Skip to main content
Log in

Reproductive biology of Sporobolus phleoides Hack. (Poaceae), an endemic halophyte grass of Argentina

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Sporobolus phleoides is an endemic grass of Argentina considered an important genetic resource for saline environments due to its salinity tolerance. Basic information about its reproductive biology is needed to adequately preserve its genetic variability. Hence, we studied its breeding system through phenology, embryological analysis, and self-pollination versus open-pollination treatments in six populations collected from four provinces of Argentina. The results indicated that S. phleoides is mainly autogamous with a high fertility rate. Cleistogamous and chasmogamous spikelets are isomorphic and occur simultaneously on the inflorescence, with higher percentages of cleistogamy found in the basal region of the panicle. The average percentage of cleistogamy during the study period was 23 % for all populations evaluated. The development of the embryo sac follows the typical pattern of grasses and indicates normal sexual reproduction. This study provides the basis for programming genotype collections for gene banks and future plans of domestication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anton AM, Cocucci AE (1984) The grass megagametophyte and its possible phylogenetic implications. Pl Syst Evol 146:117–121. doi:10.1007/BF00984058

    Article  Google Scholar 

  • Aracne M (2010) Efecto de la polinización libre y la autopolinización en el éxito reproductivo pre-emergente y la germinación en poblaciones de Sporobolus indicus (Poaceae). Tesis de grado, Universidad Nacional del Litoral, Santa Fe

  • Aronsen JA (1989) Haloph, a data base of salt tolerant plants of the world. University of Arizona, Tucson

    Google Scholar 

  • Astegiano ME (1986) La cleistogamia y casmogamia en Sporobolus indicus (Poaceae). Kurtziana 18:69–76

    Google Scholar 

  • Astegiano ME (1989) Biología reproductiva de Sporobolus indicus (Poaceae) en relación a la interacción gametofito-esporofito. Kurtziana 20:65–94

    Google Scholar 

  • Baker HG (1955) Self-compatibility and establishment after ‘long distance’ dispersal. Evolution 9:347–348. http://www.jstor.org/stable/2405656

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, pp 147–172

    Google Scholar 

  • Barrett SCH (2002) Sexual interference of the floral kind. Heredity 88:154–159. doi:10.1038/sj.hdy.6800020

    Article  CAS  PubMed  Google Scholar 

  • Barrett SCH (2003) Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. Philos Trans Ser B 358:991–1004. doi:10.1098/rstb.2003.1301

    Article  Google Scholar 

  • Busch JW (2011) Demography, pollination, and Baker’s law. Evolution 65(5):1511–1151. doi:10.1111/j.1558-5646.2011.01224.x

  • Campbell CS (1982) Cleistogamy in Andropogon L. (Gramineae). Amer J Bot 69:1625–1635. http://www.jstor.org/stable/2442917

  • Campbell CS, Quinn JA, Cheplick GP, Bell TJ (1983) Cleistogamy in grasses. Annual Rev Ecol Syst 14:411–441. http://www.jstor.org/stable/2096980

  • Cheplick GP (1995) Plasticity of seed number, mass, and allocation in clones of the perennial grass Amphibromus scabrivalvis. Int J Pl Sci 156:522–529. http://www.jstor.org/stable/2475071

  • Cheplick GP (2007) Plasticity of chasmogamous and cleistogamous reproductive allocation in grasses. Aliso 23:286–294. doi:10.5642/aliso.20072301.23

    Article  Google Scholar 

  • Cheptou PO (2012) Clarifying Baker’s Law. Ann Bot (Oxford) 109:633–641. doi:10.1093/aob/mcr127

    Article  Google Scholar 

  • Clay K (1983) Variation in the degree of cleistogamy within and among species of the grass Danthonia. Amer J Bot 70:835–843. http://www.jstor.org/stable/2442935

  • Connor HE (1979) Breeding systems in the grasses; a survey. New Zealand J Bot 17:547–574. doi:10.1080/0028825X.1979.10432571

    Article  Google Scholar 

  • Connor HE (1981) Evolution of reproductive systems in the Gramineae. Ann Missouri Bot Gard 68:48–74. http://www.jstor.org/stable/2398810

  • Cruden RW (1977) Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32–46. http://www.jstor.org/stable/2407542

  • Cruden RW, Hermann-Parker SM (1977) Temporal dioecism: an alternative to dioecism. Evolution 31:863–866. http://www.jstor.org/stable/2407448

  • Culley TM, Klooster MR (2007) The cleistogamous breeding system: a review of its frequency, evolution, and ecology in angiosperms. Bot Rev 73:1–30. doi:10.1663/0006-8101(2007)73[1:TCBSAR]2.0.CO;2

  • Dafni A (1992) Pollination ecology: a practical approach. Oxford University Press, New York. doi:10.1046/j.1420-9101.1993.6050776.x

  • D'Ambrogio de Argüeso A (1986) Manual de técnicas en histología vegetal. Hemisferio Sur, Buenos Aires

    Google Scholar 

  • Denham SS (2012) Sporobolus R. Br. In: Zuloaga FO, Rúgolo ZE, Anton AM (eds) Flora vascular de la República Argentina. Monocotyledoneae, Poaceae: Aristidoideae a Pharoideae. Graficamente Córdoba, pp 208–218

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStat versión 2011. Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Doyon D, Dore WG (1967) Notes on the distribution of two grasses, Sporobolus neglectus and Leersia virginica, in Quebec. Can Field Nat 81:30–32

    Google Scholar 

  • Duncan TM, Rausher MD (2013) Evolution of the selfing syndrome in Ipomoea. Front Plant Sci 4(301):1–8. doi:10.3389/fpls.2013.00301

    Google Scholar 

  • Engstrom B (2004) Sporobolus compositus var. compositus (Tall Dropseed). Conservation and research plan for New England. New England Wild Flower Society, Framingham, Massachusetts, USA

  • Febles G, Padilla C, Achan G (2010) Estudios acerca de la reproducción agámica en Sporobolus indicus. Revista Cubana de Ciencia Agrícola 44(2):185–187. http://www.redalyc.org/pdf/1930/193015662015.pdf

  • Fryxell PA (1957) Mode of reproduction of higher plants. Bot Rev 3:135–233. doi:10.1007/BF02869758

    Article  Google Scholar 

  • Heslop-Harrison Y, Heslop-Harrison JS (1996) Lodicule function and filament extension in the grasses: potassium ion movement and tissue specialization. Ann Bot (Oxford) 77:573–582. doi:10.1093/aob/77.6.573

    Article  Google Scholar 

  • Inouye K, Maki M, Masuda M (1996) Evolution of Campanula flowers in relation to insect pollinators on islands. In: Lloyd DG, Barrett SCH (eds.) Floral biology: studies on floral evolution in animal-pollinated plants. Chapman and Hall, New York, pp. 377–301. doi:10.1007/978-1-4613-1165-2_14

  • Johri BM, Ambegaokar KB, Srivastava P (1992) Comparative embryology of angiosperms. Springer-Verlag, New York

    Book  Google Scholar 

  • Joshi AJ, Malia BS, Hinglagiaa H (2005) Salt tolerance at germination and early growth of two forage grasses growing in marshy habitats. Environm Exp Bot 54:267–274. doi:10.1016/j.envexpbot.2004.09.005

    Article  CAS  Google Scholar 

  • Kalisz S, Randle A, Chaiffetz D, Faigeles M, Butera A, Beight C (2012) Dichogamy, outcrossing rates and selfing syndrome in mixed-mating Collinsia. Ann Bot (Oxford) 109:571–582. doi:10.1093/aob/mcr237

    Article  Google Scholar 

  • Khan MA, Gul B (2008) Halophyte seed germination. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Netherlands, pp 11–30

    Google Scholar 

  • Knight SE, Waller DM (1987) Genetic consequences of outcrossing in the cleistogamous annual Impatiens capensis. I Population genetic structure. Evolution 41:969–978. http://www.jstor.org/stable/2409185

  • Liphschitz N, Waisel Y (1974) Existence of salt glands in various genera of the gramineae. New Phytol 73:507–513. doi:10.1111/j.1469-8137.1974.tb02129.x

    Article  Google Scholar 

  • Lloyd DG (1965) The evolution of self-compatibility and racial differentiation in Leavenworthia (Cruciferae). Contr Gray Herb 195:3–134. http://www.jstor.org/stable/41764680

  • Lloyd DG (1984) Variation strategies of plants in heterogeneous environments. Biol J Linn Soc 21:357–385. doi:10.1111/j.1095-8312.1984.tb01600.x

    Article  Google Scholar 

  • Lloyd DG, Schoen DJ (1992) Self and cross-fertilization in plants. I. Functional dimensions. Int J Pl Sci 153:358–369. http://www.jstor.org/stable/2995676

  • Masuda M, Yahara T, Maki M (2001) An ESS model for the mixed production of cleistogamous and chasmogamous flowers in a facultative cleistogamous plant. Evol Ecol Res 3:429–439. http://www.evolutionary-ecology.com/abstracts/v03n04/ffar1246.pdf

  • Mc Gregor RL (1990) Seed Dormancy and Germination in the annual cleistogamous Species of Sporobolus (Poaceae). Trans Kansas Acad Sci 93(1–2):8–11. http://www.jstor.org/stable/3628122

  • Oakley CG, Winn AA (2008) Population-level and family-level inbreeding depression in a cleistogamous perennial. Int J Pl Sci 169(4):523–530. doi:10.1086/528752

    Article  Google Scholar 

  • Ortiz-Díaz JJ, Culham A (2000) Phylogenetic relationships of the genus Sporobolus (Poaceae: Eragrostideae) based on nuclear ribosomal DNA ITS sequences. In: Jacobs S, Everet J (eds) Grasses: systematics and evolution. CSIRO, Melbourne, pp 184–188

    Google Scholar 

  • Parodi LR (1928) Revisión de las especies argentinas del género Sporobolus. Rev Fac Agr y Vet 6(2):115–168

    Google Scholar 

  • Peterson PM, Soreng R, Davidse G, Filgueiras T, Zuloaga F, Judziewicz E (2001). Catalogue of New World grasses (Poaceae): II. Subfamily Chloridoideae. Contr US Natl Herb 41:1–255. http://www.jstor.org/stable/23493180

  • Peterson PM, Hatch S, Weakley A (2003) Sporobolus R. Br. Pp. In: Barkworth M, Capels K, Long S, Piep M (eds). Flora of North America Editorial Committee, Flora of North America. Oxford Univ. Press, New York, 25, pp 115–139

  • Peterson PM, Columbus T, Pennington S (2007) Classification and biogeography of New World grasses: chloridoideae. Aliso 23(1):580–594. doi:10.5642/aliso.20072301.43

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2011) nlme: linear and nonlinear mixed effects models. R Package Version 3.1-101

  • Redbo-Torstensson P, Berg H (1995) Seasonal cleistogamy: a conditional strategy to provide reproductive assurance. Acta Bot Neerl 44:247–256. doi:10.1111/j.1438-8677.1995.tb00783.x

    Article  Google Scholar 

  • Richards A (1986) Plant breeding systems. George Allen and Unwin Publisher, London

    Google Scholar 

  • Riggins R (1977) A biosystematic study of the Sporobolus asper complex (Gramineae). Iowa State J Res 51(3):287–321

    Google Scholar 

  • Rogers ME, Craig AD, Munns R, Colmer TD, Nichols PGH, Malcolm CV, Barrett-Lennard EG, Brown AJ, Semple WS, Evans PM, Cowley K, Hughes SJ, Snowball R, Bennett SJ, Sweeney GC, Dear BS, Ewing MA (2005) The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Aust J Exp Agr 45(4):301–329. http://dx.doi.org/10.1071/EA04020

  • Rosengurt B (1984) Gramíneas cleistógamas del Uruguay. Bol Fac Agron Univ Rep Montevideo 134:1–28

    Google Scholar 

  • Rosengurtt B, Arrillaga de Maffei BR (1961) Flores cleistógamas en gramíneas uruguayas. Bol Fac Agron Univ Rep Montevideo 57:1–12

    Google Scholar 

  • Ruzin SE (1999) Plant Microtechnique and Microscopy. Oxford University Press, New York

    Google Scholar 

  • Schoen DJ (1984) Cleistogamy in Microlaena polynoda (Gramineae): an examination of some model predictions. Amer J Bot 71:711–719. http://www.jstor.org/stable/2443368

  • Scrivanti LR, Norrmann GA, Anton AM (2009) Reproductive biology of South American Bothriochloa (Poaceae: Andropogoneae). Flora 204(9):644–650. doi:10.1016/j.flora.2008.09.005

    Article  Google Scholar 

  • Sicard A, Lenhard M (2011) The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. Ann Bot (Oxford) 107:1433–1443. doi:10.1093/aob/mcr023

    Article  Google Scholar 

  • Smith-White AR (1988) Sporobolus virginicus (L.) Kunth in Coastal Australia: the reproductive behaviour and the distribution of morphological types and chromosome races. Austral J Bot 36:23–39. doi:10.1071/BT9880023

    Article  Google Scholar 

  • Stebbins GL (1957) Self-fertilization and population variability in higher plants. Amer Naturalist 91:337–354. http://www.jstor.org/stable/2458946

  • Steibel P, Rúgolo de Agrasar Z, Troiani H, Martínez O (1997) Sinopsis de las gramíneas (Gramineae Juss.) de la Provincia de La Pampa, República Argentina. Revista Fac Agron Univ Nac La Pampa 9:1–122

    Google Scholar 

  • Sutherland S, Delph LF (1984) On the importance of male fitness in plants: patterns of fruitset. Ecology 65:1093–1104. http://www.jstor.org/stable/1938317

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Tel-Zur N, Schneider B (2009) Floral biology of Ziziphus mauritiana (Rhamnaceae). Sex Pl Reprod 22:73–85. doi:10.1007/s00497-009-0093-4

    Article  Google Scholar 

  • Watson L, Dallwitz MJ (1992). The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. Version: 12th August 2014. http://delta-intkey.com

  • Weaver JE (1954) North American prairie. Johnsen Publishing Company, Lincoln

    Google Scholar 

  • Wood JN, Gaff DF (1989) Salinity studies with drought-resistant species of Sporobolus. Oecologia 78:559–564. doi:10.1007/BF00378748

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. DC Castro and to Mg. JM Zabala for his help with the statistical analysis of data; to Dr. MA Richard and Dr. MM Gotelli for helping with the English revision. Financial support for this research was provided by the Universidad Nacional del Litoral and the Consejo Nacional de Investigaciones Científicas y Técnicas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldina Alicia Richard.

Additional information

Handling editor: Jim Leebens-Mack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, G.A., Pensiero, J.F., Cerino, M.C. et al. Reproductive biology of Sporobolus phleoides Hack. (Poaceae), an endemic halophyte grass of Argentina. Plant Syst Evol 301, 1937–1945 (2015). https://doi.org/10.1007/s00606-015-1206-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1206-1

Keywords

Navigation