Skip to main content

Advertisement

Log in

A concise review of the brown macroalga Ascophyllum nodosum (Linnaeus) Le Jolis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Ascophyllum nodosum is a large and common brown alga. The fronds are olive-brown but can appear yellowish when stressed. It is a common, intertidal species around the periphery of the North Atlantic Ocean. It is particularly common on the north-western coast of Europe (from Svalbard to Portugal), including east Greenland, Iceland and the NE coast of N America (from New York to Newfoundland). This intertidal fucoid has long fronds with large egg-shaped airbladders. The fronds can reach 2 m (extremes of 5–7 m) in length. Depending on nutrient availability, the fronds are yellow, and at low tide, they can form extensive beds appearing to be monospecific to the casual observer. This seaweed is long lived and can be a dominant, climax community species of the middle shore. Ascophyllum nodosum is very effective at accumulating nutrients and minerals from the surrounding seawater. Due to the presence of many bioactive components, its harvested biomass is a valuable resource for human enterprise. This species is exploited for use in products such as food, fertiliser, soil conditioners, biostimulants (for phyco-elicitors), animal feed, skin and hair care products, cleaners, de-greasers, equestrian products and nutritional supplements. It is also a popular ingredient in cosmetology and thalassotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Mawgoud AMR, Tantaway AS, Hafez MM, Habib HA (2010) Seaweed extract improves growth, yield, and quality of different watermelon hybrids. Res J Agric Biol Sci 6:161–168

    CAS  Google Scholar 

  • Åberg P (1992a) A demographic study of two populations of the seaweed Ascophyllum nodosum. Ecology 73:1473–1487

    Google Scholar 

  • Åberg P (1992b) Size based demography of the seaweed Ascophyllum nodosum in stochastic environments. Ecology 73:1488–1501

    Google Scholar 

  • Åberg P (1996) Patterns of reproductive effort in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 138:199–207

    Google Scholar 

  • Abreu MH, Pereira R, Sassi J-F (2014) Marine algae and the global food industry. In: Pereira L, Neto JM (eds) Marine algae—biodiversity, taxonomy, environmental assessment and biotechnology. Science Publishers, Boca Raton, pp 300–319

  • Alam MZ, Braun G, Norrie J, Hodges DM (2013) Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can J Plant Sci 93:23–36

    Google Scholar 

  • Alam MZ, Braun G, Norrie J, Hodges DM (2014)Ascophyllum extract application can promote plant growth and root yield in carrot associated with increased root-zone soil microbial activity. Can J Plant Sci 94:337–348

    Google Scholar 

  • Ali S, Javed HU, Rehman RNU, Sabir IA, Naeem MS, Siddiqui MZ, Saeed DA, Nawaz MA (2013) Foliar application of some macro and micronutrients improves tomato growth, flowering and yield. Int J Biosci 3:280–287

    CAS  Google Scholar 

  • Ali O, Ramsubhag A, Jayaraman J (2019) Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS One 14:e0216710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almela C, Jesús Clemente M, Vélez D, Montoro R (2006) Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food Chem Toxicol 44:1901–1908

    CAS  PubMed  Google Scholar 

  • Araújo R, Barbara I, Tibaldo M, Berecibar E, Tapia PD, Pereira R, Santos R, Pinto IS (2009) Checklist of benthic marine algae and cyanobacteria of northern Portugal. Bot Mar 52:24–46

    Google Scholar 

  • Araújo R, Serrão EA, Sousa-Pinto I, Åberg P (2011) Phenotypic differentiation at southern limit borders: the case study of two fucoid macroalgal species with different life-history traits. J Phycol 47:451–462

    PubMed  Google Scholar 

  • Araújo R, Sousa-Pinto I, Serrão E, Åberg P (2012) Recovery after trampling disturbance in a canopy-forming seaweed population. Mar Biol 159:697–707

    Google Scholar 

  • Araújo R, Serrao E, Sousa-Pinto I, Aberg P (2014) Spatial and temporal dynamics of fucoid populations (Ascophyllum nodosum and Fucus serratus): a comparison between central and range edge populations. PLoS One 9:0092177

    Google Scholar 

  • Ardré F (1970) Contribution à l’étude des algues marines du Portugal. I. La flore. Portugaliae Acta Biologica, Sér B, Vol X. Coimbra editora limitada, Coimbra

  • Baardseth E (1955) Regrowth of Ascophyllum nodosum after harvesting. Institute for Industrial Research and Standards, Dublin, 1-67. Available on: https://img.algaebase.org/pdf/AC11010B075a122EB5ggP2207BAC/11235.pdf. Accessed 18 Dec 2019

  • Baardseth E (1966) Some properties of seaweed manures. Proc Int Seaweed Symp 5:349–357

    Google Scholar 

  • Baardseth E (1969) Some aspects of the native intercellular substance in Fucaceae. Proc Int Seaweed Symp 6:53–60

    Google Scholar 

  • Baardseth E (1970) Synopsis of biological data on knobbed wrack - Ascophyllum nodosum (Linnaeus) Le Jolis. Food and Agriculture Organization of the United Nations, Rome 50 pp

    Google Scholar 

  • Bacon LC, Vadas RL (1991) A model for gamete release in Ascophyllum nodosum (Phaeophyta). J Phycol 27:166–173

    Google Scholar 

  • Bajpai S, Shukla PS, Asiedu S, Pruski K, Prithiviraj B (2019) A biostimulant preparation of brown seaweed Ascophyllum nodosum suppresses powdery mildew of strawberry. Plant Pathol J 35:406–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basak A (2008) Effect of preharvest treatment with seaweed products, Kelpak® and Goëmar BM 86®, on fruit quality in apple. Int J Fruit Sci 8:1–14

    Google Scholar 

  • Belsher T (1986) Especes Phytobenthiques, volume 4. In Etude bibliographique de quelques especes planctoniques e benthiques de La Manche. IFREMER, Centre de Brest, Départment DERO, Environnement Littoral, Brest, France, 227 pp. Available on https://archimer.ifremer.fr/doc/1986/rapport-3704.pdf. Accessed 17 Dec 2019

  • Bessa-Gomes C, Legendre S, Clobert J (2004) Allee effects, mating systems and the extinction risk in populations with two sexes. Ecol Lett 7:802–812

    Google Scholar 

  • Bohn JA, BeMiller JN (1995) (1→3)-β-D-glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 28:3–14

    CAS  Google Scholar 

  • Bonotto S, Robbrecht V, Nuyts G, Cogneau M, van der Ben D (1988) Uptake of technetium by marine algae: autoradiographic localization. Mar Pollut Bull 19:61–65

    CAS  Google Scholar 

  • Borges D, Araujo R, Azevedo I, Sousa-Pinto I (2020) Sustainable management of economically valuable seaweed stocks at the limits of their range of distribution: Ascophyllum nodosum (Phaeophyceae) and its southernmost population in Europe. J Appl Phycol 32:1365–1375

    Google Scholar 

  • Bourne GS, Assinder DJ (1991) Ascophyllum nodosum (L.) Le Jolis as a bioindicator of radioactivity in the Irish Sea. Oceanol Acta 11:313–320

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Brownlee IA, Fairclough AC, Hall AC, Paxman JR (2011) The potential health benefits of seaweed and seaweed extract. In: Pomin VH (ed) Seaweed: ecology, nutrient composition and medicinal uses. Nova Science Publishers Inc., New York, pp 119–136

    Google Scholar 

  • Cabrita ARJ, Valente IM, Oliveira HM, Fonseca AJM, Maia MRG (2019) Effects of feeding with seaweeds on ruminal fermentation and methane production. In: Pereira L, Bahcevandziev K, Joshi NH (eds) Seaweeds as plant fertilizer, agricultural biostimulants and animal fodder. CRC Press, Boca Raton, pp 184–206

  • Carmody N, Goñi O, Łangowski Ł, O’Connell S (2020) Ascophyllum nodosum extract biostimulant processing and its impact on enhancing heat stress tolerance during tomato fruit set. Front Plant Sci 11:807–807

  • Carvalho MEA, De Camargo E, Castro PR, Gaziola SA, Azevedo RA (2018) Is seaweed extract an elicitor compound? Changing proline content in drought-stressed bean plants. Comunicata Scientiae 9:292–297

    Google Scholar 

  • Cassan L, Jeannin I, Lamaze T, Morot-Gaudry JF (1992) The effect of the Ascophyllum nodosum extract Goëmar GA 14 on the growth of spinach. Bot Mar 35:437–440

    Google Scholar 

  • Cervin G, Åberg P (1997) Do littorinids affect the survival of Ascophyllum nodosum germlings? J Exp Mar Biol Ecol 218:35–47

    Google Scholar 

  • Chalkey R, Child F, Al-Thaqafi K, Dean AP, White KN, Pittman JK (2019) Macroalgae as spatial and temporal bioindicators of coastal metal pollution following remediation and diversion of acid mine drainage. Ecotoxicol Environ Safety 182:1–10

    Google Scholar 

  • Chávez-Capilla T, Beshai M, Maher W, Kelly T, Foster S (2016) Bioaccessibility and degradation of naturally occurring arsenic species from food in the human gastrointestinal tract. Food Chem 212:189–197

  • Chevolot L, Mulloy B, Ratiskol J, Foucault A, Colliec-Jouault S (2001) A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr Res 330:529–535

    CAS  PubMed  Google Scholar 

  • Chock JS, Mathieson AC (1976) Ecological studies of the salt marsh ecad scorpioides (Hornemann) Hauck of Ascophyllum nodosum (L.) Le Jolis. J Exp Mar Biol Ecol 23:171–190

    Google Scholar 

  • Chock JS, Mathieson AC (1983) Variations of New England estuarine seaweed biomass. Bot Mar 26:87–97

    Google Scholar 

  • Choi J-I, Kim H-J, Lee J-W (2011) Structural feature and antioxidant activity of low molecular weight laminarin degraded by gamma irradiation. Food Chem 129:520–523

    CAS  PubMed  Google Scholar 

  • Chouliaras V, Tasioula M, Chatzissavvidis C, Therios I, Tsabolatidou E (2009) The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L). cultivar Koroneiki. J Sci Food Agric 89:984–988

  • Chouliaras V, Gerascapoulos D, Lionakis S (1997) Effects of seaweed extract on fruit growth, weight and maturation of 'Hayward' kiwifruit. Acta Hortic:485–492

  • Church AH (1954) A marine fungus. Ann Bot 7:399–400

    Google Scholar 

  • Cook J, Zhang J, Norrie J, Blal B, Cheng Z (2018) Seaweed extract (Stella Maris®) activates innate immune responses in Arabidopsis thaliana and protects host against bacterial pathogens. Mar Drugs 16:16070221

    Google Scholar 

  • Cousens R (1985) Frond size distributions and the effects of the algal canopy on the behaviour of Ascophyllum nodosum (L.) Le Jolis. J Exp Mar Biol Ecol 92:231–249

    Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    CAS  Google Scholar 

  • Davies AJ, Johnson MP, Maggs CA (2007) Limpet grazing and loss of Ascophyllum nodosum canopies on decadal time scales. Mar Ecol Prog Ser 339:131–141

    Google Scholar 

  • De Saeger J, Van Praet S, Vereecke D, Park J, Jacques S, Han T, Depuydt S (2019) Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. J Appl Phycol 32:573–597

    Google Scholar 

  • Delph LF, Herlihy CR (2012) Sexual, fecundity, and viability selection on flower size and number in a sexually dimorphic plant. Evolution 66:1154–1166

    PubMed  Google Scholar 

  • Deniaud-Bouët E, Kervarec N, Michel G, Tonon T, Kloareg B, Hervé C (2014) Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann Bot 114:1203–1216

    PubMed  PubMed Central  Google Scholar 

  • DGRM (2019) Algas - Denominação comercial para as diferentes Macroalgas e Microalgas que podem ser comercializadas em Portugal. Direção-Geral de Recursos Naturais, Segurança e Serviços Marítimos, Lisboa. Available on: https://www.dgrm.mm.gov.pt/documents/20143/56136/Site+Denominações-Algas.pdf/d7811d4d-9864-8da6-f028-bdb658c71612. Accessed 24 Apr 2020

  • Domenico P (2020)Ascophyllum nodosum extract on growth plants in Rebutia heliosa and Sulcorebutia canigueralli. GSC Biol Pharm Sci 10:039–045

    Google Scholar 

  • Dorken ME, Barrett SC (2003) Life-history differentiation and the maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae). Evolution 57:1973–1988

    PubMed  Google Scholar 

  • Dudgeon S, Petraitis PS (2005) First year demography of the foundation species, Ascophyllum nodosum, and its community implications. Oikos 109:405–415

    Google Scholar 

  • Duniker A, Roiha IS, Amlund H, Dahl L, Lock E-J, Kögel T, Måge A, Lunestad BT (2016) Potential risks posed by macroalgae for application as feed and food—a Norwegian perspective. National Institute of Nutrition and Seafood Research (NIFES), 12 pp

  • Eide I, Myklestad MS (1980) Long-term uptake and release of heavy metals by Ascophyllum nodosum (L.) Le Jol. (Phaeophyceae) in situ. Env Pollut Series A 23:19–28

    CAS  Google Scholar 

  • Elad Y, Pertot I (2014) Climate change impacts on plant pathogens and plant diseases. J Crop Improv 28:99–139

    CAS  Google Scholar 

  • Elansary HO, Norrie J, Ali HM, Salem MZM, Mahmoud EA, Yessoufou K (2016) Enhancement of Calibrachoa growth, secondary metabolites and bioactivity using seaweed extracts. BMC Complement Altern Med 16:341

    PubMed  PubMed Central  Google Scholar 

  • Elansary HO, Yessoufou K, Abdel-Hamid AME, El-Esawi MA, Ali HM, Elshikh MS (2017) Seaweed extracts enhance Salam turfgrass performance during prolonged irrigation intervals and saline shock. Front Plant Sci 8:830

    PubMed  PubMed Central  Google Scholar 

  • El-Said GF, El-Sikaily A (2013) Chemical composition of some seaweed from Mediterranean Sea coast, Egypt. Environ Monit Assess 185:6089–6099

    CAS  PubMed  Google Scholar 

  • Eppley SM, Pannell JR (2007) Sexual systems and measures of occupancy and abundance in an annual plant: testing the metapopulation model. Am Nat 169:20–28

    PubMed  Google Scholar 

  • Eris A, Sivritepe HÖ, Sivritepe N (1995) The effect of seaweed (Ascophyllum nodosum) extract on yield and quality criteria in peppers. Acta Hort 412:185–192

    Google Scholar 

  • Ertani A, Francioso O, Tinti A, Schiavon M, Pizzeghello D, Nardi S (2018) Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front Plant Sci 9:428

    PubMed  PubMed Central  Google Scholar 

  • Evans FD, Critchley AT (2014) Seaweeds for animal production use. J Appl Phycol 26:891–899

    CAS  Google Scholar 

  • Fan D, Hodges DM, Zhang J, Kirby CW, Ji X, Locke SJ, Critchley AT, Prithiviraj B (2011) Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chem 124:195–202

    CAS  Google Scholar 

  • Fan D, Hodges DM, Critchley AT, Prithiviraj B (2013) A commercial extract of a brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun Soil Sci Plant Anal 44:1873–1884

    CAS  Google Scholar 

  • Fan D, Kandasamy S, Hodges DM, Critchley AT, Prithiviraj B (2014) Pre-harvest treatment of spinach with Ascophyllum nodosum extract improves post-harvest storage and quality. Sci Hortic 170:70–74

    Google Scholar 

  • FAO (2018) The global status of seaweed production, trade and utilization, vol 124. Globefish Programme, Rome, p 120

  • FAO (2019) Fishery statistical collections. Food and Agriculture Organization of the United Nations, Rome, Italy. Available on: http://www.fao.org/fishery/statistics/. Accessed 15 Dec 2019

  • Feldmann J, Krupp EM (2011) Critical review or scientific opinion paper: arsenosugars - a class of benign arsenic species or justification for developing partly speciated arsenic fractionation in foodstuffs? Anal Bioanal Chem 399:1735–1741

    CAS  PubMed  Google Scholar 

  • Fitton JH (2011) Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 9:1731–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fornes F, Sánchez-Perales M, Guardiola JL (1995) Effect of a seaweed extract on citrus fruit maturation. Acta Hortic 379:75–82

    Google Scholar 

  • Fornes F, Sánchez-Perales M, Guardiola JL (2002) Effect of a seaweed extract on the productivity of ‘de Nules’ Clementine mandarin and Navelina orange. Bot Mar 45:486–489

    Google Scholar 

  • Francesconi KA (2010) Arsenic species in seafood: origin and human health implications. Pure Appl Chem 82:373–381

    CAS  Google Scholar 

  • Fries N (1979) Physiological characteristics of Mycosphaerella ascophylli, a fungal endophyte of the marine brown alga Ascophyllum nodosum. Physiol Plant 45:117–121

  • Fries L (1988) Ascophyllum nodosum (Phaeophyta) in axenic culture and its response to the endophyte fungus Mycosphaerella ascophylli and epiphytic bacteria. J Phycol 24:333–337

  • Fries N, Thorén-Tolling K (1978) Identity of the fungal endophyte of Ascophyllum with Mycosphaerella ascophylli established by means of fluorescent antibody techniques. Bot Mar 21:409–411

  • Frioni T, Sabbatini P, Tombesi S, Norrie J, Poni S, Gatti M, Palliotti A (2018) Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci Hortic 232:97–106

    Google Scholar 

  • Frioni T, Tombesi S, Quaglia M, Calderini O, Moretti C, Poni S, Gatti M, Moncalvo A, Sabbatini P, Berrìos JG, Palliotti A (2019) Metabolic and transcriptional changes associated with the use of Ascophyllum nodosum extracts as tools to improve the quality of wine grapes (Vitis vinifera cv. Sangiovese) and their tolerance to biotic stress. J Sci Food Agric 99:6350–6363

    CAS  PubMed  Google Scholar 

  • Garbary DJ, Deckert RJ (2001) Three-part harmony — Ascophyllum and its symbionts. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Springer, Dordrecht, pp 309–321

    Google Scholar 

  • Garbary DJ, Gautam A (1989) The Ascophyllum/Polysiphonia/Mycosphaerella symbiosis. I. Population ecology of Mycosphaerella from Nova Scotia. Bot Mar 32:181–186

    Google Scholar 

  • Garbary DJ, London J (1995) The Ascophyllum/ Polysiphonia/ Mycosphaerella symbiosis. V. Mycosphaerella protects A. nodosum from desiccation. Bot Mar 38:529–533

    Google Scholar 

  • Garbary DJ, MacDonald KA (1995) The Ascophyllum/ Polysiphonia/ Mycosphaerella symbiosis. IV. Mutualism in the Ascophyllum/ Mycosphaerella interaction. Bot Mar 38:221–225

    Google Scholar 

  • Garbary DJ, Burke J, Tian L (1991) The Ascophyllum/ Polysiphonia/ Mycosphaerella symbiosis II. Aspects of the ecology and distribution of Polysiphonia lanosa in Nova Scotia. Bot Mar 34:391–401

    Google Scholar 

  • Garbary DJ, Deckert R, Hubbard C (2005a)Ascophyllum and its symbionts. VII. Three-way interactions among Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli(Ascomycetes) and Vertebrata lanosa (Rhodophyta). Algae 20:353–361

  • Garbary DJ, Jamieson MM, Fraser SJ, Ferguson CA, Cranston PS (2005b)Ascophyllum(Phaeophyceae) and its symbionts. IX. A novel symbiosis between Halocladius variabilis (Chironomidae, Insecta) and Elachista fucicola (Elachistaceae, Phaeophyceae) from marine rocky shores of Nova Scotia. Symbiosis 40:61–68

  • Garbary DJ, Brackenbury A, McLean AM, Morrison D (2006) Structure and development of air bladders in Fucus and Ascophyllum (Fucales, Phaeophyceae). Phycologia 45:557–566

    Google Scholar 

  • Garbary DJ, Brown NE, MacDonell J, Toxopeus J (2017)Ascophyllum and its symbionts — a complex symbiotic community on North Atlantic shores. In: Grube M, Seckbach J, Muggia L (eds) Algal and cyanobacteria symbioses. World Scientific Publishing, New Jersey, pp 547–572

    Google Scholar 

  • García-Seoane R, Fernández JA, Villare R, Aboal JR (2018) Use of macroalgae to biomonitor pollutants in coastal waters: optimization of the methodology. Ecol Indic 84:710–726

    Google Scholar 

  • Gendron L, Merzouk A, Bergeron P, Johnson LE (2018) Managing disturbance: the response of a dominant intertidal seaweed Ascophyllum nodosum(L) Le Jolis to different frequencies and intensities of harvesting. J Appl Phycol 30:1877–1892

    Google Scholar 

  • Gibb DC (1957) The free-living forms of Ascophyllum nodosum (L.) Le Jolis. J Ecol 45:49–83

    Google Scholar 

  • Godward MBE (1966) The chromosomes of the algae. Edward Arnold Ltd, London 222 p

    Google Scholar 

  • Goñi O, Fort A, Quille P, McKeown PC, Spillane C, O’Connell S (2016) Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: same seaweed but different. J Agric Food Chem 64:2980–2989

    PubMed  Google Scholar 

  • Goñi O, Quille P, O’Connell S (2018)Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol Biochem 126:63–73

    PubMed  Google Scholar 

  • Guinan KJ, Sujeeth N, Copeland RB, Jones PW, O’Brien NM, Sharma HSS, Prouteau PFJ, O’Sullivan JT (2012) Discrete roles for extracts of Ascophyllum nodosum in enhancing plant growth and tolerance to abiotic and biotic stresses. Acta Hortic 1009:127–135

    Google Scholar 

  • Guiry MD, Garbary DJ (1992) A geographical and taxonomic guide to European seaweeds of economic importance. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, Chichester, pp 1–19

    Google Scholar 

  • Guiry MD, Guiry GM (2020) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available on: http://www.algaebase.org. Accessed 24 Apr 2020

  • Guiry MD, Morrison L (2013) The sustainable harvesting of Ascophyllum nodosum (Fucaceae, Phaeophyceae) in Ireland, with notes on the collection and use of some other brown algae. J Appl Phycol 25:1823–1830

    Google Scholar 

  • Halat L, Galway ME, Garbary DJ (2020) Cell wall structural changes lead to separation and shedding of biofouled epidermal cell wall layers by the brown alga Ascophyllum nodosum. Protoplasma

  • Hallsson SV (1964) The uses of seaweeds in Iceland. In: De Virville AD, Feldmann J (eds) Proceedings of the fourth International Seaweed Symposium, Biarritz, September 1961. Pergamon, Oxford, pp 398–405

    Google Scholar 

  • Hamel G (1931-1939) Phéophycées de France. Paris, 432 pp., 10 Figures

  • Haug A, Melsom S, Omang S (1974) Estimation of heavy metal pollution in two Norwegian fjord areas by analysis of the brown alga Ascophyllum nodosum. Environ Pollut 7:179–192

    CAS  Google Scholar 

  • Heldal HE, Sjøtun K (2010) Technetium-99 (99Tc) in annual growth segments of knotted wrack (Ascophyllum nodosum). Sci Total Environ 408:5575–5582

    CAS  PubMed  Google Scholar 

  • Hesse E, Pannell JR (2011a) Sexual dimorphism in a dioecious population of the wind-pollinated herb Mercurialis annua: the interactive effects of resource availability and competition. Ann Bot 107:1039–1045

    PubMed  PubMed Central  Google Scholar 

  • Hesse E, Pannell JR (2011b)Density-dependent pollen limitation and reproductive assurance in a wind-pollinated herb with contrasting sexual systems. J Ecol 99:1531–1539

    Google Scholar 

  • Hidangmayum A, Sharma R (2017) Effect of different concentrations of commercial seaweed liquid extract of Ascophyllum nodosum as a plant bio stimulant on growth, yield and biochemical constituents of onion (Allium cepa L). J Pharmacogn Phytochem 6:658–663

    CAS  Google Scholar 

  • Hill JM, White N (2008)Ascophyllum nodosum knotted wrack. In: Tyler-Walters H, Hiscock K (eds) Marine life information network: biology and sensitivity key information reviews. Marine Biological Association of the United Kingdom, Plymouth Available on: https://www.marlin.ac.uk/species/detail/1336. Accessed 11 Dec 2019

  • Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng 43:1001–1009

    CAS  PubMed  Google Scholar 

  • Holan ZR, Volesky B, Prasetyo I (1993) Biosorption of cadmium by biomass of marine algae. Biotechnol Bioeng 41:819–825

    CAS  PubMed  Google Scholar 

  • Hoygaard A (1937) Skrifter om Svalhard og Havet. Oslo

  • Hurtado AQ, Critchley AT (2018) A review of multiple biostimulant and bioeffector benefits of AMPEP, an extract of the brown alga Ascophyllum nodosum, as applied to the enhanced cultivation and micropropagation of the commercially important red algal carrageenophyte Kappaphycus alvarezii and its selected cultivars. J Appl Phycol 30:2859–2873

    CAS  Google Scholar 

  • Hurtado AQ, Yunque DA, Tibubos K, Critchley AT (2009) Use of Acadian marine plant extract powder from Ascophyllum nodosum in tissue culture of Kappaphycus varieties. J Appl Phycol 21:633–639

    Google Scholar 

  • Ibrahim AMM, Mostafa MH, El-Masry MH, El-Naggar MMA (2005) Active biological materials inhibiting tumor initiation extracted from marine algae. Egypt J Aquat Res 31:146–155

    CAS  Google Scholar 

  • Ihua MW, Guihéneuf F, Mohammed H, Margassery LM, Jackson SA, Stengel DB, Clarke DJ, Dobson AD (2019) Microbial population changes in decaying Ascophyllum nodosum result in macroalgal-polysaccharide-degrading bacteria with potential applicability in enzyme-assisted extraction technologies. Mar Drugs 17:200

    CAS  PubMed Central  Google Scholar 

  • Islam MT, Gan HM, Ziemann M, Hussain HI, Arioli T, Cahill D (2020) Phaeophyceaean (brown algal) extracts activate plant defence systems in Arabidopsis thaliana challenged with Phytophthora cinnamomi. Front Plant Sci 11:852

    PubMed  PubMed Central  Google Scholar 

  • Jannin L, Arkoun M, Etienne P, Laîné P, Goux D, Garcia-Mina M, Yvin J-N(2013)Brassica napus growth is promoted by Ascophyllum nodosum (L). Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul 32:31–52

    CAS  Google Scholar 

  • Jayaraman J, Norrie J, Punja KZ (2011) Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J Appl Phycol 23:353–361

    Google Scholar 

  • Jayaraman J, Wan A, Rahman M, Zamir Punja Z (2018) Application of seaweed extract reduces foliar fungal diseases on carrot. Can J Plant Pathol 31:137–138

    Google Scholar 

  • Jiang Z, Okimura T, Yamaguchi K, Oda T (2011) The potent activity of sulfated polysaccharide, ascophyllan, isolated from Ascophyllum nodosum to induce nitric oxide and cytokine production from mouse macrophage RAW264.7 cells: Comparison between ascophyllan and fucoidan. Nitric Oxide 25:407–415

    CAS  PubMed  Google Scholar 

  • Jiao GL, Yu GL, Zhang JZ, Ewart SH (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Escrig A, Cambrodón I (1999) Evaluación nutricional y efectos fisiológicos de macroalgas marinas comestibles [Nutritional evaluation and physiological effects of edible seaweeds]. Arch Latinoam Nutr 49:114–120

    PubMed  Google Scholar 

  • Jithesh MN, Shukla PS, Kant P, Joshi J, Critchley AT, Prithiviraj B (2019) Physiological and transcriptomics analyses reveal that Ascophyllum nodosum extracts induce salinity tolerance in Arabidopsis by regulating the expression of stress responsive genes. J Plant Growth Regul 38:463–478

    CAS  Google Scholar 

  • Joensen HP (2011) Transfer of anthropogenic radionuclides to organisms in the Faroe Islands. Radioprotection 46:S119–S124

    Google Scholar 

  • Josselyn JM, Mathieson AC (1978) Contribution of receptacles from the fucoid Ascophyllum nodosum to the detrital pool of a north temperate estuary. Estuaries 1:258–261

    Google Scholar 

  • Josselyn JN, Mathieson AC (1980) Seasonal influx and decomposition of autochthonous macrophyte litter in a north temperate estuary. Hydrobiologia 71:197–208

    CAS  Google Scholar 

  • Julshamn K (1981) Studies on major and minor elements in molluscs in Western Norway. Fiskeridirektoratets Skrifter Serie Ernaering 1:161–182

    CAS  Google Scholar 

  • Kadam SU, Tiwari BK, O’Donnell CP (2015a) Extraction, structure and biofunctional activities of Laminarin from brown algae. Int J Food Sci Tech 50:24–31

    CAS  Google Scholar 

  • Kadam SU, O’Donnel CP, Rai DK, Hossain MB, Burgess CM, Walsh D, Tiwari BK (2015b) Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: ultrasound assisted extraction, characterization and bioactivity. Mar Drugs 13:4270–4280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan G, Terrill TH, Kouakou B, Lee JH (2019) Dietary brown seaweed extract supplementation in small ruminants. In: Joshee N, Dhekney S, Parajuli P (eds) Medicinal plants. Springer, Cham, pp 291–312

    Google Scholar 

  • Kay LM, Eddy TD, Schmidt AL, Lotze HK (2016) Regional differences and linkage between canopy structure and community composition of rockweed habitats in Atlantic Canada. Mar Biol 163:251

    Google Scholar 

  • Kelly DG, Mattson KM, McDonald C, Nielsen KS, Weir RD (2014) Environmental radionuclide monitoring of Canadian harbours: a decade of analyses in support of due diligence activities by the Royal Canadian Navy. J Environ Radioact 138:303–307

    CAS  PubMed  Google Scholar 

  • Keser M, Vadas RL, Larson BR (1981) Regrowth of Ascophyllum nodosum and Fucus vesiculosus under various harvesting regimes in Maine, USA. Bot Mar 24:29–38

  • Khan W, Zhai R, Souleimanov A, Critchley AT, Smith DL, Prithiviraj B (2012) Commercial extract of Ascophyllum nodosum improves root colonization of alfalfa by its bacterial symbiont Sinorhizobium meliloti. Commun Soil Sci Plant Anal 43:2425–2436

    CAS  Google Scholar 

  • Kloareg B, Demarty M, Mabeau S (1986) Polyanionic characteristics of purified sulphated homofucans from brown algae. Int J Biol Macromol 8:380–386

    CAS  Google Scholar 

  • Kolb N, Vallorani L, Stocchi V (1999) Chemical compo-sition and evaluation of protein quality by amino acid scoremethod of edible brown marine algae Arame (Eisenia bicyclis) and Hijiki (Hijikia fusiforme). Acta Alimentaria 28:213–222

    CAS  Google Scholar 

  • Kumar M, Reddy CRK, Jha B (2013) The ameliorating effect of Acadian marine plant extract against ionic liquids-induced oxidative stress and DNA damage in marine macroalga Ulva lactuca. J Appl Phycol 25:369–378

    CAS  Google Scholar 

  • Kurr M, Davies AJ (2018)Sex-specific reproductive trade-offs in the gregarious fucoid macroalga Ascophyllum nodosum. Eur J Phycol 53:1–13

    CAS  Google Scholar 

  • Kuyucak N, Volesky B (1989) Accumulation of cobalt by marine alga. Biotechnol Bioeng 33:815–822

    CAS  PubMed  Google Scholar 

  • Kylin H (1913) Biochemistry of sea algae. Zr Physikal Chem 83:171–197

    CAS  Google Scholar 

  • Kylin H (1933) Über die Entwicklungsgeschichte der Phaeophyceen. Lunds Univ Arsskr NF Avd 2(43):100

    Google Scholar 

  • Lahaye M (1991) Marine algae as sources of fibres: Determination of soluble and insoluble dietary fibre contents insome ‘sea vegetables’. J Sci Food Agric 54:587–594

  • Lahaye M (2001) Developments on gelling algal galactans, their structure and physico-chemistry. J Appl Phycol 13:173–184

    CAS  Google Scholar 

  • Łangowski Ł, Goñi O, Quille P, Stephenson P, Carmody N, Feeney E et al (2019) A plant biostimulant from the seaweed Ascophyllum nodosum (Sealicit) reduces podshatter and yield loss in oilseed rape through modulation of IND expression. Sci Rep 9:1–11

  • Larsen B, Haug A, Painter T (1970) Sulphated polysaccharides in brown algae. 3. The native state of fucoidan in Ascophyllum nodosum and Fucus vesiculosus. Acta Chem Scand 24:3339–3352

    CAS  PubMed  Google Scholar 

  • Larsen B, Salem DMSA, Sallam MAE, Mishrikey MM, Beltagy AI (2003) Characterization of the alginates from algae harvested at the Egyptian Red Sea coast. Carbohydr Res 338:2325–2336

    CAS  PubMed  Google Scholar 

  • Larson BR, Vadas RL, Keser M (1980) Feeding and nutritional ecology of the sea urchin Strongylocentrotus drobachiensis in Maine, USA. Mar Biol 59:49–62

    Google Scholar 

  • Le Jolis A (1863) Les Algues Marines de Cherbourg. J.B. BaIllière et Fils, Libraires, Paris 168 pp., VI figures

    Google Scholar 

  • Leal D, Matsuhiro B, Rossi M, Caruso F (2008) FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr Res 343:308–316

    CAS  PubMed  Google Scholar 

  • Lee JY, Kim YJ, Kim HJ, Kim YS, Park W (2012) Immunostimulatory effect of laminarin on RAW 264.7 mouse macrophages. Molecules 17:5404–5411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levring T (1937) Zur Kenntnis der Algenflora der Norwegischen Westküste. Lunds Univ Årsskrift NF Avd 2(33):1–147

    Google Scholar 

  • Lizii Y, Coulomb C, Polian C, Coulomb PJ, Coulomb PO (1998) L'algue face au Mildiou quel avenir? Phytoma 508:29–30

    Google Scholar 

  • Lola-Luz T, Hennequart F, Gaffney M (2013) Enhancement of phenolic and flavonoid compounds in cabbage (Brassica oleraceae) following application of commercial seaweed extracts of the brown seaweed, (Ascophyllum nodosum). Agric Food Sci 22:288–295

    CAS  Google Scholar 

  • Lotze H, Milewski I, Fast J, Kay L, Worm B (2019) Ecosystem-based management of seaweed harvesting. Bot Mar 62:395–409

    Google Scholar 

  • Luening K (1990) Seaweeds: their environment, biogeography, and ecophysiology. Wiley, New York 544 p

    Google Scholar 

  • Mac Monagail M, Morrison L (2019) Arsenic speciation in a variety of seaweeds and associated food products. Compr Anal Chem 85:267–310

    Google Scholar 

  • Mac Monagail M, Morrison L (2020) The seaweed resources of Ireland: a twenty-first-century perspective. J Appl Phycol 32:1287–1300

    Google Scholar 

  • Mac Monagail M, Cornish L, Morrison L, Araújo R, Critchley AT (2017) Sustainable harvesting of wild seaweed resources. Eur J Phycol 52:371–390

    Google Scholar 

  • Mac Monagail M, Cummins E, Bermejo R, Daly E, Costello D, Morrison L (2018) Quantification and feed to food transfer of total and inorganic arsenic from a commercial seaweed feed. Environ Int 118:314–324

    Google Scholar 

  • MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543

    PubMed  Google Scholar 

  • Makkar HPS, Tran G, Heuzé V, Giger-Reverdin S, Lessire M, Lebas F, Ankers P (2015) Seaweeds for livestock diets: a review. Anim Feed Sci Technol 212:1–17

    Google Scholar 

  • Marba N, Krause-Jensen D, Olesen B, Christensen PB, Merzouk A, Rodrigues J, Wegeberg S, Wilce RT (2017) Climate change stimulates the growth of the intertidal macroalga Ascophyllum nodosum near the northern distribution limit. Ambio 46:119–131

    PubMed  PubMed Central  Google Scholar 

  • Mattner SW, Milinkovic M, Arioli T (2018) Increased growth response of strawberry roots to a commercial extract from Durvillaea potatorum and Ascophyllum nodosum. J Appl Phycol 30:2943–2951

    PubMed  PubMed Central  Google Scholar 

  • Maximova OV, Sazhin AF (2010) The role of gametes of the macroalgae Ascophyllum nodosum (L.) Le Jolis and Fucus vesiculosus L. (Fucales, Phaeophyceae) in summer nanoplankton of the White Sea coastal waters. Oceanology 50:198–208

    Google Scholar 

  • MDMR (2014) Fishery management plan for rockweed (Ascophyllum nodosum). Department of Marine Resources, Maine, 55 pp. Available on: https://www.maine.gov/dmr/science-research/species/rockweed/documents/DMRRockweedFMPJan2014.pdf. Accessed 24 Apr 2020

  • Molloy FJ, Hills JM (1996) Long-term changes in heavy metal loadings of Ascophyllum nodosum from the Firth of Clyde, UK. Hydrobiologia 326:305–310

    Google Scholar 

  • Morrison L, Baumann HA, Stengel DB (2008) An assessment of metal contamination along the Irish coast using the seaweed Ascophyllum nodosum (Fucales, Phaeophyceae). Environ Pollut 152:293–303

    CAS  PubMed  Google Scholar 

  • Morrison L, Feely M, Stengel DB, Blamey N, Dockery P, Sherlock A, Timmins É (2009) Seaweed attachment to bedrock: biophysical evidence for a new geophycology paradigm. Geobiology 7:477–487

    CAS  PubMed  Google Scholar 

  • Muto S, Nimura K, Oohara M, Oguchi Y, Matsunaga K, Hirose K, Kakuchi J, Sugita N, Furusho T (1992) Polysaccharides from marine algae and antiviral drugs containing the same as active ingredients. United States Patent 5,089,481

  • Myklestad S, Eide I, Melsom S (1978) Exchange of heavy metals in Ascophyllum nodosum (L.) Le Jol in situ by means of transplanting experiments. Environ Pollut 16:277–284

    CAS  Google Scholar 

  • Nair P, Kandasamy S, Zhang J, Ji X, Kirby C, Benkel B, Hodges MD, Critchley AT, Hiltz D, Prithiviraj B (2012) Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics 13:643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayasu S, Soegima R, Yamaguchi K, Oda T (2009) Biological activities of fucose-containing polysaccharide ascophyllan isolated from the brown alga Ascophyllum nodosum. Biosci Biotechnol Biochem 73:961–964

    CAS  PubMed  Google Scholar 

  • Neeb H, Jensen A (1965) Seaweed meal as a source of minerals and vitamins in rations for dairy cows and bacon pigs. Proc Int Seaweed Symp 5:387–393

    Google Scholar 

  • Nilsson M, Mattsson S, Holm E (1984) Radioecological studies of activation products released from a nuclear power plant into the marine environment. Mar Environ Res 12:225–242

    CAS  Google Scholar 

  • Norrie J, Branson T, Keathley PE (2002) Marine plant extracts impact on grape yield and quality. Acta Hortic 594:315–319

    Google Scholar 

  • Oliver LR, Perkins WT, Mudge SM (2006) Detection of technetium-99 in Ascophyllum nodosum from around the Welsh coast. Chemosphere 65:2297–2303

    CAS  PubMed  Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N -fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    CAS  Google Scholar 

  • Olsen JL, Zechman FW, Hoarau G, Coyer JA, Stam WT, Valero M, Aberg P (2010) The phylogeographic architecture of the fucoid seaweed Ascophyllum nodosum: an intertidal ‘marine tree’ and survivor of more than one glacial-interglacial cycle. J Biogeogr 37:842–856

    Google Scholar 

  • Ometto F, Steinhovden KB, Kuci H, Lunnbäck J, Berg A, Karlsson A, Handå A, Wollan H, Ejlertsson J (2018) Seasonal variation of elements composition and biomethane in brown macroalgae. Biomass Bioenergy 109:31–38

    CAS  Google Scholar 

  • Omidbakhshfard MA, Sujeeth N, Gupta S, Omranian N, Guinan KJ, Brotman Y et al (2020) A biostimulant obtained from the seaweed Ascophyllum nodosum protects Arabidopsis thaliana from severe oxidative stress. Int J Mol Sci 21:474

    CAS  PubMed Central  Google Scholar 

  • Pacheco AC, Sobral LA, Gorni PH, Carvalho MEA (2019)Ascophyllum nodosum extract improves phenolic compound content and antioxidant activity of medicinal and functional food plant Achillea millefolium L. Aust J Crop Sci 13:418–423

    CAS  Google Scholar 

  • Papenfuss GF (1950) Review of the genera of algae described by Stackhouse. Hydrobiologia 2:181–208

    Google Scholar 

  • Pavia H, Toth GB (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225

    Google Scholar 

  • Pavia H, Toth GB, Åberg P (2002) Optimal defence theory: elasticity analysis as a tool to predict intraplant variation in defences. Ecology 83:891–897

    Google Scholar 

  • Pedersen A (1984) Studies on phenol content and heavy metal uptake in fucoids. Hydrobiologia 116:498–504

    Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 10:9971–9975

    Google Scholar 

  • Pennesi C, Amato A, Occhialini S, Critchley AT, Totti C, Giorgini E, Conti C, Beolchini F (2019) Adsorption of indium by waste biomass of brown alga Ascophyllum nodosum. Sci Rep 9:16763

    PubMed  PubMed Central  Google Scholar 

  • Penot M, Hourmant A, Penot M (1993) Comparative study of metabolism and forms of transport of phosphate between Ascophyllum nodosum and Polysiphonia lanosa. Physiol Plant 87:291–296

    CAS  Google Scholar 

  • Pereira L (2013) Population studies and carrageenan properties in eight Gigartinales (Rhodophyta) from western coast of Portugal. The Scientific World Journal 2013:11

    Google Scholar 

  • Pereira L (2015) Seaweed flora of the European North Atlantic and Mediterranean. In: Kim S-K(ed) Handbook of marine biotechnology, Part A. Springer, Dordrecht, pp 65–178

  • Pereira L (2016) Edible seaweeds of the world. Science Publishers, Boca Raton, 448 p

    Google Scholar 

  • Pereira L (2018a) Nutritional composition of the main edible algae. In: Pereira L (ed) Therapeutic and nutritional uses of algae. Science Publishers, Boca Raton, pp 65–127

    Google Scholar 

  • Pereira L (2018b) Biological and therapeutic properties of the seaweed polysaccharides. Int Biol Rev 2:1–50

    CAS  Google Scholar 

  • Pereira L (2018c) Seaweeds as source of bioactive substances and skin care therapy - cosmeceuticals, algotherapy and thalassotherapy. Cosmetics 5:1–41

    Google Scholar 

  • Pereira L, Cotas J (2019) Historical use of seaweed as an agricultural fertilizer in the European Atlantic area (chapter 1). In: Pereira L, Bahcevandziev K, Joshi NH (eds) Seaweeds as plant fertilizer, agricultural biostimulants and animal fodder. CRC Press, Boca Raton, pp 1–22

    Google Scholar 

  • Pereira L, Ribeiro-Claro PJ (2014) Analysis by vibrational spectroscopy of seaweed with potential use in food, pharmaceutical and cosmetic industries. In: Pereira L, Neto JM (eds) Marine algae - biodiversity, taxonomy, environmental assessment and biotechnology. Science Publishers, Boca Raton, pp 225–247

    Google Scholar 

  • Pereira L, Sousa A, Coelho H, Amado AM, Ribeiro-Claro PJA (2003) Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol Eng 20:223–228

    CAS  PubMed  Google Scholar 

  • Pereira L, Gheda SF, Ribeiro-Claro PJA (2013) Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int J Carbohydr Chem 2013:537202

  • Phaneuf D, Cote I, Dumas P, Ferron LA, LeBlanc A (1999) Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans. Env Res 80:S175–S182

  • Phillips DJH (1994) Macrophytes as biomonitors of trace metals. In: Kees JM (ed) Biomonitoring of coastal waters and estuaries. CRC Press, Boca Raton, pp 85–103

    Google Scholar 

  • Popescu GC, Popescu M (2014) Effect of the brown alga Ascophyllum nodosum as biofertilizer on vegetative growth in grapevine (Vitis vinifera L). Curr Trends Nat Sci 3:61–67

    Google Scholar 

  • Printz H (1956) Recuperation and recolonization in Ascophyllum. Proc Int Seaweed Symp 2:194–197

    Google Scholar 

  • Prithiviraj B, Kant P, Narayanan JM, Khan W, Hankins S, Neily W, Critchley AT, Craigie JS (2011) Bioactive compounds of Ascophyllum nodosum and their use for alleviating salt induced stress in plants. US Patent 152099A1.

  • Raaum A, Christensen GC (2005) Seasonal variations in activity concentrations of 137Cs, 40K, 7Be, 228Ra, 99Tc, 90Sr, and 239,240Pu in Fucus vesiculosus and Ascophyllum nodosum from the southeastern coast of Norway. Radioprotection 40:S641–S647

    Google Scholar 

  • Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31:183–192

    CAS  Google Scholar 

  • Rainbow P, Kriefman S, Smith BD, Luoma SN (2011) Have the bioavailabilities of trace metals to a suit of biomonitors changed over three decades in SW England estuaries historically affected by mining. Sci Total Environ 409:1589–1602

    CAS  PubMed  Google Scholar 

  • Ratcliff JJ, Wan AHL, Edwards MD, Soler-Vila A, Johnson MP, Abreu MH, Morrison L (2016) Metal content of kelp (Laminaria digitata) co-cultivated with Atlantic salmon in an integrated multi-trophic aquaculture system. Aquaculture 450:234–243

    CAS  Google Scholar 

  • Rayorath P, Jithesh MN, Farid A, Khan W, Palanisamy R, Hankins SD, Critchley AT, Prithiviraj (2008a) Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L). Le Jol. using a model plant, Arabidopsis thaliana (L). Heynh. J Appl Phycol 20:423–429

    CAS  Google Scholar 

  • Rayorath P, Khan W, Palanisamy R, MacKinnon SL, Stefanova R, Hankins SD, Critchley AT, Prithiviraj B (2008b) Extracts of the brown seaweed Ascophyllum nodosum induce gibberellic acid (GA3)-independent amylase activity in barley. J Plant Growth Regul 27:370–379

    CAS  Google Scholar 

  • Riget F, Johansen P, Asmund G (1997) Baseline levels and natural variability of elements in three seaweed species from West Greenland. Mar Pollut Bull 34:171–176

    CAS  Google Scholar 

  • Rioux LE, Turgeon SL, Beaulieu M (2007) Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym 69:530–537

    CAS  Google Scholar 

  • Rodrigues JE (1963) Contribuição para o conhecimento das Phaeophyceae da costa Portuguesa. Bol Soc Brot 16:1–124

    Google Scholar 

  • Rupérez P, Saura-Calixto F (2001) Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur Food Res Technol 212:349–354

    Google Scholar 

  • Sabir A, Yazar K, Sabir F, Kara Z, Yazici MA, Goksu N (2014) Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci Hortic 175:1–8

    CAS  Google Scholar 

  • Salvi L, Brunetti C, Cataldo E, Niccolai A, Centritto M, Ferrini F et al (2019) Effects of Ascophyllum nodosum extract on Vitis vinifera: consequences on plant physiology, grape quality and secondary metabolism. Plant Physiol Biochem 139:21–32

  • Santaniello A, Scartazza A, Gresta F, Loreti E, Biasone A, Di Tommaso D, Piaggesi A, Perata P (2017)Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Front Plant Sci 8:1362

    PubMed  PubMed Central  Google Scholar 

  • Schmiedeberg JEO (1885) Über die Bestandteile der Laminaria. Gesellschaft Deutscher Naturforscher und Arzte: Leipzig. Tageblatt der Versammlung 58:427

  • Sealifebase (2020) Common names of Ascophyllum nodosum. Available online on: https://www.sealifebase.se/comnames/CommonNamesList.php?ID=83692. Accessed 23 Jul 2020

  • Seeley RH, Schlesinger WH (2012) Sustainable seaweed cutting? The rockweed (Ascophyllum nodosum) industry of Maine and the maritime provinces. Ann N Y Acad Sci 1249:84–103

  • Serrão EA, Alice LA, Brawley SH (1999) Evolution of the Fucaceae (Phaeophyceae) inferred from nrDNA-ITS. J Phycol 35:382–394

    Google Scholar 

  • Sharp G (1987) Ascophyllum nodosum and its harvesting in eastern Canada. In: Doty MS, Caddy JF, Santelices B (eds) Case studies of seven commercial seaweed resources. FAO, Fisheries Technical Paper 281

  • Sharp GJ, Ugarte R, Semple R (2006) The ecological impact of marine plant harvesting in the Canadian Maritimes, implications for coastal zone management. Sci Asia 32:77–86

    Google Scholar 

  • Shukla PS, Shotton K, Norman E, Neily W, Critchley AT, Prithiviraj B (2018a) Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB Plants 10:plx051

    PubMed  Google Scholar 

  • Shukla PS, Borza T, Critchley AT, Hiltz D, Norrie J, Prithiviraj B (2018b)Ascophyllum nodosum extract mitigates salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. PLoS One 13:e0206221

    PubMed  PubMed Central  Google Scholar 

  • Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT, Prithiviraj B (2019)Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front Plant Sci 10:1–22

    Google Scholar 

  • Silva LD, Bahcevandziev K, Pereira L (2019) Production of bio-fertilizer from Ascophyllum nodosum and Sargassum muticum (Phaeophyceae). J Oceanol Limnol 37:918–927

    CAS  Google Scholar 

  • Soares F, Fernandes C, Silva P, Pereira L, Gonçalves T (2016) Antifungal activity of carrageenan extracts from the red alga Chondracanthus teedei var. lusitanicus. J Appl Phycol 28:2991–2998

    Google Scholar 

  • South R, Hooper R (1980) A catalogue and atlas of the benthic marine algae of the island of Newfoundland. Occasional papers in biology, St. Johns, Memorial University of Newfoundland, Canada, 136 pp

  • South GR, Tittley I (1986) A checklist and distributional index of benthic marine algae of the North Atlantic Ocean. Huntsman Marine Laboratory, St Andrews, New Brunswick and The British Museum of Natural History, London, pp. 556-556

