Skip to main content
Log in

Magnetosomes: biogenic iron nanoparticles produced by environmental bacteria

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The scientific community’s interest in magnetotactic bacteria has increased substantially in recent decades. These prokaryotes have the particularity of synthesizing nanomagnets, called magnetosomes. The majority of research is based on several scientific questions. Where do magnetotactic bacteria live, what are their characteristics, and why are they magnetic? What are the molecular phenomena of magnetosome biomineralization and what are the physical characteristics of magnetosomes? In addition to scientific curiosity to better understand these stunning organisms, there are biotechnological opportunities to consider. Magnetotactic bacteria, as well as magnetosomes, are used in medical applications, for example cancer treatment, or in environmental ones, for example bioremediation. In this mini-review, we investigated all the aspects mentioned above and summarized the currently available knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali I, Peng C, Khan ZM, Naz I (2017) Yield cultivation of magnetotactic bacteria and magnetosomes: a review. J Basic Microbiol 57:643–652

    Article  CAS  PubMed  Google Scholar 

  • Alphandéry E, Idbaih A, Adam C, Delattre J-Y, Schmitt C, Guyot F, Chebbi I (2017) Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field. J Control Release 262:259–272

    Article  CAS  PubMed  Google Scholar 

  • Amemiya Y, Tanaka T, Yoza B, Matsunaga T (2005) Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. J Biotechnol 120:308–314

    Article  CAS  PubMed  Google Scholar 

  • Amor M, Busigny V, Durand-Dubief M, Tharaud M, Ona-Nguema G, Gelabert A, Alphandery E, Menguy N, Benedetti MF, Chebbi I, Guyot F (2015) Chemical signature of magnetotactic bacteria. Proc Natl Acad Sci U S A 112:1699–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arakaki A, Takeyama H, Tanaka T, Matsunaga T (2002) Cadmium recovery by a sulfate-reducing magnetotactic bacterium, Desulfovibrio magneticus RS-1, using magnetic separation. Appl Biochem Biotechnol 98–100:833–840

    Article  PubMed  Google Scholar 

  • Bahaj AS, Croudace IW, James PAB, Moeschler FD, Warwick PE (1998) Continuous radionuclide recovery from wastewater using magnetotactic bacteria. J Magn Magn Mater 184:241–244

    Article  CAS  Google Scholar 

  • Bain J, Staniland SS (2015) Bioinspired nanoreactors for the biomineralisation of metallic-based nanoparticles for nanomedicine. Phys Chem Chem Phys 17:15508–15521

    Article  CAS  PubMed  Google Scholar 

  • Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barber-Zucker S, Keren-Khadmy N, Zarivach R (2016) From invagination to navigation: the story of magnetosome-associated proteins in magnetotactic bacteria. Protein Sci Publ Protein Soc 25:338–351

    Article  CAS  Google Scholar 

  • Bazylinski DA, Williams TJ (2006) Ecophysiology of magnetotactic bacteria. In: Schüler D (ed) Magnetosomes and magnetoreception in bacteria, vol 3, pp 37–75. Springer, Heidelberg

  • Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334:518–519

    Article  Google Scholar 

  • Bellini DS (1963a) Su di particolare comportamento di batteri d’acqua dolce università di  Pavia, Pavia

  • Bellini S (1963b) Ultriori studi sui “Batteri Magnetosensibili”, università di  Pavia, Pavia

  • Bellini S (2009a) Further studies on “magnetosensitive bacteria”. Chin J Oceanol Limnol 27:6

    Article  Google Scholar 

  • Bellini S (2009b) On a unique behavior of freshwater bacteria. Chin J Oceanol Limnol 27:3

    Article  Google Scholar 

  • Bennet M, Bertinetti L, Neely RK, Schertel A, Koernig A, Flors C, Mueller FD, Schueler D, Klumpp S, Faivre D (2015) Biologically controlled synthesis and assembly of magnetite nanoparticles. Faraday Discuss 181:71–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzerara K, Menguy N (2009) Looking for traces of life in minerals. Comptes Rendus Palevol 8:617–628

