Skip to main content

Advertisement

Log in

Thaliacean community responses to distinct thermohaline and circulation patterns in the Western Tropical South Atlantic Ocean

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In western boundary current systems, strong currents transport oligotrophic oceanic waters towards the coast. Thaliaceans may have an advantage in these systems due their ability to filter small particles such as the bacterioplankton, typically responsible for the primary production in oligotrophic waters. Here, we evaluated the structure of the thaliacean community present in the tropical South Atlantic Ocean western boundary current system to test the hypothesis that species distribution and abundance are structured by the circulation and thermohaline features. For that purpose, we used data collected though 40 mm mesopelagic trawls above the slope and around oceanic seamounts and islands. Results reveal distinct patterns in the thaliacean community structure. Over the continental slope, under the influence of the strong North Brazilian Undercurrent, Pyrosoma atlanticum was highly abundant. Soestia zonaria was also present but in a lesser amount. Offshore, around oceanic islands and Seamounts under the influence of the central branch of South Equatorial Current, Doliolida spp. were the dominant thaliacean, co-occurring with P. atlanticum in lower abundance. Mesh selectivity is a potential drawback in these results since the coarse aperture may have lost smaller species and early life stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Andersen, V. & J. Sardou, 1994. Pyrosoma atlanticum (Tunicata, Thaliacea): diel migration and vertical distribution as a function of colony size. Journal of Plankton Research 16: 337–349.

    Article  Google Scholar 

  • Anderson, M. J., R. N. Gorley, & K. R. Clarke, 2008. Permanova For Primer: Guide to Software and Statiscal Methods. PRIMER-E, Plymouth.

  • Assunção, R. V., A. C. Silva, A. Roy, B. Bourlès, C. H. S. Silva, J.-F. Ternon, M. Araujo & A. Bertrand, 2020. 3D characterisation of the thermohaline structure in the southwestern tropical Atlantic derived from functional data analysis of in situ profiles. Progress in Oceanography 187: 102399.

    Article  Google Scholar 

  • Bertrand, A., 2017. ABRACOS 2 cruise, Antea R/V. Sismer. https://campagnes.flotteoceanographique.fr/campagnes/17004100

  • Buarque, B. V., J. A. Barbosa, J. R. G. Magalhães, J. T. Cruz Oliveira & O. J. C. Filho, 2016. Post-rift volcanic structures of the Pernambuco Plateau, northeastern Brazil. Journal of South American Earth Sciences 70: 251–267.

    Article  Google Scholar 

  • Castro, B. M., F. P. Brandini, A. M. S. Pires-Vanin & L. B. Miranda, 2006. Multidisciplinary oceanographic processes on the Western Atlantic continental shelf between 4°N and 34°S. The Sea 14: 1–39.

    Google Scholar 

  • Clarke, K. R., & R. N. Gorley, 2006. PRIMER 6 + PERMANOVA.

  • Cotté, C. & Y. Simard, 2005. Formation of dense krill patches under tidal forcing at whale feeding hot spots in the St. Lawrence estuary. Marine Ecology Progress Series 288: 199–210.

    Article  Google Scholar 

  • de Carvalho, P. F. & S. L. C. Bonecker, 2008. Tunicata, Thaliacea, Pyrosomatidae, Pyrosomella verticillata (Neumann, 1909): First record from the southwest Atlantic Ocean. Check List 4: 272.

    Article  Google Scholar 

  • Deibel, D., 1982. Laboratory determined mortality, fecundity and growth rates of Thalia democratica Forskal and Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). Journal of Plankton Research 4: 143–153.

    Article  Google Scholar 

  • Díaz, X. F. G., L. M. de Oliveira Gusmão & S. Neumann-Leitão, 2008. New record of Thalia cicar van Soest 1973 (Urochordata: Thaliacea) in the Equatorial Atlantic. Biota Neotropica 8: 99–104.

    Article  Google Scholar 

  • Díaz, X. F. G., L. M. de Oliveira Gusmão & S. Neumann-Leitao, 2009. Biodiversidade e dinâmica espaço-temporal do zooplâncton. In Hazin, F. H. V. (ed), O arquipélago de São Pedro e São Paulo: 10 anos de estação cientíica SECIRM, Brasília: 138–147.

    Google Scholar 

  • Dölger, J., T. Kiørboe & A. Andersen, 2019. Dense dwarfs versus gelatinous giants: The trade-offs and physiological limits determining the body plan of planktonic filter feeders. The American Naturalist 194: E30–E40.

