Skip to main content
Log in

New Negombata species discovered: latrunculin mystery solved

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The Red Sea features a remarkable diversity of marine natural products. Among its coral-reef residents, sponges (phylum Porifera) are recognized as a prolific source of novel secondary metabolites. Taxonomic identification and characterization of sponge phylogeny play a key role in understanding the underlying processes and evolution of such secondary metabolite production in sponges. However, sponge morphological plasticity frequently results in ambiguous taxonomic descriptions, necessitating a multidisciplinary approach in sponge species delimitation. One of the most conspicuous reef sponges in the Red Sea belongs to the genus Negombata, known to produce various bioactive compounds, including the macrolides latrunculin A and B (Lat A and B, respectively). Their alternative presence in N. magnifica was previously suggested to result from different environmental conditions, stress, or seasonality. Here, we hypothesized that this variation found in latrunculin presence derives from the existence of another morph of Negombata. We tested this using an integrative approach comprising morphological and molecular examination, characterization of latrunculin types, and analysis of the microbial community structure. We compared those parameters to other species of Negombata and, in greater depth, to the coexisting species, N. magnifica. Our results indicate that Negombata rotundata sp.nov. produces mainly Lat A, and N. magnifica produces Lat B, regardless of environmental factors. Moreover, the two morphs differ in their morphology, microbiome communities, and 28S rDNA sequence. Our findings emphasize the importance of uncovering sponge identity with respect to their secondary products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abou El-Ezz R, Ibrahim A, Habib E, Kamel H, Afifi M, Hassanean H, Ahmed S (2017) Review of natural products from marine organisms in the Red Sea. Int J Pharm Sci Res 8:940

    CAS  Google Scholar 

  • Ahmed SA, Odde S, Daga PR, Bowling JJ, Mesbah MK, Youssef DT, Khalifa SI, Doerksen RJ, Hamann MT (2007) Latrunculin with a highly oxidized thiazolidinone ring: structure assignment and actin docking. Org Lett 9:4773–4776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apprill A, McNally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75:129–137

    Article  Google Scholar 

  • Bayona LM, Van Leeuwen G, Oz E, Swierts T, Van Der Ent E, De Voogd NJ, Choi YH (2020) Influence of geographical location on the metabolic production of giant barrel sponges (Xestospongia spp.) revealed by metabolomics tools. ACS Omega 5:12398–12408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becerro MA, Paul VJ (2004) Effects of depth and light on secondary metabolites and cyanobacterial symbionts of the sponge Dysidea granulosa. Mar Ecol Prog Ser 280:115–128

    Article  CAS  Google Scholar 

  • Belinky F, Rot C, Ilan M, Huchon D (2008) The complete mitochondrial genome of the demosponge Negombata magnifica (Poecilosclerida). Mol Phylogen Evol 47:1238–1243

    Article  CAS  Google Scholar 

  • Blisko R (1998) Reproduction processes and establishment of cell culture from marine sponges Negombata spp. M. Sc. thesis, Tel Aviv Univ., Israel

  • Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116–211

    Article  CAS  PubMed  Google Scholar 

  • Boury-Esnault N, Lavrov DV, Ruiz CA, Pérez T (2013) The integrative taxonomic approach applied to Porifera: a case study of the Homoscleromorpha. Integr Comp Biol 53:416–427

    Article  PubMed  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643

    Article  PubMed  PubMed Central  Google Scholar 

  • Cárdenas P, Pérez T, Boury-Esnault N (2012) Sponge systematics facing new challenges. Adv Mar Biol 61:79–209

    Article  PubMed  Google Scholar 

  • Cárdenas P, Gamage J, Hettiarachchi CM, Gunasekera S (2022) Good practices in sponge natural product studies: revising vouchers with Isomalabaricane Triterpenes. Mar Drugs 20:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Carella M, Agell G, Cárdenas P, Uriz MJ (2016) Phylogenetic reassessment of Antarctic Tetillidae (Demospongiae, Tetractinellida) reveals new genera and genetic similarity among morphologically distinct species. PLoS ONE 11:e0160718

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter HJ (1879) Contributions to our Knowledge of the Spongida. Ann Mag Nat Hist 5(3):284–304

    Article  Google Scholar 

  • Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2022) Marine natural products. Nat Prod Rep 39:1122–1171

  • Chaib De Mares M, Sipkema D, Huang S, Bunk B, Overmann J, Van Elsas JD (2017) Host specificity for bacterial, archaeal and fungal communities determined for high-and low-microbial abundance sponge species in two genera. Front Microbiol 8:2560

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaidez V, Dreano D, Agusti S, Duarte CM, Hoteit I (2017) Decadal trends in Red Sea maximum surface temperature. Sci Rep 7:1–8

    Article  CAS  Google Scholar 

  • Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform 12:35

    Article  Google Scholar 

  • Cleary D, Polónia AR, Reijnen B, Berumen ML, de Voogd N (2020) Prokaryote communities inhabiting endemic and newly discovered sponges and octocorals from the Red Sea. Microb Ecol 80:103–119

    Article  CAS  PubMed  Google Scholar 

  • De Goeij JM, Van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, de Goeij AF, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110

    Article  PubMed  Google Scholar 

  • DeBiasse MB, Hellberg ME (2015) Discordance between morphological and molecular species boundaries among Caribbean species of the reef sponge Callyspongia. Ecol Evol 5:663–675

    Article  PubMed  PubMed Central  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M (2008) Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucl Acids Res 36:W465–W469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz MC, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci 69:535–546

    Google Scholar 

  • Easson CG, Thacker RW (2014) Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front Microbiol 5:532

    Article  PubMed  PubMed Central  Google Scholar 

  • Easson CG, Chaves-Fonnegra A, Thacker RW, Lopez JV (2020) Host population genetics and biogeography structure the microbiome of the sponge Cliona delitrix. Ecol Evol 10:2007–2020

    Article  PubMed  PubMed Central  Google Scholar 

  • Erpenbeck D, Voigt O, Al-Aidaroos AM, Berumen ML, Büttner G, Catania D, Guirguis AN, Paulay G, Schätzle S, Wörheide G (2016) Molecular biodiversity of Red Sea demosponges. Mar Pollut Bull 105:507–514

    Article  CAS  PubMed  Google Scholar 

  • Ferrario F, Calcinai B, Erpenbeck D, Galli P, Wörheide G (2010) Two Pione species (Hadromerida, Clionaidae) from the Red Sea: a taxonomical challenge. Org Divers Evol 10:275–285

    Article  Google Scholar 

  • Fierer N (2008) Microbial biogeography: patterns in microbial diversity across space and time. In: Zengler K (ed) Accessing uncultivated microorganisms: from the environment to organisms and genomes and back. ASM Press, Washington, pp 95–115

    Google Scholar 

  • Foissner I, Wasteneys GO (2007) Wide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cells. Plant Cell Physiol 48:585–597

    Article  CAS  PubMed  Google Scholar 

  • Galitz A, Nakao Y, Schupp PJ, Wörheide G, Erpenbeck D (2021) A soft spot for chemistry–current taxonomic and evolutionary implications of sponge secondary metabolite distribution. Mar Drugs 19:448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giles EC, Kamke J, Moitinho-Silva L, Taylor MW, Hentschel U, Ravasi T, Schmitt S (2013) Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol Ecol 83:232–241

    Article  CAS  PubMed  Google Scholar 

  • Gillor O, Carmeli S, Rahamim Y, Fishelson Z, Ilan M (2000) Immunolocalization of the toxin latrunculin B within the Red Sea sponge Negombata magnifica (Demospongiae, Latrunculiidae). Mar Biotechnol 2:213–223

    Article  CAS  Google Scholar 

  • Gökalp M, Kooistra T, Rocha MS, Silva TH, Osinga R, Murk AJ, Wijgerde T (2020) The effect of depth on the morphology, bacterial clearance, and respiration of the mediterranean sponge Chondrosia reniformis (Nardo, 1847). Mar Drugs 18:358

    Article  PubMed  PubMed Central  Google Scholar 

  • Groweiss A, Shmueli U, Kashman Y (1983) Marine toxins of Latrunculia magnifica. J Org Chem 48:3512–3516

    Article  CAS  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hooper JN (2000) Sponguide: guide to sponge collection and identification. South Brisbane, Qld. Queensland Museum

  • Ilan M (1995) Reproductive Biology, Taxonomy, and Aspects of Chemical Ecology of Latrunculiidae (Porifera). Biol Bull 188:306–312

    Article  CAS  PubMed  Google Scholar 

  • Kamel HL, Hanora A, Solyman SM (2022) Metataxanomic, bioactivity and microbiome analysis of Red Sea marine sponges from Egypt. Mar Genomics 61:100920

    Article  CAS  PubMed  Google Scholar 

  • Kamke J, Taylor MW, Schmitt S (2010) Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME J 4:498–508

    Article  CAS  PubMed  Google Scholar 

  • Kashman Y, Groweiss A, Shmueli U (1980) Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge Latrunculia magnifica. Tetrahedron Lett 21:3629–3632

    Article  CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller C (1889) Die Spongienfauna des rothen Meeres (I. Hälfte). Zeitschrift Für Wissenschaftliche Zoologie 48:311–405

    Google Scholar 

  • Kelly-Borges M, Vacelet J (1995) A revision of Diacamus Burton and Negombata de Laubenfels (Demospongiae: Latrunculiidae) with descriptions of new species from the west central Pacific and the Red Sea. Mem Queensl Mus 38:477–504

    Google Scholar 

  • Khalifa S, Ahmed S, Mesbah M, Youssef D, Hamann M (2006) Quantitative determination of latrunculins A and B in the Red Sea sponge Negombata magnifica by high performance liquid chromatography. J Chromatogr B 832:47–51

    Article  CAS  Google Scholar 

  • de Laubenfels MW (1936) A discussion of the sponge fauna of the dry tortugas in particular and the West Indies in General, with Material for a Revision of the Families and Orders of the Porifera. Carnegie Institute of Washington Publication. Tortugas Laboratory Paper 467(30): 1–225

  • Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian P-Y (2011) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP, Fiore C, Slattery M, Zaneveld J (2016) Climate change stressors destabilize the microbiome of the Caribbean barrel sponge, Xestospongia muta. J Exp Mar Biol Ecol 475:11–18

    Article  Google Scholar 

  • Loh T-L, Pawlik JR (2009) Bitten down to size: fish predation determines growth form of the Caribbean coral reef sponge Mycale laevis. J Exp Mar Biol Ecol 374:45–50

    Article  Google Scholar 

  • McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow CC, Redmond NE, Picton BE, Thacker RW, Collins AG, Maggs CA, Sigwart JD, Allcock AL (2013) Molecular phylogenies support homoplasy of multiple morphological characters used in the taxonomy of Heteroscleromorpha (Porifera: Demospongiae). Integr Comp Biol 53:428–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow KM, Fiore CL, Lesser MP (2016) Environmental drivers of microbial community shifts in the giant barrel sponge, Xestospongia muta, over a shallow to mesophotic depth gradient. Environ Microbiol 18:2025–2038

    Article  CAS  PubMed  Google Scholar 

  • Muricy G, Domingos C, Lage A, Lanna E, Hardoim CC, Laport MS, Zilberberg C (2019) Integrative taxonomy widens our knowledge of the diversity, distribution and biology of the genus Plakina (Homosclerophorida: Plakinidae). Invertebr Syst 33:367–401

    Google Scholar 

  • Neeman I, Fishelson L, Kashman Y (1975) Isolation of a new toxin from the sponge Latrunculia magnifica in the Gulf of Aquaba (Red Sea). Mar Biol 30:293–296

    Article  Google Scholar 

  • Okka M, Tian B, Kaufman PL (2004) Effect of low-dose latrunculin B on anterior segment physiologic features in the monkey eye. Arch Ophthalmol 122:1482–1488

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Package ‘vegan’. Community ecology package, version 2

  • Page M, West L, Northcote P, Battershill C, Kelly M (2005) Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand sponge Mycale hentscheli. J Chem Ecol 31:1161–1174

    Article  CAS  PubMed  Google Scholar 

  • Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414

    Article  CAS  PubMed  Google Scholar 

  • Pawlik JR, McMurray SE (2020) The emerging ecological and biogeochemical importance of sponges on coral reefs. Ann Rev Mar Sci 12:315–337

    Article  PubMed  Google Scholar 

  • Pita L, Rix L, Slaby BM, Franke A, Hentschel U (2018) The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6:1–18

    Article  Google Scholar 

  • Pöppe J, Sutcliffe P, Hooper JN, Wörheide G, Erpenbeck D (2010) CO I barcoding reveals new clades and radiation patterns of Indo-Pacific sponges of the family Irciniidae (Demospongiae: Dictyoceratida). PLoS ONE 5:e9950

    Article  PubMed  PubMed Central  Google Scholar 

  • Pulitzer-Finali G (1993) A collection of marine sponges from East Africa. Annales Museo Civico Storia Naturale Giacomo Doria 89:247–350

