Skip to main content

Preaxostyla

  • Living reference work entry
  • First Online:
Handbook of the Protists

Abstract

Preaxostyla comprises Oxymonadida, containing 14 genera of gut endosymbionts plus two genera of free-living bacterivorous flagellates from low oxygen sediments (Trimastix and Paratrimastix). The group was recognized on the 18S rRNA phylogenies, and ultrastructural investigations have revealed a synapomorphy in the organization of the ā€œIā€ fiber that supports microtubular root R2. Trimastix and Paratrimastix are typical excavates with three anterior/lateral flagella and the recurrent flagellum passing through a conspicuous ventral feeding groove. The cellular structure of oxymonads is more derived, and a particularly striking diversity of large cellular forms is observed in genera inhabiting guts of lower termites and wood-eating cockroaches. Here the large oxymonad species and their bacterial ecto- and endosymbionts are probably involved in the cellulose digestion, similarly to the large species of parabasalids. All Preaxostyla live in low oxygen environments, and this has affected their metabolism and organelle complement. Glycolysis is apparently the main source of cellular ATP and mitochondria are either reduced to hydrogenosome-like compartments (in Trimastix and Paratrimastix) or lost completely (in oxymonads). Peroxisomes are absent in the whole group. Stacked Golgi bodies are unknown in oxymonads; however, genes encoding proteins functional in Golgi are present, indicating the existence of a cryptic Golgi. Phylogenomic analyses have shown that Preaxostyla represent one of the three main lineages of Metamonada (within Excavata). Because oxymonads are the only known eukaryotes that have completely lost the mitochondrial organelle, they may serve as models for studies of amitochondriality and mitochondrial evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham, R. (1961). A description of Monocercomonoides sayeedi n. sp., from the rumen of an Indian goat. Zeitschrift fĆ¼r Parasitenkunde, 20, 558ā€“562.

    ArticleĀ  Google ScholarĀ 

  • Adl, S. M., Simpson, A. G. B., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Browser, S. S., Brugerolle, G., Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, O., Mozley-Standridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A. V., Spiegel, F. W., & Taylor, M. F. J. R. (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology, 52, 399ā€“451.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Adl, S. M., Simpson, A. G., Lane, C. E., LukeÅ”, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., Hampl, V., Heiss, A., Hoppenrath, M., Lara, E., Le Gall, L., Lynn, D. H., McManus, H., Mitchell, E. A., Mozley-Stanridge, S. E., Parfrey, L. W., Pawlowski, J., Rueckert, S., Shadwick, L., Schoch, C. L., Smirnov, A., & Spiegel, F. W. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59, 429ā€“493.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bala, P., & Bhagat, R. C. (1993). The intestinal protozoans of the termite, Odontotermes obesus (Rambur). Indian Journal of Parasitology, 17, 179ā€“187.

    Google ScholarĀ 

  • Bernard, C., Simpson, A. G. B., & Patterson, D. J. (2000). Some free-living flagellates (protista) from anoxic habitats. Ophelia, 52, 113ā€“142.

    ArticleĀ  Google ScholarĀ 

  • Bhaskar Rao, T. (1969). The morphology and incidence of the genus Monocercononoides (Grassi, 1879) Travis, 1932 of insects found in Andhra Pradesh. Proceedings of the Indian Academy of Science (B), 70, 208ā€“214.

    Google ScholarĀ 

  • Bishop, A. (1932). A note upon Retortamonas rotunda n. sp. an intestinal flagellate in Bufo vulgaris. Parasitology, 24, 233ā€“237

    ArticleĀ  Google ScholarĀ 

  • Bloodgood, R. A., & Fitzharris, T. P. (1978). Initiation of bends in the microtubular axostyle of Pyrsonympha. Cytobios, 23, 109ā€“117.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bloodgood, R. A., Miller, K. R., Fitzharris, T. P., & McIntosh, J. R. (1974). The Ultrastructure of Pyrsonympha and its associated microorganisms. Journal of Morphology, 143, 77ā€“105.

    ArticleĀ  Google ScholarĀ 

  • Bobyleva, N. N. (1973). The mastigophora fauna from the hind-gut of the far-eastern woodroach Cryptocercus relictus. Parazitologiya, 7, 201ā€“213.

    CASĀ  Google ScholarĀ 

  • Brugerolle, G. (1970). Sur lā€™ultrastructure et la position systĆ©matique de Pyrsonympha vertens (Zooflagellate Pyrsonymphina). Comptes Rendus de lā€™AcadĆ©mie des Sciences, Paris, 270, 3474ā€“3478.

    Google ScholarĀ 

  • Brugerolle, G. (1981). Ultrastructural-study of the parasitic flagellate Polymastix melolonthae (Oxymonadida). Protistologica, 17, 139ā€“145.

    Google ScholarĀ 

  • Brugerolle, G., & Joyon, L. (1973). Ultrastructure du genre Monocercomonoides (Travis). Zooflagellata, Oxymonadida. Protistologica, 9, 1ā€“80.

    Google ScholarĀ 

  • Brugerolle, G., & Kƶnig, H. (1997). Ultrastructure and organization of the cytoskeleton in Oxymonas, an intestinal flagellate of termites. Journal of Eukaryotic Microbiology, 44, 305ā€“313.

    ArticleĀ  Google ScholarĀ 

  • Brugerolle, G., & Lee, J. J. (2000). Order Oxymonadida. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), The illustrated guide to the protozoa (Vol. 2, pp. 1186ā€“1195). Lawrence: Allen Press.

    Google ScholarĀ 

  • Brugerolle, G., & Patterson, D. (1997). Ultrastructure of Trimastix convexa Hollande, an amitochondriate anaerobic flagellate with a previously undescribed organization. European Journal of Protistology, 33, 121ā€“130.

    ArticleĀ  Google ScholarĀ 

  • Brugerolle, G., & Radek, R. (2006). Symbiotic protozoa of termites. In H. Kƶnig & A. Varma (Eds.), Intestinal microorganisms of termites and other invertebrates (pp. 243ā€“269). Berlin/Heidelberg: Springer.