    Article  Google Scholar 

  • Bergeron JRC, Hutto R, Ozyamak E, Hom N, Hansen J, Draper O, Byrne ME, Keyhani S, Komeili A, Kollman JM (2017) Structure of the magnetosome-associated actin-like MamK filament at subnanometer resolution. Protein Sci 26:93–102

    Article  CAS  PubMed  Google Scholar 

  • Blakemore R (1975) Magnetotactic bacteria. Science 190:377–379

    Article  CAS  PubMed  Google Scholar 

  • Blakemore RP, Maratea D, Wolfe RS (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140:720–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher M, Geffroy F, Prévéral S, Bellanger L, Selingue E, Adryanczyk-Perrier G, Péan M, Lefèvre CT, Pignol D, Ginet N, Meriaux S (2017) Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor. Biomaterials 121:167–178

    Article  CAS  PubMed  Google Scholar 

  • Carillo MA, Bennet M, Faivre D (2013) Interaction of Proteins Associated with the Magnetosome Assembly in Magnetotactic Bacteria As Revealed by Two-Hybrid Two-Photon Excitation Fluorescence Lifetime Imaging Microscopy Förster Resonance Energy Transfer. J Phys Chem B 117:14642–14648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chariaou M, Rahn-Lee L, Kind J, García-Rubio I, Komeili A, Gehring AU (2015) Anisotropy of bullet-shaped magnetite nanoparticles in the magnetotactic bacteria Desulfovibrio magneticus sp. strain RS-1. Biophys J 108:1268–1274

  • Chen C, Chen L, Wang P, Wu L-F, Song T (2017) Magnetically-induced elimination of Staphylococcus aureus by magnetotactic bacteria under a swing magnetic field. Nanomedicine 13:363–370

    Article  CAS  PubMed  Google Scholar 

  • Dai Q, Long R, Wang S, Kankala RK, Wang J, Jiang W, Liu Y (2017) Bacterial magnetosomes as an efficient gene delivery platform for cancer theranostics. Microb Cell Factories 16:216

    Article  CAS  Google Scholar 

  • Degauque J (1992) Magnétisme et matériaux magnétiques : introduction. J Phys IV Colloq 2:C3-1–C3–13

    Google Scholar 

  • Deng Q, Liu Y, Wang S, Xie M, Wu S, Chen A, Wu W (2013) Construction of a novel magnetic targeting anti-tumor drug delivery system: cytosine arabinoside-loaded bacterial magnetosome. Materials 6:3755–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Descamps ECT, Abbé J-B, Pignol D, Lefèvre CT (2016) Controlled Biomineralization of Magnetite in Bacteria. In: Faivre D (ed) Iron Oxides. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 99–116

    Chapter  Google Scholar 

  • Descamps ECT, Monteil CL, Menguy N, Ginet N, Pignol D, Bazylinski DA, Lefèvre CT (2017) Desulfamplus magnetovallimortis gen. nov., sp. nov., a magnetotactic bacterium from a brackish desert spring able to biomineralize greigite and magnetite, that represents a novel lineage in the Desulfobacteraceae. Syst Appl Microbiol 40:280–289

  • Draper O, Byrne ME, Li Z, Keyhani S, Barrozo JC, Jensen G, Komeili A (2011) MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ. Mol Microbiol 82:342–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunin-Borkowski RE, McCartney MR, Frankel RB, Bazylinski DA, Pósfai M, Buseck PR (1998) Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282:1868–1870

    Article  CAS  PubMed  Google Scholar 

  • Elcey CD, Kuruvilla AT, Thomas D (2014) Synthesis of magnetite nanoparticles from optimized iron reducing bacteria isolated from iron ore mining sites. Int J Curr Microbiol App Sci 3:408–417

