Skip to main content

Advertisement

Log in

Spiny Norman in the Garden of Eden? Dispersal and early biogeography of Placentalia

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The persistent finding of clades endemic to the southern continents (Afrotheria and Xenarthra) near the base of the placental mammal tree has led molecular phylogeneticists to suggest an origin of Placentalia, the crown group of Eutheria, somewhere in the southern continents. Basal splits within the Placentalia have then been associated with vicariance due to the breakup of Gondwana. Southern-origin scenarios suffer from several problems. First, the place of origin of Placentalia cannot be reconstructed using phylogenetic reasoning without reference to outgroups. When available outgroups are considered, a Laurasian origin is most parsimonious. Second, a model of pure vicariance would require that basal placental splits occurred not with the breakup of Gondwana, but of Pangea in the Late Triassic—Early Jurassic. This event long preceded even the oldest molecular divergence estimates for the Placentalia and was coeval only with the earliest mammals in the fossil record. Third, a problem with the number of dispersal events that would be required emerges under different southern-origin scenarios. In considering the geographic distribution of the major placental clades at their first appearance (mostly Early Cenozoic), it becomes clear that a Laurasian center of origin would require fewer dispersal events. Southern-origin models would require at least twice the number of dispersal events in comparison with a model of Laurasian origins. This number of required dispersal events increases if extinct groups of placental mammals are also considered. Results are similar assuming a morphology-based phylogeny. These facts, along with earlier findings speaking against a major placental radiation deep in the Cretaceous without leaving fossil evidence, suggest an origin of Placentalia somewhere in Laurasia with few supraordinal splits occurring before the last 5–10 million years of the Cretaceous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Literature cited

  • Alroy, J. (1999). The fossil record of North American mammals: Evidence for a Paleocene evolutionary radiation. Syst. Biol. 48: 107–118.

    Article  PubMed  CAS  Google Scholar 

  • Archer, M. (1978). The nature of the molar–premolar boundary in marsupials and a reinterpretation of the homology of marsupial cheekteeth. Mem. Qd. Mus. 18: 157–164.

    Google Scholar 

  • Archer, M., Arena, R., Bassarova, M., Black, K., Brammall, J., Cooke, B., Creaser, P., Crosby, K., Gillespie, A., Godthelp, H., Gott, M., Hand, S. J., Kear, B., Krikmann, A., Mackness, B., Muirhead, J., Musser, A., Myers, T., Pledge, N., Wang, Y., and Wroe, S. (1999). The evolutionary history and diversity of Australian mammals. Aust. Mammal. 21: 1–45.

    Google Scholar 

  • Archibald, J. D. (1996). Fossil evidence for a Late Cretaceous origin of “hoofed” mammals. Science 272: 1150–1153.

    Article  PubMed  CAS  Google Scholar 

  • Archibald, J. D. (1998). Archaic ungulates (“Condylarthra”). In: Tertiary Mammals in North America: Volume 1: Terrestrial Carnivores, Ungulates, and Ungulate-like Mammals, C. M. Janis, K. M. Scott, and L. Jacobs, eds., pp. 292–331, Cambridge University Press, Cambridge.

    Google Scholar 

  • Archibald, J. D. (1999a). Molecular dates and the mammalian radiation. Trends Ecol. Evol. 14: 278.

    Article  PubMed  Google Scholar 

  • Archibald, J. D. (1999b). Pruning and grafting on the mammalian phylogenetic tree. Acta Palaeontol. Pol. 44: 220–222.

    Google Scholar 

  • Archibald, J. D. (2003). Timing and biogeography of the eutherian radiation: Fossils and molecules compared. Mol. Phylogenet. Evol. 28: 350–359.

    Article  PubMed  CAS  Google Scholar 

  • Archibald, J. D., and Deutschman, D. H. (2001). Quantitative analysis of the timing of the origination and diversification of extant placental orders. J. Mamm. Evol. 8: 107–124.

    Article  Google Scholar 

  • Archibald, J. D., Hedges, S. B., Kumar, S., Rich, T. H., Vickers-Rich, P., Flannery, T. F., Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J., Jr. (1999). Divergence times of eutherian mammals. Science 285: 2031a.

