Skip to main content
Log in

Murataite: a matrix for immobilizing waste generated in radiochemical reprocessing of spent nuclear fuel

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Incorporation of waste from spent nuclear fuel pyrochemical reprocessing and calcines from the decontamination of glove box and hot cell equipment into murataite-based ceramics was studied. The phase and chemical compositions of the ceramics containing precipitates simulating fission products in molten chlorides were examined. The radiation stability of murataite matrices was studied by incorporating 244Cm isotope (1.8 wt%). In the ceramics produced by melting at 1325 and 1350 °C the murataite phases was rendered to be X-ray amorphous at doses of 2.46 × 1018 and 2.53 × 1018 α-decay/g (0.21 dpa), while for the sample sintered at 1250 °C the amorphization dose was found to be 2.73 × 1018 α-decay/g (0.21 dpa). The murataite structure was recovered after the annealing at 1250 °C for 5 h in air. Both the pristine and amorphized samples had very low leachability of Cm and major elements. Production of highly durable murataite-based ceramics containing waste surrogate after spent nuclear fuel (SNF) pyrochemical reprocessing and calcine after the evaporation of decontamination solutions were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams JW, Botinelly T, Sharp WN, Robinson K (1974) Murataite, a new complex oxide from EI Paso Country, Colorado. Am Miner 59:172–176

    CAS  Google Scholar 

  2. Portnov AM, Dubakina LS, Krivokoneva GK (1981) Murataite in predicted association with landauite. Proc USSR Acad Sci 261:741–744

    CAS  Google Scholar 

  3. Ercit TS, Hawthorne FC (1995) Murataite, a UB12 derivative structure with condensed Keggin molecules. Can Miner 33:1223–1229

    CAS  Google Scholar 

  4. Krivovichev SV, Yudintsev SV, Stefanovsky SV, Organova NI, Karimova OV, Urusov VS (2010) Murataite–pyrochlore series: a family of complex oxides with nanoscale pyrochlore clusters. Angew Chem Int Ed 49:9982–9984

    Article  CAS  Google Scholar 

  5. Laverov NP, Urusov VS, Krivovichev SV, Pakhomova AS, Stefanovsky SV, Yudintsev SV (2011) Modular nature of the polysomatic pyrochlore-murataite series. Geol Ore Deposits 53:307–329

    Article  CAS  Google Scholar 

  6. Krivovichev SV, Urusov VS, Yudintsev SV, Stefanovsky SV, Karimova OV, Organova NI (2012) Crystal structure of murataite Mu-5, a member of the murataite—pyrochlore polysomatic series. In: Krivovichev S (ed) Minerals as advanced materials II. Springer, Berlin, pp 293–304

    Chapter  Google Scholar 

  7. Pakhomova AS, Krivovichev SV, Yudintsev SV, Stefanovsky SV (2013) Synthetic murataite-3C, a complex form for long-term immobilization of nuclear waste: crystal structure and its comparison with natural analogues. Z Kristallogr 228:151–156

    Article  CAS  Google Scholar 

  8. Pakhomova AS, Krivovichev SV, Yudintsev SV, Stefanovsky SV (2016) Polysomatism and structural complexity: structure model for murataite-8C, a complex crystalline matrix for the immobilization of high-level radioactive waste. Eur J Miner 28:205–214

    Article  CAS  Google Scholar 

  9. Morgan PED, Ryerson FJ (1982) A new “cubic” crystal compound. J Mater Sci Lett 1:351–352

    Article  CAS  Google Scholar 

  10. Laverov NP, Omel’yanenko BI, Yudintsev SV, Nikonov BS, Sobolev IA, Stefanovskii SV (1997) Mineralogy and geochemistry of matrices for the immobilization of high-level radioactive wastes. Geol Ore Deposits 39:179–208

    Google Scholar 

  11. Laverov NP, Gorshkov AI, Yudintsev SV, Sivtsov AV, Lapina MI (1998) New structural modifications of synthetic murataite. Dokl Earth Sci 363:540–543

    CAS  Google Scholar 

  12. Urusov VS, Organova NI, Karimova OV, Yudintsev SV, Stefanovskii SV (2005) Synthetic “murataites” as modular members of a pyrochlore—murataite polysomatic series. Dokl Earth Sci 401:319–325

    CAS  Google Scholar 

  13. Urusov VS, Organova NI, Karimova OV, Yudintsev SV, Ewing RC (2007) A modular model of the crystal structure of the pyrochlore—murataite polysomatic series. Crystallogr Rep 52:37–46

    Article  CAS  Google Scholar 

  14. Laverov NP, Yudintsev SV, Stefanovsky SV, Omel’yanenko BI, Nikonov BS (2006) Murataite as a universal matrix for immobilization of actinides. Geol Ore Deposits 48:335–356

    Article  Google Scholar 

  15. Pyrochemical Separations in Nuclear Applications (2004) Paris: OECD NEA. Report N5427

  16. Spent fuel reprocessing options (2008) Vienna: IAEA, Report IAEA-NECDOC-1587

  17. Skiba OV, Kisly VA, Savochkin YP, Vavilov SK (2012) Pyro-electrochemical processes in the fuel cycle of fast neutron reactors. JSC “SSC RIAR”, Dimitrovgrad