    CAS  Google Scholar 

  • Elfick A, Rischitor G, Mouras R, Azfer A, Lungaro L, Uhlarz M, Herrmannsdörfer T, Lucocq J, Gamal W, Bagnaninchi P, Semple S, Salter DM (2017) Biosynthesis of magnetic nanoparticles by human mesenchymal stem cells following transfection with the magnetotactic bacterial gene mms6. Sci Rep 7:39755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdal E, Demirbilek M, Yeh Y, Akbal Ö, Ruff L, Bozkurt D, Cabuk A, Senel Y, Gumuskaya B, Algın O, Colak S, Esener S, Denkbas EB (2018) A comparative study of receptor-targeted magnetosome and HSA-coated iron oxide nanoparticles as MRI contrast-enhancing agent in animal cancer model. Appl Biochem Biotechnol 185:91–113

    Article  CAS  PubMed  Google Scholar 

  • Farina M, Esquivel DMS, de Barros HGPL (1990) Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature 343:256–258

    Article  CAS  Google Scholar 

  • Felfoul O, Mohammadi M, Taherkhani S, de Lanauze D, Xu YZ, Loghin D, Essa S, Jancik S, Houle D, Lafleur M, Gaboury L, Tabrizian M, Kaou N, Atkin M, Vuong T, Batist G, Beauchemin N, Radzioch D, Martel S (2016) Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol 11:941–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer A, Schmitz M, Aichmayer B, Fratzl P, Faivre D (2011) Structural purity of magnetite nanoparticles in magnetotactic bacteria. J R Soc Interface 8:1011–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flies CB, Peplies J, Schüler D (2005) Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. Appl Environ Microbiol 71:2723–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouladi JE, Lu Z, Savaria Y, Martel S (2007a) An integrated biosensor for the detection of bio-entities using magnetotactic bacteria and CMOS technology. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 119–122

  • Fouladi JE, Andre W, Savaria Y, Martel S (2007b) System design of an integrated measurement electronic subsystem for bacteria detection using an electrode array and MC-1 magnetotactic bacteria. In 2006 International Workshop on Computer Architecture for Machine Perception and Sensing, pp. 38–41

  • Frankel RB (2009) The discovery of magnetotactic/magnetosensitive bacteria. Chin J Oceanol Limnol 27(1):1–2

  • Frankel RB, Blakemore RP (1989) Magnetite and magnetotaxis in microorganisms. Bioelectromagnetics 10:223–237

    Article  CAS  PubMed  Google Scholar 

  • Frankel RB, Blakemore RP, Wolfe RS (1979) Magnetite in Freshwater Magnetotactic Bacteria. Science 203:1355–1356

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  PubMed  Google Scholar 

  • Ginet N, Pardoux R, Adryanczyk G, Garcia D, Brutesco C, Pignol D (2011) Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One 6:e21442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldhawk DE, Lemaire C, McCreary CR, McGirr R, Dhanvantari S, Thompson RT, Figueredo R, Koropatnick J, Foster P, Prato FS (2009) Magnetic resonance imaging of cells overexpressing MagA, an endogenous contrast agent for live cell imaging. Mol Imaging 8:129–139

    Article  CAS  PubMed  Google Scholar 

  • Grünberg K, Müller E-C, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 70:1040–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Huang J, Zheng L-M (2010) Efficient conjugation doxorubicin to bacterial magnetic nanoparticles via a triplex hands coupling reagent. J Nanosci Nanotechnol 10:6514–6519

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Huang J, Zheng L-M (2011) Control generating of bacterial magnetic nanoparticle–doxorubicin conjugates by poly-L-glutamic acid surface modification. Nanotechnology 22:175102

    Article  CAS  PubMed  Google Scholar 

  • Guo FF, Yang W, Jiang W, Geng S, Peng T, Li JL (2012) Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1. Environ Microbiol 14:1722–1729

    Article  CAS  PubMed  Google Scholar 

  • Han L, Zhang A, Wang H, Pu P, Jiang X, Kang C, Chang J (2010) Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo. Hum Gene Ther 21:417–426

    Article  CAS  PubMed  Google Scholar 

  • Islam T, Peng C, Ali I (2017) Morphological and cellular diversity of magnetotactic bacteria: a review. J Basic Microbiol 2018(58):378–389

  • Ji B, Zhang S-D, Zhang W-J, Rouy Z, Alberto F, Santini C-L, Mangenot S, Gagnot S, Philippe N, Pradel N, Zhang L, Tempel S, Li Y, Médigue C, Henrissat B, Coutinho PM, Barbe V, Talla E, WU LF (2017) The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of Proteobacteria. Environ Microbiol 19:1103–1119

