Skip to main content
Log in

U–Th-total Pb ages of monazite from the Eckergneiss (Harz Mountains, Germany): evidence for Namurian to Westfalian granulite facies metamorphism at the margin of Laurussia

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Four samples of garnet-bearing metapsammitic gneisses and one sample of a kinzigitic sillimanite-garnet-cordierite gneiss from the Eckergneiss Complex (Harz Mountains, Germany) were studied in detail for U–Th-total Pb dating with the electron microprobe. Monazite in all samples occurs in the matrix and show similar chemical compositional variation. A single stage monazite growth during the highest stages of metamorphism was deduced and chemical ages of all samples are between 313 ± 4 and 328 ± 6 Ma. These ages are interpreted as the time of granulite facies metamorphism in the Eckergneiss Complex. This metamorphism post-dates the formation of the main foliation, presumably developed under amphibolite facies conditions, as indicated by overprinting static grain growth and partial melt microstructures. It pre-dates the significantly younger intrusion of the Harzburg Gabbronorite and the Brocken Granite that are of post-Variscan age. Our results, in combination with P–T conditions for the peak of granulite facies metamorphism, show that the Eckergneiss Complex must have resided at a depth of at least 15 km during the Namurian to Westfalian. Later exhumation of the Eckergneiss Complex and its tectonic emplacement within the low-grade metamorphic Rhenohercynian rock units of the NW-Harz most likely occurred along the Acker-Bruchberg Thrust Zone, which marks the transition between the allochthonous and autochthonous domains of the Harz Mountains. At Early Permian time, this imbricated sequence was intruded and sealed by the post-Variscan intrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armstrong JT (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films and particles. Microbeam Anal 4:117–200

    Google Scholar 

  • Bankwitz P (1993) Die Erdkruste der östlichen Rhenoherzynischen Zone im Umfeld des Harzes. Zentralblatt für Geologie und Paläontologie, Teil 1(9/10):1551–1557

    Google Scholar 

  • Baumann A, Grauert B, Mecklenburg S, Vinx R (1991) Isotopic age determinations of crystalline rocks of the Upper Harz Mountains, Germany—Springer. Geol Rundsch 80(3):669–690. https://doi.org/10.1007/BF01803694

    Article  Google Scholar 

  • Behr HJ, Engel W, Franke W, Giese P, Weber K (1984) The Variscan Belt in Central Europe: Main structures, geodynamic implications, open questions. Tectonophysics 109(1):15–40. https://doi.org/10.1016/0040-1951(84)90168-9

    Article  Google Scholar 

  • Chatterjee ND, Plessmann W, Wunderlich HG (1960) Zur Alterstellung des Eckergneises im Harz. Neues Jahrbuch für Geologie Paläontologie, Monatshefte, pp 368–379

  • Donovan J, Hanchar J, Picolli P, Schrier M, Boatner L, Jarosewich E (2003) A re-examination of the rare-earth-element orthophosphate standards in use for electron-microprobe analysis. Can Mineral 41(1):221–232

    Article  Google Scholar 

  • Doublier MP, Potel S, Franke W, Roache T (2012) Very low-grade metamorphism of Rheno-Hercynian allochthons (Variscides, Germany): facts and tectonic consequences. Int J Earth Sci 101(5):1229–1252. https://doi.org/10.1007/s00531-011-0718-3

    Article  Google Scholar 

  • Eckelmann K, Nesbor HD, Königshof P, Linnemann U, Hofmann M, Lange JM, Sagawe A (2014) Plate interactions of Laurussia and Gondwana during the formation of Pangaea—Constraints from U-Pb LA-SF-ICP-MS detrital zircon ages of Devonian and Early Carboniferous siliciclastics of the Rhenohercynian zone, Central European Variscides. Gondwana Res 25(4):1484–1500. https://doi.org/10.1016/j.gr.2013.05.018

    Article  Google Scholar 

  • Erdmannsdörfer OH (1909) Der Eckergneis im Harz. Jahrbuch Preußisch Geologische Landes-Anstalt 30:324–388

    Google Scholar 

  • Fiebig B (1990) Beiträge zum strukturellen Bau des Harzes auf Grundlage der geophysikalischen Komplexinterpretation. PhD thesis, Martin-Luther-Universität Halle-Wittenberg

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc London Spec Publ 179(1):35–61. https://doi.org/10.1144/GSL.SP.2000.179.01.05

    Article  Google Scholar 

  • Franke W (2006) The variscan orogen in central Europe: construction and collapse. Geol Soc Lond Mem 32:333–343

    Article  Google Scholar 

  • Franke W, Dulce JC (2017) Back to sender: tectonic accretion and recycling of Baltica-derived devonian clastic sediments in the rheno-hercynian variscides. Int J Earth Sci 106(1):377–386. https://doi.org/10.1007/s00531-016-1408-y

    Article  Google Scholar 

  • Franke W, Cocks LRM, Torsvik TH (2017) The Palaeozoic Variscan oceans revisited. Gondwana Res 48:257–284. https://doi.org/10.1016/j.gr.2017.03.005

    Article  Google Scholar 

  • Franz L, Schuster A, Strauss K (1997) Basement evolution in the rhenohercynian segment: discontinuous exhumation history of the Eckergneis complex (Harz mountains, Germany). Chemie der Erde 57:105–135

    Google Scholar 

  • Franzke HJ (2001) Die strukturelle Einbindung des Eckergneises zu seinem variscisch geprägten Umfeld. Braunschweiger geowiss Arb 24:1–26

    Google Scholar 

  • Franzke H, Zeh A, Meier S (2007) Die metamorph-magmatische und strukturelle Entwicklung des Kyffhäuser Kristallins/Mitteldeutsche Kristallinzone—Vergleich mit der Wippra-Zone und dem Eckergneis/Harz. Z Geol Wiss 35(1/2):27–61

    Google Scholar 

  • Geisler T, Vinx R, Martin-Gombojav N, Pidgeon RT (2005) Ion microprobe (SHRIMP) dating of detrital zircon grains from quartzites of the Eckergneiss Complex, Harz Mountains (Germany): implications for the provenance and the geological history. Int J Earth Sci 94(3):369–384. https://doi.org/10.1007/s00531-004-0460-1

    Article  Google Scholar 

  • Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. Am Miner 90(2–3):316–328

    Article  Google Scholar 

  • Horstwood MSA, Foster DL, Parrish RR, Noble SR, Nowell GM (2003) Common-Pb corrected in situ U-Pb accessory mineral geochronology by LA-MC-ICP-MS. J Anal At Spectrom 18(8):837–846

    Article  Google Scholar 

  • Huckriede H, Wemmer K, Ahrendt H (2004) Palaeogeography and tectonic structure of allochthonous units in the German part of the Rheno-Hercynian Belt (Central European Variscides). Int J Earth Sci 93:414–431. https://doi.org/10.1007/s00531-004-0397-4

    Article  Google Scholar 

  • Jarosewich E, Boatner LA (1991) Rare-earth element reference standards for electron microprobe analysis. Geostand Newslett 15:397–399

    Article  Google Scholar 

  • Jercinovic MJ, Williams ML (2005) Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: background acquisition, interferences, and beam irradiation effects. Am Miner 90(4):526–546. https://doi.org/10.2138/am.2005.1422

    Article  Google Scholar 

  • Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abhandlungen des Sächsischen Geologischen Landesamts 1:1–39

    Google Scholar 

  • Koziol A, Newton R (1988) Redetermination of the anorthite breakdown reaction and improvement of the plagioclase-garnet-Al2SiO5-quartz geobarometer. Am Miner 73(3–4):216–223

    Google Scholar 

  • Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana?—U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci 93(5):683–705. https://doi.org/10.1007/s00531-004-0413-8

    Article  Google Scholar 

  • Linnemann U, Herbosch A, Liegeois JP, Pin C (2012) The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with new zircon ages, geochemistry, Sm–Nd isotopes, stratigraphy and palaeogeography. Earth Sci Rev 112:126–154

    Article  Google Scholar 

  • Marheine D (1997) Zeilmarken im variszischen Kollisionsbereich des Rhenoherzynikums—Saxothuringikums zwischen Harz und Sächsischem Granulitmassiv—Ergebnisse von K/Ar-Altersbestimmungen. PhD thesis, Göttinger Arbeiten zur Geologie und Paläontologie

  • Martin-Gombojav N (2003) Petrographie und Petrogenese des Eckergneis-Komplexes, Harz. PhD thesis, ediss.sub.uni-hamburg.de, Hamburg. http://ediss.sub.uni-hamburg.de/volltexte/2003/1054/pdf/dissertation.pdf. Accessed 28 May 2019

  • Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126(2–4):329–374. https://doi.org/10.1016/0040-1951(86)90237-4

    Article  Google Scholar 

  • McDonough W, Sun S (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Article  Google Scholar 

  • Molzahn M, Anthes G, Reischmann T (1998) Single zircon Pb/Pb age geochronology and isotope systematics of the Rhenohercynian basement. Terra Nostra 98(1):67–68

    Google Scholar 

  • Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chemical Geology 131:37–53 

    Article  Google Scholar 

  • Müller G, Strauss K (1985) Polymetamorphe Entwicklung des Eckergneis-Komplexes/Harz. Neues Jahrbuch für Mineralogie, Abhandlungen 152(3):271–291

    Google Scholar 

  • Nichols GT, Berry RF, Green DH (1992) Internally consistent gahnitic spinel-cordierite- garnet equilibria in the FMASHZn system: geothermobarometry and applications. Contrib Miner Petrol 111(3):362–377. https://doi.org/10.1007/BF00311197

    Article  Google Scholar 

  • Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and it’s consequences for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol Rundsch 86(1):2–20. https://doi.org/10.1007/s005310050118

    Article  Google Scholar 

  • Paquette J-L, Tiepolo M (2007) High resolution (5 μm) U-Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237

    Article  Google Scholar 

  • Paquette J-L, Nédélec A, Moine B, Rakotondrazafy M (1994) U-Pb, single zircon Pb evaporation, and Sm-Nd isotopic study of a granulite domain in SE Madagascar. J Geol 120:523–538

    Article  Google Scholar 

  • Salamon M, Königshof P (2010) Middle Devonian olistostromes in the Rheno-Hercynian zone (Rheinisches Schiefergebirge)—an indication of back arc rifting on the southern shelf of Laurussia. Gondwana Res 17:281–291. https://doi.org/10.1016/j.gr.2009.10.004

    Article  Google Scholar 

  • Schlüter J (1983) Petrographische und petrochemische Untersuchungen am Eckergneis, Harz. Doctorate dissertation, Universität Hamburg

  • Schoell M, Lenz H, Harre M (1973) Das Alter der Hauptmetamorphose des Eckergneises im Harz auf Grund von Rb/Sr-Datierungen. Geologisches Jahrbuch A9:89–95

    Google Scholar 

  • Sohn W (1956) Der Harzburger Gabbro. Geologisches Jahrbuch 72:117–172

    Google Scholar 

  • Stephan T, Kroner U, Hahn T, Hallas P, Heuse T (2016) Fold/cleavage relationships as indicator for late Variscan sinistral transpression at the Rheno-Hercynian–Saxo-Thuringian boundary zone, Central European Variscides. Tectonophysics 681:250–262

    Article  Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. J Struct Geol 24(1):1861–1884. https://doi.org/10.1016/s0191-8141(02)00035-4

    Article  Google Scholar 

  • Wachendorf H (1986) Der Harz—variszischer Bau und geodynamische Entwicklung. Geol Jahrb A91:3–67

    Google Scholar 

  • Whitney D, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Will T, Lee SH, Schmädicke E, Frimmel H, Okrusch M (2015) Variscan terrane boundaries in the Odenwald-Spessart basement, mid-german crystalline zone: New evidence from ocean ridge, intraplate and arc-derived metabasaltic rocks. Lithos 220–223:23–42. https://doi.org/10.1016/j.lithos.2015.01.018

    Article  Google Scholar 

  • Will TM, Schulz B, Schmädicke E (2017) The timing of metamorphism in the Odenwald–Spessart basement, Mid German Crystalline Zone. Int J Earth Sci 106(5):1631–1649. https://doi.org/10.1007/s00531-016-1375-3

    Article  Google Scholar 

  • Will T, Schmädicke E, Ling X, Li X, Li Q (2018) New evidence for an old idea: geochronological constraints for a paired metamorphic belt in the central european variscides. Lithos 302–303:278–297. https://doi.org/10.1016/j.lithos.2018.01.008

    Article  Google Scholar 

  • Zech J, Jeffries T, Faust D, Ullrich B, Linnemann U (2010) U/Pb-dating and geochemical characterization of the Brocken and the Ramberg Pluton, Harz Mountains, Germany. Geol Saxonica 56:9–24

    Google Scholar 

  • Zeh A, Gerdes A (2010) Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): implications for the closure of the Rheic ocean. Gondwana Res. https://doi.org/10.1016/j.gr.2009.08.004

    Google Scholar 

  • Zeh A, Will T (2010) The mid-German crystalline zone. In: Linneman U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 195–220

    Google Scholar 

  • Zundel M, Friedel C-H, Grimmer JC (2019) Magnetic fabric constraints for syn-magmatic doming of the laccolithic Brocken granite pluton (Harz Mountains, northern Germany). Int J Earth Sci. https://doi.org/10.1007/s00531-019-01679-w

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the administration of the Nationalpark Harz (Werningerode) and Friedhart Knolle for assistance and access to the area. Thomas Schlüter and Roland Vinx (University of Hamburg) kindly provided samples for this study. Wolfgang Franke is thanked for useful comments about the relevance of the ages and Erik Düsterhöft is thanked for stimulating discussions. We thank Barbara Mader for assistance with the electron microprobe analyses and Andreas Fehler for thin sections. We gratefully acknowledge constructive reviews by Fritz Finger (Salzburg) and Thomas Theye (Stuttgart) that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Appel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appel, P., Stipp, M., Friedel, CH. et al. U–Th-total Pb ages of monazite from the Eckergneiss (Harz Mountains, Germany): evidence for Namurian to Westfalian granulite facies metamorphism at the margin of Laurussia. Int J Earth Sci (Geol Rundsch) 108, 1741–1753 (2019). https://doi.org/10.1007/s00531-019-01735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01735-5

Keywords

Navigation