Thymectomy is indicated for certain subgroups of MG. The treatment of MG has expanded with the usage of newer immune modulating drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 5,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagia L, Lemos J, Abusamra K, Cornblath WT, Eggenberger ER. Prognosis of ocular myasthenia gravis. Ophthalmology [Internet]. 2015;122(7):1517–21. https://doi.org/10.1016/j.ophtha.2015.03.010.

    Article  Google Scholar 

  2. Sommer N, Sigg B, Melms A, et al. Ocular myasthenia gravis: response to long term immunosuppressive treatment. Neurosurg Psychiatry. 1997;62 SRC:156–62.

    Article  Google Scholar 

  3. Daroff R. Ocular myasthenia: diagnosis and therapy. In: Glaser JS, editor. Neuro-ophthalmology. St. Louis: Mosby; 1980. p. 62–71.

    Google Scholar 

  4. Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol [Internet]. 2015 [cited 2019 Feb 16];14(10):1023–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1474442215001453

  5. Howard FMJ, Lennon VA, Finley J, Matsumoto J, Elveback LR. Clinical correlations of antibodies that bind, block, or modulate human acetylcholine receptors in myasthenia gravis. Ann N Y Acad Sci. 1987;505:526–38.

    Article  PubMed  Google Scholar 

  6. Fortin E, Cestari DM, Weinberg DA. Ocular myasthenia gravis. Curr Opin Ophthalmol. 2018;29(6):477.

    Article  PubMed  Google Scholar 

  7. Huijbers MG, Zhang W, Klooster R, Niks EH, Friese MB, Straasheijm KR, et al. MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc Natl Acad Sci [Internet]. 2013. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24297891

  8. Hoch W, McConville J, Helms S, et al. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med. 2001;7:365–8.

    Article  CAS  PubMed  Google Scholar 

  9. McConville J, Farrugia ME, Beeson D, Kishore U, Metcalfe R, Newsom-Davis J, et al. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol. 2004;55(4):580.

    Article  CAS  PubMed  Google Scholar 

  10. Gilhus NE, Skeie GO, Romi F, Lazaridis K, Zisimopoulou P, Tzartos S. Myasthenia gravis – autoantibody characteristics and their implications for therapy. Nat Rev Neurol [Internet]. 2016 [cited 2019 Feb 16];12(5):259–68. Available from: http://www.nature.com/articles/nrneurol.2016.44

  11. Pasnoor M, Dimachki M, Farmakidis C, Barohn RJ. Diagnosis of myasthenia gravis. Neurol Clin. 2018;36:261–74.

    Article  PubMed  Google Scholar 

  12. Sommer N, Harcourt GC, Willcox N, Beeson D, Newsom-Davis J. Acetylcholine receptor-reactive T lymphocytes from healthy subjects and myasthenia gravis patients. Neurology [Internet]. 1991 [cited 2019 Jul 1];41(8):1270–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1714058

  13. Drachman DB. Myasthenia gravis. N Engl J Med [Internet]. 1994 [cited 2019 Jul 1];330(25):1797–810. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8190158

  14. Sommer N, Willcox N, Harcourt GC, Newsom-Davis J. Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor-reactive T cells. Ann Neurol [Internet]. 1990 [cited 2019 Jul 1];28(3):312–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2241114

  15. Scadding GK, Vincent A, Newsom-Davis J, Henry K. Acetylcholine receptor antibody synthesis by thymic lymphocytes: correlation with thymic histology. Neurology [Internet]. 1981 [cited 2019 Jul 1];31(8):935–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6973710

  16. Van de Velde RL, Friedman NB. Thymic myoid cells and myasthenia gravis. Am J Pathol. 1970;59:347.

    PubMed  PubMed Central  Google Scholar 

  17. Kao I, Drachman DB. Thymic muscle cells bear acetylcholine receptors: possible relation to myasthenia gravis. Science [Internet]. 1977 [cited 2019 Jul 1];195(4273):74–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/831257

