Skip to main content
Log in

The role of the chaetognath Sagitta gazellae in the vertical carbon flux of the Southern Ocean

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Chaetognaths are among the most abundant predators in the Southern Ocean and are potentially important components in the biological carbon pump due to the production of large, fast-sinking fecal pellets. In situ S. gazellae abundance, fecal pellet production, sinking rates, carbon content, and vertical carbon fluxes were measured at the Lazarev Sea between December 2005 and January 2006. Sagitta gazellae produce fecal pellets that sink at speeds of 33–600 m day−1 and have carbon contents of 0.01–0.8 mg C pellet−1. Vertical carbon flux was later compared with the total carbon flux measured at 360 m depth at the study area. Rough estimates using published seasonal abundance of S. gazellae indicate that, at 360 m depth in the Lazarev Sea, this specie may contribute 12 and 5% of the total vertical carbon flux in winter (ice-covered) and summer (ice-free), respectively. Thus, the role of chaetognaths in the downward transport of organic matter may be far more important than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bajkov AD (1935) How to estimate the daily food consumption of fish under natural conditions. Trans Am Fish Soc 65:288–289

    Article  Google Scholar 

  • Besiktepe S, Dam HG (2002) Coupling of ingestion and defecation as a function of diet in the calanoid copepod Acartia tonsa. Mar Ecol Prog Ser 229:151–164

    Article  Google Scholar 

  • Boyer SN (1994) Aerobic and anaerobic degradation and mineralization of 14C-Chitin by water column and sediment inocula of the York River Estuary, Virginia. Appl Environ Microbiol 60(1):174–179

    CAS  PubMed  Google Scholar 

  • Bruland KW, Silver MW (1981) Sinking rates of fecal pellets from gelatinous zooplankton (salps, pteropods, doliolids). Mar Biol 63:295–300

    Article  Google Scholar 

  • Butler M, Dam HG (1994) Production rates and characteristics of fecal pellets of the copepod Acartia tonsa under simulated phytoplankton bloom conditions: implications for vertical fluxes. Mar Ecol Prog Ser 114:81–91

    Article  Google Scholar 

  • Cadée GC, González HE, Schnack-Schiel SB (1992) Krill diet affects faecal string settling. Polar Biol 12:75–80

    Google Scholar 

  • Christian JR, Karl DM (1995) Bacterial ectoenzymes in marine waters: activity ratios and temperature responses in three oceanographic provinces. Limnol Oceanogr 40(6):1042–1049

    CAS  Google Scholar 

  • Connolly JP, Coffin RB (1995) Model of carbon cycling in planktonic food webs. J Environ Eng 121:682–690

    Article  CAS  Google Scholar 

  • Cosper TC, Reeve MR (1975) Digestive efficiency of the chaetognath Sagitta hispida Conant. J Exp Mar Biol Ecol 17:33–38

    Article  Google Scholar 

  • Crelier AM, Daponte MC (2004) Chaetognatha of the Brazil-Malvinas (Falkland) confluence: distribution and associations. Iheringia Ser Zool 94(4):337–348

    Google Scholar 

  • David PM (1955) The distribution of Sagitta gazellae Ritter-Zahony. Disc Rep 27:235–278

    Google Scholar 

  • David PM (1958) The distribution of the Chaetognatha of the Southern Ocean. Disc Rep 29:200–229

    Google Scholar 

  • Dilling L, Alldredge AL (1993) Can chaetognath fecal pellets contribute to carbon flux? Mar Ecol Prog Ser 92:51–58

    Article  Google Scholar 

  • Donnelly J, Torres JJ, Hopkins TL et al (1994) Chemical composition of Antarctic zooplankton during austral fall and winter. Polar Biol 14:171–183

    Article  Google Scholar 

  • Falk-Petersen S, Sargent JR, Lønne OJ et al (1999) Functional biodiversity of lipids in Antarctic zooplankton: Calanoides acutus, Calanus propinquus, Thysanoessa macrura and Euphausia crystallorophias. Polar Biol 21:32–47

