Skip to main content

Lymphocytes

  • Living reference work entry
  • First Online:
Encyclopedia of Immunotoxicology
  • 372 Accesses

Definition

Lymphocytes are a subclass of leukocytes (white blood cells) that have round nuclei (earning them the designation “mononuclear cells”) and typically lack cytoplasmic granules (making them “agranulocytes”). Two lymphocyte types, T cells and B cells, are the key lymphocytes that control the adaptive immune response, which develops as a reaction to a prior antigenic stimulus. Additional lymphocyte kinds – large granular lymphocytes (LGL cells) and natural killer (NK) cells – are lymphocytes that function in the early, antigen-independent, innate immune response.

Characteristics

Lymphocyte Categories

In general, lymphocytes can be classified by either lineage (Fig. 1) or function.

Fig. 1
figure 1

All leukocyte (white blood cell) lineages are derived from partially committed (oligopotent) common progenitor cells that arose from uncommitted (pluripotent) hematopoietic stem cells. The common progenitor cells undergo further differentiation into various classes of lymphocytes (leftside of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bendele A, McComb J, Gould T et al (1999) Animal models of arthritis: relevance to human disease. Toxicol Pathol 27:134–142

    Article  CAS  PubMed  Google Scholar 

  • Ben-Nun A, Kaushansky N, Kawakami N et al (2014) From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 54:33–50

    Google Scholar 

  • Bolon B (2012) Cellular and molecular mechanisms of autoimmune disease. Toxicol Pathol 40:216–229

    Article  CAS  PubMed  Google Scholar 

  • Bolon B, Stolina M, King C et al (2011) Rodent preclinical models for developing novel antiarthritic molecules: comparative biology and preferred methods for evaluating efficacy. J Biomed Biotechnol. Art. No.: 569068. http://www.hindawi.com/journals/bmri/2011/569068/. Accessed 01 Dec 2014

  • Descotes J (2004) Nonclinical strategies of immunotoxicity evaluation and risk assessment. In: Immunotoxicology of drugs and chemicals: an experimental and clinical approach, vol 1, 3rd edn, Principles and methods in immunotoxicology. Elsevier, San Diego, pp 269–294

    Google Scholar 

  • Farine J-C (1997) Animal models in autoimmune disease in immunotoxicity assessment. Toxicology 119:29–35

    Article  CAS  PubMed  Google Scholar 

  • Fazilleau N, Mark L, McHeyzer-Williams LJ et al (2009) Follicular helper T cells: lineage and location. Immunity 30:324–335

    Google Scholar 

  • FDA/CDER (U.S. Food and Drug Administration, Center for Drug Evaluation and Research) (2002) Guidance for industry: immunotoxicology evaluation of investigational new drugs. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm079239.pdf. Accessed 01 Dec 2014

  • FDA/CDER and CBER (U.S. Food and Drug Administration, Center for Drug Evaluation and Research and Center for Biologics Evaluation and Research) (2006) International conference on harmonisation (ICH) Guidance for industry: S8 immunotoxicity studies for human pharmaceuticals. http://www.fda.gov/OHRMS/DOCKETS/98fr/05d-0022-gdl0002.pdf. Accessed 01 Dec 2014

  • Feuerer M, Hill JA, Mathis D et al. (2009). Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol 10:689–695

    Article  CAS  PubMed  Google Scholar 

  • Gore ER, Gower J, Kurali E et al (2004) Primary antibody response to keyhole limpet hemocyanin in rat as a model for immunotoxicity evaluation. Toxicology 197:23–35

    Article  CAS  PubMed  Google Scholar 

  • Iciek L (2008) Evaluation of drug effects on immune cell phenotypes. In: Herzyk DJ, Bussiere JL (eds) Immunotoxicology strategies for pharmaceutical safety assessment. Wiley, Hoboken, pp 103–124

    Chapter  Google Scholar 

  • ILAR (Institute for Laboratory Animal Research of the National Research Council) Committee on Immunologically Compromised Rodents (2002a) Hereditary immunodeficiencies. In: Immunodeficient rodents: a guide to their immunobiology, husbandry, and use. The National Academies Press, Washington, DC, pp 36–139

    Google Scholar 

  • ILAR (Institute for Laboratory Animal Research of the National Research Council) Committee on Immunologically Compromised Rodents (2002b) Induced immunodeficiencies. In: Immunodeficient rodents: a guide to their immunobiology, husbandry, and use. The National Academies Press, Washington, DC, pp 140–147

    Google Scholar 

  • Josefowicz SZ, Lu LF, Rudensky AY et al. (2012) T. Cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564

    Article  CAS  PubMed  Google Scholar 

  • Kono K (2014) Current status of cancer immunotherapy. J Stem Cells Regen Med 10:8–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lebrec H, Cowan L, Lagrou M et al (2011) An interlaboratory retrospective analysis of immunotoxicological endpoints in non-human primates: T-cell-dependent antibody responses. J Immunotoxicol 8:238–250

    Article  CAS  PubMed  Google Scholar 

  • Lee TP, Chiang BL (2012) Sex differences in spontaneous versus induced animal models of autoimmunity. Autoimmun Rev 11:A422–A429

    Article  PubMed  Google Scholar 

  • McDermott SP, Eppert K, Lechman ER et al (2010) Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 116:193–200

    Article  CAS  PubMed  Google Scholar 

  • Morse HC 3rd, Anver MR, Fredrickson TN et al for the Hematopathology Subcommittee of the Mouse Models of Human Cancers Consortium (MMHCC) et al (2002) Bethesda proposals for classification of lymphoid neoplasms in mice. Blood 100:246–258

    Google Scholar 

  • NICHD (National Institute of Child Health and Human Development), National Institutes of Health, USA (2002) Primary immunodeficiency. http://www.nichd.nih.gov/publications/pubs/Pages/primary_immuno.aspx. Accessed 01 Dec 2014

  • Piccotti J, Alvey JD, Reindel JF et al (2005) T-cell-dependent antibody response: assay development in cynomolgus monkeys. J Immunotoxicol 2:191–196

    Article  CAS  PubMed  Google Scholar 

  • Shultz LD, Brehm MA, Garcia-Martinez JV et al (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 12:786–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13:139–145

    Article  CAS  PubMed  Google Scholar 

  • Talmadge JE, Singh RK, Fidler IJ et al (2007) Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170:793–804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toxicologic Pathology (2006) A monograph on histomorphologic evaluation of lymphoid organs. Toxicol Pathol 34:631–696. http://tpx.sagepub.com/content/34/5.toc. Accessed 01 Dec 2014

  • van den Berg W (2000) What we learn from arthritis models to benefit arthritis patients. Baillieres Best Pract Res Clin Rheumatol 14:599–616

    Article  PubMed  Google Scholar 

  • Vesely MD, Kershaw MH, Schreiber RD et al (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey Papenfuss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Papenfuss, T., Bolon, B. (2014). Lymphocytes. In: Vohr, HW. (eds) Encyclopedia of Immunotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27786-3_925-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27786-3_925-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27786-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics