Skip to main content
Log in

Preparation of Al-magadiite material, copper ions exchange and effect of counter-ions: antibacterial and antifungal applications

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, the Al-magadiite is synthesized by the hydrothermal method. It is then used to prepare three copper exchanged materials using copper nitrate, copper chloride, and copper sulfate salts. The materials obtained were characterized and applied as antibacterial and antifungal agents against pathogen strains. The characterization methods showed the presence of four coordinated aluminum atoms in the magadiite framework. The presence of aluminum leads to the total exchange of interlayer sodium cations. Otherwise, the copper exchange rate is influenced by the nature of the counter-ion used. Indeed, the exchanged rate increased in the sense of copper nitrate > copper chloride > copper sulfate. The chemical analysis shows that the ion exchange of Al-magadiite with copper salts is accompanied with dehydration of Cu-exchanged materials. This result was confirmed by XRD diffraction, chemical analysis, and FTIR spectroscopy. This dehydration depends on the nature of the counter ion increase also in the sense of copper nitrate > copper chloride > copper sulfate. Tested as antibacterial and antifungal materials against pathogens strains, all the copper exchanged materials exhibited a good antibacterial activity against Gram-positive bacteria which increased with increasing the copper content of a sample. The best activity was observed in the exchanged sample prepared from copper nitrate. However, a low or no activity is observed against Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.-L. Ma, B. Yang, T. Guo, L. Xie, Appl. Clay Sci. 50, 3 (2010)

    Article  CAS  Google Scholar 

  2. A. Top, S. Ülkü, Appl. Clay Sci. 27, 1 (2004)

    Article  CAS  Google Scholar 

  3. Y. Ouyang, X. Yushan, T. Shaozao, S. Qingshan, C. Yiben, J. Rare Earths 27, 5 (2009)

    Article  Google Scholar 

  4. G. Tong, M. Yulong, G. Peng, X. Zirong, Vet. Microbiol. 105, 2 (2005)

    Article  CAS  Google Scholar 

  5. D. Wei, W. Sun, W. Qian, Y. Ye, X. Ma, Carbohydr. Res. 344, 17 (2009)

    Article  CAS  Google Scholar 

  6. F. Wahid, H.-S. Wang, Y.-S. Lu, C. Zhong, L.-Q. Chu, Int. J. Biol. Macromol. 101, 690 (2017)

    Article  CAS  Google Scholar 

  7. H. Jia, W. Hou, L. Wei, B. Xu, X. Liu, Dent. Mater. 24, 2 (2008)

    Article  CAS  Google Scholar 

  8. S. Demirci, Z. Ustaoğlu, G.A. Yılmazer, F. Sahin, N. Baç, Appl. Biochem. Biotechnol. 172, 3 (2014)

    Article  CAS  Google Scholar 

  9. M. Rivera-Garza, M. Olguın, I. Garcıa-Sosa, D. Alcántara, G. Rodrıguez-Fuentes, Microporous Mesoporous Mater. 39, 3 (2000)