  18. Kirchner T, Hoppe F, Schalke B, Müller-Hermelink HK. Microenvironment of thymic myoid cells in myasthenia gravis. Virchows Arch B Cell Pathol Incl Mol Pathol [Internet]. 1988 [cited 2019 Jul 1];54(5):295–302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2895542

  19. Gilhus NE. Myasthenia gravis. N Engl J Med [Internet]. 2017;376(13):e25. Available from: http://www.nejm.org/doi/10.1056/NEJMc1701027

  20. Vaphiades MS, Bhatti MT, Lesser RL. Ocular myasthenia gravis. Curr Opin Ophthalmol [Internet]. 2012 [cited 2019 Feb 18];23(6):537–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23047171

  21. Hoff JM, Daltveit AK, Gilhus NE. Myasthenia gravis: consequences for pregnancy, delivery, and the newborn. Neurology [Internet]. 2003. Available from: https://insights.ovid.com/neurology/neur/2003/11/250/myasthenia-gravis/15/00006114

  22. Kusner LL, Puwanant A, Kaminski HJ. Ocular myasthenia: Diagnosis, treatment, and pathogenesis [Internet]. Neurologist. 2006. Available from: https://ophed.net/system/files/2010/08/ocular-myasthenia-2490-2490.pdf

  23. Gorelick PB, Rosenberg M, Pagano RJ. Enhanced ptosis in myasthenia gravis. Arch Neurol. 1981;38:531.

    Article  CAS  PubMed  Google Scholar 

  24. Gay AJ, Salmon ML, Windsor CE. Hering’s law, the levators, and their relationship in disease states. Arch Ophthalmol. 1967;77(2):157.

    Article  CAS  PubMed  Google Scholar 

  25. Cogan DG. Myasthenia gravis: a review of the disease and a description of lid twitch as a characteristic sign. Arch Ophthalmol. 1965;74:217–21.

    Article  CAS  PubMed  Google Scholar 

  26. Digre KB. Cogan’s lid twitch video 2. Moran Core. 2015.

    Google Scholar 

  27. Apinyawasisuk S, Zhou X, Tian JJ, Garcia GA, Karanjia R, Sadun AA. Validity of forced eyelid closure test: a novel clinical screening test for ocular myasthenia gravis. J Neuro-Ophthalmology [Internet]. 2017. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556905/

  28. Puklin JE, Sacks JG, Boshes B. Transient eyelid retraction in myasthenia gravis. J Neurol Neurosurg Psychiatry [Internet]. 1976. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC492212/pdf/jnnpsyc00163-0051.pdf

  29. Porter JD. Extraocular muscle: cellular adaptations for a diverse functional repertoire. Ann Sci. 2002;956 SRC:7–16.

    Google Scholar 

  30. Osher RH, Griggs RC. Orbicularis fatigue: the ‘peek’ sign of myasthenia gravis. Arch Ophthalmol. 1979;97 SRC:677–9.

    Google Scholar 

  31. Evoli A, Alboini PE, Iorio R, Damato V, Bartoccioni E. Pattern of ocular involvement in myasthenia gravis with MuSK antibodies. J Neurol Neurosurg Psychiatry. 2017;88(9):761.

    Article  PubMed  Google Scholar 

  32. Evoli A, Alboini PE, Damato V, Iorio R, Provenzano C, Bartoccioni E, et al. Myasthenia gravis with antibodies to MuSK: an update. Ann N Y Acad Sci. 2018;1412(1):82.

    Article  CAS  PubMed  Google Scholar 

  33. Pestronk A, Drachman DB, Josifek LF. Measurement of junctional acetylcholine receptors in myasthenia gravis: diagnostic value and clinical correlates. Neurol. 1981;83:31 SRC

    Google Scholar 

  34. Pestronk A, Drachman DB, Self SG. Measurement of junctional acetylcholine receptors in myasthenia gravis: clinical correlates. Muscle Nerve. 1985;8 SRC-B:245–51.