  • Spann TM, Little HA (2011) Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown “Hamlin” sweet orange nursery trees. Hortic Sci 46:577–582

    Google Scholar 

  • Spinelli F, Fiori G, Noferini M, Sprocatti M, Costa G (2010) A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci Hortic 125:263–269

    CAS  Google Scholar 

  • Stasio ED, Oosten V, Silletti JM, Silvia S, Giampaolo R, dell’Aversana E, Carillo P, Maggio A (2018)Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. J Appl Phycol 30:2675–2686

    Google Scholar 

  • Stengel D, Dring M (2010) Morphology and in situ growth rates of plants of Ascophyllum nodosum(Phaeophyta) from different shore levels and responses of plants to vertical transplantation. Eur J Phycol 32:193–202

    Google Scholar 

  • Stengel D, Macken A, Morrison L, Morley N (2004) Zinc concentrations in marine macroalgae and a lichen from western Ireland in relation to phylogenetic grouping, habitat and morphology. Mar Pollut Bull 48:902–909

    CAS  PubMed  Google Scholar 

  • Sundene O (1973) Growth and reproduction in Ascophyllum nodosum (Phaeophyceae). Nor J Bot 20:249–255

    Google Scholar 

  • Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KA (2017) Human exposure to organic arsenic species from seafood. Sci Total Environ 580:266–282

    CAS  PubMed  Google Scholar 

  • Tonnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 2:621–630

    Google Scholar 

  • Toth G, Pavia H (2000) Lack of phlorotannin induction in the brown seaweed Ascophyllum nodosum in response to increased copper concentrations. Mar Ecol Prog Ser 192:119–126

    CAS  Google Scholar 

  • Toth G, Pavia H (2003) Fertilisation and germination tolerance to copper in Ascophyllum nodosum (Phaeophyceae). Proceedings of the International Seaweed Symposium 17:411–416

    Google Scholar 

  • Turan M, Köse C (2004) Seaweed extracts improve copper uptake of grapevine. Acta Agric Scand Sect B 54:213–220

    CAS  Google Scholar 

  • Ugarte R, Sharp G (2001) A new approach to seaweed management in eastern Canada: the case of Ascophyllum nodosum. Cah Biol Mar 42:63–70

    Google Scholar 

  • Ugarte R, Sharp G (2012) Management and production of the brown algae Ascophyllum nodosum in the Canadian Maritimes. J Appl Phycol 24:409–416

    Google Scholar 

  • Ugarte RA, Critchley AT, Serdynska AR, Deveau JP (2009) Changes in composition of rockweed (Ascophyllum nodosum) beds due to possible recent increase in sea temperature in eastern Canada. J Appl Phycol 21:591–598

    Google Scholar 

  • Ugarte RA, Craigie JS, Critchley AT (2010) Fucoid flora of the rocky intertidal of the Canadian Maritimes: implications for the future with rapid climate change. In: Seckbach J, Einav R, Israel A (eds) Seaweeds and their role in globally changing environments. Cellular origin, life in extreme habitats and astrobiology, vol 15. Springer, Dordrecht, pp 69–90

  • Umanzor S, Shin S, Michael M-R, Augyte S, Yarish C, Kim JK (2019) Preliminary assessment on the effects of the commercial seaweed extract, AMPEP, on growth and thermal tolerance of the kelp Saccharina spp. from the Northwest Atlantic. J Appl Phycol 31:3823–3829

    CAS  Google Scholar 

  • Umanzor S, Jang S, Antosca R, Critchley AT, Yarish C, Kim KK (2020) Optimizing the application of selected biostimulants to enhance the growth of Eucheumatopsis isiformis a carrageenophyte with commercial value, as grown in land-based nursery systems. J Appl Phycol 32:1917–1922

    CAS  Google Scholar 

  • Vadas R, Wright WA, Miller SL (1990) Recruitment of Ascophyllum nodosum: wave action as a source of mortality. Mar Ecol Prog Ser 61:263–272

    Google Scholar 

  • Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:1–12

    Google Scholar 

  • Vandermeulen H (2013) Information to support assessment of stock status of commercially harvested species of marine plants in Nova Scotia: Irish moss, rockweed and kelp. Canadian Science Advisory Secretariat (CSAS), Research Document 2013/042. vi + 50 p

  • Vernet P, Harper JL (1980) The costs of sex in seaweeds. Biol J Linn Soc 13:129–138

    Google Scholar 

  • Villares R, Carral E, Carballeira C (2017) Differences in metal accumulation in the growing shoot tips and remaining shoot tissue in three species of brown seaweeds. Bull Environ Contam Toxicol 99:372–379

    CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    CAS  PubMed  Google Scholar 

  • Vinogradov AP (1953) The elementary chemical composition of marino organisms. Mem Sears Fdn Mar Res 2:647

    Google Scholar 

  • Wang Y, Jiang Z, Kim D, Ueno M, Okimura T, Yamaguchi K, Oda T (2013) Stimulatory effect of the sulfated polysaccharide ascophyllan on the respiratory burst in RAW264.7 macrophages. Int J Biol Macromol 52:164–169

    CAS  PubMed  Google Scholar 

  • Webster T, MacDonald C, McGuigan K, Crowell N, Lauzon-Guay J-N, Collins K (2019) Calculating macroalgal height and biomass using bathymetric LiDAR and a comparison with surface area derived from satellite data in Nova Scotia, Canada. Bot Mar 63:43–59

    Google Scholar 

  • West JS, Townsend JA, Stevens M, Fitt BD (2012) Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. Eur J Plant Pathol 133:315–331

    Google Scholar 

  • Whapham CA, Blunden G, Jenkins T, Hankins SD (1993) Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract. J Appl Phycol 5:231–234

    CAS  Google Scholar 

  • Wu L, Sun J, Su X, Yu Q, Yu Q, Zhang P (2016) A review about the development of fucoidan in antitumor activity: progress and challenges. Carbohydr Polym 154:96–111

    CAS  PubMed  Google Scholar 

  • Xu C, Leskovar DI (2015) Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci Hortic 183:39–47

    Google Scholar 

  • Yu G, Chen Y, Bao Q, Jiang Z, Zhu Y, Ni H, Li Q, Oda T (2020) A low-molecular-weight ascophyllan prepared from Ascophyllum nodosum: Optimization, analysis and biological activities. Int J Biol Macromol 153:107–117

    CAS  PubMed  Google Scholar 

  • Zhang X, Ervin EH (2008) Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Sci 48:364–370

    Google Scholar 

  • Zhang X, Ervin EH, Schmidt RE (2003) Plant growth regulators can enhance the recovery of Kentucky bluegrass sod from heat injury. Crop Sci 43:952–956

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Anne O’Shaughnessy for the illustrations in Figs. 1 and 3. The authors would like to thank the three referees for their constructive and collegial inputs towards the improvements of this manuscript. Finally, the authors would like to thank Professor Michael Guiry for providing invaluable discussions on the manuscript.

Funding

Leonel Pereira had the support of the Foundation for Science and Technology (FCT), within the scope of the project UIDB/04292/2020 – MARE - Marine and Environmental Sciences Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonel Pereira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, L., Morrison, L., Shukla, P.S. et al. A concise review of the brown macroalga Ascophyllum nodosum (Linnaeus) Le Jolis. J Appl Phycol 32, 3561–3584 (2020). https://doi.org/10.1007/s10811-020-02246-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02246-6

Keywords

Navigation