Skip to main content
Log in

Rib fabrication in Ostreoidea and Plicatuloidea (Bivalvia, Pteriomorphia) and its evolutionary significance

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Ribs of Ostreoidea and Plicatuloidea are defined as antimarginal, that is, perpendicular to the margin throughout growth. Morphogenetically, these ribs are unique, since, unlike radial ribs, they are secreted by a homogeneous mantle margin. Based also on the reconstructed shell secretion cycle in Bivalvia, we propose that ribs of Ostreoidea and Plicatuloidea are formed by a mantle margin which, upon extension from the shell margin, stretches and folds by taking the preformed ribs as templates. In extending perpendicular to the margin (as in all Bivalvia growing isometrically), such a mantle extends the rib pattern antimarginally. Ribs of this kind are purely mechanical structures, as their arrangement depends on the mechanical properties of the mantle and on the environmental conditions. This explains the high irregularity of such ribbing patterns. The presence of antimarginal ribs in both the Ostreoidea and Plicatuloidea sheds light on their origin. The first known oyster, Actinostreon cristadifformis, probably derived from an antimarginally ribbed Prospondylidae gen. indet. in the Late Permian or Early Triassic. Antimarginally ribbed Triassic species formerly included in Placunopsis originated both the Dimyidae Atreta in the Late Triassic and Enantiostreon in the Mid Triassic, which was transitional to Plicatulidae. Therefore, Dimyidae and Plicatulidae are closely connected and grouped under Plicatuloidea, to which Ostreoidea is phylogenetically unrelated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D.
Fig. 2A–F.
Fig. 3.
Fig. 4A–C.
Fig. 5A–C.
Fig. 6A–D.
Fig. 7.
Fig. 8A–F.
Fig. 9.
Fig. 10A–H.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14A, B.
Fig. 15.

Similar content being viewed by others

References

  • Adamkiewicz SL, Harasewych MG, Blake J, Saudek D, Bult CJ (1997) A molecular phylogeny of the bivalve mollusks. Mol Biol Evol 14:619–628

    Google Scholar 

  • Biot MA, Odé H, Roever, WL (1961) Experimental verification of the theory of folding of stratified viscoelastic media. Bull Geol Soc Am 72:1621–1630

    Google Scholar 

  • Campbell DC (2000) Molecular evidence on the evolution of the Bivalvia. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the Bivalvia. Geological Society Special Publication 177, London, pp 31–46

  • Carter JG (1990) Evolutionary significance of shell microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca). In: Carter JG (ed) Skeletal biomineralisation: patterns, processes and evolutionary trends, vol 1. Van Nostrand Reinhold, New York, pp 135–296

  • Checa A (1994) A model for the morphogenesis of ribs in ammonites inferred from associated microsculptures. Palaeontology 37:863–888

    Google Scholar 

  • Checa A (2002) Fabricational morphology of oblique ribs in bivalves. J Morphol 254:195–209

    Article  PubMed  Google Scholar 

  • Checa A, Crampton JS (2002) Mechanics of sculpture formation in Magadiceramus? rangatira rangatira (Inoceramidae, Bivalvia) from the Upper Cretaceous of New Zealand. Lethaia 35:279–290

    Article  Google Scholar 

  • Cox LR (1969) General features of Bivalvia. In: Moore RC (ed) Treatise on invertebrate paleontology, part N, Mollusca 6, Bivalvia, vol 1. Geological Society of America and University of Kansas Press, Boulder, Colorado and Lawrence, Kansas, pp N2–N224

  • Cox LR, Newell ND, Branson CC, Casey R, Chavan A, Coogan AH, Dechaseaux C, Fleming CA, Haas F, Hertlein LG, Keen AM, LaRocque A, McAlester AL, Perkins BF, Puri HS, Smith LA, Soot-Ryen T, Stenzel HB, Turner RD, Weir J (1969) Systematic descriptions. In: Moore RC (ed) Treatise on invertebrate paleontology, part N, Mollusca 6, Bivalvia, vol 1. Geological Society of America and University of Kansas Press, Boulder, Colorado and Lawrence, Kansas, pp N225–N489

  • De Renzi M, Márquez-Aliaga A (1980) Primary and diagenetic features in the microstructure of some Triassic bivalves. Rev Inst Inv Geol 34:101–116