    Article  Google Scholar 

  • Feigenbaum DL (1982) Feeding by the chaetognath, Sagitta elegans, at low temperature in Vineyard Sound, Massachusetts. Limnol Oceanogr 27:699–706

    Google Scholar 

  • Fischer G, Futterer D, Gersonde R et al (1988) Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335:426–428

    Article  Google Scholar 

  • Fowler SW, Knauer GA (1986) Role of large particles in the transport of elements and oceanic compounds through the oceanic water column. Prog Oceanogr 16:147–194

    Article  Google Scholar 

  • Fowler SW, Small LF (1972) Sinking rates of euphausiid fecal pellets. Limnol Oceanogr 17:293–296

    Article  Google Scholar 

  • Froneman PW, Pakhomov EA (1998) Trophic importance of the chaetognaths Eukrohnia hamata and Sagitta gazellae in the pelagic subsystem of the Prince Edward Islands in late austral summer 1996. Polar Biol 19:242–249

    Article  Google Scholar 

  • Froneman PW, Pakhomov EA, Perissinotto R et al (1998) Community structure and predation impact of two chaetognath species, Sagitta gazellae and Eukrohnia hamata in the vicinity of the Prince Edward Archipelago (Southern Ocean). Mar Biol 131:95–101

    Article  Google Scholar 

  • González HE, Smetacek V (1994) The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Mar Ecol Prog Ser 113:233–246

    Article  Google Scholar 

  • Granata TC, Dickey TD (1991) The fluid mechanics of copepod feeding in a turbulent flow: a theoretical approach. Prog Oceanogr 26:243–261

    Article  Google Scholar 

  • Hagen W (1988) On the significance of lipids in Antarctic zooplankton. Ber Polar Forsch 49:1–129

    Google Scholar 

  • Hagen W (1999) Reproductive strategies and energetic adaptations of polar zooplankton. Invertebr Reprod Dev 36:25–34

    Google Scholar 

  • Harding GCH (1973) Decomposition of marine copepods. Limnol Oceanogr 18:670–673

    Google Scholar 

  • Honjo S, Roman MR (1978) Marine copepod fecal pellets: production, preservation and sedimentation. J Mar Res 36:45–57

    Google Scholar 

  • Hosie GW, Schultz MB, Kitchener JA, Cochran et al (2000) Macrozooplankton community structure off east Antarctica (80–150°E) during the austral summer of 1995/1996. Deep Sea Res II 47:2437–2463

    Article  Google Scholar 

  • Ikeda T, Kirkwood R (1989) Metabolism and elemental composition of a giant chaetognath Sagitta gazellae from the Southern Ocean. Mar Biol 100:261–267

    Article  CAS  Google Scholar 

  • Kehayias G, Lykakis J, Fragopoulu N (1996) The diets of the chaetognaths Sagitta enfata, S. serratodentata atlantica and S. bipunctata at different seasons in Eastern Mediterranean coastal waters. ICES J Mar Sci 53:837–846

    Article  Google Scholar 

  • Kimmerer WJ (1984) Selective predation and its impact on prey of Sagitta enflata (Chaetognatha). Mar Ecol Prog Ser 15:55–62

    Article  Google Scholar 

  • Komar PD, Morse AP, Small LF et al (1981) An analysis of sinking rates of natural copepod and euphausiid fecal pellets. Limnol Oceanogr 26:172–180

    Article  Google Scholar 

  • Krause M (1981) Vertical distribution of faecal pellets during FLEX ’76. Helgol Meeresunters 34:313–327

    Article  Google Scholar 

  • Kruse S, Bathmann U, Brey T (2009) Meso- and bathypelagic distribution and abundance of chaetognaths in the Atlantic sector of the Southern Ocean. Polar Biol. doi:10.1007/s00300-009-0632-3

