Skip to main content

Concept and Applications of Receiving Mutual Impedance

  • Reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

The concept of receiving mutual impedance is introduced through derivation from a method of moments (MoM) analysis. The theoretical and experimental methods for the determination of the receiving mutual impedance are given and illustrated with typical examples of dipole and monopole antenna arrays. The fundamental difference, namely, the truly isolated state between the receiving mutual impedance and the conventional mutual impedance, is explained. Typical examples for the application of the receiving mutual impedance are given to demonstrate the validity and accuracy of using this concept. These examples include applications in direction of arrival (DOA) estimation, in interferences suppression, in magnetic resonance imaging (MRI) phased-array design, and in multiple-input and multiple-output (MIMO) communication systems.

Hon Tat Hui: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adve RS, Sarkar TK (2000) Compensation for the effects of mutual coupling on direct data domain adaptive algorithms. IEEE Trans Antennas Propag 48:86–94

    Article  Google Scholar 

  • Balanis CA (2005) Antenna theory: Analysis and design. 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Cheng DK (1983) Field and wave electromagnetics. Addison-Wesley Publishing, Reading

    Google Scholar 

  • Clarke RH (1968) A statistical theory of mobile-radio receptions. Bell Syst Tech J 47:957–1000

    Google Scholar 

  • Craeye C, Parvais B, Dardenne X (2004) MoM simulation of signal-to-noise patterns in infinite and finite receiving antenna arrays. IEEE Trans Antennas Propag 52:3245–3256

    Article  MathSciNet  MATH  Google Scholar 

  • Dandekar KR, Ling H, Xu G (2002) Experimental study of mutual coupling compensation in smart antenna application. IEEE Trans Wirel Commun 1:480–487

    Article  Google Scholar 

  • Daniel JP (1974) Mutual coupling between antennas for emission or reception-application to passive and active dipoles. IEEE Trans Antennas Propag 22:347–349

    Article  Google Scholar 

  • Foschini GJ, Gans MJ (1998) On limits of wireless communications in a fading environment when using multiple antennas. Wirel Pers Commun 6:311–335

    Article  Google Scholar 

  • Goossens R, Rogier H (2007) A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling. IEEE Trans Antennas Propag 43:841–849

    Article  Google Scholar 

  • Gupta IJ, Ksienski AA (1983) Effect of mutual coupling on the performance of adaptive arrays. IEEE Trans Antennas Propag 31:785–791

    Article  Google Scholar 

  • Harrington RF (1993) Field computation by moment methods. IEEE Press, New York

    Book  Google Scholar 

  • Hui HT (2003) Improved compensation for the mutual coupling effect in a dipole array for direction finding. IEEE Trans Antennas Propag 51:2498–2503

    Article  Google Scholar 

  • Hui HT (2004a) A practical approach to compensate for the mutual coupling effect of an adaptive dipole array. IEEE Trans Antennas Propag 52:1262–1269

    Article  Google Scholar 

  • Hui HT (2004b) A new definition of mutual impedance for application in dipole receiving antenna arrays. IEEE Antennas Wirel Propag Lett 3:367–364

    Article  Google Scholar 

  • Hui HT (2007) Decoupling methods for the mutual coupling effect in antenna arrays: a review. Recent Pat Eng 1:187–193

    Article  MathSciNet  Google Scholar 

  • Hui HT, Li BK, Crozier S (2006) A new decoupling method for quadrature coils in magnetic resonance imaging. IEEE Trans Biomed Eng 53:2114–2116

    Article  Google Scholar 

  • Hyde JS, Jesmanowicz A, Froncisz W, Kneeland JB, Grist TM (1986) Parallel image acquisition from noninteracting local coils. J Magn Reson 70:512–517

    Google Scholar 

  • Ishimaru A (1991) Electromagnetic wave propagation, radiation, and scattering. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Jin JM (1999) Electromagnetic analysis and design in magnetic resonance imaging. CRC Press, Boca Raton

    Google Scholar 

  • Jordan EC (1968) Electromagnetic waves and radiating systems. Prentice-Hall, Englewood Cliffs, Chap 11

    MATH  Google Scholar 

  • Jungnickel V, Pohl V, Helmolt C (2003) Capacity of MIMO systems with closely spaced antennas. IEEE Commun Lett 7:367–363

    Article  Google Scholar 

  • Kisliansky A, Shavit R, Tabrikian J (2007) Direction of arrival estimation in the presence of noise coupling in antenna arrays. IEEE Trans Antennas Propag 55:1940–1947

    Article  Google Scholar 

  • Lau CKE, Adve RS, Sarkar TK (2004) Minimum norm mutual coupling compensation with applications in direction of arrival estimation. IEEE Trans Antennas Propag 52:2034–2040

    Article  Google Scholar 

  • Li BK, Hui HT, Yang CH, Crozier S (2008) A new decoupling method for phased arrays in magnetic resonance imaging – an experimental approach. IET Proc Sci Meas Technol 2:317–325

    Article  Google Scholar 

  • Liang D, Hui HT, Yeo TS (2012) Increasing the signal-to-noise ratio by using vertically stacked phased array coils for low-field magnetic resonance imaging. IEEE Trans Inf Technol BioMed 16:1150–1156

    Article  Google Scholar 

  • Liang D, Hui HT, Yeo TS, Li BK (2013a) Stacked phased array coils for increasing the signal-to-noise ratio in magnetic resonance imaging. IEEE Trans Biomed Circuits Syst 7:24–30

    Article  Google Scholar 

  • Liang D, Hui HT, Yeo TS (2013b) Improved signal-to-noise ratio performance in magnetic resonance imaging by using a multi-layered surface coil array – a simulation study. IEEE J Biomed Health Inf 17:756–762

    Article  Google Scholar 

  • Lui HS, Hui HT (2010a) Effective mutual coupling compensation for direction-of-arrival estimation using a new, accurate determination method for the receiving mutual impedance. J Electromagn Waves Appl 24:271–281

    Article  Google Scholar 

  • Lui HS, Hui HT (2010b) Mutual coupling compensation for direction-of-arrival estimations using the receiving-mutual-impedance method. Int J Antennas Propag Article ID 373061

    Google Scholar 

  • Lui HS, Hui HT (2010c) Improved mutual coupling compensation in compact antenna arrays. IET Microwave Antennas Propag 4:1506–1516

    Article  Google Scholar 

  • Lui HS, Hui HT, Leong MS (2009) A note on the mutual coupling problems in transmitting and receiving antenna arrays. IEEE Antennas Propag Mag 51:171–176

    Google Scholar 

  • Niow CH, Hui HT (2012) Improved noise modeling with mutual coupling in receiving antenna arrays for direction-of-arrival estimation. IEEE Trans Wirel Commun 11:1616–1621

    Article  Google Scholar 

  • Ohliger MA, Ledden P, McKenzie CA, Sodickson DK (2004) Effects of inductive coupling on parallel MR Image reconstructions. Magn Reson Med 52:628–639

    Article  Google Scholar 

  • Pasala KM, Friel EM (1994) Mutual coupling effects and their reduction in wideband direction of arrival estimation. IEEE Trans Aerosp Electron Syst 30:1116–1122

    Article  Google Scholar 

  • Pozar DM (1990) Microwave engineering. Addison-Wesley, New York

    Google Scholar 

  • Prasad S, Williams RT, Mahalanabis AK, Sibul LH (1988) A transform-based covariance differencing approach for some classes of parameter estimation problems. IEEE Trans Acoust Speech Signal Process 36:631–641

    Article  Google Scholar 

  • Qi C, Wang Y, Zhang Y, Han Y (2005) Spatial difference smoothing for DOA estimation of coherent signals. IEEE Signal Process Lett 12:800–802

    Article  Google Scholar 

  • Qi C, Chen Z, Wang Y, Zhang Y (2007) DOA estimation for coherent sources in unknown nonuniform noise fields. IEEE Trans Aerosp Electron Syst 43:1195–1204

    Article  Google Scholar 

  • Rajagopal R, Rao PR (1991) DOA estimation with unknown noise fields: a matrix decomposition method. IEE Proc 138:495–501

    Google Scholar 

  • Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225

    Article  Google Scholar 

  • Roy R, Kailath T (1989) ESPRIT – estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust Speech Signal Process 37:984–995

    Article  MATH  Google Scholar 

  • Sarkar TK, Park S, Koh J, Schneible RA (1996) A deterministic least squares approach to adaptive antennas. Digital Signal Process 6:185–194

    Article  Google Scholar 

  • Sarkar TK, Koh J, Adve RS, Schneible RA, Wicks MC, Choi S, Palma MS (2000) A pragmatic approach to adaptive antennas. IEEE Antennas Propag Mag 42:39–55

    Article  Google Scholar 

  • Schmidt RO (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag 34:276–280

    Article  Google Scholar 

  • Schmidt RO, Franks RE (1986) Multiple source DF signal processing: an experimental system. IEEE Trans Antennas Propag 34:281–290

    Article  Google Scholar 

  • Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil array. Magn Reson Med 38:591–603

    Article  Google Scholar 

  • Svantesson T (2002) Correlation and channel capacity of MIMO systems employing multimode antennas. IEEE Trans Veh Technol 51:1304–1312

    Article  Google Scholar 

  • Torrieri D, Bakhru K (1997) The effects of nonuniform and correlated noise on superresolution algorithms. IEEE Trans Antennas Propag 45:1214–1218

    Article  Google Scholar 

  • Werner K, Jansson M (2005) On DOA estimation in unknown colored noise-fields using an imperfect estimate of the noise covariance. In: Proceedings of the 2005 IEEE/SP 13th workshop on statistical signal processing, Bordeaux, France, pp 956–961

    Google Scholar 

  • Wu Y, Nie Z (2008) On the improvement of the mutual coupling compensation in DOA estimation. J Syst Eng Electron 19:1–16

    Article  Google Scholar 

  • Wu Y, Nie Z (2009) New mutual coupling compensation method and its application in DOA estimation. Front Electr Electron Eng Chin 4:47–51

    Article  Google Scholar 

  • Yang S, Nie Z (2005) Mutual coupling compensation in time modulated linear antenna arrays. IEEE Trans Antennas Propag 53:4182–4185

    Article  Google Scholar 

  • Ye Z, Liu C (2008) 2-D DOA estimation in the presence of mutual coupling. IEEE Trans Antennas Propag 56:3150–3158

    Article  MathSciNet  MATH  Google Scholar 

  • Yeh CC, Leou ML, Ucci DR (1989) Bearing estimations with mutual coupling present. IEEE Trans Antennas Propag 37:1332–1335

    Article  Google Scholar 

  • Yu YT, Hui HT (2011) Design of a mutual coupling compensation network for a small receiving monopole array. IEEE Trans Microw Theory Tech 59:2241–2245

    Article  Google Scholar 

  • Yu YT, Lui HS, Niow CH, Hui HT (2011) Improved DOA estimations using the receiving mutual impedances for mutual coupling compensation: an experimental study. IEEE Trans Wirel Commun 10:2228–2233

    Article  Google Scholar 

  • Yuan H, Hirasawa K, Zhang Y (1998) The mutual coupling and diffraction effects on the performance of a CMA adaptive array. IEEE Trans Veh Technol 47:728–736

    Article  Google Scholar 

  • Zhang X, Webb A (2004) Design of a capacitively decoupled transmit/receive NMR phased array for high field microscopy at 14.1 T. J Magn Reson 170:149–155

    Article  Google Scholar 

  • Zhao Y, Zhang S (2000) Generalised algorithm for DOA estimation in unknown correlated noise. IET Electron Lett 36:1893–1894. http://www.feko.info/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Hui, H.T. (2016). Concept and Applications of Receiving Mutual Impedance. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_13

Download citation

Publish with us

Policies and ethics