  • Jogler C, Lin W, Meyerdierks A, Kube M, Katzmann E, Flies C, Pan Y, Amann R, Reinhardt R, Schüler D (2009) Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl Environ Microbiol 75:3972–3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasama T, Pósfai M, Chong RKK, Finlayson AP, Buseck PR, Frankel RB, Dunin-Borkowski RE (2006) Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am Mineral 91:1216–1229

    Article  CAS  Google Scholar 

  • Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D (2010) Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol 77:208–224

  • Kirschvink JL (1980) South-seeking magnetic bacteria: short communications. J Exp Biol 86:345–347

    Google Scholar 

  • Klumpp S, Lefèvre CT, Bennet M, Faivre D (2019) Swimming with magnets: from biological organisms to synthetic devices. Phys Rep 789:1–54

    Article  Google Scholar 

  • Koernig A, Winklhofer M, Baumgartner J, Gonzalez TP, Fratzl P, Faivre D (2014) Magnetite crystal orientation in magnetosome chains. Adv Funct Mater 24:3926–3932

    Article  CAS  Google Scholar 

  • Kolinko S, Jogler C, Katzmann E, Wanner G, Peplies J, Schüler D (2012) Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ Microbiol 14:1709–1721

    Article  CAS  PubMed  Google Scholar 

  • Kolinko I, Lohße A, Borg S, Raschdorf O, Jogler C, Tu Q, Pósfai M, Tompa É, Plitzko JM, Brachmann A, Wanner G, Müller R, Zhang Y, Schüler D (2014) Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat Nanotechnol 9:193–197

    Article  CAS  PubMed  Google Scholar 

  • Komeili A (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245

    Article  CAS  PubMed  Google Scholar 

  • Komeili A (2012) Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev 36:232–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koulialias D, García-Rubio I, Rahn-Lee L, Komeili A, Löffler JF, Gehring AU, Charilaou M (2016) Competitive and cooperative anisotropy in magnetic nanocrystal chains of magnetotactic bacteria. J Appl Phys 120:83901

    Article  CAS  Google Scholar 

  • Leão P, Teixeira LCRS, Cypriano J, Farina M, Abreu F, Bazylinski DA, Lins U (2016) North-seeking magnetotactic gammaproteobacteria in the Southern hemisphere. Appl Environ Microbiol 82:5595–5602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefèvre CT, Bazylinski DA (2013) Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev 77:497–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefèvre CT, Bernadac A, Yu-Zhang K, Pradel N, Wu L-F (2009) Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean sea. Environ Microbiol 11:1646–1657

    Article  CAS  PubMed  Google Scholar 

  • Lefèvre CT, Abreu F, Schmidt ML, Lins U, Frankel RB, Hedlund BP, Bazylinski DA (2010) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl Environ Microbiol 76:3740–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefèvre CT, Frankel RB, Pósfai M, Prozorov T, Bazylinski DA (2011a) Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environ Microbiol 13:2342–2350

    Article  PubMed  Google Scholar 

  • Lefèvre CT, Menguy N, Abreu F, Lins U, Pósfai M, Prozorov T, Pignol D, Frankel RB, Bazylinski DA (2011b) A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science 334:1720–1723

    Article  CAS  PubMed  Google Scholar 

  • Lefèvre CT, Viloria N, Schmidt ML, Posfai M, Frankel RB, Bazylinski DA (2012) Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME J 6:440–450

  • Lefèvre CT, Bennet M, Landau L, Vach P, Pignol D, Bazylinski DA, Frankel RB, Klumpp S, Faivre D (2014) Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. Biophys J 107:527–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Menguy N, Arrio M-A, Sainctavit P, Juhin A, Wang Y, Chen H, Bunau O, Otero E, Ohresser P, pan Y (2016) Controlled cobalt doping in the spinel structure of magnetosome magnetite: new evidences from element- and site-specific X-ray magnetic circular dichroism analyses. J R Soc Interface 13:20160355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang H, Menguy N, Benzerara K, Wang F, Lin X, Chen Z, Pan Y (2017) Single-cell resolution of uncultured magnetotactic bacteria via fluorescence-coupled electron microscopy. Appl Environ Microbiol 83