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41:D590–D596

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org/

  • Reveillaud J, Maignien L, Eren AM, Huber JA, Apprill A, Sogin ML, Vanreusel A (2014) Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J 8:1198–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reverter M, Perez T, Ereskovsky A, Banaigs B (2016) Secondary metabolome variability and inducible chemical defenses in the Mediterranean sponge Aplysina cavernicola. J Chem Ecol 42:60–70

    Article  CAS  PubMed  Google Scholar 

  • Rix L, de Goeij JM, van Oevelen D, Struck U, Al-Horani FA, Wild C, Naumann MS (2018) Reef sponges facilitate the transfer of coral-derived organic matter to their associated fauna via the sponge loop. Mar Ecol Prog Ser 589:85–96

    Article  CAS  Google Scholar 

  • Rohde S, Molis M, Wahl M (2004) Regulation of anti-herbivore defence by Fucus vesiculosus in response to various cues. J Ecol 92:1011–1018

  • Rohde S, Gochfeld DJ, Ankisetty S, Avula B, Schupp PJ, Slattery M (2012) Spatial variability in secondary metabolites of the Indo-Pacific sponge Stylissa massa. J Chem Ecol 38:463–475

    Article  CAS  PubMed  Google Scholar 

  • Rützler K, Macintyre IG (1978) Siliceous sponge spicules in coral reef sediments. Mar Biol 49:147–159

    Article  Google Scholar 

  • Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564

    Article  CAS  PubMed  Google Scholar 

  • Spector I, Shochet NR, Kashman Y, Groweiss A (1983) Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 219:493–495

    Article  CAS  PubMed  Google Scholar 

  • Spector I, Shochet NR, Blasberger D, Kashman Y (1989) Latrunculins—novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. Cell Motil Cytoskeleton 13:127–144

    Article  CAS  PubMed  Google Scholar 

  • Swierts T, Cleary D, de Voogd N (2018) Prokaryotic communities of Indo-Pacific giant barrel sponges are more strongly influenced by geography than host phylogeny. FEMS Microbiol Ecol 94:fiy194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turon M, Cáliz J, Garate L, Casamayor EO, Uriz MJ (2018) Showcasing the role of seawater in bacteria recruitment and microbiome stability in sponges. Sci Rep 8:1–10

    Article  CAS  Google Scholar 

  • Villegas-Plazas M, Wos-Oxley ML, Sanchez JA, Pieper DH, Thomas OP, Junca H (2019) Variations in microbial diversity and metabolite profiles of the tropical marine sponge Xestospongia muta with season and depth. Microb Ecol 78:243–256

    Article  CAS  PubMed  Google Scholar 

  • Voolstra CR, Berumen ML (2019) Coral reefs of the Red Sea. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Wheeler B, Torchiano M (2016) Package ‘lmPerm’. Permutation Tests for Linear Models. R package version 2.1.0. https://CRAN.R-project.org/package=lmPerm

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  • Yang Q, Franco CM, Sorokin SJ, Zhang W (2017) Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations. Sci Rep 7:1–14

    Google Scholar 

  • Youssef DT, Asfour HZ, Genta-Jouve G, Shaala LA (2021) Magnificines A and B, antimicrobial marine alkaloids featuring a tetrahydrooxazolo [3, 2-a] azepine-2, 5 (3H, 6H)-dione backbone from the Red Sea sponge Negombata magnifica. Mar Drugs 19:214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Goren for constructive comments and to prof. N. Shenkar lab for the assistance in microscopy. Prof. Shmuel Carmeli and Prof. Yoel Kashman’s help with latrunculins identification and quantification is highly appreciated. We are grateful to the Interuniversity Institute for Marine Sciences in Eilat (IUI) for ongoing support and use of facilities. We acknowledge N. Paz for scientific editorial assistance and Ilan’s lab members for the support in lab and field work. Funding: This research was supported by the ISF-NSFC joint research program (Grant No. 2577/18 to MI). LR was supported by the Lev Tzion scholarship from the Israeli council for higher education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilach Raijman-Nagar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1492 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raijman-Nagar, L., Shefer, S., Feldstein-Farkash, T. et al. New Negombata species discovered: latrunculin mystery solved. Coral Reefs 42, 343–357 (2023). https://doi.org/10.1007/s00338-022-02337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-022-02337-5

Keywords

Navigation