Skip to main content
Log in

Architecture of the nervous system in two Dactylopodola species (Gastrotricha, Macrodasyida)

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Immunohistochemical stainings have become standard tools to describe the nervous system, but usually only singular or few markers are used and consequently show only subsets of neurons within the nervous system. We investigated two species of Dactylopodola (Gastrotricha, Macrodasyida) with a broad set and combination of markers, to represent the nervous system in a more holistic approach. We suggest that markers for both neurotubuli (tubulin) and neurotransmitters (e.g. serotonin, FMRF-amides, histamine) should be used. Combinations with markers for the musculature (phalloidin) and nuclei (propidiumiodide or other markers) help to reveal spatial patterns and when used with TEM can provide a more precise picture of the spatial relationships of particular nerves. Species of Dactylopodola have a brain consisting of a solid dorsal commissure and a fine ventral commissure. Cell somata of brain cells are arranged lateral to the dorsal commissure and form a dumbbell-like brain. Additionally, projections into the head region, head sensory organs, one pair of lateroventral nerve cords with three commissures and stomatogastric nerves are described. Obviously, some longitudinal transmitter-specific fibres run in parallel to the main longitudinal nerve and represent additional longitudinal fibres. In comparison with the nervous system architecture of other gastrotrich species and that of different bilaterian animals it is speculated that the gastrotrich nervous system retains several ancestral features, such as being commissural and not a compact brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ax P (2003) Multicellular Animals III. Order in Nature—System made by Man. Springer, Berlin

    Google Scholar 

  • Breidbach O (1990) Serotonin-immunoreactive brain interneurons persist during metamorphosis of an insect: a developmental study of the brain of Tenebrio molitor L. (Coleoptera). Cell Tissue Res 259:345–360. doi:10.1007/BF00318458

    Article  Google Scholar 

  • Breidbach O, Wegerhoff R (1993) FMRFamide-like immunoreactive neurons in the central brain of the beetle Tenebrio molitor: Constancies and variations in development from embryo to adult. Int J Insect Morphol Embryol 23:383–404. doi:10.1016/0020-7322(94)90033-7

    Article  Google Scholar 

  • Ehlers U, Ehlers B (1978) Paddle cilia and discocilia—genuine structures? Cell Tissue Res 192:489–501. doi:10.1007/BF00212328

    Article  PubMed  CAS  Google Scholar 

  • Grimmelikhuijzen CJP (1983) FMRFamide immunoreactivety is generally occurring in the nervous system of coelenterates. Histochemistry 78:361–381. doi:10.1007/BF00496623

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Wildt M, Battelle B, Waloszek D (2005) Immunohistochemical localization of neurotransmitter in the nervous system of larval Limulus polyphemus (Chelicerata, Xiphosura): evidence for a conserved protocerebral architecture in Euarthropoda. Arthropod Struct Dev 34:327–342. doi:10.1016/j.asd.2005.01.006

    Article  CAS  Google Scholar 

  • Hochberg R (2007) Comparative immunohistochemistry of the cerebral ganglion in Gastrotricha: an analysis of FMRFamide-like immunoreactivity in Neodasys cirritus (Chaetonotida), Xenodasys riedli and Turbanella cf. hyalina (Macrodasyida). Zoomophology 126:245–264. doi:10.1007/s00435-007-0044-2

    Article  Google Scholar 

  • Hochberg R, Litvaitis MK (2000) Phylogeny of Gastrotricha: a morphology-based framework of gastrotrich relationships. Biol Bull 198:299–305. doi:10.2307/1542532

    Article  PubMed  CAS  Google Scholar 

  • Hochberg R, Litvaitis MK (2001a) Macrodasyida (Gastrotricha): a cladistic analysis of morphology. Invertebr Biol 120:124–135. doi:10.1111/j.1744-7410.2001.tb00116.x

    Article  Google Scholar 

  • Hochberg R, Litvaitis MK (2001b) The muscular system of Dactylopodola baltica and other macrodasyidan gastrotrichs in a functional and phylogenetic perspective. Zool Scr 30:325–336. doi:10.1046/j.1463-6409.2001.00066.x

    Article  Google Scholar 

  • Hochberg R, Livaitis MK (2003) Ultrastructural and immunocytochemical observations of the nervous systems of three macrodasyidan gastrotrichs. Acta Zool 84:171–178. doi:10.1046/j.1463-6395.2003.00144.x

    Article  Google Scholar 

  • Horvitz HR, Chalfie M, Trent C, Sulston JE, Evans PD (1982) Serotonin and octopamine in the nematode C. elegans. Science 216:1012–1014. doi:10.1126/science.6805073

    Article  PubMed  CAS  Google Scholar 

  • Joffe BI, Kotikova EA (1987) Catecholamines in the nervous system of the gastrotrich Turbanella sp. Dokl Akad Nauk SSSR 296:1509–1511

    Google Scholar 

  • Joffe BI, Wikgren M (1995) Immunocytochemical distribution of 5-Ht (serotonin) in the nervous system of the gastrotrich Turbanella cornuta. Acta Zool 76:7–9

    Article  Google Scholar 

  • Kienecke A, Martinez Arbizu P, Ahlrichs WH (2008) Anatomy and ultrastructure of the reproductive organs in Dactylopodola typhle (Gastrotricha: Macrodasyida) and their possible functions in sperm transfer. Invertebr Biol 127:12–32. doi:10.1111/j.1744-7410.2007.00111.x

    Article  Google Scholar 

  • Kotikova EA, Raikova OI, Reuter M, Gustafsson MKS (2005) Rotifer nervous system visualized by FMRFamide and 5-Ht immunocytochemistry and confocal laser scanning microscopy. Hydrobiologia 546:239–248. doi:10.1007/s10750-005-4203-5

    Article  Google Scholar 

  • Liesenjohann T, Neuhaus B, Schmidt-Rhaesa A (2006) Head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha): a combination of transmission electron microscopical and immunocytochemical techniques. J Morphol 267:897–908. doi:10.1002/jmor.10419

    Article  PubMed  Google Scholar 

  • Liu T, Kim K, Barr MM (2007) FMRFamide-like neuroprptide and mechanosensory touch receptor neurons regulate male sexual turning behavior in Caenorhabditis elegans. J Neurosci 27:7174–7182. doi:10.1523/JNEUROSCI.1405-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Lubics A, Reglődi D, Slezák S, Szelier M, Lengvári I (1997) Co-localization of serotonin and FMRFamide-like immunoreactivity in the central nervous system of the earthworm, Eisenia fetida. Acta Histochem 99:459–467

    PubMed  CAS  Google Scholar 

  • Morris J, Cardona A, Del Mar De Miguel-Bonet M, Hartenstein V (2007) Neurobiology of the basal platyhelminth Macrostomum lignano: map and digital 3D model of the juvenile brain neuropile. Dev Genes Evol 217:569–584. doi:10.1007/s00427-007-0166-z

    Article  PubMed  CAS  Google Scholar 

  • Nässl DR (1999) Histamine in the brain of insects: a review. Microsc Res Tech 44:121–136. doi:10.1002/(SICI)1097-0029(19990115/01)44:2/3<121::AID-JEMT6>3.0.CO;2-F

    Article  Google Scholar 

  • Nässl DR, Holmqvist MH, Hardie RC, Håkanson R, Sundler F (1988) Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of the flies Calliphora erythrocephala and Musca domestica. Cell Tissue Res 253:639–646

    Google Scholar 

  • Panula P, Eriksson K, Gustafsson M, Reuter M (1995) An immunocytochemical method for histamine: application to the planarians. Hydrobiol 305:291–295. doi:10.1007/BF00036409

    Article  Google Scholar 

  • Raikova OI, Reuter M, Jondelius U, Gustafsson MKS (2000) The brain of Nemertodermatida (Platyhelminthes) as revealed by anti-5Ht and anti-FMRFamide immunostainnings. Tissue Cell 32:358–365. doi:10.1054/tice.2000.0121

    Article  PubMed  CAS  Google Scholar 

  • Raikova OI, Reuter M, Gustafsson MKS, Maule AG, Halton DW, Jondelius U (2004) Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology 107:75–86. doi:10.1016/j.zool.2003.12.002

    Article  PubMed  Google Scholar 

  • Reglödi D, Slezák S, Lubic A, Szelier M, Elkes K, Lengvári I (1997) Distribution of FMRFamide-like immunoreactivity in the nervous system of Lumbricus terrestris. Cell Tissue Res 288:575–582. doi:10.1007/s004410050843

    Article  PubMed  Google Scholar 

  • Remane A (1926) Morphologie und Verwandtschaftsbeziehungen der aberranten Gastrotrichen I. Z Morph Ökol Tiere 5:625–754

    Article  Google Scholar 

  • Remane A (1936). Gastrotricha und Kinorhyncha. In: Bronn`s Kl. Ordn. Tierreichs 4: 1–385

  • Reuter M, Raikova OI, Gustafsson MKS (2001) Pattern in the nervous and muscle systems in lower flatworms. Belg J Zool 31(Suppl 1):47–53

    Google Scholar 

  • Rieger RM, Ruppert EE (1978) Resin embedments of quantitative meiofauna samples for ecological and structural studies–description and application. Mar Biol (Berl) 46:223–235. doi:10.1007/BF00390684

    Article  Google Scholar 

  • Rothe BH, Schmidt-Rhaesa A (2008) Variation in the nervous system in three species of the genus Turbanella (Gastrotricha, Macrodasyida). Meiofauna Marina 16:175–185

    Google Scholar 

  • Ruiz-Trillo I, Riutort M, Littlewood DTJ, Herniou EA, Baguña J (1999) Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283:1919–1923. doi:10.1126/science.283.5409.1919

    Article  PubMed  CAS  Google Scholar 

  • Ruppert EE (1982) Comparative ultrastructure of the gastrotrich pharynx and the evolution of myoepithelial foreguts in Aschelminthes. Zoomorphology 99:181–220. doi:10.1007/BF00312295

    Article  Google Scholar 

  • Ruppert EE (1991) Gastrotricha. In: Harrison F, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4: Aschelminthes. Wiley, New York, pp 41–109

    Google Scholar 

  • Schmidt-Rhaesa A (2002) Two dimensions of biodiversity research amplified by Nematomorpha and Gastrotricha. Integr Comp Biol 42:633–640. doi:10.1093/icb/42.3.633

    Article  Google Scholar 

  • Schmidt-Rhaesa A (2003) Old trees, new trees—is there any progress? Zoology 106:291–301. doi:10.1078/0944-2006-00128

    Article  PubMed  Google Scholar 

  • Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, Oxford

    Book  Google Scholar 

  • Short G, Tamm SL (1991) On the nature of paddle cilia and discocilia. Biol Bull 180:466–474. doi:10.2307/1542347

    Article  Google Scholar 

  • Teuchert G (1974) Aufbau und Feinstruktur der Muskelsysteme von Turbanella cornuta Remane (Gastrotricha, Macrodasyoida). Mikrofauna Meeresbodens 39:223–246

    Google Scholar 

  • Teuchert G (1976) Sinneseinrichtigungen bei Turbanella cornuta Remane (Gastrotricha). Zoomorphologie 83:193–207. doi:10.1007/BF00993484

    Article  Google Scholar 

  • Teuchert G (1977) The ultrastructure of the marine gastrotrich Turbanella cornuta Remane (Macrodasyoidea) and its functional and phylogenetic importance. Zoomorphologie 88:189–246. doi:10.1007/BF00995474

    Article  Google Scholar 

  • Teuchert G, Lappe A (1980) The so-called “pseudocoel” of Nemathelminthes—a comparison of the body cavity of several gastrotrichs. Zool Jahrb Anat 103:424–438

    Google Scholar 

  • Todaro MA, Littlewood DTJ, Balsamo M, Herniou EA, Cassanelli S, Manicardi G, Tongiorgi P (2003) The interreleationships of the Gastrotricha using nuclear small rRNA subunit sequence data, with an interpretation based on morphology. Zool Anz 242:145–156. doi:10.1078/0044-5231-00093

    Article  Google Scholar 

  • Todaro MA, Telford MJ, Lockyer AE, Littlewood TJ (2006) Interrelationsship of the Gastrotricha and their place among the Metazoa inferred from 18S rRNA genes. Zool Scr 35:251–259. doi:10.1111/j.1463-6409.2006.00228.x

    Article  Google Scholar 

  • Travis PB (1983) Ultrastructural study of body wall organization and Y-cell composition in the Gastrotricha. Z Zool Syst Evolut-forsch 21:52–68

    Article  Google Scholar 

  • Uhlig G (1964) Eine einfache Methode zur Extraction der vagilen, mesopsammalen Mikrofauna. Helgoländer Wiss Meeresunt 11:151–157

    Google Scholar 

  • Wallberg A, Curini-Galletti M, Ahmadzadeh A, Jondelius U (2007) Dismissal of Acoelomorpha: Acoela and Nemertodermatida are separate early bilaterian clades. Zool Scr 36:509–523. doi:10.1111/j.1463-6409.2007.00295.x

    Article  Google Scholar 

  • Wiedermann A (1995) Zur Ultrastruktur des Nervensystems bei Cephalodasys maximus (Macrodasyida, Gastrotricha). Microfauna Marina 10:173–233

    Google Scholar 

  • Wikgren M, Reuter M, Gustafsson MKS, Lindroos P (1990) Immunocytochemical localization of histamine in flatworms. Cell Tissue Res 260:479–484. doi:10.1007/BF00297227

    Article  PubMed  CAS  Google Scholar 

  • Wikgren M, Fagerholm H-P (1993) Neuropeptides in sensory structures of nematodes. Acta Biol Hung 44:133–136

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to the people of the Wadden Sea Station (AWI) in List/Sylt, especially to Werner Armonis. We thank Pedro Martínez Arbizu (Wilhelmshaven) for the possibility to participate at the MEIONORD cruise. The authors gratefully acknowledge Alexander Kienecke (Oldenburg) and a second anonymous reviewer for their critical comments which improved the manuscript. This research was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG) (SCHM 1278/8-1) within the frame of the focal programme Deep Metazoan Phylogeny (SPP 1174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schmidt-Rhaesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothe, B.H., Schmidt-Rhaesa, A. Architecture of the nervous system in two Dactylopodola species (Gastrotricha, Macrodasyida). Zoomorphology 128, 227–246 (2009). https://doi.org/10.1007/s00435-008-0077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-008-0077-1

Keywords

Navigation