Skip to main content
Log in

Microbiota composition of captive bluestreak cleaner wrasse Labroides dimidiatus (Valenciennes, 1839)

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Labroides dimidiatus is one of the most traded marine ornamental fishes worldwide, yet not much is known about the microflora associated with this fish. This study is designed to investigate the bacteria composition associated with captive L. dimidiatus and its surrounding aquarium water. The fish and carriage water were obtained from well-known ornamental fish suppliers in Terengganu Malaysia. Bacteria present on the skin and in the stomach and the aquarium water were enumerated using culture-independent approaches and next-generation sequencing (NGS) technology. A total of 3,238,564 valid reads and 828 total operational taxonomic units (OTUs) were obtained from the three metagenomic libraries using NGS analysis. Of all the 15 phyla identified in this study, Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria were the most prevalent in all samples. Also, 170 families belonging to 36 bacteria classes were identified. Although many of the bacteria families were common in the skin, gut, and aquarium water (39%), about 26% of the families were exclusive to the aquarium water alone. Therefore, any substantial change in the structure and abundance of microbiota (especially pathogenic bacteria) reported in this study may serve as an early sign for disease infection in the species under captivity.

Key points

• Proteobacteria was the most dominant.

• The microbiota was either shared or exclusively in samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso-Sáez L, Balagué V, Sà EL, Sánchez O, González JM, Pinhassi J, Massana R, Pernthaler J, Pedrós-Alió C, Gasol JM (2007) Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol Ecol 60:98–112

    Article  PubMed  CAS  Google Scholar 

  • Arias CR, Koenders K, Larsen AM (2013) Predominant bacteria associated with red snapper from the northern Gulf of Mexico. J Aquat Anim Health 25:281–289

    Article  PubMed  Google Scholar 

  • Austin B, Austin DA (2012) In: Austin B, Austin DA (eds) In bacterial fish pathogens: disease of farmed and wild fish, 5th edn. Springer Science, Stirling, pp 1–678

    Chapter  Google Scholar 

  • Bairagi A, Ghosh KS, Sen SK, Ray AK (2002) Enzyme producing bacterial flora isolated from fish digestive tracts. Aquacult Int 10:109–121

    Article  CAS  Google Scholar 

  • Balcázar JL, Blas ID, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114:173–186

    Article  PubMed  Google Scholar 

  • Balcázar JL, Vendrell DL, de Blas I, Ruiz-Zarzuela I, Muzquiz JL (2009) Effect of Lactococcus lactis CLFP 100 and Leuconostoc mesenteroides CLFP 196 on Aeromonas salmonicida infection in brown trout (Salmo trutta). J Mol Microbiol Biotechnol 17:153–157

    Article  PubMed  CAS  Google Scholar 

  • Bartram AK, Lynch MD, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl Environ Microbiol 77:3846–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  Google Scholar 

  • Bondad-Reantaso MG, Subasighe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, Tan Z, Shariff M (2005) Disease and health management in Asian aquaculture. Vet Parasitol 132:249–272

    Article  PubMed  Google Scholar 

  • Boutin S, Bernatchez L, Audet C, Derôme N (2013) Network analysis highlights complex interactions between pathogen, host and commensal microbiota. PLoS One 8:e84772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boutin S, Sauvage C, Bernatchez L, Audet C, Derome N (2014) Inter individual variations of the Fish skin microbiota: host genetics basis of mutualism? PLoS One 9:102–649

    Article  CAS  Google Scholar 

  • Bueche M, Wunderlin T, Roussel-Delif L, Junier T, Sauvain L, Jeanneret N, Junier P (2013) Quantification of endospore-forming Firmicutes by quantitative PCR with the functional gene spo0A. Appl Environ Microbiol 79:5302–5312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerezuela R, Meseguer J, Esteban MA (2013) Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 34:843–848

    Article  CAS  PubMed  Google Scholar 

  • Cipriano R (2011) Far from superficial: microbial diversity associated with the dermal mucus of fish. In: Cipriano R, Schelkunov I, eds. Health and diseases of aquatic organisms: bilateril perspectives. East Lansing, MI: MSU Press; 2011. p. 156–67

  • Clements KD, Angert ER, Montgomery W, Linn CJ, Howard CJ (2014) Intestinal microbiota in fishes: what’s known and what’s not. Molecul Ecol 23:1891–1898

    Article  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:141–145

    Article  CAS  Google Scholar 

  • Das P, Mandal S, Khan A, Manna SK, Ghosh K (2014) Distribution of extracellular enzyme-producing bacteria in the digestive tracts of 4 brackish water fish species. Turk J Zool 38:79–88