  • Lin W, Bazylinski DA, Xiao T, Wu L-F, Pan Y (2014) Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol 16:2646–2658

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Pan Y, Bazylinski DA (2017) Diversity and ecology of and biomineralization by magnetotactic bacteria. Environ Microbiol Rep 9:345–356

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA, Pan Y (2018) Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J 1

  • Lisjak D, Mertelj A (2018) Anisotropic magnetic nanoparticles: a review of their properties, syntheses and potential applications. Prog Mater Sci 95:286–328

    Article  CAS  Google Scholar 

  • Liu S, Wiatrowski HA (2018) Reduction of Hg(II) to Hg(0) by biogenic magnetite from two magnetotactic bacteria. Geomicrobiol J 35:198–208

    Article  CAS  Google Scholar 

  • Liu Y-G, Dai Q-L, Wang S-B, Deng Q-J, Wu W-G, Chen A-Z (2015) Preparation and in vitro antitumor effects of cytosine arabinoside-loaded genipin-poly-l-glutamic acid-modified bacterial magnetosomes. Int J Nanomedicine 10:1387–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang W, Li X, Li X, Chen X, Li J-H, Teng Z, Xu C, Santini C-L, Zhao L, Zhao Y, Zhang H, Zhang WJ, Xu K, Li C, Pan Y, Xiao T, Pan H, Wu LF (2017) Bacterial community structure and novel species of magnetotactic bacteria in sediments from a seamount in the Mariana volcanic arc. Sci Rep 7:17964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohße A, Borg S, Raschdorf O, Kolinko I, Tompa E, Pósfai M, Faivre D, Baumgartner J, Schüler D (2014) Genetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense. J Bacteriol 196:2658–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long R, Liu Y, Dai Q, Wang S, Deng Q, Zhou X (2016) A natural bacterium-produced membrane-bound nanocarrier for drug combination therapy. Materials 9:889

  • Lu Z, Truong O-D, André W, Martel S (2006) Preliminary design of a biosensor based on MC-1 magnetotactic bacteria. Ninth World Congress on Biosensors (Biosensor), May, Toronto

  • Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343:258–261

    Article  CAS  Google Scholar 

  • Martel S (2017) Targeting active cancer cells with smart bullets. Ther Deliv 8:301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga T, Sakaguchi T, Tadakoro F (1991) Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 35:651–655

    Article  CAS  Google Scholar 

  • Mériaux S, Boucher M, Marty B, Lalatonne Y, Prévéral S, Motte L, Lefèvre CT, Geffroy F, Lethimonnier F, Péan M, Garcia D, Adryanczyk-Perrier G, Pignol D, Ginet N (2015) Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner. Advanced Healthcare Materials 4(7):1076–1083

  • Meldrum FC, Mann S, Heywood BR, Frankel RB, Bazylinski DA (1993) Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proc R Soc Lond B 251:231–236

    Article  Google Scholar 

  • Mirabello G, Lenders JJM, Sommerdijk NAJM (2016) Bioinspired synthesis of magnetite nanoparticles. Chem Soc Rev 45:5085–5106

    Article  CAS  PubMed  Google Scholar 

  • Monteil CL, Menguy N, Prévéral S, Warren A, Pignol D, Lefèvre CT (2018) Accumulation and dissolution of magnetite crystals in a magnetically responsive ciliate. Appl Environ Microbiol 84:AEM.02865-17. https://doi.org/10.1128/AEM.02865-17

  • Morillo V, Abreu F, Araujo AC, de Almeida LGP, Prast AE, Farina M, de Vasconcelos ATR, Bazylinski DA, Lins U (2014) Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of South-seeking magnetotactic cocci within the Alphaproteobacteria. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00072

  • Murat D, Quinlan A, Vali H, Komeili A (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci 107:5593–5598