    ChapterĀ  Google ScholarĀ 

  • Brugerolle, G., Silva-Neto, I. D., Pellens, R., & Grandcolas, P. (2003). Electron microscopic identification of the intestinal protozoan flagellates of the xylophagous cockroach Parasphaeria boleiriana from Brazil. Parasitology Research, 90, 249ā€“256.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Brune, A., & Ohkuma, M. (2011). Role of the termite gut microbiota in symbiotic digestion. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 439ā€“475). Dordrecht: Springer.

    Google ScholarĀ 

  • Carpenter, K. J., Waller, R. F., & Keeling, P. J. (2008). Surface morphology of Saccinobaculus (Oxymonadida): Implications for character evolution and function in oxymonads. Protist, 159, 209ā€“221.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Carpenter, K. J., Weber, P. K., Davisson, M. L., Pett-Ridge, J., Haverty, M. I., & Keeling, P. J. (2013). Correlated SEM, FIB-SEM, TEM, and NanoSIMS imaging of microbes from the hindgut of a lower termite: Methods for in situ functional and ecological studies of uncultivable microbes. Microscopy and Microanalysis, 19, 1490ā€“1501.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cavalier-Smith, T. (2002). The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. International Journal of Systematic and Evolutionary Microbiology, 52, 297ā€“354.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cavalier-Smith, T. (2003). The excavate protozoan phyla Metamonada Grasse emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): Their evolutionary affinities and new higher taxa. International Journal of Systematic and Evolutionary Microbiology, 53, 1741ā€“1758.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cleveland, L. R. (1924). The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to Reticulitermes flavipes Kollar. The Biological Bulletin, 46, 203ā€“227.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cleveland, L. R. (1925). The effects of oxygenation and starvation on the symbiosis between the termite Termopsis and its intestinal flagellates. The Biological Bulletin, 48, 309ā€“325.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cleveland, L. R. (1935). The intranuclear achromatic figure of Oxymonas grandis sp. nov. Biological Bulletin, 69, 54ā€“65.

    ArticleĀ  Google ScholarĀ 

  • Cleveland, L. R. (1950a). Hormone-induced sexual cycles of flagellates: II. Gametogenesis, fertilization, and one-division meiosis in Oxymonas. Journal of Morphology, 86, 185ā€“214.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cleveland, L. R. (1950b). Hormone-induced sexual cycles of flagellates: III. Gametogenesis, fertilization, and one-division meiosis in Saccinobaculus. Journal of Morphology, 86, 215ā€“228.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cleveland, L. R. (1950c). Hormone-induced sexual cycles of flagellates: IV. Meiosis after syngamy and before nuclear fusion in Notila. Journal of Morphology, 87, 317ā€“348.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cleveland, L. R. (1956). Brief accounts of the sexual cycles of the flagellates of Cryptocercus. The Journal of Protozoology, 3, 161ā€“180.

    ArticleĀ  Google ScholarĀ 

  • Cleveland, L. R. (1966). Nuclear division without cytokinesis followed by fusion of pronuclei in Paranotila lata gen. et sp. nov. The Journal of Protozoology, 13, 132ā€“136.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cleveland, L. R., Hall, S. R., Sanders, E. P., & Collier, J. (1934). The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Memoirs of the American Academy of Arts and Sciences, 17, 185ā€“342.

    ArticleĀ  Google ScholarĀ 

  • Cleveland, L. R., Arthur, W., Burke, J. R., & Karlson, P. (1960). Ecdysone induced modifications in the sexual cycles of the protozoa of Cryptocercus. Journal of Eukaryotic Microbiology, 7, 229ā€“239.

    Google ScholarĀ 

  • Cochrane, S. M., Smith, H. E., Buhse, H. E., & Scammell, J. G. (1979). Structure of the attached stage of Pyrsonympha in the termite Reticulitermes flavipes Kollar. Protistologica, 15, 259ā€“270.

    Google ScholarĀ 

  • Connell, F. H. (1930). The morphology and life-cycle of Oxymonas dimorpha sp. nov., from Neotermes simplicicornis (Banks). University of California Publications in Zoology, 36, 51ā€“66.

    Google ScholarĀ 

  • Corliss, J. O. (1994). An interim utilitarian (users-friendly) hierarchical- classification and characterization of the protists. Acta Protozoologica, 33, 1ā€“51.

    Google ScholarĀ 

  • Cross, J. B. (1939). A study on Oxymonas minor Zeliff from the termite Kalotermes minor Hagen. University of California Publications in Zoology, 43, 379ā€“404.

    Google ScholarĀ 

  • Cross, J. B. (1946). The flagellate subfamily oxymonadidae. University of California Publications in Zoology, 53, 67ā€“162.

    Google ScholarĀ 

  • Crouch, H. B. (1933). Four new species of Trichomonas from the Woodchuck (Marmota monax Linn.). The Journal of Parasitology, 19, 293ā€“301.

    ArticleĀ  Google ScholarĀ 

  • da Cunha, A. M., & Muniz, J. (1921). Sobre flagellados parasitas. I. Monocercomononas caviae n. sp. Brazil-Medicine, 35, 379ā€“380.

    Google ScholarĀ 

  • da Cunha, A. M., & Muniz, J. (1927). Sur les flagellĆ©s intestinaux; description de trois especes novelles. Comptes Rendus de la SociĆ©tĆ© de Biologie, 96, 496ā€“498.

    Google ScholarĀ 

  • Dacks, J. B., Silberman, J. D., Simpson, A. G. B., Moriya, S., Kudo, T., Ohkuma, M., & Redfield, R. J. (2001). Oxymonads are closely related to the excavate taxon Trimastix. Molecular Biology and Evolution, 18, 1034ā€“1044.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dacks, J. B., Kuru, T., Liapounova, N. A., & Gedamu, L. (2008). Phylogenetic and primary sequence characterization of cathepsin B cysteine proteases from the oxymonad flagellate Monocercomonoides. Journal of Eukaryotic Microbiology, 55, 9ā€“17.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Das, A. K. (1974). On the genus Oxymonas Janicki (Pyrsonymphidae: Mastigophora) from Indian termites. Acta Protozoologica, 12, 335ā€“344.