    Article  PubMed  Google Scholar 

  • Dossa, A. N., A. C. Silva, A. Chaigneau, G. Eldin, M. Araujo & A. Bertrand, 2021. Near-surface western boundary circulation off Northeast Brazil. Progress in Oceanography 190: 102475.

    Article  Google Scholar 

  • Drits, A. V., E. G. Arashkevich & T. N. Semenova, 1992. Pyrosoma atlanticum (Tunicata, Thaliacea): Grazing impact on phytoplankton standing stock and role in organic carbon flux. Journal of Plankton Research 14: 799–809.

    Article  Google Scholar 

  • Eduardo, L. N., T. Frédou, A. S. Lira, B. P. Ferreira, A. Bertrand, F. Ménard & F. L. Frédou, 2018. Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf. Continental Shelf Research 166: 108–118.

    Article  Google Scholar 

  • Ekau, W. & B. Knoppers, 1999. An introduction to the pelagic system of the Northeast and East Brazilian shelf. Archive of Fishery and Marine Research. 47(2/3): 5–24.

    Google Scholar 

  • Esnal, G. B., 1999. Pyrosomatida. In Boltovskoy, D. (ed), South Atlantic Zooplankton Backhuys Publishers, Leiden: 1401–1408.

    Google Scholar 

  • Esnal, G. B. & M. C. Daponte, 1999a. Doliolida. In Boltovskoy, D. (ed), South Atlantic Zooplankton Backhuys Publishers, Leiden: 1409–1421.

    Google Scholar 

  • Esnal, G. B. & M. C. Daponte, 1999b. Salpida. In Boltovskoy, D. (ed), South Atlantic Zooplankton Backhuys Publishers, Leiden: 1423–1444.

    Google Scholar 

  • Farias, G. B., J.-C. Molinero, C. Carré, A. Bertrand, B. Bec & P. A. M. de Castro Melo, 2022. Uncoupled changes in phytoplankton biomass and size structure in the western tropical Atlantic. Journal of Marine Systems 227: 103696.

    Article  Google Scholar 

  • Gibson, D. M. & G.-A. Paffenhöfer, 2000. Feeding and growth rates of the doliolid, Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). Journal of Plankton Research 22: 1485–1500.

    Article  Google Scholar 

  • Govindarajan, A. F., A. Bucklin & L. P. Madin, 2011. A molecular phylogeny of the Thaliacea. Journal of Plankton Research 33: 843–853.

    Article  CAS  Google Scholar 

  • Hagström, Å., F. Azam, A. Andersson, J. Wikner & F. Rassoulzadegan, 1988. Microbial loop in an oligotrophic pelagic marine ecosystem: Possible roles of cyanobacteria and nanoflagellates in the organic fluxes. Marine Ecology Progress Series 49: 171–178.

    Article  Google Scholar 

  • Harbison, G. R. & R. B. Campenot, 1979. Effects of temperature on the swimming of salps (Tunicata, Thaliacea): Implications for vertical migration1: Temperature effects on salps. Limnology and Oceanography 24: 1081–1091.

    Article  Google Scholar 

  • Harbison, G. R. & R. W. Gilmer, 1976. The feeding rates of the pelagic tunicate Pegea confederata and two other salps1: Salp feeding rates. Limnology and Oceanography 21: 517–528.

    Article  CAS  Google Scholar 

  • Hazen, E., A. Friedlaender, M. Thompson, C. Ware, M. Weinrich, P. Halpin & D. Wiley, 2009. Fine-scale prey aggregations and foraging ecology of humpback whales Megaptera novaeangliae. Marine Ecology Progress Series 395: 75–89.

    Article  Google Scholar 

  • Henschke, N., J. D. Everett, A. J. Richardson & I. M. Suthers, 2016. Rethinking the role of Salps in the Ocean. Trends in Ecology & Evolution 31: 720–733.

    Article  Google Scholar 

  • Henschke, N., E. A. Pakhomov, L. E. Kwong, J. D. Everett, L. Laiolo, A. R. Coghlan & I. M. Suthers, 2019. Large vertical migrations of Pyrosoma atlanticum play an important role in active carbon transport. Journal of Geophysical Research: Biogeosciences 124: 1056–1070.

