Skip to main content
Log in

Small copepods of the deep South Adriatic Pit: diversity, seasonal and multi-annual dynamics, and implications from the regional hydrography

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to expand the fragmentary knowledge on the interactions between the environment and copepod distribution in the deep offshore Adriatic Sea, microcopepod assemblages were investigated during 31 cruises in the 1200-m deep central part of the South Adriatic Pit (SAP), from May 1998 to December 2009. Samples were collected in 8 depth layers, using a 53-μm mesh Nansen net equipped with a closing system. The taxonomic composition and vertical and temporal distributions of copepod abundances were analyzed, considering naupliar stages for all species combined, total calanoid copepodites, copepodite stages and adults separately for oithonids and oncaeids, and all post-naupliar stages combined of harpacticoids and mormonilloids. Corycaeid copepods are not considered in the present study. Data are presented for 41 non-calanoid copepod species, as well as for 7 undetermined morphospecies. Within the family Oncaeidae, four species new to the Adriatic Sea fauna are registered. Nauplii were generally the numerically dominant group, especially in the upper epipelagic layers, where they outnumbered all total post-naupliar stages by a factor of an average 3.5. Oncaeids were notably abundant, accounting in total post-naupliar copepods for an average proportion of 33% in the upper 50 m and 74% between 300- and 400-m depth. In the epipelagic zone, copepod abundances were enhanced by the cyclonic circulation which enriches the central part of the SAP with new primary production. A strong advection of Levantine Intermediate Water (LIW) influenced the post-naupliar abundances also in mesopelagic and deeper layers, by promoting the sinking of heavy water mass from the connected middle Adriatic sub-basin which enhances the trophic conditions and transports new organisms into the deeper layers of the SAP. Therefore, the variability in copepod abundances was influenced not only by the seasonal temperature fluctuations but also by the productivity conditions in the SAP which are connected to the movements of regional water masses and the resulting effects on the internal Adriatic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Batistić, M., Kršinić, F., Jasprica, N., Carić, M., Viličić, D., & Lučić, D. (2004). Gelatinous invertebrate zooplankton of the South Adriatic: species composition and vertical distribution. Journal of Plankton Research, 26, 459–474.

    Google Scholar 

  • Batistić, M., Jasprica, N., Carić, M., Čalić, M., Kovačević, V., Garić, R., Njire, J., Mikuš, J., & Bobanović-Ćolić, S. (2012). Biological evidence of a winter convection event in the South Adriatic: a phytoplankton maximum in the aphotic zone. Continental Shelf Research, 44(1), 57–71.

    Google Scholar 

  • Batistić, M., Garić, R., & Molinero, J. C. (2014). Interannual variation in Adriatic Sea zooplankton mirror shifts in circulation regimes in the Ionian Sea. Climate Research, 61, 231–240.

    Google Scholar 

  • Bosak, S., Bošnjak, I., Cetinić, I., Mejdandžić, M., & Ljubešić, Z. (2016). Diatom community in the depths of the south Adriatic: an injection of carbon by biological pump. Rapports et Procès-Verbaux des Réunions de la Commision international pour L’Exploration scientifique de la Mer Méditeranée, 41, 2016.

    Google Scholar 

  • Böttger-Schnack, R. (1994). The microcopepod fauna in the eastern Mediterranean and Arabian seas: a comparison with the Red Sea fauna. Hydrobiologia, 292(293), 271–282.

    Google Scholar 

  • Böttger-Schnack, R. (1996). Vertical structure of small metazoan plankton, especially nom-calanoid copepods. I. Deep Arabian Sea. Journal of Plankton Research, 18, 1073–1101.

    Google Scholar 

  • Böttger-Schnack, R. (1997). Vertical structure of small metazoan plankton, especially nom-calanoid copepods. II. Deep eastern Mediterranean. Oceanologica Acta, 20, 399–419.

    Google Scholar 

  • Böttger-Schnack, R. (1999). Taxonomy of Oncaeidae (Copepoda, Poecilostomatoida) from the Red Sea. -I. 11 species of Triconia gen. nov.and a redescription of T. similis (Sars) from Norwegian waters. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 96, 37–128.

    Google Scholar 

  • Böttger-Schnack, R. (2001). Taxonomy of Oncaeidae (Copepoda, Poecilostomatoida) from the Red Sea. II. Seven species of Oncaea s.str. Bulletin of the Natural History Museum London (Zoology), 67, 25–84.