    Article  Google Scholar 

  10. H. Pourabolghasem, M. Ghorbanpour, R. Shayegh, J. Phys. Sci. 27, 2 (2016)

    Article  Google Scholar 

  11. C. Hu, Z. Xu, M. Xia, Vet. Microbiol. 109, 1 (2005)

    Article  CAS  Google Scholar 

  12. H.P. Eugster, Science 157, 3793 (1967)

    Article  Google Scholar 

  13. S.M. Auerbach, K.A. Carrado, P.K. Dutta, Handbook of Layered Materials (CRC Press, Boca Raton, 2004)

    Google Scholar 

  14. F. Feng, K.J. Balkus, J. Porous Mater. 10, 1 (2003)

    Google Scholar 

  15. R.A. Fletcher, D.M. Bibby, Clays Clay Miner. 35, 4 (1987)

    Article  Google Scholar 

  16. M. Sassi, J. Miehé-Brendlé, J. Patarin, A. Bengueddach, Clay Miner. 40, 3 (2005)

    Article  CAS  Google Scholar 

  17. Y.-R. Wang, S.-F. Wang, L.-C. Chang, Appl. Clay Sci. 33, 1 (2006)

    Article  CAS  Google Scholar 

  18. A. Mokhtar, Z.A.K. Medjhouda, A. Djelad, A. Boudia, A. Bengueddach, M. Sassi, Chem. Pap. 72, 1 (2018)

    Article  CAS  Google Scholar 

  19. C. Eypert-Blaison, L.J. Michot, B. Humbert, M. Pelletier, F. Villiéras, J.-B. de la Caillerie, J. Phys. Chem. B 106, 3 (2002)

    Article  CAS  Google Scholar 

  20. N. Homhuan, S. Bureekaew, M. Ogawa, Langmuir 33, 38 (2017)

    Article  CAS  Google Scholar 

  21. C.S. Kim, D.M. Yates, P.J. Heaney, Clays Clay Miner. 45, 6 (1997)

    Article  Google Scholar 

  22. U. Brenn, W. Schwieger, K. Wuttig, Colloid Polym. Sci. 277, 4 (1999)

    Article  Google Scholar 

  23. N. Mizukami, M. Tsujimura, K. Kuroda, M. Ogawa, Clays Clay Miner. 50, 6 (2002)

    Article  Google Scholar 

  24. M. Ogawa, Y. Takahashi, Clay Sci. 13, 4/5 (2007)

  25. S. Benkhatou, A. Djelad, M. Sassi, M. Bouchekara, A. Bengueddach, Desalin Water Treat 57, 20 (2016)

    Article  CAS  Google Scholar 

  26. A. Mokhtar, A. Djelad, M. Adjdir, M. Zahraoui, A. Bengueddach, M. Sassi, J. Mol. Struct. 1171, 190 (2018)

    Article  CAS  Google Scholar 

  27. A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, Res. Chem. Intermed. (2018). https://doi.org/10.1007/s11164-018-3502-1

    Article  Google Scholar 

  28. K. Isoda, K. Kuroda, M. Ogawa, Chem. Mater. 12, 6 (2000)

    Article  CAS  Google Scholar 

  29. O.-Y. Kwon, H.-S. Shin, S.-W. Choi, Chem. Mater. 12, 5 (2000)

    Article  CAS  Google Scholar 

  30. N. Miyamoto, R. Kawai, K. Kuroda, M. Ogawa, Appl. Clay Sci. 19, 1 (2001)

    Article  Google Scholar 

  31. T. Sirinakorn, K. Imwiset, S. Bureekaew, M. Ogawa, Appl. Clay Sci. 153, 1 (2018)

    Article  CAS  Google Scholar 

  32. D.L. Guerra, A.A. Pinto, C. Airoldi, R.R. Viana, J. Solid State Chem. 181, 12 (2008)

    Google Scholar 

  33. Y. Ide, N. Ochi, M. Ogawa, Angew. Chem. 123, 3 (2011)

    Article  Google Scholar 

  34. D.L. Guerra, A.A. Pinto, J.A. de Souza, C. Airoldi, R.R. Viana, J. Hazard. Mater. 166, 2 (2009)

    Article  CAS  Google Scholar 

  35. B. Royer, N.F. Cardoso, E.C. Lima, T.R. Macedo, C. Airoldi, Sep. Sci. Technol. 45, 1 (2009)

    Article  CAS  Google Scholar 

  36. G.L. Paz, E.C. Munsignatti, H.O. Pastore, J. Mol. Catal. A Chem. (2016). https://doi.org/10.1016/j.molcata.2016.02.014

    Article  Google Scholar 

  37. S.J. Kim, M.H. Kim, G. Seo, Y.S. Uh, Res. Chem. Intermed. 38, 6 (2012)

    Google Scholar 

  38. G. Novodárszki, J. Valyon, Á. Illés, S. Dóbé, M.R. Mihályi, React. Kinet. Mech. Catal. 121, 1 (2017)

    Article  CAS  Google Scholar 

  39. X. Sun, J. King, J.L. Anthony, Chem. Eng. J. 147, 1 (2009)

    Article  CAS  Google Scholar 

  40. Z. Wang, T.J. Pinnavaia, Chem. Mater. 10, 7 (1998)

    Google Scholar 

  41. Z. Wang, T. Lan, T.J. Pinnavaia, Chem. Mater. 8, 9 (1996)

    Article  Google Scholar 

  42. A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, Int. J. Biol. Macromol. 118, 2149 (2018)

    Article  CAS  Google Scholar 

  43. N. Takahashi, K. Kuroda, J. Mater. Chem. 21, 38 (2011)

    Article  CAS  Google Scholar 

  44. G. Pál-Borbély, A. Auroux, in Studies in Surface Science and Catalysis, ed. by H.K. Beyer, H.G. Karge, I. Kirisci, J.B. Nagy (Elsevier, Amsterdam, 1995), pp. 55–62

    Google Scholar 

  45. D. Sangian, S. Naficy, F. Dehghani, Y. Yamauchi, Macromol. Chem. Phys. 219, 13 (2018)

    Article  CAS  Google Scholar 

  46. G.B. Superti, E.C. Oliveira, H.O. Pastore, A. Bordo, C. Bisio, L. Marchese, Chem. Mater. 19, 17 (2007)

    Article  CAS  Google Scholar 

  47. W. Lim, J.-H. Jang, N.-Y. Park, S.-M. Paek, W.-C. Kim, M. Park, J. Mater. Chem. A 5, 8 (2017)

    Google Scholar 

  48. A.M. Scheidegger, G.M. Lamble, D.L. Sparks, J. Colloid Interface Sci. 186, 1 (1997)

    Article  Google Scholar 

  49. Q. Wang, Y. Zhang, J. Zheng, Y. Wang, T. Hu, C. Meng, Dalton Trans. 46, 13 (2017)

    Google Scholar 

  50. Y. Chen, G. Yu, F. Li, J. Wei, Appl. Clay Sci. 88, 163–169 (2014)

    Article  CAS  Google Scholar 

  51. Y. Tong, Y. Zhang, N. Tong, Z. Zhang, Y. Wang, X. Zhang, S. Zhu, F. Li, X. Wang, Catal. Sci. Technol. 6, 20 (2016)

    Article  CAS  Google Scholar 

  52. J.P. Montañez, S. Gómez, A.N. Santiago, L.B. Pierella, J. Braz. Chem. Soc. 26, 6 (2015)

    Google Scholar 

  53. M. Zanjanchi, A. Razavi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 57, 1 (2001)

    Article  Google Scholar 

  54. A.N. Pestryakov, V.P. Petranovskii, A. Kryazhov, O. Ozhereliev, N. Pfänder, A. Knop-Gericke, Chem. Phys. Lett. 385, 3 (2004)

    Article  CAS  Google Scholar 

  55. I.R. Iznaga, V. Petranovskii, G.R. Fuentes, C. Mendoza, A.B. Aguilar, J. Colloid Interface Sci. 316, 2 (2007)

    Google Scholar 

  56. S. Velu, K. Suzuki, S. Hashimoto, N. Satoh, F. Ohashi, S. Tomura, J. Mater. Chem. 11, 8 (2001)

    Article  CAS  Google Scholar 

  57. Z. Ismagilov, S. Yashnik, V. Anufrienko, T. Larina, N. Vasenin, N. Bulgakov, S. Vosel, L. Tsykoza, Appl. Surf. Sci. 226, 1 (2004)

    Article  CAS  Google Scholar 

  58. A. Mokhtar, A. Djelad, A. Boudia, M. Sassi, A. Bengueddach, J. Porous Mater. 24, 6 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Mokhtar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahraoui, M., Mokhtar, A., Adjdir, M. et al. Preparation of Al-magadiite material, copper ions exchange and effect of counter-ions: antibacterial and antifungal applications. Res Chem Intermed 45, 633–644 (2019). https://doi.org/10.1007/s11164-018-3634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3634-3

Keywords

Navigation