    Article  Google Scholar 

  • Archibald, J. D., Averianov, A. O., and Ekdale, E. G. (2001). Late Cretaceous relatives of rabbits, rodents, and other extant eutherian mammals. Nature 414: 62–65.

    Article  PubMed  CAS  Google Scholar 

  • Averianov, A., Archibald, J. D., and Martin, T. (2003). Placental nature of the alleged marsupial form the Cretaceous of Madagascar. Acta Palaeontol. Pol. 48: 149–151.

    Google Scholar 

  • Beard, K. C. (1998). East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. Bull. Carnegie Mus. Nat. Hist. 34: 5–39.

    Google Scholar 

  • Beard, K. C. (2002). East of Eden at the Paleocene/Eocene boundary. Science 295: 2028–2029.

    Article  PubMed  CAS  Google Scholar 

  • Benton, M. J. (1999). Early origins of modern birds and mammals. Bioessays 21: 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  • Bonaparte, J. F. (1990). New Late Cretaceous mammals from the Los Alamitos Formation, northern Patagonia. Natl. Geogr. Res. 6: 63–93.

    Google Scholar 

  • Bowen, G. J., Clyde, W. C., Koch, P. L., Ting, S., Alroy, J., Tsubamoto, T., Wang, Y., and Wang, Y. (2002). Mammalian dispersal at the Paleocene/Eocene boundary. Science 295: 2062–2065.

    Article  PubMed  CAS  Google Scholar 

  • Butler, P. M. (1995). Fossil Macroscelidea. Mammal Rev. 25: 3–14.

    Article  Google Scholar 

  • Cifelli, R. L. (1983). The origin and affinities of the South American Condylarthra and early Tertiary Litopterna (Mammalia). Am. Mus. Novitates 2772: 1–49.

    Google Scholar 

  • Cifelli, R. (1993). The phylogeny of native South American ungulates. In: Mammal Phylogeny: Placentals, F. S. Szalay, M. Novacek and M. C. McKenna, eds., pp. 195–216, Springer-Verlag, New York.

    Google Scholar 

  • Cifelli, R. (2000). Cretaceous mammals of Asia and North America. Paleontol. Soc. Korea Spec. Publ. 4: 49–84.

    Google Scholar 

  • Cifelli, R. L., Schaff, C. R., and McKenna, M. C. (1989). The relationships of the Arctostylopidae (Mammalia): New data and interpretation. Bull. Mus. Comp. Zool. 152: 1–44.

    Google Scholar 

  • Clemens, W. A. (2001a). Mammalian evolution across the Cretaceous/Tertiary boundary: The contributions of survival, dispersal, and extinction. Asoc. Paleont. Argentina Publ. Espec. 7: 57–60.

    Google Scholar 

  • Clemens, W. A. (2001b). Patterns of mammalian evolution across the Cretaceous-Tertiary boundary. Mitt. Mus. Nat.kd. Berl., Zool. Reihe 77: 175–191.

    Google Scholar 

  • Clyde, W. C., Sheldon, N. D., Koch, P. L., Gunnell, G. F., and Bartels, W. S. (2001). Linking the Wasatchian/Bridgerian boundary to the Cenozoic Global Climate Optimum: New magnetostratigraphic and isotopic results from South Pass, Wyoming. Palaeogeogr. Palaeoclimatol. Palaeoecol. 167: 175–199.

    Article  Google Scholar 

  • Domning, D. P. (2001a). Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 166: 27–50.

    Article  Google Scholar 

  • Domning, D. P. (2001b). The earliest known fully quadrapedal sirenian. Nature 413: 625–627.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, J. G. (1993). Marsupial dispersal. Natl. Geogr. Res. 9: 436–443.

    Google Scholar 

  • Eberle, J. J. (1999). Bridging the transition between didelphodonts and taeniodonts. J. Paleontol. 73: 936–944.

    Google Scholar 

  • Eizirik, E., Murphy, W. J., and O’Brien, S. J. (2001). Molecular dating and biogeography of the early placental mammal radiation. J. Hered. 92: 212–219.

    Article  PubMed  CAS  Google Scholar 

  • Ekdale, E. G., Archibald, J. D., and Averianov, A. (2004). Petrosal bones of placental mammals from the Late Cretaceous of Uzbekistan. Acta Palaeontol. Pol. 49: 161–176.