    Google Scholar 

  35. Chiang LM, Darras BT, Kang PB. Juvenile myasthenia gravis. Muscle Nerve [Internet]. 2009;39(4):423–31. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/mus.21195

  36. Peragallo JH. Pediatric myasthenia gravis. Semin Pediatr Neurol. 2017;24(2):116.

    Article  PubMed  Google Scholar 

  37. Odel JG, Winterkorn JMS, Behrens MM. The sleep test for myasthenia gravis: a safe alternative to Tensilon. Neuroophthalmol.1991;11 SRC:288–92.

    Google Scholar 

  38. Sethi KD, Rivner MH, Swift TR. Ice pack test for myasthenia gravis. Neurology 1987;37 SRC:1383–5.

    Google Scholar 

  39. Golnik KC, Pena R, Lee AG, Eggenberger ER. An ice test for the diagnosis of myasthenia gravis. Ophthalmology [Internet]. 1999. Available from: https://www.sciencedirect.com/science/article/pii/S0161642099007095#BIB8

  40. Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in myasthenia gravis. BMC Neurol [Internet]. 2010. Available from: https://bmcneurol.biomedcentral.com/articles/10.1186/1471-2377-10-46

  41. Seybold ME. The office Tensilon test for ocular myasthenia gravis. Arch Neurol. 1986;43(8):842–3.

    Google Scholar 

  42. Okun MS, Charriez CM, Bhatti MT, Watson RT, Swift T. Tensilon and the diagnosis of myasthenia gravis: are we using the Tensilon test too much? Neurologist. 2001;7(5):295.

    Article  CAS  PubMed  Google Scholar 

  43. Ing EB, Ing SY, Ing T, Ramocki JA. The complication rate of edrophonium testing for suspected myasthenia gravis. Can J Ophthalmol. 2000;35:141.

    Article  CAS  PubMed  Google Scholar 

  44. Miller NR, Morris JE, Maguire M. Combined use of neostigmine and ocular motility measurements in the diagnosis of myasthenia gravis. Arch Ophthalmol. 1982;100:761–3.

    Article  CAS  PubMed  Google Scholar 

  45. Smith SV, Lee AG. Update on ocular myasthenia gravis. Neurologic Clinics. W.B. Saunders. 2017;35:115–23.

    Google Scholar 

  46. Sanders DB. The electrodiagnosis of myasthenia gravis. Ann Sci. 1987;505 SRC:539–56.

    Google Scholar 

  47. Vincent A, Newsom-Davis J. Anti-acetylcholine receptor antibody characteristics in myasthenia gravis. I Patients with generalized myasthenia or disease restricted to ocular muscles. Clin Exp Immunol. 1982;49 SRC:257–65.

    Google Scholar 

  48. Vincent A, Newsom-Davis J. Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2967 diagnostic assays. Neurosurg Psychiatry. 1985;48 SRC:1246–52.

    Google Scholar 

  49. Leite MI, Waters P, Vincent A. Diagnostic use of autoantibodies in myasthenia gravis. Autoimmunity. 2010.

    Google Scholar 

  50. Zisimopoulou P, Brenner T, Trakas N, Tzartos SJ. Serological diagnostics in myasthenia gravis based on novel assays and recently identified antigens. Autoimmun Rev. 2013;12:924–30.

    Google Scholar 

  51. Wolfe GI, Kaminski HJ, Aban IB, Minisman G, Kuo H-C, Marx A, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med [Internet]. 2016 [cited 2019 Feb 16];375(6):511–22. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1602489

  52. de Perrot M, Donahoe L. Thymectomy for myasthenia gravis: what’s next? J Thorac Dis [Internet]. 2017 [cited 2019 Feb 18];9(2):237–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28275468

  53. Koneczny I, Martinez PM, De Baets M. Myasthenia gravis. In: Encyclopedia of immunobiology; 2016. p. 168–79.

    Chapter  Google Scholar 

  54. Raza A, Woo E. Video-assisted thoracoscopic surgery versus sternotomy in thymectomy for thymoma and myasthenia gravis. Ann Cardiothorac Surg [Internet]. 2016 [cited 2019 Feb 18];5(1):33–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26904429