  • Lampitt RS, Noji T, von Bodungen B (1990) What happens to zooplankton faecal pellets? Implications for material flux. Mar Biol 104:15–23

    Article  Google Scholar 

  • Legendre L, Michaud J (1998) Flux of biogenic carbon in oceans: size dependent regulation by pelagic food webs. Mar Ecol Prog Ser 164:1–11

    Article  CAS  Google Scholar 

  • Lukáč D (2006) Community structure and predation impact of carnivorous macrozooplankton in the Polar Frontal Zone (Southern Ocean), with particular reference to chaetognaths, Masters thesis, Rhodes University, 135 p

  • Nagasawa S (1985) The digestive efficiency of the chaetognath Sagitta crassa Tokioka, with observations on the feeding process. J Exp Mar Biol Ecol 87:271–282

    Article  Google Scholar 

  • Noji TT, Estep KW, MacIntyre F et al (1991) Image analysis of fecal material grazed upon by three species of copepods: evidence for coprorhexy, coprophagy and coprochaly. J Mar Biol Assoc UK 71:465–480

    Article  Google Scholar 

  • Øresland V (1987) Feeding of the chaetognaths Sagitta elegans and S. setosa at different seasons in Gullmarsfjorden, Sweden. Mar Ecol Prog Ser 39:69–79

    Article  Google Scholar 

  • Øresland V (1990) Feeding and predation impact of the chaetognath Eukrohnia hamata in Gerlache Strait, Antarctic Peninsula. Mar Ecol Prog Ser 63:201–209

    Article  Google Scholar 

  • Øresland V (1995) Winter population structure and feeding of the chaetognath Eukrohnia hamata and the copepod Euchaeta antarctica in Gerlache Strait, Antarctic Peninsula. Mar Ecol Prog Ser 119:77–86

    Article  Google Scholar 

  • Øresland V (2000) Diel feeding of the chaetognath Sagitta enflata in the Zanzibar Channel, western Indian Ocean. Mar Ecol Prog Ser 193:117–123

    Article  Google Scholar 

  • Pakhomov EA, Froneman PW (2000) Composition and spatial variability of macroplankton and micronekton within the Antarctic Polar Frontal Zone of the Indian Ocean during austral autumn 1997. Polar Biol 23(6):410–419

    Article  Google Scholar 

  • Pakhomov EA, Perissinotto R, Froneman PW (1999) Predation impact of carnivorous macrozooplankton and micronekton in the Atlantic sector of the Southern Ocean. J Mar Syst 19:47–64

    Article  Google Scholar 

  • Pakhomov EA, Perissinotto R, McQuaid CD et al (2000) Zooplankton structure and grazing in the Atlantic sector of the Southern Ocean in the last austral summer 1993. Park 1. Ecological zonation. Deep Sea Res I 47(9):1663–1686

    Article  Google Scholar 

  • Ploug H, Iversen MH, Koski M (2008) Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: direct measurements of ballasting by opal and calcite. Limnol Oceanogr 53(2):469–476

    CAS  Google Scholar 

  • Priddle J, Smetacek V, Bathmann U (1992) Antarctic marine primary production, biochemical carbon cycles and climatic change. Philos Trans R Soc Lond B 338:289–297

    Article  Google Scholar 

  • Raymont JEG, Srinivasagam T, Rayrnont JKB (1969) Biochemical studies on marine zooplankton. VI. Investigation on Meganyctiphanes norvegica (M. Sars). Deep Sea Res 16:141–156

    CAS  Google Scholar 

  • Reeve MR (1970) The biology of Chaetognatha 1. Quantitative aspects of growth and egg production in Sagitta hispida. In: Steele JH (ed) Marine food chains. Oliver and Boyd, Edinburgh, pp 168–189

    Google Scholar 

  • Small LF, Fowler SW, Onlii MY (1979) Sinking rates of natural copepod fecal pellets. Mar Biol 51:233–241