    Google Scholar 

  • Flynn, J. J., Parrish, J. M., Rakotosamimanana, B., Simpson, W. F., and Wyss, A. R. (1999). A Middle Jurassic mammal from Madagascar. Nature 401: 57–60.

    Article  CAS  Google Scholar 

  • Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J., Jr. (1999). Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. Science 283: 1310–1314.

    Article  PubMed  CAS  Google Scholar 

  • Fox, R. C., and Naylor, B. G. (2003). A Late Cretaceous taeniodont (Eutheria, Mammalia) from Alberta, Canada. N. Jb. Geol. Palaontol. Mh. 229: 393–420.

    Google Scholar 

  • Fox, R. C., and Youzwyshyn, G. P. (1994). New primitive carnivorans (Mammalia) from the Paleocene of western Canada, and their bearing on relationships of the order. J. Vertebr. Paleontol. 14: 382–404.

    Article  Google Scholar 

  • Gaudin, T. J. (1999). The morphology of xenarthrous vertebrae (Mammalia: xenarthra). Fieldiana: Geol. 41: 1–38.

    Google Scholar 

  • Gaudin, T. J., and Branham, D. G. (1998). The phylogeny of the Myrmecophagidae (Mammalia, Xenarthra, Vermilingua) and the relationship of Eurotamandua to the Vermilingua. J. Mamm. Evol. 5: 237–265.

    Article  Google Scholar 

  • Gheerbrant, E. (1995). Les mammiferes paleocenes du Basin d’Ouarzazate (Maroc); 3, Adapisoriculidae et autres mammiferes (Carnivora?Creodonta, Condylarthra?Ungulata et incertae sedis). Palaeontogr., Abt. A: Palaeozool.-Stratigr. 237: 39–132.

    Google Scholar 

  • Gheerbrant, E., Sudre, J., and Cappetta, H. (1996). A Paleocene proboscidean from Morocco. Nature 383: 68–70.

    Article  CAS  Google Scholar 

  • Gheerbrant, E., Sudre, J., Cappetta, H., Iarochene, M., Amaghzaz, M., and Bouya, B. (2002). A new large mammal from the Ypresian of Morocco: Evidence of surprising diversity of early proboscideans. Acta Palaeontol. Pol. 47: 493–506.

    Google Scholar 

  • Gingerich, P. D., Abbas, S. G., and Arif, M. (1997). Early Eocene Quettacyon parachai (Condylarthra) from the Ghazij Formation of Baluchistan (Pakistan): Oldest Cenozoic land mammal from South Asia. J. Vertebr. Paleontol. 17: 629–637.

    Article  Google Scholar 

  • Gingerich, P. D., Arif, M., Khan, I. H., Clyde, W. C., and Bloch, J. I. (1999). Machocyon abbasi, a new early Eocene Quettacyonid (Mammalia, Condylarthra) from the middle Ghazij Formation of Mach and Daghari coal fields, Baluchistan (Pakistan). Contrib. Mus. Paleontol. Univ. Mich. 30: 233–250.

    Google Scholar 

  • Gunnell, G. F. (1998). Creodonta. In: Evolution of Tertiary Mammals of North America: Volume 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, C. M. Janis, K. M. Scott, and L. L. Jacobs, eds., pp. 91–109, Cambridge University Press, New York.

    Google Scholar 

  • Hedges, S. B., Parker, P. H., Sibley, C. G., and Kumar, S. (1996). Continental breakup and the ordinal diversification of birds and mammals. Nature 381: 226–229.

    Article  PubMed  CAS  Google Scholar 

  • Holroyd, P. A. (1999). New Pterodontinae (Creodonta; Hyaenodontidae) from the late Eocene–early Oligocene Jebel Qatrani Formation, Fayum Province, Egypt. PaleoBios 19: 1–18.

    Google Scholar 

  • Holroyd, P. A., Bown, T. M., Gingerich, P. D., Kraus, M. J., Polly, P. D., and Simons, E. L. (1996). New records of terrestrial mammals from the upper Eocene Qasr El Sagha Formation, Fayum Depression, Egypt. Palaeovertebrates 25: 175–192.

    Google Scholar 

  • Hunter, J. P. (1997). Adaptive radiation of early Paleocene condylarths. J. Vertebr. Paleontol. 17: 54A.