  55. Rowse PG, Roden AC, Corl FM, Allen MS, Cassivi SD, Nichols FC, et al. Minimally invasive thymectomy: the Mayo Clinic experience. Ann Cardiothorac Surg [Internet]. 2015 [cited 2019 Feb 18];4(6):519–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26693147

  56. Xie A, Tjahjono R, Phan K, Yan TD. Video-assisted thoracoscopic surgery versus open thymectomy for thymoma: a systematic review. Ann Cardiothorac Surg [Internet]. 2015 [cited 2019 Feb 18];4(6):495–508. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26693145

  57. Späth G, Brinkmann A, Huth C, Wiethölter H. Complications and efficacy of transsternal thymectomy in myasthenia gravis. Thorac Cardiovasc Surg [Internet]. 1987 [cited 2019 Feb 16];35(05):283–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2447670

  58. Pascuzzi RM, Coslett HB, Johns TR. Long-term corticosteroid treatment of myasthenia gravis: report of 116 patients. Ann Neurol [Internet]. 1984 [cited 2019 Feb 16];15(3):291–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6721451

  59. Johns TR. Long-term corticosteroid treatment of myasthenia gravis. Ann N Y Acad Sci [Internet]. 1987 [cited 2019 Feb 16];505:568–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3479938

  60. Dalakas MC. Immunotherapy in myasthenia gravis in the era of biologics. Nat Rev Neurol [Internet]. 2019 [cited 2019 Feb 16];15(2):113–24. Available from: http://www.nature.com/articles/s41582-018-0110-z

  61. Gotterer L, Li Y. Maintenance immunosuppression in myasthenia gravis. J Neurol Sci [Internet]. 2016 [cited 2019 Feb 16];369:294–302. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022510X16305482

  62. Hauser RA, Malek AR, Rosen R. Successful treatment of a patient with severe refractory myasthenia gravis using mycophenolate mofetil. Neurology 1998;51 SRC:912–3.

    Google Scholar 

  63. Meriggioli MN, Rowin J. Treatment of myasthenia gravis with mycophenolate mofetil: a case report. Muscle Nerve. 2000;23:1287–9.

    Article  CAS  PubMed  Google Scholar 

  64. Chaudry V, Cornblath DR. Griffin JW, et al. Mycophenolate mofetil: a safe and promising immunosuppressant in neuromuscular diseases. Neurology. 2001;56 SRC:94–6.

    Google Scholar 

  65. Meriggioli MN, Rowin J, Richman JG, Leurgans S. Mycophenolate mofetil for myasthenia gravis: a double-blind, placebo-controlled pilot study. Ann Sci. 2003;998 SRC:494–9.

    Google Scholar 

  66. Meriggioli MN, Ciafaloni E, Al-Hayk KA, et al. Mycophenolate mofetil for myasthenia gravis. Neurology. 2003;61 SRC:1438–40.

    Google Scholar 

  67. Ciafaloni E, Massey JM, Tucker-Lipscomb B, Sanders DB. Mycophenolate mofetil for myasthenia gravis: an open-label pilot study. Neurology. 2001;56:97–9.

    Google Scholar 

  68. Tindall RS, Phillips JT, Rollins JA, Wells L, Hall K. A clinical therapeutic trial of cyclosporine in myasthenia gravis. Ann N Y Acad Sci. 1993.

    Google Scholar 

  69. Mantegazza R, Antozzi C. When myasthenia gravis is deemed refractory: clinical signposts and treatment strategies. Ther Adv Neurol Disord [Internet]. 2018 [cited 2019 Feb 16];11:175628561774913. Available from: http://journals.sagepub.com/doi/10.1177/1756285617749134

  70. Howard JF, Barohn RJ, Cutter GR, Freimer M, Juel VC, Mozaffar T, et al. A randomized, double-blind, placebo-controlled phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle Nerve [Internet]. 2013 [cited 2019 Feb 16];48(1):76–84. Available from: http://doi.wiley.com/10.1002/mus.23839

