Skip to main content

Advertisement

Log in

Tumour-like anomaly of copepods-an evaluation of the possible causes in Indian marine waters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Globally, tumour-like anomalies (TLA) in copepods and the critical assessment of their possible causes are rare. The exact causative factor and ecological consequences of TLA in copepods are still unclear and there is no quantitative data available so far to prove conclusively the mechanism involved in developing TLA in copepods. TLA in copepods are considered as a potential threat to the well-being of the aquatic food web, which prompted us to assess these abnormalities in Indian marine waters and assess the possible etiological agents. We carried out a focused study on copepods collected from 10 estuarine inlets and five coastal waters of India using a FlowCAM, advanced microscopes and laboratory-incubated observations. The analysis confirmed the presence of TLA in copepods with varying percentage of incidence in different environments. TLA was recorded in 24 species of copepods, which constituted ~1–15 % of the community in different environments. TLA was encountered more frequently in dominant copepods and exhibited diverse morphology; ~60 % was round, dark and granular, whereas ~20 % was round/oval, transparent and non-granular. TLA was mostly found in the dorsal and lateral regions of the prosome of copepods. The three suggested reasons/assumptions about the causes of TLA such as ecto-parasitism (Ellobiopsis infection), endo-parasitism (Blastodinium infection) and epibiont infections (Zoothamnium and Acineta) were assessed in the present study. We did find infections of endo-parasite Blastodinium, ecto-parasite Ellobiopsis and epibiont Zoothamnium and Acineta in copepods, but these infectious percentages were found <1.5 % to the total density and most of them are species specific. Detailed microscopical observations of the samples collected and the results of the incubation experiments of infected copepods revealed that ecto-parasitism, endo-parasitism and epibiont infections have less relevance to the formation of TLA in copepods. On the other hand, these studies corroborated the view that wounds on the exoskeleton caused by partial predation as the potential reason for the TLA of copepods in Indian waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Albaina, A., & Irigoien, X. (2006). Fecundity limitation of Calanus helgolandicus, by the parasite Ellobiopsis sp. Journal of Plankton Research, 28, 413–418.

  • Benfield, M. C., & Minello, T. J. (1996). Relative effects of turbidity and light intensity on reactive distance and feeding of an estuarine fish. Environmental Biology of Fishes, 46, 211–216.

    Article  Google Scholar 

  • Beyer, F. (1992). Meganyctiphanes norvegica (M. Sars) (Euphausiacea) a voracious predator on Calanus, other copepods, and ctenophores, in Oslofjorden, Southern Norway. Sarsia, 77, 189–206.

    Article  Google Scholar 

  • Bhandare, C., & Ingole, B. S. (2008). First evidence of tumor-like anomaly infestation in copepods from the Central Indian Ridge. Indian Journal of Marine Science, 37, 227–232.

    Google Scholar 

  • Breitburg, D. L., Steinberg, N., DuBeau, S., Cooksey, C., & Houde, E. D. (1994). Effects of low dissolved oxygen on predation on estuarine fish larvae. Marine Ecology Progress Series, 104, 235–246.

    Article  Google Scholar 

  • Bridgeman, T. B., Messick, G., & Vanderploeg, H. A. (2000). Sudden appearance of cysts and Ellobiopsid parasites on zooplankton in a Michigan lake: a potential explanation of tumor-like anomalies. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1539–1544.

    Article  Google Scholar 

  • Buskey, E.J. (1984). Swimming pattern as an indicator of the roles of copepod sensory systems in the recognition of food. Marine Biology, 79, 165–175.

  • Buskey, E. J., Lenz, P. H., & Hartline, D. K. (2011). Sensory perception, neurobiology, and behavioral adaptations for predator avoidance in planktonic copepods. Adaptive Behavior, 20, 57–66.

    Article  Google Scholar 

  • Chatton, E. (1920). Les Péridiniens parasites: morphologie, reproduction, ethologie. Archives de Zoologie expérimentale et générale, 59, 1–145.

    Google Scholar 

  • Costello, J.H., & Colin, S. P. (1994). Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Marine Biology, 121, 327–334.

  • Crisafi, P. (1974). Some responses of planktonic organisms to environmental pollution. Reviews on International Oceanography Mediterranean, 34, 145–154.

    Google Scholar 

  • Crisafi, P., & Crescenti, M. (1975). Conseguenze delle attivita` umane sullo zooplancton del mare de Taranto. Boll Pesca Piscic Idrobiolology, 30, 207–218.

