Skip to main content

Advertisement

Log in

THz quad-beam holographic antenna with independent beam control and low sidelobe levels

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

A quad-beam antenna with a controlled electromagnetic surface with high gain is proposed for THz applications. The electromagnetic surface is created based on the holographic principle. Three different designs of the quad-beam (beams in directions of (θ1, φ1), (θ2, φ2), (θ3, φ3), (θ4, φ4)) antenna based on holographic surfaces are presented to show how holographic surfaces can be tuned to provide radiation beams in different directions (by varying θ°s and φ°s) as well as with different gain values (by varying the areas of the holographic surface). In this way, these novel proposed designs provide extra degrees of freedom as compared to legacy designs. All designs are numerically evaluated and tested by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jha, K. R., & Singh, G. (2014). Terahertz sources and antennas. In Terahertz Planar Antennas for Next Generation Communication. Springer. https://doi.org/10.1007/978-3-319-02341-0_1.

  2. Song, H.-J., & Nagatsuma, T. (2011). Present and future of terahertz communications. IEEE Transactions on Terahertz Science and Technology, 1(1), 256–263. https://doi.org/10.1109/TTHZ.2011.2159552

    Article  Google Scholar 

  3. Akyildiz, I. F., Han, C., Hu, Z., Nie, S., & Jornet, J. M. (2022). Terahertz band communication: An old problem revisited and research directions for the next decade. IEEE Transactions on Communications, 70(6), 4250–4285. https://doi.org/10.1109/TCOMM.2022.3171800

    Article  Google Scholar 

  4. Zhu, H., Zhang, Y., Wu, C., Xiao, F., Xu, R., & Yan, B. (2020). Integrated dipole antenna with bandwidth enhancement for terahertz waveguide-to CPWG transition. IEEE Antennas Wireless Propagation Letters, 19(12), 2433–2436.

    Article  Google Scholar 

  5. Liang, J., Gao, W., Lees, H., & Withayachumnankul, W. (2021). All-silicon terahertz planar horn antenna. IEEE Antennas and Wireless Propagation Letters, 20(11), 2181–2185. https://doi.org/10.1109/LAWP.2021.3094310

    Article  Google Scholar 

  6. Park, S.-G., Choi, Y., Oh, Y.-J., & Jeong, K.-H. (2012). Terahertz photoconductive antenna with metal nanoislands. Optical Material Express, 20(23), 25530–25535. https://doi.org/10.1364/OE.20.025530

    Article  Google Scholar 

  7. Xu, J., Tao, L., Zhang, R., Hao, Y., Huang, S., & Bi, K. (2017). Broadband complementary ring-resonator based terahertz antenna. Optical Material Express, 25(15), 17099–17104. https://doi.org/10.1364/OE.25.017099

    Article  Google Scholar 

  8. Gao, S. S., Qiao, H.-M., & Li, J.-L. (2019). Multibeam holographic antenna for terahertz applications. Optik-International Journal of Light and Electron Optics, 181, 538–544. https://doi.org/10.1016/j.ijleo.2018.12.058

    Article  Google Scholar 

  9. Dooley, R. P. (1965). X-band holography. Proceedings of the IEEE, 53(11), 1733–1735. https://doi.org/10.1109/PROC.1965.4350

    Article  Google Scholar 

  10. Aoki, Y. (1968). Microwave holography by a two-beam inntereferance method. Proceedings of the IEEE, 56(8), 1402–1403. https://doi.org/10.1109/PROC.1968.6619

    Article  Google Scholar 

  11. Patel, A. M., & Grbic, A. (2011). A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface. IEEE Transactions on Antennas and Propagation, 59(6), 2087–2096. https://doi.org/10.1109/TAP.2011.2143668

    Article  Google Scholar 

  12. Ramalingam, S., Balanis, C. A., Birtcher, C. R., & Shaman, H. N. (2019). Polarization diverse holographic metasurfaces. IEEE Antennas and Wireless Propagation Letters, 18(2), 264–268. https://doi.org/10.1109/LAWP.2018.2888811