    Article  Google Scholar 

  • Hetherington, E., C. Kurle, S. Benson, T. Jones & J. Seminoff, 2019. Re-examining trophic dead ends: Stable isotope values link gelatinous zooplankton to leatherback turtles in the California Current. Marine Ecology Progress Series 632: 205–219.

    Article  CAS  Google Scholar 

  • Hirose, E., S. Kimura, T. Itoh & J. Nishikawa, 1999. Tunic morphology and cellulosic components of pyrosomas, doliolids, and salps (Thaliacea, Urochordata). The Biological Bulletin 196: 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Iseki, K., 1981. Particulate organic matter transport to the deep sea by salp fecal pellets. Marine Ecology Progress Series 5: 55–60.

    Article  Google Scholar 

  • Köster, M. & G.-A. Paffenhöfer, 2016. How efficiently can doliolids (Tunicata, Thaliacea) utilize phytoplankton and their own fecal pellets? Journal of Plankton Research 39(2): 305–315.

    Google Scholar 

  • Lebrato, M. & D. O. B. Jones, 2009. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnology and Oceanography 54: 1197–1209.

    Article  CAS  Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data using CANOCO, Cambridge University Press, Cambridge:

    Book  Google Scholar 

  • Li, K., J. Yin, L. Huang, J. Zhang, S. Lian & C. Liu, 2011. Distribution and abundance of thaliaceans in the northwest continental shelf of South China Sea, with response to environmental factors driven by monsoon. Continental Shelf Research 31: 979–989.

    Article  CAS  Google Scholar 

  • Lucas, C. H., D. O. B. Jones, C. J. Hollyhead, R. H. Condon, C. M. Duarte, W. M. Graham, K. L. Robinson, K. A. Pitt, M. Schildhauer & J. Regetz, 2014. Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers: Global gelatinous biomass. Global Ecology and Biogeography 23: 701–714.

    Article  Google Scholar 

  • Madin, L. P., P. Kremer & S. Hacker, 1996. Distribution and vertical migration of salps (Tunicata, Thaliacea) near Bermuda. Journal of Plankton Research 18: 747–755.

    Article  Google Scholar 

  • Miller, R. R., K. M. Sakuma, B. K. Wells, J. C. Field, M. Way & S. Cruz, 2019. Distribution of pelagic thaliaceans, Thetys vagina and Pyrosoma atlanticum, during a period of mass occurrence within the California current. California Cooperative Oceanic Fisheries Investigations Reports 60: 94–108.

    Google Scholar 

  • Neumann-Leitao, S., E. M. E. Sant’anna, L. M. D. O. Gusmao, D. A. Do Nascimento-Vieira, M. N. Paranagua & R. Schwamborn, 2008. Diversity and distribution of the mesozooplankton in the tropical Southwestern Atlantic. Journal of Plankton Research 30: 795–805.

    Article  Google Scholar 

  • Nishikawa, J. & A. Tsuda, 2001. Diel vertical migration of the tunicate Salpa thompsoni in the Southern Ocean during summer. Polar Biology 24: 299–302.

    Article  Google Scholar 

  • Perissinotto, R., P. Mayzaud, P. Nichols & J. Labat, 2007. Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean. Marine Ecology Progress Series 330: 1–11.

    Article  CAS  Google Scholar 

  • Piette, J. & P. Lemaire, 2015. Thaliaceans, the neglected pelagic relatives of ascidians: A developmental and evolutionary enigma. The Quarterly Review of Biology 90: 117–145.

    Article  PubMed  Google Scholar 

  • QGIS Development Team, 2022. QGIS Geographic Information System.

  • Riccardi, N., 2010. Selectivity of plankton nets over mesozooplankton taxa: Implications for abundance, biomass and diversity estimation. Journal of Limnology 69: 287.

    Article  Google Scholar 

  • Schlitzer, R., 2020. Ocean Data View.

  • Schram, J., H. Sorensen, R. Brodeur, A. Galloway & K. Sutherland, 2020. Abundance, distribution, and feeding ecology of Pyrosoma atlanticum in the Northern California Current. Marine Ecology Progress Series 651: 97–110.

    Article  CAS  Google Scholar 

  • Silva, A. C., A. Chaigneau, A. N. Dossa, G. Eldin, M. Araujo & A. Bertrand, 2021. Surface circulation and vertical structure of upper ocean variability around Fernando de Noronha Archipelago and Rocas Atoll during spring 2015 and fall 2017. Frontiers in Marine Science 8: 598101.