    Article  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25:472–479

    Article  CAS  PubMed  Google Scholar 

  • Del’Duca A, Evangelista CD, Galuppo DC, Cesar AP (2013) Evaluation of the presence and efficiency of potential probiotic bacteria in the gut of tilapia (Oreochromis niloticus) using the fluorescent in situ hybridization technique. Aquac 391:115–121

    Article  CAS  Google Scholar 

  • Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324

    Article  CAS  PubMed  Google Scholar 

  • DeVos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (2009) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Dordrecht, pp 1–1423

    Google Scholar 

  • El Sayed EM, Hamed AM, Badran SM, Mostafa AA (2011) A survey of selected essential and heavy metals in milk from different regions of Egypt using ICP-AES. Food Addit Contam Part B 4:294–298

    Article  CAS  Google Scholar 

  • Embley TM, Stackebrandt E (1994) The molecular phylogeny and systematics of the Actinomycetes. Annu Rev Microbiol 48:257–289

    Article  CAS  PubMed  Google Scholar 

  • Evelyn TPT (1997) Infection and disease. In: Iwama G, Nakanishi T (eds) The fish immune system: organism, pathogen, and environment. Academic, San Diego, pp 339–366

    Google Scholar 

  • Ferguson HW (2006) Systematic pathology of fishes: a text and atlas of normal tissues in Teleosts and their response to disease. Scotian Press, London

    Google Scholar 

  • Fudou R, Iizuka T, Yamanaka S (2001) Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 1. Fermentation and biological characteristics. J Antibiot 54:149–152

    Article  CAS  Google Scholar 

  • Gahlawat SK, Gupta RK, Sihag RC, Yadav (2006) Latest science of fish diseases in India. In: Gupta VK, Verma AK (eds) Prespectives in ecology and reproduction. Daya Publishing House, New Delhi, pp 135–143

    Google Scholar 

  • Gatesoupe FJ (1999) The use of probiotics in aquaculture. Aquac 180:147–165

    Article  Google Scholar 

  • Georgala DL (1958) The bacterial flora of the skin of North Sea cod. J Gen Microbiol 18(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Gerzova L, Videnska P, Faldynova M, Sedlar K, Provaznik I, Cizek A, Rychlik I (2014) Characterization of microbiota composition and presence of selected antibiotic resistance genes in carriage water of ornamental fish. PLoS One 9(8):e103865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghanbari M, Kneifel W, Doming KJ (2015) A new view of the fish gut microbiome: advances from next-generation sequencing. Aquac 448:464–475

    Article  CAS  Google Scholar 

  • Giri SS, Sukumaran V, Oviya M (2013) Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 34:660–666

    Article  CAS  PubMed  Google Scholar 

  • Givens CE (2012) A fish tale: comparison of the gut microbiome of 15 fish species and the influence of diet and temperature on its composition. University of Georgia, Athens

    Google Scholar 

  • Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    Article  PubMed  PubMed Central  Google Scholar 

  • Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD, MacPhee R (2010) Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products. PLoS One:5e15406

  • Grutter AS (1996) Parasite removal rates by the cleaner wrasse Labroides dimidiatus. Inter Res Mar Ecol Prog Ser 130:61–70

    Article  Google Scholar 

  • Gupta RS (2000) Phylogeny of Proteobacteria: relationships to other eubacterial phyla and to eukaryotes. FEMS Microbiol Lett Rev 24:367–402

    Article  CAS  Google Scholar 

  • Hongo Y, Yuzawa H, Ohkuma M, Kudo T (2003) Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol Lett 221:299–304

    Article  CAS  Google Scholar 

  • Horsley RW (1977) A review on the bacterial flora of teleosts and elasmobranchs, including methods for its analysis. J Fish Biol 10:529–553

    Article  Google Scholar 

  • Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4(11):e1000255

  • Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048

    Article  PubMed  Google Scholar 

  • Kämpfer P (2010) Family I. Sphingobacteriaceae. In Bergey’s Manual of Systematic Bacteriology Second Edition Volume Four -The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes, ed. N.R. Krieg, J.T. Staley, D.R. Brown, B.P. Hedlund, B.J. Paster, N.L. Ward, W. Ludwig and W.B. Whitman, pp 331. New York: Springer

  • Kersters K, DeVos P, Gillis M, Swings J, Vandamme P, Stackebrandt E (2006) Introduction to the Proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes- volume 5: Proteobacteria: alpha and beta subclasses. Springer, New York, pp 3–37

    Google Scholar 

  • Kim BS, Kim OS, Moon EY, Chun J (2010) Vitellibacter aestuarii sp. nov., isolated from tidal-flat sediment, and an emended description of the genus Vitellibacter. Int J Syst Evol Microbiol 60:1989–1992