  71. Howard JF, Utsugisawa K, Benatar M, Murai H, Barohn RJ, Illa I, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol [Internet]. 2017 [cited 2019 Feb 16];16(12):976–86. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1474442217303691

  72. Stieglbauer K, Pichler R, Topakian R. 10-year-outcomes after rituximab for myasthenia gravis: efficacy, safety, costs of inhospital care, and impact on childbearing potential. J Neurol Sci [Internet]. 2017 [cited 2019 Feb 17];375:241–4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022510X17301041

  73. Arsura E. Experience with intravenous immunoglobulins in myasthenia gravis. Clin Immunol Immunopathol. 1989;53:S170–9.

    Article  CAS  PubMed  Google Scholar 

  74. Dwyer JM. Manipulating the immune system with immune globulin. N Engl J Med. 1992;326 SRC:107–16.

    Google Scholar 

  75. Grob D, Arsura E, Brunner N, Namba T. The course of myasthenia gravis and therapies affecting outcome. Ann N Y Acad Sci. 1987;505:472–99.

    Article  CAS  PubMed  Google Scholar 

  76. Bever CT, Aquino AV, Penn AS, Lovelace RE, Rowland LP. Prognosis of ocular myasthenia. Ann Neurol. 1983;14(5):516–9.

    Article  PubMed  Google Scholar 

  77. Kupersmith MJ, Latkany R, Homel P. Development of generalized disease at 2 years in patients with ocular myasthenia gravis. Arch Neurol. 2003;60(2):243–8.

    Article  PubMed  Google Scholar 

  78. Kupersmith MJ, Moster M, Bhuiyan S, et al. Beneficial effects of corticosteroids on ocular myasthenia gravis. Arch Neurol. 1996;53:802–4.

    Article  CAS  PubMed  Google Scholar 

  79. Benatar M, Mcdermott MP, Sanders DB, Wolfe GI, Barohn RJ, Nowak RJ, et al. Efficacy of prednisone for the treatment of ocular myasthenia (EPITOME): a randomized, controlled trial. Muscle Nerve. 2016;53(3):363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chan JW. Mycophenolate mofetil for ocular myasthenia. J Neurol. 2008;255(4):510–3.

    Article  CAS  PubMed  Google Scholar 

  81. Kupersmith MJ. Ocular myasthenia gravis: treatment successes and failures in patients with long-term follow-up. J Neurol. 2009;256(8):1314–20.

    Article  PubMed  Google Scholar 

  82. Mee J, Paine M, Byrne E, et al. Immunotherapy of ocular myasthenia gravis reduces conversion to generalized myasthenia gravis. J Neuroophthalmol. 2003;23 SRC:251–5.

    Google Scholar 

  83. Eaton LM, Lambert EH. Electromyography and electric stimulation of nerves in diseases of motor unit: observations on myasthenic syndrome associated with malignant tumors. JAMA. 1957;163:1117–24.

    Article  CAS  Google Scholar 

  84. Titulaer MJ, Lang B, Verschuuren JJGM. Lambert-Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurol. 2011.

    Google Scholar 

  85. Lambert EH. Defects of neuromuscular transmission in syndromes other than myasthenia gravis. Ann Sci. 1966;135 SRC:367–84.

    Google Scholar 

  86. Lambert EH, Elmqvist D. Quantal components of end-plate potentials in the myasthenic syndrome. Ann N Y Acad Sci. 1971.

    Google Scholar 

  87. Vincent A, Newland C, Crosen R, et al. Genes at the junction: candidates for congenital myasthenic syndromes. Trends Neurosci. 1997;20:15–22.

    Article  CAS  PubMed  Google Scholar 

  88. Elrod RD, Weinberg DA. Ocular myasthenia gravis. Ophthalmol Clin North Am. 2004;17:275–309.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie M. Keung .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Keung, B.M., Hamilton, S.R. (2022). Myasthenia Gravis. In: Albert, D.M., Miller, J.W., Azar, D.T., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-42634-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42634-7_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42633-0

  • Online ISBN: 978-3-030-42634-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics