Skip to main content

Advertisement

Log in

Foraminiferal distribution and diversity, Madang Reef and Lagoon, Papua New Guinea

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

In the Madang Lagoon, on the northern coast of Papua New Guinea (PNG), distinct groups of foraminifera, defined by numerical Q-mode cluster analysis of foraminiferal species occurrences, occupy four major environments and sedimentary regimes, generally aligned parallel to the coast: (1) the harbor and bay inlets, which have large fresh-water runoff and organic detrital inputs; (2) the fringing reefs along the west side of the lagoon which are influenced by coastal factors such as overhanging mangroves or fresh-water runoff; (3) the central lagoon floor which is over 50 m deep and covered with fine sand and patch reefs rising from it; and (4) the reef barrier with adjacent live coral-covered fore-reef slope and generally sandy back-reef slope. The four clusters are also mirrored in both species richness and Fisher alpha diversity analysis. Cluster 4 includes 79 species of large, thick-shelled miliolids, robust agglutinated species, calcarinids, and amphisteginids (Fisher α ≥20) that occur on the coral-rich barrier reef and back-reef. Cluster 3 has 50 species (Fisher α=8–20) and occupies the central lagoon floor. Cluster 2 has 25 or fewer species (Fisher α=2–6) and occurs on the shallow fringing reefs. Cluster 1 is the least diverse (≤7 species, Fisher α ≤2) and occurs in the harbors and bays in the mouths of larger rivers and streams. The larger, endosymbiont-bearing foraminifera (alveolinellids, soritids, amphisteginids, nummulitids, and calcarinids) generally live on the back- and fore-reef slopes and in the lagoon, avoid the organic-rich coastal and harbor habitats, and preferentially dwell in well-lit environments to the bottom of the lagoon. The river mouths and bays are unusual for reef systems because of their high organic content, which creates low-oxygen and nutrient-rich conditions. Here the foraminiferal fauna is dominated by only a few and, for the most part, particularly thin-shelled and highly fragile species. Each faunal group contains a number of numerically abundant indicator species that do not occur in other faunal clusters. This implies low horizontal transport rates within the reef and lagoon complex and signifies that faunal mixing among the cluster groups is limited. Foraminiferal death assemblages may thus be autochthonous and retain information regarding the original community structure. They may also preserve environmental information useful in paleoecological studies and they are good ecological indicators of reef and lagoon habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Adams CG (1992) Larger foraminifera and the dating of Neogene events. In: Tsuchi R, Ingle JC (eds) Pacific Neogene. University of Tokyo Press, Tokyo, pp 221–235

  • Baccaert J (1987) Distribution patterns and taxonomy of benthic foraminifera in the Lizard Island reef complex, northern Great Barrier Reef, Australia. PhD Thesis, University of Liege, 3 vols

  • Brady HB (1884) Report on the foraminifera dredged by H.M.S. Challenger, during the years 1873–1876: report on the scientific results of the voyage of the H.M.S. Challenger. Zoology 9:1–814

    Google Scholar 

  • Chappell J, Polach HA (1974) Holocene sea-level change and coral-reef growth at Huon Peninsula, Papua New Guinea. Bull Geol Soc Am 87:235–240

    Google Scholar 

  • Chappell J, Omura A, Esatt T, McCulloch M, Pandolfi J, Ota Y, Pillans B. (1996) Reconciliation of Late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planet Sci Letters 141:227–236

    Article  CAS  Google Scholar 

  • Cushman JA, Todd R, Post RJ (1954) Recent foraminifera of the Marshall Islands. US Geol Surv Prof Paper 260-H:319–384

  • Debenay J-P (1988a) Recent foraminifera tracers of oceanic water movements in the southwestern lagoon of New Caledonia. Palaeogeogr Palaeoclim Palaeoecol 65:59–72

    Google Scholar 

  • Debenay J-P (1988b) Foraminifera larger than 0.5 mm in the southwestern lagoon of new Caledonia: distribution related to abiotic properties. J Foram Res 18:158–175

    Google Scholar 

  • Debenay J-P (1990) Recent foraminiferal assemblages and their distribution relative to environmental stress in the paralic environments of West Africa (Cape Timiris to Ebrie Lagoon). J Foram Res 20:267–282

    Google Scholar 

  • Fisher RA, Corbet AS, Williams CB (1943) The relationship between the number of species and the number of individuals in a random sample of animal populations. J Anim Ecol 12:42–58

    Google Scholar 

  • Glenn-Sullivan EC, Evans I (2001) The effects of time-averaging and taphonomy on the identification of reefal sub-environments using larger foraminifera: Apo Reef, Mindoro, Philippines. Palaios 16:399–408

    Google Scholar 

  • Gosliner TM (1993) Biodiversity of tropical opisthobranch gastropod faunas. Proc 7th Int Coral Reef Symp 2:702–709

    Google Scholar 

  • Haig DW (1979) Foraminifera from shore-line sediments, Motupore Island, Papua New Guinea. Sci New Guinea 6:138–143

    Google Scholar 

  • Haig DW (1988a) Miliolid foraminifera from inner neritic sand and mud facies of the Papuan Lagoon, New Guinea. J Foram Res 18:203–236

    Google Scholar 

  • Haig DW (1988b) Distribution of miliolid foraminifera in marine sediments around Motupore Island, Papua New Guinea. Sci New Guinea 14:54–94

    Google Scholar 

  • Haig DW (1993) Buliminid foraminifera from inner neritic sand and mud facies of the Papuan Lagoon, New Guinea. J Foram Res 23:162–179

    Google Scholar 

  • Haig DW, Burgin S (1982) Brackish-water foraminiferids from the Purari River delta, Papua New Guinea. Rev Espanola Micropaleont 14:359–366

    Google Scholar 

  • Hallock P (1999) Symbiont-bearing foraminifera. In: Sen Gupta BK (ed) Modern foraminifera. Kluwer, Dordrecht, pp 123–139

  • Hallock P, Glenn EC (1986) Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios 1:55–64

    Google Scholar 

  • Havach SM, Collins LS (1997) The distribution of Recent benthic foraminifera across habitats of Bocas del Toro, Caribbean Panama. J Foram Res 27:232–249

    Google Scholar 

  • Hoeksema BW (1993) The position of northern New Guinea in the center of marine benthic diversity: a reef coral perspective. Proc 7th Int Coral Reef Symp 2:710–717

    Google Scholar 

  • Hohenegger J, Yordanova E (2001) Displacement of larger foraminifera at the western slope of Motobu Peninsula (Okinawa, Japan). Palaios 16:53–72

    Google Scholar 

  • Hohenegger J, Yordanova E, Nakano Y, Tatzreiter F (1999) Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Mar Micropaleont 36:109–168

    Article  Google Scholar 

  • Hottinger L (1977) Distribution of larger Peneroplidea, Borelis and Nummulitidae in the Gulf of Elat, Red Sea. Utrecht Micropaleont Bull 15:35–109

    Google Scholar 

  • Jebb MHP, Lowry JK (1995) Natural history of Madang Lagoon with an appendix of collecting localities. Rec Aust Mus Suppl 22:1–24

    Google Scholar 

  • Kohn AJ (2001) Maximal species richness in Conus: diversity, diet and habitat on reefs of northeast Papua New Guinea. Coral Reefs 20:25–38

    Article  Google Scholar 

  • Langer MR (1992) New Recent foraminiferal genera and species from the lagoon at Madang, Papua New Guinea. J Micropaleont 11:85–93

    Google Scholar 

  • Langer MR (1995) Oxygen and carbon isotopic composition of Recent larger and smaller foraminifera from the Madang Lagoon (Papua New Guinea). Mar Micropaleont 26:215–221

    Article  Google Scholar 

  • Langer MR, Gehring AU (1994) Manganese (II) in tests of larger foraminifera from Madang (Papua New Guinea). J. Foram Res 24:203–206

    Google Scholar 

  • Langer MR, Hottinger L (2000) Biogeography of selected "larger" foraminifera. Micropaleontology 46(Suppl 1):105–126

    Google Scholar 

  • Larson AR, Drooger CW (1977) Relative thickness of the test in Amphistegina species of the Gulf of Elat. Utrecht Micropaleont Bull 15:225–239

    Google Scholar 

  • Lipps JH (1988) Predation on foraminifera by coral reef fish: taphonomic and evolutionary implications. Palaios 3:315–326

    Google Scholar 

  • Lipps JH, Severin KP (1986) Alveolinella quoyii, a living fusiform foraminifera, at Motupore Island, Papua New Guinea. Sci New Guinea 11(1984/85):126–137

  • Loeblich AR Jr, Tappan H (1994) Foraminifera of the Sahul Shelf and Timor Sea. Cushman Found Foram Res Spec Publ 31:1–661

    Google Scholar 

  • Ludwig JA, Reynolds JF (1988) Statistical ecology: a primer on methods and computing. Wiley, New York, 337 pp

    Google Scholar 

  • Millett FW (1898–1904) Report on the recent foraminifera of the Malay Archipelago contained in anchor mud, collected by Mr. A. Durrand, F.R.M.S. J R Micr Soc 1898:258–269, 499–513, 607–614; 1899:249–255, 357–365, 557–564; 1900: 6–13, 273–281, 539–549; 1901:1–11, 485–497, 619–628; 1902:509–528; 1903:253–275, 685–704; 1904:489–506, 597–609

  • Moodley L, Hess C (1992) Tolerance of infaunal benthic foraminifera for low and high oxygen concentrations. Biol Bull 183:94–98

    Google Scholar 

  • Moodley L, van der Zwann GJ, Rutten GMW, et al. (1998) Subsurface activity of benthic foraminifera in relation to porewater oxygen content: laboratory experiments. Mar Micropaleont 34:91–106

    Article  Google Scholar 

  • Murray JW (1973) Distribution and ecology of living benthic foraminiferids. Crane Russak, New York. 274 pp

  • Pandolfi JM (1992) Successive isolation rather than evolutionary centers for the origination of Indo-Pacific reef corals. J Biogeogr 19:593–609

    Google Scholar 

  • Pandolfi JM (1996) Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea—constancy during global change. Paleobiology 22:152–176

    Google Scholar 

  • Pandolfi JM, Minchin PR (1995) A comparison of taxonomic composition and diversity between reef coral life and death assemblages in Madang Lagoon, Papua New Guinea. Palaeogeogr Palaeoclim Palaeoecol 119:321–341

    Article  Google Scholar 

  • Pandolfi JM, Best MMR, Murray SP (1994) Coseismic event of May 15, 1992, Huon Peninsula, Papua New Guinea: comparison with Quaternary tectonic history. Geology 22:239–242

    Article  Google Scholar 

  • Phleger FB (1960) Ecology and distribution of Recent foraminifera. John Hopkins Press, Baltimore

  • Rasheed DA (1971a) Some foraminifera belonging to Miliolidae and Ophthalmidiidae from the Coral Sea, south of Papua (New Guinea); part II. J Madras Univ 37–38:19–68

    Google Scholar 

  • Rasheed DA (1971b) Distribution of foraminifera in the Coral Sea, south of Papua (New Guinea); part I. J Madras Univ 37–38:73–80

    Google Scholar 

  • Reiss Z, Hottinger L (1984) The Gulf of Aqaba, ecological micropaleontology. Springer, Berlin Heidelberg New York

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Well F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  CAS  PubMed  Google Scholar 

  • Rosen BR (1988) Progress, problems and patterns in the biogeography of reef corals and other tropical marine organisms. Helgoland Meeresunters 42:269–301

    Google Scholar 

  • Seibold I (1975) Benthonic foraminifera from the coast and lagoon of Cochin (South India). Rev Espanola Micropaleont 7:175–213

    Google Scholar 

  • Severin KP (1983) The size-frequency distribution of the foraminifer Marginopora vertebralis on seagrass through time. Sci New Guinea 10:187–195

    Google Scholar 

  • Severin KP (1987) Spatial and temporal variation of Marginopora vertebralis on seagrass in Papua New Guinea during a six week period. Micropaleontology 33:368–377

    Google Scholar 

  • Severin KP, Lipps JH (1987) The weight–volume relationship of the test of Alveolinella quoyi: Implications for the taphonomy of large fusiform foraminifera. Lethaia 22:1–12

    Google Scholar 

  • Song Y, Black RG, Lipps JH (1994) Morphological optimization in the largest living foraminifera: implications from finite element analysis. Paleobiology 20:14–26

    Google Scholar 

  • Thomas JD (1993) Biodiversity and biogeography of coral reef amphipods from the north coast of New Guinea. Proc 7th Int Coral Reef Symp Abstr 2:736

    Google Scholar 

  • Todd R (1961) Foraminifera from Onotoa Atoll Gilbert Islands. US Geol Surv Prof Paper 354-H:171–191

  • Tudhope AW, Buddemeier RW, Chilcott CP, Berryman KR, Fautin DG, Jebb M, Lipps JH, Pearce RG, Scoffin TP, Schmmield GB (2000) Alternating seismic uplift and subsidence in the late Holocene at Madang, Papua New Guinea: evidence from raised reefs. J Geophys Res-Solid Earth 105:13797–13807

    Google Scholar 

  • Veron JEN (1995) Corals in space and time: the biogeography and evolution of the Scleractinia. Comstock, Cornell

    Google Scholar 

  • Yordanova EK, Hohenegger J (2002) Taphonomy of larger foraminifera: relationships between living individuals and empty tests on flat reef slopes (Sesoko Island, Japan). Facies 48:159–204