    Google ScholarĀ 

  • Das Gupta, M. (1935). Preliminary observations on the protozoan fauna of the rumen of the Indian goat, Capra hircus Linn. Archiv fur Protistenkunde, 85, 153ā€“172.

    Google ScholarĀ 

  • de Koning, A. P., Noble, G. P., Heiss, A. A., Wong, J., & Keeling, P. J. (2008). Environmental PCR survey to determine the distribution of a non-canonical genetic code in uncultivable oxymonads. Environmental Microbiology, 10, 65ā€“74.

    PubMedĀ  Google ScholarĀ 

  • De Mello, I. F. de. (1953). Sur une oxymonade de lā€™intestin du termite africain Cryptotermes havilandi Sjos-tedt, recolte a Santos (Bresil). Revista Brasileira de Biologia, 13, 65ā€“72.

    Google ScholarĀ 

  • Derelle, R., Torruella, G., KlimeÅ”, V., Brinkmann, H., Kim, E., Vlček, Č., Lang, B. F., & EliĆ”Å”, M. (2015). Bacterial proteins pinpoint a single eukaryotic root. Proceedings of the National Academy of Sciences of the United States of America, 112, E693ā€“E699.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Diamond, L. S. (1982). A new liquid medium for xenic cultivation of Entamoeba histolytica and other lumen dwelling Protozoa. The Journal of Parasitology, 68, 958ā€“959.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dobell, C., & Laidlaw, P. P. (1926). On the cultivation of Entamoeba histolytica and some other entozoic amoebae. Parasitology, 18, 283ā€“318.

    ArticleĀ  Google ScholarĀ 

  • Duboscq, O., & GrassĆ©, P. P. (1934). Sur Microrhopalodina inflata(Grassi). Archives de zoologie expĆ©rimentale et gĆ©nĆ©rale, 75, 615ā€“637.

    Google ScholarĀ 

  • Dumas, E. (1930). Les microzoaires ou infusoires proprementdits. Faune du centre. 2e Fascicule. Moulins (ā€˜les imprimeriesreuniesā€™), 166 p.

    Google ScholarĀ 

  • Gabel, J. R. (1954). The morphology and taxonomy of the intestinal Protozoa of the american woodchuck, Marmota monax Linnaeus. Journal of Morphology, 94, 473ā€“549.

    ArticleĀ  Google ScholarĀ 

  • Geiman, Q. M. (1933). The intestinal protozoa of the larvae of the crane fly Tipula abdominalis. Journal of Parasitology, 19, 173.

    Google ScholarĀ 

  • Georgevitch, J. (1932). Recherches sur les flagellĆ©s des termites de Yougoslavie. Archives de zoologie expĆ©rimentale et gĆ©nĆ©rale, 74, 81ā€“109.

    Google ScholarĀ 

  • Georgevitch, J. (1951). Etude des flagelles dā€™un termite de Dalmatie Reticulitermes lucifugus. Glasn Acad Serbe Sci NS, 200, 95ā€“108.

    Google ScholarĀ 

  • Grant, J. R., & Katz, L. A. (2014). Building a phylogenomic pipeline for the eukaryotic tree of life ā€“ Addressing deep phylogenies with genome-scale data. PLoS Currents, 2, 6.

    Google ScholarĀ 

  • GrassĆ©, P. P. (1926). Contribution Ć  lā€™Ć©tude des FlagellĆ©s parasites. Archives de zoologie expĆ©rimentale et gĆ©nĆ©rale, 65, 342ā€“602.

    Google ScholarĀ 

  • GrassĆ©, P. P. (1952). TraitĆ© de Zoologie. Tome I, Fascicule 1: PhylogĆ©nie. Protozoaires: gĆ©nĆ©ralitĆ©s. FlagellĆ©s. Paris: Masson et Cie.

    Google ScholarĀ 

  • Grassi, B. (1879). Dei protozoi parassiti specialmente di quelli che sono nellā€™uomo. Gaz Ital Lombardi, 39, 445ā€“448.

    Google ScholarĀ 

  • Grassi, B., & FoĆ”, A. (1911). Intorno ai protozoi dei termitidi. Atti Reale Accad Lincei, 20, 725ā€“741.

    Google ScholarĀ 

  • Grassi, B., & Sandias, A. (1893). Constitutione e svillupo della societa dei termitidi. Atti Accad. Gioenia di scienze naturali in Catania, 6, 150ā€“155.

    Google ScholarĀ 

  • Grimstone, A. V., & Cleveland, L. R. (1965). The fine structure and function of the contractile axostyles of certain flagellates. The Journal of Cell Biology, 24, 387ā€“400.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Guzmen, R. S. (1961). Oxymonas chilensis n. sp., flagelado simbionte del termite Calotermes chilensis (Blanchard). Investigaciones Zoologicas Chilenas, 7, 83ā€“95.

    Google ScholarĀ 

  • Hampl, V., & Simpson, A. G. B. (2008). Possible mitochondria-related organelles in poorly-studied ā€˜amitochondriateā€™ eukaryotes. In J. Tachezy (Ed.), Hydrogenosomes and mitosomes of the amitochondrial protists (Microbiology monographs). Heidelberg: Springer.

    Google ScholarĀ 

  • Hampl, V., Horner, D. S., Dyal, P., Kulda, J., Flegr, J., Foster, P. G., & Embley, T. M. (2005). Inference of the phylogenetic position of oxymonads based on nine genes: Support for Metamonada and Excavata. Molecular Biology and Evolution, 22, 2508ā€“2518.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hampl, V., Hug, L., Leigh, J. W., Dacks, J. B., Lang, B. F., Simpson, A. G. B., & Roger, A. J. (2009). Phylogenomic analyses support the monophyly of excavata and resolve relationships among eukaryotic ā€œsupergroupsā€. Proceedings of the National Academy of Sciences of the United States of America, 106, 3859ā€“3864.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hasselmann, G. (1928). Novo proeesso de divisao no genero Polymastix-descriptao de Polymastix nitidus, nov. sp. de flagellado. Boletim do Instituto Brasileiro de Sciencias Rio de Janeiro, 3, 40ā€“46.