    Google Scholar 

  • Crisafi, P., & Crescenti, M. (1977). Confirmation of certain correlation between polluted areas and tumorlike conditions as well as tumor growths in pelagic copepods provening of numerous seas over the world. Rapp Comm int Mer Mediterranéen, 24, 155.

    Google Scholar 

  • Curds, C. R. (1985). A revision of the Suctoria (Ciliophora, Kinetofragminophora). 1. Acineta and its morphological relatives. Bulletin of British Museum (Natural History), (Zoology), 48, 75-129.

  • Dias, C. D. O. (1999). Morphological abnormalities of Acartia lilljeborgi (Copepoda, Crustacea) in the Esp´irito Santo Bay (E.S. Brazil). Hydrobiologia, 394, 249–251.

    Article  Google Scholar 

  • Elliott, D. T., & Tang, K. W. (2009). Simple staining method for differentiating live and dead marine zooplankton in field samples. Limnology and Oceanography: Methods, 7, 585–594.

    Article  Google Scholar 

  • Fernandes, V., & Ramaiah, N. (2014). Distributional characteristics of surface-layer mesozooplankton in the Bay of Bengal during the 2005 winter monsoon. Indian Journal of Geo-Marine Science, 43, 176–188.

    Google Scholar 

  • Fernandez-Leborans, G., & Tato-Porto, M. (2000). A review of the species of protozoan epibionts on crustaceans. I. Suctorian ciliates. Crustaceana, 73, 1205–1237.

    Article  Google Scholar 

  • Fields, D. M., Shema, S. D., Browman, H. I., Browne, T. Q., & Skiftesvik, A. B. (2012). Light primes the escape response of the calanoid copepod, Calanus finmarchicus. PLoS One, 7, e39594.

    Article  CAS  Google Scholar 

  • Gerritsen, J., & Strickler, J. R. (1977). Encounter probabilities and community structure in zooplankton: a mathematical model. Journal Fisheries Research Board Canada, 34, 73–82.

    Article  Google Scholar 

  • Gilbert, O. M., & Buskey, E. J. (2005). Turbulence decreases the hydrodynamic predator sensing ability of the calanoid copepod Acartia tonsa. Journal of Plankton Research, 27, 1067–1071.

    Article  Google Scholar 

  • Gomez, F., Lopez-Garcıa, P., Nowaczyk, A., & Moreira, D. (2009). The crustacean parasites Ellobiopsis Caullery, 1910 and Thalassomyces Niezabitowski, 1913 form a monophyletic divergent clade within the Alveolata. Systematic Parasitology, 74, 65–74.

    Article  Google Scholar 

  • Greene, C. H. (1985). Planktivore functional groups and patterns of prey selection in pelagic communities. Journal of Marine Systems, 7, 35–40.

    Google Scholar 

  • Hansson, S., Larsson, U., & Johansson, S. (1990). Selective predation by herring and mysids, and zooplankton community structure in a Baltic Sea coastal area. Journal of Plankton Research, 12, 1099–1116.

    Article  Google Scholar 

  • Haury, L. R., Kenyon, D. E., & Brooks, J. R. (1980). Experimental evaluation of the avoidance reaction of Calanus finmarchicus. Journal of Plankton Research, 2, 187–202.

    Article  Google Scholar 

  • Ianora, A., Mazzocchi, M. G., & Scotto di Carlo, B. (1987). Impact of parasitism and intersexuality on Mediterranean populations of Paracalanus parvus (Copepoda: Calanoida). Disease of Aquatic Organisms, 3, 29–36.

    Article  Google Scholar 

  • Jagadeesan, L., Jyothibabu, R., Anjusha, A., Mohan, A. P., Madhu, N. V., Muraleedharan, K. R., & Sudheesh, K. (2013). Ocean currents structuring the mesozooplankton in the Gulf of Mannar and the Palk Bay, Southeast coast of India. Progress in Oceanography, 110, 27–48.

    Article  Google Scholar 

  • Jepps, M. W. (1937). On the protozoan parasites of Calanus finmarchicus in the cycle sea area. Quarterly Journal of Microscopical Science, 79, 589–658.

    Google Scholar 

  • Kiørboe, T., & Visser, A. (1999). Predator and prey perception in copepods due to hydro mechanical signals. Marine Ecology Progress Series, 179, 81–95.

    Article  Google Scholar 

  • Kiørboe, T., Saiz, E., & Visser, A. (1999). Hydrodynamic signal perception in the copepod Acartia tonsa. Marine Ecology Progress Series, 179, 97–111.