    Google Scholar 

  18. GOST 20286-90 (1990) Radioactive contamination and decontamination. Terms and definitions. USSR National Committee for product quality control and standards. Publishing House for Standards, Moscow

    Google Scholar 

  19. Zimon AD (1975) Decontamination. Atomizdat, Moscow

    Google Scholar 

  20. Lian J, Yudintsev SV, Stefanovsky SV, Kirjanova OI, Ewing RC (2002) Ion-induced amorphization of murataite. Mater Res Soc Symp Proc 713:455–460

    CAS  Google Scholar 

  21. Lian J, Wang LM, Ewing RC, Yudintsev SV, Stefanovsky SV (2004) Radiation effects in murataite ceramics. Mater Res Soc Symp Proc 807:225–230

    Article  CAS  Google Scholar 

  22. Stefanovsky SV, Lukinykh AN, Tomilin SV, Lizin AA, Yudintsev SV (2008) Alpha-decay damage in murataite-based ceramics. Mater Res Soc Symp Proc 1107:389–394

    Article  Google Scholar 

  23. Yudintsev SV, Stefanovsky SV, Nikonov BS, Omelianenko BI (2001) Phase and chemical stability of murataite containing uranium, plutonium and Rare Earth. Mater Res Soc Symp Proc 663:357–365

    Article  Google Scholar 

  24. Patent 2643362 Russian Federation, IPC G21F 9/16 (2006.01) Method to treat radioactive solutions after decontamination of hot cell equipment surfaces. Lizin AA, Tomilin SV, Poglyad SS (2018) patent owner—Russian Federation presented by Rosatom State Corporation, Joint Stock Company “State Scientific Center – Research Institute of Atomic Reactor” No. 2017101380, patent application: January 16, 2017, patent publication: February 01, 2018. Bulletin No. 4, 2018, p 2

  25. Nuclear Waste Materials Handbook. Test Methods. (1981) Rep. DOE/TIC-11400DOE. Washington, DC: Technical Information Center

  26. Stefanovsky SV, Yudintsev SV, Giere R, Lumpkin GR (2004) Nuclear Waste Forms Energy, Waste and the Environment: A Geological Perspective, vol 236. Geological Society, Special Publication, London, pp 37–63

    Google Scholar 

  27. Weber WJ, Ewing RC, Catlow CRA, Diaz de la Rubia T, Hobbs LW, Kinoshita C, Hj Matzke, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484

    Article  CAS  Google Scholar 

  28. Laverov NP, Yudintsev SV, Yudintseva TS, Stefanovsky SV, Ewing R, Ch Lian J, Utsunomiya S, Wang LM (2003) Effect of radiation on properties of confinement matrices for immobilization of actinide-bearing wastes. Geol Ore Deposits 45:483–513

    CAS  Google Scholar 

  29. Yudintsev S, Stefanovsky S, Ewing R (2007) Actinide host phases as radioactive waste forms. In: Krivovichev S, Burns P, Tananaev I (eds) Structural chemistry of inorganic actinide compounds. Elsevier B.V., Amsterdam, pp 457–490

    Chapter  Google Scholar 

  30. Ringwood AE (1985) Disposal of high-level nuclear wastes: a geological perspective. Mineral Mag 49:159–176

    Article  CAS  Google Scholar 

  31. Stefanovsky SV, Yudintsev SV, Perevalov SA, Startseva IV, Varlakova GA (2007) Leach resistance of murataite-based ceramics containing actinides. J Alloys Compd 444–445:618–620

    Article  Google Scholar 

  32. Smith KL, Lumpkin GR, Blackford MG, Hambley M, Day RA, Hart KP, Jostsons A (1997) Characterization and leaching behavior of plutonium-bearing Synroc-C. Mater Res Soc Symp Proc 465:1267–1272

    Article  CAS  Google Scholar 

  33. Hart KP, Vance ER, Stewart MWA, Weir J, Carter MR, Hanbley M, Brownscombe A, Day RA, Leung S, Ball CJ, Ebbinghaus B, Gray L, Kan T (1998) Leaching behavior of zirconolite-rich Synroc used to immobilize ‘high-fired’ plutonium oxide. Mater Res Soc Symp Proc 506:161–168

    Article  CAS  Google Scholar 

  34. Hart KP, Zhang Y, Loi E, Aly Z, Stewart MWA, Brownscombe A, Ebbinghaus B, Boucier W (2000) Aqueous durability of titanate ceramics designed to immobilize excess plutonium. Mater Res Soc Symp Proc 608:353–358

    Article  CAS  Google Scholar 

  35. Stennett MC, Backhouse DJ, Freeman CL, Hyatt NC (2013) Ceramic immobilisation options for technetium. Mater Res Soc Symp Proc 1518:111–116

    Article  Google Scholar 

  36. Gotovchikov VT, Seredenko VA, Osipov IV (2003) Industrial experience and perspectives related to application of vacuum induction furnace with cold crucibles. Nonferrous Met 4:68–72

    Google Scholar 

Download references

Acknowledgements

The authors are grateful two anonymous reviewers which comments allowed to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Lizin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizin, A.A., Tomilin, S.V., Poglyad, S.S. et al. Murataite: a matrix for immobilizing waste generated in radiochemical reprocessing of spent nuclear fuel. J Radioanal Nucl Chem 318, 2363–2372 (2018). https://doi.org/10.1007/s10967-018-6236-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6236-z

Keywords

Navigation