    Google ScholarĀ 

  • Heiss, A. A., & Keeling, P. J. (2006). The phylogenetic position of the oxymonad Saccinobaculus based on SSU rRNA. Protist, 157, 335ā€“344.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Heuser, J. E. (1986). Different structural states of a microtubule cross-linking molecule, captured by quick-freezing motile axostyles in Protozoa. The Journal of Cell Biology, 103, 2209ā€“2227.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hollande, A., & Carruette-Valentin, J. (1970a). Appariement chromosomique et complexes synaptonĆ©matiques dans les noyaux de dĆ©polyploidisation chez Pyrsonympha flagellata: le cycle Ć©volutif des Pyrsonymphines symbiotiques de Reticulitermes lucifugus. Comptes Rendus de lā€™AcadĆ©mie des Sciences, Paris, D, 270, 2250ā€“2255.

    Google ScholarĀ 

  • Hollande, A., & Carruette-Valentin, J. (1970b). La lignĆ©e des Pyrsonymphines et les caracteres infrastructuraux commus aux autres genres Opisthomitus, Oxymonas, Saccinobaculus, Pyrsonympha et Streblomastix. Comptes Rendus de lā€™AcadĆ©mie des Sciences, Paris, D, 270, 1587ā€“1590.

    CASĀ  Google ScholarĀ 

  • Hongoh, Y. (2010). Diversity and genomes of uncultured microbial symbionts in the termite gut. Bioscience Biotechnology and Biochemistry, 74, 1145ā€“1151.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hongoh, Y., Sato, T., Noda, S., Ui, S., Kudo, T., & Ohkuma, M. (2007). Candidatus Symbiothrix dinenymphae: Bristle-like Bacteroidales ectosymbionts of termite gut protists. Environmental Microbiology, 9, 2631ā€“2635.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Iida, T., Ohkuma, M., Ohtoko, K., & Kudo, T. (2000). Symbiotic spirochetes in the termite hindgut: Phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiology Ecology, 34, 17ā€“26.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Inward, D., Beccaloni, G., & Eggleton, P. (2007). Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3, 331ā€“335.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Janakidevi, K. (1961). The morphology of Monocercomonoides filamentum n. sp., parasite of the indian starred tortoise. Archiv fur Protistenkunde, 106, 37ā€“40.

    Google ScholarĀ 

  • Janicki, C. (1915). Untersuchungen an parasitischen Flagellaten. II. Teil: Die Gattungen Devescovina, Parajoenia, Stephanonympha, Calonympha. Uber den Parabasalapparat.-Uber Kernkonstitution und Kernteilung. Zeitschrift fĆ¼r wissenschaftliche Zoologie, 112, 573.

    Google ScholarĀ 

  • Jensen, E. A., & Hammond, D. M. (1964). A morphological study of trichomonads and related flagellates from the bovine digestive tract. The Journal of Protozoology, 11, 386ā€“394.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jensen, C. G., & Smaill, B. H. (1986). Analysis of the spatial organization of microtubule associated proteins. The Journal of Cell Biology, 103, 559ā€“569.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • JĆ­rovec, O. (1929). La faune du tube digestif du Calotermes lucifugus rĆ©coltĆ© en GrĆ©ce. Bulletin international de lā€™AcadĆ©mie des Sciences de Boheme, 39, 1ā€“15.

    Google ScholarĀ 

  • Kamikawa, R., Kolisko, M., Nishimura, Y., Yabuki, A., Brown, M. W., Ishikawa, S. A., Ishida, K., Roger, A. J., Hashimoto, T., & Inagaki, Y. (2014). Gene content evolution in Discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biology and Evolution, 6, 306ā€“315.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Karnkowska, A., Vacek, V., ZubĆ”ÄovĆ”, Z., Treitli, S. C., PetrželkovĆ”, R., Eme, L., NovĆ”k, L., Å½Ć”rskĆ½, V., Barlow, L. D., Herman, E. K., Soukal, P., HroudovĆ”, M., Doležal, P., Stairs, C. W., Roger, A. J., EliĆ”Å”, M., Dacks, J. B., Vlček, Č., & Hampl, V. (2016). A eukaryote without a mitochondrial organelle. Current Biology. doi:10.1016/j.cub.2016.03.053.

    PubMedĀ  Google ScholarĀ 

  • Keeling, P. J., & Leander, B. S. (2003). Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix. Journal of Molecular Biology, 326, 1337ā€“1349.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kent, W. S. (1880). Manual of the Infusoria. London: David Bogue.

    Google ScholarĀ 

  • Kidder, G. W. (1929). Streblomastix strix, morphology and mitosis. University of California Publications in Zoology, 33, 109ā€“124.

    Google ScholarĀ 

  • Kidder, G. W. (1937). The intestinal protozoa of the wood-feeding roach Panesthia. Parasitology, 29, 163ā€“205.

    ArticleĀ  Google ScholarĀ 

  • Kirby, H., Jr. (1924). Morphology and mitosis of Dinenympha fimbriata sp. nov. University of California Press.

    Google ScholarĀ 

  • Kirby, H., Jr. (1926). The intestinal flagellates of the termite, Cryptotermes hermsi Kirby. University of California Publications in Zoology, 29, 103ā€“120.

    Google ScholarĀ 

  • Kirby, H. (1928). A species of Proboscidiella from Kalotermes (Cryptotermes) dudleyi Banks, a termite of Central America, with remarks on the oxymonad flagellates. The Quarterly Journal of Microscopical Science, 72, 355ā€“386.