    Google Scholar 

  • Hunter, J. P. (1999). The radiation of Paleocene mammals with the demise of the dinosaurs: Evidence from southwestern North Dakota. N. Dak. Acad. Sci. Proc. 53: 141–144.

    Google Scholar 

  • Hunter, J. P. (2004). Alternative interpretation of molar morphology and wear in the Early Cretaceous mammal Ausktribosphenos. J. Vertebr. Paleontol. 24: 73A.

    Article  Google Scholar 

  • Ji, Q., Luo, Z.-X., Yuan, C.-X., Wible, J. R., Zhang, J.-P., and Georgi, J. A. (2002). The earliest known eutherian mammal. Nature 416: 816–822.

    Article  PubMed  CAS  Google Scholar 

  • Khosla, A., Prasad, G. V. R., Verma, O., Jain, A. K., and Sahni, A. (2004). Discovery of a micromammal-yielding Deccan intertrappean site near Kisalpuri, Dindori District, Madhyra Pradesh. Curr. Sci. 87: 380–383.

    Google Scholar 

  • Krause, D. W. (2001). Fossil molar from a Madagascan marsupial. Nature 412: 497–498.

    Article  PubMed  CAS  Google Scholar 

  • Krause, D. W., and Maas, M. C. (1990). The biogeographic origins of late Paleocene–early Eocene mammalian immigrants to the Western Interior of North America. Geol. Soc. Amer. Spec. Paper 243: 71–105.

    Google Scholar 

  • Krause, D. W., Prasad, G. V. R., Koenigswald, W., Sahni, A., and Grine, F. E. (1997). Cosmopolitanism among Gondwanan Late Cretaceous mammals. Nature 390: 504–507.

    Article  CAS  Google Scholar 

  • Krause, D. W., Gottfried, M. D., O’Connor, P. M., and Roberts, E. M. (2003). A Cretaceous mammal from Tanzania. Acta Palaeontol. Pol. 48: 321–330.

    Google Scholar 

  • Kumar, S., and Hedges, S. B. (1998). A molecular timescale for vertebrate evolution. Nature 392: 917–920.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, S. G. (1993). Pantodonts, tillodonts, uintatheres, and pyrotheres are not ungulates. In: Mammal Phylogeny: Placentals, F. S. Szalay, M. Novacek and M. C. McKenna, eds., pp. 182–194, Springer-Verlag, New York.

    Google Scholar 

  • Luo, Z., Cifelli, R., and Kielan-Jaworowska, Z. (2001). Dual origin of tribosphenic mammals. Nature 409: 53–57.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Z., Kielan-Jaworowska, Z., and Cifelli, R. (2002). In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol. Pol. 47: 1–78.

    Google Scholar 

  • Luo, Z., Ji, Q., Wible, J. R., and Yuan, C.-X. (2003). An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302: 1934–1940.

    Article  PubMed  CAS  Google Scholar 

  • MacPhee, R. D. E., and Novacek, M. J. (1993). Definition and relationships of Lipotyphla. In: Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek and M. C. McKenna, eds., pp. 13–31, Springer-Verlag, New York.

    Google Scholar 

  • Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, L. G. (1980). Marsupial paleobiogeography. In: Aspects of Vertebrate History: Essays in Honor of Edwin Harris Colbert, L. L. Jacobs, ed., pp. 345–386, Museum of Northern Arizona Press, Flagstaff.

    Google Scholar 

  • McKenna, M. C. (1973). Sweepstakes, filters, corridors, Noah’s arks, and beached Viking funeral ships in paleogeography. In: Implications of Continental Drift to the Earth Sciences, D. H. Tarling and S. K. Runcorn, eds., pp. 21–46, Academic Press, London and New York.

    Google Scholar 

  • McKenna, M. (1975). Toward a phylogenetic classification of the Mammalia. In: Phylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 21–46, Plenum Publishing Corporation, New York.

    Google Scholar 

  • McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.

    Google Scholar 

  • Meng, J., Zhai, R., and Wyss, A. R. (1998). The late Paleocene Bayun Ulan fauna Inner Mongolia. Bull. Carnegie Mus. Nat. Hist. 34: 148–185.

