Skip to main content

Euglenida

  • Living reference work entry
  • First Online:
Handbook of the Protists

Abstract

Euglenids are a group of >1500 described species of single-celled flagellates with diverse modes of nutrition, including phagotrophy and photoautotrophy. The group also encompasses a clade of specialist “primary” osmotrophs (Aphagea) and, very likely, one group of phagotrophs that are ectosymbiont-supporting anaerobes (Symbiontida). Almost all euglenids are free-living. The (usually) one or two emergent flagella have thick paraxonemal (paraxial) rods and originate in a deep pocket/reservoir, while the cell surface is almost always supported by a pellicle of parallel proteinaceous strips underlain by microtubules. Cells with 4–12 strips are rigid; most of those with more strips (typically ~20–40) have them arranged helically and exhibit active cell deformation called “euglenid motion” or “metaboly.” Most phagotrophic euglenids are surface-associated bacterivores or eukaryovores that employ a flagellar gliding motility; they are abundant in marine and freshwater sediments. Photoautotrophic species (Euglenophyceae) constitute a single subclade within euglenids and have a plastid (chloroplast) of secondary endosymbiotic origin, with three bounding membranes. The plastid is typically green, with chlorophylls a + b, and was derived from a chloroplastidan alga related to the Pyramimonadales. Photoautotrophic euglenids move primarily by swimming, and most (members of the taxon Euglenales, e.g., Euglena) have a single emergent flagellum and are generally restricted to fresh and brackish waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Angeler, D. G., Müllner, A. N., & Schagerl, M. (1999). Comparative ultrastructure of the cytoskeleton and nucleus of Distigma (Euglenozoa). European Journal of Protistology, 35, 309–318.

    Article  Google Scholar 

  • Bennett, M. S., & Triemer, R. E. (2012). A new method for obtaining nuclear gene sequences from field samples and taxonomic revisions of the photosynthetic euglenoids Lepocinclis (Euglena) helicoideus and Lepocinclis (Phacus) horridus (Euglenophyta). Journal of Phycology, 48, 254–260.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, M., Wiegert, K. E., & Triemer, R. E. (2012). Comparative chloroplast genomics between Euglena viridis and Euglena gracilis (Euglenophyta). Phycologia, 51, 711–718.

    Article  CAS  Google Scholar 

  • Bennett, M. S., & Triemer, R. E. (2014). The genus Cyclidiopsis: An obituary. Journal of Eukaryotic Microbiology, 61, 166–172.

    Article  PubMed  Google Scholar 

  • Bennett, M., Wiegert, K. E., & Triemer, R. E. (2014). Characterization of Euglenaformis gen. nov. and the chloroplast genome of Euglenaformis [Euglena] proxima (Euglenophyta). Phycologia, 53, 66–73.

    Google Scholar 

  • Bennett, M. S., & Triemer, R. E. (2015). Chloroplast genome evolution in the Euglenaceae. Journal of Eukaryotic Microbiology, 62, 773–785.

    Article  CAS  PubMed  Google Scholar 

  • Belhadri, A., Bayle, D., & Brugerolle, G. (1992). Biochemical and immunological characterization of intermicrotubular cement in the feeding apparatus of phagotrophic euglenoids: Entosiphon, Peranema, and Ploeotia. Protoplasma, 168, 113–124.

    Google Scholar 

  • Belhadri, A., & Brugerolle, G. (1992). Morphogenesis of the feeding apparatus of Entosiphon sulcatum: An immunofluorescence and ultrastructural study. Protoplasma, 168, 125–135.

    Article  Google Scholar 

  • Boenigk, J., & Arndt, H. (2002). Bacterivory by heterotrophic flagellates: Community structure and feeding strategies. Antonie Van Leeuwenhoek Journal of Microbiology, 81, 465–480.

    Article  Google Scholar 

  • Bouck, G. B., Rogalski, A., & Valaitis, A. (1978). Surface organization and composition of Euglena. II. Flagellar mastigonemes. The Journal of Cell Biology, 77, 805–826.

    Google Scholar 

  • Breglia, S. A., Slamovits, C. H., & Leander. (2007). Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences. Journal of Eukaryotic Microbiology, 52, 86–94.

    Article  CAS  Google Scholar 

  • Breglia, S. A., Yubuki, N., Hoppenrath, M., & Leander, B. S. (2010). Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. gen. et sp. (Symbiontida). BMC Microbiology, 10, 145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breglia, S. A., Yubuki, N., & Leander, B. S. (2013). Ultrastructure and molecular phylogenetic position of Heteronema scaphurum: A eukaryovorous euglenid with a cytoproct. Journal of Eukaryotic Microbiology, 60, 107–120.

    Article  CAS  PubMed  Google Scholar 

  • Brosnan, S., Brown, P. J. P., Farmer, M. A., & Triemer, R. E. (2005). Morphological separation of the euglenoid genera Trachelomonas and Strombomonas (Euglenophyta) based on lorica development and posterior strip reduction. Journal of Phycology, 41, 590–605.

    Article  Google Scholar 

  • Brosnan, S., Shin, W., Kjer, K. M., & Triemer, R. E. (2003). Phylogeny of the photoautotrophic euglenophytes inferred from the nuclear SSU and partial LSU rDNA. International Journal of Systematic and Evolutionary Microbiology, 53, 1175–1186.

    Article  CAS  PubMed  Google Scholar 

  • Brown, P. J. P., Leander, B. S., & Farmer, M. A. (2002). Redescription of Euglena rustica (Euglenophyceae), a rare marine euglenophyte from the intertidal zone. Phycologia, 41, 445–452.

    Article  Google Scholar 

  • Brown, P. J. P., Zakryś, B., & Farmer, M. A. (2003). Plastid morphology, ultrastructure, and development in Colacium and the loricate euglenophytes (Euglenophyceae). Journal of Phycology, 39, 115–121.

    Article  Google Scholar 

  • Brugerolle, G. (1985). Des trichocystes chez les bodonides, un caractère phylogénétique supplémentaire entre Kinetoplastida et Euglenida. Protistologica, 21, 339–348.

    Google Scholar 

  • Brumpt, E., & Lavier, G. (1924). Un nouvel Euglénien polyflagellé parasite du têtard de Leptodactylus ocellatus au Brésil. Annales de Parasitologie, 2, 248–252.