    Google ScholarĀ 

  • Kirby, H., & Honigberg, B. M. (1949). Flagellates of the caecum of ground squirrels. University of California Publications in Zoology, 53, 315ā€“366.

    Google ScholarĀ 

  • Klebs, G. (1892). Flagellatenstudien. Zeitschrift fĆ¼r wissenschaftliche Zoologie, 55, 262ā€“445.

    Google ScholarĀ 

  • Kofoid, C. A., & Swezy, O. (1919). Studies on the parasites of the termites I. On Streblomastix strix, a polymastigote flagellate with a linear plasmodial phase. University of California Publications in Zoology, 20, 1ā€“20.

    Google ScholarĀ 

  • Kofoid, C. A., & Swezy, O. (1926). On Oxymonas, a flagellate with an extensile and retractile proboscis from Kalotermes from British Guiana. University of California Publications in Zoology, 28, 285ā€“300.

    Google ScholarĀ 

  • Koidzumi, M. (1921). Studies on the intestinal protozoa found in the termites of Japan. Parasitology, 13, 235ā€“309.

    ArticleĀ  Google ScholarĀ 

  • Krishnamurthy, R. (1967). Two new species of the genus Monocercomonoides Travis, 1932 (Protozoa: Mastigophora) from reptiles. Proceedings of the Indian Academy of Science, 66, 184ā€“191.

    Google ScholarĀ 

  • Krishnamurthy, R., & Madre, V. E. (1979). Studies on two flagellates of the genus Monocercomonoides Travis, 1932 (Mastigophora: Polymastigina) from amphibian and reptiles in India. Acta Protozoologica, 18, 251ā€“257.

    Google ScholarĀ 

  • Krishnamurthy, R., & Sultana, T. (1976). Tubulimonoides gryllotalpae n. g., n. sp. (Mastigophora: Oxymonadida) from cricket in India. Proceedings of the Indiana Academy of Sciences, 84(B), 137ā€“140.

    Google ScholarĀ 

  • Krishnamurthy, R., & Sultana, T. (1977). Studies on two flagellates of the genus Monocercomonoides Travis, 1932 from the gut of the dung beetle larva (Oryctes rhinoceros) in India. Archiv fur Protistenkunde, 119, 121ā€“126.

    Google ScholarĀ 

  • Krishnamurthy, R., & Sultana, T. (1977). The flagellates of the genus Monocercomonoides Travis, 1932 (Mastigophora: Oxymonadida) from insects in India ā€“ A review, with a key to the species. Proceedings of the Zoological Society. Calcutta, 32, 51ā€“55.

    Google ScholarĀ 

  • Krishnamurthy, R., & Sultana, T. (1978). A new species of the genus Polymastix Butschli, 1884 from an insect Polyphaga indica in India. Archiv fur Protistenkunde, 120, 301ā€“303.

    ArticleĀ  Google ScholarĀ 

  • Krishnamurthy, R., & Sultana, T. (1980). The description of new flagellate Monocercomonoides spirostreptae sp. n. (Mastigophora: Oxymonadida), from the millipedes in Maharashtra, India. Acta Parasitologica Polonica, 27, 257ā€“260.

    Google ScholarĀ 

  • Kulda, J., & NohĆ½nkovĆ”, E. (1978). Flagellates of the human intestine and of intestines of other species. In J. P. Kreier (Ed.), Parasitic protozoa (pp. 1ā€“138). New York: Academic.

    Google ScholarĀ 

  • Lavette, A. (1973). Ultrastructure and systematic affinities of Microrhopalodina inflata, symbiotic flagellate of Calotermes flavicollis. Comptes Rendus de lā€™AcadĆ©mie des Sciences, Paris, D, 276, 1309ā€“1311.

    CASĀ  Google ScholarĀ 

  • Leander, B. S., & Keeling, P. J. (2004). Symbiotic innovation in the oxymonad Streblomastix strix. Journal of Eukaryotic Microbiology, 51, 291ā€“300.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Leidy, J. (1877). On intestinal parasites of Termes flavipes. Proceedings of the National Academy of Sciences, Philadelphia, 29, 146ā€“149.

    Google ScholarĀ 

  • Li, L., Frƶhlich, J., & Kƶnig, H. (2006). Cellulose digestion in the termite gut. In H. Kƶnig & A. Varma (Eds.), Intestinal microorganisms of termites and other invertebrates (pp. 221ā€“241). Berlin/Heidelberg: Springer.

    ChapterĀ  Google ScholarĀ 

  • Liapounova, N. A., Hampl, V., Gordon, P. M., Sensen, C. W., Gedamu, L., & Dacks, J. B. (2006). Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides. Eukaryotic Cell, 5, 2138ā€“2146.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lo, N., Tokuda, G., Watanabe, H., Rose, H., Slaytor, M., Maekawa, K., Bandi, C., & Noda, H. (2000). Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Current Biology, 10, 801ā€“804.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Maass, A., & Radek, R. (2006). The gut flagellate community of the termite Neotermes cubanus with special reference to Staurojoenina and Trichocovina hrdyi nov. gen. nov. sp. European Journal of Protistology, 42, 125ā€“141.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Madre, V. E., & Krishnamurthy, R. (1976). Studies on two flagellates from the rectum of the viper, Vipera russeli in Aurangabad. National Science Journal of Marathwada University, 15, 143ā€“147.

    Google ScholarĀ 

  • Mali, M. S. (1993). Studies on the Polymastix jadhavii, a new flagellate from the gut of the cockroach Periplareta americana in India. Geobios New Reports, 14, 189ā€“191.

    Google ScholarĀ 

  • Mali, M., Kulkarni, S., & Mali, S. (2001). Two species of flagellates of the genus Monocercomonoides Travis, 1932 from the gut of dung beetle larva (Oryctes rhinoceros) in India. Geobios (Jodhpur), 28, 201ā€“204.

    Google ScholarĀ 

  • Mali, M., & Mali, S. (2004). Monocercomonoides khultabadae n.sp., a new flagellate from the gut of Pycnoscelus surinamensis. Uttar Pradesh Journal Zoology, 24, 55ā€“58.