    Article  PubMed  Google Scholar 

  • Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, Dinesh D, Chandramohan B, Paneerselvam C, Subramaniam J, Vadivalagan C, Wei H, Amuthavalli P, Jaganathan A, Devanesan S, Higuchi A, Kumar S, Aziz AT, Nataraj D, Higuchi A, Vaseeharan B, Canale A, Benelli G (2017) Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol Res 116:495–502

    Article  PubMed  Google Scholar 

  • Naresh M, Das S, Mishra P, Mittal A (2012) The chemical formula of a magnetotactic bacterium. Biotechnol Bioeng 109:1205–1216

    Article  CAS  PubMed  Google Scholar 

  • Newell AJ (2009) Transition to superparamagnetism in chains of magnetosome crystals. Geochem Geophys Geosyst 10:Q11Z08

    Article  CAS  Google Scholar 

  • Nisticò R (2017) Magnetic materials and water treatments for a sustainable future. Res Chem Intermed 43:6911–6949

    Article  CAS  Google Scholar 

  • Orlando T, Mannucci S, Fantechi E, Conti G, Tambalo S, Busato A, Innocenti C, Ghin L, Bassi R, Arosio P, Orsini F, Sangregorio C, Corti M, Casula MF, Marzola P, Lascialfari A, Sbarbati A (2016) Characterization of magnetic nanoparticles from as potential theranostics tools. Contrast Media & Molecular Imaging 11(2):139–145

  • Pan W, Xie C, Lv J (2012) Screening for the interacting partners of the proteins MamK and MamJ by two-hybrid genomic DNA library of Magnetospirillum magneticum AMB-1. Curr Microbiol 64:515–523

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Li N, Mu J, Zhou R, Xu Y, Cui D, Wang Y, Zhao M (2015) Biogenic magnetic nanoparticles from Burkholderia sp. YN01 exhibiting intrinsic peroxidase-like activity and their applications. Appl Microbiol Biotechnol 99:703–715

    Article  CAS  PubMed  Google Scholar 

  • Plan Sangnier A, Preveral S, Curcio A, Silva A KA, Lefèvre CT, Pignol D, Lalatonne Y, Wilhelm C (2018) Targeted thermal therapy with genetically engineered magnetite magnetosomes@RGD: photothermia is far more efficient than magnetic hyperthermia. J Control Release 279:271–281

    Article  CAS  PubMed  Google Scholar 

  • Popp F, Armitage JP, Schüler D (2014) Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway. Nat Commun 5:5398

    Article  CAS  PubMed  Google Scholar 

  • Posfai M, Lefevre CT, Trubitsyn D, Bazylinski DA, Frankel RB (2013) Phylogenetic significance of composition and crystal morphology of magnetosome minerals. Front Microbiol 4:344

    Article  PubMed  PubMed Central  Google Scholar 

  • Prozorov R, Prozorov T, Mallapragada SK, Narasimhan B, Williams TJ, Bazylinski DA (2007) Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite. Phys Rev B 76:54406

    Article  CAS  Google Scholar 

  • Prozorov T, Perez-Gonzalez T, Valverde-Tercedor C, Jimenez-Lopez C, Yebra-Rodriguez A, Körnig A, Faivre D, Mallapragada SK, Howse PA, Bazylinski DA, Prozorov R (2014) Manganese incorporation into the magnetosome magnetite: magnetic signature of doping. Eur J Mineral:457–471

  • Qu Y, Zhang X, Xu J, Zhang W, Guo Y (2014) Removal of hexavalent chromium from wastewater using magnetotactic bacteria. Sep Purif Technol 136:10–17

    Article  CAS  Google Scholar 

  • Quinlan A, Murat D, Vali H, Komeili A (2011) The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol Microbiol 80:1075–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raschdorf O, Müller FD, Pósfai M, Plitzko JM, Schüler D (2013) The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Mol Microbiol 89:872–886

