Skip to main content
Log in

Synthesis, characterization and low-temperature carbonation of mesoporous magnesium oxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A sample of MgO was successfully synthesized using thermal decomposition of hydromagnesite and compared to commercial material. The characterization of materials using XRD, SEM, BET and BJH methods showed that the thermal decomposition way led to rectangular mesoporous microsheets with high specific surface area of 100 m2 g−1. This porous magnesium oxide has been shown to be a potential candidate for CO2 capture at low temperatures range (30 and 50 °C), low pressures of CO2 (\( P_{{{\text{CO}}_{2} }} = 600\;{\text{mbar}} \)) and in the presence of water vapor (\( P_{{{\text{H}}_{2} {\text{O}}}} = 15\;{\text{mbar}} \)). In these conditions, our results show that 11% of MgO was converted to hydrated magnesium carbonate MgCO3·3H2O after 8 h of carbonation in a thermobalance and reached 54% after 24 h of carbonation using tube furnace. After carbonation, hydration reaction pore size and surface area have noticeably changed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change, Edenhofer O, editors. Climate change 2014: mitigation of climate change: Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press; 2014.

    Google Scholar 

  2. Seifritz W. CO2 disposal by means of silicates. Nature. 1990;345(6275):486.

    Article  Google Scholar 

  3. Kumar S, Saxena SK. A comparative study of CO2 sorption properties for different oxides. Mater Renew Sustain Energy. 2014;3:30. https://doi.org/10.1007/s40243-014-0030-9.

    Article  CAS  Google Scholar 

  4. Rouchon L, Favergeon L, Pijolat M. Analysis of the kinetic slowing down during carbonation of CaO by CO2. J Therm Anal Calorim. 2013;113(3):1145–55.

    Article  CAS  Google Scholar 

  5. Bouquet E, Leyssens G, Schönnenbeck C, Gilot P. The decrease of carbonation efficiency of CaO along calcination–carbonation cycles: experiments and modelling. Chem Eng Sci. 2009;64(9):2136–46.

    Article  CAS  Google Scholar 

  6. Bhatia SK, Perlmutter DD. Unified treatment of structural effects in fluid-solid reactions. AIChE J. 1983;29(2):281–9.

    Article  CAS  Google Scholar 

  7. Rouchon L, Favergeon L, Pijolat M. New kinetic model for the rapid step of calcium oxide carbonation by carbon dioxide. J Therm Anal Calorim. 2014;116(3):1181–8.

    Article  CAS  Google Scholar 

  8. Sun P, Grace JR, Jim Lim C, Anthony EJ. A discrete-pore-size-distribution-based gas–solid model and its application to the reaction. Chem Eng Sci. 2008;63(1):57–70.

    Article  CAS  Google Scholar 

  9. Selvamani T, Sinhamahapatra A, Bhattacharjya D, Mukhopadhyay I. Rectangular MgO microsheets with strong catalytic activity. Mater Chem Phys. 2011;129(3):853–61.

    Article  CAS  Google Scholar 

  10. Fagerlund J, Highfield J, Zevenhoven R. Kinetics studies on wet and dry gas–solid carbonation of MgO and Mg(OH)2 for CO2 sequestration. RSC Adv. 2012;2(27):10380.

    Article  CAS  Google Scholar 

  11. Kumar S, Saxena SK, Drozd V, Durygin A. An experimental investigation of mesoporous MgO as a potential pre-combustion CO2 sorbent. Mater Renew Sustain Energy. 2015;4:8. https://doi.org/10.1007/s40243-015-0050-0.

    Article  Google Scholar 

  12. Bhagiyalakshmi M, Lee JY, Jang HT. Synthesis of mesoporous magnesium oxide: its application to CO2 chemisorption. Int J Greenh Gas Control. 2010;4(1):51–6.

    Article  CAS  Google Scholar 

  13. Torres-Rodríguez DA, Pfeiffer H. Thermokinetic analysis of the MgO surface carbonation process in the presence of water vapor. Thermochim Acta. 2011;516(1–2):74–8.

    Article  Google Scholar 

  14. Song G, Ding Y-D, Zhu X, Liao Q. Carbon dioxide adsorption characteristics of synthesized MgO with various porous structures achieved by varying calcination temperature. Colloids Surf Physicochem Eng Asp. 2015;470:39–45.

    Article  CAS  Google Scholar 

  15. Lin Y, Zheng M, Ye C, Power IM. Thermogravimetric analysis–mass spectrometry (TGA-MS) of hydromagnesite from Dujiali Lake in Tibet, China. J Therm Anal Calorim. 2018;133(3):1429–37.

    Article  CAS  Google Scholar 

  16. Niu H, Yang Q, Tang K, Xie Y. A simple solution calcination route to porous MgO nanoplates. Microporous Mesoporous Mater. 2006;96(1–3):428–33.

    Article  CAS  Google Scholar 

  17. Jauffret G, Morrison J, Glasser FP. On the thermal decomposition of nesquehonite. J Therm Anal Calorim. 2015;122(2):601–9.

    Article  CAS  Google Scholar 

  18. Koga N. In: Vyazovkin S, Koga N, Schick C, editors. Handbook of thermal analysis and calorimetry, chapter 6, vol. 6. 2nd ed. Amsterdam: Elsevier; 2018. p. 213–51.

    Google Scholar 

  19. Sing K, Everett D, Haul R, Moscou L, Pierotti R, Rouquerol J, et al. Reporting physisorption data for 1, 0 × 10-3 1, 2 × 10-3 1, 4 × 10-3 1, 6 × 10-3 1, 8 × 10-3 2, 0 × 10-3-8-6-4-2 0 2 4-1 K) I II III gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603–19.

    Article  CAS  Google Scholar 

  20. Tiffonnet A-L, Blondeau P, Allard F, Haghighat F. Sorption isotherms of acetone on various building materials. Indoor Built Environ. 2002;11(2):95–104.

    Article  CAS  Google Scholar 

  21. Sawada Y, Uematsu K, Mizutani N, Kato M. Thermal decomposition of hydromagnesite 4MgCO3· Mg(OH)2· 4H2O. J Inorg Nucl Chem. 1978;40(6):979–82.

    Article  CAS  Google Scholar 

  22. Sawada Y, Uematsu K, Mizutani N, Kato M. Thermal decomposition of hydromagnesite 4MgCO3-Mg(OH)2-4H2O under different partial pressures of carbon dioxide. Thermochim Acta. 1978;27(1–3):45–59.

    Article  CAS  Google Scholar 

  23. Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Thermogravimetric study on the decomposition of hydromagnesite 4MgCO3· Mg(OH)2· 4H2O. Thermochim Acta. 1979;33:127–40.

    Article  CAS  Google Scholar 

  24. Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Thermal decomposition of basic magnesium carbonates under high-pressure gas atmoshpheres. Thermochim Acta. 1979;32(1–2):277–91.

    Article  CAS  Google Scholar 

  25. Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Isothermal differential scanning calorimetry on an exothermic phenomenon during thermal decomposition of hydromagnesite 4MgCO3· Mg(OH)2· 4H2O. Thermochim Acta. 1979;34(2):233–7.

    Article  CAS  Google Scholar 

  26. Padeste C, Oswald HR, Reller A. The thermal behaviour of pure and nickel-doped hydromagnesite in different atmospheres. Mater Res Bull. 1991;26(12):1263–8.

    Article  CAS  Google Scholar 

  27. Hollingbery LA, Hull TR. The thermal decomposition of huntite and hydromagnesite—a review. Thermochim Acta. 2010;509(1–2):1–11.

    Article  CAS  Google Scholar 

  28. Todor D. Thermal analysis of minerals. London: Abacus Press; 1976.

    Google Scholar 

  29. Coleyshaw EE, Crump G, Griffith WP. Vibrational spectra of the hydrated carbonate minerals ikaite, monohydrocalcite, lansfordite and nesquehonite. Spectrochim Acta A Mol Biomol Spectrosc. 2003;59(10):2231–9.

    Article  Google Scholar 

  30. Frost RL, Palmer SJ. Infrared and infrared emission spectroscopy of nesquehonite Mg(OH)(HCO3)·2H2O-implications for the formula of nesquehonite. Spectrochim Acta A Mol Biomol Spectrosc. 2011;78(4):1255–60.

    Article  Google Scholar 

  31. Frost RL, Dickfos M. Hydrated double carbonates—a Raman and infrared spectroscopic study. Polyhedron. 2007;26(15):4503–8.

    Article  CAS  Google Scholar 

  32. Edwards HGM, Villar SEJ, Jehlicka J, Munshi T. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. Spectrochim Acta A Mol Biomol Spectrosc. 2005;61(10):2273–80.

    Article  Google Scholar 

  33. Frost RL, Bahfenne S, Graham J. Raman spectroscopic study of the magnesium-carbonate minerals—artinite and dypingite. J Raman Spectrosc. 2009;40(8):855–60.

    Article  CAS  Google Scholar 

  34. Cornu D, Guesmi H, Krafft J-M, Lauron-Pernot H. Lewis acido-basic interactions between CO2 and MgO surface: DFT and DRIFT approaches. J Phys Chem C. 2012;116(11):6645–54.

    Article  CAS  Google Scholar 

  35. Jin F, Al-Tabbaa A. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc. Chemosphere. 2014;117:285–94.

    Article  CAS  Google Scholar 

  36. Yin W, Wang Y, Ji Q, Yao J, Hou Y, Wang L, et al. Synthesis and formation mechanism of micro/nano flower-like MgCO3·5H2O. Int J Miner Metall Mater. 2014;21(3):304–10.

    Article  CAS  Google Scholar 

  37. Chaka AM, Felmy AR. Ab initio thermodynamic model for magnesium carbonates and hydrates. J Phys Chem A. 2014;118(35):7469–88.

    Article  CAS  Google Scholar 

  38. Hill RJ, Canterford JH, Moyle FJ. New data for lansfordite. Miner Mag. 1982;46(341):453–7.

    Article  CAS  Google Scholar 

  39. Farmer VC. The infrared spectra of minerals. London: Mineralogical Society; 1974.

    Book  Google Scholar 

  40. Kloprogge JT, Martens WN, Nothdurft L, Duong LV, Webb GE. Low temperature synthesis and characterization of nesquehonite. J Mater Sci Lett. 2003;22(11):825–9.

    Article  CAS  Google Scholar 

  41. Ferrini V, De Vito C, Mignardi S. Synthesis of nesquehonite by reaction of gaseous CO2 with Mg chloride solution: its potential role in the sequestration of carbon dioxide. J Hazard Mater. 2009;168(2–3):832–7.

    Article  CAS  Google Scholar 

  42. Hopkinson L, Kristova P, Rutt K, Cressey G. Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing solutions. Geochim Cosmochim Acta. 2012;76:1–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Favergeon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdi, S., Vieille, L., Nahdi, K. et al. Synthesis, characterization and low-temperature carbonation of mesoporous magnesium oxide. J Therm Anal Calorim 138, 1923–1933 (2019). https://doi.org/10.1007/s10973-019-08431-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08431-1

Keywords

Navigation