    Google Scholar 

  • Morales, J., Fraile, S., Pickford, M., and Soria, D. (1998a). New carnivores from the basal middle Miocene of Arrisdrift, Namibia. Eclogae Geol. Helv. 91: 27–40.

    Google Scholar 

  • Morales, J., Pickford, M., and Soria, D. (1998b). A new creodont Metapterodon stromeri nov. sp. (Hyaenodontidae, Mammalia) from the early Miocene of Langental (Sperregebiet, Namibia). C. R. Acad. Sci., Ser. II. Sciences de la Terre et des Planetes 327: 633–638.

    Google Scholar 

  • Muizon, C., de., and Cifelli, R. (2000). The “condylarths” (archaic Ungulata, Mammalia) from the early Palaeocene of Tiupampa (Bolivia): Implications on the origins of South American ungulates. Geodiversitas 22: 47–150.

    Google Scholar 

  • Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O’Brien, S. J. (2001a). Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, W. J., Eizirik, E., O’Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001b). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351.

    Article  PubMed  CAS  Google Scholar 

  • Murray, A. M. (2001). The fossil record and biogeography of the Cichlidae (Actinopterygii: Labroidei). Biol. J. Linn. Soc. Lond. 74: 517–532.

    Article  Google Scholar 

  • Nessov, L. A., Archibald, J. D., and Kielan-Jaworowska, Z. (1998). Ungulate-like mammals from the Late Cretaceous of Uzbekistan and a phylogenetic analysis of Ungulatomorpha. Bull. Carnegie Mus. Nat. Hist. 34: 40–88.

    Google Scholar 

  • Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classfication of eutherian mammals. Bull. Am. Mus. Nat. Hist. 183: 1–111.

    Google Scholar 

  • Novacek, M. J. (1992). Mammalian phylogeny: Shaking the tree. Nature 356: 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Novacek, M. J. (1999). 100 million years of land vertebrate evolution: The Cretaceous-Early Tertiary transition. Ann. Missouri Bot. Garden 86: 230–258.

    Article  Google Scholar 

  • Novacek, M. J., and Wyss, A. R. (1986). Higher-level relationships of the Recent eutherian orders: Morphological evidence. Cladistics 2: 257–287.

    Google Scholar 

  • Novacek, M. J., Rougier, G. W., Wible, J. R., McKenna, M. C., Dashzeveg, D., and Horowitz, I. (1997). Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia. Nature 389: 483–486.

    Article  PubMed  CAS  Google Scholar 

  • Novacek, M., Rougier, G., Dashzeveg, D., and McKenna, M. C. (2000). New eutherian mammal from the Late Cretaceous of Mongolia and its bearing on the origins of the modern placental radiation. J. Vertebr. Paleontol. 20: 61A.

    Google Scholar 

  • Pascual, R. (1996). Late Cretaceous–Recent land-mammals, an approach to South American geobiotic evolution. Mastozoologia Neotropical 3: 133–152.

    Google Scholar 

  • Pascual, R. (1998). The history of South American land mammals: the seminal Cretaceous–Paleocene transition. Asoc. Paleontol. Argentina Publ. Espec. 5: 9–18.

    Google Scholar 

  • Pascual, R., and Goin, F. J. (1999). Non-tribosphenic Gondwanan mammals, and a distinct attainment of the molars reversed triangle pattern, In: International Symposium on Mesozoic Terrestrial Ecosystems, pp. 48–49, Buenos Aires, Argentina.

  • Pascual, R., Goin, F. J., Gonzalez, P., Ardolino, A., and Puerta, P. F. (2000). A highly derived docodont from the Patagonian Late Cretaceous: Evolutionary implications for Gondwanan mammals. Geodiversitas 22: 395–414.

    Google Scholar 

  • Prasad, G. V. R., and Godinot, M. (1994). Eutherian tarsal bones from the Late Cretaceous of India. J. Paleontol. 68: 892–902.

    Google Scholar 

  • Prasad, G. V. R., and Khajuria, C. K. (1990). A record of microvertebrate fauna from the intertrappean beds of Naskal, Andhra Pradesh. J. Palaeontol. Soc. India 35: 151–161.

    Google Scholar 

  • Prasad, G. V. R., and Sahni, A. (1988). First Cretaceous mammal from India. Nature 332: 638–640.