    Article  Google Scholar 

  • Lima, S. L., & Dill, L. M. (1990). Behavioral decision made under the risk of predation: a review and prospectus. Canadian Journal of Zoology, 68, 619–640.

    Article  Google Scholar 

  • Madhupratap, M. (1987). Status and strategy zooplankton of tropical Indian estuaries: a review. Bulletin of Plankton Society of Japan, 34, 65–81.

    Google Scholar 

  • Manca, M., Beltrami, M., & Sonvico, D. (1996). On the appearance of epibionts on the crustacean zooplankton of a large subalpine lake undergoing oligotrophication (L. Maggiore, Italy). Memorie dell' Istituto Italiano di Idrobiologia, 54, 161–171.

    Google Scholar 

  • Manca, M., Carnovale, A., & Alemani, P. (2004). Exotopic protrusions and Ellobiopsid infection in zooplanktonic copepods of a large, deep subalpine lake, Lago Maggiore, in Northern Italy. Journal of Plankton Research, 26, 1257–1263.

    Article  Google Scholar 

  • Mantha, G., Awasthi, A. K., Al-Aidaroos, A. M., & Hwang, J. S. (2013). Diversity and abnormalities of cyclopoid copepods around hydrothermal vent fluids, Kueishantao Island, north-eastern Taiwan. Journal of Natural History, 47, 685–697.

    Article  Google Scholar 

  • Messick, G. A., Vanderploeg, H. A., Cavaletto, J. F., & Tyler, S. S. (2004). Histological characteristics of abnormal protrusions on copepods from Lake Michigan, USA. Zoological Studies, 43, 314–322.

    Google Scholar 

  • Mills, C. E. (1981). Diversity of swimming behaviors in hydromedusae as related to feeding and utilization of space. Marine Biology, 64, 185–189.

    Article  Google Scholar 

  • Mills, C. E. (1995). Medusae, Siphonophores and Ctenophores as planktivorous predators in changing global ecosystems. ICES Journal of Marine Sciences, 52, 575–581.

    Article  Google Scholar 

  • Ohman, M. D. (1984). Omnivory by Euphausia pacifica: the role of copepod prey. Marine Ecology Progress Series, 19, 125–131.

    Article  Google Scholar 

  • Ohman, M. D. (1988). Behavioral responses of zooplankton to predation. Bulletin of Marine Science, 43, 530–550.

    Google Scholar 

  • Omair, M., Vanderploeg, H. A., Jude, D. J., & Fahnenstiel, G. L. (1999). First observations of tumor-like abnormalities (exophytic lesions) on Lake Michigan zooplankton. Canadian Journal of Fisheries and Aquatic Sciences, 56, 1711–1715.

    Article  Google Scholar 

  • Omair, M., Naylor, B., Jude, D. J., Quddus, J., Beals, T. F., & Vanderploeg, H. A. (2001). Histology of herinations through the body wall and cuticle of zooplankton from the Laurentian great lakes. Journal of Invertebrate Pathology, 77, 108–113.

    Article  CAS  Google Scholar 

  • Omori, M., Ishii, H., & Fujinaga, A. (1995). Life history strategy of Auerelia aurita (Cnideria: Scyphomedusae) and its impact on zooplankton community in the Tokyo bay. ICES Journal of Marine Sciences, 52, 597–603.

    Article  Google Scholar 

  • Postel, L., Fock, H., & Hagen, W. (2000). Biomass and abundance, In ICES Zooplankton Methodology manual. Academic Press.

  • Poulet, S. A., & Marsot, P. (1978). Chemosensory grazing by marine calanoid copepods (Arthropoda: Crustacea). Science, 200, 1403–1405.

    Article  CAS  Google Scholar 

  • Purcell, J. E. (1992). Effects of predation by the scyphomedusan Chrysaora quinquecirrha on zooplankton populations in Chesapeake Bay, USA. Marine Ecology Progress Series, 87, 65–76.

    Article  Google Scholar 

  • Purcell, J. E., & Mills, C. E. (1988). The correlation between the nematocyst types and diets in pelagic hydrozoan. In D. A. Hessinger & H. Lenhoff (Eds.), The biology of the Nematocysts. New York: Academic.

    Google Scholar 

  • Santhakumari, V. (1985). Distribution of Ellobiopsidae, parasitic protozoa in the Indian Ocean. Mahasagar, 18, 517–520.

    Google Scholar 

  • Santhakumari, V., & Saraswathy, M. (1979). On the Ellobiopsidae, parasitic protozoa from zooplankton. Mahasagar, 12, 83–92.

    Google Scholar 

  • Sewell, R. B. (1951). The epibionts and parasites of the planktonic copepods of the Arabian Sea. John Murray expedition. Scientific Reprints British Museum Natural History, 9, 255–394.

    Google Scholar 

  • Shields, J. D. (1994). The parasitic dinoflagellates of marine crustaceans. Annual Review of Fish Diseases, 4, 241–271.

    Article  Google Scholar 

  • Silina, N., & Khudolei, V. (1994). Tumorlike anomalies in planktonic copepods. Hydrobiological Journal, 30, 52–55.

    Google Scholar 

  • Skovgaard, A. (2004). Tumour-like anomalies on copepods may be wounds from parasites. Journal of Plankton Research, 26, 1129–1131.

    Article  Google Scholar 

  • Skovgaard, A. (2005). Infection with the dinoflagellate parasite Blastodinium spp. in two Mediterranean copepods. Aquatic Microbial Ecology, 38, 93–101.

    Article  Google Scholar 

  • Skovgaard, A., & Daugbjerg, N. (2008). Identity and systematic position of Paradinium poucheti and other Paradinium-like parasites of marine copepods based on morphology and nuclear-encoded SSU rDNA. Protists, 159, 401–413.

    Article  CAS  Google Scholar 

  • Skovgaard, A., & Saiz, E. (2006). Seasonal occurrence and role of protistan parasites in coastal marine zooplankton. Marine Ecology Progress Series, 327, 37–49.

    Article  Google Scholar 

  • Skovgaard, A., Karpov, S. A., & Guillou, L. (2012). The parasitic dinoflagellates Blastodinium spp. inhabiting the gut of marine, planktonic copepods: morphology, ecology and unrecognized species diversity. Frontiers in Microbiology, 3, 305.

    Article  Google Scholar 

  • Smith, S. L., & Madhupratap, M. (2005). Mesozooplankton of the Arabian Sea: patterns influenced by seasons, upwelling, and oxygen concentrations. Progress in Oceanography, 65, 214–239.

    Article  Google Scholar 

  • Suchman, C. L., & Sullivan, B. K. (2000). Effect of prey size on vulnerability of copepods to predation by the scyphomedusae Aurelia aurita and Cyanea sp. Journal of Plankton Research, 22, 2289–2306.

    Article  Google Scholar 

  • Sullivan, B. K., Garcia, J. R., & Klein-MacPhee, G. (1994). Prey selection by the scyphomedusan predator Aurelia aurita. Marine Biology, 121, 335–341.

    Article  Google Scholar 

  • Terazaki, M., & Wada, M. (1988). Occurrence of large numbers of carcasses of the large, grazing copepod Calanus cristatus from the Japan Sea. Marine Biology, 97, 177–183.

    Article  Google Scholar 

  • Utz, L. R. P., & Coats, W. (2005). Spatial and temporal patterns in the occurrence of peritrich ciliates as epibionts on calanoid copepods in the Chesapeake Bay, USA. Journal of Eukaryotic Microbiology, 52, 236–244.

    Article  Google Scholar 

  • Vanderploeg, H. A., Cavaletto, J. F., Liebig, J. R., & Gardner, W. S. (1998). Limnocalanus macrurus (Copepoda: Calanoida) retains a marine arctic lipid and life cycle strategy in Lake Michigan. Journal of Plankton Research, 20, 1581–1597.

    Article  CAS  Google Scholar 

  • Verity, P. G., & Smetacek, V. (1996). Organism life cycles, predation, and the structure of marine pelagic ecosystems. Marine Ecology Progress Series, 130, 277–293.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Director, CSIR- National Institute of Oceanography, India, for facilities and encouragement. We thank all our selfless colleagues who supported us in many ways for the successful completion of this research work. This is NIO contribution 5865. We thankfully acknowledge all those well wishers who have helped us in sample collection from several estuaries and coastal waters widely distributed along the Indian subcontinent

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jyothibabu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(DOCX 4308 kb)

Esm 2

(MP4 15153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeesan, L., Jyothibabu, R. Tumour-like anomaly of copepods-an evaluation of the possible causes in Indian marine waters. Environ Monit Assess 188, 244 (2016). https://doi.org/10.1007/s10661-016-5230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5230-6

Keywords

Navigation