    Google Scholar 

  • Böttger-Schnack, R. (2003). Taxonomy of Oncaeidae (Copepoda, Poecilostomatoida) from the Red Sea. V. Three species of Spinoncaea gen.Nov. (ivlevi-group), with notes on zoographical distribution. Zoological Journal of the Linnean Society, 137, 187–226.

    Google Scholar 

  • Böttger-Schnack, R. (2005). Taxonomy of Oncaeidae (Copepoda, Poecilostomatoida) from the Red Sea. VII. Oncaea cristata, a new species related to the ovalis-complex, and a revision of O. ovalis Shmeleva and O. bathyalis Shmeleva from the Mediterranean. Cahiers de Biologie Marine, 46, 161–209.

    Google Scholar 

  • Böttger-Schnack, R. (2007). Taxonomy of Oncaeidae (Copepoda, Cyclopoida) from the Red Sea. VIII. Morphology and phylogenetic position of Oncaea tregoubovi Shmeleva, 1968 and the closely related O. prendeli Shmeleva, 1966 from the Mediterranean Sea. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 104, 89–127.

    Google Scholar 

  • Böttger-Schnack, R. (2009). Taxonomy of Oncaeidae (Copepoda, Cyclopoida s.l.) from the Red Sea. IX. Epicalymma bulbosa sp. Nov., first record of the genus in the Red Sea. Journal of Plankton Research, 31, 1027–1043.

    Google Scholar 

  • Böttger-Schnack, R., & Boxshall, G. A. (1990). Two new Oncaea species (Copepoda: Poecilostomatoida) from the Red Sea. Journal of Plankton Research, 12, 861–871.

    Google Scholar 

  • Böttger-Schnack, R., & Schnack, D. (1989). Vertical distribution and population structure of Macrosetella gracilis (Copepoda: Harpacticoida) in the Red Sea in relation to the occurrence of Oscillatoria (Trichodesmium) spp. (cyanobacteria). Marine Ecology Progress Series, 52, 17–31.

    Google Scholar 

  • Böttger-Schnack, R., & Schnack, D. (2009). Taxonomic diversity and identification problems of oncaeid microcopepods in the Mediterranean Sea. Marine Biology, 39, 131–145.

    Google Scholar 

  • Boxshall, G. A., & Halsey, S. H. (2004). An introduction to copepod diversity. London: The Ray Society.

    Google Scholar 

  • Buljan, M., & Špan, J. (1976). Hydrographical properties of the sea water “lakes” on the island of Mljet and the adjoing sea in eastern South Adriatic Sea. Acta Adriatica, 6, 1–227.

    Google Scholar 

  • Buljan, M., & Zore-Armanda, M. (1979). Hydrographic properties of the Adriatic Sea in the period from 1965-1970. Acta Adriatica, 20, 1–368.

    Google Scholar 

  • Calbet, A., Garrido, S., Saiz, E., Alcaraz, M., & Duarte, C. M. (2001). Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. Journal of Plankton Research, 23, 319–331.

    Google Scholar 

  • Civitarese, G., Gačić, M., Lipizer, M., & Eusebi Borzelli, G. L. (2010). On the impact of the bimodal oscillating system (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian seas (Eastern Mediterranean). Biogeosciences, 7, 3987–3997.

    CAS  Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2006). PRIMER V6: user manual/tutorial. Plymouth: PRIMER-E 192 p.

    Google Scholar 

  • Claus, C. (1881). Neue Beiträge zur Kenntniss der Copepoden unter besonderer Berücksichtigung der Triester Fauna. Arbeiten aus dem Zoologischen Institut der Universität Wien, 3, 313–332.

    Google Scholar 

  • de Olazabal, A., & Tirelli, V. (2011). First record of the egg-carrying calanoid copepod Pseudodiaptomus marinus in the Adriatic Sea. Marine Biodiversity Records. https://doi.org/10.1017/S1755267211000935 Published online by Cambridge University Press: 01 November 2011.

  • Dugas, J. C., & Koslow, J. A. (1984). Microsetella norvegica: a rare report of a potentially abundant copepod on the Scotian shelf. Marine Biology, 84, 131–134.

    Google Scholar 

  • Früchtl, F. (1920). Planktoncopepoden aus der nördlichen Adria. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe, 1(129), 463–509.

    Google Scholar 

  • Gačić, M., Eusebi Borzelli, G. L., Civitarese, G., Cardin, V., & Yari, S. (2010). Can internal processes sustain reversal of the ocean upper circulation? The Ionian Sea example. Geophysical Research Letters, 37. https://doi.org/10.1029/2010GL043216.