    Article  Google Scholar 

  • Smith, W. O. & D. J. Demaster, 1996. Phytoplankton biomass and productivity in the Amazon River plume: Correlation with seasonal river discharge. Continental Shelf Research 16: 291–319.

    Article  Google Scholar 

  • Sourisseau, M., Y. Simard & F. Saucier, 2006. Krill aggregation in the St. Lawrence system, and supply of krill to the whale feeding grounds in the estuary from the gulf. Marine Ecology Progress Series 314: 257–270.

    Article  Google Scholar 

  • StatSoft Inc., 2011. Statistica, version 10. Tulsa.

  • Stone, J. P. & D. K. Steinberg, 2016. Salp contributions to vertical carbon flux in the Sargasso Sea. Deep Sea Research Part i: Oceanographic Research Papers 113: 90–100.

    Article  CAS  Google Scholar 

  • Stramma, L. & M. England, 1999. On the water masses and mean circulation of the South Atlantic Ocean. Journal of Geophysical Research: Oceans 104: 20863–20883.

    Article  Google Scholar 

  • Stramma, L., S. Schmidtko, L. A. Levin & G. C. Johnson, 2010. Ocean oxygen minima expansions and their biological impacts. Deep Sea Research Part i: Oceanographic Research Papers 57: 587–595.

    Article  CAS  Google Scholar 

  • Tavares, D. Q., 1967. Occurrence of doliolios and salps during 1958, 1959, and 1960 off the São Paulo coast. Boletim Do Instituto Oceanográfico De São Paulo 16: 87–97.

    Article  Google Scholar 

  • Thibault-Botha, D., J. R. E. Lutjeharms & M. J. Gibbons, 2004. Siphonophore assemblages along the east coast of South Africa; mesoscale distribution and temporal variations. Journal of Plankton Research 26: 1115–1128.

    Article  Google Scholar 

  • Tosetto, E. G., S. Neumann-Leitão & M. Nogueira Júnior, 2019. Sampling planktonic cnidarians with paired nets: Implications of mesh size on community structure and abundance. Estuarine, Coastal and Shelf Science 220: 48–53.

    Article  Google Scholar 

  • Tosetto, E. G., A. Bertrand, S. Neumann-Leitão, A. Costa da Silva & M. Nogueira Júnior, 2021. Spatial patterns in planktonic cnidarian distribution in the western boundary current system of the tropical South Atlantic Ocean. Journal of Plankton Research 43: 270–287.

    Article  Google Scholar 

  • Van Soest, R. W. M., 1975. Zoogeography and speciation in the Salpidae. Beaufortia 23: 181–2015.

    Google Scholar 

  • Vannucci, M., 1968. Loss of organisms through the meshes Zooplankton sampling, Unesco, Paris:, 77–86.

    Google Scholar 

  • Wiebe, P. H., L. P. Madin, L. R. Haury, G. R. Harbison & L. M. Philbin, 1979. Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea. Marine Biology 53: 249–255.

    Article  Google Scholar 

  • Zubkov, M. V., B. M. Fuchs, G. A. Tarran, P. H. Burkill & R. Amann, 2003. High rate of uptake of organic nitrogen compounds by prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Applied and Environmental Microbiology 69: 1299–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We are grateful to the French oceanographic fleet for funding the survey ABRAÇOS 1 and the officers, crew and scientific team of the R/V Antea for their contribution to the success of the operations. The present study was not possible without the support of all members from LABZOO and other laboratories from UFPE and UFRPE. We thank to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Brazilian National Council for Scientific and Technological Development), which provided Research Scholarships to E.G.T., B.B.S. and S.N.L. This work is a contribution to the LMI TAPIOCA (www.tapioca.ird.fr), CAPES/COFECUB program (88881.142689/2017–01), the European Union’s Horizon 2020 projects PADDLE (Grant agreement No. 73427) and TRIATLAS (Grant agreement No. 817578).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everton Giachini Tosetto.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interests.

Additional information

Handling editor: Jonne Kotta

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giachini Tosetto, E., Barkokébas Silva, B., Franchesca García Díaz, X. et al. Thaliacean community responses to distinct thermohaline and circulation patterns in the Western Tropical South Atlantic Ocean. Hydrobiologia 849, 4679–4692 (2022). https://doi.org/10.1007/s10750-022-05007-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05007-3

Keywords

Navigation