Skip to main content
Log in

Data-driven topology optimization (DDTO) for three-dimensional continuum structures

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Developing appropriate analytic-function-based constitutive models for new materials with nonlinear mechanical behavior is demanding. For such kinds of materials, it is more challenging to realize the integrated design from the collection of the material experiment under the classical topology optimization framework based on constitutive models. The present work proposes a mechanistic-based data-driven topology optimization (DDTO) framework for three-dimensional continuum structures under finite deformation. In the DDTO framework, with the help of neural networks and explicit topology optimization method, the optimal design of the three-dimensional continuum structures under finite deformation is implemented only using the uniaxial and equi-biaxial experimental data. Numerical examples illustrate the effectiveness of the data-driven topology optimization approach, which paves the way for the optimal design of continuum structures composed of novel materials without available constitutive relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. While in the 3D case, more DOFs related to low-density element need to be eliminated to solve the convergence issue caused by excessive deformation of low-density elements. Thanks to the decoupling of the geometry model and analysis model in the MMV method, we won’t need to worry about the reintroduction of removed DOFs or elements in subsequent iteration (Xue et al. 2019; Zhang et al. 2017; Du et al. 2022).

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    MathSciNet  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    MathSciNet  MATH  Google Scholar 

  • Bonatti C, Mohr D (2022) On the importance of self-consistency in recurrent neural network models representing elasto-plastic solids. J Mech Phys Solids 158:104697

    MathSciNet  Google Scholar 

  • Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidisc Optim 19:93–104

    Google Scholar 

  • Chen F, Wang Y, Wang MY, Zhang YF (2017) Topology optimization of hyperelastic structures using a level set method. J Comput Phys 351:437–454

    MathSciNet  Google Scholar 

  • Chen J, Yang H, Elkhodary KI, Tang S, Guo X (2022) G-MAP123: a mechanistic-based data-driven approach for 3D nonlinear elastic modeling—via both uniaxial and equibiaxial tension experimental data. Extreme Mech Lett 50:101545

    Google Scholar 

  • Dalklint A, Wallin M, Tortorelli DA (2020) Eigenfrequency constrained topology optimization of finite strain hyperelastic structures. Struct Multidisc Optim 61:2577–2594

    MathSciNet  Google Scholar 

  • Deng H, Cheng L, To AC (2019) Distortion energy-based topology optimization design of hyperelastic materials. Struct Multidisc Optim 59:1895–1913

    MathSciNet  Google Scholar 

  • Du Z, Cui T, Liu C, Zhang W, Guo Y, Guo X (2022) An efficient and easy-to-extend Matlab code of the Moving Morphable Component (MMC) method for three-dimensional topology optimization. Struct Multidisc Optim 65:158

    Google Scholar 

  • Guo X, Zhang WS, Zhong WL (2014) Doing topology optimization explicitly and geometrically—a new moving morphable momponents based framework. J Appl Mech 81:081009

    Google Scholar 

  • Guo X, Du Z, Liu C, Tang S (2021) A new uncertainty analysis-based framework for data-driven computational mechanics. J Appl Mech 88:111003

    Google Scholar 

  • Ha SH, Cho S (2008) Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Comput Struct 86:1447–1455

    Google Scholar 

  • He Q, Chen JS (2020) A physics-constrained data-driven approach based on locally convex reconstruction for noisy database. Comput Methods Appl Mech Eng 363:112791

    MathSciNet  MATH  Google Scholar 

  • Huang J, Xu S, Ma Y, Liu J (2022) A topology optimization method for hyperelastic porous structures subject to large deformation. Int J Mech Mater Des 18:289–308

    Google Scholar 

  • Ibañez R, Borzacchiello D, Aguado JV, Abisset-Chavanne E, Cueto E, Ladeveze P, Chinesta F (2017) Data-driven non-linear elasticity: constitutive manifold construction and problem discretization. Comput Mech 60:813–826

    MathSciNet  MATH  Google Scholar 

  • Ibañez R, Abisset-Chavanne E, Aguado JV, Gonzalez D, Cueto E, Chinesta F (2018) A manifold learning approach to data-driven computational elasticity and inelasticity. Arch Computat Methods Eng 25:47–57

    MathSciNet  MATH  Google Scholar 

  • Kanno Y (2018) Simple heuristic for data-driven computational elasticity with material data involving noise and outliers: a local robust regression approach. Jpn J Ind Appl Math 35:1085–1101

    MathSciNet  MATH  Google Scholar 

  • Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101

    MathSciNet  MATH  Google Scholar 

  • Lahuerta RD, Simões ET, Campello EM, Pimenta PM, Silva EC (2013) Towards the stabilization of the low density elements in topology optimization with large deformation. Comput Mech 52:779–797