    Article  Google Scholar 

  • Prasad, G. V. R., Jaeger, J. A., Sahni, A., Gheerbrant, E., and Khajuria, C. K. (1994). Eutherian mammals from the Upper Cretaceous (Maastrictian) Intertrappean Beds of Naskal, Andhra Pradesh, India. J. Vertebr. Paleontol. 14: 260–277.

    Article  Google Scholar 

  • Prasad, G. V. R., Khajuria, C. K., and Manhas, B. K. (1995). Palaeobiogeographic significance of the Deccan infra- and intertrappean biota from peninsular India. Hist. Biol. 9: 319–334.

    Article  Google Scholar 

  • Rana, R. S., and Wilson, G. P. (2003). New Late Cretaceous mammals from the Intertrappean beds of Rangapur, India and paleobiogeographic framework. Acta Palaeontol. Pol. 48: 331–348.

    Google Scholar 

  • Rauhut, O. W. M., Martin, T., Ortiz-Jaureguizar, E., and Puerta, P. (2002). A Jurassic mammal from South America. Nature 416: 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Rich, T. H., Vickers-Rich, P., Constantine, A., Flannery, T. F., Kool, L., and van Klaveren, N. (1997). A tribosphenic mammal from the Mesozoic of Australia. Science 278: 1438–1442.

    Article  PubMed  CAS  Google Scholar 

  • Rich, T. H., Vickers-Rich, P., Constantine, A., Flannery, T. F., Kool, L., and van Klaveren, N. (1999). Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Rec. Queen Victoria Mus. 106: 1–35.

    Google Scholar 

  • Rich, T. H., Flannery, T. F., Trusler, P., Kool, L., van Klaveren, N., and Vickers-Rich, P. (2001a). A second tribosphenic mammal from the Mesozoic of Australia. Rec. Queen Victoria Mus. 110: 1–10.

    Google Scholar 

  • Rich, T. H., Flannery, T., Trusler, P., and Vickers-Rich, P. (2001b). Corroboration of the Garden of Eden Hypothesis. In: Faunal and Floral Migrations and Evolution in SE Asia-Australia, I. Metcalfe, J. M. B. Smith, M. Morwood, I. Davidson and K. Hewison, eds., pp. 323–332, Balkema Publishers, Lisse, Netherlands.

    Google Scholar 

  • Rich, T. H., Flannery, T. F., Trusler, P., Kool, L., van Klaveren, N. A., and Vickers-Rich, P. (2002). Evidence that monotremes and ausktribosphenids are not sister groups. J. Vertebr. Paleontol. 22: 466–469.

    Article  Google Scholar 

  • Rose, K. D., and Lucas, S. G. (2000). An early Paleocene palaeanodont (Mammalia?Pholidota) from New Mexico, and the origin of the Palaeanodonta. J. Vertebr. Paleontol. 20: 139–156.

    Article  Google Scholar 

  • Sigogneau-Russell, D. (1991a). Decouverte du premier mammifere tribosphenique du Mesozoique africain. C. R. Acad. Sci. Paris, Ser. II. Sciences de la Terre et des Planetes 313: 1635–1640.

    CAS  Google Scholar 

  • Sigogneau-Russell, D. (1991b). First evidence of Multituberculata (Mammalia) in the Mesozoic of Africa. N. Jb. Geol. Palaeontol. Mh. 2: 119–125.

    Google Scholar 

  • Sigogneau-Russell, D., Hooker, J. J., and Ensom, P. C. (2001). The oldest tribosphenic mammal from Laurasia (Purbeck Limestone Group, Berriasian, Cretaceous, UK) and its bearing on the ‘dual origin’ of Tribosphenida. C. R. Acad. Sci. Paris, Ser. II. Sciences de la Terre et des Planetes 333: 141–147.

    Google Scholar 

  • Simons, E. L., Holroyd, P. A., and Bown, T. M. (1991). Early Tertiary elephant-shrews from Egypt and the origin of the Macroscelidea. Proc. Natl. Acad. Sci. U.S.A. 88: 9734–9737.

    Article  PubMed  CAS  Google Scholar 

  • Springer, M. S., Cleven, G. C., Madsen, O., de Jong, W. W., Waddell, V. G., Amrine, H. M., and Stanhope, M. J. (1997). Endemic African mammals shake the phylogenetic tree. Nature 388: 61–64.

    Article  PubMed  CAS  Google Scholar 

  • Springer, M. S., Murphy, W. J., Eizirik, E., and O’Brien, S. J. (2003). Placental mammal diversification and the Cretaceous–Tertiary boundary. Proc. Natl. Acad. Sci. U.S.A. 100: 1056–1061.

    Article  PubMed  CAS  Google Scholar 

  • Stanhope, M. J., Waddell, V. G., Madsen, O., de Jong, W. W., Hedges, S. B., Cleven, G. C., Kao, D., and Springer, M. S. (1998). Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc. Natl. Acad. Sci. U.S.A. 95: 9967–9972.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, N. J., and Heesy, C. P. (2000). Biogeographic origins of primate higher taxa. J. Vertebr. Paleontol. 20: 71A.

    Google Scholar 

  • Stewart, C.-B., and Disotell, T. R. (1998). Primate evolution—in and out of Africa. Curr. Biol. 8: R582–R588.

    Article  PubMed  CAS  Google Scholar 

  • Strait, D. S., and Wood, B. A. (1999). Early hominid biogeography. Proc. Natl. Acad. Sci. U.S.A. 96: 9196–9200.

    Article  PubMed  CAS  Google Scholar 

  • Tavare, S., Marshall, C. R., Will, O., Soligo, C., and Martin, R. D. (2002). Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature 416: 726–729.

    Article  PubMed  CAS  Google Scholar 

  • van Dijk, M. A. M., Madsen, O., Catzeflis, F., Stanhope, M. J., de Jong, W. W., and Pagel, M. (2001). Protein sequence signatures support the African clade of mammals. Proc. Natl. Acad. Sci. U.S.A. 98: 188–193.

    Article  PubMed  CAS  Google Scholar 

  • Van Valen, L. M. (1985). Why and how do mammals evolve unusually rapidly? Evol. Theory 7: 127–132.

    Google Scholar 

  • Vizcaino, S. F., Pascual, R., Reguero, M. A., and Goin, F. J. (1998). Antarctica as background for mammalian evolution. Asoc. Paleont. Argentina Publ. Espec. 5: 199–209.

    Google Scholar 

  • Weil, A. (2001). Mammalian evolution: relationships to chew over. Nature 409: 28–29, 31.

    Article  PubMed  CAS  Google Scholar 

  • Wible, J. R., Novacek, M. J., and Rougier, G. W. (2004). New data on the skull and dentition in the Mongolian Late Cretaceous eutherian mammal Zalambdalestes. Bull. Am. Mus. Nat. Hist. 281: 1–144.

    Article  Google Scholar 

  • Woodburne, M. O., and Case, J. A. (1996). Dispersal, vicariance, and the post-Gondwanan Late Cretaceous to early Tertiary biogeography from South America to Australia. J. Mammal. Evol. 3: 121–161.

    Article  Google Scholar 

  • Woodburne, M. O., Rich, T. H., and Springer, M. S. (2003). The evolution of tribospheny and the antiquity of mammalian clades. Mol. Phylogenet. Evol. 28: 360–385.

    Article  PubMed  CAS  Google Scholar 

  • Zack, S. P., Penkrot, T. A., Bloch, J. I., and Rose, K. D. (2005). Affinities of “hyopsodontids” to elephant-shrews and a holartic origin of Afrotheria. Nature 434: 497–501.

    Article  PubMed  CAS  Google Scholar 

  • Zalmout, I. S., Gingerich, P. D., and Ul-Haq, M. (2003). New species of protosiren (Mammalia, Sirenia) from the early middle Eocene of Balochistan (Pakistan). Contrib. Mus. Paleontol. Univ. Mich. 31: 79–87.

    Google Scholar 

Download references

Acknowledgements

Responding to comments by Mark Springer and three anonymous reviewers aided the growth and development of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Hunter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, J.P., Janis, C.M. Spiny Norman in the Garden of Eden? Dispersal and early biogeography of Placentalia. J Mammal Evol 13, 89–123 (2006). https://doi.org/10.1007/s10914-006-9006-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-006-9006-6

Keywords

Navigation