Skip to main content

Advertisement

Log in

Barcoding marine nematodes: an improved set of nematode 18S rRNA primers to overcome eukaryotic co-interference

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Nematodes form an important component of many benthic marine ecosystems and DNA barcoding approaches could provide an insight into nematode community composition from different environments globally. We have amplified nematode 18S rRNA sequences using standard nematode18S rRNA primers from environmental DNA extracted from intertidal sediment collected from New Jersey coast, USA to test whether the published marine nematode 18S rRNA sequences from GenBank and EMBL databases can effectively assign unknown nematode sequences into genus or species level. Most of the sequenced clones showed some degree of identities with published marine nematode 18S rRNA sequences. However, relatively very few of the sequences could be assigned even to genus level based on sequence assignment rule. In addition, other eukaryotic 18S rRNA sequences were found to be co-amplified with commonly used nematode 18S rRNA primers. We found that the majority of the current nematode 18S rRNA primers will co-amplify other eukaryotes if environmental DNA is the target template. We therefore designed a new set of nematode 18S rRNA primers and evaluated them using environmental DNA in intertidal sediment from the New Jersey coast. In total, 40 clones were screened and subsequently sequenced and all the sequences showed varying degree of identities with published nematode 18S rRNA sequences from GenBank and EMBL databases, and no obvious eukaryotic co-amplicons were detected with new primers. Only 13 out of 40 clones amplified with the new primer set showed 100% identity to published Daptonema and Metachromadora 18S rRNA sequences. The current molecular databases for nematodes are dominated by sequences from NW Europe and need to be more extensively populated with new full length 18S rRNA nematode sequences collected from different biogeographic locations. The new primers developed in this study, in combination with an updated nematode 18S rRNA sequence database, would help us to better investigate and understand the diversity and community composition of free-living marine nematodes based on DNA barcoding approaches during biodiversity or biomonitoring surveys on a global-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Austen, M. C., 2004. Natural nematode communities are useful tools to address ecological and applied questions. Nematology Monographs and Perspectives 2: 1–17.

    Google Scholar 

  • Austen, M. C. & A. J. McEvoy, 1997. The use of offshore meiobenthic communities in laboratory microcosm experiments: response to heavy metal contamination. Journal of Experimental Marine Biology and Ecology 211: 247–261.

    Article  CAS  Google Scholar 

  • Bhadury, P., M. C. Austen, D. T. Bilton, P. J. D. Lambshead, A. D. Rogers & G. R. Smerdon, 2006a. Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Marine Ecology Progress Series 320: 1–9.

    Article  CAS  Google Scholar 

  • Bhadury, P., M. C. Austen, D. T. Bilton, P. J. D. Lambshead, A. D. Rogers & G. R. Smerdon, 2006b. Molecular detection of marine nematodes from environmental samples: overcoming eukaryotic interference. Aquatic Microbial Ecology 44: 97–103.

    Article  Google Scholar 

  • Bhadury, P., M. C. Austen, D. T. Bilton, P. J. D. Lambshead, A. D. Rogers & G. R. Smerdon, 2007. Exploitation of archived marine nematodes—a hot lysis DNA extraction protocol for molecular studies. Zool Scripta 36: 93–98.

    Article  Google Scholar 

  • Bhadury, P., M. C. Austen, D. T. Bilton, P. J. D. Lambshead, A. D. Rogers & G. R. Smerdon, 2008. Evaluation of combined morphological and molecular techniques for marine nematode (Terschellingia spp.) identification. Marine Biology 154: 509–518.

    Article  Google Scholar 

  • Blaxter, M. L., P. De Ley, J. R. Garey, L. X. Liu, P. Scheldeman, A. Vierstraete, J. R. Vanfleteren, L. Y. Mackey, M. Dorris, L. M. Frisse, J. T. Vida & V. K. Thomas, 1998. A molecular evolutionary framework for the phylum Nematoda. Nature 392: 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Boyd, S. E., H. L. Rees & C. A. Richardson, 2000. Nematodes as sensitive indicators of changes at dredged material disposal sites. Estuarine Coastal and Shelf Science 51: 805–819.

