Skip to main content

The Family Simkaniaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Simkaniaceae, a family that is distinguished phylogenetically within the order Chlamydiales, embraces the genera Simkania, “Candidatus Fritschea,” and at least a dozen additional lineages with varying depths of characterization. Like all Chlamydiae, Simkaniaceae are obligately intracellular bacteria found in association with eukaryotes, in which they replicate. Known natural eukaryotic hosts include humans, whiteflies, scale insects, and the benthic marine animal Xenoturbella. The effect of Simkaniaceae on hosts may be pathogenic, commensal, or mutualistic and they survive and replicate at temperatures ranging from 1.9 °C to 37 °C. The type strain S. negevensis (ATCC VR-1471), for example, has been shown experimentally to infect and replicate in human cells, insect cells, and Acanthamoeba polyphaga. Morphological characterization using transmission electron microscopy has been carried out for Simkania negevensis, “Ca. Fritschea,” and symbionts of Xenoturbella. These data show classic chlamydial replication involving elementary bodies (EBs) and reticulate bodies (RBs). However, unlike other RBs, those of S. negevensis are infectious. Chemotaxonomic properties have been examined by molecular analysis and inferred from the complete genome sequence of S. negevensis and partial sequence of “Ca. Fritschea bemisiae.” DNA sequence analysis is routinely used to identify Simkaniaceae. The full-length rRNA genes of all Simkaniaceae have 16S or 23S rDNA sequences at least 90 % identical to those of S. negevensis and at least 80 % identical to sequence accession number NR_036834.1 (16S) or U76710.2 (23S). Algorithms applied to Chlamydiales 16S rRNA sequences show that S. negevensis branches deeply relative to other chlamydial type strains. Within Simkaniaceae, full-length rRNA gene sequences are available for S. negevensis, “Ca. Fritschea,” symbionts of Xenoturbella, and other lineages. Partial rRNA sequences are available for other clades. Unlike all other Chlamydiae and most other bacterial lineages, three Simkaniaceae species have a group I intron in the I-CpaI target site of the 23S rRNA gene (position 1931, Escherichia coli numbering). Many proteins coded in the S. negevensis genome and an exonuclease coded in these introns show significant similarities to coding sequences in cyanobacteria, chloroplasts, and mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenberg-Gershtein Y, Vaizel-Ohayon D, Halpern M (2012) Structure of bacterial communities in diverse freshwater habitats. Can J Microbiol 58:326–335

    Article  CAS  PubMed  Google Scholar 

  • Birtles RJ, Rowbotham TJ, Michel R, Pitcher DG, Lascola B, Alexiou-Daniel S, Raoult D (2000) ‘Candidatus Odyssella thessalonicensis’ gen. nov., sp. nov., an obligate intracellular parasite of Acanthamoeba species. Int J Syst Evol Microbiol 50:63–72

    Article  CAS  PubMed  Google Scholar 

  • Bourlat SJ, Juliusdottir T, Lowe CL, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444:85–88

    Article  CAS  PubMed  Google Scholar 

  • Caldwell HD, Kromhout J, Schachter J (1981) Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31:1161–1176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collingro A, Tischler P, Weinmaier T, Penz T, Heinz E, Brunham RC, Read TD, Bavoil PM, Sachse K, Kahane S, Friedman MG, Rattei T, Myers GS, Horn M (2011) Unity in variety–the pan-genome of the Chlamydiae. Mol Biol Evol 28:3253–3270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corsaro D, Venditti D (2009) Detection of Chlamydiae from freshwater environments by PCR, amoeba coculture and mixed coculture. Res Microbiol 160:547–552

    Article  CAS  PubMed  Google Scholar 

  • Costa HS, Westcot DM, Ullman DE, Rosell R, Brown JK, Johnson MW (1995) Morphological variation in Bemisia endosymbionts. Protoplasma 189:194–202

    Article  Google Scholar 

  • Desper R, Gascuel O (2004) Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol Biol Evol 21:587–598

    Article  CAS  PubMed  Google Scholar 

  • Dvoskin B, Kahane S, Everett KDE, Gopas J, Friedman MG (2003) Preliminary characterization of the outer membrane protein complex of Simkania negevensis. First biennial meeting of the Chlamydia Basic Research Society, Memphis

    Google Scholar 

  • Dvoskin B, Kahane S, Everett KDE, Gopas J, Friedman MG (2002) Preliminary characterization of the outer membrane protein complex of Simkania negevensis. Submitted to the 10th international symposium on human Chlamydial infections, Antalya

    Google Scholar 

  • Everett KDE, Bush RM, Andersen AA (1999a) Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49:415–440

    Article  CAS  PubMed  Google Scholar 

  • Everett KDE, Kahane S, Bush RM, Friedman MG (1999b) An unspliced group I intron in 23S rRNA links Chlamydiales, chloroplasts, and mitochondria. J Bacteriol 181:4734–4740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Everett KDE, Hatch TP (1995) Architecture of the cell envelope of Chlamydia psittaci 6BC. J Bacteriol 177:877–882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Everett KDE, Thao M, Horn M, Dyszynski GE, Baumann P (2005) Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. Int J Syst Evol Microbiol 55:1581–1587

    Article  CAS  PubMed  Google Scholar 

  • Friedman MG, Dvoskin B, Kahane S (2003) Infections with the Chlamydia-like microorganism Simkania negevensis, a possible emerging pathogen. Microbes Infect 5:1013–1021

    Article  PubMed  Google Scholar 

  • Friedman MG, Galil A, Greenberg S, Kahane S (1999) Seroprevalence of IgG antibodies to the Chlamydia-like microorganism ‘Simkania Z’ by ELISA. Epidemiol Infect 122:117–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman MG, Kahane S, Dvoskin B, Hartley JW (2006) Detection of Simkania negevensis by culture, PCR, and serology in respiratory tract infection in Cornwall, UK. J Clin Pathol 59:331–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukushi H, Hirai K (1993) Restriction fragment length polymorphisms of rRNA as genetic markers to differentiate Chlamydia spp. Int J Syst Bacteriol 43:613–617

    Article  CAS  PubMed  Google Scholar 

  • Garrity GM, Holt JG (2001) The road map to the manual. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic bacteria. Springer, New York, pp 119–166

    Chapter  Google Scholar 

  • Georgiades K, Madoui MA, Le P, Robert C, Raoult D (2011) Phylogenomic analysis of Odyssella thessalonicensis fortifies the common origin of Rickettsiales, Pelagibacter ubique and Reclimonas americana mitochondrion. PLoS One 6:e24857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gillespie JJ, Joardar V, Williams KP, Driscoll T, Hostetler JB, Nordberg E, Shukla M, Walenz B, Hill CA, Nene VM, Azad AF, Sobral BW, Caler E (2012) A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol 194:376–394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenberg D, Banerji A, Friedman MG, Kahane S (2003) High rate of Simkania negevensis among Canadian Inuit infants hospitalized with lower respiratory tract infections. Scand J Infect Dis 35:506–508

    Article  PubMed  Google Scholar 

  • Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413–433

    Article  PubMed Central  PubMed  Google Scholar 

  • Haugen P, Bhattacharya D, Palmer JD, Turner S, Lewis LA, Pryer KM (2007) Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns. BMC Evol Biol 7:159

    Article  PubMed Central  PubMed  Google Scholar 

  • Heinz E, Pichler P, Heinz C, Op den Camp HJ, Toenshoff ER, Ammerer G, Mechtler K, Wagner M, Horn M (2010) Proteomic analysis of the outer membrane of Protochlamydia amoebophila elementary bodies. Proteomics 10:4363–4376

    Article  CAS  PubMed  Google Scholar 

  • Homi S, Takechi K, Tanidokoro K, Sato H, Takio S, Takano H (2009) The peptidoglycan biosynthesis genes MurA and MraY are related to chloroplast division in the moss Physcomitrella patens. Plant Cell Physiol 50:2047–2056

    Article  CAS  PubMed  Google Scholar 

  • Horn M (2010a) Family VII. Simkaniaceae Everett, K. D. E., R. M. Bush, and A. A. Andersen 1999, 435VP. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 874–876

    Google Scholar 

  • Horn M (2010b) Class I. Chlamydiia class nov. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, p 844

    Google Scholar 

  • Horn M, Wagner M, Müller KD, Schmid EN, Fritsche TR, Schleifer KH, Michel R (2000) Neochlamydia hartmannellae gen. nov., sp. nov. (Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformis. Microbiology 146:1231–1239

    CAS  PubMed  Google Scholar 

  • Husain S, Kahane S, Friedman MG, Paterson DL, Studer S, McCurry KR, Wolf DG, Zeevi A, Pilewski J, Greenberg D (2007) Simkania negevensis in bronchoalveolar lavage of lung transplant recipients: a possible association with acute rejection. Transplantation 83:138–143

    Article  PubMed  Google Scholar 

  • Israelsson O (2007) Chlamydial symbionts in the enigmatic Xenoturbella (Deuterostomia). J Invertebr Pathol 96:213–220

    Article  CAS  PubMed  Google Scholar 

  • Kahane S, Dvoskin B, Mathias M, Friedman MG (2001) Infection of Acanthamoeba polyphaga with Simkania negevensis and S. negevensis survival within amoebal cysts. Appl Environ Microbiol 67:4789–4795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kahane S, Kimmel N, Friedman MG (2002) The growth cycle of Simkania negevensis. Microbiology 148:735–742

    CAS  PubMed  Google Scholar 

  • Kahane S, Dvoskin B, Friedman MG (2008) The role of monocyte/macrophages as vehicles of dissemination of Simkania negevensis: an in vitro simulation model. FEMS Immunol Med Microbiol 52:219–227

    Article  CAS  PubMed  Google Scholar 

  • Kahane S, Dvoskin B, Lustig G, Dilbeck P, Friedman MG (2000) Partial characterization of Simkania negevensis isolates and comparison with Chlamydia type strains. In: Saikku P (ed) Proceedings: fourth meeting of the European Society for Chlamydia research. Esculapio, Helsinki/Bologna, p 8

    Google Scholar 

  • Kahane S, Everett KD, Kimmel N, Friedman MG (1999) Simkania negevensis strain ZT: growth, antigenic and genome characteristics. Int J Syst Bacteriol 49:815–820

    Article  CAS  PubMed  Google Scholar 

  • Kahane S, Gonen R, Sayada C, Elion J, Friedman MG (1993) Description and partial characterization of a new Chlamydia-like microorganism. FEMS Microbiol Lett 109:329–333

    Article  CAS  PubMed  Google Scholar 

  • Kahane S, Greenberg D, Newman N, Dvoskin B, Friedman MG (2007) Domestic water supplies as a possible source of infection with Simkania. J Infect 54:75–81

    Article  PubMed  Google Scholar 

  • Kahane S, Greenberg D, Friedman MG, Haikin H, Dagan R (1998) High prevalence of “Simkania Z”, a novel Chlamydia-like bacterium, in infants with acute bronchiolitis. J Infect Dis 177:1425–1429

    Article  CAS  PubMed  Google Scholar 

  • Kahane S, Platzner N, Dvoskin B, Itzhaki A, Friedman MG (2004) Evidence for the presence of Simkania negevensis in drinking water and in reclaimed wastewater in Israel. Appl Environ Microbiol 70:3346–3351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karunakaran K, Mehlitz A, Rudel T (2011) Evolutionary conservation of infection-induced cell death inhibition among Chlamydiales. PLoS One 6:e22528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knab S, Mushak TM, Schmitz-Esser S, Horn M, Haferkamp I (2011) Nucleotide parasitism by Simkania negevensis (Chlamydiae). J Bacteriol 193:225–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kjeldsen KU, Obst M, Nakano H, Funch P, Schramm A (2010) Two types of endosymbiotic bacteria in the enigmatic marine worm Xenoturbella bocki. Appl Environ Microbiol 76:2657–2662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Kohlhoff SA, Gelling M, Roblin PM, Kutlin A, Kahane S, Friedman MG, Hammerschlag MR (2005) Infection with Simkania negevensis in Brooklyn, New York. Pediatr Infect Dis J 24:989–992

    Article  PubMed  Google Scholar 

  • Lieberman D, Dvoskin B, Lieberman DV, Kahane S, Friedman MG (2002) Serological evidence of acute infection with the Chlamydia-like microorganism Simkania negevensis (Z) in acute exacerbation of chronic obstructive pulmonary disease. Eur J Clin Microbiol Infect Dis 21:307–309

    Article  CAS  PubMed  Google Scholar 

  • Lieberman D, Kahane S, Lieberman D, Friedman MG (1997) Pneumonia with serological evidence of acute infection with the Chlamydia-like microorganism “Z”. Am J Respir Crit Care Med 156:578–582

    Article  CAS  PubMed  Google Scholar 

  • Lienard J, Croxatto A, Aeby S, Jaton K, Posfay-Barbe K, Gervaix A, Greub G (2011a) Development of a new Chlamydiales-specific real-time PCR and its application to respiratory clinical samples. J Clin Microbiol 49:2637–2642

    Article  PubMed Central  PubMed  Google Scholar 

  • Lienard J, Croxatto A, Prod’hom G, Greub G (2011b) Estrella lausannensis, a new star in the Chlamydiales order. Microbes Infect 13:1232–1241

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Euzéby J, Whitman WB (2010) Road map of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 13–16

    Google Scholar 

  • Machida M, Takechi K, Sato H, Chung SJ, Kuroiwa H, Takio S, Seki M, Shinozaki K, Fujita T, Hasebe M, Takano H (2006) Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss. Proc Natl Acad Sci U S A 103:6753–6758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto H, Takechi K, Sato H, Takio S, Takano H (2012) Treatment with antibiotics that interfere with peptidoglycan biosynthesis inhibits chloroplast division in the desmid Closterium. PLoS One 7:e40734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCoy AJ, Adams NE, Hudson AO, Gilvarg C, Leustek T, Maurelli AT (2006) l, l-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc Natl Acad Sci USA 103:17909–17914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ouellette SP, Karimova G, Subtil A, Ladant D (2012) Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division. Mol Microbiol 85:164–178

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Li X, Ge D, Wang S, Wu Q, Xie W, Jiao X, Chu D, Liu B, Xu B, Zhang Y (2012) Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci. PLoS One 7:e30760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sagaram US, DeAngelis KM, Trivedi P, Andersen GL, Lu SE, Wang N (2009) Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip arrays and 16S rRNA gene clone library sequencing. Appl Environ Microbiol 75:1566–1574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt H, Hansen G, Singh S, Hanuszkiewicz A, Lindner B, Fukase K, Woodard RW, Holst O, Hilgenfeld R, Mamat U, Mesters JR (2012) Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis. Proc Natl Acad Sci USA 109:6253–6258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scieux C, Grimont F, Regnault B, Grimont PA (1992) DNA fingerprinting of Chlamydia trachomatis by use of ribosomal RNA, oligonucleotide and randomly cloned DNA probes. Res Microbiol 143:755–765

    Article  CAS  PubMed  Google Scholar 

  • Sixt BS, Heinz C, Pichler P, Heinz E, Montanaro J, Op den Camp HJ, Ammerer G, Mechtler K, Wagner M, Horn M (2011) Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont Protochlamydia amoebophila. Proteomics 11:1868–1892

    Article  CAS  PubMed  Google Scholar 

  • Sixt BS, Hiess B, König L, Horn M (2012) Lack of effective anti-apoptotic activities restricts growth of Parachlamydiaceae in insect cells. PLoS One 7:e29565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Storz J, Page LA (1971) Taxonomy of the Chlamydiae: Reasons for Classifying Organisms of the Genus Chlamydia, Family Chlamydiaceae, in a Separate Order, Chlamydiales ord. nov. Int J Syst Bacteriol 21:332–334

    Article  Google Scholar 

  • Takano H, Takechi K (2010) Plastid peptidoglycan. Biochim Biophys Acta 1800:144–151

    Article  CAS  PubMed  Google Scholar 

  • Thao ML, Baumann L, Hess JM, Falk BW, Ng JC, Gullan PJ, Baumann P (2003) Phylogenetic evidence for two new insect-associated Chlamydia of the family Simkaniaceae. Curr Microbiol 47:46–50

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Yamazaki T, Inoue M, Mashida C, Kawagoe K, Ogawa M, Shiga S, Nakagawa Y, Kishimoto T, Kurane I, Ouchi K, Ohzeki T (2005) Prevalence of antibodies against Simkania negevensis in a healthy Japanese population determined by the microimmunofluorescence test. FEMS Immunol Med Microbiol 43:21–27

    Article  CAS  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author is grateful to Dr. Simona Kahane for providing data, analyses, basic information, and frequent consultation and to Dr. Maureen Friedman for reports of published and unpublished data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin D. E. Everett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Everett, K.D.E. (2014). The Family Simkaniaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_153

Download citation

Publish with us

Policies and ethics