    Google Scholar 

  • Buetow, D. E. (1968). The Biology of Euglena. New York: Academic Press.

    Google Scholar 

  • Busse, I., & Preisfeld, A. (2002). Unusually expanded SSU ribosomal DNA of primary osmotrophic euglenids: Molecular evolution and phylogenetic inference. Journal of Molecular Evolution, 55, 757–767.

    Article  CAS  PubMed  Google Scholar 

  • Busse, I., Patterson, D. J., & Preisfeld, A. (2003). Phylogeny of phagotrophic euglenids (Euglenozoa): A molecular appraoch based on culture material and environmental samples. Journal of Phycology, 39, 828–836.

    Article  CAS  Google Scholar 

  • Canaday, J., Tessier, L. H., Imbault, P., & Paulus, F. (2001). Analysis of Euglena gracilis alpha-, beta- and gamma-tubulin genes: Introns and pre-mRNA maturation. Molecular Genetics and Genomics, 265, 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Cann, J. P., & Pennick, N. C. (1986). Observations on Petalomonas cantuscygni, n. sp., a new halo-tolerant strain. Archiv für Protistenkunde, 132, 63–71.

    Article  Google Scholar 

  • Cavalier-Smith, T. (2016). Higher classification and phylogeny of Euglenozoa. European Journal of Protistology, 56, 250–276.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T., Chao, E. E., & Vickerman, K. (2016). New phagotrophic euglenoid species (new genus Decastava; Scytomonas saepesedens; Entosiphon oblongum), Hsp90 introns, and putative euglenoid Hsp90 pre-mRNA insertional editing. European Journal of Protistology, 56, 147–170.

    Article  PubMed  Google Scholar 

  • Chen, Y. T. (1950). Investigations of the biology of Peranema trichophorum (Euglenineae). Quarterly Journal of Microscopical Science, 91, 279–308.

    CAS  PubMed  Google Scholar 

  • Chan, Y.-F., Moestrup, Ø., & Chang, J. (2013). On Keelungia pulex nov. gen. et nov. sp., a heterotrophic euglenoid flagellate that lacks pellicular plates (Euglenophyceae, Euglenida). European Journal of Protistology, 49, 15–31.

    Article  PubMed  Google Scholar 

  • Ciugulea, I., Nudelman, M. A., Brosnan, S., & Triemer, R. E. (2008). Phylogeny of the euglenoid loricate genera Trachelomonas and Strombomonas (Euglenophyta) inferred from nuclear SSU and LSU rDNA. Journal of Phycology, 44, 406–418.

    Article  CAS  PubMed  Google Scholar 

  • Cook, J. R., & Roxby, R. (1985). Physical properties of a plasmid-like DNA from Euglena gracilis. Biochimica et Biophysica Acta (BBA) – Gene Structure and Expression, 824, 80–83.

    Article  CAS  Google Scholar 

  • Dabbagh, N., & Preisfeld, A. (2017). The chloroplast genome of Euglena mutabilis – Cluster arrangement, intron analysis, and intrageneric trends. Journal of Eukaryotic Microbiology, 64, 31–44.

    Google Scholar 

  • DaCunha, A. M. (1913). Contribuição para o conhecimento da fauna protozoarios do Brazil II. Memórias do Instituto Oswaldo Cruz, 6, 169–179. [in Portuguese].

    Google Scholar 

  • Dasgupta, S., Fang, J., Brake, S. S., Hasiotis, S. T., & Zhang, L. (2012). Biosynthesis of sterols and wax esters by Euglena of acid mine drainage biofilms: Implications for eukaryotic evolution and the early Earth. Chemical Geology, 306, 139–145.

    Article  CAS  Google Scholar 

  • Dawson, N. S., & Walne, P. L. (1991). Structural characterization of Eutreptia (Euglenophyta). III. Flagellar structure and possible function of the paraxial rods. Phycologia, 30, 415–437.

    Google Scholar 

  • Deflandre, G. (1930). Strombomonas, nouveau genre d’Euglénacées (Trachelomonas EHR. pro parte). Archiv für Protistenkunde, 69, 551–614.

    Google Scholar 

  • Dietrich, D., & Arndt, H. (2000). Biomass partitioning of benthic microbes in a Baltic inlet: Relationships between bacteria, algae, heterotrophic flagellates and ciliates. Marine Biology, 136, 309–322.

    Article  Google Scholar 

  • Dobáková, E., Flegontov, P., Skalický, T., & Lukeš, J. (2015). Unexpectedly streamlined mitochondrial genome of the Euglenozoan Euglena gracilis. Genome Biology and Evolution, 7, 3358–3367.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dooijes, D., Chaves, I., Kieft, R., Dirks-Mulder, A., Martin, W., & Borst, P. (2000). Base J originally found in Kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis. Nucleic Acids Research, 2816, 3017–3021.

    Article  Google Scholar 

  • Dujardin, F. (1841). Histoire naturelle des Zoophytes. Infusoires. Paris: Roret.

    Google Scholar 

  • Ehrenberg, C. G. (1830). Neue Beobachtungen über blutartige Erscheinungen in Aegypten, Arabien und Sibirien, nebst einer Uebersicht und Kritik der früher bekannten. Annalen der Physik, 9, 477–514.

    Article  Google Scholar 

  • Ehrenberg, C. G. (1832) [1831] Über die Entwickelung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abhandlungen der Königlichen Akademie der Wissenschaften Berlin, 1–154.

    Google Scholar 

  • Ehrenberg, C. G. (1835) [1833]. Dritter Beitrag zur Erkenntnis großer Organisation in der Richtung des Kleinsten Raumes. Abhandlungen der Königlichen Akademie der Wissenschaften Berlin, 145–336.

    Google Scholar 

  • Esson, H. J., & Leander, B. S. (2006). A model for the morphogenesis of strip reduction patterns in phototrophic euglenids: Evidence for heterochrony in pellicle evolution. Evolution & Development, 8, 378–388.

    Article  CAS  Google Scholar 

  • Esson, H. J., & Leander, B. S. (2008). Novel pellicle surface patterns on Euglena obtusa Schmitz (Euglenophyta), a euglenophyte from a benthic marine environment: Implications for pellicle development and evolution. Journal of Phycology, 43, 132–141.

    Article  Google Scholar 

  • Farmer, M. A., & Triemer, R. E. (1988). Flagellar systems in the euglenoid flagellates. Biosystems, 21, 283–291.

    Google Scholar 

  • Fenchel, T., Bernard, C., Esteban, G., Finlay, B. J., Hansen, P. J., & Iversen, N. (1995). Microbial diversity and activity in a Danish fjord with anoxic deep water. Ophelia, 43, 45–100.

    Google Scholar 

  • Forster, D., Dunthorn, M., Mahé, F., Dolan, J. R., Audic, S., Bass, D., et al. (2016). Benthic protists: The under-charted majority. FEMS Microbiology Ecology, 92, fiw120.

    Google Scholar 

  • Frantz, C., Ebel, C., Paulus, F., & Imbault, P. (2000). Characterization of trans-splicing in Euglenoids. Current Genetics, 37, 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Fujita, T., Aoyagi, H., Ogbonna, J. C., & Tanaka, H. (2008). Effect of mixed organic substrate on tocopherol production by Euglena gracilis in photoheterotrophic culture. Applied Microbiology and Biotechnology, 79, 371–378.

    Article  CAS  PubMed  Google Scholar 

  • Gawryluk, R. M. R., del Campo, J., Okamoto, N., Strassert, J. F. H., Lukeš, J., Richards, T. A., et al. (2016). Morphological identification and single-cell genomics of marine diplonemids. Current Biology, 26, 3053–3059.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, S. P. (1978). The chloroplasts of Euglena may have evolved from symbiotic green algae. Canadian Journal of Botany, 56, 2883–2889.

    Article  Google Scholar 

  • Gockel, G., & Hachtel, W. (2000). Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist, 151, 347–351.

    Google Scholar 

  • Gockel, G., Hachtel, W., Baier, S., Fliss, C., & Henke, M. (1994). Genes for chloroplast apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid agellate Astasia longa. Current Genetics, 26, 256–262.

    Article  CAS  PubMed  Google Scholar 

  • Gojdics, M. (1953). The genus Euglena. Madison: The University of Wisconsin Press.

    Google Scholar 

  • Gray, J., & Boucot, A. J. (1989). Is Moyeria a euglenoid? Lethaia, 22, 447–456.

    Google Scholar 

  • Hachtel, W. (1998). A plastid genome in the heterotrophic flagellate Astasia longa. Endocytobiosis and Cell Research, 12, 191–193.

    Google Scholar 

  • Hadariová, L., Vesteg, M., Birčák, E., Schwartzbach, S. D., & Krajčovič, J. (2016). An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis. Current Genetics. doi:10.1007/s00294-016-0641-z.

    PubMed  Google Scholar 

  • Hallick, R. B., Hong, L., Drager, R. G., Favreau, M. R., Monfort, A., Orsat, B., et al. (1993). Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Research, 21, 3537–3544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampl, V., Hug, L., Leigh, J. W., Dacks, J. B., Lang, B. F., Simpson, A. G. B., & Roger, A. J. (2009). Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups.”. Proceedings of the National Academy of Sciences, 106, 3859–3864.

    Article  CAS  Google Scholar 

  • Hilenski, L. L., & Walne, P. L. (1983). Ultrastructure of ejectile mucocysts in Peranema trichophorum (Euglenophyceae). Journal of Protozoology, 30, 491–496.

    Article  Google Scholar 

  • Hilenski, L. L., & Walne, P. L. (1985). Ultrastructure of the flagella of the colorless phagotroph Peranema trichophorum (Euglenophyceae. II. Flagellar roots). Journal of Phycology, 21, 125–134.

    Article  Google Scholar 

  • Hrdá, Š., Fousek, J., Szabová, J., Hampl, V., & Vlček, Č. (2012). The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. PloS One, 7(3), e33746.

    Google Scholar 

  • Huber-Pestalozzi, G. (1955). 4. Euglenophyceen. In A. Thienemann (Ed.), Das Phytoplankton des Süßwassers: Systematik und Biologie. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Inui, H., Miyatake, K., Nakano, Y., & Kitaoka, S. (1982). Wax ester fermentation in Euglena gracilis. FEBS Letters, 150, 89–93.

    Google Scholar 

  • Kamikawa, R., Kolisko, M., Nishimura, Y., Yabuki, A., Brown, M. W., Ishikawa, S. A., et al. (2014). Gene content evolution in discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biology and Evolution, 6, 306–315.

    Google Scholar 

  • Karnkowska-Ishikawa, A., Milanowski, R., Kwiatowski, J., & Zakryś, B. (2010). Taxonomy of the Phacus oscillans (Euglenaceae) and its close relatives – Balancing morphological and molecular features. Journal of Phycology, 46, 172–182.

    Article  CAS  Google Scholar 

  • Karnkowska-Ishikawa, A., Milanowski, R., & Zakryś, B. (2011). The species Euglena deses revisited: New morphological and molecular data. Journal of Phycology, 47, 653–661.

    Article  PubMed  Google Scholar 

  • Karnkowska-Ishikawa, A., Milanowski, R., Triemer, R. E., & Zakryś, B. (2012). Taxonomic revisions of morphologically similar species from two genera: Euglena (E. granulata and E. velata) and Euglenaria (Eu. anabaena, Eu. caudata, Eu. clavata). Journal of Phycology, 48, 729–739.

    Article  PubMed  Google Scholar 

  • Karnkowska-Ishikawa, A., Milanowski, R., Triemer, R. E., & Zakryś, B. (2013). A redescription of morphologically similar species from the genus Euglena: E. laciniata, E. sanguinea. E. sociabilis and E. splendens. Journal of Phycology, 49, 616–626.

    Article  PubMed  Google Scholar 

  • Karnkowska, A., Bennett, M. S., Watza, D., Kim, J. I., Zakryś, B., & Triemer, R. E. (2015). Phylogenetic relationships and morphological character evolution of photosynthetic euglenids (Excavata) inferred from taxon-rich analyses of five genes. Journal of Eukaryotic Microbiology, 62, 362–373.

    Article  CAS  PubMed  Google Scholar 

  • Kasiborski, B. A., Bennett, M. S., & Linton, E. W. (2016). The chloroplast genome of Phacus orbicularis (Euglenophyceae): An initial datum point for the Phacaceae. Journal of Phycology, 52, 404–411.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. I., & Shin, W. (2008). Phylogeny of the Euglenales inferred from plastid LSU rDNA sequences. Journal of Phycology, 44, 994–1000.

    Article  PubMed  Google Scholar 

  • Kim, J. I., Shin, W., & Triemer, R. E. (2010). Multigene analyses of photosynthetic euglenoids and new family Phacaceae (Euglenales). Journal of Phycology, 46, 1278–1287.

    Article  Google Scholar 

  • Kim, J. I., Shin, W., & Triemer, R. E. (2013a). Phylogenetic reappraisal of the genus Monomorphina (euglenophyceae) based on molecular and morphological data. Journal of Phycology, 49, 82–91.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. I., Shin, W., & Triemer, R. E. (2013b). Cryptic speciation in the genus Cryptoglena (euglenaceae) revealed by nuclear and plastid SSU and LSU rRNA gene. Journal of Phycology, 49, 92–102.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. I., & Shin, W. (2014). Molecular phylogeny and cryptic diversity of the genus Phacus (Phacaceae, Euglenophyceae) and the descriptions of seven new species. Journal of Phycology, 50, 948–959.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. I., Linton, E. W., & Shin, W. (2015). Taxon-rich multigene phylogeny of the photosynthetic euglenoids (Euglenophyceae). Frontiers in Ecology and Evolution, 3, 98.

    Article  Google Scholar 

  • Kim, J. I., Linton, E. W., & Shin, W. (2016). Morphological and genetic diversity of Euglena deses group (Euglenophyceae) with emphasis on cryptic species. Algae, 31, 219–230.

    Article  Google Scholar 

  • Kisielewska, G., Kolicka, M., & Zawierucha, K. (2015). Prey or parasite? The first observations of live Euglenida in the intestine of Gastrotricha. European Journal of Protistology, 51, 138–141.

    Article  PubMed  Google Scholar 

  • Kosmala, S., Karnkowska, A., Milanowski, R., Kwiatowski, J., & Zakryś, B. (2005). The phylogenetic and taxonomic position of Lepocinclis fusca comb. nova (=Euglena fusca) (Euglenaceae). Morphological and molecular justification. Journal of Phycology, 41, 258–267.

    Article  CAS  Google Scholar 

  • Kosmala, S., Bereza, M., Milanowski, R., Kwiatowski, J., & Zakryś, B. (2007a). Morphological and molecular examination of relationships and epitype establishment of Phacus pleuronectes, Phacus orbicularis, and Phacus hamelii. Journal of Phycology, 43, 1071–1082.

    Article  CAS  Google Scholar 

  • Kosmala, S., Milanowski, R., Brzóska, K., Pękala, M., Kwiatowski, J., & Zakryś, B. (2007b). Phylogeny and systematics of the genus Monomorphina (Euglenaceae) based on morphological and molecular data. Journal of Phycology, 43, 171–185.

    Article  CAS  Google Scholar 

  • Kosmala, S., Karnkowska-Ishikawa, A., Milanowski, R., Kwiatowski, J., & Zakryś, B. (2009). Phylogeny and systematics of species from the genus Euglena (Euglenaceae) with axial, stellate chloroplasts based on morphological and molecular data – New taxa, emended diagnoses and epitypifications. Journal of Phycology, 45, 464–481.

    Article  CAS  PubMed  Google Scholar 

  • Korn, E. D. (1964). The fatty acids of Euglena gracilis. Journal of Lipid Research, 53, 352–362.

    Google Scholar 

  • Krajčovič, J., Vesteg, M., & Schwartzbach, S. D. (2015). Euglenoid flagellates: A multifaceted biotechnology platform. Journal of Biotechnology, 202, 135–145.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, R. C., Zhang, H., Zhuang, Y., Hannick, L., & Lin, S. (2013). Transcriptomic study reveals Widespread spliced leader trans-splicing, short 5′-UTRs and potential complex carbon fixation mechanisms in the Euglenoid alga Eutreptiella sp. PloS One, 8, e60826.

    Google Scholar 

  • Kuznicki, L., Mikolajczyk, E., & Walne, P. L. (1990). Photobehavior of euglenoid flagellates: Theoretical and evolutionary perspectives. Plant Science, 9, 343–369.

    Article  Google Scholar 

  • Larsen, J. (1987). Algal studies of the Danish Wadden Sea. IV. A taxonomic study of the interstitial euglenoid flagellates. Nordic Journal of Botany, 7, 589–607.

    Article  Google Scholar 

  • Larsen, J., & Patterson, D. J. (1990). Some flagellates (Protista) from tropical marine sediments. Journal of Natural History, 24, 801–937.

    Article  Google Scholar 

  • Lax, G., & Simpson, A. G. B. (2013). Combining molecular data with classical morphology for uncultured phagotrophic Euglenids (Excavata): A single-cell approach. Journal of Eukaryotic Microbiology, 60, 615–625.

    Article  CAS  PubMed  Google Scholar 

  • Leander, B. S. (2004). Did trypanosomatid parasites have photoautotrophic ancestors? Trends in Microbiology, 12, 251–258.

    Article  CAS  PubMed  Google Scholar 

  • Leander, B. S., Esson, H. J., & Breglia, S. A. (2007). Macroevolution of complex cytoskeletal systems in euglenids. BioEssays, 29, 987–1000.

    Article  PubMed  Google Scholar 

  • Leander, B. S., & Farmer, M. A. (2000a). Comparative morphology of the euglenid pellicle. I. Patterns of strips and pores. Journal of Eukaryotic Microbiology, 47, 469–479.

    Article  CAS  PubMed  Google Scholar 

  • Leander, B. S., & Farmer, M. A. (2000b). Epibiotic bacteria and a novel pattern of strip reduction on the pellicle of Euglena helicoideus (Bernard) Lemmermann. European Journal of Protistology, 36, 405–413.

    Article  Google Scholar 

  • Leander, B. S., & Farmer, M. A. (2001a). Comparative morphology of the euglenid pellicle. II. Diversity of strip substructure. Journal of Eukaryotic Microbiology, 48, 202–217.

    Article  CAS  PubMed  Google Scholar 

  • Leander, B. S., Witek, R. P., & Farmer, M. A. (2001b). Trends in the evolution of the euglenid pellicle. Evolution, 55, 2115–2135.

    Google Scholar 

  • Leander, B. S., Triemer, R. E., & Farmer, M. A. (2001a). Character evolution in heterotrophic euglenids. European Journal of Protistology, 37, 337–356.

    Article  Google Scholar 

  • Leander, B. S., & Farmer, M. A. (2001b). Evolution of Phacus (Euglenophyceae) as inferred from pellicle morphology and SSU rDNA. Journal of Phycology, 37, 143–159.

    Article  CAS  Google Scholar 

  • Lee, W. J., & Patterson, D. J. (2000). Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia. Journal of Natural History, 34, 483–562.

    Article  Google Scholar 

  • Lee, W. J., Blackmore, R., & Patterson, D. J. (1999). Australian records of two lesser known genera of heterotrophic euglenids – Chasmostoma Massart, 1920 and Jenningsia Schaeffer, 1918. Protistology, 1, 10–16.

    Google Scholar 

  • Lee, W. J., & Simpson, A. G. B. (2014a). Ultrastructure and molecular phylogenetic position of Neometanema parovale sp. nov. (Neometanema gen. nov.), a marine phagotrophic euglenid with skidding motility. Protist, 165, 452–472.

    Article  PubMed  Google Scholar 

  • Lee, W. J., & Simpson, A. G. B. (2014b). Morphological and molecular characterisation of Notosolenus urceolatus Larsen and Patterson 1990, a member of an understudied deep-branching euglenid group (petalomonads). Journal of Eukaryotic Microbiology, 61, 463–479.

    Article  CAS  PubMed  Google Scholar 

  • Leedale, G. F. (1967). Euglenoid Flagellates. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Linton, E. W., & Triemer, R. E. (1999). Reconstruction of the feeding apparatus in Ploeotia costata (Euglenophyta) and its relationship to other euglenoid feeding apparatuses. Journal of Phycology, 35, 313–324.

    Article  Google Scholar 

  • Linton, E. W., Hittner, D., Lewandowski, C., Auld, T., & Triemer, R. E. (1999). A molecular study of euglenoid phylogeny using small subunit rDNA. Journal of Eukaryotic Microbiology, 46, 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Linton, E. W., Nudelman, M. A., Conforti, V., & Triemer, R. E. (2000). A molecular analysis of the euglenophytes using SSU rDNA. Journal of Phycology, 36, 740–746.

    Article  CAS  Google Scholar 

  • Linton, E. W., Karnkowska-Ishikawa, A., Kim, J. I., Shin, W., Bennett, M., Kwiatowski, J., Zakryś, B., & Triemer, R. E. (2010). Reconstructing euglenoid evolutionary relationships using three genes: Nuclear SSU and LSU, and chloroplast 16S rDNA sequences and the description of Euglenaria gen. nov. (Euglenophyta). Protist, 161, 603–619.

    Google Scholar 

  • Łukomska-Kowalczyk, M., Karnkowska, A., Milanowski, R., Łach, Ł., & Zakryś, B. (2015). Delimiting species in the Phacus longicauda complex (Euglenida) through morphological and molecular analyses. Journal of Phycology, 51, 1147–1157.

    Article  PubMed  CAS  Google Scholar 

  • Łukomska-Kowalczyk, M., Karnkowska, A., Krupska, M., Milanowski, R., & Zakryś, B. (2016). DNA barcoding in autotrophic euglenids: Evaluation of COI and 18s rDNA. Journal of Phycology, 52, 951–960.

    Google Scholar 

  • Marin, B., Palm, A., Klingberg, M., & Melkonian, M. (2003). Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist, 154, 99–145.

    Article  CAS  PubMed  Google Scholar 

  • Marrs, J. A., & Bouck, B. (1992). The two major membrane skeletal proteins (articulins) of Euglena gracilis define a novel class of cytoskeletal proteins. Journal of Cell Biology, 118, 1465–1475.

    Article  CAS  PubMed  Google Scholar 

  • McLachlan, J. L., Seguel, M. R., & Fritz, L. (1994). Tetraeutreptia pomquetensis gen. et sp. nov. (Euglenophyceae): A quadriflagellate, phototrophic marine euglenoid. Journal of Phycology, 30, 538–544.

    Article  Google Scholar 

  • Melkonian, M., Robenek, H., & Rassat, J. (1982). Flagellar membrane specializations and their relationship to mastigonemes and microtubules in Euglena gracilis. Journal of Cell Science, 55, 115–135.

    CAS  PubMed  Google Scholar 

  • Mereschowsky, K. S. (1877). Etjudy nad prostejsimi zivotnymi severa Rossii. Trudy Imperatorskago S.-Peterburgskago Obshchestva Estestvoispytatelei, 8, 1–299. [in Russian].

    Google Scholar 

  • Meyer, A., Cirpus, P., Ott, C., Schlecker, R., Zähringer, U., & Heinz, E. (2003). Biosynthesis of docosahexaenoic acid in Euglena gracilis: Biochemical and molecular evidence for the involvement of a Δ4-fatty acyl group desaturase. Biochemistry, 42, 9779–9788.

    Google Scholar 

  • Milanowski, R., Zakryś, B., & Kwiatowski, J. (2001). Phylogenetic analysis of chloroplast small-subunit rRNA genes of the genus Euglena Ehrenberg. International Journal of Systematic and Evolutionary Microbiology, 51, 773–781.

    Article  CAS  PubMed  Google Scholar 

  • Milanowski, R., Kosmala, S., Zakrys, B., & Kwiatowski, J. (2006). Phylogeny of photoautotrophic euglenophytes based on combined chloroplast and cytoplasmic SSU rDNA sequence analysis. Journal of Phycology, 42, 721–730.

    Article  CAS  Google Scholar 

  • Milanowski, R., Karnkowska, A., Ishikawa, T., & Zakryś, B. (2014). Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids. Molecular Biology and Evolution, 31, 584–593.

    Google Scholar 

  • Mignot, J.-P. (1962). Étude du noyau de l’euglénien Scytomonas pusilla Stein, pendant la division et la copulation. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 254, 1864–1866. [in French].

    CAS  PubMed  Google Scholar 

  • Mignot, J.-P. (1965). Ultrastructure des eugleniens. I. Protistologica, 1, 5–15. [in French].

    Google Scholar 

  • Mignot, J.-P. (1966). Structure et ultrastructure de quelques Euglenomonadines. Protistologica, 2, 51–117. [in French].

    Google Scholar 

  • Mignot, J.-P., & Hovasse, R. (1973). Nouvelle contribution à la connaissance des trichocystes: les organites grillages d’Entosiphon sulcatum (Flagellata, Euglenida). Protistologica, 9, 373–391. [in French].

    Google Scholar 

  • Moestrup, Ø. (2000). The flagellate cytoskeleton. Introduction of a general terminology for microtubular flagellar roots in protists. In B. S. C. Leadbeater & J. C. Green (Eds.), Flagellates, unity, diversity and evolution (pp. 69–94). London: Taylor & Francis.

    Google Scholar 

  • Monfils, A. K., Triemer, R. E., & Bellairs, E. F. (2011). Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta). Phycologia, 50, 156–169.

    Article  Google Scholar 

  • Montegut-Felkner, A. E., & Triemer, R. E. (1997). Phylogenetic relationships of selected euglenoid genera based on morphological and molecular data. Journal of Phycology, 33, 512–519.

    Article  CAS  Google Scholar 

  • Müllner, A. N., Angeler, D. G., Samuel, R., Linton, E. W., & Triemer, R. E. (2001). Phylogenetic analysis of phagotrophic, phototrophic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. International Journal of Systematic and Evolutionary Microbiology, 51, 783–791.

    Article  PubMed  Google Scholar 

  • Nisbet, B. (1974). An ultrastructural study of the feeding apparatus of Peranema trichophorum. Journal of Protozoology, 21, 39–48.

    Article  Google Scholar 

  • Nudelman, M. A., Rossi, M. S., Conforti, V., & Triemer, R. E. (2003). Phylogeny of Euglenophyceae based on small subunit rDNA sequences: Taxonomic implications. Journal of Phycology, 39, 226–235.

    Article  CAS  Google Scholar 

  • O’Neill, E. C., Trick, M., Henrissat, B., & Field, R. A. (2015). Euglena in time: Evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspectives on Science, 6, 84–93.

    Article  Google Scholar 

  • Patterson, D. J., & Larsen, J. (1992). A perspective on protistan nomenclature. The Journal of Protozoology, 39, 125–131.

    Article  Google Scholar 

  • Pellegrini, M. (1980). Three-dimensional reconstruction of organelles in Euglena gracilis Z. II. Qualitative and quantitative changes of chloroplasts and mitochondrial reticulum in synchronous cultures during bleaching. Journal of Cell Science, 46, 313–334.

    CAS  PubMed  Google Scholar 

  • Perty, M. (1849). Über vertikale Verbreitung mikroskopischer Lebensformen. Naturforschende Gesellschaft in Bern Mittheilungen, 153–167. [in German].

    Google Scholar 

  • Perty, M. (1852). Zur Kenntniss kleinster Lebensformen nach Bau, Funktionen, Systematik, mit Specialverzeichniss der in der Schweiz beobachteten. Bern: Jent & Reinert. [in German].

    Google Scholar 

  • Petroni, G., Spring, S., Schleifer, K.-H., Verni, F., & Rosati, G. (2000). Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proceedings of the National Academy of Science, 97, 1813–1817.

    Google Scholar 

  • Pombert, J.-F., James, E. R., Janouškovec, J., Keeling, P. J., & McCutcheon, J. (2012). Evidence for transitional stages in the evolution of Euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome. PloS One, 12, e53433.

    Article  CAS  Google Scholar 

  • Popova, T. G. (1966). Flora sporovych rastenij SSSR 8. [Flora plantarum cryptogamarum URSS], Euglenophyta (Vol. 1). Moskva-Leningrad: Nauka. [in Russian].

    Google Scholar 

  • Popova, T. G., & Safonova, T. A. (1976). Flora sporovych rastenij SSSR, 9. [Flora plantarum cryptogamarum URSS], Euglenophyta (Vol. 2). Moskva-Leningrad: Nauka. [in Russian].

    Google Scholar 

  • Preisfeld, A., Busse, I., Klingberg, M., Talke, S., & Ruppel, H. G. (2001). Phylogenetic position and inter-relationships of the osmotrophic euglenids based on SSU rDNA data, with emphasis on the Rhabdomonadales (Euglenozoa). International Journal of Systematic and Evolutionary Microbiology, 51, 751–758.

    Article  CAS  PubMed  Google Scholar 

  • Pringsheim, E. G. (1953). Observations on some species of Trachelomonas grown in culture. New Phytologist, 52, 93–113.

    Article  Google Scholar 

  • Pringsheim, E. G. (1956). Contributions towards a monograph of the genus Euglena. Nova Acta Leopoldina, 18, 1–168.

    Google Scholar 

  • Ravel-Chapuis, P. (1988). Nuclear rDNA in Euglena gracilis: Paucity of chromosomal units and replication of extrachromosomal units. Nucleic Acids Research, 16, 4801–4810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Zavala, J. S., Ortiz-Cruz, M. A., Mendoza-Hernández, G., & Moreno-Sánchez, R. (2010). Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. Journal of Applied Microbiology, 1096, 2160–2172.

    Article  CAS  Google Scholar 

  • Roy, J., Faktorova, D., Lukes, J., & Burger, G. (2007). Unusual mitochondrial genome structures throughout the Euglenozoa. Protist, 158, 385–396.

    Article  CAS  PubMed  Google Scholar 

  • Saito, A., Suetomo, Y., Arikawa, M., Omura, G., Khan, S. M. M. K., Kakuta, S., et al. (2003). Gliding movement in Peranema trichophorum is powered by flagellar surface motility. Cell Motility and the Cytoskeleton, 55, 244–253.

    Article  PubMed  Google Scholar 

  • Santek, B., Felski, M., Friehs, K., Lotz, M., & Flaschel, E. (2009). Production of paramylon,a beta-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on a synthetic medium. Engineering in Life Sciences, 9, 23–28.

    Article  CAS  Google Scholar 

  • Schuster, F. L., Goldstein, S., & Hershenov, B. (1968). Ultrastructure of a flagellate, Isonema nigricans nov. gen. nov. sp., from a polluted marine habitat. Protistologica, 4, 141–149.

    Google Scholar 

  • Shibakami, M., Sohma, M., & Hayashi, M. (2012). Fabrication of doughnut-shaped particles from spheroidal paramylon granules of Euglena gracilis using acetylation reaction. Carbohydrate Polymers, 87, 452–456.

    Article  CAS  Google Scholar 

  • Shin, W., Boo, S. M., & Triemer, R. E. (2001). Ultrastructure of the basal body complex and putative vestigial feeding apparatus in Phacus pleuronectes (Euglenophyceae). Journal of Phycology, 37, 913–921.

    Article  Google Scholar 

  • Shin, W., Brosnan, S., & Triemer, R. E. (2002). Are cytoplasmic pockets (MTR/pocket) present in all photoautotrophic euglenoid genera? Journal of Phycology, 38, 790–799.

    Article  Google Scholar 

  • Shin, W., & Triemer, R. E. (2004). Phylogenetic analysis of the genus Euglena (Euglenophyceae) with the particular reference to the type species Euglena viridis. Journal of Phycology, 40, 758–771.

    Article  CAS  Google Scholar 

  • Silva, P. C. (1980). Remarks on algal nomenclature VI. Taxon, 29, 121–145.

    Article  Google Scholar 

  • Simon, M., Jardillier, L., Deschamps, P., Moreira, D., Restoux, G., Bertolino, P., & López-García, P. (2015). Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environmental Microbiology, 17, 3610–3627.

    Article  PubMed  Google Scholar 

  • Simpson, A. G. B. (1997). The identity and composition of the Euglenozoa. Archiv für Protistenkunde, 148, 318–328.

    Article  Google Scholar 

  • Simpson, A. G. B., Van Den Hoff, J., Bernard, C., Burton, H. R., & Patterson, D. J. (1997). The ultrastructure and systematic position of the Euglenozoon Postgaardi mariagerensis, Fenchel et al. Archiv für Protistenkunde, 147, 213–225.

    Article  Google Scholar 

  • Simpson, A. G. B., Lukes, J., & Roger, A. J. (2002). The evolutionary history of kinetoplastids and their kinetoplasts. Molecular Biology and Evolution, 19, 2071–2083.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, A. G. B., & Roger, A. J. (2004). Protein phylogenies robustly resolve deep-level relationships within Euglenozoa. Molecular Phylogenetics and Evolution, 30, 201–212.

    Article  CAS  PubMed  Google Scholar 

  • Singh, K. P. (1956). Studies in the genus TrachelomonasI. Description of six organisms in cultivation. American Journal of Botany, 43, 258–266.

    Article  Google Scholar 

  • Spencer, D. F., & Gray, M. W. (2010). Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: Fragmented genes in a seemingly fragmented genome. Molecular Genetics and Genomics, 285, 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, J. A., Walne, P. L., & Kivic, P. A. (1987). Entosiphon sulcatum (Euglenophyceae): Flagellar roots of the basal body complex and reservoir regions. Journal of Phycology, 23, 85–98.

    Article  Google Scholar 

  • Starmach, K. (1983). Euglenophyta – Eugleniny. III. In K. Starmach (Ed.), Flora Słodkowodna Polski. Państwowe Wydawn Naukowe: Warszawa/Kraków. [in Polish].

    Google Scholar 

  • Stein, F. V. (1878). Der Organismus der Infusionsthiere, Abt. 3: Der Organismus der Flagellaten, 1. Hälfte. Leipzig: Engelmann. [in German].

    Google Scholar 

  • Sturm, N. R., Maslov, D. A., Grisard, E. C., & Campbell, D. A. (2001). Diplonema spp. possess spliced leader RNA genes similar to the Kinetoplastida. Journal of Eukaryotic Microbiology, 48, 325–331.

    Article  CAS  PubMed  Google Scholar 

  • Surek, B., & Melkonian, M. (1986). A cryptic cytostome is present in Euglena. Protoplasma, 133, 39–49.

    Article  Google Scholar 

  • Takeyama, H., Kanamaru, A., Yoshino, Y., Kakuta, H., Kawamura, Y., & Matsunaga, T. (1997). Production of antioxidant vitamins β-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z. Biotechnology and Bioengineering, 532, 185–190.

    Article  Google Scholar 

  • Talke, S., & Preisfeld, A. (2002). Molecular evolution of euglenozoan paraxonemal rod genes par1 and par2 coincides with phylogenetic reconstruction based on small subunit rDNA data. Journal of Phycology, 38, 995–1003.

    Article  CAS  Google Scholar 

  • Teerawanichpan, P., & Qiu, X. (2010). Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters. Lipids, 45, 263–273.

    Article  CAS  PubMed  Google Scholar 

  • Tell, G., & Conforti, V. (1986). Euglenophyta pigmentadas de la Argentina. Berlin/Stuttgart: Gebrüder Borntraeger Verlegsbuchhandlung. [in Spanish].

    Google Scholar 

  • Triemer, R. E. (1985). Ultrastructural features of mitosis in Anisonema sp. (Euglenida). Journal of Eukaryotic Microbiology, 32, 683–690.

    Google Scholar 

  • Triemer, R. E. (1997). Feeding in Peranema trichophorum revisited (Euglenophyta). Journal of Phycology, 33, 649–654.

    Article  Google Scholar 

  • Triemer, R. E., & Farmer, M. A. (1991a). An ultrastructural comparison of the mitotic apparatus, feeding apparatus, flagellar apparatus and cytoskeleton in euglenoids and kinetoplastids. Protoplasma, 164, 91–104.

    Article  Google Scholar 

  • Triemer, R. E., & Farmer, M. A. (1991b). The ultrastructural organization of the heterotrophic euglenids and its evolutionary implications. In D. J. Patterson & J. Larsen (Eds.), The biology of free-living heterotrophic flagellates (pp. 185–204). Oxford: Clarendon Press.

    Google Scholar 

  • Triemer, R. E., & Fritz, L. (1987). Structure and operation of the feeding apparatus in a colorless eugelnoid, Entosiphon sulcatum. Journal of Protozoology, 34, 39–47.

