Skip to main content
Log in

Meiotic behavior and pollen viability of tetraploid Arachis glabrata and A. nitida species (Section Rhizomatosae, Leguminosae): implications concerning their polyploid nature and seed set production

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The meiotic behavior and pollen viability of the tetraploids (2n = 4x = 40) Arachis glabrata and A. nitida were analyzed aiming to provide insights into the nature of these polyploids and into the mechanism that determines the low seed production of these species. Meiotic analysis revealed 21 different chromosome configurations at diakinesis-metaphase I in A. glabrata (from 20 II to 4 II + 8 IV) and 7 in A. nitida (from 20 II to 2 I + 12 II + 2 III + 2 IV). The multivalent associations (up to 8 IV) observed in some A. glabrata metaphases suggest that this species may have an autopolyploid origin. However, the fact that the mean number of bivalents varied among accessions indicates different degrees of diploidization among them. In contrast, the multivalents (up to 2 III + 2 IV) observed in very low frequency in A. nitida indicate that this species may be either a largely diploidized autopolyploid or a segmental allopolyploid. A great diversity, although in low frequency, of meiotic abnormalities (abnormal chromosome orientation and segregation, chromosome bridges, irregular spindles, micronuclei, aneuploid nuclei, restitution nuclei, microcytes, monads, dyads, triads, and hexads) was detected in both species. The meiotic indexes were over 95%, and pollen viabilities ranged from 83.20 to 95.99%. These results suggest that chromosome behavior during meiosis would not severely affect pollen viability. Thus, the irregular chromosome behavior caused by the autopolyploid or segmental allopolyploid nature of these species may not be related to their low seed set production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angelici C, Hoshino AA, Nóbile PM, Palmieri DA, Valls JFM, Gimenes MA, Lopes CR (2008) Genetic diversity in Rhizomatosae section of the genus Arachis (Fabaceae) based on microsatellite markers. Genet Mol Biol 31:79–88

    Article  CAS  Google Scholar 

  • Brandham PE (1970) Chromosome behavior in the Aloineae III correlations between spontaneous chromatid and sub-chromatid aberrations. Chromosoma 31:1–17

    Article  Google Scholar 

  • Cimini D, Cameron LA, Salmon ED (2004) Anaphase spindle mechanics prevent mis-segregation of merotelically oriented chromosomes. Curr Biol 14:2149–2155

    Article  PubMed  CAS  Google Scholar 

  • Clark FJ (1940) Cytogenetics studies of divergent meiotic spindle formation in Zea mays. Amer J Bot 27:547–559

    Article  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 89:836–846

    Article  Google Scholar 

  • Darlington CD (1965) Recent advances in cytology. J & A Churchill Ltd., London

    Google Scholar 

  • Dewitte A, Eackhaut T, Van Huylenbroeck J, Van Bockstaele E (2010) Meiotic aberrations during 2n pollen formation in Begonia. Heredity 104:215–223

    Article  PubMed  CAS  Google Scholar 

  • Diao WP, Bao SY, Jiang B, Cui L, Qian CT, Chen JF (2009) Cytogenetic studies on microsporogenesis and male gametophyte development in autotriploid cucumber (Cucumis sativus L.): implication for fertility and production of trisomics. Plant Syst Evol 279:87–92

    Article  Google Scholar 

  • Diggle PK, Meixner MA, Carrol AB, Aschwanden CF (2002) Barriers to sexual reproduction in Polygonum viviparum: a comparative developmental analysis of P. viviparum and P. bistortoides. Ann Bot 89:145–156

    Article  PubMed  Google Scholar 

  • Dyer AF (1963) The use of lacto-propionic orcein in rapid squash methods for chromosome preparations. Stain Tech 38:85–90

    CAS  Google Scholar 

  • Fatta Del Bosco S, Tusa N, Conicella C (1999) Microsporogenesis in a Citrus interspecific tetraploid somatic hybrid and its fusion parents. Heredity 83:373–377

    Article  Google Scholar 

  • French EC, Prine GM, Ocumpaugh WR, Rice RW (1994) Regional experience with forage Arachis in the United States. In: Kerridge PC, Hardy B (eds) Biology and agronomy of forage Arachis. CIAT, Cali, pp 169–186

    Google Scholar 

  • InfoStat (2008) InfoStat versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina

  • John B (1990) Meiosis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Lavia GI, Fernández A, Seijo JG (2008) Cytogenetic and molecular evidences on the evolutionary relationships among Arachis species. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 1E. Science Publishers, Calcutta, pp 101–134

    Google Scholar 

  • Luan L, Wang X, Long WB, Liu YH, Tu SB, Xiao XY, Kong FL (2009) A comparative cytogenetic study of the rice (Oryza sativa L.) autotetraploid restorers and hybrids. Russ J Genet 45:1074–1081

    Article  CAS  Google Scholar 

  • Maass BL, Ocampo CH (1995) Isozyme polymorphism provides for germplasm of Arachis glabrata Bentham. Genet Resour Crop Evol 42:77–82