    Google ScholarĀ 

  • Mali, M., & Patil, D. (2003). The morphology of Monocercomonoides aurangabadae n. sp. a flagellata from the gut of Blatta germanica. Uttar Pradesh Journal of Zoology, 23, 117ā€“119.

    Google ScholarĀ 

  • Mali, M., & Sultana, T. (1993). The morphology of Tubulimonoides shivamurthi n. sp. ā€“ A new flagellate from the gut of Oryctes rhinoceros. Geobios New Reports, 12, 30ā€“32.

    Google ScholarĀ 

  • Mali, M., Kulkarni, S., & Mali, S. (2003). Tubulimonoides aurangabadae n. sp. (Mastigophora: Oxymonadida), a new flagellate from the gut of Oryctes rhinoceros. Geobios, 30, 291ā€“292.

    Google ScholarĀ 

  • May, E. (1941). The behavior of the intestinal protozoa of termites at the time of the last ecdysis. Transactions of the American Microscopical Society, 60, 281ā€“292.

    ArticleĀ  Google ScholarĀ 

  • Mcintosh, J. R. (1973). Axostyle of Saccinobaculus. 2. Motion of microtubule bundle and a structural comparison of straight and bent axostyles. The Journal of Cell Biology, 56, 324ā€“339.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mcintosh, J. R. (1974). Bridges between microtubules. The Journal of Cell Biology, 61, 166ā€“187.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mcintosh, J. R., Ogata, E. S., & Landis, S. C. (1973). Axostyle of Saccinobaculus. 1. Structure of organism and its microtubule bundle. The Journal of Cell Biology, 56, 304ā€“323.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mooseker, M. S., & Tilney, L. G. (1973). Isolation and reactivation of the axostyle. Evidence for a dynein-like ATPase in the axostyle. The Journal of Cell Biology, 56, 13ā€“26.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Moriya, S., Ohkuma, M., & Kudo, T. (1998). Phylogenetic position of symbiotic protist Dinenympha [correction of Dinemympha] exilis in the hindgut of the termite Reticulitermes speratus inferred from the protein phylogeny of elongation factor 1 alpha. Gene, 210, 221ā€“227.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Moriya, S., Tanaka, K., Ohkuma, M., Sugano, S., & Kudo, T. (2001). Diversification of the microtubule system in the early stage of eukaryote evolution: Elongation factor 1 alpha and alpha-tubulin protein phylogeny of termite symbiotic oxymonad and hypermastigote protists. Journal of Molecular Evolution, 52, 6ā€“16.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Moriya, S., Dacks, J. B., Takagi, A., Noda, S., Ohkuma, M., Doolittle, W. F., & Kudo, T. (2003). Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas. Journal of Eukaryotic Microbiology, 50, 190ā€“197.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Moskowitz, N. (1951). Observations on some intestinal flagellates from reptilian host (Squamata). Journal of Morphology, 89, 257ā€“321.

    ArticleĀ  Google ScholarĀ 

  • Mukherjee, P., & Maiti, P. K. (1988). Two new species of flagellates of the genus Pyrsonympha Leidy (Mastigophora: Protozoa) from Reticulitermes tirapi Chhotani and Das (Isoptera: Insecta). Proceedings of the Zoological Society, Calcutta, 38, 37ā€“45.

    Google ScholarĀ 

  • Mukherjee, P., & Maiti, P. K. (1989). Description of two new species of flagellates of the genus Dineympha Leidy (Mastigophora: Polymastigida) from Reticulitermes tirapi Chhotani & Das (Isoptera). Archiv fur Protistenkunde, 137, 95ā€“100.

    ArticleĀ  Google ScholarĀ 

  • MĆ¼ller, M. (1992). Energy metabolism of ancestral eukaryotes: A hypothesis based on the biochemistry of amitochondriate parasitic protists. Biosystems, 28, 33ā€“40.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Nakashima, K. I., Watanabe, H., & Azuma, J. I. (2002). Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus. Cellular and Molecular Life Sciences, 59, 1554ā€“1560.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Navarathnam, E. S. (1970). Intestinal flagellates of the common Indian rat Rattus rattus frugivorous. Acta Protozoologica, 8, 155ā€“165.

    Google ScholarĀ 

  • Nie, D. (1950). Morphology and taxonomy of the intestinal Protozoa of the guinea-pig, Cavia porcella. Journal of Morphology, 86, 381ā€“494.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Noda, S., Ohkuma, M., Yamada, A., Hongoh, Y., & Kudo, T. (2003). Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Applied and Environmental Microbiology, 69, 625ā€“633.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Noda, S., Inoue, T., Hongoh, Y., Kawai, M., Nalepa, C. A., Vongkaluang, C., Kudo, T., & Ohkuma, M. (2006). Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environmental Microbiology, 8, 11ā€“20.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nurse, F. R. (1945). Protozoa from New Zealand Termites. Transactions of the Royal Society of New Zealand, 74, 305ā€“314.

    Google ScholarĀ 

  • Ohkuma, M., & Brune, A. (2011). Diversity, structure, and evolution of the termite gut microbial community. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 439ā€“475). Dordrecht: Springer.

    Google ScholarĀ 

  • Oā€™Kelly, C. J., Farmer, M. A., & Nerad, T. A. (1999). Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: Similarities of Trimastix species with retortamonad and jakobid flagellates. Protist, 150, 149ā€“162.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Parfrey, L. W., Grant, J., Tekle, Y. I., Lasek-Nesselquist, E., Morrison, H. G., Sogin, M. L., Patterson, D. J., & Katz, L. A. (2010). Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Systematic Biology, 59, 518ā€“533.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Poinar, G. O., Jr. (2009a). Description of an early Cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasites & Vectors, 2, 12.

    ArticleĀ  Google ScholarĀ 

  • Poinar, G. O., Jr. (2009b). Early Cretaceous protist flagellates (Parabasalia: Hypermastigida: Oxymonada) of cockroaches (Insecta:Blattaria) in Burmese amber. Cretaceous Research, 30, 1066ā€“1072.