    Article  Google Scholar 

  • Cook, A. A., P. Bhadury, N. J. Debenham, B. H. M. Meldal, M. L. Blaxter, G. R. Smerdon, M. C. Austen, P. J. D. Lambshead & A. D. Rogers, 2005. Denaturing gradient gel electrophoresis (DGGE) as a tool for identification of marine nematodes. Marine Ecology Progress Series 291: 103–113.

    Article  CAS  Google Scholar 

  • De Ley, P., I. T. De Ley, K. Morris, E. Abebe, M. Mundo, M. Yoder, J. Heras, D. Waumann, A. Rocha-Olivares, J. Burr, J. G. Baldwin & W. K. Thomas, 2005. An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philosophical Transactions of the Royal Society B Biological Science 360: 1945–1958.

    Article  Google Scholar 

  • Derycke, S., T. Backeljau, C. Vlaeminck, A. Vierstraete, J. Vanfleteren, M. Vincx & T. Moens, 2007. Spatiotemporal analysis of population genetic structure in Geomonhystera disjuncta (Nematoda, Monhysteridae) reveals high levels of molecular diversity. Marine Biology 151: 1799–1812.

    Article  Google Scholar 

  • Feazel, L. M., J. R. Spear, A. B. Berger, J. K. Harris, D. N. Frank, R. E. Ley & N. R. Pace, 2008. Eucaryotic diversity in a hypersaline microbial mat. Applied and Environmental Microbiology 74: 329–332.

    Article  CAS  PubMed  Google Scholar 

  • Floyd, R. M., A. D. Rogers, P. J. D. Lambshead & C. R. Smith, 2005. Nematode-specific PCR primers for the 18S small subunit ribosomal RNA gene. Molecular Ecology Notes 5: 611–612.

    Article  CAS  Google Scholar 

  • Foucher, A. & M. Wilson, 2002. Development of a polymerase chain reaction-based denaturing gradient gel electrophoresis technique to study nematode species biodiversity using the 18S rDNA gene. Molecular Ecology Notes 2: 45–48.

    Article  CAS  Google Scholar 

  • Jeanmougin, F., J. D. Thompson, M. Gouy, D. G. Higgins & T. J. Gibson, 1998. Multiple sequence alignment with Clustal X. Trends in Biochemical Sciences 23: 403–405.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., K. Tamura & M. Nei, 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150–163.

    Article  CAS  PubMed  Google Scholar 

  • Lambshead, P. J. D., 1986. Sub-catastrophic sewage and industrial waste contamination as revealed by marine nematode faunal analysis. Marine Ecology Progress Series 29: 247–260.

    Article  Google Scholar 

  • Meldal, B. H. M., N. J. Debenham, P. De Ley, et al., 2007. An improved molecular phylogeny of the Nematoda with special emphasis on marine nematode taxa. Molecular Phylogenetics and Evolution 42: 622–636.

    Article  CAS  PubMed  Google Scholar 

  • Rozen, S. & H. Skaletsky, 2000. PRIMER 3 on the WWW for general users and for biologist programmers. In Krawetz, S. & S. Misener (eds), Bioinformatics: Methods and Protocols. Humana Press, Totowa, NJ: 365–368 (available on internet at http://Fokker.wi.mit.edu/primer3).

  • Steyart, M., N. Garner, D. van Gansbeke & M. Vincx, 1999. Nematode communities from the North Sea: environmental controls on species diversity and vertical distribution within the sediment. Journal of the Marine Biological Association of the United Kingdom 79: 253–264.

    Article  Google Scholar 

  • Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nicholas Bouskill and Jennifer Bowen (Princeton University) for collecting the sediment samples. Punyasloke Bhadury would like to thank Professor Sushanta Dattagupta (Director, IISER-K) for his constant encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punyasloke Bhadury.

Additional information

Handling editor: K. Martens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadury, P., Austen, M.C. Barcoding marine nematodes: an improved set of nematode 18S rRNA primers to overcome eukaryotic co-interference. Hydrobiologia 641, 245–251 (2010). https://doi.org/10.1007/s10750-009-0088-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0088-z

Keywords

Navigation