Skip to main content
Log in

Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Enrichments for anaerobic, organotrophic hyperthermophiles were performed with hydrothermal chimney samples collected from the Mid-Atlantic Ridge at a depth of 3,550 m (23°22′N, 44°57′W) and the Guaymas Basin (27°01′N, 111°24′W) at a depth of 2,616 m. Positive enrichments were submitted to γ-irradiation at doses of 20 and 30 kGy. Two hyperthermophilic, anaerobic, sulfur-metabolizing archaea were isolated. Strain EJ1T was isolated from chimney samples collected from the Mid-Atlantic Ridge after γ-irradiation at 20 kGy, and strain EJ2T was isolated from the Guaymas Basin after γ-irradiation at 30 kGy. Only strain EJ2T was motile, and both formed regular cocci. These new strains grew between 55 and 95 °C with the optimal temperature being 88 °C. The optimal pH for growth was 6.0, and the optimal NaCl concentration for growth was around 20 g l−1. These strains were obligate anaerobic heterotrophs that utilized yeast extract, tryptone, and peptone as a carbon source for growth. Ten amino acids were essential for the growth of strain EJ1T, such as arginine, aspartic acid, isoleucine, leucine, methionine, phenylalanine, proline, threonine, tyrosine, and valine, while strain EJ2T was unable to grow on a mixture of amino acids. Elemental sulfur or cystine was required for EJ2T growth and was reduced to hydrogen sulfide. Rifampicin inhibited growth for both strains EJ1T and EJ2T. The G+C contents of the genomic DNA were 52.3 and 54.5 mol% for EJ1T and EJ2T, respectively. As determined by 16S rRNA gene sequence analysis, these strains were more closely related to Thermococcus gorgonarius, T. celer, T. guaymasensis, T. profundus, and T. hydrothermalis. However, no significant homology was observed between them with DNA–DNA hybridization. These novel organisms also possess phenotypic traits that differ from those of its closest phylogenetic relatives. Therefore, it is proposed that these isolates, which are amongst the most radioresistant hyperthermophilic archaea known to date with T. gammatolerans (Jolivet et al. 2003a), should be described as novel species T. marinus sp. nov. and T. radiotolerans sp. nov. The type strain of T. marinus is strain EJ1T (=DSM 15227T=JCM 11825T) and the type strain of T. radiotolerans is strain EJ2T (=DSM 15228T=JCM 11826T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3

Similar content being viewed by others

References

  • Arab H, Völker H, Thomm M (2000) Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece. Int J Syst Bacteriol 50:2101–2108

    Google Scholar 

  • Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane-sulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    CAS  PubMed  Google Scholar 

  • Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 18:203–224

    Article  Google Scholar 

  • Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF, Rapp BA, Wheeler DL (1999) GenBank. Nucleic Acids Res 27:12–17

    Article  CAS  PubMed  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannashii. Science 273:1058–1073

    CAS  PubMed  Google Scholar 

  • Canganella F, Jones WJ, Gambarcota A, Antranikian G (1998) Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Bacteriol 48:1181–1185

    Google Scholar 

  • Charbonnier F, Forterre P (1994) Comparison of plasmid DNA topology among mesophilic and thermophilic eubacterial and archaebacteria. J Bacteriol 176:1251–1259

    CAS  PubMed  Google Scholar 

  • Cherry R, Desbruyères D, Heyraud M, Nolan C (1992) High levels natural radioactivity in hydrothermal vent polychaetes. CR Acad Sci Paris, Ser III, pp 21–26

  • Cohen GN, Barbe V, Flament D, Galperin M, Heilig R, Lecompte O, Poch O, Prieur D, Querellou J, Ripp R, Thierry JC, Van der Oost J, Weissenbach J, Zivanovic Y, Forterre P (2003) An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol 47:1495–512

    Article  CAS  PubMed  Google Scholar 

  • Dirmeier R, Keller M, Hafenbradl D, Braun FJ, Rachel R, Burggraf S, Stetter KO (1998) Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2:109–114

    Article  CAS  PubMed  Google Scholar 

  • DiRuggiero J, Santngelo N, Nackerdien Z, Ravel J, Robb FT (1997) Repair of extensive ionizing-radiation DNA damage at 95 °C in the hyperthermophilic archeon Pyrococcus furiosus. J Bacteriol 179:4643–4645

    CAS  PubMed  Google Scholar 

  • Duffaud GD, d’Hennezel OB, Peek AS, Reysenbach AL, Kelly RM (1998) Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal flange formation. Syst Appl Microbiol 21:40–49

    CAS  PubMed  Google Scholar 

  • Edgell DR, Doolittle WF (1997) Archaea and the origin(s) of DNA replication proteins. Cell 89:995–998

    CAS  PubMed  Google Scholar 

  • Erauso G, Prieur D (1995) Plate cultivation technique for strickly anaerobic, thermophilic, sulfur-metabolizing archaea. In: Fleischmann EM, Place AR, Robb FT, Schreider HJ (eds) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 25–29

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a new genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:338–349

    Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SeaView and Phylo-Win, two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    CAS  PubMed  Google Scholar 

  • Gérard E, Jolivet E, Prieur D, Forterre P (2001) DNA protection is not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus furiosus. Mol Gen Genet 266:72–78

    Google Scholar 

  • Godfroy A, Meunier JR, Guezenec J, lesongeur F, Raguenes G, Rimbault A, Barbier G (1996) Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the north Fiji Basin. Int J Syst Bacteriol 46:1113–1119

    Google Scholar 

  • Godfroy A, lesongeur F, Raguenes G, Quéréllou J, Antoine E, Meunier JR, Guezenec J, Barbier G (1997) Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermmal vent. Int J Syst Bacteriol 47:622–626

    Google Scholar 

  • Gonzalez JM, Kato C, Horikoshi K (1995) Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164

    PubMed  Google Scholar 

  • Gonzalez JM, Sheckells D, Viebahn M, Krupatkina D, Borges KM (1999) Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. Arch Microbiol 172:95–101

    PubMed  Google Scholar 

  • Grote R, Li L, Tamaoka J, Kato C, Horikoshi K, Antranikian G (1999) Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from deep-sea hydrothermal vent at Mid-Okinawa Trough. Extremophiles 3:55–62

    Article  CAS  PubMed  Google Scholar 

  • Huber RJ, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333

    CAS  Google Scholar 

  • Huber R, Stöhr J, Honenhaus S, Rachel R, Burggraf S, Jannash HW, Stetter KO (1995) Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal environment. Arch Microbiol 164:255–264

    CAS  Google Scholar 

  • Ivanova TL, Turova TP, Antonov AS (1988) DNA-DNA hybridization studies on some purple, non-sulfur bacteria. Syst Appl Microbiol 10:259–263

    Google Scholar 

  • Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003a) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851

    Article  CAS  PubMed  Google Scholar 

  • Jolivet E, Matsunaga F, Ishino Y, Forterre P, Prieur D, Myllykallio H (2003b) Physiological responses of the hyperthermophilic archaeon Pyrococcus abyssi to DNA damage caused by ionizing radiation. J Bacteriol 185:3958–3961

    Article  CAS  PubMed  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannashii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    CAS  Google Scholar 

  • Jonhson JL (1984) DNA reassociation and RNA hybridization of bacterial nucleic acids. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 8–11

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro, HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132

  • Keller M, Braun FJ, Dirmeier R, Hafenbradl D, Burggraf S, Rachel R, Stetter KO (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T (2001) Genus I. Thermococcus. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, , vol 1, 2nd edn. Springer, Berlin Heidelberg New York, pp 243–245

  • Kobayashi T, Kwak YS, Akiba T, Kudo T, Horikoshi K (1994) Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236

    CAS  Google Scholar 

  • Koonin EV, Mushegian AR, Gamperin MY, Walker DR (1997) Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol Microbiol 25:619:637

    Google Scholar 

  • Kopylov VM, Bonch-Osmolovskaya EA, Svetlichnyi VA, Miroshnichenko ML, Skobkin VS (1993) Gamma-irradiation resistance and UV-sensitivity of extremely thermophilic archaebacteria and eubacteria. Mikrobiologiya 62:90–95

    Google Scholar 

  • Kristjansson JK, Hjörleifsdottir S, Marteinsson VT, Alfredsson GA (1994) Thermus scotoductus sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-1. Syst Appl Microbiol 17:44–50

    Google Scholar 

  • Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ, Woese CR (1996) The ribosomal database project. Nucleic Acids Res 24:82–85

    CAS  PubMed  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Ferment Bioeng 69:244–249

    Google Scholar 

  • Marteinson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr U, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49:351–359

    Google Scholar 

  • Miroshnichenko ML, Bonch-Osmolovskaya EA, Neuner A, Kostrikina NA, Chernych NA, Alekseev VA (1989) Thermococcus Stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst Appl Microbiol 12:257–262

    Google Scholar 

  • Miroshnichenko ML, Gongadze GM, Rainey FA, Kostyukova AS, Lysenko AM, Chernyh NA, Bonch-Osmoloskaya EA (1998) Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 48:23–29

    Google Scholar 

  • Miroshnichenko ML, Hippe H, Stackebrandt E, Kostrinika NA, Chernyh NA, Jeanthon C, Nazina TN, Belyaev SS, Bonch-Osmolovskaya EA (2001) Isolation and characterization of Thermococcus sibiricus sp. nov. from a western Siberia high-temperature oil reservoir. Extremophiles 5:85–91

    Article  CAS  PubMed  Google Scholar 

  • Neuner A, Jannash HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov., a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207

    Google Scholar 

  • Olsen GJ, Woese CR (1996) Lessons from an archaeal genome: what are learning from Methanococcus jannashii? Trends Genet 12:377–379

    Article  CAS  PubMed  Google Scholar 

  • Rominus RS, Reysenbach AL, Musgrave DR, Morgan HW (1997) The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis: a proposal that AN1 represents a new species, Thermococcus zilligii sp. nov. Arch Microbiol 163:245–248

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaecoccus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500

    CAS  PubMed  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative, mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Shleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 3352–3378

  • Zillig W, Holz I, Janekovic D, Schäfer W, Reiter WD (1983) The archaebacterium Thermococcus celer represents,a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Vincent Favaudon for the use of 137Cs-γ-ray source (Institut Curie, Orsay, France). We also thank Dr. F.A. Rainey, Dr. J.R. Battista, and A. Simmons for critical reading of the manuscript and for useful discussions (Louisiana State University A&M College, Baton Rouge, LA, USA). This work was supported by the grant “Contrat de plan Etat-Région Bretagne, opération Souchotèque de Bretagne”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmond Jolivet.

Additional information

Communicated by J. Wiegel

The GenBank accession numbers for the 16S rRNA sequence of Thermococcus marinus strain EJ1T and Thermococcus radiotolerans EJ2T are AF479012 and AF479013, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolivet, E., Corre, E., L’Haridon, S. et al. Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8, 219–227 (2004). https://doi.org/10.1007/s00792-004-0380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0380-9

Keywords

Navigation