    Google Scholar 

  • El-Hedeny MM, Abdel Aal AA, Maree M, Seeling J (2001) Plicatulid bivalves from the Coniacian-Santonian Matulla Formation, Wadi Sudr, western Sinai, Egypt. Cretaceous Res 22:295–308

    Article  Google Scholar 

  • Giribet G, Distel D (2002) Bivalve phylogeny and molecular data. In: Lydeard C, Lindberg D (eds) Molecular systematics and phylogeography of mollusks. Smithsonian Institution Press, Washington (in press)

  • Giribet G, Wheeler W (2002) On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebr Biol 121:271–324

    Google Scholar 

  • Gofas S (1991) The family Galeommatidae (Bivalvia: Leptonacea) in the Eastern Atlantic. Veliger 34:344–353

    Google Scholar 

  • Gofas S, Salas C (1996) Small Nuculidae (Bivalvia) with functional primary hinge in the adults. J Conchol 35:427–435

    Google Scholar 

  • Gordon JE (1978) Structures, or why things don't fall down. Penguin Books, Reading, pp 1–395

  • Hautmann M (2001) Taxonomy and phylogeny of cementing Triassic bivalves (families Prospondylidae, Plicatulidae, Dimyidae and Ostreidae). Palaeontology 44:339–373

    Google Scholar 

  • Hayami I, Kase T (1993) Submarine cave Bivalvia from the Ryukyu islands: systematics and evolutionary significance. Tokyo Univ Mus Bull 35:1–133

    Google Scholar 

  • Malchus N (1990) Revision del Kreide-Austern (Bivalvia: Pteriomorphia) Ägyptens (Biostratigraphie, Systematik). Berl Geowiss Abh, Reihe A 125:1–231

  • McRoberts CA, Carter JG (1994) Nacre in an early gryphaeid bivalve (Mollusca). J Paleontol 68:1405–1408

    Google Scholar 

  • Morita R (1991) Mechanical constraints on aperture form in gastropods. J Morphol 207:93–102

    Google Scholar 

  • Nakazawa K, Newell ND (1968) Permian bivalves of Japan. Mem Fac Sci Kyoto Univ Ser Geol Miner 35:1–108

    Google Scholar 

  • Newell ND (1960) The origin of the oysters. Proc 21st Int Geol Congr 2:81–86

    Google Scholar 

  • Newell ND, Boyd DW (1970) Oyster-like Permian Bivalvia. Bull Am Mus Nat Hist 143:217–282

    Google Scholar 

  • Raup DM (1966) Geometric analysis of shell coiling: coiling in ammonoids. J Paleontol 41:43–65

    Google Scholar 

  • Repin YS (1996) New Late Triassic bivalves from Iran and a taxonomy of the superfamily Spondylacea. Paleontol J 30:363–369

    Google Scholar 

  • Salas C, Gofas S (1998) Description of four new species of Neolepton Monterosato, 1875 (Mollusca: Bivalvia: Neoleptonidae), with comments on the genus and on its affinity with the Veneracea. Ophelia 48:35–70

    Article  CAS  Google Scholar 

  • Scarlato OA, Starobogatov YI (1984) The systematics of the suborder Mytileina (Bivalvia). Malacol Rev 17:115–116

    Google Scholar 

  • Seilacher A (1954) Ökologie der triassischen Muschel Lima lineata (Schloth.) und ihrer Epöken. Neues Jahrb Geol Palaeontol Monatsh 1954:163–183

    Google Scholar 

  • Seilacher A (1972) Divaricate patterns in pelecypod shells. Lethaia 5:325–343

    Google Scholar 

  • Skelton PW, Benton MJ (1993) Mollusca: Rostroconchia, Scaphopoda and Bivalvia. In: Benton MJ (ed) The fossil record 2. Chapman and Hall, London, pp 237–263

  • Slack-Smith SM (1998) Order Ostreoida. In: Beesley PL, Ross GJB, Wells A (eds) Mollusca: the Southern synthesis, fauna of Australia, vol 5, part A. CSIRO Publishing, Melbourne, pp 268–282

  • Squires RL, Saul LR (1997) Review of the bivalve genus Plicatula from Cretaceous and lower Cenozoic strata of California and Baja California. J Paleontol 71:287–298

    Google Scholar 

  • Starobogatov YI (1992) Morphological basis for the phylogeny and classification of Bivalvia. Ruthenica 2:1–26

    Google Scholar 

  • Steiner G, Hammer S (2000) Molecular phylogeny of the Bivalvia inferred from the 18S rDNA sequences with particular reference to the Pteriomorphia. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the Bivalvia. Geological Society Special Publication 177, London, pp 11–29

  • Stenzel HB (1971) Oysters. In: Moore RC (ed) Treatise on invertebrate paleontology, part N, Mollusca 6, Bivalvia, vol 3. Geological Society of America and University of Kansas Press, Boulder, Colorado and Lawrence, Kansas, pp N953–N1224

  • Stone HMI (1998) The functional morphology and evolution of pronounced shell ornament in epifaunal bivalves. Unpublished D. Phil. Thesis, Cambridge University, Cambridge, pp 1–271

  • Termier H, Termier G (1949) Roles des Aviculopectinidae dans la morphogénèse des dysodontes Mesozoiques. Bull Mus Natl Hist Nat Paris 21:292–299

    Google Scholar 

  • Todd JA, Palmer TJ (2002) The Jurassic bivalve genus Placunopsis: new evidence on anatomy and affinities. Palaeontology 45:487–510

    Google Scholar 

  • Vokes HE (1979) Observations on the genus Dimya (Mollusca, Bivalvia) in the Cenozoic faunas of the Western Atlantic region. Tulane Stud Geol Paleontol 15:33–53

    Google Scholar 

  • Waller TR (1978) Morphology, morphoclines and a new classification of the Pteriomorphia (Mollusca: Bivalvia). Philos Trans R Soc Lond Ser B 284:345–365

    Google Scholar 

  • Waller TR (1986) A new genus and species of scallop (Bivalvia: Pectinidae) from off Somalia, and the definition of a new tribe Decatopectinini. Nautilus 100:39–46

    Google Scholar 

  • Xu J (1976) Terquemiidae Cox, 1964 (in Chinese). In: Compiling group of the lamellibranch fossils of China (ed) The lamellibranch fossils of China. Science Press, Beijing, pp 230–231

  • Yonge CM (1975) The status of the Plicatulidae and the Dimyidae in relation to the superfamily Pectinacea (Mollusca: Bivalvia). J Zool 176:545–553

    Google Scholar 

  • Yonge CM (1978) On the Dimyidae (Mollusca, Bivalvia) with special reference to Dimya corrugata Hedley and Basiliomya goreaui Bayer. J Moll Stud 44:357–375

    Google Scholar 

  • Yonge CM (1980) On the Dimyidae and Plicatulidae: proposed superfamily Plicatulacea. J Malacol Soc Aust 4:241–242

    Google Scholar 

Download references

Acknowledgements

Thanks are given to Serge Gofas (University of Málaga, Spain), Hans Hagdorn (Hagdorn Museum, Ingelfingen, Germany), Gerd Dietl (Staatliches Museum für Naturkunde, Stuttgart), Istvan Fözy (Hungarian Natural History Museum, Budapest), Bushra Hussaini (American Museum of Natural History, New York), and Reinhard Schmidt-Effing (Philipps Universität Marburg). All of them contributed in an essential way to the present study either by providing material of Recent and fossil specimens or allowing access to private or institutional collections. Liz Harper (Cambridge University) and Nikolaus Malchus (Universitat Autònoma de Barcelona) critically reviewed the manuscript. The latter one kindly allowed reproduction of specimens in his 1990 monograph. Michael Hautmann (Universität Würzburg) provided constructive criticism on the early phylogeny of oyster-like Bivalvia (although he may not agree with all our statements). Otto Kraus (Universität Hamburg) and two anonymous reviewers made significant improvements. This work was funded by Research Projects PB97 0790 and BOS2001–3220 of the DGYCIT (Ministerio de Ciencia y Tecnología) and by the Research Group RNM0178 of the Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio G. Checa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Checa, A.G., Jiménez-Jiménez, A.P. Rib fabrication in Ostreoidea and Plicatuloidea (Bivalvia, Pteriomorphia) and its evolutionary significance. Zoomorphology 122, 145–159 (2003). https://doi.org/10.1007/s00435-003-0080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-003-0080-5

Keywords

Navigation