  • Gallienne, C. P., & Robins, D. B. (2001). Is Oithona the most important copepod in the world’s oceans? Journal of Plankton Research, 23, 1421–1432.

    Google Scholar 

  • Gamulin, T. (1939). Kvalitativna i kvantitativna istraživanja kopepoda u istočnim obalnim vodama srednjeg Jadrana tokom 1936/37. Pririrodoslovna Istraživanja Jugoslavenske Akademije Znanosti i Umjetnosti, 22, 97–180 (in Croatian).

    Google Scholar 

  • Gamulin, T. (1979). Zooplankton istočne obale Jadranskog mora. Prirodoslovna Istraživanja 43. Acta Biologica, 8(1–10), 177–270 (in Croatian).

    Google Scholar 

  • Gamulin, T., & Kršinić, F. (2000). Calycophores (Siphonophora, Calycophorae) of the Adriatic and Mediterranean seas. Natura Croatica, 9(Suppl. 1), 1–198.

    Google Scholar 

  • Ghirardelli, E., & Gamulin, T. (2004). Chaetognatha, Fauna d’Italia, 39. Bologna: Calderini.

    Google Scholar 

  • Giesbrecht, W. 1893 [“1892”]: Systematik und Faunistik der pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. Fauna und Flora des Golfes von Neapel, 19, 1–831 plates 1–54.

  • González, H. E., & Smetacek, V. (1994). The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Marine Ecology Progress Series, 113, 233–246.

    Google Scholar 

  • Humes, A. G. (1994). How many copepods? Hydrobiologia, 292(1), 1–7. https://doi.org/10.1007/BF00229916.

    Article  Google Scholar 

  • Hure, J. (1955). Distribution annuelle verticale du zooplancton sur une station de l’Adriatique méridionale. Acta Adriatica, 7, 1–72.

    Google Scholar 

  • Hure, J., & Kršinić, F. (1998). Planktonic copepods of the Adriatic Sea. Natura Croatica, 7(suppl. 2), 1–135.

    Google Scholar 

  • Hure, J., & Scotto di Carlo, B. (1968). Comparazione tra lo zooplankton del Golfo di Napoli e dell’ Adriatico meridionale presso Dubrovnik. I. Copepoda. Pubblicazioni della Stazione Zoologica di Napoli, 36, 21–102.

    Google Scholar 

  • Hure, J., & Scotto di Carlo, B. (1969). Ripartizione quantitativa e distribuzione verticale dei Copepodi pelagici di profondità su una stazione nel Mar Tirreno ed una nell’ Adriatico Meridionale. Pubblicazioni della Stazione Zoologica di Napoli, 37, 51–83.

    Google Scholar 

  • Hure, J., Ianora, A., & Scotto di Carlo, B. (1980). Spatial and temporal distribution of copepod communities in the Adriatic Sea. Journal of Plankton Research, 2, 295–316.

    Google Scholar 

  • Huys, R., & Böttger-Schnack, R. (2007). Taxonomy of Oncaeidae (Copepoda, Cyclopoida) from the Red Sea-VIII. Morphology and phylogenetic position of Oncaea tregoubovi Shmeleva, 1968 and the closely related O. prendeli Shmeleva, 1966 from the Mediterranean Sea. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 104, 89–127.

    Google Scholar 

  • Kovačević, V., Gačić, M., & Poulain, P. M. (1999). Eulerian current measurement in the Strait of Otranto and in the Southern Adriatic. Journal of Marine Systems, 20, 255–278.

    Google Scholar 

  • Kršinić, F. (1990). A new type of zooplankton sampler. Journal of Plankton Research, 12(2), 337–343.

    Google Scholar 

  • Kršinić, F. (1995). Changes in the microzooplankton assemblages in the northern Adriatic Sea during 1989 to 1992. Journal of Plankton Research, 17, 935–953.

    Google Scholar 

  • Kršinić, F. (1998). Vertical distribution of protozoan and microcopepod communities in the South Adriatic Pit. Journal of Plankton Research, 20, 1033–1060.

    Google Scholar 

  • Kršinić, F. (2003). Mesaiokeras hurei n. sp. (Copepoda, Calanoida, Mesaiokeratidea) from the Adriatic Sea. Journal of Plankton Research, 25, 939–948.

    Google Scholar 

  • Kršinić, F. (2010a). Tintinnids (Tintinida, Choreotricha, Ciliata) in the Adriatic Sea, Mediterranean. Part I. Taxonomy. (monograph). Institute of Oceanography and Fisheries, Split, Croatia, Dalmacija papir, Split, 186 pp.

  • Kršinić, F. (2010b). Tintinnids (Tintinida, Choreotricha, Ciliata) in the Adriatic Sea, Mediterranean. Part II. Ecology. (monograph). Institute of Oceanography and Fisheries, Split, Croatia, Dalmacija papir, Split, 113 pp.

  • Kršinić, F., & Grbec, B. (2002). Some distributional characteristics of small zooplankton at two stations in the Otranto Strait (eastern Mediterranean). Hydrobiologia, 482, 119–136.

    Google Scholar 

  • Kršinić, F., & Grbec, B. (2012). Spatial distribution of copepod abundance in the epipelagic layer of the South Adriatic Sea. Acta Adriatica, 53, 57–70.

    Google Scholar 

  • Kršinić, F., & Kršinić, A. (2012). Radiolarians in the Adriatic Sea plankton (eastern Mediterranean). Acta Adriatica, 53, 187–210.

    Google Scholar 

  • Kršinić, F., & Malt, S. J. (1985). Little known species of small Oncaeidae (Cyclopoida) from the South Adriatic. Journal of Plankton Research, 7, 189–199.

    Google Scholar 

  • Kršinić, F., Čalić, M., & Carić, M. (2016). The population structure of planktonic protists and small metazoans in Mali Ston Bay (Adriatic Sea)- implications for determination of trophic state and shellfish culturing potential. Acta Adriatica, 57, 17–38.

    Google Scholar 

  • Lampitt, R. S., & Gamble, J. C. (1982). Diet and respiration of small planktonic marine copepod Oithona nana. Marine Biology, 66, 185–190.

    Google Scholar 

  • Miyashita, L. K., de Melo Jr., M., & Lopers, R. M. (2009). Estuarine and oceanic influences on copepod abundance and production of a subtropical coastal area. Journal of Plankton Research, 31, 815–826.

    Google Scholar 

  • Nishibe, Y., Takahashi, K., Ichikawa, T., Hidaka, K., Kurogi, H., Segawa, K., & Saito, H. (2015). Degradation of descarded appendicularians houses by oncaeid copepods. Limnology and Oceanography, 60, 967–976.

    Google Scholar 

  • Nishida, S. (1985). Taxonomy and distribution of the family Oithonidae (Copepoda, Cyclopoida) in the Pacific and Indian Ocean. Bulletin of the Ocean Research Institute University of Tokyo, 20, 1–167.

    Google Scholar 

  • Orlić, M., Gačić, M., & La Violette, P. E. (1992). The current circulation of the Adriatic Sea. Oceanologica Acta, 15, 109–124.

    Google Scholar 

  • Paffenhöfer, G. A. (1993). On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). Journal of Plankton Research, 15, 37–55.

    Google Scholar 

  • Paffenhöfer, G. A., & Mazzocchi, M. G. (2003). Vertical distribution of subtropical epiplanktonic copepods. Journal of Plankton Research, 25, 1139–1156.

    Google Scholar 

  • Raymont, J. E. G. (1983). Plankton and productivity in the oceans. 2nd edition, volume 2, zooplankton. Oxford: Pergamon Press.

    Google Scholar 

  • Roff, J. C., Turner, J. T., Webber, M. K., & Hopcroft, R. R. (1995). Bacterivory by tropical copepod nauplii: extent and possible significance. Aquatic Microbial Ecology, 9, 165–175.

    Google Scholar 

  • Roura, Á., Strugnell, J. M., Guerra, Á., & Gonzàlez, Á. F. (2018). Small copepods could channel missing carbon through metazoan predation. Ecology and Evolution, 8(22), 10868–10878. https://doi.org/10.1002/ece3.4546.

    Article  Google Scholar 

  • Sars, G. O. (1918). An account of the Crustacea of Norway. VI Copepoda Cyclopoida. Bergen: Bergen Museum.

    Google Scholar 

  • Shmeleva, A. A. (1969). Espèces nouvelles du genre Oncaea (Copepoda, Cyclopoida) de la mer Adriatique. Bulletin de l’ Institut Océanographique Monaco, 68, 1–28.

    Google Scholar 

  • Shuvalov, V. S. (1980). Cyclopoid copepods of the family Oithonidae in the world ocean. Leningrad: Nauka (In Russian).

    Google Scholar 

  • Šolić, M., Krstulović, N., Vilibić, I., Kušpilić, G., Šestanović, S., Šantić, D., et al. (2008). The role of water mass dynamics in controlling bacterial abundance and production in the middle Adriatic Sea. Marine Environmental Research, 65, 388–404.

    Google Scholar 

  • Steuer, A. (1910). Adriatische Planktoncopepoden. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe, 119, 1005–1039.

    Google Scholar 

  • Turner, J. T. (1986). Zooplankton feeding ecology: contents of fecal pellets of the cyclopoid copepods Oncaea venusta, Corycaeus amazonicus, Oithona plumifera, and O. simplex from the northeastern Gulf of Mexico. Marine Ecology, P.S.Z.N.I. 7, 289–302.

    Google Scholar 

  • Turner, J. T. (2004). The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies, 43, 255–266.

    Google Scholar 

  • Vidjak, O., & Bojanić, N. (2009). Species composition and distribution patterns of the family Corycaeidae Dana, 1852 (Copepoda: Cyclopoida) in the middle Adriatic Sea. Marine Biology Research, 5(5), 427–440.

    Google Scholar 

  • Vidjak, O., Bojanić, N., Matijević, S., Kušpilić, G., Ninčević Gladan, Ž., Skejić, S., Grbec, B., & Brautović, I. (2012). Environmental drivers of zooplankton variability in the coastal eastern Adriatic (Mediterranean Sea). Acta Adriatica, 53(2), 243–261.

    Google Scholar 

  • Vidjak, O., Bojanić, N., Ninčević Gladan, Ž., Skejić, S., & Grbec, B. (2016). First record of small tropical calanoid copepod Parvocalanus crassirostris (Copepoda, Calanoida, Paracalanidae) in the Adriatic Sea. Mediterranean Marine Science, 17(1), 627–633.

    Google Scholar 

  • Vilibić, I., & Šantić, D. (2008). Deep water ventilation traced by Synechococcus cyanobacteria. Ocean Dynamics, 58, 119–125.

    Google Scholar 

  • Vilibić, I., Grbec, B., & Supić, N. (2004). Dense water generation in the north Adriatic in 1999 and its recirculation along the Jabuka pit. Deep Sea Research, Part I, 52, 1457–1474.

    Google Scholar 

  • Viličić, D., Vučak, Z., Škrivanić, A., & Gržetić, Z. (1989). Phytoplankton blooms in the oligotrophic open south Adriatic waters. Marine Chemistry, 28, 89–107.

    Google Scholar 

  • Vinogradov, M. E. (1968). The vertical distribution of oceanic zooplankton. Moskow: Nauka.

    Google Scholar 

  • Williams, J. A., & Muxagata, E. (2006). The seasonal abundance and production of Oithona nana (Copepoda: Cyclopoida) in Southampton water. Journal of Plankton Research, 28, 1055–1065.

    CAS  Google Scholar 

  • Williams, R., Conway, D. V. P., & Hunt, H. G. (1994). The role of copepods in the planktonic ecosystems of mixed and stratified waters of the European shelf seas. Hydrobiologia, 292, 521–530. https://doi.org/10.1007/BF00229980.

    Article  Google Scholar 

  • Zervoudaki, S., Christou, E. D., Nielsen, T. G., Siokou-Frangou, I., Assimakopoulou, G., Giannakourou, A., Maar, M., Pagou, K., Krasakopoulou, E., Christaki, U., & Moraitou-Apostolopoulou, M. (2007). The importance of small-sized copepods in a frontal area of the Aegean Sea. Journal of Plankton Research, 29, 317–338.

    Google Scholar 

Download references

Acknowledgments

We are indebted to the anonymous reviewers who assisted us in improving the manuscript, as well as to colleague Dr. M. Čalić for the interpretation of Chl a data. The authors also wish to thank the technicians and the crew of r/v “BIOS” for their long-term technical support during the cruises.

Funding

The research was financially supported by the Ministry of Science and Education of the Republic of Croatia and the Croatian national monitoring project “Jadran”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frano Kršinić.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kršinić, F., Böttger-Schnack, R. & Vidjak, O. Small copepods of the deep South Adriatic Pit: diversity, seasonal and multi-annual dynamics, and implications from the regional hydrography. Environ Monit Assess 192, 545 (2020). https://doi.org/10.1007/s10661-020-08462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08462-4

Keywords

Navigation