    Article  Google Scholar 

  13. ElSherbiny, M., Fathy, A. E., Rosen, A., Ayers, G., & Perlow, S. M. (2004). Holographic antenna concept, analysis, and parameters. IEEE Transactions on Antennas and Propagation, 52(3), 830–839. https://doi.org/10.1109/TAP.2004.824673

    Article  Google Scholar 

  14. Gan, L., Jiang, W., Gong, S., Chen, Q., & Li, X. (2018). A low-profile and high-gain circularly polarized antenna based on holographic principle. In 2018 Asia Pacific Microwave Conference (APMC) (pp. 1031–1033). https://doi.org/10.23919/APMC.2018.8617191.

  15. Lv, H., Huang, Q., Liu, J., Hou, J., & Shi, X. (2019). Holographic design of beam switchable leaky-wave antenna. IEEE Antennas and Wireless Propagation Letters, 18(12), 2736–2740. https://doi.org/10.1109/LAWP.2019.2950382

    Article  Google Scholar 

  16. Pandi, S., Balanis, C. A., & Birtcher, C. R. (2015). Sinusoidally modulated metasurface antenna excited by aperture coupling. In 2015 International Conference on Advanced Technologies for Communications (ATC) (pp. 355–357). https://doi.org/10.1109/ATC.2015.7388350

  17. Movahhedi, M., Karimipour, M., & Komjani, N. (2019). Multibeam bidirectional wideband/wide-scanning-angle holographic leaky-wave antenna. IEEE Antennas and Wireless Propagation Letters, 18(7), 1507–1511. https://doi.org/10.1109/LAWP.2019.2920953

    Article  Google Scholar 

  18. Gao, S. S., Qiao, H. M., & Li, J. L. (2014). High gain holographic antenna for terahertz applications. Optical Material Express, 8(2), 452–462. https://doi.org/10.1364/OME.8.000452

    Article  Google Scholar 

  19. Moeini, M. M., Oraizi, H., Amini, A., & Nayyeri, V. (2019). Wide-band beam-scanning by surface wave confinement on leaky wave holograms. Scientific reports, 9(1), 1–11.

    Article  Google Scholar 

  20. Sievenpiper, D. F. (1999). High-impedance electromagnetic surfaces.

  21. Wu, G.-B., Chan, K. F., Shum, K. M., & Chan, C. H. (2021). Millimeter-wave holographic flat lens antenna for orbital angular momentum multiplexing. IEEE Transactions on Antennas and Propagation, 69(8), 4289–4303. https://doi.org/10.1109/TAP.2020.3048527

    Article  Google Scholar 

  22. Pan, S., Lin, M., Xu, M., Zhu, S., Bian, L.-A., & Li, G. (2022). A Low-profile programmable beam scanning holographic array antenna without phase shifters. IEEE Internet of Things Journal, 9(11), 8838–8851. https://doi.org/10.1109/JIOT.2021.3116158

    Article  Google Scholar 

  23. Yerrola, A. K., Arya, R. K., Ali, M., & Murmu, L. (2021). Directional monopole using holographic surfaces with reduced sidelobe level. In 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) (pp. 1–3). https://doi.org/10.23919/URSIGASS51995.2021.9560429.

  24. Ren, P., Jiang, L., & Li, P. (2022). Graphene based tunable terahertz holographic antennas. IEEE Open Journal of Antennas and Propagation, 3, 324–332. https://doi.org/10.1109/OJAP.2022.3158203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Yerrola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yerrola, A.K., Arya, R.K., Ali, M. et al. THz quad-beam holographic antenna with independent beam control and low sidelobe levels. Wireless Netw 29, 3707–3716 (2023). https://doi.org/10.1007/s11276-023-03418-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03418-1

Keywords

Navigation