    Article  CAS  PubMed  Google Scholar 

  • Kirchman DL, Yu L, Cottrell MT (2003) Diversity and abundance of uncultured Cytophaga-like bacteria in the Delaware estuary. Appl Environ Microbiol 69:6587–6596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundim BA, Itou Y, Sakami Y, Fudou R, Iizuka T, Yamanaka S, Ojika M (2003) New haliangicin isomers, potent antifungal metabolites produced by a marine myxobacterium. J Antibiot 56:630–638

    Article  CAS  Google Scholar 

  • Kurnia A, Satoh S, Hanzawa S (2010) Effect of Paracoccus sp. and their genetically modified on skin coloration of red sea bream. HAYATI J Biosci 17:79–84

    Article  Google Scholar 

  • Landeira-Dabarca A, Sieiro C, Álvarez M (2013) Change in food ingestion induces rapid shifts in the diversity of microbiota associated with cutaneous mucus of Atlantic salmon Salmo salar. J Fish Biol 82:893–906

    Article  CAS  PubMed  Google Scholar 

  • Larsen AM, Mohammed HH, Arias CR (2014) Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol 116:1396–1404

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn MS, Boutin S, Hoseinifar SH, Derome N (2014) Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries: review. Front Microbiol 5:1–18

    Article  Google Scholar 

  • Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bøgwald J (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquac 302:1–18

    Article  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Nurul ANA, Muhammad DD, Okomoda VT, Nur AAB (2019) 16S rRNA-based metagenomic analysis of microbial communities associated with wild Labroides dimidiatus from Karah Island, Terengganu, Malaysia. Biotechnol Rep 21:e00303

    Article  Google Scholar 

  • Olafsen JA (2001) Interactions between fish larvae and bacteria in marine aquaculture. Aquac 200:223–247

    Article  Google Scholar 

  • Pérez T, Balcázar JL, Ruiz-Zarzuela I, Halaihel N, Vendrell D, de Blas I, Muzquiz JL (2010) Host-microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol 3:355–360

    Article  PubMed  CAS  Google Scholar 

  • Potts GW (1973) The ethology of Labroides dimidiatus (Cuv & Val) Labridae, Pisces on Aldabra. Anim Behav 21:250–291

    Article  Google Scholar 

  • Randall JE (1958) A review of the Labrid Fish genus Labroides, with descriptions of two new species and notes on ecology. Pacific Science, 12:327–347. In Sakai Y, Kohda M, Kuwamura T (2001) Effect of changing harem on timing of sex change in female cleaner fish Labroides dimidiatus. ASAB, 62:251–257

  • Revilla-Guarinos A, Gebhard S, Mascher T, Zúñiga M (2014) Defence against antimicrobial peptides: different strategies in Firmicutes (Minireview). Environ Microbiol 16:1225–1237

    Article  CAS  PubMed  Google Scholar 

  • Rhyne AL, Tlusty MF, Schofield PJ (2012) Revealing the appetite of the marine aquarium fish trade: the volume and biodiversity of fish imported into the United States. PLoS One 7:e35808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rimstad E, Basic D, Gulla S, Hjeltnes B, Mortensen S (2017) Risk assessment of fish health associated with the use of cleaner fish in aquaculture. Opinion of the Panel on Animal Health and Welfare of the Norwegian Scientific Committee for Food and Environment. VKM report Oslo, Norway 2017:32

  • Ringo E, Gatesoupe FJ (1998) Lactic acid bacteria in fish: a review. Aquac 160:177–203

    Article  Google Scholar 

  • Ringo E, Myklebust R, Mayhew TM, Olsen RE (2007) Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquac 268:251–264

    Article  Google Scholar 

  • Romero J, Ringø E, Merrifield DL (2014) The gut microbiota of fish. In: Merrifield DL, Ringø E (eds) Aquaculture nutrition: gut health, Probiotics and Prebiotics. Wiley, London, London, pp 75–100

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community- supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shea S, Liu M (2010) Labroides dimidiatus. The IUCN red list of threatened species 2010: e.T187396A8523800. https://doi.org/10.2305/IUCN.UK.2010-4.RLTS.T187396A8523800.en Downloaded on 31 January 2015

  • Sihag RC, Sharma P (2012) Probiotics: the new ecofriendly alternative measures of disease control for sustainable aquaculture. Can J Fish Aquat Sci 7:72–103

    Google Scholar 

  • Silva FC, Nicoli JR, Zambonino-Infante JL, Kaushik S, Gatesoupe FJ (2011) Influence of the diet on the microbial diversity of faecal and gastrointestinal contents in gilthead sea bream (Sparus aurata) and intestinal contents in goldfish (Carassius auratus). FEMS Microbiol Ecol 78:285–296