    Article  CAS  PubMed  Google Scholar 

  • Raschdorf O, Forstner Y, Kolinko I, Uebe R, Plitzko JM, Schüler D (2016) Genetic and ultrastructural analysis reveals the key players and initial steps of bacterial magnetosome membrane biogenesis. PLoS Genet 12:e1006101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raschdorf O, Bonn F, Zeytuni N, Zarivach R, Becher D, Schüler D (2018) A quantitative assessment of the membrane-integral sub-proteome of a bacterial magnetic organelle. J Proteome 172:89–99

    Article  CAS  Google Scholar 

  • Rioux J-B, Philippe N, Pereira S, Pignol D, Wu L-F, Ginet N (2010) A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island. PLoS One 5:e9151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roda A, Cevenini L, Borg S, Michelini E, Calabretta MM, Schüler D (2013) Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. Lab Chip 13:4881–4889

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi T, Arakaki A, Matsunaga T (2002) Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 52:215–221

    Article  CAS  PubMed  Google Scholar 

  • Schleifer KH, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, Köhler M (1991) The genus Magnetospirillum gen. nov. description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 14:379–385

  • Schwarz S, Fernandes F, Sanroman L, Hodenius M, Lang C, Himmelreich U, Schmitz-Rode T, Schueler D, Hoehn M, Zenke M, Hieronymus T (2009) Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells. J Magn Magn Mater 321(10):1533–1538

  • Sengupta A, Quiaoit K, Thompson RT, Prato FS, Gelman N, Goldhawk DE (2014) Biophysical features of MagA expression in mammalian cells: implications for MRI contrast. Front Microbiol 5:29. https://doi.org/10.3389/fmicb.2014.00029

  • Simmons SL, Bazylinski DA, Edwards KJ (2006) South-seeking magnetotactic bacteria in the Northern Hemisphere. Science 311:371–374

    Article  CAS  PubMed  Google Scholar 

  • Siponen MI, Legrand P, Widdrat M, Jones SR, Zhang W-J, Chang MCY, Faivre D, Arnoux P, Pignol D (2013) Structural insight into magnetochrome-mediated magnetite biomineralization. Nature 502:681–684

    Article  CAS  PubMed  Google Scholar 

  • Smith MJ, Sheehan PE, Perry LL, O’Connor K, Csonka LN, Applegate BM, Whitman LJ (2006) Quantifying the magnetic advantage in magnetotaxis. Biophys J 91:1098–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staniland S, Williams W, Telling N, Laan GVD, Harrison A, Ward B (2008) Controlled cobalt doping of magnetosomes in vivo. Nat Nanotechnol 3:158–162

    Article  CAS  PubMed  Google Scholar 

  • Stanton MM, Park B-W, Vilela D, Bente K, Faivre D, Sitti M, Sánchez S (2017) Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano 11:9968–9978

    Article  CAS  PubMed  Google Scholar 

  • Sun J-B, Duan J-H, Dai S-L, Ren J, Zhang Y-D, Tian J-S, Li Y (2007) In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Lett 258:109–117

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Tang T, Duan J, Xu P, Wang Z, Zhang Y, Wu L, Li Y (2010) Biocompatibility of bacterial magnetosomes: Acute toxicity, immunotoxicity and cytotoxicity. Nanotoxicology 4:271–283

    Article  CAS  PubMed  Google Scholar 

  • Sun J-B, Duan J-H, Dai S-L, Ren J, Guo L, Jiang W, Li Y (2018) Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. Biotechnol Bioeng 101:1313–1320

    Article  CAS  Google Scholar 

  • Taherkhani S, Mohammadi M, Daoud J, Martel S, Tabrizian M (2014) Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano 8:5049–5060

    Article  CAS  PubMed  Google Scholar 

  • Talib A, Khan AA, Ahmed H, Jilani G, Talib A, Khan AA, Ahmed H, Jilani G (2017) The nano-magnetic dancing of bacteria hand-in-hand with oxygen. Braz Arch Biol Technol 60