    MathSciNet  MATH  Google Scholar 

  • Luo Y, Wang MY, Kang Z (2015) Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique. Comput Methods Appl Mech Eng 286:422–441

    MathSciNet  MATH  Google Scholar 

  • Masi F, Stefanou I, Vannucci P, Maffi-Berthier V (2021) Thermodynamics-based artificial neural networks for constitutive modeling. J Mech Phys Solids 147:104277

    MathSciNet  MATH  Google Scholar 

  • Silva ALF, Salas RA, Silva ECN, Reddy JN (2020) Topology optimization of fibers orientation in hyperelastic composite material. Comput Struct 231:111488

    Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    MathSciNet  MATH  Google Scholar 

  • Tang S, Zhang G, Yang H, Li Y, Liu WK, Guo X (2019) MAP 123: A data-driven approach to use 1D data for 3D nonlinear elastic materials modeling. Comput Methods Appl Mech Eng 357:112587

    MATH  Google Scholar 

  • Tang S, Li Y, Qiu H, Yang H, Saha S, Mojumder S, Liu WK, Guo X (2020) MAP123-EP: a mechanistic-based data-driven approach for numerical elastoplastic analysis. Comput Methods Appl Mech Eng 364:112955

    MathSciNet  MATH  Google Scholar 

  • Tang S, Yang H, Qiu H, Fleming M, Liu WK, Guo X (2021) MAP123-EPF: a mechanistic-based data-driven approach for numerical elastoplastic modeling at finite strain. Comput Methods Appl Mech Eng 373:113484

    MathSciNet  MATH  Google Scholar 

  • van Dijk NP, Langelaar M, van Keulen F (2014) Element deformation scaling for robust geometrically nonlinear analyses in topology optimization. Struct Multidisc Optim 50:537–560

    MathSciNet  Google Scholar 

  • Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    MathSciNet  MATH  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O, Jensen JS (2014) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Engrg 276:453–472

    MathSciNet  MATH  Google Scholar 

  • Xia Q, Shi T (2016) Stiffness optimization of geometrically nonlinear structures and the level set based solution. Int J Simul Multisci Des Optim 7:A3

    Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896

    Google Scholar 

  • Xue R, Liu C, Zhang W, Zhu Y, Tang S, Du Z, Guo X (2019) Explicit structural topology optimization under finite deformation via Moving Morphable Void (MMV) approach. Comput Methods Appl Mech Eng 344:798–818

    MathSciNet  MATH  Google Scholar 

  • Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42:1983–2009

    MATH  Google Scholar 

  • Yoon GH, Kim YY (2007) Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. Int J Numer Methods Engrg 69:2196–2218

    MathSciNet  MATH  Google Scholar 

  • Zhang XS, Chi H (2020) Efficient multi-material continuum topology optimization considering hyperelasticity: achieving local feature control through regional constraints. Mech Res Commun 105:103494

    Google Scholar 

  • Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017) Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach. Comput Methods Appl Mech Engrg 322:590–614

    MathSciNet  MATH  Google Scholar 

  • Zhang Z, Zhao Y, Du B, Yao W (2020a) Topology optimization of hyperelastic structures using a modified evolutionary topology optimization method. Struct Multidisc Optim 62:3071–3088

    MathSciNet  Google Scholar 

  • Zhang XS, Chi H, Paulino GH (2020b) Adaptive multi-material topology optimization with hyperelastic materials under large deformations: a virtual element approach. Comput Methods Appl Mech Eng 370:112976

    MathSciNet  MATH  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Google Scholar 

  • Zhou Y, Zhan H, Zhang W, Zhu J, Bai J, Wang Q, Gu Y (2020) A new data-driven topology optimization framework for structural optimization. Comput Struct 239:106310

    Google Scholar 

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation (11821202, 11732004, 12002073, 11872139), the National Key Research and Development Plan (2020YFB1709401), Dalian Talent Innovation Program (2020RQ099), and 111 Project (B14013) are gratefully acknowledged.

Funding

Funding was provided by National Natural Science Foundation of China (Grant Numbers 11821202, 11732004, 12002073, 11872139), National Key Research and Development Plan (Grant Number 2020YFB1709401), Dalian Talent Innovation Program (Grant Number 2020RQ099), and 111 Project (B14013).

Author information

Authors and Affiliations

Authors

Contributions

Shan Tang (shantang@dlut.edu.cn) and Xu Guo (guoxu@dlut.edu.cn) are co-corresponding authors of this paper.

Corresponding author

Correspondence to Zongliang Du.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Replication of results

Code and data for replication can be provided up on request.

Additional information

Responsible Editor: Shikui Chen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$r\left(\theta ,\varphi \right)=\Vert {\varvec{S}}\left(u\left(\theta \right), v\left(\varphi \right)\right)\Vert =\Vert \sum_{k=0}^{K}\sum_{l=0}^{L}{N}_{k,p}\left(u\left(\theta \right)\right){N}_{l,q}\left(v\left(\varphi \right)\right){{\varvec{P}}}^{k,l}\Vert ,$$
(A.1)

where \({N}_{k,p}\left(u\right)\),\({N}_{l,q}\left(v\right)\) are the B-spline basis functions of \(p\) th and \(q\) th orders, \(K=14\) and \(L=6\) are the total number of control points in the \(\theta\) and \(\varphi\) directions, respectively. The symbols \({{\varvec{P}}}^{k,l}={\left({P}_{x}^{k,l},{P}_{y}^{k,l},{P}_{z}^{k,l}\right)}^{\top },\boldsymbol{ }k=0,\dots ,K, l=0,\dots ,L\) are the coordinates of the corresponding control points. In order to avoid self-intersection of the surfaces, the control points are constructed as follows:

$${P}_{x}^{k,l}={r}^{k,l}\mathrm{sin}\left({\varphi }_{l}\right)\mathrm{cos}\left({\theta }_{k}\right),$$
(A.2a)
$${P}_{y}^{k,l}={r}^{k,l}\mathrm{sin}\left({\varphi }_{l}\right)\mathrm{sin}\left({\theta }_{k}\right),$$
(A.2b)
$${P}_{z}^{k,l}={r}^{k,l}\mathrm{cos}\left({\varphi }_{l}\right),$$
(A.2c)

where \({r}^{k,l},\boldsymbol{ }k=0,\dots ,K, l=0,\dots ,L\) is the distance from the control point to the center of the void, \({\theta }_{k}=\frac{2k\pi }{K}, k=0,\dots ,K, {\varphi }_{l}=\frac{l\pi }{L}, l=0,\dots ,L\). Since the surface is a closed region, it is also required that

$${r}^{0,l}={r}^{K,l}, l=0,\dots ,L,$$
(A.3a)
$${r}^{k,0}={r}^{\mathrm{0,0}}, k=1,\dots ,K,$$
(A.3b)
$${r}^{k,L}={r}^{0,L}, k=1,\dots ,K.$$
(A.3c)

Appendix B

$$\frac{\partial {\chi }^{\mathrm{s}}}{\partial {\varvec{D}}}=\sum_{i=1}^{nv}\frac{\partial {\chi }^{\mathrm{s}}}{\partial {\chi }^{i}\left({{\varvec{D}}}^{i};\,{\varvec{x}}\right)}\frac{\partial {\chi }^{i}\left({{\varvec{D}}}^{i};\,{\varvec{x}}\right)}{\partial {\varvec{D}}}=\sum_{i=1}^{nv}\frac{{e}^{{-\lambda \chi }^{i}\left({{\varvec{D}}}^{i};\,{\varvec{x}}\right)}}{\sum_{i=1}^{nv}{e}^{{-\lambda \chi }^{i}\left({{\varvec{D}}}^{i};{\varvec{x}}\right)}}\frac{\partial {\chi }^{i}\left({{\varvec{D}}}^{i};\,{\varvec{x}}\right)}{\partial {\varvec{D}}},$$
(B.1)

In Eq. (2.11), the derivative of \({\chi }^{i}\left({{\varvec{D}}}^{i};{\varvec{x}}\right)\) with respect to each design variable can be calculated as follows:

$$\frac{\partial {\chi }^{i}\left({{\varvec{D}}}^{i};{\varvec{x}}\right)}{\partial {C}_{x}^{i}}=\frac{{C}_{x}^{i}}{\sqrt{{\left(x-{C}_{x}^{i}\right)}^{2}+{\left(y-{C}_{y}^{i}\right)}^{2}+{\left(z-{C}_{z}^{i}\right)}^{2}}} ,$$
(B.2)
$$\frac{\partial {\chi }^{i}\left({{\varvec{D}}}^{i};{\varvec{x}}\right)}{\partial {C}_{y}^{i}}=\frac{{C}_{y}^{i}}{\sqrt{{\left(x-{C}_{x}^{i}\right)}^{2}+{\left(y-{C}_{y}^{i}\right)}^{2}+{\left(z-{C}_{z}^{i}\right)}^{2}}} ,$$
(B.3)
$$\frac{\partial {\chi }^{i}\left({{\varvec{D}}}^{i};{\varvec{x}}\right)}{\partial {C}_{z}^{i}}=\frac{{C}_{z}^{i}}{\sqrt{{\left(x-{C}_{x}^{i}\right)}^{2}+{\left(y-{C}_{y}^{i}\right)}^{2}+{\left(z-{C}_{z}^{i}\right)}^{2}}} ,$$
(B.4)
$$\frac{\partial {\chi }^{i}\left({{\varvec{D}}}^{i};{\varvec{x}}\right)}{\partial {r}^{k,l}}=\frac{1}{r\left(\theta ,\varphi \right)}\left[{S}_{x}\left(\theta ,\varphi \right)\frac{\partial {S}_{x}\left(\theta ,\varphi \right)}{\partial {r}^{k,l}}+{S}_{y}\left(\theta ,\varphi \right)\frac{\partial {S}_{y}\left(\theta ,\varphi \right)}{\partial {r}^{k,l}}+{S}_{z}\left(\theta ,\varphi \right)\frac{\partial {S}_{z}\left(\theta ,\varphi \right)}{{\partial r}^{k,l}}\right],$$
$$k=0,\dots ,K, l=0,\dots ,L,$$
(B.5)

where

$$\frac{\partial {S}_{x}\left(\theta ,\varphi \right)}{{\partial r}^{k,l}}=\sum_{n=1}^{K}\sum_{m=1}^{L}{N}_{n,p}\left(u\left(\theta \right)\right){N}_{m,q}\left(v\left(\varphi \right)\right)\frac{\partial {P}_{x}^{n,m}}{{\partial r}^{k,l}}, n=0,\dots ,K, m=0,\dots ,L, (\mathrm{B}.6)$$
$$\frac{\partial {S}_{y}\left(\theta ,\varphi \right)}{{\partial r}^{k,l}}=\sum_{n=1}^{K}\sum_{m=1}^{L}{N}_{n,p}\left(u\left(\theta \right)\right){N}_{m,q}\left(v\left(\varphi \right)\right)\frac{\partial {P}_{y}^{n,m}}{{\partial r}^{k,l}}, n=0,\dots ,K, m=0,\dots ,L, (\mathrm{B}.7)$$
$$\frac{\partial {S}_{z}\left(\theta ,\varphi \right)}{{\partial r}^{k,l}}=\sum_{n=1}^{K}\sum_{m=1}^{L}{N}_{n,p}\left(u\left(\theta \right)\right){N}_{m,q}\left(v\left(\varphi \right)\right)\frac{\partial {P}_{z}^{n,m}}{{\partial r}^{k,l}}, n=0,\dots ,K, m=0,\dots ,L. (\mathrm{B}.8)$$

If \(n=k\) and \(m=l\), \(\partial {P}_{x}^{k,l}/\partial {r}^{k,l}\), \(\partial {P}_{y}^{k,l}/\partial {r}^{k,l}\), \(\partial {P}_{z}^{k,l}/\partial {r}^{k,l}\) are be expressed as

$$\frac{\partial {P}_{x}^{k,l}}{\partial {r}^{k,l}}=\mathrm{sin}\left({\varphi }_{l}\right)\mathrm{cos}\left({\theta }_{k}\right), \frac{\partial {P}_{y}^{k,l}}{\partial {r}^{k,l}}=\mathrm{sin}\left({\varphi }_{k}\right)\mathrm{sin}\left({\theta }_{l}\right), \frac{\partial {P}_{z}^{k,l}}{\partial {r}^{k,l}}=\mathrm{cos}\left({\varphi }_{l}\right), (\mathrm{B}.9)$$

otherwise, \(\partial {P}_{x}^{n,m}/\partial {r}^{k,l}=0\), \(\partial {P}_{y}^{n,m}/\partial {r}^{k,l}=0\), \(\partial {P}_{z}^{n,m}/\partial {r}^{k,l}=0\).

Appendix C

See Tables 7 and 8.

Table 7 The mean square errors of ANN and polynomials in fitting different numbers of ideal data of the uniaxial tension experiment
Table 8 The mean square errors of ANN and polynomials in fitting different numbers of noisy data of the uniaxial tension experiment

As shown in the above two tables, the ANN performs better on both ideal and noisy data sets, and ANN is adopted as the fitting tool in this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Du, Z., Wang, L. et al. Data-driven topology optimization (DDTO) for three-dimensional continuum structures. Struct Multidisc Optim 66, 104 (2023). https://doi.org/10.1007/s00158-023-03552-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-023-03552-6

Keywords

Navigation