Skip to main content
Log in

Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A psychrotrolerant acetate-oxidizing sulfate-reducing bacterium (strain akvbT) was isolated from sediment from the northern part of The North Sea with annual temperature fluctuations between 8 and 14 °C. Of the various substrates tested, strain akvbT grew exclusively by the oxidation of acetate coupled to the reduction of sulfate. The cells were motile, thick rods with round ends and grew in dense aggregates. Strain akvbT grew at temperatures ranging from −3.6 to 26.3 °C. Optimal growth was observed at 20 °C. The highest cell specific sulfate reduction rate of 6.2 fmol cell−1 d−1 determined by the ^{35}\hbox{SO}_{4}^{2-} method was measured at 26 °C. The temperature range of short-term sulfate reduction rates exceeded the temperature range of growth by 5 °C. The Arrhenius relationship for the temperature dependence of growth and sulfate reduction was linear, with two distinct slopes below the optimum temperatures of both processes. The critical temperature was 6.4 °C. The highest growth yield (4.3–4.5 g dry weight mol−1 acetate) was determined at temperatures between 5 and 15 °C. The cellular fatty acid composition was determined with cultures grown at 4 and 20 °C, respectively. The relative proportion of cellular unsaturated fatty acids (e.g. 16:1ω7c) was higher in cells grown at 4 °C than in cells grown at 20 °C. The physiological responses to temperature changes showed that strain akvbT was well adapted to the temperature regime of the environment from which it was isolated. Phylogenetic analysis showed that strain akvbT is closest related to Desulfobacter hydrogenophilus, with a 16S rRNA gene sequence similarity of 98.6%. DNA–DNA-hybridization showed a similarity of 32% between D. hydrogenophilus and strain akvbT. Based on phenotypic and DNA-based characteristics we propose that strain akvbT is a member of a new species, Desulfobacter psychrotolerans sp.␣nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abildgaard L., Ramsing N.B. and Finster K. (2004). Characterization of the marine propionate-degrading, sulfate-reducing bacterium Desulfofaba fastidiosa sp nov and reclassification of Desulfomusa hansenii as Desulfofaba hansenii comb. nov. Int. J. Syst. Evol. Microbiol. 54: 393–399

    Article  PubMed  CAS  Google Scholar 

  • Bak F. 1988. Sulfatreduzierende bakterien und ihre aktivität im litoralsediment der unteren Güll (Überlinger See) Ph.D. Thesis. In: Mikrobieele Ökologie, Konstanz

  • Bakermans C. and Nealson K.H. (2004). Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J. Bacteriol. 186: 2340–2345

    Article  PubMed  CAS  Google Scholar 

  • Brandt K.K. and Ingvorsen K. (1997). Desulfobacter halotolerans sp nov, a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Syst. Appl. Microbiol. Syst Appl Microbiol. 20: 366–373

    Google Scholar 

  • Brysch K., Schneider C., Fuchs G. and Widdel F. (1987). Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen-nov, sp-nov. Arch. Microbiol. 148: 264–274

    Article  CAS  Google Scholar 

  • Cashion P., Holder-Franklin M.A., Mccully J. and Franklin M. (1977). Rapid method for base ratio determination of bacterial DNA. Anal. Biochem. 81: 461–466

    Article  PubMed  CAS  Google Scholar 

  • Christensen D. (1984). Determination of substrates oxidized by sulfate reduction in intact cores of marine-sediments. Limnol. Oceanogr. 29: 189–192

    CAS  Google Scholar 

  • Deley J., Cattoir H. and Reynaert A. 1970. Quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12: 133–142

    Google Scholar 

  • Delille D. and Perret E. (1989). Influence of temperature on the growth-potential of Southern Polar marine-bacteria. Microbial. Ecol. 18: 117–123

    Article  Google Scholar 

  • Denich T.J., Beaudette L.A., Lee H. and Trevors J.T. (2003). Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J. Microbiol. Meth. 52: 149–182

    Article  CAS  Google Scholar 

  • Dowling N.J.E., Widdel F. and White D.C. (1986). Phospholipid ester-linked fatty-acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide-forming bacteria. J. Gen. Microbiol. 132: 1815–1825

    CAS  Google Scholar 

  • DSMZ 2005. Deutche Sammlung von Mikroorganismen und Zellkulturen GmbH, DSMZ http://www.dsmz.de/media.htm

  • Fossing H. and Jørgensen B.B. (1989). Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochem. 8: 205–222

    Article  CAS  Google Scholar 

  • Guillou C. and Guespin-Michel J.F. (1996). Evidence for two domains of growth temperature for the psychrotrophic bacterium Pseudomonas fluorescens MF0. Appl. Environ. Microb. 62: 3319–3324

    PubMed  CAS  Google Scholar 

  • Harder W. and Veldkamp H. (1968). Physiology of an obligately psychrophilic marine Pseudomonas species. J. Appl. Bacteriol. 31: 12–23

    CAS  Google Scholar 

  • Harder W. and Veldkamp H. 1971. Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leuwenhoek 37: 51– 63

    Google Scholar 

  • Hébraud M. and Potier P. 1999. Cold shock response and low temperature adaptation in psychrotrophic bacteria. J. Mol. Microbiol. Biotechnol. 1: 211–219

    Google Scholar 

  • Hicks R.E., Amann R.I. and Stahl D.A. (1992). Dual staining of natural bacterioplankton with 4’,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16s Ribosomal-RNA sequences. Appl. Environ. Microb. 58: 2158–2163

    PubMed  CAS  Google Scholar 

  • Huss V.A.R., Festl H. and Schleifer K.H. (1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4: 184–192

    CAS  Google Scholar 

  • Isaksen M.F. and Teske A. (1996). Desulforhopalus vacuolatus gen nov, sp nov, a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166: 160–168

    Article  CAS  Google Scholar 

  • Isaksen M.F. and Jørgensen B.B. (1996). Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl. Environ. Microbiol. 62: 408–414

    PubMed  CAS  Google Scholar 

  • Jørgensen B.B. (1978). A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments I. Measurement with radiotracer techniques. Geomicrobiol. J. 1: 11–27

    Google Scholar 

  • Jørgensen B.B. (1982). Mineralization of organic-matter in the sea bed - the role of sulfate reduction. Nature. 296: 643–645

    Article  Google Scholar 

  • Knoblauch C. and Jørgensen B.B. (1999). Effect of temperature on sulfate reduction, growth rate and growth yield in five psychrophilic sulfate-reducing bacteria from Arctic sediments. Environ. Microbiol. 1: 457–467

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch C., Sahm K. and Jørgensen B.B. (1999). Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigrus oceanense gen. nov., sp nov., Desulfofrigus fragile sp nov., Desulfofaba gelida gen. nov., sp nov., Desulfotalea psychrophila gen. nov., sp nov and Desulfotalea arctica sp nov. Int. J. Syst. Bacteriol. 49: 1631–1643

    PubMed  CAS  Google Scholar 

  • Kohring L.L., Ringelberg D.B., Devereux R., Stahl D.A., Mittelman M.W. and White D.C. (1994). Comparison of phylogenetic-relationships based on phospholipid fatty-acid profiles and ribosomal-RNA sequence similarities among dissimilatory sulfate-reducing bacteria. Fems Microbiol. Lett. 119: 303–308

    Article  PubMed  CAS  Google Scholar 

  • Könneke M. and Widdel F. (2003). Effect of growth temperature on cellular fatty acids in sulfate-reducing bacteria. Environ. Microbiol. 5: 1064–1070

    Article  PubMed  CAS  Google Scholar 

  • Kuever J., Konneke M., Galushko A. and Drzyzga O. (2001). Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov and description of strain Sax(T) as Desulfotignum balticum gen. nov., sp nov. Int. J. Syst. Evol. Micr. 51: 171–177

    PubMed  CAS  Google Scholar 

  • Kuykendall L.D., Roy M.A., O’Neill J.J. and Devine T.E. (1988). Fatty-acids, antibiotic-resistance, and deoxyribonucleic-acid homology groups of Bradyrhizobium-japonicum. Int. J. Syst. Bacteriol. 38: 358–361

    CAS  Google Scholar 

  • Lane D.J. (1991). 16/23S rRNA Sequencing. In: Stackebrandt E., Goodfellow M. (eds). Nucleic acid techniques in bacterial systematics. Wiley, Chichester, England.

    Google Scholar 

  • Lien T. and Beeder J. (1997). Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 47: 1124–1128

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., Jobb G., Forster W., Brettske I., Gerber S., Ginhart A.W., Gross O., Grumann S., Hermann S., Jost R., Konig A., Liss T., Lussmann R., May M., Nonhoff B., Reichel B., Strehlow R., Stamatakis A., Stuckmann N., Vilbig A., Lenke M., Ludwig T., Bode A. and Schleifer K.H. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371, http://www.arb-home.de/

  • Mesbah M., Premachandran U. and Whitman W.B. (1989). Precise measurement of the G+C content of deoxyribonucleic-acid by High-Performance Liquid-Chromatography. Int. J. Syst. Bacteriol. 39: 159–167

    CAS  Google Scholar 

  • Miller L.T. (1982). Single derivatization method for routine analysis of bacterial whole-cell fatty-acid methyl-esters, including hydroxy-acids. J. Clin. Microbiol. 16: 584–586

    PubMed  CAS  Google Scholar 

  • Mohr P.W. and Krawiec S. (1980). Temperature characteristics and Arrhenius plots for nominal psychrophiles, mesophiles and thermophiles. J. Gen. Microbiol. 121: 311–317

    PubMed  CAS  Google Scholar 

  • Morita R.Y. (1975). Psychrophilic bacteria. Bacteriol. Rev. 39: 144–167

    PubMed  CAS  Google Scholar 

  • Muyzer G., Dewaal E.C. and Uitterlinden A.G. (1993). Profiling of complex microbial-populations by Denaturing Gradient Gel-Electrophoresis analysis of Polymerase Chain Reaction-amplified genes-coding for 16s Ribosomal-RNA. Appl. Environ. Microb. 59: 695–700

    PubMed  CAS  Google Scholar 

  • Nedwell D.B., Walker T.R., Ellis-Evans J.C. and Clarke A. (1993). Measurements of seasonal rates and annual budgets of organic-carbon fluxes in an Antarctic coastal environment at Signy Island, South Orkney Islands, suggest a broad balance between production and decomposition. Appl. Environ. Microb. 59: 3989–3995

    PubMed  CAS  Google Scholar 

  • Bundesamt für Seeschifffahrt und Hydrographie. 2004. North-Sea. Sea surface temperatures http://www.bsh.de/en/Marine%20data/Observations/Sea%20surface%20temperatures/anom.jsp

  • Oude Elferink S.J.W.H., Maas R.N., Harmsen H.J.M. and Stams A.J.M. (1995). Desulforhabdus amnigenus Gen-Nov Sp-Nov, a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 164: 119–124

    PubMed  CAS  Google Scholar 

  • Oude Elferink S.J.W.H., Akkermans-van Vliet W.M., Bogte J.J. and Stams A.J.M. (1999). Desulfobacca acetoxidans gen. nov., sp, nov., a novel acetate- degrading sulfate reducer isolated from sulfidogenic granular sludge. Int. J. Syst. Bacteriol. 49: 345–350

    PubMed  Google Scholar 

  • Parkes R.J., Gibson G.R., Mueller-Harvey I., Buckingham W.J. and Herbert R.A. (1989). Determination of the substrates for sulfate-reducing bacteria witin marine and estuarine sediments with different rates of sulfate reduction. J. Gen. Microbiol. 135: 175–187

    CAS  Google Scholar 

  • Rabus R., Hansen T. and Widdel F. 2000. The dissimilatory sulfate- and sulfur-reducing Prokaryotes. In: Dworkin M. et al. (eds), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edition, release 3.7, November 2, 2001. Springer-Verlag, New York, http://link.springer-ny.com/link/service/books/10125/

  • Rabus R., Bruchert V., Amann J. and Konneke M. (2002). Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum. Fems Microbiol. Ecol. 42: 409–417

    Article  CAS  PubMed  Google Scholar 

  • Russell N.J. (1990). Cold adaptation of microorganisms. Phil. Trans. Roy. Soc. B. 326: 595–611

    Article  CAS  Google Scholar 

  • Russell N.J. and Hamamoto T. 1998. Psychrophiles. In: K.␣Horikoshi and W.D. Grant (eds), Extremophiles: Microbial Life in Extreme Environments. John Wiley & Sons, New York, pp. 25–45

  • Rütters H., Sass H., Cypionka H. and Rullkotter J. (2001). Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch. Microbiol. 176: 435–442

    Article  PubMed  Google Scholar 

  • Sagemann J., Jørgensen B.B. and Greeff O. (1998). Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiol. J. 15: 85–100

    Article  CAS  Google Scholar 

  • Sass H., Berchtold M., Branke J., Konig H., Cypionka H. and Babenzien H.D. (1998). Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralissp. nov. Syst. Appl. Microbiol. 21: 212–219

    PubMed  CAS  Google Scholar 

  • Sørensen J., Christensen D. and Jørgensen B.B. (1981). Volatile fatty-acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42: 5–11

    PubMed  Google Scholar 

  • Tamaoka J. and Komagata K. (1984). Determination of DNA-base composition by reversed-phase High-Performance Liquid-Chromatography. Fems. Microbiol. Lett. 25: 125–128

    Article  CAS  Google Scholar 

  • Taylor J. and Parkes R.J. (1985). Identifying different populations of sulfate-reducing bacteria within marine sediment systems, using fatty-acid biomarkers. J. Gen. Microbiol. 131: 631–642

    CAS  Google Scholar 

  • Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., Stackebrandt E., Starr M.P. and Trüper H.G. (1987). Report of the Ad-Hoc-Committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463–464

    Google Scholar 

  • Wheeler D.L., Church D.M., Lash A.E., Leipe D.D., Madden, T.L., Pontius J.U., Schuler G.D., Schriml L.M., Tatusova T.A., Wagner L. and Rapp B.A. (2002). Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Res. 30: 13–16

    Article  PubMed  CAS  Google Scholar 

  • Widdel F. (1987). New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D-hydrogenophilus sp-nov, D-latus sp-nov, and D-curvatus sp-nov. Arch. Microbiol. 148: 286–291

    Article  CAS  Google Scholar 

  • Widdel F. and Pfennig N. (1977). New anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum(emend) acetoxidans. Arch. Microbiol. 112: 119–122

    Article  PubMed  CAS  Google Scholar 

  • Widdel F. and Pfennig N. (1981). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty-acids .1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments - description of Desulfobacter-postgatei gen-nov, sp-nov. Arch. Microbiol. 129: 395–400

    Article  PubMed  CAS  Google Scholar 

  • Widdel F. and Bak F. (1992). Gram-negative mesophilic sulfate-reducing bacteria. In: Balows H., Trüper H.G., Dworkin M., Harder W. and Schleifer K.H. (eds). The prokaryotes. Springer-Verlag, New York

    Google Scholar 

  • Wilkinson S.G. (1988). Gram-negative bacteria. In: Ratledge C., Wilkinson S.G. (eds). Microbial Lipids. Academic Press, London, pp. 299–457

    Google Scholar 

  • Zheng D.D., Alm E.W., Stahl D.A. and Raskin L. (1996). Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Appl. Environ. Microb. 62: 4504–4513

    CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by SNF Grant No. 21-00-0309. Kai Finster thanks the crew of the research vessel R/V Heincke for a very fruitful sampling cruise. We thank Tove Wiegers for her skilful technical assistance, Kasper Kjeldsen for help with the phylogentic analysis and Rodney Herbert for a critical review of the manuscript. The constructive criticism of 3 anonymous reviewers is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Finster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarpgaard, I.H., Boetius, A. & Finster, K. Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes. Antonie Van Leeuwenhoek 89, 109–124 (2006). https://doi.org/10.1007/s10482-005-9014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-005-9014-1

Key words

Navigation