    Article  Google Scholar 

  • Small LF, Fowler SW, Moore SA et al (1983) Dissolved and fecal pellet carbon and nitrogen release by zooplankton in tropical waters. Deep Sea Res 30:1199–1220

    Article  CAS  Google Scholar 

  • Smayda TJ (1969) Some measurements of the sinking rate of fecal pellets. Limnol Oceanogr 14:621–625

    Article  Google Scholar 

  • Steur L, Holland DM, Muench RD et al (2007) The warm-water ‘‘Halo’’ around Maud Rise: properties, dynamics and impact. Deep Sea Res I 54:871–896

    Article  Google Scholar 

  • Terazaki M (1989) Distribution of chaetognaths in the Australian sector of the Southern Ocean during the BIOMASS SIBEX cruise (KH-83–4). Proc NIPR Symp Polar Biol 2:51–60

    Google Scholar 

  • Terazaki M, Wada M (1988) Occurrence of large numbers of carcasses of the large, grazing copepod Calanus cristatus from the Japan Sea. Mar Biol 97:177–183

    Article  Google Scholar 

  • Turner JT (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27:75–102

    Article  Google Scholar 

  • Turner JT, Ferrante JG (1979) Zooplankton fecal pellets in aquatic ecosystems. Bioscience 29:670–677

    Article  Google Scholar 

  • Urban-Rich J, Hansell DA, Roman MR (1998) Analysis of copepod fecal pellet carbon using a high temperature combustion method. Mar Biol Prog Ser 171:199–208

    Article  CAS  Google Scholar 

  • Uye S, Kaname K (1994) Relations between fecal pellet volume and body size for major zooplankters of the Inland Sea of Japan. J Oceanogr 50:43–49

    Article  Google Scholar 

  • Wefer G, Fischer G, Fuetterer D et al (1988) Seasonal particle flux in the Bransfield Strait, Antarctica. Deep-Sea Res 35:891–898

    Article  CAS  Google Scholar 

  • Wefer G, Fischer G (1991) Annual primary production and export flux in the Southern Ocean from sediment trap data. Mar Chem 35:597–613

    Article  CAS  Google Scholar 

  • Wefer G, Fischer G, Füetterer D et al (1990) Particle sedimentation and productivity in Antarctic waters of the Atlantic sector. In: Bleil U, Thiede J (eds) Geological history of polar oceans: Arctic versus Antarctic. Kluwer, Dordrecht, pp 363–379

    Google Scholar 

  • Wilson SE, Steinberg DK, Buesseler KO (2008) Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep Sea Res II 55:1636–1647

    Article  Google Scholar 

  • Yoon WD, Marty J-C, Sylvain D, Nival P (1996) Degradation of faecal pellets in Pegea confoederata (Salpidae, Thaliacea) and its implication in the vertical flux of organic matter. J Exp Mar Biol Ecol 203:147–177

    Article  Google Scholar 

  • Yoon WD, Kim SK, Han KN (2001) Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic. Mar Biol 139:923–928

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the crew and scientists of R/V ‘Polarstern’ for their help and support during the Lazarev Sea Krill Study (LAKRIS) project. To Dr. V. Siegel for providing RMT 1 + 8 zooplankton samples. The participation of RG was funded by a CONICYT doctoral fellowship, a DAAD fellowship and a POGO-IOC-SCOR travel-fellowship. Additional support from FONDAP-COPAS grant No. 15010007 and the Instituto Antártico Chileno made possible the post-cruise analysis of zooplankton samples grant Gabinete.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Giesecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giesecke, R., González, H.E. & Bathmann, U. The role of the chaetognath Sagitta gazellae in the vertical carbon flux of the Southern Ocean. Polar Biol 33, 293–304 (2010). https://doi.org/10.1007/s00300-009-0704-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0704-4

Keywords

Navigation