    Google Scholar 

Download references

Acknowledgements

J.H.L. is particularly thankful to Diane Christiansen and Matthew Jebb (past-Director) of the Christiansen Research Laboratory (CRL) at Madang for many courtesies and help extended during two collecting trips, and to Jeremy, Jamison, and Susie Lipps for assistance in collecting samples with a pipe dredge in a small boat. Kenneth Severin, Yan Song, and Bernard Ormsby assisted in collecting in PNG. J.H.L. also thanks the Jais Aben Resort and Riwa Village for living arrangements and much other help during two field trips to the CRL. R. Buddemeier kindly provided temperature and salinity data obtained by J. Oliver. We also appreciate thoughtful discussions with Lukas Hottinger and comments from Joan Bernhard, David Haig, and David Scott on an earlier version of this manuscript. B.G. Hatcher and R.E. Dodge, Editors of Coral Reefs, provided help in making this paper much better. Collection and study of the material by J.H.L. was supported by NSF grant EAR 84-08001 and a Christiansen Research Institute Fellowship. The Swiss Science and the German Science Foundations supported M.R.L.'s research. A Pacific Rim Project grant from the University of California provided partial aid in the preparation of this paper. We gratefully thank all these organizations and people. This is a CRL contribution and University of California Museum of Paleontology contribution number 1756.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Langer.

Appendix 1: List of foraminiferal species in alphabetical order

Appendix 1: List of foraminiferal species in alphabetical order

-:

Alveolinella quoyi (d'Orbigny, 1826)

-:

Ammonia convexa (Collins, 1958)

-:

Amphisorus hemprichii Ehrenberg, 1839

-:

Amphistegina bicirculata Larsen, 1976

-:

Amphistegina lessoni d'Orbigny, 1826

-:

Amphistegina lobifera Larsen, 1976

-:

Amphistegina papillosa Said, 1949

-:

Amphistegina radiata (Fichtel and Moll, 1798)

-:

Anomalinella rostrata (Brady, 1881)

-:

Asanonella tubulifera (Heron-Allen and Earland, 1915)

-:

Assilina ammonoides (Gronovius, 1781)

-:

Assilina heterosteginoides (Hofker, 1933)

-:

Asterorotalia concinna (Millet, 1904)

-:

Baculogypsina sphaerulata (Parker and Jones, 1860)

-:

Borelis pulchra (d'Orbigny, 1839)

-:

Borelis schlumbergeri (Reichel, 1937)

-:

Buliminoides williamsonianus (Brady, 1881)

-:

Calcarina spengleri (Gmelin, 1788)

-:

Clavulina pacifica Cushman, 1924

-:

Edentostomina cultrata (Brady, 1881)

-:

Elphidium craticulatum (Fichtel and Moll, 1798)

-:

Elphidium galeraensis (Baccaert, 1987)

-:

Elphidium limbatum (Chapman, 1909)

-:

Elphidium striatopunctatum (Fichtel and Moll, 1798)

-:

Epistomaroides punctulatus (d'Orbigny, 1826)

-:

Gaudryina robusta Cushman, 1913

-:

Haddonia torresiensis Chapman, 1898

-:

Hauerina fragilissima (Brady, 1884)

-:

Hauerina pacifica Cushman, 1917

-:

Heterocyclina tuberculata (Möbius, 1880)

-:

Heterolepa preacincta (Karrer, 1868)

-:

Heterostegina depressa d'Orbigny, 1826

-:

Heterostegina operculinoides Hofker, 1927

-:

Lachlanella parkeri (Brady, 1881)

-:

Marginopora vertebralis Quoy and Gaimard, 1830

-:

Neoeponides bradyi (LeCalvez, 1974)

-:

Neorotalia calcar (d' Orbigny, 1839)

-:

Nonion japonicum Asano, 1938

-:

Nummulites cummingii (Carpenter, 1860)

-:

Parrellina hispidula (Cushman, 1936)

-:

Parrellina pacifica (Collins, 1958)

-:

Parrina bradyi (Millett, 1898)

-:

Pegidia dubia (d'Orbigny, 1826)

-:

Planispirinella exigua (Brady, 1879)

-:

Pseudomassilina macilenta (Brady, 1884)

-:

Quinqueloculina pseudoreticulata Parr, 1941

-:

Quinqueloculina sidebottomi (Rasheed, 1971)

-:

Schlumbergerina alveoliniformis (Brady, 1879)

-:

Sigmoilopsis minuta (Collins, 1958)

-:

Siphogenerina virgula (Brady, 1879)

-:

Siphoniferoides siphoniferus (Brady, 1881)

-:

Sorites discoideus (Flint, 1899)

-:

Sorites marginalis (Carpenter, 1856)

-:

Sorites orbiculus Ehrenberg, 1839

-:

Sorites orbitolitoides (Hofker, 1930)

-:

Sorites variabilis Lacroix, 1941

-:

Spiroloculina attenuata Cushman and Todd, 1944

-:

Textularia oceanica Cushman, 1932

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, M.R., Lipps, J.H. Foraminiferal distribution and diversity, Madang Reef and Lagoon, Papua New Guinea. Coral Reefs 22, 143–154 (2003). https://doi.org/10.1007/s00338-003-0298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-003-0298-1

Keywords

Navigation