    ArticleĀ  Google ScholarĀ 

  • Porter, J. F. (1897). Trichonympha, and other parasites of Termes flavipes. Bulletin of the Museum of Comparative Zoƶlogy, 31, 47ā€“63.

    Google ScholarĀ 

  • Powell, W. N. (1928). On the morphology of Pyrsonympha with a description of three new species from Reticulitermes hesperus Banks. University of California Publications in Zoology, 31, 179ā€“200.

    Google ScholarĀ 

  • Qadri, S. S., & Rao, T. B. (1963). On a new flagellate Polymastix periplanetae from the common cockroach, Periplaneta americana. Rivista Parasitologica, 24, 153ā€“158.

    Google ScholarĀ 

  • Radek, R. (1994). Monocercomonoides termitis n. sp, an oxymonad from the lower termite Kalotermes sinaicus. Archiv fĆ¼r Protistenkunde, 144, 373ā€“382.

    ArticleĀ  Google ScholarĀ 

  • Radek, R. (1997). Monocercomonoides hausmanni nom. nov, a new species name for M. termitis Radek, 1994. Archiv fĆ¼r Protistenkunde, 147, 411.

    Google ScholarĀ 

  • Radek, R. (1999). Flagellates, bacteria, and fungi associated with termites: Diversity and function in nutrition ā€“ A review. Ecotropica, 5, 183ā€“196.

    Google ScholarĀ 

  • Radek, R., Strassert, J. F., KrĆ¼ger, J., Meuser, K., Scheffrahn, R. H., & Brune, A. (2014). Phylogeny and ultrastructure of Oxymonas jouteli, a rostellum-free species, and Opisthomitus longiflagellatus sp. nov., Oxymonadida flagellates from the gut of Neotermes jouteli. Protist, 165(3), 384ā€“399.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Ray, D. K. (1949). On a Monocercomonoides nimiei n. sp., from the caecum of Indian guinea pig, Cavia cutleri Bennet. Proceedings of the Indian Science Congress, 36, 155.

    Google ScholarĀ 

  • Reeves, R. E., Warren, L. G., Susskind, B., & Loi, H. S. (1977). Energy conserving pyruvate to acetate pathway in Entamoeba histolytica ā€“ Pyruvate synthase and a new acetate thiokinase. The Journal of Biological Chemistry, 252, 726ā€“731.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Rodriguez-Ezpeleta, N., Brinkmann, H., Burger, G., Roger, A. J., Gray, M. W., Philippe, H., & Lang, B. F. (2007a). Toward Resolving the eukaryotic tree: The phylogenetic positions of jakobids and cercozoans. Current Biology, 17, 1420ā€“1425.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rodriguez-Ezpeleta, N., Brinkmann, H., Roure, B., Lartillot, N., Lang, B. F., & Philippe, H. (2007b). Detecting and overcoming systematic errors in genome-scale phylogenies. Systematic Biology, 56, 389ā€“399.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rother, A., Radek, R., & Hausmann, K. (1999). Characterization of surface structures covering termite flagellates of the family oxymonadidae and ultrastructure of two oxymonad species, Microrhopalodina multinucleata and Oxymonas sp. European Journal of Protistology, 35, 1ā€“16.

    ArticleĀ  Google ScholarĀ 

  • Sato, T., Kuwahara, H., Fujita, K., Noda, S., Kihara, K., Yamada, A., Ohkuma, M., & Hongoh, Y. (2014). Intranuclear verrucomicrobial symbionts and evidence of lateral gene transfer to the host protist in the termite gut. ISME Journal, 8(5), 1008ā€“1019.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Simpson, A. G. B. (2003). Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). International Journal of Systematic and Evolutionary Microbiology, 53, 1759ā€“1777.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Simpson, A. G. B., Bernard, C., & Patterson, D. J. (2000). The ultrastructure of Trimastix marina Kent, 1880. European Journal of Protistology, 36, 229ā€“251.

    ArticleĀ  Google ScholarĀ 

  • Simpson, A. G. B., Radek, R., Dacks, J. B., & Oā€™Kelly, C. J. (2002). How oxymonads lost their groove: An ultrastructural comparison of Monocercomonoides and excavate taxa. Journal of Eukaryotic Microbiology, 49, 239ā€“248.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Simpson, A. G. B., Inagaki, Y., & Roger, A. J. (2006). Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of ā€œprimitiveā€ eukaryotes. Molecular Biology and Evolution, 23, 615ā€“625.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Slamovits, C. H., & Keeling, P. J. (2006a). A high density of ancient spliceosomal introns in oxymonad excavates. BMC Evolutionary Biology, 6, 34.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Slamovits, C. H., & Keeling, P. J. (2006b). Pyruvate-phosphate dikinase of oxymonads and parabasalia and the evolution of pyrophosphate-dependent glycolysis in anaerobic eukaryotes. Eukaryotic Cell, 5, 148ā€“154.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Smith, H. S., & Arnott, H. J. (1973). Scales associated with external surface of Pyrsonympha vertens. Transactions of the American Microscopical Society, 92, 670ā€“677.

    ArticleĀ  Google ScholarĀ 

  • Smith, H. E., & Arnott, H. J. (1974a). Axostyle structure in termite protozoan Pyrsonympha vertens. Tissue & Cell, 6, 193ā€“207.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Smith, H. E., & Arnott, H. J. (1974b). Epibiotic and endobiotic bacteria associated with Pyrsonympha vertens ā€“ Symbiotic protozoan of termite Reticulitermes flavipes. Transactions of the American Microscopical Society, 93, 180ā€“194.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Smith, H. E., Stamler, S. J., & Buhse, B. E., Jr. (1975). A scanning electron microscope survey of the surface features of polymastigote flagellates from Reticulitermes flavipes. Transactions of the American Microscopical Society, 94, 401ā€“410.