  • Tanaka M, Nakata Y, Mori T, Okamura Y, Miyasaka H, Takeyama H, Matsunaga T (2008) Development of a cell surface display system in a magnetotactic bacterium, “Magnetospirillum magneticum” AMB-1. Appl Environ Microbiol 74:3342–3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Arakaki A, Staniland SS, Matsunaga T (2010) Simultaneously discrete biomineralization of magnetite and tellurium nanocrystals in magnetotactic bacteria. Appl Environ Microbiol 76:5526–5532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Knowles W, Brown R, Hondow N, Arakaki A, Baldwin S, Staniland S, Matsunaga T (2016) Biomagnetic recovery and bioaccumulation of selenium granules in magnetotactic bacteria. Appl Environ Microbiol 82:3886–3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y-S, Wang D, Zhou C, Ma W, Zhang Y-Q, Liu B, Zhang S (2012) Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther 19:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Taoka A, Kiyokawa A, Uesugi C, Kikuchi Y, Oestreicher Z, Morii K, Eguchi Y, Fukumori Y (2017) Tethered magnets are the key to magnetotaxis: direct observations of Magnetospirillum magneticum AMB-1 show that MamK distributes magnetosome organelles equally to daughter cells. mBio 8:e00679–e00617

    Article  PubMed  PubMed Central  Google Scholar 

  • Toro-Nahuelpan M, Müller FD, Klumpp S, Plitzko JM, Bramkamp M, Schüler D (2016) Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol 14:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uebe R, Schüler D (2016) Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol 14:621–637

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Sun G, Wang Y, Kong N, Chi Y, Yang L, Xin Q, Teng Z, Wang X, Wen Y, Li Y, Xia G (2017) Bacterial magnetic particles improve testes-mediated transgene efficiency in mice. Drug Deliv 24:651–659

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang J-G, Geng Y-Y, Wang J-J, Zhang X-M, Yang S-S, Jiang W, Liu W-Q (2018) An enhanced anti-tumor effect of apoptin-cecropin B on human hepatoma cells by using bacterial magnetic particle gene delivery system. Biochem Biophys Res Commun 496:719–725

    Article  CAS  PubMed  Google Scholar 

  • Winklhofer M, Chang L, Eder SHK (2014) On the magnetocrystalline anisotropy of greigite (Fe3S4). Geochem Geophys Geosyst 15:1558–1579

    Article  CAS  Google Scholar 

  • Wolfe RS, Thauer RK, Pfennig N (1987) A “capillary racetrack” method for isolation of magnetotactic bacteria. FEMS Microbiol Ecol 3:31–35

    Article  Google Scholar 

  • Xiang L, Bin W, Huali J, Wei J, Jiesheng T, Feng G, Ying L (2007) Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. J Gene Med 9:679–690

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto D, Taoka A, Uchihashi T, Sasaki H, Watanabe H, Ando T, Fukumori Y (2010) Visualization and structural analysis of the bacterial magnetic organelle magnetosome using atomic force microscopy. Proc Natl Acad Sci U S A 107:9382–9387

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang W, Bai Y, Wang X, Dong X, Li Y, Fang M (2016a) Attaching biosynthesized bacterial magnetic particles to polyethylenimine enhances gene delivery into mammalian cells. J Biomed Nanotechnol 12:789–799

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Bai Y, Wang X, Dong X, Li Y, Fang M (2016b) Attaching biosynthesized bacterial magnetic particles to polyethylenimine enhances gene delivery into mammalian cells. J Biomed Nanotechnol 12:789–799

    Article  CAS  PubMed  Google Scholar 

  • Zeytuni N, Ozyamak E, Ben-Harush K, Davidov G, Levin M, Gat Y, Moyal T, Brik A, Komeili A, Zarivach R (2011) Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc Natl Acad Sci 108:E480–E487

    Article  PubMed  Google Scholar 

  • Zurkiya O, Chan AWS, Hu X (2008) MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med 59:1225–1231

Download references

Acknowledgments

The authors would like to thank Damien Faivre for his scientific contribution, Caroline Monteil for her help with the genomic data representation, and Marina Siponen for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Prévéral.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dieudonné, A., Pignol, D. & Prévéral, S. Magnetosomes: biogenic iron nanoparticles produced by environmental bacteria. Appl Microbiol Biotechnol 103, 3637–3649 (2019). https://doi.org/10.1007/s00253-019-09728-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09728-9

Keywords

Navigation