    Article  Google Scholar 

  • Triemer, R. E., Linton, E., Shin, W., Nudelman, A., Monfils, A., Bennett, M., et al. (2006). Phylogeny of the euglenales based upon combined SSU and LSU rDNA sequence comparisons and description of Discoplastis gen. nov (Euglenophyta). Journal of Phycology, 42, 731–740.

    Article  Google Scholar 

  • Triemer, R. E., & Farmer, M. A. (2007). A decade of euglenoid molecular phylogenetics. In J. Brodie & J. Lewis (Eds.), Unravelling the algae: The past, present and future of algal systematics (pp. 315–330). London: Taylor & Francis.

    Chapter  Google Scholar 

  • Tucci, S., Vacula, R., Krajcovic, J., Proksch, P., & Martin, W. (2010). Variability of wax-ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. Journal of Eukaryotic Microbiology, 57, 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Turmel, M., Gagnon, M. C., O’Kelly, C. J., Otis, C., & Lemieux, C. (2009). The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Molecular Biology and Evolution, 26, 631–648.

    Article  CAS  PubMed  Google Scholar 

  • von der Heyden, S., Chao, E. E., Vickerman, K., & Cavalier-Smith, T. (2004). Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of euglenozoa. Journal of Eukaryotic Microbiology, 51, 402–416.

    Article  PubMed  Google Scholar 

  • Walder, J. A., Eder, P. S., Engman, D. M., Brentano, S. T., Walder, R. Y., Knutzon, D. S., et al. (1986). The 35-nucleotide spliced leader sequence is common to all trypanosome messenger RNA’s. Science, 233, 569–571.

    Article  CAS  PubMed  Google Scholar 

  • Wallis, J. G., & Browse, J. (1999). The Delta8-desaturase of Euglena gracilis: An alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Archives of Biochemistry and Biophysics, 365, 307–316.

    Article  CAS  PubMed  Google Scholar 

  • Wenrich, D. (1924). Studies on Euglenomorpha hegneri n. g., n. sp., a Euglenoid Flagellate Found in Tadpoles. The Biological Bulletin, 47, 149–174.

    Article  Google Scholar 

  • Wiegert, K. E., Bennett, M. S., & Triemer, R. E. (2012). Evolution of the chloroplast genome in photosynthetic euglenoids: A comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta). Protist, 163, 832–843.

    Article  CAS  PubMed  Google Scholar 

  • Wiegert, K. E., Bennett, M. S., & Triemer, R. E. (2013). Tracing patterns of chloroplast evolution in Euglenoids: Contributions from Colacium vesiculosum and Strombomonas acuminata (Euglenophyta). Journal of Eukaryotic Microbiology, 60, 214–221.

    Article  CAS  PubMed  Google Scholar 

  • Willey, R. L., & Wibel, R. G. (1985). A cytostome/cytopharynx in green euglenoid flagellates (Euglenales) and its phylogenetic implications. Biosystems, 18, 369–376.

    Article  CAS  PubMed  Google Scholar 

  • Willey, R. L., & Wibel, R. G. (1987). Flagellar roots and the reservoir cytoskeleton of Colacium libellae (Euglenophyceae). Journal of Phycology, 23, 283–288.

    Article  Google Scholar 

  • Yamaguchi, A., Yubuki, N., & Leander, B. S. (2012). Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: Description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evolutionary Biology, 12(1), 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yubuki, N., Edgcomb, V. P., Bernhard, J. M., & Leander, B. S. (2009). Ultrastructure and molecular phylogeny of Calkinsia aureus: Cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiology, 9, 16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yubuki, N., & Leander, B. S. (2012). Reconciling the bizarre inheritance of microtubules in complex (euglenid) microeukaryotes. Protoplasma, 249, 859–869.

    Article  PubMed  Google Scholar 

  • Yubuki, N., & Leander, B. S. (2013). Evolution of microtubule organizing centers across the tree of eukaryotes. Plant Journal, 75, 230–244.

    Article  CAS  PubMed  Google Scholar 

  • Zakryś, B. (1986). The nuclear behaviour during abnormal cell division in Euglena viridis Ehrbg. Nova Hedwigia, 42, 591–596.

    Google Scholar 

  • Zakryś, B. (1997). The taxonomic consequences of morphological and genetic variability in Euglena agilis Carter (Euglenophyta): Species or clones in Euglena? Acta Protozoologica, 36, 157–169.

    Google Scholar 

  • Zakryś, B., Milanowski, R., Empel, J., Borsuk, P., Gromadka, R., & Kwiatowski, J. (2002). Two different species of Euglena, E. geniculata and E. myxocylindracea (Euglenophyceae), are virtually genetically and morphologically identical. Journal of Phycology, 38, 1190–1199.

    Article  Google Scholar 

  • Zakryś, B., Milanowski, R., Kędzior, M., Empel, J., Borsuk, P., Gromadka, R., & Kwiatowski, J. (2004). Genetic variability of Euglena agilis (Euglenaceae). Acta Societatis Botanicorum Poloniae, 73, 305–309.

    Article  Google Scholar 

  • Zakryś, B., Karnkowska-Ishikawa, A., Łukomska-Kowalczyk, M., & Milanowski, R. (2013). A new photosynthetic euglenoid isolated in Poland: Euglenaria clepsydroides sp. nov. (Euglenea). European Journal of Phycology, 48, 260–267.

    Article  CAS  Google Scholar 

  • Zimba, P. V., Rowan, M., & Triemer, R. E. (2004). Identification of euglenoid algae that produce ichthyotoxin(s). Journal of Fish Diseases, 27, 115–117.

    Article  CAS  PubMed  Google Scholar 

  • Zimba, P. V., Moeller, P. D., Beauchesne, K., Lane, H. E., & Triemer, R. E. (2010). Identification of euglenophycin – A toxin found in certain euglenoids. Toxicon, 55, 100–104.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Won Je Lee and Bożena Zakryś for extensive use of their unpublished micrographs. BSL and AGBS gratefully acknowledge the support of the Canadian Institute for Advanced Research (CIfAR), program in Integrated Microbial Biodiversity. AK was supported by a grant from the Tula Foundation to the Centre for Microbial Biodiversity and Evolution at UBC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian S. Leander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Leander, B.S., Lax, G., Karnkowska, A., Simpson, A.G.B. (2017). Euglenida. In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32669-6_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32669-6

  • Online ISBN: 978-3-319-32669-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics