Skip to main content

Advertisement

Log in

Greenhouse gas emissions and comprehensive greenhouse effect potential of Megalobrama amblycephala culture pond ecosystems in a 3-month growing season

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

In this study, we assess the greenhouse gas emissions and greenhouse effect potential of a Wuchang bream (Megalobrama amblycephala) aquaculture. We used the ‘static opaque chamber-gas chromatography method’ to determine in situ emissions of greenhouse gases in the 3-month growing season (CO2, CH4, and N2O) from bream culturing ponds. We detected emissions of all three gases from the ponds, with CO2 emission far exceeding the other gases in the 3-month growing season (CO2 = 278.54 ± 36.41 g/m2, CH4 = 23.73 ± 5.27 g/m2, and N2O = 1.69 ± 0.32 g/m2). We calculated that in one growing season this ecosystem would have a total emission of CO2 equivalent of 15.86 t CO2/hm2, indicating its ability to contribute to global warming via the greenhouse effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PVC:

Polyvinyl chloride

IPCC:

Intergovernmental panel on climate change

GWP:

Greenhouse effect potential

FCR:

Feed conversion rate

Chamber-GC:

Chamber-gas chromatography

Eh:

Redox potential

References

  • Bouwman AF (1990) Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. WiIey, New York

    Google Scholar 

  • Chen SY, Li J, Lu PL et al (2004) Soil respiration characteristics in winter wheat field in North China Plain. Chin J Appl Ecol 15(9):1552–1560

    Google Scholar 

  • Cole JA, Brown CM (1980) Nitrite reduction to ammonia by ferment circuit in the biological nitrogen cycle. FEMS Microbiol Lett 7:65–72

    Article  CAS  Google Scholar 

  • Dong YH, Ou YZ, Li YS et al (2005) Influence of fertilization and environmental factors on CO2 and N2O fluxes from agricultural soil. J Agro Environ Sci 24(5):913–918

    CAS  Google Scholar 

  • Dong YH, Ou YZ, Li P et al (2007) Influence of long-term fertilization on greenhouse gas fluxes from agricultural soil. Chin J Soil Sci 38(1):97–100

    CAS  Google Scholar 

  • Duan XN, Wang XK, Mu YJ et al (2005) Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China. Atmos Environ 39:4479–4487

    Article  CAS  Google Scholar 

  • Guérin F, Abril G, Serca D et al (2007) Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. J Mar Syst 66(124):161–172

    Article  Google Scholar 

  • Huttunen JT, Alm J, Saarijarvi E et al (2003a) Contribution of winter to the annual CH4 emission from a eutrophied boreal lake. Chemosphere 50:247–250

    Article  CAS  PubMed  Google Scholar 

  • Huttunen JT, Alm J, Liikanen A et al (2003b) Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52:609–621

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson JM, Franzluebbers AJ, Weyers SL et al (2007) Agricultural opportunities to mitigate greenhouse gas emissions. Environ Pollut 150:107–124

    Article  CAS  PubMed  Google Scholar 

  • Joyce R, Jewell PW (2003) Physical controls on methane ebullition from reservoirs and lakes. Environ Eng Geosci 9(2):167–178

    Article  Google Scholar 

  • Kessavalou A, Moiser AR, Doran JW et al (1998) Fluxes of carbon dioxide, nitrous oxide and methane in grass sod and winter wheat fallow tillage management. J Environ Qual Abstr 27(5):1094–1104

    Article  CAS  Google Scholar 

  • Lelieveld J, Crutzenand P, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Ser B 5:128–150

    Article  Google Scholar 

  • Li H, Qiu JJ, Wang LG (2008) Characterization of farmland soil respiration and modeling analysis of contribution of root respiration. Trans Chin Soc Agric Eng 24(4):14–20

    Google Scholar 

  • Li CF, Cao CG, Wang JP (2009) CH4 and CO2 emissions from paddy soils and assessment of carbon budget in different tillage systems. J Agro Environ Sci 28(12):2482–2488

    CAS  Google Scholar 

  • Liikanen A, Huttunen JT, Karjalainen SM et al (2006) Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters. Ecol Eng 26:241–251

    Article  Google Scholar 

  • Lloyd D (1993) Aerobic denitrification in soils and sediments-from fallacies to facts. Trends Ecol Evol 8:352–356

    Article  CAS  PubMed  Google Scholar 

  • Louis VLS, Kelly CA, Duchemin E et al (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50(9):766–775

    Article  Google Scholar 

  • Ma XM, Zhu B, Du ZL et al (2005) CH4, CO2 and N2O emissions from the year-round flooded paddy field at fallow season. J Agro Environ Sci 24(6):1199–1202

    CAS  Google Scholar 

  • Mirzoyan N, Parness S, Singer A et al (2008) Quality of brackish aquaculture sludge and its suitability for anaerobic digestion and methane production in an upflow anaerobic sludge blanket (UASB) reactor. Aquaculture 279(124):35–41

    Article  CAS  Google Scholar 

  • Nishio T (1994) Estimating nitrogen transformation rates in surface aerobic soil of a paddy field. Soil Biol Biochem 26:1273–1280

    Article  Google Scholar 

  • Patrick WH Jr, Reddy KR (1976) Nitrification-denitrification reactions in flooded soils and water bottoms: dependence on oxygen supply and ammonium diffusion. J Environ Qual 5:469–472

    Article  CAS  Google Scholar 

  • Reddy KR, Patrick WH Jr (1986) Denitrification losses in flooded rice fields. Fertil Res. 9:99–116

    Article  CAS  Google Scholar 

  • Robertson AI (1995) Mangroves as filters of shrimp pond effluents: predictions and biogeochemical research needs. Hydrobiologia 295:311–321

    Article  CAS  Google Scholar 

  • Rosa LP, Santos MAD, Matvienko B et al (2000) Biogenic gas production from major Amazon reservoirs. Hydrol Process 17:1443–1450

    Article  Google Scholar 

  • Søvik AK, Kløve B (2007) Emission of N2O and CH4 from a constructed wetland in southeastern Norway. Sci Total Environ 380:28–37

    Article  PubMed  Google Scholar 

  • The Ministry of Agriculture Fisheries Bureau (2014) China fisheries statistical yearbook. China Agriculture Press, Beijing

    Google Scholar 

  • Troell M, Rönnbäck P, Halling C et al (1999) Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture. J Appl Phycol 11:89–97

    Article  CAS  Google Scholar 

  • Van Lujien F, Boers PCM, Lijklema L (1996) Comparison of denitrification rates in lake sediments obtained by the N2 flux method, the 15N isotope pairing technique and the mass balance approach. Water Res 30:893–900

    Article  Google Scholar 

  • Wang M (2014) Study on methane, nitrous oxide and carbon dioxide fluxes and their influencing factors in Hangzhou Bay coastal wetland. Chinese academy of forestry, Beijing (in Chinese)

    Google Scholar 

  • Wang LG, Qiu JJ, Li WJ (2002) Study on the dynamics of soil respiration in the field of summer-corn in Huanghuaihai Region in China. Soils Fertil 6:13–17

    Google Scholar 

  • Wang LG, Li H, Qiu JJ (2008) Characterization of emissions of nitrous oxide from soils of typical crop fields in Huang-Huai-Hai Plain. Sci Agric Sin 41(4):1248–1254

    CAS  Google Scholar 

  • Wang Q, Liu M, Hou LJ et al (2010) Characteristics and influencing factors of CO2, CH4 and N2O emissions from Chongming eastern tidal flat wetland. Geogr Res 05:935–946

    Google Scholar 

  • Wu RSS (1995) The environmental impact of marine fish culture: towards a Sustainable Future. Mar Pollut Bull 31:159–166

    Article  CAS  Google Scholar 

  • Wu J (2009) Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater. Bioresour Technol 100:2910–2917

    Article  CAS  PubMed  Google Scholar 

  • Xing YP, Xie P, Yang H et al (2005) Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China. Atmos Environ 39:5532–5540

    Article  CAS  Google Scholar 

  • Xu H (2008) Report on fishery industry energy conservation and emissions reduction research in China. Fish Mod 35(4):1–7 (in Chinese)

    CAS  Google Scholar 

  • Xu H, Ni Q, Liu H (2007) Study on the development of aquaculture facilities model in China. Fish Mod 34(6):1–6 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Open Project of the Key Laboratory of Fishery Equipment and Engineering Technology (2013006), Ministry of Agriculture, and grants from the Agricultural Finance Project ‘Fisheries energy saving and emission reduction advocacy and policy research.’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Che.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Che, X., Liu, H. et al. Greenhouse gas emissions and comprehensive greenhouse effect potential of Megalobrama amblycephala culture pond ecosystems in a 3-month growing season. Aquacult Int 24, 893–902 (2016). https://doi.org/10.1007/s10499-015-9959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-015-9959-7

Keywords

Navigation