    Article  PubMed  CAS  Google Scholar 

  • Smith KF, Schmidt V, Rosen GE, Amaral-Zettler L (2012) Microbial diversity and potential pathogens in ornamental fish aquarium water. PLoS One 7:e39971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subasighe RP, Bondad-Reantaso MG, McGladdery SE (2001) Aquaculture development, health and wealth. In: Subasighe RP, Bueno P, Phillips MJ, Hough C, McGladdery SE, Arthur JR, editors. Aquaculture in the Third Millennium. Bangkok: NACA and FAO. p. 167 91

  • Sugita H, Hirose Y, Matsuo N, Deguchi Y (1998) Production of the antibacterial substance by Bacillus species strain NM12, an intestinal bacterium of Japanese coastal fish. Aquac 165:269–280

    Article  CAS  Google Scholar 

  • Sullam KE, Essinger SD, Lozupone CA, O'Connor MP, Rosen GL, Knight R, Kilham SS, Russell JA (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21:3363–3378

    Article  PubMed  Google Scholar 

  • Tarnecki AM, Patterson WF, Arias CR (2016) Microbiota of wild-caught Red Snapper Lutjanus campechanus. BMC microbiology, 16(1):1–10

  • Tarnecki AM, Burgos FA, Ray CL, Arias CR (2017) Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol 123:2–17

    Article  CAS  PubMed  Google Scholar 

  • Tatsuro H, Daichi T, Yasutada I, Takayuki H (2004) Diversity and seasonal changes in lactic acid bacteria in the intestinal tract of cultured freshwater fish. Aquac 234:35–346

    Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • vonMering C, Hugenholtz P, Raes J, Tringe SG, Doerks T, Jensen LJ (2007) Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315:1126–1130

    Article  CAS  Google Scholar 

  • Wagner EJ, Jensen T, Arndt R, Routedge MD, Brddwisch Q (1997) Effects of rearing density upon cut throat trout haematology, hatchery performance, fin erosion and general health and condition. The Progr Fish Cult 59:173–187

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf J, Prüss-Ustün A, Cumming O (2014) Review of the evidence relating drinking-water and sanitation to diarrhoea: a meta-regression. Tropical Med Int Health 19:928–942

    Article  Google Scholar 

  • Wu SG, Tian JT, Li WX, Zou H, Yang BJ, Wang GT (2013) Intestinal microbiota of Gibel carp (Carassius Auratus Gibelio) and its origin as revealed by 454 pyrosequencing. World J Microbiol Biotechnol 29:1585–1595

    Article  PubMed  Google Scholar 

  • Wunderlin T, Junier T, Roussel-Delif L, Jeanneret N, Junier P (2014) Endospore-enriched sequencing approach reveals unprecedented diversity of Firmicutes in sediments. Environ Microbiol Rep 6:631–639

    Article  CAS  PubMed  Google Scholar 

  • Xia JH, Lin G, Fu GH, Wan ZY, Lee M, Wang L, Liu XJ, Yue GH (2014) The intestinal microbiota of fish under starvation. BMC Genomics 15:266

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing M, Hou Z, Yuan J, Liu Y, Qu Y, Liu B (2013) Taxonomic and functional metagenomic profiling of gastrointestinal tract microbiome of the farmed adult turbot (Scophthalmus maximus). FEMS Microbiol Ecol 86:432–443

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express appreciation to the Institute of Tropical Aquaculture and Fisheries Research and Biosystem Laboratory, School of Fisheries and Food Sciences, University Malaysia Terengganu, for providing the laboratory facilities for this study. The authors would like to thank Miss Nor Aiffa Wahyu Abu Bakar and the staff of Net loft for their assistance in the sample collection.

Funding

This research was funded by the Ministry of Higher Education Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

NSA, MDDA, and OVT conceptualized and designed the study, and NANA experimented and collected the needed data. OVT also wrote the draft of the manuscript. All the authors reviewed the manuscript and approved it for submission.

Corresponding authors

Correspondence to Victor Tosin Okomoda or Nur Ariffin Asma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experimental protocols for this study were approved by the Universiti Malaysia Terengganu committee on research. All prescribed international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurul, A.A.N., Danish-Daniel, A.M., Okomoda, V.T. et al. Microbiota composition of captive bluestreak cleaner wrasse Labroides dimidiatus (Valenciennes, 1839). Appl Microbiol Biotechnol 104, 7391–7407 (2020). https://doi.org/10.1007/s00253-020-10781-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10781-y

Keywords

Navigation