    Article  Google Scholar 

  • Mallikarjuna N, Sastri DC (2002) Morphological, cytological and disease resistance studies of the intersectional hybrid between Arachis hypogaea L. and A. glabrata Benth. Euphytica 126:161–167

    Article  CAS  Google Scholar 

  • Nicklas RB, Waters JC, Salmon ED, Ward SC (2001) Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J Cell Sci 114:4173–4183

    PubMed  CAS  Google Scholar 

  • Nielsen LR, Siegismund HR, Philipp M (2003) Partial self-incompatibility in the polyploid endemic species Scalesia affinis (Asteraceae) from the Galápagos: remnants of a self-incompatibility system? Bot J Linn Soc 142:93–101

    Article  Google Scholar 

  • Pagliarini MS (2000) Meiotic behavior of economically important plant species: the relationship between fertility and male sterility. Genet Mol Biol 23:997–1002

    Article  Google Scholar 

  • Pagliarini MS, Risso-Pascotto C, Souza-Kaneshima AM (2008) Analysis of meiotic behavior in selecting potential genitors among diploid and artificially induced tetraploid accessions of Brachiaria ruziziensis (Poaceae). Euphytica 164:181–187

    Article  Google Scholar 

  • Pittenger TH, Frolik EF (1951) Temporary mounts for pollen abortion determinations. Stain Tech 26:181–184

    CAS  Google Scholar 

  • Prine GM, Dunavin LS, Moore JE, Roush RD (1981) “Florigraze” rhizoma peanut: a perennial forage legume. Agr Exp Sta, Univ of Florida, Gainsville, Circular S-275

  • Prine GM, Dunavin LS, Glennon RJ, Roush RD (1986) “Arbrook” rhizoma peanut: a perennial forage legume. Agr Exp Sta, Univ of Florida, Gainsville, Circular S-332

  • Qu L, Hancock JF, Whallon JH (1998) Evolution in an autopolyploid group displaying predominantly bivalent pairing at meiosis: genomic similarity of diploid Vaccinium darrowi and autotetraploid V. corymbosum (Ericaceae). Amer J Bot 85:698–703

    Article  Google Scholar 

  • Raman VS (1981) Nature of chromosome pairing in allopolyploids of Arachis and their stability. Cytologia 46:307–321

    Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Rouse RE, Roka F, Miavitz-Brown EM (2004) Guide for establishing perennial peanut as a landscape groundcover. Proc Fla State Hort Soc 117:289–290

    Google Scholar 

  • Santos JL, Alfaro D, Sanchez-Moran E, Armstrong SJ, Franklin FCH, Jones GH (2003) Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 165:1533–1540

    PubMed  CAS  Google Scholar 

  • Seijo JG (2002) Estudios citogenéticos en especies sudamericanas del género Lathyrus, sección Notolathyrus (Leguminosae). Doctoral thesis, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad de Córdoba, Argentina

  • Seijo JG, Solis Neffa VG (2006) Cytogenetic studies in the rare South american Lathyrus hasslerianus Burk. (Leguminosae). Cytologia 71:11–19

    Article  Google Scholar 

  • Simpson CE, Valls JFM, Miles JM (1994) Reproductive biology and the potential for genetic recombination in Arachis. In: Kerridge PC, Hardy B (eds) Biology and agronomy of forage Arachis. CIAT, Cali, pp 43–52

    Google Scholar 

  • Singh AK (1986) Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. Theor Appl Genet 72:433–439

    Article  Google Scholar 

  • Singh RJ (2003) Plant cytogenetics, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Stebbins GL (1947) Types of polyploids, their classification and significance. Adv Genet 1:403–429

    Article  PubMed  Google Scholar 

  • Taschetto OM, Pagliarini MS (2004) Meiotic behavior in tetraploid populations of Pfaffia tuberosa (Amaranthaceae). Acta Bot Croat 63:17–24

    Google Scholar 

  • Teng N, Chen T, Jin B, Wu X, Huang Z, Li X, Wang Y, Mu X, Li J (2006) Abnormalities in pistil development result in low seed set in Leymus chinensis (Poaceae). Flora 201:658–667

    Google Scholar 

  • Valls JFM, Simpson CE (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14:35–64

    Google Scholar 

  • Valls JFM, Maas BL, Lopez CR (1994) Genetic resources of wild Arachis and genetic diversity. In: Kerridge PC, Hardy B (eds) Biology and Agronomy of Forage Arachis. CIAT, Cali, pp 28–40

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Secretaría General de Ciencia y Técnica (UNNE) PI 47/04, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP 6265, and Agencia Nacional de Promoción Científica y Tecnológica PICTO 2007-00099, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela Inés Lavia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz, A.M., Seijo, J.G., Fernández, A. et al. Meiotic behavior and pollen viability of tetraploid Arachis glabrata and A. nitida species (Section Rhizomatosae, Leguminosae): implications concerning their polyploid nature and seed set production. Plant Syst Evol 292, 73–83 (2011). https://doi.org/10.1007/s00606-010-0397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0397-8

Keywords

Navigation