    ArticleĀ  Google ScholarĀ 

  • Stechmann, A., Baumgartner, M., Silberman, J. D., & Roger, A. J. (2006). The glycolytic pathway of Trimastix pyriformis is an evolutionary mosaic. BMC Evolutionary Biology, 6, 101.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Stingl, U., & Brune, A. (2003). Phylogenetic diversity and whole-cell hybridization of oxymonad flagellates from the hindgut of the wood-feeding lower termite Reticulitermes flavipes. Protist, 154, 147ā€“155.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Stingl, U., Radek, R., Yang, H., & Brune, A. (2005). ā€œEndomicrobiaā€: Cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Applied and Environmental Microbiology, 71, 1473ā€“1479.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sultana, T. (1975). A redescription of Monocercomonoides ganapatii Bhaskar Rao, 1969 from Gryllotalpa africana. Natural Science. Journal of Marathwada University, 14, 229ā€“232.

    Google ScholarĀ 

  • Sultana, T. (1976). Monocercomonoides krishnamurthii n. sp., a new flagellate (Protozoa: Plastigophora) from the gut of a blattid in India. Natural Science. Journal of Marathwada University, 15, 149ā€“152.

    Google ScholarĀ 

  • Sultana, T. (1976). Studies on two new species of flagellates of the genus Polymastix Butschli, 1884 from insects in India. Acta Protozoologica, 15, 1ā€“8.

    Google ScholarĀ 

  • Sultana, T., & Krishnamurthy, R. (1978). Monocercomonoides gryllusae n. sp. (Mastigophora: Oxymonadida) from Gryllus bimaculatus. Geobios, 6, 114ā€“115.

    Google ScholarĀ 

  • Tamschick, S., & Radek, R. (2013). Colonization of termite hindgut walls by oxymonad flagellates and prokaryotes in Incisitermes tabogae, I. marginipennis and Reticulitermes flavipes. European Journal of Protistology, 49, 1ā€“14.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Tanabe, M. (1933). The morphology and division of Monocercomonas lacertae, n. sp. from lizards. Keijo Journal of Medicine, 4, 367ā€“377.

    Google ScholarĀ 

  • Tiwari, D. N. (2005). Oxymonas bastiensis sp.nov. (Oxymonadidae) a new flagellate from the termite Neotermes bosei synder of Uttar Pradesh, India. Journal of Advanced Zoology, 26, 50ā€“51.

    Google ScholarĀ 

  • Todd, S. R. (1963). Studies on some parasitic flagellates of certain wild mammals of Hyderabad. Archiv fur Protistenkunde, 107, 1ā€“116.

    Google ScholarĀ 

  • Tokura, M., Ohkuma, M., & Kudo, T. (2000). Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiology Ecology, 33, 233ā€“240.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Travis, B. V. (1932). A discussion of synonymy in the nomenclature of certain insect flagellates, with the description of a new flagellate from the larvae of Ligyrodes relictus Say (Coleoptera-Scarabaeidae). Iowa State College Journal of Science, 6, 317ā€“323.

    Google ScholarĀ 

  • Travis, B. V., & Becker, E. R. (1931). A preliminary report on the intestinal protozoa of white grubs. (Phyllophaga sp. Coleoptera). Iowa State Journal of Science, 5, 223ā€“235.

    Google ScholarĀ 

  • Upcroft, J., & Upcroft, P. (1998). My favorite cell: Giardia. Bioessays, 20, 256ā€“263.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yamin, M. A. (1981). Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science, 211, 58ā€“59.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang, H., Schmitt-Wagner, D., Stingl, U., & Brune, A. (2005). Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environmental Microbiology, 7, 916ā€“932.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yubuki, N., & Leander, B. S. (2013). Evolution of microtubule organizing centers across the tree of eukaryotes. The Plant Journal, 75(2), 230ā€“244.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yubuki, N., Simpson, A. G., & Leander, B. S. (2013). Comprehensive ultrastructure of Kipferlia bialata provides evidence for character evolution within the Fornicata (Excavata). Protist, 164(3), 423ā€“439.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zeliff, C. C. (1930). Kirbyella zeteki, a new genus and species of protozoa from Kalotermes (Calcaritermes) brevicollis from the canal zone. American Journal of Epidemiology, 11, 740ā€“742.

    Google ScholarĀ 

  • Zeliff, C. C. (1930). A cytological study of Oxymonas, a flagellate, including descriptions of new species. American Journal of Epidemiology, 11, 714ā€“739.

    Google ScholarĀ 

  • Zhang, Q., TĆ”borskĆ½, P., Silberman, J. D., PĆ”nek, T., Čepička, I., & Simpson, A. G. B. (2015). Marine Isolates of Trimastix marina form a plesiomorphic deep-branching lineage within Preaxostyla, separate from other known trimastigids (Paratrimastix n. gen.). Protist, 166(4), 468ā€“491.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Zhou, X., Smith, J. A., Oi, F. M., Koehler, P. G., Bennett, G. W., & Scharf, M. E. (2007). Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene, 395(1ā€“2), 29ā€“39.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • ZubĆ”ÄovĆ”, Z., NovĆ”k, L., BublĆ­kovĆ”, J., Vacek, V., Fousek, J., RĆ­dl, J., Tachezy, J., Doležal, P., Vlček, C., & Hampl, V. (2013). The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system. PLoS One, 8, e55417.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

The author would like to thank Guy Brugerolle, Patrick Keeling, Kevin Carpenter, and Eva NohĆ½nkovĆ” for kindly providing figures; Joel B Dacks, Jaroslav Kulda, Naoji Yubuki, Alastair Simpson, and an anonymous reviewer for proofreading the manuscript and helpful comments; Ivan Čepička for providing protargol preparations; and Ivan HrdĆ½ for providing termites. Support for the authorā€™s salary came from the project of the Ministry of Education, Youth, and Sports of CR within the National Sustainability Program II (Project BIOCEV-FAR) LQ1604 and by the project ā€œBIOCEVā€ (CZ.1.05/1.1.00/02.0109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Hampl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Hampl, V. (2016). Preaxostyla. In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32669-6_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-32669-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics